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Preface

Over the past decade, Qualitative Comparative Analysis (QCA) has made major
inroads into many areas of the social sciences, with applications from sociology
and political science topping the list of publication figures. The development of
software able to meet the growing demand for QCA, however, has been relatively
slow and patchy. The QCA package for the R environment and this accompanying
user’s guide form the bundle of tools which fill this gap in three ways. First, with
QCA, there now exists a user-friendly yet immensely powerful and flexible soft-
ware solution covering the full spectrum of QCA. Second, this guide complements
QCA’s own internal documentation files by providing a comprehensive manual.
And third, this guide offers a general introduction to performing QCA with the R

environment for statistical computing and graphics.
The typographic conventions used in this book are intended to facilitate the flow

of reading. Software and packages are identified by a sans-serif font: Software; R

input code by slanted typewriter style: input; R output and general code by
typewriter style: output; variables by italicized letters: var; sets (their negations)
by bold upper case (lower case) font-weight: S (s); uniform resource locators
(URLs) by typewriter style: http://www.r-project.org/; filename extensions
by italicized lower case letters with a preceding dot: .txt; and explanations of
R functions and some arguments by underlineation: sin() finds the sine.

Terminology is important and should ideally be homogeneous, but different
academic communities use different terms to mean one and the same QCA object.
We adopt a set of definitions that will be used consistently throughout the text. A
condition, or condition set is a set, or a combination of sets, that is meant to
explain the outcome. An outcome, or outcome set is a set that is to be explained by
the condition(s). Each binary-value set has two literals, one for its presence and
one for its absence/negation. An outcome value is a truth value in the truth table
indicating the degree to which the aggregate evidence is consistent with the
statement that the configuration is sufficient for the outcome. If the outcome value
is positive (‘‘1’’), the configuration is assessed as true. If the outcome value is
negative (‘‘0’’), the configuration is assessed as false. A configuration is a con-
junctive combination of all conditions in the truth table. A combination is any
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conjunction or disjunction of conditions. The set of configurations which is to be
minimized forms the canonical sum. A configuration which is part of a canonical
sum is called a fundamental product. The solution results from the minimization of
the canonical sum, and consists of one or more minimal sums. Each conjunctive
combination in the minimal sum is called a prime implicant. Prime implicants that
imply fundamental products which no other prime implicant implies are referred to
as essential prime implicants, otherwise as inessential prime implicants.

When one of QCA’s functions is introduced for the first time in a chapter, the
full syntax is written out in a gray box as it would apply to the actual operation that
is to be performed next. This not only presents readers with the full range of
options they have available in this function, but also demonstrates the most effi-
cient way to carry out the desired operation. For example, if the aim was to
calibrate a crisp set S from a continuous base variable s, the following syntax box
would appear before the actual input of code required by the user. The ‘‘is-greater-
than’’ sign > indicates where the input of code starts, while the ‘‘plus’’ sign +
signals the continuation of this input.

The above is the full syntax processed by QCA’s calibrate() function, but
only the following input is required by the user to achieve the desired result:

> S <- calibrate(s, thresholds = 7)

Often in the book we draw parallels and illustrate differences in the functionality
between the QCA package and alternative software. Whenever mention is made of
fs/QCA, QCA3, Tosmana or fuzzy, we refer to the latest versions available at
the time of writing, this being fs/QCA 2.5, QCA3 0.0-5, Tosmana 1.3.2.0, and
fuzzy st0140_2. Future updates may render these parallels and differences invalid.

The ideational spadework of this book was done during the 2011 Summer
School of the European Consortium for Political Research (ECPR) at the Uni-
versity of Ljubljana, where I (Alrik) was lucky enough to meet a number of
inspirational people. We thank Flavia Fossati for her help with the collection of
QCA applications, and the participants of the 2012 ECPR Joint Sessions Work-
shop ‘‘Methodological Advances, Bridges and Limits in the Application of
Qualitative Comparative Analysis’’ for useful comments and suggestions. Our
editors at Springer Jon Gurstelle and Kevin Halligan ensured a smooth flow of this
project. For financial support at various stages, we thank the Swiss Academy of
Humanities and Social Sciences, the Swiss Study Foundation, and the Swiss
National Science Foundation. This book has been typeset with the help of ,

, MakeIndex, PSTricks, and Sweave. Without these amazing tools,

Full syntax:

> calibrate (s, type = "crisp", thresholds = 7, include = TRUE,
+ logistic = FALSE, idm = 0.95, ecdf = FALSE, p = 1, q = 1)
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its preparation would have been so much harder. We also thank their authors for
making such great software freely available.

A lot of time and effort has been invested in developing the QCA package and
in writing this book. If you use the QCA package in your work, please cite it as

Dus�a, Adrian, and Alrik Thiem. 2012. QCA: Qualitative Comparative Analysis.
R Package Version < current version number >.

We seek to keep QCA’s functionality and design abreast of changes.
Responsiveness to new developments and feedback by users are key in this
endeavor. Readers of this book and users of our package are therefore invited to
contact us with suggestions for improvements, comments, or questions at
thiem@sipo.gess.ethz.ch and dusadrian@unibuc.ro.

Happy QCAing!

Zurich, Switzerland, May 2012 Alrik Thiem
Bucharest, Romania, May 2012 Adrian Dus�a
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Chapter 1
Introduction

It is not an overstatement to say Qualitative Comparative Analysis (QCA) counts
among the most influential innovations social science methodology has witnessed
in the past two decades. The accomplishment of this status can be attributed almost
exclusively to the untiring work of Charles Ragin. A political sociologist by trade,
he has done more than anyone else for the recognition and diffusion of QCA.
It then comes as no surprise that, although initially embraced only by a small number
of macrosociologists (e.g., Amenta et al. 1992; Griffin et al. 1991; Ragin et al. 1984;
Wickham-Crowley 1991), QCA has since made major inroads into political science
(e.g., Avdagic 2010; Pennings 2003; Vis 2009; Werner 2009) and international rela-
tions (e.g., Chan 2003; Koenig-Archibugi 2004; Maat 2011; Thiem 2011). More
recently, it has also been increasingly applied in business studies and economics
(e.g., Abell 1990; Evans and Aligica 2008; Schneider et al. 2010; Valliere et al.
2008; Woodside et al. 2011), management and organization (e.g., Bakker et al. 2011;
Boudet et al. 2011; Greckhamer 2011; Romme 1995), governance and administration
(e.g., Kaeding 2008; Maggetti 2007; Stevenson and Greenberg 2000), legal stud-
ies and criminology (Arvind and Stirton 2010; Miethe and Drass 1999; Musheno
et al. 1991; Williams and Farell 1990), education (e.g., Freitag and Schlicht 2009;
Glaesser and Cooper 2011; Schneider and Sadowski 2010), health research (e.g.,
Blackman 2008; Harkreader and Imershein 1999; Hollingsworth et al. 1996; Schen-
sul et al. 2010), environmental sciences (e.g., Oldekop et al. 2010; Rudel and Roper
1996; Scouvart et al. 2008), anthropology (e.g., Moritz et al. 2011), and religion
(e.g., Sebastian and Parameswaran 2007). Publications which have sought to raise
researchers’ awareness of QCA have often preceded the proliferation of applications
in many of these areas (Coverdill et al. 1994; Downey and Stanyer 2010; Greckhamer
et al. 2008; Hellström 1998; Kitchener et al. 2002; Ragin 1989, 1999; Stokke 2007).

Figure 1.1 conveys a sense of QCA’s trajectory by visualizing the trend in the total
number of published journal article applications, broken down by its three related
variants crisp-set QCA (csQCA), multi-value QCA (mvQCA) and fuzzy-set QCA

A. Thiem and A. Duşa, Qualitative Comparative Analysis with R, 1
SpringerBriefs in Political Science, DOI: 10.1007/978-1-4614-4584-5_1,
© The Author(s) 2013
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Fig. 1.1 Trend in number and research area distribution of QCA applications

(fsQCA).1 It also shows the distribution of applications across areas of research.
With the exception of the year 2002, there have been at least two in each year since
1990. After the appearance of Ragin’s award-winning “The Comparative Method”
(1987) and the introduction of csQCA, about four applications on average have
been published in the years between 1990 and 2000, but only his “Fuzzy-Set Social
Science” (2000) seems to have got the “Ragin Revolution” (Vaisey 2009) finally
off ground. Allowing for a publication lag of about 2 years, the average number of
applications rose to 13 in the years between 2003 and 2007. Since 2007, it almost
tripled from 12 to 35 in 2011.

Despite the introduction of fsQCA, applications of csQCA have continued to
increase from 7 in 2003 to 20 in 2011. As for fsQCA, they have increased from
3 in 2003 to 14 in 2011. In contrast to csQCA and fsQCA, however, mvQCA has
remained at the sidelines so far. Of a total of 235 published articles between 1984
and 2011, only 7 have applied this QCA variant. Even when accounting for the fact

1 The number of applications differs slightly from the number of articles as four articles have each
presented two applications of QCA using two different variants. In order to be included in the
data, articles had to focus primarily on a substantive research question, not QCA as a method or
any of its constitutive procedures. In consequence, the number of published applications using or
addressing QCA as a technique is probably between 20–30% higher. All entries are recorded in the
bibliography section on http://www.compasss.org.

http://www.compasss.org
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that mvQCA has only been introduced in 2004, 17 years after csQCA and 4 years
after fsQCA, this represents an extremely low number.2

The distribution of publications across research areas reflects the background of
QCA’s earliest proponents. The vast majority of applications—close to 55%—have
appeared in Sociology with 23% and Political Science, including International Rela-
tions, with 31%. Behind these two areas by large margins, approximately 12% have
come from business and economics, 11% from health and education research, 9%
from management and organization science, 4% from legal studies and criminology,
and 10% from various other areas.

QCA’s methodological success story has created a growing demand for tai-
lored software, which has almost exclusively been met by two programs: Charles
Ragin, Kriss Drass and Sean Davey’s (2009) fs/QCA, and Lasse Cronqvist’s (2011)
Tosmana. Until very recently, however, neither program supported other operat-
ing systems than Microsoft Windows. As of version 1.3.2.0, Tosmana also runs on
non-Windows operating systems. Kyle Longest and Stephen Vaisey’s (2008) Stata
package fuzzy and the R package QCA3 by Ronggui Huang (2012) have recently
been offered as cross-platform alternatives.

All four of these software solutions offer various procedures, but none covers the
full range of essential functionality. Neither fs/QCA nor fuzzy can handle multi-value
data, while Tosmana cannot process fuzzy sets. An algorithm for arriving at inter-
mediate solutions is only available in fs/QCA, and parameters of fit are not presented
by Tosmana. In consequence, users have often been limited in their analyses when
using one software, or had to switch back and fourth between different programs. Our
book and the QCA package now form a comprehensive solution that not only unifies
the individual capabilities of other software, but what is more, also enhances them
further. Novel procedures include, among others, an automated search for necessary
conditions and intermediate solutions for mvQCA.

R is an obvious choice of environment for this task because it is one of the
most powerful tools for data analysis. Popular with natural as well as mathe-
matically inclined social scientists for its almost unrivaled flexibility, however,
R comes at the price of a steep learning curve. As Chambers (2008, 34) puts it,
the “computational style of an R session is extremely general”, and “for some users
exactly this computational style and diversity present barriers to using the system”.
With the combination of a new R package for performing QCA and a book that
accompanies it, we thus pursue two main objectives: first, to draw on the tremendous
capabilities of R in order to meet the demand for software that is capable of per-
forming the entire range of QCA procedures on all operating systems, and second,
to lower the barriers which have thus far ruled out R for many users of QCA as an
alternative software environment.

This book therefore starts with a brief introduction to R, which we have kept
to the absolute minimum necessary to perform QCA with the QCA package. If the
reader’s intention is to carry on with R beyond this text, we highly recommend a

2 We doubt that this is a consequence of the rare use of multi-nominal variables in social-science
research.
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more thorough introductory exposure to R. Due to its ever increasing popularity
also among social scientists, the number of elementary, intermediate, and advanced
textbooks on R in general and on specific topics in particular has kept growing. The
R project website http://www.r-project.org/ offers an extensive overview of
available books, of which there have been 115 at the time of writing. In our view, one
of the best general introductions to R for (complete) beginners is Zuur et al. (2009).
A very good online source is offered by the Academic Technology Services of the
University of California in Los Angeles (UCLA) at http://www.ats.ucla.edu/
stat/r/.

No knowledge of R is assumed, but readers should be familiar with the funda-
mentals of Qualitative Comparative Analysis (QCA) as introduced by Ragin (1987,
2000, 2008) and Rihoux and Ragin (2009). Many core concepts are revisited in
brief at the beginning of a section or in a footnote, but the focus of our text is on
combining prior knowledge of QCA with almost no or little knowledge of R. Where
methodologically novel concepts or procedures appear, we explain them in sufficient
theoretical detail prior to demonstrating their implementation in QCA.

Chapter 3 on csQCA and Chap. 4 on fsQCA are self-contained because researchers
still think of these two variants as related yet distinct techniques. This is justified to
the degree that some procedures are relevant for one, but not the other variant. For
example, Venn diagrams are inappropriate for fsQCA. While this approach leads
to some duplication of code and text, we consider it more user-friendly because
time-consuming jumping back and forth between chapters and sections is avoided.
In contrast, Chap. 5 on mvQCA and temporal QCA (tQCA) requires the reader to
have studied at least Chap. 3.

The content of this book revolves around four main parts. First, we provide a
concise introduction to the R environment for those readers with no or very little
knowledge of the software. Although this introduction is kept to an absolute mini-
mum, it contains all necessary procedures required to perform QCA in R. Second, we
show how to perform csQCA by replicating Krook’s (2010) study on women’s rep-
resentation in Western national parliaments. The results from Emmenegger’s (2011)
fsQCA study on job-security regulations in Western democracies are replicated in
the next chapter. Finally, a separate chapter on extensions of QCA introduces the
procedures for mvQCA using Hartmann and Kemmerzell’s (2010) study on party
ban implementations in sub-Saharan Africa, and tQCA using the artificial dataset on
student union recognitions at US research universities.

http://www.r-project.org/
http://www.ats.ucla.edu/stat/r/
http://www.ats.ucla.edu/stat/r/
http://dx.doi.org/10.1007/978-1-4614-4584-5_3
http://dx.doi.org/10.1007/978-1-4614-4584-5_4
http://dx.doi.org/10.1007/978-1-4614-4584-5_5
http://dx.doi.org/10.1007/978-1-4614-4584-5_3


Chapter 2
Introduction to R

Abstract This chapter provides a brief introduction to the R environment. The
material covers all topics that are necessary to understand the remaining chapters.
In addition to basic arithmetic and logical operations, functions and values, data
structures and functions that are fundamental to performing operations on sets and
set memberships are introduced. Short sections on how to install R, text editors, and
finding help complete the chapter.

2.1 Installation and Usage

If R is not yet installed, it should first be downloaded from the central R website at
http://www.r-project.org. This website, shown in Fig. 2.1, provides informa-
tion about R, its history, documentation, and other resources. In order to download
the latest version of R, click on the CRAN mirror link in the Getting Started box.1

Select a link under the country nearest to you and choose the appropriate version for
your operating system. After the file has been downloaded, install the software with
its default settings and open it.

First time users of R may be disappointed by what shows up: an unspectacular
window similar to Fig. 2.2. However, R hides its light under the bushel, something
you will discover over the course of this book. Most important at this stage is the
R console inside the RGui window. The console provides information about the
installed version and a few additional things. Unlike other statistical software such
as SPSS, R possesses no integrated graphical user interface for communicating your
commands to the software by means of radio buttons and mouse clicks.2 Instead, the
commands which tell the software what to do exactly have to be formulated using the

1 CRAN stands for Comprehensive R Archive Network, describing all servers around the world on
which code and documentation for R is stored.
2 Some packages, such as the Rcmdr, add a graphical user interface.

A. Thiem and A. Duşa, Qualitative Comparative Analysis with R, 5
SpringerBriefs in Political Science, DOI: 10.1007/978-1-4614-4584-5_2,
© The Author(s) 2013

http://www.r-project.org
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Fig. 2.1 The R website

Fig. 2.2 Starting a session in R
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language of R. It expects these commands in the console where the blinking cursor
appears next to the “is-greater-than” sign >.

2.2 Installing and Loading Packages

A package is a directory system containing R code, documentation, and sometimes
also data. Packages extend the software by making functions which are not part
of the basic distribution available to the user. Some essential packages are already
included by default, but the vast majority of packages has to be installed separately.3

For example, the QCA package contains functions for performing QCA, but it also
contains datasets and help files which document everything. Packages which do not
come as part of the basic R distribution can be installed through the RGui menu
(Packages→Install package(s)...) or the install.packages() function. Type the
following code into the console and press the [Enter] key. This will install the QCA
package.

> install.packages("QCA", dependencies = TRUE)

The dependencies argument is set to TRUE, which causes all other packages on
which the functionality of the QCA package depends to also be installed. The QCA
package incorporates functionality provided in the lpSolve package, so lpSolve will
be installed alongside QCA. The mere installation of a package, however, is not
enough to make its functionality available. Packages also have to be loaded into
R at the beginning of a session, either through the RGui menu (Packages→Load
package...) or the library() command.

> library("QCA")

Installed packages should be regularly updated either through the menu
(Packages→Update packages...) or the update.packages() function.

2.3 Basic Operations, Functions and Values

In essence, R can be conceived of as a programmable calculator whose core func-
tionality can be extended almost limitlessly. Start by entering the following code in
the console.

> 3 * 5

[1] 15

It does not matter whether spaces are left between the single elements. The two
expressions 3*5 and 3 *5 yield the same result, but once expressions
become more complex, leaving sensible, and avoiding unnecessary, blank spaces

3 At the time of writing, about 3,900 packages have been available on CRAN.
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in a structured manner is highly advisable. The [1] in front of the result is called the
index. We will come back to what indexes are useful for at a later stage. This minimal
example already illustrates the basic work flow in R: first formulate a command and
then send it to the interpreter for processing.

R is an object-oriented language, which means that everything is treated as an
object, including functions. A function f has the following structure in R:

> f(argument1 = value1, argument2 = value2, ...)

For example, the sine function is implemented in R as sin().4

> sin(pi/2)

[1] 1

There are many other such basic functions. For example, instead of using the *
operator for calculating the product of 3 and 5, the prod() function could have been
invoked.

> prod(3, 5)

[1] 15

Besides standard names for specific functions, R also has a standard notation for
certain values, such as pi for π , NA for missing data, and NULL for empty sets. If an
operation is performed which is not defined, R returns NaN (not a number). Note that
the division of zero by zero returns NaN, whereas the division of a nonzero number
by zero returns Inf, which designates infinity.

> 0/0

[1] NaN

> 1/0

[1] Inf

In addition to these arithmetic objects, R also offers logical operators, functions,
and values. The two logical values are TRUE (true) and FALSE (false). Logical func-
tions include == (is equal) and != (is not equal).

> 6 == 7

[1] FALSE

> 6 != 7

[1] TRUE

4 The sine of an angle is the ratio of the length of the side opposite of this angle in a right-angled
triangle to the length of the longest side.
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Table 2.1 Basic operators, functions, and values
Operator / Function / Value Description

Arithmetic +, - Addition, subtraction
*, / Multiplication, division
^ Power

Logical &, && And, and (not vector-valued)
|, || Or, or (not vector-valued)
xor Either . . . or

Arithmetic sum(), prod() Sum, product
min(), max() Minimum, maximum
round(), floor(), ceiling() Round (down / up to integer)
sqrt() Square root
abs() Modulus
log() Natural logarithm
exp() Exponential function

Logical ==, != Equals, equals not
>, >= Larger, larger or equal
<, <= Smaller, smaller or equal
! Not (negation)

Arithmetic pi π

Inf, -Inf Positive and negative infinity
NA Missing value
NULL Empty set
NaN Not a number

Logical TRUE, FALSE True, false

Two important logical operators are & (and), and | (or).

> FALSE & TRUE

[1] FALSE

> 2 == 2 | 2 == 3

[1] TRUE

A summary of basic operators, functions, and values available in R, both arithmetic
and logical, is given in Table 2.1. We leave it to the reader to experiment with those
that have not been introduced in this section.

2.4 Using an Editor

It is inefficient to type commands into the console. Once code grows to more than
simple one-line calculations, a good editor becomes an indispensable tool. Editors
also aid in identifying programming errors, they ease commenting and sometimes
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Fig. 2.3 The R script editor

even provide built-in function templates. On the MacOS and Windows operating
systems, R comes with a basic editor. It can be started in the RGui window via the
menu entry File→New script. This rudimentary editor suffices for everything that is
presented in this book, but if you intend to carry on with R and the QCA package,
we strongly recommend the use of a more sophisticated editor. A good overview of
what is available can be found at http://www.sciviews.org/_rgui/projects/
Editors.html.

In order to send commands from the R editor to the console, type the command
without preceding it by the “is-greater-than” sign >, mark it (with or without com-
ments) and press [Ctrl + R] as shown in Fig. 2.3. The marked code will be send to
the console and executed. At the end of a session, scripts can be saved as .R files
through the editor menu File→Save as....

Besides a good editor, larger projects should also make use of comments, which
provide information relating to the code. Comments not only make it easier to keep
track of code or re-use it in other projects, but they also allow peers to better under-
stand and replicate results. As replication is a cornerstone of scientific research, the
practice of commenting is not to be underestimated. In R, comments can be inserted
with the “hash” sign #, after which everything else on the same line will be ignored.

> (3 * 5)^2 - 210 # should still be 15

[1] 15

http://www.sciviews.org/_rgui/projects/Editors.html
http://www.sciviews.org/_rgui/projects/Editors.html
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2.5 Objects and Assignments

It was mentioned above that R is an object-oriented language. Object-orientation not
only means that functions are treated as objects, but also that results from operations
using these functions can themselves be saved as objects again. This process is
referred to as assignment. The most common form of assignment uses the assignment
arrow, which consists of the “is smaller than” sign < and the “minus” sign - joined
together, without spaces in between.

> x <- c(sum(3, 5), sum(4, 9)) # assigning two sums to x

The two built-in functions c() and sum() have been used here to arrive at a
result that is then assigned to the new object x.5 The c() function concatenates its
arguments, the two sums of 3+ 5 = 8 and 4+ 9 = 13.6 In order to avoid mistakes,
a new object should thus not be named with the lower case letter c. As R is case-
sensitive, upper case C would have also been fine. More generally, however, a name
of an object should be an optimal trade-off between a description of its content and
efficient programming. For example, one way of naming is to combine lower and
upper case letters, as in dataAuthor for a dataset. This way of naming is referred to
as camel notation. Another system uses a dot as the separator, as in data.author.
When x is now entered, the result of the expression assigned to it is called up and
printed into the console.

> x

[1] 8 13

As expected, x consists of two elements—the two sums of 8 and 13—which are
preceded by the index [1]. R only shows the index of the first element in that line
of the console. To see what happens beyond the first line, enter the following code,
including the enclosing parentheses. If necessary, resize the console window.

> (x <- rep(5, times = 40))

[1] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[26] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

A new object x has been created by overwriting the original one that consisted
of two sums. This new object results from the rep() function, which repeats its
first argument as often as specified in its second argument times. Now the indexing
extends over several lines, with only the index of the first element in that line being
displayed. Putting parentheses around an entire expression is a useful shortcut to
calling up the object by retyping its name.

5 The sum() function was listed in Table 2.1 above. It adds together all its arguments.
6 Typing 3 + 5 is an alternative to sum(3, 5).
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2.6 Data Structures

A data structure is a particular form of arrangement which usually represents the
nature of the elements it consists of. A number of different data structures exist
in R, but this section focuses on those which occur most often in social science
research—vectors, matrices, data frames, and lists.

2.6.1 Vectors

Vectors generally represent single rows or columns of data. A single number is also
a vector, but a special type thereof referred to as a scalar. You have already created
two vectors, one of length two and the other of length fifty, using the c() and the
rep() functions in Sect. 2.5. The length of a vector is the number of elements it
comprises. It can be found with the length() function.

> x <- rep(5, times = 50)

> length(x)

[1] 50

Vectors need not necessarily consist of numbers. For example, the three words
“Qualitative”, “Comparative”, and “Analysis” can be concatenated to form a single
vector of length three.

> (y <- c("Qualitative", "Comparative", "Analysis"))

[1] "Qualitative" "Comparative" "Analysis"

Besides the c() and the rep() functions, the seq() function is also often used
to generate vectors which have some sequential structure.

> seq(from = 0, to = 10, by = 2)

[1] 0 2 4 6 8 10

The first two arguments from and to indicate the sequence starting and end points,
while by specifies the increment. If the starting point and the increment are to equal
one, then a shorter route can be taken.

> seq(10)

[1] 1 2 3 4 5 6 7 8 9 10

Sequences of increment one that consist only of integers can be easily produced
using a colon.

> 1:5

[1] 1 2 3 4 5
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2.6.2 Matrices

A matrix is a rectangular arrangement of elements on which mathematical operations
can be performed. The matrix() function offers the easiest way to create matrices
in R.

> x <- seq(20)

> matrix(x, nrow = 5)

[,1] [,2] [,3] [,4]
[1,] 1 6 11 16
[2,] 2 7 12 17
[3,] 3 8 13 18
[4,] 4 9 14 19
[5,] 5 10 15 20

In addition to the first argument x representing the data, the function can take two
further arguments: nrow for the number of rows and ncol for the number of columns.
It suffices to provide either the former or the latter. Matrices are filled column-wise
by default. For row-wise filling the argument byrow = TRUE should be used.

Matrices can also be constructed from existing row or column vectors. The
cbind() function binds columns together, whereas the rbind() function binds
rows together.

> x <- rep(seq(4), 2)

> y <- rep(c(7, 8), 4)

> rbind(x, y)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
x 1 2 3 4 1 2 3 4
y 7 8 7 8 7 8 7 8

Notice that the name for the second argument in the rep() function—times—
has been omitted. The rep() function “knows” that the second argument is always
the number of times the first argument should be repeated. The omission of argument
names works for all R functions, but for didactic reasons, we will always write them
out.

A peculiar feature of R can be nicely demonstrated with matrices—vector recy-
cling. It allows to perform operations and create objects which are usually mathe-
matically impossible. Enter the following block of code, the two last input lines of
which seem meaningless.

> x <- seq(4)

> y <- rep(c(7, 8), 4)

> rbind(x, y)
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[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
x 1 2 3 4 1 2 3 4
y 7 8 7 8 7 8 7 8

> x + y

[1] 8 10 10 12 8 10 10 12

It remains true that two vectors of different lengths cannot be bound together to
create a matrix. Vector x is of length four, y of length eight. Also, vector addition is
undefined for summands of unequal length. In these and similar cases, however, R
automatically recycles the shorter vector as long as the length of the longer vector is
a multiple of the length of the shorter vector.

2.6.3 Data Frames

Data frames are the most common data structure in the social sciences. They are
very similar to matrices, but unlike matrices, which can only contain data of one
data type, data frames can accommodate different types. Let us first create a small
data frame from the information about the three QCA variants that was presented in
the introduction in Fig. 1.1 using the data.frame() function.

> QCAdat <- data.frame(variant = c("csQCA", "mvQCA", "fsQCA"),

+ number = c(170, 7, 62))

> QCAdat

variant number
1 csQCA 170
2 mvQCA 7
3 fsQCA 62

The data frame consists of three rows and two columns. The particularity of
QCAdat is that the first column contains elements which consist only of letters,
whereas the second column’s elements are numbers. The two columns therefore
contain data of different data types.

2.6.4 Lists

Data frames are special cases of lists, another useful data structure in R. Lists are
extremely flexible because they can store all of the above structures in a single object.
The creation of lists is achieved with the list() function.

http://dx.doi.org/10.1007/978-1-4614-4584-5_1
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Table 2.2 Basic data types

Type Description Example

Logical Logical values TRUE
Numeric Real numbers Integer 3

Double 2.71

Character Letters and strings "QCA"

> (QCAlist <- list(dat = QCAdat, txt = c("Happy", "QCAing")))

$dat
variant number

1 csQCA 170
2 mvQCA 7
3 fsQCA 62

$txt
[1] "Happy" "QCAing"

Rarely are lists created directly by end-users. Instead, they are usually generated
when a complex function, such as QCA’s truthTable(), returns a result that is not
just a single number, but a collection of several different objects.

2.7 Data Types

At the most basic level, objects can be divided into different atomic data types. Three
such types are listed in Table 2.2 in increasing order of hierarchy. The lowest priority
is given to logical, the highest to character values. Numeric values fall in between.
The reason for this hierarchy builds on set relations. It is possible to represent all
real numbers with character strings, but not the other way around. It will later be
shown that real numbers can in turn represent the logical values TRUE and FALSE,
but logical values cannot represent all real numbers. In set-theoretic language, the
set of logical values is a subset of the set of real numbers, which is itself a subset
of the set of character values. The real numbers are further divided into integer and
double, the former of which is again a subset of the latter.7

Below we define two vectors, the first consisting of three letters, the second of a
sequence of six numbers.8

7 More precisely, numeric is identical to double.
8 The two objects letters and LETTERS are predefined constants in R.
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> (Letters <- c("Q", "C", "A"))

[1] "Q" "C" "A"

> (Numbers <- seq(from = 1, to = 2, by = 0.2))

[1] 1.0 1.2 1.4 1.6 1.8 2.0

The data type of Letters and Numbers can be queried with the mode() function.

> mode(Letters)

[1] "character"

> mode(Numbers)

[1] "numeric"

The data type of Letters is character, that of Numbers is numeric. The two are
now to be concatenated with the c() function to create the new object LetNum. The
data type of LetNum will be character, not numeric, because that data type which is
highest in the hierarchy will always be chosen so as to avoid a loss of information.

> (LetNum <- c(Letters, Numbers))

[1] "Q" "C" "A" "1" "1.2" "1.4" "1.6" "1.8" "2"

> mode(LetNum)

[1] "character"

Whether or not an object is of a specific data type can be tested with the function
class is.<data type>().

> is.character(Letters)

[1] TRUE

While is.<data type>() only tests for the data type, the function class
as.<data type>() can be used in order to coerce objects to specific data types.

> (Numbers <- as.integer(Numbers))

[1] 1 1 1 1 1 2

The vector Numbers remains numeric, but it is now not double anymore.9

9 Note that as.integer() works similarly to the floor() function presented in Table 2.1.
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Fig. 2.4 R data editor

2.8 Accessing Data

Working with and operating on datasets in R is different from working with general
spreadsheet software. We introduce several ways of accessing data in this section,
each of which may be more useful than the other in certain situations. As a preparatory
step, let us recreate the data frame QCAdat from Sect. 2.6.3, which gave the number
of times each QCA variant has been applied.

> QCAdat <- data.frame(variant = c("csQCA", "mvQCA", "fsQCA"),

+ number = c(170, 7, 62))

> QCAdat

variant number
1 csQCA 170
2 mvQCA 7
3 fsQCA 62

The data frame can be seen in the R console, but trying to change elements in
QCAdat from within the console will not work. There exist several ways whereby
QCAdat can be accessed. For example, the edit() function can be used for small
changes, such as the replacement of single values or a correction of a variable label.
It will call up the built-in R data editor shown in Fig. 2.4.

> QCAdat <- edit(QCAdat)

The data frame is conveniently small, but problems arise if, for example, a new
variable with the recoded values of an existing variable in a larger dataset should
be added. For this and similar purposes, the “dollar” sign $ is useful. Suppose a
nominally-scaled variable indicating in which research area the occurrence of each
QCA variant has been highest should be generated. Applications of csQCA have
appeared most often in sociology, those of mvQCA and fsQCA in political science.
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> QCAdat$occur <- c("sociology", rep("politics", 2))

> QCAdat

variant number occur
1 csQCA 170 sociology
2 mvQCA 7 politics
3 fsQCA 62 politics

The variable occur is created within QCAdat by putting a $ in front of it. As both
mvQCA and fsQCA applications have occurred most often in political science, the
rep() function avoids typing in the character value "politics" twice. The $ sign
can also be applied to perform operations on existing variables. For computing the
total number of QCA applications, the sum() function can be run over all values in
the respective column.

> sum(QCAdat$number)

[1] 239

Sometimes access to only a subset of the data may be needed. Possibly more than
a few values of a variable but fewer than all of them. In such cases, the subset()
function is useful.

> subset(QCAdat, subset = number > 50)

variant number occur
1 csQCA 170 sociology
3 fsQCA 62 politics

Its argument subset requires a logical expression for the selection of elements
or rows. A second argument of subset() is select, which specifies the desired
columns.

> subset(QCAdat, select = variant)

variant
1 csQCA
2 mvQCA
3 fsQCA

These two arguments can also be applied together in order to extract any combi-
nation of elements or rows and columns from the data.

> subset(QCAdat, subset = number > 50, select = variant)

variant
1 csQCA
3 fsQCA
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Another way of accessing data is through indexing, also referred to as subscripting.
The structure of an index is <object>[<row(s)>, <column(s)>]. For example,
in order to select the entry for the number of mvQCA applications, the second row
has to be specified, because mvQCA applications are listed there, and the second
column, because this is the variable with the number of applications.

> QCAdat[2, 2]

[1] 7

Now suppose all values from the number of applications should be
extracted. In this case, a substitute for QCAdat$number is to leave away the row
index and only provide the column index.

> QCAdat[ , 2]

[1] 170 7 62

It is also possible to use logical expressions, as in the subset() function, with
indexes.

> QCAdat[QCAdat$number > 50, 2]

[1] 170 62

In the case of lists, a special way of indexing must be used. For example, in order
to access the second element of the list object QCAlist created in Sect. 2.6.4, the
value 2 should be enclosed by double square brackets.

> QCAlist[[2]]

[1] "Happy" "QCAing"

After this more general introduction, the next two sections will now introduce
useful functions for operating on the elements of sets and their set memberships.

2.9 Operations on Sets

This section introduces the basic operations available in R with regard to the elements
of sets, not their membership, which is assumed to be crisp. Let us first create two
equally-sized sets, X and Y, whose six elements are random samples of integers
between one and ten.

> set.seed(1)

> (X <- sample(1:10, size = 6))

[1] 3 4 5 7 2 8
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> set.seed(10)

> (Y <- sample(1:10, size = 6))

[1] 6 3 4 5 1 2

The set.seed() function is very useful whenever random sampling is applied
because it allows the retrieval of the exact same sample. Its single argument is just
a starting number for the random number generator. The sample() function takes
a sample of the specified size from the elements of its first argument. The union of
these two sets containing all unique elements which belong either to X or Y can be
found with the union() function.

> union(X, Y)

[1] 3 4 5 7 2 8 6 1

In contrast, the intersection containing all unique elements which belong to X and
Y can be found with the intersect() function.

> intersect(X, Y)

[1] 3 4 5 2

Another useful function is setdiff(), which returns all unique elements of the
first set which are not unique elements of the second set.

> setdiff(X, Y)

[1] 7 8

The last function to be introduced is setequal(), which returns a logical state-
ment about the equality between all unique elements of two sets.

> setequal(X, Y)

[1] FALSE

It is important to emphasize the word unique here, otherwise the result of the
following example would be surprising.

> A <- c(1, 2, 3, 4)

> B <- c(1, 1, 2, 3, 3, 3, 4)

> setequal(A, B)

[1] TRUE

In this case, the test result is true because all unique elements in A and B are
equal. However, if exact equality is to be tested, the identical() function should
be used.

> B <- A

> identical(A, B)

[1] TRUE
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2.10 Operations on Set Memberships

After basic operations on sets have been introduced, this section now demonstrates
how to perform calculations on elements’ set memberships. The two functions
pmin() and pmax() are central for this purpose. Let us begin with a small dataset
of fuzzy-set membership scores, named datFS. All functions and structures work
exactly the same for crisp sets.

> set.seed(1)

> datFS <- data.frame(A = runif(5), B = runif(5), C = runif(5))

> (datFS <- round(datFS, 2))

A B C
1 0.27 0.90 0.21
2 0.37 0.94 0.18
3 0.57 0.66 0.69
4 0.91 0.63 0.38
5 0.20 0.06 0.77

The dataset datFS consists of five cases with set membership scores in three
conditions A, B, and C. The runif() function generates a random deviate from
a uniform distribution for each case and condition. Before calling up datFS, the
round() function introduced in Table 2.1 cuts these deviates back to two decimal
places. Having created the dataset of set membership scores, the pmin() function
can now be applied in order to calculate the result of the expression a · B ·C (not A
AND B AND C). The pmin() function returns parallel minima, which means that
instead of simply taking the single smallest value from all values in the sets passed
to pmin() as arguments, set membership scores are compared separately for each
case (row). The computation of complements can be achieved by making use of the
fact that for every set complement set, set = 1− SET.

> (datFS$aBC <- pmin(1 - datFS$A, datFS$B, datFS$C))

[1] 0.21 0.18 0.43 0.09 0.06

Recall that R recycles the value(s) of the shorter vector when performing opera-
tions on two vectors of different lengths. This is why the scalar 1 need not be repeated
five times in order to compute the complement of A. The function pmax() is applied
analogously for parallel maxima. For example, the result of the expression A+b+C
(A OR not B OR C) can be calculated as follows:

> (datFS$"A+b+C" <- pmax(datFS$A, 1 - datFS$B, datFS$C))

[1] 0.27 0.37 0.69 0.91 0.94

The set name for the new disjunctive combination has to be enclosed in double
quotes because the Boolean “or” sign + would otherwise be treated as an arithmetic
operator rather than part of a string. The two functions pmin() and pmax() can also
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be combined in nested structures so that even complex expressions require relatively
little programming effort. As an example, let us calculate A · b+ B · c.

> datFS$"Ab+Bc" <- pmax(

+ pmin(datFS$A, 1 - datFS$B),

+ pmin(datFS$B, 1 - datFS$C)

+ )

> datFS

A B C aBC A+b+C Ab+Bc
1 0.27 0.90 0.21 0.21 0.27 0.79
2 0.37 0.94 0.18 0.18 0.37 0.82
3 0.57 0.66 0.69 0.43 0.69 0.34
4 0.91 0.63 0.38 0.09 0.91 0.62
5 0.20 0.06 0.77 0.06 0.94 0.20

Even complete truth tables can be constructed with pmin() and pmax(). Instead
of using numeric truth values of 1 and 0, here we choose TRUE and FALSE in order
to demonstrate why, as stated in Sect. 2.7, these logical values are subsets of real
numbers in R. Using QCA’s createMatrix() function, enter the following code
to construct the first part of the truth table tt, containing all 2k configurations from
the k = 3 crisp sets A, B, and C.10

> tt <- data.frame(createMatrix(rep(2, 3), logical = TRUE))

> names(tt) <- c("A", "B", "C")

After having generated all 23 = 8 configurations, the condition labels for sets
A, B, and C are assigned to each column of tt using the names() function. The
outcome value (truth value) of the expression a · B · C can then be computed as
follows:

> tt$OUT <- pmin(1 - tt$A, tt$B, tt$C)

> tt

A B C OUT
1 FALSE FALSE FALSE 0
2 FALSE FALSE TRUE 0
3 FALSE TRUE FALSE 0
4 FALSE TRUE TRUE 1
5 TRUE FALSE FALSE 0
6 TRUE FALSE TRUE 0
7 TRUE TRUE FALSE 0
8 TRUE TRUE TRUE 0

10 The createMatrix() function is primarily used internally for constructing truth tables.
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In R, the logical value TRUE is equivalent to the numerical value 1, whereas
FALSE corresponds to the numerical value 0. The set of logical values is therefore
a subset of the set of real numbers and R can calculate the result of 1 - FALSE. In
consequence, the only true statement in the truth table tt for the expression a ·B ·C
is the combination FALSE-TRUE-TRUE in row four.

2.11 Importing and Exporting Data

Social-science datasets are rarely built directly in R, but usually in spreadsheet or
database software such as Excel or Access. It is thus important to know how to
import external data files. R can read many different file formats and from different
sources, but the easiest way is to first prepare the data in a spreadsheet software and
save it as a tab-delimited text file.11 This file type ensures a small file size and it
can be easily imported into all kinds of software on all kinds of operating systems.
Make sure that no cell entry, including values, row, and column labels, has a blank
space. Blank spaces should generally be avoided, irrespective of whether the data is
to be further analyzed in another software or not. Instead of naming a variable GDP
Growth, GDPgrowth should be used. In addition, all entries or empty cells denoting
missing values should already be marked with NA.12

In the bibliography section at http://www.compasss.org a number of datasets
from published studies can be found. Download one of them and save it in the working
directory of your R installation. The working directory is the folder from which R
has been started. Its path can be found by entering the command getwd().

> getwd()

The working directory can be changed by providing a file path to the setwd()
function.

> setwd("C:/Myfolder")

File path specifications use the following structure in R: "C:/.../..."
or "C:\\...\\...". The familiar Microsoft Windows backslash structure
"C:\...\..." cannot be used because the single backslash is a special character.
Once the working directory has been found or changed to the preferred folder, and
the dataset saved in it, the read.table() function will load it into the R workspace.
The workspace is the working environment and includes all objects (vectors, matri-
ces, data frames, functions, etc.) which have been created in the current session.
For demonstration purposes, we use the dataset by Arvind and Stirton (2010) on the
reception of the Code Napoleon in Germany.

11 Text files have the file type extension .txt.
12 R can handle other indicators for missing values, but an optimal preparation of the data according
to R’s standards facilitates their import.

http://www.compasss.org
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> AS <- read.table("ArvindStirton2010set.txt", header = TRUE,

+ row.names = "State")

> AS

D C F I L N A O
Rhine 1.00 1.00 0.4 0.00 0.50 0.00 0.50 1.00
KiWes 1.00 0.75 0.6 0.00 0.60 0.00 0.90 1.00
GDBer 1.00 0.75 0.4 0.00 0.75 0.00 1.00 1.00
..... .... .... ... .... .... .... .... ....
<<rest omitted>>

The read.table() function makes AS a data frame by default. The original
file in which the data is stored is given as the first argument. By passing TRUE to
the optional header argument, the first row of ArvindStirton2010set.txt is
identified as containing the variable labels for AS. The name of the variable which
contains the case identifiers is passed to the row.names argument. If in your own
data the decimal separator is a comma instead of a point, dec = "," should be added
as an argument. If you neither want to save the data in your working directory nor
change the directory, the data can also be put into any folder and the entire file path
to R be provided instead.

Besides the read.table() function, there also exists a read.csv() function for
reading comma separated values. In addition, the foreign package provides function-
ality for importing data stored in other formats such as .sav (SPSS) or .dta (Stata).
We refer you to introductory textbooks on R and R’s own manuals for further infor-
mation on data import.

For saving data from R as .txt files, the write.table() function can be used.

> write.table(myfile, file = "myfile.txt", sep = "\t",

+ quote = FALSE)

The specification \t in the sep argument creates tab-separated values, and the
logical argument quote = FALSE avoids double quotes being put around character
values. This way, myfile will be structured in exactly the same way as the file
ArvindStirton2010set.txt.

2.12 Finding Help

Sometimes software lets you cry for help. If new to R, this will happen all the more
so. The learning curve for R is steep at the beginning, but once you have become
familiar with the fundamentals, the “products” it delivers will often have been cheap
at twice the price. However, even experienced users regularly seek help because
every new project will at least be a little different from the previous one and possibly
require a slightly different solution.

The first point of reference is R’s internal help facilities, which can be accessed
with the question mark ?, followed by the term which is sought. This will open the
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respective documentation files, in HTML or plain text format. For example, to look
up the documentation for the prod() function, type the following:

> ?prod

Help pages have a standardized structure with all necessary information. Let us
go through the most important headings, including Description, Usage, Arguments,
Details, Value, and Examples because you will certainly come across them again.
The Description states what the object you asked for is about. Not surprisingly, the
prod() function returns the product. The Usage section shows the complete structure
of prod(). Each element in this structure is explained under Arguments. The three
dots ... denote numeric or complex or logical vectors. Without going into the details
here (the meaning of numeric and logic vectors has been explained in Sect. 2.7), this
means that we could have also told R to calculate the product of 3 and 5, as we did
above in Sect. 2.3 with the * operator, by passing to the prod() function the two
numeric values 3 and 5.

> prod(3, 5)

[1] 15

The second element in the Arguments list is na.rm. This argument is logical,
which implies that only one of two values can be passed to it: TRUE or FALSE. Under
the Usage section, you saw that the default value of this argument was set to FALSE.
It means that missing values in the vectors provided will not be removed unless
specified otherwise by the user. This is very important! Compare the two following
examples.

> x <- c(3, 5, NA)

> prod(x)

[1] NA

> prod(x, na.rm = TRUE)

[1] 15

The second version removes the missing value from x before taking the product.
One of the main reasons for getting NA as the result of an operation where you did
not expect it is that the na.rm argument has not been set to TRUE.13 You are also
informed about this feature in the Details section, which generally provides more in-
depth information about an object and its particularities. The section Value exactly
describes what is returned from the function, namely a vector of length one—the
product. The Examples section provides minimal, and sometimes not so minimal,
working examples. Just copy the example from the help page into the editor.

13 This often happens with the mean() function, for example.
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> print(prod(1:7)) == print(gamma(8))

[1] 5040
[1] 5040
[1] TRUE

The print() function is a generic function for printing its arguments into the
console. As it is used twice, the first two objects that appear as printed output in
the console are the results of each print() function’s argument. Both expressions
yield the same number, so the logical operator == returns the value TRUE as the third
output that results from the entire expression.

The help.start() function automatically opens the HTML version of the gen-
eral R help page, from which you can proceed further.14 The advantage of the HTML
version over the text version is the availability of links for jumping directly to related
topics.

14 You can also use the menu in the RGui window: Help→HTML Help.



Chapter 3
Crisp-Set QCA

Abstract A QCA which uses only binary-value crisp-set data is referred to as a
crisp-set QCA (csQCA). In this chapter, the findings of Krook’s (2010) csQCA
study on women’s representation in national parliaments are replicated. We first
show how to calibrate crisp sets from categorical and continuous base variables, using
both external criteria as suggested by theoretical knowledge and internal criteria as
arrived at through empirical data analysis. We then proceed to the testing of necessity
relations. The analysis of sufficiency relations is the next step, including the derivation
of complex, parsimonious and intermediate solutions. Finally, we also demonstrate
how to plot results for both types of relation as Venn diagrams.

3.1 Calibrating Crisp Sets

The process of getting from base variable values (also called raw data) to condition
or outcome set membership scores is referred to as calibration. In this section, we
demonstrate how to calibrate crisp sets from raw data of categorical and continuous
base variables. Both external and internal calibration criteria will be used in this
process. External criteria result from prior theoretical knowledge, whereas internal
criteria follow from the empirical analysis of the data at hand. The raw data presented
in Table 1, Krook (2010, p. 893), should first be downloaded from the bibliography
section at http://www.compasss.org. It should then be loaded into R as shown
above in Sect. 2.2, and be assigned to the data frame object KrookRaw.

> KrookRaw <- read.table("Krook2010raw.txt", header = TRUE,

+ row.names = "Country")

> KrookRaw

es qu ws wm lp wnp
SE PR Yes SocDem Non 5 47.3
FI PR No SocDem Non 5 42.0

A. Thiem and A. Duşa, Qualitative Comparative Analysis with R, 27
SpringerBriefs in Political Science, DOI: 10.1007/978-1-4614-4584-5_3,
© The Author(s) 2013

http://www.compasss.org
http://dx.doi.org/10.1007/978-1-4614-4584-5_2
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NO PR Yes SocDem Autonom 14 37.9
.. .. ... ...... ....... .. ....
<<rest omitted>>

There is data for 22 countries on five variables, these being the type of the elec-
toral system (es: PR, mixed, and majority), whether or not the country has quotas
for women (qu: Yes, No), qualitative distinctions between welfare states in offering
women social and economic opportunities (ws: social-democratic, conservative, lib-
eral), women’s movements’ degree of autonomy from the state and political parties
(wm: non, autonomous), the percentage of parliamentary seats held by left-libertarian
parties in 2002 (lp), and the dependent variable measuring the proportion of women
in the single or lower house of parliament (wnp).1 In order to get from the raw data
presented in Table 1, Krook (2010, p. 893) to the crisp-set data shown in Table 2,
Krook (2010, p. 895), informed choices regarding the calibration of the target sets
must be made.2 As a preparatory step, we first create a new empty data frame—call
it Krook—with the data.frame() function.

> Krook <- data.frame(matrix(rep(numeric(22), 6), nrow = 22,

+ dimnames = list(row.names(KrookRaw),

+ toupper(names(KrookRaw)))))

Inside data.frame(), the matrix() function is used to setup a matrix with
22 (rows) times 6 (columns) numeric elements using the rep() function. A list of
two elements is passed to the dimnames argument, the first for the row names and
the second for the column names. The row names of Krook are the same as the row
names of KrookRaw, and the column names for Krook are extracted from KrookRaw
using the names() function. The enclosing function toupper() then converts the
lower case variable names from KrookRaw to upper case set names.3

Krook now applies the following rules to the four categorical variables es, qu, ws,
and wm in order to calibrate the associated target condition sets ES, QU, WS, and
WM: countries with PR electoral systems are coded “1”, all others “0”; countries with
a quota are coded “1” and “0” otherwise; social democratic welfare states are coded
“1”, all others “0”; and countries with autonomous women’s movements are coded
“1” and “0” otherwise. An efficient solution for this kind of recoding is provided by
the ifelse() function, which takes three arguments: a test, a value if the test returns
true, and a value if the test returns false.

> Krook$ES <- ifelse(KrookRaw$es == "PR", 1, 0)

> Krook$QU <- ifelse(KrookRaw$qu == "Yes", 1, 0)

> Krook$WS <- ifelse(KrookRaw$ws == "SocDem", 1, 0)

> Krook$WM <- ifelse(KrookRaw$wm == "Autonom", 1, 0)

The dataset Krook should start to look more like Table 2 now.

1 Some variable and set labels have been adapted for this replication.
2 Note that Krook calls Table 3.2 a truth table, which it is not yet.
3 If Krook is now called up, it can be seen that all entries are zeros. This is just a standard value for
filling generic objects of data type numeric.
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Fig. 3.1 Threshold-setter window in Tosmana

> Krook

ES QU WS WM LP WNP
SE 1 1 1 0 0 0
FI 1 0 1 0 0 0
NO 1 1 1 1 0 0
.. . . . . . .
<<rest omitted>>

This leaves the condition LP and the outcome WNP to be calibrated from the
ratio-scaled variables lp and wnp. Krook mentions that Tosmana possesses a very
user-friendly feature: the threshold-setter. It is shown for lp in Fig. 3.1.

Thresholds are the breakpoints that separate particular groups of data from
each other in the calibration process. The threshold-setter window visualizes the
distribution of cases in a bar chart and if the user wishes so, the threshold-setter
function suggests up to nine thresholds for calibrating condition values based on a
cluster analysis of the data. Visualizing distributions of cases is just as easy in R and
almost always already provides all the information users require in order to make
informed decisions about how to find suitable thresholds for calibrating sets when a
justified theoretical argument is unavailable.

Bar charts are ideal for a limited number of (usually categorical) values. They can
be created in R with the barplot() function. If the data to be plotted comes from
a vector of values, then the heights of the bars reflect these values. If the data comes
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Fig. 3.2 Bar chart (left) and density plot (right) of Left party strength

from a matrix of values, then each bar will be a stack of individual bars reflecting
each value in each column of the data.4 An object containing all potential data values
with a count of each value occurrence is a one-dimensional table. In order for the
plot not to be limited only to those values which exist in the data, but the entire range,
a categorical variable containing all values is required. These variables are referred
to in R as factors and include nominally (unordered) as well as ordinally-scaled
variables (ordered). Tables can be created with the table() function, factors with
the factor() function, whose argument levels specifies the different categories.

> (tab <- table(factor(KrookRaw$lp, levels = 0:14)))

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
8 0 1 1 1 2 0 4 1 2 0 0 0 1 1

The factor has 15 levels because left party strength ranges from 0 to 14 %. Levels
1, 6, and 10–12 do not occur. All that remains to be done is to pass the table to the
barplot() function. The result is shown in the left panel of Fig. 3.2.

> barplot(tab, xlab = "Left Party Strength",

+ ylab = "Frequency")

The two arguments xlab and ylab specify the axes labels. They are available
for most types of plots in R. In contrast, if the data is truly continuous and/or can
be conceived of as representing draws from a variable with a probability density, a
kernel density plot is a very suitable means of visualization and often more effective
than a histogram.

4 For example, Fig. 1.1 has been created by barplot() with a matrix of data in which each column
represents the year of publication and each row one of the three QCA variants.

http://dx.doi.org/10.1007/978-1-4614-4584-5_1
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> LPdens <- density(KrookRaw$lp, bw = 0.4)

> plot(LPdens, xlab = "Left Party Strength", ylab = "Density")

> polygon(LPdens, col = "gray")

The density() function is first applied to create the object LPdens, using its
argument bw for a smoothing bandwidth of 0.4. This object is then passed to the
plot() function. Finally, the polygon() function fills the area under the density
curve.5 The result is shown in the right panel of Fig. 3.2.

If an appropriate threshold has still not been found even after having exhausted all
the means presented above, other formal methods may be employed. In order to aid in
the search for a threshold, Tosmana also shows the median and the suggested cluster-
analytical threshold value in addition to the bar chart. The median and arithmetic
mean of an empirical distribution of data can be found with the eponymous functions.

> median(KrookRaw$lp)

[1] 4.5

> mean(KrookRaw$lp)

[1] 4.545455

A last resort solution is to perform hierarchical cluster analysis with QCA’s
findTh() function. By default, it returns a suitable threshold for dividing the data
into two groups. Further arguments besides the number of groups are the clustering
method hclustm and the distance measure distm.6

Full syntax:

> findTh(KrookRaw$lp, groups = 2, hclustm = "complete",

+ distm = "euclidean")

> findTh(KrookRaw$lp)

[1] 6

> findTh(KrookRaw$wnp)

[1] 28.3

Although findTh() suggests that 6 % be chosen as the threshold in lp and 28 %
in wnp, Krook (2010) opts for 7 and 30 %. The calibration of crisp sets is achieved

5 The graphics device showing the density plot must not be closed before the polygon() function
has been evaluated.
6 See ?hclust and ?dist for all argument values of hclustm and distm.
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in QCA with the calibrate() function. For csQCA, it takes two mandatory argu-
ments: the base variable to be transformed and a numeric vector of thresholds pro-
vided in the thresholds argument, which simplifies to a scalar in our case. The
logical argument include indicates whether the threshold should be included into
or excluded from the target set. All remaining arguments are only relevant for fsQCA
and will be explained later in Chap. 4.

Full syntax:

> calibrate(KrookRaw$lp, type = "crisp", thresholds = 7,

+ include = TRUE, logistic = FALSE, idm = 0.95,

+ ecdf = FALSE, p = 1, q = 1)

> Krook$LP <- calibrate(KrookRaw$lp, thresholds = 7)

> Krook$WNP <- calibrate(KrookRaw$wnp, thresholds = 30)

The dataset now looks exactly like Table 2, Krook (2010, p. 895).

> Krook

ES QU WS WM LP WNP
SE 1 1 1 0 0 1
FI 1 0 1 0 0 1
NO 1 1 1 1 1 1
.. . . . . . .
<<rest omitted>>

All sets have now been calibrated.7 The next step is to test for the existence of
necessity relations between condition and outcome sets.

3.2 Testing for Necessity

Analyses of necessity should precede those of sufficiency (Ragin 2000, p. 106). In the
first section, we present common parameters of fit on which the analysis of necessity
relations in the second section is based. In the third section, we show how to produce
Venn diagrams for visualizing these relations.

7 The completely calibrated dataset is also integrated in the QCA package. Type data(Krook) to
load it. This will overwrite the current object with the same name.

http://dx.doi.org/10.1007/978-1-4614-4584-5_4
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Table 3.1 Necessity in
csQCA

1 ① ②

O relevant cases relevant cases
inclusion ↓

0 ③ ④

irrelevant cases relevant cases
coverage ↓

0 1
C

3.2.1 Parameters of Fit

Analyses of necessity proceed from the observation of the outcome O to the
observation of the condition(s) C. For analyzing necessity inclusion, the decisive
question is how often C has been present, given the presence of O, in relation
to the overall presence of O. For analyzing necessity coverage, in contrast, the
crucial question is how often C has been present, given the presence of O, in
relation to the overall presence of C. If necessity inclusion is high enough, the
evidence is consistent with the hypothesis that C is necessary for O (C ← O).
If necessity coverage within such a relation is high enough, the evidence is con-
sistent with the hypothesis that C is not trivially necessary for O. Table 3.1
shows the relevant cells for necessity inclusion and necessity coverage of C.

Cell ② is relevant for both inclusion and coverage, while cell ① is only relevant
for inclusion and cell ④ only for coverage. The more cases fall into cells ① and ④,
ceteris paribus, the more inclusion and coverage will decrease. Cell ③ is irrelevant
for either measure. The necessity inclusion of C, InclN (C), is calculated as given in
Eq. (3.1).

InclN (C) =
∑n

i=1 ci = 1|oi = 1
∑n

i=1 oi = 1
(3.1)

The necessity coverage of C, CovN (C), is calculated as given in Eq. (3.2).

CovN (C) =
∑n

i=1 ci = 1|oi = 1
∑n

i=1 ci = 1
(3.2)

3.2.2 Analyzing Necessity Relations

In order to test for necessary conditions, QCA provides thesuperSubset() function.
This returns inclusion, PRI, and coverage scores for those of the 3k−1 combinations
of k conditions which optimally fit the given cut-offs for inclusion and coverage.8

8 In csQCA and mvQCA, PRI equals inclusion. We thus ignore PRI in the remainder of this chapter
and come back to it in more detail in Sect. 4.2.1.

http://dx.doi.org/10.1007/978-1-4614-4584-5_4
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Therefore, superSubset() does not require a preselection of the combinations to
be tested, and so removes the risk of leaving potentially interesting results undis-
covered.9 The theoretical idea behind superSubset() is simple. Starting with the
2k uniliteral combinations C1, c1, C2, c2, . . . , Ck, ck , the number of literals in those
combinations that meet the cut-offs is incrementally increased from 1 to k until their
scores fall below the cut-offs.

If, for example, the uniliteral combination C1 passes the inclusion cut-off, it can
be combined with all of the other 2k−2 uniliteral combinations to form the next more
complex conjunctive combinations C1 ·C2 to C1 · ck .10 If the biliteral combination
C1 ·C2 still passes the inclusion cut-off, it can be further combined with all of the
remaining 2k − 4 uniliteral combinations to form the next more complex triliteral
combinations C1 ·C2 ·C3 to C1 ·C2 · ck , and so on. This process can continue until
the inclusion score of some combination falls below the given cut-off for some
number of literals g. Only then will the coverage cut-off be evaluated. In other words,
the inclusion cut-off always enjoys priority over the coverage cut-off. Combinations
with more than g literals will always fall below the inclusion cut-off, whereby the
need to further evaluate coverage is also removed. All g-literal combinations as well
as all less complex combinations will therefore be returned by superSubset().11

Situation may occur when no uniliteral combination passes the inclusion cut-off.
When this happens, disjunctive instead of conjunctive combinations are searched.
If, for example, C1 does not pass the inclusion cut-off, it can be combined with all
of the other 2k − 2 uniliteral combinations to form the next more complex biliteral
combination C1 + C2 to C1 + ck . If the biliteral combination C1 + C2 still does
not exceed the cut-off, it can be further augmented until the cut-off is passed for
some number of literals g, or the maximally-complex k-literal combination has been
formed. In contrast to the presence of at least biliteral conjunctive combinations, only
the g-literal disjunctive combinations thus found are returned by superSubset(),
but neither less nor more complex combinations because combinations with more
than g literals will always exceed the inclusion cut-off.

Full syntax:

> superSubset(Krook, outcome = "WNP", neg.out = FALSE,

+ conditions = c("ES", "QU", "WS", "WM", "LP"),

+ relation = "necessity", incl.cut = 0.9, cov.cut = 0.52,

+ use.tilde = FALSE, use.letters = FALSE)

9 Such a result is presented in Sect. 4.2.2.
10 There are 2k− 2 uniliteral combinations left because no condition can be combined with its own
negation.
11 Computationally, superSubset() does not use the procedure described above, but immediately
creates all 3k − 1 combinations from which it then extracts only those which fit the criteria.

http://dx.doi.org/10.1007/978-1-4614-4584-5_4
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> KrookNR <- superSubset(Krook, outcome = "WNP",

+ incl.cut = 0.9, cov.cut = 0.52)

> KrookNR

incl PRI cov.r
---------------------------------
1 wm+LP 0.909 0.909 0.667
2 WS+LP 0.909 0.909 0.909
3 WS+WM 0.909 0.909 0.625
4 QU+LP 0.909 0.909 0.526
5 QU+WS 0.909 0.909 0.556
6 ES+LP 1.000 1.000 0.733
7 ES+WM 1.000 1.000 0.524
8 ES+qu 0.909 0.909 0.625
9 ES+QU 0.909 0.909 0.526
10 qu+WM+LP 0.909 0.909 0.588
11 QU+WM+lp 1.000 1.000 0.524
---------------------------------

The first argument is the data frame (or matrix) of set data. If the conditions are
not specified, superSubset() will choose in their place all sets in the data but the
outcome. By default, the type of relation to be tested is that of necessity as specified
by the argument relation, the inclusion cut-off argument incl.cut is set to 1, and
that for coverage cov.cut to 0. When neg.out = TRUE, the outcome is negated.
By default, results are presented in upper and lower case notation, but for non-multi-
value data, negation by tilde can be achieved with the logical argument use.tilde.
The argument use.letters converts set names to letters in alphabetical order.
For a better overview, the returned combinations are listed in increasing order of
complexity.

3.2.3 Plotting Results

Venn diagrams are a suitable means to visualize results from a csQCA (Duşa 2007b).
Tosmana offers extensive features in this respect, but Venn diagrams can also be gen-
erated in R, for example with the VennDiagram package (Chen 2012).12 It should first
be installed and loaded as shown in Sect. 2.2. Below we demonstrate how to plot the
three biliteral combinations WS + LP, ES + LP, and ES +WM, which were found
by superSubset() to have particularly high inclusion and coverage scores given
their low complexity. For this purpose, we use VennDiagram’s venn.diagram()

12 Internal functionality for Venn diagrams is foreseen in a future update of QCA.

http://dx.doi.org/10.1007/978-1-4614-4584-5_2
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function.13 Before proceeding, we introduce another feature of superSubset()
which simplifies the generation of Venn diagrams.

Besides presenting the user with combinations of conditions and their parameters
of fit, the superSubset() function also generates an invisible component called
coms. This component contains each case’s combination membership scores. As
coms is a data frame, all columns can be accessed as shown in Sect. 2.8.

> (COms <- KrookNR$coms[ , 1:9])

wm+LP WS+LP WS+WM QU+LP QU+WS ES+LP ES+WM ES+qu ES+QU
SE 1 1 1 1 1 1 1 1 1
FI 1 1 1 0 1 1 1 1 1
NO 1 1 1 1 1 1 1 1 1
.. . . . . . . . . .
<<rest omitted>>

With the coms component of superSubset(), users are spared from long
Boolean calculations applying the pmin() and pmax() functions. The three combi-
nations can now easily be plotted by combining the COms object with the
venn.diagram() function.

> library("VennDiagram")

> vennKrookNec <- venn.diagram(

+ x = list(

+ "WNP" = which(Krook$WNP == 1),

+ "WS+LP" = which(COms[ , 2] == 1),

+ "ES+LP" = which(COms[ , 6] == 1),

+ "ES+WM" = which(COms[ , 7] == 1)),

+ filename = NULL,

+ cex = 2.5, cat.cex = 2, cat.pos = c(350, 10, 0, 0),

+ cat.dist = c(0.22, 0.22, 0.12, 0.12),

+ fill = gray(c(0.3, 0.5, 0.7, 0.9))

+ )

> grid.draw(vennKrookNec)

The venn.diagram() function takes a list of vectors, each of which represents
a different set. However, Venn diagrams require the data to be in the format of
an incidence table, such that each element in the diagram contains the number of
cases for each pairing of combinations. The columns in Krook can therefore not be
directly passed to the function. In order to produce such an incidence table on the
fly, a very handy R function called which() is available. It extracts the row numbers
of all elements from a data frame for which some conditional statement is true. For
creating the ellipse that represents the outcome WNP, the row numbers of all cases

13 The VennDiagram package only supports diagrams of order four. With more sets, its authors
argue, Venn diagrams become too complex for intuitive visualization (Chen and Boutros 2011,
p. 37).

http://dx.doi.org/10.1007/978-1-4614-4584-5_2


3.2 Testing for Necessity 37

Fig. 3.3 Venn diagram of
three necessity relations in
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for which WNP is present need to be extracted. The original set data frame Krook
should be used for this purpose. The ellipses for the three disjunctive combinations
to be intersected with WNP are formed likewise, but with the column-indexed object
COms.14

The filename argument is mandatory. If a simple filename is provided, the figure
will be saved in the working directory.15 Currently, only .tiff images can be pro-
duced in this way, but .tiff is a common format for publication-quality figures. If the
filename argument is set to NULL, the object can be directly displayed in the usual
R plotting device with the grid.draw() function and be saved anywhere in one of
the available formats (.pdf, .png, .jpg, etc.).

All arguments after the filename determine the exact appearance of the diagram,
including the size of the area labels (cex), the size of the set labels (cat.cex), the
position of each set name in degrees (cat.pos), the distance of the set labels from
the edge of the set circle (cat.dist), and the color of each circle (fill).16 The
resulting Venn diagram is shown in Fig. 3.3.

Eleven cases are in WNP, all of which are also in ES+WM and ES+ LP, but
only ten of which are also in WS + LP. If the identification of this remaining case
was of interest, the rownames() function could be used in conjunction with a logical
index.

> rownames(Krook)[which(Krook$WS != 1 & Krook$LP != 1 &

+ Krook$WNP == 1)]

[1] "ES"

Spain is the only case that falls out of the subset relation.

14 Alternatively, the full name of the combination could have been used instead. For example,
COms[ , 2] is equivalent to COms$"WS+LP".
15 See Sect. 2.11 for how to find and set the working directory.
16 Enter ?VennDiagram for more details.

http://dx.doi.org/10.1007/978-1-4614-4584-5_1
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Table 3.2 Sufficiency in
csQCA

1 ① ②

O relevant cases relevant cases
coverage ↓

0 ③ ④

irrelevant cases relevant cases
inclusion ↓

0 1
C

3.3 Testing for Sufficiency

The ultimate goal of QCA is to analyze set-theoretic sufficiency relations (Ragin
2009, p. 110) for which the construction of the truth table is central. In addition to the
exhaustive formation of all configurations, an outcome value for each configuration
has to be established. The outcome value is a fractional truth value of the statement
that the configuration is sufficient for the outcome to occur.

3.3.1 Parameters of Fit

Analyses of sufficiency proceed from the observation of some condition(s) C to
the observation of the outcome O. For analyzing sufficiency inclusion, the decisive
question is how often O has been present, given the presence of C, in relation to the
overall presence of C. For analyzing sufficiency coverage, in contrast, the crucial
question is how often O has been present, given the presence of C, in relation to
the overall presence of O. If sufficiency inclusion is high enough, the evidence is
consistent with the hypothesis that C is sufficient for O (C → O). If sufficiency
coverage within such a relation is high enough, the evidence is consistent with the
hypothesis that C is not trivially sufficient for O. Table 3.2 shows the relevant cells
for sufficiency inclusion and sufficiency coverage of C.

Cell ② is relevant for both inclusion and coverage, while cell ① is only relevant
for coverage and cell ④ only for inclusion. The more cases fall into cells ① and ④,
ceteris paribus, the more coverage and inclusion will decrease. Cell ③ is irrelevant
for either measure. The sufficiency inclusion of C, InclS(C), is calculated as given
in Eq. (3.3).

InclS(C) =
∑n

i=1 oi = 1|ci = 1
∑n

i=1 ci = 1
(3.3)

The sufficiency coverage of C, CovS(C), is calculated as given in Eq. (3.4).

CovS(C) =
∑n

i=1 oi = 1|ci = 1
∑n

i=1 oi = 1
(3.4)
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3.3.2 Constructing the Truth Table

The truthTable() function constructs truth tables from crisp-set data. At the very
least, it requires two arguments: a matrix or data frame of crisp-set membership
scores and an outcome set. In order to create the truth table object KrookTT, the
dataset Krook is specified as the first argument, then the outcome set WNP. If not all
columns except the one representing the outcome set are to be selected as conditions,
theconditions argument must also be specified. As all sets but WNP are conditions,
this argument need not be provided.

Full syntax:

> KrookTT <- truthTable(Krook, outcome = "WNP", neg.out = FALSE,

+ conditions = c("ES", "QU", "WS", "WM", "LP"), n.cut = 1,

+ incl.cut1 = 1, incl.cut0 = 1, complete = FALSE,

+ show.cases = TRUE, sort.by = c("incl", "n"),

+ decreasing = TRUE, use.letters = FALSE)

> KrookTT <- truthTable(Krook, outcome = "WNP",

+ show.cases = TRUE, sort.by = c("incl", "n"))

> KrookTT

OUT: outcome value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

ES QU WS WM LP OUT n incl PRI cases
28 1 1 0 1 1 1 2 1.000 1.000 NL,BE
32 1 1 1 1 1 1 2 1.000 1.000 NO,IS
4 0 0 0 1 1 1 1 1.000 1.000 NZ
12 0 1 0 1 1 1 1 1.000 1.000 DE
21 1 0 1 0 0 1 1 1.000 1.000 FI
24 1 0 1 1 1 1 1 1.000 1.000 DK
26 1 1 0 0 1 1 1 1.000 1.000 AT
27 1 1 0 1 0 1 1 1.000 1.000 ES
29 1 1 1 0 0 1 1 1.000 1.000 SE
11 0 1 0 1 0 0 4 0.000 0.000 AU,GB,FR,IE
25 1 1 0 0 0 0 3 0.000 0.000 CH,PT,GR
3 0 0 0 1 0 0 2 0.000 0.000 CA,US
9 0 1 0 0 0 0 1 0.000 0.000 IT
18 1 0 0 0 1 0 1 0.000 0.000 LU
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The truthTable() function includes three cut-off arguments that influence how
a configuration is coded in the outcome value column “OUT”: n.cut, incl.cut1
and incl.cut0. The first argument n.cut specifies the minimum number of cases
needed in order to not code a configuration as a logical remainder as indicated by
“?”. The second argument incl.cut1 specifies the minimal sufficiency inclusion
score for a non-remainder configuration to be coded as true (“1”). The third argument
incl.cut0 offers the possibility of coding configurations as contradictions (“C”)
when their inclusion score is neither high nor low enough to consider them as true,
respectively false. If the inclusion score of a non-remainder configuration falls below
incl.cut0, it is always coded false (“0”).

By default, truthTable() only returns those configurations of the truth table in
which at least n.cut cases have membership. The names of these cases are printed
if the show.cases argument is set to TRUE. With the sort.by argument, the truth
table can also be ordered along inclusion scores, numbers of cases, or both. The
logical argument decreasing controls the sorting order.

3.3.3 Boolean Minimization

The minimization of the canonical sum whose fundamental products correspond to
all true configurations yields the complex solution. The derivation of this solution
type is achieved with the eqmcc() function (enhanced Quine-McCluskey) (Duşa
2007a, 2010). It is the core function of the QCA package.

Full syntax:

> KrookSC <- eqmcc(KrookTT, explain = "1", include = "1",

+ all.sol = FALSE, omit = c(), direxp = c(), rowdom = TRUE,

+ details = TRUE, show.cases = FALSE, use.tilde = FALSE,

+ use.letters = FALSE)

> KrookSC <- eqmcc(KrookTT, details = TRUE,

+ show.cases = TRUE)

The truth table object KrookTT is passed to eqmcc() as the first argument.17

By default, true configurations are explained. No additional information is required
for arriving at the complex solution. The all.sol argument causes eqmcc() to
derive all minimal sums of the solution, not just those with the fewest PIs.18 The
logical argument details causes all parameters of fit to be printed together with

17 The eqmcc() function can also directly process datasets with crisp-set membership scores.
However, it is recommended that the function only be used after having created and evaluated the
truth table.
18 This argument has been suggested by Michael Baumgartner.
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the minimal sum: inclusion, PRI, raw coverage, and unique coverage scores for each
prime implicant (PI) as well as the minimal sum.19 If details = TRUE, the logical
argument show.cases also prints the names of the cases that are covered by each
PI.

> KrookSC

n OUT = 1/0/C: 11/11/0
Total : 22

Number of multiple-covered cases: 2

S1: ES*QU*ws*LP + ES*QU*ws*WM + es*ws*WM*LP + ES*WS*wm*lp +
ES*WS*WM*LP

incl PRI cov.r cov.u cases
-----------------------------------------------------
1 ES*QU*ws*LP 1.000 1.000 0.273 0.091 NL,BE; AT
2 ES*QU*ws*WM 1.000 1.000 0.273 0.091 NL,BE; ES
3 es*ws*WM*LP 1.000 1.000 0.182 0.182 NZ; DE
4 ES*WS*wm*lp 1.000 1.000 0.182 0.182 FI; SE
5 ES*WS*WM*LP 1.000 1.000 0.273 0.273 NO,IS; DK
-----------------------------------------------------

S1 1.000 1.000 1.000

The output which is printed when an object returned by eqmcc() is called up
consists of three parts. The header provides information about the number of cases in
each of the three types of configurations and the total number of cases. If show.cases
= TRUE, it also displays the number of cases which are covered by more than one
PI. The middle part prints the solution, which may consist of one or more minimal
sums S. The bottom part provides the parameters-of-fit (POF) table.

The minimal sum consists of five PIs. These cover 11 cases, namely the Nether-
lands, Belgium, Austria, Spain, New Zealand, Germany, Finland, Sweden, Norway,
Iceland, and Denmark. The Netherlands and Belgium are covered by multiple PIs as
indicated above the POF table. Cases from the same configuration are separated by
a comma, those from different configurations by a semicolon.

3.3.4 Incorporating Logical Remainders

Logical remainders are configurations which are not populated by any cases, or too
few cases. However, instead of forming the useless tail of the truth table, each single
such configuration provides a potentially relevant combination of conditions that
allows researchers to engage in counterfactual thinking. Two common solution types

19 Unique coverage scores do not apply to minimal sums.
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which rely on counterfactuals are the parsimonious and the intermediate solution.
Before logical remainders can be incorporated into the analysis, a new object which
contains the entire truth table should be created. The provision of the additional
argument complete = TRUE in truthTable() generates the entire truth table. For
reasons of space, it is not called up here.

> KrookTT <- truthTable(Krook, outcome = "WNP",

+ complete = TRUE, sort.by = c("incl", "n"))

With KrookTT now containing the complete truth table, it becomes possible to
generate solution types which incorporate logical remainders.

3.3.4.1 Parsimonious Solution

If all logical remainders are made available for minimization, the minimal sum(s)
obtained from this process are summarized under the parsimonious solution. Logical
remainders can be incorporated into the minimization process by using the include
argument in eqmcc(). Ignore the rowdom argument for the moment.

> KrookSP <- eqmcc(KrookTT, include = "?", rowdom = FALSE,

+ details = TRUE)

> KrookSP

n OUT = 1/0/C: 11/11/0
Total : 22

S1: WS + ES*WM + QU*LP + (es*LP)
S2: WS + ES*WM + QU*LP + (WM*LP)

-------------------
incl PRI cov.r cov.u (S1) (S2)

--------------------------------------------------
1 WS 1.000 1.000 0.455 0.182 0.182 0.182
2 ES*WM 1.000 1.000 0.545 0.091 0.091 0.091
3 QU*LP 1.000 1.000 0.545 0.091 0.091 0.091
--------------------------------------------------
4 es*LP 1.000 1.000 0.182 0.000 0.091
5 WM*LP 1.000 1.000 0.636 0.000 0.091
--------------------------------------------------

S1 1.000 1.000 1.000
S2 1.000 1.000 1.000

The parsimonious solution consists of the two minimal sums S1 and S2, each
of which contains four PIs. This situation is the analogy of choosing all inessential
PIs in the PI chart of fs/QCA with the Mark All button in the bottom-left part of
the window. It is shown in Fig. 3.4. The Data line in this window indicates that the
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Fig. 3.4 PI chart window (Krook) in fs/QCA

fundamental product es ·qu ·ws ·WM ·LP is covered by Prime es ·LP as well as
WM ·LP. These two PIs are not listed in the Solution tab, which shows all essential
PIs, but at least one is required to complete a minimal sum, so users are asked to
choose one of the inessential PIs or both.

In QCA’s solution output, inessential PIs are enclosed by brackets and listed in
the middle part on the POF table, while essential PIs are listed in the upper part. The
bottom part shows all parameters of fit for each minimal sum. If there are multiple
minimal sums, unique coverage may vary, for both essential and inessential PIs. The
columns with the respective header for each minimal sum are therefore listed next
to the unique coverage column cov.u.

Although there is nothing wrong in choosing both inessential PIs, WM ·LP in
fact dominates es ·LP. One PI P1 is said to dominate another P2 if all fundamental
products covered by P2 are also covered by P1 and both are not interchangeable.
This principle is often referred to as row dominance because in PI charts, columns
represent fundamental products, and rows the PIs. The application of the row domi-
nance principle is controlled through the rowdom argument in eqmcc(). When set to
its default value TRUE, dominated PI are always eliminated from the solution. When
set to FALSE, dominated PIs are retained.20

That WM ·LP really dominates es ·LP in the parsimonious solution can be seen
when calling up the subcomponent p.sol in the PI chart component PIchart of
the QCA solution object created by eqmcc().

> KrookSP$PIchart$p.sol

28 32 4 12 21 24 26 27 29
WS - x - - x x - - x
es*LP - - x x - - - - -
ES*WM x x - - - x - x -
QU*LP x x - x - - x - -
WM*LP x x x x - x - - -
ES*qu*lp - - - - x - - - -
qu*wm*lp - - - - x - - - -

20 It may happen that there are multiple inessential PIs, none of which dominates the other.
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Truth table rows 4 and 12 are implied by es ·LP, but so they are by WM ·LP. Both
PIs are not interchangeable because WM ·LP also implies truth table rows 24, 28, and
32 in addition. As row 12 is also implied by QU ·LP, row 4 must correspond to the
fundamental product for which es ·LP and WM ·LP are alternatives. Using this row
name, the configuration in question can be found by accessing the tt component of
the truth table object. We also index the columns because only the raw configuration
is of interest.21

> KrookTT$tt["4", 1:5]

ES QU WS WM LP
4 0 0 0 1 1

Although Krook provides both minimal sums in her study, S2 shall be chosen for
further analysis here because WM ·LP not only dominates es ·LP but it is also more
in line with theoretical expectations. In this regard, the simplifying assumptions (SA)
on which the derivation of the parsimonious solution has been based may also be of
interest. The SAs of S2 can be called up by accessing its subcomponent in the overall
list component SA returned by eqmcc().

> KrookSP$SA$S2

ES QU WS WM LP
5 0 0 1 0 0
6 0 0 1 0 1
7 0 0 1 1 0
. . . . . .
<<rest omitted>>

Fifteen logical remainders have been used as SAs in the derivation of S2.

3.3.4.2 Intermediate Solution

If researchers make explicit assumptions about the set-theoretic relationship between
a condition and the outcome by formulating directional expectations, the result is
called the intermediate solution. The intermediate solution is always a subset of
the parsimonious solution, so it does not use any logical remainders as simplifying
assumptions other than those which have already been used in the derivation of
the parsimonious solution. The complex and the parsimonious solution are always
unique, but the intermediate solution is not. Essentially, it consists of the entire set of
possible solutions between the complex and the parsimonious solution. In fs/QCA,
the window where directional expectations are specified is shown in Fig. 3.5. Radio
buttons specify whether there is an expectation, and if so, which direction it has.

21 It is important to use double quotes around the number 4 because row names are of data type
character. Alternatively, truth table rows can also be accessed in the solution object. The same
output would have been generated by KrookSP$tt$tt["4", 1:5].
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Fig. 3.5 Directional expecta-
tions window in fs/QCA

Intermediate solutions can be generated in QCA by making use of the direxp
argument. This takes a numeric vector whose length and order equals the number and
arrangement of conditions in the truth table. The value “1” indicates that the condition
is expected to contribute to an outcome value of “1”, “0” that it is the negation of
this condition. The value “−1” indicates that no directional expectations are made.
Krook does not provide an intermediate solution, so we extend her analysis here. The
relationship between each single condition and the outcome value is assumed to be
positive, which means that ES, QU, WS, WM, and LP are expected to contribute to
OUT = 1 in their presence. Instead of writing out direxp = c(1,1,1,1,1), the
rep() function, introduced in Sect. 2.5, offers a slightly more efficient solution.

> KrookSI <- eqmcc(KrookTT, include = "?", direxp = rep(1, 5),

+ details = TRUE)

> KrookSI

n OUT = 1/0/C: 11/11/0
Total : 22

p.sol: WS + ES*WM + QU*LP + WM*LP

S1: ES*WS + WM*LP + ES*QU*LP + ES*QU*WM

incl PRI cov.r cov.u
---------------------------------------
1 ES*WS 1.000 1.000 0.455 0.182
2 WM*LP 1.000 1.000 0.636 0.182
3 ES*QU*LP 1.000 1.000 0.455 0.091
4 ES*QU*WM 1.000 1.000 0.455 0.091
---------------------------------------

S1 1.000 1.000 1.000

http://dx.doi.org/10.1007/978-1-4614-4584-5_2.5
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The printed output for intermediate solutions contains an additional line between
the header and the solution part for that minimal sum of the parsimonious solution
p.sol from which the intermediate solution has been derived. This implies that if
rowdom had been set to FALSE, there would have been two intermediate solutions.

Sometimes it is desired that common literals across different PIs be empha-
sized in solutions. For this purpose, minimal sums can be factorized using QCA’s
factorize() function.

> factorize(KrookSI)

p.sol: WS + ES*WM + QU*LP + WM*LP

S: ES*WS + WM*LP + ES*QU*LP + ES*QU*WM

F1: ES*QU*(LP + WM) + ES*WS + WM*LP
F2: WM*(LP + ES*QU) + ES*(WS + QU*LP)
F3: LP*(WM + ES*QU) + ES*(WS + QU*WM)
F4: ES*(WS + QU*LP + QU*WM) + WM*LP

There exist four possible factorizations of the intermediate solution. The one
which best underlines the theoretical argument to be made in the analysis should
ideally be chosen. If the importance of ES is to be stressed, F4 provides a suitable
representation of the solution.

The defining characteristic of intermediate solutions is that SAs are filtered accord-
ing to a set of “rules” formulated by the researcher. In order to provide maximum
flexibility in formulating these rules, it is also possible in QCA to impose any kind
of further restriction on the minimization procedure by excluding specific logical
remainders. Individual exclusions can be achieved by means of the omit argument.
For example, if the parsimonious solution should be generated, but without making
potential use of those remainder configurations as SAs which have only one con-
dition present at most, omit requires a vector of those truth table row names that
correspond to these remainders. With truth tables of low dimensions, these rows can
easily be found by visual inspection of the complete truth table.22 Rows 1, 2, 5, and
17 have only one condition present at most.23

> KrookSR <- eqmcc(KrookTT, include = "?", omit = c(1,2,5,17),

+ details = TRUE)

> KrookSR

n OUT = 1/0/C: 11/11/0
Total : 22

S1: ES*WM + ES*WS + QU*LP + WM*LP

22 Call up KrookTT again or scroll back in the R console.
23 The omit argument always converts a numeric vector to a character vector of row names.
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incl PRI cov.r cov.u
------------------------------------
1 ES*WM 1.000 1.000 0.545 0.091
2 ES*WS 1.000 1.000 0.455 0.182
3 QU*LP 1.000 1.000 0.545 0.091
4 WM*LP 1.000 1.000 0.636 0.091
------------------------------------

S1 1.000 1.000 1.000

With truth tables of higher dimensions, visual inspection becomes error-prone.
The rows to be omitted should therefore be collected by means of automated methods.
For example, the above result could also be achieved by first calculating the row
sums of all configurations with R’s rowSums() function, and then extracting those
elements that are both remainders and have a value below two. The which() function
and the logical & operator are suitable for this purpose. The row sum should be lower
than two, and not equal to one because those configurations are sought which have
one condition present at most. Just as all objects returned by eqmcc() have various
components, so have all objects returned by truthTable(). One of them, the tt
component, has already been introduced above. It contains the actual truth table. The
conditions are the first five columns, over which the row sum is to be formed. Finally,
the names() function extracts the wanted row names.

> sums <- rowSums(KrookTT$tt[, 1:5])

> omRows <- which(KrookTT$tt$OUT == "?" & sums < 2)

> (omRows <- names(omRows))

[1] "1" "2" "5" "17"

The vector omRows could then be passed directly to the omit argument in
eqmcc().

3.3.4.3 Contradictory Simplifying Assumptions

Contradictory simplifying assumptions (CSA) are logical remainders which enter
into the derivation of the solution with respect to the outcome set as well as its
negation. Reconsider the second minimal sum of the parsimonious solution, S2:
WS + ES ·WM + QU ·LP +WM ·LP. First, the minimization has to be carried
out for the negation of the outcome. As neither the truth table nor the solution details
are of immediate interest here, the eqmcc() function can be called directly on the
original dataset instead of the truth table. If the object passed to eqmcc() is not a
truth table object but a data frame or matrix of set data, the logical argument neg.out
negates the outcome.24

24 If a truth table object is passed to eqmcc(), the neg.out argument has no effect.
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> KrookSPn <- eqmcc(Krook, outcome = "WNP", neg.out = TRUE,

+ include = "?")

> KrookSPn

S1: es*lp + ws*wm*lp + (ES*qu*ws)
S2: es*lp + ws*wm*lp + (qu*wm*LP)
S3: es*lp + ws*wm*lp + (qu*ws*wm)

The parsimonious solution for the negation of the outcome set consists of three
minimal sums, none of which dominates any other.25 We thus choose all three min-
imal sums here in testing for CSAs. How to access SAs has been shown above in
Sect. 3.3.4.1. First, three vectors of those truth table row names are generated which
identify the respective SAs for each minimal sum. They can be extracted with the
rownames() function.

> (SAs1n <- rownames(KrookSPn$SA$S1))

[1] "1" "5" "7" "13" "15" "17" "19" "20"

> (SAs2n <- rownames(KrookSPn$SA$S2))

[1] "1" "2" "5" "6" "7" "13" "15" "17" "22"

> (SAs3n <- rownames(KrookSPn$SA$S3))

[1] "1" "2" "5" "7" "13" "15" "17"

Second, we need the SAs for minimal sum S2 from the original analysis performed
in Sect. 3.3.4.1.

> (SAs2 <- rownames(KrookSP$SA$S2))

[1] "5" "6" "7" "8" "10" "13" "14" "15" "16" "19" "20"
[12] "22" "23" "30" "31"

With only relatively few SAs, visual inspection may be sufficient. However, it
is always better to apply a formal test, in particular when the numbers of SAs
become larger. Most suitably, the intersect() function introduced in Sect. 2.9
can be employed to test whether there exist any shared SAs.

> (CSA1 <- intersect(SAs1n, SAs2))

[1] "5" "7" "13" "15" "19" "20"

> (CSA2 <- intersect(SAs2n, SAs2))

[1] "5" "6" "7" "13" "15" "22"

25 Note that the same solution would have resulted had the minimization been run on all false
configurations in the original truth table. However, this mirror relation does not always hold.

http://dx.doi.org/10.1007/978-1-4614-4584-5_2
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> (CSA3 <- intersect(SAs3n, SAs2))

[1] "5" "7" "13" "15"

The intersections of the SAs for each minimal sum of the solution for the negated
outcome set and the SAs for minimal sum S2 of the original solution contain different
logical remainders. Those logical remainders that appear in all these intersections
can be found by applying the intersect() function twice in a nested structure.

> (CSAall <- intersect(intersect(CSA1, CSA2), CSA3))

[1] "5" "7" "13" "15"

Four logical remainders are common to all combinations of the minimal sums. By
using the character vector CSAall to index the truth table component of KrookTT,
the exact configurations can be found.

> KrookTT$tt[CSAall, ]

ES QU WS WM LP OUT n incl PRI
5 0 0 1 0 0 ? 0 - -
7 0 0 1 1 0 ? 0 - -
13 0 1 1 0 0 ? 0 - -
15 0 1 1 1 0 ? 0 - -

3.3.5 Plotting Results

In Sect. 3.2.3, it was shown how to use VennDiagram’s venn.diagram() function
to visualize results in csQCA. As the VennDiagram package only supports diagrams
of order four, we only demonstrate how to plot the first three PIs from the intermediate
solution generated in Sect. 3.3.4.2.26

Similar to the coms component in objects returned by superSubset(), eqmcc()
returns a pims component, which contains all PI membership scores. As it is the
intermediate solution for which these scores are required, the relevant subcomponent
of pims is i.sol. The last piece of information that is needed concerns the respective
complex and parsimonious solution from which the intermediate solution has been
formed. The row dominance principle has been applied in the derivation of KrookSI,
and we know that the parsimonious solution only contains one minimal sum. As
intermediate solutions always result from a unique combination of a minimal sum
from the complex solution and one from the parsimonious solution, the identifier
in the solution subcomponent of pims indexes the respective combination. In our
example, the combination of the first (and only) minimal sum from the complex
solution and the first (and only) minimal sum from the parsimonious solution is
therefore indexed by C1P1.

26 The authors of the VennDiagram package argue that Venn diagrams become too complex for
intuitive visualization with more sets (Chen and Boutros 2011, p. 37).
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Fig. 3.6 Venn diagram of
intermediate solution PIs in
csQCA 0
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> PIms <- KrookSI$pims$i.sol$C1P1

> PIms[ , 1:3]

ES*WS WM*LP ES*QU*LP
SE 1 0 0
FI 1 0 0
NO 1 1 1
.. . . .
<<rest omitted>>

The code for producing the Venn diagram shown in Fig. 3.6 has exactly the same
structure as that used for generating Fig. 3.3. The only difference is that the object
with the combination membership scores COms has been replaced with the object
containing the PI membership scores PIms.

> vennKrookSuf <- venn.diagram(

+ x = list(

+ "WNP" = which(Krook$WNP == 1),

+ "ES*WS" = which(PIms[ , 1] == 1),

+ "WM*LP" = which(PIms[ , 2] == 1),

+ "ES*QU*LP" = which(PIms[ , 3] == 1)),

+ filename = NULL,

+ cex = 2.5, cat.cex = 2, cat.pos = c(350, 10, 0, 0),

+ cat.dist = c(0.22, 0.22, 0.12, 0.12),

+ fill = gray(c(0.3, 0.5, 0.7, 0.9))

+ )

> grid.draw(vennKrookSuf)



Chapter 4
Fuzzy-Set QCA

Abstract This section explains how to perform QCA using fuzzy sets, commonly
referred to as fsQCA. Since the publication of Ragin (2000), fsQCA has become
increasingly popular because continuous base variables need not be dichotomized.
After a short theoretical introduction to the concept of fuzzy-set calibration, we
introduce the two most popular calibration methods: direct assignment and transfor-
mational assignment. While the former is quickly dealt with, more time will be spent
on the latter as its mechanisms and implications have so far received little attention.
In the remainder of the chapter, the results from the study by Emmenegger (2011)
on job-security regulations in Western democracies are replicated.

4.1 Calibrating Fuzzy Sets

The process of getting from base variable values (also called raw data) to condi-
tion or outcome set membership scores is generally referred to as calibration, in
fsQCA often also as fuzzification. Applications of fsQCA in most areas of the social
sciences make use of two different calibration procedures. The first is the method
of direct assignment, whereby fuzzy-set membership scores are derived from base
variable values solely through the researcher’s or another expert’s judgement. The
second is the method of transformational assignment, whereby base variable values
are mapped into the unit interval with the help of continuous functions for which only
minimal information is provided by the researcher. The essential difference between
direct and transformational assignments therefore builds on the same difference that
exists between discrete and continuous random variables in statistics. More space
in this section has been allocated to transformational assignments because this pro-
cedure has been devoted much less attention in applications of and methodological
studies about fsQCA. In this connection, some theoretical preliminaries are neces-
sary in order to fully understand the implementation of fuzzy-set calibration methods
in the QCA package.

A. Thiem and A. Duşa, Qualitative Comparative Analysis with R, 51
SpringerBriefs in Political Science, DOI: 10.1007/978-1-4614-4584-5_4,
© The Author(s) 2013
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4.1.1 Theoretical Preliminaries

In order to fully understand the practicalities of calibrating fuzzy sets, it is important
to first delve a little into the theory behind it. Essentially, sets represent concepts
comprising multiple levels, two most fundamental of which are what Goertz (2006)
refers to as the “basic level” and the “indicator level.” The indicator level captures
the kind of the concept, and the degree to which some observation corresponds
to that kind is measured on the indicator level. In order to provide a taxonomy of
calibration scenarios, we link these two levels across two concept types, each with two
specific concept type relations. These concept type relations cover the vast majority
of calibration scenarios which may occur in social science research.

The two concept types shall be referred to as end-point concept and mid-point
concept. End-point concepts are of a positive relation when set membership scores
do not decrease with increasing values on the base variable, but usually increase. In
contrast, end-point concepts are of a negative relation when set membership scores
do not increase with increasing values on the base variable, but usually decrease.1 As
a fuzzy set is tied in degree and kind to its base variable, this tie determines whether
an end-point concept is positive or negative. A number of examples are to be given
in the following to clarify these relations.

First, consider the set of “non-democratic countries.” There exists a whole raft
of potential base variables in the comparative politics literature from which this
set could be calibrated (Coppedge et al. 2011; Munck and Verkuilen 2002). The
“Freedom in the World” country ratings published by Freedom House (Freedom-
House index (FHI)) is one of them. It ranges from 1 to 7 at increments of 0.5, with
higher scores indicating less democracy.2 If this index is chosen as the base variable,
then the form of the membership function must reflect a positive end-point concept.
As the value of a country under the base variable increases, so does its membership
score in the set of “non-democratic countries.” Conversely, the set of “democratic
countries” represents a negative end-point concept if tied to the FHI. As its value on
the index increases, a country’s membership score in this set decreases.

Sets based on end-point concept are therefore characterized by extreme member-
ship scores towards both ends of the empirical range of their underlying base variable.
Sets based on a mid-point concept type also have extreme membership scores along
that range. However, in contrast to end-point concepts, mid-point concepts exhibit
identical extremes towards either end of the empirical range of their underlying base
variable, and another extreme between them. As with end-point concepts, they can
also be positive or negative, depending on the way in which they are linked to their
base variables. Mid-point concepts are positive when set membership scores first

1 There can be some interval on the base variable [xi , x j ] over which set membership scores remain
equal, but it is generally assumed that they vary over some interval along the domain, usually
between the threshold for set exclusion and that for set inclusion.
2 More precisely, the Freedom House index measures freedom rather than democracy, but its two
dimensions include political rights and civil liberties. For more details about the data and documen-
tation, see http://www.freedomhouse.org.

http://www.freedomhouse.org
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Table 4.1 Concept types and their relations

Concept Type
End-point base variable: base variable:

Freedom-House index Freedom-House index
target set: target set:

non-democratic countries democratic countries

Mid-point base variable: base variable:
Herfindahl index Herfindahl index

target set: target set:
oligopolistic markets non-oligopolistic markets

Positive Negative
Concept Type Relation

increase with increasing values on the base variable, and decrease thereafter. They
are negative when set membership scores first decrease with increasing values on
the base variable, and increase thereafter. From this perspective, mid-point concepts
can thus be conceived of as two end-point concepts (positive and negative) with a
bifurcated base variable that have been joined together. An illustrative example from
the field of economics is the set of “oligopolistic markets.”

Oligopolies are market structures between the extremes of perfect competition,
where many firms provide the same or a very similar product, and monopoly with only
one firm. If fuzzification is based on the Herfindahl–Hirschman index, with values
close to 1 indicating monopolies and values close to 0 indicating perfect competition,
then there exists a certain point to either of whose sides a case’s membership in
the set of oligopolistic market structures will decrease.3 In consequence, the mid-
point concept is positive because going from perfect competition to monopoly on
the index means first increasing membership scores up to oligopoly, then decreasing
membership scores up to monopoly. By analogy, the set of “non-oligopolistic market
structures” using the Herfindahl–Hirschman index is a negative mid-point concept.4

The two concept types introduced above and the two relations they can assume are
summarized in Table 4.1.

3 The Herfindahl–Hirschman index measures the size of firms in relation to their industry and thus
indicates the degree of competition between them. Different versions of this index exist.
4 Another example of a set based on a mid-point concept is the set of “moderately developed
countries”. The example given in Table 5.3, Ragin (2008, p. 93), claims to demonstrate the calibration
of the set of “moderately developed countries”, whereas in fact it describes the calibration of the
set of “at least moderately developed countries” as written in the text. The former is a mid-point
concept and must be calibrated by a different function from that applied to calibrate the latter.
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4.1.2 Direct Assignment

With the method of direct assignment, fuzzy-set membership scores are directly
arrived at through expert knowledge (Verkuilen 2005). For demonstrative purposes,
we simulate our own dataset of FHI scores for 30 countries. The index ranges from
1 to 7 at increments of 0.5, with lower scores representing more democracy. The
sample() function introduced in Sect. 2.9 can be used to generate a number of
random draws, passing it a sequence of index scores that consists of all possible index
values. Its optional argument replace must be set to TRUE because the number of
draws (30) exceeds the number of possible values (13). For a better overview, the
sort() function is used to order the values from smallest to largest.

> set.seed(10)

> fhi <- sample(seq(1, 7, 0.5), 30, replace = TRUE)

> fhi <- sort(fhi)

> fhi

[1] 1.0 1.5 1.5 2.0 2.5 2.5 2.5 2.5 2.5 3.0 3.0 3.0 3.5 3.5
[15] 3.5 3.5 3.5 4.0 4.5 4.5 4.5 5.0 5.0 5.5 5.5 6.0 6.0 6.0
[29] 6.0 6.5

Suppose the base variable f hi should now be fuzzified into three categories in
order to construct the set of “non-democratic countries,” denoted by lower case dem:
0.33 for “democratic,” 0.66 for “partly democratic” and 1 for “non-democratic.” As
already shown for the calibration of crisp sets in Sect. 3.1, the ifelse() function
offers an efficient solution. Recall that it has three elements: a test, a value if the test
returns true, and a value if the test returns false. Instead of specifying a particular
value if the test returns false, however, we can as well perform a new test. The
nesting of sequential tests can be expanded until all desired categories of fuzzy-set
membership scores have been covered. In our case, two tests suffice. The researcher
decides—based on theoretical and/or empirical knowledge—that a membership of
0.33 in dem should be assigned to cases whose index value falls in the interval
[1.0, 2.5), 0.66 if in [2.5, 5.0) and 1 otherwise.5

> dem <- ifelse(1.0 <= fhi & fhi < 2.5, 0.33,

+ ifelse(2.5 <= fhi & fhi < 5.0, 0.66,

+ 1))

> dem

[1] 0.33 0.33 0.33 0.33 0.66 0.66 0.66 0.66 0.66 0.66 0.66
[12] 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 1.00
[23] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

While direct assignments only require a simple recoding of the data from con-
tinuous base variables into a small number of membership score categories, trans-
formational assignments are more taxing in that the researcher has to first decide

5 Square brackets mean “inclusive of,” round brackets “exclusive of”.

http://dx.doi.org/10.1007/978-1-4614-4584-5_2
http://dx.doi.org/10.1007/978-1-4614-4584-5_3
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on a suitable membership function for recoding a continuous base variable into a
continuous fuzzy set.

4.1.3 Transformational Assignment

In fsQCA, continuous base variables need not be categorized by the researcher,
but they can also be transformed into fuzzy-set membership scores with the help
of continuous functions. Ragin (2008), for example, calls this procedure the direct
method, which makes use of a piecewise logistic function. Other authors refer to it
more generally as assignment by transformation (Verkuilen 2005, p. 465). We adopt
the latter terminology here because the word “direct” is often associated with the
calibration method of direct assignment. In addition, transformational assignments
are not associated with any functional form in particular, whereas Ragin’s direct
method explicitly uses only the piecewise logistic.

Some baseline choices for transformational assignments exist, but potentially, any
function which possesses the properties desired by the analyst could be used (Thiem
2010).6 Decisions for or against specific functions, however, may have consequen-
tial downstream effects. It is therefore incumbent on the researcher to control the
calibration process by carefully considering the form of the membership function.
At the very least, this form is determined by the nature of the concept underlying the
set and its base variable.7

For calibrating sets based on positive end-point concepts, Eq. (4.1) is implemented
in QCA.

μSET(x, τ[...], p, q) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if τex ≥ xi ,
1
2

(
τex−xi
τex−τcr

)p
if τex < xi ≤ τcr,

1− 1
2

(
τin−xi
τin−τcr

)q
if τcr < xi ≤ τin,

1 if τin < xi .

(4.1)

where x denotes the base variable, τex the threshold for full exclusion from SET,
τcr the crossover threshold at the point of maximally ambiguous set membership in
SET, τin the threshold for full inclusion in SET, and p as well as q are parameters
for controlling the degrees of concentration and dilation.

For calibrating sets based on negative end-point concepts, Eq. (4.2) is implemented
in QCA.

6 Only the piecewise logistic function is available in fs/QCA through the “calibrate” command
and in the QCA3 package through the directCalibration() command. Both functions differ
slightly from each other.
7 By “form of the membership function,” we mean both the choice of the calibration thresholds and
the membership function.
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Fig. 4.1 Positive (left) and Negative (right) end-point concepts

μSET(x, τ[...], p, q) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if τin ≥ xi ,

1− 1
2

(
τin−xi
τin−τcr

)q
if τin < xi ≤ τcr,

1
2

(
τex−xi
τex−τcr

)p
if τcr < xi ≤ τex,

0 if τex < xi .

(4.2)

The denotation is analogous to that for Eq. (4.1). By adjusting p and q accord-
ingly, both functions can accommodate linear, s-shaped, and inverted s-shaped rela-
tions as special cases (Clark et al. 2008, pp. 37–45; Bojadziev and Bojadziev 2007,
pp. 19–26). One example of each such relation is pictured in Fig. 4.1, for positive
end-point concepts in the left panel and negative end-point concepts in the right panel.
Linear membership functions (black) result for p = q = 1, s-shaped membership
functions (light-gray) for p > 1 and q > 1, and inverted s-shaped membership
functions (gray) for 0 < p < 1 and 0 < q < 1.8

For calibrating sets based on positive mid-point concepts, Eq. (4.3) is implemented
in QCA.

μSET(x, τ[...], p, q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if τex1 ≥ xi ,
1
2

(
τex1−xi
τex1−τcr1

)p
if τex1 < xi ≤ τcr1,

1− 1
2

(
τin1−xi
τin1−τcr1

)q
if τcr1 < xi < τin1,

1 if τin1 ≤ xi ≤ τin2,

1− 1
2

(
τin2−xi
τin2−τcr2

)q
if τin2 < xi ≤ τcr2,

1
2

(
τex2−xi
τex2−τcr2

)p
if τcr2 < xi ≤ τex2,

0 if τex2 < xi .

(4.3)

8 It is possible to combine p > 1 and 0 < q < 1, 0 < p < 1 and q > 1 respectively, to get
double-concentrated or double-dilated membership functions.
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where x denotes the base variable, τex1 the first (left) threshold for full exclusion
from SET, τcr1 the first (left) crossover threshold, τin1 the first (left) threshold for
full inclusion in SET, τin2 the second (right) threshold for full inclusion in SET,
τcr2 the second (right) crossover threshold, τex2 the second (right) threshold for full
exclusion from SET, and p as well as q are again parameters for controlling the
degrees of concentration and dilation.

For calibrating sets based on negative mid-point concepts, Eq. (4.4) is imple-
mented in QCA.

μSET(x, τ[...], p, q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if τin1 ≥ xi ,

1− 1
2

(
τin1−xi
τin1−τcr1

)q
if τin1 < xi ≤ τcr1,

1
2

(
τex1−xi
τex1−τcr1

)p
if τcr1 < xi < τex1,

0 if τex1 ≤ xi ≤ τex2,

1
2

(
τex2−xi
τex2−τcr2

)p
if τex2 < xi ≤ τcr2,

1− 1
2

(
τin2−xi
τin2−τcr2

)q
if τcr2 < xi ≤ τin2,

1 if τin2 < xi .

(4.4)

The denotation is analogous to that for Eq. (4.1). By adjusting p and q accord-
ingly, both functions can accommodate trapezoidal, triangular, and bell-shaped rela-
tions as special cases (Clark et al. 2008, pp. 37–45; Bojadziev and Bojadziev 2007,
pp. 19–26). One example of each such relation is pictured in Fig. 4.2, for positive mid-
point concepts in the left panel and negative mid-point concepts in the right panel.
Triangular membership functions (black) for positive mid-point concepts result when
p = q = 1 and τin1 = τin2, for negative mid-point concepts when p = q = 1 and
τex1 = τex2. Trapezoidal membership functions (light-gray) for positive mid-point
concepts result when p = q = 1 and τin1 �= τin2, for negative mid-point concepts
when p = q = 1 and τex1 �= τex2. Bell-shaped membership functions (gray) result
when p > 1 and q > 1. An example for an inverted bell-shaped membership function
is not shown in Fig. 4.2. It results when 0 < p < 1 and 0 < q < 1.

Just as with the calibration of crisp sets, the calibration of fuzzy sets is achieved
in QCA with the calibrate() function. For fuzzification, it takes three mandatory
arguments: the base variable to be transformed, the information that the target set
is fuzzy, and a numeric vector of thresholds. Three thresholds must be provided in
the case of end-point concepts: the threshold for full set exclusion τex, the threshold
for the set crossover τcr, and the threshold for full set inclusion τin. This order of
thresholds must be adhered to, but the user need not specify whether the target set
is based on a positive or a negative end-point concept. The calibrate() function
will automatically recognize which of the two is the case. It will apply Eq. (4.1)
if τex < τcr < τin and Eq. (4.2) if τin < τcr < τex. Equalities of thresholds are
not allowed because two cases with the same value on the base variable cannot be
members of the same target set to different degrees, whereas they can be members
of a set to the same degree with different values on the associated base variable.
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Fig. 4.2 Positive (left panel) and negative (right panel) mid-point concepts

Assume that for calibrating the set of “non-democratic countries”—let it be
denoted by dem again—the following thresholds are established: 2 for full exclusion,
4 for maximally ambiguous set membership, and 6 for full inclusion. We reuse the
example of FHI values from Sect. 4.1.2.

Full syntax:

> dem <- calibrate(fhi, type = "fuzzy",

+ thresholds = c(2, 4, 6), include = TRUE, logistic = FALSE,

+ idm = 0.95, ecdf = FALSE, p = 1, q = 1)

> dem <- calibrate(fhi, type = "fuzzy",

+ thresholds = c(2, 4, 6))

> round(dem, 2)

[1] 0.00 0.00 0.00 0.00 0.12 0.12 0.12 0.12 0.12 0.25 0.25
[12] 0.25 0.38 0.38 0.38 0.38 0.38 0.50 0.62 0.62 0.62 0.75
[23] 0.75 0.88 0.88 1.00 1.00 1.00 1.00 1.00

After the base variable f hi , the type argument specifies the nature of the target
set and the thresholds argument the three thresholds in the following order: τex,
τcr and τin.

Now assume that for calibrating the set of “democratic countries”—DEM—the
following thresholds are established: 6 for full exclusion, 4 for maximally ambiguous
set membership, and 2 for full inclusion.
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> DEM <- calibrate(fhi, type = "fuzzy",

+ thresholds = c(6, 4, 2))

> round(DEM, 2)

[1] 1.00 1.00 1.00 1.00 0.88 0.88 0.88 0.88 0.88 0.75 0.75
[12] 0.75 0.62 0.62 0.62 0.62 0.62 0.50 0.38 0.38 0.38 0.25
[23] 0.25 0.12 0.12 0.00 0.00 0.00 0.00 0.00

As the order of thresholds is fixed, the calibrate() function recognizes that the
target set must be based on a negative end-point concept. Since the same thresholds
are applied as for the construction of dem, dem+ DEM = 1.

In the case of mid-point concepts, six thresholds must be provided: the first (left)
threshold for full set exclusion τex1, the first (left) threshold for the set crossover
τcr1, the first (left) threshold for full set inclusion τin1, the second (right) threshold
for full set inclusion τin2, the second (right) threshold for the set crossover τcr2 and
the second (right) threshold for full set exclusion τex2. This order of thresholds must
be adhered to, but the user need not specify whether the target set is based on a
positive or a negative mid-point concept. The calibrate() function will automat-
ically recognize which of the two is the case. It will apply Eq. (4.3) if τex1 < τcr1 <

τin1 ≤ τin2 < τcr2 < τex2 and Eq. (4.4) if τin1 < τcr1 < τex1 ≤ τex2 < τcr2 < τin2.
Equalities of thresholds other than τin1 = τin2 for positive mid-point concepts and
τex1 = τex2 for negative mid-point concepts are not allowed for the same reason
given above in relation to end-point concepts.

Assume that for calibrating the set of “partly democratic countries”—let it be
denoted by PTDEM—the following thresholds are established: 2 and 6 for full
exclusion, 3 and 5 for maximally ambiguous set membership, and 4 for full inclusion.
The six thresholds must be provided in the following order: τex1, τcr1, τin1, τin2, τcr2
and τex2.

> PTDEM <- calibrate(fhi, type = "fuzzy",

+ thresholds = c(2, 3, 4, 4, 5, 6))

> round(PTDEM, 2)

[1] 0.00 0.00 0.00 0.00 0.25 0.25 0.25 0.25 0.25 0.50 0.50
[12] 0.50 0.75 0.75 0.75 0.75 0.75 1.00 0.75 0.75 0.75 0.50
[23] 0.50 0.25 0.25 0.00 0.00 0.00 0.00 0.00

Now assume that for calibrating the set of “not partly democratic countries”—let
it be denoted by ptdem—the following thresholds are established: 2 and 6 for full
inclusion, 3 and 5 for maximally ambiguous set membership, and 4 for full exclusion.

> ptdem <- calibrate(fhi, type = "fuzzy",

+ thresholds = c(4, 3, 2, 6, 5, 4))

> round(ptdem, 2)

[1] 1.00 1.00 1.00 1.00 0.75 0.75 0.75 0.75 0.75 0.50 0.50
[12] 0.50 0.25 0.25 0.25 0.25 0.25 0.00 0.25 0.25 0.25 0.50
[23] 0.50 0.75 0.75 1.00 1.00 1.00 1.00 1.00
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As the order of thresholds is fixed, calibrate() recognizes that the target set
must be based on a negative mid-point concept. Since the same thresholds are applied
as for the construction of PTDEM, ptdem = 1− PTDEM.

In addition to Eqs. (4.1)–(4.4), calibrate() is also capable of applying the
piecewise logistic function, both with negative and positive end-point concepts. The
procedure is essentially the same as the one described by Ragin (2008, pp. 89–94),
but the formula implemented in QCA differs insofar as it applies exact logged odds
for the degrees of membership chosen by the user to represent full inclusion in the
target set and full exclusion from it. The formula for the piecewise logistic is given
in Eq. (4.5).

μSET(x, τ[...], φ) =

⎧
⎪⎪⎨

⎪⎪⎩

1/

(

1+ e
−

[
(xi−τcr)

( −φ
τex−τcr

)])

if xi < τcr,

1/

(

1+ e
−

[
(xi−τcr)

(
φ

τin−τcr

)])

if xi ≥ τcr.

(4.5)

The parameter φ denotes the logged odds of the degree of membership the user
specifies for full set inclusion. As Eq. (4.5) is symmetric around the logged odds of the
crossover, the user need not specify the degree of membership for full set exclusion in
addition. By providing the argument logistic = TRUE to calibrate(), the logis-
tic function can be invoked. The calibration of the set of “democratic countries”—
call it LOGDEM now to emphasize the use of the logistic function—with the same
thresholds is achieved as follows.

> LOGDEM <- calibrate(fhi, type = "fuzzy",

+ thresholds = c(6, 4, 2), logistic = TRUE, idm = 0.99)

> round(LOGDEM, 2)

[1] 1.00 1.00 1.00 0.99 0.97 0.97 0.97 0.97 0.97 0.91 0.91
[12] 0.91 0.76 0.76 0.76 0.76 0.76 0.50 0.24 0.24 0.24 0.09
[23] 0.09 0.03 0.03 0.01 0.01 0.01 0.01 0.00

The argument idm specifies the inclusion degree of membership. Its default is
0.95 as shown in (Ragin 2008, pp. 89ff.), but here it has been set to 0.99 for demon-
stration purposes.9 All membership scores assigned through the logistic in this way,
except that for the crossover threshold, will almost always differ from those assigned
through Eqs. (4.1), (4.2) respectively. Even small differences in assigned member-
ship scores may change final solutions, so the researcher should analyze what effects
the application of different membership functions has.10 As a general guideline, we
recommend beginning with the standard settings in the calibrate() function if no
theoretical or empirical reasons for changing them exist.

9 A value of 0.95 requires φ = log(19), 0.975 φ = log(39), 0.98 φ = log(49), 0.99 φ = log(99),
and so on.
10 The arbitrariness of membership functions has been one of the main criticisms in fuzzy-set theory
(Arfi 2010, pp. 5f.).
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In some cases, a fuzzification procedure that is based on the empirical distribu-
tion of base variable values, and not on some theoretical membership function that
imposes an artificial continuity on the transformation process, may be preferred.
To this end, calibrate() also provides a calibration solution that is based on the
empirical cumulative distribution function (ECDF) of the base variable. Its formula
is given in Eq. (4.6).

μSET(x, τ[...]) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if τex ≥ xi ,

1
2

F(xi )
F(τcr)

if τex < xi ≤ τcr,

1− 1
2

(
1−F(xi )
1−F(τcr)

)
if τcr < xi ≤ τin,

1 if τin < xi .

(4.6)

More precisely, Eq. (4.6) applies a double-truncated ECDF, which combines the
qualitative information provided by the researcher through the specification of thresh-
olds with valuable information contained in the base variable. That membership func-
tions should resemble the concept in hand as closely as possible has been given as a
general advice in the literature (Kvist 2006, p. 174), and ECDFs often come closer
to fulfilling this requirement than the solutions presented above. The social mean-
ing of a concept often arises from the contemporary distribution of values under
its indicator variable. For example, as more people become rich, the meaning of
richness as a social-scientific concept changes accordingly. The strategy of identify-
ing membership functions by means of base variable characteristics thus increases
in attractiveness with the extent to which the cases used in the analysis are repre-
sentative of or even identical with their respective unit space under this particular
variable.

For example, the fuzzification of the set of “democratic countries”—call it
CDFDEM to emphasize the use of the (E)CDF—can be achieved as follows.

> CDFDEM <- calibrate(fhi, type = "fuzzy",

+ thresholds = c(6, 4, 2), ecdf = TRUE)

> round(CDFDEM, 2)

[1] 1.00 1.00 1.00 1.00 0.80 0.80 0.80 0.80 0.80 0.70 0.70
[12] 0.70 0.53 0.53 0.53 0.53 0.53 0.50 0.36 0.36 0.36 0.27
[23] 0.27 0.18 0.18 0.00 0.00 0.00 0.00 0.00

μSET(x, τ[...]) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if τin ≥ xi ,

1− 1
2

F(xi )
F(τcr)

if τin < xi ≤ τcr,

1
2

(
1−F(xi )
1−F(τcr)

)
if τcr < xi ≤ τex,

0 if τex < xi .

(4.7)

Accordingly, the fuzzification of the set of “non-democratic countries” cdfdem
draws on Eq. (4.7) and only requires the thresholds to be reversed.
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> ecdfdem <- calibrate(fhi, type = "fuzzy",

+ thresholds = c(2, 4, 6), ecdf = TRUE)

> round(ecdfdem, 2)

[1] 0.00 0.00 0.00 0.00 0.20 0.20 0.20 0.20 0.20 0.30 0.30
[12] 0.30 0.47 0.47 0.47 0.47 0.47 0.50 0.64 0.64 0.64 0.73
[23] 0.73 0.82 0.82 1.00 1.00 1.00 1.00 1.00

If the thresholds are not themselves empirical cases, the values of the cases closest
to but greater than τex, and those smaller than τcr and τin will be used.

4.2 Testing for Necessity

In this and the following sections, the results from a study on job security regulations
in Western democracies by Emmenegger (2011) are replicated. The conditions are
a high level of statism (S), a high level of non-market coordination (C), a high level
of labor movement strength (L), a high level of Catholicism (R), a high level of
religious party strength (P), and many institutional veto points (V). The dataset is
integrated in the QCA package and can be loaded with the data() function.11

> data(Emme)

As Emmenegger hypothesizes the negation of V to be necessary for JSR, the set
of “countries with not many political veto points” has to be constructed first. We
use the fact that for every general set SET, set = 1 − SET. Emmenegger (2011,
p. 347) further argues that a high level of job security regulations can only be expected
for high levels of statism (S), high levels of non-market coordination (C), and high
levels of statism or high levels of non-market coordination (S+ C).12

> Emme$v <- 1 - Emme$V

> Emme$"S+C" <- pmax(Emme$S, Emme$C)

> Emme

S C L R P V JSR v S+C
AU 0.00 0.00 0.57 0.2 0.0 1.00 0.14 0.00 0.00
AT 0.67 1.00 0.57 1.0 0.8 0.67 0.71 0.33 1.00
BE 1.00 0.67 0.43 1.0 1.0 0.67 0.57 0.33 1.00
.. .... .... .... ... ... .... .... .... ....
<<rest omitted>>

11 After having loaded the dataset, further information on it can be obtained with the usual help call
?Emme.
12 Notice that S and C are both subsets of S + C. When S and/or C are/is individually necessary,
the combination S+ C must also be necessary.
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The set v is created by subtracting V from 1, and the set S+C is created using the
pmax() function introduced in Sect. 2.10. Recall that it returns the parallel maxima
of its arguments. Due to the “plus” sign + parentheses have to enclose the set name.

Emmenegger has created these sets in order to test their necessity relations to
the outcome. However, as will be shown later on, QCA does not require users to
manually test for necessity. Conditions can, of course, always be created by the user.
The above was an example of how to achieve this. For our purposes, however, sets
v and S+ C are not needed. They can be dropped by preceding their column index
with a minus operator.

> Emme <- Emme[ , -(8:9)]

The dataset Emme should now equal the original one again.

4.2.1 Parameters of Fit

Analyses of necessity proceed from the observation of the outcome O to the obser-
vation of the condition(s) C. For analyzing necessity inclusion, the decisive question
is to which degree cases are members of C and O in relation to their overall mem-
bership in O. For analyzing necessity coverage, the decisive question is to which
degree cases are members of C and O in relation to their overall membership in C.
If necessity inclusion is high enough, the evidence is consistent with the hypothesis
that C is necessary for O (C ← O). If necessity coverage within such a relation is
high enough, the evidence is consistent with the hypothesis that C is not trivially
necessary for O. The necessity inclusion of C, InclN (C), is calculated as given in
Eq. (4.8).

InclN (C) =
∑n

i=1 min(ci , oi )
∑n

i=1 oi
(4.8)

The necessity coverage of C, CovN (C), is calculated as given in Eq. (4.9).

CovN (C) =
∑n

i=1 min(ci , oi )
∑n

i=1 oi
(4.9)

Unlike in csQCA, the use of fuzzy sets in fsQCA sometimes leads to seemingly
paradoxical situations. At worst, the evidence for the existence of a necessity relation
between a condition and the outcome may be as sufficiently strong as the evidence
for the existence of a necessity relation between the negation of this condition and
the outcome. While necessity coverage may or may not remain the same, such a
situation occurs when (almost) all cases fall into area A1 in Fig. 4.3.

A measure that helps identify such situations is the PRI score (proportional
reduction in inconsistency). While fs/QCA computes the PRI for the sufficiency
relation of each truth table configuration to the outcome set, it does not provide it

http://dx.doi.org/10.1007/978-1-4614-4584-5_2
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Fig. 4.3 “Paradoxical” rela-
tions with fuzzy sets

for the analysis of necessity relations. In QCA, the necessity PRI of C, PRIN (C), is
calculated as given in Eq. (4.10).13

PRIN (C) =
∑n

i=1 min(ci , oi )−∑n
i=1 min(ci , 1− ci , oi )

∑n
i=1 oi −∑n

i=1 min(ci , 1− ci , oi )
(4.10)

Necessity PRI ranges from 0 to 1, but it is undefined if all cases fall into area
A1. Then, InclN (C) = InclN (c) because each case’s membership in O will always
be less than both its membership in C and c. High PRI scores may point towards
relatively large differences between InclN (C) and InclN (c), but this is not always
true. It depends on the distribution of membership scores in the condition and the
outcome. Thus, we caution readers right away against substituting PRI, or its product
with the corresponding inclusion score as advocated by fs/QCA and some authors
(Schneider and Wagemann, 2012), for a thorough comparison of inclusion scores.
QCA comes with suitable functionality to perform extensive testing in this respect
as will be shown in the following sections.

4.2.2 Analyzing Necessity Relations

In order to test for necessary conditions, QCA provides thesuperSubset() function.
For the details of its algorithm, see Sect. 3.2.2. In summary, superSubset() does
not require a preselection of the combinations to be tested, and so removes the

13 By default, the QCA package also computes PRI scores for binary and multi-value crisp-set data,
but in csQCA and mvQCA, PRI always equals inclusion.

http://dx.doi.org/10.1007/978-1-4614-4584-5_3
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risk of leaving potentially interesting results undiscovered. It does not require a
specification of the conditions if they represent all other sets but the outcome in the
data. The argument incl.cut sets the inclusion cut-off and cov.cut the coverage
cut-off. The algorithm will search as long as it takes to meet these criteria, but if no
combination can be found, a warning message will be returned.

Full syntax:

> superSubset(Emme, outcome = "JSR", neg.out = FALSE,

+ conditions = names(Emme)[1:6], relation = "necessity",

+ incl.cut = 0.965, cov.cut = 0.6, use.tilde = FALSE,

+ use.letters = FALSE)

> EmmeNR <- superSubset(Emme, outcome = "JSR",

+ incl.cut = 0.965, cov.cut = 0.6)

> EmmeNR

incl PRI cov.r
-------------------------------
1 C+R 0.968 0.964 0.722
2 S+C 0.968 0.963 0.691
3 R+P+v 0.975 0.972 0.622
4 L+R+P 0.994 0.993 0.685
5 S+L+P 1.000 1.000 0.669
6 C+L+P+v 0.967 0.963 0.609
-------------------------------

No uniliteral combination has met the criteria, but six disjunctive combinations
have been found. Two biliteral, three triliteral, and one quadriliteral combination
have passed the relatively stringent inclusion and coverage cut-offs. The results from
this replication illustrate the advantage of QCA’s superSubset() function over
the user-driven procedures of fs/QCA, QCA3 and fuzzy. Recall that Emmenegger
hypothesized the combination S + C to be necessary for JSR, but this condition
displays the same evidence for the existence of a necessity relation with regard
to the outcome as C + R. What is more, CovN (C + R) = 0.72 is larger than
CovN (S + C) = 0.69. We do not judge whether this finding is consistent with
theoretical expectations about the relation between C, R and JSR, but only conclude
that the union of these two sets performs better than S+ C.

Figure 4.3 has illustrated why seemingly paradoxical relations can appear in
fsQCA. With regard to the analysis of necessity relations, PRIN (C) has been intro-
duced in order to account for the fact that cases in area A1 confirm a situation in
which C as well as c can be considered necessary for O.

In addition to returning combinations of conditions and their parameters of fit,
the superSubset() function also generates an invisible component called coms.
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This component contains each case’s combination membership scores. As coms is a
data frame, all columns can be accessed as shown in Sect. 2.8. The combinations of
membership scores for the first three cases are shown below.

> EmmeNR$coms[1:3, ]

C+R S+C R+P+v L+R+P S+L+P C+L+P+v
AU 0.2 0 0.2 0.57 0.57 0.57
AT 1.0 1 1.0 1.00 0.80 1.00
BE 1.0 1 1.0 1.00 1.00 1.00

The coms component can then be passed directly to QCA’s pof() function, which
is a generic and flexible function for computing inclusion, PRI, and coverage scores
for both necessity and sufficiency relations. At a minimum, it requires a data frame of
set membership scores, the original dataset and the identification of the outcome set.
In order to analyze necessity inclusion for the negation of all combinations found by
superSubset() and saved in EmmeNR, the coms component just has to be negated.

Full syntax:

> pof(1 - EmmeNR$coms, Emme, outcome = "JSR", neg.out = FALSE,

+ relation = "necessity")

> pof(1 - EmmeNR$coms, Emme, outcome = "JSR")

incl PRI cov.r
-------------------------------
1 C+R 0.147 0.032 0.263
2 S+C 0.162 0.032 0.325
3 R+P+v 0.101 0.000 0.303
4 L+R+P 0.139 0.000 0.310
5 S+L+P 0.154 0.000 0.380
6 C+L+P+v 0.110 0.000 0.354
-------------------------------

These results confirm that, overall, only few cases fall into area A1. All necessity
inclusion scores of the negated combinations are far too low to indicate a possible
necessity relation to JSR. On the other hand, this may come at the cost of the original
combinations being only trivially necessary. As the coverage cut-off had already been
set to 0.6 in superSubset(), but did not exceed 0.73 for any combination, coverage
can still be considered moderately high.

A second problematic area in the analysis of necessity relations is A2 in Fig. 4.3.
Here, the evidence for the existence of a necessity relation between a condition and
the outcome may be as sufficiently strong as the evidence for the existence of a
necessity relation between the condition and the negation of the outcome. Whether

http://dx.doi.org/10.1007/978-1-4614-4584-5_2
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this is the case can also be tested with the pof() function. Its argument neg.out
controls the outcome set.

> pof(EmmeNR$coms, Emme, outcome = "JSR", neg.out = TRUE)

incl PRI cov.r
-------------------------------
1 C+R 0.542 0.461 0.364
2 S+C 0.626 0.544 0.402
3 R+P+v 0.742 0.714 0.426
4 L+R+P 0.657 0.560 0.407
5 S+L+P 0.721 0.635 0.434
6 C+L+P+v 0.777 0.747 0.440
-------------------------------

No inclusion score is sufficiently high to indicate that a combination may be
necessary for the outcome as well as its negation.

4.2.3 Plotting Results

The relationship S+ C← JSR is plotted in Fig. 4.1, (Emmenegger 2011, p. 347).
This plot is reproduced in Fig. 4.4 below. First, the basic plot is generated with the
plot() function. The abscissa values are given by the set membership scores for
condition S+C and the ordinate values by the set membership scores for the outcome
JSR. The optional arguments pch, ylab and xlab define the marker symbol (a black
dot) and the respective axis label.

> plot(EmmeNR$coms$"S+C", Emme$JSR, pch = 19,

+ xlab = "S + C", ylab = "JSR")

With the plotting device opened, the diagonal line representing set identity can
be added with the abline() function.

> abline(0, 1)

The first argument in abline() is the intercept, the slope the second. To com-
plete the plot, all that remains is to identify the cases that are of further analytical
importance.14 Keep the plotting device open and enter the following code:

> cases <- c(1, 3, 11, 14, 17)

> text(EmmeNR$coms$"S+C"[cases], Emme$JSR[cases],

+ labels = rownames(Emme)[cases],

+ pos = c(4, rep(2, 4)))

14 Labeling all cases, as in Fig. 1, Emmenegger (2011, p. 347) is usually not necessary.
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Fig. 4.4 Necessity relation
between S+ C and JSR
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First, we create the vector of row numbers cases which identifies all important
cases. With the help of the text() function, case labels can be added. The first
argument is again the vector of abscissa values, the second the vector of ordinate val-
ues. Instead of manually creating a character vector of case labels, the rownames()
function has been used for the labels argument. The pos argument then positions
all labels around the case markers.15

With the plotting device window open, cases can also easily be labeled interac-
tively with the identify() function (not shown here).16

> identify(EmmeNR$coms$"S+C", Emme$JSR, labels = rownames(Emme),

+ plot = TRUE)

The first two arguments specify all possible coordinates and the labels argument
the vector of case labels which correspond to these coordinates. The last argument
plot = TRUE simply causes the labels to be printed near the case markers.17

4.3 Testing for Sufficiency

The ultimate goal of QCA is to analyze set-theoretic sufficiency relations (Ragin
2009, p. 110), for which the construction of the truth table is central. In addition to the
exhaustive formation of all configurations, an outcome value for each configuration
has to be established. An outcome value represents a fractional truth value of the

15 1, 2, 3, and 4 stand for below, to the left, above, and to the right.
16 As the identify() function will only label each pair of coordinates once, check whether some
cases have exactly the same values and overlap each other on a single point, for example with a
cross-tabulation of fuzzy-set membership scores.
17 For more options such as label offsets and identification tolerance, enter ?identify.



4.3 Testing for Sufficiency 69

statement that aggregate case membership in the corresponding corner of the 2k-
cornered vector space is equal to or lower than aggregate case membership in the
outcome set.

4.3.1 Parameters of Fit

Analyses of sufficiency proceed from the observation of some condition(s) C to
the observation of the outcome O. For analyzing sufficiency inclusion, the decisive
question is to which degree cases are members of C and O in relation to their overall
membership in C. For analyzing sufficiency coverage, the decisive question is to
which degree cases are members of C and O in relation to their overall membership
in O. If sufficiency inclusion is high enough, the evidence is consistent with the
hypothesis that C is sufficient for O (C→ O). If sufficiency coverage within such a
relation is high enough, the evidence is consistent with the hypothesis that C is not
trivially sufficient for O. The sufficiency inclusion of C, InclS(C), is calculated as
given in Eq. (4.11).

InclS(C) =
∑n

i=1 min(ci , oi )
∑n

i=1 ci
. (4.11)

The sufficiency coverage of C, CovS(C), is calculated as given in Eq. (4.12).

CovS(C) =
∑n

i=1 min(ci , oi )
∑n

i=1 oi
. (4.12)

Three different types of sufficiency coverage exist. Raw coverage can refer to a
minimal sum or a PI within a minimal sum. Unique coverage refers to that part of
each PI’s raw coverage which is not shared by any other PI within the same minimal
sum.

As in the case of analyzing necessity relations, the use of fuzzy sets sometimes
leads to seemingly paradoxical situations in which the evidence for the existence of a
sufficiency relation between a condition and the outcome may be as sufficiently strong
as the evidence for the existence of a sufficiency relation between this condition and
the negation of the outcome (Cooper and Glaesser 2011). While sufficiency coverage
may or may not remain the same, such a situation occurs when (almost) all cases
fall into area A3 in Fig. 4.3. The fs/QCA software, for example, computes the PRI
for each configuration in the truth table. PRI for sufficiency relations PRIS(C) is
calculated as given in Eq. (4.13).

PRIS(C) =
∑n

i=1 min(ci , oi )−∑n
i=1 min(ci , oi , 1− oi )

∑n
i=1 ci −∑n

i=1 min(ci , oi , 1− oi )
(4.13)
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Sufficiency PRI ranges from 0 to 1, but it is undefined if all cases fall into area
A3. Then, InclS(C → O) = InclS(C → o) because each case’s membership in C
will always be less than both its membership in O and o. High PRI scores may point
towards relatively large differences between InclS(C→ O) and InclS(C→ o), but
this is not always true. It depends on the distribution of membership scores in the
condition and the outcome. To reiterate the point made in Sect. 4.2.1, PRI should not
substitute for a thorough comparison of inclusion scores.

4.3.2 Constructing the Truth Table

Just as for crisp-set data, the truthTable() function also constructs truth tables
from fuzzy-set data. At the very least, it requires two arguments: a matrix or data
frame of fuzzy-set membership scores and an outcome set. In order to create the
truth table object EmmeTT, the dataset Emme is specified as the first argument, then
the outcome set JSR. If not all columns except the one representing the outcome set
are to be selected as conditions, the conditions argument must also be specified.
As all sets but JSR are conditions, the eponymous argument need not be provided.

Full syntax:

> EmmeTT <- truthTable(Emme, outcome = "JSR", neg.out = FALSE,

+ conditions = names(Emme)[1:6], n.cut = 1, incl.cut1 = 0.9,

+ incl.cut0 = 0.9, complete = FALSE, show.cases = TRUE,

+ sort.by = c("incl", "n"), decreasing = TRUE,

+ use.letters = FALSE)

> EmmeTT <- truthTable(Emme, outcome = "JSR", incl.cut1 = 0.9,

+ show.cases = TRUE, sort.by = c("incl", "n"))

> EmmeTT

OUT: outcome value
n: number of cases in configuration

incl: sufficiency inclusion score
PRI: proportional reduction in inconsistency

S C L R P V OUT n incl PRI cases
56 1 1 0 1 1 1 1 2 1.000 1.000 BE,DE
47 1 0 1 1 1 0 1 1 1.000 1.000 IT
48 1 0 1 1 1 1 1 1 1.000 1.000 ES
64 1 1 1 1 1 1 1 1 1.000 1.000 AT
37 1 0 0 1 0 0 1 2 0.977 0.966 FR,PT
27 0 1 1 0 1 0 1 1 0.940 0.825 NO
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25 0 1 1 0 0 0 0 2 0.839 0.699 DK,SE
57 1 1 1 0 0 0 0 1 0.717 0.000 FI
20 0 1 0 0 1 1 0 2 0.716 0.500 NL,CH
5 0 0 0 1 0 0 0 1 0.581 0.000 IE
10 0 0 1 0 0 1 0 1 0.494 0.000 AU
33 1 0 0 0 0 0 0 2 0.203 0.000 NZ,GB
2 0 0 0 0 0 1 0 2 0.198 0.000 CA,US

The truthTable() function includes three cut-off arguments that influence how
a configuration is coded in the outcome value column “OUT”: n.cut, incl.cut1
and incl.cut0. The first argument n.cut specifies the minimum number of cases
with membership above 0.5 needed in order to not code a configuration as a logical
remainder as indicated by “?”. The second argument incl.cut1 specifies the mini-
mal sufficiency inclusion score for a non-remainder configuration to be coded as true
(“1”). The third argument incl.cut0 offers the possibility of coding configurations
as contradictions (“C”) when their inclusion score is neither high nor low enough to
consider them as true, respectively false. If the inclusion score of a non-remainder
configuration falls below incl.cut0, it is always coded false (“0”).

By default, truthTable() only returns those configurations of the truth table in
which at least n.cut cases have membership above 0.5. The names of these cases
are printed if the show.cases argument is set to TRUE. With the sort.by argument,
the truth table can also be ordered along inclusion scores, numbers of cases, or both.
The logical argument decreasing controls the sorting order.

4.3.3 Boolean Minimization

The minimization of the canonical sum whose fundamental products correspond to
all true configurations yields the complex solution. The derivation of this solution
type is achieved with the eqmcc() function (enhanced Quine-McCluskey) (Duşa
2007a, 2010). This is the core function of the QCA package.

Full syntax:

> EmmeSC <- eqmcc(EmmeTT, explain = "1", include = "1",

+ all.sol = FALSE, omit = c(), direxp = c(), rowdom = TRUE,

+ details = TRUE, show.cases = TRUE, use.tilde = FALSE,

+ use.letters = FALSE)

> EmmeSC <- eqmcc(EmmeTT, details = TRUE, show.cases = TRUE)
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The truth table object EmmeTT is passed to eqmcc() as the first argument.18 By
default, true configurations are explained. No additional information is required for
arriving at the complex solution. The all.sol argument causes eqmcc() to derive
all minimal sums of the solution, not just those with the fewest PIs.19 The logical
argument details causes all parameters of fit to be printed together with the minimal
sum: inclusion, PRI, raw coverage, and unique coverage scores for each PI as well
as the minimal sum.20 The logical argument show.cases also prints the names of
the cases that are covered by each PI if details = TRUE.

> EmmeSC

n OUT = 1/0/C: 8/11/0
Total : 19

Number of multiple-covered cases: 0

S1: ScLRP + SCRPV + sCLrPv + SclRpv

incl PRI cov.r cov.u cases
------------------------------------------------
1 ScLRP 1.000 1.000 0.204 0.055 IT; ES
2 SCRPV 0.960 0.921 0.237 0.151 BE,DE; AT
3 sCLrPv 0.940 0.825 0.171 0.171 NO
4 SclRpv 0.977 0.966 0.172 0.089 FR,PT
------------------------------------------------

S1 0.961 0.931 0.615

The output which is printed when an object returned by eqmcc() is called up
consists of three parts. The header provides information about the number of cases
in each of the three types of configurations in which cases have membership above
0.5, and the total number of cases. If show.cases = TRUE, it also displays the
number of cases which are covered by more than one PI. The middle part prints
the solution, which may consist of one or more minimal sums S. The bottom part
provides the parameters-of-fit (POF) table.

The minimal sum consists of four PIs. These terms cover eight cases across six
configurations, namely Spain and Italy in the first term, Norway in the second, France
and Portugal in the third, and Austria, Belgium and Germany in the fourth term. No
case is covered by more than one PI. Cases from the same configuration are separated
by a comma, those from different configurations by a semicolon.

18 The eqmcc() function can also directly process datasets with fuzzy-set membership scores.
However, it is recommended that the function only be used after having created and evaluated the
truth table.
19 This argument has been suggested by Michael Baumgartner.
20 Unique coverage scores do not apply to minimal sums.
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Sometimes it is desired that common literals across different PIs be empha-
sized in solutions. For this purpose, minimal sums can be factorized using QCA’s
factorize() function.

> factorize(EmmeSC)

S: ScLRP + SCRPV + sCLrPv + SclRpv

F1: v(sCLrP + SclRp) + PRS(cL + CV)
F2: RS(cLP + CPV + clpv) + sCLrPv
F3: CP(SRV + sLrv) + cRS(LP + lpv)
F4: LP(ScR + sCrv) + RS(CPV + clpv)
F5: P(ScLR + SCRV + sCLrv) + SclRpv

There exist five possibilities for factorizing the complex solution. The one which
best underlines the theoretical argument to be made in the analysis should ideally be
chosen. If the importance of P is to be stressed, F5 provides a suitable representation.

4.3.4 Incorporating Logical Remainders

Logical remainders are configurations for which no case possesses a membership
score above 0.5, or which have been judged to contain too few cases in relation
to the total number of cases. However, each single such configuration provides a
potentially relevant combination of conditions that allows researchers to engage in
counterfactual thinking. Two common solution types which rely on counterfactuals
are the parsimonious and the intermediate solution. Before logical remainders can
be incorporated into the analysis, a new object which contains the entire truth table
should be created. The provision of the additional argument complete = TRUE in
the truthTable() function generates the entire truth table. For reasons of space, it
is not called up here.

> EmmeTT <- truthTable(Emme, outcome = "JSR",

+ incl.cut1 = 0.9, complete = TRUE)

With EmmeTT now containing the complete truth table, it becomes possible to
generate solution types which incorporate logical remainders.

4.3.4.1 Parsimonious Solution

If all logical remainders are made available for minimization, the minimal sum(s)
obtained from this process are summarized under the parsimonious solution. Logical
remainders can be incorporated into the minimization process by using the include
argument in eqmcc(). Ignore the rowdom argument for the moment.
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Fig. 4.5 PI Chart Window (Emmenegger) in fs/QCA

> EmmeSP <- eqmcc(EmmeTT, include = "?", rowdom = FALSE,

+ details = TRUE)

> EmmeSP

n OUT = 1/0/C: 8/11/0
Total : 19

S1: SR + (LP)
S2: SR + (Pv)

-------------------
incl PRI cov.r cov.u (S1) (S2)

-----------------------------------------------
1 SR 0.871 0.821 0.610 0.231 0.256 0.335
-----------------------------------------------
2 LP 0.979 0.955 0.506 0.014 0.152
3 Pv 0.950 0.883 0.417 0.004 0.142
-----------------------------------------------

S1 0.883 0.821 0.762
S2 0.874 0.812 0.752

The parsimonious solution consists of the two minimal sums S1 and S2, each of
which contains two PIs. This situation is the analogy of choosing all inessential PIs in
the PI chart of fs/QCA with the Mark All button in the bottom-left part of the window.
It is shown in Fig. 4.5. The Data line in this window indicates that the fundamental
product s ·C ·L · r ·P · v is covered by Prime P · v as well as L ·P. These two PIs are
not listed in the Solution tab, which shows all essential PIs, but at least one is required
to complete a minimal sum, so users are asked to choose one of the inessential PIs
or both.

In QCA’s solution output, inessential PIs are enclosed by brackets and listed in
the middle part of the POF table below the solution, while essential PIs are listed in
the upper part. The bottom part shows all parameters of fit for each minimal sum. If
there are multiple minimal sums, unique coverage may vary, for both essential and
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inessential PIs. The columns with the respective headers for each minimal sum are
therefore listed next to the unique coverage column cov.u.

Although there is nothing wrong in choosing both inessential PIs, L ·P in fact
dominates P · v. One PI P1 is said to dominate another P2 if all fundamental products
covered by P2 are also covered by P1 and both are not interchangeable. This principle
is often referred to as row dominance because in PI charts, columns represent funda-
mental products and rows the PIs. The application of the row dominance principle is
controlled through the rowdom argument in eqmcc(). When set to its default value
TRUE, the dominated inessential PI is always eliminated from the solution. When set
to FALSE, dominated PIs are retained.21

That L ·P really dominates P · v in the parsimonious solution can be seen when
calling up the subcomponent p.sol in the PI chart component PIchart of the QCA
solution object created by eqmcc().

> EmmeSP$PIchart$p.sol

27 37 47 48 56 64
.. . . . . . .
LP x - x x - x
.. . . . . . .
Pv x - x - - -
.. . . . . . .
SR - x x x x x
.. . . . . . .

Truth table rows 27 and 47 are implied by P · v, but so are they by L ·P. Both
PIs are not interchangeable because L ·P also implies truth table rows 48 and 64
in addition. As row 47 is also implied by S ·R, row 27 must correspond to the
fundamental product for which P · v and L ·P are alternatives. Using this row name,
the configuration in question can be found by accessing the tt component of the
truth table object. We also index the columns because only the raw configuration is
of interest.22

> EmmeTT$tt["27", 1:6]

S C L R P V
27 0 1 1 0 1 0

In this regard, the simplifying assumptions (SA) on which the derivation of the
parsimonious solution has been based may also be of interest. The SAs of S2 can be
called up by accessing its subcomponent in the overall list component SA returned
by eqmcc().

21 It may happen that there are multiple inessential PIs, none of which dominates the other.
22 It is important to use double quotes around the number 27 because row names are of data type
character. Alternatively, truth table rows can also be accessed in the solution object. The same
output would have been generated by EmmeSP$tt$tt["27", 1:6].
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Fig. 4.6 Directional expecta-
tions window in fs/QCA

> EmmeSP$SA$S1

S C L R P V
11 0 0 1 0 1 0
12 0 0 1 0 1 1
15 0 0 1 1 1 0
.. . . . . . .
<<rest omitted>>

Twenty-two logical remainders have been used as SAs in the derivation of S1.

4.3.4.2 Intermediate Solution

If researchers make explicit assumptions about the set-theoretic relationship between
a condition and the outcome by formulating directional expectations, the result is
called the intermediate solution. The intermediate solution is always a subset of
the parsimonious solution, so it does not use any logical remainders as simplifying
assumptions other than those which have already been used in the derivation of
the parsimonious solution. The complex and the parsimonious solution are always
unique, but the intermediate solution is not. Essentially, it consists of the entire set of
possible solutions between the complex and the parsimonious solution. In fs/QCA,
the window where directional expectations are specified is shown in Fig. 4.5. Radio
buttons, shown in Fig. 4.6, specify whether there is an expectation, and if so, which
direction it has.

Intermediate solutions can be generated in QCA by making use of the direxp
argument. This takes a numeric vector whose length and order equals the number
and arrangement of conditions in the truth table. The value “1” indicates that the
condition is expected to contribute to an outcome value of “1,” “0” that it is the
negation of this condition. The value “-1” indicates that no directional expectations
are made. Conditions C, L, P, R and S are all expected to contribute to OUT = 1
when present, whereas V is expected to do so when absent.
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> EmmeSI <- eqmcc(EmmeTT, include = "?",

+ direxp = c(1,1,1,1,1,0), details = TRUE, show.cases = TRUE)

> EmmeSI

n OUT = 1/0/C: 8/11/0
Total : 19

p.sol: LP + SR

Number of multiple-covered cases: 2

S1: SRv + CLPv + SCRP + SLRP

incl PRI cov.r cov.u cases
-----------------------------------------------
1 SRv 0.990 0.983 0.402 0.152 FR,PT; IT
2 CLPv 0.964 0.872 0.297 0.138 NO
3 SCRP 0.965 0.921 0.277 0.041 BE,DE; AT
4 SLRP 1.000 1.000 0.354 0.027 IT; ES; AT
-----------------------------------------------

S1 0.965 0.941 0.685

The printed output for intermediate solutions contains an additional line between
the header and the solution part for that minimal sum of the parsimonious solution
p.sol from which the intermediate solution has been derived. This implies that if
rowdom had been set to FALSE, there would have been two intermediate solutions.

4.3.4.3 Contradictory Simplifying Assumptions

Contradictory simplifying assumptions (CSA) are logical remainders which enter
into the derivation of the solution with respect to the outcome set as well as its
negation. Reconsider the first minimal sum of the parsimonious solution, S1: S ·R+
L ·P. First, the minimization has to be carried out for the negation of the outcome.
As neither the truth table nor the solution details are of immediate interest here, the
eqmcc() function can be called directly on the original dataset instead of the truth
table. If the object passed to eqmcc() is not a truth table object but a data frame or
matrix of set data, the logical argument neg.out negates the outcome.23

> EmmeSPn <- eqmcc(Emme, outcome = "JSR", neg.out = TRUE,

+ incl.cut1 = 0.9, include = "?")

> EmmeSPn

S1: sc + Sr

23 If a truth table object is passed to eqmcc(), the neg.out argument has no effect.



78 4 Fuzzy-Set QCA

The parsimonious solution for the negation of the outcome set consists of one
minimal sum. How to access SAs has been shown above in Sect. 4.3.4.1. First, a
vectors of those truth table row names is generated which identifies the respective
SAs for the minimal sum. They can be extracted with the rownames() function.

> (SAs1n <- rownames(EmmeSPn$SA$S1))

[1] "1" "3" "4" "6" "7" "8" "9" "11" "12" "13" "14"
[12] "15" "16" "34" "35" "36" "41" "42" "43" "44" "49" "50"
[23] "51" "52" "58" "59" "60"

Second, we need the SAs for minimal sum S1 from the original analysis performed
in Sect. 4.3.4.1.

> (SAs1 <- rownames(EmmeSP$SA$S1))

[1] "11" "12" "15" "16" "28" "31" "32" "38" "39" "40" "43"
[12] "44" "45" "46" "53" "54" "55" "59" "60" "61" "62" "63"

With only relatively few SAs, visual inspection may be sufficient. However, it is
always better to apply a formal test, in particular when the numbers of SAs become
larger. Most suitably, the intersect() function introduced in Sect. 2.9 can be
employed to test whether there exist any shared SAs.

> (CSA <- intersect(SAs1n, SAs1))

[1] "11" "12" "15" "16" "43" "44" "59" "60"

Contradictory assumptions are made on eight logical remainders. By using the
character vector CSA to index the truth table component of EmmeTT, the exact con-
figurations can be found.

> EmmeTT$tt[CSA, ]

S C L R P V OUT n incl PRI
11 0 0 1 0 1 0 ? 0 0.935483870967742 0
12 0 0 1 0 1 1 ? 0 1 -
15 0 0 1 1 1 0 ? 0 0.940298507462687 0
16 0 0 1 1 1 1 ? 0 1 -
43 1 0 1 0 1 0 ? 0 - -
44 1 0 1 0 1 1 ? 0 - -
59 1 1 1 0 1 0 ? 0 1 -
60 1 1 1 0 1 1 ? 0 1 1

4.3.5 Further Diagnostics

Figure 4.3 has illustrated why seemingly paradoxical relations can appear in fsQCA.
With regard to the analysis of sufficiency relations, PRIS(C) has been introduced in

http://dx.doi.org/10.1007/978-1-4614-4584-5_2
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order to account for the fact that cases in area A3 confirm a situation in which C can
be considered sufficient for O as well as o.

Similar to the coms component in objects returned by superSubset(), eqmcc()
returns a pims component, which contains all PI membership scores. The relevant
subcomponent of pims for the intermediate solution is i.sol. The last piece of infor-
mation that is needed concerns the respective complex and parsimonious solution
from which the intermediate solution has been formed. The row dominance principle
has been applied in the derivation of EmmeSI, and we know that the parsimonious
solution only contains one minimal sum. As intermediate solutions always result
from a unique combination of a minimal sum from the complex solution and one
from the parsimonious solution, the identifier in the solution subcomponent of pims
indexes the respective combination. In our example, the combination of the first (and
only) minimal sum S1 from the complex solution and the first (and only) minimal
sum S1 from the parsimonious solution is indexed by C1P1.

> pof(EmmeSI$pims$i.sol$C1P1, Emme, outcome = "JSR",

+ neg.out = TRUE, relation = "sufficiency")

incl PRI cov.r cov.u
-----------------------------------
1 SRv 0.438 0.017 0.198 0.031
2 CLPv 0.756 0.128 0.259 0.108
3 SCRP 0.557 0.000 0.178 0.000
4 SLRP 0.492 0.000 0.193 0.000
-----------------------------------

None of the PIs shows a high enough inclusion score in relation to the negated
outcome jsr. Only C ·L ·P · v has an inclusion score above 0.75, but this is still
significantly lower than that for the original outcome set JSR.

A second area that is problematic for the analysis of sufficiency relations is A4
in Fig. 4.3. Here, the evidence for the existence of a sufficiency relation between a
condition and the outcome may be as strong as the evidence for the existence of a
sufficiency relation between the negation of the condition and the outcome. Whether
this is the case can also be tested with the pof() function by negating all PIs.
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> pof(1 - EmmeSI$pims$i.sol$C1P1, Emme, outcome = "JSR",

+ relation = "sufficiency")

incl PRI cov.r cov.u
-----------------------------------
1 SRv 0.517 0.357 0.772 0.000
2 CLPv 0.581 0.453 0.925 0.000
3 SCRP 0.541 0.408 0.873 0.000
4 SLRP 0.530 0.382 0.820 0.000
-----------------------------------

Just as for the negation of the outcome, the inclusion score of no negated PI would
be considered high enough to confirm sufficiency.

4.3.6 Plotting Results

In order to round off the analysis, the results for all four PIs from the intermediate
solution are to be plotted as shown in Fig. 4.7. We first need the membership scores
of each case in each PI. To do this, we again exploit the pims component in the
object returned by the eqmcc() function as previously shown for the identification
of CSAs.

> (PIsc <- EmmeSI$pims$i.sol$C1P1)

SRv CLPv SCRP SLRP
AU 0.00 0.00 0.00 0.00
AT 0.33 0.33 0.67 0.57
BE 0.33 0.33 0.67 0.43
.. .... .... .... ....
<<rest omitted>>

Instead of four single plot() commands, the for(){...} loop construct can be
used.24

> par(mfrow = c(2, 2))

> for(i in 1:4){

+ plot(PIsc[ , i], Emme$JSR, pch = 19, ylab = "JSR",

+ xlab = colnames(PIsc)[i], xlim = c(0, 1), ylim = c(0, 1),

+ main = paste("PI", print(i)))

+ abline(0, 1)

+ }

24 Loops are a more advanced programming technique. Alternatively, individual plots can be pro-
duced as shown in Sect. 4.2.3.



4.3 Testing for Sufficiency 81

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PI 1

SRv

JS
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PI 2

CLPv

JS
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PI 3

SCRP

JS
R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PI 4

SLRP

JS
R

Fig. 4.7 Plots of intermediate solution PIs

First, a plotting device containing four regions is set up with the general graphics
parameter function par().25 The mfrow argument is useful for placing multiple

figures into a single row.26 It takes a numeric vector of length two with the number
of rows and the number of figures (columns) to be plotted. Plots are placed one
after the other into the separate windows, going by rows. The main title applies the
paste() command, putting a fixed text string and the loop counter together. The
abline() function adds the straight diagonal line by taking an ordinate intercept
and slope parameter as its arguments.27

25 See also split.screen() and layout() for similar functionality.
26 The analogous argument for multiple column figures is mfcol.
27 If you want to add line segments to a plot, use the segments() function for single lines and the
lines() function for joined segments.



Chapter 5
QCA Extensions

Abstract In this chapter, we briefly introduce two extensions of the basic binary-
valued crisp-set variant of QCA. The first, multi-value QCA (mvQCA), is essentially
a generalization rather than an extension of csQCA. It can accommodate conditions
with more than two categories, but remains crisp in that membership in each of
these categories cannot be partial and is mutually exclusive. It will also be shown
how to plot mvQCA solutions in Venn diagrams and produce intermediate solutions
with multi-value data. In contrast, tQCA is a specific kind of csQCA with one or
more auxiliary binary-valued crisp conditions whose values denote temporal relations
between two or more of the substantive conditions.

5.1 Multi-Value QCA

Multi-value QCA (mvQCA) is a variant of QCA introduced by Lasse Cronqvist,
who also developed the Tosmana software for performing it (Cronqvist and Berg-
Schlosser 2009; Cronqvist 2011). mvQCA is a generalization of csQCA, but it is
neither a generalization nor a special case of fsQCA. csQCA can be considered a
special case of mvQCA with only two categories, one for denoting the presence of
the condition and one for denoting its absence. Furthermore, in csQCA, the number
of configurations dcs with k conditions is given by dcs = 2k . In mvQCA the number
of configurations dmv with k conditions is given by dmv =∏k

j=1 pj , where pj is the
number of values for condition j . However, dmv is the generalization of dcs, the latter
being the special case where all pj = 2.

For demonstrating how mvQCA can be performed with QCA, we use the study by
Hartmann and Kammerzell (2010) on the legal provision and actual implementation
of party bans in Sub-Saharan Africa. Its findings with respect to the introduction
of party ban provisions (PB: 1-yes, 0-no) will be replicated. The conditions are
colonial tradition (C: 2-British, 1-French, 0-other), former regime type competition

A. Thiem and A. Duşa, Qualitative Comparative Analysis with R, 83
SpringerBriefs in Political Science, DOI: 10.1007/978-1-4614-4584-5_5,
© The Author(s) 2013
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(F: 2-no, 1-limited, 0-multi-party), the mode of transition (T: 2-managed, 1-pacted,
0-democracy before 1990), and ethnic violence (V: 1-yes, 0-no).1

> data(HarKem)

> HarKem

C F T R V PB PBI
AO 0 2 1 2 1 1 1
BJ 1 2 1 0 0 1 0
BW 2 0 0 0 0 0 0
.. . . . . . . .
<<rest omitted>>

As the QCA package computes all usual parameters of fit for multi-value data, all
functions introduced in relation to csQCA and fsQCA above can be used in exactly
the same way. The only difference is the notation. The next sections will therefore not
repeat theoretical points or the explanation of computing procedures, except where
these relate to particularities of performing mvQCA. Note that the QCA package
requires multi-value crisp-set categories to start with “0” and increment by 1.

5.1.1 Analyzing Necessity Relations

The Tosmana software neither analyzes necessity relations nor does it produce para-
meters of fit. QCA addresses this gap by generalizing the formulas for both inclusion
and coverage in csQCA, presented in Sect. 3.2.1, to mvQCA. If C {vl} denotes a gen-
eral condition level with l = 1, 2, . . . , p, the necessity inclusion of this condition
level, InclN (C {vl}), is then given by Eq. (5.1).

InclN (C {vl}) =
∑n

i=1 {vl} ci = 1|oi = 1
∑n

i=1 oi = 1
(5.1)

Equation (5.1) resembles Eq. (3.1) for csQCA, the only difference being that the
category of which a case is a member has been added. As categories are mutually
exclusive, no ambiguities arise. Accordingly, the necessity coverage of condition
level C {vl}, CovN (C {vl}), is then given by Eq. (5.2).

CovN (C {vl}) =
∑n

i=1 {vl} ci = 1|oi = 1
∑n

i=1 {vl} ci = 1
(5.2)

1 There are four typos in the truth table on page 652, Hartmann and Kammerzell (2010). Botswana,
Mauritius, South Africa, and Zimbabwe should be coded as “2” - having a British colonial tradition
- not “0”. As a result, the solution presented on page 652 is incorrect. The correct solution is given
in the Appendix on page 664.

http://dx.doi.org/10.1007/978-1-4614-4584-5_3
http://dx.doi.org/10.1007/978-1-4614-4584-5_3
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Whether or not any condition level is individually necessary can again be tested
with the superSubset() function, which automatically recognizes when at least
one condition has a multi-value data structure.

> HarKemNR <- superSubset(HarKem, outcome = "PB",

+ conditions = c("C", "F", "T", "V"), incl.cut = 0.9,

+ cov.cut = 0.906)

> HarKemNR

incl PRI cov.r
--------------------------------------
1 T{2}+V{0} 0.929 0.929 0.907
2 F{2}+V{0} 0.905 0.905 0.950
3 C{1}+T{2} 0.905 0.905 0.950
4 C{0}+T{1}+V{0} 0.905 0.905 0.927
5 C{0}+F{1}+V{0} 0.929 0.929 0.907
--------------------------------------

No single category shows a sufficiently high enough necessity inclusion score,
but the three disjunctive combinations of order two T {2} +V {0}, F {2} +V {0} and
C {1} + T {2} do. As in csQCA, the best way to plot results from an mvQCA is to
use Venn diagrams. Although Tosmana has been developed for mvQCA, it is not
possible to use its Visualizer tool for multi-value data. However, the VennDiagram
package, already introduced and described in more detail for csQCA in Chap. 3, can
also be used for visualizing multi-value data in R. The package must first be installed
and loaded as shown in Sect. 2.2.

The superSubset() function returns important components that are not directly
visible to the end-user in its printed output. One of these invisible yet useful compo-
nents is coms, which contains all combination membership scores of the combina-
tions found by superSubset(). The coms component is a data frame, all of whose
columns can be accessed as usual.

> (COms <- HarKemNR$coms[ , 1:3])

T{2}+V{0} F{2}+V{0} C{1}+T{2}
AO 0 1 0
BJ 1 1 1
BW 1 1 0
.. . . .
<<rest omitted>>

With the coms component, users are spared from long Boolean calculations with
the pmin() and pmax() functions, and the three combinations can easily be plotted
with the venn.diagram() function.2

2 The VennDiagram package only supports diagrams of order four, which produces 16 areas,
including the empty set.

http://dx.doi.org/10.1007/978-1-4614-4584-5_3
http://dx.doi.org/10.1007/978-1-4614-4584-5_2
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Fig. 5.1 Venn diagram of
three necessity relations in
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> library("VennDiagram")

> vennHarKemNec <- venn.diagram(

+ x = list(

+ "PB" = which(HarKem$PB == 1),

+ "T{2}+V{0}" = which(COms[ , 1] == 1),

+ "F{2}+V{0}" = which(COms[ , 2] == 1),

+ "C{1}+T{2}" = which(COms[ , 3] == 1)),

+ filename = NULL,

+ cex = 2.5, cat.cex = 2, cat.pos = c(180, 180, 0, 0),

+ cat.dist = c(0.4, 0.4, 0.12, 0.12),

+ fill = gray(c(0.3, 0.5, 0.7, 0.9))

+ )

> grid.draw(vennHarKemNec)

The resulting Venn diagram is shown in Fig. 5.1.

5.1.2 Analyzing Sufficiency Relations

Analogous to necessity inclusion, sufficiency inclusion of some condition level
C {vl}, InclS(C {vl}), is computed as given by Eq. (5.3).

InclS(C {vl}) =
∑n

i=1 oi = 1| {vl} ci = 1
∑n

i=1 {vl} ci = 1
(5.3)

Accordingly, the formula for sufficiency coverage CovS(C {vl}) is given by
Eq. (5.4).

CovS(C {vl}) =
∑n

i=1 oi = 1| {vl} ci = 1
∑n

i=1 oi = 1
(5.4)
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The construction of truth tables for csQCA and fsQCA is achieved with the
truthTable() function, which works likewise for mvQCA.

> HarKemTT <- truthTable(HarKem, outcome = "PB",

+ conditions = c("C", "F", "T", "V"), incl.cut0 = 0.4,

+ show.cases = TRUE, sort.by = c("incl","n"))

> HarKemTT

C F T V OUT n incl PRI cases
35 1 2 2 0 1 7 1.000 1.000 BF,TD,KM,DJ,GA,GN,MR
17 0 2 2 0 1 6 1.000 1.000 CV,GQ,ER,GW,LR,SO
29 1 1 2 0 1 4 1.000 1.000 CF,CM,CI,TG
.. . . . . . . ..... ..... ...........
<<rest omitted>>

In order to replicate the truth table from Hartmann and Kammerzell (2010)
and code configuration C {2} ·F {1} ·T {2} ·V {1} as a contradiction, the argument
incl.cut0 has to be used. All non-remainder configurations with inclusion scores
between incl.cut0 and incl.cut1 are coded as contradictions.

Hartmann and Kammerzell (2010) present the parsimonious solution, which can
be generated using the eqmcc() function with the same arguments that were also
used for csQCA in Sect. 3.3.4.1 and fsQCA in Sect. 4.3.4.1.

> HarKemSP <- eqmcc(HarKemTT, include = "?", details = TRUE)

> HarKemSP

n OUT = 1/0/C: 40/4/4
Total : 48

S1: C{0} + C{1} + F{2} + T{1}*V{0} + T{2}*V{0}

incl PRI cov.r cov.u
----------------------------------------
1 C{0} 1.000 1.000 0.333 0.024
2 C{1} 1.000 1.000 0.405 0.048
3 F{2} 1.000 1.000 0.619 0.048
4 T{1}*V{0} 1.000 1.000 0.143 0.048
5 T{2}*V{0} 1.000 1.000 0.571 0.048
----------------------------------------

S1 1.000 1.000 0.952

The minimization yields one minimal sum consisting of five PIs. However, the
study by Hartmann and Kemmerzell provides a prime example for the all.sol
argument of the eqmcc() function.3 Current QCA practice only focuses on those
minimal sums with the least number of PIs in deriving the solution. However, there

3 This argument has been suggested by Michael Baumgartner.

http://dx.doi.org/10.1007/978-1-4614-4584-5_3
http://dx.doi.org/10.1007/978-1-4614-4584-5_4
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may exist PIs with more literals than the most efficient path, or minimal sums with
more PIs than the minimal number, or both.

> eqmcc(HarKemTT, include = "?", all.sol = TRUE, rowdom = FALSE)

S1: C{0} + C{1} + F{2} + T{1}*V{0} + (T{2}*V{0})
S2: C{0} + C{1} + F{2} + T{1}*V{0} + (F{0}*T{2} + F{1}*V{0})

Minimal sum S1 consists of five, but S2 of six PIs. However, T {2} ·V {0} implies
the same configurations as F {0} ·T {2} + F {1} ·V {0} and both fit the data equally
well. This phenomenon requires a separate theoretical treatment and will not be
further analyzed herein. In the remainder of this chapter, we will therefore concentrate
of S1.

Factorization and collapsing simplify S1 to three terms, and the entire solution
can again be visualized in a Venn diagram with VennDiagram’s venn.diagram()
function. Similar to the coms component in objects returned by superSubset(),
eqmcc() returns a pims component, which contains all PI membership scores. As
it is the parsimonious solution for which these scores are required, the relevant
subcomponent of pims is p.sol.

> (PIms <- HarKemSP$pims$p.sol)

C{0} C{1} F{2} T{1}*V{0} T{2}*V{0}
AO 1 0 1 0 0
BJ 0 1 1 1 0
BW 0 0 0 0 0
.. . . . . .
<<rest omitted>>

When the PIms data frame is now combined with the usual application of the
which() function to produce an auxiliary incidence table, the plot in Fig. 5.2 results.

> vennHarKemSuf <- venn.diagram(

+ x = list(

+ "PB" = which(HarKem$PB == 1),

+ "C{0,1}" = which((PIms[,1] | PIms[,2]) == 1),

+ "F{2}" = which(PIms[,3] == 1),

+ "T{1,2}*V{0}" = which((PIms[,4] | PIms[,5]) == 1)),

+ filename = NULL,

+ cex = 2.5, cat.cex = 2, cat.pos = c(180, 180, 0, 0),

+ cat.dist = c(0.4, 0.4, 0.12, 0.12),

+ fill = gray(c(0.3, 0.5, 0.7, 0.9))

+ )

> grid.draw(vennHarKemSuf)
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Fig. 5.2 Venn diagram of
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The structure of this code is very similar to that used for producing Fig. 5.1.
Additional code only has to be added for those conditions where more than one
category either represents an individual PI as in C {0, 1}, or appears in conjunction
with an identical category of another condition as in T {0, 1} ·V {0}.

The QCA package is the first software to offer intermediate solutions for mvQCA.
In the current framework of mvQCA, value labels denote full membership in one of
at least three mutually exclusive set categories. Directional expectations for multi-
value crisp sets require the specification of these labels, separated by semicolons and
enclosed by double quotes if more than one category is to be specified. The provision
of a value indicates that the presence of this category is expected to contribute to
an outcome value of “1”, while implicitly, QCA assumes that it is the absence of
all remaining categories. For example, if having a French colonial background, no
or only limited regime type competition, a managed mode of transition and ethnic
violence are individually expected to contribute to a subset-relation between each
configuration in which these categories are contained and the provision of party
bans, the following specification should be used in the argument for directional
expectations direxp.

> HarKemSI <- eqmcc(HarKemTT, include = "?",

+ direxp = c(1,"1;2",2,1), details = TRUE)

> HarKemSI

n OUT = 1/0/C: 40/4/4
Total : 48

p.sol: C{0} + C{1} + F{2} + T{1}*V{0} + T{2}*V{0}

S1: C{1} + F{2} + T{1}*V{0} + T{2}*V{0} + C{0}*F{1}*T{2}
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incl PRI cov.r cov.u
---------------------------------------------
1 C{1} 1.000 1.000 0.405 0.048
2 F{2} 1.000 1.000 0.619 0.143
3 T{1}*V{0} 1.000 1.000 0.143 0.048
4 T{2}*V{0} 1.000 1.000 0.571 0.048
5 C{0}*F{1}*T{2} 1.000 1.000 0.071 0.024
---------------------------------------------

S1 1.000 1.000 0.952

Both the intermediate solution and the parsimonious solution from which it has
been derived are printed.

5.2 Temporal QCA

Despite its roots in historical sociology, the incorporation of temporal sequences
in QCA has only recently become a topic of discussion in the literature (Caren
and Panofsky 2005; Ragin and Strand 2008), although a suitable procedure had
already been suggested by Ragin (1987, p. 162). A QCA involving information
about the sequencing of events is known as temporal QCA (tQCA). In tQCA, the
set of conditions usually consists of the set of substantive conditions, and a set
of auxiliary conditions which describe sequential pairings among the substantive
conditions. With ks substantive conditions, there can be up to ka = (k2

s − ks)/2
auxiliary conditions. However, not all of the 2ka configurations are transitive and
need to be included in the full truth table. More precisely, only ks ! configurations
are transitive and therefore potentially plausible. For example, with three substantive
conditions C1, C2 and C3, there are ka = (k2

s −ks)/2 = 3 auxiliary conditions C1/2,
C1/3 and C2/3 that together form ks ! = 6 transitive configurations.

We use the hypothetical dataset of 18 cases of unionization attempts by graduate
student workers at research universities introduced in Caren and Panofsky (2005)
and re-analyzed in Ragin and Strand (2008).4 The conditions indicate whether
the university is public (P: 1-yes, 0-no), elite allies have been present (E: 1-yes,
0-no), the university has been affiliated with a national union (A: 1-yes, 0-no) and
whether a strike or strike threat has been present (S: 1-yes, 0-no). The outcome indi-
cates whether the union has been recognized or not (REC: 1-yes, 0-no), and a fifth,
auxiliary condition whether elite allies had been present before the university has
become affiliated with a national union or not (EBA: 1-yes, 0-no).

When either of the two events E and A did not occur, it is impossible to establish
a sequence.5 These combinations are usually coded as “don’t care” and are ignored

4 Only the set names have been changed.
5 Sometimes the non-occurrence of an event may play a role so that event sequences could be
established for events that did not happen. In this example, however, we simply replicate the analysis.
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during minimization. QCA indicators for a “don’t care” value in auxiliary conditions
can be a dash (“-”), the value “dc” or any negative integer.6

> data(RagStr)

> RagStr

P E A S EBA REC
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 0 1
. . . . . . .
<<rest omitted>>

As usual, the truth table can be constructed with thetruthTable() function. Note
that QCA also automatically takes care of the auxiliary condition EBA. Conditions
which contain any of the accepted indicators for a “don’t care” value are always
excluded from the computation of parameters of fit.

> RagStrTT <- truthTable(RagStr, outcome = "REC")

The minimization is again performed by eqmcc().

> eqmcc(RagStrTT, details = TRUE, show.cases = TRUE)

n OUT = 1/0/C: 7/10/0
Total : 17

Number of multiple-covered cases: 3

S1: P*E*S + E*A*S*eba + P*E*A*EBA

incl PRI cov.r cov.u cases
---------------------------------------------------
1 P*E*S 1.000 1.000 0.571 0.143 6; 3; 1,2
2 E*A*S*eba 1.000 1.000 0.571 0.143 13; 3
3 P*E*A*EBA 1.000 1.000 0.714 0.286 4,5; 1,2
---------------------------------------------------

S1 1.000 1.000 1.000

The minimal sum consists of all substantive as well as both literals of the auxiliary
condition EBA. This solution can be written more efficiently by eliminating EBA
again after having transposed the information it contained into sequence notation
using the forward slash “/” as the temporal separator.

P/E/S+ A/E/S+ P/E/A→ REC

6 This flexibility allows to directly import datasets that have been initially prepared for fs/QCA,
which uses a dash, and QCA3, which uses the value “-9”.
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Substantively, this formula translates into three statements. Graduate student
unions are recognized when graduate students at a public university have had the
support of elite allies and then threatened to strike, or when graduate students (irre-
spective of whether the university was public) have become affiliated with a national
union, then gained elite allies and finally threatened to strike, or when graduate stu-
dents at a public university have had the support of elite allies before they became
affiliated with a union.
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