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  Abstract   The employment of physical tools to assist teaching and learning of 
mathematics did not begin with electronic devices, and has a much longer history 
than is often recognized. At times, technology has functioned as the inventive 
embodiment of mathematical ideas, progressing somewhat in step with the evolu-
tion of mathematics itself. At other times, technology has entered mathematics from 
outside, notably from commerce and science. This chapter surveys the evolution 
and curricular in fl uence of technology in mathematics instruction in the Eastern and 
Western worlds from ancient times to the present day, with the primary focus being 
on the last 200 years. Past technology is categorized into tools for information storage, 
tools for information display, tools for demonstration, and tools for calculation. It is 
argued that today’s computing technology offers teachers and students the potential 
to move beyond these categories, and to experience mathematics in ways that are 
different from traditional school mathematics curricula. A window is opened 
through which mathematics teaching and learning might enter into a new epistemo-
logical domain, where knowledge becomes both personal and communal, and in 
which connective and explorative mathematical knowledge becomes vastly more 
accessible.      
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   Introduction 

 Since the advent of the electronic calculator it has become customary for discussion 
of “technology” in mathematics education to refer almost exclusively to use of 
electronic devices. However, this represents a manifestation of historical amnesia. 
The employment of physical tools to assist teaching and learning of mathematics 
has a much longer history, and this history provides a valuable perspective on cur-
rent proposals and debates. At times technology has functioned as the inventive 
embodiment of mathematical ideas, progressing somewhat in step with the evolu-
tion of mathematics itself. But technology also enters mathematics from the larger 
world outside, notably from commerce and science. Moreover, technological tools 
used by mathematical practitioners need not translate immediately into mathemat-
ics education, and tools useful in an educational setting need have little appeal for 
professional users of mathematics. Educational use of technology is also subject to 
overarching educational philosophies prevailing at any given time and place; some 
would call these fads and fashions. The interactions among technology, mathematics, 
and education are thus unavoidably complex, and cannot be described by any simple 
model of historical progress over time. 

 The historical record suggests that the use of tools always has been inseparable 
from expressing and doing mathematics. In the ancient Western world the 
Babylonians carved solutions to geometric problems on small pieces of round clay. 
Possibly students did these as assessment tasks—for instance to  fi nd the length of a 
diagonal of a square using the square root of two. The ancient artefact depicted in 
Figure  17.1a  might have been the work carried out by such a student. Another 
Babylonian student may have used a “calculator” to work out a rather complex 
arithmetic problem. In this case his tool was a counting board made from a slab of 
stone with groups of markings (parallel lines, semi-circles) on it. The student put 
pebbles on it to work out his answer. A version of this counting board, which dated 

  Figure 17.1.    ( a ) Mathematical exercise to  fi nd diagonal of square, using the square root of 2 [Yale 
Babylonian Collection   http://www.yale.edu/nelc/babylonian.html    ], ( b ) The Salamis Tablet: The oldest 
counting board. It is made of marble. Photo from the National Museum of Epigraphy, Athens.       
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back to 300  bce , was found on the Greek island of Salamis in 1846 (Figure  17.1b ). 
In these ancient artefacts mathematics seems to have been embodied and was being 
preserved under the inventiveness of ancient craft.  

 Looking to the Eastern world, there was a different type of embodiment. In 
ancient Chinese mythology, there were demigods  Nuwa  and  Fuxi  who were the 
progenitors of mankind and shapers of human society. Legends say that  Nuwa  and 
 Fuxi  invented  guī  (compasses) and  ju  (set-square) to shape the world. On an ancient 
stone carving found inside a tomb from the East Han dynasty (25 to 220  ce ) there is 
engraved an intertwined image of  Nuwa  and  Fuxi  with  Nuwa  holding a  guī  and  Fuxi  
holding a  ju  (Figure  17.2a ).  

 For the ancient Chinese, the basic concept of the world was “heaven is round, 
earth is square” and there was an ancient motto saying that “without  guiju , there are 
no square and circle.” This geometrical intuition about the physical world became 
metaphoric in the human world. The connotative usage of the word  guiju  refers to 
orderliness according to underlying rules, and even applies to human affairs. Hence, 
for the Chinese, circle and square were elemental shapes and rules of the universe 
and they were embodied and symbolized by the tools that produced them. Notice that 
the two arms of the Chinese set square were not of the same length (Figure  17.2b ). 
This might indicate that the ancient Chinese were already familiar with a Pythagorean-
type relation about right-angled triangles. (The Chinese version of Pythagoras’ 
Theorem was  Gougu : Chapter 9 of the ancient Chinese mathematics treatise  The 
Nine Chapters ). Thus, behind the design of  ju  there lay an embodiment of a piece of 
mathematical knowledge. This kind of knowledge mediation, using tools embodying 
mathematics, was even more deep-seated in another Chinese traditional knowledge 
system mediated by symbolic visual tools. Ancient Chinese used dot and line pattern 
diagrams to represent and interpret the phenomenological world. In Figure  17.3  
there are three elemental number pattern diagrams that constituted the root of 
Chinese thought and culture. Chinese used these diagrams (and derivations of them) 
as coding tools to decipher the hidden laws of the universe.  

  Luò Shū  (The Luò River Writing) and  He Tu  (The River Map) were two different 
but related arrangements of 1, 2, 3, 4, 5, 6, 7, 8 and 9 using black and white dots. 

  Figure 17.2.    ( a )  Nuwa  ( left ) and  Fuxi  ( right ) with  Nuwa  holding a  gu   and  Fuxi  holding a  ju  [  http://
sunrise.hk.edu.tw/~planning/sm/images/exect-1/book-j002.JPG    ]; ( b ) A Chinese set-square.       
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There were mythical stories about their origins signifying that these patterns were 
indeed very ancient and sacred.  Luò Shū  is a three-by-three magic square. It has 
intriguing mathematical properties and has had a deep in fl uence in Chinese culture 
(Berglund,  1990  ) .  He Tu  is a derivation of  Luò Shū:  it emphasizes the concept of 
duality (even and odd,  yin  and  yang ).  Bā guà  is the kernel of a binary coding system 
that classi fi es natural and human phenomena and is intimately connected to  Luò 
Shū . These were the fundamental symbolic tools by which the ancient Chinese 
derived their concept of the world. They are supposed to embody numerical and 
geometrical information that guided the development of Chinese civilization. In 
particular, these diagrams were instrumental in facilitating mathematical calcula-
tions to predict occurrences of human affairs and natural phenomena. 

 The above examples from ancient Babylon and China illustrate that humans 
invent tools, symbols, and technology that embody mathematics. By this we mean 
that an object has been created, possibly simple, possibly very complex, which in 
some sense contains a mathematical idea or procedure. The object is capable of 
illustrating the idea for an observer, of facilitating the procedure, or of providing 
some combination of these services. Such tools can in turn endow users of the tools 
with enhanced ability to deepen their mathematical experiences. Mathematical 
experience can be thought of as “the discernment of invariant pattern concerning 
numbers and/or shapes and the re-production or re-presentation of that pattern” 
(Leung,  2010  ) . Moreover, mathematical concepts are often developed in the process 
of using tools, whether the tools were designed for mathematical purposes or not. 
Tools used for the general betterment of social conditions, or for encapsulating 
features of a cultural worldview, often carry with them indigenous mathematical 
knowledge. In ancient India (800–500  bce ), notions of geometric shape and mea-
suring techniques emerged in Sanskrit texts on ritual practices, such as prescriptions 
for constructing  fi re altars:

  The footprints for the altars were laid out on leveled ground by manipulating cords of various 
lengths attached to stakes. The manuals described the required manipulations in terse, cryptic 
phrases—usually prose, although sometimes including verses—called  sūtras  (literally 
“string” or “rule, instruction”). The measuring cords, called ś ulba  or  śulva , gave their name 
to this set of texts, the Ś ulba-sūtras , or “Rules of the cord.” (Plofker,  2008 , p. 17)   

 The Mayan calendar wheels (1000  bce ) in Central America, based on a vigesimal 
(base 20) number system, formed a complete philosophy of cyclic time that was 

  Figure 17.3.    Three fundamental symbolic tools that form the basis of Chinese culture.       
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believed to guide human destiny (Coe,  1993  ) . The Incas, in the 1400s and 1500s in 
what is now Peru, used a complex system of knotted strings ( quipus ) as a data col-
lecting and recording device which in effect served as a numerical calculator (Ascher 
& Ascher,  1997  ) . The Marshall Islanders of the South Paci fi c used palm ribs and 
coconut  fi ber to construct navigation stick charts to represent the behaviour of wave 
fronts (refraction, re fl ection and diffraction) as they approach land (Ascher,  2002  ) . 

 It must be acknowledged that our understanding of the educational practices 
associated with the above examples is very sparse. We see also from these examples 
that “technology,” if interpreted broadly, can encompass a vast range of human 
activities, including mathematical notation and language in general. To make our 
discussion manageable, we therefore de fi ne technology in education more narrowly, 
con fi ning ourselves to physical devices used with the aim of enhancing or amplifying 
the abilities of the teacher or the student in the mathematics classroom. Thus, although 
for our purposes we will not count a tool such as logarithms as a technology, the slide 
rule, a physical device embodying logarithms, will fall under our purview. Electronic 
devices, and algorithms realized on electronic devices, digital or analog, are also 
within our scope, inasmuch as there is a physical object involved. In the remainder 
of this chapter we offer brief histories of several representative devices that have 
been used in classrooms around the world. To make this survey more relevant to the 
present day, we furthermore focus mainly on the last 200 years, when mathematics 
education began to become (haltingly and unevenly across the globe) not merely an 
acquirement of a small elite, but a mass phenomenon. 

 We introduce a simple categorization to provide a framework for discussing 
these tools: tools for information storage, tools for information display, tools for 
demonstration, and tools for calculation. These categories are admittedly not entirely 
distinct, and we will see that they become less useful as we move into the electronic 
era—but they serve well for setting the stage. 

   Tools of Information Storage 

 The quintessential information storage tool is the book, which retains a powerful 
presence in worldwide mathematics education to the present day. The book has a 
history almost as old as civilization itself, from clay tablets, to the papyrus scroll, to 
the handwritten codex, to the printed book, and on to the modern e-book (Hobart & 
Schiffman,  1998  ) . But the history of the mathematics textbook is much shorter, and 
falls almost entirely within the 200-year window mentioned above, especially if we 
neglect advanced monographs in favour of books actually used in schools. Certainly, 
for many centuries individuals learned mathematics independently from books, and 
likewise tutors used books to teach mathematics to individuals and small-groups, 
but a new era began with the advent of mass schooling and the mass-produced text-
book. These interconnected phenomena did not become prominent until the 19th 
century in Europe and the Americas, and were materially aided by both political and 
economic developments. On the political side there was rising support for providing 
education for a larger proportion of children. On the economic side, there were 
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increasing ef fi ciencies in the production of paper and books, and increasing facilities 
for transporting goods over long distances, resulting in the ability to manufacture 
and distribute large numbers of books relatively cheaply (Cordasco,  1976  ) . 

 When books were scarce, if a class had a book at all it would frequently be the 
exclusive possession of the teacher. If the class was of any appreciable size this led 
to the recitation method of teaching, which often meant the teacher simply reading 
aloud from the book and the pupils attempting, through writing or sheer memoriza-
tion, to retain what was read, and then to recite it back to the teacher. Notable attempts 
to scale this system up were made in England and its colonies in the late 18th 
and early 19th centuries with the so-called monitorial system, in which the teacher 
would  fi rst teach a group of more advanced students, who would in turn teach less 
advanced students. In mathematics, in particular, the recitation method and the 
monitorial system primarily supported a curriculum centred on the rote learning of the 
rudiments of arithmetic (Butts,  1966  ) . 

 But with cheaper books came the possibility (though still often not the reality) 
that not merely the teacher but also many students would have individual access to 
a textbook. A student with a book could now be asked to read that book both inside and 
outside of class and to work problems assigned from the book. More sophisticated 
mathematics instruction for a classroom of pupils was now far more feasible than 
previously. Thus the rising presence of algebra and geometry in addition to arithme-
tic in the curriculum of 19th-century schools surely owes a good deal to the prolif-
eration of textbooks. The use of textbooks could also serve to hide problems arising 
from inadequate teacher preparation. This was certainly the case in the 19th-century 
USA (Tyack,  1974  ) . 

 Moreover, the system ampli fi ed itself: a greater supply of books produced a 
greater demand for books, which in turn produced yet more books, and so on. 
In mathematics this resulted not merely in the creation of individual textbooks, 
but entire series of textbooks covering the whole range of the curriculum from the 
lowest grades to the colleges: basic arithmetic to the differential and integral calcu-
lus. In Europe and North America by the end of the 19th century there was a well-
established textbook industry, and there were specialist authors who became wealthy 
writing textbooks. In the USA, notable 19th-century authors of mathematics text-
books included Charles Davies, Joseph Ray, and George Wentworth (Kidwell, 
Ackerberg-Hastings, & Roberts,  2008  ) . Seymour and Davidson  (  2003  )  asserted that 
“until the late 1960s, the textbook was virtually the exclusive curricular and peda-
gogical approach to the teaching and learning of mathematics in the United States 
and Canada” (p. 990). A study at the close of the 20th century concluded that in the 
USA the textbook remained the main source used by mathematics teachers to plan 
daily classroom instruction (Harel & Wilson,  2011  ) . 

 One effect of textbook proliferation should be especially noted: the assistance 
provided to standardization of the curriculum, and the dif fi culty of dislodging cur-
riculum topics once they were printed in widely distributed textbooks. This is espe-
cially striking in the USA, which despite a long tradition of local control of schools, 
and avoidance of an of fi cial national curriculum, rapidly converged on a de facto 
standard curriculum in mathematics, as a relatively small number of textbooks 
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began to dominate the market. Genuinely innovative mathematics textbooks have 
never fared well in the US market. Even during the “New Math” era of the1950s 
and 1960s, supposedly a time of major upheaval, there was substantial continuity 
in high school textbooks from earlier decades (Dolciani, Berman, & Freilich,  1965 ; 
Freilich, Berman, & Johnson,  1952  ) . Many students today have access to textbooks 
in electronic form, as a supplement to or instead of the traditional paper book. 
Whether this transition will have a marked effect on the mathematics curriculum 
is unclear.  

   Tools of Information Display 

 The book of course functions as a display device for individuals, as well as a 
storage device, but with mass education came a pressing need for multiple individu-
als to view the same display simultaneously. Here the representative tool is the 
blackboard or chalkboard and its offshoots. Prior to the wall-mounted blackboard, 
there had been a slow evolution of handheld writing surfaces, culminating in the 
slate, which could be written on with chalk. In Europe and North America this was 
often a facet of the recitation method of instruction. The teacher could read a problem 
from the book and the students could copy and display their solutions on their slates 
(Burton,  1850 ; Cajori,  1890  ) . 

 Prior to the emergence of both the textbook and the blackboard, it was also common 
practice in many schools in Europe and North America for each student to produce 
a “copybook” or “cipherbook.” Beginning with a collection of blank pages (paper 
and binding quality could vary widely, depending on economic circumstances) the 
student would copy out the material spoken aloud by the teacher. In the case of a 
teacher reading from a printed book this could often mean that the student was 
almost literally producing a handwritten copy of the book, or the problems from the 
book. Here again the use of copybooks primarily supported arithmetic instruction, but 
in some cases this could be fairly elaborate, including square and cube roots and com-
plicated problems from commerce and business. The teacher could periodically inspect 
the copybooks, so that they could have functioned as what more recent educators 
would term a “portfolio.” But how rigorously 18th- and 19th-century copybooks 
were evaluated for mathematical correctness is unclear, and some may have been 
assessed more on aesthetic grounds, such as penmanship (Clements & Ellerton,  2010 ; 
Cohen,  1982  ) . 

 The erasable blackboard, written on with chalk, spread quietly into schools in the 
early 1800s and was well established by the end of that century (Kidwell et al.,  2008  ) . 
It allowed the teacher to display complicated verbal or pictorial details with far more 
exactitude than merely reading aloud from a book. Moreover, it allowed students to 
work out problems on the board themselves, displaying their efforts for both the 
teacher and other students to see and comment on, thus changing the personal dynam-
ics of the classroom. In mathematics the blackboard worked in conjunction with the 
textbook to promote the rise of both algebra and geometry in the curriculum. 
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 Blackboards have continued in use in mathematics classrooms to the present 
time. In many cases the chalkboard has been replaced by the “dry-erase” or “white-
board,” but with no essential change in functionality. The interactive whiteboard, 
developed in the late 20th century, represents a major innovation, allowing the mate-
rial displayed on the board to be connected directly to a computer. Opinions vary 
widely on the value of this technology in the classroom (Smith, Higgins, Wall, & 
Miller,  2005 ; Wood & Ash fi eld,  2008  ) . Tablet personal computers offer similar 
functionality, including handwriting recognition, whereby the computer is able to 
interpret handwriting drawn on the screen, not merely type entered via a keyboard 
(Anderson,  2011  ) . 

 Another signi fi cant classroom display technology is the overhead projector. 
It came to classrooms in the USA after World War II (Kidwell et al.,  2008  ) . Much 
more than the blackboard, this technology usually remained the exclusive domain 
of the teacher. It had two primary attractions. First, it allowed the teacher to con-
tinue to face the students while displaying materials to them. Second, it allowed the 
teacher to display elaborate transparencies created before class. For example, a 
teacher of solid geometry could prepare complicated diagrams with an exactitude 
that could never be hoped for in hand-drawn diagrams quickly improvized while 
watched by the students. On the other hand, reliance on prepared slides sometimes 
encouraged a too rapid succession of material that overloaded the students’ ability 
to assimilate the information presented. 

 Overhead projectors have continued in use to the present, but in many cases have 
been superseded by new technologies allowing greater ease of use and a greater 
range of display functionality. Computer projection systems permit the display of 
any image, static or moving, available to the host computer, and in particular allow 
slide shows formerly done via transparencies on an overhead projector to be accom-
plished via software such as PowerPoint. Another new technology is the document 
camera (also known as an image presenter or visualizer), which permits any docu-
ment, or even a three-dimensional object, to be displayed on the overhead screen 
without any prior preparation of the document or object (Ash,  2009  ) . 

 Many classrooms in the 21st century provide not only a computer and projector 
for the teacher but also a computer for each student, networked with the teacher’s 
computer. In some ways this is a return of the handheld slate, with a vast increase in 
functionality. Its potential for mathematics instruction is just being tapped.  

   Tools of Demonstration 

 By tools of demonstration we refer to objects to be handled (physically, or, in 
more recent times, virtually) by either the teacher or the student, with the aim of 
conveying increased understanding of a concept or procedure. Rather than being 
tools of education in general, such tools have usually been more unique to mathe-
matics than the tools of information storage and display. However, bringing new 
demonstration tools into the classroom has often only occurred in conjunction 
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with some larger movement in educational philosophy that has affected more than 
mathematics alone. 

 The history of demonstration tools has been strikingly uneven. A few have been 
deeply imbedded for millennia, while others have come and gone with little trace. 
We have already noted the important place of the compass in Chinese thought, and it 
is well known that the classical geometric drawing instruments in the European 
tradition are the straightedge and the compass (often referred to as a pair of com-
passes). The Greek mathematician Euclid, in his  Elements  (ca. 300  bce ), gave priority 
to constructions based on these instruments. Probing the limits of such construc-
tions (squaring the circle, trisecting the angle, etc.) was a spur to mathematical 
researchers from antiquity to the 19th century. Indeed, although other instruments 
were often used for various practical purposes, such uses were long considered 
illegitimate for mathematical demonstration (Knorr,  1986  ) . Since Euclid served as 
the basis of geometry instruction in Europe and its colonies for centuries, the 
straightedge and the compass became regular features of this instruction. 

 In the 17th century, René Descartes, the great French philosopher and mathema-
tician, strenuously challenged the straightedge-compass tradition, and made free 
use of more complicated mechanisms for geometric constructions. However, this 
had little in fl uence on education. The discovery of linkages capable of producing 
exact straight lines in the 1870s produced a brief  fl urry of interest among mathema-
ticians, and even prompted some to propose a refashioning of geometry education. 
In 1895 the mathematician G. B. Halsted unsuccessfully called for the Hart inversor 
(see Figure  17.4 ) to be a standard part of every elementary geometry course. Such 
devices have periodically created excitement among mathematics teachers and 
teacher educators in more recent years, but they have never become more than an 
enrichment topic (Kidwell et al.,  2008  ) .  

  Figure 17.4.    The Hart Inversor, a linkage which translates rotary into straight line motion [National 
Museum of American History collections, gift of Department of Mathematics, University of 
Michigan. Smithsonian Negative no. 2006–3].       
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 In Europe and North America, there has been a discernable increased use of 
demonstration tools from the beginning of the 19th century, driven by greater 
emphasis on using sense data, especially visual, to convey the abstract concepts of 
mathematics. This has remained a feature, at least in theoretical pronouncements, of 
much mathematics education to the present day (Bartolini Bussi, Taimina, & Isoda, 
 2010  ) . The empirical side of the 17th-century scienti fi c revolution appears to have 
been crucial, with knowledge coming to be understood to depend not only on reason 
but also on careful sifting of material evidence; induction in addition to deduction. 

 But although there were some precursors, it was not until the 19th century that this 
stimulus was widely felt in education. Swiss educator Johann Pestalozzi and his fol-
lower Friedrich Froebel were especially in fl uential in bringing material objects into the 
classroom to be seen or touched by the students. These included objects associated with 
mathematics, such as geometric solids. Froebel, teaching in Swiss and German towns in 
the 1830s and 1840s, pioneered the concept of kindergarten for very young children. He 
recommended organized play with blocks, which would introduce the child to geometric 
shapes and to arithmetic ideas up to simple fractions. Froebel’s ideas spread across Europe 
and to the USA in the late 19th century (Allen,  1988 ; Butts,  1966  ) . 

 One 19th-century educational tool which may have bene fi ted from Froebel’s 
in fl uence was the cube root block, now little remembered. It is based on a method 
of extracting cube roots based on the binomial expansion of ( a  +  b ) 3 , which can be 
illustrated with a cube of side  a  +  b . (There is a better-known corresponding method 
for extracting square roots which can be illustrated with a diagram of a square of 
side  a  +  b ). Illustrations of this cube can be found in English arithmetic texts from 
the 17th century (e.g., Recorde,  1632  ) , but it was not until the middle of the 19th 
century that it became an actual classroom device (see Figure  17.5 ). With the aim of 
helping students understand the aforementioned cube root algorithm, scienti fi c 

  Figure 17.5.    Illustration of a cube root block.       
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instrument companies in the USA began to produce and market wooden cube root 
blocks that could be dissected into constituent parts.  

 These blocks, for advanced arithmetic students, were often advertized with other 
classroom objects, such as cones for displaying conic sections, and Froebel’s blocks 
for kindergarten children. Diagrams based on the blocks were a staple of school 
arithmetic textbooks for many years, but the approach had detractors. The cube root 
block algorithm never gained any favour with engineers and other users of mathe-
matics for practical purposes, since the ef fi ciency of the algorithm is low compared 
to other methods, such as logarithms or Newton’s method. Moreover, how often did 
mathematical practitioners even need to compute cube roots? By the 1890s many 
mathematics educators in the USA were campaigning against cube root extraction, 
but it persisted in the curriculum well into the 20th century. Cube root blocks were 
still being sold in the 1920s (Kidwell et al.,  2008  ) . Since no studies of the effective-
ness of the cube root block as a teaching technique are known, it must be judged a 
demonstration tool of unclear bene fi t to support an algorithm of dubious value. 
Nevertheless for a time it was well ensconced in the curriculum. 

 The end of the 19th century and the beginning of the 20th saw another surge of 
interest in concrete instructional methods, at both the highest and lowest levels of 
the curriculum. For advanced instruction this was strongly in fl uenced by a felt need 
to better align mathematics with science and engineering. In France, the mathemati-
cian Émile Borel, concerned that mathematics might lose its place in education due 
to a public perception that it was useless, called for more practical instruction, 
including augmenting geometry teaching with surveying exercises. He recom-
mended “laboratories de mathématiques,” which would make many connections 
with physics (Borel,  1904  ) . In the United Kingdom, the engineer John Perry pro-
moted a more concrete and visual approach to mathematics education, helping to 
break the unquestioned dominance of formal Euclidean geometry in British educa-
tion. His in fl uence extended to both Japan (where he worked for a time in the 1870s) 
and the USA (Brock,  1975 ; Brock & Price,  1980  ) . In the USA, Perry’s most promi-
nent disciple was pure mathematician Eliakim Hastings Moore of the University of 
Chicago, who championed a “laboratory method” of teaching mathematics at both 
the secondary and college levels. This involved strong emphasis on developing intu-
ition in the student through physical models, weighing and measuring, and drawing 
on squared paper (an uncommon classroom item up to that time). Moore saw Perry’s 
ideas as helping students aiming to be scientists and engineers, while at the same 
time supporting future teachers of mathematics and research mathematicians. His 
curricular program was brie fl y signi fi cant in the USA, but other than an increased use 
of graphs in algebra instruction, its long-term stimulus was slight (Roberts,  2001  ) . 

 Moore was also greatly in fl uenced by the German mathematician Felix Klein, 
who likewise sought to make mathematics education more supportive of engineering. 
Klein championed the use of geometric models in classroom instruction. This built 
on a tradition originating in France in the early 19th century, especially with mathe-
matician Gaspard Monge. Models made of plaster, string, wood, and paper were 
developed in France and Germany. These went beyond the simple solids of Pestalozzi 
and Froebel to include hyperboloids and other more advanced structures, all the way 
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to objects at the forefront of mathematical research, such as Riemann surfaces. Some 
of the string models were even dynamic; that is, they could be manipulated to change 
shape. With Klein’s instigation, German models, mainly of plaster, were manufac-
tured and sold worldwide. Colleges and universities in the USA were among the 
buyers, but there is little evidence to support extensive classroom use of these mod-
els; more likely they were treated more as museum pieces. There were also isolated 
enthusiasts at the secondary school level in the USA, who enjoyed training students 
to create geometric models, but their effectiveness is very hard to gauge (Committee 
on Multi-Sensory Aids,  1945 ; Kidwell et al.,  2008  ) . 

 Meanwhile in Italy, Maria Montessori inherited Froebel’s emphasis on teaching 
young children through tactile experience, buttressing her theories by appealing to 
more recent developments in psychology and anthropology. She advised that begin-
ning students be given the opportunity to handle objects of various shapes—such as 
cylinders of varying heights and diameters—continually. Colored cubes and rods 
were a central feature of her approach to arithmetic. Montessori schools were 
opened in Italy and Switzerland. After an initially rapid growth of interest in her 
work in the USA in the 1910s, her in fl uence declined, in part due to criticism from 
American educational theorists such as William Heard Kilpatrick of Columbia 
University (Kramer,  1976 ; Whitescarver & Cossentino,  2008  ) . 

 The USA experienced a Montessori revival beginning in the 1950s, and this 
closely coincided with, and perhaps helped to support, renewed interest in both the 
USA and Europe in using physical objects speci fi cally in teaching mathematics. 
Other sources of support were found in the work of educational psychologists 
whose in fl uence extended well beyond mathematics, such as the Swiss, Jean Piaget, 
and the Russian, L. S. Vygotsky. Among those in the 1960s who helped popularize 
what came to be called “manipulatives” in mathematics instruction were the Belgian 
educator Emile-Georges Cuisenaire, the Egyptian-born British educator Caleb 
Gattegno, and the Hungarian-born educator Zoltan Dienes, who worked in Great 
Britain, Australia, Canada, and elsewhere (Jeronnez,  1976 ; Seymour & Davidson, 
 2003  ) . This period also saw the rise of the “New Math,” a conglomeration of cur-
riculum reform programs initially centred in the USA but eventually extending well 
beyond. Some would see manipulatives such as Cuisenaire rods as incongruous 
with the emphasis on axiomatics and abstraction characteristic of many of the New 
Math programs, although Dienes ( 1960,   1971   ), for one, saw no contradiction. In 
any case, the popularity of certain manipulatives to some extent rose and fell with 
public perceptions of the New Math as a whole. Nevertheless, while New Math 
programs often experienced severe backlash, the use of manipulatives never went 
into total eclipse. 

 The presence of manipulatives in classrooms during the last 50 years is testi fi ed 
to by the fact that the topic has been an active subject of empirical research from the 
1960s to the present (Karshmer & Farsi,  2008 ; McNeil & Jarvin,  2007 ; Moyer, 
 2001 ; Sowell,  1989  ) . This research has painted a mixed picture of the effectiveness 
of manipulatives. Although some studies have detected very positive effects, others 
have found that these effects were negated by poor teaching techniques. Some 
research even suggested that manipulatives could harm students by burdening them 
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with the problem of “dual representation.” According to McNeil and Jarvin  (  2007  ) , 
“a given manipulative needs to be represented not only as an object in its own right, 
but also as a symbol of a mathematical concept or procedure” (p. 313). 

 The computer, especially as connected to the Internet, makes readily available to 
students and teachers all of the objects mentioned above, and many more, in virtual 
form. Whether this will prove to have a signi fi cantly more positive in fl uence on the 
mathematics curriculum than physical models that students can hold in their hands 
remains to be seen. We will note some recent efforts in this direction in the last section 
of this chapter.  

   Tools of Calculation 

 To the consternation of many mathematicians and mathematics educators, calcu-
lation is often considered to be synonymous with mathematics by many members of 
the general public, so these tools naturally loom large in public discussion of math-
ematics education. Here we brie fl y discuss the history of three devices—the abacus, 
the slide rule, and the calculator—that have had a global impact in mathematics 
education, as it evolved from mechanical to electronic. It should be noted that the 
slide rule, though intermediate chronologically, is in no sense intermediate concep-
tually between the abacus and the calculator. This shows the dif fi culty of imposing 
any straightforward conception of linear progress in the use of technology in math-
ematics education. 

   The abacus.   The abacus depicts numbers by means of beads on wires. It apparently 
evolved from marks in sand or counters on a board. The device seems to have 
developed somewhere in the eastern Mediterranean world in antiquity, moved east 
to Asia, then moved back west via Russia into Europe and thence to the Americas. 
The transmission to Asia is conjectural, and it is possible that it originated there 
independently. What is clear is that whereas the abacus became a widely used tool 
of calculation in China and Japan, without a serious competitor until very recent 
times, it never attained the same level of popularity in this role in Europe and North 
America. Instead, in the last-named regions, it was primarily con fi ned to use as a 
demonstration tool for teaching elementary arithmetic to young children. 

 The Chinese abacus ( suanpan ) appears to have been in substantial use by 1200 
and probably much earlier. Transmission to Japan, seems to have occurred via 
Korea. The Japanese modi fi cation of this instrument (called the  soroban ) was in use 
by 1600 (Smith,  1958  ) . Although the abacus has been a part of education in both 
Japan and China for centuries, in the decades after World War II major efforts were 
undertaken in both nations to modernize and formalize this instruction (Hua,  1987 ; 
Shibata,  1994  ) . The device has continued to be part of the mathematics curriculum 
in many East Asian nations to the present day. In Malaysia, for example, although 
abacus use in schools declined for a time after handheld calculators became 
widely available, the abacus ( sempoa  in Malay) has more recently experienced an 
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educational resurgence in connection with an increased emphasis on mental arithmetic 
(Siang,  2007  ) . 

 In China and Japan the beads move on vertical wires, but the version of the abacus 
that became common in Russia featured horizontal wires. This would prove advan-
tageous for using it as a display device for young children, since the teacher could 
hold the abacus up in front of the class and the beads would remain in place. It was 
used in Russia for early education until recent decades. The French mathematicians 
Jean Victor Poncelet encountered the abacus while imprisoned in Russia following 
Napoleon’s invasion of 1812 and introduced it to France on his return. It spread 
widely across France as a teaching tool in the 19th century (Gouzévitch & 
Gouzévitch,  1998 ; Régnier,  2003  ) . 

 A similar teaching device began to appear in the USA in the 1820s, likely inspired 
at least in part by the French version. Here it meshed well with the Pestalozzian 
object-teaching philosophy that was gaining in popularity, and by the 1830s it was 
being sold under various names, including “numeral frame,” by companies catering 
to the growing education market. These teaching abaci were not without detractors, 
however, some of whom felt they might even sti fl e the imagination of the child. 
They remained as a tool for only the youngest learners of arithmetic (Kidwell et al., 
 2008  ) . In more recent years, some educators (e.g., Ameis,  2003  ) , apparently reacting 
to the perceived success of Asian students in mathematics, have advocated more use 
of the Asian abacus in Western schools.  

   The slide rule.   The slide rule was a direct embodiment of the theory of logarithms 
pioneered by Scottish mathematician John Napier and English mathematician Henry 
Briggs in the early 1600s. By marking two straightedges with logarithmic scales 
and sliding one with respect to the other it was possible to calculate approximate 
answers to multiplication problems quickly. Even more complicated problems could 
be handled with suf fi cient ingenuity, although the fact that the slide rule was an 
analog instrument meant that it always provided only approximate answers, and thus 
was not appropriate for most business applications of mathematics or for accounting. 
Variations involving circular rules were also possible, and both possibilities had been 
explored by the middle of the 17th century in England. These slide rules were slowly 
improved over the next century, and became a tool used by engineers, such as James 
Watt, in the UK. By the early 1800s they had spread to the European continent and 
to the USA (von Jezierski,  2000  ) . 

 It was not until the late 19th century that the slide rule became an educational 
tool, beginning  fi rst with colleges featuring an engineering curriculum, such as 
Rensselaer Polytechnic, the US Military Academy, and the Massachusetts Institute 
of Technology. In the early 20th century the slide rule began to  fi lter down into the 
secondary schools, helped by the movement to establish mathematical “laborato-
ries” which emphasized the mathematics of measurement and applications to the 
physical sciences. Instrument makers were selling slide rules to the high school 
market by the 1920s and some were also selling oversized models that could be 
displayed in front of a classroom for all students to see. The slide rule remained a 
recognized feature, although in most cases not a central one, of many mathematics 
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and science classrooms until the advent of cheap electronic calculators in the 1970s 
(Kidwell et al.,  2008  ) .  

   The calculator.   Unlike the slide-rule, the calculator is fundamentally a digital 
instrument, which seems to have given it a decided advantage in achieving a place 
in mathematics instruction. Its fate in the classroom is still being written. European 
development of mechanical calculators dates from the 17th century, with such 
notable mathematicians as Pascal and Leibniz prominently involved (Goldstine, 
 1972  ) . But it was not until the middle of the 19th century that industrial processes 
were suf fi ciently advanced to allow construction of calculating devices on a 
commercial basis, both in Europe and the USA. By the 1920s they had become a 
standard feature of many of fi ce settings. But it appears that it was not until after 
World War II that they received much consideration as educational devices. In the 
1950s there was some minor experimentation in classrooms with mechanical 
calculators, or mechanical calculators with electrical assistance, but the size of these 
machines made them inconvenient as personal devices (Kidwell et al.,  2008  ) . 

 The major breakthrough occurred in the 1970s, with the arrival of inexpensive, 
fully electronic calculators. Initially these calculators were still relatively bulky, and 
were able to perform little beyond the familiar four operations of arithmetic. But by 
the 1980s calculators had become readily portable, and were able to compute trigo-
nometric and other transcendental functions and to display graphs, thus far surpass-
ing the functionality of mechanical calculators and slide rules. Classroom use 
became practical, and although very uneven, soon became widespread enough to 
create disputes between enthusiasts and detractors. Calculators greatly increased the 
range of feasible problems that could be given to students, but concern was expressed 
about the effect on basic arithmetic skills, and doubts were raised about the readi-
ness of teachers to use calculators effectively (Kelly,  2003 ; Waits & Demana,  2000  ) . 
By the mid-1990s computer algebra systems (CAS) were available on hand-held 
devices, leading to further debate. Now, in the 21st century, although the generic 
name persists, high-end devices referred to as “calculators” in fact provide a huge 
range of information storage, information display, and demonstration capabilities, 
in addition to pure calculation (Aldon,  2010 ; Trouche,  2005  ) . Some controversy has 
persisted, but in recent years the use of calculators has been increasing around the 
world in secondary and elementary schools, and at the college level as well.    

   The Virtual World: The Potential of 21st-Century 
Technology for Mathematics Education 

 During the past two decades, pedagogical theories in mathematics education, 
such as instrumental genesis and semiotic mediation, have placed tools, artefacts, and 
technology at the centre stage of discussion on mathematics knowledge acquisition 
(see, e.g., Artigue,  2002 ; Bartolini Bussi & Mariotti,  2008  ) . Studying the pedagogical 
potential of technology is a major research  fi eld of study in mathematics education 
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(see, e.g., Blume & Heid,  2008 ; Heid & Blume,  2008  ) . The question arises, regarding 
the plethora of electronic devices now available to mathematics teachers and stu-
dents, and the evident integration of these devices into what appears is becoming a 
comprehensive technology platform: is this something fundamentally new for math-
ematics education or does it merely provide the means for delivering the services of 
the older technologies more quickly and ef fi ciently? It would certainly appear that 
the distinctions made earlier in this chapter among classes of technologies are 
increasingly irrelevant. The computer can function simultaneously as an informa-
tion storage device, an information display device, a demonstration device, a super 
calculator, and much more. In the remainder of this chapter we describe some indi-
cations that the new technology environment does indeed provide unprecedented 
opportunities. 

 Tools from the past are far from irrelevant to the new environment, since the Web 
can function as a window to access information on historical mathematical tools 
instantly. This provides the potential to construct mathematical knowledge via simul-
taneous attention to the multifarious facets in the evolution of that knowledge, as 
re fl ected in the tools, thereby creating a virtual thematic museum of mathematical 
artefacts. One could, if one wished, virtually go back in time, by constraining students 
to use only the tools available in a certain era in a speci fi c geographic locale. This 
powerful capability for integrating history, pedagogy and mathematics opens a vast 
range of intriguing possibilities in conceptualizing the mathematics curriculum. 

 Research into integrating the history of mathematical tools with the school math-
ematics curriculum, by having students visit and study historical mathematical tools 
via present day accessible technology, has been carried out in teacher education and 
in mathematics classrooms (Bartolini Bussi et al.,  2010 ; Maschietto & Trouche, 
 2010  ) . On the one hand, this can assist students to acquire mathematical under-
standing in a techno-cultural context, which raises the relevance of school mathe-
matics as a part of social development. On the other hand, students can re-visit and 
re-think (even re-conceptualize) familiar mathematical concepts in an old-meets-new 
context. This simultaneity may bring about awareness of invariants that constitute 
the core of abstract mathematical concepts. This looking back to  re -interpret and 
 re -present the mathematics embodied in historical tools somewhat echoes Hans 
Freudenthal’s  (  1991  )  idea of mathematization, in which mathematical concepts are 
re-invented using tools that are more powerful than our predecessors possessed. 
According to Freudenthal, “children should repeat the learning process of mankind, 
not as it factually took place but rather as it would have been done if people in the 
past had known a bit more of what we know now” (p. 48). 

 There have been substantial recent efforts to study classroom use of historically 
signi fi cant tools, both as originally conceived and in a digital form. Maschietto and 
Trouche  (  2010  )  have revisited the idea of the mathematics laboratory in classroom 
practice, explicitly citing Borel’s early 20th-century proposal. They studied the use 
of both “old” technology (the mechanical calculator of Blaise Pascal, the abacus) 
and “new” technology (networked electronic calculators) in such laboratory situa-
tions, while exploring notions of good contexts and good teaching practices. Cornell 
University (USA) has digitized and enhanced its collection of kinematic models, in 
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what they call the Kinematical Models for Design Digital Library (KMDDL). 
These models (including linkages generating straight lines, mentioned earlier in this 
chapter), were originally created as physical models in the 1870s by the German 
engineer Franz Reuleaux. At Cornell they are being used to teach the mathematics 
of machine design. In the 1990s at the Centre for Research on International 
Cooperation in Educational Development (CRICED) at Tsukuba University (Japan), 
there was a rebirth of interest in using mechanical instruments in mathematics 
instruction, facilitated by LEGO blocks and dynamic geometry software. The project 
has also made use of e-textbooks to weave together historical books and interactive 
dynamic simulations. And the University of Modena (Italy) has established a 
Laboratory of Mathematical Machines, which provides digitizations of familiar 
mathematical instruments, including the compass. Dynamic simulations are avail-
able on the Web as a source for teaching and learning activities with prospective 
mathematics teachers (Bartolini Bussi et al.,  2010  ) . 

 There are several key research questions for this historical pedagogy. How can this 
re-invention process be best realized in a pedagogic process? Will the re-invention 
embody “more” or “less” mathematical knowledge? How can this pedagogical per-
spective be integrated into the curriculum? We illustrate and discuss an example in 
geometry. 

 As just noted, the Laboratory of Mathematics of the University of Modena in 
Italy holds a large collection of replicated mechanical “geometrical machines” from 
different historical periods—where by geometrical machine is meant a tool that 
forces a point to follow a trajectory or to be transformed according to a given law 
(Bartolini Bussi & Maschietto,  2008  ) . These geometrical machines were re-con-
structed based on old scienti fi c and technical literature, and after experimentation 
on their possible pedagogical potential. In the Museum’s Web site, beside the pic-
tures of some of the replicated geometrical machines, there are corresponding vir-
tual animations, constructed by dynamic geometry software, showing what the 
machines do. Such a parallel representation is depicted in Figure  17.6 , which shows 
a replica of a Scheiner pantograph, a device invented in Germany in 1603 by 
Christoph Scheiner for making a scaled copy of a given  fi gure.  

 This juxtaposition of old and new technology (wooden craft and virtual craft) 
provides a good context for implementing historic re-invention pedagogy in the 
mathematics classroom. Figure  17.7  has four equal rods hinged by adjustable pivots 
at A, B, C and P with OA = AP and PC = P ¢ C = AB. It is fastened by a pivot at O. 
Placing a pencil at P (or P ¢ ) to trace a  fi gure, a dilated image is obtained at P ¢  (or P). 
Note that APCB is a parallelogram, O, P and P ¢  are collinear, and OP ¢ /OP = OB/
OA = constant. Antonini and Martignone  (  2011  )  have studied the didactical poten-
tial of the pantograph in proof and argumentation for geometrical transformations.  

 In a mathematics classroom, students can construct a make-shift pantograph 
using geometry sticks, appropriate fastening pivots and writing implements 
(Figure  17.8 ), which can be used as an explorative tool to investigate the geometry 
of similarity (homothety/dilation). The pivot points of this tool can be readily 
adjusted, which enables students to access, easily, different ratio variations between 
the sides of parallelogram ABCP. Since all pivot points are free, students can choose 
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  Figure 17.7.    A modern day pantograph [Sources:   http://www.isaacwunderwood.com/gallery2/
displayimage.php?album=4&pos=0       http://www.datavis.ca/milestones/index.php?group=1600s    ].       

  Figure 17.8.    A classroom make-shift pantograph constructed using geometry sticks.       

  Figure 17.6.    A wooden replica of a Scheiner pantograph and a dynamic animation of how it works 
[Source:   http://www.museo.unimo.it/theatrum/macchine_00lab.htm    ].       
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which one to be the fastened one, and which to be where the pens are. Furthermore, 
the shape of ABCP can be changed to other shapes. These different degrees of freedom 
of the tool open up a vast pedagogic space for teachers and students.  

 For more advanced lessons, students can construct dynamic geometry panto-
graphs and use the construction activity to explore the mathematics that can be 
embodied in a pantograph—an example of which is depicted in Figure  17.9 .  

 For this virtual pantograph, the lengths of OB and AP are adjustable variables 
and points O and P are free. These features facilitate students experiencing the vari-
ation that this virtual tool can offer, providing opportunities for them to discover 
geometrical properties (Leung,  2008  ) . We have here an example of old and new 
technologies meeting together in the mathematics curriculum, enabling meaningful 
mathematics teaching and learning. Such examples suggest that by utilizing the 
multi-functional nature of the computer, and the connectivity power of the evolving 
virtual technology, mathematics pedagogy could take on a new paradigm that supports 
connective and explorative knowledge building in a powerful way. By “connective 
knowledge building” is meant the ability of teachers and students to (re)construct 
mathematical knowledge connectively and collectively, and in particular, through 
the idea of “webbing.” Webbing refers to “the presence of a structure that learners 
can draw upon and reconstruct for support—in ways that they choose as appropriate 
for their struggle to construct meaning for some mathematics” (Noss & Hoyles, 
 1996 , p. 108). 

 Thus, webbing can be interpreted as an affordance in the virtual world to facilitate 
mathematics pedagogy, where connective structures that empower mathematical 
experience can be built by teachers and students, utilizing multi-functional tools 
present in the virtual environment. As Web technology advances in terms of speed, 
accessibility and information content, one can easily surf the Web to connect to 
information on mathematical artefacts, ancient or new, like those described earlier 
in this chapter. 

 The virtual platform can be designed to collect students’ perception of mathe-
matical concepts, thus forming a “knowledge database” that serves as a source to 

  Figure 17.9.    A dynamic geometry pantograph constructed in Sketchpad™.       
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connect students’ different ways of understanding. This collective understanding 
via a virtual environment can then be used pedagogically for developing mathemati-
cal concepts in the classroom. Leung and Lee (Lee, Wong, & Leung,  2006 ; Leung 
& Lee,  2008  )  have been conducting research on such a platform in an ambient 
dynamic geometry environment to categorize visually students’ perceptions of geo-
metrical concepts. This kind of platform may be extended to become a virtual forum 
(or community of practice) where teachers and students co-construct mathematical 
knowledge and even formulate curriculum decisions. 

 By explorative knowledge building is meant students engaging in explorative 
activities in speci fi c virtual environments like spreadsheets, dynamic geometry soft-
ware, computer algebra systems, and other purpose driven software that support 
mathematics knowledge construction. Students are empowered in these environ-
ments to develop tool instrumentation schemes, to discern mathematical patterns 
and to develop situated discourses. In this connection, Leung  (  2011  )  has proposed a 
framework of  techno-pedagogic task design  that aims to organize and capture tra-
jectories of learning in a technology-rich pedagogical environment by a sequence of 
progressively inclusive epistemic modes: establishing practice mode, critical dis-
cernment mode, and situated discourse mode. This technology-dependent cognitive 
sequence can empower learners to see mathematics in situated abstract ways and 
hence enlighten their understanding of traditional mathematics by providing alter-
native passages to mathematical knowledge (Leung,  2011  ) . 

 Using the mathematics knowledge embodied in computing technology, teachers 
and students can potentially experience mathematics in ways that are different from 
traditional school mathematics curricula. A window is opened through which math-
ematics teaching and learning might enter into a new epistemological domain, 
where knowledge becomes both personal and communal, and in which connective 
and explorative mathematical knowledge becomes vastly more accessible. 

 How soon or how fully this vast potential might be utilized for mathematics edu-
cation is a dif fi cult question. The historical examples given earlier in this chapter 
suggest that we should be cautious about predicting revolutionary changes. 
Moreover, it is entirely possible that the most profound effects will come not from 
explicit efforts to design technologies for mathematics education, but rather from 
the side effects of technologies adopted by the wider society. This has certainly been 
the case with the book, which did not originate as a special tool of mathematics 
education, but became ubiquitous both inside and outside mathematics classrooms. 
And while there is little inherently mathematical about the blackboard, its in fl uence 
on the mathematics curriculum has been substantial. The computer, with its off-
shoots and allied technologies, represents an especially intriguing case, and a huge 
challenge for those who attempt to forecast the future. The computer surely does 
explicitly embody mathematical concepts and processes (e.g., base two arithmetic), 
but it does not follow that the primary applications in education will come from this 
direction, especially as the computer is such a versatile device. As we have indi-
cated, mathematics educators are proposing exciting pedagogical innovations based 
on the newest technologies, but meanwhile the pace of technological evolution may 
be changing the overall place of mathematics within education and within society in 
ways that we cannot yet foresee.      
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