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Chapter 1
Introduction

Christiane Benz, Birgit Brandt, Ulrich Kortenkamp, Götz Krummheuer, 
Silke Ladel and Rose Vogel

U. Kortenkamp et al. (eds.), Early Mathematics Learning, 
DOI 10.1007/978-1-4614-4678-1_1, © Springer Science+Business Media New York 2014

U. Kortenkamp ()
CERMAT, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
e-mail: kortenkamp@cermat.org

B. Brandt 
Martin-Luther-Universität Halle-Wittenberg, Halle, Germany 
e-mail: birgit.brandt@paedagogik.uni-halle.de

G. Krummheuer · R. Vogel
Goethe-University and IDeA-Center Frankfurt am Main, Frankfurt am Main, Germany
e-mail: {krummheuer|vogel}@math.uni-frankfurt.de

C. Benz
University of Education Karlsruhe, Karlsruhe, Germany
e-mail: benz@ph-karlsruhe.de

S. Ladel
CERMAT, Universität des Saarlandes, Saarbrücken, Germany
e-mail: ladel@math.uni-sb.de

This book is the result of a conference that took place from February 27 to 29 in 
Frankfurt am Main, Germany. Following up the Congress of the European Society 
for Research in Mathematics Education (CERME) conference 2011 in Rzészow, Po-
land, we, a group of German researchers from Frankfurt and Karlsruhe in early math-
ematics education, were faced with the question: In which way—and how much—
should children be “educated” in mathematics before entering primary school. The 
European conference in Poland demonstrated that there are many opinions and re-
search results, and the topic itself deserves further attention. We decided to organize 
an invitation-only workshop-conference to further investigate this question.

We wanted to address this question from a mathematics education perspective on 
early mathematics learning in the strain between instruction and construction. The 
topics of the conference included research on the design of learning opportunities, 
the development of mathematical thinking, the impact of the social setting and the 
professionalization of nursery teachers.

At the conference, we created a focused working atmosphere in the spirit of the 
CERME conferences, with only few paper presentations and allowing for more inter-
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action and exchange between the researchers. This book collects revised and extended 
versions of the conference papers, grouped in four parts that reflect major strands that 
emerged. These parts follow an introductory chapter by Norma Presmeg, “A dance of 
instruction with construction in mathematics education.” Presmeg highlights in a very 
personal exposition the main theme of the book: The dual nature of instruction and 
construction, with each being necessary for the other, or as she phrases it, “Instruction 
and construction can mutually constitute each other in a fine-tuning awareness that I 
have called a dance.” To us, there could not be a better description for the fundamental 
question of perspective on early mathematics (POEM) than this poetic one.

In the first part, the relation between instruction and construction is illuminated 
by case studies in different social settings. Case studies from three European coun-
tries with different curricular concepts for early (mathematics) education and with 
different institutional embedding of the interaction processes between children and 
adults are gathered in this part. Although the studies use different methodological ap-
proaches and theoretical backgrounds, they all use videotape as database and focus 
on situational aspects and different roles of the participants within the interactions.

Three of these contributions are concerned with interaction processes in insti-
tutional settings and particularly deal with the role of the teacher. Sayers and Bar-
ber examine one experienced teacher’s practice in relation to the centrally imposed 
English mathematics curriculum. Within the framework of pedagogical content 
knowledge (Shulman 1986)1, they focus on pedagogical issues related to the use 
of manipulatives and language emphasized when teaching place value to young 
children in a whole class interaction. Similarly, the contribution of Lange, Meaney, 
Riesbeck and Wernberg is concerned with one teacher’s practice in relation to the 
national curriculum for early education. Using Anghileri’s (2006) model of scaffold-
ing, this case study focuses on how one teacher in a Swedish preschool recognizes 
and builds on mathematical teaching moments that arise from children’s play with 
glass jars in a guided play set up by the kindergarten teacher. Brandt also discusses 
the acting of kindergarten teachers in guided play situations. Within the framework 
of folk pedagogy (Bruner 1996), she examines the pedagogical ideas of three kin-
dergarten teachers arranging learning opportunities in the mathematical domain pat-
terning and describes three basically different instruction models. The two last con-
tributions of this part leave the institutional embedding of the interaction processes 
in preschool or kindergarten. Krummheuer examines the interface between cultural 
expectation and local realization in the social context of encounters that “serve” as 
mathematical learning opportunities for children. For this reason, he analyses peer 
interactions guided by an adult and a play situation in a family. Tracing back Super 
and Harkness (1986), he employs the concept of the “developmental niche in the 
development of mathematical thinking”. This concept is adopted by Acar-Baraktar 
for her investigation of the interaction processes between children and adults and 
the reconstruction of mathematics learning in the familial context. In her contribu-
tion, she carries out the support system of a German–Turkish family in the domain 
of spatial thinking while playing a rule-based game.

1 See the respective chapters for full references.
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Thus, the cultural impact of early mathematical teaching and learning and the 
“dance of instruction and construction” become apparent through these case studies.

In Part 2, the focus will be on children’s constructions. By investigating chil-
dren’s constructions, the learner’s perspective will be focused on. The different in-
sights in children’s constructions can help to provide a basis for instruction in terms 
of realizing and using learning opportunities and creating learning environments 
within mathematical early childhood education. So the “dance between construc-
tion and instruction” also underlies this part, although the aspect of construction 
will be more exposed.

In the introductory chapter, Bert van Oers highlights the aspect of construction, 
using the term of “productive mathematising” in contrast to mathematical activities 
with a re-productive aspect. Based on the cultural–historical activity theory, van 
Oers defends the position that “the activity of mathematising basically is a form 
of playful mathematics, embedded in young children’s play”. Regarding different 
aspects of play as a form of productive mathematising, both the aspect of children’s 
construction and the aspect of instruction will be presented. 

The productive and creative aspect in children’s constructions is also analyzed 
by Melanie Münz. In her chapter, she focuses especially on the aspect of mathemati-
cal creativity. Mathematical creative ideas, which emerge in the interaction between 
children and the accompanying person, are illustrated. By including the analyses of 
the interaction of the accompanying person, the aspect of mathematical instruction 
is also mentioned. 

A special expression of children’s constructions are gestures. In the chapter by 
Melanie Huth, the interplay between gestures and speech used by second graders is 
illustrated while they are occupied with a geometrical problem in pairs. Construc-
tions regarding the geometrical domain are also the subject of the chapter of Andrea 
Maier and Christiane Benz. Here, children of two educational settings, England and 
Germany, were interviewed. In addition to insights in children’s geometrical com-
petencies concerning shapes, hypotheses are formulated how the introduction of 
shapes might additionally influence the concept formation of the children. Another 
discernment of individual’s constructions is given in the chapter of Christiane Benz. 
Here, different processes by recognizing or perceiving collections of objects and by 
identifying quantities of collections are investigated. On the basis of insights about 
children’s constructions, different conclusions for instruction in early mathematics 
education will be drawn.

The third part concentrates on tools and interactions. There are three chapters 
in this part that all have a view on learning as a socio-cultural process. Therein, 
instructions are given as orders from the teachers to the students. The role of the 
teacher is to orchestrate mathematical learning opportunities for the children. The 
child has to construct the mathematical meaning. The artefacts determine this con-
struction. They mediate between the subject, the child, and the object, the math-
ematical content. In the first and third chapter, the artefact is a digital tool. They 
focus on the use of technology to support mathematical teaching and learning. In 
the second chapter, mathematical conversation situations, impulses of the guiding 
adult, and of the materials are used as the starting point of the interaction.
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Martin Carlsen, Ingvald Erfjord and Per Sigurd Hundeland analyse the chil-
dren’s engagement with mathematics in kindergarten mediated by the use of in-
teractive whiteboards. In the research project, they survey in what ways digital 
tools may nurture children’s appropriation processes relative to mathematics. In 
particular, they focus on the use of a digital pair of scales in kindergarten for com-
parison of weights. In the long-term study ‘early Steps in Mathematics Learning’ 
(erStMaL), Rose Vogel explores mathematical situations of play and exploration 
as an empirical research instrument. An especially developed description grid in 
the form of “design patterns of mathematical situations” achieves a comparability 
of the situations. 

Silke Ladel and Ulrich Kortenkamp use information and communication tech-
nology (ICT), in particular multi-touch technology, to survey and to enhance the 
development of children’s concepts of numbers. A special focus lies on the pro-
cesses of internalization and externalization that constitute the construction of 
meaning. Also the instructions given by the (nursery) teacher as well as the part-
ners have an influence on the child’s internalization and externalization. As a basis 
for the design and analysis this research project refers to Artefact-Centric Activity 
Theory (ACAT).

In Part 4, “interventions” are presented that integrate both the principle of in-
struction and the principle of construction into processes of early mathematical edu-
cation. Jie-Qi Chen and Jennifer McCray describe a yearlong training program for 
preschool teachers. The program “Early Mathematics Education” was launched in 
2007. Starting with mathematical “Big Ideas”, preschool teachers shall be enabled 
to understand children in their mathematical thinking and support children to build 
up mathematical knowledge. A variety of teaching strategies were developed in the 
program to encourage the preschool teachers.

Hedwig Gasteiger presents a professionalization program of early childhood 
educators as part of the project “TransKiGs Berlin”. Early childhood educators are 
enabled to support the individual mathematical learning of children, here particu-
larly in everyday learning situations. The further education program includes three 
modules in the domains number/counting/quantity, space and shape, and measure-
ment and data. The fourth module is concerned with methodological components 
like observation, documentation and intervention measures.

Pessia Tsamir, Dina Tirosh, Esther Levenson, Michal Tabach and Ruthi Barkai 
examine 36 practising preschool teachers with regard to their mathematical 
knowledge and their self-efficacy. Based on the results of their study, they develop 
professional courses for preschool teachers. One important aspect of the program 
is to discuss with the teachers the different aims of mathematical tasks. In addition, 
the authors assume that the teacher’s own learning experiences are important in sup-
porting the children’s learning.

All training programs presented focus on the development of mathematical  and 
special methodological knowledge to support the learning of mathematics in early 
education.

Andrea Peter Koop and Meike Grüßing focus on the children themselves. Their 
study examines 5-year-old preschoolers. By different methods of testing, they 
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identify 73 children out of 947 that are “potentially at risk learning school math-
ematics”. The 73 children are split in two groups, which are promoted with different 
programs in prior to school entry. The results of the study are examined in detail, 
with a special interest in children with a migrant background.

We hope that this book will be able to carry over not only the results of the con-
ference, but also its spirit and atmosphere to a broader audience. May we ask you 
for the next dance?
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Chapter 2
A Dance of Instruction with Construction  
in Mathematics Education

Norma Presmeg

N. Presmeg ()
Illinois State University, Illinois, USA
e-mail: npresmeg@msn.com

Setting the Scene

Our field, our baby field that is brand new in comparison with the millennia for 
which mathematics has existed as a discipline, has seen some dramatic changes in 
its half-century of being a field in its own right, with its own journals and conferenc-
es. We have come a long way, even since the early 1980s, when “illuminative evalu-
ation” (McCormick 1982) was slowly replacing or, initially at least, supplementing 
the psychometric experiments that used “subjects” ( people) who were being taught 
mathematics. Before that period, in the old paradigm, no research that did not aim 
for objectivity by means of carefully controlled experiments and statistical analysis 
was considered scientific in our field. In connection with the research methods of 
this period, Krutetskii (1976) gave a pungent critique:

It is hard to understand how theory or practice can be enriched by, for instance, the research 
of Kennedy, who computed, for 130 mathematically gifted adolescents, their scores on 
different kinds of test and studied the correlations between them, finding that in some cases 
it was significant and in others not. The process of solution did not interest the investigator. 
But what rich material could be provided by the process of mathematical thinking in 130 
mathematically able adolescents! (p. 14)

Krutetskii’s interview methods, in Soviet Russia, were in many ways a precursor to 
the qualitative methodologies that followed this early period. Slowly, the qualitative 
research paradigm gained credence. After all, we are dealing with human beings in 
their teaching and learning of mathematics, with all the complexities and uncertain-
ties that that fact implies! Even Krutetskii (1976), aware as he was of individual 
differences, wrote of “perfect teaching methods” (p. 6), terminology that we might 
use more circumspectly today. With regard to useful and believable research (rather 
than reliable and valid experiments), initial crude attempts at quality control became 
strengthened. Thus, triangulation of various types (Stake 1995) was needed to en-
sure that research results and insights reported more than merely the researcher’s 
opinions. We learned to go back and ask the mathematics teachers and their stu-

U. Kortenkamp et al. (eds.), Early Mathematics Learning, 
DOI 10.1007/978-1-4614-4678-1_2, © Springer Science+Business Media New York 2014
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dents whether they agreed with the results of our observations and interviews, in 
“member checks” that were a means of respondent validation. By the 1990s, such 
qualitative research was the prominent methodology, and it was in this climate that 
radical constructivism became the dominant theoretical framework for research in 
our field. Radical constructivism was salutary in its critique of the behaviorism that 
had preceded it. And this theoretical precedence leads me to the topic of this talk.

Construction and Instruction

I remember, in the early 1990s sitting on a stone seat in the garden of The Florida 
State University with Ernst von Glasersfeld and asking him about the status of con-
ventional knowledge in mathematics education according to radical constructivism. 
It seemed obvious that attempts by teachers to give their students space to construct 
their ideas of mathematics in more personal ways (e.g., by discussion in groups) 
would lead to a kind of knowledge that could be more meaningful to learners in 
terms of their mathematical identities and ownership. It is not that some kinds of in-
struction lead to construction and others do not. What other ways of “appropriation 
of knowledge” (van Oers 2002) do we have than by construction? We are construct-
ing even in the choice of what we make of a straightforward lecture as we sit and 
listen. We may listen, but what do we hear? It was concerns such as these, in part, 
that caused debates on whether or not radical constructivism was epistemological, 
and whether or not it made claims about the ontology of mathematical knowledge. 
Nell Noddings, in the 1990s, called it “post-epistemological” (Janvier 1996).

But to return to my conversation with Ernst von Glasersfeld in the garden, Ernst 
acknowledged that there are different kinds of knowledge, and that knowledge of 
conventions had a different status, belonging as it does to accidents of cultural histo-
ricity rather than to the logic of rational thinking. Even the ability to use convention-
al knowledge would entail construction by an individual; but telling by somebody 
who knows the convention (aurally or in written form) is required, simply because 
there is no logical necessity for this kind of knowledge, except perhaps in a histori-
cal sense. Why, for instance, do we have 360° in a complete revolution? 100 degrees 
would be much more convenient. Reporting on some of his work with Les Steffe, 
in one of his many publications during this period, von Glasersfeld (1994) gave a 
short synopsis of the radical constructivist position concerning early mathematics 
concepts such as number; and early mathematical learning is of particular relevance 
in this conference, although it is clear that mathematics learning between the poles 
of instruction and construction is an important topic at all levels.

The founders of theoretical edifices, such as von Glasersfeld, are thus aware of 
the contingencies and intricacies inherent in building theories. But Peirce (1992) 
had insight into what happens to such theories over time. He cast light on what he 
meant by continuity in his law of mind:

Logical analysis applied to mental phenomena shows that there is but one law of mind, namely, 
that ideas tend to spread continuously and to affect certain others which stand to them in a pecu-
liar relation of affectability. In this spreading they lose intensity, and especially the power of 
affecting others, but gain generality and become welded with other ideas. (Peirce 1992, p. 313)
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Some followers of radical constructivism took the theory to be a prescription for in-
struction. The mantra became, “Teachers mustn’t tell!” (I have an anecdote about a 
professor and her primary school mathematics education prospective teachers, who 
just smiled and moved on when her students decided in groups that doubling the 
length of a particular similar figure must, automatically, double the area.) It is to the 
credit of deep scholars in our field, such as Paul Cobb and Erna Yackel (e.g., Yackel 
and Cobb 1996) that they recognized even in the heyday of radical constructivism, 
that instruction has an indispensable role, and that there is a delicate blending of 
instruction and construction that is a fine-tuning of the teacher’s craft. It is this 
blending that I am calling the dance of instruction with construction.

In an email conversation with Götz Krummheuer, it emerged that when we con-
sidered the metaphor of the dance in this regard, we were viewing different aspects 
of dance that had relevance. He was interested in the swirling motion as the dancers 
moved—and certainly there is movement if we are considering teachers and their 
pupils in interaction in a dynamic way that leads to deep contemplation of math-
ematical ideas and changes in cognition, ideally also with a positive affective com-
ponent. I had been thinking more of dance involving canonical moves by people in 
interaction—although both aspects are relevant to instruction and construction in 
mathematics education. Within the set moves of a particular dance there is freedom, 
creativity, and vigor. Certainly, a dancer can decide to construct a different set of 
movements, and they may be harmonious and beautiful, but if they are too far from 
the set moves, that dancer cannot be considered to be doing that particular dance. 
As is the case with all metaphors, there are elements in which the source domain 
(in this case dance) resonates with the target domain (mathematics education), and 
this common structure constitutes the ground of the metaphor. But every metaphor 
also involves ways in which the source and target domains are different, and these 
constitute the tension of the metaphor (Presmeg 1997). The dance metaphor does 
not take into account that there is a knowledge differential between teachers and 
their students who are learning mathematics. Teachers know the conventions of rea-
soning and representation that are involved in the patterns of mathematical think-
ing: Students initially may not have this awareness. There is also thus a power 
differential involved. However, effective instruction can facilitate students’ making 
of constructions that lie within the canons of mathematically accepted knowledge, 
and yet there is room for creativity and enjoyment. I present two examples of such 
instruction in the next sections.

An Example of the Dance

As an example of an effective dance, I would like to highlight the doctoral research 
of Andrejs Dunkels (1996) in Luleå in the north of Sweden, in the mid-1990s. But for 
the untimely and tragic death of Andrejs, it is likely that he would have been the very 
first mathematics education professor in Sweden, who was appointed at the Univer-
sity of Luleå in 2001. After establishing his credibility as a mathematician with pub-
lications in pure mathematics (which was a necessity in that academic climate), An-
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drejs set out to teach his section of an engineering calculus course in a way that was 
very different from the traditional lecture format. Of the 5 or 6 sections of the course, 
with students arranged in the sections according to their previous accomplishments, 
Andrejs chose a section for his research that was just one up from the bottom in the 
hierarchy (i.e., many of these students had experienced difficulty in mathematics 
courses previously). He collected baseline data, so that he could compare these data 
with the achievements of his class at the end of the course, using exploratory data 
analysis (EDA) as well as observations and interviews. Thus, the research design 
used mixed methods (quantitative and qualitative), prefiguring a balanced swing of 
the pendulum to methodologies that became more common in the 2000s.

How did Andrejs teach his class? Firstly, he arranged them in groups of four for 
ease of communication. Secondly, he told them in advance what would be the math-
ematical topic of a particular class session, and he expected them to read and try to 
make sense of the relevant material in the textbook of the course. Thirdly, they were 
expected to come to the session prepared to talk about their current constructions. 
Finally, in the session, he circulated among the groups, listened to their conver-
sations, and answered their questions although not always directly; he sometimes 
answered a question by posing another question. He sometimes pointed the group 
in directions they had not considered—with suggestions, not as the all-knowing 
teacher, and without taking away their ownership and agency. He had instinctively 
mastered the difficult and delicate dance of instruction with construction.

At the end of the course, the statistical EDA revealed that his students had im-
proved their accomplishments so significantly that their section was now almost at 
the top of the hierarchy, second only to one other section. But even more convinc-
ingly, the analysis of data from interviews with students showed that the quality of 
the mathematical knowledge the students had constructed had improved immeasur-
ably. There was no longer memorization of rules without reasons; they knew why 
the rules worked, and above all, they experienced greater enjoyment of the math-
ematical content, and more self-confidence than previously. This doctoral research 
study thus provided convincing evidence, both quantitative and qualitative, of the 
efficacy of balancing instruction with construction in mathematics education.

The Purported “epistemological paradox”

An issue that is relevant at this point is the oft-quoted paradox of instruction 
and construction (e.g., Simon 1995) that students can actively work only with 
what they have already constructed: How then is new knowledge possible? I shall 
argue shortly that there really is no paradox; the seeming paradox hinges on a 
false dichotomy. However, let me first give an example of a related phenomenon 
from my own research on ethnomathematics. I asked students in a masters-level 
course in mathematics education to take a personally meaningful cultural activity, 
and to construct mathematics from it. I gave examples from ethnomathematics 
literature and my own experiences to show them how to use several steps of se-
miotic chaining (Presmeg 2006a) to build connections between a cultural activ-



132 A Dance of Instruction With Construction in Mathematics Education 

ity and mathematical ideas suitable for teaching at some level in a mathematics 
classroom. The process is akin in many ways to the horizontal mathematization, 
followed by vertical mathematization, used by the Freudenthal group (e.g., Tref-
fers 1993; Gravemeijer 1994) in Realistic Mathematics Education (RME). The 
students in my course took ownership of the project, and the activities they chose 
were diverse and personally meaningful to them. However, it was evident that the 
mathematical ideas that students recognized in their chosen cultural activities de-
pended heavily on what mathematics they already knew. For example, Vivienne, 
a primary school teacher, did not recognize the hyperbola that resulted when she 
analyzed the gear ratios and distances traveled by her mountain bicycle: Vivienne 
called the graph “a nice curve.” In contrast, David constructed a “dihedral group 
of order 4” when he analyzed the symmetries of a tennis court: He was a teacher 
of college-level number theory. And in the data there were many more examples 
of this phenomenon. How then might teachers use the connections of horizontal 
mathematization to facilitate students’ construction of new mathematical ideas? 
This question might be particularly vexing for a teacher who feels under pressure 
to ‘cover’ the topics listed in a mathematics syllabus.

I can do no more here (the topic has been addressed in several papers or book 
chapters, e.g., Presmeg 1998, 2007) than to report that the ethnomathematics course 
had the effect of broadening participants’ beliefs about the nature of mathematics, 
which was no longer seen as a “bunch of rules to be memorized” (initial student 
characterization of what mathematics is), with or without understanding. Many stu-
dents expressed in reflective journals that after the course they saw mathematics as 
inherent in patterns and regularities that they could identify also in their daily lives 
and activities. This change of beliefs prefigures what Tony Brown (2011) is accom-
plishing in his “weekly session centred on broadening the students’ perceptions of 
mathematics and of how mathematics might be taught” (p. 18). Brown does not use 
the conceptual framework of semiotics, but the contemporary theoretical lenses of 
Zizek and Badiou, in his work, but the aim of his teaching resonates with a dance of 
instruction with construction.

To return to the so-called learning paradox, as I hinted, there really is no para-
dox at all if mathematics education is reconceptualized as a dance of construction 
with instruction. The crux of the matter is the relationship between the construc-
tions made by an individual, and the broader societal context, the culture in which 
established mathematical ideas reside: These might be characterized as Karl Pop-
per’s (1974, 1983) worlds 2 and 3, respectively. Radford (2012) has trenchantly 
pointed out that the seeming dilemma results from what he calls the “antinomies” 
in epistemological views that we have accepted: “Unfortunately, we have become 
used to thinking that either students construct their own knowledge or knowledge 
is imposed upon them” (p. 4). As he points out, this conception is a misleading 
oversimplification. Radford poses the paradox in terms of emancipation in math-
ematics education rather than in terms of construction, but the ideas are relevant to 
both. He points out that the antinomies reside in two epistemological ideas: “First, 
knowledge is something that subjects make. Second, the making of knowledge must 
be carried out free from authority” (p. 102, italics in original). What is problematic 
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is the relationship between freedom and truth. Radford points out convincingly that 
the paradox results from “a subjectivist view of the world espoused by modernity (a 
world thought of as made and known through the individual’s deeds) and the cultur-
al regimes of reason and truth that precede the individual’s own activity” (p. 104). 
Although Radford does not cast it in these terms, it is the mistaken notion that Pop-
per’s worlds 2 and 3 are colliding. But all individual constructions (world 2) are 
made in the context of a cultural milieu (world 3). This relationship is inescapable. 
Seen in this light, the paradox disappears, and this relationship has its practical 
manifestation in a delicate blending of freedom and truth, a dance of instruction 
with construction. It is not necessary for the teacher’s role to conform to an irreduc-
ible and contradictory dichotomy of “the sage on the stage” versus “the guide on 
the side,” because elements of both these metaphors are evident in the dance, as the 
following example illustrates.

Blending Popper’s Worlds in the Teaching of Trigonometry

I would like to present here an instance of teaching high school trigonometry that 
uses the dance of instruction and construction to the fullest, thereby—at least in 
some measure—resolving the apparent paradox suggested in the previous section.

Sue Brown (2005) carried out a powerful dissertation study in which she an-
alyzed high school students’ understanding of connections among trigonometric 
definitions (particularly of sine and cosine) that move from right triangles to the 
coordinate plane and unit circle, and then to definitions that establish sine and co-
sine as functions. Following this research (which involved quantitative as well as 
qualitative methods), she and I set out to examine further, pedagogy that might 
facilitate the students’ constructions of such connections in trigonometry. In this 
postdoctoral phase, I served as the researcher in Sue’s trigonometry class in the 
spring of 2006, in Chicago, USA. The research question was as follows: How may 
teaching facilitate students’ construction of connections among registers in learn-
ing the basic concepts of trigonometry? The main goal in Sue’s trigonometry class 
was to foster skill in converting among signs as students build up comprehensive 
knowledge of trigonometry concepts.

The methodology of this teaching experiment included cycles of joint reflection 
based on interviews with students, followed by further teaching. Early in our col-
laboration, Sue listed ways in which she tried to facilitate connected knowledge in 
her class—actions that were confirmed in my observations of her lessons, and in 
documents such as tests and quizzes. In the analysis of data, her list was compared 
with the connections constructed—or the lack of connections—by four students in a 
series of six interviews conducted with each student at intervals during the semester. 
The four students were purposively chosen by the teacher in collaboration with the 
researcher to ensure a range of learning styles and proficiency.
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Some of Sue’s facilitative principles that have the intent of helping students to 
move freely and flexibly among trigonometric registers are summarized as follows:

• Connecting old knowledge with new, starting with the “big ideas,” providing 
contexts that demand the use of trigonometry, allowing ample time, and moving 
into complexity slowly

• Connecting visual and nonvisual registers, e.g., numerical, algebraic, and gra-
phical signs, and requiring or encouraging students to make these connections in 
their classwork, homework, tests, and quizzes

• Supplementing problems with templates that make it easy for students to draw 
and use a sketch, or asking students to interpret diagrams that are given

• Providing contextual (“real world”) signs that have an iconic relationship with 
trigonometric principles, e.g., a model of a boom crane that rotates through an 
angle θ, 0o < θ < 180°, on a half plane

• Providing memorable summaries in diagram form, which have the potential of 
becoming for the students prototypical images of trigonometric objects, because 
these inscriptions are sign vehicles for these objects

• Providing or requiring students to construct static or dynamic computer simula-
tions of trigonometric principles and their connections, in many cases giving a 
sense of physical motion; and

• Using metaphors that are sometimes based on the students’ contextual experien-
ces, e.g., a bow tie and the boom crane, for trigonometric ratios in the unit circle.

An analysis of the complete corpus of data in terms of Sue’s full list (abridged here) 
assessed the effectiveness of these principles in accomplishing their goal, at least for 
the four students who were interviewed (Presmeg 2006b). On the surface, Sue’s list 
appears to relate to the instruction pole of the dance; however, it was her long experi-
ence of students’ constructions—informed also by her intensive doctoral research—
that formed the foundation for her principles of instruction in this list. And many 
instances were present of ways that Sue incorporated idiosyncratic constructions of 
students in her teaching. An example of this inclusion is the bow tie metaphor, which 
was introduced in class by Sue, but originated in interviews with students in a task in 
which they were finding the sine of angles in the second and third quadrants. Sue’s 
pedagogy provides an illustration of principles that alternate flexibly and sensitively 
between instruction and construction in learning trigonometry.

Some Conclusions

In this introduction to the topic of a mathematics education Perspective On Early 
Mathematics learning between the poles of instruction and construction (POEM), I 
have introduced a brief overview of the way our field has moved from a behavior-
ist emphasis on instruction, to an opposite concern with pupils’ constructions, and 
further to the realization that instruction and construction can mutually constitute 
each other in a fine-tuning awareness that I have called a dance. Other writers have 
used different terminology, although the ideas resonate with the notions of con-
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struction and instruction: Hewitt (2012) makes the distinction between arbitrary and 
necessary knowledge, which he characterizes as knowledge that has the function of 
assisting memory and knowledge that is necessary in educating awareness of the 
accepted canons of a discipline, respectively. In any case, learning mathematics 
involves not only becoming aware of conventions and standards of the mathematics 
that has been accepted as such through the ages but also making sense of the logic 
of these canons in a personally and individually meaningful way.

I tried to initiate conversations on the topic with reference to two examples: one 
in a university-level calculus class and the other in a high school trigonometry class. 
I look forward to examples our colleagues will present in early childhood teaching 
and learning of mathematics. But I hope the cases presented here exemplify my 
belief that the topic is important at all levels of learning mathematics and that at-
tention to this topic is required at both theoretical and empirical levels, the former, 
for example, with regard to the so-called paradoxes of our field and the latter in the 
day-to-day lives of teachers and students.
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Introduction

Firstly, it is important to distinguish between two different constructs of place value; 
namely, the ‘quantity’ value aspect and ‘column’ value aspect. Thompson (2009) 
informs us that using manipulatives, such as base ten apparatus, reinforces the ‘col-
umn’ aspect of place value, while emphases on partitioning reinforce the quantity 
aspect. However, there are important questions about whether we should be teach-
ing column value to young children at all, for it is not a necessary prerequisite for 
early calculation, whereas an understanding of quantity value is (Thompson 2009).

In this chapter, we discuss how Jane, an experienced teacher with good math-
ematics subject knowledge and considered locally to be effective, presented the 
topic of place value to 5–6-year-old children. We wanted to examine the various 
resources, including manipulatives, she used and the specific language she privi-
leged in her support of her young children’s mathematical thinking. In so doing, we 
wished to understand how her practice was constructed by the curriculum discourse 
imposed centrally on teachers in England. The depth of case study colleagues’ sub-
ject knowledge was an important defining characteristic, not least because it is an 
essential prerequisite for good mathematics teaching (Rowland and Ruthven 2011). 
In particular, deep pedagogical subject knowledge (Shulman 1986) is needed to 
understand the developmental stages of number sense (Howell and Kemp 2005) 
foundational to place value and its relationship to quantity. Thus, the dance between 
the instruction and construction of knowledge could be identified through the case.
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The Context

In England, since the introduction of a national curriculum in 1987, there has been 
substantial change in the teaching of mathematics, culminating in the launch of 
the National Numeracy Strategy and the adoption by primary schools of the ‘daily 
mathematics lesson’ in 1999. There was much debate over many years prior to its 
introduction about the teaching and learning of mathematics, but this was the first 
shift towards a public education emphasis which decreed equal treatment for all 
students and all teachers (Brown 2010). It was also the first time a pedagogical 
prescription was introduced, which emphasised whole class, or direct, teaching, and 
specified modes of instruction. However, the research base for the innovation was 
weak (Brown et al. 1998) and, in the years that have followed, further government-
sponsored pedagogical intervention has been introduced to the extent that teachers 
no longer appear to trust their own judgement, believing themselves compelled to 
follow their interpretations of the national strategy.

Theoretical Background

A long, and still current, debate in education questions whether a constructivist ap-
proach is sufficient in teaching and learning, for example, Kirschner et al. (2006) 
question the efficacy of all constructivist approaches to learning, whether discovery, 
experiential, problem-based and inquiry-based teaching. Tobias and Duffy (2009) 
challenge this view. Drawing on the research foundations of Vygotsky (1978), 
Piaget (1952) and Bruner (1966), and more recent perspectives such as situated 
learning (Resnick 1987) and its derivative, communities of practice (Lave and 
Wenger 1991), they suggest that there are many, not unrelated, characteristics of 
constructivist approaches to learning.

Recent research into early years practice in England, for example, the Effective 
Practice of Preschool Education (EPPE) project (Siraj-Baltchford 2002), refers to 
the continued work of Weikart’s (2000) model, as a typology of commonly ap-
plied ‘early childhood education curriculum models’ where high teacher initiative 
is described in terms of the highly structured pedagogy and high child initiative in 
terms of the learner’s control of the curriculum. The model is based on two continua 
reflecting the interactions of both teacher and child perspectives in the ownership of 
the learning trajectory, implying there should be a balance between the two, where 
an instructional orientation can interplay, or dance, with a constructivist approach 
(Siraj-Baltchford 2002).

What the early years literature appears to suggest is that effective early child-
hood pedagogy must still be ‘instructive’, but should be interpreted as incorporat-
ing all of those processes that occur within the classroom that aim to initiate or 
maintain learning processes, and to be effective means to achieve educational goals 
(Creemers 1994). This does not mean the rejection of a constructivist approach, 
on the contrary. According to the English system education guidance for teachers 
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(DfES, 1999), effective teaching encompasses direct teaching that makes effective 
use of unexpected and unforeseen opportunities for children’s learning. This will 
include both instructive and constructive approaches to learning. When considering 
the guidance, the message to teachers in England is clear, there are structured op-
portunities to be identified and planned which should provide a balance of approach 
between instruction and construction in order to be an effective practitioner.

In general, primary teachers in England do not study early years educational 
philosophy in their training; they receive a general training delivered through the 
curriculum subjects and a national strategy. However, recent independent reviews 
of primary practice in England have shown how the national strategy has failed to 
provide an appropriately meaningful pedagogy for early years teaching (Williams 
2008), in its offering just a series of notes that implicitly adopt a broadly construc-
tivist approach to teaching mathematics. The Cambridge Primary Review (2009) 
also reported on the need for a proper debate about primary education, in particular 
research-based approaches to how mathematics should be presented to children for 
deep learning experiences.

A significant issue of the national strategy model of planning is that ‘teaching 
starts to be assumed to be the reality of learning. Children are not assessed on what 
they have learned, but on whether they have learned very specific objectives. Rather 
than the attained curriculum—in the sense of what children actually learn—being a 
guide to help shape further teaching it has become a tick list’ (Askew 2011, p. 23). 
Furthermore, Aubrey et al. (2006) reported how the national strategy advantages 
some pupils more than others, with low attainers in particular, being least advan-
taged. Although primary mathematics teaching was presented as informed by con-
structivist, in reality it appeared to have become an impoverished list of things for 
the teacher to do.

Importantly, Askew et al. (2002) also found that if the emphasised mental math-
ematical images suggested in the guidance did not fit with those predetermined for 
the lesson then these were, at best, judged by teachers as not so relevant, rather than 
being a resource for the class to discuss and build upon, and were often ignored. 
Askew and Brown (2004) later confirmed that informed interpretation of the given 
objectives, and a move to more strategic ways of working, were challenging for 
teachers to understand and implement. Although professional development train-
ing was offered by the national strategy department, different interpretations were 
conceived by those training and by those being trained.

Knowledge for Teaching

The understanding of subject knowledge necessary for teaching mathematics is 
not disputed; effectiveness of mathematics teaching is not only due to the depth 
of a teacher’s knowledge but also to how explicit connections are made within the 
subject (Askew et al. 1997). Importantly, teachers should have a deep knowledge 
of mathematics at the level they were teaching rather than having knowledge of 
advanced mathematics’ (Ma 1999, p. 120).
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Furthermore, Ball et al.’s (2001) view is that not only should mathematical con-
ceptual knowledge be revisited but also pre-service teachers may need to unlearn 
what they know about teaching and learning of mathematics. Indeed, case studies, 
such as Goulding et al. (2002), report that an early years specialist with good subject 
knowledge does not guarantee successful teaching of mathematics. Their case of 
Frances revealed that a lack in confidence was also an issue, for although she knew 
the theory behind the teaching of subtraction, due to problems with her manage-
ment, she resorted to time-filling activities.

In 1986, Lee Shulman et al. introduced different kinds of knowledge, in particu-
lar ‘pedagogical content knowledge’. This term called attention to a special kind of 
teacher knowledge that links content and pedagogy. Ball and Bass (2000) describe 
how pedagogical content knowledge characterises the representations of particular 
topics and how children tend to interpret them. Children will often have difficulties 
with mathematical ideas or procedures and so teachers will need a unique subject-
specific body of knowledge highlighting the need for close interweaving of subject 
matter and pedagogy in teaching (Ball and Bass 2000).

Teaching Place Value

Place value is taken to mean the value assigned to a digit according to its position 
in a number, e.g. 2 represents 2 units in the number 42, 2 tens in the number 125 
and 2 hundreds in the number 274. Teaching place value has been a part of the 
mathematics curriculum since the introduction of a numeracy strategy (Department 
for Education and Employment (DfEE) 1999). With respect to early mathematics, it 
has been emphasised through extensive work on partitioning and recombining two 
or more digit numbers. Young children, who are only just developing an early un-
derstanding of quantity value while working with two-digit numbers, are expected 
to recognise a more formal perspective on these numbers, in order to prepare them 
for the formal written method.

English teachers are encouraged to support young children’s mathematical think-
ing by taking a constructivist approach and provide a range of manipulatives that 
will model the concepts under scrutiny and support mathematical thinking, but little 
guidance on why this might be done. Documentation available encourages teach-
ers to use a range of models and images to support the teaching of mathematics 
to young children. What they appear not to have achieved is the provision of ap-
propriate pedagogical content knowledge and guidance as to how best to teach the 
contradictory elements of place value. In England, young children are expected to 
develop and refine counting skills, which are then abandoned in favour of a com-
pletely different approach based on place value through partitioning the tens from 
the units. Research contradicts this perspective (Sugarman 2007; Thompson 2000; 
Beishuizen 2004), in that young children need to bridge this understanding of quan-
tity value and column value, but much later in their development, when they are 
fluent in their understanding of quantities (Beishuizen 2004).
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Manipulatives have the propensity to provide representations of mathematical 
concepts and structures, and are used widely to support children’s thinking, but they 
are not sufficient to guarantee meaningful learning (Clements and Samara 2009). 
Askew (2011) discusses how learners cannot go directly from not knowing about 
place value to knowing about it. Teachers provide tools and artefacts that mediate 
this, through which the learning is assumed to be enabled. Thus, part of that media-
tion has to come through appropriate use of language and specific vocabulary which 
will enculturate children in learning to think and speak mathematically (Lerman 
2001). Teachers’ guidance has promoted the use of some manipulatives, such as, 
base ten apparatus, to reinforce the ‘column’ aspect and to an extent the partitioning 
of quantity aspect. Consequently, teachers will draw on what they have used in the 
past, what they have seen others use or what their institutional scheme of work or 
textbook (if they have one) suggests. It is assumed that teachers will know what ma-
nipulatives are best to use for place value, drawing on their subject or pedagogical 
content knowledge. However, Rowland et al. (2009) show that whichever manipu-
latives are used, the examples provided by a teacher ought, ideally, to be the out-
come of a careful process of choice because some examples work better than others.

As stated above, this approach has been called into question. Thompson (2009) 
argues that teachers need to distinguish between the two different interpretations of 
place value the ‘quantity’ value aspect and ‘column’ value aspect. Furthermore, re-
search indicates that place value understanding needs to develop over time, possibly 
years (Thompson and Bramald 2002; Liebeck 1984; Anghileri 1995). They question 
why we (the English) teach column value as soon as children begin to recognise and 
calculate with two-digit numbers. Beishuizen (2004), summarising Freudenthal’s 
earlier work, wrote ‘instead of introducing formal structures like place value with 
concrete materials to children, Freudenthal (1973) advocated the more radical view 
of linking-up early maths activities to children’s own informal (counting) strategies, 
and postponing the more formal aspects till later’ (2004, p. 19).

Bruner’s (1966) work on enactive, iconic and symbolic learning provides us with 
a warranted framework from which to analyse how place value could be introduced 
and developed with young children. More recent work (Thompson 2009, Thompson 
and Bramald 2002; Sugarman 2007; Tall and Vinner 1991) reinforces how imagery 
and representation (Bruner’s iconic stage) can explicitly, and implicitly, develop 
deep understanding of partitioning. Examples of effective imagery can be seen in 
Clements and Samara’s (2009) work, and in particular in the Australian Maths Re-
covery work by Wright et al. (2006).

Here are some examples of the type of imagery that might be used to support 
children’s understanding if used consistently through instruction (Sugarman 2007) 
(Fig. 3.1).

A fives dot rack, where ten discs are placed in a line can provide an intermediate 
grouping for ten. This can reinforce the partitioning of numbers such as six, which 
is five and one more, seven is five and two more, etc. developing a consistent struc-
ture for the children to follow that they can build upon.

The bead string shown in Fig. 3.2 provides a similar model, where numbers that 
go beyond five either form a new line or change colour.



26 J. Sayers and P. Barber

The images become a powerful mental picture for children to develop number 
structures mentally, such as the number 17 illustrated above. Children will see that 
17 can be made up or broken down into parts, all of which will be familiar to them 
at that stage, e.g. a ten, made up of two fives, and five and two more, just as the So-
roban discs for Japanese and Chinese children offer (Frank and Barner 2012). This 
will support children moving onto calculation, for example, when two numbers are 
placed together for adding, 4 + 3, after several physical movements of the discs, or 
beads, children will be able to mentally move the discs and know that 4 + 3 becomes 
(4 + 1) + 2, thus five and two more. This becomes even more effective when they 
begin to bridge ten.

Essentially, it would appear that carefully selected manipulatives can be a crucial 
part of the process of learning. Conducted under careful instruction by the teacher, 
but developed through constructive models where patterns, combinations and parts 
of numbers can be seen and discussed explicitly with the children. However, if not 
selected or used appropriately, manipulatives may become simply a motivational 
pieces of apparatus. Indeed, Moyer’s (2001) research found that some teachers’ per-
spectives and ‘behaviours indicated that using manipulatives was little more than 
a diversion in classrooms where teachers were not able to represent mathematics 
concepts themselves.’ (p. 175). In such circumstances, the emphases were on fun 
rather than the necessary support for learning in general and mathematical thinking 
in particular.

The research reported here is to analyse how one experienced teacher, with good 
subject knowledge, orchestrates the dance between instruction and construction in 
teaching this challenging concept of place value through partitioning of numbers 
with models and images, to young children.

Fig� 3�1  Fives rack. 

Fig� 3�2  String beads.
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Methodology

A number of studies (Thompson 1984; Goldin 2002; Beswick 2007) have shown 
how case study can greatly enhance our knowledge and understanding of the rela-
tionship between teachers’ espoused beliefs and enacted practice. In respect of this 
study, six primary teachers, considered locally to be effective teachers of mathemat-
ics, participated in a series of observations and post-observation video-stimulated 
recall interviews. It was decided to work with teachers who were essentially ambas-
sadors of the subject in order to eliminate, as far as possible, lack of confidence or en-
joyment in teaching the subject. This chapter reports on the findings of one of the six 
teachers (Jane),who, when involved in this research, taught children of ages five and 
six, to illustrate pedagogical issues related to the use of manipulatives and language 
emphasised when teaching fundamental number structures to such young children.

Prior to any observations, a semi-structured interview was conducted to elicit 
colleagues’ mathematical backgrounds. The intention was to examine how their 
early experiences of school, university and, for example, family had influenced 
their perspectives on mathematics and its teaching. Following the initial interview, 
each teacher was observed over a period of 6–12 weeks. Each lesson was video-
taped and after an initial analysis, where questions and issues were identified, fol-
lowed by a stimulated recall interview (SRI) (Perkins 1982). During these inter-
views, colleagues were invited to discuss the whole class episodes of the lessons 
in relation to their professional decision-making in respect of the chosen task and 
the manner in which the episode played out. Foci for this elicitation included, for 
example, their mathematical objectives and the pedagogical approaches they used. 
Importantly, teachers’ topic choices were assumed to have been predetermined by 
the statutory National Curriculum requirements and so SRIs focussed on the ratio-
nales colleagues’ gave for the ways in which they engaged their children during the 
whole class episodes of their lessons. Thus, the data for each teacher comprised a 
pre-observation background interview and between three and six paired observa-
tions and SRIs. Data were analysed qualitatively drawing on, but not exclusively, 
the constant comparison exploited by grounded theorists (Strauss and Corbin 1998).

The Study and Discussion

What follows is a summary of what Jane presented to her class and her rationale for 
using the manipulatives to model the learning objectives, and the activity children 
were expected to do in independent work. Jane’s utterances are in italics.

As presented earlier, the context in English mathematics classrooms has contin-
ued to draw from the National Strategy guidelines (DfEE 1999; DfES 2003) where 
the learning objectives for a lesson are displayed together with success criteria. This 
objective-driven approach is a procedure adopted by most teachers in England, and 
indeed in this case by Jane. Her lesson listed two mathematical learning objectives 
lifted straight from guidance papers:
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• To partition numbers into tens and units
• To begin to order two-digit numbers

Although the children had started to partition numbers earlier that week, they could 
not remember what the word ‘partition’ meant. Jane explained to the children that 
it meant splitting the number into tens and ones, and that would be what they do in 
independent work later.

Jane’s success criteria were:

• We will understand how to partition two-digit numbers
• We can show a two-digit number by using cubes
• We can order two-digit numbers

The criteria emphasised the use of cubes to show understanding of a two-digit num-
ber, which Jane saw as a model for the learning of partitioning. She explained, in the 
SRI (interview) that followed the lesson, that the idea of partitioning was still new 
to the class and so the lesson ‘…was like one of their first steps to understanding 
how to partition a two-digit number’.

The first resource Jane used to illustrate partitioning was on the class interactive 
whiteboard (IWB) where a set of number (place value) cards, numbers 1–9 and 
10–50, were displayed like the ones in Fig. 3.3.

When prompted, some of the children were able to offer examples of one-, two- 
and three-digit numbers which she acknowledged and praised. She then used the 
IWB to construct a two-digit number, and moved a ten and a seven, placing the 
seven on top of the zero of the ten. She asked the children what is the number. Many 
of the children called out the number 70. She corrected them by reiterating that it 
was a 17 not 70 as it was a teen number, because ‘all numbers with a one in front 
were teen numbers’. She continued to demonstrate and explain that the number 
could be split apart, back to the ten and the seven again, and moved the seven card 
away from the ten. She repeated the process by covering the zero by the seven card, 
reiterating that ten and seven make 17.

Jane reflected later that her resources were not ideal but because she did not have 
any arrow cards, she had found the IWB card activity online so decided to use this 
as her model to demonstrate partitioning. The place value cards, like the ones shown 
in Fig. 3.4, are commonly used in primary schools.

Fig� 3�3  Place value cards

Fig� 3�4  Place value cards
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The teacher will use a large dimensioned set, and the children would have 
a small-sized set to use individually or in pairs. The Primary National Strategy 
guidance (DfES, 2003) and DfEE (NNS 1999) suggest to teachers that they ‘should 
use place value cards to partition and combine numbers with zero as place holder’ 
(p. 4). The resource is an abstract image rather than a more concrete one but no clear 
rationale is evident in the documentation for this preferred choice.

It could be argued that using the number cards on the IWB or physically by the 
teacher would have made little difference to the presentation of partitioning numbers; 
they simply appear on screen rather than in the teacher’s hand. The representation of 
number still remains an abstract one. Therefore, the language the teacher uses here to 
describe the process of partitioning is crucial in the exposition. Jane did not empha-
sise any connection to the order of numbers, where number 17 sits within the system, 
this was entirely left for the children to implicitly understand, which is problematic. 
As Lampert (1986) and Gelman (1986) highlight, teaching implicit understanding 
can have the adverse effect on the development of children’s mathematical thinking. 
Jane had found the place value cards free online and ‘thought that would be good to 
use, but they were only small ones and only one set of them. So I would have pre-
ferred to use giant hands-on ones…so I could show them, together, take them apart, 
etc. I would have preferred that…but this was the best I could find at short notice’.

After repeating the splitting up and recombining of the cards to illustrate parti-
tioning of number 17, Jane explained to the children that the numbers were in col-
umns called ones and tens. And reiterated ‘seven ones go into the ones column and 
one ten goes into the tens column’, just as illustrated below, stating to the children 
that this was ‘where all two-digit numbers go’ (Fig. 3.5).

She repeated the process with 25, showing a 20 card and a five card and placed 
the five over the zero of the 20. She repeated that ‘the five is in the ones column and 
the two is in the tens column’ and partitioned them as she did before. She reinforced 
the idea by asking the children what this means, as she makes hand gestures of pull-
ing something apart. She repeats, ‘It means to split the number apart.’ as she moves 
the five away again from the 20. Jane asks, ‘What are we left with?’ To which the 
children shout out ‘Twenty!’

Jane’s progression to draw column lines onto her board above the number 17 she 
believed reiterated that the one represents one ten in the tens column and the seven 
represents the seven in the ones column. Interestingly, she provided no explana-
tion to what these columns meant, or why they were important. After repeating the 
same statement, that the seven goes in the ones column and the tens go into the tens 
column, she qualified this fact saying ‘where all the two-digit numbers go’. Her 

Fig� 3�5  Column representa-
tion of a two-digit number
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qualifying statement here is problematic; she does not expand on what she means 
by ‘all the two-digit numbers go…’ She did not explain what two-digit numbers 
have in common. Instead, she introduced a new number to look at, 25, and repeated 
the explanation. Jane believed that this is what was required of her. She believed 
that drawing the columns supported the children’s understanding of place value, 
and therefore partitioning. As Askew (2011) argues ‘learners cannot go from not 
knowing to knowing about place value’, teachers need to provide tools and artefacts 
that will mediate this notion, through which the learning is assumed to be enabled. 
Jane was convinced that drawing the columns helped the children understand place 
value, she said ‘I have used this before, it works well’.

The lesson changed to an instruction of what the children were expected to do 
at their tables independently. Jane introduced linking cubes, as shown in Fig. 3.6.

Jane showed the children ten cubes attached to each other in a rod, and said:
Jane: One tower of ten cubes here and this represents the tens column. This is a 

block of ten (as she shows a number of cubes fixed in a rod). It’s just one block of 
ten. (She then held up seven orange cubes attached in a shorter length.)

Jane: The orange cubes, how many cubes have I got here? (showing the children 
the smaller length of cubes).

Class: Seven
Jane: You think seven? Yes I have, (and counts them). These cubes show us the 

number 17 in those columns. We have one block of ten but seven little ones. You are 
going to do that soon at your tables in a minute.

In the SRI, Jane was asked why she called the small rod of seven cubes the ‘little 
ones’? She said ‘…for practicality really, for showing them on the carpet. It’s diffi-
cult to show them seven individual ones in your hand so ideally, that’s what I would 
have liked them to see, and on reflection I could have perhaps stuck them with blu-
tack on the little white board…so they could see them better, but I think that was the 
main reason it was difficult to show them seven individual ones’.

Fig� 3�6  Linking cubes
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Jane repeated the procedure with the number 25, again reiterating the column 
she asked ‘we have then number two in our tens column, how many cubes of ten 
will I need now?’ She pointed to the 20 in 25. The class response was quite mixed, 
they shouted out:

Class: Nine…two…ten.
Jane: It’s quite difficult isn’t it! With our 17…ok I have one in the tens column. 

And one block of ten, how many do I need in this one? (Pointing to the number 
seven. She then points back to the number two in 25.)

Lisa: ‘We need two blocks of ten,’ to which Jane praises, ‘We do, good girl!’
Jane agreed and reiterated that ‘in the tens column we need two blocks of ten’. 

One child called out ‘Two more?’ which she rejected and repeated that they need 
two blocks of ten in the tens column. She again counted the two blocks in her hand 
and repeated they need two blocks of tens in the tens column. She turned to her box 
to get some more cubes, and a child shouted out ‘we need five cubes’. She turned 
with her cubes and said, ‘That’s right just five,’ and announced that they need, ‘five 
ones for the ones column’, pointing to the ones column on the board ‘but two blocks 
of ten for our tens column. It is, quite confusing isn’t it!’, she stated. The children 
appeared to be confused with this different model, having demonstrated understand-
ing of the abstract of splitting two digits apart and then recombining, they were 
moved onto column value and then swiftly followed by quantity value in the cubes.

The independent work lasted for nearly 12 minutes and when children appeared 
to struggle with making the tens and ‘little ones’ to partition their numbers given to 
them. Jane called a halt to this section of the lesson and tried to explain the process 
again. She asked what they found difficult about the task, but the children did not 
appear to be able to articulate what they found difficult, consequently Jane re-taught 
the idea using the linking cubes but changing the vocabulary from blocks of ten and 
little ones saying, ‘One group of ten or one tower of ten’. She repeated that the num-
ber one represented number ten and that it was not the number one, and explained 
the ones column asking another child (Tom) to select the right number of cubes to 
show this number (seven). She reiterated that Tom was not getting ‘two big towers 
out of the box, but just seven on its own’. She placed the two towers (ten and the 
seven) together to show the cubes and asked the children to help her count on from 
10 to 17. The lesson ended, the topic would not be picked up again until the follow-
ing term, nearly 3 months later.

Jane had clearly believed that to reconstruct a two-digit number, she would need 
a model for the children to gain understanding of partitioning through ‘accessible 
concrete materials that illustrate’ the concept of ‘partitioning’ she had previously 
illustrated abstractly on the board. The linking cubes were presented as one ‘block’ 
of ten, linked together and seven ‘little ones’ which were also linked in a rod, but 
smaller. Jane’s rationale for this approach was:

 ‘…I’ve used those two (place value cards and cubes) together before and it’s been successful.
This was good because you could see how the numbers began in their tens and units and you 
could put them together and partition them again and to try to relate the partitioning and like 
making towers of ten to relate to the numbers.’
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Jane recognised that the children were struggling with the task she had set them 
of partitioning and recombining numbers with cubes so changed the vocabulary she 
had used in her previous explanation and instruction. She said:

…if children don’t understand the word ‘block’ then they might understand the 
word ’tower’ or they might understand ‘lots of’ or they might understand other 
vocabulary. So I tend to throw different vocabulary at them, because some children 
might not understand just one of those words.

Her reflection indicated her understanding of the difficulties children experience 
with certain vocabulary, yet she did not seem aware of the more complex difficulties 
the children were having with the instruction she gave them. Her focus (learning 
objective) was to partition numbers into tens and ones. This she did by deconstruct-
ing the digits of a two-digit number and partitioned the seven from the ten card. She 
immediately followed this by instructing the children to see the two-digit number 
by its column value, one ten and seven ones. The children did not respond to this 
new idea of columns. To reiterate the partitioning and recombining of two-digit 
numbers, the children were instructed to construct the quantity value of the numbers 
shown, then attempt to reconstruct new numbers at their tables independently us-
ing the cubes. The difficulties the children had were between the teacher’s abstract 
instruction and concrete re-construction of what a two-digit number is, was confus-
ing to the children. Jane believed the construction of a two-digit number with cubes 
was to scaffold the children’s learning, just as the teacher guidance suggests when 
partitioning and recombining numbers.

Evidence in this study reveals that these ‘blocks’ of cubes do not easily lend 
themselves to becoming tools for thinking with. People’s mental models of number 
seem to be linked to the ordinal aspects of number where numbers are placed in 
order and with respect to each other, as on a linear scale or number line (Dehaene 
1999). Jane had not considered the implication of using an abstract form of number 
cards followed by the introduction to column value, then scaffold the idea with a 
concrete form of quantity. She believed she was supporting children’s thinking by 
constructing the quantity value to reinforce the partitioning. However, the confu-
sion began with mixing the abstract form alongside the column value, followed by 
the quantity value together with informal language to complicate the situation. The 
dance of instruction with construction (Presmeg 2014) was a confusing dance for 
these children, who were still unsure of the quantity value of numbers.

This study is not presented to criticise one teacher’s exposition or lack of peda-
gogical content knowledge. For this case is not atypical, when analysing the na-
tional strategy documentation (DfEE 1999, 2003) the guidance to English teachers 
informs them that abstract representations are to be favoured over more concrete 
materials without any clear rationale. Jane conveyed no knowledge that there could 
be an issue in using concrete materials (cubes) alongside the abstract form. She 
followed the national strategy training and documentation and interpreted the sug-
gested advice closely. She was successful and considered to be an effective teacher 
of mathematics, totally committed to doing well by the children in her care, working 
hard to follow the system in which she was working.
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Sutherland (2007) argued that the practitioners are no longer being treated as in-
telligent professionals, whose teaching would be enhanced by knowing the reasons 
for using a particular teaching approach. She views the framework as ‘dumbing 
down’ the teachers, which is likely to lead to a ‘dumbing down’ of their pupils. 
This study would concur with this idea, the relationship between the instruction and 
construction appears to no longer be in the hands of the teacher, for Jane trusted the 
guidance materials she used, as is the expectation.

Jane assumed that if she showed her class the number cards to represent the 
two digits, and then cubes, it would help to illustrate the number symbols by of-
fering a concrete sense of size and quantity of the number, thus the mathematical 
concept of place value. Research informs us that resources do not in themselves 
convey knowledge; the teacher should explicitly make the connections between the 
abstract and the concrete idea. Yackel (2000), Cobb et al. (1992) and Holt (1982) 
state, only those who already understand the mathematical concepts being modelled 
will perceive the mathematics in them, as the interpretation of the individual will be 
constrained by prior experiences. Jane appeared not to be concerned with this idea. 
She assumed that the children were simply not ready for partitioning, and not, the 
exposition itself may have been the difficulty children were having. She changed 
her vocabulary indicating that she was aware of some misunderstandings but little 
sense was made by the children of how these two ideas linked.

Conclusion

Although the exposition described here appears to imply that Jane had limited math-
ematical subject knowledge, the fact is she trained as a specialist of mathematics and 
achieved a very good grade in her degree. What she appeared not to demonstrate 
was a deep pedagogical knowledge (see Shulman 1986), however, we argue that 
she had placed her trust in the national strategy and followed the guidance carefully.

Where the lesson failed, it seems to us, was in her ambition of supporting chil-
dren’s mathematical thinking, particularly in respect of making explicit the connec-
tions between quantity value and column value. She understood how teaching place 
value through the use of digit cards links with the partitioning of two-digit numbers 
and introduced column value. Jane attempted to support her class’ understanding by 
the use of informal language: ‘block of, and tower of (tens) and little ones’. In this 
respect, Jane was confident that her chosen words were familiar to her children, and 
yet our observations indicated that these words meant little to the children in this 
context, which is a problem well rehearsed in the literature (Clements and Samara 
2009; Lansdel 1999).

Significantly, Jane works in a system that expects an unquestioning adherence 
to centrally prepared pedagogical guidelines. These guidelines, which do not sug-
gest postponing work on tens and units/ones with column headings T and U, expect 
teachers to teach this idea to young children. Jane made the decision to support 
children’s understanding of partitioning through her cube-related representation. In 
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so doing, she assumed that mathematical meaning was embodied in her representa-
tions but failed to make explicit her objectives in this regard.

In sum, place value is difficult to understand and to teach. Jane’s teaching of 
mathematics is expected to comply with a national strategy that presents mathemat-
ical content as lists of learning objectives and success criteria. She attempted to pro-
vide her children with meaningful opportunities to develop conceptual understand-
ing through her use of manipulatives and language in order. Yet the dance—to use 
Presmeg’s (2014) metaphor—as presented here, shows that teachers need an aware-
ness of how these opposing pedagogical approaches interplay. Until a system offers 
teachers, the pedagogical training and guidance necessary for the development of 
an awareness of the subtleties of the dance between instruction and construction, 
we cannot expect those who teach young children mathematics to participate in the 
dance. It simply becomes confusing, doesn’t it?
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Mathematics Through Play in Swedish Preschools

Sweden, like other countries such as New Zealand (Haynes 2000), is faced with a 
tension of wanting to ensure that children begin school with stronger mathemati-
cal understandings, while also wanting to adhere to the philosophy that preschool 
children should learn through play. This is a tension that some see as irreconcilable 
(Lee and Ginsburg 2009; Carr and May 1996), often because it is reduced to an 
either–or scenario—either children’s own interests are followed or they are directly 
instructed by an adult (Dijk et al. 2004). In this chapter, we explore how one teacher 
developed children’s mathematical curiosity from their play. Through respectful 
listening, including watching carefully what children do, the teacher was able to ask 
questions that simultaneously engaged the children’s mathematical curiosity and 
supported their play.

As is the case in many countries around the world, in Swedish preschools play 
is considered the foundation for children’s learning experiences (Skolverket 2011). 
This is reflected in the curriculum:

Play is important for the child’s development and learning. Conscious use of play to pro-
mote the development and learning of each individual child should always be present in 
preschool activities. Play and enjoyment in learning in all its various forms stimulate the 
imagination, insight, communication and the ability to think symbolically, as well as the 
ability to co-operate and solve problems. (Skolverket 2011, p. 6)

Connecting play with enjoyment assumes that learning will produce more easily “imag-
ination, insight, communication and the ability to think symbolically, as well as the 
ability to co-operate and solve problems”. However, in a study of Swedish teachers and 
parents’ perceptions of the relationship between play and learning in very young chil-
dren, learning was taken for granted and considered as something that always occurs in 
play (Sheridan et al. 2009). It was not something that had to be planned for. At the same 
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time, play was assessed as being of low quality, although exactly how this quality was 
judged was unclear. Still, it would seem that the assumption of the connection between 
play, enjoyment and learning needs more investigation.

One reason for the difficulty in assessing the quality of play may be because 
it is difficult to define (Samuelsson and Carlsson 2008). Alan Bishop (1988), in 
discussing the addition of play to his list of universal mathematical activities, used 
Norbeck’s (1977) reflections on the work of Huizinga to suggest the following list 
of characteristics:

• Voluntary, free
• Not a task, not ordinary, not real
• Essentially unserious in its goals although often seriously executed
• Outside the immediate satisfactions itself, but an integral part of life and a neces-

sity
• Repetitive
• Closely linked with beauty in many ways but not identical with it
• Creates order and is order; has rules, rhythms and harmony
• Often related to wit and humour but is not synonymous with them
• Has elements of tension, uncertainty, chanciness
• Outside the antitheses of wisdom and folly, truth and falsehood, good and evil, 

vice and virtue, has no more moral function (p. 42)

More succinctly and combining many of the features also identified by Samuelsson 
and Carlsson (2008), Dockett and Perry’s (2010) stated:

The process of play is characterised by a non-literal “what if” approach to thinking, where 
multiple end points or outcomes are possible. In other words, play generates situations 
where there is no one “right” answer.… Essential characteristics of play then, include the 
exercise of choice, non-literal approaches, multiple possible outcomes and acknowledge-
ment of the competence of players. These characteristics apply to the processes of play, 
regardless of the content. (Dockett and Perry 2010, p. 175)

These definitions share several ideas. They include a sense of play being voluntary 
so that children have a choice of whether to engage or not as well as having choices 
about how to participate. It could also be said that the uncertainty that is integral to 
play provides the opportunities for multiple possible outcomes. The “what-if” and 
“non-literalness” nature of play resonates with play being outside the “antitheses” 
mentioned by Bishop. While the Dockett and Perry (2010) definition includes the 
“acknowledgement of the competence of players”, the characteristics discussed by 
Bishop (1988) do not include any which are related to characteristics of the partici-
pants. Play can be considered as an essential component of children’s experiences 
as they explore, try out and interact with aspects of the world around them.

The Swedish curriculum for preschools (Skolverket 2010) does not define play 
as such, except by choosing to use the word lek, meaning play without predeter-
mined rules. (Playing of rule-based games, such as football, bridge and Monopoly, 
is denoted by the word spel.) The choice of the word lek indicates an alignment with 
Dockett and Perry’s (2010) idea that the characteristics of play are about the pro-
cess, rather than outcomes. In the characteristics discussed by Bishop (1988), rules 
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are mentioned but in the sense that they arise out of the play—“creates order and 
is order; has rules, rhythms and harmony”—rather than being imposed on the play.

We consider that there are predominantly two kinds of situations which can 
be described as play in preschools: free play, in which children use the resources 
around them without adult intervention, and guided play where a teacher sets up a 
situation but allows children’s own interests to form the play. Both of these kinds 
of play are in alignment with the use of lek in the preschool curriculum. Although 
researchers used these terms, for example, Coltman et al. (2002), Edo et al. (2009), 
Lamberty (2007), the differences between the terms generally remain undefined.

Although it has been documented that mathematical learning has arisen from 
free play (Coltman et al. 2002), Lee and Ginsberg (2009) suggested that children are 
likely to gain only limited mathematical understandings from it. For them, the role 
of the teacher is of paramount importance. Björklund (2008) showed that adults set 
the parameters for children’s opportunities to engage with mathematical ideas. An 
adult watching or participating in a child-initiated play can develop children’s math-
ematical ideas by stimulating their curiosity and language use (Doverborg 2006). 
Anderson (1997) in investigating parent interactions with preschool children wrote:

Adherence to social constructivist principles implies that parents be encouraged to share 
in determining and carrying out activities with their children rather than to expect children 
to work alone with the materials. Likewise, it suggests that young children are capable 
explorers who actively seek meaning from and aptly structure their own engagement with 
the materials and significant others. (p. 485)

As an alternative to the two types of play, direct instruction also can occur in preschools. 
In this case, the teacher prescribes what actions the children should engage in. Children 
may still enjoy this learning but they can make limited, if any, choices about what they 
do (see Emilson and Folkesson 2006). In recent years, particularly in English-speaking 
countries, several intervention studies have involved teachers presenting preschool chil-
dren with set activities. For example, Papic, Mulligan and Mitchelmore (2011) imple-
mented an intervention program on repeating and spatial patterning in one preschool 
over a 6-month period. Children were grouped according to how they performed on an 
initial diagnostic interview and then provided with tasks for their level. A combination 
of individual and group time was provided. Children progressed to the next level if they 
showed competency in their current level.

Although learning through play can be juxtaposed with learning from direct in-
struction, such a juxtaposition limits the types of discussions that can result. Con-
sequently, we see it as being more valuable to focus on the teaching process and 
the features most likely to lead to learning. To us, teachers, or other adults, who 
engage with children around mathematical concepts are teaching. Therefore, teach-
ing can occur both in guided play as well as in direct instruction. The relationship 
between teaching and learning is complex, making it difficult to determine causal-
ity (Krummheuer 2012). However, by understanding how a teacher interacts with 
children within a guided play situation, we will be more able to understand which 
features in the interaction contribute to children’s learning mathematics.

In this chapter, we first present two models for the organisation of learning be-
fore describing how the Swedish preschool teacher engaged with a small group 
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of children around the mathematical ideas in a set of glass jars. We then use the 
models to analyse the teacher’s role in developing children’s mathematical curiosity 
through building on mathematical teaching moments.

The Teacher’s Role in Preschool Children’s Learning

The importance of scaffolding, where adults gradually reduce their level of support 
so children become competent, is often raised in discussions about young children 
learning mathematics. Frequently, this discussion is framed in relation to children 
solving problems (Wood et al. 1976). Using her own and others’ work on scaffold-
ing, Anghileri (2006) distinguished between different teacher strategies for scaf-
folding mathematics learning. These strategies can be seen in the three-level model 
represented in Fig. 4.1. Each level is in a hierarchical relationship to the others:

At the most basic level, environmental provisions enable learning to take place without the 
direct intervention of the teacher. The subsequent two levels identify teacher interactions 
that are increasingly directed to developing richness in the support of mathematical lear-
ning through explaining, reviewing and restructuring and developing conceptual thinking. 
(Anghileri 2006, p. 38)

Examples of different strategies are provided at each level. The strategies in the cen-
tre are those that Anghileri (2006) considered were seen most frequently in class-
rooms, while the strategies on the sides were the ones that were more likely to be 
connected to effective mathematics classrooms. Although situated within the school 
context, much of the work that Anghileri drew on in developing this model came 
from research on 4–6-year-olds. Given that Swedish children are in preschools for 
most of this age period, Anghileri’s model has the potential to be a valuable resource 
in analysing the teacher’s role in developing children’s mathematical curiosity.

Although Anghileri (2006) acknowledged the importance of the interactions be-
tween teachers and students as leading to learning, her model focuses on what the 
teacher does and the children’s actions are less visible. As indicated by Anderson 
(1997), children are active investigators of their world and thus their contributions 
to the interactions must be considered, especially when it is from their play that the 
teacher identifies teaching moments. In a study of toddlers in a Swedish preschool, 
Emilson and Folkesson (2006) used the ideas of Bernstein to suggest that a teacher, 
“instead of keeping control by the selection of communication, its sequencing and 
its pacing, she is responsive, observant and confirming, and she develops the ideas 
of the children” (p. 237). In so doing, she was able to support children to make 
decisions about their learning and consequently be involved in genuine participa-
tion. The child’s contribution to the interaction was the basis on which learning 
opportunities were developed. Therefore, although Anghileri (2006) provides valu-
able insights, there is a need for a broader model with which to analyse interactions 
between the teacher and the children.

In many ways, the description of Emilson and Folkesson’s (2006) teacher’s in-
teractions with toddlers resembles what Rogoff et al. (2003) described as intent 
participation. Rogoff et al. (2003)  acknowledge that there are many ways to organ-
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ise learning, but in their article they distinguished between intent participation and 
assembly-line instruction. Table 4.1 shows the main differences between these two 
types of learning. Intent participation often occurs when “people engage together 
in a common endeavour” (p. 183) and assembly-line instruction is used when there 
is a “transmission of information from experts outside the context of purposeful, 
productive activity” (p. 183), something which they perceived as being common 
in schools.

Fig� 4�1  Teacher strategies for scaffolding learning. (From Anghileri 2006, p. 39)

 



42 T. Lange et al. 

Although not specifically on preschool teaching, Rogoff et al.’s (2003) model, 
like that of Anghileri (2006), drew on extracts from interactions between adults 
and preschool-aged children to exemplify the different components. Rogoff et al. 
(2003) considered that it is the integration of the components which contributes to 
the different traditions for organising learning. Certainly, the components of intent 
participation recognise the role of the child or learner in the interaction. There is 
an overlap in some aspects of both models; for example, Anghileri’s model high-
lighted the need for a teacher to identify meaningful contexts whilst Rogoff et al. 
suggested that in intent participation, “motivation is generally inherent in the obvi-
ous importance and interest of the activity”. However, there are also differences. 
Anghileri concentrated on the teacher, whereas Rogoff et al. viewed the roles of the 
participants as being fluid. We have primarily drawn on Rogoff et al.’s model and 
used the teacher scaffolding strategies of Anghileri’s model to unpack the teacher’s 
role in the interactions with the children.

The Data

The research was undertaken in a private preschool in a large city in southern Swe-
den. Filming was undertaken with different classes/groups over several days. In this 
chapter, we report on one episode of guided play. Although initially the teacher had 
not nominated it as being a mathematical activity, this focus became evident as the 
children engaged with the jars. Therefore, it was chosen because it exemplified how 
the activity was developed from the children’s own interests. The whole episode 
lasted about 11 min. Extracts of the transcript are provided in the original Swedish 
with an English translation.

After first describing the episode, we then analyse how the teacher identified 
and then elaborated on children’s interests by discussing each of the components 

Table 4�1  Multifaceted traditions for organising learning. (From Rogoff et al. 2003, p. 185)
Assembly-line instruction Intent participation

Participation 
structure

Hierarchical participation structure 
with fixed roles

Collaborative, horizontal participation 
structure with fluid responsibilities

Motivation Motivation in extrinsic rewards, 
threats. Relation of steps to 
purpose often unknown

Motivation in importance of acti-
vity. Relation of steps to purpose 
understood

Assessment Assessment separate from lear-
ning, to test receipt

Assessment during shared endeavours 
to aid learning

Communication Communication mainly in words; 
questions to quiz learners

Communication through joint action, 
and words and gestures about needed 
information

Learning Learning through lessons, 
exercises, out of purposeful 
endeavours

Learning through observation during 
participation in shared endeavours

Roles Experts manage, dividing task, not 
participating. Learners receive 
information

Experienced people guide while partici-
pating. Learners take initiative
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in Rogoff et al.’s (2003) multifaceted models and connecting them to Anghileri’s 
(2006) teacher strategies for scaffolding for learning.

Playing with Glass Jars

In this episode, three children, Marie, Mia and Lena, all pseudonyms, played with 
some glass jars. The teacher (L in the transcripts) provided the opportunity for this 
exploration, although the main purpose of the activity was for the children to put 
coloured paper on the jars and make them into candleholders.

The teacher placed herself on the side of the group and so was at a similar height 
to the children. This seemed to contribute to them focusing on the jars in the centre 
of the space. The children continually touched the jars, putting their hands and feet 
inside and exchanging the jars between themselves.

Most of the time, the teacher sat away from the jars, allowing the children to take 
the lead. However, when she wanted to ask specific questions or highlight particular 
aspects of the jars, she would touch or point to them. Although the teacher asked 
questions, she did not model answers, nor force the children to answer her questions 
when they showed reluctance.

The teacher began by asking the children if they thought that the jars looked the 
same. The children explained how they perceived the jars as rectangular, thick or thin. 
The teacher then asked one of the children, Lena, why she thought her jar was thick.

L: Och din är lite tjock. På vad sätt är den tjock 
Lena, hur är den tjock?

And yours is a bit thick. In what way is it 
thick Lena, how is it thick?

Lena: Den är tjock på denna bredden. [barnet har en 
burk som blir tjockare nertill som hon visar på]

It is thick at this width. [the child has a jar 
that gets thicker at the bottom which she 
demonstrates]
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The teacher then continued by asking if the children had noticed other shapes

L: Har den någon annan form någon annanstans? Does it have any other shape elsewhere?

This helped the children to focus on 
different shapes both between the jars 
as well as within the jar. After a while, 
the teacher asked if the children could 
put the jars in some sort of order. Lena 
placed all but one together in a group 
and explained how the odd jar was 
rectangular and therefore did not fit 
with the others.

After a short while, Mia tried to put her foot in one of the jars and Lena and Marie 
copied her immediately.
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This went on until the teacher 
again asked the children if they 
could put the jars in order but this 
time she specified that the order 
was to be according to size. The 
children started to arrange the 
jars, with the teacher asking ques-
tions as they were doing it.

L: Vilken kan komma efter den här om 
den är högst och sen kommer den 
vilken kan komma efter den här? 
[Marie flyttar dit en högre burk] Om 
man tänker att man hitta nått som är 
lägre än den?

What can come after if this is the tallest and then what 
could come after this? [Marie moves a taller jar into 
the line] Do you think that you could find one that 
is lower [smaller] than that?

Bigger
It is taller

Marie: Större
L: Den är högre

[Mia ändrar på burkarna så att de går 
från högre till lägre.]

[Mia changes the jars so they go from tallest to 
shortest.]

  On the initiative of Marie, they 
divided the jars between them. 
Marie said that everyone could 
have two each. The teacher 
then asked if they could have 
three each.

L: Om vi gör så att vi ställer tillbaka 
dom också ser vi om vi alla kan få, 
ställ tillbaka dom Marie allihopa, om 
alla kan få tre var?

If we put those back too, we will see if everyone can 
get, put them back Marie all of them, if everyone 
can get three each

Marie: En, två, tre [Marie räknar när 
hon tar sina, de andra bara tar]

One, two, three [Marie counts as she takes hers, the 
others just take theirs]

… …
L: Det gick inte att få tre var Could not get three each.



46 T. Lange et al. 

  Then they counted the jars. 
 Marie counts seven whilst Lena 
counts eight.

L: Åtta. Hur många fick du det till, 
kommer du ihåg det? [till Marie] när 
du räknade alla tillsammans? [Marie 
skakar på huvudet]

Eight. How many did you get it, do you remember 
that? [Marie] when you counted all together? 
[Marie shakes her head]

Marie: Sju Seven
L: Marie fick det till sju Marie got it [the answer] to be seven
Marie: Nej, jag fick det till åtta No, I got it to be eight
L: Aha, du fick det till åtta sen, mm. Det 

är åtta tillsammans och vi har två var 
nu. Om vi gör så här att vi försöker 
ställa alla små burkar i en hög och alla 
stora burkar i en hög

Aha, you got it to be eight, then, mmm. There are eight 
together and we have two each n. If we do like this 
that we try to put all the small jars in a pile and all 
the big jars in a pile

By contrasting the answers, the teacher made the girls aware that there were two 
different answers. However, Marie did not want to take this any further and then 
said that she got eight as well.

Then the teacher asked the 
girls to sort the jars with the 
small jars in one group and the 
tall ones in another group. Al-
though it began as a discussion 
about size, all of a sudden Ma-
rie says fyrhörning (meaning a 
figure with four corners, i.e. a 
quadrilateral). This comment 
occurred when she was touch-
ing a jar with a square cross 
section. The teacher focused 
on this and they started to talk 
about the different shapes.
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Throughout the episode, the teacher followed whatever the children were interested 
in. However, the repeated requests for the jars to be sorted according to some cri-
teria, suggested that she did have a specific intention for the activity. Nevertheless, 
she followed the children’s own interests and did not insist on them continuing to 
arrange the bottles according to different kinds of attributes. By being sensitive to 
the children’s interest in the jars, she both caught and missed opportunities to chal-
lenge the children’s understanding. For example, she was able to suggest seeing if 
it was possible for each person to have three jars each after Marie’s suggestion of 
having two each had been investigated.

Analysis

In the analysis, we look at each of Rogoff et al.’s (2003) components to see how repre-
sentative the various incidents are of intent participation or assembly-line instruction. 
In making this analysis, we use Anghileri’s (2006) strategies—environmental provi-
sions; explaining, reviewing and restructuring; developing conceptual thinking—to 
identify how the teacher developed the learning opportunities for the children.

Participation Structures

The teacher set out the jars so that the children could make candleholders. Possibly, 
because the children began to handle the jars immediately, she invited them to play 
before the main task of making the candleholders. At different times, she requested 
the children to talk about the jars and to order them in different ways. However, in 
responding to the teacher’s suggestions the children took control of how the activity 
developed through their actions or comments. Although the participation structures 
did not have the fluidity described by Rogoff et al. (2003) for intent participation; 
neither did they have the fixed roles of the assembly-line instruction.

This fluidity of control was supported by “provision of artefacts”, a scaffolding 
strategy, from the environmental provision level, which was the lowest level of An-
ghileri’s (2006) hierarchy. The provision of artefacts, the glass jars, scaffolded the 
children into playing which then lead to learning opportunities. The jars attracted 
and retained the children’s interest and consequently they explored them in a va-
riety of different ways, sometimes with teacher guidance but also by themselves. 
Providing the jars resulted in the children immediately touching and playing with 
them, which exemplifies level 2 of Anghileri’s (2006) teacher strategies identified 
as “looking, touching and verbalising”. The teacher could build on these tactile 
sensations by asking different children to verbalise what they noticed, thus bringing 
mathematical ideas such as shape and number into focus.

At times the children engaged with the jars individually, or in parallel, but at 
other times they worked together as was the case when they ordered the jars from 
shortest to tallest. According to Anghileri (2006), grouping as a way of working 
together is a form of scaffolding at the environmental provision level. Children’s 
working together in this way, with the teacher sitting on the side, was a result of 
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collaborative, horizontal participation structures. However, it may be that the value 
that the participants gave to this way of working then supported the use of those 
structures at other times. The control of the activity flowed between the different 
participants during these group work sessions.

Roles

In intent participation, “experienced people play a guiding role, facilitating learn-
ers’ involvement and often participating alongside learners—indeed often learn-
ing themselves. New learners in turn take initiative in learning and contributing 
to shared endeavours, sometimes offering leadership in the process” (Rogoff et al. 
2003, p. 187). In the activity, the teacher did not participate in the same way as the 
children and so her role was closer to that of a manager in assembly-line instruc-
tion. On the other hand, although she suggested activities, such as ordering the jars, 
she did not force the children to carry them out. Several times, the children took the 
initiative in suggesting activities and so their role could be considered to be closer 
to that of intent participation. To structure their interactions, they used the ideas of 
each other, such as placing their feet in the jars, as much as they did the ideas of the 
teacher. Although they did not verbally interact with each other like they did with 
the teacher, they constantly watched and copied each other’s actions.

Many of the teacher’s questions focused the children on mathematical aspects of 
their jars. As part of her level 2 strategies, Anghileri (2006) identified the need for 
teachers “to interject questions that focus on the most critical points in an explana-
tion and take the understanding forward. Here the purpose is to gain insight into stu-
dents’ thinking, promoting their autonomy and underpinning the mathematical un-
derstanding that is generated” (p. 42–43). Without the questions, these aspects may 
have been missed by the children. Therefore, the teacher’s role as the one with expert 
knowledge was important. However, as noted earlier, the play situation meant that it 
was not always possible to push children’s thinking because they were not required 
to answer the teacher’s questions, as occurred when Mia was counting the jars.

Although the teacher may have known the answers to some of her questions, her 
way of listening to the children suggested that she was opening a learning space 
which accommodated their reflections. Thus, not only did the teacher ask prompt-
ing and probing questions but she also left the children to interpret and answer the 
questions, which meant that children’s autonomy was supported. Thus, her “listen-
ing style” was as important as her questioning style.

Motivation and Purpose

After the children had begun to handle the jars, the teacher suggested that the begin-
ning activities were play—“Men innan vi börjar med att göra de här ljusen tänkte 
jag att vi kunde leka lite med de här burkarna. Tycker ni att alla burkar ser likadana 
ut?” (“But before we start making these candles, I thought we could play around 
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with these jars. Do you think that all the jars look alike?”). The video of the episode 
showed that the children continued to play with the jars, even though the teacher 
asked a school-like question. The characteristics of play identified by Dockett and 
Perry (2010), “the exercise of choice, non-literal approaches, multiple possible out-
comes and acknowledgement of the competence of players” (p. 175) can be seen in 
how the children explored the jars. Consequently, the purpose of the activity was 
clear to all. By agreeing on the activity being one of play, the children were free 
to make choices about what they would do. It would not have been appropriate for 
the teacher to expect responses to her questions as in a school-like initiation–re-
ply–evaluation format (Rogoff et al. 2003) as this would have clearly changed the 
activity. The confining of participants’ actions to those consistent with play can be 
seen as a significant contributor to the children engaging eagerly in the activities.

However, with the activity being labelled as play, many of the teacher scaffold-
ing strategies identified by Anghileri (2006) were inappropriate unless they were 
adapted, such as was the case with teacher listening. One of Anghileri’s level 2 
strategies is “identifying meaningful contexts”, which constitutes finding a shared 
context which makes the mathematical problem more accessible to students. This 
episode with preschool children suggests that working in a context that is meaning-
ful for the children, that of play, and conforming to its characteristics, contributes 
to children engaging actively. When children have control over deciding if and how 
they want to engage then there is no need for a teacher to search for a meaningful 
context. Rather it is the level 1 strategies, connected to environmental provisions, 
which are more important, as the teacher needs to provide materials with which the 
children will want to engage.

Sources of Learning

Rogoff et al. (2003) stated that “in intent participation, learning is based on par-
ticipation in ongoing or anticipated activities, with keen observation and listening” 
(p. 22). The glass jar activity was not an adult activity where the children learnt 
from watching experts. Simply reading the transcript could suggest that the children 
merely responded to the teacher’s questions as would be the case in assembly-line 
instruction. However, the video shows that in addition to listening to the teacher, 
the children at the same time manipulated the glass jars and watched each other. 
Simultaneously noticing different behaviours is common in play, as the focus shifts 
frequently. Therefore, as in intent participation, the children paid attention to mul-
tiple ongoing events. In assembly-line instruction, the focus is supposed to be con-
centrated on only one action. Children, who focus widely, are labelled as distracted 
and are likely to have problems learning (Rogoff et al. 2003). Thus, because the 
activity was acknowledged as play, focusing widely provided a variety of sources 
for learning opportunities.

With the children focusing widely, there were opportunities for them to make 
connections between visual imagery and spoken words, a scaffolding strategy, de-
veloping representational tools, that Anghileri (2006) saw as being part of level 3. 
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Mia used the discussion between Marie and the teacher about “bigger” and “taller” 
as well as looking at and touching the jars to rearrange them from shortest to tallest.

Forms of Communication

In the episode, the children’s actions were often connected to language as a result 
of the teacher’s questions. As discussed previously, the teacher’s questions were 
sometimes about information that she already knew. As such, Rogoff et al. (2003) 
would consider that they were test questions and a form of communication linked 
to assembly-line instruction. Yet, the children responded to them as though they 
required genuine investigation. For example, the first request was about whether 
the children thought the jars were alike. Although the children and the teacher could 
see that there were differences, the children picked up the jars, felt them and then 
made comments about them. The teacher was not judgemental about the comments, 
but instead asked for clarification. The children made choices about whether to re-
spond or not. This format for interaction would not be considered typical of intent 
participation where the expert provides explanations only within the context of the 
process being learnt. Nevertheless, the format for interaction made the mathematics 
visible in the exchange but kept the conversation within the children’s control. For 
example, in suggesting that the children order the jars according to size, the chil-
dren’s actions in placing the jars in a row, provide the teacher with an opportunity to 
bring in comparison terms, an important component of measurement.

Most of Anghileri’s (2006) scaffolding strategies can be considered forms of 
communication, as they are concerned with how a teacher interacts with students. 
As already noted, many of the strategies were seen in this episode. At the highest 
level of scaffolding, Anghileri included “generating conceptual discourse” in which 
the teacher identifies for the students valuable ways of thinking mathematically, 
“thus enabling students to become aware of more sophisticated forms of mathemati-
cal reasoning” (p. 49). In the jar episode, the teacher’s requests for clarifications 
rather than providing judgements about the children’s answers may have supported 
them to see that their explanations were what the teacher valued, rather than a spe-
cific, correct answer. This is likely to contribute to them gaining “intellectual au-
tonomy” (p. 49). However, there were opportunities for the teacher to request more 
information from the children about their mathematical thinking, and similar was 
the case with the sharing of the jars so that each child had two each. It is interest-
ing to note that she did not recognise or chose not to take up the possibility to have 
children think more about why sharing in twos was possible while sharing by threes 
was not and so missed an opportunity to push them into thinking more about the 
numbers and how they were related.
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Assessment

In intent participation, assessment occurs continually during the performance of the 
activity with the intention of ensuring that children gain “the important skills and 
ways of their community” (Rogoff et al. 2003, p. 196). By being in a play situation, 
assessment requirements are not connected to the performance of a particular prac-
tice and do not determine the children’s retention of set information, as is the case 
in assembly-line instruction. Yet, the preschool teacher was involved in continual 
assessment both of the children’s willingness to engage, important in intent par-
ticipation, and of the mathematical information that they showed. Having children 
show the mathematics that they knew was not an end in itself but rather contributed 
to the play being continued and the mathematics becoming visible.

Anghileri (2006) suggested that negotiating meaning is one strategy that in-
volves the teacher having to listen carefully:

It is time consuming and demanding on a teacher’s skills to elicit the true meaning of their 
students’ responses, respecting the more outlandish contributions as their students work at 
developing their personal understandings, and not simply opting for responses that are “in 
tune” with their requirement. (Anghileri 2006, p. 46)

Anghileri queries the need for teachers to insist that children always provide the 
“correct” meaning. Similarly, Krummheuer (2012) suggests that negotiating mean-
ing occurs in every interaction:

From an interactionist’s stance, all interaction situations principally entail the potential of 
developing in a non-canonical way so that the participants cannot easily refer to routinized 
and/or standardized knowledge applications. In such cases, the participants have to interac-
tively negotiate a novel “shared meaning”. (p. 321)

When two children arrived at different total numbers of the jars, the teacher high-
lighted that there were differences but when Marie did not want to discuss the dif-
ference, but changed her answer to that of Lena, the teacher did not insist on Marie 
recounting. The teacher could assess the children’s knowledge and note for future 
reference that it might be useful to provide activities where it was likely that Marie 
would need to count to eight again. Requiring Marie to count immediately after she 
had rejected an offer to discuss her answer may have decreased her willingness to 
participate in further activities and changed the activity from one of play to one of di-
rect instruction which would be more closely aligned with assembly-line instruction.

Using Play for Teaching Mathematics

Too often, discussions about learning of mathematics in preschools are positioned as 
being a choice between direct instruction and free play. Although the importance of 
the teacher interactions in preschools have been noted in many studies, a clear descrip-
tion of what the teacher does to facilitate learning often remains unclear, especially 
within guided play situations. Our study indicates how conforming to the context of 
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play affected both the children and the teacher’s ways of interacting. Our analysis 
of each of Rogoff et al.’s (2003) components shows how the effect of the particular 
kinds of interactions which occurred then affected the possibilities for learning.

The play context supported the children’s engagement, but also restricted how 
the teacher could interact with the children and the scaffolding that she provided. 
Level 1 scaffolding strategies were more important for setting up learning opportu-
nities than Anghileri (2006) suggested, because the organisation of the environment 
is what supported the children to play. The play undertaken with the jars also result-
ed at level 2 in reviewing, rather than restructuring, strategies being used frequently 
by the teacher because they conformed more easily to the need for the children to 
have control of the activity. As the children controlled the activity, level 3 strategies 
had to build on what was offered by the children through their actions or words and 
so could not be easily initiated by the teacher independently.

At first glance, play and teaching mathematics do not seem to be compatible. 
Mathematics is often considered to be something that can only be learnt from direct 
instruction (Lange and Meaney 2011). Yet, this example of a preschool interaction 
shows that guided play can provide rich opportunities for learning mathematics. It 
could be said that the teacher guided the children’s actions, but was respectful of the 
children’s control over the direction of the activity. The teacher was able to stimu-
late children’s mathematical curiosity about shapes, their attributes and about num-
ber, including division. This curiosity, as well as the children’s enjoyment, could be 
seen in the way that the children played with the jars and the mathematical ideas 
that they discussed. This episode does seem to illustrate the Swedish preschool cur-
riculum’s suggestion that play and enjoyment produces learning that would lead to 
“imagination, insight, communication and the ability to think symbolically, as well 
as the ability to co-operate and solve problems” (Skolverket 2011, p. 6).

Nevertheless, by placing the teaching in a play situation the teacher’s actions are 
constrained. Direct instruction also constrains the teacher’s possibilities for inter-
acting with the children, but in different ways. As was illustrated in this episode, 
play means that children have as much opportunity as the teacher, if not more, to 
control what happens. The focus of the activity can switch frequently supporting 
children to take note of a wide range of stimuli simultaneously. The teacher can of-
fer suggestions for activities and ask questions about what the children are engaged 
in but the children can ignore the invitation or decline to participate. The teacher 
cannot insist that her suggestions are accepted, as this would move the activity from 
one of being play into something more closely resembling Rogoff et al.’s (2003) 
assembly-line instruction. Consequently, the teacher must watch and listen very 
carefully to the children so that her suggestions build on the children’s interests and 
also what they have previously shown about mathematical ideas. The questions and 
suggestions should raise the children’s curiosity, if children are to engage with them 
willingly. If the teacher is successful in doing this, then the mathematical aspects of 
children’s actions are made visible.

Thus, it is clear that the context has a substantial influence on children’s possi-
bilities for learning. This is not to suggest that play is a negative influence. Rather, 
like direct instruction, the possibilities for learning are constrained as well as en-
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abled by the contexts in which these possibilities arise. In Sweden, the role of play 
as the context for learning is a long-standing belief, heavily supported within the 
curriculum (Skolverket 2010, 2011).

However, this small study of one teacher’s interactions suggests that for learning 
to develop over time, the teacher’s understanding about mathematics and how to 
develop children’s mathematical curiosity within a play context is very important. 
Teachers need to both recognise mathematical learning opportunities and formulate 
challenging questions, matching both children’s interest and their current knowl-
edge of mathematical ideas, if the joint aims of using play as the context for learning 
and to develop children’s mathematical understanding are to be achieved. When the 
teacher is able to do this as happened in this episode, the children will make use of 
the control that they have from the activity being one of play and this is likely to 
contribute to learning being connected to enjoyment.
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Introduction

With the publication of international comparisons, early education has attracted the 
interest of scientists and the general public. In Germany, new plans for the edu-
cation of children’s daycare centres are being devised, and most of the German 
states include mathematics as its own educational discipline within different cur-
riculum approaches (e.g. Niedersächsisches Kultusministerium 2000; Hessisches 
Sozialministerium 2007). In most German countries, mathematical education is 
demanded as a specific activity in kindergarten, but there are relatively few insights 
into the current practices and the daily routines of mathematical instruction of kin-
dergarten teachers. Thus, one part of the research project erStMaL investigates the 
everyday practice of mathematical interaction processes in kindergarten settings.

The aim of this chapter is to describe different practices of mathematical instruc-
tion in the German kindergarten. As theoretical background for the descriptions serve 
the idea of folk pedagogical concepts (Bruner 1996; Olson and Bruner 1996) and the 
concept of instructional models (Rogoff 1994; Rogoff et al. 1996). In micro-sociolog-
ical analyses of video data, relations between these pedagogical aspects of the interac-
tion process and the emerging opportunities for mathematical learning are illustrated.

erStMal is integrated into the Research Center IDeA (Individual Development and Adaptive 
Education of Children at Risk). The preparation of this chapter was funded by the state 
government of Hesse.
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The Theoretical Framework

Following the interactionistic perspective on learning processes, as implemented by 
a group of German and American researchers to mathematics education (Bauersfeld 
1994; Cobb and Bauersfeld 1995), the way of participation in interaction processes 
is a crucial aspect for learning processes. In this approach, the interaction serves as 
a place for joint negotiation and thus individual cognition is bound to the participa-
tion in the construction of (taken as) shared meanings (Brandt and Tatsis 2009). 
Theoretically, this approach is based on the symbolic interactionism and the idea of 
negotiation of meaning (Blumer 1954, 1969) as well as on the ethnomethodological 
concept of local production (Garfinkel 1967) and situational perspective (Goffman 
1983) (cf. Brandt and Tatsis 2009; Krummheuer 2011, 2012). In addition, this ap-
proach is aware of the role of culture in teaching and learning mathematics, whereat 
culture is seen “as webs of significance (which) may be central also in the societal, 
institutional, and pedagogical aspects of mathematics education considered as a 
social process” (Presmeg 2007, p. 437).

As a consequence of the situational perspective, the research focus of this chap-
ter is on the current “how” of the everyday practice and the attempt to understand 
its underlying rationality.

The Development Niche of Mathematical Thinking

Harkness and Super (Super and Harkness 1986; Harkness et al. 2007) elaborate 
a developmental theory from a cultural perspective which is in line with the eco-
logical model of child development (Bronfenbrenner 1979). The central concept of 
their theory is the “development niche” (Super and Harkness 1986; Harkness et al. 
2007), “which provides a framework for examining the effects of cultural features 
on child rearing in interaction with general developmental parameters” (Super and 
Harkness 1986, p. 546). The child and their “particular set of inherited disposi-
tions” (Harkness et al. 2007, p. 34S) are in the centre of the development niche, 
encompassed by a system of cultural constructed environmental circumstances, 
which influence the child’s development:

a. Physical and social settings
b. Customs of child care and rearing
c. Caretakers’ psychology (ibid.; see Fig. 5.1)

Enclosed to aspects of the larger culture, children will be involved in different social 
and physical settings (1), different customs will be livened up by the participants of 
the social interactions (2), and the adults will have different ideas of how children 
in general or a specific child “is like” (3).

In adoption of this theoretical model, Krummheuer developed the “Interaction-
al Niche in the Development of Mathematical Thinking” (NMT; cf. Krummheuer 
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2012, 2014). The three components of Super and Harkness were combined to coop-
eration (personal grouping) and pedagogy respectively education. Due to the focus 
on mathematical learning, the component content is added.

According to the theoretical consideration of situational aspects of learning, 
these components are considered in two dimensions (see Table 5.1):

• The aspect of allocation, given by canonical knowledge, institutional arrange-
ments, or theories of education

• The aspect of the situation, which refers to the emerging performance of these 
three components by the negotiation process of the participants (see Krummheuer 
2012, 2014)

In the project erStMaL, this model of NMT serves as basis for theory-driven recon-
struction of interaction processes in different contexts (cf. Acar 2014). Engaging in 
pedagogical aspects of concrete interaction processes between kindergarten teachers 
and children, this chapter will focus on the situational aspects of education and ped-
agogy, which is the marked cell of the NMT in Table 5.1. As van Oers (2002) out-
lined, the teacher’s epistemology of mathematics contributes to the monitoring and 
guidance of mathematical thinking of pupils. In a certain manner, the perspective of 
this chapter is the inverted one: The pedagogical beliefs of the kindergarten teacher 
will contribute to the mathematics which emerges in the interaction processes.

Fig� 5�1  The development niche (Harkness and Super 2007)
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For the empirical reconstructions of the interaction processes I refer to the con-
cept of folk pedagogy (Bruner and Olson 1996; Bruner 1996) and to the instruction 
models described by Rogoff (1994) and Rogoff et al. (1996) (cf. Brandt and Tiede-
mann 2011). These concepts will be linked to the developmental niche. Folk peda-
gogy can be located in the caretakers’ psychology and in the pedagogical aspects 
of general customs of care (see Fig. 5.1), which are combined in the component 
education/pedagogy in the NMT. Based on observations of caretakers’ activities, 
the concept of folk pedagogy pertains to the situational dimension.

Folk Pedagogy

With his concept of folk pedagogy, Bruner (1996) deals with the ancient problem of 
applying theoretical knowledge to practical problems, especially “applying psycho-
logical theories to educational practice” (ibid., p. 44).

There is one ‘presenting problem’ that is always with us in dealing teaching and learning…. It 
is the issue of how human beings achieve a meeting of minds, expressed by teachers usually 
as ‘how do I reach the children?’ or by children ‘what’s she trying to get at?’. (ibid., p. 45)

He argues, that we use “everyday intuitive theories about how others minds work” 
(ibid.) in the interaction with others. He calls these theories “folk psychology”, 
which are affected by culture. Employing the intuitive theories of everyday acting 
to the question of helping children growing up and learning, he introduces the no-
tion of “folk pedagogy” (Bruner 1996, p. 45 f.; cf. Olson and Bruner 1996):

…we are steered in the activity of helping children learn about the world by a body of 
assumptions that make up what we may call ‘folk pedagogy’. …Watch any mother, any 
teacher, even any baby-sitter with a child and you will be struck at how much of what they 
do is guided by notions of what children’s minds are like and how one may help them learn, 
even though they may not be able to verbalize their pedagogical principles. (Olson and 
Bruner 1996, p. 10)

Bruner (1996; cf. Olson and Bruner 1996) describes four everyday educational con-
cepts that are distinguished by the convictions about how teaching and learning 
work and the manner in which the knowledge should be taught and learnt. The point 
of reference for the designation of the concept is the child as the subject of learning, 
towards whom the activity of the adult model has been oriented:

Table 5�1  Components and dimension of NMT (cf. Krummheuer 2012)
NMT Content Cooperation Education/Pedagogy
Allocation Mathematical domains, 

tasks
(Institutional) 

settings of 
cooperation

Theories of (mathematics) education, 
pedagogical concepts

Situation Interactive negotiating 
of the theme

Emerging structure 
of participation

Folk theories of education, every-
day routines in mathematical 
instruction
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• “Children as imitative learners” (Bruner 1996, p. 53) and “children as doers” 
(Olson and Bruner 1996), including learning as “the acquisition of ‘know-how’” 
(ibid. p. 16)

• “Children as learning from didactic exposure” (Bruner 1996, p. 55) and “children 
as knowers: the acquisition of propositional knowledge” (Olson and Bruner 1996, 
p. 17)

• “Children as thinkers: the development of intersubjective interchange” (ibid. p. 18)
• “Children as knowledgeable: the management of ‘objective’ knowledge” (ibid. 

p. 21)

The first concept is more oriented towards the apprenticeship and a craftsman-like 
learning process. We can observe situations of writing numbers and letters in the 
kindergarten, which can be assigned to this concept. However, in general, this sim-
ple “theory of imitative learning suits a ‘traditional’ society” (Bruner 1996, p. 54) 
is not suitable for teaching and learning advanced ideas and concepts like math-
ematics. The other three concepts are more oriented to advanced mental abilities. 
Thus, these concepts will be described in more detail in their situational realisation 
in mathematical interaction processes by empirical data.

Instruction Models and their Relation to Folk Pedagogy

The three concepts for advanced mental abilities of folk pedagogy can be compared 
with the instruction models, which were described by Rogoff (1994) and Rogoff 
et al. (1996), observing parents in school settings. They describe three different 
instruction models:

• Transmission
• Acquisition
• Community-of-lerners

The interrelations between the different concepts of folk pedagogy and the instruc-
tion models are summarised in the following overview (see Brandt and Tiedemann 
2011 for more details) (Table 5.2):

For the instruction model transmission, an adult or an expert is compulsorily 
necessary for learning processes, as it is in the concept children as knowers or learn-
ing from didactic exposure: The participation of the adult causes the learning pro-
cess, whereas the child is more or less seen as passive and not responsible for its 
own learning. The child is seen as an empty vessel, which has to be filled by the 
adult. As explicitly described by Rogoff et al. (1996), this delimited the possibilities 
of the children in their participating in the current situations as well in the participat-
ing in prospective interactions.

Students learn how to solve problems but not how to set them. They can produce correct 
answers but do not have experience examining how to determine what is correct. (Rogoff 
et al. 1996, p. 393)
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The instruction model acquisition corresponds to the concept children as thinkers. 
Both concepts can be described as different forms of constructivism. The concept of 
Bruner (1996), respectively Olson and Bruner (1996), is oriented to socio-construc-
tivism with more emphasis to the exchange with others for the construction process:

Their understanding is fostered through discussion and collaboration, with each child 
encouraged to present her own way of constructing the subject at hand to achieve some 
meeting of minds with peers and teachers. (Olson and Bruner 1996, p. 18)

On the contrary, the dedicated instruction model acquisition emphasises the indi-
vidual part of construction as a kind of autodidactic processes and reminds more to 
radical positions of constructivism (e.g. von Glasersfeld 1996).

The concept children as knowledgeable and the instruction model community-
of-learners correlate in their orientation to cultural aspects of learning. The learn-
ing process is seen as a re-construction of culturally approved knowledge, which 
is in principal modifiable; thus, the (re-)constructions of the child are culturally 
delimited but not definite by objective knowledge. These concepts emphasise “the 
importance of knowledge accumulated in the past” (Bruner 1996, p. 60) and the 
distinction of canonical, personal, and idiosyncratical knowledge.

Data Basis: The Kindergarten Settings of erStMaL

As mentioned above, the research study erStMaL aims to the development of math-
ematical thinking in different social contexts. It is a video-study with a longitudinal 
design. Following the interactionistic perspective, we observe the children in in-
teraction processes accompanied by different adults: research students, kindergar-
ten teachers, and parents (for more details of the project cf. Acar Bayraktar 2011). 
In this chapter, I will focus on settings which were designed by the kindergarten 
teachers themselves.

Table 5�2  Relationship between folk pedagogical concepts (Bruner 1996) and instructional mod-
els (Rogoff 1994)
Folk pedagogy 
(Olson & Bruner)

Instruction model (Rog-
off et al.)

Main idea of learning and teaching

Children as doers – Learning as acquisition of “know how”—
demonstration and imitation of activities

Children as knowers Transmission Learning as acquisition of propositional and 
objective knowledge by transmission of 
facts and rules

Children as thinkers Acquisition Learning as individual construction of knowl-
edge in exchange with others

Children as 
knowledgeable

Community-of-learners Learning by participating in cultural practises 
with support from experts (in interaction 
with more knowledgeable)
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We asked the kindergarten teacher to design settings for different mathematical 
domains: (1) numbers and operations, (2) geometry and sizes, (3) pattern and struc-
tures, (4) measurements, and (5) data analysis (Konferenz der Kultusminister 2004; 
cf. Sarama and Clements 2008). Designed by the kindergarten teacher as “settings 
with specific mathematical learning opportunities”, these different situations will 
be used for working out daily kindergarten routines of planed mathematical activi-
ties. Focussing on the educational concepts and the embedded mathematical ideas, 
insights can be gained into the current mathematical teaching processes—omitting 
more open approaches of everyday routines in unplanned mathematical activities 
using favourable occasions.1

Analysis of the Empirical Data

The situational production of instructional practices by the participants will be carried 
out with micro-analytical methods, based on a turn-by-turn analysis of transcribed 
sequences (Krummheuer 2007, Brandt and Tatsis 2009). For this reason, selected 
episodes were transcribed verbally, completed by some screen shots of the video.

Blumer distinguished between “sensitizing” and “definitive” concepts; thereby, 
“sensitizing concepts merely suggest certain directions along which to look” (ibid. 
p. 7). Using “sensitizing concepts” for the analysis of empirical data, these concepts 
describe a framework for the interpretation process:

Empirically related research questions ask less whether these concepts come to view in 
‘reality’, but rather, how they orient one’s perspective in order to interpret this ‘reality’. 
(Krummheuer 2011, p. 82)

Looking to the local production of pedagogical aspects of observed situations, the 
folk pedagogical concept of Bruner and the instruction models of Rogoff serve as 
“sensitizing concepts” for the interpretation process. As argued above (Sect. 1), 
both concepts are similar in the main idea of teaching and learning and the role of 
the adult person in the interaction process. Concerning the emerging participation 
structure of the interaction processes (situational aspect of the component coopera-
tion in the NMT, Table 5.1), I will refer to both concepts. In addition, the different 
concepts of folk pedagogy of Bruner (1996) are linked to different concepts or ideas 
of “mind” and “knowledge” in general (Bruner 1996, p. 50 f.), which offer the 
opportunity for content-related deliberations of different instruction practices (situ-
ational aspect of the component content in the NMT).

In the dimension of allocation of the NMT, the examined interaction processes 
are similar in all components:

1 In German kindergarten, you can find both forms in different conceptions of ‘kindergarten’ 
(Thiel 2009). Especially, in the last year before entering school, more planned mathematical ac-
tivities will be offered to the child. Looking at the videos, there is an impression of ‘routine’ with 
such more formal settings by the participants (children and kindergarten teachers) in most of the 
institutions of our sample.
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• Component content: The selected settings are allocated to the mathematical do-
main pattern by the kindergarten teachers, although they choose different aspects 
within this domain and use different materials.

• Component cooperation: All of them are comparable due to the institutional em-
bedment and the isolation to other activities in the kindergarten: they take place 
on specially prepared tables or in separate rooms and not in the area for free play 
activities. All children are aged 4–5. The settings differ in the number of partici-
pating children (two versus four).

• Component pedagogy: The situations are forms of planned activities within the 
kindergarten but not part of a special training course.

The situational dimension of the last component (pedagogy) is the focus of the 
following analyses. Thereby, aspects of the situational dimension of the two other 
components are addressed too. The situations are named by the materials, which the 
kindergarten teachers select for the settings.

Coloured Pins

In this situation, the kindergarten teacher selects coloured pins (red, yellow, and 
green), which normally were used for creating free patterns or designing pictures 
with concrete objects (flower, house, etc.) on a pinboard. The kindergarten teacher 
(TE) prepared a paper with lines of dots (red, yellow, and green) and a box with the 
material. After entering the room with two boys (F and N, both 4 years old), she 
starts to arrange the prepared material from the box at the table as shown on the first 
picture of this scene.

F + N: (both are grasping in the individual pin box)
TE: don’t start yet . I have a little job that I prepared for you 
(showing the sheet of paper with the coloured dots)

Afterwards, she introduces the children to the task to copy her lines of coloured dots 
with the pins. Then, she guides the children line by line, covering the other lines 
and deciding, when the next line will occur.2 She recognises, that N (boy on the 
right side) copies the fourth line from the right side, but she explicitly allows this 

2 This is neither the case of using the same number of pins on the pinboard as dots on the sheet 
of paper nor the case of building a line from the one side to the other on the pinboard as on her 
drawing. The decision seems situational and more or less accidental, perhaps oriented to the time.
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procedure “this is the other direction, but it’s all right”. Thus, she sets and controls 
the rules for the conducting of the task.

N copies the four coloured dots of the last line with pins, again starting on the 
right side (red, yellow, green, and red) and leans back after the forth pin. He seems 
satisfied with his conduction, but the kindergarten teacher intervenes:

TE: so, here is free (showing on her drawing) but you have to fill it now, 
you have red yellow green and now you have to start again here 
(showing the red plugs one after the other) red and what is coming next 
(showing the yellow plug and the „gap“ at the end of his line) 
N: well, there you need green
TE: no, what is the next,  what is next to red, look at your line, what did 
you put after red here

Whereas the children were obliged to copy the previous lines, the idea of the last 
line is the continuation of a pattern. Thereby, the teacher has a definite idea how 
to continue the “objective given pattern”: starting again at the beginning of the 
line, whereas her last (red) dot belongs to the first iteration of the pattern (red, 
green, yellow)—changing the direction (red, yellow, green) seems again not impor-
tant for her. N fits in to the idea of proceeding, but taking a green pin he adduces 
an own idea for continuation: a possible assumption is “going backwards” (which 
means to produce a symmetric colour sequences).3 Although the teacher confirms 
her interpretation, a few minutes later, N suggests to take a red pin at the fifth posi-
tion (which could mean to iterate the whole colour sequences of the kindergarten 
teacher). But the teacher confirms again her idea and requests him to take a yellow 
pin in an interaction pattern, which reminds to the “funnel pattern” (Bauersfeld 
1980; cf. Brandt 1997).

TE: well, (showing the yellow plug) what’s the name of this colour 
N: yellow
TE: then take it

In this second part, again the kindergarten teacher sets and controls the rules of the 
procedure. Furthermore, she “transmits” her idea of continuation as a kind of objec-
tive knowledge, although from a mathematical view, this is not the fact. Thus, she 
rejects the divergent ideas of N. These divergent ideas will not become the topic of 
the interaction, but are substituted by the “objective knowledge” enforced by the 
adult as the knowledge agent.

3 It is not sure that he has any idea of a pattern by choosing the green pin.
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Generally, this situation could be assigned as a prototype of children as knowers 
and the instruction model transmission: “Teaching is not a mutual dialogue, but 
telling by on to the other” (Bruner 1996, p. 56).

Thus, learning mathematics within this concept means to cumulate facts and 
rules. The conception of mathematics, which is related to this instructional practice, 
is the traditional, formalist characterisation of mathematics as “objective knowl-
edge” and “immutable truths and unquestionable certainty” (Nickson 1994, p. 11; 
cf. Presmeg 2007, p. 437).

Lot of Things

In this situation, the kindergarten teacher selects an accumulation of different things 
in various numbers (diverse glassy stones, dices, counter, wooden sticks, etc.) and 
a special kind of placemats. She prepared all of these materials in the middle of the 
room. Entering the room with four children (U, S, B (girls) and K (boy), all 4–5 
years old), she asks the children to choose a placemat and opens up the “room” 
for the children’s ideas: “Come have a look and see if you have an idea about what 
you can do with this.” Then, she sits down on the floor a little bit apart. In fact, all 
children start to arrange different things on their own placemat. The following table 
gives an overview of the beginning phase (Principle, this kindergarten teacher com-
ments only very few of the children’s activities).

time: 1:35
U: (puts a big, red glassy stone in the middle of her round placemat) 
look TE
TE: fantastic you have found a centre, like a Mandala, yes
time: 2:06
B: (puts a big, green glassy stone in the centre of her round 
placemat) I have the big one
time: 2:24
B: (singing) and I make a centre, too (puts a big, green glassy stone 
in the middle of her round placemat)
TE:  You have a centre, too, where is your centre, B
B: (showing the big green glassy stone) there
TE: that is the centre of the circle
time: 2:40
K: where are the big one (stands up, retrieves a big green glassy 
stone)
S: (at the same time: puts a big red glassy stone in the centre of her 
squarish placemat, without any comment)
K: I have a centre too.
TE: and you have also a centre, a tetragon has also a centre, and Sara 
has found her centre too
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Within 1 min, all children implemented the idea of “centre” in their arrangement, 
which U inserts to the interaction by her acting. It is the teacher who makes it 
explicit in the discourse by her comment of this acting. This was one of the kinder-
garten teacher’s few utterances. She reacts directly and extensively; thus, she em-
phasises the mathematical idea of the centre of a geometrical figure. However, she 
ties her comments to the activities and utterances of the children. Afterwards, the 
children create a very different arrangement integrating “the centre”. The children 
named their arrangements “clown”, or “like a face”, but nobody grasps the idea of 
“Mandala”, which the kindergarten teacher linked to the centre of the figure—the 
figures are not symmetrical at all.

A few minutes later (time: 6:20), she starts an own “mandala-like” pattern on a 
quadratic placemat, but without any comment (see below). K starts to rearrange his 
pattern to a “mandala-like” pattern (time: 6:45). A little bit later (time: 7:45), the 
kindergarten teacher clears up her own placemat and comments: “You will have 
your own ideas to continue”. K was the only child in this situation, who grasps the 
idea of symmetry of the Mandala, starting with the centre and he worked 20 min to 
finish a very complex, almost symmetric pattern, whereas the three others pursue to 
produce figurative arrangements and finish much earlier.

TE (7:45) K (7:45) K (27:15)

In general, this situation is formed by very free pattern creations of the children. 
Several times, the kindergarten teacher ties mathematically oriented comments 
to the utterances and activities of the children. She does not insist on following 
her suggestions and the children are not pushed directly to elaborate their ideas or 
arrangements to a “mathematical” one. In particular, she emphasises that every-
one has to try out his/her own ideas—and the children did so. The individual con-
structions were affected by individual examination with the material, in reciprocal 
awareness, but not in extensive interchanges of ideas. Thus, describing this situa-
tion as a “learning opportunity”, constructivist assumption of learning and mind 
are required, which is the basis for the concept children as thinkers. Regarding the 
concentration on the individual process and the minor emphasis on interpersonal 
exchange of ideas, radical constructivism as in the instruction model acquisition 
(Rogoff et al., see above) seems to be the underlying learning concept.

For this instructional practice, mathematical learning is a child-centred, active 
process, a kind of “learning by doing” in a very autonomous way. Children are seen 
as constructing their own mathematics—and it is a question of discourse to achieve 
a sufficient degree of intersubjectivity and to reach justified beliefs, viable theories, 
and conventional knowledge.
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Butterfly Puzzle

In this situation, the kindergarten teacher selects a butterfly puzzle of a set of sym-
metric puzzles for the setting. Before entering the room with the two boys (B and 
N, both 4 years old), she prepared the puzzle, putting the shape of the puzzle and 
coloured wooden triangles (equilateral; red, blue, and yellow) in the middle of the 
table. She starts the situation questioning the children “Do you know what we will 
do today?” The children uttered some incomprehensible words, thus, the teacher 
goes on:

TE: let’s make a butterfly together. We will colour the wing in a 
nice way
N: I know 
TE:  with which colour you will start

N: with the blue one
TE: we will start together with one (...) B will also participate 
B: with here . I make the red one 
TE: okay (…)You can put them together in this way 
(rearranging the triangles of the boys), look

Just from the beginning, the children were encouraged to participate in the realisa-
tion of “shared endeavors” (Rogoff et al. 1996, p. 389), where it seems that the kin-
dergarten teacher has an idea of a symmetrical puzzle (“we will start together with 
one”—referring to the left wing of the butterfly), but she only implicitly informs the 
children about the idea of colouring the butterfly symmetrically (“we will design the 
butterfly in a nice way”). First, the focus is on the practice of parqueting the area with 
equilateral triangles. Thus, the teacher regulates the first attempts (“you can put them 
together in this way, look”). Later on, the teacher follows her own colouring ideas, 
which seems to be guided by the second part of the whole project: She supplements 
the pattern of the two boys in a way that small plain-coloured areas occur (e.g. “lines” 
of yellow triangles).

After finishing the first wing, she introduces the second part of the project to the 
children:
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TE: look, do you know how a butterfly looks like outside, when he 
is sitting on a flower
N: yes
B: (puts a triangle in the right wing)
TE: B, wait a moment, this side (showing the coloured left side) 
looks the same as the other one (showing the empty right side) 
B + N: (nodding)
TE: oh, look, it starts again, what did you need now a lot
N + B: yellow (both grasp a yellow triangle) 
N: but I will start at the bottom
TE: but then you must look   there, we did not need yellow  what 
will we need then 
N: ah, (a lot) red (both boys take red triangles and start the third 
line at the bottom)

In the second part of the joint problem solving, she refers several times to the plain-
coloured areas as orientation for copying the whole pattern. Thereby, the children 
are free in a certain degree. Instead of starting the third line with the lot of yellow 
at the top, as suggested by the kindergarten teacher, the boys decided to start at the 
bottom with red triangles.

The kindergarten teacher covers parts of the finished wing and points on tri-
angles in the finished wing, as other forms of managing the realisation of a sym-
metrical pattern. Both forms structure the process of problem solving. At the end, 
the children reflect the finished puzzle with two “equally coloured wings”.

Thus, this situation can be seen as a type of children as knowledgeable, whereas 
the children were encouraged and enabled to participate in the “practice of produc-
ing a symmetrical pattern”—and the kindergarten teacher participates as an expert, 
organising the problem-solving process in a community-of-learners: Within the 
joint process of fulfilling this specific problem which was set up by the kindergar-
ten teacher, she established several forms of ordering and organising the puzzle. 
She adjusted these forms to the activities of the children and the children adopted 
their own ideas to her management process. Thus, on the one hand, the children are 
not as free in their ideas and constructions as in the situation “A lot of things” but 
on the other hand, they are not so strictly bounded to the ideas of the kindergarten 
teacher as in the situation “Coloured pins”. Thus, the conception of mathematics 
in this instructional practice is mathematics as a (symbolic) tool for setting and 
solving problems in a specific way. The way to learn mathematics as a tool for 
problem solving is to participate in problem-solving processes with more experi-
enced human beings.
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Final Remarks

The goal of the comparison of the three different everyday practices is to highlight 
differences in mathematical instructions and the emerging opportunities for math-
ematical learning processes.

The everyday educational concept of children as knowers leads to very strict 
methods of processing the tasks determined by the teacher in small steps. Along 
with that, folk pedagogical idea mathematics emerges as composed of prepositional 
knowledge from guidelines—and this practice fails in the examination of different 
ideas to a given task. Of course, skilfulness in the organisation of the learning set-
tings and the motivation of the children for the pre-determined tasks is often demon-
strated in these situations. Especially in the episode “Coloured pins”, the children 
are very proud in the end to finish such a “difficult task”.

Even if the adult sets up the environment, the concept of children as thinkers is 
building up on the ideas of the participating children; the kindergarten teacher pro-
vides the objects and tasks and the children have time to explore themselves—and 
to discover mathematical concepts on their own. However, an outward proclivity 
for further discovery is often missing from the creations of the children. The teacher 
hopes for the situational evolvement of specific mathematical ideas from the pro-
vided materials. In the examined episode, only one child works discernible on the 
complex mathematical idea of symmetry. The other children were limited to the 
already known “fact” of identifying the centre of a simple geometric figure—and 
lose the interest in the material after some figural arrangements (which indeed do 
not reach the attention of the kindergarten teacher).

In situations that can be classified under the concept of children as knowledge-
able, potential mathematical learning momentum can only arise if the teacher fo-
cuses on the mathematical content of the cultural practice as part of the mutual 
mastery. The adult as an expert has to guide the common attraction to mathematical 
aspects of the problem solving practice, which can be observed in the examined 
situation by providing strategies for copying the wing symmetrically. But we also 
observed several settings with missing attention to the mathematical aspect of the 
cultural practice.

From the examined episodes, it seems clear that it is neither the specific math-
ematical domain nor the kind of materials which causes the pedagogical orientation 
of the interaction, but the embedding of the material into a content-related task. It 
is an open question if the different emerging instruction models can be seen as a 
characteristic of the teacher, since we did not observe all kindergarten teachers re-
peatedly. But we have more settings with the kindergarten teachers of the episodes 
“Coloured pins” and “A lot of things”—and we reconstructed similar pedagogical 
orientations in their other interaction processes independent from the mathematical 
domain of the settings. Thus, for vocational training it could be a fruitful approach to 
analyse videotaped episodes due to the underlying folk pedagogical ideas and con-
trast them with other episodes. This approach for enhancements of the mathematics 
education in kindergarten would build on the current practices and their different 
strengths and weaknesses.



695 “I have a little job for you” 

References

Acar Bayraktar, E. (2014). The Reflection of Spatial Thinking on the Interactional Niche in the 
Family. In: U. Kortenkamp et al. (eds.), Early Mathematics Learning, (pp. 85–107). New York: 
Springer.

Acar, Bayraktar E., Hümmer, A. Huth, M. Münz, M., & Reimann, M. (2011). Forschungs-
methodischer Rahmen der Projekte erStMaL und MaKreKi. In B. Brandt, R. Vogel, & G. 
Krummheuer (Eds.), Die Projekte erStMaL und MaKreKi. Mathematikdidaktische Forschung 
am “Center for Individual Development and Adaptive Education” (IDeA) (pp. 11–24). Mün-
ster: Waxmann.

Bauersfeld, H. (1980). Hidden dimensions in the so-called reality of mathematics classroom. Edu-
cational Studies in Mathematics, 11(1), 23–29.

Bauersfeld, H. (1994). Theoretical perspective on interaction in the mathematics classroom. 
In Biehler et al. (Eds.), Didactics of mathematics as a scientific discipline (pp. 133–146). 
Dodrecht: Kluwer Academic Publishers.

Blumer, H. (1954). What is wrong with social theory? American Sociological Review, 19(1), 3–10.
Blumer, H. (1969). Symbolic interactionism: Perspective and method. Englewood Cliffs: Prentice-

Hall.
Brandt, B. (1997). Reconstructions of “Possibilities” for learning with respect to the participation 

in classroom interaction. In H. Weigand et al. (Eds.), Selected papers from annual confer-
ence on didactics of mathematics, Leipzig. http://www.fmd.uni-osnabrueck.de/ebooks/gdm/
annual1997.html. Accessed 28 Nov 2012.

Brandt, B., & Tatsis, K. (2009). Using Goffman’s concepts to explore collaborative interaction pro-
cesses in elementary school mathematics. Research in Mathematics Education, 11(1), 39–56.

Brandt, B., Vogel, R., & Krummheuer G. (Eds.). (2011). Die Projekte erStMaL und MaKreKi. 
Mathematikdidaktische Forschung am “Center for Individual Development and Adaptive Edu-
cation” (IDeA). Münster: Waxmann.

Brandt, B., & Tiedemann, K. (2011). Alltagspädagogik in mathematischen Spielsituationen mit 
Vorschulkindern. In B. Brandt, R. Vogel, & G. Krummheuer (Eds.), Die Projekte erStMaL 
und MaKreKi. Mathematikdidaktische Forschung am “Center for Individual Development and 
Adaptive Education” (pp. 91–134). Münster: Waxmann.

Bronfenbrenner, U. (1979). The ecology of human development. Cambridge: Harvard University Press.
Bruner, J. (1996). The culture of education. Cambridge: Harvard University Press.
Bruner, J. (1986). Actual minds, possible worlds. Cambridge: Harvard University Press.
Cobb, P., & Bauersfeld, H. (Eds.). (1995). The emergence of mathematical meaning: Interaction 

in classroom cultures. Hillsdale: Erlbaum.
Garfinkel, H. (1967). Studies in ethnomethodology. Englewood Cliffs: Prentice-Hall.
von Glasersfeld, E. (1996). Radical constructivism: A way of knowing and learning. London: 

Falmer Press.
Goffman, E. (1983). The interaction order. American Sociological Review, 48, 1–17.
Harkness, S., & Super, C. M. et al. (2007). Culture and the construction of habits in daily life: 

Implications for the successful development of children with disabilites. OTJR: Occupation. 
Participation and Health, 27(4, Supplement), 33S–30S.

Hessisches Sozialministerium und Hessisches Kultusministerium. (Eds.). (2007). Bildung von An-
fang an. http://www.bep.hessen.de/irj/BEP_Internet. Accessed 28 Nov 2012.

Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom. 
Two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26, 60–82.

Krummheuer, G. (2011). Representation of the notion “learning-as-participation” in everyday situ-
ations of mathematics classes. ZDM Mathematics Education, 43, 81–90.

Krummheuer, G. (2012). The “Non-canonical” solution and “improvisation” as conditions for 
early years mathematics learning processes: The concept of the “interactional niche in the 
development of mathematical thinking” (NMT). In Journal für Mathematikdidaktik, 33(2), 
317–338, doi:10.1007/s13138-012-0040-z.



70 B. Brandt

Krummheuer, G. (2014). The Relationship between Cultural Expectation and the Local Realization 
of a Mathematics Learning Environment In: U. Kortenkamp et al. (eds.), Early Mathematics 
Learning, (pp. 71–83). New York: Springe

Krummheuer, G., & Brandt, B. (2001). Paraphrase und Traduktion. Partizipationstheoretische El-
emente einer Interaktionstheorie des Mathematiklernens in der Grundschule. Beltz: Weinheim.

Konferenz der Kultusminister. (2004). Bildungsstandards im Fach Mathematik für den Primar-
bereich (Jahrgangsstufe 4). München: Luchthand. http://www.kmk.org/fileadmin/veroeffentli-
chungen_beschluesse/2004/2004_10_15-Bildungsstandards-Mathe-Primar.pdf. Accessed 28 
Nov 2012.

Nickson, M. (1994). The culture of mathematics classroom: An unknown quantity? In S. Lerman 
(Ed.), Culturale perspective on the mathematics classroom (pp. 7–35). Dodrecht: Kluwer.

Niedersächsisches Kultusministerium. (2000). Bildung und Erziehung im Elementarbereich nie-
dersächsischer Tageseinrichtungen für Kinder. http://www.mk.niedersachsen.de/portal/live.
php?navigation_id=25428&article_id=86998&_psmand=8. Accessed 28 Nov 2012.

van Oers, B. (2002). Teachers’ epistemology and the monitoring of mathematical thinking in early 
years classrooms. European Early Childhood Education Research Journal, 10(2), 19–30.

Olson, D., & Bruner, J. (1996). Folk psychology and folk pedagogy. In D. Olson & N. Torrance 
(Eds.), The handbook of education and human development (pp. 9–27). Cambridge: Blackwell.

Presmeg, E. (2007). The role of culture in teaching and learning mathematics. In F. K. Lester (Ed.), 
Second handbook of research on mathematics teaching and learning (pp. 435–458). Charlotte: 
Information Age Publishing.

Rogoff, B. (1994). Developing understanding of the idea of community of learners. Mind, Culture, 
and Activity, 1(4), 209–229.

Rogoff, B., Matusov, E., & White, C. (1996). Models of teaching and learning—participation in 
a community of learners. In D. Olson & N. Torrance (Eds.), The handbook of education and 
human development (pp. 388–414). Cambridge: Blackwell.

Sarama, J., & Clements, D. H. (2008). Mathematics in early childhood. In O. N. Saracho & D. 
Spodek (Eds.), Contemporary perspectives on mathematics in early childhood education (pp. 
67–94). Charlotte: Information Age Publishing.

Super, C. M., & Harkness, S. (1986). The developmental niche: A conceptualization at the inter-
face of child and culture. International Journal of Behavioral Development, 9, 545–569.

Thiel, O. (2009). Prozessqualität mathematischer Bildung im Kindergarten. In M. Neubrand (Ed.), 
Beiträge zum Mathematikunterricht 2009 (pp. 395–398). Münster: WTM.

http://www.mk.niedersachsen.de/portal/live.php?navigation_id=25428&article_id=86998&_psmand=8
http://www.mk.niedersachsen.de/portal/live.php?navigation_id=25428&article_id=86998&_psmand=8


71

Chapter 6
The Relationship between Cultural Expectation 
and the Local Realization of a Mathematics 
Learning Environment

Götz Krummheuer

U. Kortenkamp et al. (eds.), Early Mathematics Learning, 
DOI 10.1007/978-1-4614-4678-1_6, © Springer Science+Business Media New York 2014

G. Krummheuer ()
Goethe-Univesity Frankfurt a.M. and IDeA-Center Frankfurt a. M., Germany
e-mail: krummheuer@math.uni-frankfurt.de

Momma used to say that life is like a box of chocolates: you 
never know what you’re gonna get

—Forrest Gump

Introduction

I would like to talk about the interface between cultural expectation and local real-
ization in the social context of encounters that “serve” as mathematical learning op-
portunities for children. In the analyses of several episodes from a German kinder-
garten or from family observations dealing with different mathematical domains, 
we were confronted with an interpretation of certain scenes, in which somehow 
something “went wrong.” Obviously, local productions of a solution can take anoth-
er path than anticipated by “normal” expectations about how the given problem is 
supposed to be coped with. It was a remark of Newcombe and Huttenlocher (2003) 
about the child’s development of spatial representation and reasoning, stressing the 
factor or necessity of “mishaps resulting from ambiguous communication” for this 
development that gave me food for thought:

Presumably, in the course of normal development, feedback from confused listeners and/
or from mishaps resulting from ambiguous communication drive the development of orga-
nized description strategies and explicit marking of frames of reference. (Newcombe and 
Huttenlocher 2003, p. 205)

My first thought was: is this appropriate wording, when obviously crucial condi-
tions of the child’s development connote a negative outcome, like the word “mis-
hap.” I do not mean to idealize the conditions of learning mathematics in everyday 
situations—the kinds of normal interaction with parents, adults, nursery teachers, 
siblings, and peers. I would rather support a position, which might be similar to 
what Garfinkel calls the “ethonomethdological indifference”:
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Administering Ethnomethodological indifference is an instructable way … to pay no onti-
cal [sic! ] judgemental attention to the established corpus of social science. (Garfinkel 
2002, p. 171)

From a socio-constructivist perspective I am interested in reconstructing the ways 
and modalities, in which the situationally emerging form of participation of a child 
in a social encounter can be conceptualized as a moment in the child’s development 
in mathematical thinking.

This way of looking at the process of interaction is based on a long discussion 
in the science of mathematics education that resulted in “my” conceptualization of 
learning as a dual process, as the individual’s cognitive construction of knowledge, 
and as his increasingly autonomous participation in social situations. Tomasello 
(2003) speaks of the “dual inheritance” (p. 283; see also Krummheuer 2011a, b; 
Voigt 1995).

Referring to my initial remarks, the following issues might be helpful in finding 
an appropriate wording for the theoretical concepts:

1. If one looks into mathematics learning processes of young children of preschool 
and kindergarten age, one cannot assume that the attending adults have a suf-
ficient mathematical background to serve as experts who can help avoid the 
occurrence of such mishaps. Neither the nursery teacher nor the parents or elder 
siblings of a child necessarily possess the desirable mathematical competence. 
Referring to the epigram, one could say: Forrest Gump cannot be sure, what kind 
of chocolates are in the box.

2. From an interactionist’s stance, all interaction situations principally entail the 
potential of developing in an unexpected way where the participants cannot eas-
ily refer to routinized and/or standardized applications of knowledge—they have 
to interactively negotiate a novel “shared meaning.” Forrest Gump, who is going 
to get a box of chocolates, might have another understanding of what such a box 
is going to be.

In order to deepen this issue theoretically, I will introduce the concept of the “in-
teractional niche in the development of mathematical thinking” and thereafter ap-
ply this concept to several episodes that were analyzed in our projects early Steps 
in Mathematics Learning (erStMaL) and Mathematische Kreativität bei Kindern 
mit schwieriger Kindheit (MaKreKi, Mathematical Creativity of Children at Risk). 
Finally, I will draw some conclusions about the question how much one could or 
should instruct small children in the development of their mathematical thinking.

The Concept of the “Interactional Niche in the Development 
of Mathematical Thinking”

The theoretical perspective of the generation of mathematical thinking taken here is 
one of socio-constructivism. This perspective encompasses two research traditions: 
one strand is based on the phenomenological sociology of Alfred Schütz (Schütz 
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and Luckmann (1979) and its expansion into ethnomethodology (Garfinkel (1972) 
and symbolic interactionism (Blumer (1969)1—usually subsumed under the name 
“micro-sociology”; the other tradition refers to the cultural historic approach of 
Vygotksky and Leont’ev, etc. (see Wertsch and Tulviste 1992 and Ernest 2010).

Generally speaking, one can characterize the cultural historic approach as one 
which takes culture as a given that the child adapts to by its development; an im-
portant issue hereby is the notion of language that stores and transmits the cultural 
accomplishments in a symbolic form allowing the child to enter into this culture, 
step by step, finally becoming a full participant. One can characterize this approach 
as structuralistic (see Gellert (2008)). In contrast, the micro-sociological approach 
views culture as a continuously and locally emerging course of action that is accom-
plished by the mutual exchange of meanings in the steady interaction among the 
members of a group or society. Goffman (1983) calls this a “situational perspective” 
(p. 8; see also Krummheuer (2007)). Hereby the child co-constructs the culture in 
each social event in which it is participating.

From the stance of the cultural historic approach, one can consider the child’s 
development as a general individual progression starting with statuses of participa-
tion that are dominated by observing and imitating actions of other participants 
and aiming toward statuses that are rather characterized by taking active influence 
on the course of interaction. Respectively, the interactionistic approach implies the 
idea of a “leeway of participation,”2 within which a child explores its cultural envi-
ronment while co-constructing it. With respect to the child’s development of math-
ematical thinking, I will amalgamate the two approaches in a “socio-constructivist 
paradigm,” thus allowing the introduction of the notion of the “evolutionary spiral”:

• The child individually utilizes the leeway of participation that is interactively ac-
complished and to be understood as a result of the culture the participants share.3 
The development of thinking is then comprehensible as an individual process 
of cognitively active adaptation to those aspects of the process of negotiation of 
meaning that are conceivable to the child.

• By these processes of adaptation, the procedure of interaction develops over time 
allowing the child incrementally to take over activities and responsibility for the 
outcome of the interaction. This might lead to modifications of the structure of 
interaction that eventually can become stabilized in this new mode over a longer 
period of time. Thus, the framing conditions of the culture for such social occa-
sions change, in that in subsequent encounters the participants are likely to ac-
complish (slightly) differently structured processes of negotiation of meaning.4

1 Surprisingly, Ernest (2010) does not mention this research tradition. For its reception in math-
ematics education, see Bauersfeld (1995); Krummheuer (1995); Voigt (1995).
2 See the notion of “Partizipationsspielraum” in Brandt (2004) that is translated into English as 
“leeway of participation”; see also Krummheuer (2011a).
3 Culture is taken here either as a macro-sociological global precondition or as a micro-sociologi-
cal phenomenon of locally stabilized and routinized procedures of meaning negotiation.
4 One might call this a “conceptual change” on the individual level Vogel and Huth (2010).
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For the purpose of further developing this notion of the evolutionary spiral, I refer to 
the concept of “developmental niche” (Fig. 6.1) from Super and Harkness (1986):

The developmental niche...is a theoretical framework of studying cultural regulation of 
the micro-environment of the child, and it attempts to describe the environment from the 
point of view of the child in order to understand processes of development and acquisition 
of culture. (p. 552)

The authors introduce three subsystems for such a developmental niche:

• The physical and social settings in which the child lives
• Culturally regulated customs of child care and rearing
• The psychology of the caretakers (Super and Harkness 1986, p. 552; the diagram 

is published in Harkness et al. 2007, p. 34)

Super and Harkness conducted anthropological studies without focusing on the situ-
ational aspects of social interaction processes. I stress the component of the interac-
tively local production of such processes and speak of an “interactional niche in the 
development of mathematical thinking” (NMT). It consists of the provided “learn-
ing offerings” of a group or society, which are specific to their culture and will be 
categorized as aspects of “allocation,” and of situationally emerging performance 

Fig� 6�1  Subsystems of the developmental niche according to Super and Harkness
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occurring in the process of meaning negotiation, which will be subsumed under the 
aspect of the “situation.”5

I modify Super and Harkness’s three components of the developmental niche in 
that, first, I merge the categories “customs” and “caretaker psychology” to the com-
ponent “pedagogy and education,” second, redefine the category “settings” to the 
component “cooperation” and third, add the new component of the content. These 
modifications allow a combination of each of these novel components with either 
of the mentioned aspects.

In the following I would like to further explicate the details of Table 6.1:

1. Content: Children are confronted with topics from different domains of math-
ematics as they appear in their everyday life. The following data were gathered 
in the research project erStMaL and in everyday mathematic classroom situa-
tions. These mathematical topics are usually presented in the form of a sequence 
or body of tasks, which are adapted with respect to their content and difficulty 
to the assumed mathematical competencies of these children. On the situational 
level the presentation of such tasks elicits processes of negotiation, which neces-
sarily do not proceed in concordance to the ascribed mathematical domain or to 
the activities that are expected in the tasks.

2. Cooperation: Besides this content-related component, the children participate 
in culturally specific social settings which are variously structured as in peer 
interaction or small group interaction guided by a nursery teacher or primary 
mathematics teacher etc. These social settings do not function automatically; in 
fact they need to be accomplished in the joint interaction. Depending on each 
event, a different leeway of participation will come forward.

3. Pedagogy and education: The science of mathematics education develops theo-
ries and delineates—more or less stringently—learning paths and milestones for 
the children’s mathematical growth. In the concrete situation, however, it rather 
is the folk pedagogy of the participating adults and children that becomes oper-
ant. It cannot be assumed that these different theories coincide.

5 For more details see Krummheuer (2011a).

Table 6�1  Components and aspects of the interactional niche in the development of mathematical 
thinking (NMT)
NMT Component: content Component: 

cooperation
Component: pedagogy and 
education

Aspect of 
allocation

Mathematical domains; 
body of mathematics 
tasks

Institutions of educa-
tion; settings of 
cooperation

Scientific theories of math-
ematics education

Aspect of 
situation

Interactive negotiation 
of the theme

Leeway of 
participation

Folk theories of mathematics 
education

6 The Relationship Between Cultural Expectation and the Local Realization…
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Some Insights From our Recent Analyses in the Projects 
erStMaL and MaKreKi

First, some information about two projects on which my empirical analyses are 
based. They are a part of the Center for Individual Differences and Adaptive Ed-
ucation in Frankfurt am Main, Germany: early Steps in Mathematics Learning 
(erStMaL) and “Mathematische Kreativität bei Kindern mit schwieriger Kindheit” 
(MaKreKi, Mathematical Creativity of Children at Risk).6 Both projects are lon-
gitudinal studies that range over a period of 5–6 years. Within this time frame we 
are in contact with the children from age 3 to 10. In erStMal, we initiate learning 
opportunities for children in small groups in preschool and kindergarten and later 
in primary mathematics classes. Additionally, with a few children we also observe 
their families at home as they play with mathematically challenging material that 
we provide. In MaKreKi, we selected children with a seemingly extraordinary 
degree of mathematical creativity. In this project we integrate our analyses with 
psychoanalytical insights about the development of the attachment behavior of the 
child to his/her mother.

I will present the results of our analyses of three episodes in these two projects.

First Episode: the June Bug Problem

In a preschool, the German Kindergarten, the two children Marie (aged 4 years and 
8 months) and René (4 years and 9 months) and an adult person are sitting together 
around a table. They have cards on the table that show June bugs, which differ in 
size (small and large), in color (red, green, and yellow), and in the types of spots 
(circle, triangle, and square and also by the sizes small and large; Fig. 6.2).

The two children invent two systems of descriptions for the size of the bodies: 
the size (small and large) and the family position (mom, dad, parents, and kids); for 
example as in Fig. 6.3.

I will refer to the end phase of a collective processing of the task. As mentioned, 
also a familial system of description has been invented: The small June bugs rep-
resent child-bugs and the big one mom-bugs, dad-bugs, or parents-bugs. During 

6 For more details of both projects see Acar Bayraktar et al. (2011).

Fig� 6�2  Different types of 
June bugs
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the period before this episode, they also compared the number of cards according 
to their size and color and found out that all these subgroups are of equal number.

After this comparison, the children realigned the cards around the round carpet, 
which is a kind of defined space for playing and exploring the material.

Finally, there were three cards in the center of the table as shown in Fig. 6.4.
Routinely, the adult opens this kind of constellation with the question “which 

one doesn’t belong” (Wheatley 2008). Furthermore, routinely we expect as an an-
swer: the June bug with the few and big triangles does not belong. But René comes 

Fig� 6�4  The three differ-
ent large June bugs in the 
discussion

 

Fig� 6�3  Familial categorization of June bugs
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up with the solution that both June bugs with the many, small triangles do not be-
long. His justification has two aspects:

• Comparing the figures of the small and the big cards, he concludes, that the June 
bugs of the small cards should also only possess small figures on their tops.

• The two cards with the many and small triangles cannot exist in the system of the 
cards at all.

If one interprets his explanation in terms of the invented familial system of descrip-
tion, one could rephrase it in this way:

• Big June bugs have big figures because they are parents,
• small June bugs have small figures because they are children, and
• so, big June bugs with small figures do not exist.

If one understands the figures on the June bugs to be, for example, people’s hands, 
René’s argument is: parents do not have hands the size of kids, this is impossible. 
They cannot be parents and children “at the same time,” as he says.

René creates a non-canonical solution. The observing adult seems to have dif-
ficulty comprehending his approach. Possibly she assumes that he wants to say that 
the two June bugs with the many and small triangles are the ones that remain and 
therefore the third one with the few and big triangles does not belong. This constel-
lation of misinterpretation evokes the short dialog in which Renè rephrases his solu-
tion. With respect to the interactional setting, it is René who takes over the adult’s 
perspective of being puzzled and explains his position to her. Obviously, the adult 
person did not anticipate René’s solution. It was beyond the canonical expectations 
of what a child might answer.

From the viewpoint of the design of the problem, one could argue, if the differ-
ent patterns of triangles would not have been printed on the backs of June bugs but 
just in an “inexpressive” circle, the children would not have had the “chance” to 
be “confused” and to thus develop an anthropomorphic view of the problem. This 
might be correct, and Wheatley (2008), who developed the problem, does it with 
circles. But discussing the results of this scene in this inexpressive way means that 
a kind of deterioration occurred in the process, namely that a mishap occurred. 
From an interactionistic stance, however, one would rather argue: this is what hap-
pened and it was rather René who “saved” the situation by taking over the adult’s 
perspective. (Forrest Gump got a box of something that he did not take to be a box 
of chocolates. So what!)

The Second Episode: The Birthday-Party Problem

In a preschool the four children and a student research assistant “B” are seated 
at a table.7 The children are Karoline (4 years 11 months), Fanny ( 4 years), Otto 
(5 years 4 months), and Klara (5 years 10 months). B opens the conversation: 

7 This scene is first mentioned in Krummheuer (2011a).
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“Do you remember the chipmunk8 that we brought with us the last time? It has its 
birthday today and wants to have a birthday party.” B then takes off a cover from 
a set of dishes and eating utensils that were put on the table. It contains four cups 
(pink, blue, green, and yellow), four mugs, four plates all in the same four colors, 
four forks and knives, four teaspoons, and four tablespoons. The children take some 
of the items and move them around the table. Each child has a placemat in front of 
him/her and they group their items on it.

After 8 min of sorting out the utensils and the dishes, Otto takes his turn and says: 
“One thing we forgot, where is the chipmunk supposed to sit?” The group declares 
a part of the table to be the place where the chipmunk as a toy is supposed to sit (as 
a toy, it is physically not really present). The peers discover that there are no more 
dishes available and that only a few teaspoons remain. B comments on this situation: 
“We haven’t got enough. But perhaps you guys can hand over some of yours.”

In the following the children make several attempts to distribute their eating and 
drinking utensils among five participants of the party. They develop some ideas that 
can be seen as the very initial steps to the concept of the division in the set of ratio-
nal numbers. It, however, did not merge into more tangible results.

Here again one could argue from the stance of design science, that one could 
have anticipated the remark that the chipmunk should sit with them at the table and 
one could have been appropriately prepared for this. But again: “You never know 
what you’re gonna get.”

Third Episode: The Game: “Building Bricks” in the Family Ak

In a family setting, the mother and the daughter Aleyna (aged 4 years and 8 months) 
play a game in which they have to rebuild a construction of bricks according to a 
given picture on a playing card.

At the end of a relatively intense discussion they came up with the solution 
shown in the right cell of Fig. 6.5. Our analysis of the interaction between mother 

8 The chipmunk is the mascot of the project erStMaL. It is a stuffed animal.

Fig� 6�5  The chosen play card and the accomplished solution
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and daughter reveals that the two partners, sitting at different sides of the table, 
interpret the bricks in their final joint construction as different parts of the picture 
(Fig. 6.6).

Here again, we are facing a situation that developed in a surprising and unex-
pected way. At least Aleyna does not feel satisfied with the result, though the mother 
decided that their construction coincides with the picture on the card. It can be as-
sumed that the designer of this game had not envisioned such a solution.

Conclusion: the Application of the Notion of NMT

For a deeper analysis, one can reconstruct these three examples with the help of the 
concept NMT. In all of these episodes a specific niche emerged, which conjointly 
can be characterized by the tension between the expected production of the solution 
and the actually realized outcome.

• With respect to the component of content we have to consider that the intended 
mathematical activities, like pattern identification, partitive division, and spatial 
reconstruction of two dimensional diagrams, were accomplished in the first two 
cases in a more elaborated way than assumedly intended by the designers of the 
task. René’s application of two different systems of categorization combined 
with certain restrictions that were based on a common sense understanding of 
human growth is a somehow unique and not expectable solution, which from 
a mathematical point of view, might entail a more sophisticated mathematical 
potential than the expected “canonical” solution. Also the birthday-party prob-
lem advanced in a direction that, from a mathematical point of view, promises 
a deeper mathematical understanding of division than the expected partitive 

Fig� 6�6  The final joint construction of mother and daughter and their sitting positions
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division of dishes and eating utensils. It encompasses the options of dealing with 
the division with a remainder, the overcoming of the positive integers, etc.

 The third example appears to be different from the first two. Here the analysis 
leads to the insight that the negotiations between mother and daughter reach a 
dead end. We assume that it is not the different geometrical perspectives of mother 
and Aleyna that produce this calamity but the effect of interactively wiping away 
their differences. Finally, this leads to unclarified and unspoken discrepancies that 
are most unlikely to stimulate any process of cognitive (re)-construction.

• With regard to the component of cooperation we have to take into account that 
initially designed asymmetrical situations of interaction in which an adult is sup-
posed to order, structure, and/or correct, emerge in a rather symmetrical dis-
course of co-construction. In the case of René we can even assume that he con-
ducts himself in a more adult-like manner with the capacity of taking over the 
perspective of the adult.

• Referring to the component of education and pedagogy, we recognize that theo-
ries of design science overestimate the immediate and direct impact of the cogni-
tive constructions on the learner. It is as if the wedge of the social affair of nego-
tiating meaning in the interaction among the participants is driven between the 
provided problem and the mind of the child. With reference to Goffman (1983), 
we can speak of the “interaction order” that is somehow more or less like a thick 
wedge that is driven between the allocated learning material and the cognizing 
child. What the child is processing in his mind is not the “inherent” meaning of 
this material but the interactively negotiated working consensus of the definition 
of the situation in which this material was implemented. This interaction order is 
to be taken as a social institution that for the most part independently functions 
with its own regularities and dynamics.

Taking all this into regard, we can reconstruct NMTs in the first two episodes that 
do not fail but rather proceed in an evolutionary spiral. Mathematically, more so-
phisticated definitions of the situation and rather symmetrical forms of discourse 
are emerging as well. New mathematical concepts are in the incubator of these pro-
cesses: the making of meaning and the potential of symmetrical co-construction can 
be exploited. The longitudinal design of our projects will give us the opportunity to 
analyze the actions of these children in later phases of their development. We also 
can gain insights into accomplished niches that go awry. This happens in the inter-
action when the emerging differences in the individual definitions of the situations 
are not distinguishable. It is neither the persistence of differences nor the situational 
impossibility of dissolving them; it is instead the act of sweeping these discrepan-
cies under the carpet that extinguishes the NMT. Bauersfeld (1980) called it once 
the “hidden dimension(s)” (see also Krummheuer 2009, 2012).

The results of these first studies about the functioning of NMT allow a relatively 
differentiated standpoint on the question how much one should instruct children 
of kindergarten age in mathematics and how much one should let them have their 
own experience in constructing personally new insights that in the long term can 
be incorporated in the buildup of their mathematical knowledge (see the discussion 
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in Tobias and Duffy (2009)). It is not so much a matter if something goes right or 
wrong, which from an instructional point of view would be an indicator whether 
the instruction needs to be improved. There is always the possibility of unexpected 
ways in which the actual situations emerge. The allocative components will always 
be mediated in the concrete encounter by the interactive process of negotiation of 
meaning. Both aspects together define the interactional niche, by which the child 
might perceive the appropriate stimulus and the appropriate guidance as well for 
his/her cognitive development. Stimulus and guidance are on the one hand dis-
tinguishable as allocative and situational and on the other hand they are two sides 
of the same coin: they are concepts that in terms of NMT appear as a whole and 
not as one of its aspects. Empirically, there seem to be various constellations of 
NMT, which “operate” differently with respect to stimulus and guidance. Depend-
ing on these realizations of NMT, the evolutionary spiral then advances along dif-
ferent loops and opens different options to the process of children’s mathematical 
thinking—you never know what your’re gonna get.

Further research is necessary in order to reconstruct these options and describe 
their effects.

The projects erStMaL and MaKreKi are funded by the Hessian initiative for 
the development of scientific and economic excellence (LOEWE) and are conduct-
ed in the Center of “Individual Development and Adaptive Education” (IDeA) at 
Frankfurt am Main, Germany
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Interactional Niche in the Development of Mathematical 
Thinking (NMT) in Familial Situations

IDeA Center and Project erStMaL

One of the research projects of the Center for Research on Individual Development 
and Adaptive Education of Children at Risk (IDeA) is the project Early Steps in 
Mathematics Learning (erStMaL), which investigates the mathematical develop-
ment of children in this age group. It is planned as a longitudinal study to fol-
low children from the age of three, until the third year of primary school from a 
socioconstructivist perspective. While the first survey period covers kindergarten 
children, the second survey period covers the same children in primary school ages 
(see also Acar Bayraktar et al. 2011). Currently, the fifth observation phase contin-
ues in the project erStMaL. In the study erStMaL, a family study is also performed, 
which is designed as a longitudinal study and named erStMaL-FaSt (Early Steps 
in Mathematics Learning-Family Study). It deals with the impact of the familial 
socialization on the mathematics learning. The chapter deals with first insights of 
this family study.

The IDeA is conducted by the German Institute for International Educational 
Research (DIPF), Goethe Universität Frankfurt, and the Sigmund Freud Institute 
Frankfurt. The center explores the development of children at risk and the processes 
of individual learning in the preschool, kindergarten, and primary school age.

A Familial Study in the erStMaL Project: erStMaL-FaSt

For the family study, we choose children from our main study erStMaL according 
to the following three criteria: the ethnic background (German or Turkish), the du-
ration of the formal education of the parents (more or less than 10 years), and the 
sibling situation within the families. From different kindergartens, 120 erStMaL 
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children who were about the age of 4 considering the year 2009 were selected, from 
among whom 49, whose families matched all three criteria, were chosen for the 
family study. These families were contacted and asked if they would like to par-
ticipate in erStMaL-FaSt. At the beginning of the family study, eight families had 
agreed to participate in it.

Currently, there are eight ongoing participant families in the erStMaL-FaSt, 
whose children are aged seven considering the year 2012. The detailed research 
design is shown in Table 7.1.

Data collection comprises of recorded videos and their transcripts. Once a year, 
an appointment is arranged with each family. This leads step by step to a collection 
of data from each child.

In these appointments, the erStMaL child is video recorded together with mem-
bers of the family while they are playing. By setting up a design for the observa-
tion of each child, it is also enabled to see game partners of the erStMaL child 
(Table 7.2).

For erStMaL-FaSt, four play situations are conceived, which refers to two math-
ematical domains: geometry and measurement (Acar Bayraktar and Krummheuer 
2011, p. 143; see also Acar Bayraktar et al. 2011). Each play situation is constructed 
according to specific design patterns for erStMaL-FaSt (see also Vogel 2012; Vogel 
and Wippermann 2005).

In each brief description, as a specific design pattern (1) definition of play situ-
ation, (2) application field, (3) intended mathematical domain, (4) mathematical 
context, (5) materials and playroom, and (6) instruction manual are introduced. As 
an example, one specific design pattern and its translation are shown in Figs. 7.1 
and 7.2.

In FaSt, there are four different play situations, which are expanded and up-
graded in each year before the observations.

For data collection, an appointment must be arranged with the family by giving 
them the flexibility to choose place and time.

Eight families With 
sibling

Without 
sibling

Higher educational 
level

Turkish/German 1 2
German 2 1

Lower educational 
level

Turkish/German 1 –
German 1 –

Table 7�1  Research design of 
the family study

Table 7�2  Observation design
Observation design I erStMaL child as a single 

child
II erStMaL child as a sibling

erStMaL child is 
playing with

Ia Mother or one member 
of family (e.g., father)

IIa Mother or one member of family 
(e.g., father) and sibling

Ib Mother and one member 
of family (e.g., father)

IIb Mother, sibling, and one member 
of family (e.g., father)

 



877 The Reflection of Spatial Thinking on the Interactional Niche in the Family

•

•

•

•

•

•

•

•
•

Fig� 7�1  The specific design pattern of play Building 01
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Before family members begin to play in the meeting, all plays are explained in 
the language family members want: either German or Turkish. At the same time, 
all play materials are shown to family members. In addition, it is told that they are 
also free to play in any language they want. Instruction manuals of each play are 
composed in both languages as well. These introduction manuals and game materi-
als are provided by the author and put at the disposal of the family in the recording 
room. Afterwards, the family is left by themselves to make all play members feel 

•

•

•

•

•

•

Fig� 7�2  English translation of the specific design pattern of play Building 01
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comfortable while the video recorders are turned on. The members of the family are 
supposed to choose at least two games out of four and to perform them.

Theoretical Framework of erStMaL-FaSt

Parents are their children’s first and continuing “educators” (Mills 2002, p. 1). Thus, 
the family functions as an ongoing “support system,” parallel to kindergarten, pre-
school, and (primary) school for the learning of mathematics. By the term “support 
system,” it is referred to the idea of socioconstructivist theory, which means that the 
cognitive development of an individual is constitutively bound to the participation 
of this individual in a variety of social interactions. Support is a type of feedback or 
correction, which helps the child to participate more during the play situation. With 
respect to Bruner’s concept of a Language Acquisition Support System (LASS), we 
propose a similar concept for the learning of mathematics, which is analogically 
called the “Mathematics Learning Support System” (MLSS) (Bruner 1986, p. 77; 
see also Acar Bayraktar and Krummheuer 2011, Krummheuer 2011b, c, Tiedemann 
2010).

Mathematical support exists of patterns and routines of interaction, which are realized by 
adult and child, and also, in which the child is supported to participate in a mathematical 
discourse. (Tiedemann 2010, p. 154; translation by Ergi Acar Bayraktar)

Considering play situations of erStMaL-FaSt, while children experience the math-
ematical situations in their families, learning mathematics in early years emerges 
in different forms of participation (Acar 2011a, p. 1861). The research interest is to 
identify in which way these forms of participation is shaped by MLSS.

This support occurs not only through “correct instructions” but also through “in-
correct instructions.” Through the negotiation during the play situation, children 
and parents construct new definitions of the situation, which reflect the mode of 
functioning of MLSS (see Acar Bayraktar and Krummheuer 2011). Thus, MLSS is 
seen as part of a familial “micro cosmos” that emerges during such play situations. 
It is referred to here as the theoretical framework “developmental niche,” which has 
been introduced by Super and Harkness.

Super and Harkness developed this theoretical framework as a reflection on cul-
tural anthropology and developmental psychology:

The developmental niche…is a theoretical framework of studying cultural regulation of the 
micro-environment of the child, and it attempts to describe the environment from the point 
of view of the child in order to understand processes of development and acquisition of 
culture. (Super and Harkness 1986, p. 552)

This theoretical framework is generated as a juncture of cultural anthropology and 
developmental psychology. The authors introduce three major subsystems of a de-
velopmental niche, which operate together and share the common function of me-
diating the individual’s developmental experience within a larger culture: (1) the 
physical and social settings in which the child lives, (2) culturally regulated customs 
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of child care and rearing, and (3) the psychology of the caretakers (Super and Hark-
ness 1986; see also Harkness and Super 1994; Harkness et. al. 2007, p. 552).

Nevertheless, these three components of the developmental niche are deprived 
of focusing on the situational aspects of social interaction processes. Although 
they form the cultural context of child development (Super and Harkness 1986; 
see also Wombles 2010, p. 552), local productions of social interaction processes 
of mathematics education in children’s development are not taken into account. 
Krummheuer (2011a, b, 2012) worked on this theoretical concept, modified it to the 
mathematical development, and named it the “interactional niche in the develop-
ment of mathematical thinking” (NMT).

For the comparison among the various family situations and for the longitudinal 
analyses as well, the concept of the “interactional niche in the development of math-
ematical thinking” (NMT) can be used (Krummheuer 2011a, b, 2012). This new 
theoretical framework includes the advantage of a closer analysis of the relationship 
between mathematical learning occasions with those, which take place in preschool, 
kindergarten, and/or primary math classes.

Krummheuer explains NMT as follows:
It consists of the provided “learning offerings” of a group or society, which are specific to 
their culture and will be categorized as aspects of “allocation,” and of situationally emerg-
ing performance occurring in the process of meaning negotiation, which will be subsumed 
under the aspect of the “situation.” (Krummheuer 2012, p. 323; see also Krummheuer 
2011a, b)

While analyzing the mathematical situations according to emerging performances 
of participants, NMT makes it possible to analyze their learning offerings at the 
same time. Through the allocational aspect, the activeness and the emergence of 
interaction during the play can be examined in a chosen mathematical domain. 
Through the situational aspect, it can also be examined how players participate 
and what they perform during interactive negotiations in the play situation. Thus, 
this framework enables one to observe and examine the child development clearly 
through social interaction processes in mathematical situations.

With regard to the design of the family study, the general structure of the interac-
tional niche in the development of mathematical thinking is adapted to the familial 
context and named NMT-Family (Table 7.3).

Due to allocation and situation aspects, the structure of three components is de-
tailed and explained below1:

• Content: In the practice of erStMaL-FaSt, children and their families are con-
fronted with mathematical play situations, which are in mathematical domain 
either “geometry” or “measurement.”

 The play situations in erStMaL-FaSt are designed according to a specific design 
pattern, which supposedly gives the families open areas and opportunities for 
interactive negotiations. From the situational perspective, during play situations 

1 This part is translated into English from the German article (Acar Bayraktar and Krummheuer 
2011).
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interactive negotiations emerge, in which the rules of play and/or mathematical 
topics might be chosen as themes.

• Cooperation: The process of cooperation between the adult and child provides 
the opportunity to refine their thinking and to make their performance more ef-
fective. Depending on this cooperation, a different leeway of participation comes 
forward.

 “Leeway of participation” is one of the interactionistic approaches, by 
which a child explores his/her cultural environment while co-constructing it 
(Krummheuer 2012, p. 322; see also “Partizipationsspielraum,” Brandt 2004). 
So, this is a concept belonging to the situational aspect. Brandt (2004) explains 
that the participants interactively accomplish different margins of leeways of 
participation that are conducive or restrictive to the mathematical development 
of a child (see also Krummheuer 2011c; 2012). Alongside contents, the children 
are involved in the social settings in the play situations, which are variously 
structured as in child–parents interaction and/or child–sibling interaction. These 
social settings need to be accomplished in the process of interaction.

• Pedagogy and Education: Developmental theories and theories of mathematics 
education describe and delineate learning paths for the children’s mathemati-
cal growth from different points of view. With respect to folk pedagogy, the 
participating adults and children become situationally active and operant in the 
concrete interaction. During each interaction, there emerge new interpretations, 
which support the development of the child either in a positive or in a negative 
way. Thus, in this system, MLSS occurs in different ways.

With respect to all these three components, one chosen scene will be introduced as 
an example to show how the concept of “interactional niche in the familial context” 
can be clearly used to examine the social interaction processes in the play situations 
with respect to the functioning of MLSS.

Table 7�3  Components and aspects of the interactional niche in the development of mathematical 
thinking in familial context. (Acar Bayraktar and Krummheuer 2011, p. 140)
NMT-Family Component: content Component: 

cooperation
Component: pedagogy and 
education

Aspect of 
allocation

Mathematical domains: 
geometry and 
measurement

Play as a familial 
arrangement for 
cooperation

Developmental theories in 
mathematics education and 
proposals of activeness for 
parents on this theoretical 
basis

Aspect of 
situation

Interactive negotiation of 
the rules of play and 
the content

Leeway of 
participation

Folk theories of mathematics 
education, everyday routines 
in mathematics education; 
MLSS
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Spatial Thinking and a Play: Building 01

The play, for the child and for the adult alike, is a way of using mind, or better yet, an atti-
tude toward the use of mind. (Bruner 1983, p. 69)

The exemplarily chosen mathematical play from the family study refers to spatial 
thinking and is based upon the play “Make ‘N’ Break” (Lawson and Lawson 2008). 
In the play, families are supposed to build three-dimensional version of the picture 
with wooden bricks, which are of the same size and weight. The play situation 
offers families different opportunities to perform the relations between two- and 
three-dimensional representations.

In each round, one player chooses one card from the deck and builds the figure, 
which is seen on the card as an image. The aim of play is to build a figure properly 
with the provided wooden bricks as seen on the chosen card, and thereby to get the 
most points to be a winner. To check the compatibility between the built figure and 
the seen figure on the card, other players should examine if the built figure is cor-
rectly built or not and give a feedback. If it is correct, then the player gets as many 
points as seen on the card.

In the play, cards are placed on the table face down. Each card has a difficulty 
level ranging from one to three, which also shows how many points each player can 
get after they build the card right. The cards with the number 1 are the easiest and 
the cards with the number 3 are the hardest (Fig. 7.3). In total, they play five rounds 
by turns of each player.

In the intellectual growth and everyday existence, spatial ability plays a ma-
jor role (Wachs 2003, p. 534). Clements and Sarama point out that mathematics 
achievement is related to spatial abilities and therefore, spatial ability is an im-
portant factor for the acquisition of many topics in mathematics (2007, p. 489). 
By many researchers, this “complex” and “elusive” (Clements and Sarama 2007, 
p. 489) role of spatial ability is investigated in two parts: spatial orientation and 
spatial visualization (Bishop 1980, p. 259; see also Harris 1981; McGee 1979; Cle-
ments and Sarama 2007; National Research Council Committee on Early Child-
hood 2009). Spatial visualization means that the subject must be imagined as the 
rotations of objects in space and spatial orientation means that the subject must be 
recognized and the relationships between the various parts of a configuration and 
his own position are comprehended (Bishop 1980, p. 259). In their work, Clements 

Fig� 7�3  The game cards on different levels
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and Sarama draw on spatial thought under the part “spatial orientation” (2007). Spa-
tial thought is a thought that finds meaning in the shape, size, orientation, location, 
direction or trajectory of objects, processes or phenomena, or the relative positions 
in space of multiple objects, processes, or phenomena (Science Education Resource 
Centre 2008). The term spatial structuring is defined as the process of organizing 
two- and three-dimensional concepts. Furthermore, it is declared that it is related 
with selecting, coordinating, unifying, and registering in memory a set of mental 
objects and actions (Nes 2009, p. 21).

In the chosen example, it will be focused on both spatial abilities and their sub-
parts as explained above.

For the developmental steps in spatial abilities, it will be benefited from the work 
of National Research Council Committee on Early Childhood (2009): Step 1 for age 
2 and 3, step 2 for age 4, and step 3 for age 5. This chapter focuses on step 3, i.e., 
age 5. In respect of National Research Council (2009), children who are aged five 
can take measures of sides (simple units) and compare areas by using superimposi-
tion. Furthermore, they can identify and create symmetric figures by using motions 
(e.g., paper folding; also mirrors as reflections). By using a variety of shape sets 
(e.g., pattern blocks; rectangular grids with squares, right triangles, and rectangles, 
tangrams), they can also construct compositions on grids and in puzzles with syste-
maticity and anticipation.

In the range of this age, they can substitute shapes and build complex structures. 
From pictured models, they can build structures as well.

Additionally, they can both understand and replicate the perspective of a differ-
ent viewer. Describing both congruent faces and parallel faces of blocks in context 
(e.g., block building) is another ability of children in the range of age 5.

According to Clements and Sarama, 5-year-old children can metrically represent 
spatial information in a polar coordinate task, using the same two dimensions as 
adults, radius and angle (2007, p. 498). It is also reported by National Research 
Council Committee on Early Childhood that 5-year-old children can understand and 
can replicate the perspectives of different viewers. Morever, these competencies 
reflect an initial development at the third level of thinking, which is about relating 
parts and wholes level. (2009, p. 191).

As a comparison on spatial thinking among children and adults, Clements & 
Sarama emphasize qualitatively indistinguishability of spatial processing:

Spatial processing in young children is not qualitatively different from that of older children 
or adults. However, with the age, children produce progressively more elaborate construc-
tions. (2007, p. 512)

The richness of block building in free-play situations and explorations gives wide 
opportunities for discovering the basic structure of mathematics and establishing 
equivalencies in length, height, area, and volume, making tangible, and therefore 
real, what children have so far learned only symbolically (Hewitt 2001, p. 10). 
Kersh, Casey, and Young emphasize the reflection of block play on the social skills:

Engaging in block play helps children acquire a diverse range of valuable competencies and 
knowledge, from social skills to the foundations for later math achievement. (2008, p. 237)
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Moreover, blocks enable children to be illuminated in different varieties of growth 
areas: physical, social, emotional, and cognitive growth (Bullock 1992, p. 16; see 
also Cartwright 1988). Bullock draws up each benefit in each growth area, through 
the block play, as follows (ibid):

Physical Growth: (1) Small and large-muscle development and coordination of muscles by 
lifting, carrying, bending, reaching, pushing, and pulling. (2) Learning hand-eye coordina-
tion by reaching, grasping, and moving blocks. (3) Learning a sense of balance and symme-
try through building, stacking, and balancing blocks. (4) Developing motor coordination by 
moving blocks. (5) Understanding object-space relationships through placement of blocks.
Social Growth: (1) Promotion of social growth through experience in interpersonal rela-
tionships. (2) Experience in taking turns, sharing, and respecting the rights of others. (3) 
Learning to cooperate and play together. (4) Opportunities to engage in several levels of 
play, from solitary and parallel to group. (5) Increased confidence and self-esteem.
Emotional Growth: (1) Learning patience. (2) Increasing independence. (3) Contributing 
to a sense of accomplishment, which improves the child’s self-image. (4) Stimulation of 
imagination, creativity, and joy. (5) Experimenting with a variety of roles and skills and 
feeling a sense of success.
Cognitive Growth: (1) Exploration of sizes, shapes, distances, proportions, and weight. (2) 
Mathematical concepts such as “bigger than,” “smaller than,” or “need more or need less.” 
(3) Counting, one-to-one correspondence, classification, sorting, and matching. (4) Experi-
mentation, manipulation, and problem solving. (5) Communicating with others (listening, 
speaking, and sharing).

Correspondingly, Johnson lays an emphasis on block building and suggests that 
children go through different phases in each growth area (Johnson 1966). In addi-
tion to this, Bullock points out that younger or less experienced children may need 
more encouragement during the block-building activities (Bullock 1992, p. 18).

The Kil Family

The Kil family is a German-Turkish family who lives in a major German city. 
The parents, having been brought up in Germany, speak with their daughter Ayse 
mostly German. Ayse is a single child, aged 5 years and seven months; she speaks 
German and rudimentary Turkish. Her mother studied for 10 years and has a higher 
education qualification. Her father studied for 13 years and has a higher education 
qualification, too. Similar to Ayse, her parents speak both German and rudimentary 
Turkish.

In the chosen game, Ayse and her father play together. Although they have been 
informed through the instruction manual that they should play only a total of 5 
rounds, they play in total 14 rounds by taking turns, in which they build up all given 
cards.

Up to the chosen and transcribed scene, they have played just two rounds. Mr. 
Kil started to play. Until the third round, they built each chosen card correctly. In the 
third round, Mr. Kil chooses another card and starts to build it (Fig. 7.4).

After a while, he completes the assignment as it is seen in Fig. 7.5.
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In the chosen scene, he asks his daughter if the built structure is identical with the 
figure on the card (Table 7.4).

By posing the question “right?” < 01 >, Mr. Kil probably tries to get to know, if 
Ayse finds his built figure proper as it is seen on the chosen card. This question also 
enables to spark off her spatial visualization and spatial orientation. As a reply, Ayse 
gives him a positive feedback, which shows a temporary agreement that her father 
built the picture correctly as it is seen on the card. Further, this action indicates that 
he can gain 3 points given on the card < 01–02 >.

But after she checks the card again, she realizes a discrepancy between the con-
structed building and the picture. She says, “But one long and one short” < 04 >. 
Actually, she does not exactly depict which wooden bricks she meant are long and 
short. When the card is compared with the structure of the building, it could be in-
terpreted that she could mean what is shown in Fig. 7.6.

As can be seen in Fig. 7.6, there is a difference between the figure on the chosen 
card and the built structure. According to the visual discrimination, it can be said 
that Ayse can represent wooden bricks at the detailed level of shapes (Clements and 
Sarama 2007, p. 511). Topologically, she can also coordinate both structures and 
realize that the wooden bricks, K8 and K6, are not horizontally of the same height.

Fig� 7�5  A structure built by 
Mr. Kil
 

Fig� 7�4  A card chosen by 
Mr. Kil in the third round
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As a reply, her father approves her critique and shows the reason of his “dis-
crepancy” as “the chosen card” < 05–09 >. He says first, “Yes, I think the picture is 
false.” Then he claims, “Just look. This is a short block or a short piece of wood…” 
< 05–09 >. These claims could be interpreted in three different ways:

• He might think that the figure on the card is less stable and would easily collapse, 
whereas the construction they build seems to be quite firm; especially the cross 
consisting of K4, K5, and K6 is statically better integrated into the entire build-
ing.

01 Father right?
02 Ayse Yes
03 Father Cool
04 Ayse But one long and one short. looks at the card
05 Father Yes I think the picture is false. bends to front
06 And shows the card with his index finger
07 Ayse Mmh
08 Father Just look. this is a short block or a short
09 Piece of wood
10 Ayse Looks at the residuary pile of wooden blocks
11 4.30 Father Building block
12 Ayse Leans back, looks still at the pile of blocks
13 Father Shows the pile of wooden blocks. but there
14 Are no short blocks. I think the picture is
15 False. I would say; it is all right. O.K.?? puts
16 The card in his left hand and piles it on his
17 Other cards. you too?
18 Ayse Pushes her father’s building with her right
19 Hand. mhhm
20 > Father Good. bowls over the his building and
21 Pushes the blocks to the other pile
22 > Ayse Picks a new card with her right hand  

23 Turns the card face, looks at it, then looks
24 At her father and laughs
25 Father Yes
26 Ayse Mh
27 Father Not so difficult. scratches his face with his
28 Left hand
29 Ayse She picks up the card and puts it on the
30 Table so that she looks on it like in line 22
31 She separates the cards from the other
32 Cards which are used in exercises they have
33 Before.but…one more…a long one. heh?
34 Looks at the pile of blocks on the table
35 Father No, no it looks like that. takes cards away

Table 7�4  The transcript of the chosen scene with Ayse and Mr. Kil 
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• He sees the difference between the card and the built figure. But he does not care 
about the difference and jut between blocks (Ya–Yb) (see Fig. 7.7). Maybe, this 
difference is less important to him as compared with his daughter’s opinion.

• He perceives two different blocks (K8, K6) on the card and probably comments 
as if he needs longer or shorter blocks, with which the figure can be properly 
built up as seen on the card. He just says that the card is false in spite of interpret-
ing the fact that all the given blocks are of the same height.

He goes on explaining the mistake on the card, that one building block, most prob-
ably K8, is scratched shorter than others on the card. It could be that he does not see 
the “discrepancy” in his construction.

With regard to his argument, Ayse looks up to the pile of wooden bricks, probably 
checking whether the all-wooden bricks are of the same length and size < 10–12 >. 
Her father, meanwhile, repeats his statement as follows: Although there are no short 
wooden bricks, there is a short wooden brick on the chosen card. Hence, the card is 
false < 13–14 >. Then, he insists that he built the figure correctly and asks for Ayse’s 
approval < 14–17 >. She does not argue any further and does not make any other 
comment. So, her father behaves as she has not rejected his argument < 18–21 >. 
This interaction process can be interpreted in the following way:

• Without remarking the effect of K5 (Ya–Yb), the discussion is automatically ter-
minated that there is a need for a short wooden brick to build the figure properly 
as seen on the card. Because there is no short wooden brick, the card is falsely 
scratched and the built figure is correct. Thus, the discussion leads to unambigu-
ous consensus (see Fig. 7.7).

There is a working consensus between the father and his daughter about this 
first solution. The given information by the father is not clear enough that their 
argument is held in suspense and therefore, comes up with an unambiguous 
consensus.

Fig� 7�6  Comparison between the figure on the chosen card and the built structure
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Then, Ayse selects a new card from the deck. Hereby, Mr. Kil’s turn in third 
round ends up and Ayse’s turn begins (see Fig. 7.8).

She laughs at her father, after she looks at the card < 22–24 >.
Her reaction could be interpreted as that she asks her father’s help to “construct” 

the figure, because it is difficult to build it by herself. But despite her appeal for 
help, the father tells her that he thinks that the figure on the card is not difficult 
< 25–28 >. With this reaction, he might encourage her to build the figure by herself.

She takes an upright position to build the card. After she checks the card, she 
says, “one more…a long one” < 29–34 >. Most probably, she mentions two blocks 
by using the adjectives “one more” and “a long one” in the following way:

• In her father’s turn, which was just before her turn, she saw “one long” wooden 
brick (see Fig. 7.9) and then, on her card she sees two long wooden bricks (see 
Fig. 7.10). This evokes the idea that she needs one more wooden brick, because 
according to her father’s card there was already “a long one.”

Here it is seen as high attentiveness of Ayse, that she can realize the jut of Kx 
(X2–X1) and the jut of Ky (Y1–Y2) (see Fig. 7.11).

Actually, she repeats her arguments, what she already mentions during her fa-
ther’s turn and might defend it by the way. Obviously, her father cannot give a 
persuasive explanation why the lengths of wooden bricks are seen different in the 
image on his card. This might have the impact that Ayse cannot release her argu-
ment that she needs two long wooden bricks to build the figure on her card.

Fig� 7�7  The jut due to K5 in coordinate axis: Ya–Yb
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Despite all her claims, her father answers that the figure on the card looks as if 
two different lengths of blocks are needed to build the figure correctly, but in fact, 
they are not needed < 35 >. Furthermore, he gives her no further explanations. Here-
by, two similar problems are exactly expressed as two different contrary positions. 
In his turn, he rationalizes that the card is false, while in Ayse’s turn, he rationalizes 

Fig� 7�8  A card chosen by 
Ayse in third round
 

Fig� 7�9  The long wooden 
brick on Mr. Kil’s card (K6)
 

Fig� 7�10  Long wooden 
bricks on Ayse’s card (Kx 
and Ky)
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that the card gives an impression as if two different lengths of blocks are needed, 
but actually, they are not needed. In both of his and Ayse’s turn, he ascribes his 
“incorrectness” to the chosen cards and thereby begets a “discrepancy” between his 
arguments. In his turn, the difficulty level of the chosen card was three and now in 
Ayse’s turn, a card with the lowest level of difficulty is chosen. After a while, Mr. 
Kil tells her that the card is easy to build and she should just get started. Through 
this encouragement, Ayse starts to build the figure slowly by checking with her fa-
ther after each action. So far, she builds the figure as seen in Fig. 7.12.

During Ayse’s check by looking at her father, he gives a clue and tells that one 
long wooden brick is missing. Then she takes one wooden brick (K5) from the pile 
and puts it vertically in between K2 and K4 on K3 as seen in Fig. 7.13.

Her father approves her action and says that she has built the figure right. Here-
by, Ayse conducts her turn and gains one point as given on the card (see Fig. 7.14).

Although Ayse abstains from building this card, Mr. Kil encourages her to build 
it and at the end of the third round, she properly builds the figure as seen on the card 
(see Fig. 7.14) and conducts her turn.

As a summary, in this scene, although there is a discrepancy between Mr. Kil’s 
arguments, there emerges a developmental niche for Ayse in the following way.

In her father’s turn, she realizes the missing jut (Ya–Yb) in the built figure and 
the discrepancy between building and picture. Her father establishes this fact that 
the chosen card is falsely constructed. Furthermore, he means that different lengths 
of blocks are needed to build the figure on card properly. But the assigned blocks 
are all of the same length. Thus, he means the card is falsely constructed.

In Ayse’s turn, she realizes juts ((X2–X1) and (Y1–Y2)) on the chosen card 
again. Through the negotiation with her father, she understands that the card is 

Fig� 7�12  Ayse builds the 
figure
 

Fig� 7�11  Juts of Kx and Ky 
in coordinate axes: X2–X1 
and Y1–Y2
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constructed correctly. According to the father, two different lengths of blocks are 
needed to build the figure correctly but in fact, they are not needed. The card can be 
built up without any long blocks.

While in her father’s turn, she sees that the figure can be built up properly only 
with the different lengths of blocks, in her turn, she experiences that the figure 
can be built up properly without any blocks of different lengths. In both cases, she 
explores sizes, shapes, and proportion of blocks, which reinforces her cognitive 
growth (Bullock 1992, p. 16). Additionally, she represents the relationship between 
picture and built objects. Moreover, despite her argument, she builds the structure 
from pictured model correctly (National Research Council, Committee on Early 
Childhood 2009, p. 187), by the emotional agency of the father. Thus, both the turns 
together provide the opportunity to reinforce Ayse’s spatial abilities. Furthermore, 
they construct new definitions in the situation, which reflect the mode of function-
ing of MLSS.

According to Clements and Sarama, 5-year-old children can metrically repre-
sent spatial information in a polar coordinate task, using the same two dimensions 
as adults, radius and angle (2007, p. 498). If this argument would be disregarded, 
it could be assumed that Ayse’s spatial thinking is not developed enough to realize 
two- and three-dimensional coordinate axes. In any case, a developmental niche 
for Ayse due to the awareness of the relationship between the building and the pic-
ture occurs there. In her father’s turn, she sees the discrepancy between the build-
ing and the picture. Thus, in her turn, she acts already on the base of a sensitization 
for jutted blocks (Kx and Ky). Although she tries to abstain from building the card, 
her father encourages her to carry on building. This encouragement is also another 
sensitization for Ayse that she can do something despite her assumed difficulties. 
She focuses on the problem and solves it. Although there is no long wooden brick, 
she builds the figure with juts ((X2–X1) and (Y1–Y2)) correctly. By the agency 

Fig� 7�13  The built figure in 
Ayse’s turn
 

Fig� 7�14  The chosen card 
and the built figure in Ayse’s 
turn
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of her father, both her emotional and cognitive growth is fortified (Bullock 1992, 
p. 16).

This whole analysis can be structured according to the three components of an 
interactional developmental niche in familial context.

• Component “Content”

Block building provides a view of children’s initial abilities to compose three-di-
mensional objects. Theoretically, by building blocks, five goals are pursued:

• Spatial structuring
• Operating shapes and figures
• Exploring sizes, shapes, and proportions
• Static balance between wooden bricks
• Coping with the different difficulty levels on the cards

As Clements and Sarama (2007, p. 494) point out spatial relations require attention, 
Ayse sensitizes and realizes the spatial relations between two- and three-dimension-
al objects.

According to National Research Council Committee on Early Childhood, chil-
dren at the age of five can understand and replicate the perspectives of different 
viewers. These competencies reflect an initial development at the third level of 
thinking, which is about relating parts and wholes level. (2009, p. 191). Concern-
ing this report, it can be said that Ayse can relate parts and the whole with two- and 
three-dimensional structures. So, the spatial structuring and operating with shapes 
occur during the play as an allocational aspect.

During the negotiations of the play between Ayse and her father, a “discrepancy” 
emerges between the father’s arguments. However, they are not rejected and held in 
suspense (ambiguity). Thereby, an unambiguous consensus comes out of the inter-
action, in which concurrences are actually not explicit and clear enough. For father 
and daughter, it seems to be an unambiguous consensus, although from the perspec-
tive of the observer, it would seem to be rather an ambiguous consensus.

• Component “cooperation”

Parental scaffolding of spatial communication develops children’s physical, social, 
emotional, and cognitive growths (Bullock 1992, p. 16; see also Clements and Sara-
ma 2007). The chosen play situation is constant and directed by the father. By his re-
action for type, a leeway of participation emerges, that limits her space of activities.

But, in her turn, he assigns an opened up leeway of participation for Ayse, that 
she should believe in herself and overcome the difficulties. Thus, in this play situa-
tion, different leeways of participation have been realized.

• Component “pedagogy and education”

The chosen play situation is constructed along a uniform didactical design pattern 
and refers to the spatial structuring in geometry. From pictured models, each player 
has to build up three-dimensional structures. Clements and Sarama call spatial struc-
turing as a mental operation of constructing an organization or form for an object or 
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set of objects in space (2007, p. 498). In the chosen scene, the opportunity to sensi-
tize two- and three-dimensional bodies (objects) has been embraced.

Her father’s “discrepancy” and arguments help Ayse to recognize the feasibil-
ity of the building juts without long wooden bricks. With respect to folk theory, his 
encouragement provides Ayse the success of enhancing her spatial abilities. She ab-
stains from building this card but her father encourages her to build it. Therefore, she 
overcomes the difficulty and builds the figure properly as seen on the chosen card. 
Thereby, Ayse experiments her skills, because her success can help build her confi-
dence and self-esteem. Thus, it can be said that Mr. Kil’s encouragement provides 
not only Ayse’s cognitive and physical growth but also emotional and social growth.

These insights can be assembled in the NMT-Family table (Table 7.5).

Afterword/Conclusion

The play under the control of the player gives to the child his first and most crucial opportu-
nity to have the courage to think, to talk, and perhaps even to be himself. (Bruner 1983, p. 69)

The play situation “Building 01” gives an opportunity to negotiate interactively 
about two- and three-dimensional spaces, which enables one to reinforce the chil-
dren’s spatial abilities (see Miller 1986, p. 176; Acar Bayraktar and Krummheuer 
2011, p. 168).

For the learning opportunities, it is not obviously commendable that the interac-
tions lead to a consensus among the participants. In the chosen scene, there are “an-
tagonisms” among the father’s explanations. Although the structure that he builds 
in his turn is not proper as it is seen on the chosen card, he says that short blocks are 
needed to build the figure properly; according to him, the card is falsely scratched 
and he built the structure correctly. In Ayse’s turn, he rationalizes his argument by 

Table 7�5  NMT-Family Kil
NMT-Family Component: content Component: 

cooperation
Component: pedagogy and 
education

Aspect of 
allocation

Geometry, operating with 
shapes and figures, spa-
tial structuring, exploring 
sizes, shapes and propor-
tions, static balance 
between wooden bricks

Familial situation 
(father plays 
with daughter)

Development of spatial skills 
and transformational abili-
ties in spatial thinking

Aspect of 
situation

Discrepancy between the 
solutions, unambiguous 
consensus

Different leeways 
of participation

The father’s “discrepancy” and 
arguments assist Ayse to 
recognize feasibility of the 
building juts without long 
wooden bricks. His encour-
agement provides Ayse the 
success of spatial abilities, 
social and emotional growth
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telling that the card gives an impression as if two different lengths of blocks are 
needed to build correctly, but actually they are not needed. In both of his and Ayse’s 
turn, he ascribes the “discrepancy” of his arguments to the “incorrectness” of the cho-
sen cards. Consequently, there are “antagonisms” among the father’s explanations. 
In this sense, despite Mr. Kil’s oversights or his insufficient information, a devel-
opmental niche for Ayse on her spatial skills emerges there. Her spatial thinking is 
contrasted with her and her father’s discrepant reasoning, which might enable her to 
see the potential of the building up with the blocks of the same length.

Contrary to Ayse’s arguments, her father always offers another reasoning. Here-
with, she experiences different kinds of building possibilities and learns to associate 
two- and three-dimensional coordinate axes. On the other hand, the language-based 
encouragement of her father provides the development of her spatial thinking as 
well as her personal/social skills as mentioned before. In the chosen example, even-
tually with the emotional motivation given by her father, Ayse builds the figure cor-
rectly. Although “antagonisms” occur toward the inputs given by her father, Ayse 
interprets distinctively the given instructions through his encouragement. This is 
an over-careful learning progress, in which the interactional developmental niche 
emerges for Ayse.

Five-year-old children can normally understand the substitution of shapes, rep-
licate the perspective of a different viewer, and build complex structures (National 
Research Council, Committee on Early Childhood 2009, p. 187). Hereby, it could 
be explicated that, children in the age range of 7 are able to build two- and three-
dimensional structures according to coordinates, or build up the figure by substitut-
ing different wooden bricks.

My first insight to reveal this tendency is the parent’s assignment, regardless 
of whether they have good spatial skills or enough geometrical knowledge. In this 
sense, it is really important if parents give an emotional motivation to their chil-
dren, although they do or do not have enough spatial knowledge. As it seen in the 
example, sometimes instead of spatial abilities of parents, emotional motivation of 
parents suffices to reinforce the spatial development of children.

On the other hand, in a long-term analysis of the development of spatial skills 
in familial context, based on the notion of NMT-Family, it could be declared that 
this development occurs slightly independent from parent’s geometrical knowledge 
(Acar Bayraktar and Krummheuer 2011, p. 169; see also Acar 2011b). In some 
analysis of FaSt, it is seen that during play situations, children can potentially ex-
plore something through the negotiations, although parents do not have enough 
spatial abilities (Acar Bayraktar and Krummheuer 2011; Acar 2011a, b). “Mishaps” 
and “Aporias” reinforce the emergence of children’s developmental niche during 
interactions in the play situations (Acar Bayraktar and Krummheuer 2011, p. 170). 
In another long-term analysis of FaSt, it is also seen that the construction of par-
ents during the negotiation is independent of the educational level of parents. Not 
only they demonstrate and dissolve the differences of interpretations, but also they 
interpret the different solutions (see also Acar Bayraktar and Krummheuer 2011). 
During the interaction processes, participants create a communicative atmosphere 
and in there they can explicitly manifest their agreement and disagreement about 
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the construction of the built figures. Hence, it seems to be that the interactional phe-
nomenon has an essential impact by supporting the children’s developmental niche 
in the spatial abilities (Krummheuer 2012, p. 332).

Proximately, long-term analyses of FaSt are close to introduce that the spatial 
development of children can be supported by either spatial abilities or non-abilities 
of parents, and by either negative or positive emotional motivations given by par-
ents. It is really rare in play situations that parents serve both spatial non-abilities 
and emotional motivations to their children during interactions.

In this sense, it will be augmented with examples in the next 2 years. It will be 
exciting to find out how NMT-Family functions work on children’s spatial develop-
ment in the familial context.

Rules of Transcription

Column 1 Serially numbered lines
Column 2 Speech timing
Column 3 Abbreviations of the names of the interacting people
Column 4 Verbal (regular font) and nonverbal (italic font) actions
underlined Speech is in Turkish
bold Accentuated word
< Indicates where people are talking at the same time
> The next block of simultaneous speech is indicated by a change in arrow direction
# There is no break, the second speaker follows immediately after the first

The sides of the blocks are defined as X-side, Y-side, Z-side in 
the transcript
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It has not yet been sufficiently realized that present 
mathematical and scientific education is a hotbed of 
authoritarianism and is the worst enemy of independent and 
critical thought. 
I. Lakatos, Proofs and refutations� The logic of mathematical 
discovery (1976).

Introduction

The quality of mathematical thinking of coming generations has been a serious 
concern of many educators for a number of years. Since the middle of the twentieth 
century, mathematicians have emphasised (as in the rest of this chapter) the essen-
tial meaning of problem solving, reasoning, and the construction of communicative 
tools for the understanding of the nature of mathematical thought (see, for example 
Polya 1945; Freudenthal 1973; Lakatos 1976; Sfard 2008, to name just a few). In 
mathematics education in schools all over the world, however, there is nevertheless 
a strong emphasis on the mastery of number operations and on the formation of 
skills in faultless arithmetic.

Indeed, important changes have taken place in mathematics classrooms in the past 
few decades. Context-based problem solving has become a part of regular classroom 
practice for developing mathematical proficiency in pupils, but still the dominant 
focus is set on instruction for skill acquisition, avoiding serious efforts in promoting 
pupils’ problem solving (Kolovou 2011) and deep conceptual understanding (Bruin-
Muurling 2010). Considering the worldwide interest in accountability of schools, 
effective education, and skill mastery, there is no reason as yet to stop being con-
cerned. Skill acquisition is still the main criterion in the testing of children’s math-
ematical development, while deep conceptual understanding, argumentation, and 
creative problem solving more and more seem to be reserved for the gifted pupils.
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Many studies, however, show that the concepts and approaches for promoting 
children’s abilities of dealing in mathematically consistent ways with reality are not 
exhausted (see, for example Sfard 2008). Particularly, studies on young children’s 
thinking and learning give reasons to assume that “mathematising” (organising ex-
perience for mathematical purposes) may be rooted in early childhood education 
(see, for example Pound 1999). Picking up on young children’s abilities and as-
sisting them in their ways of dealing with number (Munn 1998), emergent notions 
of quantity (Carruthers and Worthington 2006), drawing (van Oers 1994, 2004), 
and collective reasoning (Krummheuer 2011) may provide good starting points for 
gradual improvements of children’s mathematising abilities, beyond mere techni-
cally operating with numbers and number symbols.

In the present chapter, I will unfold an approach to early mathematics education 
based on a theory of playful activities, drawing from the perspective of cultural-
historical activity theory (CHAT/Vygotskij). From this perspective, I will demonstrate 
how direct instruction of mathematical operations can be reconciled with productive 
mathematical problem solving. Starting out from the CHAT, I will argue that productive 
mathematising is to be conceived as an essentially playful activity that has its roots 
in young children’s playful participation in cultural practices. Within this context, 
instruction of useful mathematical operations can be taught and practised, as long 
as it can be meaningfully embedded in children’s activity. The approach that will be 
presented here is becoming increasingly popular in Dutch primary schools that have 
adopted the Vygotskian concept of Developmental Education (see van Oers 2012a).

What is Productive Mathematising?

The notion of “mathematising” has been introduced by Freudenthal (1973) for re-
ferring to mathematics as a human activity of organising a field (be it conceptual or 
material) into a structure that is accessible for mathematical refinement (Freuden-
thal 1973, p. 133). Organising a field of mathematical objects like circles, ellipses, 
parabola, etc. into the category of conic sections or quadratic functions is an ex-
ample of mathematising, as well as the recognition of the growth of a plant in early 
childhood classrooms as a measurement problem. Mathematising is the activity of 
producing structured objects that allow further elaborations in mathematical terms 
through problem solving and (collective) reasoning/argumentation. It is the type of 
dialogic, inquisitive, and productive thinking that was once described as mathemati-
cal discovery by Lakatos (1976). Hence, as an expression, “productive mathema-
tising” is basically pleonastic, but it is a useful way to contrast this mathematical 
activity with the re-productive activity of applying mathematical rules or operations 
for the solution of instructional tasks. By itself, there is nothing wrong, though, with 
reproduction in the context of mathematising (as, for example, anyone proficient in 
mathematics does, when immediately applying specific knowledge, e.g. the square 
root of, say, 81, in solving a specific problem or doing a specific task). However, 
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reducing mathematics education to the mastery of these types of reproductions is 
like cutting the heart out of mathematics as mathematising.

In terms of the CHAT, mathematising can be further specified as a complex of 
specific human tool-mediated actions driven by a motive to know the world and 
organised by a series of (emergent) goals. Developing mathematical thinking from 
this perspective can be conceived of as a process of producing new or improved 
tools for the understanding and analysis of quantitative or spatial dimensions of re-
ality that are acceptable for the mathematical community (van Oers 2001). It would 
not make much sense here to further characterise mathematising as an ongoing 
activity by specifying its goals and tools, as these latter elements always depend on 
the specific type of problem a person tries to solve. Rather, on a more general level, 
it is possible to characterise the format of the activity of mathematising. A format of 
activity refers to the general characteristics of the way an activity is carried out (see 
van Oers 2012b)1. First of all a cultural activity can be more or less strictly rule-
driven, by object-bound rules, technical rules, and/or social rules. The number and 
nature of the rules determine the nature of the activity to a great extent. As a matter 
of fact, the rules featuring in mathematising strongly depend on the type of problem 
a person tries to solve, and on the mathematical rules and socio-mathematical norms 
available in the person. However, what basically makes an activity a form of math-
ematising are at least the rules of intersubjectivity and consistency, and the rules that 
a newly constructed object should be acceptable for the mathematical community 
and be accessible for further mathematical elaboration. A mathematical activity that 
requires strict obedience to rules has a format which is different from a mathemati-
cal activity that is based on ill-defined rules that have to be interpreted and specified 
by the pupils. Both are basically different mathematical activities.

A second characteristic of the format of cultural activities is the level of involve-
ment of the agent. Activity settings differ as to the conditions they provide to get ac-
tors involved. At one extreme pole, an agent can be forced to carry out a procedure 
of specific actions (without personal involvement, as often happens in the reproduc-
tion or recitation script of schooling); at the other extreme, the activity is carried out 
from an intrinsic motivation and the authentic will to achieve a specific goal. Low 
levels of involvement require high levels of extrinsic motivation to make and keep 
the process going; high levels of involvement encourage pupils to get engaged in 
(collaborative) problem solving, to be creative, and to endure. Characteristically, 
mathematising is an activity that is driven by personal engagement with a person-
ally acknowledged query that requires creativity and endurance.

Finally, the format of human activity can be characterised by more or less de-
grees of freedom allowed to the actor in the choice of goals, tools, or rules. Ac-
tivities without any degrees of freedom are performances like in drill, strictly 

1 The notion of “format of an activity” is familiar with Lompscher’s concept of “Verlaufsqualitäten 
der Tätigkeit” (Lompscher 1975) in its intention to further qualify human activity as a process that 
can have different modi of accomplishment. Lompscher’s Verlaufsqualitäten and my parameters 
of the format both try to characterise human activities beyond the morphological model of actions, 
goals and operations. Lompscher, however, used other parameters in his explanation than the ones 
used here. It is beyond the scope of this chapter to compare different models here.
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sanctioned practices, or training. On the other hand, activities that require creativity 
and imagination by definition require at least some degrees of freedom for the actor. 
As a problem-solving activity, mathematising can only be successful and produc-
tive if the problem solver is allowed to act tentatively, to make mistakes, try and 
re-try, and feels allowed to make wild guesses.

Hence, analysing productive mathematising as a human activity leads to the pic-
ture of this activity as a goal-oriented, tool-mediated human activity that is char-
acterised by specific mathematical rules and socio-mathematical norms, by high 
involvement of the agent, and by at least some degrees of freedom in the choice of 
rules, tools, and goals. This characterisation of the general nature of cultural activi-
ties does not preclude or contradict a further microgenetic analysis of these activi-
ties in (Leont’evian) terms of motives, actions, objects, goals, tools, and operations. 
As said before, such analysis would only make sense when it refers to a specific 
task (e.g. using a number line for estimating the position of the value 17/23). I will 
not pursue this type of microgenetic analyses here (how illustrative and interesting 
they may be), as it is not necessary to complete the general argument concerning the 
roots of mathematising in young children’s play.

Mathematics Learning and Play

On the basis of my previous research in early years’ classrooms, I will argue that 
the activity format of mathematising as described above, can be interpreted as a 
specimen of a more general kind of human activity called “play”. In my studies 
of play as a kind of human behaviour and as a context for learning, I have argued 
that play is basically an activity that is carried out in a specific format, i.e. as an 
activity that implies obeying self-acknowledged rules, requires high engagement, 
and allows at least some degrees of freedom (see for van Oers 2010a, 2012b). As 
a result, I defend the proposition that mathematising is basically a form of play-
ful mathematics, embedded in young children’s play. In playful activities, children 
can encounter situations that require special attention for the quantitative of spatial 
dimensions of their activity (e.g. when trading money in a supermarket play); in 
order to deal effectively with these aspects, children need to learn new actions that 
can be considered mathematical from a cultural point of view. Hence, mathematics 
arises in the context of play through the mathematisation of children’s actions and 
utterances by more knowledgeable others (adults or peers). Mathematics emerges 
in children’s development, not as an elaboration of implicit mathematics in play, 
but as an attribution from outside of mathematical meanings to children’s actions or 
utterances (see van Oers 2012c).

The format of the traditional mathematics classroom activity is typically char-
acterised by strict rules, little or no involvement of the pupils, and no degrees of 
freedom in the choice of tasks, objects, and rules or operations. Traditionally, the 
mathematical task prescribes which operations have to be carried out. This class-
room gives little or no room for playing and mathematising as a productive activity.



1158 The Roots of Mathematising in Young Children’s Play

Socioconstructivist and activity theory approaches to human learning emphasise 
the importance of the active involvement of pupils in their (mathematical) learn-
ing activities (see, for example Darling-Hammond 2008; Schoenfeld 2008; Leontev 
1978). In the wake of the socioconstructivist approach to mathematics, several at-
tempts have been made to make mathematics classrooms more engaging for chil-
dren, particularly by introducing moments of play in the classroom. Popular ver-
sions of such attempts can be seen in the introduction of realistic contexts (like 
supermarkets) into the classroom, which require pupils to deal with trading money 
(addition, subtraction) But many other examples can be found: children sharing a 
pizza at parties (to evoke thinking about division), or all kinds of board games (to 
engage young children in counting), etc. No doubt, this has made the mathemat-
ics classes in primary schools more playful, but play in these cases was still just 
embedded in task-based classroom work within an otherwise strict classroom script 
that focused mainly on the mastery of operations; play functioned here merely as a 
stepping stone for further practising the mathematical operations outside the play 
contexts that initiated them.

Starting out from a cultural-historical activity point of view, a new approach is 
developed towards a play-based curriculum that does not just allow children to play 
sometimes, in addition to their task-related work, but which fundamentally imple-
ments the play format in all pupils’ activities. This is essentially different from the 
previously described approach of integrating play and mathematics (see Fig. 8.1). 
In a genuine play-based curriculum, mathematising is provoked and encouraged in 
children as a way of dealing (collaboratively) with the quantitative and spatial di-
mensions of reality which surface during their participation in engaging and mean-
ingful cultural practices. Looking for solutions to emerging problems regarding 
quantitative or spatial dimensions in such practices may lead to the enhancement 
of a child’s possibilities of participating in this practice. Guided problem solving 
through mathematising as well as improving (mathematical) skills through practis-
ing are functional and meaningful for children’s participation in this practice. In a 

Mathematics lesson 

a

Incidental playful tasks (      ) in
the mathema�cs lesson

Playfully formatted practice 

M
MM

b

Mathema�cs instruc�ons (M)
within play

Fig� 8�1  Different relationships between mathematics and play. a Mathematics classrooms that 
follow the direct-instruction script. b Mathematics classrooms that follow a problem-solving script
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play-based curriculum problem, solving and practising are not taken out of a playful 
activity, but remain functional parts of the playfully formatted practice, improving 
the participants’ abilities to take part in this practice.

Figure 8.1 summarises the major difference between (a) mathematics classrooms 
that follow the direct-instruction script (with incidentally embedded games), evok-
ing at best reproductive mathematising, and (b) mathematics classrooms that fol-
low a problem-solving script, requiring productive mathematising, interrupted by 
dispersed moments of meaningful, and functional instructions.

Mathematics Learning Within Play?

When participating playfully in an engaging practice (like a restaurant, a construc-
tion site, gardener’s practice, a post office, etc.), young children encounter numer-
ous problems that demand a mathematical approach (e.g. paying three stamps in 
the post office, finding and comparing the dimensions of a building, figuring out 
the number of chocolates needed for a party, etc). In the play-based curriculum, 
children work out solutions to these problems collaboratively under the guidance of 
the teacher or a more knowledgeable peer. There are probably different dimensions 
of activity involved in the emergence of mathematising from playful activities. In 
this chapter, I will elaborate on two dimensions that we have found in our research 
in the past decade.

Learning to Communicate on Mathematical Aspects of Reality

An obvious feature of children’s behaviour when facing a (mathematical) problem 
in their play is their wish to suggest solutions, to try out different solutions, to dis-
cuss different solutions, in short: to communicate about possible solutions. The first 
thing that children need in cases, where they face a problem regarding quantitative 
or spatial aspects of their play, is a proper language to communicate about number 
and spatial positions or relations. Learning to communicate mathematically is an 
important process to stimulate in children’s play, as it is the main prerequisite for the 
development of mathematising in play and as play. Many researchers have already 
discussed the importance of language for the development of mathematical thinking 
(e.g. Pimm 1987, 1995), and have been able to demonstrate empirically that rela-
tionships do exist between mathematical thinking and narrative competence (see 
Burton 2003; Krummheuer 2011; van Houten 2011). With regard to mathematical 
reasoning and the construction of a mathematical space for focused communication, 
a number of researchers have pointed at the relevance of gestures (gesticulations) 
as means for communication in a mathematical discourse or teaching process (see 
among others Bjuland et al. 2008; Yoon et al. 2011). Similar suggestions have re-
cently been forwarded with regard to picture books as a communicative medium 
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for the stimulation of young children’s mathematical thinking (see, for example 
Elia et al. 2010). Inventing or looking for symbolic means to support communica-
tion about number, number operations, or space is common practice in many play 
activities of young children.

In one of my classroom visits, I witnessed two 5-year-old boys’ cooperative ac-
tivity of building a castle on the basis of a schematic construction plan provided by 
the teacher. The plan showed the floor plan of the castle and depicted the direction 
of the blocks and the numbers of blocks on top of each other for the reconstruction 
of the towers and walls of the castle (see Fig. 8.2). The teacher helped the two boys 
with interpreting the construction plan correctly. After that, the boys started build-
ing the castle.

However, during the re-construction of the castle the boys ran out of blocks and 
had to change the teacher’s design for building a castle that looked similar to the 
teacher’s design. After finalising their castle, the teacher discussed it with the boys 
and showed her approval. She suggested that the boys should make a drawing of 
their castle that could help other children build such a nice castle too. The boys liked 
the idea. Actually, the teacher’s request put them in the position to communicate the 
relevant information about their castle to other children they did not even know by 
then.

The boys adopted the basic idea from the teacher’s construction plan, but they 
also had to invent new communicative tools, for their castle was not exactly like the 
teacher’s. From the perspective of learning to communicate about number, this was 
an interesting process to observe. One of the boys started of with drawing the blocks 
in the walls and towers in the way the teacher had done. However, he had trouble 
writing the number symbols. Immediately, he changed to an analogical representa-
tion indicating the number of blocks by corresponding quantities of small circles. 
So 4 was represented by four small circles. In this process, the boy was using a 
one-to-one correspondence rule, and he used it consistently. At a certain moment, 
he drew five circles in a wall with four blocks, but immediately crossed out one. 
These phenomena demonstrate that the boy was tentatively finding out appropriate 
ways to communicate about the numbers in the castle to inform future constructors.

This example of mathematical communication grew meaningfully out of the 
children’s play. Many similar examples of children’s efforts to create proper means 

Fig� 8�2  Construction plan of 
a castle
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of communication about number can be found in the work of Carruthers and 
Worthington (2006).

In our research programme for the study of children’s symbolisations and con-
struction of schematic representations, we have studied processes like the one 
described above in many early years’ classrooms. We have evidence to conclude 
that children can produce much more sophisticated schematic representations of 
quantities and their relationships as long as it is meaningful for the children (and 
functional in the context of their play). The evolution of these representations with 
communicative purposes is a demonstration of how mathematising emerges in play 
on the basis of learning how to communicate about number (relationships). Math-
ematising in play develops as a playful activity, and may flourish with appropriate 
help towards playful mathematics. In an experimental study of Poland (see Poland 
et al. 2009),  the researcher could demonstrate that engaging young (6-year-olds) 
children in this type of playful mathematising (particularly focusing on schematis-
ing) facilitates their transition into more formal mathematics in the early grades of 
primary school (ages 6 and 7).

Embedded Mathematics Teaching in the Context of Play

Involving children in mathematical communications in the context of their play 
activities is a powerful way of getting them involved in meaningful productive 
mathematising. Not every child, however, will immediately pick up the structure 
of mathematical operations through schematising alone, as some of them will not 
always immediately understand the action-regulating function of schematic repre-
sentations or algorithms. In those cases, more stepwise instruction, explanation, and 
practice will be needed. Moreover, developing proficiency in mathematical com-
munication also requires the development of automatised operations that can be 
used in problem solving regarding the mathematical objects or relations. Both for 
the support of slow learning pupils and for the development of automatised opera-
tions in all children, instruction may be unavoidable. The mastery of mathematical 
operations (i.e. reproductive mathematising) most of the time contributes to young 
children’s ability to participate in role play with other children (e.g. when tending 
the counter of a shop).

From one of our classroom observation studies, we can report examples of both 
cases. In an early years’ classroom (populated with pupils aged 5–7 years) a shoe 
shop was set up in which children were playing all kinds of shoe-shop related roles. 
One 6-year-old girl (who was known by the teacher to be a slow learner in maths) 
was highly involved in the play, and as a customer in the shop, she has bought two 
pairs of boots which cost € 60 each. The girl was insecure if she had enough money 
and said to the boy at the counter: “Wait a moment; I have to figure out, if I can pay 
it.” She withdrew from the scene and set herself on a small bench at some distance 
from the counter, but next to the teacher. The teacher, however, decided to leave her 
alone for a moment to give her a chance to sort it out for herself. The girl opened 
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her purse, put all her money next to her on the bank, and started counting, but she 
mostly had notes (notes of 50 and 10), so there was little to count: she had to cal-
culate by adding and subtracting how much she had to pay, and find out if she had 
enough money. It took her a while of fiddling around with the money, but apparently 
she could not solve the problem on her own. The teacher had observed her from a 
distance and finally decided to offer help. The teacher sat next to the girl and started 
a conversation about her money, but she did not immediately ask what the precise 
problem was. The teacher started with structuring the girl’s money in batches of 
100, and showing that two times 50 is 100. With the girl, she explored different 
amounts of money, structured with the help of her notes of 50 and 10. Only after 
some examples of how to structure amounts of money with notes of 50 and 10, she 
addressed the girl’s real problem. With some help and instruction, the girl figures out 
that 60 can be composed as 50 + 10, and two times 60 can be structured as two times 
50 (the girl knew this was hundred) and two notes of ten. The teacher’s instruction 
was useful for the girl, as it strengthened her ability to participate in the play.

In the same classroom, there was a small group of children interested in the 
shop’s stock of shoes. The teacher translated this interest in a role of a book-keeper 
who must keep an eye on the stock of shoes available in the shop. The teacher sug-
gests that a book-keeper must be good at calculation and should keep on practising 
calculations. She said: “If you want to be the book-keepers, we can play the book-
keeper game. It will help you to play shop play activities in a more easy way.” The 
children agreed and sat at the table to play the game. The teacher explained the 
game: there were two decks of cards (reds and greens, each with a number on it; 
numbers were faced down): reds are for buying shoes, greens are for selling shoes. 
The children understood that when you sell shoes you will earn money, but also may 
run out of shoes at some moment. All children are allowed 10 turns, and at each turn 
a child must take one card from the deck (a red or a green one). The game starts with 
each child drawing a red card from the deck. One child after the other may draw a 
card of his/her choice. They had to calculate his/her stock with the information on 
this card and write it down on a piece of paper as a + or a − sum. For example, one 
paper looked like this

5 (start quantity) − 3 − 1 + 1 + 2 + 4 − 3 etc.
The teacher was sitting at the table too, checked if it went well, that no mistakes 

were made; she offered help where needed for each child’s successful participa-
tion in this game. For an outsider, the game may look like a traditional instruction 
lesson for automatisation of the elementary operations of addition and subtraction. 
Actually, the children performed their actions as part of their role of a book-keeper 
of the shoe shop. They experienced their actions as meaningful, but basically were 
practising addition and abstraction as well. Although from the outside the scene 
may look like a playful moment in an otherwise traditional mathematics classroom, 
it was actually experienced by the children as an instruction and practice moment in 
a play activity (see again Fig. 8.1).

The bottom line of the two examples above is that a playful activity including 
mathematical actions does not prohibit embedded instructions as long as these con-
tribute to the child’s interest in participating in the play as good as possible. Math-
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ematising requires productive construction, but also instruction and practice. Each 
dimension can be made a meaningful part of coherent children’s play.

Fostering a Mathematising Culture in the Classroom

Is this enough for an optimal stimulation of pupils’ proficiency in mathematics? 
Pupils cannot keep on playing in shoe shops, restaurants, hospitals, racetracks, etc. 
forever. Embedding mathematising as a playful part of children’s role play turns out 
to be a rich context for meaningful learning. However, appropriate conditions must 
be created for play to evolve into new activities that can be playfully formatted. By 
the same token, conditions must also be created to give children the chance to learn 
to play the role of mathematical expert who can do mathematics as an independent 
practice, just for the sake of mathematics, just for his/her interest in mathematics! 
Finally, we want pupils to master mathematical operations and understandings as 
meaningful “stand alone operations”, originally rooted in everyday practices but fi-
nally winded up as independent accomplishments in the context of an emancipated 
mathematical discipline.

We are still in the middle of reflecting this issue and consider that it is even unsure 
that all pupils can or need to reach that high a level of disciplinary expertise for pro-
ficient participation in society and for their future jobs. Theorising on this topic from 
CHAT, we may conceive of this process of “emancipation” of mathematics from 
everyday practice as another specimen of the division of labour, an intrinsic potential 
of all cultural practices. In fact, the history of mathematics exemplifies this process, 
if we think about the origins of mathematics in practical geometry and music.

At this moment, we hypothesise that the formation of a new and autonomous 
positive mathematical attitude in pupils is an important condition for fostering the 
transition of functional mathematics in play into a playfully functioning mathemati-
cal discipline. Much is still to be found out on this issue, and elaborating deeply on 
this issue would go way beyond the scope of this chapter. In our approach to prima-
ry schools (“Developmental Education”), we contribute to this development by cre-
ating from the youngest grades (4-year-olds) a mathematical culture in classrooms, 
i.e. a culture in which communicating about number, spatial relations,  mathematical 
games, and mathematical objects is accepted and positively valued (see for example 
van Oers, 2010b). Teachers try to contribute to such a culture by frequently asking 
questions like, “Are you sure?” (see van Oers 1996, 2001).

In Conclusion

Our argument winds up in claiming that mathematical thinking should start out as 
mathematics in play (rather than direct instruction on elementary mathematical op-
erations), and be fostered into mathematics as play. Inventing and improving ways 
to communicate about number and spatial aspects of reality turns out to be a core 
issue in this process.
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However, from our observations in classrooms involved in play, it is also clear 
that both creative construction and sensitive instruction are necessary elements for 
a developmentally productive organisation of play and the development of math-
ematical thinking. From an activity theory point of view, the differences between 
the two can be explained on the basis of varying degrees of freedom that are allowed 
to the actors (“players”). Both construction and instruction can be seen as attempts 
by an actor to execute his or her actions on the basis of personally and socially 
acceptable rules. In the instruction case, an actor receives the rules from teacher, 
textbook, or memory and carries out the actions strictly according to the prescrip-
tions that follow from this rule. The girl from the example above re-constructs the 
conventional rule (with the help of the teacher) of how to sum 50 and 50 etc. She 
had no choice as to how to define the rules, but—importantly—she acknowledged 
the relevance of the rules for her ability to participate in the shoe shop play. The ex-
ample of the book-keepers was similar: the players applied the rules as given, with 
minimal degrees of freedom (note that the degrees of freedom in this activity were 
at an another level of activity: which colour to choose?). In the construction case, 
the actor is more free to make decisions about how to regulate his or her actions, 
and to invent appropriate symbolic equipment for communication. But, here too, 
there is no absolute freedom due to the communicative function of the constructed 
symbols, or how to use the rules (see the example of the analogically represented 
one-to-one correspondence between quantity of blocks and the number of circles). 
The freedom here regards the choice of the rules or symbols to use for communica-
tion. It is important to emphasise at this point that in both cases, the actions were 
based on personally acknowledged (and meaningful) rules.

In the context of play and the embedded processes of creative construction and 
rule-driven instruction, it is important to take care that any embedded action (be it 
instruction or construction) is meaningful for the children and related to the psycho-
logical functions they are supposed to fulfil within the play activity (communica-
tion or mastery). The nature of the actions embedded in play can vary with respect 
to their degrees of freedom allowed, as long as the activity as a whole remains a 
playful activity, i.e. is based on personally acknowledged rules, is engaging, and 
preserves some degrees of freedom for the player.

Only to the extent that we succeed in doing this in our schools and families, and 
only to the extent that teachers and parents can receptively and purposefully partici-
pate in children’s play without impairing this activity as play, we may hope that we 
really have harvested the best from the richness of play, and have made a start with 
fostering autonomous critical mathematical thinking in our children.
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Introduction

Attempts to define mathematical creativity seem to lead to more than 100 con-
temporary definitions of creativity (Mann 2006). Present empiric works measure 
mathematical creativity rather in the mathematical product and neglect the creative 
process. Especially mathematical creativity in early years is rarely examined. Thus, 
the first central research question is, how does mathematical creativity express itself 
at the age of preschool and how is it observable?

Following Urban (2003) a theory of creativity has to consider the “4P-E Struc-
ture” (Urban 2003, p. 85) of creative thinking and acting, which embodies the inter-
active structure of the factors: problem, person, process, product, and environment. 
The existence, the range, and recognizability of possible problems to be solved 
creatively are determined by meta-environmental factors like evolutionary and so-
cial–historical developments; macro-environment like economic, material, cultural, 
and political conditions; and micro-environmental factors such as socioeconomic 
conditions of the family (Urban 2003, p. 85–86).

From a socio-constructivist point of view, which, theoretically, this chapter is 
based on, the research focus is rather on the cultural and micro-environmental as-
pects of Urban’s global approach. The main assumption of socio-constructivism 
states, also with respect to mathematical creativity, that the individual ability of 
mathematical creativity develops in the course of the various interactions with other 
members of the culture. Sriraman (2004) emphasizes:

the types of questions asked are determined to a large extent by the culture in which the 
mathematician lives and works. Simply put, it is impossible for an individual to acquire 
knowledge of the external world without social interaction. (p. 21)

This chapter focuses on the mathematically creative solving process while chil-
dren are working on mathematical tasks in situations of play and exploration. The 
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situations analyzed in this chapter are designed in a way that besides the children, an 
adult person is also present. So the analysis highlights the processes of negotiation 
of meaning between the children and between the children and the accompanying 
person during the interactive process while coping with mathematical tasks (Bau-
ersfeld 1995; Brandt and Krummheuer 2001; Cobb and Bauersfeld 1995; Jungwirth 
and Krummheuer 2006; Krummheuer 2007).

With respect to the research interest on children with social/emotional difficul-
ties, the MaKreKi (mathematical creativity of children) project refers the psycho-
analytically based attachment theory, in which these difficulties are interpreted in 
the light of the emerging relationship between mother and child. This theory of 
attachment suggests that children come into world biologically preprogrammed to 
form attachments with others (Bowlby 1969). The neonate develops special rela-
tionships with his/her parents. In the first years of life, the child develops an “in-
ner working model” through child–parents interactions (Bowlby 1969). This “inner 
working model” contains the early individual bonding experiences as well as the 
expectations, which a child has toward human relationships, derived from these 
experiences. They conduce to interpret the behavior of the caregiver and to predict 
his or her behavior in certain situations. Therefore, the attachment between mother 
and child has a great impact on the social–emotional and cognitive development of 
the child. After the first year of life, this “inner working model” becomes more and 
more stable and turns into a so-called “attachment pattern” (Bowlby 1969, p. 364).

For the investigation of mathematically creative processes, it is relevant that chil-
dren are confronted with mathematical tasks and contents from different domains 
of mathematics as they appear in their everyday life. In the MaKreKi project these 
contents are presented in the form of mathematical situations of play and explora-
tion, which are conformly designed along a “didactical design pattern” (see Sect. 
“Short Description of the Sample and Empirical Approach”), which were developed 
for this study (Vogel 2013). Among others, this design pattern contains information 
for an accompanying adult person. It provides him/her with some knowledge about 
the mathematical content and a minimal set of instructions like questions or allega-
tions. The competent adult also gets some hints of possible reactions and expres-
sions of the children by these design patterns so that he/she is somehow prepared 
for possible solutions emerging in the context of the mathematical situation of play 
and exploration.

In the concrete situation, on the situational level, the initiation of these math-
ematical situations of play and exploration provokes processes of negotiation of 
meaning, which necessarily have not to be in accord with the described mathemati-
cal domain or the activities that are described in the design pattern. This principal 
discrepancy might be especially relevant in the context with mathematically cre-
ative children.

Summarizing, following Urban’s general approach of the “4P-E structure,” this 
chapter examines macro-environmental factors like cultural conditions, e.g., the in-
tended mathematical domains/contents and the expected mathematical tasks and 
solutions presented in the mathematical situations of play and exploration as well 
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as the interactive negotiations of these themes (micro-social factors). Besides this, 
the chapter also involves psychodynamic aspects of early childhood development 
(micro-environmental factors), like the attachment patterns of the children (see 
Sect. “Attachment Theory”). The attachment system is now widely studied in the 
life cycle, but little is said about creativity as a concomitant of this system (Brink 
2000). Therefore, the second research question is which correlation exists between 
the attachment pattern of children and their mathematical creativity?

Theoretical Perspectives

The following section introduces theoretical perspectives of mathematical creativ-
ity in early childhood (Sect. “Mathematical Creativity”) and offers psychoanalyti-
cal considerations about attachment theory and the connection to creativity (Sect. 
“Attachment Theory”).

Mathematical Creativity

Mathematicians and researchers in mathematics education as well as psychologists 
have examined mathematical creativity under their various scientific viewpoints 
(Hadarmard 1954; Sriraman 2004). A clarification of concepts of creativity is diffi-
cult and additionally complicated by its relationship to the concepts of intelligence, 
giftedness, and problem solving.

With respect to the relative lack of current research, the following analyses deal 
with the following four aspects of mathematical creativity (Sriraman 2004):

1. Choice: Poincaré (1948) described as a fundamental aspect of mathematical cre-
ativity the ability to choose from the huge number of possible combinations of 
mathematical propositions a minimal collection that leads to the proof. Ervynck 
(1991) understands by mathematical creativity the ability to generate mathemat-
ical objects or the generation of a base idea for coping with a mathematical 
problem within a mathematical context. From this definition, he derives the fol-
lowing characteristic features of mathematical creativity:

a. Relational: With the production of mathematical objects the individual has 
to discover conceptual links between two or several mathematical concepts, 
so that an interaction of ideas enters. The different mathematical ideas can be 
understood as single “blocks” (Ervynck 1991, p. 49), which can be combined 
differently.

b. Selective: With competition of different mathematical blocks, the individual 
has to make a choice on one (at best for the most useful idea). This character 
is similar to Poincare’s metaphor of choice.
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c. Compressed/briefly presentably: The individual has to find the suitable words 
and symbols for the presentation of the mathematical ideas (Ervynck 1991, 
p. 50).

 With regard to the age group of interest under this choice aspect of math-
ematical creativity, the production of (unusual) relations between mathemati-
cal examination and experiences and the playful contact with mathematical 
methods is understood.

2. Non-algorithmic decision making: According to Ervynck (1991), mathemati-
cal creativity articulates itself not when routine and/or standard procedures are 
applied but when a unique and new way of solving a problem emerges. Ervynck 
refers to the creative achievement of mathematicians, who created something 
new for mathematics. With regard to the age group of 3–6-year-old children, 
there is still to clarify, what could be meant by a “unique and new” way of solv-
ing a problem? At first, one is able to shift therefore the accentuation and speak 
of the “divergence from the canonical” (Bruner 1990, p. 19).

3. Adaptiveness: Sternberg and Lubart (2000) characterize creativity as the ability 
to present an unexpected and original result that is also adaptive. Adaptiveness 
describes children’s ability to accomplish unusual descriptions of a happening 
and to adapt the original core of the meaning of this description to a new situation.

4. De-emphasizing details: Liljedahl (2008) describes in his study, in which he 
investigates the ideas and thoughts to mathematical creativity from famous math-
ematicians, that the details of the problem do not play any role during the incuba-
tion1 phase of creativity. They rather work with strategies, which allows coping 
with the basics of the mathematical problem. Many of the interviewed mathema-
ticians mention how difficult it seems to them to learn mathematics by attending 
to the details, and how much easier it is if the details are de-emphasized.

This section has elucidated how children can express their mathematically creative 
ideas while coping with mathematical tasks. Regarding Urban’s “4P-E Structure,” 
it focuses mainly on the components problem, product, and process. The following 
section highlights the other components such as person and environment, which 
are also relevant for the examination of mathematical creativity in early childhood.

Attachment Theory

Attachment theory originates from Bowlby (1951) and postulates the central role of 
attachment behavior for individual development. Bowlby perceives the attachment 
system as the central source of motivation. In his approach, the antagonism between 
attachment and exploration has a highly relevant explanatory power. Both systems 

1 Hadamard has used introspection to describe mathematical thought processes. He developed 
the four-stage model of mathematical creative thinking: Preparation, incubation, illumination and 
verification (see Hadamard 1954).
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cannot be simultaneously activated. If a child feels secure, he/she can activate their 
exploration system and explore their surroundings. If he/she perceives danger, the 
attachment system is activated. The child interrupts his/her exploratory behavior 
and seeks safety from their parent according to the developed attachment pattern 
between them.

Bowlby’s model has subsequently been further developed. Ainsworth has cre-
ated a test for the study of attachment behavior. In the so-called strange situation 
(Ainsworth et al. 1978), a standardized observation situation, the quality of the at-
tachment of the child to its mother (or to their father) can be measured. Four of such 
attachment patterns can be described (Ainsworth et al. 1978):

a. Insecure-avoidant: The “insecure-avoidant” child (A) experiences that his/her 
mother feels best when he/she shows no intense reactions and behaves toward 
her in a controlled, distanced manner with a minimum of affect.

b. Secure: The securely attached child (B) has, thanks to his/her sensitive mother, 
a chance to build up a secure relationship with her in which the whole spectrum 
of human feelings in the sense of communication with another can be perceived, 
experienced, and expressed.

c. Insecure-ambivalent: The ambivalently attached child (C) has spent his/her first 
year with a mother, who sometimes reacts appropriately, and is at other times 
rejecting and overprotective, i.e., on the whole, inconsistent and for this reason 
she reacts in a way that is unpredictable for the child.

d. Insecure-disorganized attachment: The disorganized/disoriented attached child 
(D) could not build up a stable inner working model, as his/her mother (or father) 
suffered under the consequences of an acute trauma (for example, the dramatic 
loss of an important person). They were psychically so absorbed by this loss that 
they could hardly take up a coherent relationship with their infant.

Relating this approach to the topic of mathematical creativity of young children, the 
results of empirical attachment research point to the fact that the shaping of domain-
specific (mathematical) creativity can be localized not only in the potentially stimu-
lating mathematical contents in the child’s milieu but also in the type of attachment 
of the child to his/her parents.

Grossmann describes the link between the attachment pattern of the child and the 
“successful cooperation” (in German: “gelingende Gemeinsamkeit”) in a child–par-
ent play situation in more detail (Grossmann 1984). The “successful cooperation” 
of this play situation correlates with the delicacy feeling of the mother, and a more 
delicacy feeling leads very often to a secure attachment pattern of the child (Gross-
mann 1984). Mothers of securely attached children seem to be more reserved and 
gentle and they show more efforts in handing over the lead to their children in play 
situations. In contrast, mothers of insecurely attached children are often strict and 
controlling and they have more instructional ratio in play situations than mothers of 
securely attached children (Grossmann 1984). Significant differences between chil-
dren with a secure attachment pattern and children with an insecure attachment pat-
tern in play situations are also described in the study of Grossmann. Thus, securely 
attached children are more often initiators of the common play and they seem to be 
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rather more extroverted than insecurely attached children, who wait for instructions 
and seem to be rather introverted (Grossmann 1984).

Due to the above-mentioned antagonism between attachment and exploration 
behavior, it is plausible to assume that, above all, securely attached children will 
develop great joy in (mathematical) exploration and creativity. Nevertheless, the 
MaKreKi project investigates if some children, who have other attachment patterns, 
are also able to develop mathematical creativity. It might be possible to assume 
that especially children with an insecure-avoidant attachment pattern or with an 
insecure-disorganized attachment pattern evolve great interests in mathematics, be-
cause of the regularities and structures in the mathematical field. In this case, these 
children might be able to compensate their adverse attachment pattern by develop-
ing interests in mathematics and mathematical creativity.

In the research design of the MaKreKi project, children deal with mathematical 
problems and tasks guided by a competent adult. This adult can be seen as a rep-
resentative of the parents, because it might be reasonable to assume that children 
show similar behavior in this situation like they would with their parents, because of 
their stability on the “inner working model” of their attachment pattern.

Methodology

Short Description of the Sample and Empirical Approach

The sample of MaKreKi is based on the original samples of two projects that are in 
the larger study IDeA (Center for Individual Development and Adaptive Education 
of Children at Risk2). One project is a study of the evaluation of two prevention pro-
grams with high-risk children regarding their attachment pattern in day-care centers 
(EVA3). It examines approximately 290 children. The second project is a study of 
early steps in mathematics learning (erStMaL4). This project includes approximate-
ly 150 children. Thus, the original sample contains 440 children.

Due to the lack of tests for identifying mathematical creativity in preschool chil-
dren, the MaKreKi team developed a questionnaire in which the nursery teach-
ers of these two original samples were asked whether they knew children in their 
groups who showed divergent and unusually sophisticated strategies while cop-
ing with mathematical tasks. These questions concern the interest of the children 
in mathematical domains as well as the children’s supposed unusual dealing with 
mathematical situations. In the combined sample of 440 children, 40 children were 
identified who seemed to creatively cope with mathematical problems.

2 http://www.idea-frankfurt.eu/. Accessed 6 Aug 2013.
3 http://www.idea-frankfurt.eu/en/research/research-domains/diagnostics-and-prevention/eva. 
Accessed 6 Aug 2013.
4 http://www.idea-frankfurt.eu/en/research/research-domains/resources-and-limitations-of-
successful-learning/erstmal. Accessed 6 Aug 2013.
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In order to analyze the children’s forms of mathematical creativity, open math-
ematical situations of play and exploration (Vogel 2013), which were designed for 
the erStMaL (early Steps in Mathematical Learning) project, were applied in semi-
annual surveys in pair and group settings. These situations refer to the mathematical 
domains of number and operation, geometry, measurement, pattern and structures, 
and data analysis (Sarama and Clements 2008). To ensure that the implementation 
is independent from specific individuals and proceeded comparably, the mathemati-
cal situations of play and exploration are described in “design patterns of math-
ematical situations,” which follows the type of documentation of didactical design 
pattern (Vogel and Wippermann 2004, p. 35). The mathematical situations of play 
and exploration as research instruments design opportunities, in which children can 
demonstrate their mathematical potentials in the interaction. The composition, spar-
ingly given verbal and gestural impulses as well as actions with the material by a 
guiding adult, introduce the children to the situation and the mathematical context 
in which they can pose or solve a first mathematical problem or work on a first 
mathematical assignment (Vogel 2013).

Every child participates in two different situations of play and exploration per 
survey date and all mathematical situations of play and exploring are videotaped. 
These recordings are the basis for the intended interactional analyses.

Process of Reconstructive Analysis

Regarding the theoretical considerations and the attempt to identify mathematically 
creative moments in mathematical interactions of preschool children, in the follow-
ing an analysis of interaction is conducted, which is based on an interactional theory 
of learning (Cobb and Bauersfeld 1995; Brandt and Krummheuer 2001). There-
fore, a method was developed, which focuses on the reconstruction of meaning 
and the structure of interactions (Krummheuer 2012a). The negotiation of meaning 
takes place in interactions between the involved individuals. These processes will 
be analyzed by an ethnomethodologically based analysis, in which is stated that the 
partners co-constitute the rationality of their action in the interaction in an everyday 
situation, while the partners try constantly to indicate the rationality of their actions 
and to produce a relevant consensus together. This is necessary for the origin of the 
own conviction as well as for the production of conviction with the other participat-
ing persons. This aspect of interaction is described with the term “accounting prac-
tice” (see Garfinkel 1967, p. 1). From an ethnomethodological point of view, these 
accounting practices are an integral component of the action itself. The interactive 
devices, which are necessary for securing and creating a common basis of rational-
ity, are laid out in the actions of the participants. This claimed coincidence of the 
procedures of the realization of the action with those of the rationalization of the 
action is commonly referred to as the ethnomethodological theorem of reflexivity 
(Mehan and Wood 1975; Krummheuer 1995; Lehmann 1988).

To analyze these accounting practices of children in mathematical situa-
tions, Toulmin’s analysis of argumentation (1969) has proved to be successful 
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(Krummheuer 2007). Four central categories of an argumentation are “data,” “con-
clusion,” “warrant,” and “backing.” Toulmin (1969) returns these functional argu-
mentation categories graphically in a layout (see Fig. 9.1).

The general idea of an argumentation consists of tracing the conclusion to be 
proven back to undoubted statements (data). This relationship is expressed in the 
first line of the layout. Therefore, this line can altogether be referred to as the infer-
ence of the argument. Sometimes, such an inference requires a legitimation. State-
ments, which contribute to this, represent the “warrant.” Of another quality are 
those statements, which refer to the permissibility of the warrant. Toulmin (1969, 
p. 97) calls them “backings.” They represent undoubtable basic convictions (e.g., 
the axioms in “mathematical” argumentations). Warrants and backings represent the 
depth of the argumentation. Arguments can be chained together in the way that an 
accepted conclusion can serve as data for a subsequent new argument.

Diagnosis of Attachment Style

For the diagnosis of the attachment pattern, the MaKreKi project applies the Man-
chester Child Attachment Story Task, the so-called MCAST (Green et al. 2000). 
This is a storytelling test that has good reliability and validity. A standardized doll-
house is used. The play of the child with the test coordinator is videotaped and later 
evaluated according to the test manual. In order to rule out the possibility that the 
behavior during the storytelling, for example, is not determined by an exceptionally 
weak, cognitive ability, the MCAST is used in combination with an intelligence 
test. The Hannover Wechsler Intelligence Test in preschool age (HAWIWA-III), 
the German adaptation of the Wechsler Preschool and Primary Scale of Intelligence 
(WPPSI, 2002) is implemented in the project. The international test has been shown 

Fig� 9�1  Toulmin scheme 
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to be reliable and valid (Petermann 2009). The test with its comparable subtests 
allows observing specific intellectual abilities over a longer time, for example, 
during phases of therapeutic or pedagogic support.

To get a deeper knowledge about the relationship between the child and his/her 
parents, the parents are interviewed. In the half standardized interviews conducted 
by experienced psychoanalysts and therapists, questions concerning the family con-
stellation, the early development in kindergarten and school, and the mathematical 
creativity are focused.

First Insights

Investigating the assumption mentioned above, that not only children with a secure at-
tachment pattern could cope creatively with mathematical tasks, the following section 
presents two children of the MaKreKi project with different attachment pattern while 
they are participating in the mathematical situation of play and exploration called 
“Ladybug”: René (type A) and Nina (type B). Both children are examined and paired 
with one of their close friends and one adult person who acts as a nursery teacher.

The “Ladybug Situation”

In this situation, the children can differentiate between similar objects, which dif-
fer according to their size and color. The objects are pictures of ladybugs, which 
differ in size (small and large), in color (red, green, and yellow), and in spots in 
two ways (circle, triangle, and square and also by the amount of spots as well). The 
big ladybug-cards have additionally two different sizes of spots (large and small) 
(Fig. 9.2).

The design pattern suggests, for this situation of play and exploration, the fol-
lowing mathematical activities to the children through material, designated instruc-
tions, and impulses:

• Counting and determination of quantity.
• Arrangement and comparing of sets, e.g., in respect of the number of elements 

on the back of the ladybugs.
• Mathematical structures, i.e., the elements of sets, are associated with each other 

relationally and they form structures through which they differ from the other 
objects. The bugs are linked by social relations like in family or in kindergarten 
group in the eyes of the children.

The “Ladybug situation” consists of two parts. In the first part, the children are 
dealing with little ladybug-cards. Typical instructions of the accompanying person 
are: “Look what I have brought here.” “Put together all ladybugs which belong to 
each other.” “Can you find further groups or families of ladybugs?” “Why do these 
ladybugs belong together?”
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In the second part, the children are dealing with big ladybug-cards which have 
small and large spots on their backs. Usually the accompanying person offers a trip-
let of big ladybug-cards and asks: “Which one does not belong?” (Wheatley 2008).

Case Study One: René’s Solution Process in the “Ladybug 
Situation”5

René is a boy aged 4 years and 9 months, who lives with his parents and his older 
sister in a small city. His father works full time in a computer firm and his mother 
remains at home.

Because of René’s very sophisticated language ability, the research assistant, 
who contacted René first, assumed that he was older than four. In the MCAST René 
was very curious and highly motivated to cooperate; at the same time, however, he 
demonstrated in his facial mimic and body language a certain tension and restless-
ness. According to the nine scales of the MCAST, René shows insecure-avoidant 
attachment behavior (A). In the HAWIWA, René demonstrates average intellectual 
ability with a value of 95 points. Only in one performance subtest, “symbolic-fig-
ure”, his capabilities are above average (they correspond to the abilities of a 6-and-
a-half-year-old child).

Besides René, two other persons are involved in the “Ladybug situation”: Lisa, a 
girl aged 4 years and 8 months from René’s preschool and a member of our research 
team, who conducted the conversation with the two children as the accompanying 
adult person (abbreviated with B).

The presented episode refers to the end phase of a collective processing of the 
task. René, Lisa, and the member of the research team invented a familial system of 
description: The small ladybugs represent kid-bugs and the big one mom-bugs, dad-
bugs, or parents-bugs. During the period before this episode, they also compared 
the number of cards according to their size and color and found out that all these 
subgroups are of equal number.

5 The following extract of René’s solution process refers to an analysis, which has already been 
published in German. For more details see Hümmer et al. (2011) and Krummheuer (2011).

Fig� 9�2  Little ladybug-cards
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After this comparison, the children realigned the cards around the round carpet, 
which is a kind of defined space for playing and exploring the cards.

In the center of this carpet, the adult person puts a triplet of the cards of the same 
size several times, but alternately of different size and number of figures on top of 
the ladybugs and/or of different colors of the ladybugs. Routinely, the adult always 
opens a new problem with the question, “Which one doesn’t belong?”

In the following analysis, the guiding adult has put a triplet of three red ladybug-
cards. One has 7 big triangles, one has 19 little triangles, and the last one has 23 
little triangles on his back. René has mentioned that the ladybug with 19 little tri-
angles does not belong to the group, while Marie has mentioned that the bug with 
seven big triangles does not belong to the group (Fig. 9.3).

The conversation continues as follows:

01
02 B looks at René why do you think that this is
03 the one pointing to the red bug with 19 little
04 triangles and why does Marie think that this is
05 the one\ pointing to the large bug with
06 7 Big triangles
07 Marie this is the one because he has so big peaks\
08 points to the bug with the big 7 triangles
09 B aha\ and you/ looks towards René
10 René mhm\ shakes his head and points to the bug with
11 19 Small triangles
12 > B why do you think this is the one/
13 > Marie puts a little yellow ladybug on the circle
14 René because he has too small ones\ points to the
15 little triangles on the bug with 19 little
16 triangles
17 B because he has too small ones\ too small as what
18 René too small four looks at the little ladybugs
19 here dots like this points to the little
20 triangles of the big bug with 19 small
21 triangles, takes a little red ladybug with 2

Fig� 9�3  Triplet of big ladybug-cards
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22 small circles like these\ like the little ones\
23 Marie ehm René\ looks at René’s card and takes it
24 in her hands, together they put it back in the
25 circle
26 B but we have to come to an agreement\ well\ one
27 < does not fit
28 < René hey these are, points alternately
29 to one of the big red ladybugs with small
30 triangles two do not belong because
31 they are coincident
32 Marie has 2 big yellow bugs and 1 little yellow
33 bug, which she arranges on the table
34 B these are coincident\
35 René yes
36 B what do you mean when you say that\
37 René mhm this has a little bit smaller ones points
38 to the bug with 19 little triangles than this
39 points to the bug with 23 triangles cause
40 these are growing and these are already big
41 points to the big bug with 7 large triangles
42 B aha also however they are bigger\ points to
43 the big bug with 7 large triangles
44 René nods slowly
45 B well can you warm to that we are taking Marie’s
46 suggestion so we put this one away\ puts the
47 bug with the 7 big triangles away
48 Marie nods
49 René looks at B looks at the ladybugs
50 mhm (yes)
51 B yes/ okay\
  

The interpretation presented here is based on the following constellation:
René comes up with the solution that both bugs with many and small triangles do 

not belong. His justification has two aspects:

• Comparing the figures of the small and the big ladybug-cards, he concludes, that 
the bugs of the small cards should also only possess small figures on their tops.

• The two cards with the many and small triangles cannot exist in the system of the 
cards at all.

If one interprets these two warrants of his argumentation in his familial system of 
description, one could rephrase it in this way:

• Big ladybugs have big figures because they are parents.
• Small ladybugs have small figures because they are children.
• So, big ladybugs with small figures do not exist.
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If one understands the figures of the ladybugs to be people’s hands, René’s argu-
ment is that parents do not have hands the size of kids, this is impossible. They 
cannot be parents and children “at the same time,” as he says.

With respect to the three aspects of mathematical creativity mentioned, one can 
conclude: René’s solution is based on a surprising choice of a familial system of 
description for the comparison of the ladybugs. Hereby, he does create a somehow 
non-canonical combination of size and family members. He restricts this 2 × 2 table 
as shown in Fig. 9.4.

René creates a non-canonical solution in which he combines the mathematical 
quantity “size” and the social and emotional quantity “family.”

Furthermore, on the level of speech, he expresses this unusual choice by a lin-
guistic adaption of the size of ladybugs by using a familial metaphor. He says that 
the big ladybugs would be “already big.” The wording of “big” can appear in the 
size system of description and in a familial system of description. By combining 
“big” with “already,” a process of change comes up: A ladybug can grow to a certain 
size and reach some features which ladybug kids did not possess. This switch in his 
formulation is seen here linguistically as an adaptive achievement.

The guiding adult seems to have difficulty in comprehending René’s approach. 
Possibly she assumes that he wants to say that the two ladybugs with the many and 
small triangles are the ones that remain and therefore the third one with the few 
and big triangles does not belong. Moreover, Marie has chosen this solution. This 
constellation of misinterpretation evokes the short dialog in which the guiding adult 
asks René for explanations three times (see lines 2–3, 12, and 36). In this phase she 
behaves similar to the type of mother of securely attached children, she is more re-
served with her own interpretation of the mathematical situation and shows efforts 
in handing over the lead to René. René accomplishes the warrant and backing of 
his argumentation mentioned above. With respect to the interactional setting, it is 
René who takes the part as the competent partner and explains his position to his 
counterpart. Being able to take this role, René shows a great autonomy in dealing 
with mathematical problems in social situations. Because of his great autonomy 
in explaining his perspective on the problem of the three big ladybugs, René can 
be seen as the initiator (Grossmann 1984) of his non-canonical solution, which he 
expresses and explains to the guiding adult. In this situation, he presents a very deep 
argumentation as the Toulmin scheme shows in Fig. 9.5 (Krummheuer 2011).

In René’s argumentation, one can see that he connects the first part (finding 
family members, making groups of little ladybugs because of their relationships 
regarding their spots (amount, shape) or their colors) with the second part (separate 

big
triangles

small
triangles

parents rejected

rejected

ok

okchildren

Fig� 9�4  Rene’s solution 
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big ladybugs, which do not belong together) of the mathematical situation. So he 
transforms two operations into one by disregarding the detail that only one ladybug 
does not belong to the triplet. He has come up with a strategy that de-emphasizes 
details (Liljedahl 2008).

In the end, the guiding adult forces an agreement and she asks if it is all right for 
René to take Marie’s solution. Here she reacts in a more controlling way; neverthe-
less, she shows some kind of delicacy of feeling, because she asks René if it works 
for him to take Marie’s solution.

Case Study Two: Nina

Nina is a girl aged 5 years and 5 months who lives with her mother in a major city. 
Her parents are divorced.

In the MCAST, Nina was highly motivated to cooperate and rather extrovert 
than introvert in her interactions. According to the nine scales of the MCAST, Nina 
shows secure attachment behavior (B). In the HAWIWA, Nina demonstrates low 
average intellectual ability with a value of 88 points in the performance IQ6.

Besides Nina, there are two other persons involved in the “Ladybug situation”: 
Samira, a girl aged 5 years and 10 months from Nina’s preschool, and an accompa-
nying person from the research project. At first, the children and the adult person 
have dealt with the little ladybugs. They have discovered various families of lady-

6 Because of the difficulties conducting IQtests in early childhood, Nina has only participated in 
the performance test (and not in the verbal test). So these values have to be interpreted carefully.

Fig� 9�5  Toulmin scheme of René’s argumentation
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bugs where the color and the number of spots determine to which family a ladybug 
belongs. At the end of this phase, Nina mentioned that all ladybugs of the same 
family are grown in the same stomach. After that, the little ladybug-cards are moved 
to the edge of the table. The presented scene begins with the second part of the lady-
bug situation: The guiding adult has put a triplet of big yellow ladybug-cards on the 
table and asked: “Which one does not belong?” Both children discuss the number of 
spots on the ladybugs and discover that they do not have the same amount of spots. 
Samira suggests putting the ladybug with six squares and the bug with seven circles 
together (Fig. 9.6).

0001
0002 B is six and seven the same/ looks to Samira
0003 > Samira ehehe shakes her head
0004 > Nina no. but there are remaining some reaches for the
0005 cards which are underhanded in B’s hands
0006 B retains the cards first we have to say which one
0007 is wrong of these moves the 3 big ladybugs
0008 < closer to each other which one does not belong
0009 to the family/
0010 < Nina this one is away\ sliding
0011 away the bug with 7 circles and the bug with 6
0012 squares they are wrong\
0013 B they are wrong/
0014 Samira points to the bug with 10 circles
0015 Nina takes the bug with 10 circles and this is right
0016 B is this a one member family/
0017 Samira yes\
0018 B okay then we try the next ones reaches for the bug
0019 with 10 circles, which Nina holds in her hands
0020 Nina and then it has got a baby takes a little
0021 yellow bug with one triangle on his back and puts
0022 it next to the big bug with 10 circles
0023 B oohh a little ladybug\
0024 > Nina mhm

Fig� 9�6  Triplet of big ladybug-cards
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0025 > Samira yes\
0026 B which belongs to a big one/
0027 Nina yes\
0028 Samira there points to a little yellow bug with 3
0029 < triangles on its back there are many other too
0030 < Nina many babies
0031 takes some little ladybugs but not the red ones\
0032 B not the red ones\
0033 Samira because afterwards the red ones points to the
0034 underhanded cards in B’s hands afterwards the
0035 red ones will come
0036 Nina no, the red bugs are firebugs slides the little red
0037 bugs away and puts the little yellow bugs to the
0038 big bug with 10 circles and they don’t like the
0039 the red ones
0040 B these are all babies of these ones/ points to
0041 the big bug with 10 circles
0042 > Samira yes
0043 > Nina yes and he has one two three four five six seven
0044 < eight nine ten eleven points to each of the
0045 little yellow bugs
0046 < Samira seven eight…eleven
0047 Nina eleven babies\ looks towards B and laughs

In this scene, Samira suggests to put the big yellow bug with seven circles and the big 
yellow bug with six squares on their backs together. Nina and the guiding adult do 
not seem to agree with this solution. Before making a choice Nina tries to reach all 
cards of big ladybugs, which can be interpreted as the attempt to get an overview of 
the whole data, what is similar to the creative process of famous mathematicians men-
tioned in Sect. “Mathematical Creativity”. The accompanying person does not permit 
this attempt and so Nina and Samira have to find a solution just for one triplet of big 
ladybug-cards. Nina comes up with the solution that two big ladybug-cards are wrong 
and only one ladybug-card is right. She creates a non-canonical solution. Her surpris-
ing choice can include two aspects of relationships similar to a mathematical function:

1. A relationship between the number of spots on the back of the ladybugs and the 
age of the ladybugs: The two ladybug-cards, which have been stated as wrong, 
have only six or seven elements on their backs; the right one has ten. He has a 
suitable quantity of elements, so he can represent an adult ladybug.

2. A relationship between the number of elements on the back of the ladybugs and 
the quantity of babies which belong to the bug. Each spot on the back repre-
sented one of his babies.

Following the scene, one can see that the second interpretation of Nina’s choice 
(functional relationship between spots and babies) will be realized through her ac-
tivities by counting the small ladybugs and her expression that the big yellow bug 
with 10 circles has 11 babies. She extends the functional relationship by determin-
ing the color as a feature of the functional relationship between the ladybugs: The 
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big yellow bug can only have little yellow ladybug kids. Samira takes this hint and 
expresses an assumption that there will follow some big red ladybugs later.

By reconstructing Nina’s argumentation with the Toulmin layout (see Fig. 9.7), 
it is obvious that she connects the first part of the mathematical situation (finding 
families/groups of ladybugs) with the second part (which one does not belong?).

Nina transforms two operations into one by disregarding the detail that only one 
ladybug does not belong to the triplet. For Samira and the guiding adult, Nina’s de-
cision of choosing one ladybug becomes clear during the scene. However, it seems 
that the guiding adult and Samira do not have a problem with Nina’s choice. How-
ever, in line 16 the accompanying adult asks if the yellow bug with ten circles is a 
one-member family, which Nina first affirms. During this phase, the guiding person 
is similar to the type of mother of securely attached children (Grossmann 1984); 
she is more reserved with her own interpretation of the mathematical situation and 
shows a great interest to understand Nina’s solution. She does not insist on the ca-
nonical solution to find two big ladybugs, which belong to each other. A one-mem-
ber family is not possible in an ordinary context. Nina has to specify and clarify her 
“one-card solution” to the group, which follows in line 20. Nina lives with only a 
single parent and this constellation corresponds with a normal family life.7 From a 
mathematical perspective, Nina’s solution is now possible, too. Regarding her au-
tonomous explanation and argumentation, Nina can be interpreted as the initiator of 
the non-canonical solution, which links the big ladybugs with the small ladybugs.

7 In Germany the period of a marriage lasts 14 years on average, so many children like Nina live 
in a single-parentfamily.

Fig� 9�7  Toulmin scheme of Nina’s argumentation
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On the level of speech, Nina is able to formulate her non-canonical solution 
with appropriate and adaptive expressions, so the identification of the little yellow 
ladybugs as babies of the big yellow ladybug can be seen as a linguistic achieve-
ment to describe the functional relationship between the little and the big ladybugs 
in an adaptive way.

Comparison of the Two Cases

The two cases show non-canonical solutions of children while coping with math-
ematical tasks. Nina as well has René offered a “one-card solution” instead of the 
expected “two-card solution,” because of the connection they have discovered be-
tween the two parts of the ladybug situation. This endeavor is similar to the creative 
process of famous mathematicians ( de-emphasizing details).

Both children show autonomy in dealing with mathematical tasks. They are initi-
ators (Grossmann 1984) of their non-canonical solutions. In case of Nina as a child 
with a secure attachment pattern, this observation is in accord with Grossmann’s re-
sults. Following Grossmann, children with an insecure-avoidant attachment pattern 
like René are often less autonomous in play situations. In the mathematical situa-
tions of play and exploration this is not the case for René. He often is the initiator, 
too. So the behavior of children in play situations may be linked to the context of the 
situation as well as to their attachment pattern. René is able to take the part of the 
competent partner because of his mathematical creativity and his great interest in 
mathematical situations. Another explanation for René’s autonomous behavior may 
be his attachment type. In the MCAST, René shows a similar behavior; he reacts 
independently and solves the problems on his own and afterwards he returns to his 
mother. As an insecure-avoidant attached child, he has discovered that he emotion-
ally gets along the best when attempting to solve his problems by himself.

In both scenes, the children provide a non-canonical solution by finding equiva-
lent classes between the big and the small ladybugs. This fact leads to “improvisa-
tions” by the guiding adult (Krummheuer 2012b, p. 324). In the presented scenes, 
the guiding adults seem to have difficulties to understand René’s and Nina’s solu-
tions so they have to claim explanations and reasons for the non-canonical solutions. 
During these phases both guiding persons behave similar to the type of mother of 
securely attached children; they are more reserved with their own interpretation of 
the mathematical situation and show efforts in handing over the lead to René and 
Nina. Their requests like “why” or “what do you mean by saying this” seem to sup-
port the emergence of René’s and Nina’s mathematically creative solutions. In case 
of René, there were two competing solutions by René and Marie, so the guiding 
adult wants to have an agreement and this leads to Marie’s two-card solution. Here 
she reacts in a more controlling way and nevertheless shows some kind of delicacy 
of feeling, because she asks René if it works for him to take Marie’s solution. By 
contrast, the guiding adult in Nina’s situation is more open for Nina’s idea that 
only one bug fits and she does not insist on the canonical solution. Thus, Nina has 
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a good atmosphere to explore autonomously the ladybug-cards and their relation-
ships. René has to show more effort to explain his idea because of the two compet-
ing solutions. As a child with an insecure attachment pattern, he is used to anticipate 
the perspective of his caregivers, because they feel better when he shows no intense 
affects and behaves toward them in a controlled, distanced manner. Because of his 
attachment pattern, he is maybe able to work autonomously and creatively although 
the guiding adult seems not to understand his solution. Dealing with this, René puts 
himself in her position and takes her perspective to elucidate his solution that can be 
seen in his deep argumentation. The ability of perspective taking is rather untypical 
for children of his age and is regarded here as a cognitive-interactional ability that 
he developed over time in order to compensate his insecure-avoidant behavior.

Summary

Two cases of the MaKreKi study were discussed and it has been shown that the 
approaches mentioned in Sect. 2 can be used to describe creative mathematical 
processes of young children at the kindergarten age. Regarding the first central 
research question, how does mathematical creativity express itself at the age of 
preschool and how is it observable, the two cases illustrate that children who can be 
seen as mathematically creative are able to change the perspective on a mathemati-
cal task, although a clear instruction from the guiding adult focuses on another per-
spective. Nina as well as René offered a “one-card solution” instead of the expected 
“two-card solution” by combining the two classification systems of big and small 
ladybug-cards.

Comparing René’s and Nina’s solution with solutions of other children in the 
erStMaL project, who also attended the ladybug situation, exhibits their mathemati-
cally creative potential. The other children do not discover a kind of connection 
between the two parts and offer accordingly the expected one-card solution. Instruc-
tions may have a strong impact on children’s interpretation of mathematical tasks 
and so only mathematically creative children are able and have the confidence to 
see more possibilities and perspectives than the canonical solution, which is forced 
by the comments of the guiding adult.

From the guiding adult’s perspectives, which are in line with the didactical de-
sign pattern of the ladybug situation, there were canonical solutions by comparing 
the colors of the ladybugs, the shapes on their backs, or their number of spots on 
their backs. In this perspective, it is easy to determine two ladybugs which be-
long together because of their equal features, which the third ladybug does not pos-
sess. From the situational perspective, the final definition of the problem situation 
is a matter of negotiation of the meaning in the concrete situation of interaction 
(Krummheuer 2012b).

Concerning the two poles, construction and instruction, the two cases show that 
some kind of instructions, especially instructions which expected arguments and 
reasons, support mathematically creative potential of young children. Regarding 
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the construction of children’s mathematical thinking, it is important to understand 
and also honor their non-canonical solutions, which might be the first step in the 
development of mathematical creativity in early childhood. As the two cases illus-
trated, it is not always easy for the guiding adults to see the mathematically creative 
potential in the non-canonical solutions of the children. Therefore, additional analy-
sis of young children’s non-canonical solutions can help to describe, understand, 
and identify the mathematical potential of young children. Thus, further research 
is necessary.

Till now the connection between mathematical creativity and the attachment pat-
tern in early childhood is not satisfactorily investigated. Therefore, a conceptual 
framework has to develop which examines the cultural and the situational impact as 
well as the influence of the attachment pattern on the development of mathematical 
creativity in early childhood and connects with the creative mathematical abilities 
of young children.
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Appendix

Rules of Transcription

Column 1 Serially numbered lines
Column 2 Shows when people are talking at the same time
Column 3 Abbreviations for the names of interacting people
Column 4 Verbal (regular font) and non-verbal ( italic font) actions
/ Rising pitch
- Even pitch
\ Falling pitch
… … Breaks of 1, 2 or 3 s
(4) Breaks of a specified time span
Bold Accentuated word
S p a c e d Spoken slowly
(word) Unclear utterance
( remark) Remark, offering alternatives to unclear utterances
 + The indicated way of speaking ends at this symbol
# There is no break; the second speaker follows immediately
< Indicates where people are talking at the same time
> The next block of simultaneous speech is indicated by a change
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In mathematical interactions, young learners express their ideas in multiple ways 
to interact with each other and to come in contact with the provided culture-based 
mathematical environment—to construct in common mathematical meaning, so to 
say. To deal with the complex multimodality seen in these interactions, this chap-
ter investigates the interplay between gestures and speech used by second graders 
while they are occupied with a geometrical problem in pairs. In the chapter, gesture 
and speech are analyzed with an interaction analysis, and a detailed reconstruction 
of the semiotic process on a microscopic level. The main research question is: How 
and in what kind of modality—in gesture and/or speech—will mathematical ideas1 
be introduced, adopted, developed and/or refused by the children during their oc-
cupation with the given mathematical problem?

Introduction

During the occupation with mathematical problems in pairs, elementary school pu-
pils gesticulate, discuss their mathematical ideas and methods, use the provided 
material, and possibly even write something down. In a complex kind of interplay, 
these diverse modes of expression do not appear sequentially, but rather simulta-
neously and they overlap with each other. Actions can be described in speech or 

1 The term mathematical ideas can be understood as any kind of expressed contribution of the 
second graders, which contain any suggestion to solve the given mathematical problem. What can 
be described as a mathematical idea emerges and is constructed in the interaction by negotiations 
of the participants. By dint of a detailed analysis, these mathematical ideas can be reconstructed.
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imitated by gestures. The pupils talk about things they have written down, refer 
with gestures to things which were discussed before, etc. In the general view, the 
expressions—and also the interpretations of such expressions—are generated in a 
multimodal way. These multiple ways of expression will be analyzed in the present 
chapter by focusing on the special relation of gesture and speech used by the learn-
ers in mathematical interactions. Looking at gestures in mathematical situations, 
however, is a fairly new field of research in Germany, though it is increasingly 
gaining international significance (cf., e.g., Arzarello and Paola 2007; Radford 
2009; Sabena 2008). Gesture and speech are seen as a single integrated language 
system and display a special relationship with each other (cf., e.g., McNeill 1992; 
Goldin-Meadow 2003). The present chapter offers a descriptive approach to the use 
and functionality of gesture and speech in their interplay in mathematical interac-
tions of second graders. The theoretical frame makes use of previous approaches 
to multimodality as described, e.g., by Radford (2009) and Sabena (2008). These 
approaches emphasize the significance of bodily expression in the sense of “Em-
bodied Cognition” (Anderson 2003), and describe the body and its interaction with 
signs and artifacts as central “sources of mathematics knowledge” (Sabena 2008, 
p. 19). A crucial role is ascribed to the body, its integration in the mathematical 
learning environment, and its constitution of mathematical thinking and learning.

[…] thinking does not occur solely in the head but also in and through a sophisticated 
semiotic coordination of speech, body, gestures, symbols and tools. (Radford 2009, p. 111)

A semiotic approach to the data in this chapter allows a micro-analytical exami-
nation of the relationship between gesture and speech used by second graders in 
mathematical interactions. A sequence out of the domain geometry will be analyzed 
by dint of an interactional and a semiotic perspective, and will concretize the theo-
retical remarks.

An interactional Approach to the Learning of Mathematics

In the present chapter, an interactional approach of mathematics education is used 
to understand the learning of mathematics as highly socially constituted in interac-
tion.2 In mathematics education this interactional view emerged out of the orienta-
tion on the radical constructivism, research traditions of the interpretative social re-
search, and the symbolic interactionism (cf. Bauersfeld 2000, p. 117). According to 
Voigt (1984, p. 7), Krummheuer (1992), and Krummheuer and Brandt (2001, p. 13), 
the learning of mathematics is incomprehensively seen, if learning is exclusively 

2 Please note that the interaction theory is the leading approach according to the learning of mat-
hematics in the present chapter. In some sections in the chapter, other approaches will be described 
to clarify the current state of research according to the theme of the chapter. In some of these other 
approaches, the conception of the learning of mathematics is quite different from the interactional 
point of view. For example, the mismatch theory according to Goldin-Meadow (2003) in the sec-
tion about gestures in the learning of mathematics is ascribed to the psychological view and brings 
into focus the individual rather than the social constitution of learning.
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viewed as an individual process. With this in mind, research in mathematics educa-
tion is highly interested in the conditions of mathematics learning in interaction, as 
well as in the structure and organization of these social processes. In interactions, 
humans create—commonly by dint of processes of negotiation and subject to mu-
tually coordinated behavior—“taken-as-shared meaning[s]” (Krummheuer 1992, 
p. 18). Thus, argumentations which are created rather of the social “we” than of the 
individual “me” can emerge. Through the participation in these argumentations, 
the individual has the possibility to achieve more and more autonomy and get the 
chance to assume responsibility for mathematical activities. With regard to math-
ematics learning, this process is described by Krummheuer and Brandt (2001) as the 
“social phenomenon of the collective genesis of meaning” (ibid. p. 15, translated 
by M. Huth).

The perspective of the emergence of meaning in interaction does not examine 
or focus the individual mental schemes of the interlocutors, which are difficult to 
access. As Sfard (2003) states:

we should be less interested in explanations based on such unobservables as mental sche-
mes, than in descriptions of the processes of learning, their patterns and mechanisms. 
(ibid. p. 24)

Furthermore, it rarely contains the idea of any fixed and objective given mean-
ing of, e.g., mathematical terms, which can be taught to learners. An interactional 
perspective rather asks about the processes of interpretation and negotiation of 
the interlocutors which are created in and simultaneously constitute the interac-
tion. Through the mutually interrelated behavior of the interlocutors, mathemati-
cal meaning emerges in interactionally generated negotiation processes. Brandt and 
Höck (2011a) describe these mathematical negotiation processes in peer interac-
tions or in interactions between an expert and learners (e.g., teacher and pupils) as 
co-constructions (ibid. 245 f.). These co-constructions have mainly an impact on 
the individual constructions of meaning and facilitate the learning of mathematics. 
A precondition for individual learning in the frame of co-construction processes is 
the participation in the technical constitution of these interactions (cf. ibid. p. 246).

[…] the result of a joint constructed process can become more than an addition of different 
ideas or propositions. (Brandt and Höck 2011b, p. 1)

Successful mathematical learning and the creation of mathematical meaning are thus 
more than the discussion or exchange of information about word-meaning-pairs, 
e.g., between teacher and learners, but rather collectively constructed mathemati-
cal argumentations (cf. Krummheuer and Brandt 2001, p. 18). They are described 
as specific processes of interaction that facilitate the learning of mathematics. It is 
important for learners to be a part of and to take part in3 these interaction processes 

3 To be a part of means that learners orient themselves on the behavior of others. To take part 
means that the own behavior is used as orientation for others. Whereas the former can be described 
as a receptive behavior, the latter is rather an active participation (cf. Krummheuer and Brandt 
2001, 17 f.).
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in mathematics (cf. Krummheuer and Brandt 2001, 17 f., according to Markowitz 
1986). Sfard (2003) describes from this perspective of participation

[…] learning is first and foremost about the development of ways in which an individual 
participates in well-established communal activities. (ibid. p. 23)

In this way, learners can gain more and more autonomy in their participation in 
interactively generated interaction patterns.4 Their responsibility for argumenta-
tions in mathematics increases with their autonomy in these interaction patterns 
(Krummheuer 2011, 30 ff.).

Also, Sfard (2003) describes the learning of mathematics as constituted in com-
munication.5 In her “communicational approach” (ibid. p. 13), she describes that

putting communication in the heart of mathematics education is likely to change not only 
the way we teach but also the way we think about learning and about what is being learned. 
(ibid. p. 13)

Mathematics learning in Sfard’s eyes is less acquisition but merely participation in 
mathematics interactions (ibid. p. 22). Thinking and communication is no longer 
differentiated:

[…]these two “things” are to be understood as inseparable aspects of basically one and the 
same phenomenon, with none of them being prior to the other. (ibid. p. 27)

The goal of mathematics education is then to become a skillful participant of inter-
actions in mathematics. This argumentation is also found in Krummheuer (2011, 
30 f.), who describes the interplay of social and individual components of success-
ful learning in mathematics in interaction like this: The participation in collective 
argumentations in the frame of mathematical interactions can act as an orientation 
of cognitive reorganization and thus leads to a convergence of individual ascription 
of meaning and the interactively generated negotiation of meaning.

With these theories of mathematics learning in mind, two aspects seem to be 
crucial for the present chapter: First, mathematics learning takes place in the social, 
and the medium of this social world is interaction. Second, in mathematics inter-
actions different symbolic systems of expression are used to realize the processes 
of negotiation. To understand the roles of gestures and speech in the creation of 
socially constituted mathematical meaning, the present chapter would like to offer a 
puzzle piece to approximate this question. In the next sections of the chapter, it has 

4 Interaction patterns emerge in interactions and are a kind of routines or structures which can be 
reconstructed by dint of a detailed analysis of the interaction processes. These routines contain 
implicit and, for the interlocutors, rather unconscious rules which determine the process of inter-
action (cf. Voigt 1984, Krummheuer 2011). The benefit of those patterns is to stabilize the progress 
of the mathematical interaction and to guarantee the functionality. Mutual coordination of the 
interlocutors (cf. Krummheuer 1992, 40 ff.) can be realized. Interaction patterns are no (teaching) 
methods which are available or can be applied consciously. Both, the rules and the patterns emerge 
in these interactions between the interlocutors.
5 Communication in Sfard’s (2003) sense is understood as any instance of doing it and thus in-
cludes gestures as well: “whether diachronic or synchronic, whether with others or with oneself, 
whether predominantly verbal or with the help of any other symbolic system.” (Sfard 2003, p. 28).
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to be clarified, how the modalities gesture and speech which are used in mathemat-
ics interactions can be described in the frame of an integrated language system, and 
which research results are already available according to the role of gesture and 
speech in mathematics learning.

Gesture and Speech: Two Modes, But One System

Elements of the semiotic repertoire which is used in interactions, gestures, and 
speech are described as two modes of one integrated language system in the most 
psycholinguistic-based literature (cf. McNeill 1992 and 2005, Goldin-Meadow 
2003). McNeill (1992) remarks on gestures:

They are tightly intertwined with spoken language in time, meaning, and function; so clo-
sely linked are they that we should regard the gesture and the spoken utterance as different 
sides of a single underlying mental process. (McNeill 1992, p. 1)

Gestures are such stable components of the semiotic repertoire that it is probably 
almost impossible to suppress them for any length of time. But not only for the pro-
ducer of gestures, but also for the reader or rather interpreter of them, they seem to 
be important in relation to the speech used, as indicated by Kendon (2004):

The meanings expressed by these two components [gesture and speech] interact in the 
utterance and, through a reciprocal process, a more complex unit of meaning is the result. 
(ibid. 108 f.)

Also McNeill (2005) assumes that gestures are important for both—speaker and 
listener:

I mean that an individual–social duality is inherent to gesture. A gesture is a bridge from 
one’s social interaction to one’s individual cognition – it depends on the presence (real or 
imagined) of a social other and yet is a dynamic element in the individual’s cognition. (ibid. 
p. 54)6

Research shows that movements of the feet or head take over from hand and arm 
movements when the hands are artificially rested (cf. Goss 2010, p. 302). Goldin-
Meadow (2003) describes this interplay between gesture and speech as having its 
origin in early language acquisition, where gestures acts as a facilitator and path-
finder (cf. Goldin-Meadow 2003, 17 f.).7

6 This argumentation, although rather from a perspective of psychology, is in line with the above-
mentioned aspects of the relation of individual and social learning in interaction as described by 
Krummheuer (2011) and Sfard (2003). Maybe the examination of gestures can thus provide a 
bridge between approaches of psychology and psycholinguistics and the theory of interaction in 
the learning of mathematics.
7 The specific interplay of gesture and speech leads to the here described research focus. This does 
not mean that other expression modes as well as the influence of the given material on mathema-
tical interactions are ignored or disregarded. Those aspects are considered analytically by dint of 
the interaction analysis and are integrated in the interpretation of gesture, speech, and their relation 
to each other.
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For the research described in the present chapter, one can apply the definition of 
gesture used by Goldin-Meadow (2003). She describes gestures as movements of 
hands and arms during speaking:

The criteria for a gesture thus stipulate that the hand motion (1) be produced during the 
communicative act of speaking […] and (2) not be a functional act on an object or person. 
(ibid. p. 8)

Thus in the present chapter, those gestures are focused which are produced intuitive-
ly and spontaneously during speech.8 Previous analysis in the frame of the research 
project described here revealed that an “act on object” (ibid. p. 8) and gestures 
cannot necessarily always be clearly distinguished from each other at first sight. 
According to the multimodal paradigm, objects can be integrated into gestural ar-
gumentations without any functional act being performed upon them. For example 
in a situation out of the domain combinatorics, all sequences of three elements had 
to be found by two second graders. The three elements were represented by animal 
figures: an elephant and two tigers, which were nearly identical but only differently 
colored. To explain why one cannot use two identical orders out of the anima, one of 
the boys integrated the tiger figures in his gestural argumentation: The boy placed 
the two figures exactly next to each other to figure out their specific attribute of 
being nearly identical but only differently colored. Metaphorically, he included the 
two tiger figures in his explanation of sameness. At this moment, the tigers were not 
used as figures of animals or as elements in rows which were interpreted in a combi-
natorial sense. The tigers were used as an example of sameness. In such cases, these 
movements of hands and arms are examined in the present chapter as gestures in 
the analyses. The distinction between act and gesture only emerges after a detailed 
analysis has been carried out (cf. Huth 2011a).

In the present chapter, the gesture dimensions according to McNeill (2005) 
are used for descriptions in the analyses. McNeill (2005, 38 ff.) pictures four di-
mensions9 of gestures: iconic gestures (are used to describe, e.g., form and size 
of objects); deictic gestures (are used to point at something or refer to relations); 
metaphoric gestures (are used to refer to a more abstract thought or idea); and beat 
gestures (are used to beat the rhythm of speech or to underline prominent aspects 
in speech). These dimensions offer a first systematic sight on the originally less or 
not conventionalized system of spontaneously produced gestures during speaking.

In their interplay, both modes—gesture and speech—display unique characteris-
tics in terms of their means of expression. Neither is simply a support or accessory 
for the other, and neither can fully replace the other. Speech can be described as a 
linear, hierarchically organized grammatical system that follows conventionalized 

8 Spontaneously produced gestures are differentiated from those gestures which have any kind 
of standardized well formedness and/or can be understood, e.g., within a language community 
without accompanying speech, e.g., like it is described for emblems (cf. McNeill 1992, 36 ff.).
9 These gesture dimensions are often described as “categories” (McNeill 2005, p. 41). The diffe-
rent features of these categories are often mixed in the same gesture. The word categories seems 
to imply a hierarchy, which is why McNeill (2005, p. 41) recommends to use dimensions instead 
of categories.
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rules, which are fixed within a language community. Spoken words are fleeting, but 
once spoken cannot be changed or taken back, but they can be further specialized. 
They leave a kind of phonetic track in our minds which is shortly available. Speech 
can create a narrative context and can establish concepts that can outlast the present 
situation and be used in the future, e.g., as technical terminology. On the other hand, 
gesture, expressed spontaneously and intuitively during speech, does not follow any 
conventionalized parameters in the sense of a grammatically fixed system of rules 
within a community of language. However, it too displays a certain fleetingness, but 
leaves a kind of imagistic track of movements. Deictically, it can be very precise. 
Furthermore, it can refer to objects that are not currently present, or even thoughts. 
In these cases, gestures create quasi-real objects in the gesture space, which can be 
referred to in the further interaction. Gestures are described as complex formations 
of space and time (Sager 2005, p. 22), which are a kind of images created by hands 
and arms, and they often express space and time aspects simultaneously. Gestures 
which accompany speech can experience a certain degree of conventionalization 
if a gesture is repeatedly used by two speakers at the moment of interaction and 
commonly established as the representation of an object to be used over a specific 
period (cf. Fricke 2007, p. 196).

Thinking of interactions, interlocutors, on the one hand, cope with these particu-
lar possibilities of expression in a sophisticated way, and, on the other hand, also 
handle nearly perfectly the task of the interaction itself with its various require-
ments of coordination and monitoring, turn-taking, and fulfilling of social norms 
and expectations, etc.

[…] conversations are a testimony to the remarkable skill by which people are able to coor-
dinate their actions with one another. (Clark 1996, p. 325)

If gestures, in this sense, are a part of language, and language is used mainly to 
interact, and interaction is the place in which learning of mathematics emerges, the 
question for the next chapter is, which role gestures play in the learning of math-
ematics during interactions.

Gestures in the Mathematical Learning Process: 
“Stepping Stones” of Learning

With relation to the significance of gestures in mathematics learning as an over-
arching research interest, mathematics education can use results of psychological 
and psycholinguistic studies (cf., e.g., McNeill 1992, Goldin-Meadow 2003). This 
chapter will introduce some studies which are relevant to the described research10 

10 Please keep in mind that those studies are not necessarily compatible with the introduced inter-
action theory, especially with regard to the conception of mathematics learning. First, regardless 
of these differences, the approaches will be described. At the end of this section, these approaches 
will be discussed with regard to the interactional approach used in the present chapter.
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and interpret them using perspectives of mathematics education. The chosen scene 
for the following analysis is taken out of the domain geometry, which underlines the 
significance of bodily expressions, and the interplay of gesture and speech in par-
ticular. Different studies in gestures and mathematics showed that gestures particu-
larly are suitable to describe spatial relations. Furthermore, gestures are more fre-
quently used during tasks to define spatial words than non-spatial words and have 
an impact on spatial reasoning of young learners (cf. Ehrlich et al. 2006, p. 1260; 
Elia et al. 2011; Krauss 1998, p. 7).

In relation to the learning of mathematics from a psychological point of view, 
Goldin-Meadow (2003) describes the theory of “matches” and “mismatches” (ibid. 
25 ff.). Where gesture and speech express the same information, this is described 
as a match. With mismatches, gesture and speech convey different pieces of in-
formation that do not overlap. These pieces of information are not necessarily in 
contrast or even in conflict to each other, but rather often mutually compensatory 
(ibid. p. 26). Goldin-Meadow (2003, p. 51) was able to show that children who pro-
duced mismatches during the occupation with mathematical problems (e.g., while 
solving equation problems) were in a transition phase of learning.11 At first they 
showed matches with correct or incorrect strategies in speech and gesture. Then 
they produced mismatches with various correct and incorrect strategies in gesture 
and speech. A short time later, they showed matches with correct mathematical 
strategies. Furthermore, they often used gestures to express mathematical ideas be-
fore they were able to explain these strategies within their speech repertoire. Thus, 
gestures also can act as facilitators, e.g., in the development of a technical language 
in mathematics (cf. Givry and Roth 2006). Goldin-Meadow (2003) noted from her 
observations that mismatches are an important step in the mathematical learning 
process (cf. ibid. p. 54) and facilitate insights into the benefit of instructions12 (cf. 
ibid. 124 ff.). Children who produced mismatches were “ready to learn” (ibid. p. 47) 
and especially open for instructions, which they were able to use for increasing their 
constructions in mathematics. It needs to be noted that these results were generated 
by investigations with individuals in relatively clearly structured mathematical situ-
ations. According to Goldin-Meadow (2003), mismatches are evidently relevant for 
the speaker’s mental system, which means for the producer of mismatches. Follow-
ing Goldin-Meadows description (2003) obviously utterances can be recognized as 
a mismatch if semantically different meanings can be reconstructed in the respec-
tive movements and spoken words. In my research work, I was able to reconstruct a 
mismatch according to Goldin-Meadows (2003) definition: In a measurement situa-
tion, two second graders were occupied with the volume of cubes (cf. Huth 2011a). 

11 The children had to solve equation problems of the following kind: 3 + 7 + 4 = __ + 4. A match 
was observed, when a child said: “I add 3, 7 and 4” accompanied with a pointing gesture from 
the left to the right on the 3, the 4 and the 7 on the left side of the equation sign. A mismatch was 
observed when a child uttered the same words in speech but simultaneously showed a pointing 
gesture to 3 and 7 with an extended index and ring finger. In this case, the 4 on the left side of the 
equation sign was gesturally excluded (Goldin-Meadow 2003, p. 44).
12 Please note that the concept of instruction in the here-described approach is understood rather in 
a narrow sense and as a kind of very clearly defined teaching sessions.
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They had to answer the question, how many wooden cubes with a side length of 
3 cm will fit in an edge model of a cube (side length of 9 cm). The children first 
filled the edge model. Then one girl suggested to count three layers, as she said. 
What she then did was rather a counting of columns of wooden cubes than a count-
ing of layers. Her interaction partner’s reaction was a kind of confusion. In the 
analysis it could be reconstructed that for the girl layer and column were not differ-
ent ideas of counting the wooden cubes: She presumably counted layers of wooden 
cubes in each column of those. For her interlocutor these two concepts of volume 
seemed to be highly incompatible at the beginning of the sequence. In the progress 
of the situation, she was also able to integrate the column idea in her strategy of 
counting layers (she counted each side of the cube). At the end of the situation, both 
girls used both strategies but in quite different ways. With this in mind, the question 
is, when is a mismatch a mismatch and for whom, and which effect can a mismatch 
have on the level of interaction and the progress of negotiation of meaning. In the 
study of Goldin-Meadow (2003), the reconstruction of the mismatches produced by 
the children was made by the research team. Although they used a detailed system 
to carry out, what can count as a mismatch, the question is, which impact do mis-
matches have on the level of interaction: In the perspective of the interaction theory, 
like it is used in the here described research, the interactional effects of mismatches 
are of special interest, e.g., how they are perceived and handled by the interlocutors. 
It will also be necessary to seek to describe the specific nature of mismatches, and 
to illustrate in more detail what Goldin-Meadow (2003, p. 26) has already indicated 
with her description of a continuum of matches and mismatches.13 McNeill (1992) 
investigated the effects of mismatches on the listener, offering various artificially 
generated mismatches as input for test persons (cf. ibid. 134 ff.). The mismatches 
were subdivided, e.g., in categories of space and form.14 McNeill (1992) was able to 
show that, when the mismatch input they had experienced was reproduced, the test 
persons always tried to correct the mismatch in some way. The study allows one to 
conclude that it is evidently possible to distinguish mismatches according to their 
manner (space, form), and possibly further aspects (e.g., level of organization of 
the discourse, level of content, etc.). Furthermore, one can assume that mismatches 
have effects on the listener and the process of interpretation of utterances. The ques-
tion with regard to these research results is, whether these can be transferred to and 
confirmed in relatively natural mathematical interactions of second graders, which 
are examined in the present chapter.

13 Goldin-Meadow (2003) describes a continuum of matches and mismatches based on the degree 
of overlap of information in gesture and speech (cf. ibid. p. 26).
14 Mismatch of space (with relation to the gesture space): In an ongoing narration, an actor is sited 
in a certain area of the gesture space, e.g., on the left side of the gesture space. Then the narrator 
uses another area as the space of reference for the same actor, which was already established for 
another actor. The gesture shows a shift of space, whereas the speech implies continuity of referen-
ce, e.g., by using the same pronoun “he.” Mismatch of form: A narrator uses verbs that refer to a 
motion but do not convey any information about the manner of this motion, e.g., come. In gesture 
then the form of motion is shown, e.g., by bouncing up and down with the hands (cf. McNeill 
1992, p. 135).
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Cook and Goldin-Meadow (2006) investigated the influence of gestures in 
mathematical instructions15 which were especially enriched with gestures. They 
noticed that learners benefited from instructions in the learning of mathematics, 
at first through imitation but above all through making these gestures to their own 
ones. Cook and Goldin-Meadow (2006) tried to find a reason for these results and 
latched onto some results from the field of behavioral research, describing, e.g., the 
imitation of actions as learning opportunities (cf. Carpenter et al. 2005). But with 
gestures, it was not merely a question of imitating arm and hand movements. In 
gestures a goal is not inherent in the movement, as it is, e.g., in imitating pressing 
on the light switch. Especially in mathematical situations of instructions, learners 
had to understand what the showed gestures represent. Cook and Goldin-Meadow 
(2006) were also able to show that instructions that included gestures could have 
long-term effects on learning, because learners were able to transfer the gestures 
they learned to their own repertoire and they used them to solve further mathemati-
cal tasks (cf. ibid. 226 f.).

McNeill (2005) also describes the imitation of gestures between speakers in 
interaction. According to McNeill (2005), an imitation of gestures between inter-
locutors can take place in different ways: Mimicry is ascribed to gestures which are 
imitated by the interlocutor while he or she reacts on something the speaker said. 
Appropriation is observable when, e.g., the interlocutor copies a gesture during 
the speaker’s speech and even coordinate his own hand movement with the speech 
rhythm of the speaker. McNeill (2005) signifies these imitations not only as an 
imitation itself but above all as an insight into mental processes of the interlocutor 
(cf. ibid. 159 ff.).

In mathematics education, Arzarello and Paola (2007) described the imitation 
of gestures in mathematical interactions between teachers and pupils. They found 
that in a so-called “semiotic game” (Arzarello and Paola 2007, p. 18) the teacher 
integrates gestural “personal signs” of the pupils that show less technical terminol-
ogy elements, into an adequate mathematical reasoning, called the “institutional 
signs” (ibid. p. 23). According to this theory, the integration of gestures showed 
by learners in the explanations of the teacher will foster learning, especially with 
regard to the development of an appropriate mathematical language. In this ap-
proach, the teacher is always seen as a role model for an adequate use of a techni-
cal language in mathematics. With relation to symmetrical mathematical inter-
actions of learners, the question emerges whether the imitation and adaption of 
gestures can also be reconstructed between pupils, and what effects these assump-
tions of gestures have in the ongoing mathematical interaction. Can they be seen 
as instructions (in a very broad sense of a kind of stimulus for the development of 
signs) for constructions? In my previous research work, I was able to show that the 
former question may very much be answered in the positive, and that gestures then 
experienced a further development within the mathematical interaction. Gestural 
signs were taken over between the learners, they were adapted and used by the 

15 Instruction in the here-described study of Cook and Goldin-Meadow (2006) is understood as 
clearly structured teaching sessions with planned gesture and speech instructions.
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pupils for their own strategies and emerged to more developed signs as construc-
tions. In a so-called “semiotic game among equals”16 (Huth 2011b, according to 
Arzarello and Paola 2007), an exchange of signs between gesture and speech could 
be observed: speech signs were transformed into gestural signs, and in this way 
they were a part of the ongoing mathematical process of negotiation and thus earn 
further development.

With regard to the impact of mismatches in mathematical interactions of learn-
ers, I was able to show that they were used as a kind of source of mathematical strat-
egies. In the above-described example out of a measurement situation (counting 
layers and/or columns of wooden cubes), the mismatch fulfilled this role: The two 
strategies ( layers and columns) were adopted by the two interlocutors in different 
ways to solve the problem. While the one girl combined them from the beginning 
and developed an adequate solution by dint of these strategies, the other girl first 
took the layers into focus. At the end and with a further hint of her interlocutor, she 
was able to add also the column idea in her counting process. The two strategies, 
which were introduced at the beginning of the situation in speech and in gesture, 
were adopted, further developed as well as integrated in their own strategies by the 
interlocutors, which displays the importance of mismatches in these interactions 
with regard to mathematical constructions. In this example, the relation of imitation 
of signs and mismatches is also becoming apparent. In the view of an interactional 
theory, mismatches are indeed a part of the negotiation processes of learners during 
their effort to generate “taken-as-shared meanings” (Krummheuer 1992, p. 18). The 
described studies characterize imitated gestures as important events in interaction, 
especially in mathematical learning environments with regard to instruction and 
construction.

Gesture and Speech as Signs

In order to investigate gestures and speech in mathematical utterances of learn-
ers and interpret them as signs, a theory is required that enables the description of 
conventionalized as well as non-conventionalized signs. Peirce’s concept of signs 
is especially appropriate (cf. Fricke 2007, 182 f.). Peirce places the focus square-
ly on the sign itself and emphasizes the significance of the interpretation process, 
which is initiated when a sign is perceived as such. This aspect links in particular 
to an interactional theoretical perspective. Schreiber (2010) was able to show that 
Peirce’s theory of signs may indeed be used to appropriately analyze mathematical 

16 Among equals means that both interlocutors were equal concerning their role in the mathemati-
cal interaction: No explicitly and previously defined role model or more advanced interlocutor of 
adequate mathematical reasoning participates. Both pupils take part in the interaction with their 
mathematical way to interpret the given problem. There is no knowing professional, and no inex-
perienced and unknowing novice. It is a more symmetrical interaction between peers in which, of 
course, these asymmetrical roles can possibly emerge and can be negotiated between the interlo-
cutors.
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interactions of learners (cf. Schreiber 2010, 56 ff.). Peirce describes three relata as 
a sign: representamen, interpretant, and object (in the following often abbreviated 
as R, I, and O). The portrayal of this concept of signs therefore involves a triad, 
with the help of which all three aspects of the sign can be related to each other (cf. 
Fig. 10.1). Peirce describes a sign as follows:

A sign, or representamen, is something which stands to somebody for something in some 
respect or capacity. It addresses somebody, that is, creates in the mind of that person an 
equivalent sign, or perhaps a more developed sign. That sign which it creates I call the 
interpretant of the first sign. The sign stands for something, its object. It stands for that 
object, not in all respects, but in reference to a sort of idea, which I have sometimes called 
the ground of the representamen. (Peirce 1931-1935, CP 2.228)

First, the representamen can be seen as an external and perceivable sign and can be 
a word, a gesture, etc. This representamen creates in the mind of the sign reader an 
interpretant, which at first can be understood as the meaning of the sign for the sign 
reader (inner sign). The object which the sign relates to is also related to both the 
representamen and the interpretant. According to Peirce a sign only becomes a sign 
when it is perceived as a sign and interpreted by a subject. The process of signs is 
never ending, since an interpretant produced in the mind of the sign reader can be 
expressed as a new representamen by the interpreting subject, which is obligatory 
for the sign process (Dörfler 2005, p. 171). In relation to the occupation of learn-
ers with mathematical problems, Schreiber (2010) was able to show that the sign 
process is not linear but displays a complexity. Sign processes may run parallel to 
each other, e.g., if one representamen leads to the creation of several interpretants 
(cf. ibid. 148 ff.). Schreiber (2010) developed the semiotic process cards to analyze 
these sign processes. In the here-described research project, these semiotic process 
cards were adopted on a multimodal level. In this way, the complexity can be con-
firmed with regard to different modes of expression (cf. Huth 2011a). In the quote 
above, Peirce refers to a kind of background idea which shows a stability over a 
short time: the ground of the representamen. This idea is used to interpret the sign 
and in this sense it determines the creation of an interpretant of the sign. The in-
terpretation of Schreiber (2010, p. 37) of the ground concept as frame is affected 
by the frame theory of Goffman (1977) and is mainly based on the interactional 
approach of Krummheuer (1992). According to Schreiber (2010, 36 f.), a frame is 
activated if a sign is perceived as a sign. The frame offers an interpretation back-
ground which is determined by the number of experiences. In Schreiber’s (2010) 
description of frames, the centrality of the social in line with the interaction theory 

Fig� 10�1  The sign triad after 
Peirce
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becomes apparent. Schreiber (2010) describes his further developed concept out of 
Peirce’s ground of the representamen, hence, in a social context as

socially taken-as-shared and available knowledge in the sense of frames (of interpretation). 
(ibid. p. 59, translated by M. Huth)

In the present chapter I will not describe these frames in the later-discussed example 
in detail in view of an adequate number of pages and refer to Huth (2011a) concern-
ing further remarks.

Method of Analysis and Research Focus

The data collection was based on the so-called Didactic Design Patterns (cf. Vogel 
2014, Wippermann and Vogel 2004). These patterns of description facilitate the 
dispersion and communication of didactic knowledge, and enable it to be written up 
clearly in comparable categories and to be further developed. By dint of the didactic 
design patterns, the instruction part of the mathematical situation can be planned 
adequately according to the assumed and possible constructions of the learners (cf. 
Vogel 2014), which naturally emerges concretely when the situation takes place. 
Thus, the didactic design patterns are descriptions of didactically planned math-
ematical situations on a continuum between openness and closeness in the sense of 
didactical arrangements. Learners can bring in their ideas to mathematize the given 
learning environment, but there is a central theme or idea defined and described in 
the patterns. The mathematical situations17 that were developed for the study can 
be assigned to three mathematical domains: geometry, combinatorics, and measure-
ment. In the chapter, a sequence out of a geometrical situation will be analyzed. 
For the qualitative data analysis, a combined method is used:18 In a first step, tran-
scripts19 of the video-recorded situations are analyzed with the interaction analysis20 
according to the interpretative research in mathematics education (cf. Krummheuer 

17 Each situation is accompanied by an adult who presents it to the children and gives spare impul-
ses if needed. The concept of instruction in the didactic design patterns is understood in a broader 
sense and allocates a set of those impulses. In the planning of this set of impulses thought has been 
given to describe possible ideas of the children in the situation. The accompanying person can use 
this set of impulses to choose them adequately according to the mathematical ideas of the children.
18 In the present paper the analyses will not be described in detail, but portrayed as summarized 
interpretations.
19 With regard to an adequate number of pages, the transcript of the chosen and described sequence 
is not portrayed in the given paper. The produced utterances in speech and gesture, the actions of 
the interlocutors, as well as the whole process of interaction can be seen in the semiotic process 
card (cf. Fig. 10.5).
20 The interaction analysis is based on a sequential proceeding to reconstruct the development of 
the theme in the progress of the interaction. In this proceeding from turn to turn, the interaction 
analysis leans among others on the conversation theory (cf. e.g. Eberle 1997). Aspects of the con-
versation analysis are adopted to focus not only the organizational aspects but mainly the develop-
ment of the theme of the interaction (Krummheuer and Brandt 2001, p. 90).
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and Naujok 1999, Krummheuer 2012). In order to avoid a dominance of speech 
in the interpretation, the two modalities—gesture and speech—are separated with 
each utterance, and at first only the arm and hand movements are analyzed. In the 
consequent procedure, the alternatives for interpreting the gestures are narrowed 
down through the inclusion of the interpretations of the speech used. In this process, 
a most probable interpretation emerges for the whole interaction. In the second step, 
a micro-analysis of the relationship of gesture and speech is conducted with the 
aid of the semiotic triad of signs after Peirce. Here the semiotic process cards from 
Schreiber (2010, 60 ff.) are adopted and extended on a multimodal level. Following 
Peirce’s theory of signs, two triads are used—one for gesture and one for speech 
(cf. Fig. 10.5 in the present chapter)—which are linked by a common interpretant. 
The theoretical assumptions displayed above lead to the following overarching re-
search focus: How and in what kind of modality—in gesture and/or speech—will 
mathematical ideas be introduced, adopted, developed, and/or refused by the chil-
dren during their occupation with the given mathematical problem? It is particularly 
interesting what happens on the level of interaction if a mismatch appears. Previous 
results to these events in mathematical interactions of learners and to the above-
described “semiotic game among equals” (Huth 2011b) can be used, empirically 
tested and possibly further developed.

The Relation of Gesture and Speech in the Empiricism

In the following chapter, an example will be described which will concretize the 
theoretical assumptions. With regard to the research focus, an interaction analysis 
as well as a semiotic analysis will be conducted to deepen previous findings and 
facilitate a theoretical development according to the research focus.

Introduction of the Chosen Sequence

The herein-described sequence is from a video-recorded mathematical situation 
which can be assigned to the mathematical domain geometry. The situation is called 
building. Out of a given repertoire of different LEGO® DUPLO® bricks in three 
sizes, each of the participating pupils Jana and Ayse should at first construct a build-
ing without any demands, except to use all of the given bricks. In the following 
situation, each of them should emulate the building of the partner, only regarding 
the speech description of the interlocutor and without seeing the original building 
of the partner. A dividing wall is used. In a mathematical sense, a three-dimensional 
object has to be built and described in speech. Then the design description of the 
interlocutor has to be used to construct a three-dimensional object which is congru-
ent with the original building. Both pupils had the following LEGO DUPLO bricks 
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at their disposal: eight 2 × 2 bricks21, eight 4 × 2 bricks, and two 6 × 2 bricks. Jana 
worked with a green-colored set of these LEGO DUPLO bricks; Ayse’s bricks were 
blue. The sets were identical concerning to the numbers of different LEGO DUPLO 
bricks. Ayse constructed a building (building 1), which should later be emulated by 
Jana (building 2). A dividing wall between the two girls prevented Jana from see-
ing building 1. Jana had to reconstruct the original building 1 only by listening to 
Ayse’s description in speech. After a while of trying, the dividing wall was removed 
as desired by the children. Jointly, Jana, and Ayse now attempted to bring building 
2 more in line with building 1. In the chosen sequence, both of them can see both 
buildings and also gestures can be used to explain mathematical ideas.

Jana and Ayse are in the second grade of an elementary school with urban catch-
ment in Frankfurt on the Main. About 70 % of the pupils have a migration back-
ground. Many families of the pupils have a low socioeconomic status. Jana’s moth-
er tongue is German. At the time of the video recording, Jana is 8 years old. Ayse 
has a Turkish background and is 7 years old. Her German proficiency is nearly on 
the mother tongue level. The girl’s teacher describes their mathematical knowledge 
as being average. Both pupils were chosen as participants of the study because of 
their willingness to join in the offered mathematical situations in common, and 
according to prior consulting with their class teacher. Furthermore, 1 week before 
the mathematical situations were conducted, the researcher visited the class of the 
children to join in their daily routine in school. No math tests were conducted to 
choose the participants or to check their math level.

Building 1 (cf. Fig. 10.2, on the left) is the original building and building 2 (cf. 
Fig. 10.2, on the right) the replica at the beginning of the chosen sequence. The 
bricks are numbered, except the two 8-bricks at building 2. Side C at building 1 and 
side A at building 2 are the subject matter of negotiation in the following interac-
tion. Obviously, the two girls do not pick out as a central theme here that already the 
first floors of the buildings were constructed in different ways. The girls rather try 

21 In the following analyses, the LEGO DUPLO bricks will be signified after the numbers of knobs 
they have on their upper side, e.g., the 4 × 2 brick is called 8-brick. Furthermore, in the buildings 
most of them are numbered, e.g., brick 2, brick 15, etc. (cf. Fig. 10.2).
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Fig� 10�2  Building 1 and building 2 at the beginning of the analyzed scene (The bricks are dif-
ferently colored to illustrate the transitions between them. The girls had single-colored bricks. 
(figure created with LEGO Digital Designer, http://ldd.lego.com/ [27.01.2012]))
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to bring the side A at building 2 more in line with the comparable part at building 
1 (side C).

At the beginning of the interaction, both buildings are in front of the girls, like it 
is shown in the sketch below (cf. Fig. 10.3). Jana has just placed the 8-brick between 
brick 3 and brick 4 at building 2 (cf. Fig. 10.2).

Summarization of Interpretation—Interaction Analysis

The attempt to bring side A of building 2 more in line with side C of building 1 can 
be described as the main and jointly generated topic of both interlocutors in the fol-
lowing analyzed scene after a long period of single-working before. Especially the 
positions of the 8-bricks at side A of building 2 are the subject matter of negotiation 
in the following interaction. At the beginning of the sequence, the grasp of Ayse at 
the 8-brick between the bricks 3 and 4 at building 2 leads to a protest of Jana which 
she utters in speech. “Ey (inaudibly spoken) that’s right\ I have looked/” is ac-
companied by a gesture with both flat hands. Jana’s hands cover symmetrically and 
nearly completely side A at building 2. The hands are used as something like a flat 
thing to cover the building, which can be described as an iconic gesture according 
to McNeill (2005, 38 ff.). Further manipulations on this side of the building would 
not be possible any more. No one can even take a glance at this side of the build-
ing. Nevertheless, looking seems to be the preferred strategy of the two girls: It is 
observable that the utterance of looking at both buildings in speech often leads to 
changing of some bricks or marking them as set correctly or incorrectly. Obviously 
Jana is sure of the correct position of the grasped brick, or the whole construction 
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of this side of her building. Jana’s wording and accentuation (“right”) underlines 
her wish to make this clear. Furthermore, the accentuation refers to her opinion 
that there are in general “right” and “wrong” positions of bricks at the building, 
which seems to be discovered by looking at both buildings (cf. “I have looked/”). 
On the first sight, the following fixed deictic gesture of Ayse on brick 15 at build-
ing 1 marks this brick as comparable to the afore-grasped 8-brick at building 2. 
Ayse maintains the fixation by gesture of brick 15 at building 1, even through the 
subsequent rotation of building 1. The index finger marks at first the point of origin 
of the rotation. In speech Ayse seems to agree with Jana (“yes\ (here) and now-”) 
and refers to “here,” with which obviously brick 15 is meant. It is a kind of answer 
to Jana’s plea before. Then Ayse unfixes her index finger from brick 15 and rotates 
building 1 several times with both hands left and right at the building. She stops 
the rotation when building 1 is in the same adjustment like building 2. This action 
presumably leads to a better possibility of comparison. In speech Ayse states as 
opposed to her above-mentioned agreement: “no but not right\ look\.” Obviously, 
she discovered through the rotation anything which is “not right” in her eyes, e.g., 
a position of a brick on side A of building 2 or the whole building. Afterwards Ayse 
points eight times in an energetic way on brick 16 at building 1 and obviously marks 
it with these gestures as “not right.” Only the gesture displays the changed refer-
ent from brick 15 to brick 16. Here, a deictic or pointing gesture is mixed with the 
beat dimension of gesture (cf. McNeill 2005, p. 41) to underline the importance of 
this brick or/and the accompanying speech utterance. Only with regard to the given 
environment and the given mathematical problem does it become apparent that the 
comparable 8-brick at building 2 is meant with “not right,” and not brick 16 at build-
ing 1 itself. Furthermore, her energetic pointing seems to signalize for her interlocu-
tors that soon thereafter a crucial mathematical idea will be introduced. Looking is 
again the strategy to decide whether a brick is set correctly or not. Here it is directed 
through the accompanying pointing gesture. The comparison between both build-
ings becomes apparent through gestures and the strategy of looking, while gestures 
mark exactly which brick is meant. Furthermore, the herein uttered gestures seem 
to mark not only single bricks at one building, but refer to the relation between one 
brick in the original building and its comparable brick in the copying building. This 
seems to be implicitly clear between the two pupils, because they never discuss this 
aspect explicitly. In speech, Ayse obviously describes how the position has to be 
modified to make it “right”: “(a little) in the middle” she says. This utterance can 
be signified as a central mathematical idea in the following scene. While Ayse is 
speaking, Jana brings the 8-brick at side A of building 2 between bricks 2 and 3 in a 
new position. Thus Jana obviously understands Ayse’s utterances with regard to one 
brick but not with regard to the whole building, which has to be set “in the middle.” 
Jana sets the 8-brick “in the middle,” so that inside and outside at side A one row of 
the knobs is overlapping. The position of this 8-brick, which was denoted as “right” 
by Jana before, is obviously no longer correct. The rotation and Ayse’s utterances of 
the mathematical idea to set bricks “(a little) in the middle” seem to convince Jana 
to change the position of this brick. How to place something/a brick “in the middle,” 
is not necessary to be discussed between the two girls. One can interpret that Jana 
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mainly considers the speech utterance of Ayse and disregards the changed reference 
object in Ayse’s gesture. Ayse’s previous utterances are perhaps interpreted by Jana 
in the following: First, brick 15 at building 1 seems to be compared to the 8-brick on 
building 2 between bricks 2 and 3. Ayse says that this brick was set correctly. After 
a few moments, Ayse obviously changes her opinion and now says that the position 
has to be corrected “(a little) in the middle.” This is what Jana is doing now. She 
does not recognize that Ayse changed the reference object in her gesture to brick 16. 
In speech Ayse did not reveal that another brick was meant, namely the pendant of 
brick 16, which is set between bricks 3 and 4 at building 2. Again the gesture not 
only marks brick 16 at building 1 but brick 16 in relation to the comparable brick 
at building 2. According to McNeill (1992, 134 ff.) and with regard to the level of 
interaction, a mismatch can be assumed here which is comparable to what McNeill 
(1992) described as a mismatch of (gesture-)space. The interpretation of Jana is 
based on the disregarded change of the reference object, which is not explicitly 
perceivable in Ayse’s speech. Only in her gesture, Ayse changed the referent to 
brick 16. This is the reason why Jana changed the position of the 8-brick which was 
set between bricks 2 and 3 “in the middle” at side A of building 2. The mathemati-
cal idea “(a little) in the middle” was introduced in speech and was set in relation 
to the meant bricks by gesture. But only the speech utterance was adopted by the 
interlocutor Jana, so that a mismatch on the level of interaction becomes apparent.

With regard to the question what is meant by “(a little) in the middle,” and Jana’s 
interpretation of this utterance, Ayse does not raise a plea. Thus, this interpretation 
can be described as a “taken-as-shared meaning” (cf. Krummheuer 1992, p. 18) of 
the two girls: A brick is placed so that inside and outside one row of knobs overlaps. 
This position is called “in the middle” by both girls.

With the action of Jana, the encircled part of building 2 gets a mirror image of 
the comparable part of building 1 with no preserving of orientation. The imagined 
plane of reflection would stand between both buildings (cf. Fig. 10.4, first layer of 
the buildings has to be ignored). It is still not clear whether Jana recognizes that 
building 2 is laterally reversed in comparison to building 1, or whether she attaches 
importance to this at all with regard to the given mathematical problem. For Ayse, the 
fact that building 2 is a mirror image of building 1 obviously leads to a correction of 
the position of the 8-brick at building 2, which was set between bricks 3 and 4. There 
emerges presumably a difference in the individual definition of what is meant by 
copying a building. Ayse obviously puts her previous remark in action: She puts the 
8-brick between bricks 3 and 4 at building 2 “in the middle,” like it is negotiated be-
fore. In speech Ayse explains her action and points out, which brick was meant: “This 
is what I’ve done to the middle\(inaudibly spoken) (.) like this\.” This is the first time 
that Ayse explicitly makes clear by her act on the object brick, what she means by “in 
the middle.” With regard to her action, it becomes apparent which brick was meant, 
namely the 8-brick between the bricks 3 and 4. Jana does not cover building 2 again, 
so that Ayse is able to manipulate the 8-brick without any difficulty. The reticence 
of Jana here emerges possibly from Ayse’s grasping of Jana’s hand. In the next ut-
terance Jana first points at the 8-brick between bricks 2 and 3 at building 2 with her 
right forefinger. Jana lays some fingertips of her left hand down on the 8-brick be-
tween bricks 3 and 4. In gesture, she obviously marks the bricks which are important 
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for her in this moment. Maybe this is an imitation and adaption of Ayse’s previous 
behavior: Ayse also marked the important bricks by pointing several times on them. 
Probably Jana’s fingertips at the 8-brick between bricks 3 and 4 sustain this brick for 
the following manipulation: Jana changes the position of the 8-brick between bricks 
2 and 3 at building 2, so that outside two rows of knobs overlap. One can assume that 
Jana recognizes Ayse’s intention to create a congruent copy of building 1 which has 
the same orientation, and that Jana now tries to support this plan. Also the interpreta-
tion persists that for Jana the fact that building 2 is right–left reversed to building 1 is 
not relevant. Jana utters in speech: “No but this-(.) this was already in the middle\,” 
what is rather contrarily to her action. The 8-brick between bricks 2 and 3 was in the 
middle, but nevertheless Jana changes its position now. Maybe Jana does not want 
to concede this point to Ayse. It can also be more and more assumed that for Jana it 
is not relevant whether the copy of building 1 is preserving orientation or not. At the 
end of the chosen sequence and from an outside perspective with regard to the task 
of copying a building, the adjustment of the upper row of side A at building 2 to the 
upper row of side C at building 1 can be described as completed.

Summarization of the Semiotic Process: Semiotic Analysis

The semiotic process card, as is portrayed below, is used as an instrument for analy-
sis (cf. Fig. 10.5). Furthermore, it shows the semiotic process in the described math-
ematical interaction of Jana and Ayse. Generally, one can see two triads22, which are 

22 There is a triad for gesture (on the right) and a triad for speech (on the left). When there is no 
speech utterance at all, there is only one triad for gesture. The triads are numbered. Parallel utte-
rances are portrayed by parallel triads which are marked with indices a, b,….
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Fig� 10�4  Side A of building 2 (on the left) as a mirror image of side C of building 1 (on the right)
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Fig� 10�5  Semiotic process-card of the analyzed sequence
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linked to each other by dint of a jointly generated interpretant. The complexity of 
the semiotic process (cf. Schreiber 2010) is confirmed on the multimodal level, and 
at points in interaction where one representamen leads to more than one interpretant 
(cf. triads 4a and 4b in Fig. 10.5).

In the chosen sequence it is negotiated, how and which of the 8-bricks at side 
A of building 2 has to be changed according to their positions, to create a replica 
of building 1. The interaction analysis showed that an important position of these 
8-bricks is called “(a little) in the middle,” and means for the girls that inside and 
outside one row of knobs overlaps. With regard to the overarching research ques-
tion, the semiotic analysis allows one to observe in detail, in what kind of modality 
mathematical ideas will be introduced, adopted, developed, and/or refused by the 
interlocutors.

In triad 1, Ayse utters as her representamen in gesture a grasping on the 8-brick 
at side A of building 2, which was set between bricks 3 and 4. It seems to be a sug-
gestion of an action which is shown in gesture. Instead of repositioning the brick in 
fact, Ayse fixes the grasping. As an object one can assume the required correction 
of the position, shown as the suggested action. This representamen creates in the 
mind of Jana an interpretant that is expressed in the following triad 2: In speech 
Jana produces “Ey (inaudibly spoken) that’s right\ I have looked\.” In gesture, she 
fully covers side A of building 2 by dint of a nearly symmetrical gesture with both 
flat hands.

With this representamen Jana obviously tries to avoid any further actions at side 
A of building 2 which can be seen as the object of the triad. With her gesture, Jana 
also avoids any glance on side A. Especially with her formulation in speech in 
which she again refers to looking as an adequate strategy, this seems to be conspicu-
ous. In the semiotic analysis, it becomes apparent that the speech representamen 
mainly includes the protest of Jana in relation to Ayse’s suggested action. The ges-
ture of Jana displays a short-term but effective solution by way of covering side A 
completely. It is evidently observable that gesture and speech are used effectively in 
relation to their above described special possibilities of expression. Here, the ges-
ture seems to be a little bit faster than speech because it shows an effective solution 
by covering the building. In the further sign process, Ayse utters her created inter-
pretant as a new representamen in triad 3, which seems to be contradictory at first 
sight: “Yes\(here) and now- no but not right\ look\.” At first she obviously agrees to 
Jana, but only a few moments later, she says “no but not right\.”. This discrepancy 
is also getting obvious in the speech object and can only be resolved with regard to 
the gesture used. In the gesture object, brick 15 at building 1 can be assumed as a 
comparable brick to a brick at building 2. Brick 15 or/and its comparable brick at 
building 2 are denoted as rightly placed bricks. Ayse fixes her pointing gesture at 
brick 15 and uses this pointing as the origin in the following rotation. Finally and 
through the use of further rotations, building 1 is in the same adjustment as building 
2. In triads 4a and 4b, two interpretants are created out of the representamen of triad 
3 which shows the complexity of the semiotic process which is already described 
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by Schreiber (2010). Ayse obviously carries on her reasoning in triad 4a. She intro-
duces in speech a description of what she assumes to be the correct position of the 
8-brick at side A of building 2: “(a little) in the middle.” This can also be assumed 
as the speech object. In gesture the referent is changed from brick 15 at building 1 to 
brick 16 at building 1, but this changing is not explicitly expressed in speech. Both 
objects—in speech and in gesture—seem to refer to different meant bricks. With 
regard to her speech only, one can assume that again brick 15 is meant. With regard 
to her gesture, it is clear that brick 16 is meant. Out of the interaction analysis, it is 
known that this is a crucial point in the interaction of the girls, where a mismatch 
becomes apparent. By dint of the semiotic analysis, it is obviously possible to docu-
ment this mismatch in the form of different objects and interpretants in the triads in 
relation to one representamen.

At the same time, in triad 4b Jana creates a new representamen, which includes 
an action: Jana changes the position of the 8-brick at building 2 which was sited 
between bricks 2 and 3. The brick now is “in the middle.” Jana disregards the 
change of the referent, which is only shown in Ayse’s gesture. Jana seems to at-
tach importance to Ayse’s speech only. Thus, Jana does not integrate the change 
of referent in her interpretation and dislocates the 8-brick “in the middle,” which 
presumably was not intended by Ayse. The mismatch, which emerges here on the 
level of interaction, and which is also seen in Jana’s interpretation, leads to the 
following situation: The upper layer of side A of building 2 is a mirror image of 
the upper layer of side C of building 1. Obviously, Ayse recognizes the different 
interpretations of both girls with regard to the 8-bricks, and the question which 
brick has to be set in the middle. She utters a kind of correction and tries to show 
which brick is meant in triad 5. Her representamen in gesture refers to a kind of 
demonstration as the object. At first Ayse grasps Jana’s hand, then Ayse accom-
plishes the repositioning on her own. Ayse places the 8-brick between bricks 3 
and 4 at building 2 in its “right” position with an overlapping of one row of knobs 
inside and outside of side A. An approximation of the object in speech and the 
object in gesture can be observed: Both representamens refer to a correction of 
the brick position. At the end of the sequence, it becomes apparent that for Jana 
this is not a discrepancy in relation to what was done before. In speech she utters: 
“no but this- (.) this was in the middle already.” With this negation she refers to 
the speech object which shows her opinion that the 8-brick, on which she now 
shows a pointing gesture, was already set correctly before. Maybe, it is irrelevant 
for Jana, whether the copy of building 1 is in the same orientation or laterally 
reversed. At the same time, she repositions the 8-brick between bricks 2 and 3 at 
building 2, so that outside two rows   of knobs are overlapping. She finishes her 
action by pointing twice at the repositioned 8-brick, which can be described as a 
beat gesture according to McNeill (2005, 40 f.). The pointing and marking of the 
bricks are a kind of adaption of Ayse’s previous behavior, and frames the action 
of Jana. Again, the gesture seems to be a bit further than the speech used, which 
can be shown in the objects of both triads.
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Conclusions

In the chapter, the process of semiosis as a semiotic game among equals (cf. Huth 
2011) is described. Signs were imitated, adopted, and negotiated between the two 
participating pupils in the shown example. Instruction23 and construction within the 
use of signs in the described interaction are observable. One can assume that in the 
situation the mathematical sign “in the middle” that is introduced in speech is related 
to the given material by gesture, and adopted or transformed in acts on the copied 
building. The pointing gestures seem to be the instrument to emphasize which brick 
is meant for both girls. And furthermore the gestures display for what brick the cur-
rently mathematical idea is significant. The gestures are adopted between the two 
interlocutors to underline their own mathematical opinion about what, for them, can 
be regarded as a copy of building 1 according to the expected mathematical solution 
of the problem. By gesture, the girls refer not only to single bricks, but rather to the 
relevance of the bricks concerning the given mathematical idea to put them “in the 
middle.” They refer to bricks and their comparable brick in the other building. Only 
by observing the gestures is it understandable which bricks are meant and how these 
bricks have to be placed. The girls in the shown example have different interpreta-
tions, which brick has to be placed “in the middle.” This results obviously out of the 
difference in the interpretation of what is considered as a copy of a building: Is a lat-
erally reversed building an adequate mathematical solution or not? Furthermore, the 
gestures which are used by the girls relate both buildings to each other and combine 
comparable bricks in the buildings. A pointing (a deictic gesture) emphasizes not only 
one single brick but rather this brick with regard to the comparable brick in the other 
building. They use this pointing repeatedly and it seems to be clear for both of them 
what is meant by this. Pointing here is more than just creating a joint focus of atten-
tion: It is a kind of taken-as-shared mathematical meaning (cf. Krummheuer 1992) 
which emerges between the interlocutors: One brick is marked metaphorically as to 
stand for itself and for the comparable brick in the other building. The interpretation 
of the girls in this sense is not challenged by the girls at any time in the progress of the 
situation. In a mathematical sense, it is describable as a bijective mapping between 
the sets of bricks of buildings 1 and 2. The deictic gesture is ascribed a kind of meta-
phorical meaning. The environment offers a frame of interpretation of signs, which 
also could be described as a kind of instruction to read signs, which then leads to con-
struction to create or develop (new) signs. The analyses also show that actions and the 
given environment have to be considered, especially within the described theoretical 
framework of the multimodal paradigm (cf. Arzarello and Paola 2007). It can be evi-
dently assumed that the given material and the environment in total have an impact 
on the gestures and speech which are used by the second graders in the situation. In 
relation to the displayed theoretical framework of both modalities as one system, 
it can be further confirmed that speech and gesture have their own possibilities of 

23 Please keep in mind that instruction here is understood in a very broad sense and not exclusively 
as a kind of teaching by a knowing expert like a teacher. Rather instruction here is understandable 
as an impulse which can be used to foster one’s own insights and further development.
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expression, and both analyses confirm the special relationship of gesture and speech. 
Second graders are obviously able to use both modes effectively during their occupa-
tion with a mathematical problem. In the described sequence, the mathematical idea 
of placing a brick “in the middle” is introduced in speech and marks a critical point 
in interaction. In what follows, a mismatch (cf. Goldin-Meadow 2003) on the level of 
interaction appears and leads to different interpretations of the gesture-speech-utter-
ance, or new representamens, to say it in semiotic words. In previous publications, I 
could reveal mismatches that serve as a kind of source of mathematical strategies in 
the interactions of second graders (cf. the above-described example out of a measure-
ment situation and Huth 2011a). At first sight the mismatch in the herein-described 
situation is not comparable to this in all respects. The mismatch does not include dif-
ferent mathematical strategies itself to solve the given mathematical problem, but is 
rather on the level of the reference object. But in what follows, the mismatch leads to 
mathematically relevant aspects. Obviously, the already-negotiated taken-as-shared 
mathematical meaning of pointing at one brick so as to say: “think of this brick and 
his features of form, position, orientation,…, and use this knowledge to position the 
comparable brick in the other building” has to be clarified with regard to both modal-
ities: gesture and speech. On the one hand, in a mathematical sense, the interlocutors 
rethink the positions of the critical 8-bricks at building 2, and this finally leads to dif-
ferent solutions so that both can be described as adequately in a mathematical sense. 
For Jana it is obviously irrelevant, whether building 2 is laterally reversed in compari-
son with the original building 1. The fact of congruency satisfies the expectation of a 
solution of the problem for Jana. The preserving of orientation in the congruent image 
of the three-dimensional object is not relevant for her. In contrast, Ayse obviously at-
taches great importance to the preserving of orientation to create a replica of building 
1. On the other hand, the mismatch on the level of reference is not resolved for Jana 
somehow: At the end of the situation, she is still of the opinion that the bricks were 
already set correctly. In Jana’s opinion this indeed happened before Ayse pushed for 
the preserving of orientation and set the proper 8-brick “in the middle.” The congru-
ent copy in the same orientation of the discussed bricks at side C of building 1 at the 
end of the situation seems to be more or less a result of an agreement to handle the 
further interaction. The girls do not look into their different interpretations of building 
a copy explicitly but manage the situation to go on in the interaction.

In the future research work, these results have to be confirmed in further ex-
amples and by dint of the displayed analytic instruments. Theoretically, the semi-
otic game among equals has to be described in detail, and especially in relation to 
the roles of mismatches in mathematical interactions of learners. These theoretical 
descriptions can be used in the future to differentiate the mismatch theory on the 
level of (mathematical) interaction, as well as concerning the question of different 
mismatches, e.g., on the level of reference with determination of the negotiated 
mathematical theme in the interactions. Possibly, further levels can be found with 
regard to the question how mathematical a mismatch can be or which impact it has 
on the negotiated mathematical theme(s) between the interlocutors.
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Introduction

In the last couple of years, the importance of early learning has been widely dis-
cussed. Research does suggest that early learning is important in order to offer a 
basic education to all children, but one of the remaining questions is how educa-
tion for 4- to 6-year-old children should be designed. In Germany alone, there are 
a number of approaches and concepts as well as new emerging programmes for 
preschool education, which themselves differ in their promoted way of teaching and 
learning. Therefore, it is not institutional or rather uniformly clarified if and how 
the unplanned, purpose-free playing or learning through playing or constructivist 
learning (Schäfer 2010, 2011; Rigall and Sharpe 2008; Puhani and Weber 2005) 
should be replaced by systematic, curriculum-based learning or instructional learn-
ing (Duncker 2010; Preiß 2006, 2007; Krajewski et al. 2007). On the one hand, 
there is a demand for protection from schoolification, especially for younger chil-
dren, but on the other hand it is important to support mathematical competencies 
before entering school, because we know that they are predictors for later success 
in mathematics (Schneider 2008; Dornheim 2008), and to avoid existing learning 
capacities in children being exhausted.

With this in mind, the study at hand investigates the geometric competencies of 
children from two countries with different concepts of elementary education: Ger-
many (Baden-Württemberg), where learning through play and with this a construc-
tivist view of learning is, at present, the main concept for kindergarten education, 
and England, where the elementary education is rather systematic, curriculum based 
and mainly instructive, and where the competencies of the children are tested via 
stepping stones which they should have acquired. There, the children enter school 
in the year when they have their fifth birthday, but many children go to a reception 
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class before that. So the entering school age is about 2 years earlier than for children 
in Germany.

The topic of geometry was chosen because there have been fewer studies in this 
area than, for example, in number and counting, but it is still a very important aspect 
of mathematics as is illustrated in the following quote:

No mathematical subject is more relevant than geometry. It lies at the heart of physics, 
chemistry, biology, geology, and geography, art and architecture. It also lies at the heart 
of mathematics, though through much of the 20th century the centrality of geometry was 
obscured by fashionable abstraction. (Sarama and Clements 2009, p. 201)

Moreover, a geometric topic is perfectly suited for the aims of instructive learning 
as well as for constructive learning, for the children can easily work on their own 
and explore things—as can be seen, for example, in the pedagogy of Froebel (Hei-
land 1998; Hoffmann 1982) or Montessori (Heiland 1991; Steenberg 2008)—and 
also, instructions can be created in a very diversified and interesting manner, for 
example, by using a variety of materials.

Theoretical Background

The focus of this chapter is on the development of geometric concepts. First, it will 
be illustrated, what constitutes a concept, before two general theoretical models 
concerning concept development are presented. Following this, some empirical re-
sults concerning the development of geometric concepts are shown, ending with a 
brief comparison of instructive and constructive teaching methods.

Constitution of a Concept

Franke (2007) defines a concept as follows:
We speak of a concept, if it not only represents one single object—or incidence and so 
on—is meant, but a category or a class is associated with it, in which the concrete object 
can be classified. (Franke 2007, p. 72)

According to Vollrath (1984), a comprehensive conception of geometric shapes, as 
a concept for objects, is shown to be able to

• Name the shapes,
• Give a definition of the shapes,
• Show further examples of this category and
• Name all properties.

Furthermore, in order to select certain shapes among others, being able to distin-
guish between examples and non-examples is essential, as was examined in the 
study by Tirosh et al. (2011).
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All these aspects were included in the tasks of the study at hand. Still, it cannot 
be expected from children in the age of 4–6 to have such a comprehensive concept 
knowledge as stated by Vollrath.

Conceptualization Theories

Szagun (2008) proposes two theoretical approaches that illustrate how a concept 
develops. In the semantic feature hypothesis ( semantische Merkmals-hypothese), 
general features are learnt before specific features. For example, the child has learnt 
the word dog, which is connected with one semantic feature and that is four-legged. 
Accordingly, the child would first call every four-legged animal (horse, cat, mouse, 
etc.) a dog. With time, other semantic features, such as barking are added so that 
the word dog could be distinguished from cow for example. The features are ei-
ther present or not and apply for every member of the class, e.g. all kinds of dogs 
belonging to the category “dog” are four-legged and bark. In contrast, in the pro-
totype theory ( Prototypentheorie), which is considered as a psychologically more 
real theory, some members of a category are categorized as more typical than the 
others (Szagun 2008, p. 134). For example, a sparrow is a more typical bird than a 
chicken, although both belong to the subordinate concept bird. In addition to that, 
not every member of the category bird has the same features. Members having a lot 
of features in common are prototype members of the category bird (e.g. sparrow, 
robin) and members having fewer features in common are periphery members of 
the category bird (e.g. chicken). However, in order to give a complete picture of 
what we know of the geometric concept formation, how a concept develops has to 
be complemented by research findings on geometric concepts.

Empirical Background

In the mathematical domain, research focusing on children’s concepts of space and 
geometric shapes began with the observations of Piaget and Inhelder (1975) and 
Piaget et al. (1975). Their research findings revealed that children younger than 4 
years of age are not able to distinguish a circle, a square and a triangle, but consider 
all of these shapes as closed figures. With the age of 4, the children start to distin-
guish between curved and straight shapes but not among these classes: for example, 
a circle is not distinguished from an oval and a square is not distinguished from a 
rectangle or even a triangle. At the age of 6, the children are able to name and to 
distinguish between geometric shapes. Since Piaget’s studies, several researches 
have either verified (Laurendau and Pinard 1970) or contradicted (Darke 1982; 
Lehrer et al. 1998) some or all of the original hypotheses of Piaget (cf. Hannibal 
and Clements 2008). Some studies reported, for example, that even at an earlier 
age children were able to distinguish between curvilinear and rectilinear shapes 
(Lovell 1959; Page 1959). Another body of research has focused on children’s rea-
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soning about geometric concepts that they have formed (van Hiele and van Hiele 
1986). The van Hieles, who also created a hierarchical developmental description, 
constitute that on the first level (pre-recognition) before the age of 4, children are 
not able to capture all features of a geometric shape, instead only parts of the shape 
can be comprehended and properties cannot be explicitly realized yet. At the end 
of this level, children can distinguish between curvilinear and rectilinear shapes but 
not among these groups (in concordance with Piaget). On the next level, the visual 
level, up to 7 years, shapes are realized as whole entities. The following level, the 
analytic or descriptive level, is representative for primary school children and goes 
up to the age of 9/10. The shapes are now distinguished by their properties. Correla-
tions between different classes, e.g. squares and rectangles, cannot be made yet. The 
other levels concern secondary school and beyond (university level).

Following these developmental models, there were several studies to prove 
the existence of such levels or the characteristics of such levels (e.g. Burger and 
Shaughnessy 1986; Gutiérrez et al. 1991; Clements and Battista 1992; Lehrer et al. 
1998; Battista 2007). As a common ground, most empirical research confirmed that 
such levels exist and that they are useful in describing children’s geometric concept 
development but that they are not discrete or independent. Moreover, it is difficult 
to relate a student to one single level, for students were on different levels for differ-
ent concepts and exhibited different preferred levels on different tasks (Burger and 
Shaughnessy 1986; Battista 2007). Thus, the assignment to levels does not seem to 
be strictly related to age or theme and with this, the hierarchical order of the levels 
is shaken. Other researches propose that the characteristics of the single levels de-
velop at the same time but in diverse intensity (Clements and Battista 1992; Lehrer 
1998).

Apart from this, there have been studies with the single focus on the develop-
ment of geometric concepts in children (Clements and Battista 1989; Clements 
et al. 1999; Hannibal and Clements 2008), instead of investigating geometric com-
petencies as a whole. There also have been studies on what visual prototypes and 
ideas preschool children form about common shapes. Focusing on a few detailed 
empirical results, Clements et al. (1999) found that children identified circles quite 
accurately but had some difficulties in selecting squares, for they were less accurate 
in classifying squares without horizontal sides (Clements 2004, p. 269 f.). They had 
most difficulties in recognizing triangles and rectangles. The study revealed that 
children’s prototype of a triangle seems to be an isosceles triangle and their proto-
type of a rectangle seems to be a four-sided figure with two long and two short sides 
and close-to square corners. Square prototypes only occur concerning position and 
there are no circle prototypes, for they all, except from size, look the same.

Although there have been several studies on the development of geometric con-
cepts in children, there hardly have been any studies yet on this topic regarding 
different educational settings. The settings in this research differ mainly in the way 
learning is enhanced. In England, it is clearly defined in the national curriculum 
what competencies children should have acquired after each key stage. Here, the 
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focus is on the aim of learning (cf. Gasteiger 2010, p. 78). Thus, in the school curri-
cula starting at age 4 at the earliest, there is a focus on instructive aspects of learning 
in order to ensure a certain learning benefit or outcome. In Germany, there are dif-
ferent concepts and approaches for kindergartens in order to enhance early learning 
with different focuses: some focus more on instructive aspects and others more on 
constructive aspects of learning. In the Orientierungsplan of Baden-Württemberg, 
for example, the focus is on using children’s ideas and interests in everyday situa-
tions and on letting them construct their mathematical ideas, carefully supported by 
an educator. Still, there are also training programmes (cf. Gasteiger 2007, p. 78) for 
enhancing learning in kindergartens, which are focusing more on instructive aspects 
of learning, for example, Mengen, Zählen, Zahlen meaning, respectively, quantity, 
counting, numbers (Krajewski et al. 2007).

Although the main focus of the study was not to compare different educational 
settings but much rather to illustrate children’s understanding of geometric shapes 
in the light of different educational settings and with this the learning and teaching 
methods, these still play a major role for the learning benefits of the children, as is 
obvious in the results.

The research at hand is a descriptive study to illustrate the understanding of 
geometric shapes that English and German children in the age of 4–6 years have 
and how these competencies develop in the course of 1 year. Furthermore, it was 
examined whether the children of this study could be grouped into a hierarchical 
stage model or rather into a dynamic developmental model.

Empirical Study

Research Questions

The underlying research questions are:

(1)  How do children solve some tasks of geometric conceptualization of shapes and 
how do they explain their proceeding?

(2)  What differences in the development can be described after a year?
(3)  Can hypothesis be formulated whether the educational setting, the way how 

early learning is enhanced, does influence the competencies of the children?

Subjects

The research gathered 81 children, of which 34 are of English nationality and were 
attending a local primary school, near Winchester. The age of the children in this 
primary school ranges from 4 to 11 years. The other 47 children were from Ger-
many and attending a kindergarten in Karlsruhe, where children from the age of 3 
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up to primary school can go. The children participating in this study were from 4 to 
6 years old and were all attending the school or correspondingly the kindergarten 
the entire week.

Method

The study was conducted in the form of clinical interviews, the origins of which 
coincide with Piaget’s early investigations into children’s thinking (Ginsburg and 
Opper 1998). The order of the tasks as well as the material was predetermined but 
in accordance with the nature of clinical interviews, this order could be altered or 
complemented if some of the child’s answers happened to be interesting or leading 
into another direction worth being examined. There were altogether two points of 
investigation, without intervention, one at the beginning of the school year in Octo-
ber 2008 and one at the end of the school year in July 2009.

Tasks

In order to investigate children’s knowledge of shapes and to illustrate the concept 
formation of the children, different tasks were conducted in the interview, of which 
the following will be presented in this chapter:

(1) Naming, explaining and correlating shapes
(2) Drawing shapes
(3) Identifying and discerning shapes

In the following, the selected tasks presented in this chapter are described:

Naming, Explaining and Correlating Shapes

In this task, the children were shown eight different geometric shapes. In the case of 
circles and squares, the shapes that were shown varied in their sizes. In the case of 
rectangles and triangles, there was a more prototypical example (e.g. an equilateral 
triangle) of the respective shape and a less prototypical example (e.g. a rectangular 
triangle). They were at first asked to name these shapes and then correlate them to 
a hole in a scarf, which had the shape of one of the geometric figures. Afterwards, 
they were asked to explain a triangle to somebody who has never seen a triangle 
before.
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Drawing Shapes

In order to examine the children’s transfer from knowledge about a shape into a rep-
resentation, they were asked to draw a triangle on a paper (cf. Burger and Shaugh-
nessy 1986, p. 34 f.). Then they were asked to draw another triangle that would be 
a bit different from the first triangle. After this, again another triangle had to be 
drawn, differing from the first two. This was continued as long as it appeared to 
make sense, meaning so long until the child’s way of drawing different triangles re-
vealed something of his or her idea of a triangle and of variety. This means that, for 
example, if the child drew three different triangles and then again the same ones or 
very similar ones as fourth and fifth triangle, they were not asked to draw any more 
triangles. Still, all children were asked to draw at least three triangles.

Identifying and Discerning Shapes

Another task giving hints on the conceptualization of the children was a shape-
selection task (cf. Burger and Shaughnessy 1989; Clements et al. 1999; Sarama and 
Clements 2009). The children were asked to put a mark in each of the shapes that 
is a circle on a DIN-A3 page of separate geometric figures (Fig. 11.1). After several 
shapes were marked, the interviewer asked questions such as the following: “Why 
did you choose this one?”, “How did you know that one was a circle?”, “Why did 
you not choose that one?” A similar procedure was conducted for squares, triangles 
and rectangles ending with circles and squares in a complex configuration of over-
lapping forms. The tasks for triangles, rectangles and overlapping forms are not 
discussed in this chapter.

Results

In the following, the generation of the categories for the evaluation of the results 
is presented as well as some results the children achieved at both measuring times, 
distinct by countries.

Fig� 11�1  Student marks circ-
les. (In Sarama and Clements 
2009, p. 269, from Razel 
and Eylon 1991)
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Naming Shapes

Starting chronologically, it first will be shown what kind of categories could be 
generated to describe how children named the shapes. Here, six categories could 
be distinguished:

(1)  Using terms of comparison instead of the correct name of the shape, for exam-
ple, like a ball instead of circle or like a cupboard instead of rectangle.

(2)  Using terms for solids (3-D shapes) for 2-D shapes, e.g. cube instead of square 
or cone instead of triangle.

(3)  Mixing up terms, using the wrong 2-D-shape name for another 2-D shape, for 
example, square instead of triangle or triangle instead of rectangle.

(4)  Using property names instead of the correct shape names, for example, round 
instead of square or acute instead of triangle.

(5)  Using the generic term (quadrangle) instead of the more specific terms (square 
or rectangle).

(6)  Using geometric terms but not for all the shapes, leaving some shapes out (often 
the rectangle) or using other ways (see categories before) to name the shape.

(7)  Using the geometric terms for each shape. The children were only grouped in 
this category, if they named all the shapes with the respective geometric term.

In Table 11.1, it is illustrated how high the amount of children was for each cat-
egory. For the children could be grouped to several categories at the same time, it is 
possible that the total percentage in each country is more than 100 %. For example, 
if they used comparisons as well as geometric terms, they were grouped into these 
two categories. If the total percentage is less than 100 %, this is due to the fact that 
some children did only use the geometric term for each shape but did not name all 
the shapes.

How do children name the shapes?
There were several readily discernible trends in the children’s developing under-

standing of shape concepts. The usage of comparative terms (cat. 1) only occurred 
among the German children and the usage of correct geometric terms for each shape 
(cat. 7) occurred only (2008) or more often (2009) in England. Only German chil-
dren used the generic term Viereck ( quadrangle) (cat. 5), which is not frequently 
used in colloquial English.

As previous studies revealed (e.g. Burger and Shaughnessy 1986; Clements et al. 
1999; Razel and Eylon 1991), it was more likely that the children named circles with 
the correct geometric term than squares, triangles and rectangles (see Table 11.2).

Table 11�1  Naming shapes
(1) (2) (3) (4) (5) (6) (7)
E D E D E D E D E D E D E D

2008 0 % 9 % 9 % 5 % 18 % 28 % 0 % 37 % 0 % 70 % 14 % 0 % 59 % 0 %
2009 0 % 14 % 3 % 2 % 9 % 28 % 0 % 16 % 0 % 81 % 24 % 0 % 68 % 7 %
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Explaining Triangles

Following the naming task, the children were asked to explain how a triangle looks 
like. For the explanations of the children, again several categories could be found 
(Table 11.3):

(A) no explanation given
(B) gestures used to explain a shape (the gestures were always applied correctly)
(C) correct comparisons used to explain the shapes
(D) correct informal ways of explaining used
(E) correct formal ways of explaining used

How do children explain the shapes?
If we summarize the research findings of this task, it becomes obvious that Eng-

lish children gave more often an explanation or characterization of a triangle than 
the German children. The latter ones used more gestures at the first point of investi-
gation and more comparisons at the second point of investigation, like “this has the 

circle circle square square

D E D E D E D E
2008 74% 97% 72% 100% 63% 88% 65% 88%
2009 86% 94% 81% 97% 84% 97% 70% 94%

rectangle rectangle triangle triangle

D E D E D E D E
2008 33% 76% 30% 74% 67% 94% 53% 79%
2009 51% 91% 67% 88% 81% 94% 70% 74%

Table 11�2  Naming shapes

 

Table 11�3  Explaining shapes
(A) (B) (C) (D) (E)
E D E D E D E D E D

2008 12 % 23 % 6 % 21 % 6 % 9 % 9 % 30 % 62 % 16 %
2009 0 % 23 % 3 % 7 % 15 % 21 % 21 % 49 % 62 % 14 %
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shape of a tent or the hat of a witch”. Additionally, there was a bigger tendency in 
Germany to explain in an informal way, meaning that they tried to explain a shape 
by its properties but lacked words, such as side, corner or straight or acute. The 
majority of the English children explained the shapes in a formal way, for example, 
a triangle is a shape with three straight sides and three corners. However, most 
English children who did not know a formal description did not try to explain the 
shape in another way.

Drawing Shapes

The drawings of the children were thoroughly examined and after several scans and 
discussions, the following seven categories for the drawings of the children were 
generated. Here, each child was related to at least one category, but it could also be 
that their drawings fit into more categories. Therefore, the overall percentages could 
be higher than 100 % in the end (Table 11.4).

Category 1: Area—Child draws triangles in different sizes (but similar angles and 
all in an upward position).

Category 2: Angular dimension—Child draws triangles with different angles (from 
very acute ones to obtuse ones).

Category 3: Shape—Child draws different shapes (correct ones and “own inventi-
ons”, e.g. with wavy sides).

Category 4: Identity—Child draws the same or similar triangle again and again.
Category 5: Position—Child draws triangles in different positions and directions.
Category 6: Combination—Child draws triangles that differ in size, area, angular 

size and position.
Category 7: Objects from everyday life—Child draws objects from everyday life 

having geometric shapes (for example, road signs).
Category 8: Other examples—Child draws a shape that is missing some critical 

attributes of a triangle, for example, a third side.

How do children draw different triangles?
To summarize the findings of this task, having especially in mind the concept 

formation of the children, it became obvious that most children connected with dif-
ferent triangles, triangles that differ in their area dimension but are all pointing up-
wards and are most of the time equilateral. There were more English children who 
drew triangles in that category; the English children drew more triangles varying 

Table 11�4  Drawing triangles
Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8
E D E D E D E D E D E D E D E D

2008 50 % 49 % 15 % 9 % 29 % 21 % 18 % 7 % 6 % 5 % 6 % 7 % 0 % 9 % 3 % 3 %
2009 71 % 44 % 24 % 28 % 9 % 21 % 12 % 14 % 9 % 12 % 6 % 12 % 0 % 9 % 3 % 3 %
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in their shapes (the first triangles were usually correct ones but then other shapes, 
similar to triangles but, for example, with wavy sides, were drawn), but later there 
were more German children drawing triangles in that category. Only in England it 
occurred that the explanation of the triangles did not fit the actual drawing. A tri-
angle was explained, for example, as having three straight sides, but in the drawings 
a shape with three corners and three wavy sides was described as triangle as well, 
just as a different triangle. Triangles as part of the geometric solids in the everyday 
life (e.g. street signs or tents instead of a simple triangle shape) were only drawn by 
the German children.

Identifying and Discerning Shapes

A few of the research findings at the shape-selection task are, for example, that 
the majority of the children in both countries could distinguish circles from non-
circles correctly. Still, the children often also marked the oval shape as a circle. At 
the second point of investigation, there were slightly more German children (84 %) 
than English children (76 %) who marked all the correct circles and no other shapes.

According to this, in the square-selection task, there were also more German 
children (especially at the second point of investigation: 44 %) who marked all the 
correct squares than English children (21 %), of which most children only marked 
horizontal lying squares. After the children explained their selection, they often 
argued that “if you turn a square it becomes a diamond”.

To summarize, concerning the conceptualization of the children, which were ex-
amined at the beginning and end of a school year, the following key statements can 
be made:

(1)  In most of the tasks, German children did improve in their conceptualizations, 
although they were not formally instructed.

(2)  The concepts of the English children were—in the majority of tasks—more 
prototype determined at the end of the school year than at the beginning of the 
school year.

(3)  The competencies of the children in this research cannot be grouped into a 
hierarchical stage model for the children apply competencies of different stages 
for different tasks and children of the same age apply competencies of different 
stages depending on the task.

Discussion

To discuss the research findings, the differences are reflected and possible influ-
ences of the different educational settings will be hypothesized. Only the German 
children used terms of comparison in order to name a shape, for they were not in-
structed the correct concept yet and consequently had to construct their own ideas 
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of how to name the shapes and to try to find words they connect with these shapes. 
Fifty-nine per cent of the English children at the first and 68 % at the second point of 
investigation used the correct geometric terms for each shape which is clearly due 
to the instruction in school. Still, using different terms could also be due to cultural 
differences, for example, in Germany the word “quadrangle” is colloquially often 
used, which is not the case in England. There, the specific terms “square” and “rect-
angle” are used most of the time and quadrangle is colloquially hardly ever used. 
When children do not know the correct concept, they try to find other logical names 
for the shapes, as the German children did more frequently.

The reason why English children were more eager to explain the shapes is 
probably because they are advanced in school to do so. They were already taught 
the definitions of familiar shapes and thus were able to recite them to a high 
degree (62 %) in the study. Most of the children there gave, for example, a for-
mal definition of a triangle like “a triangle has three corners and three straight 
sides”, exactly what they are taught in school, for one goal of the foundation 
stage curriculum is that children should be able to name and explain shapes cor-
rectly. Comprehensive definitions, like “a plane figure with three straight sides 
and three angles” (Oxford Dictionary) or “a flat shape with three straight sides 
and three angles” (Longman Dictionary), were never given, and statements like 
“three corners and three sides” were also counted to be correct, although the de-
tail “straight” was missing. In the case of not knowing a definition, the English 
children were more likely to say nothing at all than the German children, who 
made up their own ways of explaining the shapes, through gestures, comparisons 
or informal explanations (using own words or even made up words) for they were 
not yet familiar with the correct terms because of not being instructed in the same 
way as the English children were.

However, as was shown before, although the children knew a correct verbal de-
scription of a concept, they sometimes had difficulty applying the verbal descrip-
tion correctly. This was, for example, shown in the drawing-shapes task, where the 
children drew all kinds of triangles, sometimes with rocky or wavy sides, although 
giving a perfect definition of a triangle where a triangle is described to have three 
straight sides. In the light of this finding, it should be thoroughly considered wheth-
er the construction in school could be either more extensive or completed by some 
constructivist activity of the children in order to explore the shapes on their own and 
to find out what constitutes, for example, the properties of a triangle and how the 
definition is linked to its representatives.

In the shape-selection task, it cannot be said whether the results here could be 
linked to an instructive or constructive way of teaching and learning. Still, the Ger-
man children performed better in marking circles and squares as well as to some 
extent in marking rectangles. The English children performed better in marking 
triangles which clearly revealed that they are more familiar with what constitutes a 
triangle and what does not, presumably due to the instruction in school.

Still another influence for the concept formation that should not be left out is the 
material that is used in the single institutions. One reason why the English children 
might only describe a horizontal lying square as a square and one that stands on one 
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of its corners as a diamond and not a square anymore could be the illustrations in 
the classroom, only showing squares in horizontal position. The reason why they 
preferred marking equal-sided triangles as triangles might be because the material 
they use for exercising only have equal-sided triangles.

Therefore, it can be concluded that the input if and how they are instructed as 
well as the material that is used influence the concept formation of the children.

Conclusion

Still, the question that remains is when would be the best time to actively support 
the children’s geometric concept formation and how should this be done in order 
to help them to develop a comprehensive knowledge about shapes. This is not eas-
ily to be answered. Research indicates that a lot of educational materials introduce 
children “to triangles, rectangles and squares overwhelmingly in limited, rigid 
ways” (Sarama and Clements 2009, p. 216) as was assumed in the research as 
well, and moreover that such prototypes can rule children’s thinking throughout 
their lives (cf. Burger and Shaughnessy 1986; Fuys et al. 1988; Vinner and Hes-
hkowitz 1980). As the results in the study at hand also suggest, there might be a 
connection between the way how concepts are introduced and the perception the 
children acquire of each shape or correspondingly what kind of prototypes deter-
mine their perception. Consequently, teachers as well as kindergarten educators 
should be aware of the variety of representatives of a certain shape and let them 
explain what properties a shape needs to have in order to be called a triangle for 
example. An isolated memorizing of definitions is seen to be critical and more 
emphasis should be placed on being able to connect a concept with many rep-
resentatives as examples. There are findings that one can have a correct verbal 
description of a concept and possess a specific visual image (or concept image) 
associated strongly with the concept, but still might have difficulty applying the 
verbal description correctly (Sarama and Clements 2009, p. 213). Altogether, the 
study reveals that a formal instruction might lead to a higher percentage of chil-
dren acquiring geometric terms as well as formal definitions, but also to a more 
prototype-determined perception. So, if we think in terms of instruction of this 
mathematical content, it should be created in a way that children have the chance 
to construct a comprehensive concept of shapes and also not putting aside the 
constructive way of learning, for it enhances the creativity of the children. To 
conclude, the best way is probably to balance an instructive and a constructive 
teaching and learning method, as it is stated in Presmeg (2012) “a dance between 
construction and instruction”.
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Introduction

Identifying quantities of collections is a well-accepted mathematical content in 
early childhood education. Many pre-school teachers think immediately of the pro-
cess of counting every single item as a way to determine the quantity of the repre-
sentation of the collection. Therefore, pre-school teachers think that one main part 
of their instructions in early childhood education should be to support children to 
develop counting competences (Benz 2010, 2012). The acquirement of counting 
principles (Gelman and Gallistel 1978) reveals both the aspect of instruction and the 
aspect of construction in early childhood mathematics. Learning the number words 
of the counting sequence is not possible without any instruction. However, without 
their own constructions, children cannot develop the different counting principles. 
Counting is an important competence, which can be seen as a milestone in the arith-
metical learning process. However, counting is not the only way to determine quan-
tities, as we can see below. There are different processes possible, which are based 
on children’s constructions of perceiving or determining quantities. If we analyse 
the different processes, which can be used for identifying quantities of representa-
tions, it becomes clear that there are other valuable competences and constructions 
which should be in the focus too. In this chapter, children’s constructions of differ-
ent kind of processes in identifying quantities will be analysed. The insights in the 
children’s construction shall provide a basis for instruction in terms of realizing and 
using learning opportunities and creating learning environments within mathemati-
cal early childhood education.

U. Kortenkamp et al. (eds.), Early Mathematics Learning, 
DOI 10.1007/978-1-4614-4678-1_12, © Springer Science+Business Media New York 2014
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Theoretical Background—Different Processes to Identify 
the Quantities of Collections

In order to describe different aspects and competences in identifying quantities of 
representations of concrete objects, here we will theoretically distinguish between 
two different steps (Benz 2011; Steffe and Cobb 1988):

• Step 1: The process of perception of the representation of the quantity.
• Step 2: The process of judgement or determination of the whole quantity of the 

collection.

The first step—the process of perception—will be discerned in three different 
kinds of perception and then the various processes of determination will be 
assigned. (see Table 12.1), First, the collection can be seen as a conglomerate of 
lots of separate single objects as one possibility of perception, the quantity can 
be seen also as a whole or as a composition of different parts. Then, there are 
different possibilities to determine the quantity: counting, knowing or calculating.

If the quantity is perceived as lots of different single items, the process of de-
termination can be done through counting every single item. However, the collec-
tion can also be perceived as single items and simultaneously the quantity can be 
determined. Researchers speak about subitizing, spontaneous subitizing, perceptual 
subitizing or simultaneous recognizing. This means, “recognizing a number without 
consciously using other mental or mathematical processes and then naming it” (Cle-
ments and Sarama 2009, p. 44). Still, there are different theories about the mental 
processes which are behind the ability to subitize, but “regardless of the precise 
mental processes, subitizing appears to be phenomenologically distinct from count-
ing and other means of quantification” (Clements and Sarama 2009, p. 44). For 
subitizing, the process of perception and determination seems to be one act. Even 
if research results vary regarding how many objects can be subitized at once, no 
one speaks about subitizing of a set of more than six objects (Clements and Sarama 
2009). So, the process of subitizing is limited to a small number of objects. Some 
research suggests that sets with more than three objects will be decomposed and 
recomposed without the person being aware of the process (Clements and Sarama 
2009, p. 45).

If the collection is perceived as a whole figure and the figure is recognized im-
mediately because it is well known or memorized, like dice or finger patterns, some 
researchers speak also of subitizing. But it is not sure if the children are indeed 
aware of the quantity of the single items of this arrangement and if this representa-
tion is a composition of different parts (like 4 and 1). They could also just have 
learnt the “name” of the figure without being aware of the quantity (von Glasersfeld 
1987, p. 261).

Next, to perceive the quantity as a whole entity, there is another way of percep-
tion of a quantity. A set of collections can be decomposed through structuring this 
collection and identifying different parts in this collection. The idea of structuring 
and decomposing a representation in different parts can lead to different ways to 
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determine the quantity of a collection. After identifying different substructures or 
parts, still every item can be counted. Another possibility is to perceive one or two 
parts of the substructures with subitizing and then counting every item or counting 
only the second part and starting with the quantity of the first part or knowing the 
result.

The mental act of decomposing a collection in its constituent parts can also be 
described as identifying, seeing, perceiving or creating a structure in the collection 
so that different parts or substructures can be identified. Sometimes, the arrange-
ment of the objects or the spatial structure of the collection can lead to the grouping 
but still the identification of the structure is an individual constructive act (Söbbeke 
2005). Structuring a quantity into different parts or substructures is seen as a power-
ful mathematical activity. In previous research and mathematical theories, different 
reasons for supporting the perception of structures and the ability of decomposing a 
collection into parts are evident and will be discussed in the next paragraph.

The Importance of Perception of Structures—Decomposing 
a Collection into Parts

In terms of a part–whole understanding, decomposing a quantity into parts or sub-
structures is an important ability. Resnick (1983) points out that an interpretation of 
numbers in terms of part and whole relationships is very important. She mentions 
that a primitive form of part–whole reasoning occurs in early counting routines 
when children are able to maintain a partition on a collection of items: those items 
already counted and those items yet to be counted. She proposes that later on the 
basis of this basic part–whole schema, a quantitative part–whole schema will be es-
tablished, which can be observed when dividing a collection into parts. Gaidoschik 

Table 12�1  Different processes in identifying the quantity of a collection
Step 1: Process of perception Step 2: Process of determination
Perception of the quantity as every single item Counting every single object—counting all

Knowing for sets with quantities up to 3–4 on 
the basis of subitizing (perceptual subitizing)

Perception of the quantity as a whole Knowing because the figure or pattern of the 
representation is already known (e.g. dice 
patterns up to 6 or finger patterns) on the 
basis of subitizing (perceptual subitizing)

Perception of the quantity as a composition of 
different parts

Counting every single object

Identifying the parts Counting on
Structuring the quantity in substructures or in 

different parts
Calculating the result

 Parts can be perceived as single items Knowing the result
 Parts can be perceived as a whole
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(2010) and Young-Loveridge (2002) point out the connection between the structur-
ing of a collection of items and the development of a quantitative part–whole un-
derstanding. The quantitative part–whole understanding is to be seen as one impor-
tant component for building mental calculation strategies, another important step in 
school (Gaidoschik 2010; Gerster and Schulz 2004).

The competences in part–whole understanding and the competence of perception 
of structured quantities are—next to advanced counting competences—evaluated as 
predictors for arithmetical competences in year 2 (Dornheim 2008). The particular 
relevance of identifying structures in collections of quantities was also investigated 
by Mulligan et al. in the project Awareness of Mathematical Pattern and Structure 
(AMPS) (Mulligan et al. 2010). They were able to show that children who are low 
achievers in mathematics had problems perceiving structures in visual representations 
(Mulligan 2002). A general connection between awareness of structures and pattern 
and mathematical abilities is stated by Mulligan and Mitchelmore (2009, p. 35).

A link between spatial structuring abilities of children aged 4–6 years and de-
veloping number sense is suggested by van Nes (2009). She investigated spatial 
structuring ability in different tasks with 38 children aged 4–6 years and postulated 
four phases in spatial structuring ability. In these phases, she also focused on the 
ability to produce structures in unordered quantities with reference to determination 
of quantities. Lueken (2010) interviewed 74 first graders (aged 5 years 8 months to 
7 years 2 months) at the beginning of school with a semi-structured interview about 
early structure sense. The interview contained tasks in visual, tactile and audio pat-
terns and asked for explanations and reproduction of structured didactical material 
which is used in primary school like a ten-chain and the twenty-field. The results of 
Lueken’s study showed that there is a correlation between early structure sense and 
mathematical competences, tested with the standardized OTZ test 3 months before 
the children entered school. She also showed that an early structure sense can be 
seen as a predictor for mathematical achievement at the end of year 2.

These theoretical and empirical studies show evidence for the relevance of iden-
tifying structures in representations and the connection with children’s arithmeti-
cal development. Many researchers of these studies indicate that their research is 
done with a small group of children in special settings, thus the analyses are rather 
exploratory than confirmatory and offer only trends. They lead to further research 
questions

Research Questions

In most of the reported studies, the abilities to structure small quantities were tested 
mainly by reproducing structured representation or by determining their quantity 
when the representations were shown only for a short time to the children. This 
made it necessary to use subitizing for determining the quantity of parts or the 
whole. The memory can also play an additional role because the different parts must 
be memorized for determination.
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Considering the difference between the processes of perception and determi-
nation of quantities (see Table 12.1), this study will be focused on the process of 
perception of quantities. Therefore, we will investigate children’s constructions at 
the age of 4–6 years, if and how they perceive (de)composition or structures of 
quantities in representations as a help for determination. This leads to the following 
research questions:

1.  Do pre-school children perceive arranged structures in collections and can they 
use this perception to determine the quantity?

2.  Do pre-school children use the idea of decomposing or structuring a collection 
into parts to create a representation of a collection so that they can easily see 
how many objects are there? What kind of structures do they use?

Most of structured didactical material which is used later on in school for instruc-
tion is designed with structures of parts of 5 and 10 in order to enable children to 
(de)compose quantities easily for perception. This kind of structure is an impor-
tant structure in terms of perception for numbers up to 100. Because perception of 
structures even in structured representations is an individual act, a third research 
question will be raised with reference to the idea on building further competences 
on informal strategies:

3.  What kind of structures do children use or perceive in a ten-frame to represent 
a collection so that it can be easily seen how many objects are presented?

To answer children’s constructions in perceiving and using structures, the following 
study was conducted.

Design

Although it was planned to interview only children at age 4–6, some younger chil-
dren were asked to be interviewed as well, so they were included in the study. 
Altogether 189 children at the age of 3–6, all attending German kindergarten, were 
interviewed individually. In the interview, they had to solve different tasks. To an-
swer the research questions above, the analyses of three tasks of the interview were 
selected.

To investigate the first research question—do children at the age of 3–6 perceive 
arranged structures in representations of quantities and can they use this perception 
to determine the quantity—a task of the study of Gasteiger (2010) was chosen. 
Here, the children were given cards with blue and red dots. The blue dots were 
structured (line above in Fig. 12.1) and the red dots were without structures (line at 
the bottom in Fig. 12.1).

Then, the children were asked to find a card with blue dots that corresponds to 
a card with red dots: For every blue card there is a red card. Do you have an idea, 
which of these cards belong together? This question does not address the percep-
tion of structures directly. With this question, it is investigated if children focus on 
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the aspect of quantity in general. The children had to identify the quantity so that 
they could reflect about the process of perception. If the children did focus on the 
aspect of quantity and tried to make pairs with the same quantity, they were asked: 
On which cards could you identify easier how many dots there are? Then, they were 
asked to explain their opinion. The children could take as much time as they needed.

With the second task, the children’s ability to decompose a quantity into parts 
was investigated in a reversible way. Therefore, it was examined if children at the 
age of 3–6 already use the idea of decomposing or structuring a collection into parts 
to create a representation of a collection so that other people can easily see how 
many objects there are. It also was investigated what kind of structures the children 
used. First, the children were asked to create a collection with seven counters so that 
another person can easily see how many items there are. Then, they were asked why 
they think it can be easily seen how many counters are on the table.

The collections were categorized in different categories. If the children put the 
counters in a row so that no decomposition was clearly shown, then it was categorized 
as not structured into parts, also if they created a circle. If any decomposition into 
parts could be seen so that someone had the chance to determine the quantity without 
counting every single item, then it was categorized as structured representation.

In order to see what kind of structures young children see and use when they deal 
with structured material of formal school mathematics, the children were also asked 
to sort five eggs in an egg carton. In Germany, egg cartons usually contain six or ten 
eggs. We used a carton for ten eggs because it is equivalent to the didactical material 
of a ten-frame (Gerster and Schultz 2004). Here, the children are forced to use the 
structure of the ten-frame. Still, it was in our interest to investigate the children’s 
constructions: how they “use” the structure to create quantities which can be seen 
easily, whether they can explain afterwards if and how they used the structure of 
the ten-frame for (de)composition. They were asked to put five eggs in a carton so 
that it can be easily seen and then to explain their representation. In the analysis, the 
structures are described. To categorize the explanations, it was investigated if and 
what kind of structure or (de)composition the children referred to.

The interviews were conducted in two parts to avoid too much strain on the 
children. The children could stop the interview at any time, thus not every task was 
solved by every child. All tasks were posed in the same order. The interviewers 
took care to ask the children also whether they could explain why they solved the 
task in the way they did. The solving process was videotaped and transcribed. Later 
on, a qualitative and quantitative analyses of the solutions and explanations were 
undertaken. The results of these analyses will be presented in the following section.

Fig� 12�1  Task “Grouped 
Quantities”
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Results

Perception of Structures as a Help for Determination 
Quantities

As it can be seen in Fig. 12.2, 67 % of the children made pairs with the same quan-
tity correctly. Eleven percent of the children tried to make pairs with the same quan-
tity but not every pair was correct. Nine percent of the children made pairs on the 
basis of other criteria (like “nice–not nice”). Thirteen percent of the children did not 
deal with the task; (e.g. they had no idea or said, “I cannot do that”).

It can be stated that many children (78 %) between the age of 3 and 6 see quantity 
as a criteria for correspondence and that they can make right correspondences in 
terms of same quantity.

Table 12.2 illustrates what it looks like if the children are divided into age groups.
With increasing age, the children perceive quantities rather as criteria for cor-

respondence. Also, with increasing age the number of correct pairs of the same 
quantity rises.

If the children did focus on the aspect of quantity and tried to make pairs with 
the same quantity, they were asked: On which cards could you identify easier how 
many dots there are?

If we look only at the children who dealt with that task in terms of focusing on 
the same quantity, it can be stated that 75 % of the children who focused on the 
same quantity responded that they could identify the quantity easier at the grouped 
representations. Sixteen percent of the children who focused on the same quantity 
preferred representations without arranged structures, and 9 % of the children who 
focused on the same quantity did not see any difference.

Then, the children were asked to explain their decision:
Twenty-seven percent of the children who focused on the same quantity gave 

explanations, which did not refer to the arrangement or structure like I can already 
paint dots. Some of them made a connection to colours like Blue is my favourite 
colour or I wear a blue T-shirt.

Fifty-four percent of the children who focused on the same quantity did refer in 
their explanations to the structure in the representations. Different aspects of the 
arrangements are described:

• Structure in general
 The red cards are disordered
 The blue ones were easier painted
 The blue cards are more correct
• Dice pattern
 The 4 and the 6 look like a correct 4 and 6
• Describing the structure—Quantity of the parts
 (Card with four dots): 2 and 2
 (Card with five dots): If you look skewed, you can see 2 and 2 and then 1
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 (Card with five dots): Because on the bottom there are 3 and above there a 2
 (Card with six dots): Here are 3 and here are 3 too

The results show that pre-school children can already perceive structures in repre-
sentations and they can use them to determine quantities. However, for interpret-
ing these results in terms of ability to decompose a collection into parts through 
structuring, it must be considered that the cards with the four and the six dots are 
very similar to dice patterns. It cannot be stated clearly if they perceive these collec-
tions of quantities as a structured composition of different parts or as a whole fig-
ure which they recognize again as memorized pictures or figures (von Glasersfeld 
1987). Thus, for the next task, the quantity of seven counters was chosen so that not 
only one dice pattern as a whole figure could be reproduced.

Structures Used to Create Representations

The children were asked to create a representation with seven counters so that they 
can easily see how many objects there are. All the counters had the same colour so 
that a composition only can be demonstrated through spatial structures. The chil-
dren were not given seven counters; they first had to count seven counters out of a 
bowl with many counters (Table 12.3 and 12.4).

Table 12�2  Aspects of correspondence—children at different age groups
Age of children 
(year; month)

N Pairs of same quantity Other 
correspondence

Not dealt with

Correct Not Correct
3;6–3;11 8 3 (37.5 %) – 3 (37.5 %) 2 (25 %)
4;0–4;11 74 44 (60 %) 10 (13 %) 6 (8 %) 14 (19 %)
5;0–5;11 87 63 (72 %) 10 (12 %) 5 (6 %) 9 (10 %)
6;0–6;11 20 16 (80 %) 1 (5 %) 1 (5 %) 2 (10 %)

0%

20%

40%

60%

80%

100%

Quantity Other Aspect not dealt with

not correct

correct

Fig� 12�2  Aspects of correspondence
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Here, the same tendency can be seen as with the first question. Many children, 
especially the 5- and 6-year-old children, already used a structure to create a rep-
resentation which can easily be seen. They decomposed the collections in different 
parts.

Most children used a composition of the dice pattern of 6 and then placed one 
counter next to the dice pattern. Here, I do not distinguish the different possible 
orientations.

(Number of children who created this representation is in brackets)

(23) (11) (5) (5) (20) or

Most of the children (51) explained their (de)composing with explanations like One 
more than six. For the last representation in this line, the children gave different 
explanations because they used different structures. A total of 7 of the 20 children 
explained their representation as a composition of 6 and 1, and 13 children saw a 
substructure of 3 and 4.

The structure of 3 and 4 could be seen with other representations too, whereas 
the 3 and the 4 were represented differently. They sometimes used the dice pattern 
for 4 but no child used the dice pattern for 3:

(3) (4) (4)

Table 12�3  Representations which can be seen easily
Structured 
representation

Not structured 
into parts

Wrong quantity 
represented

Not dealt with

All children 189 108 (57 %) 43 (23 %) 22 (12 %) 16 (8 %)
Age of children 

(year; month)
3;6–3;11 8 3 (37.5 %) 4 (50 %) – 1 (12.5 %)
4;0–4;11 74 34 (46 %) 14 (19 %) 14 (19 %) 12 (16 %)
5;0–5;11 87 56 (64 %) 21 (24 %) 7 (8 %) 3 (4 %)
6;0–6;11 20 15 (75 %) 4 (20 %) 1 (5 %) –

Table 12�4  Structures of five eggs in an egg carton
Five in a 
row

Other 
structures

Wrong 
quantity

Not dealt 
with

All Children 
Age

189 77 (41 %) 66 (35 %) 12 (6 %) 10 (5 %) 8 (4 %) 16 (9 %)

3;6–3;11 8 1 (12.5 %) 1 (12.5 %) – – – 6 (75 %)
4;0–4;11 74 35 (47 %) 24 (32 %) 1 (1 %) 2 (3 %) 5 (7 %) 7 (10 %)
5;0–5;11 87 37 (43 %) 33 (38 %) 7 (8 %) 4 (5 %) 3 (3 %) 3 (3 %)
6;0–6;11 20 4 (15 %) 8 (45 %) 4 (20 %) 4 (20 %) – –
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Altogether 24 children used the composition of 3 and 4. The composition of dice 
patterns of 5 and 2 was created by 12 children. Other representations, which were 
used quite frequently, divided the dice pattern of 6 into rows and then one point was 
put between the rows:

(6) (4) 

Nine children placed the counters so that the digit was represented:

Here, the children did not use the idea of structuring a quantity but rather the idea of 
using digits to describe quantities which is an obvious solution for the task.

In this chapter, not all compositions are reported but only the most frequent 
compositions.

Summing up, it can be stated that children at pre-school age are able to decom-
pose representations of quantities in different parts to facilitate for other people the 
perception of the quantity, whereupon in most of the structured representation, dice 
patterns were used in some way.

Different Perceptions of Structures in Structured Material

In order to see what kind of structures young children perceive and use when they 
have to deal with structured material with a structure of 2 × 5, the children were 
asked to sort five eggs in an egg carton which looks like a ten-frame. Thereafter, 
they were asked to explain why it can be seen easily. Through the structure of the 
ten-frame, they could not reproduce the dice pattern of 5 which some already know 
as a whole figure. So they were forced to find another way of representation.

Most children put the five eggs in one row; one third of the children put three 
eggs in one row and two eggs in the other row. These were the most frequent rep-
resentations.

With increasing age, the use of this structure  is more frequent and the rep-
resentation with five eggs in a row decreases. How the children perceive their rep-
resentation cannot be concluded from their representation because the perception 
of a structure and (de)composing the quantity into substructures and different parts 
individual constructive acts. The given structure of the ten-frame automatically pro-
duces a kind of structured representation. But if the children perceive the quantity 
as a conglomerate of single items, then as a whole figure or as (de)composition of 
different parts with a structure cannot be answered only through interpreting the 
created representation. Therefore, the interviewers asked the question Why do you 
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think, it can be easily seen, that there are five eggs? In order to get an indication of 
what kind of structures the children perceive in their representation.

As it can be seen in Table 12.5, most of the children using the representation 
of five eggs in a row did not refer to a composition of a quantity in different parts. 
Sixty-four children gave no explanation or gave an explanation which can be in-
terpreted as a perception of the quantity as single eggs because they counted every 
single egg. But we cannot be sure if this really is the case. It is just an assumption. 
Only ten children referred to the structure as a row. Five of these children used the 
structure of the ten-frame in their explanation like It is a carton for ten eggs and 
therefore five eggs are in a row or ten eggs are in the carton and five is the half.

At this point, it must be stated that the structure of the ten-frame like it is often 
used in primary school, where the quantities are perceived as composition of two 
quantities of five items, is not used very much by children aged 3–6. Three children 
explained that they perceive a (de)composition of 2 and 3 in a row.

Fifty of the 66 children using the representation  referred in their expla-
nations to a structure. Only 16 gave no explanation or referred to counting every 
single object. Eight children perceived the two rows as a division into the parts in 2 
and 3. The structure of the dice patterns of 4, 5 or 6 were mentioned in most of the 
explanations referring to a structure.

Children using the representation   also referred proportionally quite fre-
quently to a structure in their explanation.

Table 12�5  Answers referring to structures or compositions
Answers referring to 
structures (Explanations 
in grey rows refer to a (de)
composition)

Five eggs in 
row

 Other structure

No explanation N = 36 N = 12 N = 1 N = 0
Referring to no structure—

Mention of counting every 
single egg

N = 28 N = 4 N = 1 N = 0

Referring to the row without 
reference to the ten-frame

N = 5

Structure of a ten-frame N = 5
(De)composition in 2 and 3 N = 3 N = 8 N = 3 N = 3
(De)composition in 2, 2 

and 1
N = 4 N = 3 N = 2

(De)composition in 4 and 1 
without explicit mention 
dice pattern

N = 6 N = 4 N = 3

Dice pattern of 4 N = 13 N = 1
Dice pattern of 5 N = 12 N = 1
Dice pattern of 6 N = 7

N = 77 N = 66 N = 12 N = 10
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Discussion

In the theoretical background, different processes in identifying quantities are dis-
cerned. In this chapter, we tried to investigate the process of perception, especially 
the perception of structures in order to identify different parts in a collection. It is 
not easy to gain insight into how children perceive a collection of objects—because 
there is no obvious action to observe. Therefore, we only can draw conclusions out 
of the explanations of the children or through careful interpretation of their way of 
determination or (re)producing representations, still having in mind that there is no 
one-to-one correspondence between perception and determination. In summary, it 
can be stated that half of all children of this study at the age of 3–6 already discern 
between structured and not structured representations and that they can use this per-
ception to determine quantities. As already mentioned at the first task, not only the 
perception of structures but also the perception of quantities as a whole figure was 
investigated because the representation of the quantity 4 and 6 was similar to dice 
patterns which are mainly recognized first as whole figures (see Table 12.1). Some 
children already referred in their explanation to the quantity as a decomposition of 
parts even for the dice-like representation of 4 and 6. In the reversible task where 
children should create a representation of seven items, the children had to (de)com-
pose the quantity because a dice pattern of the quantity of 7 does not exist. Here, the 
same tendency can be seen: More than half of the children already used a structured 
composition for their representation. With increasing age, the perception and the 
use of structure increased. Looking on the structures and decompositions which are 
used or explained by the children for the quantity of 7 the decomposition of the dice 
pattern of 6 was dominant. A possible interpretation for the preference of this use 
can be the fact that children used 6 as the number next to 7. Another possible inter-
pretation can be that 6 is the largest quantity which can be represented with one dice 
pattern and the children used the largest possible quantity. Interestingly, the compo-
sition of 5 and 2 was used less frequently as the composition of 3 and 4. A possible 
explanation for the preference of the composition of 3 and 4 can be the proximity 
to 3 and 3. The (de)composition of 3 and 4 then can be seen as nearly dividing into 
halves or nearly doubling (Rottmann 2006). The structure of the finger-pattern with 
5 and 2 was not transferred to create a structured representation with seven items. 
In this setting, it has now to be noticed that the quantity of 5 did not play a big role 
in children’s ideas of (de)composition with round counters. Looking at the explana-
tions of the children about the structures they used for the representation in the ten-
frame, it can be stated that most of the children who used the structure of five items 
in a row in the structured ten-frame as a structure did not explain the representation 
of the quantity with reference to a structure or (de)composition. If they gave an ex-
planation, then they referred to counting every single item. This can be interpreted 
in the way that they did not use a structure or (de)composition to perceive the quan-
tity with different parts. Children who explained the quantity with (de)composition 
either used the two rows to structure the quantity in two parts or they referred to dice 
patterns. Most of the children did not perceive and use the structure of a ten-frame 
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in the conventional way of perception which refers to decomposition of ten in two 
parts of 5 and refers to a row as a whole quantity of five items. The composition 
in parts of 5 and 10 is used in most didactical materials to represent numbers up to 
100, so that conceptual subitizing is possible. If the children in this study used the 
row for the five eggs, then most of the children had to count. Only very few children 
could “use” the knowledge of the fact that there are parts in terms of rows which 
are representing five items in this ten-frame. This is not astonishing. It emphasizes 
the fact that children’s perception of structures is an individual act. Also, it becomes 
clear that the decomposition and perception of quantities in parts of tens, fives and 
ones, which is used in didactical material, have to be learned.

Conclusion

What conclusions can be drawn on the basis of these results in terms of instruction 
or construction on the domain of identifying quantities?

In this study, children’s own constructions of recognizing or perceiving collec-
tions of objects was investigated. It was carefully interpreted how the children prob-
ably could have perceived the representation. The bases for this interpretation are 
the children’s created representations of quantities and their explanations of their 
way of determining the quantity of the representations. For the interpretation, we 
still had in mind that there is no one-to-one correspondence between perception 
and determination. The study reveals that many children could already perceive 
structures in representations. They could explain structures in quantities and they 
also could explain how they used the idea of (de)composing a representation of a 
quantity into different parts for determination. However, it must be noted that there 
are also children who do not obviously perceive or use structures. This shows, on 
the one hand, that it is possible for children at this age to construct knowledge in this 
domain. But it also shows, on the other hand, that many children need additional 
support. Therefore, it is a challenge for professionals to support children in the 
perception and usage of structures through questions and reflections about the per-
ception of structures and through providing materials where children can perceive 
structures (like egg cartons).

The different possible interpretations why children did not use the idea to decom-
pose quantities in a part with five items very much are already discussed above. A 
conclusion which can be drawn from this fact is that the idea of decomposing quan-
tities in parts of tens, fives and ones is a content which perhaps has to be discussed 
because this idea is not concluded in children’s own perceptions and constructions. 
Professionals must have in mind that many children have their own constructions 
regarding perceiving structures even in didactical material. Referring to this obser-
vation, children’s own constructions have to be an important point of discussion for 
mathematical instruction not only in pre-school setting, but also in school settings 
when using didactical material with an arranged structure.
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Introduction

In the last few years, Norwegian authorities have emphasised the importance of 
implementing mathematics and the use of information and communication tech-
nology (ICT)in kindergarten (Ministry of Education and Research 2006a,b). The 
former document adopts a broad view upon ICT and includes in the notion, for 
instance, computers, digital cameras, and copy machines. Moreover, the document 
contains recommendations and ideas for how to implement ICT in kindergarten. 
The latter document introduces mathematics as a separate subject area in kindergar-
ten. However, a combined emphasis on mathematics and use of ICT is not explicitly 
elaborated.

This study reports on our conducted research within a project called ICT Sup-
ported Learning of Mathematics in Kindergarten.1 In our study, ICT means comput-
ers together with digital tools displayed by way of web-based applications. Accord-
ing to Sarama and Clements (2004), there is a need for research aiming at identi-
fying the role of digital tools and their contributions with respect to mathematics 
learning. Our study aims at gaining insights from implementing and using digital 
tools as regards children’s mathematical learning within the kindergarten setting. 
In general, our hypothesis is that kindergarten children’s engagement with digital 
tools may support their learning of mathematics. More specifically, our tenet is that 
the studied children may encounter and experience mathematics concepts as re-
gards comparison of weights through the use of a digital pair of scales in interaction 
and collaboration with a more capable adult. The literature has so far not offered 
this topic careful attention. In their meta-analysis, Plowman and Stephen (2003) 
argue that mathematics and the use of digital tools in preschool settings have not 
frequently been an object of study.

1 This project was funded by the LA2020 programme at the University of Agder.

U. Kortenkamp et al. (eds.), Early Mathematics Learning, 
DOI 10.1007/978-1-4614-4678-1_13, © Springer Science+Business Media New York 2014
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Our study addresses the overall theme of this book in several ways. Mathemat-
ics education within the kindergarten context is in our perspective situated exactly 
within the poles of instruction on the one side and construction on the other side. 
With our theoretical position, we view mathematics education in kindergarten from 
an activity-oriented perspective (van Oers 2002). Kindergarten teachers aim at de-
veloping and orchestrating mathematical activities to create mathematical learning 
opportunities. In our view, the term instruction carries connotations in direction of 
teachers giving students orders to carry through. From our perspective, the kin-
dergarten teachers’ role takes the form of orchestration of mathematical learning 
opportunities for the children. The term construction is, to us, associated with a 
constructivist view upon learning. From our theoretical position, learning is seen as 
an ongoing process of appropriation (Moschkovich 2004; Rogoff 1990, 1995). By 
participating in learning activities, the children get opportunities to make the math-
ematical tools and actions their own. Children experience number, shape, and mea-
suring, by making sense in what contexts they are used, by trying them out for vari-
ous purposes in problem solving and communication (Säljö 2001; Wertsch 1998).

We believe the children in our study are involved in a learning process when 
engaging with the digital tools mediated by the interactive whiteboard (IWB). Hen-
nessy (2011) explored interaction possibilities of the IWB used in teaching and she 
lists their affordances, among others, the direct manipulation of objects and multi-
modal nature of interaction. These affordances offer “strong support for cumulative, 
collaborative and recursive learning” (p. 483). However, we believe it is a challenge 
to explore to what extent the users of the IWB, in our case children aged 4–5 years, 
engage in the learning of mathematics, i.e. whether the children become participants 
in processes of appropriating mathematical concepts.

From these considerations, we have formulated the following research question 
for our study: In what ways did the use of a digital pair of scales in kindergarten give 
learning opportunities in mathematics as regards comparison of weights?

Learning as Appropriation

In our study, we adopt a sociocultural perspective on learning. We view learning 
as a situated and social process in which individuals, i.e. in our case kindergar-
ten teachers and children, appropriate (mathematical) concepts, tools, and actions 
by collaboration and communication (Rogoff 1990; Wertsch 1998). Our reason 
for adopting this theoretical perspective is that a sociocultural stance offers a lens 
through which learning activities involving the use of digital tools may be analysed.

Appropriation as a sociocultural metaphor of learning is viewed as an individ-
ual process of ‘taking something that belongs to others and making it one’s own’ 
(Wertsch 1998, p. 53). In order for this process to be nurtured, the individual has to 
participate in social interaction with others where communication and contributions 
regarding ideas and arguments are essential elements. Appropriation is describ-
ing the process through which individuals gain from participating in sociocultural 
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activities (Rogoff 1995). To become a cultural knower, i.e. in our case to become a 
novice participant within mathematics, one has to: (1) involve oneself in a joint ac-
tivity with others; (2) establish together with others shared foci of attention; (3) de-
velop agreement with others regarding shared meanings for words and concepts, (4) 
reason with respect to the words and concepts used by others and transform these 
in future, purposeful actions; and (5) attend to the relationship between their indi-
vidual sense of mathematical concepts and tools and the mathematical meanings of 
these (Moschkovich 2004; Rogoff 1990). Moreover, when a child encounters and 
makes initial contact with a new cultural tool, such as measuring and comparison 
of objects with different weights as is the case in our study, she/he is dependent on 
external support by more competent peers. As the child’s experience increases and 
she/he comes farther in the process of appropriating the tool, the need for external 
support decreases.

However, the emergence of digital tools within educational practices, such as 
kindergartens and schools, transforms the way we learn and come to know new 
things (Säljö 2010). In a digital world, the interesting thing is our abilities to make 
productive and insightful use of digital tools in locally suitable ways. Learning in 
technological environments is a process of performative actions, which applies to 
children’s engagement with digital tools in kindergarten. Learning is about master-
ing the tools and performing in appropriate ways when interacting with the ICT 
applications, or as Säljö (2010, p. 62) puts it: ‘our mastery of such tools is a critical 
element of what we know’. These claims suggest that becoming familiar with digi-
tal tools at an early stage, in kindergarten, is important for the children in an edu-
cational perspective. In order to become a competent participant in an increasingly 
sophisticated and specialised society, the upcoming generation is in need of skills 
and competence regarding digital tools, their affordances, and constraints.

According to Plowman and Stephen (2003), the use of ICT in educational prac-
tices is a valuable supplement, or ‘benign addition’, to existing resources. Never-
theless, they claim, employing these tools does not transform kindergarten practice. 
Moreover, they assert that there is a scarcity regarding research on kindergartners’ 
use of ICT tools. Other researchers, in reviewing studies on young children’s learn-
ing with digital tools, have found that digital tools are effective in improving math-
ematical and problem-solving skills for children aged 3–6 (Lieberman et al. 2009). 
Clements and Sarama (2007) studied the effects of a preschool mathematics cur-
riculum focused at creating technology-enhanced mathematics materials. They ar-
gue that early mathematical interventions contribute to children’s developing math-
ematical knowing.

Sarama and Clements (2004) found that when children were engaging with com-
puter software, opportunities for mathematics learning were provided. In using the 
digital tools, children’s appropriation of mathematical concepts and skills was nur-
tured. The software helped the children to mathematise their everyday activities and 
supported the children in their participation in mathematical activities interacting 
with computers. The digital tools the children worked with supported them in repre-
senting mathematical ideas as well as modelled mathematical activity with objects, 
i.e. numbers and shapes, and mathematical actions such as counting, adding, and 
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subtracting. Nevertheless, Sarama and Clements point to a critical issue concerning 
children’s play and use of digital tools. In order for the children to make meaning 
of the digital tools, it is crucial the way they interpret and grasp the objects, actions, 
and screen design represented and offered through the software. Careful observa-
tions and conversations with the children are thus necessary in order to explore their 
meaning making.

The Mediating Role of Digital Tools

Within a sociocultural perspective,one tenet is the mediating role of cultural tools 
such as computer software and interactive boards (Säljö 2010; Vygotsky 1986). 
Children’s interaction and collaborative participation is fundamentally dependent 
on the use of these tools. The ICT applications become digital tools by way of their 
mediating function. These tools mediate mathematical concepts and ideas. Accord-
ing to Leont’ev (1979, p. 56), “The tool mediates activity and thus connects humans 
not only with the world of objects but also with other people”. The mediating role 
of digital tools is quite evident in that children interact with each other through 
communication and with the software by way of the dynamic mathematical objects 
incorporated in the software.

Plowman and Stephen (2003) argue that with accessible technologies with tangi-
ble interfaces, such as interactive boards, a distinction between playing with digital 
tools and embodied play in kindergarten may be neglected. In a kindergarten envi-
ronment where these new technologies are available, the notion of children’s play 
ought to be enlarged in order to encompass playing with digital tools as a mediated, 
physical, and embodied activity. The software applications are used as digital tools 
which children ought to mathematise in order to develop their mathematical think-
ing. The applications mediate reality in a particular way that the children need to 
make mathematical sense of. Displayed pair of scales, cars, trucks, buses, toy bears 
and dolls, footballs, and violins ought to be made sense of as objects that may be 
compared relative to their individual weights.

The children also have to consider various semiotic contexts in order to make 
sense of the ICT applications, the semiotic context of real toys and pair of scales 
as well as the semiotic context of the application. The children’s sense making in 
the former context has to be mapped onto the semiotic context of the application, 
e.g. the weights of violins, teddy bears, dolls, cars, and trucks, their internal weight 
relationships and how the producers of the application have implemented various 
weights of these toys, not necessarily in the same manner as the children reason. 
Additionally, these issues have to be related to the pair of scales and its functional-
ity as well as the boxes or areas (labelled heavy/light, heavier/lighter, and heaviest/
lightest, respectively) in which the toys ought to be placed after the comparisons 
of toys’ weights. From a sociocultural perspective, the reliance on symbolic tools 
such as interactive screens with manipulative objects exemplifies the crucial role 
that semiotic tools play in mediating a physical world with physical objects for the 
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children (Säljö et al. 2009). Moreover, we will argue that the children are involved 
in inter-semiotic work, i.e. the coordination of iconic categories and mathematical 
ideas and operations.

Interacting with the Digital Tools Through the Zone 
of Proximal Development

Links between learning as appropriation and the mediating role of tools are, in a so-
ciocultural perspective, found in the Vygotskian notion of the zone of proximal de-
velopment (ZPD). In order for children to learn something, Vygotsky (1978) argues 
that interaction with more capable peers needs to take place within this zone. ZPD 
is the difference between what a child is able to do alone and without assistance and 
what she is able to do in collaboration with adults or more competent others. With 
this notion, Vygotsky addresses the potentiality in the child’s appropriations and ac-
tions. This zone therefore could be seen as the adult’s guiding of the child within a 
culture and the collective knowing of that culture (Säljö 2001). The notion of ZPD 
is useful when analysing children’s interaction with digital tools and the collabora-
tion with the kindergarten teacher(s) within that interaction, because this notion 
may be used to describe the communicative qualities of their interaction. In a social 
setting and collaboration with the adult, the children are exposed to reasoning and 
actions that they gradually appropriate by becoming able to make those arguments 
and carry out those actions themselves. According to Chaiklin (2003), it is the qual-
ity of the interaction that takes place within the ZPD among children and adults that 
makes the notion fruitful for analysing children’s engagement with ICT tools. The 
interaction has to be ontogenetically adaptive in order to be purposeful, both with 
respect to the current situation of the child and with respect to future developments: 
an interactive creation of an intellectual space (Zack and Graves 2001). Sarama and 
Clements (2004) found that children of a particular age often seemed to be more 
competent than the software designers assumed them to be at that age. The age indi-
cators associated with different programs do not meet the competences appropriated 
by children at that particular age in their ZPD (Vygotsky 1978).

Co-learning as a Methodological Approach

Our methodology in conducting this research is based on what Wagner (1997) calls 
a co-learning agreement among us as researchers and kindergarten teachers as prac-
titioners. Researchers and kindergarten teachers collaborate in order to develop new 
forms of mathematical practice in kindergarten, a practice in which children interact 
with and use digital tools to appropriate mathematical concepts and actions. The 
reason for establishing a co-learning agreement is that, according to Wagner (1997, 
p. 16), within this agreement:
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…researchers and practitioners are both participants in processes of education and systems 
of schooling. Both are engaged in action and reflection. By working together, each might 
learn something about the world of the other. Of equal importance, however, each may 
learn something more about his or her own world and its connections to institutions and 
schooling.

We argue that a co-learning agreement is useful when aiming at exploring the sub-
tleties of the children’s opportunities for appropriating mathematical concepts and 
actions by way of using the digital tools on the IWB. Working with digital tools on 
the IWB to stimulate learning of mathematics was a new experience for the chil-
dren, kindergarten teachers, and researchers. Thus, a co-learning agreement was 
fruitful for common explorations of the new area of practice and research, in which 
both parties contributed with ideas and arguments.

More particularly, we used observations, video data of the sessions, field notes, 
and conversations with the kindergarten teachers as data collection methods to ad-
dress our research question. In our opinion, these various methods complemented 
each other in our ongoing efforts to do an in-depth analysis of naturally occurring 
talk in interaction. The context of our project is collaboration with three kindergar-
tens called Bee Pre-school centre, Swan Pre-school centre, and Frog Pre-school cen-
tre. We collaborated with two kindergarten teachers at each of these kindergartens.

In this chapter, we analyse data collected in an IWB session on Frog Pre-school 
centre planned and led by one of the researchers. The researchers had observed this 
group of children and their kindergarten teachers several times working with differ-
ent digital tools on IWB ahead of this session.

Results

The digital tool used on the IWB was a Norwegian software package for mathemat-
ics, Multi 1b.2 The software package Multi 1b is supposed to be appropriate for 
grade 1 students in Norway, which means an age of 6–7 years. At this age, many 
children are able to read in Norway. However, the children that engaged in the ac-
tivity we observed were 4–5 years old. Thus, we did not expect any of the children 
to be able to read. Consequently, all the written instructions in the digital tool were 
explained by the adult who lead the session. In this chapter, we consider the work 
with the three afforded levels of difficulty 1, 2, and 3 in an application within the 
digital tool Multi 1b treating measuring, particularly measuring of weights.

In the following, we will present two transcribed excerpts from video data and 
our analyses of those in order to address aspects of our research question. The digi-
tal tool displayed a pair of scales and the users were supposed to use the scales to 
compare the weight of displayed toys. Three levels of activities are presented in 
the tool. In excerpt 1, we present children’s work with level 1 where the tool asks 
the user to weigh two different, displayed toys and based on their weighing and 

2 http://web3.gyldendal.no/multi/1-4nettoppgaver/multi1b/kapittel7/oppgaveC/

http://web3.gyldendal.no/multi/1-4nettoppgaver/multi1b/kapittel7/oppgaveC/
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reasoning drag the toys to two boxes labelled “HEAVIEST” and “LIGHTEST”, 
respectively. At level 2, which was not engaged with in the session presented below, 
the users of the tool were supposed to use the pair of scales to compare the weight 
of one specific toy to four other toys. Each of these four toys was supposed to be 
dragged to either a box labelled “HEAVIER THAN” or LIGHTER THAN” the toy 
they compared with. At level 3, engaged with in excerpt 2, the mathematical chal-
lenges for the users of the tool are to relate the weights of three different, displayed 
toys with each other.

In the observed session, three children were placed close to the IWB. Immedi-
ately before this session, the children had engaged with a physical pair of scales 
and weighed various objects and compared their weights. In that session, the three 
children were made to experience, as regards the functionality of the pair of scales, 
that the pan with the heavier toy went downwards and the pan with the lighter toy 
went upwards. These children thus had some prior experience that they could relate 
to when exposed to the digital tool involving a pair of scales in a digital context. The 
adult started off the session by briefly demonstrating the functionality of the digital 
tool, pointed at the various elements of the screen and labelled them. Throughout 
the session, he read the written text presented within the application, called forward 
one child at a time to the touchable screen, and asked questions while the child 
interacted with the IWB. The session lasted for approximately 15 minutes before 
a new group of children accomplished the same activity. Both sessions followed 
the same pattern of interaction, addressing similar mathematical contents, and for 
convenience of the reader, we refer to only one of them in the two excerpts below.

Excerpt 1 Familiarisation with the Application 
and its Use on the IWB

In the following excerpt, four persons are interacting, one boy, Peter, two girls, 
Christina and Helen, and Ove (researcher).

1.   Ove: Now we are supposed to be weighing with the help of the computer, and 
we are supposed to figure out which one of these two things is lightest and 
which is heaviest.

2.   Christina: A ball
3.   Ove: A ball and a doll. Here it says: Put the toys in the correct box (Ove points 

to the text at the top of the screen and reads). Here it says lightest and here it 
says heaviest. But this thing here, do you know what that is? (Points at the pair 
of scales)

4.   Helen: The thing they are supposed to be laying at.
5.   Ove: The thing they are supposed to be laying at. It is a pair of scales, it goes 

upwards and downwards as we put the toys into the pans. I will show you. Let’s 
take the doll and drag it onto the left pan. Then it goes downwards. Let’s then 
take the football and drag it onto the other, right, pan. What do you think will 
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happen? (No response). It went just a little downwards. Which one of the two 
toys do you believe is the heaviest one?

6.   Christina: The doll
7.   Helen: The doll
8.   Ove: The doll. Why do you mean that?
9.   Helen: Because it went furthest down.
10.  Ove: Yes, because it went furthest down.

This excerpt starts off by Ove demonstrating and explaining the functionality of 
level 1 in the application and the associated drag-and-drop affordance to use when 
interacting with the IWB. Ove emphasises the comparison words lightest and heavi-
est in relation to comparisons of the weights of toys (this is the reason why the com-
parison words are written in italics in the excerpt), in order to focus the children’s 
attention to what the comparisons are about. At the screen (see Fig. 13.1), the fol-
lowing elements are displayed: A pair of scales to the right, two side-by-side boxes 
to the upper left corner labelled “HEAVIEST” and “LIGHTEST", respectively, in 
which the toys are supposed to be put after the weighing, and two toys—a football 
and a doll. Ove asks the three children’s opinions regarding the displayed pair of 
scales. It seems as if Helen makes sense of it even though she has never tried the 
application out before. However, she had seen and engaged with a physical pair of 
scales some minutes ago. The visualisation of the pair of scales seems to communi-
cate with her in such a way that she rationalises on its functionality. Ove is confir-
mative with respect to her reasoning and exemplifies the functionality of the pair of 
scales. Ove drags the two toys onto the two pans, first the doll onto the left pan and 
afterwards the football onto the right pan. Just before he drops the ball onto the pan, 

Fig� 13�1  The screen relative to excerpt 1 at level 1 in Multi 1b, measuring with scales (Trans-
lated by the authors). Source: http://web3.gyldendal.no/multi/1–4nettoppgaver/multi1b/kapittel7/
oppgaveC/nivaa1

 

http://web3.gyldendal.no/multi/1�4nettoppgaver/multi1b/kapittel7/oppgaveC/nivaa1
http://web3.gyldendal.no/multi/1�4nettoppgaver/multi1b/kapittel7/oppgaveC/nivaa1
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Ove asks the children what they believe will happen. There is no recognisable re-
sponse from the children to that question. But after having dropped it (there is only 
a small movement visible in the pair of scales when the football is placed onto the 
right pan), Ove asks a question addressing the conclusion that can be drawn from 
what they saw happen. Which one of the toys is heaviest? Both the girls conclude 
that it is the doll that is heaviest. Ove confirms their reasoning by repeating their an-
swer, but continues by asking them to argue for their conclusion. Helen then utters 
her argument. We interpret this utterance to explicate the following conclusion: The 
doll is heaviest because the pan in which the doll is laying got further down than the 
pan with the ball. The pan with the doll is visually lower on the screen than the pan 
with the ball. In this situation with two different toys, a mathematical underlying 
element is the concept of pair of contrasts. One of the toys is lighter and the other 
one is therefore, logically, heavier.

From this excerpt, it seems as if the children have made sense of the application, 
both the functionality of the pair of scales and what they are supposed to do when 
interacting on the application through using the drag-and-drop affordance in the 
IWB. It seems as if the children quite spontaneously master the digital tool (Wertsch 
1998). After a few repetitions of similar tasks at level 1, Ove decided that the chil-
dren needed greater mathematical challenges. The children’s engagement with the 
tasks at level 1 did not result in significant difficulties for them, and the tasks were 
solved with few actions on the IWB by the children. Thus, we find indications 
that the children were not met in their ZPD to any significant degree (Vygotsky 
1978). This might be due to the children’s recent experience with the physical pair 
of scales. The engagement with the digital tool at this level may thus be seen as an 
activity that repeats what the children experienced in the former session. The deci-
sion was then taken to continue with the application at the most difficult level, level 
3, to enrich the intellectual space created in the interaction between the children and 
Ove (Zack and Graves 2001).

Excerpt 2 Engaging with the Application on the IWB

This excerpt sort of continues where the previous excerpt ended. The same four 
persons are interacting, but now with the application at level 3. At the screen (see 
Fig. 13.2), there are currently three boxes to the upper left corner, labelled from left 
to right “HEAVY”, “HEAVIER”, and “HEAVIEST”.

Helen and Peter had already tried the application out in interaction and collabo-
ration with Ove when Christine approached the IWB.

78.  Ove: (Ove informs about the screen seen in Fig. 13.2, reads the text and indi-
cates where the toys are supposed to be dropped according to their weights). 
Now it says that the heaviest object ought to be placed here (points at the box 
to the right). The object that is midmost ought to be placed there (points at the 
midmost box). And the object which is lightest (even though it says “heavy” on 
the box) ought to be placed here (points at the box to the left). Do you want to 
compare them?
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79. Christina: (She drags the doll to the left pan and the bus to the right pan)
80. Ove: Wow. Which one of those is the lightest one?
81. Christina: (She immediately points at the left pan, which is correct)
82.  Ove: Yes, that’s correct. It is the doll. But we still don’t know what the relation-

ship is between the ball (points at the ball) and the doll. Shall we weigh the ball 
and the doll?

83.  Christina: (She removes the bus and replace it with the ball)
84. Ove: Which one of them is the lightest one?
85. Christina: (She immediately points at the ball, which is correct)
86.  Ove: Yes, it’s the ball. Then the ball has to go over here (points at the left box)

This excerpt is characterised by Christina’s action-oriented approach to solve the 
measuring problem. She does not say anything, but she performs actions as respons-
es to Ove’s questions. We consider these non-verbal actions as ways through which 
Christina externalises her thinking. She communicates her reasoning by dragging 
and dropping the toys where they are supposed to, and she correctly answers two 
of the questions by a pointing gesture. In this dialogue, we also recognise that Ove 
holds back some of the apparent difficulties in the task. He deliberately uses the 
word “lightest” when Christina compares the weights of the ball and the doll, rather 
than asking for what toy to be heavier. Their attention is then focused at the pair of 
contrast ‘heavy–light’ or ‘heaviest–lightest’. In this situation with three different 
toys, the children, in particular, Christina, but also Helen and Andreas who care-
fully watched the interaction among Christina and Ove, are exposed to the transitive 
ordering relation of quantities: If a > b and b > c, then a > c. In this particular case, 
Christina concluded that the doll is lighter than the bus. In the second weighing, 

Fig� 13�2  The screen relative to excerpt 2, at level 3 in Multi 1b, measuring with scales (Trans-
lated by the authors) Source: http://web3.gyldendal.no/multi/1–4nettoppgaver/multi1b/kapittel7/
oppgaveC/nivaa3
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suggested by Ove, she compares the weight of the doll and the ball. She then found 
that the ball is the lighter of those two toys, i.e. ball < doll. Algebraically, if the bus 
is quantity a, the doll is quantity b, and the ball is quantity c, she did the follow-
ing: In the first weighing she found that a > b. In the second weighing, she kept the 
lighter toy, b, and compared that toy with c. She concluded that b > c. If that had 
not been the case, that the second weighing led to the conclusion that b < c, then a 
third weighing would be necessary in order to decide the ordering of the quantities. 
Mathematically, the following conclusion about the transitivity might be drawn, 
that since a > b and b > c, then a > c. That is, the ball (quantity c) is the lighter one 
and ought to be placed at the left box.

In this excerpt, we observe how the more capable peer and the child are collabo-
rating in order to solve the problems. Christina is apparently in need of assistance 
in her problem solving, and Ove raises questions to explicitly involve Christina 
in their joint activity. The interaction takes place within the ZPD of Christine as 
her encounter with the pair of scales is guided by the more competent adult. Their 
shared focus of attention is the comparisons of the toys’ weights to order them ac-
cordingly. Both, the ICT application and the goal-directed activity of weighing by 
way of a digital tool in this case were new to Christina and the other children. The 
ICT application mediated mathematical ideas with respect to the concept of measur-
ing in a new way. Christina (and the other children) was confronted with measuring 
tasks in a digital setting. We therefore argue that the children, by being involved in 
this activity, have made initial contact with the implicit mathematical concepts such 
as pair of contrasts and the transitive ordering relation. Thus, opportunities are es-
tablished from which Christina and the other children may start their individual pro-
cess of appropriating the mathematics involved (Moschkovich 2004, Rogoff 1990).

Discussion

We set out in this study to come up with possible answers to the question: In what 
ways did the use of a digital pair of scales in kindergarten give learning opportuni-
ties in mathematics as regards comparison of weights? Through the two excerpts 
analysed in this study, we have seen how the children make meaning of the ICT 
applications, but also mathematical meaning. We argue that the children, through 
their utterances and actions, reveal that they make meaning of the digital tools of-
fered and represented at the screen. It is decisive to oblige and surpass this criti-
cal issue, as argued by Sarama and Clements (2004), in order for the children to 
appropriate mathematical meaning mediated by the digital tools (Plowman and 
Steven 2003; Säljö 2010). The children seem to immediately interpret and grasp 
the meaning of the displayed pair of scales and its functionality. If the pan moves 
upwards, the toy in that pan is lighter than the toy in the pan that moves downwards 
at the screen. Particularly, the children investigate and experience the functionality 
of the pair of scales and how it mediates that various objects have different weights. 
The children are in need of support by the more capable adult in their testing 
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of the material features of the digital tool(s). The balance between instruction and 
construction is delicate in this situation as the children’s mathematical and digi-
tal background is limited. Instruction is thus needed in order for the children to 
make sense of the displayed digital tool. The delicate balance between giving a too 
limited versus a too extensive mathematical instruction must thus be considered 
by the adult. However, opportunities have to be established in which the children 
themselves may initially appropriate features of the tool, its functionality, and the 
mathematical concepts implicitly mediated by the tool.

When the children use these digital tools, opportunities are made in which they 
externalise their mathematical thinking. The children are offered possibilities to es-
tablish shared meanings for mathematical concepts due to the flexible displaying of 
these concepts by way of the computer. The digital tools also make powerful links 
between the per se abstract mathematical concepts and visual concretising by vari-
ous representations. In using digital tools, these children may establish shared focus 
of attention as well due to their dynamic and multimodal nature. Interaction with 
digital tools may encourage the children to pose problems and conjecture regarding 
mathematical actions and objects. Due to the interaction with the digital tools and 
the more capable peer, the children become participants in an initial process of ap-
propriating (Moschkovich 2004; Rogoff 1995) the mathematical tool of measuring, 
in particular comparison of weights, pair of contrasts, and the transitive ordering 
relation.

In this application, both at level 1 and level 3, mathematical problems with simi-
lar cognitive demands were engaged with repetitiously. At level 1, different toys 
appeared in each turn and the order of the labels heaviest and lightest on the screen 
changed (sometimes heaviest was written on the left-hand side and sometimes on 
the right-hand side). While engaging with the tasks at level 3, the labels of the boxes 
changed into light, lighter, and lightest (from left to right). Nevertheless, it seems as 
if the children do not have severe difficulties with that. From a mathematical point 
of view, the ordering of the toys relative to their weight is opposite of each other on 
these occasions. In the first situation, the heaviest toy ought to be placed to the left-
hand box, but in the second situation the heaviest toy ought to be placed in the box 
to the right (in both situations the middle-sized toys ought to be placed in the box in 
the middle—whether the toys are characterised as lighter or heavier). These issues 
are deliberately hidden by Ove in the excerpts above, in order to competently guide 
and assist the children within their ZPD (Vygotsky 1978). The level of difficulty in 
the application is competently adapted to the children’s level of competence. An 
intellectual space (Zack and Graves 2001) is thus interactively created in order for 
the children to competently participate with ideas, actions, and arguments.

However, from a mathematical point of view it is problematic that the web-
based application introduces the words “heaviest” and “lightest” when the chil-
dren are supposed to compare two objects regarding their weight. According to 
the meaning of the notion weight, the words “heavier” and “lighter” respectively 
should have been used and displayed within the application. The same mathemati-
cal problematic issue occurs when the children are supposed to compare the weight 
of three objects and these are pre-classified as “heavy”, “heavier”, and “heaviest”. 
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A displayed object is in this context not “heavy” per se, but heavy with respect to an 
implicit comparison to a reference norm. These shortcomings of the digital tool, as 
well as the lack of comments by the adult in this respect, ought to be described as 
mathematically problematic. If we want children to develop proper conceptualisa-
tions of mathematical concepts and ideas as well as being able to use such notions 
properly and in accordance with the mathematical community, we argue that it is 
important to already in kindergarten introduce and use the mathematical correct 
words and notions both by adults and by way of software. Nevertheless, in the Nor-
wegian language, as is the original language of both the application and the adult, it 
is usual when comparing two objects to denote the heavier one as the heaviest one 
and the lighter one as the lightest one (literal translations of the Norwegian words 
“tyngst”—“heaviest” and “lettest”—“lightest”).

Additionally, these excerpts reveal that the children are challenged by the dis-
played toys, the correspondence of the toys with reality, and the weight of different 
toys in reality compared with what the application shows. Thus, the children are 
involved in inter-semiotic work (Säljö et al. 2009). The displayed buses and trucks, 
are they supposed to be interpreted as toy buses and toy trucks or real buses and 
trucks? What about the violin—is it supposed to display a real playable violin or 
some toy violin with a much smaller size? What images and thoughts are aroused 
among the children when displaying these objects? From the dialogues, we argue 
that the children, through inter-semiotic reasoning, are able to relate to the world 
of objects within the application and their representatives in the physical world, re-
spectively. The digital displaying of the pair of scales and the objects by way of the 
computer constitute both affordances and constraints as regards the children’s math-
ematics learning opportunities. Through inter-semiotic work, the children have to 
coordinate semiotic categories with the implicit mathematical concepts and ideas. 
The digital tool(s) as well as the more capable adult supported the children to some 
extent to mathematise their experience of measuring in this case (Samara and Cle-
ments 2004).

From the excerpts, we observe how Ove challenges the children mathematically 
through asking questions directly and indirectly linked to the mathematical issues 
implicitly imbedded in the applications. In competently assisting the children’s 
engagement with the ICT applications, Ove nurtures possible links between the 
challenges and previous experience. Thus, Ove emphasises the mathematical po-
tentials through which the children get opportunities to participate in processes of 
appropriating the imbedded mathematical tools. In terms of instruction, the adult in 
our study carries out his role through the orchestration of mathematical activities 
and thereby challenges the children within their ZPD. As regards the children’s 
construction, we describe this process as an interactive, individual process of ap-
propriating the offered mathematical tools and actions.

From our analyses of the children’s interaction with the ICT applications, it is ev-
ident that in excerpt 1 there is a mismatch between the competencies of the children 
involved and assumed competence of children of that age by the software design-
ers. This finding is in accordance with the result of Sarama and Clements (2004). It 
seems as if the children are able to master applications designed for children who 
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are from 2 to 3 years older. An intellectual space (Zack and Graves 2001) where 
the children are appropriately challenged is established in excerpt 2. Kindergarten 
teachers therefore need to make an effort to choose software programs and applica-
tions that meet and challenge the children within their ZPD (Vygotsky 1978). It is 
needed in order for children to continue their individual process of appropriating the 
mathematical tools and actions incorporated in the digital tools.
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Introduction

The long-term study early Steps in Mathematics Learning (erStMaL) is based at 
the Individual Development and Adaptive Education of Children at Risk (IDeA) 
Research Center in Frankfurt am Main1. In the context of erStMaL, children will be 
accompanied from the age of 4 years up to the age of about 9 years. Working out 
development lines of mathematical thinking stands at the centre of the study. The 
mathematical situations of play and exploration are designed as special empirical 
research instruments for the study erStMaL. They offer an action framework for 
children and the guiding adult which permits them to construct a situation context 
in the interaction in which processes of mathematical thinking can take place. The 
children cooperate in tandems or smaller groups (up to four children). Every half 
year with each child two situations of play and exploration are carried out in the 
described settings. The composition of the tandems and the groups remains constant 
during the complete investigation period. At the first data collection point, 144 chil-
dren were involved in the study (see Acar Bayraktar et al. 2011).

Each situation of play and exploration focuses on one mathematical task or prob-
lem, which is presented in a playful or exploratory context according to the age of 
the children and represents the starting point of a common process of dispute. This 
format was chosen because the discussions themselves are distinguished by a rela-
tively high degree of “close communication” (Koch and Österreicher 2007, p. 350; 

1 The IDeAResearch Center is funded through the “LOEWE” initiative of the federal state govern-
ment of Hessen. LOEWE is a national initiative in the development of scientific and economic 
excellence. The cooperation partner in the IDeA Research Center is the German Institute for In-
ternational Educational Research (DIPF), the Goethe University Frankfurt/Main and the Sigmund 
Freud Institute Frankfurt/Main. Further information can be found under www.idea-frankfurt.eu

U. Kortenkamp et al. (eds.), Early Mathematics Learning, 
DOI 10.1007/978-1-4614-4678-1_14, © Springer Science+Business Media New York 2014
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Vogel and Huth 2009, pp. 38, 39). On the one hand, the increased intensity of com-
munication can be used motivationally, and on the other for the discursive adapta-
tion of the mathematical problem (see also Vogel and Huth 2010, pp. 184, 185).

Furthermore, the conception of the mathematical situations of play and explora-
tion provides that the arrangement has its root in one of the following five math-
ematical domains: numbers and operations, geometryand spatial thinking, measure-
ments, patterns and algebraic thinking or data and probability (including combi-
natorics). The mathematical domain is being expressed by a suitable selection of 
materials and arrangement of space and by the mathematical task. In addition, the 
guiding adult gives thriftily verbal and gestural impulses and encourages the partici-
pating children to engage in activities.

The tandem situations always take place in the same mathematical domain. The 
group situation is chosen from two further alternating mathematical domains. So 
every child is confronted with mathematical situations of play and exploration from 
three mathematical domains. The mathematical situations are further developed 
over time as described in the section.

Approaches and support for the development and conceptualization of the math-
ematical situations of play and exploration in the erStMaL long-term study come 
from a number of sources. These include the results of empirical studies (Clements 
and Sarama 2007; Sarama and Clements 2008; Schuler and Wittmann 2009), and 
practical information for work in day-care centres from operational books (e.g. 
Hoenisch and Niggemeyer 2007; Benz 2010). Additional publications include those 
in which concepts are described for the creation of a mathematical teaching and a 
learning environment (Hülswitt 2006; Wollring 2006), together with publications in 
the field of early education (Fthenakis et al. 2009; Korff 2008).2

The mathematical situations of play and exploration are carried out by specifical-
ly trained members of the project’s staff and will be videotaped. The video material 
delivers the data material for the development of theories of mathematical thinking 
within the framework of mathematics education (Krummheuer 2011; Vogel and 
Huth 2010).

At first, the mathematical situations of play and exploration are introduced as an 
empirical research instrument in the context of a long-term study with two exam-
ples. The staged situations establish the starting point for children for the first en-
counter with the mathematical world. The mathematical world is caused situational 
and is characterized as the interplay between construction and instruction. With the 
detailed descriptions, the guiding adults gain confidence which open a scope of ac-
tion for them. These two aspects are introduced in the following and illustrated by 
the empirical data material. This has arisen in the two exemplarily selected situations 
of play and exploration “animal polonaise” (data material from the data collection 
point T1) and “wooden sticks” (data material from the data collection point T3). 

2 This is only a selection of the literature that was evaluated in the preparation of the mathematical 
situations of play and exploration. The development of the mathematical situations is continued. In 
this context, there is also an ongoing process of feedback to the current discussion of mathematical 
education in child-care centres, and the transition to primary school.
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At the data collection point T1, the observed children are approximately 4 years old; 
at the point T3, the children are approximately 5 years old.

Mathematical Situation of Play and Exploration 
in the Context of a Long-Term Study

The mathematical situations of play and exploration for the erStMaL long-term 
study will be developed further from data collection point to data collection point 
in the context of the mathematical domain. This continuing development will oc-
cur from various points of view. Therefore, the goal of development lines research 
involves a certain requirement for consistency and variation for investigation. In 
reality, this means that the situations of play and exploration must remain consist-
ent within their mathematical frameworks, however, developing in the materials 
(artefacts) and arrangement of space and in the mathematical task. In this way, the 
developmental changes, such as the cognitive and communicative potential of the 
children,are taken into account. In addition, at each data collection point the children 
acquire progressive experiences in situations of play and exploration. These experi-
ences can be included in the situation at the next data collection point. Therefore, 
appropriate continuing development must be designed specifically for each situa-
tion of play and exploration in consideration of its respective degree of freedom.

The continuing development of mathematical situations of play and exploration 
can add to the characteristic components of a situation of play and exploration de-
scribed here: (1) of the mathematical task, (2) the materials (artefacts) and arrange-
ment of space and (3) the stimuli set by the guiding adult during the performance 
of the situation.

The Mathematical Task Every mathematical situation of play and exploration 
shares a need of mathematical tasks that originates from the respectively selected 
mathematical domain. The mathematical task shows different degrees of freedom 
that will be strengthened by the degree of freedom of the material (artefacts) or 
rather the tools which are contemplated for the situations. This degree of freedom 
influences the scope of construction of the mathematical area of action for all actors 
(see sections Example 1: “Animal Polonaise” and Example 2: “Wooden Sticks” 
in this chapter). The advancement of the mathematical task can occur within the 
selected mathematical domain as variation of the task by the addition of more 
aspects.

The Materials (artefacts) and the Arrangement of Space The material (arte-
facts) and the arrangement of space are so selected that the processing of the mathe-
matical task is initiated and supported. The chosen artefacts offer the children points 
of contact, since they usually originate from the world of the childlike play. So, for 
example, toys from plastic, which run on podiums (see section Example 1: “Animal 
Polonaise”), chipmunks made of plush, which want to distribute fairly nuts and cards 
with ladybugs, which can be sorted according different criteria, are selected. At the 
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same time, this material can be used to stimulate mathematical activities. Usually, 
the materials (artefacts) remain constant over several data collection points. Further 
developments of the materials for example consist of expanding from the plane to 
the space (see the situation “wooden sticks”).

The Multimodal Stimuli The guiding adult, who accompanies the implementa-
tion of the mathematical situation of play and exploration, is urged to initiate the 
employment with the mathematical problem through open stimuli, but he/she should 
offer as little guidance as possible in order to provide the most potential freedom 
for the mathematical situations of play and exploration. This offers the children the 
possibility to choose a way of adapting the mathematical task which is suited to the 
situation. Thus, in the process, they can produce connections to other mathematical 
domains or to other worlds of ideas.

The components of the multi-modal stimuli must continue to be developed in a 
certain manner by the guiding adult. Thus, the initial stimuli remain in the repertoire 
of the guiding adult throughout and will be documented in the description of the 
situations for the subsequent data collection point. In addition, progressive stimuli 
will be supplemented from data collection point to data collection point. The guid-
ing adult is confronted with the often-difficult task of making concrete decisions 
about which of the stimuli formulated in the pattern should be used, or rather be 
replaced by more appropriate, spontaneous stimuli.

Example 1: “Animal Polonaise”

The mathematical situation of play and exploration “animal polonaise” has to be 
assigned to the mathematical domain of combinatorics. On a podium, animals shall 
be brought in an order (see Fig. 14.1). At the first two data collection points, the 
mathematical task consists in finding all possible sequences that can be made using 
a given number of animals (at the first data collection point were used three ani-

Fig� 14�1  Animals and 
podium from the math-
ematical situation of play 
and exploration “animal 
polonaise”
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mals, rather than four animals). In this situation, the level of mathematical freedom 
is rather small, since the task is defined clearly. The scopes are here rather in the 
processing of the mathematical task which can be solved using different combina-
torial solution strategies. These, in turn, are linked to the available materials. The 
task will then be extended for the third data collection point by the requirement of 
documenting the sequences found with the help of cards, on which the animals are 
displayed. In doing so, the question as to how many such sequences there are can be 
approached systematically. Optimization of the solution strategies for finding all of 
the sequences can result through such documentation.

An extension at the fourth data collection point will then include limitations on 
the arrangement of the animals on the circus podium, such as always placing the 
elephant at the front. This will be introduced into the situations of play with the help 
of a dice as a random generator.

This example shows how that material and the arrangement of space will change 
in parallel with the extension of the mathematical task. Thus, the first data collec-
tion point begins with three animals, which increases to four, then the addition of 
animal cards for documenting the various sequences and the addition of a random 
generator in the form of a dice for creating conditions at the fourth data collection 
point.

The guiding adult has the task of introducing the mathematical task in this situ-
ation using the non-mathematical context of the circus as the framework for the 
activity. This should encourage the children to discover the potential sequences of 
animals on a circus podium as a form of exploration and symbolic play. In this situ-
ation, the guiding adult has the task of deciding at each data collection point and for 
each individual group of children the extent to which the circus context will be used 
and at which intensity. By adding the animal cards at the third data collection point, 
explanations will be required on the part of the guiding adult, who will create a con-
nection between the plastic animals on the podium and the animal cards.

Example 2: “Wooden Sticks”

If one considers the “wooden sticks” situation as an additional example of a math-
ematical situation of play and exploration, then this mathematical task exhibits 
a greater degree of freedom. Patterns can be created, by arranging the coloured 
wooden sticks (see Fig. 14.2). Since the wooden sticks differ only in colour but not 
in shape, colour is an obvious criterion for the development of the patterns. Patterns 
can be created, by placing certain sequences of colours side by side (Hülswitt 2006). 
Another possibility would be to create geometric shapes from the wooden sticks 
that in turn serve as a unit of pattern development. The objectives of the play situa-
tions show that the mathematical task allows many possibilities that have increased 
even more scopes in connection with the materials.
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The mathematical task as soon as the material and the arrangement of space will 
remain consistent over multiple data collection points, since both the task and the 
materials contain a great degree of freedom for the solution. The materials will first 
be changed for the fourth data collection point by extending the creation of patterns 
in the space. Flat wooden sticks will no longer be used, but rather wooden sticks of 
a certain shape (rectangular prisms), in order to create spatial patterns.

Mathematical Situations of Play and Exploration—Area 
of Action between Construction and Instruction

Mathematical Area of Action

The central goal of the mathematical situations of play and exploration of erStMaL 
is to create an area of action that makes encountering mathematics as a culture pos-
sible. The perception of mathematics as an independent cultural orientation system 
is not new and has been handled in a special manner by ethno-mathematics (see 
Prediger 2001, p. 126). For learning mathematics, this means that points of access 
into this culture must be found with regard to the way of thinking, the values and 
the behaviour in this culture. Prediger (2001) introduced one such approach in her 
“Concept of Intercultural Learning”.

“Mathematics instruction should be used to teach students to know and to understand math-
ematics as an own culture. To do this, they should experience this culture and socialize as 
much as possible within it so that they can move safely within certain limited areas. The 
acquisition of implicit knowledge about the approaches, standards and values is also neces-
sary.” (Prediger 2001, p. 129; translated by R.V.)

Above all, intercultural overlap situations, in which the culture of mathematics 
meets other parts of cultural life, provide students with the ability “…to gather their 

Fig�14�2  Material from 
the mathematical situation 
of play and exploration 
“wooden sticks”
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own experiences in those overlap areas between mathematics and the world” (Pre-
diger 2001, p. 130; translated by R.V).

The mathematical situations of play and exploration constitute such overlap 
areas between mathematics and the children’s world of experience (see Prediger 
2001). The mathematical discourse as a part of the situations of play and explora-
tion should permit the children to participate in the mathematical concepts that are 
presented in a multi-modal manner by the guiding adult. Participation is used here 
in the sense that an area of learning will be created, where “knowledge learning” 
and “human being learning” and in the same way “acting learning” and “common 
life learning” can be connected (see Wulf and Zierfas 2007; translated by R.V.) and 
a narrative argumentation becomes possible (Krummheuer 2011; Tomasello 2008; 
Bruner 1986).

The experience world of the children is determined by the play. In the play, 
children discover the “physical world” (Samuelsson and Carlsson 2007, p. 33) as 
well as the world of the living together. In the free play, they test their own physical 
borders and the quality of objects. Role plays enable the actors to leave the pure 
object relation and to agree on a subject of the play; thereby, a common context as 
a reference point is possible (see Oerter 2011, p. 99). So the play can be described 
as a possibility to understand the world (see Samuelsson and Carlsson 2007, p. 31) 
and still the play remains free of purpose (see Oerter 2011, p. 5). These described 
aspects of the play are considered in the concept of the mathematical situations in 
the research study “erStMaL”. They should create a space in contrast to learning 
situations, which makes free mathematical explorations possible.

Example—“Animal Polonaise”

The chosen scene in the transcript section (see Fig. 14.3) describes a situation in which 
the guiding adult introduces in the situation “animal polonaise”. The animal figures 
should run above the podium, as well as they do in the circus. Besides, the fact that they 
run in different orders through the podium should be taken into account.

The situation ties up with the context circus. Here animals make tricks and run 
over podiums. With the plastic animals and the podium from cardboard the real 
circus becomes a situation of play in which the animals are controllable and these 
can be led in different orders about the podium. For the play situation, the podiums 
are so formed that the plastic animals can be put up only one after the other. In this 
manner, a mathematical interpretation is initiated for the purposes of a combinato-
rial situation “in order without repeating”.

At the beginning of the example, the guiding adult puts three animals one af-
ter the other beside the podium. With this, a mathematical interpretation is given. 
The repeated walk one after another on the podium should support the children 
in finding other variations. The context enables the emergence of different varia-
tions, because the same animals can go several times differently about the podium. 
Thus, a real situation can be used in the play as a starting point for mathematical 
interpretations.
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Material and the Arrangement of Space

The activity-oriented approach described by van Oers (2004, pp. 316, 317) for ear-
ly mathematical education, which touches on the cultural–historical approach for 
learning and development Vygotsky (1978), assumes that mathematical thinking is 
not limited by genetics. Mathematical thinking arises from the idea that “activities 
resulting from specific actions or situations” will be designated as “mathematical” 
by the adults (teachers or parents) (van Oers 2004, 317; translated by R.V.).

“These activities, in turn, achieve a certain meaning in the understanding of the individual. 
The process of selection, designation and assessment of certain activities as ‘mathematical’ 
is in principle a socio-cultural process. […] Consequently, mathematics is learned through 
social interaction and that in the context of meaningful activities.” (van Oers 2004, p. 317) 
(translated by R.V.)

Meaning is not attributed to the materials themselves for the relevant activities in 
this theoretical context, but rather is given a meaningful value by the people partici-
pating in the situation (see also van Oers 2004, p. 321).

“Learning processes are required to be able to use an aid properly. The behaviour of the stu-
dents is supported by the aid in a manner specific to the culture in such a learning process, 
and simultaneously, the advantages that are connected with the culture structure of the aid 
become obvious.” (van Oers 2004, p. 321; translated by R.V.)

001
002 > B lift the tiger and put him down and now in the circus
003 the animals want to make once a trick
004 on the podium\ lift shortly the elephant and the monkey  
005 (from left to right: elephant – monkey – tiger)
006 put them up again and push the podium more nearly to
007 the children and namely they should run sometimes 
008 in a row through it put the animals in a
009 row next to the podium (from left to right):
010 (monkey – elephant – tiger) and balancing about this
011 > Kai looks on the carpet in the direction of the animal figures
012 > Ayse looks on the carpet in the direction of the animal figures
013 B looks at Kai and Ayse want you  
014 < help me sometimes/
015 < Ayse looks at B 
016 y e s
017 B na\ put this onto the podium that these can run about in a 
018 > row\

Fig�14�3  Transcript from the situation “animal polonaise” implemented with the children Kai 
und Ayse at the data collection point T1 (see Vogel and Huth 2010, S. 191 et seqq.). Explanation 
for understanding the transcript:/—lifting the voice,\—lower the voice, action are in italics and 
<—happened at the same time
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The materials and aids become a bridge between the strange culture (in this case, 
the culture of mathematics), in which experts (in this case the adult) demonstrate 
 handling the material with reference to the task and deliver one interpretation with 
it. In this manner, the material has significance for the problems to be solved. There-
by, they create connecting factors for childlike thinking and the children’s develop-
ment and they introduce them to the thinking and activity processes of the relevant 
culture.

“Higher mental functions exist for some time in a distributed or ’shared’ form, when learn-
ers and their mentors use new cultural tools jointly in the context of solving some task.” 
(Bodrova and Leong 2001, p. 9)

Through the interpretation of the guiding adult, the chosen materials and tools be-
come artefacts of a culture of mathematics. They constitute connection points for 
the kindergarten children either to join the mathematical interpretations of the guid-
ing adult or to make modified interpretations of the arrangement and to bring their 
own ideas as well as the storylines and rules of their child-like world into the situa-
tion (see also Vogel 2013).

Example—“Wooden Sticks”

The left picture (see Fig. 14.4) shows figures like houses and lanes, which the two 
boys have laid spontaneously with the wooden sticks at the beginning. The bicol-
oured pattern (see marking, red–yellow–red–yellow) is being laid by the guiding 
adult. This pattern shows the mathematical interpretation intending for the situa-
tion: the sticks are used for putting a tape ornaments. The figures of the children can 
be also interpreted mathematically. After statements of the children, they represent 
three-dimensional objects. In the mathematical interpretation, the boy could have 
laid down the front elevation of a building.

The children take up the impulse of the guiding adult and extend the pattern 
(see the right picture of Fig. 14.4). On inquiry, the children describe the lined up 

Fig� 14�4  Stills from the situation “wooden sticks” at the data collection point T3 (two boys at the 
age of approximately 5 years are involved in the situation)
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sticks as people. Thereby, they tie in with a situation, e.g. a human queue in which 
people stand close to each other. With it, the children take up the mathematical 
interpretation at the action level and interpret them in their childlike world of 
experience.

The second pattern (see Fig. 14.5), which is pretended by the guiding adult, is 
taken up by one of the two boys in the manner that he lies down a structure which 
shows colour sample at one point (see the left picture of the Fig. 14.5). At the end 
of the laying sequence, the boy puts a square with the wooden sticks. The other 
boy has put another bicoloured pattern in the meantime. In this, the boy takes up 
a colour from the original pattern and chooses another colour as the second colour 
usage (yellow–lilac–yellow–lilac). While one boy at the action level is following 
up the pretended mathematical interpretation, the other boy also integrates elements 
from his world of experience at the action level. Thus, the resulted structure could 
be interpreted, e.g. as a rocket (see marking, Fig. 14.5).

Altogether, in the select sequences it becomes apparent that the children follow 
the mathematical interpretations of the guiding adult in their visible actions at time 
but absolutely also find their own mathematical interpretations. Thus, a boy of the 
tandem remains true to his original use of the wooden sticks as a representation of 
geometrical objects.

Mathematical Situations of Play and Exploration—
Research Areas Between Instruction and Construction

The mathematical stagings shall be able to be repeated in the research context com-
parably several times. With it, the instructional view point gets more important if the 
mathematical situations of play and exploration are used as an empirical research 
instrument. For the implementation of this requirement of openness and standardi-
zation, a uniform structure for the description of the situations in the form of “di-
dactic design pattern” (see Wippermann 2008) was chosen. This “design pattern” 
will be designated in the context of mathematical learning and thinking as “design 
patterns of mathematical situations” in the future. Alexander (1977) developed the 
theory of “Pattern Language”. It was adapted for the area of teaching and learning 
and is used here especially to document and to relay expert knowledge about the 

Fig� 14�5  Stills from the situation “wooden sticks” at the data collection point T3
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arrangement of teaching–learning environments (see Wippermann and Vogel 2004; 
Vogel and Wippermannn 2005).

In the erStMaL project, the mathematical situations of play and exploration will 
be described by the research team along a structure which has been specially de-
veloped.3 The “design patterns of mathematical situations” are sub-divided into the 
following central groups of categories (see also Vogel 2013): (1) organizational 
aspects, (2) realization-related aspects and (3) mathematical aspects (see Fig. 14.6). 
The organizational aspects are important for the organization of the research. The 
realization-related aspects refer to the actual implementation of the play situations 
and the mathematical aspects support the guiding adult in their decision-making 
during the situation.

The individual descriptive categories are related to each other. Thus, a repertoire 
is described by possible stimuli in the realization-related categories. In the specific 
situation, selections can be made between them. Which of the possible stimuli for 
activities, gestures and spoken instructions in the “design patterns of mathematical 
situations” are appropriate must be decided for each situation and assumes a certain 
measure of mathematical knowledge in the respective mathematical domain and, 
furthermore, in the mathematical domains that might be used for creative solution 
of the task, as well as a good feeling for accompanying the mathematical learning 
process.

On the one hand, detailed instructions are given for the situation by the “design 
patterns of mathematical situations” and on the other the descriptions shall put the 
guiding adult in a position to react situatively and creatively to the mathematical 
constructions of the children.

3 All the mathematical situations of play and exploration will be developed from the researcher 
group of the project erSTMaL

organiza�onal
aspects

realiza�on-related
aspects

mathema�cal
aspects

brief descrip�on star�ng situa�on
mathema�cal

domain

possible s�muli
domain of
applica�on

descrip�on and
explana�on of
mathema�cal
backgroundconceivable links to

children’s ideas,
ac�vi�es and verbal

expressions references to
realiza�on

material and spa�al
configura�ons 

references

Fig� 14�6  Structure for the “design pattern of mathematical situations” in the erStMaL project
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Conclusion

For the children, the mathematical situations of play and exploration are areas of 
common construction of the meaning, which receives a mathematical dimension by 
the instruction of the guiding adult. At the same time, these instructions are products 
of construction on the part of the guiding adult who interprets the descriptions of 
the situations in form of “design patterns of mathematical situations” in the context 
of the research process at different points. Such points are the preparations for the 
concrete data collection stage or several sequences in the implementation of the 
situations of play and exploration.

The exemplarily selected situations of play and exploration give an impression 
of this, like the children in the data collection stage meet the construction of math-
ematics which is determined by the material (artefacts), the mathematical task and 
the impulses by the guiding adult. The construction of mathematical spaces of ex-
ploration on the part of the guiding adult is initiated by instructions in the situation 
descriptions of the “design patterns of mathematical situations”. The children them-
selves partially take up this mathematical interpretation or develop own interpreta-
tions.

Besides the use as an empirical research instrument, the mathematical situations 
of play and exploration are currently used in seminars of the primary teacher educa-
tion in mathematics at the Goethe University, Frankfurt am Main. The work with 
the children is prepared in detail by the exact description of mathematical teaching 
and learning situations in the form of “design patterns of mathematical situations”. 
For following analyses, the situations will be videotaped. In this way, the teacher 
students can observe and analyse the mathematical work of the children according 
to research-based learning. At the same time, they can experience what it means to 
accompany children in their mathematical learning.
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Introduction

In Germany, the use of ICT in kindergarten (as well as in primary school) is still 
seen to be very controversial. There are various reasons for this, but a crucial point 
is that “traditional” technology (that is, computers and software) only offers indirect 
manipulation through the mouse, while it is generally preferred to offer manipula-
tives that children can hold, touch, feel, etc. With virtual manipulatives, children 
might not focus on the content but on the (artificial) way to interact with it. In the 
beginning, it is even a challenge for children if the mouse reaches the border of the 
table or mouse pad. The fine motor skills of the young children are not fully devel-
oped yet, for example, the hand–eye coordination still needs additional training. It 
is difficult for children to coordinate their eyes and what they see on the screen with 
their movements with the mouse. This problem is amplified by the fact that the scale 
of the distances moving the mouse does not correspond linearly to the distances on 
the screen.

Touch-sensitive interfaces enable children to work directly with virtual manipu-
latives, that is, interactive visual representations of dynamic objects that provide op-
portunities for constructing mathematical knowledge (Moyer et al. 2002). Touching 
and working with manipulatives meet the way young children learn. Children who 
cannot express knowledge in speech could express knowledge in gestures (Goldin-
Meadow 2009). “Interactive gestures allow users to interact naturally with digital 
objects, in a physical way, like we do with physical objects.” (Segal 2011, p. 7). 
Multi-touch technology gives children better control of their interaction. In a study 
with 128 children at the age of 6 and 7 years, Segal examined the variable direct-
touch interaction vs. mouse interaction (Segal 2011). She concluded that children 
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using direct-touch outperformed children using the mouse, in particular for strategy 
use in a counting and addition task. Segal reasons that the children using the touch 
interface had more time to concentrate on the task itself than to concentrate on the 
manipulation.

A further possible improvement in interface design can be multi-touch technol-
ogy, as opposed to single-touch technology. Multi-touch means that the interface is 
able to detect and process the input of several touches at the same time, so it can be 
possible to handle a virtual manipulative with up to ten fingers, or more if several 
persons work with the same device. Single-touch, allowing for a single finger at a 
time, is still similar to a mouse movement, as it only removes the indirection. As 
it is not possible to use several fingers at once in single-touch environments, the 
single finger induces ordinal number concepts. As we will see below, representing 
a quantity by touching the screen with many fingers all at once can also support a 
cardinal concept of numbers.

Another reason for the controversial issue of ICT in kindergarten and primary 
school is that applications for early mathematics often do not match the consoli-
dated research results of mathematics education and what we know about the de-
velopment of mathematical knowledge. Segal (Segal 2011, p. 15) defines “Gestural 
Conceptual Mapping” as the “mapping of gestures (actions) to mental operations 
and representations with the learned concept.” External representations must map 
to mental representations. In her research, Segal showed that children in the en-
vironment with direct-touch and gestural conceptual mapping delivered the best 
performance.

As an example for such a mapping, we refer to the “power of five” (Flexer 1986; 
Krauthausen 1995). Children are able to subitize small numbers of items. To con-
ceive bigger numbers without the need to count, quantities should be structured, 
e.g., in blocks of five and x. Appropriate gestures must take that into account, for ex-
ample, by grouping the tokens created by five touching fingers into blocks of five.

In our research, we consider multi-touch-technology, for example, multi-touch 
tables like Microsoft Surface, Evoluce One, or similar. It also applies to mobile 
devices, in particular the iPad or others based on the Android operating system. 
These affordable devices make the double-improvement (direct vs. indirect, multi-
touch vs. single-touch) available in the classroom or kindergarten setting. Another 
requirement for sensible use of these devices is software that uses this technology 
based on educational research in mathematics. Starting from our initial hope that 
the way children use these devices can give us more information about the concepts 
of numbers they use, and maybe help them to fluently change between different 
concepts, we formulated three research questions:

• Can the usage data collected help reveal and distinguish the number concepts 
that children use?

• How must a multi-touch environment be designed to collect the appropriate 
data?

• Can we support the development of the part–whole number concept with such 
environments?
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Didactical Background

Development of Number Concepts

The analysis of the object is a necessary requirement for understanding human ac-
tivities. We focus on number concepts because this mathematical content is very 
important for further learning of mathematics. According to the ordinal concept, 
numbers describe positions in an ordered row (Fuson 1992; Dornheim 2008). Com-
ing along with that is the knowledge of which number is the successor or predeces-
sor and where a number is located on the number line. Objects can now be brought 
into a relative position to each other. This is very important for estimation as well. 
Children develop this concept about the age of 2–5 years. Parallel to this (ca. 3–6 
years), children acquire also a cardinal concept of numbers. They understand that 
number words can be used not only to count but also to name a quantity. The last 
number counted corresponds to the cardinality of a set (Gelmann and Gallistel 
1987). The part–whole concept of numbers is based on those developments. If a 
child already acquired a part–whole concept of numbers, then he/she knows that 
several parts are composed to a whole, e.g., the parts 3 and 5 are composed to the 
whole of 8. Especially the part–whole concept provides the basis for several funda-
mental mathematical principles like commutativity and associativity of addition, or 
the complementarity of addition and subtraction (Resnick et al. 1991, p. 32). The 
part–whole concept is also important to understand the decimal number system be-
cause this uses a decimal part–whole concept. It combines the part–whole concept 
with the decimal structure of our number system (Fig. 15.1) (Ladel and Kortenkamp 
2011b; Ladel 2011).

Finger Symbol Sets

All three concepts can be externalized using fingers. Fingers are a very famous 
working material for young children and medium to represent quantities. There are 
numerous ways to do this (Brissiaud 1992; Ladel and Kortenkamp 2011a). Accord-
ing to the ordinal concept of numbers, the child may show his fingers one by one. 
Brissiaud called this Counting-Word Tagging to Number. Another way to represent 
quantities with fingers is to show them all at once—Finger symbol sets. This ap-
proach is according to the cardinal concept of numbers, if the child knows that all 
fingers belong to the quantity. If a child realizes that the seven fingers are shown 
with two hands, thus two parts, e.g., existing of five fingers and two fingers, and 
these two parts add up to the whole of seven, then he/she appropriated a part–whole 
concept. We also asked the children to produce tokens of an amount between 11 and 
20. If they separate the quantity in tens and ones, it would be a grouping that tends 
to the decimal part–whole concept.
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The starting point of our development of the multi-touch environment is to sur-
vey the way children work with their fingers. In a first step, we just observe and 
recognize the touches and the spatial and temporal distances caused by a child lay-
ing his/her fingers on the table surface. It is thus the externalization of the child’s 
activated concept of numbers.

Theoretical Framework

Studying the changes that learning environments undergo when technology-based artefacts 
are introduced means analyzing how activity changes as consequence of tools’ introduction 
and how this change is meaningful for the students and the teachers.
(Bottino and Chiappini 2008, p. 841)

Using a multi-touch table in kindergarten leads to a very complex environment. 
This calls for a theoretical framework that is able to capture this environment and 
gives more orientation. Within activity theory, we are able to identify relevant key 
issues. According to the “orchestration” approach, “learning is seen as the result of 
an active exploration and construction from the student, mediated by the tools made 

1 2 3 4 5 6 7 8 9 10 ... n

ordinal concept cardinal concept

part-whole concept

decimal part-whole concept

...

n

n

part 1 part 2

n

b

...

...

...

...

Fig� 15�1  Ordinal and cardinal number concept development
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available in the activity and by the social interaction that develops within it” (Bot-
tino and Chiappini 2001, p. 3).

For our experiments, we developed a first prototype environment where children 
can produce tokens on a multi-touch table.1 In this section, we will give a short in-
troduction to our theoretical framework, artifact-centric activity theory (ACAT) and 
point out the connection to the instruction and construction processes that we could 
observe in the experiments.

Artifact-Centric Activity Theory

An activity is a form of acting directed toward an object (Bottino and Chiappini 
2008). In our experiments, the activity is to produce a given quantity of tokens, 
where the number is given either in verbal or nonverbal symbolic representation. 
The activity is carried out through an artifact, here a multi-touch table, and is orien-
tated to an object, here the concept of a number. We are using a framework based on 
activity theory and activity systems (Engeström 1987) that considers the artifact as 
a central component in the activity, ACAT (Ladel and Kortenkamp 2013). We will 
give only a brief sketch of the framework here (Fig. 15.2).

1 At http://cermat.org/acat/videos.html you can see children working with the environment.
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Fig� 15�2  Artifact-centric activity theory diagram
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Instead of measuring the outcome of the activity system—an educated student 
(Bellamy 1996)—we try to assess the processes that occur during the activity. 
ACAT gives us a framework to describe and analyze the interactions of children 
with the object mediated through the artifact.

ACAT enables us to consider the whole learning environment. The community 
(group), including the (nursery) teacher and the partner, influences the way children 
act (see the lower left triangle of Fig. 15.2). Especially the verbalization of the 
teacher may change the number concepts the children activate. The partner may 
impact the chosen number concepts as well. In the next section, we will exemplify 
how this impacts the design of the tasks we gave the children.

Construction

Within the activity, the number concepts are mediated through the artifact. Using 
the theoretical framework of ACAT, it is possible to point out the different processes 
of internalization and externalization that take place while learning with ICT and to 
focus on the mediating role of the artifact (Fig. 15.3).

The whole activity is based on interaction between subject and object. Here, we 
have to emphasize the two facets of an object. On the one hand, there is the object 
itself, which are number concepts, and this is independent of the subject, and, on the 
other hand, there is the psychological reflection, that is the concept2 of the object 
that the subject has.

The child develops its number concept during the work with the artifact. It exter-
nalizes its concepts during the interaction with the virtual tokens, those form a tan-
gible visualization that is determined by the object “itself.” This gives the children 
a chance to experience the concepts necessary for their development.

This interaction axis captures also the congruence principle of Tversky et al. 
(Tversky and Bauer Morrison 2002, p. 3) that says that

the structure and content of the external representation should correspond to the desired 
structure and content of the internal representation.

According to Segal (Segal 2011), this should yield a better construction of mental 
representations and operations of abstract concepts and thereby support performance.

2 Do not confuse this with number concept.
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Instruction

As already stated in the introduction, it is mandatory to use mathematic-didactic-
specific design for the multi-touch environment. ACAT helps us describe how these 
rules can be derived and analyze how they influence the activity.

The object is not only what the children should learn, but it also determines the 
way the multi-touch table software has to be programmed. Therefore, we have to 
follow certain rules, e.g., mathematic-didactical rules and multimedia design prin-
ciples (Ladel 2009). The properties of the mathematical object, that is, number and 
its different concepts, and the way they are used in practice determine the design of 
the multi-touch interface and hence the external representation.

The design of our prototypical environments was following the theoretical con-
siderations based on results from both mathematics education and general multi-
media design principles. Within ACAT, the design of the artifact underlies certain 
rules, which are derived through mathematics education from the object of inter-
est. The externalization and internalization, described in the previous section, are 
complemented by these design rules (Fig. 15.4).

Internalization occurs through the activity of the child also within a social com-
munity. That is why we have to consider, e.g., the nursery teacher and the team 
partner as well. The communication between two children in our environment is 
significant in the observation of the development of number concepts. We can ob-
serve if a child is able to solve a task with the help or in cooperation with another 
child or not. We refer to Vygotskys zone of proximal development (ZPD) that

is the distance between the actual development level as determined by independent prob-
lem solving and the level of potential development as determined through problem solving 
under adult guidance or in collaboration with more capable peers.
(Vygotsky 1978, p. 33)

The design and the social community aspects described above constitute the means 
of instruction. The construction process of the child can be shaped through this 
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instruction. Part of it takes place in the design phase before the actual activity, the 
other part during the activity. So, instruction is based on the rules and the group in 
ACAT.

The Design of Multi-Touch Environments for Early 
Mathematics Learning

For first experiments, we used several variants of a prototype-learning environment. 
This was created not for actual teaching or learning, but just as a first step into 
understanding the interaction processes and the chances and pitfalls for learning in 
such environments. Basically, in all environments, pairs of children were asked to 
produce tokens using their fingers. A researcher posed the tasks and the experiments 
were recorded on video for later analysis. The video recordings are available on 
request from the authors.

In this section, we will describe some aspects of the design of these environ-
ments and some first findings that are based on the analysis of the videos. Without 
jumping to the conclusion already we note that the interaction is even more complex 
than we expected, which also proves the necessity of further detailed inspection of 
such interactions.

Design: Grouping of Tokens

A fundamental visualization question is the design and behavior of the virtual to-
kens on the table. According to the one-to-one principle (Gelmann and Gallistel 
1987), we decided that each finger touch produces exactly one token.

While working with the multi-touch table, the children experience the structure 
of the external representation that offers the possibility to develop a meaningful 
mathematical discourse about the properties of the mathematical object (Chiappini 
and Bottino 1999). Therefore, the external representation (visualization of numbers) 
and the internal representation should be compatible (Segal 2011). In this way, it 
can support the development of the child’s mental representation of the object. Our 
tokens have the shape of a square (and not of a circle) to make it possible to place 
one side of the square next to another one and make it possible to stick them to-
gether. Then, they can be recognized as one block (law of closeness) (Fig. 15.5).

Fig� 15�5  Tokens: The left tokens appear as one block; the tokens on the right seem to be separate
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Analysis: Influence of the Artifact

In the following example, we asked the children to put a certain number of tokens 
on the table. They can either produce tokens one by one using any finger or produce 
several tokens simultaneously using several fingers. We were hoping to deduce the 
number concepts used by the child through analyzing their actions.

Task: “Please put x tokens on the table.”
1 Interviewer A., please put six tokens on the table
2 A. Ok. First the first finger

(A. uses the thumb to move one token on the table)
3 then the second finger

(A. uses the index finger to move another token on the table)
4 then the third finger

(A. uses the index finger again and moves another token on the table)
5 ah

(she shakes her head and wants to take the token back with her middle 
finger, but the table does not react)

6 I just take the forth
(A. takes her ring finger and wants to move one token on the table, but the 

token on the table does not move due to technical reasons, Fig. 15.6)
7 then I just take this one

(A. uses the index finger to move a fourth token on the table.)
8 and this one

(A. looks at her fingers and uses the index finger again to move one token 
on the table.)

9 One, two, three, four, five. One more
(A. uses the index finger again to move the sixth token on the table)

10 and six. One, two, three, four, five, six.
(Counting the tokens)

Fig� 15�6  A. tries to move 
the fourth token

      



246 S. Ladel and U. Kortenkamp

A. began by moving tokens one by one in the center of the table. However, she did 
not rely on counting “one, two, three,” but she connected the tokens 1-to-1 to the 
fingers and used the ordinal numbers “the first, the second.” This stands to reason 
that the ordinal concept of numbers dominates in this particular case, where the 
number word “one” corresponds to the first finger, “two” to the second finger, etc.

But in line 4, we see an adjustment event: A. made a mistake by using the 
‘wrong’ finger. She used her index finger, which is “the second” for her, to produce 
“the third” token. She recognized her ‘fault’ and wanted to correct it by removing 
the token with her middle finger. A. externalized her concept of numbers via putting 
her fingers on the MTT and the MTT visualized the fingers through the tokens. At 
this stage, we do not know if A. really identifies only the sixth finger or the whole 
quantity with the number six. But then, the visualization through the MTT did not 
work well, which leads to the situation that A. had to change the concept she uses. 
She either knows or experienced that it does not matter with which finger the token 
is moved and accepted to let the third token remain on the table.

Next, she switched back to her ordinal concept and tried to move a token with her 
ring finger. At this point, there is a second adjustment event shown by the change 
of concept, this time caused by a technological fault of the MTT that caused A. to 
use her index finger again instead of her ring finger. When she wanted to place the 
fifth token, she first thought about which finger to take and then decided to use the 
index finger again, assumedly because her experience now tells her that the table 
reacts best with this finger and it is easier as well for the fine motor skills. Most im-
portantly, she already learned that it does not matter if she uses the ‘wrong’ finger. 
The unresponsive table caused a transition of concept.

In the end, A. proved her work by counting all tokens on the table. She corre-
sponded the sixth token with not only the number six but also the whole quantity of 
all tokens on the table. This means that she already connected the ordinal with the 
cardinal concept of numbers.

This example shows very well how the artifact can influence the way children 
work and also evoke changes of concepts (Fig. 15.1). If the MTT would have 
worked well and recognized A.’s fingers, there would never have been the need to 
change the concepts.3 We could observe some children who paid attention to which 
finger they took to produce tokens, but then changed their concept and took any 
finger. The experience with the MTT led to the fact that the children were able to 
abstract and knew, that it does not matter, with which finger a token is produced.

Concerning the influence of the artifact and its design, we could observe prob-
lems that the young children did have producing tokens. In our first environment, 
the users produce tokens by touching the green border of the screen. Tokens that 
are moved into the center of the table will remain. If a finger is released while still 
on the green area, then the token will vanish again. We could observe that it was 
not easy for the children to move the fingers on the screen and therewith the to-

3 We do not dare to claim that technology causes learning due to it insufficiencies, we just point 
out how complex the interactive process of working with an electronic learning environment can 
be, both in the intended and in the unintended way.
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kens away from the body. The children could not see the tokens because they were 
covered by their hands (Dohrmann 2010). Also, the multi-touch technology had 
problems with the recognition of the fingers, because the young children touched 
the screen too weakly. Hence, the table did not visualize all the fingers as tokens. 
This led to the fact that children preferred using the one-by-one method (count-
ing) instead of all-at-once and hence a simultaneous or rather quasi-simultaneous 
representation. So the experience the children made with the artifact changed their 
behavior in a way we did not intend. We had to change the design of the MTT en-
vironment for the second experiment: The children could now produce tokens in 
the middle of the table and if the tokens should remain, they had to be pulled to the 
border of the table. We could observe that this changed user interface encouraged 
more children to create several tokens at once.

Analysis: Influencing the Partner

It is not always possible for a child to adopt or use or transition to a new concept 
even if it is shown to the child by a teacher, a partner, or the artifact. In the follow-
ing transcript, we can see how V. resists the different number concept of A. The re-
searcher in this task explicitly asks for placing tokens all at once and not one by one.

Task: “Please put x tokens on the table all at once.”
1 Interviewer A., please put five tokens on the table, but this time all at once
2 A. (A. puts all five fingers of her right hand on the screen and moves the 

tokens on the table.)
3 Interviewer V., could you please put four tokens on the table, all at once?
4 A. Like this. (A. puts four fingers all at once on the table and lifts her 

hand again.)
5 V. (V. uses her index finger and moves tokens one by one on the table.)
6 A. No, like this. (A. shows V. four fingers all at once, Fig. 15.7)
7 V. (V. looks at A.s fingers and continuous to move tokens one by one)

A. moved five tokens at the same time and V. watched her doing it. But as it was 
her turn, she did not do it the same way but moved them one by one, even when 
A. insisted that she should use four fingers and showed it to her again. V. could not 
change her concept but persisted moving one by one.

We must respect and observe whether a child is able to change his/her concept 
with help or not. In the example above, A. was able to use the cardinal concept and 
use several fingers at the same time on the screen. V. was not able to switch to this 
concept, even when A. showed her how to do it. The new concept was not yet within 
the zone of proximal development of V. In our setup, we are able to distinguish chil-
dren that can reach certain concepts from those who are unable to do this yet even 
with the help of their peers.
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Analysis: Sharing Quantities

Regarding the task to produce a quantity of tokens “together,” we could not only 
observe different kinds of agreements between the children, but also different ways 
to decompose:

1.  Halving: The children decomposed into halves, e.g., “Six, that is twice three.” 
This way to decompose is used for even numbers between 5 and 10. With quan-
tities larger than 10, the kind of decomposition changed.

2.  Decimal part–whole concept: Quantities higher than ten were decomposed into 
tens and ones, as the following transcript of P. shows.

Task: “Please put x tokens on the table together.”
1 Interviewer Can you put twelve tokens on the table, together?
2 P. One, two, three, four, five, six, seven, eight, nine, ten.

(P. counts and tips his fingers.)
3 Eleven, twelve.

(P. continues counting the fingers of his partner.)
4 S. you have to put two.
5 Interviewer So how do you decompose the twelve?
6 P. I make ten, and S. makes two.
7 Interviewer And can you also move 14 tokens on the table, together?
8 P. One, two, three, four, five, six, seven, eight,nine, ten.

(P. counts and tips his fingers again.)
9 I make ten, and S. makes four.

P. did not know or maybe was not sure how many fingers he has on two hands and 
hence had to count them twice. The first time—representing 12—he just went on 
counting up to 12, but the second time—representing 14—he immediately knew 
that S. has to produce four tokens if he produces ten. He was then able to decompose 
14 into ten and four (Fig. 15.8).

Fig� 15�7  A. shows four fin-
gers to V.      
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3.  ‘Power of five’: A third way of sharing a number we observed was the use of the 
‘power of five’ (Krauthausen 1995).4 The task was to put twelve tokens on the 
table together. Before moving the tokens on the table, E. said: “I make five and 
she makes five then and then I make two.” E. did already have a sophisticated 
part–whole concept that she could use in the sense of addition. But she did not 
use the decimal part–whole concept and decomposed in ten and two but took the 
‘power of five’ approach which corresponds to using one hand as bundling unit.

The Role of the Nursery Teacher

ACAT also enables us to clear up the role of the nursery teachers. In this theoretical 
framework, she has to supervise the work of the children, and to take care of aspects 
that cannot be handled by technology. For example, to analyze the processes we 
implemented automatic recording of the children’s touch actions. We are thus able 
to analyze the externalization process of the students also using the collected data. 
The recorded data are demonstrated in Fig. 15.9, where you can see when and how 
long a finger touched the screen. On the left, the screen was touched with three fin-
gers at the same time. On the right, we can see that five fingers touching one by one. 
This data and its visualization may help analyze the applied concepts a posteriori.

In our experiments, we could observe children changing their concepts when 
they were first representing numbers with their fingers and then representing the 

4 In German “Kraft der Fünf” is unambiguous, as Kraft does not mean power in the sense of the 
arithmetic operation, but only power in the sense of force.

Fig� 15�8  P. working with 
the multi-touch table. He is 
using the decimal part–whole 
concept for sharing quantities 
with his partner
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same numbers with their fingers on the MTT: Some children first counted their 
fingers one by one and then put them all at once on the table. Other children did the 
opposite, showing fingers all at once when asked for a certain number, and working 
one by one on the MTT. Therefore, the actions done with the fingers before touch-
ing the screen cannot be recorded by the computer. The teacher has to observe these 
actions and these observations can be included in the analysis. From this, we deduce 
the need for a nursery teacher to work with the children and to observe them, as it 
is impossible to capture the full picture with technology alone. We have to be aware 
of the fact that the fingers are already a mediating artifact on their own. Using them 
creates a first externalization (Fig. 15.10).

Conclusions

Although our current multi-touch environments are not immediately usable for 
teaching, but only for our early experiments, they proved very useful for under-
standing the complex interaction that takes place. With regard to our first research 
question—Can the usage data collected help reveal and distinguish the number 
concepts that children use?—we saw that the data indeed give hints about the num-
ber concepts used directly on the table, but this is only a part of the number concept 
used by the child. Due to the fact that the fingers act as another mediating artifact, 
we cannot get computer data about the whole activity, but only about the direct 
interaction with the table. As our analysis shows, the children switch between dif-
ferent number concepts and the concepts used on the table are not necessarily the 
concepts they prefer to solve a task.

Nevertheless, it was very important to see how the design of the artifact (the 
table, not the fingers) can force children to switch between concepts. The failing 

Fig� 15�9  Log-data of finger touches. On the left, three fingers touched simultaneously; on the 
right, five fingers touched one after the other
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finger recognition of the multi-touch table lead to children using any finger instead 
of a specific one (the first one, the second one, the third one), which is a favorable 
step in their development of abstraction. Changing the software enabled children to 
use the concept they prefer and to develop their understanding in their own pace. 
It is conceivable to use such a specific “failing” design to guide the construction 
process of the children, even if we cannot claim that this was the case in our experi-
ments. This results in “more instruction” in the construction process.

The second research question—How must a multi-touch environment be de-
signed to collect the appropriate data?—has to consider not only the artifact and 
its programming, but also the design of the learning situation as a whole. Teacher 
and group are indispensable components of the learning arrangement and thus must 
contribute to the data collection. The log data of the computer environment alone 
are not sufficient to capture the learning process of the children, as it only captures 
the interaction through one artifact, the multi-touch table. The whole mediation is 
usually done through a chain of artifacts. In our experiments, children used a certain 
number concept with their hands as a first artifact and then used a different number 
concept with their hands on the multi-touch table. A teacher can and should observe 
such transitions. In an experimental setup, it is necessary to complement the com-
puter data with video recordings of the children’s actions.

Finally, we are far away from answering the most important one of our ques-
tions—Can we support the development of the part-whole number concept with 
such environments? A very easy action like placing a certain number of tokens on 
a table is surprisingly complex to analyze, and there are many design decisions 
that have to be backed by media-pedagogic and (mathematics) didactic principles. 
Without knowing the proper design of such a simple action, it is impossible to cre-

Fig� 15�10  A child showing 
all fingers before switching 
back to the ordinal concept
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ate an environment that not only demonstrates but also changes the use of certain 
number concepts by children. Also, learning with the computer is not an asocial 
activity. Teachers and peer groups participate in that process and must be taken into 
account. We are convinced that the recent progress in technology, in particular the 
availability of multi-touch devices, can affect learning with the computer positively, 
as the computer steps back and integrates itself into a social context.
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Disputes about the roles of instruction and construction in teaching and learning 
processes have been ongoing for more than half a century (Ausubel 1964; Craig 
1956; Kirschner et al. 2006; Kohlberg and Mayer 1972; Mayer 2004; Phillips 2000; 
& Richardson 2003). Although points of argument vary, there is a general consensus 
about the definition of these two processes. Instruction usually refers to classroom 
practices that are designed by the teacher to furnish knowledge through systematic 
methods and with specific goals. Teacher in this discussion means one who works 
with all aged learners from young children to adults in a collective educational set-
ting, such as a daycare center, elementary school, or university. Construction, on the 
other hand, often describes a learning process in which children actively engage to 
build their own concepts and skills (Phillips 2000). Focusing primarily on teachers 
and their practices, instruction, while it has implications for learning, is essentially 
concerned with teaching. Attending to students and their sense making, construc-
tion, on the other hand, is a theory about learning.

Historically, instruction and construction were regarded as separate and compet-
ing processes with distinctive terms and practices associated with each. Teacher 
initiated, goal oriented, explicit teaching, and established are terms often associated 
with instruction, whereas child initiated, interests oriented, incidental learning, and 
personal are words typically used when describing construction (see Table 16.1). 
Nowadays, instruction and construction are rarely considered to be mutually exclu-
sive processes in classroom practice. Rather, they are seen as complementing each 
other to strengthen teaching and learning for children’s knowledge acquisition as 
well as their understanding (Richardson 2003; Sztajn et al. 2012).

Agreement in principle does not always lead to fully realized practice, however, 
and this is especially the case when subject matter enters into the equation. Instruc-
tion and construction do not occur in a vacuum; they are applied to content areas 
in the classroom context and must deal explicitly with content knowledge. What 
does it mean to integrate instruction and construction while dealing thoroughly and 
rigorously with a content area? To what extent does deep understanding of subject 
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knowledge affect teachers’ integration of instruction and construction? What kind 
of teacher professional development is needed to prepare teachers to teach specific 
subject matter in ways that combine the benefits of instruction and construction? To 
advance the field, discussion regarding instruction and construction needs to take 
these questions seriously. Further, to improve practice, the field needs mechanisms 
to help teachers integrate instruction and construction processes in their daily teach-
ing practices.

Providing such mechanisms is particularly pressing in the field of early child-
hood education, as it has traditionally given relatively little attention to teachers’ 
content knowledge (Bowman et al. 2001; Chen and McNamee 2006; McCray and 
Chen 2011). Instead, early childhood educators as a whole have long been focused 
on the processes of teaching, as opposed to the knowledge to be taught. This tra-
ditional early childhood approach was substantiated by a Position Statement by 
the National Association for the Education of Young Children in the United States 
(Bredekamp 1987). Calling it developmentally appropriate practice (DAP), the Po-
sition Statement supported a child-centered approach to teaching. While not tied to 
any specific curricula or content learning, it proposed a set of principles in align-
ment with constructivism. Specifically, it recommended that teaching be responsive 
to the needs and capabilities of individual children, emphasizing teacher observa-
tion and support over the instruction of skills. Though not without controversy, the 
influence of DAP on early childhood practice in the USA has been pervasive and far 
reaching (Bowman et al. 2001; Bredekamp and Copple 2009; Elkind 1987). Early 
childhood, then, is particularly “behind the curve” when it comes to a meaningful 
integration of instruction and attention to subject matter generally.

In this essay, we describe our effort to integrate instruction and construction in 
early childhood education through fostering intentional teaching around Big Ideas 
in early mathematics. We begin the chapter with a brief history of the debate about 
the roles of instruction and construction, highlighting the theoretical foundations for 
each argument. Situating issues in the historical context, we move the discussion 
to the current state of teaching in early mathematics, focusing on reasons why the 
debate tilts heavily in favor of construction and how that has affected early child-
hood classroom practice. Next, the chapter presents our argument for intentional 
teaching in early mathematics as a framework that effectively integrates instruction 

Instruction Construction
Teacher initiated Child initiated
Teacher active Child active
Teacher guided Child directed
Teacher centered Child centered
Explicit teaching Incidental learning
Goal oriented Interests oriented
Knowledge delivery Knowledge construction
Common Unique
Established Personal

Table 16�1  Terms Associ-
ated with Instruction and 
Construction
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and construction in teaching and learning processes. We share evidence suggesting 
the effectiveness of this approach based on our work at the Early Math Collabora-
tive at Erikson Institute in Chicago and conclude with a discussion of the renewed 
importance of articulating the relationship of instruction and construction in light of 
the accountability movement driving much of contemporary education.

A Brief History of the Instruction vs� Construction Debate

Two terms critical to understanding the idea of instruction are “teacher” and “acqui-
sition” (Richardson 2003) as they emphasize the primary agent—teacher—in the 
process and the central action—acquiring knowledge—that students are meant to 
take. Two theories of learning—cultural transmission ideology and behaviorism—
provide the conceptual framework for this sense of instruction. From the perspective 
of cultural transmission ideology, the primary task of education is “the transmission 
to the present generation bodies of information and rules of value collected in the 
past” (Kohlberg and Mayer 1972, p. 458). Knowledge and rules from the past may 
be rapidly changing or remain static; regardless, in instruction, education should 
focus primarily on the transmission of the culturally given. The teacher’s job, then, 
is the direct instruction (DI) of such information and rules, whereas the student’s 
primary responsibility is the acquisition of the given (Kohlberg and Mayer 1972).

Behaviorism supports the cultural transmission ideology by offering a psycho-
logical explanation of the learning process. Children learn through the imitation of 
adult behavior models, or through explicit instruction and reward or punishment. Of 
critical importance to this learning process is behavioral modification, which can 
be achieved most efficiently through classroom instruction designed by the teacher. 
In this framework, it is the teacher who supplies the model, sets the expectation, 
and presents the distilled knowledge and skills required to function successfully in 
society (Skinner 1974; Todd and Morris 1995). The child’s role is to accept, or take 
in, this knowledge and skills.

A well-known example of teaching by explicit instruction is the Direct Instruc-
tion System for Teaching Arithmetic and Reading (DISTAR), developed by Sieg-
fried Engelmann and Wesley Becker in the 1960s (Wesley et al. 1975). Today, DI 
has become a model for teaching. It emphasizes “well-developed and carefully 
planned lessons designed around small learning increments”; and it asks teachers to 
teach “clearly defined and prescribed teaching tasks” (National Institute for Direct 
Instruction 2012). DI is currently in use in thousands of schools across America 
and some of its components have been adapted by other popular intervention pro-
grams such as Success for All and the Knowledge is Power Program (Kirschner 
et al. 2006).

In contrast to instruction, the focus of construction is on “students” and their 
central activity in this context is “participation” (Richardson 2003). John Dewey 
(1963) and Jean Piaget (1952) are the primary architects of the philosophical and 
psychological foundations for this educational practice. Often referred to as a 
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constructivist approach, this view holds that children are not passive receivers of 
knowledge. Rather, they actively construct knowledge through interaction with the 
environment, including both its physical and social dimensions (Piaget and Inhelder 
1969). Knowledge is acquired, not by listening to others, but through individuals’ 
active participation. Because knowledge construction is an idiosyncratic process, it 
involves a great deal of self-exploration and self-discovery. Accordingly, instruc-
tion that disregards children’s prior experiences and their individual differences can 
have little effect on learning and development.

There are many constructivist approaches to teaching, including child-centered 
learning, discovery learning, problem-based learning, inquiry-based learning, and 
experiential learning, to name a few. All of these practices refer to an essentially 
equivalent pedagogical approach, namely, challenging students to solve “authen-
tic” problems and acquire knowledge in information-rich settings (Kirschner et al. 
2006). The emphasis in each of these practices is the self-directed activity of learn-
ers and the importance of the creation of personal meaning.

In the1990s, a great deal of work on constructivism was done in different sub-
ject areas, including mathematics (e.g., Ball 1993; Cobb et al. 1991), reading and 
writing (e.g., Freedman 1994; Barr 2001), history (e.g., Wilson 2001; Wilson and 
Wineburg 1993), and science (e.g., Tobin 1993; White 2001). Many of these authors 
compare constructivism with the instruction transmission model, drawing attention 
to significant differences in the two pedagogical approaches. They highlight various 
distinctive features, including attention to individual differences, respect for stu-
dents’ background knowledge, provision of opportunities for students to challenge, 
change, or add to existing beliefs, achievement of understandings through engage-
ment in tasks, and development of students’ meta-awareness of their own learning 
process and understanding (Richardson 2013).

Moving into the new millennium, the discourse on instruction and construction 
made headway on two fronts. On one front, more and more scholars have come to 
realize that arguing over which of the two processes—instruction or construction—
is more conducive to learning is counterproductive (Lampert 2001; Phillips 2000; 
Richardson 2003). Instead, the current zeitgeist presumes that students can learn 
and develop through constructive processes as well as teacher-directed instruction, 
and may learn best through a combination of these types of experiences. Teach-
ers play a critical role in the constructive learning model, not only by providing 
information-rich environments and by serving as facilitators, but also by setting 
clear expectations, teaching specific skills, and helping to transform students’ spon-
taneous concepts into more complex, analytical types of thought (Vygotsky 1978).

On a second front, the discussion has started to pay attention to how teachers’ 
subject matter knowledge affects the way instruction and construction are integrat-
ed in practice. Many educators acknowledge that the single most important de-
terminant of what children learn is what teachers know (Darling-Hammond and 
Bransford 2005). Recently, a body of literature has demonstrated the positive rela-
tionship between teachers’ content knowledge and student outcomes in such areas 
as mathematics (e.g., Chen and McCray 2012; Hill et al. 2005) and language and 
literacy (e.g., Coburn et al. 2011; Taylor et al. 2011). Findings such as these have 
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drawn the field’s attention to the role of teachers’ content knowledge in teaching. 
This has affected the discussion of the relationship between instruction and con-
struction, which has become not only more focused on their effective integration 
but also more cognizant of how specific content might affect their implementation 
in teaching.

Instruction and Construction Practices in Early 
Mathematics Education

Because it is more congruent with DAP, the constructivist view has dominated the 
discussion of instruction versus construction in the field of early mathematics edu-
cation (Clements et al. 2004; Copley 2010; Ginsburg et al. 2008). One of the most 
prominent and vocal scholars in this discourse is Constance Kamii, who bases much 
of her work on mathematics education on the writing of Jean Piaget. According to 
Kamii (2006), there are three kinds of knowledge: physical, social, and logical-math-
ematical. Physical knowledge is knowledge of objects in external reality, such as the 
color or weight of an apple, and it can be acquired empirically through observation 
and hands-on experience. Social knowledge, such as the alphabet and numerals, is 
created by convention among people. The child does not invent this kind of knowl-
edge. She or he acquires it through instruction. Logical–mathematical knowledge, 
including number and arithmetic, is constructed by each child. For example, when 
presenting a child two counters, she or he can see the attributes of each counter, in-
cluding things like color, size, or shape; these are present in the objects themselves. 
However, the child cannot see the “twoness” in the objects; the “twoness” results 
from the mental creation of a set—the set of two counters. In this way, numeracy 
requires a creative mental act beyond mere perception. While the child needs to have 
adults around to interact with to obtain conventional mathematics knowledge and 
skills, the ultimate source of mathematical understanding is the mental construction 
process within each individual (Kamii 2006).

Kamii’s position is supported, explicitly or implicitly, by early childhood educa-
tors for at least three reasons. First, it resonates with the strong sentiment in the field 
that play and self-directed exploration are central in young children’s learning. Ear-
ly childhood educators as a group firmly believe that young children learn through 
play. In play, children develop a range of social and cognitive skills without risk-
ing failure (Bodrova 2008; Hanline et al. 2008; Miller and Allmon 2009). Play, by 
definition, is pleasurable, spontaneous, and child initiated. It is unlike instruction, 
which, for the most part, is planned and teacher initiated, with obligatory participa-
tion and no guarantee that it will be a pleasurable experience. Conceptually, play 
and construction are related but not identical. In early childhood practice, however, 
the two concepts are often seen as synonymous. To help children learn mathematics 
concepts and skills through play, for example, teachers provide mathematics-rich 
environments, including the provision of mathematics manipulatives in different 
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learning centers. Though teachers observe children and encourage them to play with 
the materials, children’s learning tends to be more incidental and less focused.

Another reason that early childhood teachers favor construction over instruction 
in mathematics teaching is related to preschool curriculum and teacher prepara-
tion. Until recently, most preschools and daycare centers—educational settings for 
3–5-year-olds—in the USA did not use specific curricular texts for teaching. In-
stead, teachers created activities based on curriculum resource books and drew from 
their years of teaching experience. This means that to provide coherent mathemat-
ics instruction, teachers must have sufficient mathematical knowledge to design 
activities and plan their implementation. Unfortunately, mathematics as a topic is 
formidable and anxiety producing for many early childhood teachers. Unlike their 
peers at the elementary and high school levels, a majority of early childhood teach-
ers have received little training in teaching mathematics, even those that have a 
bachelor’s degree in early education (Copple 2004; Ginsburg et al. 2006). This gen-
eral lack of preparation and knowledge in early mathematics causes many early 
childhood teachers to feel uncomfortable and inadequate when they are asked to 
instruct mathematics, particularly in group situations. They are more confident and 
comfortable when children take the initiative to learn mathematics through self-
guided play situations.

A third reason that early childhood teachers favor construction in early mathemat-
ics teaching is their misunderstanding of what early mathematics is and what teach-
ing early mathematics entails. In part due to inadequate preparation and knowledge, 
many early childhood teachers think of early mathematics as simple, consisting 
primarily of counting and simple arithmetic (Copley 2004). While opportunities for 
learning how to count are numerous throughout the day in the early childhood class-
room, teaching such skills through specific instruction seems unnecessary to teach-
ers. In addition, preschool teachers often think that the main focus of mathematical 
teaching should be children’s memorization of number facts (Sarama and Dibiase 
2004). In contrast to the larger mathematics education community that has moved 
toward “redefining mathematics as a dynamic discipline full of opportunity for in-
quiry and discovery” (Feiler 2004, p. 399), the early childhood community still 
views mathematics as static and rigid with little relevance or meaning in children’s 
lives. This view of what mathematics is leads early childhood teachers to believe 
that it is developmentally inappropriate to instruct mathematics to preschoolers.

In 2000, when the National Council of Teachers of Mathematics (NCTM) first 
included standards for early education in its recommendations, it shocked the ear-
ly childhood community that mathematics for young children involves more than 
counting and simple arithmetic. Reading through the content strands identified by 
NCTM, few early childhood teachers understand their relevance to young children, 
since terms such as “algebra,” “data analysis,” and “probability” sound foreign to 
them. Many early mathematics curricula have been developed to help teachers, but 
without sound knowledge of mathematics’ content strands, early childhood teachers 
approaching mathematics from a child-guided constructivist perspective continue 
to do little to develop children’s deep mathematical understanding. Teacher’s inad-
equate preparation and their resistance to DI were the biggest challenges to effective 
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early mathematics education a decade ago at the birth of the NCTM standards, and 
unfortunately, they remain the biggest challenges today.

Intentional Teaching: A Means to Integrate Instruction and 
Construction in Early Mathematics

To help early childhood teachers understand the content of early mathematics and 
how it develops in the thinking of young children, we launched the Early Math 
 Collaborative in 2007. Designed primarily for preschool teachers who serve chil-
dren aged from 3 to 5 years, the program supports teacher development in early 
mathematics by providing yearlong, bimonthly workshops and on-site coaching 
between workshops. During the coaching session, classroom video is used to en-
gage the teacher in a reflective practice. Workshop instructors are Erikson faculty 
and coaches are experienced preschool teachers, who participate in content training 
alongside their teachers. The program promotes intentional teaching as a mech-
anism for integrating instruction and construction with a deep, connected under-
standing of early mathematics in classroom teaching.

Intentional teaching is a relatively new concept in the field of early education. 
It was developed to establish a middle ground in the long-standing debate that pits 
instruction against construction in discussions of what and how to teach children in 
early education. While stopping short of describing teaching as instruction, it makes 
clear that effective constructivist education relies on an active teacher who has goals 
for what children will learn and specific plans for how that might occur. In her 2007 
book, Epstein describes the intentional teaching method as a blended approach that 
combines what she calls a child-guided and adult-guided learning experience (Ep-
stein 2007). Intentional teaching, according to Epstein (2007), does not happen by 
chance. Rather, it is “planful, thoughtful, and purposeful,” and that purpose is to 
achieve specific outcomes or goals for children’s learning and development.

In our project, we have come to see that the biggest impediment to the intentional 
teaching of early mathematics is a lack of content knowledge on the part of most 
early childhood teachers. We believe teachers need information on what the mathe-
matics content is, how it manifests in the thinking of children as they become famil-
iar with it, and how they might best support its development in children’s thinking. 
We operationalize this needed content knowledge as three integrated components: 
what to teach (content), whom to teach (learner’s developing understanding of the 
content), and how to teach (strategies for supporting thinking about the content). We 
describe each component briefly below.

What to Teach What to teach focuses on the issue of content knowledge. Because 
early childhood teachers are traditionally trained as generalists, they are ill prepared 
in the area of mathematics knowledge. Confronted with the range of NCTM’s con-
tent strands, they often feel anxious and incapable. Recognizing the challenge that 
early mathematics knowledge presents to teachers, our team developed a list of Big 
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Ideas within each of the content strands identified by NCTM (2000). Our Big Ideas 
are key mathematical concepts with four distinctive characteristics: (1) they convey 
core mathematics ideas that serve as organizing structures for teaching and learning 
mathematics during the early childhood years; (2) they connect to each other in a 
coherent and systematic fashion; (3) they elaborate and solidify the mathematical 
experience and thinking of young children between the ages of 3 and 6 years; and 
(4) they provide foundations for further mathematics learning that facilitate long-
term mathematical understanding.

Table 16.2 lists a sample Big Idea in each of the mathematical content strands 
identified by NCTM. To help teachers understand Big Ideas, we constructed adult 
learning tasks that engage teachers in exploring, analyzing, and applying the Big 
Ideas. For example, when studying geometry, teachers are asked to describe a shape 
without using its name, focusing their attention on noticing and naming shape at-
tributes, such as number of sides and size of angles. Similarly, in the study of alge-
braic thinking, teachers challenged to name as many different sets of objects as they 
can find in the children’s story “Goldilocks and the Three Bears.” Teachers then 
analyze these sets to discover size and sequence patterns among them. We introduce 
these adult learning tasks to teachers during bimonthly workshops through hands-
on experiences. In these workshops, teachers from different schools work together, 
participating in a community of learners focused on the understanding of Big Ideas.

In their joint statement on early mathematics, the National Association for the 
Education of Young Children (NAEYC) and NCTM (2002) pointed out that “Be-
cause curriculum depth and coherence are important, unplanned experiences with 
mathematics are clearly not enough. …Depth is best achieved when the program 
focuses on a number of key content areas rather than trying to cover every topic or 
skill with equal weight.” Big Ideas help to ensure depth by providing teachers with a 
tool that focuses on foundational mathematics concepts. Equipped with such a tool, 
teachers can make the teaching and learning process more intentional. Teachers 
are more likely to specify and clarify their goals for teaching, distinguish the core 
from the trivial, engage in thoughtful curriculum analysis, and create meaningful 

Table 16�2  Sample big ideas by mathematics content strand
Content strand Big idea text
Algebraic thinking The same collection can be sorted in different ways
Number and operations A collection can be made larger by adding items to it and smaller 

by taking items away from it
Measurement Many different attributes can be measured, even when measuring 

a single object
Geometry Two- and three-dimensional shapes can be used to represent and 

understand the world around us
Data analysis and probability How data are gathered and organized depends upon the question 

that is addressed
For a complete list of Big Ideas, see “Big Ideas of Early Mathematics: What Teachers of Young 
Children Need to Know” by Erikson’s Early Math Collaborative (2014), Upper Saddle River, NJ: 
Pearson
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mathematics activities. Further, Big Ideas in mathematics help teachers articulate 
the underlying purpose of students’ work and create multiple pathways for student 
understanding. Teachers become more flexible and responsive to children’s math-
ematical thinking and behaviors.

Whom to Teach Focusing on whom to teach calls teachers’ attention to under-
standing where children are in their thinking about mathematical concepts and their 
mastery of mathematical skills. The field of early childhood education has long 
taken pride in making child development knowledge the center of early education. 
This knowledge, for the most part, concerns the general developmental progres-
sions in cognitive, language, social and emotional, and physical domains. Though 
fundamental in early education, such knowledge is too general to help teachers 
design classroom activities (Chen and McNamee 2006). Teachers need to supple-
ment general knowledge of child development with an understanding of the learn-
ing trajectories in the development of children’s mathematics thinking, integrating 
their analysis of children’s behavior with the landmarks of conceptual understand-
ing within content domains.

Learning trajectories refer to “paths by which learning might proceed” in a con-
tent area (Simon 1995). Learning trajectories are neither linear nor random. Devel-
oped through empirical research, they represent expected tendencies that describe 
probable steps children will follow as they develop their initial ideas into formal 
concepts within a content area such as mathematics (Maloney and Confrey 2010; 
Sztajn et al. 2012). Table 16.3 presents a learning trajectory that describes the grow-
ing understanding of pattern and regularity among 3–6-year-olds. It starts with rec-
ognizing patterns by detecting regularity and applying the word “pattern” to sim-
ple repeating sequences, then moves through copying, completing, extending, and 
describing, culminating in using new media to construct a new pattern that has the 
same structure as a model pattern. This learning trajectory, while recognizing that 

Table 16�3  Learning trajectory of pattern
Activity type Child’s behavior Teacher’s talk
Recognize Detects regularity, applies the word 

 “pattern” to simple repeating 
sequences

Do you see a pattern here? Do you 
notice anything that repeats?

Copy Duplicates simple patterns alongside 
a model pattern

Can you copy this pattern? Does 
yours follow the same rule?

Complete Fills in missing element of pattern How can you fix this pattern? How 
do you know what’s missing?

Extend Continues a pattern What comes next? How would this 
pattern keep going?

Describe Identifies the rule of a pattern by nam-
ing the smallest unit that repeats

How could we name this pattern? 
What is its rule?

Translate Uses new media to construct pattern 
with the same structure as model 
pattern

Can you make this pattern another 
way? How are they the same?
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each child’s path may be unique, describes a trend in how young children progress 
as they grasp the central mathematical concepts of pattern and regularity.

To help teachers integrate learning trajectories into their classroom practice, we 
developed a set of “research lessons.” Designed for teachers to use in the classroom, 
each research lesson is a series of developmentally appropriate mathematics activi-
ties that share the following three features: (1) all activities correspond to the adult 
learning tasks by addressing similar Big Ideas in the same content strand; (2) they 
respect the learning trajectory of a particular content strand by building on chil-
dren’s existing knowledge and leading them to a more sophisticated understanding 
of the concept; and (3) they invite children to construct mathematical understanding 
by involving them in a challenging yet fun learning experience.

In the “Who is Napping” research lesson, for example, the Big Idea focus is that 
patterns are sequences (repeating or growing) governed by a rule, and identifying a 
pattern leads to predictability and allows one to make generalizations. The Napping 
House by Audrey Wood is a cumulative tale in which characters, such as a grandma, 
a boy, a cat, and a flea pile on a bed, one by one, to nap. The + 1 growing pattern 
is easy for children to describe because the illustrations distinctly show the grow-
ing, linear sequence and foreshadow “what comes next.” In the research lesson, 
children first review the book “The Napping House” that they read previously. They 
then represent the growing pattern using characters in the book on a piece of chart 
paper. They can also act out the story so that they are able to visualize change in the 
sequence. Aligning with the learning trajectory for pattern, teachers ask children to 
start the activity by identifying the pattern in the book. They can then copy, extend, 
and translate the pattern. Throughout the process, they are encouraged to talk about 
their experience (see Appendix for “Who is Napping” research lesson).

After learning the research lesson during the professional development work-
shops, the teacher implements them in the classroom. The coach observes, then 
reflects on the implementation process with the teacher using the videotape. The 
videotape helps to reveal clearly what children know and where they need fur-
ther support. A teacher’s reflection with the coach focuses on levels of progression 
in children’s mathematics thinking and behavior. Engaging in reflective practice 
benefits teachers in a number of ways: It supports their growth in mathematical 
understanding as well as their intentional selection of instructional tasks, deeper 
interactions with children in the classroom, and more extensive use of children’s 
responses to further learning (Sztajn et al. 2012).

How to Teach How to teach is about pedagogy best suited to key content. Respond-
ing to the developmental characteristics of young children, the teaching strategies 
early childhood teachers use routinely involve multisensory modes, hands-on learn-
ing, the use of manipulatives or props, and learning through play or games, to name 
a few. In most early childhood classrooms, these strategies are primary. They repre-
sent most of the intentional teaching that occurs. They are applied first, with teach-
ers paying cursory attention to content and concepts, and adjusting complexity of 
challenge to meet children’s understanding only as an afterthought and when time 
and attention allow. In these instances, what is being taught and who is learning it 
are both secondary considerations, taking a “backseat” to the means and modes of 
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teaching. In our version of intentional teaching, decisions about how to teach are 
subordinated to what to teach and whom to teach. That is, the Big Ideas in a content 
strand and the learning trajectories that describe children’s progression in under-
standing them drive the choice of materials, strategies, and grouping, not vice versa. 
Effective pedagogy is intentional pedagogy; it responds to the developmental needs 
of young children and facilitates the attainment of specific learning goals.

During workshops and coaching sessions, Erikson’s instructors and coaches 
model a variety of teaching strategies appropriate for the Big Ideas and learning 

WHO IS NAPPING?
Big Idea Focus: Patterns are sequences (repeating or growing) 
governed by a rule. Identifying a pattern brings predictability and 
allows one to make generalizations.

In this lesson, children:
• Create a visual representation of a growing pattern
• Discuss ideas about patterns

Materials
oThe Napping House by Audrey Wood
oCharacter cards with felt, magnets, or tape on the back 

(see Blackline Masters, pp. 1—4)
oFelt board, magnet board, or chart paper
oUnifix cubes or inch cubes (optional)

1. Review The Napping House and Introduce Activity
Remind children of The Napping House story. Ask children, 
What happens at the napping house? and Who lives in the 
napping house?
Show children the character cards you have prepared and ask 
them to name each one. Tell children that you would like their 
help to figure out the pattern of the story. 

2.   Represent the Growing Pattern
Turn to the page where the illustration shows the granny 
sleeping on the bed. Have a child display the granny character 
card on the board or chart paper to represent who is napping. 
For example, say:

� Who is napping on this page?
� Let’s show who is napping using a picture.

Continue to the next page with the granny and the child on the 
bed.

� Who is napping now?
� Let’s use two pictures now to show who is napping. 

Let’s line them up.
Help children align the character cards so that a simple 
pictograph results. (All granny cards are lined up, all child 
cards are lined up, and so on.) Stop at the illustration with the 
flea; there are now six characters piled on the bed. 

Planning Tips
Make sure that children are familiar 
with The Napping House prior to this 
lesson. 

Introduce this activity to small 
groups. Once children are familiar 
with the materials, they can use them 
independently during center time to 
retell the story and represent the 
growing pattern.

Facilitation Tip
In order to focus on the math of the 
lesson, keep the book review brief.
Do not re-read the book as you 
represent the growing pattern. Use 
the illustrations as a guide and have 
children tell who is napping on each 
page.

Math Note
Growing patterns change (increase 
or decrease) by a constant amount. 
The pattern of The Napping House is 
based on a constant change of plus 
one.
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trajectories. For example, Big Ideas are always introduced through activities with 
materials commonly found in preschool classrooms. Teachers learn different math-
ematics concepts not only by reading texts but also through acting out stories, work-
ing on number activities, comparing different attributes of everyday objects, and 
graphing classroom data for analysis. To enhance hands-on learning experiences, 
teachers engage in discussion and reflection about the Big Ideas embedded in the 
activity. They also consider how similar approaches to learning mathematics could 
be used when they work with children in other content areas.

The integration of children’s books with mathematics education is one strategy 
that warrants special attention. Capitalizing on teachers’ relative comfort with lit-
eracy activities, each of our workshops includes a featured children’s book as a 
way to introduce mathematics Big Ideas. Books such as “Goldilocks and the Three 
Bears” and “The Gingerbread Man” offer high-quality illustrations and rich lan-

3.   Discuss the Growing Pattern
Draw children’s attention to the shape of the pictograph they 
have constructed. Ask questions to help them describe the 
growing pattern. For example:

� What do you notice? How can you describe the 
pictograph we made?

� Why is this a pattern? Have you seen a pattern like this 
anywhere else?

� If this pattern continued, what would happen next?

4. Close the Lesson 
Tell children that you appreciate their help in finding the 
pattern in the story. Remind them that finding patterns in 
stories helps them know what comes next. It helps them make 
predictions. 

Invite children to be on the lookout for other stories with a 
growing pattern. (See Book Connections for suggestions.)

Observation
Do children notice that the result 
looks like steps or a staircase? 

Do any children use numbers to 
describe the pattern they see?

Can they explain what should come 
next in the pattern? 

Math Note
It is important to identify what 
repeats in a pattern. In the case of a 
growing pattern, it’s a quantitative 
change that repeats. This constant 
change brings predictability and 
allows one to make generalizations, 
just as with a repeating AB pattern.

Book Connections
> I Went Walking by Sue Williams
> There Was an Old Lady Who Swallowed a Fly by Simms 

Taback
> This is the House that Jack Built by Simms Taback
> Bringing the Rain to Kapiti Plain by Verna Aardema
> Rooster’s Off to See the World by Eric Carle
> Other cumulative tales

Differentiation
Ask children to copy and extend the 
plus one growing pattern using 
unifix cubes or inch cubes.
For children who are ready, add 
numerals to label the pictograph or 
their cubes.

Teacher as Learner
The idea of growing patterns is new 
for many early childhood teachers.  
Can you think of other examples of 
growing patterns? 
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guage. The stories also embrace a variety of mathematics concepts, such as sets, 
patterns, counting, and composing and decomposing numbers. At the end of each 
workshop, teachers receive a copy of the featured book and one or two other qual-
ity children’s books emphasizing the same mathematics concepts. When teachers 
return to their classroom, they have materials to conduct an activity with children 
based on the mathematics concepts they explored during the workshop. Using chil-
dren’s books as an entry point to introduce mathematics concepts helps teachers 
see the connection between early mathematics education and the development of 
children’s language and literacy skills. As well, it helps to ease teachers’ anxiety 
toward early mathematics teaching, and increases their confidence in their ability to 
introduce diverse mathematics concepts and skills to young children.

Recent research has clearly demonstrated the positive relationship between the 
use of mathematics-related language by teachers and mathematical learning during 
the preschool years (Ehrlich 2007; Klibanoff et al. 2006; McCray 2008). Incorporat-
ing these findings, the workshops and coaching sessions emphasize both awareness 
and the use of mathematics-related verbalization. Teachers learn how to use math-
ematics language to describe children’s daily activities during transition, snack, 
dramatic play, and outdoor time. Additional emphasis is placed on asking questions 
that invite children to describe their thinking using mathematical language.

Intentional pedagogy in early mathematics is not limited to mathematics lesson 
time or to activities in the mathematics learning center. Rather, it permeates all 
areas in the classroom throughout the day. The term “mathematizing” describes 
this approach. Mathematizing refers to the process of taking familiar situations 
or problems in daily life and framing them in mathematical terms (NRC 2009, 
p. 43). For example, the teacher might invite Jonah to compare the height of his 
tower with that of Tyrone’s by describing the number and size of blocks each has 
used. To take another example, the teacher may ask children to help prepare for 
a snack by getting “as many napkins as there are children at your table,” or chil-
dren may be sent to wash hands through instructions such as “all children who 
are wearing red today may go line up now.” Mathematizing involves children in 
the  construction and  re-construction processes of mathematical reasoning, problem 
solving,  representation, connection, and communication (NRC 2009).

Impact of Intentional Teaching Rather than treating them as oppositional, inten-
tional teaching embraces and integrates the processes of instruction and construc-
tion. In early childhood classrooms, “children need opportunities to initiate activities 
and follow their interests, but teachers are not passive during these child-initiated 
and child-directed activities. Similarly, children should be actively engaged and 
responsive during teacher-initiated and teacher-directed activities. Good teachers 
help support the child’s learning in both types of activities” (Bowman et al. 2001, 
p. 8). Guided by the what, the whom, and the how of intentional teaching in early 
mathematics, early childhood teachers can set clearly defined mathematical goals 
for instruction while also attending to children’s interests, listening to their ways 
of understanding, and helping them construct mathematical knowledge. Both chil-
dren and their teachers play active roles in the learning process. When instruction 
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and construction are integrated in the learning process, children experience greater 
gains in learning outcomes.

Our program evaluation, conducted during the 2008–2009 school year, found 
increased mathematics learning among children whose teachers participated in our 
yearlong professional development training designed to develop teachers’ inten-
tional teaching in early mathematics (Chen and McCray 2012; McCray and Chen 
2011). A brief background about our intervention program in the context of the 
American educational system might be useful before we report the program evalu-
ation results. In the USA as in many other countries around the world, there are a 
range of different early child care systems. In our early mathematics project, we 
worked with prekindergarten and kindergarten teachers who are part of the teacher 
workforce in the Chicago Public School system. That is, they are government em-
ployees and they are required to have a teaching certificate to work with children 
aged 3–8 years.

For our program evaluation, a total of 154 3–5-year-olds participated in the 
study. Of these children, 91 were randomly selected from 12 participating class-
rooms and served as the intervention group. An additional 63 children randomly 
selected from matched classrooms served as the comparison group. Children’s 
mathematical abilities were measured using Subtest 10 of the Woodcock–Johnson 
III (WJ-III) Achievement Battery (Woodcock et al. 2001), a widely used, standard-
ized, norm-referenced measure of mathematics ability. Two-level hierarchical linear 
modeling (HLM) was used to determine how much of the variance among changes 
in children’s scores from fall to spring could be attributed to teacher participation 
in the intervention.

Results showed that participation in the intervention significantly predicted 
growth in WJ-III age estimate scores. Compared to children in comparison class-
rooms, children in intervention classrooms showed an average of 3 months addi-
tional growth in the WJ age estimate over the intervention year ( p < 0.031). The 
growth of children who began the school year behind national norms approached 
5 additional months of learning. These results point to the positive impact of the 
intentional teaching professional development program in early mathematics on 
children’s learning and its particularly significant effects on the children who are 
most in need of help.

Conclusion

The ongoing discussion of the relationship between instruction and construction 
reflects the paramount role of each in the process of teaching and learning. Due 
to concerted efforts to advance in the field of education, instruction and construc-
tion are seldom regarded as two separate entities; rather, they are often seen as 
two sides of the same coin. From years of research and field experience, we are 
clear that for certain kinds of knowledge and skills, such as creating, naming, and 
transforming shapes or counting or measuring to quantify differences, instruction 
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with adult-initiated activities is more efficient and effective. On the other hand, 
child-initiated construction processes are more conducive to the acquisition of other 
kinds of knowledge and skills, including familiarity with two- and three-dimension-
al shapes and comparing or seriating without counting or measuring (Bowman et al. 
2001; Epstein 2007). Regardless of whether children are engaged in instruction or 
construction experiences, teachers always play a vital role by creating supportive 
environments and purposefully challenging, scaffolding, and extending children’s 
learning. Both instruction and construction are basic means in teaching and learning 
in early education. When they work in tandem, they both contribute to the attain-
ment of meaningful learning goals (Richardson 2003).

Discourse on instruction and construction is not obsolete, however. In the “Race 
to the Top” initiative, the USA has once again entered into an accountability-driven 
school reform movement. What schools, teachers, and students are held account-
able for, unfortunately, is measured largely in terms of standardized test scores. 
Standardized tests, by their nature, tend to focus on factual knowledge and dis-
crete skills. Although the designers strive to give more attention to problem solving 
and in-depth understanding of content knowledge in the tests, limited time for test 
 taking and a format for quick scoring make the task extremely difficult. Teaching 
to the test becomes inevitable for teachers when their performance evaluation and 
sometimes job security depend on their students’ test scores. Teaching to the test 
is most prevalent in urban schools that serve minority and low-income students. 
In these schools, instruction involves more drill and practice, emphasizing what is 
on the test rather than inquiry and understanding. Knowledge construction through 
projects, experiments, and collaborative learning is largely ignored. As a result, 
while student test scores may increase in the short term, students’ understanding 
and interest in learning suffer in the long run (Baker et al. 2010).

With education constrained by limited vision and “teaching to the test,” there is 
a renewed significance for reflections on the meaning of instruction and construc-
tion. Good instruction always involves the students in a construction process. By 
the same token, construction can be effective only when instruction is carefully de-
signed by teachers. While curriculum should not emerge solely from children’s in-
terests, the most meaningful and lasting learning occurs when children are engaged 
and invested in the topic of the study, regardless of the content areas. To ensure 
our children develop skills and the ability to thrive in the twenty-first century, we 
have no choice but integrate instruction and construction in the classroom teaching 
practice.
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Introduction

Nowadays, the importance to provide mostly all kindergarten children with basic 
mathematical competencies is recognized and early childhood mathematics educa-
tion has been discussed in a broad way in the last years. This discussion was forced 
by several empirical studies which indicate that early numerical competencies are 
powerful predictors of later mathematical achievement (e.g., Dornheim 2008, Kra-
jewski and Schneider 2009) and the fact that children bring heterogeneous prerequi-
sites when they start school (Deutscher 2012) and even when they enter kindergarten 
(Anders et al. in press). While some children have rich experiences with mathemati-
cal learning in everyday life, others have almost none. Early childhood mathematics 
education has to compensate this lack of mathematical experiences (Stern 1998).

But what is the best way to organize early mathematics education, to ensure that 
mathematical learning is sustainable and provides children with basic mathematical 
competencies? Should early mathematics education follow a more instructive or 
a more constructive perspective on learning? Many ideas and programs for early 
mathematics education exist in Germany. They range from strong guided training 
programs with prescribed dialogues (e.g., Preiß 2007; Krajewski et al. 2007) to 
compilations of mathematical tasks which demand the responsibility of the edu-
cators to organize appropriate learning opportunities (e.g., Wittmann and Müller 
2009). In this chapter, a way of early mathematics education is proposed which 
combines construction and instruction. It is founded on two basic ideas: on the 
one hand, using natural learning situations for early mathematics education (like 
play and everyday activities) which allows children to construct their mathematical 
knowledge, and on the other hand, being aware of individual competencies due to 
a purposeful observation which allows the educators to react instructively and to 
guarantee the support that children need for the best possible development of their 
mathematical competencies.
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This way of early mathematics education is difficult to realize for kindergar-
ten educators. Empirical studies concerning teacher competencies (Ball et al. 2009; 
Shulman 1986) report that teaching requires a wide range of competencies. These 
competencies are bundled under the terms content knowledge, pedagogical content 
knowledge, and action-related competencies. There is every reason to believe that 
early childhood educators need similar competencies if learning is organized in the 
above-mentioned sense: They have to plan early mathematics education by using 
play and everyday situations, they have to detect mathematically relevant aspects in 
children’s activities and conversations, and they have to be sensitive for important 
steps in the development of their children to be able to care for their further devel-
opment. In Germany—in contrast to many other countries—mathematics educa-
tion has not played an important role over time in preservice education of early 
childhood educators. Therefore, professional development programs are necessary 
to support them in their demanding tasks and to guarantee a substantial mathemat-
ics education for the young children. As a part of the academic support in a project 
aiming at improving the quality in kindergarten and in school (for further informa-
tion: www.transkigs.de), a professional development program was designed and 
carried out. This program should help early childhood educators to implement early 
mathematics education based on a constructive understanding of learning and with 
instructive elements to foster children’s development individually. It was evalu-
ated through an empirical study and the results of the study will be reported in this 
chapter.

The foundation for the professional development program was the concept of 
learning mathematics in natural learning situations and the importance to assess 
children’s individual stage of learning. Therefore, this concept and the conditions, 
which enable early childhood educators to support children in their individual learn-
ing processes, will be described below.

Theoretical Background

Early Mathematics Education in Natural Learning Situations

It is still unexplained which is the best way to guarantee sustainable mathematical 
learning in kindergarten, but there are several reasons to assume that early math-
ematics education in natural learning situations provides a solid base. Natural learn-
ing situations are distinct from learning situations as known in school context: In 
natural learning situations, the learner decides on his own what he would like to do; 
normally, he is highly motivated and reflects his own acting and learning (Schröder 
2002, p. 18 f.). In contrast to this, learning in school context means to learn defi-
nitely more instructively: The teacher organizes learning processes, the content is 
given, and the learning goals are defined.
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In early childhood education, learning mathematics in natural situations means 
to use learning opportunities in everyday activities and in play situations (Gastei-
ger 2010). Everyday activities with potential for mathematical learning are, for 
example, setting the table, comparing collected objects (amount, length, weight, 
colors,…), reflecting timetables for the day, and many else. As play is an appropri-
ate way for preschool children to explore their environment (Fthenakis et al. 2009, 
p. 60) children also have many opportunities to develop mathematical competencies 
while playing (Seo and Ginsburg 2004; Siegler and Ramani 2008). This could be 
during free play while building blocks or playing shopkeeper and in directed play 
activities, for example, with board games.

But it is important to realize that natural learning situations are not only situa-
tions, which happen more or less by chance and learning in natural situations does 
not mean—in a misinterpretation of constructivism (Reusser 2006, p. 159)—to 
leave children alone. The crucial point is “the progressive development of what is 
already experienced into a fuller and richer and also more organized form, a form 
that gradually approximates that in which subject matter is presented to the skilled, 
mature person” (Dewey 1938, p. 48).

Therefore, the educators have to moderate and accompany the learning processes 
by explicitly initiating these learning situations (e.g., offering rhymes with num-
bers, describing ways, and measuring and comparing children’s size) or by using 
the potential for mathematical learning that everyday activities offer (e.g., prepar-
ing food for the meal, free play, or playing board games). To judge the potential of 
natural learning situations, it could be very helpful for the educators to reflect these 
opportunities to learn based on the framework of the big or fundamental mathemati-
cal ideas like counting, pattern, shapes, or modeling (Clements and Sarama 2009; 
Wittmann and Müller 2009; Wittmann 2004).

There are some reasons, why natural learning situations can be seen as an ad-
equate concept for early childhood mathematics: Children learn mathematics in 
meaningful contexts (everyday and play situations). If natural learning situations 
in early mathematics education are based on the big ideas of mathematics, then 
coherence and consistency in mathematical learning can be ensured (Clements 
2004, p. 15) and children can enhance their conceptual and procedural knowledge 
in several mathematical content areas (Greenes 1999). Moreover, in natural learn-
ing situations children have the possibility to develop mathematical competencies 
in their daily life in dialogue with other children and adults. They can enhance im-
portant mathematical competencies like arguing or constituting in discussions with 
their peers (Steinweg 2008). Learning in this way corresponds to a constructivist 
perspective on learning (Reusser 2001), but nevertheless, appropriate instructional 
support can be very helpful or even indispensable. Especially if a child does not en-
gage in activities with potential for mathematical learning, it is necessary to initiate 
adequate mathematical learning opportunities consciously. Findings on children’s 
spontaneous tendency to focus on numerosity support this claim (Hannula et al. 
2005).
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Assessment of Children’s Individual Stage of Learning

To recognize if a child needs individual support and in consequence to guarantee 
the best possible development of children’s mathematical competencies, it is nec-
essary to diagnose their individual stage of learning. Only then can the educators 
plan further steps and care for a suitable learning environment—including direct 
instructional advises appropriate to the child and the situation. This is necessary to 
ensure that natural learning situations can be used effectively and adequately to the 
individual processes of learning.

To gain a good overview of individual existing competencies, early childhood 
educators can use diagnostic tools like, e.g., OTZ (Osnabrücker Test zur Zahlbeg-
riffsentwicklung, van Luit et al. 2001) or instruments, which allow a constant moni-
toring of children’s performance like portfolios or “Lerndokumentation” (Steinweg 
2006). The crucial point in this context is not to collect data to classify if a child’s 
performance is in average or not, but to get enough information to foster further 
development. This form of diagnostic has a guiding effect (Wollring 2006) and it is 
called “pedagogical diagnostic” (Ingenkamp 1991, p. 760).

Requirements for Early Childhood Educators

To implement early mathematics education in natural learning situations and to en-
sure that children with different levels of knowledge and skills can profit, early 
childhood educators need wide-ranging knowledge and competencies.

First of all, they need content knowledge: They have to see the relations between 
mathematics in the early years and later on to guarantee coherent mathematical 
learning. Moreover, they have to judge if daily situations have the potential for 
further mathematical learning and they have to appraise if children’s statements are 
mathematically correct (Ball et al. 2009): “Contrary to the views of many, young 
children’s mathematical thinking is not limited to the concrete and the mechanical; 
it is often complex and abstract. Since this is the case, understanding the mathemat-
ics in children’s thinking requires deep subject matter knowledge” (Ginsburg and 
Ertle 2008, p. 47).

Pedagogical content knowledge is necessary to identify individual learning diffi-
culties, which in turn is an important precondition to foster children’s mathematical 
development. A specific kind of pedagogical knowledge is “diagnostic knowledge” 
(Weinert et al. 1990, p. 172). It includes the knowledge of learning difficulties, 
misconceptions, and prerequisites and it helps to decide whether additional support 
is needed or not. Exactly this diagnostic knowledge is not really part of preservice 
education in Germany (Lorenz 2008, p. 29).

However, content and pedagogical content knowledge are not sufficient for suc-
cessful action in concrete situations. To act adequately to the situation, to the in-
dividual person and to the subject, “action competence” (Weinert 2001, p. 51) is 
needed. This means to act, to a certain extent, spontaneously but appropriately. At 
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first, action competence is needed to use the opportunities for mathematical learn-
ing in natural situations, because very often these situations only can be profit-
able for mathematical learning, if the educators ask relevant questions or encour-
age reflection (van Oers 2009; Baroody et al. 2006). Moreover, action competence 
is indispensable in case of individual learning difficulties: The educators have to 
identify adequate and necessary steps for further learning and react with inquiry, in-
structive help, or incitation by choosing an appropriate game or material (Lipowsky 
2007, p. 30). Dewey describes successful teachers—and it could be assumed that 
the same could be said for educators—as “so full of the spirit of inquiry, so sensitive 
to every sign of its presence and absence, that no matter what they do, nor how they 
do it, they succeed in awakening and inspiring like alert and intense mental activity 
in those with whom they come in contact” (Dewey 1904, p. 23 f.).

Regarding the requirements educators should meet, it is clear that thinking of 
early mathematics education means not only to decide if a more constructive or a 
more instructive way would be better, it is not enough to design materials for early 
mathematics education, but it means especially to have in mind that professional 
development of educators is becoming more and more important.

Professional Development of Educators

While the importance of professional development programs in early childhood 
education is recognized, there is a research deficit concerning concepts and effec-
tiveness of professional development of early childhood educators (Fröhlich-Gild-
hoff and Mischo 2011, p. 2). Mischo and Fröhlich-Gildhoff (2011, p. 10) identified 
the following demands for professional development in early childhood education: 
Development programs should satisfy educators’ needs, they should be based on 
theoretical background, and they should include pedagogical content knowledge. 
Moreover, all efforts should be empirically evaluated with regard to the effective-
ness.

Thinking about professional development programs for educators, it could be 
helpful to take into account the results of research on professional development of 
teachers. To change teachers’ professional acting, it seems to be necessary to get in-
put concerning content and assessment knowledge and to have many opportunities 
to learn something new. To try new materials, to train new patterns of activity, and 
to reflect on it are further aspects of effective professional development (Lipowsky 
2012, p. 5 ff.). It is furthermore important to have the right framework conditions. 
Though it is not sufficient, it seems to be necessary that “learning opportunities for 
teachers” occur “over an extended period of time” and that teachers are involved “in 
a professional community of practice” (Hattie 2009, p. 120 f.; Garet et al. 2001). All 
in all, a constructive perspective on learning with instructive elements seems to be 
successful for educators as well as for children.
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Professionalization of Early Childhood Educators as Part 
of the Project TransKiGs Berlin

If early mathematics education combines constructive and instructive elements 
(Presmeg 2014), while using natural learning situations and considering the individ-
ual stage of learning, it is indispensable to care for the professional development of 
educators (see Sect. “Requirements for Early Childhood Educators”). Therefore—
as part of the academic support of the project TransKiGs in Berlin (www.transkigs.
de)—a professional development program was worked out by the author, carried 
out and evaluated (see Sect. “Evaluation Study”). The foundation and the concept 
of this professional development program with all its accompanying measures will 
be described below.

First of all, the educators participating in the project TransKiGs were inquired to 
identify their needs (as demanded by Mischo and Fröhlich-Gildhoff 2011, p. 10). 
Based on this information, the professional development program was devised with 
four modules. The basis for this program was the above-mentioned concept for 
early childhood mathematics education: focusing on natural learning situations, en-
couraging mathematical learning essentially nonformal, and following primarily a 
constructive perspective on learning (see Sect. “Early Mathematics Education in 
Natural Learning Situations”). Another key aspect of the professional development 
program was to provide knowledge about the development of mathematical com-
petencies in early childhood to enable the educators to focus on the mathematical 
learning process of each child and to care—in a more or less instructive way—for 
an appropriate support (see Sect. “Assessment of Children’s Individual Stage of 
Learning”).

In detail, the educators worked in three modules on content and pedagogical 
content knowledge in the domains ‘number, counting, quantity’, ‘space and shape’, 
and ‘measurement and data’. The fourth module focused on observation, docu-
mentation, and possibilities of intervening if the observation shows special needs 
for some children. These four modules were devised considering that task orienta-
tion, opportunities to develop content, and pedagogical content knowledge, active 
learning, reflection, and discussion with other learners are fostering the impact and 
sustainability of professional development projects (Zehetmeier and Krainer 2011; 
Boston and Smith 2011, see above).

During the first year of the project TransKiGs, the educators could attend the 
modules ‘number, counting, quantity’, ‘shape and space’, and ‘measurement and 
data’—the first one took a whole day, the others half a day (see Table 17.1). Be-
cause of employee turnover in the five participating day care centers, the modules 
were repeated after 1 year of work and supplemented by the module ‘observation, 
documentation, intervention’. Interim, the educators had regular meetings with the 
teachers of their corresponding schools and with other participating educators—this 
was an essential element of the organizational structure of the project. So, partici-
pating persons had the possibility to reflect their own work and to share their ex-
periences.
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The three content-based modules (1–3) were structured as follows: The math-
ematical content was divided into smaller sections, e.g., for the domain ‘number, 
counting, quantity’ in counting sequence, counting process, comparing, quantifica-
tion, and structures, pattern, and change. In each section, for enhancing their content 
and pedagogical content knowledge, the educators got information about associ-
ated mathematical competencies and their development from early childhood up to 
the first years of school. These information sections included thought experiments 
and self-reflection tasks like trying to count on, or calculating by, the letters of the 
alphabet. If possible, it was illustrated with short video sequences to reflect the de-
velopment of children and to train observation. The theoretic input was enriched by 
everyday activities and play situations supposing to foster the mathematical learn-
ing in this special domain (e.g., counting children, steps, collected objects, pieces of 
fruit, …, or playing board games with a dice, card games to compare quantities, …). 
Many activities were carried out directly. So the educators had enough time to try 
them out for themselves and to analyze the demands and possibilities concerning 
the implementation of these activities in their daily work. Their experiences were 
reflected in a short discussion afterwards and supplemented by their own ideas. This 
approach was used to help the educators to improve their pedagogical and didactical 
action competence (see Sect. “Requirements for Early Childhood Educators”). At 
the end of each module, the educators were invited to contemplate the information 
and ideas they had gathered and to reflect in which situations in their everyday work 
they can observe mathematical development in the respective domain.

The fourth module aimed at a more conscious approach to mathematical compe-
tencies that children show. It provided information on observation and diagnostics 
in general—especially the reasons why this is indispensable in early mathematics 
education. Therefore, some diagnostic tools, like standardized tests, portfolios, or 
learning stories (Carr 2001), were presented and discussed in terms of early math-
ematics education. The main part of this module was a training to observe learning 
processes, to draw conclusions for further mathematical learning, and to reflect on 
which tasks or situations could help to foster it. For this training, video sequences 

Table 17�1  Professional development program—an overview
Module 1:number, 
counting, quantity

Module 2:space 
and shape

Module 3:measure-
ment and data

Module 4:observa-
tion, documenta-
tion, intervention

Content Counting Visual perception Measurement Observation
Comparing Spatial orientation Length Diagnostic tools
Numbers Shape and space Weight Documentation
Quantity and 
structures

Symmetry Time
Money
Data and chance

Encouragement
Observation training 
(video-based)Pattern and change

6 h 3 h 3 h –1st year
2nd year 3 h 3 h 3 h 3 h
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were used. The participants were requested to describe the mathematical competen-
cies they could recognize, to connect their observation with the content and peda-
gogical content knowledge in the content-domains, to judge whether it is necessary 
to react, and, if it is, to think about possibilities to intervene. Intervention in this 
regard means to think about natural learning situations serving as an enhancement 
adapted to the observed stage of learning. To support the educators in these chal-
lenging activities, the observation tool “Lerndokumentation” (Steinweg 2006) was 
offered to them. It is a chart, where many mathematical competencies are described 
as they can happen every day in early childhood education. The educators can use 
this tool to document their observations. In this module, discussion about the ob-
served competencies and the possibilities to intervene, based on their content and 
pedagogical content knowledge, was seen as an important point to promote the 
pedagogical and didactical action competence of the early childhood educators.

The professional development program has to be seen embedded in a set of mea-
sures determined by the framework of the project. First of all, the project intended 
a network. All teachers and educators participating in the project cooperated in dif-
ferent kinds of meetings. Besides the professional development program, they had 
annual conferences, where they received expert input and had the possibility to 
exchange their experiences. Educators met furthermore regularly with teachers of 
the corresponding school to share information about their children and experiences 
in mathematics education. To support the educators in assessing children’s indi-
vidual stage of learning, they could use the observation tool “Lerndokumentation” 
(Steinweg 2006). It was offered to them almost at the beginning of the project with 
some information on how they can integrate it in their daily work. In addition, each 
participating kindergarten got three material packages (in annual intervals) with 
literature, materials, games, and picture books, helpful and suitable for mathematics 
education in natural learning situations (e.g., Wittmann and Müller 2009; Hoenisch 
and Niggemeyer 2004). These measures meet some of the requirements for effective 
professional development (see Sect. “Professional Development of Educators”).

Evaluation Study

Research Question

The measures of professional development (see Sect. “Professionalization of Early 
Childhood Educators as Part of the Project TransKiGs Berlin”) were evaluated. The 
aim of the professional development program with all supporting measures was to 
equip the early childhood educators with ideas for mathematical learning in play 
and everyday situations, to enable them to see important steps in their children’s 
mathematical development, and to use this information for their further work. In 
consequence, it could be supposed that children enhance their mathematical compe-
tencies. So the main research question of the evaluation study was if the professional 
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development program for educators—integrated in the framework of the project 
TransKiGs—has positive effects on the mathematical learning of children.

Sample and Methodology

A summative evaluation (Bortz and Döring 2006, p. 109) was used to evaluate the 
professional development program with reference to the research question. There-
fore, a pre- and posttest design with treatment and control group was applied: Chil-
dren’s performance in a mathematics test was measured and compared with the 
performance of a control group. There were three points of measurement over a 
3-year period in annual test intervals: a pretest (June/July 2006), a test during the 
intervention time (June/July 2007), and a posttest (June/July 2008).

As the evaluation took place in the field, only a quasi-experimental design was 
possible. All children in the 5-day care centers, participating in the project Tran-
sKiGs, defined the target population. A proportionally stratified sample (age, gen-
der, migration-background; pretest: N = 21, age 3–4 years; posttest: N = 19, age 5–6 
years) out of the target population formed the treatment group. The control group 
was stratified in the same way. For organizational reasons, the educators of children 
in this group had no possibility to participate in the project TransKiGs. The day care 
centers in both groups are located in comparable districts regarding some social 
data and the percentage of foreign nationals (Gasteiger 2010).

Three months after the pretest, the early childhood educators were introduced in 
the work with the observation tool “Lerndokumentation.” The modules of profes-
sional development program as described above (intervention) were carried out by 
the author 8 months after the pretest and repeated after 1 year. As the evaluation 
took place under natural conditions, the posttest was carried out 4 months after the 
second intervention.

The educators had the choice to take part in the professional development pro-
gram and there was a normal employee turnover during the 2 years of intervention. 
Most of the time, 17 educators took part in the project TransKiGs and 59–82 % 
of these educators visited the different modules of the professional development 
program (first year: module 1: 71 %, module 2/3: 76 %; second year: module 1–3: 
59 %, module 4: 71 %).

To measure the development of mathematical learning, a test instrument was 
designed (Gasteiger 2010) with items in the domains ‘number and calculation’ (19 
items, Cronbach’s α = 0.89, 0.86, 0.76), ‘measurement’ (5 items, α = 0.55, 0.40, 
0.35), and ‘shape and space’ (6 items, α = 0.62, 0.55, 0.44)—30 items all in all 
(α = 0.91, 0.89, 0.78). The first part of the test was a guided interview, administered 
by the author and supported with some material, e.g., counting objects, number- 
and quantity-cards. Children were asked to count, to count objects, to quantify, and 
more. The second part was a paper–pencil test, where the children answered oral 
questions and they documented their answers by drawing or writing (for all test 
items see Gasteiger 2010, p. 270 ff.). For the data analysis, the whole test was 
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videotaped. As same person interviewed all children, objectivity could be guaran-
teed. The reliabilities of the subscales ‘measurement’ and ‘shape and space’ are low. 
Therefore, for further data analysis, only the whole scale and the subscale ‘number 
and calculation’ will be used.

To assess whether changes in children’s mathematical performance can be relat-
ed to the intervention measures, questionnaires for the educators gave information, 
if the professional development program was seen as useful and if the educators use 
the observation tool “Lerndokumentation” in their daily work.

Results

The professional development program was positively evaluated. After finishing the 
professional development program, about 90 % of the participating educators felt 
more competent to accompany children’s mathematical learning, about 90 % said 
their perspective on mathematical learning changed in a positive way, and 86–93 % 
felt that they learned something for their daily work (Steinweg and Gasteiger 2007, 
2008). The questionnaire concerning the use of “Lerndokumentation” showed that 
educators think more about mathematical activities in their daily work and improve 
in recognizing important steps in the mathematical development of their children 
(Gasteiger 2010, p. 194 ff.).

To analyze the findings of the summative evaluation study, the results of the 
mathematics test should be examined. Therefore, we used the data of the group of 
children who took part in the mathematics test three times ( N = 19 in treatment and 
in control group), with one exception: At the second point of measurement one child 
in the treatment group was not available for the test, but it took part at the pre- and 
posttest.

Pretest scores for treatment group (M = 28 %, SD = 17 %) and control group 
(M = 40 %, SD = 22 %) differ not significantly but considerably ( t(36) = 1.89, 
p > 0.05), even though the samples were stratified in parallel ways. From the first 
to the second point of measurement, both groups’ mathematical competencies are 
developing in parallel. At the third point of measurement, the results of both groups 
approximate to each other (treatment group: M = 80 %, SD = 13 %; control group: 
M = 84 %, SD = 13 %, t(36) = .89, p > 0.05).

A two-factorial analysis of variance with repeated measures tends—if there are 
differences in the changing of mathematical development between the treatment, 
and the control group—to confirm or reject the hypothesis that children perform 
better in mathematics due to the professional development of their educators. The 
focus is on the interaction effect between group and point of measurement. Consid-
ering the whole scale of test items, the main effect of mathematical development 
over the period of 2 years is highly significant as expected ( p < 0.001). This is be-
cause children improve their mathematical competencies over time—independent 
from any intervention. The interaction effect is not significant (F(1.730) = 1.687, 
p = 0.20). For the whole scale of test items, that is to say the development of math-
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ematical competencies over different content domains, the hypothesis must be re-
jected. If only the subscale ‘number and calculation’ is considered, in addition to 
the main effect of mathematical development in general, the interaction effect is 
significant as well (see Table 17.2).

Children in the treatment group differ significantly in their performance in the 
content domain ‘number and calculation’ from children in a control group (11 % 
explained variance in mathematical performance). The comparison of means shows 
that they can improve their mathematical competencies between the second and the 
third point of measurement (see Table 17.3).

Examining the subscales, it could be detected that the differences in the results of 
the two groups (whole scale) at the beginning of the evaluation study and also at the 
second point of measurement are caused by the differences in the subscale ‘number 
and counting’. At the first and second points of measurements, the differences in 
this subscale are even significant (see Table 17.3), while the performances of treat-
ment and control group in the two other subscales nearly do not differ (Gasteiger 
2010).

Qualitative analysis of test results of low-achieving children shows that children 
in the treatment group can enhance their mathematical competencies more than 
children in the control group (Gasteiger 2010), p. 217 ff.). All children in the treat-
ment group can count resultative and in a flexible way immediately before they 
enter school, while two children in the control group, for example, did not master 
the one-to-one principle in their counting processes.

Discussion

The question, whether measures of professional development for educators can 
have positive effects on the mathematical learning of children, is not easy to an-
swer (s. Mischo and Fröhlich-Gildhoff 2011, p. 9). In this study, the intervention 
addressed the professional development of the educators but the mathematical 

Factor F df p
Time of measurement 210,595 2 0.000
Group*point of measurement 

(interaction effect)
4,468 1.924 0.016

Table 17�2  Analysis of vari-
ance, subscale ‘number and 
calculation’

M (SD) Treatment group Control group
1st point of measurement 

(pretest)
21 % (16 %) 39 % (23 %)
t(36) = 2.68, p < 0.05, d = 0.87

2nd point of measurement 55 % (22 %) 71 % (21 %)
t(35) = 2.29, p < 0.05, d = 0.75

3rd point of measurement 
(posttest)

83 % (14 %) 86 % (16 %)
t(36) = 0.46, p > 0.05, d = 0.15

Table 17�3  Comparison of 
means in the subscale ‘num-
ber and counting’
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competencies of children were the decisive factor to appraise whether the inter-
vention was successful or not. This fact may explain why, from the first to the 
second point of measurement, both groups’ mathematical competencies are devel-
oping almost in parallel (see Table 17.3). The professional development program 
aims to improve content knowledge, pedagogical content knowledge, and action 
competencies (Shulman 1986; Bass et al. 2009; Weinert et al. 1990). The educators 
considered this as successful (see Sect. “Evaluation Study”). So, it can be assumed 
that the educators taking part in the professional development program get ideas 
for implementing early mathematics education in natural learning situations, input 
about mathematical development in early childhood, and experiences in the obser-
vation of mathematical competencies (see Sect. “Theoretical Background”). The 
professional development program gave no explicit instruction how the educators 
should act when they are back at work. This decision was made consciously and 
based on the constructivist perspective of learning. But this means that changes in 
the daily work can only happen when the educators have in mind what they have 
learned about mathematical learning and development and, when they know how to 
act through their—hopefully—improved content and pedagogical content knowl-
edge (see Sect. “Requirements for Early Childhood Educators”). There is a long 
way to children’s improvement of mathematical competencies: The educators need 
to reflect on their daily work due to their new experiences, they need to try to real-
ize early mathematics education in natural learning situations, to detect individual 
difficulties and competencies of the children, and to support their development. 
Not until then can the professional development have an effect on children’s per-
formance (s. Lipowsky 2012). So, it is remarkable that despite the long way, these 
effects on children’s mathematical development can be detected.

Obviously, the effects of professional development on children’s mathematical 
achievement do not emerge immediately (see Table 17.3), but there is reason to 
believe that this process has a sustainable impact on the daily work of the educators 
and may lead to an ongoing enhancement of children’s mathematical development. 
If educators can see the impact of their efforts to improve their own acting, then it is 
extremely motivating and will reinforce their engagement in new teaching practices 
(Lipowsky 2012, p. 6 f.).

Another interesting point in this evaluation study is that the intervention only had 
effects in the domain ‘number and calculation’. There are some ideas to explain this 
result. One reason may be that the test instrument was not balanced in the content 
domains. There were considerably more items in the domain ‘number and calcula-
tion’ than in the other two content domains and the subscales to ‘shape and space’ 
and to ‘measurement’ were not as reliable as the subscale ‘number and calculation’. 
Maybe with a longer test instrument, effects could be detected in other content do-
mains as well. It may also be assumed that early childhood educators rather think of 
numbers, counting, and calculating than of spatial thinking or measuring time when 
they engage with early mathematics education (Lee and Ginsburg 2007). Moreover, 
the domain ‘number, counting, quantity’ took more time in the professional devel-
opment program than the other domains (see Sect. “Professionalization of Early 
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Childhood Educators as Part of the Project TransKiGs Berlin”). Possibly, it was or 
is easier for educators to think about natural learning situations in this domain than 
in the others. Discussions with educators during the professional development pro-
gram confirmed this statement. They mentioned that they already had ideas about 
mathematical learning like counting all children in the morning or counting activi-
ties while setting the table, but that they learned in the professional development 
program that mathematics is everywhere and that many situations they know from 
their daily work, e.g., paper folding or building blocks, can be used for mathemati-
cal learning as well.

Conclusion

There are many ways to think about early mathematics education. Today, early 
childhood educators can use frameworks for an orientation, they have a choice be-
tween training programs which are generally highly instructive or several materials 
which support children in their constructive learning processes. Demanding that 
early childhood education should meet the requirements on sustainable learning and 
all activities in early mathematics should be based on individual prerequisites and 
the learning progress of children, it is indispensable to support the early childhood 
educators (Baroody 2004). They have to act competent—sometimes spontaneous-
ly—and to plan and initiate mathematical learning in a meaningful way, having in 
mind why some contents or skills are relevant for further mathematical learning, 
and others are not. Using materials, frameworks, and diagnostic tools without hav-
ing in mind, which mathematical ideas are relevant for children and how they can 
learn them adequately and matched to their individual learning progress promises 
not to be successful (Siraj-Blatchford et al. 2002).

The results of the evaluation study show that professional development can have 
effects on children’s mathematical learning though it is a long way from the devel-
opment of educators’ competencies to children’s mathematical achievement and 
though it is highly demanding to realize early mathematics education between the 
poles of instruction and construction. The concepts of professionalization should 
reflect what is known about effectiveness of professional development programs 
and important framework conditions should be respected (Lipowsky 2012; Hattie 
2009; Zehetmeier and Krainer 2011). Nevertheless, short-term effects could not be 
expected if early mathematics education is mainly guided by professionalization 
of educators, and not by strong-guided instructional advices. But there are good 
reasons to believe that in the long run, this approach can lead to a profound change 
in the thinking of early childhood educators and that they can successfully manage 
the integration of constructive and instructive perspectives on learning in their daily 
acting.
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Introduction

Concern for preschool mathematics education may be seen in the rise of national 
curricula in various countries which now make specific and sometimes mandatory 
recommendations for including mathematics as part of the preschool program. For 
example, in England, the non-statutory Practice Guidance for the Early Years Foun-
dation Stage (2008) suggests ways of fostering children’s mathematical knowl-
edge from 0 to 5 years. In Israel, the National Mathematics Preschool Curriculum 
(INMPC 2008) is mandatory and contains specific guidelines and aims for children 
from 3 to 6 years. With new standards come new demands for teachers and the ne-
cessity for providing teachers with the tools to meet those demands.

In her plenary talk during the mathematics education Perspective On Early Math-
ematics learning (POEM ) 2012 conference, Norma Presmeg discussed the “dance 
of instruction with construction in mathematics education” (Presmeg, personal com-
munication). Continuing with the metaphor of dance, during the preschool years, 
there is ever the challenge of how the teacher can avoid ‘stepping on the toes’ of his 
or her young students. That is, can the teacher ‘lead’ the students without interfering 
too much and without crushing the children’s independent thinking? Ginsburg et al. 
(2008) claimed that during the preschool years, children are interested in and devel-
op mathematical ideas, often without adult assistance. Yet, while some of these ideas 
are in line with mathematical principles, others are not. They recommended that 
the preschool teacher create an environment whereby children can play with and 
construct mathematical ideas on their own but, in addition, teachers should take the 
time to “engage in deliberate and planned instruction” (Ginsburg et al. 2008, p. 8).

If we wish to guide young students in their mathematical discoveries, we need 
teachers who can lead this guidance. Yet, in Israel, as in many countries, attention 
to mathematics teacher education is mostly given at the elementary and secondary 
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levels (Arcavi 2004; Kaiser 2002). All too often, preschool teachers receive little or 
no preparation for teaching mathematics to young children (Ginsburg et al. 2008). 
With this in mind, it is not surprising to find an increased call for strengthening the 
preparation of preschool teachers for teaching mathematics. The National Associa-
tion for the Education of Young Children (NAEYC) and the National Council for 
Teachers of Mathematics (NCTM) recommend that “teachers of young children 
should learn the mathematics content that is directly relevant to their professional 
role” (NAEYC and NCTM 2002, p. 14). Similarly, the Australian Association of 
Mathematics Teachers (AAMT) and Early Childhood Australia (ECA) published 
a joint position paper recommending that early childhood staff be provided with 
“ongoing professional learning that develops their knowledge, skills and confi-
dence in early childhood mathematics” (AAMT/ECA 2006, p. 3). Summarizing the 
above, some of the credentials necessary for teaching mathematics in preschool are 
knowing mathematics, knowing what mathematics young children are capable of 
learning, being skilled in planning an appropriate environment and activities, and 
having the confidence to engage students in mathematical activities. How can these 
requirements be framed, studied, and promoted?

This chapter describes a framework for professional development which takes 
into consideration the intertwining of instruction and construction that preschool 
teachers implement and facilitate in their classrooms. The chapter is divided into 
three sections. The first section introduces the Cognitive Affective Mathematics 
Teacher Education (CAMTE) framework, used in planning and implementing the 
program. Acknowledging that knowledge and beliefs are interrelated and that both 
affect teachers’ proficiency (Pehkonen and Törner 1999; Schoenfeld 1992; Schoen-
feld and Kilpatrick 2008; Törner 2002), the framework and program take into con-
sideration teachers’ knowledge as well as self-efficacy beliefs to teach mathematics 
in preschool.

The second part of this chapter demonstrates how the framework was used to 
study preschool teachers’ knowledge and self-efficacy related to children’s concep-
tions of counting and enumeration. The third part of this chapter discusses how re-
sults of investigating preschool teachers’ knowledge and self-efficacy may be used 
in planning professional development and illustrates some of the ideas by present-
ing a case study of one preschool teacher who participated in our program.

The Cognitive Affective Mathematics Teacher Education 
(CAMTE) Framework

The framework used in our program takes into account both teachers’ knowledge as 
well as their related self-efficacy beliefs. In this section, we present the theoretical 
framework which guides both our program as well as our investigation of teachers’ 
knowledge and self-efficacy beliefs. The section begins with a brief discussion of 
teachers’ knowledge for teaching mathematics and continues with a brief review 
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of self-efficacy. We then present the model of the framework and how it relates to 
preschool teachers’ knowledge for teaching mathematics.

Teachers’ Knowledge for Teaching

In framing the mathematical knowledge preschool teachers need for teaching, we 
draw on Shulman (1986) who identified subject-matter knowledge (SMK) and ped-
agogical content knowledge (PCK) as two major components of teachers’ knowl-
edge necessary for teaching. In our previous work (Tabach et al. 2010), we found 
it useful to differentiate between two components of teachers’ SMK: being able to 
produce solutions, strategies, and explanations and being able to evaluate given so-
lutions, strategies, and explanations. Thus, our framework takes into consideration 
both of these aspects of SMK. Regarding PCK, we draw on the works of Ball and 
her colleagues (Ball et al. 2008) who refined Shulman’s theory and differentiated 
between two aspects of PCK: knowledge of content and students (KCS) and knowl-
edge of content and teaching (KCT). KCS is “knowledge that combines knowing 
about students and knowing about mathematics” whereas KCT “combines knowing 
about teaching and knowing about mathematics” (Ball et al. 2008, p. 401).

Within the domain of number, preschool teachers’ SMK includes knowledge 
about counting, operations, and a variety of possible ways and methods of rationally 
examining and explaining found solutions. Teachers’ KCS includes, for example, 
knowledge of young children’s nonconservation of number (Piaget and Inhelder 
1958). Within geometry, preschool teachers’ SMK includes knowledge of defin-
ing geometrical concepts and identifying various examples and nonexamples of 
two- and three-dimensional figures (solids) as well as ways of justifying this iden-
tification. Teachers’ KCS includes knowledge of which examples and nonexamples 
children intuitively recognize as such (Tsamir et al. 2008), as well as knowledge of 
children’s commonly held concept images and concept definitions for geometrical 
figures (Tall and Vinner 1981). In both domains, KCT includes knowledge related 
to designing and assessing different tasks, providing students with multiple paths 
to understanding.

Self-efficacy

The framework used in our program also draws on Bandura’s (1986) social cogni-
tive theory, which takes into consideration the relationship between psychodynamic 
and behavioristic influences, as well as personal beliefs and self-perception, when 
explaining human behavior. Thus, besides investigating preschool teacher’s knowl-
edge, it is important to relate to their self-efficacy. Bandura defined self-efficacy as 
“people’s judgments of their capabilities to organize and execute a course of action 
required to attain designated types of performances” (Bandura 1986, p. 391). Hack-
ett and Betz (1989) defined mathematics self-efficacy as “a situational or problem-
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specific assessment of an individual’s confidence in her or his ability to successfully 
perform or accomplish a particular [mathematics] task or problem” (p. 262). The 
CAMTE framework takes into consideration teachers’ mathematics self-efficacy as 
well as their pedagogical-mathematics self-efficacy, i.e., their self-efficacy related 
to the pedagogy of teaching mathematics. Teacher self-efficacy has been related to 
a variety of teacher classroom behaviors that affect their effort in teaching, and their 
persistence and resilience when facing difficulties with students (Ashton and Webb 
1986). Studies report that teachers with a high sense of self-efficacy are more enthu-
siastic in teaching (Allinder 1994) and are more committed to teaching (Coladarci 
1992).

Illustrating the CAMTE Framework Within the Domain 
of Number Concepts

The design of our program and the accompanying study was based on the frame-
work presented in the following eight-cell knowledge and self-efficacy matrix (see 
Table 18.1). In Cells 1–4 and in Cells 5–8, we address teachers’ knowledge and self-
efficacy, respectively. In Table 18.1, we illustrate the different cells of the frame-
work within the domain of number concepts, focusing on teachers’ knowledge for 
teaching counting and enumeration.

Counting refers to saying the number words in the proper order and knowing 
the principles and patterns in the number system as coded in one’s natural lan-
guage (Baroody 1987). For the purpose of this chapter, we define “enumerating” 
as “counting objects for the purpose of saying how many.” This is in line with the 
Hebrew terminology used in the Israel curriculum, which differentiates between 
counting (הריפס) and enumerating (הינמ). Gelman and Gallistel (1978) outlined five 
principles of counting, which in our terminology, we call enumerating. The three 
“how-to-count” principles include the one-to-one principle, the stable-order prin-
ciple, and the cardinal principle. The two “what-to-count” principles include the 
abstraction principle and the order-irrelevance principle. For each cell, we offer 
specific examples.

Cell 1: producing solutions: compare the number of elements in two sets using a 
variety of strategies; count the following large collection of items using a variety 
of strategies.

Cell 2: evaluating solutions: evaluate the following strategies for comparing the 
number of elements in two sets; evaluate the following justifications for why one 

Table 18�1  The cognitive affective mathematics teacher education framework
Subject-matter Pedagogical-content
Solving Evaluating Students Tasks

Knowledge Cell 1 Cell 2 Cell 3 Cell 4
Self-efficacy Cell 5 Cell 6 Cell 7 Cell 8
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set has more elements than another set. (See Tirosh et al. (2011) for a review of 
possible strategies for comparing the number of elements in two sets and evalua-
tions of those strategies.)

Cell 3: knowledge of students’ conceptions: which number symbols are more dif-
ficult for children to learn; what are children’s common mistakes related to the 
counting sequence.

Cell 4: designing and evaluating tasks: which tasks have the potential to foster chil-
dren’s acceptance of the one-to-one principle; which tasks will assess children’s 
counting and enumeration skills.

Cell 5: mathematics self-efficacy related to producing solutions: teachers’ beliefs 
regarding their ability to enumerate a large collection of items in multiple ways.

Cell 6: mathematics self-efficacy related to evaluating solutions: teachers’ beliefs in 
their ability to evaluate various strategies for enumerating.

Cell 7: pedagogical-mathematics self-efficacy related to children’s conceptions: 
teachers’ beliefs in their ability to identify children’s common mistakes related 
to counting.

Cell 8: pedagogical-mathematics self-efficacy related to designing and evaluating 
tasks: teachers’ beliefs in their ability to design tasks that will promote children’s 
correct and efficient enumeration strategies.

The above framework was used to plan and implement our professional develop-
ment program as well as to investigate preschool teachers’ knowledge and self-
efficacy to teach mathematics in preschool. In the following section, we report on 
a study which focused on Cells 3 and 7 of the CAMTE framework (i.e., knowledge 
of students’ conceptions and pedagogical-mathematics self-efficacy related to chil-
dren’s conceptions) with regard to the topics of counting and enumeration.

Studying Preschool Teachers’ Knowledge and Self-efficacy 
Related to Students’ Conceptions

At the heart of constructivist theories is that students build new knowledge upon ex-
isting knowledge (e.g., Simon and Schifter 1993; Von Glaserfeld 1991). When plan-
ning our professional development program, this central idea emerges twice. First, 
as we intend for teachers to plan activities for their young students based on their 
young students’ existing knowledge, one of the objectives of our program is to in-
crease teachers’ knowledge of their students. However, before planning to increase 
teachers’ knowledge of their students, we need to consider what the teachers already 
know about their students’ conceptions. In general, in order for teacher educators 
to adequately plan a professional development program, it is essential to consider 
teachers’ current knowledge. Therefore, we suggest that the CAMTE framework 
may be used to study preschool teachers’ knowledge for teaching mathematics in 
conjunction with planning an appropriate program.
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Participants

Participants in this study were 36 practicing preschool teachers, who at the time of 
the study were all teaching 4–6-year-old children in municipal preschools. All had 
a Bachelor’s degree in education. The study took place at the beginning of the year 
before they had attended any professional development courses which specifically 
addressed teaching mathematics in preschool.

Tools and Procedure

Based on the CAMTE framework, a two-part questionnaire was developed. The 
first part began with six self-efficacy questions related to participants’ knowledge of 
children’s conceptions of numbers (Cell 7 of the CAMTE framework). A four-point 
Likert scale was used to rate participants’ beliefs in their ability to identify specific 
aspects of students’ conceptions: 1—I do not believe at all in my ability; 2—I some-
what do not believe in my ability; 3—I believe somewhat in my ability; and 4—I 
completely believe in my ability. The actual questions are presented in Table 18.2. 
After participants completed this part of the questionnaire, they handed it in and 
received the second part of the questionnaire.

The second part of the questionnaire consisted of knowledge questions. These 
questions followed the self-efficacy questions in order to allow the participants to 
evaluate their self-efficacy before actually engaging in the task. Participants were 
asked to assess how many children at the end of kindergarten would be able to com-
plete various number-related tasks (Cell 3 of the framework)—almost all children, 
many, about half, few, or almost none? Kindergarten is the last year of preschool. 
All questionnaires were completed in the presence of the researcher. The actual 
questions are presented in Table 18.3. Many of the items on the questionnaire were 
based on our previous work with young children. All items on the questionnaire 

Table 18�2  Teachers’ self-efficacy related to knowledge of students
Item Question: I am capable of identifying… Teachers N = 36

M SD
3 …which combinations of numbers that add up to 7 children 

find difficult to learn
2.4 0.03

5 …which numbers children find difficult to say the number 
which comes immediately beforehand

2.5 0.81

6 …counting skills that most children are competent performing 
(when considering counting up till 30)

2.6 0.93

2 …different arrangements of eight items which children find 
difficult to count

2.9 1.02

1 …which number symbols from 1 to 9 children find difficult to 
recognize

3.0 1.10

4 …which numbers children find difficult to say the number 
which immediately follows

3.2 0.73
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were consistent with the requirements of the mandatory mathematics preschool cur-
riculum.

Results

Pedagogical-Mathematics Self-efficacy Related to Children’s Conceptions

As mentioned earlier, teachers were asked to assess on a scale of 1–4 (4 being the 
highest rating) their own ability to identify children’s difficulties when performing 
various counting and enumerating skills. Teachers were told to take into consider-
ation children at the end of their kindergarten year. Table 18.2 reports the means and 
standard deviations for each self-efficacy question related to this aspect of teachers’ 
knowledge. Statements are arranged according to the level of self-efficacy reported 
by the practicing teachers, from low to high. Item numbers represent the order in 
which they were presented on the questionnaire.

Cronbach’s alpha was used to measure internal consistency. A coefficient of 
α = 0.743 indicated that the items most likely formed a coherent group. We thus 
configured for each participant a mean self-efficacy score. The mean self-efficacy 
score for the group of teachers was 2.8 (SD = 0.61) indicating that while teachers, 
for the most part, believed in their ability to identify aspects of students’ concep-
tions, they were not absolutely sure of this ability.

Assessing Teachers’ Knowledge of Students’ Ability to Perform Number Tasks

Teachers were presented with various number tasks and asked to estimate on a scale 
from 1 to 5 how many students (1—almost none, 2—a few, 3—about half, 4—many, 

Table 18�3  Teachers’ estimates of students’ abilities to perform various tasks
Item Question: How many students will be able to… Teachers N = 36

M SD
6 say that changing the position of objects to be counted does 

not change the amount there are?
2.6 1.00

10 say how many apples to add to three apples in order to 
make seven apples?

2.8 1.03

8 say which number comes right before 6? 3.5 1.18
3 count from 6 to 15? 3.7 1.24
2 count backward from 7? 3.9 1.29
1 count from 1 to 30? 4.0 1.28
7 say which number comes right after 6? 4.0 1.07
9 identify the number symbol for 9? 4.0 1.15
5 say that it does not matter if you count objects from the left 

or from the right?
4.2 0.98

4 count eight bottle caps placed in a straight row? 4.4 1.02
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and 5—almost all) would be able to complete the task correctly. The means of par-
ticipants’ estimations of students’ abilities for each task and standard deviation are 
shown in Table 18.2. The table is arranged according to the teachers’ estimation, 
from the tasks estimated to be most difficult to those estimated to be least difficult. 
The item number reflects the order of the questions in accordance to how they ap-
peared on the questionnaire.

In general, teachers believed that for most tasks, more than half of kindergarten 
children at the end of their kindergarten year would be able to correctly solve the 
tasks. The exceptions were items 6 and 10. For those tasks, teachers believed that 
less than half of the children would be able to succeed.

In order to assess teachers’ knowledge of kindergarten children’s abilities to per-
form number tasks, we compared the participants’ estimates with previous research 
we had conducted with kindergarten children (Tirosh and Tsamir 2008), which was 
much in line with studies by other researchers (e.g., Baroody and Wilkins 1999). 
(See Table 18.4.)

For example, in our previous research we asked children ( N = 82) to count from 
1 to 30, to count backward from 7, and so on. In those studies, we configured the 
percentage of children who succeeded in the task. We then reconfigured the 1–5 
scale the teachers used to reflect the results of the children’s performance with the 
0–100 % scale. Reconfiguration was carried out in the following way. The lowest 
score on both scales was 1 and 0 %, respectively, and the highest score was 5 and 
100 %, respectively. We transformed the 1–5 scale by using the linear equation: 
y = 25(x − 1) where x represents the scale used for teachers and y the scale used for 
children. We could then compare teachers’ estimates of how many children would 
succeed at a task, with results of children’s actual performances. This is presented 
in Table 18.4.

One-sample t tests were conducted in order to compare teachers’ estimates with 
actual children’s performance. Results, shown in Table 18.5, showed no significant 

Table 18�4  Comparing participants’ estimates with children’s performance
Item Question: How many students will be able to… Mean estimates 

translated to 
percents

Percent of 
children ( N = 82) 
who succeeded

6 say that changing the position of objects to be coun-
ted does not change the amount there are?

40 65

10 tell how many apples to add to three apples in order 
to make seven apples?

45 52.5

8 say which number comes right before 6? 62.5 59
3 count from 6 to 15? 67.5 68
2 count backward from 7? 72.5 60
1 count from 1 to 30? 75 49
7 say which number comes right after 6? 75 94
9 identify the number for symbol for 9? 75 88
5 say that it does not matter if you count objects from 

the left or from the right?
80 77

4 count eight bottle caps placed in a straight row? 85 93
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differences for items 3, 5, 8, and 10. In other words, for those items, teachers’ esti-
mations were in line with the actual amount of children that were able to perform 
those tasks at the end of kindergarten. For items 4, 6, 7, and 9, teachers significantly 
underestimated children’s abilities. For items 1 and 2, teachers significantly overes-
timated children’s ability.

The two items with the greatest difference between the teachers’ estimation of 
children’s knowledge and the children’s actual performance were items 1 and 6. 
While teachers estimated that approximately three quarters of children would be 
able to recite the numbers from 1 to 30 (knowledge of counting) by the end of 
kindergarten, our investigation showed that only half were able to do so. Item 6 is 
related to knowledge of enumerating, specifically understanding the stable-order 
principle (Gelman and Gallistel 1978). Here, teachers believed that less than half of 
the children would have reached this understanding while in fact, more than half of 
the children exhibited knowledge of this principle.

Despite some of the specific differences between teachers’ estimates of chil-
dren’s abilities and their actual abilities, it is important to note some general trends. 
First, with the exception of item one, counting from 1 to 30, teachers estimated that 
fewer children would be able to complete the tasks in items 6, 10, 8, 3, and 2 than 
would be able to complete the tasks in items 7, 9, 5, and 4. This general trend was in 
line with students’ implementation of those tasks. That is, in a general sense, teach-
ers correctly lined up the tasks in order of their difficulty. We also note that teachers 
knew that a greater number of children would be able to state which number comes 
after 6 than be able to state which number comes before 6. Our work with children 
demonstrated that, in general, children are more easily able to state which number 
comes after some other number than which number comes before that other number.

In addition to the questions described above, teachers were also asked to con-
sider how much time they would dedicate to teaching number symbols and how 
much time they would dedicate to teaching which number comes before and after 
other given numbers. More specifically, regarding the teaching of number symbols, 
teachers were asked to consider the time period it would take to teach each number 
symbol and whether they would plan on spending an equal amount of time on each 

Table 18�5  Comparing teachers’ estimates with actual children performance
Item number M t value Df p value
6 40 − 5.73 34 .000
10 45 − 0.270 34 .788
8 62.5 0.851 35 .401
3 67.5 0.109 34 .914
2 72.5 2.102 34 .043
1 75 4.760 35 .000
7 75 − 4.358 34 .000
9 75 − 2.528 34 .016
5 80 0.751 33 .458
4 85 − 2.114 35 .042
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number symbol or perhaps they would plan to spend more time on symbols which 
are difficult to learn and less time on symbols which are easier to learn. Results are 
summarized in Table 18.6.

When it came to providing reasons for their decisions, a little over a third of the 
teachers (36 %) answered this question based on pedagogical knowledge without 
taking into consideration the specific content. For example, T3 claimed, “[I would] 
first check what previous knowledge the group has and then I would choose my 
teaching strategy.” T20 stated, “[I would teach] each child according to his pace.” 
Approximately a third of the teachers considered the specific content; however, 
only 15 % of the teachers specifically mentioned that they would spend more time 
on difficult-to-learn symbols such as 6 and 9.

Regarding time dedicated to teaching which number comes before and after a 
given number, participants were asked to consider if they would spend more time on 
teaching which number comes after a given number, more time on teaching which 
number comes before a given number, the same amount of time for both concepts, 
or something else. Results are summarized in Table 18.7. First, we note that none 
of the teachers wrote that they would dedicate more time to teaching which number 
comes right after a given number than which number comes right before a given 
number. This is in line with the relevant difficulties students find in completing each 
of the two tasks.

When considering their answers to this question, approximately 20 % of the 
teachers exhibited general pedagogical knowledge but did not relate specifically to 
the content. For example, T15 stated that her teaching strategy and time consider-
ations were “very dependent on the level of the children and their ability to learn.” A 
third of the teachers took into consideration that it might take more time for children 
to be able to say which number comes before a given number than after a given 
number. For example, T31 claimed, “Because children can easily count (forward), 

Table 18�6  Time devoted to teaching number symbols
Teachers (%) N = 36

Would devote the same amount of time for teaching each number symbol 7(19)
Would spend more time teaching difficult-to-learn number symbols and 

less time on others
6(17)

Other 23(64)

Table 18�7  Time that would be devoted to teaching which number comes before and after a given 
number

Teachers (%) N = 34
Would devote the same amount of time for teaching both concepts 2(6)
Would spend more time teaching which number comes right after a given 

number
–

Would spend more time teaching which number comes right before a given 
number

12(35)

Other 20(59)
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it is easy for them to say the number which comes after [a given number] and more 
difficult for them to go backward and say the number which comes before.”

Looking back at the results presented in both Tables 18.6 and 18.7, one notes 
that, in general, teachers did not choose any of the options shown to them. One pos-
sible reason for this occurrence could be that practicing teachers may draw on their 
experience, coming to different conclusions than those suggested on the question-
naire. In fact, as was noted above, many practicing teachers commendably men-
tioned that they would base the amount of time spent teaching different concepts on 
their students’ abilities and background. In general, practicing teachers exhibited a 
flexible teaching plan based on the circumstances found in their class.

Using Results to Plan for Professional Development

Just as children bring their knowledge and experiences to the school classroom, 
teachers bring their knowledge and experiences to professional development cours-
es. As mentioned above, none of the teachers had attended any professional devel-
opment courses which specifically addressed teaching mathematics in preschool. In 
addition, given the fact that the mathematics preschool curriculum in Israel has only 
recently been authorized, few of the teachers had taken any mathematics education 
courses related to the curriculum when studying toward their teaching degree. And 
still, the teachers in this study displayed knowledge of their students’ conceptions 
of number concepts. How can this be explained? We believe that teachers construct 
knowledge of their students by observing them doing mathematics, mathematics 
that arises spontaneously or is teacher directed. However, like children who con-
struct their own knowledge, teachers’ knowledge, in this case of their students, is 
not necessarily complete.

Considering Teachers’ Knowledge

How could the results of the above study be used in planning professional develop-
ment courses for those teachers? First, we might ask ourselves how those teachers 
came to be knowledgeable of certain aspects of students’ number conceptions and 
not others. Perhaps, if we surmise that most of the teachers’ knowledge came from 
their experiences while working with children, it might inform us of what types of 
number tasks teachers implement in their classes. For example, teachers correctly 
estimated how many children would be able to count backward from 7 but did 
not correctly estimate how many children would be able to count forward till 30. 
It could be that counting backward from 7 or from 10 is a more common task in 
kindergarten than counting forward all the way till 30. It could be that teachers are 
inclined to implement some tasks in a group setting and others individually. Group 
activities do not always give us accurate feedback of what each child is capable 
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of doing on his or her own. Thus, we may plan during the professional develop-
ment to discuss the difference between implementing activities in a group or with 
individuals.

In our program, we also discuss with teachers the difference between tasks which 
aim to teach or enhance students’ knowledge as opposed to tasks which aim to 
assess students’ knowledge. While the difference may be subtle, and perhaps any 
task could be viewed in both lights, we make this differentiation, and discuss this 
differentiation with teachers, in order to sharpen their knowledge of the different 
aspects of tasks that need to be considered before, during, and after implementing 
the task. We also review with the teachers the now mandatory curriculum, which 
includes many examples of tasks that can be carried out with children. This exposes 
teachers to additional ideas for mathematical activities that may be implemented in 
their classrooms. As can be seen, there is a relationship between Cells 3 and 4 of the 
CAMTE framework.

Another possible reason teachers’ estimations did not always match students’ 
implementations could be that teachers’ mathematical knowledge is incomplete and 
therefore their assessment of children’s abilities will be inaccurate. For example, 
teachers estimated that only 40 % of children would know that changing the posi-
tion of objects to be counted does not change the amount of objects. In Israel, be-
cause Hebrew is read from right to left and numbers are read from left to right, some 
teachers believe that children should be encouraged to count only from left to right 
in order to establish in them the directionality of reading numbers. Teachers may 
therefore believe that the positioning of objects is critical in counting. This example 
illustrates the relationship between Cells 1 and 3 of the CAMTE framework and 
emphasizes the need to investigate teachers’ knowledge related to all cells.

Considering Teachers’ Self-efficacy

Regarding self-efficacy, the teachers in our study felt reasonably able to identify 
aspects of children’s number concepts but were not overly confident. For us, as 
teacher educators, this is a good starting point. We take this to mean that teachers 
believe in their abilities, an important characteristic for teachers to have. Yet, they 
also realize that continued learning on their part is necessary. Having teachers admit 
to a deficiency in their knowledge is not easy. One of the ways our program has 
dealt with this issue is by employing what we term the pair-dialog (P-D) approach to 
instruction, a specific form of team teaching in which two instructors teach coopera-
tively. In our interactions with teachers, we use a blend of pair performances (e.g., 
thought-provoking dialog episodes) and discussions that involve the teachers (seg-
ments of “inviting the audience,” prospective and participating teachers, to express 
their views on different ideas that are presented and to “help us out” in resolving 
the dilemmas that we raise). (For examples of such dialogs, see Tsamir and Tirosh 
2011.) A main gain of our approach is that the teachers are confronted, in a gentle 
and respectful manner, with their incorrect responses, and the P-D opening serves 
as a springboard for a thorough discussion of common errors.
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An Illustrative Example: The Case of Maple

In order to enable teachers to construct knowledge of children’s conceptions, as part 
of our program teachers are instructed to plan and record the implementation of a 
mathematical activity. Recordings are then shared and discussed collectively with 
the teachers and teacher educators.

To illustrate this final point, we present the case of Maple, a teacher with 7 years 
of experience and a Bachelor of Education (B.Ed.). For her final project, Maple 
chose to report on her assessment of a 4 1/2-year-old girl in her class. Her report 
included her prior assessment of that girl’s counting and enumeration skills, “Gila 
can count till 10 without making mistakes. She also recognizes the number symbols 
up till 5.” Maple then described seven different tasks which she chose to implement 
in order to assess different elements of her student’s knowledge of enumeration. For 
each task, she wrote what specific element of enumeration skills she was assessing 
as well as what mistakes may possibly arise. For example, for her first task she 
planned to ask the child to count till 10 without placing any items before the child. 
She wrote, “The first task investigates consistent and acceptable counting…if the 
child cannot count, and the basis for enumeration is counting, then if the child can-
not count as she should, she will not be able to enumerate.” For the second task, she 
placed eight identical objects in a row and asked the child how many there were. 
She wrote, “The second task investigates the one-to-one correspondence principle 
and when I ask again how many there are, I am checking the principle of cardinal-
ity, that the child knows that the last number represents the total amount… [It could 
be that] a child will count the same object twice or, instead, skip an object.” Maple 
also planned to assess the order-irrelevance principle by asking if the objects can 
be counted from right to left as well as from left to right and if the amount stays the 
same.

After writing up her analysis of the child’s performance, she reflected on the 
process, noting not only the child’s performance but also her own performance. 
For example, Maple is surprised at the strategy the child used when counting 20 
bottle caps placed in a pile. The child first laid out all of the caps in a row and only 
then proceeded to count them. This was obviously a strategy Maple had not seen 
previously. She also remarked in her report that when talking to the child, she, the 
teacher, was not consistent in her terminology and sometimes mixed up the words 
for counting with enumerating. Maple also noted what she would change if she 
were to carry out the project again. She wrote, “I would emphasize the difference 
between counting and enumeration, before beginning to assess a child’s knowledge. 
First I would strengthen my own knowledge and then the child’s.”

During the reflective interview at the end of the course, Maple was asked what 
she learned from the experience of videotaping her implementation of the assess-
ment tasks and then watching the video. She noted, “It was interesting to watch 
myself. During class time I never see myself. It (the video) is a good tool. You can 
stop [the video-tape], think, watch it again, and then reflect. It really helped me to 
learn about myself and about the children.” The interviewer also asked Maple, if she 
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could point to some new insight that came about from her viewing the video. She 
answered, “First, about myself. As I conducted more assessment tasks, I saw that I 
was more confident in myself, more skillful with regard to conducting the assess-
ment task. I see how I improved each time.” At the end of the program, we see that 
Maple has begun to adopt a constructivist approach to instruction. As Cobb (1988) 
claimed, “the constructivist view of instruction implies that the teacher must be a 
reflective pedagogical problem solver who, in effect, conducts an informal research 
program” (p. 101).

Conclusion

The preschool teacher plays a major role in fostering children’s mathematical abili-
ties. “It is up to her to devote attention both to planned mathematical activities 
as well as mathematical activities which may spontaneously arise in the class and 
to pay attention to the mathematical development of the children” (INMPC 2008, 
p. 8). This is in line with Presmeg (2012) who claimed that “Effective instruction 
can facilitate students’ making of constructions that lie within the canons of mathe-
matically accepted knowledge, and yet there is room for creativity and enjoyment.”

Being able to plan appropriate mathematical activities requires knowledge of 
mathematics as well as knowledge of students and tasks. However, it is one thing 
to implement a given curriculum with given activities and another to recognize 
opportunities for learning mathematics and make the most of these opportunities. 
If we want teachers to recognize such opportunities they need to be on the lookout 
for such opportunities. They need to be proactive. A high self-efficacy for teaching 
mathematics, based on actual experiences of solving mathematical problems and 
evaluating possible solutions, in turn based on effectively implementing planned 
tasks with children and seeing the results of their work with children, can help foster 
the positive drive we ask of our teachers. That is our aim as teacher educators—to 
promote a high self-efficacy for teaching mathematics in preschool which corre-
sponds to a high level of knowledge for teaching mathematics in preschool.
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Introduction

Children start developing mathematical knowledge and abilities a long time before 
they enter formal education (e.g. see Anderson et al. 2008; Ginsburg et al. 1999). 
In their play, their everyday life experiences at home and in childcare centres they 
develop a foundation of skills, concepts and understandings about numbers and 
mathematics (Baroody and Wilkins 1999). Anderson et al. (2008) reviewing inter-
national studies on preschool children’s development and knowledge conclude that 
research

(…) points to young children’s strong capacity to deal with number knowledge prior to 
school, thus diminishing the value of the conventional practice that pre-number activities 
are more appropriate for this age group upon school entry. (p. 102)

However, the range of mathematical competencies children develop prior to school 
obviously varies quite substantially. While most preschoolers manage to develop a 
wide range of informal knowledge and skills in early numeracy, there are a small 
number of children who, for various reasons, struggle with the acquisition of num-
ber skills (e.g. see Clarke et al. 2008). Furthermore, clinical psychological studies 
suggest that children potentially at risk in learning mathematics can already be iden-
tified 1 year prior to school entry by assessing their number concept development 
(e.g. Krajewski 2005; Aunola et al. 2004). Findings from these studies also indi-
cate that these children benefit from an early intervention prior to school helping 
them to develop a foundation of knowledge and skills for successful school-based 
mathematics learning. This seems to be of crucial importance as findings from the 
SCHOLASTIK project (Weinert and Helmke 1997) a longitudinal study on the de-
velopment of primary school children suggest that students who are low achieving 
in mathematics at the beginning of primary school tend to stay in this position in 
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general. In most cases, a recovery does not occur. In addition, Stern (1997) em-
phasizes that with respect to success at school subject-specific knowledge prior to 
school is more important than general cognitive factors such as intelligence.

Theoretical Background: Number Concept Development

While pre-number activities based on Piaget’s logical foundations model are fre-
quently still current practice in first year school mathematics (Anderson et al. 
2008), research findings as well as curriculum documents increasingly stress the 
importance of students’ early engagement with sets, numbers and counting activi-
ties for their number concept development. Clements (1984) classified alternative 
models for number concept development that deliberately include early counting 
skills (Resnick 1983) as skills integrations models.

Piaget (1952) assumed that the development of number concept builds on logi-
cal operations based on pre-number activities such as classification, seriation and 
number conservation. He emphasized that the understanding of number is depen-
dent on operational competencies. In his view, counting exercises do not have an 
operational value and hence no conducive effect on conceptual competence regard-
ing number.

However, since the late 1970s this theory has been questioned due to research 
evidence suggesting that the development of number skills and concepts results 
from the integration of number skills, such as counting, subitizing and comparing. 
Studies by Fuson et al. (1983) and Sophian (1995), for example, demonstrate that 
children performing on conservation tasks who compare sets by counting or using 
a visual correspondence are highly successful. Clements (1984) investigated the ef-
fects of two training sequences on the development of logical operations and num-
ber. Two groups of 4-year-olds were trained for 8 weeks on either logical founda-
tions focussing on classification and seriation or number skills based on counting. A 
third group with no training input served as a control group. Instruments measuring 
logical operations and number abilities were designed as pre- and post-test mea-
sures. It is not surprising that both experimental groups significantly outperformed 
the control group in both tests, however, the children that were trained on number 
skills significantly outperformed the logical foundations group on the number test 
while there were no significant differences between these two groups on the logical 
operations test. Clements’ results comply with and extend previous research that 
had indicated that number skills, such as counting and subitizing, effect the de-
velopment of number conservation (Fuson et al. 1983; Acredolo 1982). Hence, he 
concludes:

(…) the counting act may provide the structure and/or representational tool with which to 
construct logical operations including classification and seriation, as well as number con-
servation. … Not only may explicit readiness training in logical operations be unnecessary, 
but well structured training in counting may facilitate the growth of these abilities as well 
as underlie the learning of other mature number concepts. (Clements 1984, p. 774–775)
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An early training based on number abilities, like counting, comparing and subitiz-
ing, may be especially important for children who are likely to develop mathemati-
cal learning difficulties.

Krajewski (2008) provides a theoretical model that is based on the assumption 
that the linkage of imprecise nonverbal quantity concepts with the ability to count 
forms the foundation for understanding several major principles of the number 
system. The model depicts how early mathematical competencies are acquired via 
three developmental levels. In two longitudinal studies, Krajewski and Schneider 
(2009a, b) investigated the predictive validity of the quantity–number competencies 
of these developmental levels for mathematical school achievement. The results of 
the studies indicate that quantity–number competencies measured in kindergarten 
predict about 25 % of the variance in mathematical school achievement in grades 
3 and 4. Moreover, a subgroup analysis indicated that low-performing fourth grad-
ers had already shown large deficits in their early quantity–number competencies 
(Krajewski and Schneider 2009b). It can be concluded that these early quantity–
number competencies constitute an important prerequisite for the understanding of 
school mathematics. These results conform to different other longitudinal studies 
(e.g. Aunola et al. 2004)

Methodology

Based on relevant research findings reported in the previous section, the longitu-
dinal study (2005–2008) that provided the background of this chapter aims at the 
following:

• To determine how 5-year-old kindergarten children potentially at risk in learning 
school mathematics can be identified one year prior to school enrolment.

• To implement an early intervention following two approaches—weekly one-on-
one intervention by pre-service teachers versus (small) group intervention by the 
kindergarten teacher.

• To investigate possible effects of the intervention on children’s number skills at 
the beginning of school, at the end of year 1 and year 2.

While key results with respect to the effects of the intervention on student achieve-
ment directly before as well as in the first two years of primary school have already 
been reported (Peter-Koop et al. 2008; Grüßing and Peter-Koop 2008), this chapter 
aims to explore how children potentially at risk learning school mathematics can be 
supported effectively in terms of their number concept development in early child-
hood education at kindergarten.

Hence, following a description of the concept and design of the intervention, re-
sults of the study with respect to three underlying research questions are addressed:

1. What are the effects of an 8-month intervention programme aimed at the develop-
ment of number abilities for kindergarten children (5-year-olds) identified to be 
potentially at risk learning school mathematics upon school entry?
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2. In how far has the early intervention a lasting effect with respect to their achie-
vement in mathematics at the end of grade 1 and grade 2?

3. Do the two types of intervention—one-on-one support by a pre-service teacher 
versus small group intervention by the kindergarten teacher—lead to significant 
differences in mathematics achievement?

Overall, 947 5-year-old preschoolers from 35 kindergartens—17 in an urban and 
18 in a rather rural setting—in the northwest of Germany took part in the first year 
of the study (September 2005–August 2006). With the permission of their parents, 
these children performed on three different tests/interviews conducted at three dif-
ferent days within a fortnight by pre-service primary mathematics teachers who had 
been especially trained for their participation in the study:

• The German version of the Utrecht Early Numeracy Test (OTZ; van Luit et al. 
2001)—a standardized individual test aiming to measure children’s number con-
cept development that involves logical operations-based tasks as well as coun-
ting related items.

• The Elementarmathematisches Basisinterview for use in kindergarten (EMBI-
KiGa) based on the First Year at School Mathematics Interview (FYSMI) [1] 
developed in the context of the Australian Early Numeracy Research Project 
(Clarke et al. 2006)—a task-based one-on-one interview aiming at 5-year-olds 
allowing children to articulate their developing mathematical understanding 
through the use of specific materials provided for each task, which in the mean-
time has been published by Peter-Koop and Grüßing (2011).

• The Culture Fair Test (CFT1)—an intelligence test for preschoolers to be con-
ducted in groups between four and eight children (Cattell et al. 1997) in order to 
be able to control this variable with respect to the children identified as potenti-
ally at risk learning mathematics.

A total of 854 children performed on all three tests. Their data provided the basis of 
the quantitative analysis with the use of Statistical Package for the Social Sciences 
(SPSS). While the majority of the children interviewed demonstrated elaborate abil-
ities and knowledge as described by Anderson et al. (2008), 73 children (about 8 %) 
in the sample severely struggled with certain areas relevant to the development of 
number concept, such as seriation, part–part–whole relationships, ordering numbers 
and counting small collections. They were identified as ‘children potentially at risk’ 
with respect to their later school mathematics learning on the basis of their perfor-
mance at the OTZ and the EMBI-KiGa. A total of 26 of these 73 children (35.6 %) 
had a non-German speaking family background. However, only 13.6 % of the chil-
dren in the complete sample ( n = 947) had a migrant background. Hence, children 
from migrant families were over-represented in the group of children potentially at 
risk learning school mathematics.

Following an 8-month intervention (details regarding the intervention are out-
lined below), participants of the study were tested/interviewed again immediately 
before entering year 1. In order to monitor potential long-term effects, follow-up 
tests were conducted at the end of year 1 and year 2. Data on student achievement 
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in mathematics after the first and second year of primary school were collected with 
the following instruments:

• Deutsche Mathematiktests für 1. und 2. Klassen (DEMAT 1 +; Krajewski et al. 
2002/DEMAT 2 +; Krajewski et al. 2004)—German curriculum-based standard-
ized paper and pencil tests to be conducted at the end of the school year with the 
whole class.

• Elementarmathematisches Basisinterview Zahlen und Operationen (EMBI; 
Peter-Koop et al. 2007)—a task- and material-based one-on-one interview 
assessing children’s developing mathematical understanding in the four areas: 
counting, place value, addition/subtraction strategies and multiplication/division 
in grade 1 and 2 [2].

The data collection included four points of measurement (T1–T4). As it was to 
be expected that the number of children who took part in the first phase of the 
data collection would continually decrease over the following 3 years, a common 
experience with respect to longitudinal studies, an ample sample size taking into 
account this decline in numbers of participants was chosen at the start of the study 
(Table 19.1).

Paradigm and Content of the Intervention

The intervention for the 73 preschoolers identified to be potentially at risk learn-
ing school mathematics was conducted in two groups: Children in group 1 were 
visited weekly by a pre-service teacher who had been prepared for this interven-
tion as part of a university methods course. The pre-service primary teachers were 

Table 19�1  Measurement points, instruments and participants of the study
Measurement points Instruments Participants
September–November 2005 T1 CFT 1 Children participating in the study ( n = 891)

OTZ Children participating in the study ( n = 947)
EMBI-KiGa Children participating in the study ( n = 854)

January–June 2006 Intervention ( n = 73)
June/July 2006 T2 OTZ Children potentially at risk ( n = 60)

EMBI-Kiga Children participating in the study ( n = 715)
June/July 2007 T3 DEMAT 1 + All year 1 classes with children participating in 

the study ( n = 1916)
including the children participating in the study 

( n = 716)
EMBI Children potentially at risk ( n = 40)

June/July 2008 T4 DEMAT 2 + All year 2 classes with children participating in 
the study ( n = 1832)

including children participating in the study 
( n = 603)

EMBI Children potentially at risk ( n = 30)
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introduced to the children as ‘number fairies’ who wanted to show them games and 
activities that they could later share with their peers. This was done to ensure that 
the children did not feel any pressure and experience themselves as slow learners 
at a very early point in their education. The intervention for the group 2 children, 
in contrast, was conducted by the kindergarten teachers within their groups. While 
the intervention in group 1 was carried out one-on-one at a set time each week, 
the kindergarten teachers working with the children in group 2 primarily tried to 
use everyday-related mathematical situations, focussing on aspects, such as order-
ing, one-to-one correspondence or counting, as they arose in the children’s play or 
everyday routine, in particular challenging the children identified to be at risk in 
these areas. The kindergarten teachers completed a diary in which they described 
these situations, noted how often they arose and what they did with the children in 
the whole group (or a small subgroup as in a game situation) and with the children 
at risk in particular. Like in group 1, the children of group 2 were not aware of the 
fact that they took part in an intervention. However, the parents of all children who 
took part in the intervention had been informed and had given their written permis-
sion. It is important to note that for ethical reasons it was not possible to establish 
a control group, i.e. children identified to be potentially at risk who did not receive 
special support in form of an intervention as parents would not have agreed for their 
children to be part of this group.

Before and during the intervention the pre-service as well as the kindergarten 
teachers were supported to the same degree by the researchers to ensure compara-
bility of the two groups. While the pre-service teachers enrolled in a methods course 
on early mathematics learning, the kindergarten teachers took part in an in-service 
course dealing with the same content and covering a similar time, i.e. about 30 
hours over 6 months. In both groups, the intervention was conducted over 6 months, 
involving about 45 min a week and based on individual learning plans developed 
by the pre-service and kindergarten teachers. These learning plans were based on 
the results of the assessment with EMBI-KiGa and OTZ and subject to gradual 
extension and adaptation. They usually provided the framework for 4–6 weeks and 
were extended or intensified based on the progress of the child. Figure 19.1 shows 
the first part of the individual learning plan for Marie (group 1) covering the first 
4 weeks of the intervention by a pre-service teacher. The example of the learn-
ing plan (Fig. 19.1) also illustrates the activities chosen for the intervention which 
were based on number work and counting following the skills integration model 
described above. The intervention in both groups focussed on games and play-type 
activities (for some example, see Fig. 19.2) acknowledging that play is essential for 
children at this age (e.g. see Walsh et al. 2006) and therefore pedagogically appro-
priate for an intervention at kindergarten level while rather systematic-methodical 
approaches to learning as preferred at school [3] is regarded as not appropriate for 
kindergarten children, because it requires attitudes and makes demands that are not 
yet developed by preschoolers (Duncker 2010). Furthermore, research in the con-
text of special education suggests that children with learning difficulties in mathe-
matics benefit from games when learning to count (McConkey and McEvoy 1986).
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Presentation and Discussion of Results

While it was to be expected that the performance of most children would increase 
from pre-test (T1) to post-test (T2) due to age-related advancement with respect 
to their cognitive abilities, the results of the study demonstrate that the total group 
of children identified to be at risk in learning mathematics showed the highest in-
crease. Figure 19.3 shows the means of the pre- and post-tests conducted in Septem-
ber/October 2005 and June/July 2006 (i.e. the first two measuring points in kinder-
garten) comparing the complete sample with the children at risk. The analysis was 
based on the number of children that had completed the OTZ and EMBI-KiGa in 

Fig� 19�2  Examples of games and play-type activities used in the intervention

 

Content Material/Games Activities
Language of location
(understanding of prepositions)

Teddy bear and a cardboard box 
and/or
pictures of a teddy bear in 
different positions in a picture 
book

Where is teddy?
The child has to use prepositions to 
locate where teddy is hiding (in, 
under, next to, above, behind)

Counting up to 10
One-to-one correspondence

Matching numerals and 
quantities

Ordering

Little plastic teddies from the 
EMBI, lego blocks, buttons etc.

Memory (pairs consisting of a 
numeral and a set)

Domino (numerals  on one side 
and dots on the other)

Dice

Tiles with numerals 1 – 10

Counting of various structured and 
unstructured quantities (teddies etc.)

Matching numerals and quantities

Matching numerals and quantities

Identifying the dot patterns and 
naming the according numbers 

Bringing the tiles in the right order, 
naming number before and number 
after a given number

Seriation Pencils, candles, straws Putting the objects in order from 
shortest to longest pointing out the 
smallest and the longest object

Ordinal numbers String of coloured beads

Racing game with children from 
the group

Showing and naming different 
positions (first, third, fifth)

Who comes first, second …?

Fig� 19�1  Example of an individual learning plan
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2005 as well as the EMBI-KiGa in 2006. Hence, the number in the complete sample 
decreased to n = 715 with 60 children (8.4 %) potentially at risk.

The data clearly show short-term effects of the intervention. The children po-
tentially at risk have in particular increased their competencies in those areas that 
were addressed during the intervention, i.e. knowledge about numbers and sets as 
well as counting abilities, and performed significantly better in the post-test in tasks 
related to ordinal numbers, matching numerals to dots, ordering numbers, numbers 
before/after and part–part–whole relationships [4]. However, it is important to note 
that due to the fact that a control group was unavailable, a distinct effect of the in-
tervention omitting other potential factors cannot be substantiated by this particular 
research design. Furthermore, ceiling effects hamper the comparison of the increase 
in mathematical competencies between the whole sample and the group of children 
identified to be potentially at risk in learning school mathematics. Despite this, 
the children potentially at risk undoubtedly demonstrated increased number knowl-
edge and skills—domains which are seen as key predictors for later achievement in 
school mathematics (Krajewski 2005; Aunola et al. 2004).

Data from this study also suggest that children from non-German speaking back-
ground families show lower competencies in number concept development one year 
prior to school entry than their German peers. A comparison of the EMBI-KiGa 
pre-test data of the children with German as their first language and the children 
with a migration background based on a total of 854 children who completed the 
interview (see Fig. 19.4), shows a significant difference in achievement ( p < 0.001) 
in the areas language of location, subitizing, matching numerals to dots, ordering 
numbers and numbers before and after.

Fig� 19�3  Means of the pre- and post-test of the EMBI-KiGa
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Complying with these results, children with a migrant background demonstrated 
significantly lower counting abilities with respect to the number-related items in the 
OTZ. A detailed investigation of these results indicates that language-related factors 
play an important role. In the subgroup of children from Turkish families [5] it was 
found that most of these children identified as potentially at risk in learning school 
mathematics, showed better performances in counting and number activities when 
they were encouraged to answer in Turkish (Schmidtman gen. Pothmann 2008). 
Thus, the intervention obviously proved beneficial with respect to their mathemati-
cal performance in the German language. The 23 children with a migrant back-
ground in the group of 60 children identified potentially at risk demonstrated a clear 
increase in achievement in the post-test (T2). While the achievement of both groups 
significantly increased ( p < 0.001) within the test interval, these children on aver-
age demonstrated an increase of 3.6 points between pre- and post-test compared to 
an increase of 2.9 points in the remaining group of the 37 children from German 
families. However, the difference in achievement between these two groups is not 
significant ( p = 0.164). In comparison, the growth in achievement in the group of 
children with a migrant background but without a potential risk factor in terms 
of their school mathematics learning is 1.3 points, while the mean score in this 
group of German children is 1.1 points. Again, the difference between those two 
groups ( p = 0.629) is not significant (Schmidtman gen. Pothmann 2008, p. 161). 
Immediately before school entry, the mathematical competencies of children with 
and without a migrant background obviously have converged—in some areas, i.e. 
matching numerals to dots, ordering numbers and part–part–whole, they even show 
slightly (however, not significantly) better results (Schmidtman gen. Pothmann 
2008, p. 121).

Fig� 19�4  Mean scores of children with a migration background and German speaking background 
children in the EMBI-KiGa pre-test
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And also another finding with respect to early intervention for preschoolers iden-
tified to be potentially at risk in learning school mathematics is encouraging. With 
respect to the substantial increase in achievement demonstrated by the 60 children 
with a risk factor in the EMBI-KiGa post-test (T2), no significant difference be-
tween the group of 13 children who worked once a week with pre-service teach-
ers introduced as ‘number fairies’ (group 1) and the remaining 47 children who 
received remedial action within their groups by their kindergarten teachers (group 
2) was found (Fig. 19.5).

This suggests that an intervention in the everyday practice by the kindergarten 
teacher who had received professional development in this area is as effective as 
a weekly one-on-one intervention by a visiting and hence more cost-intensive out-
side specialist. In addition, Fig. 19.5 shows a clear increase in achievement in both 
groups of an average 2.5 points in group 1 and even 3.2 points in group 2 which is 
clearly higher than the increase in the complete sample.

In addition to the short-term effect of the intervention, the study also aimed to 
investigate possible long-term effects at the end of grade 1 (T3) and grade 2 (T4). 
After the first and the second year in primary school as well, the group of children 
that had been identified as potentially at risk learning mathematics still shows lower 
achievements in the follow-up tests than the whole group of children participating 
in the study.

Taking a look at the different groups of children at the end of grade 1, there 
are only 20 children in the group of 40 children potentially at risk learning school 
mathematics beyond the weakest 25 %. Another 19 children are now among the 
middle 50 % and one child is among the top 25 % in terms of their achievement in 
the DEMAT 1 + . At the end of grade 2, 19 out of the still remaining 30 children 
potentially at risk belong to the group of the 25 % of the weakest children, 6 of 

Fig� 19�5  Mean score of the EMBI-KiGa comparing the two intervention groups
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them with a non-German speaking background. Ten children—four of them with a 
migrant background—belong to the middle 50 % and, like in grade 1, one child is 
still among the top 25 %.

Implications

The findings of the study suggest that preschoolers who had been identified as po-
tentially at risk in learning school mathematics one year prior to school entry could 
benefit significantly from an 8-month intervention programme based on the en-
hancement of number knowledge and counting abilities. Data from the pre- and 
post-tests clearly indicate increased knowledge, skills and understanding of num-
bers and sets, i.e. particularly those areas of number concept development regarded 
as predictors for later achievement in school mathematics (Krajewski 2005; Aunola 
et al. 2004). Further analyses suggest that for more than 50 % of these children, this 
increase in their mathematical achievement prior to school entry proves to be of 
lasting effect at the end of grade 1 (Peter-Koop and Grüßing 2008). This percentage 
drops significantly after year 2 (see Table 19.2). One possible explanation for this 
finding relates to curriculum. In year 2 primary school mathematics in Germany, 
the focus shifts from number work to operations—an area that has not been trained 
in the intervention.

Furthermore, there were no significant differences in achievement found in the 
post-test between the groups of children who had experienced a one-on-one inter-
vention by the pre-service mathematics teachers who had been particularly trained 
for this task and the children who had worked with their kindergarten teachers 
within their home groups. While clinical studies have already shown positive ef-
fects of early intervention (e.g. Krajewski 2005), this study suggests that there is 
not necessarily a need to bring external ‘specialists’ into kindergarten to work with 
individual children [6]. A comprehensive screening and respective enhancement of 
preschoolers potentially at risk by their kindergarten teachers is possible—given 

Table 19�2  Results with respect to possible long-term effects at the end of years 1 and 2
End of year 1 (max. 36) End of year 2 (max. 36)
sample M SD sample M SD

Overall ( n = 1916) 25.55 7.30 ( n = 1832) 20.69 6.59
Children participating in the 

study
( n = 716) 26.08 7.09 ( n = 603) 21.15 8.70

Peer groups in year 1/year 2 ( n = 1200) 25.23 7.40 ( n = 1229) 20.46 8.53
Children potentially at risk 

learning mathematics
( n = 40) 18.55 7.66 ( n = 30) 11.65 9.12

Children potentially at risk 
with migration background

( n = 15) 18.93 7.99 ( n = 11) 15.64 10.26

Children potentially at risk 
with German background

( n = 25) 18.32 7.62 ( n = 19) 11.65 9.12
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that the kindergarten teachers are prepared for this task during their initial and/or 
in-service training.

In addition, the findings show that children with a migrant background are not 
only over-represented in the group of preschoolers with a risk factor with respect to 
school mathematics, they also demonstrated the highest increase in mathematical 
achievement in the test interval. Hence, it appears to be important not only to focus 
on screenings that determine (German) language development prior to school as it is 
currently done in all German states, but also to investigate early mathematical abili-
ties in order to identify children who need extra support in their number concept 
development. Since the Programme of International Student Assessment (PISA) 
study has emphasized that the group of migrant children is over-represented among 
the low-achieving students at the age of 15 (Deutsches PISA-Konsortium 2001) 
and findings from the SCHOLASTIK project (Weinert and Helmke 1997) indicate 
that low achievers in mathematics at the beginning of primary school in general 
stay in this position, this seems of crucial importance. While the German version of 
the Utrecht Early Numeracy Test (van Luit et al. 2001)—the OTZ—showed clear 
ceiling effects and also proved to be very difficult for non-German speaking back-
ground children due to its demands on German language comprehension, this study 
suggests that the EMBI-KiGa is a suitable instrument for the collection of informa-
tion on preschoolers’ number learning and the respective identification of children 
potentially at risk in learning school mathematics. This instrument allows children 
to articulate their developing mathematical understanding through the use of simple 
materials provided for each task in a short one-on-one interview that takes about 
10–15 min for each child. Bruner (1969) has already highlighted the importance 
of material-based activities for young children who, for various reasons, cannot 
yet verbally articulate their developing and sometimes already yet quite elaborate 
(mathematical) understanding.

Furthermore, it can be stated that the design of the intervention which followed 
a play-oriented approach including traditional (mathematically slightly modified) 
games whenever suitable obviously had a positive effect on the children’s number 
concept development. This is supported by findings of two studies in New Zea-
land that were designed to improve 5- and 7-year-old children’s number knowledge 
through the use of mathematical games. It was found that games “appeared to be 
most effective as a way of enhancing children’s learning when a sensitive adult 
was available to support and extend the children’s learning as they played” (Peters 
1998, p. 49). The conclusions of the study presented here with respect to the role of 
games and play-based activities are also supported by findings reported by a team of 
Swiss researchers who investigated the effects on learning outcome and motivation 
of two different approaches to fostering numeracy skills in kindergarten, comparing 
a training programme with a play-based approach. Their main results indicate that 
play-based fostering is as effective as a training programme in whole-group teach-
ing in terms of learning outcomes in early numeracy (Rechensteiner et al. 2011). 
However, more detailed analyses are still needed to understand whether play-based 
early numeracy activities are of greater benefit for preschoolers potentially at risk 
learning school mathematics than a (whole-group based) training programme. Find-
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ings from the area of language education for preschoolers seem to suggest that 
whole-group training prior to school does not lead to compensational effects for 
slow learners (Röbe 1998).

Notes

1. The FYSMI is to be conducted in the first year of school, which in Australia is 
the preparatory grade preceding grade 1. This preparatory year is compulsory 
for all 5-year-old children. In Germany, in contrast, formal schooling starts with 
grade 1 when children are 6 years old. While a majority of German 5-year-olds 
attend kindergarten, this is not compulsory and involves fees to be paid by the 
parents.

2. This instrument is a German adaptation of the Australian Early Years Interview 
(Department of Education, Employment and Training, State of Victoria, 2001).

3. It is important to note that school-based approaches to mathematics teaching and 
learning in primary and junior secondary school also draw on games (e.g. Ainley 
1990; Bragg 2006).

4. The analysis of the data from the standardised OTZ showed clear ceiling effects. 
Over 40 % of the children reached level A which supposedly represents the top 
25 % of the children in this age group. However, in level E representing the 
bottom 10 % of the scale, the test differentiated sufficiently with respect to the 
sample.

5. The majority of the children with a migrant background in the sample were from 
Turkish parents, followed by families from Russia, Kazakhstan, Lebanon and 
Iraq.

6. However, it is acknowledged that there might be cases in which a specialist-based 
one-on-one training in addition to the help provided by the kindergarten tea-
cher is expedient. In our study, we consider the pre-service teachers due to their 
extensive training in the area of children’s number concept development and the 
high level of support and supervision that was provided before and during the 
intervention as specialists despite the fact that their teacher training had not been 
completed.
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