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Preface

The traditional micro/nanofabrication techniques based on photolithography are

intrinsically expensive, time-consuming, effective to only a limited set of photoresists,

and not directly applicable to nonplanar surfaces. Among the conceptually new

strategies that offer possible routes to both small features and low costs, self-assembly

involving thin sheets, films, and multilayers has become the new cornerstone. In

self-assembly, small-scale objects spontaneously organize and aggregate into stable,

well-defined structures, which are guided by the characteristics (e.g. surface, electri-

cal, andmechanical functionalities) of the subunits, and the final structures are reached

by equilibrating to the form of the lowest free energy. The design of components that

organize themselves into desired patterns and functions is the key to applications

of self-assembly. In addition, self-assembly can be used with soft lithography

and/or controlled deposition to transfer and create complex features in various small

material systems.

Typical molecular self-assembly involves noncovalent interactions, such as

electrostatic, van der Waals, and hydrogen bonds. To assemble larger components

beyond the molecular level, physical forces including magnetic, capillary,

dispersion, and entropic interactions are also involved. Presented in this book is

a novel category of self-assembly driven by mechanical forces: Mechanical

Self-Assembly, where controlled mechanical buckling is shown to be able to

self-assemble ordered patterns in thin films.

Traditionally, buckling and buckle delamination are among the most frequently

encountered failure modes in thin films. While a significant amount of efforts have

been put together to understand the failure mechanisms and to improve the reliabil-

ity of thin film systems, through mechanical self-assembly, they can become

useful and underpin a new fabrication technique. From a practical point of view,

mechanical self-assembly is complementary to, and sometimes offers advantages

over, the conventional physical and chemical self-assembly processes. From a

fundamental point of view, it also provides a rich opportunity to extend our

understanding of the mechanics in thin films.

Mechanical self-assembly is arguably one of the cheapest, quickest, and simplest

techniques for manufacturing and patterning structures at the micron and submicron
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scales; it works with most common thin film materials, offers various selections

of patterns, and directly applicable to planar and nonplanar surfaces. The subject of

mechanical self-assembly is a wide open area with numerous exciting potentials in

engineering and biology remain to be explored.

The book collects a number of recent advances in the area of mechanical self-

assembly, including fundamental wrinkling and delamination mechanics, experi-

mental techniques, applications to fabrication and morphogenesis. Chapter 1

presents an overview of mechanical self-assembly in nature and engineering.

Chapter 2 discusses the spontaneous patterns formed by growth of biological

systems. Theory of shaping by growth is given in Chap. 3. Chapter 4 illustrates

experimental thin film wrinkle morphologies. Relevant theoretical background is

given in Chap. 5. In Chap. 6, the surface crease phenomena are discussed. Chapters 7

and 8 present delamination buckling/channels self-assembled in thin films. Finally,

Chap. 9 extends spontaneous buckles on curved substrates.

New York, NY, USA Xi Chen
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Chapter 1

Mechanical Self-Assembly in Nature

Xi Chen and Jie Yin

Abstract Mother Nature provides unlimited inspirations of ordered patterns across

vast scales: from the helical DNA and lipid bilayers at the submicron level, to the

skin and tissue wrinkle at the millimeter level, to the ordered shapes in plants and

animals at the meter level, and to the geological features at the mega scale. Many of

these intriguing patterns are underpinned by mechanics-driven processes, including

spontaneous buckling deformation.

1.1 Patterns and Morphologies in Nature

Over thousands of years of evolution, Mother Nature is able to self-assemble

precise, differentiable, and intriguing morphologies on all scales from nano- to

macro-size. For example, in cells, through bending and stretching deformation, the

planar bilayer with phospholipids in solution can self-assemble into the liposome

and micelles as shown in Fig. 1.1a. The self-folding of polypeptide chains into

coiled proteins through bending and twisting is another famous molecular self-

assembly example shown in Fig. 1.1b. At the tissue level, taking the development

morphology of human’s brain cortex for example, unlike a smooth kidney or
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spleen, cerebral cortex is full of wrinkles and folds (see Fig. 1.1d). However, in the

fetus period it is smooth (see Fig. 1.1c). At the early stage, as neurons continue to

divide, grow, and migrate, the cortex folds and self-assembles a recognizable but

unique pattern of bumps and grooves.

In the world of plants and fruits, Mother Nature creates more varieties of patterns

and morphologies. Taking the different and intricate shapes found in leaves for

example, leaves are seldom observed in perfect planar shapes; indeed, one of the

most common morphologies is the saddle-like global appearance as shown in

Fig. 1.2a (e.g., the rhododendron leaf). Moreover, a pear leaf often possesses a

local wavy morphology along its edge (see Fig. 1.2b). Such a locally rippled edge is

often found in the pond weed leaves; in addition, they often take the global curling

and twisting topologies (see Fig. 1.2c).

A very special morphology is the tubular leaf shape found in rhododendron

leaves in winter (see Fig. 1.2d), where the normally open and nearly planar leaf self-

folds into a nearly closed tubular one as the temperature decreases. Other shapes

including the doubly curled (see Fig. 1.2e) and spiral morphology (see Fig. 1.2f) are

also found in leaves and tendrils. Figure 1.2g shows that most flowers have the

similar wavy margins as leaves. A more complicated pattern is also observed in

the sunflowers’ heads and pine cones, where they have the beautiful and precise

Fibonacci number patterns (see Fig. 1.2h, i).

Fig. 1.1 Self-assembly in cells and tissues: (a) Three typical self-assembled structures of lipid

bilayers in solution: liposome, micelle, and bilayer sheet. (b) Self-folding of polypeptide chains

into proteins. (c) The smooth brain cortex of a fetus at 22 weeks. (d) The corrugated morphology of

an adult human being’s brain cortex. Yin [1], reprinted with permission

2 X. Chen and J. Yin



Unlike balloons with a smooth surface, some fruits and vegetables distinguish

themselves from others by possessing undulating surface morphologies as shown in

Fig. 1.3.

For example, the small pumpkins such as acorn squashes show ten equidistant

ridges running from the stem to the tip. Like the development of brain cortex, a

pumpkin experiences a morphology transition from a smooth at newborn to the 10-

ridged shape beyond a critical moment (and the overall ridged shape remains stable

with continuous growth), as shown in Fig. 1.4. Similar 10-ridged morphology can

also be found in the Korean melon (golden melon) and ridged gourd (or silk gourd,

Luffa acutanglula). For another breed of big pumpkins, it often has about 20 ridges.

Striped cavern tomatoes and bell peppers have 4–6 ribs to characterize their unique

Fig. 1.2 Different morphologies and patterns of leaves and flowers observed in nature. (a) Saddle-

like rhododendron leaf. (b) A pear leaf with local wavy edge. (c) The global curled and twisted

morphology of pond weed leaves. (d) The tubular morphology of rhododendron leaf (same as (a)

except that the present one is in winter). (e) Doubly curled leaf. (f) Spiral morphology of a leaf.

(g) Flowers with wavy margins in growth. Fibonacci number patterns in (h) sunflowers’ head and

(i) pine cones. Yin [1], reprinted with permission

1 Mechanical Self-Assembly in Nature 3



appearances. Different from the ribbed pattern, reticular cantaloupes demonstrate a

netted pattern on their surface. In all these examples, the fruits/vegetables possess

relatively stiff skin and relatively compliant flesh, and the overall shape is approxi-

mately spheroidal. Another special case is the wax apples, whose overall shape is

conical and they exhibit a beautiful skin wrinkle-like ridged morphology on their

surfaces. Note that for the same breed of fruits, the ridge number remains essen-

tially unchanged despite their different sizes. Interestingly, similar ridged patterns

can be also found in butterfly, bollworm and tobacco budworm eggs, dehydrated

fruits and nuts (e.g., almond and prune), animal skin, tissues, etc.

Other than the fascinating self-assembled patterns and morphologies in

biological systems, Mother Nature’s strong power is witnessed even at the macro-

scopic geological systems. In many polar and high alpine environments, striking

Fig. 1.3 Examples of several natural fruits that exhibit distinctive buckle-like undulations as their

global appearances. The number on the right corner shows the number of ridges. Chen and Yin

[16], reproduced by permission of The Royal Society of Chemistry. The article in which this figure

was originally published is located at the following link: http://pubs.rsc.org/en/content/

articlelanding/2010/sm/c0sm00401d

Fig. 1.4 Morphology transition during the growth of a typical pumpkin from smooth surface to

undulating morphologies. Yin [1], reprinted with permission
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http://pubs.rsc.org/en/content/articlelanding/2010/sm/c0sm00401d
http://pubs.rsc.org/en/content/articlelanding/2010/sm/c0sm00401d


circular, labyrinthine, polygonal, and striped patterns of stones and soil are sponta-

neously formed through self-organized processes (see Fig. 1.5a–d) [1], which

constitute one of the most striking suites of geomorphic patterns. In sand dunes,

the self-assembled meandering rippled pattern often observed in deserts is another

beautiful scene in deserts [2], where the shape of ripples keeps across several

thousand meters (see Fig. 1.5e).

Fig. 1.5 Forms of sorted patterned ground: (a) sorted circles and (b) sorted labyrinths, (c) sorted

stripes, (d) sorted polygons (full scale bar: 1.0 m). (e) Rippling sand dunes under wind. Yin [1],

reprinted with permission

1 Mechanical Self-Assembly in Nature 5



1.2 Underlying Mechanical Mechanisms for Self-Assembled

Pattern Formation

The self-assembled patterns and morphologies in Nature have fascinated and

challenged both biologists and geomorphologists for decades [1, 3, 4]. For instance,

the mechanisms underpinning the formation of fascinating shapes and patterns in

plants have evoked scientists’ interests for centuries [4]. While there is no doubt

that biological and genetic factors significantly influence the morphogenesis, the

active role of physics and mechanics should not be underemphasized, as stated by

D’Arcy Thompson in his classical book on growth and forms [4],

Cell and tissue, shell and bone, leaf and flower, are so many portions of matter, and it is in

obedience to the laws of physics that their particles have been moved, moulded and

conformed.

Thompson’s argument on the inevitable interactions between physics and biol-

ogy has been evidenced by recently increasing works, where the important role of

mechanical force is found in the regulation of plant morphology [5, 6], cell growth

and cell differentiation [7], and tissue morphogenesis [8], among others. Recently

Hamant et al. [6] showed that mechanics plays a key active role in the development

of plant organs, where the mechanical stress on plant tissue during growth controls

the precise organization of a major structural element in the plant cell. By applying

the growth hormone auxin to the edge of an eggplant leaf to cause a local

expansion, Sharon et al. [9] showed that the growth stress makes the normally flat

leaf buckle into a wavy one. Similar studies on the control of crinkly leaves were

conducted by Nath et al. [10] even at the genetic level and they showed that flat

leaves become crinkly in Antirrhinum after the CIN gene mutant, where leaves of

cin cause excess growth in marginal regions and the resulting growth stress may

lead to a curved surface. By investigating the undulation of a spherical Ag substrate/

SiO2 film system, Li et al. [11] successfully reproduced the Fibonacci number

patterns in experiment that are similar to those observed in sunflowers’ head, pine

cones, and other plants, which suggested that mechanical force may be a driving

force for some plant pattern formation.

For fruit morphology, from the mechanics point of view, the transition process

from a normally smooth topology to a global undulating one (e.g., Fig. 1.3) may

correspond to the occurrence of mechanical instability. Upon instability, the

system will spontaneously choose the buckling mode with the lowest energy,

often with an ordered self-assembled undulating pattern. Likewise, one may

suspect that when the accumulated growth stress in the fruit arrives at the

threshold, instability may occur and the spontaneous buckling pattern may under-

pin the distinctive morphologies observed in nature. This mechanical process may

set a template for the subsequent and complex biological and biochemical pro-

cesses (e.g., cell growth and differentiation) which may help to stabilize the

distinctive patterns [12].

6 X. Chen and J. Yin



1.3 Bio-Inspired Self-Assembled Micro/Nanofabrication

Other than the spontaneously formed patterns in nature, in engineering, patterning

has been developed as a technique for several decades to create functional and

desired patterns and structures at the micro- and nanoscales. For example, in the

field of microelectromechanical systems (MEMS), the traditional micro/

nanofabrication techniques based on photolithography [13, 14] have been highly

developed to fabricate micro- and nanopatterns and structures in the past 30 years

[15]. The conventional photolithography approach uses UV light to transfer mode

patterns to light-sensitive chemical photoresists on the underlying films or

substrates, and after chemical etching patterned structures with high accuracy

are produced. However, these methods are intrinsically expensive, time-

consuming, effective to only a set of photoresists, and not directly applicable to

nonplanar surfaces [16]. One of the central drawbacks is its limitation of

fabricating small-aspect-ratio microstructures owing to the difficulty in deep

etching methods [17]. In recent years, the Lithographie, Galvanoformung,
Abformung (LIGA) technique has been developed to fabricate high-aspect-ratio

microstructures to overcome the limitation [18]; however, it is low-efficient and

highly expensive. The other main limitation of these traditional techniques is that

the produced patterns and structures are inherently two dimensional (2D) as a

result of the wafer-based fabrication methods. It is extremely challenging to

create truly three-dimensional (3D) microstructures (e.g., on curved substrates)

using lithography-based techniques. Thus the fabrication of 3D micro/

nanopatterns and structures with high efficiency and low cost calls the need of

revolutionary alternative approaches.

Among the conceptually new strategies offering possible routes to both small

features and low costs, self-assembly involving thin films and multilayers has

become the new cornerstone [16, 19]. The driving force for the thin film self-

assembly can be the chemical interaction between film and substrate or physical

forces such as magnetic, capillary, dispersion, and entropic interactions [16, 19].

Recently mechanical self-assembly of stiff film on planar substrate system driven

by mismatched deformation has received wide applications in engineering [20],

which offers a cost-effective and complementary solution to overcome the afore-

mentioned challenges. The rich parameters that can be manipulated during the

mechanical self-assembly process, including the material properties of film and

substrate, substrate curvature, material and geometry gradient, mismatched stress,

and time-dependent properties, etc., provide unlimited possibilities for the creation

of varieties of functional 2D and 3D patterns and structures, with wide potential

applications in biomedical engineering [21], optics [22], optoelectronics and dis-

play technologies [23, 24], among many others.

1 Mechanical Self-Assembly in Nature 7
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Chapter 2

Mechanical Self-Assembly vs. Morphogenesis

Xi Chen and Jie Yin

Abstract Morphogenesis, as one of the three fundamental aspects of developmental

biology, refers to the biological processes of developing certain shapes, which takes

place across many length scales, including the morphologies of a cell, a tissue, an

organ, and a system. From the intrinsic yet complicated biological and biochemical

perspectives, several mechanisms for plant pattern formation have been suggested,

such as positional information theory [1] and reaction–diffusion theory [2]. However,

the active role of mechanical forces should not be underemphasized.

In the past few years, a great interest has been sparked in the development of

biophysical and mechanical theories to explain the plant pattern formation [3, 4].

Among them, the connection of the morphogenetic processes of some plants with

mechanical buckling theory receives a great attraction owing to some similarities.

Patterns and shape formation are treated as the generation of specific undulating

physical topography. From biophysical viewpoints, during the growth of plants, the

morphology transition can be treated as spontaneously approaching the pattern/

mode with minimal energy, which is similar to the mechanical instability/bifurca-

tion approach. Among the several possible buckling/wrinkling modes (i.e.,

undulating patterns or structures), the system will spontaneously choose the pattern

with the minimized energy.
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2.1 Morphogenesis and Mechanical Buckling Model

A great interest has been sparked in the connection of the morphogenetic processes

of some plants with mechanical buckling theory [3, 5–8]. Generally the related

studies can be divided into two categories: one is the investigation on themechanism

of phyllotactic patterns in shoots and flowers; the other one is on the shape of leaves.

On phyllotactic patterns, Green pioneered the biophysical explanation for the

patterns commonly observed in plant shoots and flowers [3, 4], and proposed

the hypothesis that buckling of the compressed tunica is the governing mechanism

for determining the local phyllotactic pattern. Dumais and Steele [6] showed that

since the sunflower capitulum is under circumferential compression, buckling may

be a plausible explanation for the primordium initiation in the captitulum. Shipman

and Newell [5] demonstrated that the local phyllotaxis and the deformation

configurations on plant surfaces may have resulted from the energy-minimizing

buckling pattern of a compressed shell on an elastic foundation.

Several studies have been conducted on the shape of leaves from mechanical

principles. Inspired by the similarity between wrinkled edges of torn plastic sheets

and a wavy leaf, Marder et al. [9] suggested that some leaves may form wavy edges

through spontaneous buckling and proposed a continuum theory on governing similar

wavy edges observed in many leaves and flowers. To explain some wrinkled shapes

in leaves, Dervaux andAmar [10] proposed an elasticity theory on themorphogenesis

of growing tissues, where the growth stress is incorporated into the generalized

Foppl–vonKarman (FvK) theory of thin plates. Koehl et al. [11] studied the

ecomorphological differences on the blade shapes of kelp, where many species of

macroalgae have wide, thin, and ruffled (undulate) blades in sheltered habitats, while

their conspecifics at sites with more exposure to rapidly flowing water have narrow,

thick, and flat blades. Their research revealed that the change in shape results from

elastic buckling induced by mechanical stress. Recently, Liang and Mahadevan [12]

studied the shape of long leaves and showed that the typical morphologies with

saddle-likemidsurface and rippled edges arise from the elastic relaxation via bending

following differential growth in leaves. All these studies showed that the different

shapes of leaves may result from the differential in-plane deformation within the

leaves, which may lead to the occurrence of local or global wrinkling.

2.2 Mechanical Self-Assembly of Single-Layer Film

and Multilayered Film–Substrate

In recent years, self-assembled fabrication of micro/nanopatterns and structures

involving thin films and multilayers has become the new cornerstone, where there

are numerous methods that enable self-assembly, such as surface-tension-based

assembly [13, 14], electroactive polymer actuation [15], electric actuation [16],

thermal and shape-memory alloy actuation [17], and stress-driven actuation

10 X. Chen and J. Yin



[18, 19]. In this dissertation, the studies related with mechanical self-assembly

fabrication will be reviewed, especially by taking advantages of instability.

The mechanical self-assembly, i.e., the method of creating patterns or structures

through utilizing failure of film, has become a focal point in the self-assembly

fabrication. There are basically three kinds of failure in thin films: buckling [20],

delamination [21], and cracking [22]. Among them, owing to the relative easiness

of controlling and manipulation, the study on buckling of a single film sheet

[23–26], bilayer thin films [27–30], and film–substrate systems [20, 31–33] has

attracted wide interests and found extensive applications in engineering.

2.2.1 Mechanical Self-Assembly of Single- or Mutlilayer Film

Under mismatched deformation or external guidance, buckling may occur in

a single-sheet film or multilayer films and leads to different morphologies.

The controllable buckling process can be utilized and tailored to create desired

patterns and structures. For a single sheet, there are two methods to trigger the self-

assembly of a desired pattern or structure: one is the in-plane inhomogeneous and

mismatched deformation at different locations; the other one is through the interac-

tion between elasticity and capillarity, i.e., surface-tension-based assembly. For

multilayer system, the driving force for the self-assembly mainly comes from the

mismatched deformation between the different layers.

Through the programmed shrinkage at different locations of a thin flat gel sheet,

Klein et al. [23] created a variety of both 3D large-scale buckling and multiscale

wrinkling structures with nonzero Gauss curvatures as shown in Fig. 2.1. Although

the resulting structures are not regular and ordered, it shows the promising of

forming 3D structures from the buckling of a single 2D sheet.

Through the self-assembled wrapping of a liquid droplet by a planar sheet, Py et al.

[24] developed a capillary origami of thin films into 3D structures as shown in

Fig. 2.2. They showed that the final encapsulated 3D shapes can be controlled by

tailoring the initial geometry of the flat membrane. Through the balance between

interfacial energy and elastic bending energy, they revealed the critical length

scale below which encapsulation cannot occur, which suggests a new way of mass

production of 3Dmicro- or nanoscale structures. In a recent study it was demonstrated

that the resulting 3D structures may offer a promising way to efficiently harvest solar

energy in thin cells using concentrator microarrays [25]. A similar capillary origami

study was conducted by Patra et al. [26] at the nanoscale using molecular dynamics

simulations. They demonstrated that water nanodroplets may activate and guide the

self-folding of planar grapheme nanostructures and lead to the self-assembly of

nanoscale sandwiches, capsules, knots, and rings as shown in Fig. 2.3.

The mechanical bending and stretching ability of a 2D planar thin film, coupled

with or without capillary driving force, may provide us an efficient self-assembly

method to create folded 3D micro/nanostructures and devices, which have potential

applications as building blocks of functional nanodevices, with unique mechanical,

electrical, or optical properties [34].
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When combining another different thin film layer with the aforementioned

single film sheet, different functional micro/nanostructures can be created through

the mismatched deformation between the bilayer system, where such a mismatched

deformation can be introduced by misfit lattice strain [29], different rates of thermal

expansion [28], and swelling or contraction rate [16].

Schmidt and Eberl [29] pioneered the study on the self-assembly of thin solid

films into nanotubes using misfit strain. They showed that when a bilayer of thin

films with two different materials is deposited on substrates, after the bilayer is

released by selective etching, the bilayer structure would buckle and bend upwards,

and finally self-roll into a nanotube driven by the misfit lattice strain between the

bilayers, as shown in Fig. 2.4a, b. Through the similar mismatched strain approach,

Prinz et al. [35] further created more varieties of 3D micro/nanostructures such as

tubes, coils, and helices with width ranging from a few micrometers down to a few

nanometers (see Fig. 2.4c).

Despite the promise in creating nanotube or coils, Schmidt and Prinz et al.’s

methods are limited to the large misfit lattice strain, which is only applicable to a

few materials. By combining the advantages of tailored shape in Py et al.’s study

and the self-rolling of tubes in Schmidt’s study, recently Gracias and coworkers

Fig. 2.1 Different structures

of sheets with radially

symmetric target metrics.

Klein et al. [23], reproduced

with permission
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[13, 27, 28] proposed and demonstrated a self-assembly method to design and

fabricate complex patterned polyhedral micro-containers in the form of cubes,

square pyramids, dodecahedra, and octahedral (see Fig. 2.5).

Their strategy uses the thin film sheets as a bilayer hinge consisting of a

chromium (Cr)/copper (Cu) bilayer. The self-folding is caused by the residual stress

developed during thermal evaporation of the metal thin films, which was due to the

mismatch in the coefficient of thermal expansion (CTE) of the bilayer materials.

Through the control of the thickness of each layer, the bilayer hinge could fold with

certain desired angles and the resulting microstructures have great potential

applications as vehicles for drug delivery [36] and 3D electromagnetic components.

2.2.2 Mechanical Self-Assembled Patterns in Film–Substrate
System Through Wrinkling

Owing to the constraint of thin film thickness, the self-assembled 3D micro/

nanostructures through single or bilayer thin films discussed above prefer the global

Fig. 2.2 Tuning of the initial flat shape to obtain (a) a spherical encapsulation, (b) a cubic

encapsulation, or (c) a triangular mode-2 fold. Py et al. [24], reproduced with permission
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buckling to release the stored strain energy. It favors the global bending deforma-

tion with a large wavelength, which is analogous to the Euler buckling of columns.

In the bucking of columns, the higher buckling modes with a shorter wavelength are

not energetically unfavorable.

However, when the thickness of the underlying substrate is much larger than

that of the thin film, since the substrate remains tightly bonded with the thin film

during deformation, local wrinkling with a short wavelength will be preferred to

release the compressive strain. The resulting wavelength is mainly determined

by the competition between the bending energy of the thin film and the stretching

energy of the substrates. While the bending energy prohibits the wrinkling

with short wavelengths, the substrate favors wrinkles with shorter wavelengths.

A trade-off between the bending energy in the film and stretching energy in the

Fig. 2.3 (a–d) Water nanodroplet-activated and -guided folding of two graphene flakes connected

by a narrow bridge. (e–h) Nanodroplet-assisted folding of a star-shaped graphene flake. Patra et al.

[26], reproduced with permission
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substrate determines the optimum wavelength of the wrinkles observed in film/

substrate system.

Local wrinkling has been historically considered as a mechanism for structure

failure, which should be avoided in the design of sandwich panels [37] and

constructions widely used in aerospace and marine engineering [38] as well as

the deposition of thin film in the semiconductor industry [39]. In 1969, Allen [37]

first studied the problem on the wrinkling of sandwich panels in airplanes with a

stiff face rested on a compliant substrate. The usefulness of spontaneous buckling of

thin film/substrate systems was first demonstrated by Bowden et al. [20] in 1998,

where in their pioneered work they utilized the wrinkling of metal films on soft

polydimethylsiloxane (PDMS) substrates to generate ordered micropatterns and

Fig. 2.5 Self-assembled patterned micro-containers through folding of bilayer hinges. On the

right corner shows the original planar shape. Reprinted with permission from Bassik et al. [27].

Copyright 2009, American Institute of Physics

Fig. 2.4 Self-assembly of bilayer thin films (a) Schematic illustration of self-rolling of bilayer

films under misfit lattice strain. (b) The resulting self-assembled nanotube. (c) Helix scrolled from

a strip. Prinz et al. [35], reproduced with permission
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structures. Spontaneous elastic buckling patterns were observed in the 50 nm-thick

gold film as the system was cooled, owing to the mismatched thermal deformation

and the films buckled into distinctive patterns, with typical wavelengths on the

order of microns. These highly ordered patterns (e.g., Fig. 2.7a) can be precisely

manipulated and have found vast applications in stretchable electronics [40–42],

MEMS and NEMS [43], tunable optical gratings [44], thin film modulus measure-

ment [45], force spectroscopy in cells [46], control of smart adhesion [47], adjust-

ment of superhydrophobic properties of film [48], and pattern formation for micro/

nanofabrication [20, 49] among others.

Following Bowden et al.’s pioneering experiment, extensive experimental,

theoretical, and numerical studies were carried out to explore the buckling

mechanisms and investigate the feasibility of quantitative control of the patterns

for applications in micro- or nanostructures. Among experimental efforts, the

substrate surface topology may be manipulated to change the local film stress, so

as to generate a variety of ordered patterns (see Fig. 2.6a–f) [49].

Similarly, local physical properties of the thin film can be perturbed to result in

various buckle patterns [50], and more refined nanoscale patterns may be achieved

Fig. 2.6 Various wrinkling patterns observed in experiments. (a–f) Representative patterns in

metal films on PDMS substrates through the control of edges and steps, where labyrinth patterns

(a) far away any steps or edges transit to ordered ones through the rectangular, square, and circular

steps or elevations. (g) One-dimensional ridged nanoribbons. (h) Concentric and radial wrinkled

patterns through defects. (i) Wrinkle-to-fold transition of thin film on water. Moon et al. [51],

reproduced with permission
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by modifying the surfaces using focused ion beam [51]. External constraints may be

applied, where a pre-patterned mold was held against the film as the buckles were

formed, and the resulting pattern was quite stable after the removal of the mold

[52]. The substrate may also be pre-strained [53], where silicon nano-ribbons

bonded to a pre-stretched flat PDMS could generate wavy layouts upon releasing

of the substrate strain (see Fig. 2.7g). Other than the discovered labyrinth, one-

dimensional wavy and herringbone patterns in thin films, recently Chung et al. [32]

demonstrated new types of wrinkles in a dendritic-like spoke pattern or in a target

pattern consisting of concentric rings near defects in films (see Fig. 2.7h). Besides

solid substrates, a recent work [54] reported a wrinkle-to-fold transition of buckled

thin polyester film on water or soft gel substrates (see Fig. 2.7i).

In order to explain the formation mechanisms of various intriguing buckling

patterns from theoretical aspects, Cerda andMahadevan [55] proposed a generalized

scaling law for the buckling wavelength and amplitude; Chen and Hutchinson [31,

56] showed that upon equi-biaxial compression of a film bonded to a planar semi-

infinite compliant substrate, the herringbone pattern possesses less strain energy

than its competitors and thus is more favorable. Amore comprehensive discussion of

the herringbone mode was recently given by Audoly and Boudaoud [57]. Huang

et al. [58] analytically investigated the substrate thickness on the wrinkling wave-

length and proved the feasibility of neglecting interface shear stress in theory.

Fig. 2.7 The morphogenesis of some cells and tissues may be related to the wrinkling instability

of nearly spherical shell/core systems. For cells: (a) Wrinkled bacterial cell owing to the relative

shrinkage of the cytoplasm under hyper-osmotic pressure. (b) Wrinkled human neutrophil cell due

to the relative expansion of the cell membrane surface area during cell growth or phagocytosis. (c)

Wrinkled cell nucleus due to hyper-osmotic shrinkage, and (d) the wrinkles may disappear with

the swelling of nucleoplasm under hypo-osmotic pressure. The folding pattern of brain cortex: the
cross-sectional view of brain cortex shows that (e) during the early stage the surface is relatively

smooth, and (f) during the later stage the wrinkled morphology is observed. Chen and Yin [76],

reproduced with permission
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By studying the kinetic buckling of elastic films on viscoelastic substrates, Huang

[59] showed that both energetics and kinetics play important roles in determining the

critical condition, the growth rate, and the wavelength. Through the control of

anisotropic strains in films, the evolution and transition of stripes, herringbone,

and labyrinth buckling patterns were simulated [60]. In a review, Genzer and

Groenewold gave extensive examples of patterns achievable via film wrinkling

and bridged that with skin wrinkles and possible ways of material characterization

and fabrication.

2.2.3 Mechanical Self-Assembly (MSA) of Thin Film
on Curved Substrate

The buckling characteristics of closed thin film (shell) on curved substrate (core) have
important implications in the morphogenesis of quite a few fruits, vegetables,

fingertips, animal skins, tissues, and cells [61–64] as discussed earlier. The intriguing

wrinkling-like ordered patterns observed in these systems may be related to

mechanics-driven buckling process owing to the mismatched deformation between

the shell/film (e.g., skin of fruit or membrane of cell) and the underlying curved core/

substrate (e.g., flesh of fruit or cytoplasm of cell), during which the curvature of the

substrate may play a dominant role in shaping the distinctive overall appearance of

quite a few natural and biological systems.

On morphogenesis, wrinkled cells are often observed in bacterial cells (Fig. 2.7a

where the average wrinkle wavelength is about 100 nm) [65] and non-tissue cells

such as human neutrophil cells (Fig. 2.7b) [66], macrophages, lymphocytes [67],

and mast cells [68]. The wrinkled morphology may increase the surface area of the

cell by more than 100 % [69], which may accommodate potential membrane

expansion and spreading during extravasation and osmotic swelling. Other than

the cell membrane surface wrinkles, recently similar wrinkled morphology was

observed inside the cell, e.g., on the cell nucleus due to hyper-osmotic shrinkage,

Fig. 2.7c [70]. In their work, Finan and Guilak [70] suggested that the nucleus

wrinkles can be explained by the mechanical buckling of shell/core structure, where

the contraction of the soft core (nucleoplasm) renders the stiffer shell (nuclear

lamina) in compression to initiate the buckles. Under hypo-osmotic pressure, the

swelling of nucleoplasm will make the lamina in tension and stretch the lamina into

a smooth shape as shown in Fig. 2.7d [70].

Besides the cellular scale, the wrinkled morphology is also frequently observed

at larger tissue or organ scales. The wrinkled brain cortex shown in Fig. 1.1c, d is a

good example of wrinkling on curved substrates. The cross-section of the hemi-

spherical cortex reveals the detailed information on the formation of the gyri (ridge)

and sulci (groove) during development (see Fig. 2.7e, f) [71]. A number of

hypotheses and models were proposed to explain how and why the cortex folds in

a characteristic pattern from the biological, biochemical, and mechanical
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viewpoints [72–76]. Among them, Richman et al. [72] first proposed a mechanical

buckling model where the cerebral cortex was modeled as a bilayer shell rested on a

soft spherical core. The excessive growth of the shell relative to that of the core

leads to the development of compressive stress in the shell, and the subsequent

buckling may lead to the cortical folding.

Moreover, thanks to the rapid development of soft lithography which enables

micro- and nanofabrication of multilevel thin-film devices with nonplanar

geometries [77, 78], controlled 3D patterning on curved and/or closed substrates

could significantly expand applications in biomedical engineering [79], optics [50],

optoelectronics, and display technologies [80–82]. By investigating the undulation

of a spherical Ag substrate/SiO2 film system, Cao et al. [83] demonstrated an

experiment of spontaneous buckling pattern formation on spherical substrates.

Figure 2.8a shows an example with substrate radius R ¼ 3 mm and at this relatively

small R/t with t ¼ 150 nm being the film thickness, reticular pattern was produced

via spontaneous buckling. This serves an example of buckling self-assembly

fabrication of true 3D structures at micro or submicron scales. To create 3D

micro/nanopatterns and microstructures on curved substrates, Chan and Crosby

[50] confined surface wrinkles in small local pre-patterned regions, and when such a

technique was applied to a hemispherical surface, microlens arrays were self-

assembled (Fig. 2.8b).

Fig. 2.8 Experiments of self-assembly on spherical shell/core systems. Solid inorganic systems:
(a) Experiment of reticular pattern formed on a spherical system (SiO2 film/Ag substrate). (b)

Microlens arrays self-assembled on a hemispherical soft substrate using constrained local buckles.

(c) Interconnected silicon ribbonlike photodetectors on a hemispherical elastomer substrate.

Instability patterns of microbubbles: (d) Nanoscale hexagonal pattern self-assembled on a stable

microbubble, which is in part due to (e) differential shrinkage-induced buckling of the bubble

surface, and (f) the pattern can be strongly influenced by the bubble curvature. Chen and Yin [76]

reproduced with permission
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Recently, Shin et al. [84] assembled interconnected silicon ribbonlike

photodetectors on a hemispherical elastomer substrate, and the ribbons were in

buckled profiles owing to pre-stretch (Fig. 2.8c). It should be noted that in

these experiments, the buckle features created were much smaller than the substrate

radius of curvature; in other words, the versatile effect and potential of substrate

curvature were not fully utilized to regulate the self-assembled buckles. Besides

the aforementioned solid systems, buckling self-assembly was also demonstrated

on spherical shell with hollow core microstructures (fluidic spherical shell/core

microstructures), i.e., microbubbles. In a recent experiment on the nanopatterning

of stable microbubbles, Dressaire et al. [85] created a nanoscale hexagonal interface

pattern as shown in Fig. 2.8d through the shrinkage of the bubbles. By covering a

surfactant layer on the surface of microbubbles, due to the differential shrinkage the

initial smooth bubble buckled into a nano-hexagonal patterned one (Fig. 2.8e).

Figure 2.8f further demonstrates the important effect of curvature on the surface

wrinkling pattern, as the bubble radius was varied from 500 nm to 3 mm. Note that

besides mechanical buckling, phase separation and other surface mechanisms may

also underpin the pattern domains in microbubbles, and various pattern formations

were reported including polygons, dendrites, beans, networks, etc. [86]. A recent

review by Borden [86] has nicely summarized the nanopatterning on stable

microbubbles, which have implications for biomedical applications.
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Chapter 3

Shaping by Active Deformation

of Soft Elastic Sheets

Eran Sharon

3.1 Introduction

One shaping method of soft elastic bodies is growth. This method, which is very

common in natural systems and much less in man-made structures, is inherently

different from shaping by external loading. In the second case the body responses

passively to the constraints imposed on its boundaries. It has a reference stress-free

configuration and the task is to compute and minimize the elastic energy of

configurations that fulfill the boundary conditions. In the case of self-shaping by

growth, the body is free in space, but contains a field of active growth, or deforma-

tion, which determines the shape of the body.

If we want to turn shaping via growth into a controllable design technique, there

are several important questions that must be addressed: How can we describe the

physics of shaping via growth? What is the correct and convenient way of

integrating the information about active growth into the theory of elasticity? In

many cases, or at least in the interesting ones, growing bodies do not have a stress-

free configuration. What is the reference quantity with respect to which the elastic

energy can be computed and minimized? Which materials are suitable for the

construction of self-shaping bodies? How can we build bodies with predetermined

growth distribution and how can we trigger this growth? From a different perspec-

tive we can ask if and how the physics of shaping via growth is used in natural

growing bodies. Can we point out examples where the principles of the mechanics

of growth play a key role in symmetry breaking during morphogenesis? And finally,

can we use these principles to affect and correct morphogenesis, where it is needed?

In this chapter we try to provide some suggestions and guidelines for suitable

theoretical framework and experimental techniques. We provide some specific

examples that illustrate central principles that govern this shaping method in

E. Sharon (*)

The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel

e-mail: erans@vms.huji.ac.il

X. Chen (ed.), Mechanical Self-Assembly: Science and Applications,
DOI 10.1007/978-1-4614-4562-3_3, # Springer Science+Business Media New York 2013

25

mailto:erans@vms.huji.ac.il


synthetic and natural systems. It is important to say that this entire field is in its early

stages. New concepts, materials, and techniques are likely to be developed in the

near future and to extend the applicability and implementation of this new branch of

mechanics.

3.2 Theoretical Framework

3.2.1 Growth of Elastic Bodies

First we need to clarify what do we mean by a “growing elastic body.” We should

think of an elastic material, in which “rest” (in the sense of energy minimum)

distances between neighboring points are given at any time, as if they are connected

by springs. When we say that such a material grows we mean that these rest

distances are slowly changed in time—the rest lengths of the springs are

redetermined, but they continue to response elastically to deformations around

the new rest length. The laws governing the growth process are outside of elasticity

theory and we treat them as given (unlike the case of elasto-plasticity theories).

Though extremely interesting and important, we do not attempt to say anything

about these laws. We just assume that we know their outcome, i.e., the rest length of

all the “springs.” In addition, we assume that the growth is much slower than the

elastic response and we study only equilibrium configurations.

As a result of growth, the body, which is free of external constraints, is deformed

and we would like to use the theory of elasticity in order to calculate its equilibrium

configuration. As in conventional elasticity, we would like to write an energy

functional and to find the configuration that minimizes it.

3.2.2 Residually Stressed Incompatible Bodies

In the theory of elasticity, the elastic energy functional is a volume integral of an

energy density, which is expressed by the local strain tensor and material elastic

properties [1, 2]. In most formulations of elasticity the strain tensor of a given

configuration is expressed by gradients of the map between a stress-free configura-

tion of a body and its current configuration. When we wish to calculate the strain

within a buckled compressed ruler we compute the displacement field that takes

every point in the ruler, from its stress-free, flat, configuration to the buckled

configuration. Derivatives of the displacement field tell us by how much distance

between neighboring points has changed, i.e. by how much the spring connecting

them is stretched.

Perhaps surprisingly, this basic procedure for definition of strain does not work

in the general case of growing elastic bodies.
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Consider an elastic ball of radius R and let the material within r<R=2 grow

isotropically by 10 %, while for R=2<r<R, the material does not grow at all. One

immediately sees that there is no way by which the inner ball and the outer shell can

fit together while keeping their new equilibrium distances everywhere. Some parts

of the grown body must be stretched and some parts will be compressed even if the

ball is free in space. The grown ball is residually stressed—it does not have any

stress-free configuration! The lack of stress-free configuration is not a consequence

of the sharp difference between the two parts of the ball in the example. Even a

continuously varied growth field could lead to a similar situation [3, 4]. Having no

stress-free configuration, how can we define an elastic strain for such a body?

3.2.3 Metric Description

Considering the example above, one immediately feels that the difficulties in

defining an elastic strain are formal or technical, but not “physical.” If, as assumed,

we know the rest length of each spring, we can compare it to its length in every

given configuration. So where is the problem? We note that when defining strain by

the displacement field from a stress-free configuration, we “simultaneously” com-

pare the lengths of all springs in a configuration to their rest lengths in the stress-

free configuration. In fact, we do not have to do so. We do not care if there is a

configuration in which all springs are simultaneously at their rest length. We just

need to properly express these lengths and compare them to those in a given

configuration.

A natural geometric quantity which describes local lengths in a body is the

metric tensor [5]. It provides a measure of distances in different directions at every

point in the body and can be expressed “extrinsically” as a property of a configura-

tion, or intrinsically without the need of a realization as a “body.” When consider-

ing an elastic body, the “lengths of springs” in a given configuration are expressed

by the metric tensor field gðrÞ of the configuration. Equivalently, the rest lengths of
springs in a body can be expressed by a reference metric gðrÞ. The reference metric,

gðrÞ, contains all the information which is determined by the growth, i.e., the rest
lengths in each direction at each point in the body, while the actual metric, gðrÞ,
expresses the actual lengths at the same points. Realizing this the elastic strain

tensor can be written as

eðrÞ ¼ 1

2
ðgðrÞ � gðrÞÞ: (3.1)

This definition of strain holds even if the reference metric g cannot be realized as
a configuration in space. In addition, when there is a stress-free configuration,g is its
metric and the strain in (3.1) coincides with the conventional definition of the

(nonlinear) strain (see [3]).
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Turning to the elastic energy, we note that since the elastic energy density is a

local scalar quantity, we can compute it “separately” for every volume element (or

“spring”) using the strain in (3.1) and the material elastic coefficients (assuming

linear stress–strain relation), and then sum it up:

E �
ð
AðrÞðg� gÞ2dv: (3.2)

A(r) is a tensor containing the local elastic properties. For isotropic homogeneous

material it has only two independent parameters—the Lame coefficients (see [2]).

Using the above expression it is important to note that the volume element dv is

calculated correctly and consistently (see [3]).

To summarize: Growth of an elastic body determines a reference metric g on the

body. Every configuration of the body has an actual metric g. The local elastic strain
is the difference between g and g (3.1) and the energy is an integral over the energy
density, which is quadratic in the elastic strain (3.2).

3.3 Thin Sheets

In the rest of this chapter we limit our discussion to thin growing elastic sheets—

structures with one dimension—the thickness, t (in the z direction), much smaller

than the other two (x- and y-directions).
First, we will look at such ordinary (not growing) bodies. For such bodies we can

define their mid surface, z ¼ 0, and their upper and lower “faces” at � t=2. The
thinness of these bodies allowed the derivation of two-dimensional (2D) effective
theories—the theories of plates and shells [6–8]. In these theories a configuration of

a sheet is determined by the shape of its 2D mid surface. To complete the state of

the 3D body, the variation of strain in the z-direction is assumed to be linear with the

distance from the mid surface, and the z component of the strain is assumed to

vanish [9]. Under these conditions the energy of a thin sheet takes the general form

of a sum of stretching and bending energies:

E ¼ Es þ Eb:

The stretching energy is quadratic in the in-plane strain on the mid surface and

linear in the thickness. The bending energy stems from the nonuniform “horizontal”

strain in “layers” below and above the mid plane. This strain is assumed (or

approximated) linear in z. Integrating the elastic energy density (which is quadratic
in z) across the thickness leads to the bending energy, which is cubic in t and
quadratic in the deviation of the surface curvature k from its natural or “spontane-

ous” curvature k0. We distinguish between two main types of sheets: Shells, with
nonzero spontaneous curvature, k0 6¼ 0, and plates for which k0 ¼ 0 (Fig. 3.1).
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3.3.1 Metric Description of Thin Sheets

Converting the 3D metric elasticity into effective 2D plate/shell theories follows

basically the same steps as in ordinary, nongrowing sheets (see different but related

approaches in [3, 4, 10, 11]). The resulting effective theory has the same structure:

The total energy is a surface integral of an energy density of the mid surface.

The energy density is a sum of stretching and bending energies that are associated

with in-plane strain and with curvature of the mid surface, respectively. In order to

incorporate the known growth fields we introduce two reference 2D tensors: a, the
2D reference metric, encodes all the information about the local in-plane rest

distances dictated by lateral growth. b , the reference curvature tensor, contains

the information about the local spontaneous curvature in each direction, which

results from variation of growth across the thickness (these two 2D tensors replace

the 3D metric tensor presented earlier). Using these reference tensors, the energy

density takes the form

E ¼ ES þ EBat
ð
ðMetric differenceÞ2dSþ t3

ð
ðCurvature differenceÞ2dS

or

Eat
ð
½ð1� vÞ a� aj j2 þ vTr2ða� aÞ�dSþ t3

ð
½ð1� vÞ b� b

�� ��2 þ vTr2ðb� bÞ�dS;
(3.3)

Fig. 3.1 Schematics of a plate and a shell with and without a pure bending deformation, with mid

surface (dashed line) and its normals (dotted lines) indicated. A stress-free plate (top left) is flat—
has no spontaneous curvature. When bent (top right) its upper “layers” are stretched and lower

layers are compressed. A stress-free shell (bottom left) is not flat. It has a spontaneous curvature (in
this illustration it is uniaxial, but in general it is tensorial). When bent (for example flattened, as in

the bottom right panel) upper/lower layers are stretched/compressed, depending on the bending

direction. Most effective 2D models assume that normals to the mid surface remain normals in the

deformed configuration as illustrated
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where Tr indicates the trace of a tensor, a and a are the actual and reference 2D

metrics, b and b are the actual and reference curvatures, t is the thickness of

the sheet, dS is the infinitesimal surface element, and v is the Poisson ratio of the

material. The a relation stands for proportionality, where the coefficients are

constant material parameters.

Note that in this formulation we do not use a configuration or a reference

configuration. Since we deal with distances and curvatures of a 2D surface we

directly use its (actual and reference) first (metric) and second (curvature) funda-

mental forms. This gives us simplicity, accuracy, and capability of dealing with

residually stressed sheets.

Looking at (3.3) one might suggest that the system will choose a configuration in

which a ¼ a and b ¼ b have zero elastic energy. This is indeed what happens for

“regular,” or compatible, plates and shells. However, as a and b are the forms of an

actual 2D surface in space (a configuration), they are not independent. They must

fulfill the Gauss–Peterson–Codazzi–Mainardi (GPCM) equations—that connect

between the metric and curvature tensors of a surface [12]. For example, according

to Gauss theorem egregium, the Gaussian curvature, which is detðbÞ= detðaÞ , is
completely determined by a . In contrast, the reference tensors a and b are
independent, not subjected to the (GPCM) equations. In fact, for general growth,

they are likely to violate these equations. In this case we say that a and b are

incompatible—there is no surface in R3 for which they are the first and second

forms, respectively. For the mechanical sheet it implies that there is no stress-free

configuration. The body always contains elastic energy and the competition

between bending and stretching leads to the selection of a and b for the given a

and b, i.e., shape selection.
Having an energy functional, it is possible to gain insight into the principles

that govern this shape selection, to understand the global nature of the problem,

and to use differential geometry for “educated guessing” of solutions in limit

cases.

3.3.2 Thin/Thick Limits

What can be said about the selected configurations when we consider fixed sheet

size and reference tensors, and vary the thickness t? The bending energy is cubic in
t, while the stretching is linear. This implies that the thinner the sheet is, the more

energetically expensive stretching is, compared to bending. Therefore, for very thin

sheets the selected configurations will contain very small amount of in-plane

strains. For our sheets this implies that as the thickness decreases, the actual 2D

metric, a, gets closer and closer on average to the reference metric, a. In the limit

t ! 0 we will have a ! a, while the curvature tensor, b, is “enslaved” to a—It is

optimized among all curvature tensors that are consistent with a. In other terms we

can say that in the limit t ! 0 the selected configuration is an embedding of a with
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the least bending content. This formulates a link between the physical problem and

a purely geometrical problem and makes the powerful tools and theorems of

differential geometry relevant for “guessing” or “understanding” the behavior of

the underlying physical system. It is important to remember that this geometrical

connection is valid only in the limit t ! 0 and only if such a limit exists (for a proof

and details see [13]).

In the opposite limit—that of large thickness—bending deformations become

increasingly costly compared to stretching deformations. Therefore, thick enough

sheets will “obey” the reference curvature tensor having b � b, while a is optimized

among all metrics that are consistent with b.
When stating that a sheet is “thin” or “thick” “enough” we need to specify with

respect to what. For flat sheets of lateral scale L and thickness t, the Foppl–von-

Karman number g � ðL=tÞ2 determines the thin ðg>>1Þ and thick ðg � 1Þ limits.

When the reference tensors are nontrivial they define additional length scales—the

inverse of reference curvatures (that are defined by both a and b). When defining the

thin/thick limits, one needs to take these scales into account.

3.4 Building Actively Deforming Sheets

Once the theoretical framework for studying actively deforming sheets is

formulated, we turn to the nontrivial task of producing such bodies in a controllable

way. The techniques that are described in this chapter are far from being optimized

and most of them are suitable only for basic study of shaping principles. It is very

likely that advanced techniques will be developed and will allow using active

deformation as a shaping or a design technique.

3.4.1 Responsive Gels

Responsive gels are excellent materials for construction of actively deforming

sheets. These gels undergo reversible swelling/shrinking transitions that are

induced by external fields. Gels that respond to various fields, such as temperature

[14] or concentration of chemical agents [15], are available. The activation of the

gel by the external field can be sharp (“on–off-like”) or gradual (“analog-like”),

where the equilibrium volume is a continuous function of the stimulating field

intensity. One can think of two basic approaches for building actively deforming

gel sheets: In the first one the sheet composition is uniform and the driving field is

designed to vary across the sheet, leading to nonuniform shrinkage/swelling that

defines nontrivial reference tensors. A basic problem with this approach is how to

maintain the desired local value of the driving field while the sheet changes its

shape in space. In the other approach, on which we will focus, the sheet is built
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with predetermined internal gradients in its composition so that it responses
differentially to a uniform driving field. In previous works [16–18], we used N-

Isopropylacrylamide (NIPA ) gel, which undergoes a sharp shrinking transition

above C033. We have found that the amount of shrinkage in the warm state is a

strong function of the monomer concentration in the gel: Gels with low monomer

concentration lose up to 60 % of their length at high temperature, while

concentrated gels shrink by less than 10 % in length (see [19]). Once calibrating

the connection between monomer concentration and shrinkage, one can start

building sheets with predetermined, nontrivial reference tensors.

In order to determine some reference metric a, we note that the square roots of its
entries are in fact the local shrinkage values of the gel. We therefore convert the

metric into a monomer concentration field across the sheet. Once activated (in a hot

bath), this concentration field will lead to nonuniform, locally isotropic “attempted

shrinkage” of the gel, i.e., a reference metric which is obtained by a conformal

transformation of the initial flat metric. The result is a “Non-Euclidean Plate”

(NEP). Examples of NEP are presented in Fig. 3.2. Since in two dimensions

every metric can be obtained via a conformal transformation of a flat metric [20],

one has high flexibility in determine a. When designing the concentration field one

should use the proper coordinate system, taking into account its variation during

shrinkage.

In order to determine a reference curvature tensor, b , one should introduce

gradients in composition across the thickness of the sheet. Here, the isotropic

shrinkage of the gel limits the accessible reference curvatures and one needs to

introduce additional components into the gel in order to locally break the symmetry

in the plane (see Sect. 5.2.3).

A better defined technique for metric determination is by selective UV cross-

linking of a uniform polymer solution. The cross-linking density is known to be a

Fig. 3.2 Non-Euclidean plates and tubes made of NIPA gel. Examples of plates with �K>0 (a),
�K<0 (b, c), and a disc that contains a central region of �K>0 and an outer part of �K<0 (d). (e–h)

Non-Euclidean tubes. A tube with a “step function” metric in its cold (e) and warm (f) states.

Tubes with negative curvature below (g) and above (h) the “buckling-wrinkling” transition. E.

Sharon, and E. Efrati [19], reproduced with permission courtesy of The Royal Society of

Chemistry
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key factor in setting the swelling/shrinkage of the gel. Therefore, the cross-linking

density field takes the place of the monomer concentration field in the previous

example. When it varies across the sheet, it determines a nonuniform metric. This

technique provides excellent spatial resolution in determining the metric and it is

likely to be developed further.

3.4.2 Other Materials

Other candidate materials for construction of actively deforming sheets are nematic

elastomers. These elastic materials have an “ordered” nematic state at low

temperatures and are disordered at higher temperatures [21]. Therefore, they

change their metric not by locally isotropic volume changes (absorbing/expelling

water), as responsive gels do, but by volume preserving transformations (changes in

the order parameter). Until now, all the examples we are aware of use changes

between a disordered phase and a homogeneous nematic phase that are uniform

across the sheet, i.e., flat metrics. However, one can attempt to control the local

orientation of the director field in the nematic phase, thus determine non-Euclidean

metrics. An example of control over the reference curvature was presented in [22],

where gradients across the thickness were imposed and activated. Finally, it is

possible that the techniques developed to control electroactive polymers [23] could

be used for metric determination.

3.4.3 Leaves as Actively Deforming Sheets

Nature uses active deformation as a common shaping mechanism at different length

and timescales and via different deformation mechanisms. Examples are movement

of Invertebrates or the operation of the heart. In this section we give examples of

active deformation in leaves during growth. The leaf is a good system to try to

model mechanically. It is a slender sheet, made of relatively rigid tissue that

increases its size by many orders of magnitude during its development. Plant

cells do not move with respect to each other and their cell walls form a rigid

mesh, or a skeleton [24]. The description of a leaf as an actively deforming elastic

sheet is, therefore, tempting.

From a mechanical point of view, the growth process determines reference metric

and curvature tensors and the leaf skeleton evolves and deforms, so that the leaf is in a

mechanical equilibrium at each instance. Still, the leaf is a much more complicated

system than the responsive gel sheets. Its mechanical properties are nonuniform (for

example, the veins are much stiffer that the rest of the tissue), the reference tensors

are not known, and are affected by external signals during growth. More importantly,

growth (or the reference tensors) is affected by internal fieldswithin the leaf. As these
fields themselves are affected by the shape of the leaf, they cause a feedback loop:
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Growth determines reference tensors ! mechanics selects a configuration ! the

change in configuration alters the stresses and flows within the leaf ! leading to

changes in the growth field (the reference tensors). The growing leaf can, thus, be

viewed as a nonlinear evolving system. Under normal conditions the system is stable

and growth is well regulated. However, its nonlinearity makes it capable of

responding dramatically to some perturbations. Indeed, even within a single species,

one can find phenotypes with highly different leaf shapes. These can result from

minor “biological perturbations,” such as a single gene misexpression [25, 26] or

hormone application [27, 28] (Fig. 3.3). Regulation of growth is far from being clear

and it is the subject of intense research. Many of the works in this field use controlled

“perturbations” to the normal growth in order to expose the regulation mechanisms.

These perturbations alter the reference tensors and the leaf responds by changing its

3D shape. One needs a good understanding of the connection between reference

tensors and sheet configuration in order to properly analyze such data.

3.4.4 Hygroscopic Motion in Plant Tissue

Hygroscopic motion is a much simpler mechanism common in plants. This type of

active deformation occurs in sclerenchymal tissue—tissue made of dead cells. It is

thus a process that can be analyzed from a purely mechanical point of view, without

having to consider feedback on the reference tensors. Sclerenchymal tissue typi-

cally consists of fiber cells whose walls are made of layered cellulose fibrils with

preferred orientation. When absorbing/expelling water the tissue expands/shrinks

anisotropically, perpendicularly to the fibrils orientation ([29, p. 200]. Changes in

air humidity induce such uniaxial swelling/shrinkage that drive, for example, the

Fig. 3.3 The flexibility of leaf shape. Four leaves of Tomato mutants (a, b), wild type (c) and a

transgene overexpressing knotted 1 gene (d). The relatively minor biological manipulations can

prevent the development of a leaf into its natural compound shape (c). It can develop into simple

(a), dissected (b), or ultra compound (d) shapes (figures were provided by N. Ori)
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opening and closure of a pine cone [30], and the penetration of wheat seeds into soil

[31] (see Fig. 3.4). Seed pod opening is another example, which is reviewed in

details further in this chapter.

The shape transforming structures that are made of sclerenchymal tissue are, in

fact, bodies made of smart, composite material, designed to respond specifically to

external conditions (changes in humidity). It is likely that such structures (that were

hardly studied) can inspire biomimetic designs of actively deforming mechanical

elements.

3.5 Examples

Here we give some examples of specific actively deforming structures. These

examples are selected to illustrate and emphasize the principles and relevant limits

that were discussed above.

3.5.1 Non-Euclidean Discs with Constant Gaussian Curvature

The first example is of NEP (see review in [19] and specific experiments in [18])—

Thin sheets in which b ¼ 0 and a 6¼ I . This example demonstrates how the

configurations of NEP approach an isometric embedding of a as t ! 0. It also

shows that the approach to an embedding can be of qualitatively different types,

depending on the underlying (purely geometrical) embedding problem.

Fig. 3.4 Hygroscopic shape

change. Snap shots of a Pine

cone (top) and an Erodium

awn (bottom) as they change

configurations during a

transition from a wet state

(left) to a dry state (right)
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Gel discs were made by injecting the NIPA solution, through a center hole, into a

gap between closely spaced glass plates. The solution is polymerized within a time

of order minutes forming an elastic thin plate. NEP plates are made by a controlled
variation of the monomer concentrations, C, during injection. As the flow field is

axially symmetric, we end up with a disc in which C ¼ C(r). Such discs are flat

when they are cold, but they are “programmed” to shrink by a different ratio at each

radius upon heating. This differential “growth” by the shrinking ratio � ¼ �(r) ¼
�(C(r)) prescribes a new target metric (in polar coordinates) of the form

a ¼ �2 0

0 r2�2

� �
:

Introducing the arc-length radial coordinate on the shrunk disc r,

rðrÞ ¼
ðr
0

�ðr0Þdr0;

transforms the target metric to

aðrÞ ¼ 1 0

0 �2ðrÞr2
� �

; (3.4)

for which the imposed Gaussian curvature is

K ¼ � 1

�r
@2ð�rÞ
@r2

(3.5)

In order to construct discs of constant Gaussian curvaturewhose target Gaussian

is constant, we solve (3.5) for K ¼ Const and obtain the reference metrics:

a ¼ 1 0

0 1

K
sin2

ffiffiffiffiffiffiffi
Kr

p� �

for K>0, and

a ¼ 1 0

0 1

�K
sinh2

ffiffiffiffiffiffiffiffiffiffi
�Kr

p� �

for K<0.

We, then, tune the monomer concentration field to produce the calculated

functions above and produce the gel discs. In the experiments that are described

below, we keep the disc radius fixed R ¼ 28 mm and set the reference Gaussian

curvature to K ¼ �0:0011 mm�2 . The initial thickness of the disc was the only

parameter that was changed ð0:1 mm<t<1:5 mmÞ.
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3.5.1.1 Results

ForK>0 the discs buckled into dome-like shapes, preserving the axial symmetry of

the reference metric (Fig. 3.5, bottom insets). Such configurations were predicted

theoretically for the thin limit. In this limit the theoretical analysis shows that the

deviation from the isometric embedding (a perfect spherical dome) was in the form

of a boundary layer whose width scales like t1/2. In this boundary layer the

curvature perpendicular to the edge vanishes. This condition is often “put by

hand” as a boundary condition when using local equations of force and torque

balance. In our formalism it is derived directly from energy minimization (see

[32]). The experimental data is consistent with these calculations. All discs

assumed dome-like configurations with Gaussian curvature very close to K . The

predicted boundary layer is visible and it shrinks as thickness decreases (Fig. 3.5,

bottom insets). Finally, the bending energy of these discs is cubic in the thickness.

This scaling is expected, since as t ! 0 the system converges to the embedding of a

of least bending (in this case it is a spherical dome of radius 1=
ffiffiffiffi
K

p
) and nearly all

the change in the bending energy is due to the factor t3 in (3.3). The thick limit was

studied theoretically [32]. It was found that very thick discs are perfectly flat

(obeying b) down to a critical buckling threshold thickness t*. Below t* there is a

second-order transition and the disc buckles with increasing amplitude as the

thickness further decreases.

The situation is qualitatively different for discs with K<0. Though on average

these discs nearly obey the reference metric, they do not settle on axially symmetric

configurations. Instead, they break the axial symmetry and form wavy

configurations (Fig. 3.5, top insets). Thick sheets adopt a saddle shape, but as the

thickness decreases these configurations are replaced by wavy ones. The number of

waves scales like t�1=2. A direct consequence of the observed refinement is a slower

decrease of the bending energy as t decreases. The bending content is roughly

Fig. 3.5 The average bending content as a function of sheet thickness. For discs of �K<0 (solid
circles) the bending content increases sharply with decreasing thickness to values an order of

magnitude larger than �Kj j . For �Kr>0 the bending content is “saturated” at small thickness. Insets
show selected discs at the relevant thickness. Discs diameter is 28 mm and �Kj j ¼ 0:0011 mm
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quadratic in the number of waves, leading to the scalingEb � t2, which is similar to

energy scaling in some wrinkling problems. This refinement and slow decay of

energy are surprising and not fully understood. Several theoretical works have

addressed this topic, but the observation is not fully explained yet. It is important

to note that the only difference between the two cases is the sign of the reference

Gaussian curvature. All length scales and symmetries are the same. The origin of

the qualitative difference between the cases of K<0 and K>0 should thus be in the

embedding problem of the reference metrics.

3.5.2 A Strip with Imposed Hyperbolic Curvature Tensor

The previous example considered the case in which b ¼ 0 and a is non-Euclidean—
prescribing nonzero Gaussian curvature. Now we will look at the opposite case: A

sheet for which a is trivial, i.e., the identity matrix, and b 6¼ 0. In particular, we will

study long strips with a reference curvature that describes a sheet that locally

“wants” to bend into a saddle shape at every point. The principal directions of b
are oriented at some angle y from the long axis of the strip.

It was recently discovered that this type of structure is common in many plant

organs. In particular, the microstructure of many seed pod valves determines such

reference tensors, utilizing the underlying mechanics to drive hygroscopic opening

of the seed pod. We therefore review in parallel the biological and synthetic

systems.

3.5.2.1 The Opening of a Seed Pod

The dynamic opening of a pod, leading to seed dispersal, is another example of

shape transformation driven by active deformation. This process is called dehis-

cence and it is common in Leguminosae. Most Legumes blossom in spring and their

seeds are developed during early summer. At this stage, the pod is made of living

cells, and its valves are flat or convex, keeping the pod closed, protecting the seeds.

When the seeds are fully developed, the pods’ cells die, left to dry in the summer

air. At the right time the pods crack open, its two valves are separated, spreading the

seeds. The opening can be abrupt, shooting the seeds to large distances, or slow.

Bauhinia variegata pods dehisce explosively by a rapid curling of their valves into

oppositely twisted helical strips (Fig. 3.6 left). The flat-to-helical transition occurs

when the valve tissue is dead (sclerenchymal tissue, see Sect. 4.4). It is, therefore,

not a biological process, but a mechanical one. What is the mechanism converting

the initially flat valves into oppositely curled helical strips, and how is it related to

the microscopic structure of the pod tissue?

Bauhinia valves are elongated narrow strips with typical length, width, and

thickness of L � 15 cm, w � 2 cm, and t � 1 mm, respectively. They twist when

38 E. Sharon



free of external constraints, driven by the active deformation of the tissue [33].

The valve is made of fiber cells whosewalls are made of layered cellulose fibrils with

a preferred orientation. When absorbing/expelling water the tissue expands/shrinks

anisotropically, perpendicularly to the fibril orientation (see Sect. 4.3).

In Bauhinia, the pod valves consist of twofibrous layers, oriented roughly at � 45�

with respect to the pod’s longitudinal axis. How can this simple architecture lead to

the observed shape transition?

In order to answer this question, we determine the reference metric and curvature

of the pod: It is well known that a uniaxial shrinkage of one layer determines a

curvature along the shrinkage direction, where the shrunk (shorter) layer is in the

inside of the curved surface. When two layers are shrunk in perpendicular

directions, each prescribes a curvature. The result is two opposite curvatures in

two perpendicular directions—a saddle shape. We take the curvatures to be equal,

and use the principal directions (the � 45�) to write the reference curvature:

b ¼ k0 0

0 �k0

� �
; (3.6)

Since the valve material is laterally uniform, the reference metric is flat and can

be written as

a ¼ 1 0

0 1

� �
(3.7)

To verify that these are indeed the reference tensors, one can cut narrow strips

from a wet valve at � 45�. When drying, these strips bend into arcs in two opposite

directions (Fig. 3.6, right).

Fig. 3.6 The opening of a

seed pod. As they dry up (left
top to bottom) the two
initially flat valves gradually

twist in two opposite

handedness, driving the

opening of the pod. Cutting

narrow strips in � 45� to the

pod axis and drying them

leads to their bending in

opposite directions without

twisting. The � 45�

directions are, thus, the

principal directions of the

reference curvature tensor

and are defined as the x and y
directions
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We also construct a synthetic model material, which is made by stretching two

latex sheets in perpendicular directions (the x- and y-directions) and gluing with

flexible glue. When free of external constraints, the composed sheet shrinks

actively in two perpendicular directions along its top and bottom layers, similarly

to the pod tissue. This active deformation prescribes a reference curvature tensor as

in (3.6), with k0 determined by the initial stretching of the sheets (see [34]).

Once the reference tensors are determined, we are ready to discuss the shaping

principle of the valve. The incompatibility of this type of sheet is clear:

The flatness (Zero Gaussian curvature) of a is inconsistent with the negative

Gaussian curvature K ¼ �k20 that is prescribed by b. Therefore, the bending and

stretching terms cannot be minimized simultaneously by any configuration. They

have to compete. As explained earlier, b will be dominant in the “thick limit,”

while a will be obeyed in the thin limit. Cutting small and large circles from the

sheet demonstrates the different limit behavior. Small disc attains a saddle shape

(Fig. 3.7), as determined by b. The large disc rolls into a cylindrical shape—a

configuration of zero Gaussian curvature that “satisfies” one of the principal

reference curvatures. Indeed, these cylindrical configurations are bi-stable and

can flip between configurations that obey k0 or � k0 . In these configurations a

bending-dominated boundary layer is visible. Unlike the case of the NEP, where

the boundary layer was developable (since in these sheets b ¼ 0 ), here the

boundary layer is saddle-like, obeying b.

3.5.2.2 Strips

We now turn to apply the above principles to the case of long strips geometry.

The thin/thick limits can be identified as follows: A flat strip (a configuration that

obeys a) will have bending energy that scales like Eb � t3wk20. A strip configura-

tion that obeys b (a minimal surface) will have stretching energy that scales like

Fig. 3.7 A small disc (left)
and a large rectangle (right)
that were cut from the same

composed latex sheet having

reference curvature and

metric as in (3.6) and (3.7).

The small disc is governed by
�b, adopting a saddle shape.
The wide sheet is governed by
�a adopting a cylindrical shape
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Es � twðk0wÞ4. The ratio between the two energies varies like w4ðk0=tÞ2. This is
the relevant dimensionless number that takes the role of the Föppl–von-Karman

number in flat sheets. One sees that stretching is dominant for large width and

imposed curvature and for small thickness, while bending is dominant in the

opposite limit. Using a dimensionless width, ~w ¼ w
ffiffiffiffiffiffiffiffi
k0=t

p
, we expect stretching

dominance for ~w>>1, and bending dominance for ~w<<1.

The ~w<<1 limit: Here we have b � b. The shape is determined by the reference

curvature, while the metric is “enslaved.” We therefore expect the strips to adopt

configurations of minimal surfaces that coincide with b. For the valve, in which the

principal directions of b are in � 45� with respect to the pod axis, these

configurations are in the form of a “twisted ribbon” with a well-defined handedness.

Helices of opposite handedness are generated from the same material if the orien-

tation of the pod axis (with respect to the principal directions) is changed by 90�.
This is exactly the difference between the two pod valves, leading to curling in

opposite handedness, assuring opening of the pod.

The ~w>>1 limit: Here we have a � a ¼ 1. The configurations must be developable

surfaces—surfaces with zero Gaussian curvature, and b� b is optimized among

these. It can be shown that the selected configurations are “helical ribbons” that are

“cut from a cylinder.” The cylinder has radius 1=k0 (up to corrections due to

Poisson’s ratio) and the pitch angle of the helix is simply y, the angle between the

principal directions and the pod axis. For y 6¼ 45� these configurations are bi-stable
and can be flipped to obey either k0 or � k0, as demonstrated in Fig. 3.8c. Similarly

to the thin limit, a change of 90� of y leads to the same configuration in an opposite

handedness.

3.5.2.3 Experimental Verification

The two calculated limits above can be compared to experimental data from both

valve tissue and a synthetic structure. Synthetic sheets are made from two sheets of

Latex that are stretched along perpendicular directions and glued together. The

result is a composed sheet with reference curvature and metric as in (3.6) and (3.7)

(see details in [34]).

To study the flat-to-helical transition, we cut from the composed sheet strips of

different width, w, and angle, y, and study their shape. Cutting at � 45� leads to

strips with geometry similar to the pod valve, but other angles are equally interest-

ing. The strips attend different helical configurations that are characterized by the

pitch and radius of their center line, and by the distribution of mean and Gaussian

curvatures of the surface. The calculated helical shapes are in excellent agreement

with experimental data. For y ¼ 45� we observe the transition, in both valve tissue

and synthetic sheets, from “twisted ribbons” (r ¼ 0) at ~w<<1 to “helical ribbons”

at ~w>>1 (Fig. 3.8a). The transition between the two families of solutions occurs at

~w � 4 (Fig. 3.8b). Surface measurements on synthetic strips confirm that the
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transition is from minimal surfaces at ~w<<1 to developable surfaces at ~w>>1. In

the second limit a bending dominated boundary layer is clearly detected and the

helices are bi-stable (Fig. 3.8c). Finally, the measured variation of pitch and radius

with y is also in excellent agreement with the calculated values [34].

It is important to note that ~w is dimensionless and its increase can result from

different processes: an actual increase in width, an increase in curvature, or a decrease

in thickness. This is demonstrated a NIPA gel model of the valve. The samples are

prepared by casting homogeneous NIPA gel and immersing in it two perpendicular

sets of parallel threads close to its top and bottom surfaces. Since the gel is prevented

from shrinking/swelling parallel to the threads, its active deformation is uniaxial,

Fig. 3.8 Helical configurations and transitions. (a) Strips cut at 45� from the same composed latex

sheet with �a and �b as in (3.6) and (3.7). As the width of the strip increases (left to right) a twisted-to-
helical transition is observed. (b) Measurements of the normalized pitch and radius, ~p and ~r, of
helical latex strips ðy ¼ 45�Þ as functions of ~w . The thickness and spontaneous curvatures are

indicated in the figure.Dashed lines indicate the calculated values of ~p and ~r in the narrow and wide

limits. The solid lines are intermediate values that were obtained numerically. (c) Two stable

configurations of a wide strip cut at 60�. In each of the two configurations the sheet bends along a

different principal curvature
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perpendicular to the thread direction. This leads to a sheet that grows/shrink in two

perpendicular directions along its two faces, i.e., a sheet with reference curvature as in

(3.6). We cut strips from the composed gel sheet and put them in water bath. When

increasing the temperature of the water the gel increasingly shrinks, leading to a

gradual increase in k0 and a decrease in t. This leads to a total increase in ~w. Indeed, a
reversible flat–twist–helical transition is observed in this system (Fig. 3.9).

3.5.2.4 The Connection to Shape Selection of Helical Macromolecules

The inputs to the energy functional are geometrical quantities—the reference metric

and curvature tensors. The theoretical formulation does not include information

about fine scale structure. This is not a coincidence—Amorphous elastic materials

are perfectly described by 3D reference and actual metrics. Within 2Dmodeling, the

state of an amorphous sheet is fully described by reference and actual 2D metric and

curvature tensors. Therefore, many different microscale architectures can lead to the

same functional. For a given microstructure of a sheet, one only needs to find a and b
and then the trends and limit behavior of the structure become clear and solvable.

Fig. 3.9 Flat-twisted-helical-tube transition. A NIPA gel strip, reinforced with blue and red cotton
threads (see text) as it heated from room ~30 (left) to 45 �C (right). The initially flat strip

undergoes conformation transitions: The flat configuration is replaced by a twisted one. The

pitch of the twisted configurations decreases, until a helical configuration replaces the twisted

one. On further heating, the pitch of the helix decreases until the strip touches itself, forming a

tube. Qualitatively similar transitions have been observed during self assembly of macromolecules

from chiral elements
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For example, the same b as in (3.6) can result even if the layers are not

perpendicular to each other, or even when there is only one layer of fiber tissue

on top of an isotropic layer (see [34]). Indeed, the thorough study of pods from over

300 species of Leguminosae by Fahn and Zohary [35] revealed a vast variety of

microscale architectures. Some of these architectures drive pod opening as in the

Bauhinia and some drive different mechanical transitions. These architectures can

be analyzed using the modeling above and inspire the construction of smart active

structures.

Surprisingly, the mechanism studied here is highly relevant to systems in a

completely different scale and context. These are macromolecules that are

generated via self-assembly of chiral molecules. Such macromolecules often

attain configurations in the form of helical strips [36, 37] and some of them

undergo a “twisted-to-helical ribbon” transition during growth [38]. Some models

of these monolayers assume that the chirality of the molecules introduces a term

in the bending energy of the sheet, which accounts for an intrinsic twist (see
[39–41]) along the long axis of the strip. These models predict the observed

transition. It turns out that such a system is mechanically equivalent to the pod
valve system. To see that we go back to the reference curvature of the valve,

which takes the form

b ¼ k0 0

0 �k0

� �

when written in a coordinate system aligned with its principal directions ( � 45�

with respect to the pod axis). If we use a coordinate system aligned with the pod

axis (we rotate coordinate system by 45�) we find

b ¼ 0 k0
k0 0

� �
(3.8)

This reference curvature tensor represents a sheet whose only nontrivial property

is a spontaneous twist along its long axis. This is exactly the mechanical

characteristics of the macromolecules described above. The mechanical behavior

of such structures that was studied above is, thus, relevant to shape selection of such

macromolecules. Another system that was recently studied is a sheet made of

nematic elastomers with intrinsic twist along the z-direction [22]. The system

undergoes a similar twist to helical transition as the amount of twist increases.

One can easily show that the microstructure of these strips leads to reference

curvature as in (3.6) and (3.8). In this system, it is the increase in k0 that caused

the increase in ~w and drives the flat–twist–helical transition. The examples above

show that shape formation and transitions observed in chemical systems and

composed materials might be explained by the effective elastic formulation

presented in this chapter. It seems that the Bauhinia pod had opened an exciting

direction of study, combining biology, chemistry, physics, and engineering.
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3.6 Summary

The fascinating physics of actively growing elastic bodies is in the early stages of

being formulated and revealed. This young branch of mechanics contains many

open questions and challenges and is naturally connected to diverse scientific fields:

The contribution of mathematicians is essential for understanding the underlying

geometrical problems (the embedding problem) and the type of energy minimizers.

Biologists can both integrate the new mechanical concepts into morphogenetical

models and discover new “smart” natural active structures that can affect the further

development of the field. Experimental and theoretical physicists are expected to

revile the basic shaping principles and to develop experimental techniques for the

construction of active bodies. Chemists and material scientists can both contribute

to the design of new materials and the application of the new concepts to molecular

structures. Finally, engineers and even industrial designers can take the

accumulated basic knowledge and turn it into functioning devices, such as “soft

machines.”
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Chapter 4

Ion Beam-Induced Self-Assembled Wrinkles

Myoung-Woon Moon, Chansoo Kim, and Ashkan Vaziri

Abstract Instability of a stiff thin film attached to a compliant substrate generally

results in the appearance of exquisite wrinkles with length scales that depend on the

system geometry and applied stresses. Several methods have been developed for

creating surface wrinkles including inducing compressive stresses/strains on a thin

metal deposited on a polymer substrate, dewetting polymer, and UVO/ion beam-

irradiated polymeric surface.

In this work, we have reviewed the formation of ion beam-induced self-

assembled wrinkle patterns on polymer surfaces. Exposure to ion beam generally

results in formation of a stiff skin on surface areas of a polymeric surface. The

created stiff skin has strain mismatch with the polymeric surface, leading to

generation of ordered surface wrinkles. By controlling the ion beam fluence and

area of exposure of the poly(dimethylsiloxane) (PDMS), one can create a variety of

patterns in the wavelengths in the micron to submicron range, from simple one-

dimensional wrinkles to peculiar and complex hierarchical nested wrinkles. The

induced strains in the stiff skin can be estimated by measuring the surface length in

the buckled state. The patterned surfaces have a variety of cross-disciplinary

applications that range from optics and electronics to tissue engineering and

regenerative medicine. One novel usage of these patterns is for fabricating wrinkles

with extreme topology. As an example, by using the prefabricated wrinkle pattern

by ion beam, we developed wrinkles with high aspect ratio of amplitude over

wavelength. Here, first the wrinkles were induced on a PDMS surface using Ar
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ion beam irradiation. The wrinkles had a wavelength in the range of 200–1,400 nm

depending on the ion treatment time. Then, an amorphous carbon film was depos-

ited on the pre-patterned PDMS to elevate the amplitude of surface features using a

glancing angle deposition.

4.1 Introduction

Instabilities of thin films (or skins) that generally lead to large out-of-plane

deformations (e.g., wrinkling) and possible failure and cracking, impose significant

challenges to many different industries such as flexible electronics, cell templates,

nanochannels for protein condensation, or other fields [6, 8, 16]. Especially residu-

ally compressed thin films on thick substrates may delaminate and buckle on hard

substrate as energy release rate exceeds the interface fracture toughness [15, 20,

21]. While films or skins could be compressed on compliance substrate, it may

wrinkle along with deformation of substrate [6, 9, 23]. Wrinkle configurations

range from straight shape to herringbone and hierarchical with respect to the stress

distribution and level [22]. Under uniaxial compression applied externally, a thin

film (or a stiff layer) attached to a compliant substrate forms a straight wrinkle

patterns with well-defined sinusoidal shape, which might be used for cell templates,

nanochannel of protein condensation, or optical grating devices. These systems

could be maintained under equi-biaxial stress state in pre-deposited thin film as

shown in Fig. 4.1a or ion beam-induced wrinkled skin on polymer in Fig. 4.1b

[22, 23], inducing herringbone or more complex wrinkle patterns or further hierar-

chical patterns with respect to stress level and thickness of stiff layer.

In case of a compressed stressed film deposited on a soft polymer, creating

nonlinear wrinkle patterns were introduced as an alternative method for lithography

patterning [26]. A nanoscale wrinkle pattern was formed by depositing a thin

compressed diamond-like carbon (DLC) film, which causes wrinkling due to its

internal residual stress of 0.5 GPa as well as large difference in Young’s modulus

between thin DLC film (~100 GPa) and poly(dimethylsiloxane) (PDMS) substrate

(~2 MPa).

It has been reported that the high compressive stress in a DLC film is originated

from the knock-on implantation of carbon atoms with an optimum ion energy to

overwhelm the stress relaxation during the deposition process [26]. Furthermore, a

significant amount of sp3 bonds would also contribute to the high compressive

stress of the DLC film since the sp3 sites tend to form a local compression stress

rather than tension in the sp2 sites. Especially, unlike other methods, typical

external forces such as pre-stretching and/or thermal contraction of the substrate

are not required to create wrinkles on a compliant substrate. Figure 4.1a shows the

formation and evolution of the wrinkled surface with single (left)- and double

(right)-wavy modes as a function of film thickness. The wavelength of a single-

wavy mode proportionally increases with the DLC film thickness. At a larger film

thickness, the wavelength deviates from the theory, presumably due to coarsening
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of the neighboring waves. Hierarchical wrinkles with two distinguishable wave-

length of approximately 100 nm and 2,000 nm were observed at a higher film

thickness [26].

Without deposition of new materials on soft polymers, the attempt to develop

surface patterns for polymers has yielded various methods from lithography and

plasma and UVO treatment to liquid polymer films dewetting, and thin metal film

deposition on polymers [3, 10, 11, 13, 30]. These techniques have been employed to

create a variety of patterns, such as dots, network structures, complex hierarchically

assembled patterns, honeycomb-like structures, and ringlike patterns on the surface

of polymers.

Among various methods for fabrication of wrinkle patterns, surface modification

by ion bombardment or plasma treatment has been previously investigated for

glassy metals, as well as amorphous and crystalline materials [4, 12]. Generally,

ion beam irradiation normal to the surface leads to surface milling—as also seen in

our recent experiments on polyimide, a polymer much stiffer than PDMS [24]. In

these experiments, the ion effect is characterized by the mean penetration depth and

longitudinal and lateral straggling widths, depending on material properties. On the

other hand, ion beam irradiation at non-normal incident angle leads to appearance

of intricate and often complex surface features. For polyimide, the structural

features manifest in the form of ripples.

Fig. 4.1 Images for wrinkle patterns induced on a polymeric surface by deposition of a thin

compressive film (a) and by ion beam irradiation or etching process (b)
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In recent experiments on PDMS, it has been shown that focused or broad ion

beam irradiation can be used for creation of self-assembled wrinkle patterns on the

polymeric surfaces [22, 23, 25]. The flexibility provided by this technique provides

new avenues for creation of structural features at micron and submicron scales on

the surface of polymers.

As an example, irradiation of Ga ions beam (FIB) on the surface of a PDMS

substrate, Fig. 4.2, results in formation of a stiff skin on the substrate. This stiff skin

experiences in-plane compressive strain upon formation induced by ion beam [23]

and buckles to accommodate the induced mismatch strain between the skin and the

polymeric substrate. This finding provides a robust technique for creating wrinkling

patterns on selective areas of PDMS by simply controlling the movement of the ion

beam relative to the polymeric substrate. A Ga ions beam with a wide range of

acceleration voltages and ion fluencies created various pattern configurations from

straight one-dimensional undulations to herringbone and hierarchical patterns with

multiple wavelengths. The role of the acceleration voltage and the fluence of the ion

beam are explored by systematically varying these parameters between 5 and

30 keV and 1012 to 1018 ions/cm2, respectively. To extend the capabilities of this

technique, maskless patterning was developed for selecting the location of the

surface patterns. This method allows the accurate selection of the wrinkling areas

exposed to the FIB, confined by Bitmap images of the exposure patterns. Moreover,

we will discuss the fabrication of wrinkles with high amplitude/wavelength ratio by

the deposition of an amorphous carbon film on a surface of a pre-patterned soft

polymer PDMS. In the experiments, glancing angle deposition (GLAD) was used to

deposit amorphous carbon film on a PDMS surface.

4.2 Theoretical Background

Basic theory for wrinkling instability of stiff skin or film layers on soft substrates

under compression has been studied comprehensively [3, 7]. Wrinkling geometries

of wavelength and amplitude and onset strain are determined by the combination of

film thickness h and the ratio of elastic moduli between film ðEfÞ and substrate ðEsÞ.

Fig. 4.2 A schematic of

wrinkle patterns on PDMS

surface induced by FIB

irradiation
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By considering the wrinkling geometries under plane strain condition on infinitely

deep substrate, wrinkling configuration could be assumed as w ¼ wmax sin p x=Lð Þ,
and a critical strain for the onset of wrinkle would be expressed by

ec ¼ 1=4 3Esub=Ef

� �2=3
; (4.1)

where E ¼ E= 1� n2ð Þ. Above the critical strain, ec, for stiff layer, the wavelength
(L) of wrinkling would be predicted as

L=h ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ef=Esub

3

q
; (4.2)

here a is given about 4.36 for plane strain condition [7]. Noting that wavelength

L would increase by increasing the thickness hf of film and the ratio of elastic

modulus, Ef=Esub . The amplitude of the sinusoidal wrinkling patterns, A, can be

predicted from

A=h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe=ecÞ2 � 1

q
; (4.3)

where e is the compressive strain applied to the stiff skin.

4.3 Ion Beam-Induced Surface Patterns on Polymers

Using Ion Beam

The precise mechanisms underlying formation of these wrinkling patterns have not

been completely understood. However, it was shown that ion beam irradiation

creates formation of a stiff skin on the surface of PDMS, as also seen in previous

experiments on the effect of ion beam irradiation on metallic surfaces. It was

analyzed that this thin stiff skin resembles amorphous silica due to selective deple-

tion of carbon by ion [23, 27]. The thin stiff skin induced on the soft (or rubberlike)

polymeric surface undergoes in-plane compression upon formation and buckles

leading to creation of wrinkles. As ion beam irradiation on various materials was

used for high-precision micro- and nanomachining, it has been discussed that ion

beamswould induce compositional andmorphological changes because of ion–solid

interaction resulting in ion implantation or polymer chain modification. As the ion

beam creates or induces surface defects or polymer chain modification, it has been

reported that the biaxial compressive stress will develop [17].

In our experiments, wrinkle patterns are formed by exposing the surface area of a

flat PDMS sheet (thickness ~ 3 mm, Young modulus � 2 MPa) to an FIB of Ga

ions as schematically shown in Fig. 4.3. This method can create wrinkle patterns of

various widths and complexity by controlling the relative motion of the polymeric
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substrate and the FIB to scan selected areas as discussed below. Because of the

strain relaxation to release ion beam energy accumulated in the stiff skin,

the wrinkles appear only on the exposed areas of the PDMS to FIB. FIB exposure

creates a tendency for the skin to expand in the direction perpendicular to the

direction of FIB irradiation, if it were not constrained by the PDMS substrate.

The mismatch strain between the newly formed stiff skin and its substrate gives rise

to skin instability and formation of the wrinkles. FIB exposure differs from UVO

treatment of PDMS in that the latter produces a stiff skin by increasing cross-links

with relatively little strain mismatch. The morphology of the wrinkle patterns on the

surface areas of PDMS is mainly a function of ion fluence. In our experiments, the

incident angle defined as the angle between the incoming beam and the surface

normal was maintained at 0o and the beam dwell time was 3 ms in all cases.

The wavelength and morphology of the induced undulations can be effectively

selected by controlling the accelerating voltage and fluence or current density of the

ion beam as shown in Fig. 4.3 [23]. Figure 4.3a and b displays one-dimensional

straight buckles and herringbone patterns, respectively, with primary wavelength

~50 nm created using acceleration voltage 5 keV and ion fluences 9:0� 1013 ions

=cm2 and 5:0� 1014 ions=cm2, respectively. Nonlinear wrinkles with hierarchical

Fig. 4.3 Selected SEM images of the wrinkling patterns. Panels (a, b) display one-dimensional

straight buckles and herringbone patterns, respectively. (c) Complex hierarchical patterns with

primary wavelength ~465 nm (Bar ¼ 5 mm). (d) Complex wrinkling patterns and surface cracking

were observed (Bar ¼ 5 mm)
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wavelength were evolved with primary wavelength ~465 nm created using an

acceleration voltage 30 keV and ion fluence 1:0� 1016 ions=cm2. The wavelength

was almost linearly dependent on the accelerating voltage or ion beam energy. As

increased the ion fluence up to 1:0� 1017 ions=cm2 for an acceleration voltage

30 keV, complex wrinkling patterns, and surface cracking were observed in

Fig. 4.3d.

Various morphologies shown in Fig. 4.4a were created by a single-mode FIB

scanning with the beam current of 1 nA and the fluence level denoted in the images.

When the PDMS substrate is exposed to ion beam at a fluence in the order of 1

�1013ions=cm2, induced wrinkles are mainly straight and one dimensional with an

average wavelength � 460 nm. Herringbone wrinkles form at a fluence of 5� 1013

ions=cm2. Nested hierarchical patterns are created at a fluence of about 7� 1013

ions=cm2, or greater, with primary wrinkles having average wavelength of � 460

nm nested in the larger secondary wrinkles with average wavelength � 2:0 mm,

revealing the hierarchical nature of wrinkling structures.

Another method for controlling the morphology of the wrinkles is multiple

scanning of the same region by an FIB with constant beam current. Figure 4.4a

shows SEM images of the surface morphology of the PDMS exposed to FIB in a

single scan mode ðN ¼ 1Þwith various ion beam fluences,F ðions=cm2Þ. Figure 4.4b
shows SEM images of the surface morphology created by N scans at a constant

fluence, F ¼ 2:0� 1013 ions=cm2 . SEM images of the surface after N ¼ 15 and

N ¼ 20 scans reveal complex hierarchical patterns. By subjecting the surface to

multiple scans at the same acceleration voltage, we verified that the morphology of

the wrinkling patterns is indeed controlled by the accumulative ion fluence, defined

simply as the number of scans times the ion fluence per scan.

4.3.1 Energy Dependency

To quantify the morphology of the wrinkle patterns, we examined the topology of

the wrinkles using atomic force microscopy (AFM) in the tapping mode (Fig. 4.5a).

For the fluences of approximately 1013 ions=cm2 , a periodic, one-dimensional

profile appears on the regions exposed to FIB, while at fluences below this level,

the surface of the PDMS remains flat. Figure 4.5b shows the average induced strain

in the stiff skin as a function of FIB fluence for the acceleration voltages 10, 20, and

30 keV, respectively. The compressive strain in the stiff skin induced by FIB

irradiation was estimated by direct measurement of the surface length, L, along a

trace across the surface. WithL0 as the straight-line distance between the ends of the
trace, the strain approximation is taken as ðL� L0Þ=L0 . The lowest ion fluence

which causes appearance of one-dimensional straight buckles is in the order of 1013

ions/cm2 with a slight dependence on the acceleration voltage. The average induced

strain at the onset of skin wrinkling is ec � 3% for the three sets of measurement

shown in Fig. 4.5b. Examination of the wrinkling patterns created by ion beam with
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Fig. 4.4 The surface morphology of the wrinkle patterns induced by FIB depends primarily on the

applied ion fluence. (a) SEM images of the surface morphology of the PDMS exposed to FIB in a

single scan mode ðN ¼ 1Þ with various ion beam fluences, F ðions=cm2Þ. (b) SEM images of the

surface morphology created by N scans each with fluence, F ¼ 2:0� 1013 ions=cm2 . Scale

bars ¼ 10 mm. Moon et al. [23], copyright 2007 National Academy of Science, USA, reprinted

with permission
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acceleration voltage of 10 and 20 keV confirmed that the induced average strain in

the skin at the onset of wrinkling formation is effectively independent of the ion

beam acceleration voltage. The classical relationship for buckling of a linear elastic

stiff skin with modulus, Es, attached to a compliant substrate with elastic modulus,

Ef , gives the critical strain associated with the onset of instability as (4.1), ec � 0:

52ðEs=EfÞ2=3, independent of the skin thickness. Based on ec � 3%, the modulus

ratio is from (4.2), Ef=Es � 70. The associated wavelength, l1, of the first wrinkles
to form, referred as the primary wrinkles, scales with the thickness of the stiff skin,

t, according to l1=t ffi 4ðEf=EsÞ1=3.
Close examination of the undulations also shows that the wavelengths of the

patterns depend primarily on the acceleration voltage. A critical ion fluence is

required to produce a given pattern, but the fluence has little effect on the wave-

length once the pattern has formed. These observations are consistent with the

notion that the acceleration voltage sets the depth of penetration of the ions and

therefore the thickness of the stiff skin, while the lateral strain induced by the FIB is

controlled by the fluence. The three wavelengths plotted as a function of accelera-

tion voltage in Fig. 4.5c are measured within the hierarchal regime (see Fig. 4.6).

The finest wrinkling pattern has l1 � 50 nm and was created with an acceleration

voltage 5 keV, while the wrinkling patterns induced by an acceleration voltage

30 keV have l1 � 450 nm. The largest measured wavelength is l3 � 10 mm for a

hierarchical pattern induced by an acceleration voltage 30 keV.

4.3.2 Wrinkling Map

To further investigate the relationship between the pattern morphology and the ion

beam parameters, the PDMS surface was exposed to FIB of Gaþ ions in a digital

Fig. 4.5 Examination of the surface topology and chemical composition of the PDMS exposed to

FIB through depth. (a) An AFM image and cross-sectional profile, (b) average compressive strain

in the stiff skin as a function of ion fluence for acceleration voltages, and (c) wavelengths of the

wrinkling patterns. Moon et al. [22],# Carl Hanser Verlag, Muenchen, reprinted with permission
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mode with multiple acceleration voltages and ion current in the range of 1 pA to

20 nA [22]. The general conditions for the sample preparation and ion beam were

the same as those in previous sections. Figure 4.6 shows the mapping between the

morphology of the wrinkling patterns and acceleration voltage and ion fluence of

FIB. At each acceleration voltage, straight, one-dimensional buckles appear at low

ion beam fluence, while at higher ion fluence complex patterns develop including

herringbone and double-scale morphologies with two or more distinct wavelengths

as seen in Fig. 4.6. The critical value of ion fluence associated with the onset of

appearance of a given wrinkle pattern is higher at lower acceleration voltages.

At very high fluence complex patterns and cracking of the surface were observed,

denoted by “surface cracking” region.

To extend the capabilities of this technique, we have developed three different

methods to select the location of the surface patterning as shown in Fig. 4.7. The area

exposed to the ion beam can be selected by controlling the relative movement of the

ion beam and polymeric substrate, or alternatively for applications that need precise

control over the exposed area by the maskless patterning method. A significant

advantage of the surface modification offered by the technique discussed here is that

wrinkles appear only on the areas of the PDMS exposed to the FIB. Areas covered by

wrinkles can be selected by simply controlling the motion of the ion beam relative to

Fig. 4.6 Morphology of the wrinkling patterns created by varying the ion beam acceleration

voltage and fluence. Map of wrinkle morphology as a function of FIB acceleration voltage and ion

beam fluence
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the substrate (Fig. 4.7a) [23]. Here, the PDMS substrate is moved at a constant speed

relative to the FIB (Fig. 4.7b). The wrinkle patterns shown in Fig. 4.7b are formed by

moving the PDMS at a constant speed of 500 nm/s while the FIB fluence is

controlled by decreasing the width of the exposed area from 50 mm to 4 mm at a

constant beam current of 1 pA. The path of the wrinkle patterns can be selected

simply by controlling the relative motion of the substrate and ion beam, while the

morphology of the surface can be changed by controlling the ion fluence. This

method permits the formation of paths of rough wrinkles on the surface of the

PDMS that might be useful in developing multifunctional microfluidic devices [22].

Application of the maskless patterning method permits accurate selection of the

areas exposed to the FIB. Bitmap files of the exposure patterns, such as those shown

in Fig. 4.8, were imported as a virtual mask in the FIB system. The patterning was

controlled with the ion fluence in the range of 1:3� 1015 to 2:1� 1016 ions/cm2.

In Fig. 4.8, maskless patterning method was used to study the role of ion fluence on

Fig. 4.7 Surface modification of polymers by focused ion beam. The figure displays the three

methods developed for controlled wrinkle patterning on desired surface areas of the polymer.

Scale bars ¼ 10 mm. Moon et al. [25], reprinted with permission
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Fig. 4.8 Selective patterning of the PDMS surface using maskless patterning. The bitmap files

(shown on the left for each pattern) were imported to the FIB such that only the white regions were

exposed. The ion fluence of the FIB within the each patterned shape was 1:3� 1015, 2:1� 1016,

2:25� 1015, and 2:3� 1015 ions=cm2 for (a), (b), (c), and (d), respectively. Scale bar ¼ 5 mm.

Moon et al. [22], # Carl Hanser Verlag, Muenchen, reprinted with permission
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creation of wrinkle patterns by FIB. The bitmap files (shown on the left for each

pattern) were imported to the FIB such that only the white regions were exposed.

Using a low-energy ion beam of acceleration voltage, 10 keV, wrinkling patterns

with wavelength �120 nm and amplitude of 5–30 nm were created on the exposed

regions of the substrate. The ion fluence of the FIB within the each patterned

shape was 1:3� 1015 , 2:1� 1016 , 2:25� 1015 , and 2:3� 1015 ions=cm2 for

(a), (b), (c), and (d), respectively.

4.3.3 Dwell Time Effect

In literatures, pixel dwell time of ion beam is considered as one of the key factors

that determine the accuracy of surface modification by ion beam [25]. The dwell

time controls the ion beam broadening and ion beam shifting as shown before for

experiments on semiconductors [14]. In Fig. 4.9, we explore the role of ion beam

dwell time on the wrinkle patterns created on the surface of PDMS using FIB

irradiation. In this set of experiment, the accelerating voltage and ion current were

30 kV and 50 pA, respectively. In the experiments, flat polymeric substrates were

subject to ion beam irradiation with various dwell times, while the formation of

wrinkling patterns was monitored as a function of irradiation duration and therefore

ion fluence. Maskless patterning was used to create the wrinkling patterns on

predefined complex regions of the polymeric substrate.

The SEM figures display the wrinkle patterns created after 2 s of FIB irradiation,

or equivalently at the ion fluence of � 1:85� 1013 ions=cm2. The dwell time was

0:5 ms and 5 ms in Fig. 4.9b and c, respectively. For the dwell time of 0:5 ms, straight
wrinkles appear at the edge of the exposed region which evolves to herringbone

patterns with wavelength of � 350 mm by moving towards the center of the

exposed region. For the dwell time of 5 ms , well-defined herringbone wrinkles

were fabricated on the entire area exposed to the ion beam. In Fig. 4.9a, the

boundaries of the region exposed to ion beam are not very distinct due to ion

beam shifting during the repetitive scanning. However, by increasing the dwell

time, this effect diminishes as a longer dwell time leads to less number of repetitive

scanning at constant fluence. Long-term ion beam irradiation may lead to overflow

of ion dose or ion shifting outside the patterned region due to increase in the

positive ion charging effect on the surface. This effect is well known for noncon-

ductive materials, especially polymers, subject to ion beam irradiation [5].

4.4 High-Aspect-Ratio Wrinkle

As discussed earlier, the wrinkle wavelength is determined by the system geome-

try (mainly the film thickness) and the relative stiffness of the film and substrate,

and is in general much larger than the film thickness and much smaller than the
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specimen dimensions. The amplitude of the wrinkles depends on the applied

stresses and the magnitude of the induced strain mismatch. The ratio of wrinkle

amplitude/wavelength is normally limited to 1/10 [19, 23]. Here, we use carbon

film deposition on patterned surfaces to achieve high-aspect-ratio wrinkle

morphologies.

As the first step, we employed GLAD for deposition of an amorphous carbon

film on a flat PDMS surfaces. Amorphous carbon films are used as a protective layer

in structural systems and biomedical components due to their low friction coeffi-

cient, wear resistance, and high elastic modulus and hardness [26]. The deposited

carbon layer is generally under high residual compressive stresses (~1 GPa),

making it susceptible to buckle delamination on a hard substrate (e.g., silicon or

glass) [20] and to wrinkling on a soft substrate [23]. GLAD is a deposition method

used to fabricate functional thin films with a columnar morphology.

Fig. 4.9 Role of pixel dwell

time on the morphology of

patterns created by focused

ion beam. (a, b) Wrinkle

pattern created at the pixel

dwell time of 0.5 ms. (c) The
edge of the region exposed to

focused ion beam with the

pixel dwell time of 5 ms.
Moon et al. [25], reprinted

with permission
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Figure 4.10a shows the schematic of a PDMS substrate subjected to hydrocarbon

ion beam irradiation, and the SEM images of the wrinkles created by 50-min

amorphous carbon film deposition at three different incident angles [1]. The

deposited carbon film is under approximately equi-biaxial compressive stress, and

the created wrinkles are semi-herringbone or semi-labyrinth shapes, Fig. 4.10b–d.

The wavelength of the wrinkles is relatively insensitive to the deposition angle and

duration and is ~ 750 nm. In contrast, the amplitude of the wrinkles depends on the

deposition angle and duration. The wrinkles created by 50-min carbon deposition

normal to the substrate surface (i.e., y ¼ 0o, Fig. 4.10b) has an average amplitude

144 nm (i.e., amplitude/wavelength ~1/5) and has the appearance of nonlinear

wrinkle configurations observed in a biaxially compressed film on a compliant

substrate. The patterns formed by deposition at 45� and 75� have approximately the

same wavelength, but much higher amplitudes (amplitude/wavelength ratios of ~2

and 2.5, respectively). Figure 4.11a–c displays the SEM images of surface patterns

created by carbon film deposition at 75� with different deposition durations,

showing that the wrinkle amplitude increases for longer deposition durations. Ion

Fig. 4.10 Surface patterns created by carbon film deposition. (a) Schematic of the experiments,

(b–d) scanning electron microscopy (SEM) images of the PDMS surface after 50-min carbon film

deposition at different incident angles. Ahmed et al. [1], reprinted with permission
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or plasma treatment at an oblique angle results in the formation of a porous thin film

with anisotropic features that are induced by the atomic-scale shadowing, or self-

shadowing [18, 28, 29]. As the ion or radical nucleates on the target substrate, the

deposition rate is higher in front of the nucleus than the deposition rate behind it due

to the shadowing by the nucleus, resulting in a porous film structure. At early stages

of the deposition, wrinkles could emerge due to the relaxation of the strain energy in

a compressively stressed thin film as shown in Fig. 4.11a. For a longer deposition

time, the porous structure keeps growing on the wrinkled surface, resulting in an

increase in the surface amplitude as shown in Fig. 4.2b and c. It was reported that

the amplitude/wavelength ratio of the patterns created with the incident angle 75�

increases by increasing the deposition duration, resulting in an amplitude/wave-

length ratio as high as 2.5.

As an extension of this technique, we demonstrated that the amorphous carbon

deposition on a pre-patterned polymeric surface allows fabrication of high-aspect-

ratio wrinkles. Figure 4.12 shows the schematic of our experiments; first, we pre-

patterned the surface of PDMS by Ar ion beam irradiation (Fig. 4.12a, b). The

created patterns are in the form of two-dimensional wrinkles with a wavelength that

depends on the treatment time and was varied between 200 and 1,400 nm in this

study. In the next step, an amorphous carbon film gets deposited on the pre-patterned

surface using GLAD to elevate the amplitude of the patterns (Fig. 4.12c). The details

of the proposed method were outlined in the ref. [1], where we demonstrated an

interesting application of the created high-aspect-ratio wrinkles for controlling the

optical band gap with respect to the wavelength of wrinkles.

Wrinkle patterns with a high amplitude/wavelength ratio were fabricated with

irradiation of Ar ion beam on a PDMS substrate and a subsequent deposition of an

amorphous carbon film using GLAD. PDMS substrates were prepared by a mixture

of elastomer and cross-linker in a mass ratio of 10:1 (Sylgard-184, Dow Corning,

MI, USA). The mixture was placed in a plastic box and stirred to remove trapped air

bubbles and then cured at 80 �C for 2 h, resulting in a cross-linked PDMS network,

which was cut as coupons of 20 mm� 20 mm� 3 mm for the experiments.

Fig. 4.11 The effect of deposition angle and time on the morphology. (a–c) SEM images of the

PDMS surface after carbon film deposition at 75� incident angles for three different deposition

durations. Ahmed et al. [1], reproduced by permission of The Royal Society of Chemistry. The

article in which this figure was originally published is located at the following link: http://pubs.rsc.

org/en/content/articlelanding/2010/sm/c0sm00386g
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The Ar ion beam treatment of PDMS and also the carbon film deposition were

carried out in a linear ion gun (DC 3 kV/ 6 kW, EN Technologies) [2]. The sample

coupons were placed in the ion beam chamber, and the chamber was evacuated to a

base pressure 2 � 10�5 mbar. The PDMS was exposed to Ar ion beam for 10 s to

50 min, leading to creation of wrinkles. The amorphous carbon film was deposited

on flat as well as pre-patterned PDMS coupons by introducing the acetylene (C2H2)

into the ion gun at a flow rate of 8 sccm. During carbon deposition, the anode

voltage was kept at a constant value of 1 kV and a radio frequency (r.f.) bias voltage

was applied to the substrate holder at a bias voltage of �200 V. In this study, the

carbon deposition time was kept between 30 s and 50 min, while the incident angle

of hydrocarbon ion was varied from 0� to 75�. Detailed conditions were referred to

ref. [1].

Figure 4.13 shows AFM profile images of three different wrinkle patterns

created on a PDMS surface by Ar ion beam irradiation. Ion beam irradiation results

in the formation of a thin stiff skin on the polymer surface which is ~100 times

stiffer than PDMS and is under compressive stress [23]. The morphology of the

created patterns depends on the state of stress in the thin film. For the ion beam

irradiation normal to the polymeric surface, the state of stress in the thin film is

semi-equal biaxial and the wrinkles are semi-labyrinth shape. The wrinkle wave-

length mainly depends on the film thickness, t, and the ratio of elastic moduli of thin

film and substrate, Ef=Es, and can be estimated from (4.2).

Figure 4.14 shows SEM images of four different patterns created on pre-

patterned PDMS surfaces. The amorphous carbon deposition angle and duration

were 75� and 10 min, respectively, while the duration of Ar ion beam irradiation in

Fig. 4.12 Schematic of the fabrication of pre-wrinkle patterns on PDMS by Ar ion beam (a, b)

and subsequent carbon deposition using GLAD to increase the amplitude of the pre-patterned

surface (c). Representative SEM images for each condition. Ahmed et al. [1], reproduced by

permission of The Royal Society of Chemistry. The article in which this figure was originally

published is located at the following link: http://pubs.rsc.org/en/content/articlelanding/2010/sm/

c0sm00386g
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the pre-patterning step was varied between 10 s and 50 min. The wavelength of

wrinkled patterns was controlled with the increase of pre Ar ion beam irradiation,

while the amplitude was increased with deposition time of amorphous carbon layer.

It was reported that for 30-min carbon deposition on PDMS with 30-s pre-

patterning by Ar ion beam irradiation, the carbon layer thickness is approximately

500–600 nm, leading to an amplitude/wavelength ratio as large as 1 [1].

4.5 Summary

A brief overview of the recent surface modification technique for polymers using

ion beam irradiation was provided by highlighting some of the key advantages and

limitations of the developed technique to create wrinkle patterns. Firstly, methods

Fig. 4.13 Ar ion treatment of PDMS. (a) Schematic of the experiment. (b–d) AFM images of the

wrinkles formed by the ion beam irradiation with different treatment times on the surface of

PDMS. Ahmed et al. [1], reproduced by permission of The Royal Society of Chemistry. The article

in which this figure was originally published is located at the following link: http://pubs.rsc.org/en/

content/articlelanding/2010/sm/c0sm00386g
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to create patterns of wrinkled stiff skin on a polymeric substrate upon exposure to

FIB have been demonstrated and characterized. FIB irradiation alters the chemical

composition of the polymer close to its surface and induces a thin stiff skin with a

strain mismatch. Moreover, some of the key experimental factors involved in

patterning the polymeric surfaces by FIB were examined. Specifically, we explored

the role of ion energy, pixel dwell time, and fluence on the morphology of the

created wrinkles. The capabilities of the technique are also extended by adopting

the maskless patterning method of the FIB system, which allows creation of self-

assembled wrinkling patterns within desired surfaces of polymers.

In later part, a fabrication method of wrinkles with high aspect ratio of amplitude

over wavelength was presented using a GLAD. One of the limiting factors in the

usage of wrinkle patterns has been considered with the low amplitude/wavelength

ratio that can be achieved using the current surface engineering techniques. This is

Fig. 4.14 (a) SEM images of the PDMS surface, pre-patterned by Ar ion with different treatment

times (10 s to 50 min) and then subjected to 10-min carbon film deposition at 75� incident angles.
The scale bars in the insets are 1 mm. Ahmed et al. [1], reproduced by permission of The Royal

Society of Chemistry. The article in which this figure was originally published is located at the

following link: http://pubs.rsc.org/en/content/articlelanding/2010/sm/c0sm00386g
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an effective method that allows creating wrinkles with an amplitude/wavelength

aspect ratio as large as 2.5 on a soft polymer.

These techniques provide robust methods for surface engineering of polymers

and have direct implication in an array of multidisciplinary fields from medicine to

engineering. Examples are designing biointerfaces for tissue engineering and

regenerative medicine, microfluidics, biosensors, and optics.
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Chapter 5

A Kinetics Approach to Surface Wrinkling

of Elastic Thin Films

Rui Huang

Abstract Complex wrinkle patterns have been observed in various thin film

systems, typically with integrated hard and soft materials for various applications

as well as in nature. The underlying mechanism of wrinkling has been generally

understood as a stress-driven instability. On an elastic substrate, equilibrium and

energetics set the critical condition and select the wrinkle wavelength and ampli-

tude. On a viscous substrate, wrinkles grow over time and kinetics select the fastest

growing mode. Moreover, on a viscoelastic substrate, both energetics and kinetics

play important roles in determining the critical condition, the growth rate, and

wrinkle patterns. The dynamics of wrinkling, while analogous to other phase

ordering phenomena, is rich and distinct under the effects of stress and

film–substrate interactions. In this chapter, a kinetics approach is presented for

wrinkling of isotropic and anisotropic elastic films on viscoelastic substrates.

Analytic solutions are obtained by a linear perturbation analysis and a nonlinear

energy minimization method, which predict the kinetics of wrinkle growth at the

early stage and the equilibrium states at the long-time limit, respectively. In

between, a power-law coarsening of the wrinkle wavelength is predicted by a

scaling analysis. Furthermore, the kinetics approach enables numerical simulations

that demonstrate emergence and transition of diverse wrinkle patterns (ordered and

disordered) under various conditions.
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5.1 Introduction

Theoretical studies of surface wrinkling may be traced back to 1940s when wrin-

kling of face struts was analyzed as a form of local elastic instability in structural

sandwich panels [1–3]; an account of the historical development was well

documented by Allen [4]. A series of works by Biot extended the wrinkling theory

to viscoelastic layers [5] and rubberlike nonlinear elastic media under finite strain

[6]. The early studies of wrinkling focused on the critical conditions for the onset of

instability as a failure mechanism for layered structures. Recent advances in

micro/nanoscale fabrication and measurements have renewed the interest in

mechanics of wrinkling. In particular, wrinkling has also been exploited as an

enabling mechanism for a variety of applications, such as stretchable electronics

[7–9], micro/nanofabrication [10–12], optical phase grating [13], smart adhesion

[14], and metrology aid for measuring mechanical properties of thin films [15–17].

Wrinkling often occurs when a stiff surface layer on a drastically more compli-

ant substrate is subject to compression in a direction parallel to the surface. Many

approaches may induce compression and wrinkling. Mechanically, the surface layer

can be put under compression by directly compressing the substrate or by bending

the substrate. Interestingly, stretching the substrate could also induce compression

in the surface layer [18] due to Poisson’s effect. Typically the substrate (e.g.,

elastomer) has a larger Poisson’s ratio than the surface layer (e.g., metal), and the

mismatch induces compression of the surface layer in the direction perpendicular to

the direction of stretch. More effectively, by attaching the surface layer to a pre-

stretched substrate, the surface layer is compressed upon releasing the pre-stretch

and the resulting wrinkles are stable without the need to apply external forces.

Moreover, many nonmechanical approaches have also been reported to cause

wrinkling, which often relies on a particular physical mechanism to induce an

eigenstrain in the surface layer. A common approach of this kind is thermally

induced wrinkling [10, 17, 19, 20], with the eigenstrain resulting from differential

thermal expansion among the layers. A similar mechanism in biological systems is

differential tissue growth in skin layers [21, 22] and human brain [23]. Other

mechanisms include absorption-induced swelling [24] and phase transition [25].

In general, one may assume a residual stress in the surface layer as the driving force

for wrinkling, regardless of the physical origin.

Notably, surface wrinkling may occur without any surface layer [26–28].

As predicted by Biot [6], the surface of a homogeneous block of rubberlike

material becomes unstable under compression beyond a moderately large strain.

Similar surface instability has been predicted for swollen hydrogels [29]. This type

of surface instability, however, requires a nonlinear constitutive behavior of the

material and is not addressed here.

In this chapter, we focus on a model system as shown in Fig. 5.1: an elastic film

of thickness h lying on a viscoelastic layer of thickness H, which in turn lies on a

rigid foundation. At the reference state (Fig. 5.1a), both layers are flat and the

elastic film is subjected to a uniformly distributed residual stress, while the
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viscoelastic layer is stress free. A Cartesian coordinate system is set up such that the

x� y plane coincides with the interface between the two layers. Figure 5.1b

sketches a wrinkled state, where the elastic film undergoes a buckling deformation

while the viscoelastic layer deforms concomitantly. The interface is assumed to be

perfectly bonded at the wrinkled state.

Consideration of a viscoelastic layer underneath an elastic film leads to a kinetics

approach to wrinkling [30–34]. Alternatively, an energy-based statics approach has

been widely adopted for post-instability analysis to determine the equilibrium states

of wrinkling for an elastic film on an elastic substrate [35–40]. Compared to the

static equilibrium approach, which typically presumes specific wrinkle patterns, the

kinetics approach offers a physical pathway to a variety of ordered and disordered

wrinkle patterns without a priori assumptions. A similar kinetics approach has also

been developed for wrinkling of an elastic film on a viscous substrate [41–44].

5.2 Deformation and Equilibrium of an Elastic Film

Consider a cubic crystal film with the surface normal in the [001]-direction. For

convenience, the x- and y-axes are set to align with the [100]- and [010]-directions

of the crystal at the reference state. The residual stress in the film generally has three

in-plane components, sRxx,s
R
yy, and s

R
xy, as illustrated in Fig. 5.2a. The stress state can

also be represented by two principal stresses (s1 and s2 ) and the corresponding

principal angle ðypÞ, as illustrated in Fig. 5.2b. As a necessary condition for the film
to wrinkle, at least one of the two principal stresses must be negative (compressive).

The resulting wrinkle pattern depends on the ratio between the two principal

stresses for an isotropic film. For an anisotropic crystal film, the wrinkle pattern

also depends on the principal direction of the residual stress [33].

Let ux and uy be the in-plane displacements and w the out-of-plane deflection of

the film. Upon wrinkling, the membrane strain components in the film are

Elastic film 

H

h

Viscoelastic layer

Rigid substrate 

z

x

Viscoelastic layer 

Rigid substrate 

a

b

Fig. 5.1 Schematic of an

elastic film on a viscoelastic

substrate: (a) the reference

state, and (b) a wrinkled state
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exx ¼ @ux
@x

þ 1

2

@w

@x

� �2

; (5.1)

eyy ¼ @uy
@y

þ 1

2

@w

@y

� �2

; (5.2)

exy ¼ 1

2

@ux
@y

þ @uy
@x

� �
þ 1

2

@w

@x

@w

@y
: (5.3)

A nonlinear term is included above in each strain component to account for

geometrical nonlinearity due to moderately large deflection of the elastic film [45,

46]. It shall be noted that the displacements are measured relative to the reference

state with the residual stress sRab , and thus the strains in (5.1)–(5.3) describe an

incremental deformation from the stressed reference state.

The membrane forces in the film, including the initial residual stresses, are

Nab ¼ sRab þ sab
� �

h; (5.4)

where the Greek subscripts ða; bÞ represent the in-plane coordinates x and y, and by
linear elasticity

sxx
syy
sxy

2
4

3
5 ¼

~C11
~C12 0

~C12
~C22 0

0 0 2C66

2
4

3
5 exx

eyy
exy

2
4

3
5: (5.5)

For a cubic crystal film, the elastic moduli are ~C11 ¼ ~C22 ¼ C11 � C2
12=C11 and

~C12 ¼ C12 � C2
12=C11 . For an isotropic elastic plate, the reduced elastic constants

Fig. 5.2 Residual stress in a film represented by stress elements: (a) in the x–y coordinates; (b) in
the principal directions
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can be expressed in terms of Young’s modulus ðEÞ and Poisson’s ratio ðnÞ, namely,
~C11 ¼ ~C22 ¼ E= 1� n2ð Þ, ~C12 ¼ nE= 1� n2ð Þ, and C66 ¼ E= 2 1þ nð Þ½ �.
The moment intensities are

Mxx

Myy

Mxy

2
4

3
5 ¼ h3

12

~C11
~C12 0

~C12
~C22 0

0 0 2C66

2
4

3
5 kxx

kyy
kxy

2
4

3
5; (5.6)

where kab ¼ @2w
@xa@xb

is the curvature tensor.

For the film to be in equilibrium at the wrinkled state, interfacial tractions are

generally required in both the tangential and normal directions. First, in-plane force

equilibrium requires that

@Nxx

@x
þ @Nxy

@y
¼ Tx; (5.7)

@Nxy

@x
þ @Nyy

@y
¼ Ty; (5.8)

where Tx and Ty are the shear tractions acting at the interface between the film and

the substrate. In the normal direction, the force equilibrium requires that

@Qx

@x
þ @Qy

@y
þ @

@x
Nxx

@w

@x
þ Nxy

@w

@y

� �
þ @

@y
Nyy

@w

@y
þ Nxy

@w

@x

� �� �
þ p ¼ 0;

(5.9)

where p is the pressure (negative normal traction) at the interface, Qx and Qy are the

transverse shearing forces in the film. In addition, by the moment equilibrium, we

have

@Mxx

@x
þ @Mxy

@y
þ Qx ¼ 0; (5.10)

@Mxy

@x
þ @Myy

@y
þ Qy ¼ 0: (5.11)

With (5.10) and (5.11), the shear forces in (5.9) can be eliminated, namely,

@2Mxx

@x2
þ 2

@2Mxy

@x@y
þ @2Myy

@y2
� @

@x
Nxx

@w

@x
þ Nxy

@w

@y

� �
þ @

@y
Nyy

@w

@y
þ Nxy

@w

@x

� �� �
¼ p:

(5.12)
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Further by substituting (5.6) into (5.12), we obtain that

h3

12
~C11

@4w

@x4
þ 2 ~C12 þ 2C66

� 	 @4w

@x2@y2
þ ~C22

@4w

@y4

� �

� @

@x
Nxx

@w

@x
þ Nxy

@w

@y

� �
þ @

@y
Nyy

@w

@y
þ Nxy

@w

@x

� �� �
¼ p:

(5.13)

For an isotopic elastic film, (5.13) reduces to

Eh3

12ð1� n2Þ
@4w

@x4
þ 2

@4w

@x2@y2
þ @4w

@y4

� �

� @

@x
Nxx

@w

@x
þ Nxy

@w

@y

� �
þ @

@y
Nyy

@w

@y
þ Nxy

@w

@x

� �� �
¼ p;

(5.14)

which is well known as the von-Karman plate equation [45, 46].

Therefore, the deformation of the elastic film is described by the displacements

(ux, uy, w), the membrane strain ðeabÞ , and the curvature ðkabÞ . The constitutive

relations in (5.4–5.6) give the membrane forces ðNabÞand moments ðMabÞ, assuming

linear elasticity. The tractions (Tx, Ty, p) at the interface are then obtained from the

equilibrium equations in (5.7), (5.8), and (5.12).

5.3 Kinetics: Deformation of a Viscoelastic Layer

Subject to the interfacial tractions, the viscoelastic layer undergoes a time-

dependent deformation. By the linear theory of viscoelasticity [47], the stress–strain

relationship for the viscoelastic material takes an integral form:

sijðtÞ ¼ 2

ðt
�1

m t� tð Þ @eijðtÞ
@t

dtþ dij

ðt
�1

l t� tð Þ @ekkðtÞ
@t

dt; (5.15)

where mðtÞ and lðtÞ are the viscoelastic relaxation moduli and dij is the Kronecker
delta.

The Laplace transform of (5.15) is

~sijðsÞ ¼ 2s~mðsÞ~eijðsÞ þ s~lijðsÞ~ekkðsÞdij; (5.16)

where a tilt over a variable designates its Laplace transform with respect to time and

s is the transform variable. The Laplace transformed stress–strain relation is

identical to that of linear elasticity with the elastic moduli s~mðsÞ and s~lðsÞ. As a
result, a viscoelasticity problem often can be solved by the method of Laplace
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transform based on the solution of a corresponding elasticity problem, referred to as

the correspondence principle [47].

Consider a viscoelastic layer ð0� z� � HÞ, which is stress free initially ðt ¼ 0Þ
and subjected to normal and shear tractions at the upper surface for t>0, namely,

szz ¼ Szðx; y; tÞ and sza ¼ Saðx; y; tÞ at z ¼ 0: (5.17)

The lower surface of the layer is bonded to a rigid substrate, where the displace-

ment is zero:

ua ¼ uz ¼ 0 at z ¼ �H: (5.18)

Assume a plane-strain condition ðSy ¼ uy ¼ 0Þwith periodic surface tractions in
the form

Sx ¼ AðtÞ sin kx; (5.19)

Sz ¼ BðtÞ cos kx; (5.20)

where k is the wave number and AðtÞ and BðtÞ are time-dependent amplitudes.

By solving the corresponding elasticity problem [30], the Laplace transform of

the displacements at the surface of the viscoelastic layer is obtained as

~usxðx; sÞ ¼
1

2ks~mðsÞ g11ðs~n; kHÞ ~AðsÞ þ g12ðs~n; kHÞ ~BðsÞ
 �
sinðkxÞ; (5.21)

~uszðx; sÞ ¼
1

2ks~mðsÞ g21ðs~n; kHÞ ~AðsÞ þ g22ðs~n; kHÞ ~BðsÞ

 �

cosðkxÞ; (5.22)

where

g11 ¼
1þ k
4

k sinhð2kHÞ þ 2kH

kcosh2ðkHÞ þ ðkHÞ2 þ ð1� kÞ=2ð Þ2 ; (5.23)

g22 ¼
1þ k
4

k sinhð2kHÞ � 2kH

kcosh2ðkHÞ þ ðkHÞ2 þ ð1� kÞ=2ð Þ2 ; (5.24)

g12 ¼ g21 ¼ � ðkð1� kÞÞ=2sinh2ðkHÞ þ ðkHÞ2
kcosh2ðkHÞ þ ðkHÞ2 þ ð1� kÞ=2ð Þ2 ; (5.25)

and k ¼ 3� 4s~nðsÞ with ~nðsÞ ¼ ~lðsÞ=ð2sð~mðsÞ þ ~lðsÞÞÞ as Laplace transform of

Poisson’s ratio.
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The solution in (5.21) and (5.22) indicates that, in general, the surface of

the viscoelastic layer undergoes both out-of-plane and in-plane displacements.

For a special case, when the layer is infinitely thick ðkH ! 1Þ and incompressible

ðn ¼ 0:5Þ, we have g12 ¼ g21 ¼ 0, and thus the two equations are decoupled:

~usxðx; sÞ ¼
1

4ks~mðsÞ
~Sxðx; sÞ; (5.26)

~uszðx; sÞ ¼
1

4ks~mðsÞ
~Szðx; sÞ: (5.27)

Alternatively, if the viscoelastic layer is relatively thin (kH ! 0), by keeping

only the leading terms of kH in an asymptotic analysis [31, 34], (5.21) and (5.22)

become

~usxðx; sÞ ¼
1

2ks~mðsÞ 2kH ~AðsÞ þ 1� 4n
2ð1� nÞ ðkHÞ2 ~BðsÞ

� �
sinðkxÞ; (5.28)

~uszðx; sÞ ¼
1

2ks~mðsÞ
1� 2n
1� n

ðkHÞ ~BðsÞ þ 1� 4n
2ð1� nÞ ðkHÞ2 ~AðsÞ

� �
cosðkxÞ: (5.29)

Here, the Poisson’s ratio has been assumed to be a constant independent of time and

v<0:5� ð1=6ÞðkHÞ2 [34]. On the other hand, when the Poisson’s ratio approaches

0.5, the viscoelastic layer is nearly incompressible and (5.29) is replaced by

~uszðx; sÞ ¼
1

2ks~mðsÞ
2

3
ðkHÞ3 ~BðsÞ � ðkHÞ2 ~AðsÞ

� �
cosðkxÞ; (5.30)

where the first term in the bracket scales with kHð Þ3 instead of kHð Þ in (5.29). This

leads to different kinetics of wrinkling for compressible and incompressible visco-

elastic layers [32].

Figure 5.3 depicts the relaxation shear modulus, mðtÞ, as a function of time for a

typical cross-linked polymer, with the glassy modulus mð0Þ ¼ mG at the short-time

limit and the rubbery modulus mð1Þ ¼ mR at the long-time limit. The modulus

typically varies by several orders of magnitude: mG � 109 Pa and mR � 105 Pa. In

general, the Poisson’s ratio is also a function of time, but the time dependence is

much weaker. Experimentally measured relaxation modulusmðtÞ is often interpreted
in terms of a mechanical model consisting of an array of spring-dashpot analogs in

parallel (Fig. 5.4). To ensure a rubbery elastic limit at the long-time limit, one of

the parallel branches must be a spring of modulus mR, with no dashpot. Each of the

other parallel branches comprises a spring of modulus mi and a dashpot of viscosity
�i. With such a model, the relaxation modulus is
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mðtÞ ¼ mR þ
X
i

mi expð�pitÞ; (5.31)

where pi ¼ mi=�i is the relaxation parameter of one branch. The Laplace transform

of the relaxation modulus is

~mðsÞ ¼ mR
s
þ
X
i

mi
sþ pi

: (5.32)

For simplicity, consider the Kelvin model of linear viscoelasticity, modeled by a

simple mechanical analog consisting of an elastic spring and a viscous dashpot in

parallel, for which the Laplace transform of the relaxation modulus is

~mðsÞ ¼ mR
s
þ �: (5.33)

After substituting (5.33) into (5.28) and (5.29), inverse Laplace transform leads to

@usx
@t

¼ H

�
Sx þ 1� 4n

4ð1� nÞ
H2

�

@Sz
@x

� mR
�
usx; (5.34)

m1 mi

h1 hi

mR

Fig. 5.4 A mechanical

analog model of a viscoelastic

material

Log m

Log t

mR ~ 105 Pa 

mG ~ 109 Pa 

glassy viscoelastic rubbery

Fig. 5.3 A schematic of the

relaxation modulus as a

function of time for a

viscoelastic material
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@usz
@t

¼ 1� 2n
2ð1� nÞ

H

�
Sz � 1� 4n

4ð1� nÞ
H2

�

@Sx
@x

� mR
�
usz: (5.35)

By dropping the H2 terms under the thin-layer approximation (kH � 1), (5.34)

and (5.35) become

@usx
@t

¼ H

�
Sx � mR

�
usx; (5.36)

@usz
@t

¼ 1� 2n
2ð1� nÞ

H

�
Sz � mR

�
usz: (5.37)

Equation (5.36) is equivalent to a shear-lag model [48–50], which assumes a

uniform shear stress across the thin layer. Equation (5.37) is similar to the Winkler

model for an elastic foundation [4], but includes a time-dependent term accounting

for the viscous effect. The two equations are uncoupled under the thin-layer

approximation.

In the above development, plane-strain deformation and periodic surface

tractions have been assumed. The restriction of periodic tractions has been relaxed

by absorbing the wave number through a differentiation with respect to x in the

course of the inverse Laplace transform. The resulting equations are independent of

wave number and can thus be used for arbitrary tractions. At the end, the in-plane

and out-of-plane responses are decoupled by the thin-layer approximation. There-

fore, the restriction of plane-strain deformation can also be relaxed by generalizing

the in-plane response, (5.36), for both x- and y-directions, namely,

@usa
@t

¼ H

�
Sa � mR

�
usa; (5.38)

for a ¼ x and y. Equations (5.37) and (5.38) then represent an approximate solution

for the three-dimensional response of a thin viscoelastic layer subjected to the

boundary conditions in (5.17) and (5.18). Following similar steps, other forms of

viscoelastic solutions may be developed for incompressible and thick layers.

5.4 Evolution Equations of Wrinkling

By assuming the interface between the elastic film and the viscoelastic layer to

remain bonded during wrinkling, the displacements and tractions are continuous

across the interface, namely,

Sz ¼ �p; Sa ¼ Ta; (5.39)
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usz ¼ w; usa ¼ ua: (5.40)

The time-dependent response of the viscoelastic layer can then be written in

terms of the film displacements as

@w

@t
¼ 1� 2n

2ð1� nÞ
H

�
�pð Þ � mR

�
w; (5.41)

@ua
@t

¼ H

�
Ta � mR

�
ua; (5.42)

where p and Ta are related to the displacements (w and ua) by (5.7), (5.8), and

(5.12). Together with the constitutive relations of the film in (5.4)–(5.6), we have a

complete set of evolution equations for wrinkling.

Here, it is assumed that the evolution process is sufficiently slow such that inertia

effects are negligible and the elastic film remains in equilibrium during evolution.

Despite the limitations in the simple viscoelastic property and the thin-layer

approximation, the present model has been shown to be able to capture essential

features of viscoelastic wrinkle evolution, such as the kinetics of wrinkle growth at

the early stage and the equilibrium states at the long-time limit. Extension to more

general cases is possible. Notably, Biot [5] developed a general instability theory

for a viscoelastic layer on a semi-infinite viscoelastic substrate or embedded in an

infinite viscoelastic medium, which may be extended to three-dimensional post-

instability analysis. Alternatively, a Fourier transform method similar to that by

Huang et al. [37] may be employed for an elastic film on an infinitely thick

viscoelastic substrate. By combining Reynolds’ lubrication theory with the nonlin-

ear plate equations, Huang and Suo [42] developed a set of evolution equations for

wrinkling of an elastic film on an incompressible viscous layer.

5.5 Initial Growth

Start from a nearly flat film. At the early stage of wrinkling, the residual stress in the

film is hardly relaxed, and the growth of wrinkles is predominantly due to out-of-

plane displacement, uncoupled from the in-plane displacements. Substituting (5.14)

into (5.41) for an isotropic film, we obtain that

@w

@t
¼ �Kw;aabb þ F Nabw;b

� 	
;a � Rw; (5.43)

where

K ¼ ð1� 2nsÞEfh
3H

24ð1� nsÞð1� n2f Þ�s
; F ¼ 1� 2ns

2ð1� nsÞ
H

�s
; R ¼ mR

�s
: (5.44)
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Consider an equi-biaxial residual stress such that Nab � �s0hdab ðs0>0Þ at the
early stage. The first two terms at the right-hand side of (5.43) compete to set a

length scale

L1 ¼
ffiffiffiffiffiffiffiffiffiffi
K

Fs0h

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Efh2

12ð1� n2f Þs0

s
; (5.45)

and a corresponding time scale

t1 ¼ K

Fs0hð Þ2 ¼
ð1� nsÞEf�sh

6ð1� 2nsÞð1� n2f Þs20H
: (5.46)

Neglecting the third term at the right-hand side of (5.43) for the moment, a linear

perturbation analysis [31] leads to a critical wavelength,

lc ¼ 2pL1; (5.47)

and the fastest growing wavelength,

lm ¼ 2
ffiffiffi
2

p
pL1; (5.48)

both proportional to the length scale, which in turn is proportional to the film

thickness. The film is unstable for wrinkles with wavelengths l>lc, and the wrinkle
amplitude grows exponentially with time. The growth rate, inversely proportional

to the time scale t1 , peaks at the wavelength l ¼ lm , for which the wrinkle

amplitude is given by

A ¼ A0 exp
t

4t1

� �
; (5.49)

andA0 is a constant for the initial amplitude. Therefore, at the early stage, the fastest

growing mode dominates, with both the wrinkle wavelength and the growth rate

depending on the residual stress via the length and time scales.

The third term at the right-hand side of (5.43) accounts for the effect of substrate

elasticity, which does not change the fastest growing wrinkle wavelength but

reduces the growth rate [31]. The substrate elasticity completely suppresses the

wrinkling instability when the compressive residual stress is lower than a critical

value. By setting the peak growth rate to be zero, one obtains the critical stress:

sc ¼
ffiffiffiffiffiffiffiffiffiffi
4KR

F2h2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� nsÞEfmR

3ð1� 2nsÞð1� n2f Þ
h

H

s
: (5.50)
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Note that the critical stress in (5.50) decreases as the thickness ratio H/h
increases, but this is only true for a relatively thin viscoelastic layer. For a thick

substrate layer, the critical stress approaches a constant independent of the thick-

ness ratio [30, 37].

For an anisotropic elastic film, a linear perturbation analysis predicts anisotropic

wrinkle patterns at the early stage [33]. Consider a periodic wrinkle pattern, with a

wave number k and an angle of the wave vector y, namely,

w x; y; tð Þ ¼ AðtÞ cos k x cos yþ y sin yð Þ½ �: (5.51)

Here, the angle y is measured from the x-axis or the [100] axis for the cubic crystal
film. The wrinkle amplitude grows exponentially with time as

AðtÞ ¼ A0 exp
ayt
t

� �
; (5.52)

where t ¼ �s=C11 is a time scale, and

ay ¼ ð1� 2nsÞH
24ð1� nsÞC11h

�EyðkhÞ4 � 12syðkhÞ2
h i

� mR
C11

: (5.53)

The dimensionless growth rate in (5.53) depends on the angle y through two

quantities:

sy ¼ s1 1� 1� s2
s1

� �
sin2 y� yp

� 	� �
; (5.54)

Ey ¼ C11 1� C12

C11

� �2
" #

1þ x� 1ð ÞC11

2 C11 þ C12ð Þ sin
22y

� �
: (5.55)

First, the ratio between the two principal stresses represents the stress

anisotropy that determines the angular dependence of sy . Hence an equi-biaxial

stress ðs2=s1 ¼ 1Þ is isotropic. Second, x ¼ 2C66=ðC11 � C12Þ defines a degree of
elastic anisotropy of the crystal. For an isotropic material, x ¼ 1 and Ey reduces to

Ef ¼ Ef= 1� n2f
� 	

, independent of the angle.

Figure 5.5 compares the spectra of the initial wrinkle growth rate for both

isotropic and anisotropic elastic films under various residual stresses [33].

Contours of the normalized growth rate ay are plotted in the plane spanning the

x and y components of the wave vector, kx ¼ k cos y and ky ¼ k sin y , both
normalized by the film thickness h; only positive growth rates are plotted. In all

the calculations, we set mR=C11 ¼ 10�5 , H=h ¼ 10, and ns ¼ 0:45. The major

principal stress s1=C11 ¼ �0:003 is fixed, while the ratio s2=s1 is varied from 1

for equi-biaxial to 0 for uniaxial stress state. For the isotropic film, the growth
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spectrum is solely controlled by the stress ratio. Under an equi-biaxial residual

stress ðs2=s1 ¼ 1Þ , the growth spectrum is isotropic with concentric circular

contours and thus no favored directions. When the two principal stresses differ,

the rotational symmetry is broken and the growth rate peaks at a particular wave

vector in the direction of the major principal stress. Therefore, the kinetically

dominant wrinkle pattern at the initial stage changes from nondirectional (e.g.,

labyrinth pattern) to unidirectional (e.g., parallel striped pattern).

For a cubic crystal film (e.g., SiGe), the growth spectrum not only depends on the

ratio between the two principal stresses but also depends on the direction of the

principal stress yp
� 	

. Even under an isotropic equi-biaxial stress, an anisotropic

growth spectrum emerges, with four peaks aligned in the two orthogonal crystal

directions, [100] and [010]. Thus, while the stress state is isotropic, the anisotropic

elastic property of the crystal film breaks the rotational symmetry. As a result,

an orthogonally oriented bidirectional pattern is predicted to dominate the initial

growth of the wrinkles. By varying the ratio s2=s1 from 1 to 0, the growth spectrum

changes from orthogonal to uniaxial in the direction of the major principal stress.

The transition however depends on the principal angle yp. When yp ¼ 0, the growth

spectrum remains orthogonal when the ratio s2=s1 slightly deviates from 1, but the

peak growth rate becomes lower in one direction compared to the other. The

growth spectrum becomes uniaxial as the lower peak diminishes for s2=s1<0:8.
When yp ¼ 45� , the wave vectors corresponding to the peak growth rates rotate

toward the direction of the major principal stress and eventually merge into a uniaxial

pattern. At an intermediate stress ratio (e.g., s2=s1 ¼ 0:9), four peaks lie on two

directions of an oblique angle. Hence, the kinetically dominant wrinkle pattern at

the early stage becomes obliquely oriented bidirectional (e.g., zigzag pattern).

Fig. 5.5 Spectra of the wrinkle growth rate at the early stage for isotropic and anisotropic elastic

films under various residual stress states. The major principal stress is s1=C11 ¼ �0:003
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This transition in the initial wrinkle patterns may be understood as a result of the

competition between the material anisotropy and the stress anisotropy through Ey and

sy, respectively.

5.6 Equilibrium Wrinkles

For a viscoelastic substrate layer with a rubbery modulus mR>0 at the long-time

limit, wrinkling of an elastic film atop evolves toward an equilibrium state, dictated

by minimization of the elastic strain energy stored in the film and the substrate.

There may exist many mechanically equilibrium states, including the one at the

reference state with no wrinkles at all. However, by the principle of thermodynam-

ics these equilibrium states may be unstable, stable, or metastable. Searching for the

thermodynamically equilibrium state with the minimum energy requires consider-

ation of all possible wrinkle patterns. In practice, several simple wrinkle patterns

(e.g., parallel stripes, checkerboard, and herringbone) have been considered for

isotropic elastic films [36, 39]. However, experiments have commonly observed

disordered wrinkle patterns (e.g., labyrinth). With the kinetics approach facilitated

by the viscoelastic deformation in the substrate layer, evolution of wrinkle patterns

can be simulated from a randomly generated initial perturbation, without a priori

assumption of the wrinkle patterns. Since the viscoelastic deformation dissipates

energy, the evolution process may be regarded as a searching algorithm for the

minimum energy state, but it is not guaranteed that the global energy minimum can

be reached. Nevertheless, the viscoelastic evolution represents a common physical

process to form wrinkle patterns in experiments [17, 19, 51, 52], where the observed

wrinkle patterns may also be trapped in a state of local energy minimum.

Consider a parallel-striped wrinkle pattern described by (5.51). The average

strain energy per unit area of the film consists of three parts [33], namely,

U A; k; yð Þ ¼ UC þ UB þ US; (5.56)

where

UC ¼ 1

4
syhk2A2 þ 3

64
Eyhk

4A4; (5.57)

UB ¼ 1

48
Eyh

3k4A2; (5.58)

US ¼ 1� ns
2ð1� 2nsÞ

mR
H

A2: (5.59)

The first two parts,UC andUB, are associated with the in-plane deformation and

bending of the elastic film, respectively, whereas US is the reversible elastic strain

energy stored in the viscoelastic layer.
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For an arbitrary wave vector, minimizing the total energy gives the equilibrium

amplitude as a function of k and y:

Ae k; yð Þ ¼ 2
ffiffiffi
6

p

3k
� sy
Ey

� khð Þ2
12

� 2ð1� nsÞ
1� 2ns

mR
Ey

1

k2Hh

" #1=2
: (5.60)

Correspondingly, the total strain energy at the equilibrium state is also a function

of k and y , i.e., Ueðk; yÞ ¼ U Ae; k; yð Þ . The spectra of the energy, Ueðk; yÞ , are
plotted in Fig. 5.6 for both isotropic and anisotropic elastic films under various

residual stress states. Similar to Fig. 5.5, contours of the normalized strain energy,

Ue=ðC11hÞ , are plotted in the plane spanning the x and y components of the

normalized wave vector; only negative energy values are plotted.

For an isotropic elastic film, the energy contours are concentric circles under an

equi-biaxial stress ðs2=s1 ¼ 1Þ . The strain energy minimizes on a circle of a

particular radius, with no favored direction due to rotational symmetry of the

isotropic system. Once the ratio between the two principal stresses deviates from 1,

the rotational symmetry is broken and the energy spectrum has two minima symmet-

rically located on the axis parallel to the direction of themajor principal stress. Hence,

an energetically favored wrinkle pattern emerges with parallel stripes perpendicular

to the direction of the major principal stress. However, it should be noted that, since

only parallel-striped wrinkle patterns are considered in the present analysis, the

energy minima in the spectra are not necessarily global minima. For example, it

has been shown that herringbone and checkerboard wrinkle patterns may have lower

energy than the parallel stripe pattern under an equi-biaxial stress state [36, 39].

Fig. 5.6 Energy spectra of parallel wrinkles at the equilibrium state for isotropic and anisotropic

elastic films. The major principal stress is s1=C11 ¼ �0:003

84 R. Huang



For a cubic crystal film (e.g., SiGe), the energy spectrum depends on both the

material anisotropy and the stress anisotropy. Under an equi-biaxial stress, there

exist four energy minima aligned in the two orthogonal crystal directions, [100] and

[010]. Thus, an energetically favored equilibrium wrinkle pattern would consist of

parallel stripes in two orthogonal directions. When the two principal stresses are

different, the energy spectrum depends on the principal direction yp. When yp ¼ 0,

two energy minima are symmetrically located on the axis parallel to the direction of

the major principal stress, while the other two minima in the orthogonal direction

first become shallower and then disappear. When yp 6¼ 0 , as the stress ratio

decreases from 1 to 0, the wave vectors of the energy minima first rotate toward

the direction of the major principal stress and then merge to form two minima in the

same direction. Therefore, different equilibrium wrinkle patterns may emerge as a

transition between the orthogonal and the uniaxial patterns.

Furthermore, by minimizing the strain energy, Ue k; yð Þ, with respect to k for a

fixed angle y, the equilibrium wavelength is obtained as a function of y:

le yð Þ ¼ 2p
keðyÞ ¼ ph

2ð1� 2nsÞ
3ð1� nsÞ

H

h

Ey

mR

� �1=4
: (5.61)

Substitution of the equilibrium wavelength into (5.60) gives the equilibrium

amplitude for the parallel wrinkles with the angle y. Further minimization of the

strain energy, Ue ke; yð Þ, with respect to y, gives the angle for the parallel wrinkles
with the minimum energy. Both the equilibrium wavelength and the angle can be

readily determined from the locations of the minima in the energy spectrum shown

in Fig. 5.6. In particular, for an isotropic film under an equi-biaxial residual stress,

the equilibrium wrinkle wavelength in (5.61) is independent of the angle, and the

corresponding equilibrium wrinkle amplitude is

Ae ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

s0
sc

� 1

� �s
; (5.62)

where sc is the critical stress given in (5.50). Recall that we have assumed a thin

viscoelastic layer and ns<0:5 . For a thick elastic substrate or ns ¼ 0:5 , the

equilibrium wrinkle wavelength and amplitude take different forms [37].

It is noted that, although the energy spectra in Fig. 5.6 appear similar to the initial

growth spectra in Fig. 5.5, the locations for the energy minima are different from

those of the maximum growth rates. While the fastest growing wavelength depends

on the residual stress in the film, the equilibrium wrinkle wavelength is independent

of the stress. In fact, the equilibrium wavelength is always greater than the fastest

growing wavelength at the initial stage. Consequently, the wrinkle wavelength

increases as the wrinkles evolve, a coarsening phenomenon that has been observed

in experiments [19, 52]. A scaling analysis of coarsening is presented next in

Sect. 5.7, which is confirmed by numerical simulations in Sect. 5.9.
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5.7 Coarsening of Wrinkles: A Scaling Analysis

As the wrinkle amplitude grows to be comparable to the film thickness, the residual

stress in the film is partly relaxed, and the nonlinear effect of large deflection must

be accounted for. It was found that there exists a kinetically constrained wrinkle

state for each unstable wavelength [42]. In the neighborhood of such a state, the

wrinkling process is very slow (i.e., @w=@t � 0 ), despite the fact that the film

remains energetically unstable. For a particular wavelength (l>lc), setting @w=@t
¼ 0 and R ¼ 0 in (5.43) leads to a spatially uniform stress in the film

sk ¼ � 4p2K

l2Fh
¼ � p2h2Ef

3ð1� n2f Þl2
: (5.63)

Correspondingly, the wrinkle amplitude is given by [42]

Ak ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

l2

l2c
� 1

 !vuut : (5.64)

Therefore, the film stress can be continuously relaxed by increasing the wrinkle

wavelength l, i.e., coarsening. Meanwhile, the wrinkle amplitude grows.

Assume that the film stays in the neighborhood of the kinetically constrained

state during coarsening, with both the wrinkle wavelength and the amplitude

evolving nonlinearly. At this stage, the spatial distribution of the stress in the film

is nearly uniform, approximately given by (5.63) as a function of the wrinkle

wavelength. By comparing the first two terms on the right-hand side of (5.43),

the time scale for this stage becomes

t2 ¼ K

Fhskð Þ2 ¼
l4

16p4K
: (5.65)

Thus, the wrinkle wavelength scales with the time as

l � Ktð Þ1=4: (5.66)

The corresponding wrinkle amplitude can be obtained from (5.64). For l>>lc,
the same scaling law applies for the growth of wrinkle amplitude, i.e., A � Ktð Þ1=4.

Remarkably, a molecular dynamics (MD) simulation of buckling molecular

chains showed a very similar scaling with the wavelength and the amplitude

growing as a power of time: l � tn and A � tb , where both the exponents nearly

equal to 0.26 [53]. MD simulations of compressed solid membrane showed a similar

coarsening dynamics with slightly larger exponents: n ¼ 0:28 and b ¼ 0:29 [54].
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It has been noted that the nature of such dynamics is analogous to phase ordering

phenomena such as spinodal decomposition [19].

Figure 5.7 schematically illustrates the three stages of wrinkling predicted for

the wrinkle wavelength and amplitude: initial growth, coarsening, and equilib-

rium. The transition points can be determined approximately using the scaling

laws [32]. First, the coarsening starts when the wrinkle reaches the kinetically

constrained state of the fastest growing mode, which gives the first transition

point:

t1 ¼ 4t1 ln
hffiffiffi
3

p
A0

� �
; (5.67)

where A0 is the initial amplitude. Following the power law scaling for the

wavelength coarsening, the second transition point is approximately

t2 ¼ t1
le
lm

� �4

¼ 1

R
ln

hffiffiffi
3

p
A0

� �
: (5.68)

Therefore, the first transition time is proportional to the time scale of initial

growth, which inversely scales with the square of the residual stress in the film, and

the second transition time scales with the relaxation time ð1 R= Þ of the viscoelastic
layer, independent of the stress.

It should be noted that the above scaling analysis is based on the model assuming

that the thickness of the viscoelastic layer is small compared to the wrinkle

wavelength and that the viscoelastic layer is compressible (i.e., ns<0:5). Following
the same approach, different scaling can be derived for the cases with incompress-

ible thin layers or thick substrates [32]. For an incompressible, thin layer ðns ¼ 0:5Þ,
the evolution equation takes a different form (5.30), and the coarsening of the

wrinkle wavelength scales asl � t1=6. For a thick viscoelastic substrateðH=h ! 1Þ,
the scaling for coarsening is obtained as l � t1=3 . It is thus speculated that, for a

Time 

wavelength 

amplitude 

I: initial growth II: coarsening III: equilibrium 

t1 t2 

Fig. 5.7 Schematic of the

three-stage evolution of

wrinkle wavelength and

amplitude (both in log-log

scale)
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viscoelastic layer of finite thickness, the exponent of the power-law scaling for

coarsening of wrinkles should be between 1/4 and 1/3 for a compressible layer and

between 1/6 and 1/3 for an incompressible layer. Remarkably, a similar transition

was noted for the phase separation kinetics of polymer blend films, where the

coarsening exponent changes from 1 for thick films (100 nm) to a value near 0.5

for thin films (20 nm) [55].

5.8 A Spectral Method for Numerical Simulations

The nonlinear evolution equations of wrinkling in (5.41) and (5.42) can be solved

numerically by a spectral method to simulate evolution of wrinkle patterns [32]. For

convenience, the evolution equations are normalized by scaling the lengths, time,

and stress components with the film thickness (h), the characteristic time for

viscous flow ð�s mf= Þ , and the shear modulus ðmfÞ , respectively. In addition, the

linear and nonlinear terms are separated so that Fourier transform of the evolution

equations takes the form

@ŵ

@t
¼ Bŵþ f; (5.69)

@û1
@t

¼ C1û1 þ D1û2 þ f1; (5.70)

@û2
@t

¼ C2û1 þ D2û2 þ f2; (5.71)

where a hat over a variable designates its Fourier transform with respect to the in-

plane coordinates, and f, f1, and f2 represent the nonlinear terms.

A semi-implicit algorithm is employed to integrate (5.69)–(5.71) over time.

First, using a backward finite difference scheme for the linear part and a forward

scheme for the nonlinear part, (5.69) is integrated point by point in the Fourier

space as

ŵðnþ1Þ ¼ ŵðnÞ þ fðnÞDt
1� BDt

; (5.72)

where Dt is the time step. The nonlinear terms are calculated in the real space and

transformed to the Fourier space numerically by Fast Fourier transform (FFT).

Similarly, (5.70) and (5.71) are integrated as

û
ðnþ1Þ
1 ¼

1� D2Dtð Þ û
ðnÞ
1 þ fðnÞ

1 Dt
� �

þ D1Dt û
ðnÞ
2 þ fðnÞ

2 Dt
� �

1� C1Dtð Þ 1� D2Dtð Þ � C2D1 Dtð Þ2 ; (5.73)
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û
ðnþ1Þ
2 ¼

1� C1Dtð Þ û
ðnÞ
2 þ fðnÞ

2 Dt
� �

þ C2Dt û
ðnÞ
1 þ fðnÞ

1 Dt
� �

1� C1Dtð Þ 1� D2Dtð Þ � C2D1 Dtð Þ2 : (5.74)

The advantage of the spectral method is that it resolves the challenges in the

numerical simulations by converting the high-order spatial differentiations in

the real space into algebraic multiplications in the reciprocal Fourier space, utilizing

the efficiency of FFT and its inverse to communicate between the two spaces.

Similar methods have been used for simulations of other evolution systems [56–58].

Numerically, a square computational cell in the x� y plane with a periodic

boundary condition is used. The size of the computational cell is selected such that

it is sufficiently large compared to the longest wrinkle wavelengths (i.e., the

equilibrium wavelength le), thus minimizing the effect of cell size on the numerical

results. The cell is discretized into grids in both the x - and y -directions with a

sufficient resolution in space to resolve the shortest wavelength of interest (i.e., the

critical wavelength lc). Moreover, the semi-implicit algorithm for time integration

is conditionally stable. To insure numerical stability and convergence, the time step

Dt (normalized by �s mf= ) must be sufficiently small.

5.9 Numerical Simulations of Wrinkle Patterns

In this section, results from numerical simulations are presented to show evolution of

diverse wrinkle patterns. For quantitative characterization of the wrinkle patterns,

which may be ordered or disordered, two quantities are calculated. First, the wrinkle

amplitude is evaluated by a root-mean-square (RMS) of the deflection, namely,

RMSðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

w m; n; tð Þ2
N2

s
; (5.75)

where wðm; n; tÞ is the deflection of the grid point ðm; nÞ at time t and N is the

number of grid points along each side of the computational cell. Second, the

average wrinkle wavelength is evaluated by

lðtÞ ¼ 2p
kðtÞ ; (5.76)

where

kðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ŵðm; n; tÞj j2k m; nð Þ2P
ŵðm; n; tÞj j2

s
: (5.77)
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Equation (5.77) may be regarded as a weighted RMS of the wavenumbers in the

Fourier space, where the weight ŵj j2 represents the power intensity of the

corresponding wavenumber, similar to the power spectra in experiments [19].

5.9.1 Uniaxial Wrinkles (Parallel Stripes)

Figure 5.8 shows an evolution sequence of simulated wrinkle patterns under a

uniaxial stress with magnitude s0 ¼ 0:01 (normalized by the shear modulus mf ).
Here the film is isotropic and the modulus ratio mR=mf is set to zero. The other

parameters are H=h ¼ 10, ns ¼ 0:45, and nf ¼ 0:3. The computational cell size is

L=h ¼ 1; 000, with a 128-by-128 grid. The normalized time step is Dt ¼ 100. To

start the simulation, a random perturbation of amplitude 0.001 h is introduced over
the entire computational cell.

Under the uniaxial stress, a parallel stripe pattern emerges quickly in the

direction perpendicular to the stress. Both the wrinkle amplitude and the wave-

length increase with time. The presence of dislocation-type defects in the parallel

stripe pattern is evident in Fig. 5.8b, c. The defect density decreases as the wrinkle

c d

0.01

–0.01
1000

1000

1000

1000

1000

1000
1000

5

5

5
0

0

0
–5

–5

–5

800

800

800

800

800
800

800
800

600

600

600

600

600
600

600600

400

400

400

400

400
400

400400

200

200

200

200

200 200

200200

0

0

0
0

0 0

0

0

0

a b

Fig. 5.8 A simulated evolution sequence of wrinkles in a uniaxially stressed film. (a) t ¼ 104:
�l ¼ 46:2 and RMS ¼ 0.00033; (b) t ¼ 105: �l ¼ 44:4 and RMS ¼ 0.313; (c) t ¼ 106: �l ¼ 77:8

and RMS ¼ 0.947; (d) t ¼ 107: �l ¼ 128:2 and RMS ¼ 1.66
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evolves. Similar results are obtained for various stress magnitudes. Figure 5.9 plots

the evolution of the average wrinkle wavelength and the RMS amplitude. The

average wavelength quickly reaches a plateau at a level depending on the residual

stress, corresponding to the fastest growing mode predicted by (5.48) for the initial

growth. Meanwhile, the RMS amplitude increases exponentially, as predicted by

(5.49). The wavelength starts to increase (i.e., coarsening) when the RMS reaches a

critical level (~0.4), nearly independent of the residual stress. As indicated by the

horizontal dashed line in Fig. 5.9b, the RMS at the kinetically constrained state of

wavelength l ¼ lm is 0:408, which is close to the transition points for all stresses.

Therefore, the first transition time in (5.67) is a reasonable estimate for the onset of

coarsening.

During coarsening, the wavelength follows a straight line with a slope 1=4 in the
log-log plot as shown in Fig. 5.9a, in good agreement with the scaling analysis in

(5.66). Interestingly, in spite of the different residual stresses and different transi-

tion points, the wrinkle wavelength follows essentially the same path of coarsening.

On the other hand, the wrinkle amplitude grows with the same scaling (after a short

transition period) but with different magnitudes for different residual stresses. Since

no elastic equilibrium state exists for the present case (mR=mf ¼ 0), the coarsening

process continues until the simulation is stopped at t ¼ 108.

The substrate elasticity has two effects on the wrinkling process. First, it can

stabilize the film under small stresses so that the film remains flat with no wrinkles

at all. The critical stress is given by (5.50). The second effect is that, when the

residual stress is high enough to cause wrinkling, the elastic limit of the substrate

will eventually stabilize the wrinkle pattern. For parallel-stripe wrinkles, the equi-

librium wrinkle wavelength and amplitude are analytically predicted in (5.61) and

(5.62), respectively. Figure 5.10 plots evolution of the average wrinkle wavelength
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and the RMS amplitude from numerical simulations under uniaxial stresses and with

a modulus ratio,mR=mf ¼ 10�5. The critical stress in this case issc ¼ 0:00324.When

s0<sc, no wrinkle grows. For s0>sc, the initial growth is similar to that in Fig. 5.9,

but with a slower growth rate as predicted by the linear perturbation analysis [31].

The coarsening, however, is influenced by the presence of an equilibrium state. The

wrinkle wavelength increases and eventually reaches a plateau, in agreement with

the predicted equilibrium wavelength, le ¼ 76:2 in this case. At the same time, the

RMS amplitude approaches a plateau in agreement with the predicted equilibrium

amplitude. While the equilibrium wavelength is independent of the residual stress,

the equilibrium amplitude increases as the stress magnitude increases. Apparently,

the power-law scaling for coarsening becomes less predictive as the wrinkles

approach the equilibrium state. As a result, the second transition time predicted

by (5.68) typically underestimates the time to reach the equilibrium state.

5.9.2 Isotropic Wrinkles (Labyrinths)

Figure 5.11 shows an evolution sequence of simulated wrinkle patterns under an

equi-biaxial stress of magnitude s0=mf ¼ 0:01 with mR=mf ¼ 0. Differing from the

parallel stripe patterns under uniaxial stresses, an isotropically disordered labyrinth

pattern emerges under the equi-biaxial stress, due to the rotational symmetry in the

isotropic system. Figure 5.12 plots the evolution of the average wrinkle wavelength

and the RMS amplitude. Similar to the cases under uniaxial stresses, the average

wavelength quickly reaches a plateau, corresponding to the fastest growing mode

predicted by the linear analysis, and the RMS increases exponentially during the

initial growth stage. The RMS at the transition point from initial growth to
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coarsening is about the same too, but the transition process is different for the

wrinkle wavelength. The coarsening of the wavelength is faster immediately after it

reaches the transition point, giving a slope larger than ¼ in the log-log plot

(Fig. 5.12a). The slope then decreases as coarsening continues, eventually

approaching ¼, as predicted by the scaling analysis. Such a behavior may be

attributed to the disorder in the labyrinth wrinkle pattern. At the early stage, the

pattern is highly disordered with relatively short stripes in random directions, for

which the coarsening is not well described by the scaling law for parallel stripe

patterns. Later on, while the wrinkle pattern remains disordered, it consists of long

stripes coarsening in a similar manner as parallel stripes. Consequently, the coars-

ening paths under equi-biaxial stresses are different for different residual stresses,

and they are different from those under uniaxial stresses.

Using the length scale L1 and the time scale t1 as defined in (5.45) and (5.46),

respectively, Fig. 5.13 replots the evolution of wrinkle wavelength from the numer-

ical simulations (Figs. 5.9a and 5.12a, with mR=mf ¼ 0). Remarkably, the evolution

paths for different stress magnitudes collapse onto one for uniaxial stresses and

another for equi-biaxial stresses. At the early stage, the film selects the fastest

growing wrinkle wavelength, which is the same for both uniaxial and equi-biaxial

stresses. Interestingly, the process of wavelength selection at the early stage seems
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to follow the same scaling law as coarsening, i.e., l � t1=4. This process, however,
may depend on the initial perturbation, and is typically too short to be observed in

experiments. The two paths are slightly different in the transition to coarsening.

Under uniaxial stresses, the coarsening process is well described by the power-law

scaling. Under equi-biaxial stresses, however, it undergoes a transition stage with a

faster coarsening rate before it approaches the same power law. This is consistent
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with the MD simulations of buckling molecular chains [53] and membranes [54],

with the chains under uniaxial stresses and the membranes under equi-biaxial

stresses.

By adding substrate elasticity ðmR=mf>0Þ, the average wrinkle wavelength and

the RMS amplitude eventually saturate at the equilibrium state [32], similar to the

uniaxial wrinkles as shown in Fig. 5.10. Figure 5.14 shows the wrinkle patterns for

different stresses at the end of each simulation ðt ¼ 108Þ when the system has

reached a nearly equilibrium state. Under uniaxial stresses (Fig. 5.14a), similar

patterns with parallel stripes are obtained for different stress magnitudes, with the

same wrinkle wavelength but different amplitudes. Under equi-biaxial stresses

(Fig. 5.14b–d), although the average wavelength at equilibrium is independent of

the residual stress, the coarsening dynamics leads to different evolution paths and

thus different wrinkle patterns. Interestingly, the isotropic wrinkle patterns seem to

organize into a domain structure, with parallel stripes in each domain, while the

domain size decreases as the stress magnitude increases. The details of the equilib-

rium wrinkle pattern under equi-biaxial stresses may depend on the initial random

perturbation, but the average wrinkle wavelength and the RMS amplitude are

insensitive to the initial perturbation. Thus, the apparently chaotic pattern may be

characterized by the two deterministic quantities.
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In addition to the labyrinth pattern, checkerboard and herringbone patterns

have also been considered as the possible equilibrium wrinkle patterns under equi-

biaxial stresses [36, 39, 40]. As shown in Fig. 5.15a, by the kinetics approach, a

checkerboard pattern is obtained when the equi-biaxial residual stress is slightly

above the critical stress for the onset of wrinkling. A transition from the checkerboard

pattern to the labyrinth pattern occurs as the stress magnitude increases. Such a

transition may be attributed to a geometric origin [37]: a flat film can bend to

a cylindrical surface with no stretching, but bend to a spherical cap with severe

stretching at the crest. Starting from a flat film with a small random perturbation,

wrinkles emerge randomly at the early stage, forming shallow spherical dimples. As

the wrinkle amplitude grows, the spherical dimples elongate to form cylindrical

ridges. The competition between bending and stretching leads to the transition from

spherical dimples to cylindrical ridges, while the overall rotational symmetry is

maintained as the cylindrical ridges form an isotropic labyrinth pattern. When the

residual stress is low, the equilibrium wrinkle amplitude is small, and the shallow

spherical dimples remain at the equilibrium state to form the checkerboard pattern.

Such an ordering however may be an artifact of the square-shaped computational cell

used in the numerical simulation. In a recent experiment, hexagonally packed dimples

have been observed [59, 60], which manifests the rotational symmetry in the isotropic

system. Figure 5.15b shows a herringbone pattern, which ismacroscopically isotropic.

Such a pattern appears to be a special case of the labyrinth pattern,with locally ordered

parallel stripes and a parallel domain structure. Alternatively, it may also be consid-

ered as a combination of the checkerboard pattern (spherical dimples) and the parallel

stripe pattern [61]. It was found that, among the three ordered wrinkle patterns

(parallel stripes, checkerboard, and herringbone), the herringbone pattern yields the

lowest elastic energy in an equi-biaxially compressed film at relatively large

overstresses [36, 39]. Recently, Cai et al. [60] presented an energetic analysis that

predicts the transition stress from the checkerboard pattern to the herringbone pattern

under equi-biaxial compression. They also suggested that, with a small initial curva-

ture of the film, the hexagonal pattern has a lower elastic energy than the checkerboard

pattern at small overstresses.

Fig. 5.15 Ordered wrinkle patterns under equi-biaxial compression: (a) Checkerboard pattern; (b)

Herringbone pattern
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5.9.3 Transition of Wrinkle Patterns: Secondary Buckling
Instability

Apparently, the equilibrium wrinkle patterns in an isotropic elastic film depend

sensitively on the residual stress at the reference state. A uniaxial stress results in a

parallel-stripe wrinkle pattern, and an isotropically disordered labyrinth pattern often

emerges under an equi-biaxial residual stress. In between, when the film is subject to a

generally biaxial stress, a transition is expected as the ratio between the two principal

stresses (s2=s1) varies from 0 to 1. In particular, while wrinkles in the parallel stripe

pattern effectively relax the compressive stress in one direction, the presence of a

compressive stress in the perpendicular direction may induce a secondary buckling

instability that leads to the transition of wrinkling patterns [34, 40].

Consider a perturbation to the parallel wrinkles, with the out-of-plane displace-

ment taking the form

wðx; y; tÞ ¼ A cos k1 xþ B cos k2yð Þ½ �f g: (5.78)

The elastic strain energy of the system consists of the bending and in-plane strain

energy in the film and the elastic energy in the substrate [34]:

UB ¼ Efh
3

48ð1� n2f Þ
k21A

2 k21 þ k21k
2
2B

2 þ 1

2
k42B

2 þ 3

8
k21k

4
2B

4

� �
; (5.79)

UC ¼ h

2Ef

s21 þ s22 � 2nfs1s2
� 	

þ 1

8
hA2k21 2s1 þ s2B2k22

� 	þ 3Ef

64ð1� n2f Þ
hA4k41 1þ nfB2k22 þ

3

8
B4k42

� �
;

(5.80)

US ¼ 1

2

1� ns
1� 2nsð Þ

mR
H

A2: (5.81)

The total strain energy is

Utotal ¼ UB þ UC þ US ¼ U A; k1ð Þ þ DU A;B; k1; k2ð Þ: (5.82)

The first term on the right-hand side of (5.82) is the strain energy for parallel

wrinkles, for which the equilibrium amplitude and wavelength are obtained in

Sect. 5.6. The secondary buckling amplitude (B) and the wavenumber (k2) are

then obtained by minimizing the second term, which is
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DU ¼ s1j j � scð Þ2h
36Ef

Efk
2
2h

2

s1j j � sc
� 12

s2j j � sc
s1j j � sc

� nf

� �� �
k22B

2 þ O B4
� 	

: (5.83)

The leading term on the right-hand side of (5.83) is quadratic of the amplitude B.
When the coefficient is negative, the total energy in (5.82) decreases with the

amplitude B, and thus the parallel wrinkles become unstable. The critical condition

for the secondary buckling is then predicted as

s2j j � sc
s1j j � sc

¼ nf : (5.84)

The same result was obtained by Audoly and Boudaud [40] using a different

perturbation function. Apparently, Poisson’s ratio of the film plays an important

role for the secondary buckling.

By the kinetics approach, evolution of wrinkle patterns under biaxial stresses is

simulated. Figure 5.16 shows the near-equilibrium wrinkle patterns obtained from

numerical simulations. The major principal stress is identical in all simulations

ðs1 ¼ �0:005EfÞ while s2 varies between zero and s1. The following parameters

were used:mR=Ef ¼ 10�5, nf ¼ 0:3, ns ¼ 0:45, andH=h ¼ 10. The critical stress for

the onset of wrinkling (5.50) in this case issc ¼ 0:0019Ef, and the transition stress

predicted by (5.84) is s2 ¼ �0:00284Ef . Therefore, when 0>s2>� 0:00284Ef ,

parallel wrinkles form and they are stable. When � 0:00284Ef>s2>s1, parallel
wrinkles become unstable and zigzag wrinkle patterns emerge. The wavelength of

the zigzag and its amplitude may be predicted by energy minimization including

the high-order terms in (5.83). Due to the relatively long zigzag wavelength, a

much larger computational cell is needed to eliminate the effect of cell size on the

simulated zigzag patterns. Nevertheless, the numerical simulations clearly dem-

onstrate the transition from the parallel stripe pattern to the zigzag pattern. As s2
approaches s1, the zigzag wrinkle pattern becomes increasingly disordered with

defects. When s2 ¼ s1, the wrinkles become isotropically disordered in a laby-

rinth pattern.

Fig. 5.16 Transition of wrinkle patterns for an isotropic elastic film, from parallel stripes to zigzag

and to labyrinth, subject to biaxial residual stresses with s1= �Ef ¼ �0:005 and s2= �Ef ¼ �0.0028,

�0.0032, �0.0035, �0.005 (from left to right)
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Transition of wrinkle patterns has been observed experimentally [11, 62, 63].

By sequential stretch and release, Lin and Yang [63] reported reversible transition

of wrinkle patterns from parallel stripes to zigzag and to highly ordered herringbone

patterns. In their experiments, a square-shaped polydimethylsiloxane (PDMS) strip

was first stretched equi-biaxially and then treated with oxygen plasma to form a thin

oxide layer at the surface. Next, the pre-stretch was released either sequentially in

the x- and y-directions or simultaneously in both directions. By the sequential

release, they observed a transition in the wrinkle pattern from parallel stripes to

zigzag, which qualitatively agrees with the secondary buckling analysis and the

numerical simulations shown in Fig. 5.16. Interestingly, a highly ordered herring-

bone pattern was obtained at the end of the sequential release when the oxide layer

was under equi-biaxial compression. On the other hand, by simultaneous release, a

disordered labyrinth pattern was obtained at the same final state of equi-biaxial

compression. Apparently, the wrinkle pattern depends on the loading path in these

experiments. The well-ordered parallel wrinkles formed during the first stage of

sequential release seem to have placed seeding for the ordering of subsequent

wrinkle patterns. Without any seeding, wrinkles grow in all directions during the

simultaneous release, resulting in a disordered labyrinth pattern. Indeed, to obtain

the herringbone pattern by numerical simulations as shown in Fig. 5.15b, the

residual stress in the film was assumed to be time dependent to simulate a sequential

loading so that parallel wrinkles formed first to be followed by zigzag and eventu-

ally herringbone patterns. Otherwise, disordered labyrinth patterns emerge from a

random initial perturbation under equi-biaxial compression, as shown in Figs. 5.11

and 5.14. The path-dependent wrinkle patterns suggest that there may exist more

than one equilibrium states (ordered and disordered) although some of them may be

thermodynamically metastable. As such, by controlling the loading path, ordered

wrinkle patterns can be achieved.

5.9.4 Wrinkle Patterns of Anisotropic Crystal Films

Most of the theoretical studies on wrinkling have assumed isotropic, linear elastic

properties for the film. Several experimental studies have reported wrinkling of

anisotropic crystal films. Hobart et al. [51] observed wrinkling of single-crystal

silicon-germanium (SiGe) alloy films on a glass layer when annealed at an elevated

temperature, where SiGe is a cubic crystal with anisotropic elastic properties. More

detailed experiments [52] showed that the SiGe film preferentially wrinkles in two

orthogonal directions, closely aligned with the <100> axes of the crystal film.

Similar orthogonal patterns were observed for a SiGe/oxide film stack [64]. On the

other hand, Choi et al. [9] observed zigzag wrinkle patterns of single-crystal

Si films bonded to a PDMS substrate, where the jog angle of the zigzag was close

to 90�, although no alignment with the crystal axes was reported. By the kinetics

approach, coupled with the equilibrium equations for an anisotropic thin film

(Sect. 5.2), wrinkle patterns of anisotropic crystal films can be simulated under
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various stress states [33]. In particular, the effects of anisotropic elastic property of

a cubic crystal film on wrinkle patterns at both the initial growth stage and

the equilibrium state have been elucidated by the analytical solutions in Sects. 5.5

and 5.6, respectively. By the spectral method (Sect. 5.8), Fig. 5.17 shows an

evolution sequence of the simulated wrinkle pattern for a cubic crystal film

(SiGe) under an equi-biaxial compression ðs1 ¼ s2 ¼ �0:003C11Þ. Here, a square
computational cell of size L ¼ 2; 000h is discretized into a 128-by-128 grid, with

periodic boundary conditions. A random perturbation of amplitude 0.01h was

introduced as the initial perturbation from the reference state. The deflection, wðx;
y; tÞ, is normalized by the film thickness h and plotted as contours in the x–y plane;
the time is normalized by the time scale t ¼ �=C11. The insets in Fig. 5.17 show

contours in the Fourier space as the Fourier transform of the corresponding wrinkle

patterns.

As shown in Fig. 5.17, the initial perturbation at t ¼ 0 is featureless, with a small

roughness (RMS ¼ 0.0057). At t ¼ 105, the RMS amplitude has grown significantly,

and the Fourier transform takes a shape similar to the growth-rate spectrum shown in

Fig. 5.5 for the anisotropic film under an equi-biaxial stress. At the early stage, many

Fourier components are growing simultaneously, resulting in a disordered wrinkle

pattern. The average wrinkle wavelength ðl ¼ 44:77Þ is close to the fastest growing

Fig. 5.17 A simulated evolution sequence of the wrinkle pattern for a SiGe crystal film under an

equi-biaxial residual stress ðs1 ¼ s2 ¼ �0:003C11Þ: (a) t ¼ 0, RMS ¼ 0.0057, �l ¼ 38:83; (b)

t ¼ 105, RMS ¼ 0.0165, �l ¼ 44:77; (c) t ¼ 5 	 105, RMS ¼ 0.4185, �l ¼ 47:06; (d) t ¼ 106,

RMS ¼ 0.4676, �l ¼ 50:75; (e) t ¼ 107, RMS ¼ 0.5876, �l ¼ 56:43; (f) t ¼ 108, RMS ¼ 0.5918,
�l ¼ 56:63
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wavelength ( lym ¼ 43:23 for y ¼ 0 ) as predicted by the linear analysis.

At t ¼ 5 	 105, the Fourier components with the fastest growth rate start to domi-

nate, and the wrinkles become increasingly aligned in the two orthogonal directions

of the crystal, [100] and [010]. At t ¼ 106, the wrinkle pattern exhibits a bi-phase

domain structure, with parallel stripes locally ordered in one of the two orthogonal

directions in each domain. Further evolution of the wrinkle pattern shows two

coarsening processes. First, the wavelength of each individual wrinkle stripe

increases. As a result, the average wavelength of the wrinkle over the entire area

increases, similar to the coarsening process of an isotropic film. Furthermore, the

orthogonal bi-phase domain structure of the wrinkle pattern evolves with coarsening

of the domain size, as can be seen clearly from t ¼ 106 to t ¼ 107. Both the wrinkle

wavelength and the domain size seem to saturate after a long-time evolution. It is thus

postulated that the viscoelastic evolution process seeks to minimize the total strain

energy in the film and the substrate not only by selecting an equilibrium wavelength

for individual wrinkle stripes but also by selecting a particular domain size [33]. The

present simulation of the wrinkle pattern evolution qualitatively agrees with the

experiments by Peterson [52] for a SiGe film on a glass layer at an elevated

temperature. The orthogonally ordered wrinkle pattern is also comparable to the

wavy structures observed in biaxially stressed silicon membranes on a PDMS

substrate [9].

Subject to a generally biaxial stress, the wrinkle pattern depends on the stress

anisotropy in addition to the material anisotropy. Similar to the isotropic film, the

wrinkle pattern undergoes a transition from the orthogonal pattern under an equi-

biaxial stress to the parallel stripe pattern under a uniaxial stress. However, the

transition path for the anisotropic film depends on the principal direction of the

residual stress [33]. Figure 5.18 shows the wrinkle patterns with two different

principal directions. When yp ¼ 0, the directions of principal stresses coincide with

the <100> crystal axes. In this case, the orthogonal wrinkle pattern remains orthog-

onal as the stress ratio s2=s1 slightly deviates from 1, but the bi-phase domain

structure changes. Under the equi-biaxial stress ðs2=s1 ¼ 1Þ, the parallel wrinkles are
equally distributed in the two orthogonal directions. For s2=s1 ¼ 0:9 , the area

decorated with wrinkles in the [100]-direction is greater than the area decorated by

wrinkles in the [010]-direction. As the stress ratio s2=s1 decreases further, the area

percentage of the [100] wrinkles increases, and the entire area is covered with the

[100] wrinkles whens2=s1<0:8. Thus, the orthogonal wrinkle pattern changes to the
uniaxial pattern by eliminating one of the two phases as the stress anisotropy

increases. When yp ¼ 45� , the directions of the principal stresses are in the

<110>-directions of the crystal. As a result, the uniaxial wrinkles are parallel to

the <110>-directions, which are absent in the orthogonal pattern under an equi-

biaxial stress. As the stress ratio decreases, the directions of the wrinkle stripes first

rotate to form zigzag patterns and then merge into the [110]-direction for s2=s1<0:8.
Thus, the transition occurs by rotating the wrinkles in both phases toward the major

principal direction. Note that the zigzag pattern in transition typically consists of

wrinkle stripes in two directions of an oblique angle, consistent with the rotation of
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the energy minima in the predicted energy spectra (Fig. 5.6). Therefore, the competi-

tion between the stress anisotropy and the material anisotropy further enriches the

dynamics of wrinkle patterns, which may be exploited for surface patterning.

5.9.5 Wrinkle Patterns Under Nonuniform Stresses

For a thin film with finite lateral dimensions, the residual stress is typically

nonuniform due to stress relaxation along the edges [65–67]. As a result, the

wrinkle pattern depends on the distribution of the residual stress in the film,

which in turn depends on the shape and size of the film. Two potential applications

may be envisaged here. First, one may observe the wrinkle patterns as a visual

reflection of the residual stress, thus offering a measure of the underlying stress

state. Second, one may design the film geometry to achieve desirable wrinkle

patterns for functional applications, such as color control [25] and adhesion [14].

However, predicting the wrinkle patterns under nonuniform residual stresses is

often challenging. The energy minimization approach is practically ineffective for

this purpose. On the other hand, with slight modification, the kinetics approach has

been employed to simulate wrinkle patterns under nonuniform stresses [34]. For

simplicity, only isotropic elastic films are considered in this section.

Fig. 5.18 Transition of wrinkle patterns for an anisotropic crystal film, from orthogonal to

uniaxial, under biaxial stresses with yp ¼ 0 (upper row) and yp ¼ 45� (lower row). From left to
right: s2=s1 ¼ 0:9, 0.8, and 0.7
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First consider a long thin-film ribbon with a finite width b in the x-direction
ð�b=2
 x
 b=2), but infinite in the y-direction. By a shear-lag model [34, 48], the

residual stress in the ribbon is obtained as

sRxx ¼ �s0 1� cosh x=lð Þ
cosh b=2lð Þ

� �
; (5.85)

sRyy ¼ �s0 1� nf
cosh x=lð Þ
cosh b=2lð Þ

� �
; (5.86)

where s0 is the uniform stress magnitude before relaxation, assumed to be equi-

biaxial compression, and l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EfHh=mR

p
is the shear-lag length at the elastic limit

of the substrate. The normalized shear-lag length ðl=hÞ is 1,000 whenmR=Ef ¼ 10�5

and H=h ¼ 10 . For a narrow ribbon, the stress in the width direction ðsRxxÞ is

significantly relaxed over the entire ribbon, while the stress relaxation in the

longitudinal direction ðsRyyÞ is relatively small, depending on the Poisson’s ratio

of the film. Thus, parallel wrinkles are expected to form for the narrow ribbon. As

the ribbon width increases, the maximum stress in the x-direction increases. Beyond
a critical width, the maximum stress at the center of the ribbon (x ¼ 0) becomes

greater than the transition stress predicted by (5.84). Consequently, the parallel

wrinkles become unstable at the center, where zigzag wrinkle patterns are expected

to form. The critical ribbon width for this transition can be predicted by setting the

maximum lateral stress equal to the transition stress [34]. Figure 5.19 shows the

simulated wrinkle patterns in thin-film ribbons of different widths, by the kinetics

approach using the nonuniform residual stresses given by (5.85) and (5.86).

For these simulations, the computational cell size is 5; 000h	 5; 000h , with a

512-by-512 grid. To simulate the free edges, the residual stress is set to be zero

outside the ribbon area. As expected, the wrinkles remain uniaxial near the edges.

For wide ribbons, the wrinkles become zigzag and disordered at the center. Only

when the width of the ribbon is less than a critical value, parallel wrinkles are

obtained over the entire ribbon. Similar wrinkle patterns have been observed

experimentally [9, 20].

Fig. 5.19 Simulated wrinkle patterns in thin-film ribbons. The ribbon widths are (from left to
right): b=h ¼ 3,750, 3,250, 2,500, and 1,250
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Next consider a rectangular thin film with widths bx and by in the x- and

y-directions, respectively. A two-dimensional (2D) shear-lag model may be used

to determine the stress distribution in the rectangular film, which however can only

be obtained numerically [68]. As an approximation, we extend the 1D solution in

(5.85) and (5.86) to 2D as

sRxx ¼ �s0 1� cosh x=lð Þ
cosh bx=2lð Þ

� �
1� nf

cosh y=lð Þ
cosh by=2l

� 	
" #

; (5.87)

sRyy ¼ �s0 1� nf
cosh x=lð Þ
cosh bx=2lð Þ

� �
1� cosh y=lð Þ

cosh by=2l
� 	

" #
: (5.88)

Using the approximate stress distribution, Fig. 5.20 shows the simulated

wrinkle patterns of a square film and two rectangular films [34]. For the square

film ðbx ¼ by ¼ 5; 000hÞ , parallel wrinkles develop near the mid-portion of the

edges, while the four corners are wrinkle free due to stress relaxation in both

directions. The center part of the film shows a fully developed labyrinth pattern.

For the rectangular film with bx ¼ 2; 500h, predominantly parallel wrinkles extend

from left to right except near the top and bottom edges where a small number of

wrinkles in the perpendicular direction remain. With bx ¼ 1; 250h , only parallel

wrinkles appear, with flat regions at the top and bottom. Choi et al. [9] observed

similar wrinkle patterns in rectangular Si membranes bonded to a pre-strained

PDMS. They also showed wrinkle patterns of other membrane geometries, includ-

ing circles, ovals, hexagons, and triangles. For some applications, wrinkling may be

undesirable. A wrinkle-free film may be achieved if the lateral dimensions are

sufficiently small [44, 52, 66].

Fig. 5.20 Simulated wrinkle patterns of a square film and two rectangular films, with by=h
¼ 5; 000 and bx=h ¼ 5; 000, 2,500, and 1,250
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To obtain ordered wrinkle patterns, Bowden et al. [10] fabricated bas-relief

patterned surfaces and obtained a variety of wrinkle patterns with a thin metal

film on an elastomer substrate. With the patterned surface, the residual stress in the

metal film is likely nonuniform. However, the stress distribution is often compli-

cated and cannot be predicted analytically. By the finite element method, the

distribution of the residual stress in patterned thin films can be obtained numeri-

cally, assuming no wrinkles. Figure 5.21 shows the stress distributions for periodic

patterns with square and circular holes [34]. The unit cell of each pattern is modeled

as a two-dimensional plate on an elastic foundation, and the residual stress is

calculated by invoking a mismatch in thermal expansion. Next, with the nonuni-

form stress distribution, evolution of wrinkle patterns is simulated by the kinetics

approach [34]. To compare with the experimental observations, the resulting

wrinkle patterns in the unit cell are replicated to produce the periodic wrinkles in

Fig. 5.21 Wrinkling of periodically patterned films. Upper: Distribution of residual stresses in a

unit cell obtained from a finite element analysis. Lower: Periodical replication of the simulated

wrinkle patterns
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a larger scale in Fig. 5.21, showing remarkably similar features as those reported by

Bowden et al. [10]. Therefore, it is possible to predict complex wrinkle patterns by

combining the kinetics approach with the finite element method.

5.10 Concluding Remarks

In summary, a kinetics approach to wrinkling is presented in this chapter. It is

demonstrated that the kinetics approach is capable of simulating evolution of

wrinkle patterns under various conditions. Furthermore, it has enabled us to under-

stand the dynamics of coarsening and pattern transition both analytically and

numerically. The effects of stress anisotropy, material anisotropy, and nonuniform

stress distribution on wrinkle patterns are elucidated by comparing numerical

simulations with experimental observations.

Despite significant advances over the last decade in both theory and

experiments, recent studies continue to show fascinating wrinkles that stimulate

further studies. A few notable examples include concomitant wrinkling and delam-

ination [69, 70], diffusion-induced wrinkling [71, 72], and wrinkle patterns on

curved surfaces [73, 74]. In addition to fundamental understanding, several recent

reviews have highlighted potential applications of the wrinkling phenomena in

stretchable electronics [75], metrology [76], adhesion [77], and micro/nano-fluidics

[78].
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Chapter 6

Crease Instability on the Surface of a Solid

Wei Hong and Fangliang Gao

Abstract Crease instability takes place on the surface of a solid when the lateral

compression exceeds a critical level. Despite the weak singularity at the cusp,

formation of a crease relieves the elastic energy through the local out-of-plane

deformation. Due to the singular fields of deformation and stress, a crease differs

from wrinkles in both appearance and mathematical description. The singularity

also prevents common linearization-based methods for stability analysis from

correctly predicting the critical condition for the instability. This chapter first

reviews the recently published energy method which has successfully calculated

the critical strain for crease formation. Examples of more general loading

conditions, such as the crease instability on growing tissues, are demonstrated.

Moreover, the equilibrium states of a crease on a film of finite thickness are studied.

The approach of extrapolating the results of thinner films actually yields a more

accurate result than the energy method. With the aid of this new approach, the later

part of the chapter focuses on the effect of material properties on crease

instabilities. The effect of material compressibility, as well as the crease formation

on a swelling gel, is further investigated.

6.1 Introduction

When a block of rubber is compressed, creases may form laterally on the free

surface. Just like wrinkles, creases relieve elastic energy by developing inhomoge-

neous out-of-plane deformation patterns. Creases differ from wrinkles in appear-

ance as well as the detailed mode of deformation, even though the two terms are
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used interchangeably in daily life. In this chapter, we define crease as the type of

surface instability exhibiting an area of self-contact, as sketched in Fig. 6.1, and

refer to the waviness of smaller amplitude as wrinkles. Because of the self-contact,

creases only appear on a free surface, while wrinkles may occur on the interface of

two solid materials. At a later stage, however, fully developed wrinkles with large

amplitude may fold into each other and form creases on a free surface.

Creases are not only observed on the surface of soft materials under compression

or bending (e.g., [1]) but also on swelling polymers [2, 3] and growing biological

tissues [4, 5]. Creases are also seen on inelastic materials. Examples include the

surface folding during metal forming and flow of highly viscous fluid, such as lava.

Creases are often undesirable in applications: creases on a garden hose may induce

fatigue failure; creases on fabric require extra treatment every time; creases on a

coated surface may cause fracture or debonding of the coating. On the other hand,

controlled surface creases are found to be useful in autonomous microscopic pattern-

ing (e.g., [6]). The mechanics of crease has attracted great interest recently [5, 7–13].

The tip of a mathematically sharp crease, with the radius of curvature being

0, naturally reminds one of a crack tip. Indeed, the deformation is singular at the tip.

The geometry is similar to that of a 180� disclination—the initially flat surface folds

back into itself around a line. Consider a 180� disclination formed by an incom-

pressible material. Under plane-strain condition, the strain near the disclination

center can be obtained directly from the geometry: the hoop and radial stretches are,

respectively, ly ¼
ffiffiffi
2

p
and lr ¼ 1

ffiffiffi
2

p�
. The equilibrium, on the other hand, requires

the stress to be singular near a disclination core, s � R�1=2 , with R being the

distance away from the core in the undeformed state. Similarly, we expect the strain

to be finite (or at most having a removable singularity), while the stress is singular

near the crease tip on an incompressible material. Numerical calculations using

a 

b c 

self-contact 

Fig. 6.1 Sketches of a crease and wrinkles on a free solid surface. (a) Homogeneous deformation

of a solid being compressed horizontally. (b) A crease forms on the surface of the solid. (c)

Wrinkles develop on the surface
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finite-element method have confirmed our expectation, as plotted in Fig. 6.2a, b.

The stress near a crease tip has a lower order of singularity than that of a

disclination: approximately, s � R�1=5 . The order of singularity is dependent on

the compressibility of the material. As shown in Fig. 6.2c, d, both stress and strain

have higher order of singularity for a compressible material. The stretches approxi-

mately scale with the distance from the crease tip as l � R0:225. In terms of strain,

the singularity is logarithmic, e � lnR . The material law used to generate the

numerical results in Fig. 6.2c, d is neo-Hookean with the ratio between shear and

bulk moduli being a ¼ 0:1.
The geometric nonlinearity, including finite rotation and self-contact, and the

singularity together have made the crease problem mathematically difficult to

tackle. Recent studies have gained some understanding on the physics of the crease

instability, while some fundamental questions still remain to be answered. This

chapter summarizes some analytical and numerical approaches for crease analysis,

and introduces a few applications of the theory.
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Fig. 6.2 Singularity of stresses and strains near a crease tip. Numerical results presented are the

stresses and strains along three paths, as indicated by the inset of (b). (a) The strain is finite near a
crease on an incompressible solid, except for the crease tip, a removable singularity. (b) Singular-

ity of the hoop stress in an incompressible solid. (c) Stretch and (d) stress exhibit higher order

singularity near a crease on a compressible material. All stresses are normalized by the initial shear

modulus m, and lengths are normalized by the crease depth L
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6.2 Mathematical Description and Linear Stability Analysis

Let us take the undeformed state to be the reference and label all material particles

by their reference coordinatesXK. The semi-infinite block under consideration has a

free surface at X2 ¼ 0. We will first consider plane-strain deformation so that the

motion of the material particles is limited in the X1 � X2 plane. The field of

deformation is fully described by the mappings between the reference and the

current coordinates, xi X1;X2ð Þ. In the absence of tearing or fracture, the mappings

are continuous functions, and in most places differentiable. The deformation

gradient tensor,

FiK ¼ @xi
@XK

(6.1)

is a measure of strain, and is related to the stress at the same material point by

specific material laws. For example, the nominal stress of an incompressible neo-

Hookean solid is related to the deformation gradient as

siK ¼ mFiK � pF�1
Ki ; (6.2)

where F�1
Ki is the inverse of the deformation gradient tensor, and p is an undeter-

mined pressure field due to incompressibility. The incompressibility also poses a

constraint on the deformation gradient:

detF ¼ 1: (6.3)

The nominal stress field will need to satisfy the equilibrium equation

@siK
@XK

¼ 0; (6.4)

and the traction-free boundary condition on the free surface:

si2 X1; 0ð Þ ¼ 0: (6.5)

Finally, the remote deformation is assumed to be the prescribed uniform

compression

FiK 1ð Þ½ � ¼ l 0

0 1 l=

� �
; (6.6)

and the displacement needs to be properly constrained against rigid-body motion,

e.g., on the symmetry plane, x1 0;X2ð Þ ¼ 0 and x2 0; 0ð Þ ¼ 0. Equations (6.1) through

(6.4), together with the boundary conditions, consist a boundary-value problem of
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the unknown fields xi X1;X2ð Þ and p X1;X2ð Þ. The uniform compression of the block

is a trivial solution to the problem:

x1 ¼ lX1;

x2 ¼ X2

l ;

p ¼ m
l2
:

8>><
>>:

(6.7)

The nontrivial question for crease and wrinkle instabilities is whether there

exists a nonuniform solution to the boundary value problem, and if so, at which

critical stretch lc.
Biot may be the first to have analyzed the wrinkle instability on the surface of a

semi-infinite viscoelastic solid [14] and that on an incompressible neo-Hookean

solid [15] by using a linear stability analysis. The method he used is essentially

the same as the following derivation. Let us introduce a small perturbation on the

trivial solution

x1 ¼ x1 þ sin klX1 A exp kX2 l=ð Þ þ Bl2 exp klX2ð Þ� �
x2 ¼ x2 � cos klX1 A exp kX2 l=ð Þ þ B exp klX2ð Þ½ �
p ¼ pþ kA l2 � l�2

� 	
cos klX1 exp kX2 l=ð Þ

;

8>><
>>:

(6.8)

and linearize (6.2) and (6.4) by keeping only terms linear in kA and kB. It can be

verified that the specific functional form in (6.8) satisfies the equilibrium equation

and the incompressibility constraint to the first order of kA and kB. The traction-free
boundary condition (6.5) becomes a linear eigenvalue problem for A and B .

The condition for the existence of nontrivial solutions is then given by

l3 þ l2 þ l� 1 ¼ 0: (6.9)

The critical stretch for the instability is the positive real root of (6.9),

approximately,

lw � 0:5437; (6.10)

which corresponds to a compressive strain of ew � 46% . This critical value,

however, exceeds the experimentally measured value, ec � 35% [1, 8]. As indicated

by the deformation mode of instability in (6.8), ew is the critical strain for wrinkle

instability instead of crease instability.

Reexamining the procedure of the linear stability analysis, one may find that the

method is flawed for analyzing the crease instability. The error occurs at the

linearization step. It is true for arbitrarily small crease, the continuous displacement

may always be written into Fourier series ofX1, as in (6.8). However, its derivatives

6 Crease Instability on the Surface of a Solid 115



are not necessarily small. In fact, the strain near a crease tip will have removable or

logarithmic singularity, independent of the crease amplitude. Therefore, linearizing

the equations by keeping only the terms linear in kA and kB is an undependable

approach. Nevertheless, its weak singularity may allow the actual strain field to be

approximated by a truncated series containing higher order terms in kA and kB. In
their nonlinear post-buckling analysis [13], Cao and Hutchinson find the instability

modes to be more crease-like as more terms are retained. For the onset of the crease

instability, such a practice will result in a nonlinear eigenvalue problem (i.e., to

identify the condition for the existence of nontrivial solutions to a set of nonlinear

algebraic equations) which does not have a general method of solving.

6.3 Energetic Approach

In Sect. 2, it is demonstrated that Biot’s linear approach is unsuitable for analyzing

the crease instability. On the other hand, nonlinear analysis may face the difficulty

of solving a nonlinear eigenvalue problem. Despite the lack of a closed-form

analytical solution, the crease instability can still be studied numerically. In fact,

the formation of a crease can be directly simulated by any finite-element software

capable of handling nonlinear geometry and contact. For direct simulation, an

initial defect is needed and the defect amplitude needs to be large enough compared

to the size (or wavelength) of the defect [13], in order to reveal the instability at a

critical strain close to 35%. In this section, we review a numerical method which

analyzes the problem from an energetic approach [10, 11].

A major shortcoming of the linear stability analysis is the inability to capture the

singular geometry of the creased surface, and thus the actual instability mode is not

among the candidates of the linearized eigenvalue problem. On the other hand, the

characteristic features of a crease are already known: a region of self-contact, and a

180� folding. In numerical calculation, one can prescribe the features by specifying

a displacement boundary condition. Half of the creased body is modeled as shown

in Fig. 6.3. A horizontal displacement equals the horizontal coordinate of each point

is prescribed on a section of the surface, OA, to deviate the block from the

homogeneous deformation state. Such a crease may require traction on the inseam

to maintain equilibrium. Instead of studying the real crease problem with unknown

contact area, we will compare the difference in elastic energy between the uniform

deformation state and the creased state of prescribed crease depth. The depth of the

crease (measured in the reference state) L is taken to be much smaller than the size

of the block so that L is the only length scale in the problem. The elastic energy per

unit thickness of the creased body minus that of the homogeneously deformed body

is, by dimensional consideration,

DU ¼ mL2f eð Þ; (6.11)
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where f eð Þ is a dimensionless function of the nominal strain e . f eð Þ can be

numerically computed using most finite element program. Figure 6.4 shows the

result obtained by using SIMULIA Abaqus.

Under no compression, the homogeneous state is stress-free while the creased

state is stressed, so f ð0Þ>0 . When the block is being compressed, the crease

relieves the locally compressive stress, and f eð Þ is a decreasing function of e. At a
critical strain ec � 35%, the energy of a creased state equals that of the homoge-

neous state, f ecð Þ ¼ 0. In other words, the homogeneous deformation of the block

becomes a metastable state. Beyond the critical point, no state of equilibrium exists

for the prescribed crease depth and the computation of f eð Þ cannot be continued.

The semi-infinite block lacks a length scale. Following (6.11), when e>ec and f eð Þ
<0, the elastic energy of the creased state of any crease depth L is lower than that of

the homogeneous state, and the deeper the crease, the lower the elastic energy.
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0

0.2

0.4

0.6

0.8

ΔU
/μ

L2

ε

Fig. 6.4 The elastic energy difference between the creased state and the homogeneous state,

plotted as a function of the applied compressive strain

O A

homogeneous 
state 

O

A

ε
ε

creased 
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Fig. 6.3 Sketch of the computational domain. Only half of the creased body is modeled. A

displacement is prescribed on OA at the surface of the block under plane-strain compression, to

form the crease

6 Crease Instability on the Surface of a Solid 117



Therefore for a semi-infinite block, a crease will extend indefinitely without

reaching equilibrium. For a finite block, on the other hand, the crease will equili-

brate at a finite depth, as discussed in Sect. 5.

Such a numerical approach has clearly shown the critical strain for the crease

instability, ec , beyond which the creased state is energetically favorable over the

homogeneous state. Although an energy barrier may be present between the two

states, such a result at least shows that the crease will form at the critical strain

under large enough perturbation.

6.4 General Deformation States

Next let us consider the crease instability under general loading conditions.

Consider a semi-infinite elastomer block under homogeneous deformation, with l1
andl3 being the stretches parallel to the free-surface, andl2 the stretch perpendicular
to the surface. The compression in the x1-direction is taken to be more severe than

that in the x3 -direction, so that a crease forms with the ridge parallel to the x3 -
direction, leaving the stretch l3 unchanged. The crease is in a generalized plane-

strain state. To analyze the instability of the crease, we imagine an intermediate state

to bridge between the referenced stress-free state and the state of actual deformation.

Figure 6.5 illustrates the deformation in the three states. A unit cube in the reference

state deforms with principal stretches l1 , l2 , and l3 in the current state. The

intermediate state retains the same stretch in the x3-direction, l3, but is stress-free in
the other two directions. For an incompressible material, the stretches of the inter-

mediate state arel01 ¼ l02 ¼ 1
ffiffiffiffiffi
l3

p�
andl03 ¼ l3. Taking the intermediate state as the

reference state
(stress free)

1
1

1

current state
(actual deformation)

1

1

intermediate state
(imaginary)

li

l3

l3

l2

l1

l3

l3

li′

Fig. 6.5 The deformation of

a generalized plane-strain

problem, and the equivalent

plane-strain problem with the

aid of an intermediate state
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new reference, we can regard the relative deformation of the current state as plane-

strain. The relative stretches with respect to the new reference are l01 ¼ l1
ffiffiffiffiffi
l3

p
, l02

¼ l2
ffiffiffiffiffi
l3

p
, and l03 ¼ 1. The elastic energy per unit volume of the material can also be

written in terms of the relative stretches. For a neo-Hookean material,

W l01; l02ð Þ ¼ m
2

l21 þ l22 þ l23 � 3
� 	 ¼ m

2l3
l01

2 þ l02
2 þ l33 � 3


 �
: (6.12)

The strain-energy function would give rise to the same stress–strain relation as

that of a neo-Hookean material under plane-strain deformation. The effective shear

modulus of the generalized plane-strain problem is m l3= .

Such a similarity provides a means of utilizing the result obtained in Sect. 3 to

the crease instability of a material under general deformation state. The critical

strain ec � 35% corresponds to a critical stretch of lc � 0:65 in a plane-strain

state. The same critical condition is applicable to a generalized problem in which

l0c � 0:65 . In terms of the stretch with respect to the stress-free reference, the

critical condition is l1
ffiffiffiffiffi
l3

p � 0:65. Since the material is assumed to be incompress-

ible, l1l2l3 ¼ 1, the critical condition for crease instability can be rewritten as

l2
l1

� 2:4: (6.13)

Here, l1 is the stretch in the direction perpendicular to the crease line and parallel to
the free surface, while l2 is the stretch in the normal direction of the free surface. It

is noteworthy that the same procedure is also applicable to the linear stability

analysis for wrinkles, and it will translate the critical strain for wrinkle instability

ew � 46% to a generalized plane-strain state as l2 l1= � 3:4.
As an example, consider an elastomer cylinder being compressed axially.

Crease may form circumferentially on the cylinder surface, as sketched in

Fig. 6.6. To predict the onset of the crease, we may use the critical condition

(6.13) directly. Let lz be the axial stretch. The corresponding radial and circum-

ferential stretches are lr ¼ ly ¼ 1
ffiffiffiffi
lz

p�
. The critical condition for crease instabil-

ity is lr lz= � 2:4, or lz ¼ 0:56. In terms of compressive strain, crease forms at

approximately 44% of axial compression. (The linear perturbation result will

instead predict a critical strain of 56% .) For an infinitesimal crease with no

crease 

Fig. 6.6 The critical

compressive strain for

creasing on the surface of an

axially compressed cylinder

is e ¼ 44%
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intrinsic length scale, the critical condition will not be affected by the curvature of

the surface.

The critical condition for a general deformation state has also been used to study

the creases generated by the growth of soft tissues [5]. We will illustrate this

application by looking at two simple examples regarding the tissue growth on a

concave surface and a convex surface. For simplicity, we will assume the growth to

be isotropic and homogeneous, with the growth tensorG ¼ gI, where I is the identity
tensor [16]. Such a growth tensor corresponds to the state of growth in which the

tissue will expand isotropically with linear stretchg if no constraint is posed. First, let
us look at the growth on the outer surface of a rigid spherical core of radiusR. Denote
the thickness of the tissue layer before growth as H . Assuming the tissue to be

incompressible, one may obtain the field of deformation without solving the equi-

librium equations. The radius of the external surface r after growth is related to g as

r3 � R3 ¼ g3 Rþ Hð Þ3 � R3
h i

: (6.14)

The circumferential stretch on the external surface of the tissue, relative to a

stress-free isotropic state of growth, is

ly ¼ 1� 1� 1

g3

� 
R

Rþ H

� 3
" #1=3

: (6.15)

The critical linear growth ratio for crease instability, gc, can then be obtained by

applying the critical condition for equal biaxial compression, l
3
2
y � 0:65:

gc � 1� 0:58 1þ H

R

� 3
" #�1=3

: (6.16)

In the case of a relatively thin tissue, H<<R, gc � 1:33þ 1:8H R= .

The similar procedure can be applied to the growth of a tissue on the inner

surface of a rigid shell. Denoting the radius of the rigid wall as R and the thickness

of the tissue before growth asH, one can easily obtain the critical linear growth for

crease instability:

gc � 1� 0:58 1� H

R

� 3
" #�1=3

� 1:33� 1:8H R= : (6.17)

Obviously, the tissue growth on a concave surface would induce a crease more

easily than that on a convex surface. In the limiting case of a flat surface, both

results reduce to the critical condition of approximately 33% of isotropic growth for

crease instability to take place.
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6.5 Crease on a Film of Finite Thickness

The failure of the linear stability analysis in Sect. 2 suggests that a perturbation in

the form of a singular function may be needed for the crease instability. However,

the introduction of a non-smooth or a singular perturbation would immediately give

rise to geometric nonlinearity which prohibits common analytical methods. The

simplest form of a singular perturbation may be adding a concentrated load on the

surface of an elastomer block under lateral compression. As sketched in Fig. 6.7a, a

force per unit thickness of the block, F, is applied perpendicular to the free surface,
and the loading point displaces by d relative to the unperturbed surface. It is

expected that the onset of the crease instability is the point at which the

corresponding stiffness of the point load vanishes, i.e., when a point on the surface

can displace spontaneously in the absence of any force. The corresponding problem

in linear elasticity is known as the Flamant problem [17], and has a closed-form

solution. The large deformation, however, would always introduce geometric

nonlinearity as well as self-contact near the singular point. Research on the analyti-

cal solution of the finite-deformation Flamant problem and Boussinesq problem has

been carried out (e.g., [18, 19]). However no analytical result for the compressive

force case has been found up till the writing of this chapter. In fact, a crease will

always form at the loading line, regardless of the magnitude of the load. Here in this

section, we take the numerical approach by using the finite element method. It is

noteworthy that although the analytical solution for the displacement at tip is

infinity, the numerical solution is finite because the load is spread over one element

through the course of discretization.

Some representative load–displacement curves are shown in Fig. 6.7b. Although

a semi-infinite block is preferred for theoretical analysis, the numerical model has a

finite size. The displacement is normalized by the overall thickness of the block,H,
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Fig. 6.7 (a) Sketch of the finite-deformation Flamant problem: a line force acting on a semi-

infinite block under latter compression. (b) The load–displacement curves and the mesh

dependence

6 Crease Instability on the Surface of a Solid 121



and the line force by mH. At the beginning of the curve, when the displacement is

smaller than one element, the small strain approximation holds in most elements, so

the numerical results recover the linear solution. However, such a solution is never

physical, since it is highly dependent on the mesh size, as shown in Fig. 6.7b. As

soon as contact takes place in one element, the force–displacement curve deviates

from the linear solution. At a displacement about one order of magnitude larger

than the mesh size, the numerical result becomes more stable and mesh

independent.

Disregarding the nonphysical linear solution at displacements smaller than an

element, the slope of the load–displacement curves does show a dependence on the

lateral compressive strain. As shown in Fig. 6.8a, the sign of the initial slope

changes at a critical compressive strain ec � 35%. However, due to the artifact at

small displacements, the accurate values of the initial slopes are difficult to obtain.

Here we take an alternative approach by looking at the horizontal intercept of

the load–displacement curve. Under a supercritical compressive strain, e>ec , the
load–displacement curve intersects with the horizontal axis at two points, d0e and de,
as shown in Fig. 6.8a. These two intersections correspond to two equilibrium states,

in which no force is needed and the crease forms spontaneously. The intersection d0e
is unstable and is induced by the numerical artifact at small displacement. An

infinitely accurate solution is expected to have negative initial slope and intersect

with the horizontal axis at only one point. Consider only the physical equilibrium

point de . Figure 6.8b plots the corresponding crease depth as a function of the

applied strain, Le eð Þ. In contrast to the prescribed crease under a subcritical strain as
described in Sect. 3, here the crease forms spontaneously in the absence of any

external force or constraint (F ¼ 0). At a depthLe, the creased state is in equilibrium
and energetically stable.
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Fig. 6.8 (a) The load–displacement curve of a line force on the surface of a large block of size H,
under various levels of compressive strain. The two intersections with the horizontal axis corre-

spond to two equilibrium states, one being unstable and the other stable. (b) The depth of a crease

in stable equilibrium, plotted as a function of the lateral compressive strain. The circles are the

numerical results, and the line is a guide to the eye
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This calculation, in turn, reveals the equilibrium crease depth on a film of

thickness H bonded to a rigid substrate. With H being the only length scale of the

problem, the equilibrium crease depth Le scales with H and is a monotonically

increasing function of the compressive strain at e>ec . Extrapolating the curve of

equilibrium crease depths, Fig. 6.8b, an intersection with the horizontal axis could

be found. This intersection is the strain at which an infinitesimal crease is at a stable

equilibrium state, i.e., the onset of the crease instability ec . The numerical value

ec � 35% confirms the result obtained in Sect. 3.

Lack of an intrinsic length scale, the behavior of a film of finite thickness, is

indifferent from that of a semi-infinite block. At the critical strain, an infinitesimal

crease nucleates. The contact depth of the crease then increases with the applied

strain. In terms of displacement, the state of an infinitesimal crease is infinitely

close to a homogeneous deformation state. In other words, perturbation on the

displacement field with infinitesimal amplitude (but finite in derivative) would

induce the energetically more stable crease. In atomic scale, the discontinuous

thermal fluctuation serves well as such a perturbation. On the other hand, the

surface of a solid, especially polymer, is neither perfectly flat nor atomically

smooth. We may study the energy landscape near the critical point by looking at

the work done by the remote stress. Figure 6.9 plots the remote stresses as functions

of the overall compressive strain, for both the homogeneous state and the creased

state. In a reversible process, the work done by the remote stress (i.e., the area below

the curve multiplied by the volume of the bulk) equals the elastic energy stored in

the bulk. Beyond the critical strain ec , the creased state equilibrates with a lower

remote stress, and thus stores less energy. At the critical strain, the two states are in

equilibrium with the same remote stress, and bare the same elastic energy. In order

to obtain the results for the creased state, creases with different depths are pre-

scribed at various levels of the applied strain. If a crease initiates at infinitesimal

depth before reaching equilibrium at a finite depth, the calculation shows that there
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Fig. 6.9 (a) The remote nominal compressive stresses as functions of the overall compressive

strain, for the homogeneous compression state and the creased state. The crease relieves the

compressive strain. (b) The difference in remote stress between the creased state and the homoge-

neous state, plotted as a function of the overall compressive strain
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is no energy barrier between the homogeneous state and the creased state. Never-

theless, in the actual physical process, a finite energy barrier may be present

between the homogeneously deformed state and a creased state. Such an energy

barrier may be due to various reasons, including the effect of surface or the material

heterogeneity near a surface, the effect of inelastic deformation near a crease tip,

etc. The existence of a finite energy barrier may give rise to a length scale. (In fact,

the heterogeneity near the surface of a material may define a length scale directly.)

The intrinsic length scale may delay the crease instability for that a crease shallower

than a specific depth may be energetically unfavorable. For an incompressible neo-

Hookean material, such an effect is minor. Based on the numerical results shown in

Fig. 6.8b, an energy barrier which prevents the formation of a crease shallower than

5% of the overall thickness of a bonded film would only increase the critical strain

by 1%. The effect of energy barrier could be more significant to other materials,

such as a swollen polymeric gel, as is discussed later in Sect. 6.

6.6 Effect of Material Properties

Till now, we have only been looking at the crease instability on an incompressible

neo-Hookean material. The agreement between the calculated critical strain

ec � 35 % and experimental results may be attributed to the finite but moderate

strain near the crease tip. Indeed, for an incompressible neo-Hookean material,

the stretch near the tip is close to that of a 180� disclination,ly ¼
ffiffiffi
2

p
, as discussed

in Sect. 1. Under such a moderate stretch, neo-Hookean model is a good approxi-

mate for many hyperelastic materials. However, for a compressible material, the

radial distributions of both stress and strain are singular near the crease tip.

Therefore, it is expected that the critical condition for crease instability is depen-

dent on the detailed constitutive relations as well as the compressibility of

materials.

We will first look at the effect of compressibility on the critical strain for crease.

As of yet, we have only numerical methods to determine the onset of crease

instability, e.g., through extrapolating the curve in Figs. 6.4, 6.8b, or 6.9b. Using

the commercial finite-element code SIMULIA Abaqus 6.10, we calculate the data

points in Fig. 6.10a using a set of curves as the one in Fig. 6.9b. The constitutive

relation used is the compressible neo-Hookean material law, with the elastic energy

density being

W ¼ m
2

I1 � 3
� 	þ K

2
J � 1ð Þ2; (6.18)

where I1 ¼ J�
2
3FiMFiM is the first invariant of deviatoric deformation tensor,

J ¼ detF is the volume ratio of deformation, and K is the bulk modulus. We

assume plane-strain deformation, and measure the compressibility in terms of the
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ratio between the two moduli, m K= . Despite the difficulty in error control due to

the nature of the finite element method and the singularity of the problem, the

results plotted in Fig. 6.10a clearly show the dependence of the critical strain on the

compressibility of the material. The critical strain for the crease instability, ec, is not
a monotonic function of the compressibility. For a slightly compressible material,

m K= � 0:3, the critical strain decreases with the increase in compressibility; for a

highly compressible material, m K= � 0:4, the critical strain increases with com-

pressibility. That is, crease forms more easily on a slightly compressible material

than on an incompressible material, but more difficultly on highly compressible

foam. Such dependence may be attributed to the two competing effects of the lateral

constraint. Near the crease tip, the lateral constraint tends to delay the formation of

the crease because of the local large deformation (and thus high constraint force).

Remote to the crease tip, the lateral constraint increases the elastic strain energy at

the same compression, and thus favors the formation of a crease. The numerical

results show that a neo-Hookean material with intermediate compressibility, m K=
� 0:3, is most susceptible to crease instability.

Now let us turn to the effect of the material constitutive behavior. Since only

numerical methods are available, it is impossible to enumerate all material laws and

test them one by one. On the other hand, the major difference among various

constitutive relations of elastomers is at the high-extension response. Due to the

extension limit of polymer chains, most elastomers have strain-stiffening effect. To

study the effect of strain stiffening on crease instability, we invoke the commonly

used Arruda–Boyce model with a free-energy function dependent on the stretch

limit parameter lm [20]. Plotted in Fig. 6.10b is the critical strain for crease

instability on a semi-infinite block of the Arruda–Boyce material, as a function of

the stretch limit lm. It can be seen that the strain-stiffening effect tends to delay the

onset of crease instability, for the simple reason that the distorted core of a crease
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Fig. 6.10 (a) The dependence of the onset of crease instability on the compressibility of a neo-

Hookean material. (b) The dependence of the crease instability on the extension limit of an

incompressible Arruda–Boyce material

6 Crease Instability on the Surface of a Solid 125



stores higher elastic energy in a strain-stiffened material than that in a neo-Hookean

material. However, because of the weak singularity and the moderate deformation

around a crease tip as shown in Sect. 1, the effect is minor and may be of importance

only when the stretch limit is very low. Figure 6.10b only plotted the results for an

incompressible material while the behavior of compressible materials is very

similar.

The crease instability on the surface of a swollen polymeric gel was observed in

1960s [Southern] and has recently attracted more interest [3, 7, 9, 12, 21]. Here as

an example, we would use the numerical methods described in previous sections to

study the crease instability on a polymeric gel. Due to the presence of the mobile

solvent molecules in a swollen gel, its deformation is usually time dependent.

Therefore, the critical condition for crease instability is also expected to be depen-

dent on the deformation rate. We will consider two limiting cases.

Under very high deformation rate, the solvent molecules will not have time to

migrate, and a gel appears to be incompressible. It was commented by Hong et al.

[10, 11] that the critical condition for a crease that forms instantaneously can be

derived directly from the critical strain of an incompressible elastomer. If a swollen

gel is compressed instantaneously in a plane-strain state, the critical strain with

respect to the free-swelling state is ec � 35 %. Similarly, during the fast swelling

process of a gel bonded to a rigid surface, a crease forms instantaneously at a linear

swelling ratio of l0c � 2:4, relative to the as-bonded state. The result is obtained by

imagining that the bonded swollen state is achieved through instantaneously

compressing an isotropic swollen gel of the same volume to match the lateral

constraint from the rigid substrate.

At the slow deformation limit, the migration of solvent molecules has completed

and a thermodynamic equilibrium can thus be assumed. To study the crease

instability at this limit, we utilize the free-energy function for polymeric gels

proposed by Hong et al. [22]:

W ¼ m
2

I1 � 3� 2 ln J
� 	� kT

v
J � 1ð Þ ln J

J � 1
þ w

J

� �
� m

v
J � 1ð Þ; (6.19)

in which kT is the temperature in the unit of energy, v the volume per solvent

molecule, w a dimensionless parameter for the enthalpy of mixing, and m the

chemical potential of the solvent in the gel referenced to pure solvent. We imple-

ment the free-energy function into a user-defined subroutine in SIMULIA Abaqus

6.10 [10, 11], and take the following representative values of the material

parameters: vm kT= ¼ 0:001 and w ¼ 0:1. A gel represented by this model increases

its volume by approximately 39 times from a dry state to an isotropic swollen state

in equilibrium with pure solvent, m ¼ 0. We first consider the procedure shown in

Fig. 6.11a. A semi-infinite gel first swells by l0 in all directions, and is then subject
to a lateral compression. The second step is an equilibrium process, in which the

chemical potential of the solvent m is kept constant, and the deformation from the

isotropic swelling state is assumed to be plane-strain. The critical strain is obtained
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using the same method as shown in Fig. 6.9b. The numerical results are plotted in

Fig. 6.11b. Due to the finite compressibility of a swollen gel, the critical compres-

sive strain takes a value higher than that of an incompressible neo-Hookean rubber.

The difference is more significant at higher initial swelling ratios, when the

resulting gel tends to be more compressible.

The crease instability on a swollen gel being compressed mechanically is

directly related to our earlier discussion, but may be of less interest practically.

For polymeric gels that are responsive to various types of stimuli in the form of

large deformation, the crease instability during the course of swelling is studied

more often [7, 23]. Here, using a numerical method similar to that described in

Fig. 6.9b, we also calculate the critical condition for the crease instability on a gel

which undergoes constrained swelling. The loading condition is sketched in

Fig. 6.12a. A large film of gel is bonded to a rigid substrate after initial isotropic

swelling l0 , and then swells more in the thickness direction, with the lateral

directions constrained. Thermodynamic equilibrium is assumed for the whole

deformation process, i.e., m is kept constant. The onset of crease instability is

measured in terms of the relative swelling ratio l0c and plotted in Fig. 6.12b, as a

function of the ratio of initial swelling at which the gel is bonded. The critical

swelling ratio l0c � 2:4 for instantaneous crease formation is also plotted for

comparison. It could be seen that at low initial swelling ratio, due to the limited

compressibility, the critical condition for equilibrium crease is close to that of

instantaneous instability, while at high initial swelling ratio, a crease forming in

equilibrium requires a much lower relative swelling. With the combination of

material parameters picked, if a gel is bonded (or cross-linked) at an initial swelling

ratio of 2 or greater (~90% vol of solvent), an additional 200% swelling in the

thickness direction would already induce crease instability in the long-term limit.

The plot in Fig. 6.12b may also serve as a dynamic phase diagram for the crease

instability on a gel under constrained swelling. At a relative swelling smaller than
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the critical condition in equilibrium, crease never forms and a flat surface is stable.

At a relative swelling ratio between the equilibrium condition and the instantaneous

condition, a crease will form after a finite time, i.e., the time needed for the creased

state to reach equilibrium. Such a phase diagram may be used to explain the diverse

values (2–3.7) of critical swelling ratios measured in experiments [2, 9]. However,

strictly speaking, the deformation rate of a system free of length scale would be

difficult to measure. In fact, the time needed for solvent migration to equilibrate an

infinitesimal crease is infinitesimally short. In other words, an infinitesimal crease

takes no time to reach equilibrium. The situation would be different if the formation

of a crease has a finite energy barrier or the material has an intrinsic length scale.

Since a crease would then initiate at a finite size in order to be energetically

favorable, and the migration of solvent molecules requires finite time to form the

equilibrium crease, the apparent onset of the crease formation would be delayed.

The amount of delay in terms of swelling ratio would thus be dependent on the

speed of swelling as well as the thickness of the gel film. The heterogeneous

distribution of solvent through the thickness of the gel during swelling may also

play a role in determining the crease instability. To accurately predict the crease

instability in a swelling gel, a dynamic model for crease instability is required.

6.7 Concluding Remarks

This chapter introduces a special type of instability, crease, which takes place on the

free surface of a material being compressed. Characterized by the self-contact and

the weak singularity in stress and strain, a crease has inherited geometric
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nonlinearity even at infinitesimal amplitude. The finite deformation prohibits the

usage of the common linear stability analysis, which in turn predicts the wrinkle

instability. The deformation mode of crease is not among the candidates of the

linear stability analysis. While it may be probed through the introduction of a

singular perturbation, or by considering higher order terms in stability analysis,

the resulting nonlinear eigenvalue problem is not readily solvable.

Despite the mathematical difficulty in finding a closed-form solution, the onset

of instability could be obtained numerically by extrapolating the solutions of a

prescribed crease of finite size to those of an infinitesimal crease. For an incom-

pressible neo-Hookean material under plane-strain deformation, the critical com-

pressive strain for crease instability is ec � 35%. This value is very close to the

experimentally measured onset of crease on rubbery materials, and is significantly

lower than the onset of wrinkle instability, ew � 46% , as given by the linear

stability analysis. For a more general deformation mode, the critical point can be

obtained from this result by utilizing the specialty of the neo-Hookean material

law. Under a generalized plane-strain compression with stretch l3 in the third

direction, the critical condition is l1
ffiffiffiffiffi
l3

p � 0:65 or l2 l1= � 2:4, where l1 is the

stretch along the direction of compression. The results can be applied directly to

crease instability in other similar scenarios. During the growth of a tissue, the

onset of crease on a laterally constrained tissue on a flat substrate is an isotropic

growth rate of 1.33 in the absence of the constraint. A concave substrate would

promote the crease instability while a convex substrate would delay the crease

formation.

The dependency of the crease instability on the material constitutive relations is

also studied using the numerical methods. It is found that the material compress-

ibility has a strong influence on the crease instability, while the strain-stiffening at

high stretching has very small effect. More interestingly, the dependence of the

critical strain is not a monotonic function of the compressibility. A slightly com-

pressible material favors the crease instability while highly compressible foam

would postpone or prevent the crease formation. Polymeric gels, on the other

hand, have time-dependent mechanical behaviors. The short-term response of

polymeric gel is just like an incompressible rubber, while the long-term

response which brings a gel to thermodynamic equilibrium is highly compressible

because of the solvent migration. It is found in this chapter that the critical strain for

long-term crease instability is always lower than that of an instantaneously formed

crease. The limiting results in the two extremes predict the upper and lower bounds

for crease instability, while the onset of crease on a polymeric gel would depend on

the actual loading process as well as the initial condition.

Although there have been some advances on the understanding of crease insta-

bility, a few fundamental questions remain unanswered: What is the ultimate

mathematical method for analyzing instabilities that has inevitable nonlinearity?

What is the role of material heterogeneity or surface effect? What is the critical

condition for a crease which forms dynamically?
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Chapter 7

Buckling Delamination of Compressed

Thin Films

Myoung-Woon Moon

Abstract The aim of this chapter is to review the studies on buckle delamination

in compressively stressed thin films over substrates by pulling together experimen-

tal and theoretical analysis. The general phenomena shown in delamination buckles

of compressively stressed films were discussed from the onset to propagation

over the substrates. The experimental observations were characterized by the

delamination conditions and buckle morphologies. Then, the related mechanics

for buckle delamination were provided with a theoretical solution for simple buckle

configurations and a numerical solution for nonlinear buckle. Based on the experi-

mental and theoretical analysis, the buckle configuration was applied to fluidic

channels by precisely controlling buckle width within the desired area by adjusting

interface adhesion.

7.1 Introduction

When the strain energy of a compressive film exceeds the interface toughness or

interface adhesion energy, the film could show the interesting nonlinear behavior of

buckle delamination. Nonlinear configurations of delamination buckle have been

observed in many different film–substrate systems under residual compressive

stress of up to several GPa, which developed from the thermal expansion coefficient

mismatch or lattice parameter mismatch between film and substrate, or intrinsic

stress from its bonding structure which originated during deposition [4, 8, 20].

When the film or skin is well adhered to its substrate which is relatively compliant,

like polymers (e.g., PMMA, PDMS), then buckle of the thin film or skin without

delamination against the substrate has been reported even under high compression
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[2, 3, 23]. However, on moderate substrates like glass, Si, or metal, compressively

stressed films are likely to delaminate into the buckle configuration, which would

further enhance the delamination [7, 19–21].

Several systems under compressive stress have been reported to reveal the buckle

configuration as the stress relief pattern. With high residual stress, diamond-like

carbon (DLC) films or diamond films on glass, Si, or steel have been well known

for delamination buckle configurations [16, 18, 21, 29], as well as such systems as

mica films glued on Al, Mo films on glass [12, 25], amorphous (hydrogenated) Si films

on glass/Si [27], stainless steel on polycarbonate, Fe/Ni compositionally modulated

films, Boron films on NaCl [14, 15], and Nickel films on polycarbonate substrates.

Hydrogen-enhanced niobium (Nb) films on polycarbonate (PC) or mica have buckle

geometries due to increased hydrogen concentration [26].

In the presence of small interface separations, the films may buckle to release the

strain energy or residual stress. The ensuing buckles of engineering films on

substrates exhibit several configurations, ranging from circular to linear to tele-

phone cord as summarized in Fig. 7.1. The linear symmetric types, such as circular

buckle (Fig. 7.1a) or straight-sided buckle (Fig. 7.1b) initiated along the free edge,

Fig. 7.1 Buckle configurations of three categories; a circular buckle (a), a straight-sided buckle

(b), and a nonlinear telephone cord buckle (c, d)
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would be rarely observed in experimental conditions due to their energetic stability,

while the nonlinear and asymmetric morphology of buckle (Fig. 7.1c, d), the so-

called telephone cord buckle, has been well reported in many systems [20, 22]. Note

that nonlinear buckle, or telephone cord buckle, has a nonlinear side configuration,

which is periodically repeated with an asymmetric unit segment. However, buckles

known as straight-sided buckle and circular buckle show symmetric and linear

configurations, but are rare in real experimental conditions due to their energetic

instability.

In this chapter, the experimental observations were reviewed for the delamina-

tion condition and buckle morphologies. Then, the related mechanics for buckle

delamination were reviewed with a theoretical solution for simple buckle

configurations and a numerical solution for nonlinear buckle. The role of

imperfections on the initiation and propagation of buckle-driven delaminations in

compressed thin films has been demonstrated by experiments performed with DLC

films deposited onto glass substrates. The surface topologies and interface

separations have been characterized using the Atomic Force Microscope (AFM)

and the Focused Ion Beam (FIB) imaging systems.

The profiles of several nonlinear buckles have been measured to establish the

symmetry of each repeated unit, revealing similarity with a circular buckle pinned

at its center. Lithographic techniques applied to a substrate prior to film deposition

can create areas of low interface adhesion surrounded by regions of high adhesion.

When the area of low adhesion is a strip, the width of the strip controls the buckle

morphology: smooth Euler buckles for narrow strips, telephone cord buckles for

wider strips, and symmetric varicose buckles under a very limited range of

conditions. A complex and designed pattern of buckling delamination has been

introduced for simple fluidic applications.

It has been shown that the telephone cord topology can be effectively modeled as

a series of pinned circular buckles along its length, with an unpinned circular buckle

at its front. Furthermore, evaluation of the energy state over the buckle unit or the

energy release rate at the crack tip along the nonlinear side is conducted with 3-D

numerical models.

7.2 Buckling Delamination of Thin Compressed Films

7.2.1 Imperfection-Driven Delamination Buckling

Delamination or buckle would be caused near the interface defects or free edge

(Fig. 7.1) [20] with critical imperfection length due to unstable stress or strain

energy. The failure responses exhibited by residually compressed thin films on

thick substrates have been widely documented [5, 19, 20, 28]. Most typically, in the

presence of small interface separations, the films may buckle and, moreover, the

buckles can propagate beneath the film if the induced energy release rate exceeds
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the interface fracture toughness. Since the initiation of the buckles would start from

delamination of films at the interfaces that have defects, failures induced by

imperfections or defects should be understood in detail.

As in all practical buckling problems, imperfections at the interfaces are

expected to be important and some effects of geometric imperfections have been

analyzed by either theory or experiment [11, 20]. In brief summary, the energy

release rate, G, for an interface separation beneath the imperfection is dramatically

altered, relative to a flat surface. Most importantly, a finite G develops even for very

small initial separations and is attributed to the tensile stress normal to the interface.

Measurements of the surface defects of coatings, reflected off interfacial defects,

have been performed on the imperfections analyzed with AFM surface profiling and

FIB cross sectioning as shown in Fig. 7.2 [20].

Briefly, the conditions for the deposition of DLC films on standard microscope

slides made from soda lime glass were the following [20]. The DLC films were

deposited using a capacitively coupled r.f. glow discharge, choosing conditions that

generate delamination buckles. By applying a negative self-bias voltage controlled

in the range of �100 to �700 V, the film thickness was in the range of

0.26–0.46 mm, and the residual compression was between about 1 and 4 GPa,

resulting in delamination buckles with wavelengths of about 20–25 mm. Various

Fig. 7.2 AFM surface profiles of four imperfections. Images of three imperfections (a) (I, II, III)
with small diameter and a large one (b) (IV). (c) SEM images with side and cross-sectional views

for before and after sectioning with the FIB. Moon et al. [20], reprinted with permission
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surface topologies appear (Fig. 7.2a, b), indicative of a range of imperfections. It

will be shown that these imperfections are all related to defects on the surface of the

glass prior to DLC deposition.

AFM measurements were performed on the imperfection sites as shown in

Fig. 7.2a, b. The AFM surface profiles reveal four imperfection categories. The

differing profiles suggest the three basic responses shown schematically in

Fig. 7.2a–c. The two smaller imperfections (numbers I and II) both have amplitudes

of around 140 nm and wavelengths of about 6.2 mm. Their irregular profiles indicate

that the DLC is still fully attached to the substrate, having imperfections of similar

shape to those at the interfaces between film and substrate. The relatively larger

imperfection (number III in Fig. 7.2a) has a substantially different profile. The

irregular segment on the right (with features similar to imperfections I and II)

appears to separate and buckle from the interface. The largest imperfection (number

IV on Fig. 7.2b) appears at the source of a propagating telephone cord buckle. The

imperfection size is determined to have amplitude, d ¼ 360 nm and wavelength,

L0 ¼ 20.0 mm.

In all cases shown above, note that the irregular topology found on the surface

reflects the initial topology of the substrate, affirming that the DLC deposits

everywhere with uniform thickness, h ¼ 0:46 mm. Images of a larger imperfection

that initiated a telephone cord buckle (Fig. 7.2c) reveal the separation. The ampli-

tude of this imperfection exceeds the film thickness,d ¼ 1:2h. It is also asymmetric.

Region “A” on the left has a larger wavelength, L1 � 60h. This is also the side that

dictates the direction in which the buckle propagates. In region “B” on the right, the

imperfection wavelength is smaller, L2 ¼ 18h, and the buckle is stationary.

7.2.2 Buckling Delamination of Compressed Thin Films

7.2.2.1 Linear Buckling Instability

The buckles propagate beneath the film if the induced energy release rate exceeds

the interface fracture toughness. The associated mechanics have been well

documented [9]. The buckles exhibit several configurations, from circular to linear

to telephone cord (Figs. 7.1a and 7.3). Straight buckles propagate with a curved

front. The conditions at the stationary side and the circular front have been modeled

and rationalized in terms of mode mixity and energy release rate [9, 10, 13].

For thin films of thickness h, subject to equi-biaxial compression, s0, the surface
displacement w normal to the substrate of a straight-sided buckle (Fig. 7.3c), as a
function of distance y measured from the middle of the buckle well behind the

curved front, is given by [9]

w

h
¼ x

2
1þ cos

py
b

� �� �
; (7.1)
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where 2b is the width and

x � wmax

h
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3

s0
sc

� 1

� �s
: (7.2)

The critical bifurcation stress, sc, at width 2b, is

sc¼ p2

12

� �
E

1� n2
h

b

� �2

(7.3)

Fig. 7.3 Straight-sided

buckles initiated from free

edge (a) and buckling

transition from straight to

telephone cord (arrow-
marked) (b). A schematic for

modeling a straight-sided

buckle (c)
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with E and n the Young’s modulus and Poisson’s ratio of the film, respectively. The

energy release rate and phase angle, tancs � KII=KI, on the sides, well behind the

curved front, are

Gs

G0

¼ 1� sc
s0

� �
1þ 3

sc
s0

� �
; (7.4)

tancs ¼
4cosoþ ffiffiffi

3
p

xsino

�4sinoþ ffiffiffi
3

p
xcoso

; (7.5)

where the energy release rate has been normalized by the strain energy per unit area

when the film is released in plane strain [9]:

G0 ¼ 1� n2ð Þhs20
2E

: (7.6)

Note that the normalized energy release rate,G/G0, and the maximum deflection,

wmax/h, depend only on the normalized stress,s0=sc. The phase angle, c, while also
a function of the Dundurs’ parameters [9], for present purposes is set to the value of

absent elastic mismatch, whereupon o ¼ 52.1o.

The steady-state energy release rate averaged over the curved front is [9]

Gss

G0

¼ 1� sc
so

� �2

: (7.7)

The energy release rate along the sides exceeds that along the front at all s0=sc
[10]. Yet, the front propagates because it experiences a significant opening mode,

while the sides become exclusively mode II, once the buckle attains a characteristic

width (associated with s0=sc ¼ 7:54).

7.2.2.2 Nonlinear Buckling Instability

As the calculation for the nonlinear side of the stationary telephone cord buckle has

been conducted, one can consider the propagation of buckles expanding through the

entire film [21]. The formation mechanism of the nonlinear buckles has been

considered in an experimental approach for the DLC film under the equi-biaxial

stressed thin film. At the condition for the straight-sided buckle, secondary bifurca-

tion buckles, classified as varicose-type buckles and telephone cord buckles, have

been observed along the side of the preexisting straight-sided buckle. For large

widths, by contrast, the telephone cord buckle, as a nonlinear instability, has only

been induced with a unique zigzag configuration, which reveals the bifurcation

along the curved leading front as it grows (Figs. 7.1 and 7.4).
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The two different formation sequences of telephone cord buckles have been

compared with respect to buckle width. As well as the secondary bifurcation buckle

from the straight side with a small perturbation on the preexisting simple straight-

sided buckle with width b in the range of 2.0 < b/b0 < 2.5, where b0 is the

reference width for the onset of buckling, the nonsymmetric undulation has been

observed with the bifurcation at the circular leading front in the natural growth

range of 2.5 < b/b0 as the telephone cord expands. The characterization of tele-

phone cord buckles has been provided by several equipment for measuring the

exact morphologies, giving basic insight into further discussion about the energetic

stability of telephone cord buckles. The axi-symmetric model for the nonlinear side

of the telephone cord buckle has been compared with the straight side and circular

front in terms of energy release rate and mode mixity.

The profiles of telephone cord buckles are characterized along different chords

using the AFM. Images of the telephone cord buckles (Fig. 7.5) suggest that each

repeated unit has a center of symmetry, denoted O in the figure, and that the

circumference around that point, denoted by the arc XY, has constant curvature.

The adjacent units have the inverse symmetry. Each repeated unit occupies roughly

a 90o angular domain. AFM profiles measured along representative trajectories for

Fig. 7.4 Telephone cord

buckling initiated from

imperfections: interface

defect (a) and free edge

(b). Moon et al. [20],

reprinted with permission
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a DLC film (of thickness h ¼ 0.13 mm) affirm the overall characteristics (Fig. 7.5a).

Radial trajectories originating at O all have essentially the same asymmetric

profile, exemplified by that shown in Fig. 7.5b. Note the mirror symmetry between

A and B. Profiles along the medians between adjacent units (lines X and Y in

Fig. 7.5a) are symmetric (Fig. 7.5c).

7.2.2.3 Energy Release Rate of Buckling

In order to estimate the energy relaxation during nonlinear buckle evolution, the full

model of nonlinear buckle has been calculated for the nonlinear sides of telephone

cord buckles, which reveals that telephone cord morphologies could release most of

the strain energy as buckle widths or residual stress of the film increase. Besides

telephone cord buckle as the nonlinear buckle morphology, the varicose type with

symmetric instability along the side has also been predicted by the numerical

calculation.

Given the symmetry of each unit of the telephone cord buckle, described above

(see Figs. 7.1d and 7.5), it is assumed that the energy release rate and the profile can

be modeled as a full circular buckle, of radius r ¼ R � 2b , with pinned center

Fig. 7.5 Plan view of a telephone cord buckle, used to highlight a unit segment with the center of

curvature at O and arc length XY (a). The profiles along the radial trajectories, A and B (b). The

profile along the medians X and Y (c). Moon et al. [21], reprinted with permission
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(Fig. 7.6a). This assumption is validated below, using the measurements and

analysis conducted for the straight-sided buckle created by the FIB. For a circular

plate of radius 2b pinned to the substrate at the center, the corresponding critical

stress is [5] s* ¼ 1.081sc, and therefore only slightly greater than that of the

straight-sided buckle of width 2b.

Fig. 7.6 The schematics for straight-sided (top left and middle) and telephone cord (top right)
buckling used for analysis. Mode-adjusted energy release rate for three cases as a function of

normalized film stress for three different morphologies. Moon et al. [21], reprinted with

permission
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Solutions for the circular, pinned buckle were obtained by numerical integration

of the nonlinear, axi-symmetric von Karman equations [21]. The energy release rate

and the phase angle are calculated using

G ¼ 1� n2

2Eh3
12M2 þ h2 N þ sohð Þ2
� �

(7.8)

and

tanc ¼ KII

KI
¼

ffiffiffiffiffi
12

p
M cosoþ h N þ s0hð Þ sino

� ffiffiffiffiffi
12

p
M sinoþ h N þ s0hð Þ coso ; (7.9)

where the bending moment is M ¼ ½Eh3=ð12ð1� n2ÞÞ�d2w=dr2.
Computed results for G=G0 and c for the pinned circular buckle used to model

the sides of the telephone cord are presented in Fig. 7.6b as a function ofs0=sc. The
buckling stress,sc, for the straight-sided buckle of width 2b, defined in (5.3), is used
throughout to normalize the stresses. Included in Fig. 7.6b are the corresponding

results for an unpinned circular buckle of radius b, obtained by numerical analysis

[9, 12]. The buckling stress is 1.488sc. To understand the trends at large s0=sc in
Fig. 7.6, it is useful to identify the total elastic energy per unit area stored in the

biaxially stressed film:

G�
0 ¼

ð1� nÞhs02
E

: (7.10)

Note that G�
0=G0 ¼ 1:54 for a film with n ¼ 0:3 . As s0=sc becomes large,

equivalent to a large-diameter buckle, the energy release rate slowly approachesG�
0,

asymptotically releasing all the stored energy in the film. The corresponding limit

for the straight-sided buckle approaches G0 , because the released film remains

subject to the plane strain constraint parallel to the sides. For further assessment, it

becomes convenient to expresss0=sc in terms of the buckle size,b. For this purpose,
a reference length is defined as the half-width of the straight-sided configuration at

the onset of buckling,

b0 � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� n2Þp

 !
h

ffiffiffiffiffi
E

s0

r
; (7.11)

whereupon

b

b0
¼

ffiffiffiffiffi
s0
sc

r
: (7.12)
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The energy release rates for the straight-sided, pinned, and circular buckles,

summarized in Fig. 7.6, indicate that G andc for the circular buckle and at the sides

of the telephone cord are similar. By comparison, G at the sides of the straight

buckle is smaller, at least when the stress is large, s0=sc � 9 (as in the present case,

addressed below). Moreover, when s0=sc � 7:5, the sides of the straight buckle

experience pure mode II, while the circular buckles retain a substantial component

of mode I.

The existence of the telephone cord morphology is intimately related to

interfaces having toughness that increases with increasing proportion of mode II

to mode I. Indeed, as revealed in earlier work [9, 12], the occurrence of stable

propagation owes its existence to this mode dependence. The tendency to develop a

curved delamination front is tied to the larger proportion of mode I relative to mode

II as the buckle enlarges.

To simulate features of telephone cords with the solutions for circular and

pinned circular buckles, it is useful to introduce a phenomenological representation

of a family of interface toughness dependencies [9],

GcðcÞ ¼ GIcf ðcÞ;
f ðcÞ ¼ 1þ tan2 ð1� lÞcð Þ� �

;
(7.13)

where GcðcÞ is the mode-dependent interface toughness, GIc is the mode I

toughness, and l is a mode-sensitivity parameter that sets the strength of the

mode dependence. The criterion for propagation of a crack in the interface is G
¼ GcðcÞ. The ratio of mode II to mode I interface toughness values is GIIc=GIc ¼
1þ tan2ðð1� lÞp=2Þ. Interfaces with moderately strong dependence typically have

l<0:3 [6].

A mode-adjusted energy release rate, F, provides insight into the tendency

of buckles to propagate on curved rather than straight edges [10]. WithGcðcÞ ¼ Gk

f ðcÞ, let

F ¼ G

f ðcÞ (7.14)

such that the criterion for propagation of the interface crack becomes F ¼ Gc. Note

that when s0=sc exceeds about 3 (or, equivalently, when b=b0<
ffiffiffi
3

p
), the mode-

adjusted energy release rate on the straight edge is lower than that on curved sides.

This behavior underlies the tendency of highly stressed films to display curved

buckle morphologies. It also explains why a straight-sided buckle propagates at its

curved front, rather than spreading from its straight sides.

7.2.2.4 Strain Energy for Nonlinear Buckle

Confinement of a delamination buckle to a narrow strip of low adhesion (see next

section) predetermines the width of the buckle and thereby eliminates the
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complicated role played by the mode dependence of the interface toughness in

setting the buckle width for an unconfined delamination. The buckling and post-

buckling behavior of a film under equi-biaxial compression that is detached from a

substrate over a strip of width2b is usually modeled as a plate of the same width that

is fully clamped along it edges (Fig. 7.7). This is an excellent approximation for

determining the critical stress, buckling amplitude, and relevant energy release

rates as long as the Young’s modulus of the substrate is not less than about one-

fifth of that of the film [4, 30], as will be assumed here. When the substrate has a

very low modulus compared to that of the film, deformation of the substrate along

the edge of the detached region becomes important such that the assumption of a

clamped edge overestimates the constraint.

The Euler mode has been used to compute the energy release rate along the sides

of the buckle, but here the focus is on the energy release rate G averaged over the

curved end of the interface delamination crack propagating along the strip. For a

strip of low adhesion of width 2b, steady-state conditions at the propagating end

prevail once the buckle delamination is several times longer than its width. The

average energy release rate is simply the difference between the energy per area in

the plate,U0, ahead of the propagating end (in the unbuckled state) and the average

energy per unit area well behind the end in the buckled state, U, i.e., G ¼ U0 � U.
The energy per area in the unbuckled state of equi-biaxial compression is

Fig. 7.7 Geometry and finite element mesh for buckling analysis of a constant width plate (film)

clamped along its edges at y ¼ �b to a rigid substrate. The Euler mode, the varicose mode, and the

telephone core mode are depicted in two views. Moon et al. [22], reprinted with permission
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U0 ¼ ð1� nÞs02h
E

(7.15)

while the average energy per area in the buckled state is found using (7.1)–(7.3) to

be [9]

U ¼ U0 1� 1þ n
2

� �
1� sc

s0

� �2
 !

: (7.16)

The energy release rate for the Euler mode is [9] G ¼ G0 1� ðsc=s0Þð Þ2, where
G0 is from (7.6).

Plots of G=U0 for the Euler mode are included in Fig. 7.8, which will be

introduced in the next subsection when the corresponding results for the two other

morphologies are discussed. For each of the three modes, the normalized average

energy release rateG=U0 is plotted in Fig. 7.8 based on the relationG ¼ U0 � U or

Fig. 7.8 Normalized average energy release rate for steady-state buckle delamination along a

straight-sided strip, �G=U0, for each of the three buckle morphologies as a function of s0=sC and

b=b0 for n ¼ 0:3. Moon et al. [22], reprinted with permission
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G=U0 ¼ 1� U=U0for n ¼ 0:3. By considering G ¼ Gss, the relation (7.7) for the

Euler mode holds for s0=sc<6:5 (or, equivalently, b=b0<2:5) while the maximum

energy release rate for s0=sc>6:5 is associated with the telephone cord mode. For

the telephone and varicose modes, G is the energy release rate averaged over one

complete wavelength of propagation. We speculate that G will asymptotically

approach the elastic energy per area stored in the unbuckled film, U0 , as s0=sc
! 1, but G=U0 has only attained 0.75 for s0=sc ¼ 30. Note, however, that the

telephone cord energy release rateG exceeds the available energy per area subject

to the plane strain constraint,G0 ¼ ð1þ nÞU0=2, which is the asymptotic limit for

the Euler mode. Results forG=U0 for the Euler mode and the telephone cord mode

are presented in Fig. 7.8b for various Poisson’s ratio values, showing that this

normalization G=U0 for the telephone cord mode is relatively independent of

Poisson’s ratio at large values of s0=sc.

7.2.3 Buckle on the Patterned Substrate

Pre-patterned regions of low adhesion at the interface between the film and sub-

strate constrain the delamination path and thereby give rise to more predictable

behavior. When the regions of low adhesion are strips, as in Figs. 7.9 and 7.10,

delaminations, once nucleated, propagate the full length of the strips if the strips are

above a critical width. For reasons detailed below, the Euler mode emerges for the

narrow strips while a morphology much like the telephone cord mode is preferred

for the wider strips. In Fig. 7.9, buckle delaminations have been nucleated at the

wide delaminated region at the top of the narrow strips of low adhesion and then

have propagated from the top toward the bottom of the figure. As noted in Fig. 7.9,

there are several strips that are too narrow for buckling delamination to occur, i.e.,

those having 2b	 6 mm.

Both the Euler mode and a mode similar to telephone cord mode are in evidence

in Fig. 7.9, where the patterned region of low adhesion is a tapered strip. The

delamination has been nucleated at the wide end of the strip and has propagated

toward the narrow end where it transitions to the Euler mode. While some features

of the constrained mode depart from those of an unconstrained telephone cord, in

most respects the two modes are remarkably similar and the term telephone cord

mode will be used here to characterize the unsymmetric undulating mode [22].

Another notable feature seen in Fig. 7.9 is the arrest of the buckle delamination at a

point where its width becomes too narrow to release sufficient energy to overcome

the interface toughness.

In this part, the process for buckle patterning by lithography and adhesion

controlling is discussed for DLC films deposited on patterned silicon wafer

substrates. Selected experimental observations of buckle delamination of patterned

regions of low adhesion are presented for several types of pattern. Analysis related
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to buckle patterning results was performed to assess strain energy and energy

release rate for buckle morphologies elsewhere [24].

7.2.3.1 Patterning Experiments

The experimental procedure for patterning regions of low adhesion surrounded by

regions of higher adhesion for DLC films on silicon substrates is briefly addressed

with the aid of the schematic in Fig. 7.10. A 3 nm layer of Al2O3 between the Si and

the DLC is used to create the regions of low adhesion. This layer is absent in regions

of higher adhesion. The first step in creating the Al2O3 layer is to use E-beam

lithography to expose the desired low adhesion pattern on the substrate (see

Fig. 7.10). Standard lithography techniques in a clean room environment were

employed. The positive E-beam resist (ER) layer was spin-coated on Si (100)

followed by E-beam exposure of the regions selected for low adhesion. A very

thin layer of Al is then sputter deposited which, upon oxidation, becomes an Al2O3

layer about 3 nm in thickness covering the low-adhesion regions. The ER layer

covering the regions designated to have higher adhesion is removed with acetone

and alcohol. The DLC layer is then deposited by the method of plasma-enhanced

chemical vapor deposition (PECVD) using a capacitively coupled r.f. glow

2b

2b = 3 µm 4 6 8 9 10 11 12 13

Fig. 7.9 Buckle delamination along patterned strips of low adhesion between a DLC film and a

silicon substrate, showing the telephone cord morphology for wider strips and the Euler mode for

narrower strips
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discharge, choosing conditions that from prior experience will lead to buckle

delamination. Here the DLC film thickness of 0.2–0.82 mm had residual compres-

sion between about 0.9 and 2 GPa in the equi-biaxial state [4, 21]. Although no

direct observation of the location of the interface crack has been made, it can be

believed that separation occurs either within the Al2O3 layer or at the interface

between the Al2O3 and the DLC.

7.2.3.2 Buckle Delamination on Pattern with Constant Width

The basic pattern has been classified with respect to the various shapes of release

layers: linear and tapered or network. When the buckle is confined by the linear

shape of the release layer (the layer that has weak adhesion), the buckle

morphologies are the same along the propagation direction due to the widths

being identical in Fig. 7.11.

Fig. 7.10 (a) Schematic for

creating patterns of low

adhesion and (b) a cross-

sectional view of patterned

buckling delamination. Moon

et al. [24], reprinted with

permission
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Several design features of buckle patterns appear in Fig. 7.10, where the tapered

release layer has been used for confinement of buckle width. As shown in the first

feature in Fig. 7.10, the nonlinear side of the telephone cord buckle is unstable so

that it shows the bifurcation phenomena along the nonlinear side at large width (mid

of Fig. 7.10).

Regardless of buckle patterns, the configuration of buckle is shown to strongly

depend on the buckle width. The array of buckle patterns shown in Fig. 7.11 could

be applied for the micro (or nano) channels, which have a long tunnel inside the

buckle [24]. By confinement of the buckle width to the 100 nm level, the channel

with the nano-sized area could be developed, and some flows enable passing

through the buckle tunnel.

7.2.3.3 Adhesion Measurement Using Buckling on Patterned Layer

Once nucleated, the condition for the buckle delamination to propagate along the

strip is

G�Gc: (7.17)

The interface toughness, Gc , depends on the relative proportion of mode II-to-

mode I stress intensity factors acting on the propagating interface crack front [1].

Methods to estimate the mode mix for buckle delaminations are presented in [21].

For an equi-biaxial compressive film stress s0, very narrow strips with G<Gc will

not delaminate. However, for wider strips with G>Gc , buckle delaminations will

propagate unimpeded (dynamically) along the strip once nucleated. Patterning

strips of various widths provide a method to bracket the interface toughness

Fig. 7.11 Configuration of buckle delamination varying from straight-sided to telephone cord

shape with respect to the pattern width on tapered low-adhesion layers. Moon et al. [22], reprinted

with permission
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relevant to buckle delamination. The toughness measured is that of the modified
strip interface. For the technique to be employed for measuring the toughness of a

given film/substrate interface, the patterning procedure would have to be modified

so as to enhance adhesion outside the strips without altering adhesion within the

strip. This should be viable, at least for some interfaces, and will be pursued in

subsequent work.

The DLC film on the silicon substrate in Fig. 7.10 nicely illustrates the method

of bracketing Gc mentioned above for the strip interface. Based on the measure-

ment techniques noted above, the DLC film in Figs. 7.9 and 7.11 is characterized

with thickness, residual stress, and elastic modulus as h ¼ 0:26 mm; s0 ¼ 1:4
GPa; E ¼ 100 GPa; n � 0:3 . Then the onset width and the strain energies

for undeformed and deformed films for (7.6) and (7.16) can be calculated to be

b0 ¼ 2:1 mm; U0 ¼ 3:57 Jm�2; G0 ¼ 2:32 Jm�2, respectively. The width of

the widest strip in Fig. 7.9 that did not delaminate is 2b ¼ 6 mm, which would

correspond to G ¼ 0:61 Jm�2 had delamination occurred. Here the assumption is

that the strip would have been wide enough to buckle had interface separation

occurred, since b>b0. The reason delamination does not occur is that insufficient

energy is made available by interface separation, i.e., G<Gc . The width of the

narrowest strip that did delaminate (in the Euler mode) is 2b ¼ 8 mm, corres-

ponding to G ¼ 1:23 Jm�2. Thus, the interface toughness governing the buckling

delamination is bracketed by

0:61 Jm�2 < Gc < 1:23 Jm�2: (7.18)

A more refined determination is afforded by delamination along a tapered strip.

It should be noted that the propagation condition of (7.18) is necessary but not

sufficient in the sense that the fracture condition is not enforced point-wise along

the curved front of the delamination, but only as an average over the propagating

front. If there is a significant variation of the mode mix from point to point on the

propagating crack front, identification of Gc with G produces the corresponding

average of the interface toughness over the crack front. Point-wise estimation of the

energy release rate and mode mix along the edge of a telephone cord delamination

has been used to determine the interface toughness and associated mode mix of a

Pt=SiO2 interface [17]. The method was used to systematically explore the relation

between one of the variables in the film deposition process and the interface

toughness.

The theoretical prediction for the buckle amplitude from (7.2), i.e., x ¼ wmax=h
¼ 1:52orwmax ¼ 394 nm, compares favorably with the experimental measurement,

wmax ¼ 427 nm.

7.2.3.4 Buckle Delamination on Tapered Pattern Layer and Grid Networks

Adhesion release layers have been designed in network patterns as shown in

Fig. 7.12. On the network channel of small width in each line (Fig. 7.12a), the
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straight-sided buckle grows and it passes across the next buckle branch at the

junction, where the buckle is required to have fourfold symmetry, so straight-

sided buckles at the junction are shown to be not stable due to there being no

bifurcation mode in the Euler buckle during propagation. For the network with

larger width (Fig. 7.12b), the telephone cord buckle also grows and passes across

each junction. During propagation of the telephone cord buckle, it could introduce

the bifurcation at the side or front so that the folding at the junction is relatively easy

and it shows a stable buckle configuration at the junction as shown in Fig. 7.12b, c.

In order to control and confine the buckle in a straight-sided shape at the network

junctions, advanced design is required for junctions on the network.

New experiments into the control of buckle morphologies have been introduced

by confinement of buckle width with interface adhesion differences. Films subject

to equi-biaxial compression in the unbuckled state have been deposited on a

patterned substrate. Highly controlled buckle delamination patterns and a wide

Fig. 7.12 Buckling patterns formed on various shapes of low-adhesion layer patterning. Moon

et al. [24], copyright 2007 National Academy of Science, USA, reprinted with permission
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variety of buckle patterns can be achieved, such as straight channel-type buckles,

tapered buckles, and buckle networks. The buckle configuration has been selected

with respect to the confined buckle width. The straight-sided buckle, which is rarely

observed in experimental conditions, has been stably shown on patterned layers

with a small buckle width, but the buckle width for the existence of the straight-

sided buckle is relatively narrow. As one can see it in usual buckle conditions, the

telephone cord buckle appeared on relatively large widths. On the tapered pattern,

two different buckle configurations of straight sided and telephone cord are formed.

The propagation behavior on complex patterns of grids and corners has been also

designed.

7.3 Summary

In this chapter, delamination buckle has been fully studied in experiments and the

associated theory. The initiation of buckle delamination has been discussed in terms

of interface defects or imperfections, where the criterion for the critical length that

induces delamination or delamination buckle was presented. Once it initiates, the

buckle grows in the form of a telephone cord buckle under usual experimental

conditions. The characterization of buckle configurations has been dealt with by

experiments and numerical modeling. Buckle patterns were introduced by confine-

ment of the buckle width by means of controlling the interface adhesion on

patterned substrates.

The buckle delamination has been characterized by experimental analysis and

modeled to obtain a theoretical estimate of the energy state. The buckle could be

developed by the confinement of buckle width, which is possible by interface

adhesion control. In a later work, we demonstrated the possible applications of

buckles on thin films in related fields such as nano-fluidics flowing through pat-

terned buckles [24].
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Chapter 8

Delaminated Film Buckling Microchannels

Alex A. Volinsky and Patrick Waters

Abstract This chapter describes the method of manufacturing microfluidic

microchannels formed by delaminated buckled thin films. Thin films under com-

pression tend to delaminate and buckle. Microchannel geometry can be controlled

by tailoring film residual stress and placing patterned adhesion-weakening layers

utilizing photolithographic techniques. Results based on the photoresist as the

adhesion weakening layer and compressed tungsten thin films are described along

with the corresponding thin film mechanics.

8.1 Introduction

Buckling delamination blisters are commonly observed in compressed thin films.

These mechanically active features arise from a local loss of adhesion between the

film and the substrate, due to the relief of residual stress, and exhibit directional

growth. Thin films in compression can also develop circular, asterisk, straight, and

phone-cord blisters. “Telephone cords” are wormlike buckled features observed in

thin films, and are called so because they look like a twisted phone cord when they

are viewed under an optical microscope (Fig. 8.1). The geometry and path of these

blisters can be controlled by placing adhesion-weakening layers, thereby outlining

the desired in-plane blister configuration and forming a channel network on a chip.

Microfluidics, as a field, has been growing with the new advances in nanotech-

nology [1]. This field is estimated to grow at an exponential rate, and is expected to

continue to do so in the decades to come. This relatively new technology has

different possible applications, from sensors to drug delivery. It relies on the ability

to transfer fluids at small-scale chip sizes. Recently these were successfully used to
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deliver pharmacological agents directly to wound sites [2]. The channels used are

commonly etched in silicon or other materials by means of standard methods of

lithography. While it is not problematic to form an open trench, forming a channel

is more complicated. There are multiple steps involved in the conventional tech-

nology [3], so the whole process is cumbersome, expensive, and labor intensive. In

addition, Si is not biocompatible. Although one could envision a Si-based lab-on-a-

chip device, the Si substrate has to be well isolated from the biological species and

environment.

An alternative technology employs thin film delamination blisters which can

form open micro- and nano-channel networks of specific geometry. Telephone cord

delamination morphology is commonly observed as a result of the relief of residual

compressive stresses within the thin film via interfacial debonding. Here, the biaxial

film stress is partially relieved by film buckling in the direction perpendicular to the

telephone cord propagation and by “secondary” blister buckling in the direction

parallel to the telephone cord propagation. The combination of these types of

buckling results in the observed sinusoidal fracture patterns [4, 5]. Normally,

telephone cord blisters “run out of steam” and stop once the interfacial toughness

exceeds the strain energy release rate. It is possible to make blisters propagate

further by either putting mechanical energy into the system [5] or introducing

liquids to the crack tip [6]. Inspired by recent results of moisture-induced thin

film fracture [7], the thin film buckling delamination phenomenon was utilized as a

way of manufacturing channel networks for the purposes of fluid transport in lab-

on-a-chip devices and other microfluidic applications. In addition to forming

channels, the thin film buckling delamination can act as a pump, thereby

transporting the fluid during delamination. This allows for the enlargement of the

channel cross section by using etching solutions during manufacturing.

Thin film and coating buckling delamination are truly multi-scale phenomena,

with features possibly ranging from tens of nanometers to centimeters in width. In

addition, compatibility with conventional microelectronic processing is very

promising from the standpoint of full-scale on-chip integration. Crucial elements

Fig. 8.1 Telephone cord

buckling delamination of a

compressed W film
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of a lab-on-a-chip device are channels capable of transporting the fluids within the

chip dimensions and an interface which is manipulatable from the outside world.

Channels allow various fluids to be mixed, stored, and passed through. Typical

fluids include blood, protein solutions in various buffers, cell suspensions, etc.

Several measurements can be performed by microfluidic devices, including fluid

viscosity and pH [8, 9].

The competitive advantage of the channel miniaturization is due to the fact that

the Reynolds number is low, allowing for laminar flow to prevail and convective

mixing of the fluids not to occur. Miniaturization of the channels, and their

integration onto a single chip, would allow for the handling of minute amounts of

sample material, thus increasing the sensitivity. The analyte concentration Ai is

inversely proportional to its volume, V, and is given in terms of the device

efficiency, �s, as in [1]

Ai ¼ 1

�sNAV
; (8.1)

where NA is the Avogadro’s number. Reduction of the sample size provides higher

device sensitivity, as well as the capability of handling smaller samples. One can

easily and effectively perform immuno- and DNA probe assays by using minute

amounts of sample material.

In addition, the channel profile geometry has a substantial influence on the fluid

flow. It is important to know the distribution of the analytes in the channel for

developing functional and reproducible assays. One would want to increase the

molecule residence time for quantitative time-dependent analyses. The prediction

of the molecule residence time is a complicated task, as it depends on the molecule

location in the channel profile. A low-aspect-ratio channel velocity profile allows

lateral diffusion to occur in the vertical dimension without an accompanying

change in the residence time of the diffusing molecules. Therefore, one would

desire microchannels with low aspect ratios for accurate quantitative studies. Thin

film buckling channels have a low aspect ratio, i.e., height-to-width ratio.

8.2 Thin Film Buckling Delamination

Many industries, including microelectronics and microfluidics, depend on well-

adhered thin films. Thin films are normally stressed, with biaxial residual stress

residing in unpassivated films [10]. Stress in a thin film typically causes substrate

bending. This effect is employed in measuring the macroscopic residual stress

found within thin films by using Stoney’s equation [11]. There are many different

stress relief mechanisms observed in thin films. The residual stress can be partially

relieved by plastic deformation and surface reconstruction. It may also be more

completely relieved by mechanical film failure, especially if the stress levels are

high and/or externally applied stresses are present.
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Telephone cord delamination has been observed in various thin film systems,

including tungsten, carbon, diamond-like carbon (DLC), TaN, and other films which

have been applied upon various substrates [12–18]. Some theoretical considerations

of the formation of the telephone cord buckling geometry can be found in [19–22].

Most of the time delamination blisters run parallel to each other in blanket, non-

patterned films (Fig. 8.1). The multi-scale nature of these phenomena can be seen in

Fig. 8.2a–e. Figure 8.2a–c shows ultrathin films (several monolayers—ML) rolling

into nanotubes [23, 24], while Fig. 8.2d–e shows polymer film buckling delamination

on a street sign, several meters long, induced by seasonal temperature fluctuations,

thereby causing the film buckling and adhesion loss. Telephone cord delamination

morphology is commonly observed as a result of the thin film residual compressive

stress relief by interfacial debonding (Fig. 8.3).

If the residual stress is less than four times the buckling stress, straight blisters

become possible under biaxial residual compressive stress. However, this level of

residual stress may not be high enough to initiate delamination. That is why residual

stress-induced straight blisters are rarely observed in thin films. This situation

changes, however, when the stress is applied externally, or when the adhesion is

somehow weakened. A simple experiment with a compact disc (CD) in 3-point

Fig. 8.2 (a–c) SEM and HRTEM images of InGaAs/GaAs nanotubes rolled up from bi-layered

films: (a) Two scrolled single walls; (b) multi-wall nanotube (6 turn, film thickness: 4ML GaAs

+4ML InGaAs); (c) single-wall nanotube formed from 2ML GaAs + 1ML InAs. Reprinted with

permission from [23, 24]; (d) and (e) Polymer film buckling delamination on a street sign due to

seasonal temperature variations. Waters and Volinsky [31], reprinted with permission
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bending has been described in [4] to support this. Detailed dynamics of real-time

telephone cord blister propagation can be observed online [25]. As was previously

stated, telephone cord blisters “run out of steam” and stop once the interfacial

toughness exceeds the strain energy release rate. It is possible to make blisters

propagate further by either putting mechanical energy into the system [5] or

introducing liquids at the crack tip [6, 7]. Liquids can also provide the mechanical

energy (through surface tension and capillary forces) needed to continue the blister

propagation and can also reduce the film interfacial toughness. These effects were

attributed to environmentally assisted cracking, which caused the thin film delami-

nation, and is similar to a commonly known example of the degradation and fading

of vintage mirrors, as well as solar mirrors [26]. If one were to use a substrate

etching solution as a fluid, then, in addition to causing thin film delamination, it

would etch the substrate, thereby enlarging the channel cross section.

Tests have been conducted that demonstrate the method of fluid introduction as a

means of propagating delamination blisters. These blisters continue to propagate

until the fluid has been removed, or until the delamination reaches the end of the

sample [6]. All of the samples contained a 1 mm thick W superlayer deposited on

either thin magnetic layers or 40 nm thick Cu films on Si substrates, with a

thermally grown SiO2 layer. Figure 8.4 shows two snapshots, taken 3 min apart,

illustrating water-induced blister propagation. The evidence of fluid transport is

presented in Fig. 8.5. Here, the buckling delamination propagated from the right to

the left, and the water, upon reaching the far left side of the sample, moved down

the edge of the Si wafer. This demonstrates one of the potential mechanisms of fluid

transport via blister propagation. In this case, water was transported, with the

advance of the crack tip, at about 10 mm/min, although higher propagation rates,

Fig. 8.3 Transition from

straight-sided blister to

sinusoidal shape
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up to several microns per second, were observed in other samples. It has been

previously shown that interfacial cracks in thin films act as a vacuum cleaner,

collecting contaminants from the atmosphere, thus reducing the energy of the newly

formed fracture surfaces [13, 14]. In this case, the crack is acting like a pump, thus

transporting the fluid along with the blister propagation. Water droplets can be seen

on the Si substrate in Fig. 8.5.

In order to make a microfluidic or lab-on-a-chip device, the placement of

delamination fluid transport channels needs to be exact and repeatable. Standard

lithographic techniques have demonstrated the ability to control the blister place-

ment and the buckling geometry [27]. Both telephone cord as well as straight blister

geometries are available and depend on the film stress level and the width of

the adhesion-weakening (release) layer [27]. With the use of moisture, the

requirements on the release layer adhesion properties are less stringent, as the stress

combined with the moisture is sufficient to cause delamination. The properties of

the internal walls of the channel can be altered by varying the underlying materials.

For example, it has been shown that fracture in low-K dielectric films is

Fig. 8.4 Water-induced blister growth. Volinsky et al. [7], reprinted with permission

Fig. 8.5 Water transport in the delaminated blister. Volinsky et al. [7], reprinted with permission
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cohesive, i.e., the crack propagates in the film itself [28]. A similar effect is

expected for a polymer release layer and it may even be possible to use regular

photoresistant “lining” inside the channel. One could also use a biocompatible

material as an adhesion-weakening layer, which would include polymer and

ceramic films, as well as DLC.

Figure 8.6a shows two 50 mmwide straight channels, which coalesce by forming

a telephone cord delamination blister, resulting in a single 50 mmwide channel. The

profilometer scan in Fig. 8.6b reflects the blister buckling geometry. A highly

desirable microchannel aspect ratio of 1:25 is achieved here. This demonstrates

the possibility of constructing a fluid-mixing device by employing thin film buck-

ling channels. In this particular case, the double-to-single channel transition

occurred naturally, although the same result can be achieved with patterned release

layers, which form channel network structures. Another important example of a

storage element is shown in Fig. 8.7, where a channel extends to a larger reservoir.

Fig. 8.6 (a) Optical micrograph of two straight buckled channels coalescing into one through a

telephone cord delamination, and (b) corresponding height profiles. Volinsky et al. [7], reprinted

with permission

Fig. 8.7 Buckling delamination showing channels and fluid “storage reservoirs”
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One can envision using this storage element as a pump, when combined with an

electrostatic device capable of mechanically pressurizing it from the top.

8.3 Buckling Blister Mechanics

The buckling channel geometry can be predicted based on the multilayer material

properties, residual stress, and adhesion [22]. The steady-state interfacial toughness

of the film, in the direction of the blister propagation (shown in Fig. 8.6a), is

GSS ¼ ð1� n2Þhs2r
2E

1� sB
sr

� �2

; (8.2)

where sr and sB are the residual (compressive) stress and the buckling stress,

respectively, h is the film thickness, E is the elastic modulus, and n is the Poisson’s
ratio. The buckling stress is given in terms of the film thickness and the blister

width, b, as

sB ¼ p2

12

E

ð1� n2Þ
h

b

� �2

: (8.3)

Now one can express the residual stress in terms of the buckling stress and the

blister heights, d, as

sr ¼ 3

4
sB

d2

h2
þ 1

� �
: (8.4)

To complete the formulation, the mode-dependent interfacial film toughness, in

the buckling direction, perpendicular to the blister propagation, can be expressed as

GðCÞ ¼ ð1� n2Þh
2E

ðsr � sBÞðsr þ 3sBÞ: (8.5)

This simple analysis basically shows that the level of the residual stress and the

extent of the thin film adhesion will control the microchannel geometry. The upper

layer residual stress, determined primarily by the deposition parameters, will

control the microchannel height.

Typically, residual stress in thin films results in negative consequences that

include wafer bowing, film cracking, and delamination. However, depositing a

film with a compressive residual stress has been demonstrated to be a benefit,

specifically when using superlayer indentation to determine the thin film interfacial

toughness [12]. A similar concept can be employed to create microchannels. When

the strain energy release rate, G, exceeds the interfacial toughness, Гi, of a film/
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substrate, delamination will occur. A simplified form of the strain energy release

rate in a stressed film is [22]

G ¼ Z
s2f h
Ef

; (8.6)

where sf is the stress in the film, h is the film thickness, Ef is the modulus of

elasticity, and Z is a dimensionless parameter that depends on the geometry.

In thin film systems with biaxial compressive stresses, various shapes of the

delaminated regions will arise. These shapes include long straight-sided, circular,

and telephone cord delamination, which is the most commonly observed morphol-

ogy. The delamination shape and size will depend on factors such as the film stress,

thickness, and interfacial toughness. Most importantly, the propagation depends on

the interfacial toughness, which increases as the mode mixity, acting on the

interface ahead of the delamination crack, shifts from mode I towards mode II.

Interfacial failure starts with the film delaminating from the substrate and is

followed by the spreading of the delamination as the buckling loads the edge of

the interfacial crack, resulting in a failure phenomenon that couples both buckling

and interfacial crack propagation.

To create useful microchannels via film delaminations, the direction and mor-

phology of the delaminations need to be controlled. The easiest way to control

delamination is by controlling the interfacial toughness. This can be done by

creating adhesion-reducing layers that have a lower interfacial toughness than the

surrounding areas. A compressively stressed film can be used in conjunction with a

patterned adhesion-reducing layer as a method for creating microchannels. Using

delaminations will hopefully solve the existing challenges and provide an alterna-

tive method in creating microchannels.

8.4 Buckling Microchannel Pattern Manufacturing

To create the adhesion-reducing layers, standard photolithography techniques were

employed [29]. The simplest approach used the patterned photoresist as the adhe-

sion reducer. The basic steps in lithography include the following:

(1) The application of a photosensitive material (photoresist)

(2) Soft bake of the photoresist

(3) Exposure of the photoresist

(4) Development of the exposed pattern

(5) Hard bake of the remaining pattern

Figure 8.8 is a depiction of the basic lithography steps used here, along with the

additional step of depositing a compressively stressed film for creating

delamination-induced microchannels.
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There are two types of photoresist to choose from: positive and negative

photoresist. Positive photoresist is exposed to UV light wherever it is to be

removed. Regarding the positive photoresist, exposure to the UV light changes its

chemical structure so that it becomes more soluble in a developer, which is opposite

to that of the negative photoresist. The exposed photoresist is then washed away by

a developer solution, leaving areas of the underlying material bare. Therefore, the

mask contains an exact copy of the pattern, which is to remain on the wafer.

In general, positive photoresists provide clearer edge definition than negative

photoresists. The better edge definition found in positive photoresists makes them

a better option for high-resolution patterns.

Negative photoresists behave in the opposite manner. Exposure to the UV light

causes the negative photoresist to become polymerized, and consequently more

difficult to dissolve. Therefore, the negative photoresist remains on the surface

wherever it is exposed, and the developer solution removes only the unexposed

portions. Thus, masks used for negative photoresists contain the inverse of the

pattern to be transferred. Shipley 1813 was used here, which is a positive photore-

sist that is optimized for G-line exposure (436 nm wavelength).

Normally, to start the photoresist application process, the wafer surface is

prepared in a specific way in order to remove the surface moisture and other

contaminants. In order to remove the moisture, the wafers are baked and then

primed with an adhesion promoter. Hexamethyldisilazane (HMDS) is normally

used as the adhesion promoter and is applied at a reduced pressure to form a

monomolecular layer on the wafer surface, thereby making the wafer hydrophobic,

which prevents moisture condensation. These wafer preparation steps were ignored

here because the goal of the photoresist layer was to be an adhesion reducer and

only a proof of concept was intended.

Spin coating was used to apply the photoresist with thicknesses ranging from a

few hundred nanometers to a few microns. If thicker coatings are required, electro-

chemical coatings, spray coatings, and casting processes can be used [29].

A Laurell Technologies WS-400A-8NPP/Lite Spin Processor was utilized here

and can handle wafers up to 800 in diameter. It uses a vacuum chuck to hold the

Si wafer 

Mask

ExposureSpin coating

Develop W deposition W delamination

Photoresist Soft bake 

Hard bake

Fig. 8.8 Process of creating microchannels
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wafers in place and has a spin speed which can range from 0 to 6,000 rpm.

Acceleration profiles, speed changes, and spin times can all be programmed by

the user. By adjusting the spin speed, the photoresist thickness can be controlled.

The manufacturer-supplied thickness versus spin speed data for the Shipley 1813 is

shown in Fig. 8.9. They suggest that the Shipley 1813 has the best coating

uniformity between spin speeds of 3,500 and 5,500 rpm.

The spin speed and time used here were 4,000 rpm for 40 s, with a ramp speed of

1,000 rpm/s. Based on the manufacturer’s supplied data for the photoresist thick-

ness versus spin speed, it was expected to have a photoresist thickness of approxi-

mately 1.3 mm after application. However, the resist thickness was measured to be

approximately 1.5 mm with relatively good thickness uniformity across the wafer

diameter. Spin-on deposition of the photoresist was a tricky process because the

photoresist was applied manually. First, the wafer surface had to be thoroughly

cleaned of any debris to avoid streaking of the photoresist during spinning. After the

surface cleaning, the wafer had to be centered on the vacuum chuck to avoid uneven

distribution of the photoresist. A drop of photoresist was then placed in the center of

the wafer and a few additional drops were added during the first 5 s, in which the

spin speed of the wafer was ramped to the maximum rpm. Upon completion of the

spin-on deposition, the wafer was placed on a hot plate for 90 s at 90 �C.
After the photoresist soft bake, a range of exposure times were attempted in

order to find the optimum photoresist thickness. The light source used for the

photoresist exposure was a mercury vapor lamp, which provides a wavelength

spectrum from 310 to 440 nm. A Karl Suss MA 56 Mask Aligner was used in hard

contact mode for the mask and wafer alignment. The mask had a repeating

pattern, which consisted of two straight lines running parallel, where the line

width was measured to be 250 mm with 30 mm separation. The results of the

photoresist profiles, after testing a range of exposure times, can be seen in

Figs. 8.10 and 8.11. The photoresist width and thickness varied by up to 10%

across the 400 wafer diameter.
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speed for Shipley 1813
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Fig. 8.10 Photoresist profiles after different exposure times

Fig. 8.11 Effect of exposure time on the final photoresist thickness: (a) 10 s, (b) 8 s, (c) 6 s, and

(d) 4 s
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At the shortest exposure time of 4 s, the remaining developed photoresist

measured 1.5 mm in height and 218 mm in width. However, on most of the wafer

there also remained a thinner layer of photoresist between the parallel lines. It was

concluded that an exposure time of 4 s at 275 W was inadequate. From there the

exposure time was increased by 2-s increments, with the final resist height and

width being inversely proportional to the exposure time. Along with decreasing line

height and width, the resist profile ended up being more rounded as the exposure

time was increased.

After exposure, the wafers were placed in a developer bath for 30 s and were then

rinsed with deionized water. Nitrogen was used to remove the majority of the excess

moisture on the wafer, which was then hard baked on a hot plate at 110 �C for 100 s.

Overall, the lithography techniques used here were adequate in accomplishing

the objective of creating simple patterns on a wafer. However, a more thorough

approach can be taken in the future for optimizing spin speed and time, bake time

and temperature, and exposure and development time. It must be understood that

the line widths created here are relatively large when compared with other lithog-

raphy techniques. Therefore, the quick optimization steps used here were adequate.

If smaller line widths and heights were required, a more meticulous approach would

be needed. The final step in the process was to deposit a tungsten film that is forced

to have compressive residual stress.

8.5 Buckling Delamination Morphology

The various shapes of buckled regions evolve in film/substrate systems that are in a

state of biaxial compression. Details of their shape and size will depend on factors

such as the film stress, thickness, and interfacial toughness. The buckling geometry

can be used to assess the interfacial toughness. Figure 8.12 is a picture of three

straight-sided delaminations of a tungsten and DLC film stack on a silicon wafer.

Fig. 8.12 Straight-sided

delaminations of a W/DLC

film on Si
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Assuming that fracture happens at the interface, (8.2) through (8.5) can be

applied to solve for the interfacial toughness between the photoresist and the

tungsten film, when straight-sided delaminations are present. One of the initial

deposition tests was on a silicon wafer patterned with the larger 200 mm wide

photoresist lines. The tungsten film was deposited for 50 min with an argon pressure

of 5 mTorr. This resulted in straight-sided delaminations forming across the width

of the photoresist line, as shown in Fig. 8.13a. The profile of the straight-sided

delamination widths is shown in Fig. 8.13b. Using the delamination height, d, the
delamination half width, b, and (8.2)–(8.5), the critical buckling stress was calcu-

lated to be 194 MPa. The residual stress of the film was found to be 313 MPa, the

steady-state interfacial toughness was found to be 0.0114 J/m2, and the mode-

dependent interfacial toughness was found to be 0.0859 J/m2.

The steps taken for calculating the interfacial toughness assumed that fracture

took place at the tungsten/photoresist interface. There is a possibility that the crack

propagates in the photoresist, at the interface between the photoresist and the silicon

substrate, or a combination of above mentioned. No matter where the crack is

propagating, however, the important thing is that the interfacial toughness between

the tungsten film and the silicon substrate, which has been reported in literature to

be 1.73 J/m2 [30], is stronger than that measured in the photoresist areas.

Moon et al. have found that the delamination morphology can be predicted when

the film stress is compared to the buckling stress [27]. For sr/sB < 6.5 straight-sided

delaminations are predicted and for sr/sB > 6.5 telephone cord delaminations are

predicted. For the delaminations shown in Fig. 8.13, sr/sB ¼ 1.6, which agrees with

the Moon et al. findings. Their predictions of delamination morphology were based

on similar experimental methods that utilized lithography techniques in applying

patterned areas of low interface adhesion surrounded by areas of high adhesion. By

controlling the width of the low-adhesion strips, the buckle morphology was

controlled.

Fig. 8.13 Tungsten delamination: (a) Optical image of delamination morphology and (b) Profile

of delaminations
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Ideally the delaminations would propagate parallel to the photoresist lines as

opposed to perpendicular to them, as seen in Fig. 8.13. The main reason in preventing

this from happening is that the photoresist line is too wide. The photoresist is so wide

that it exceeds the critical buckling width, thereby allowing enough room for the

straight-sided delaminations to run perpendicular to the lines. Figure 8.14 shows two

different delamination morphologies that are possible when the photoresist line is

decreased in width. Telephone cord delamination morphology can be observed in

Fig. 8.14a when the photoresist width was approximately 120 mm. When the photo-

resist width was reduced to approximately 80 mm, as shown in Fig. 8.14b, a straight-

sided delamination was created. Unfortunately, as shown in Fig. 8.14b, tungsten

delamination also occurred in between the photoresist lines.

The delamination morphology that was observed in Fig. 8.14 would be neces-

sary if the delaminations were to find future use in transporting fluids. Continued

work is necessary to further experiment with photoresist width and its effect on

delamination morphology. Attention to deposition parameters, in regard to

controlling the residual stress, was found to be more important when using the

adhesion-reducing layers. Not only was delamination occurring in the patterned

areas, but it was also common to see the delamination propagate across other areas

of the wafer. The adhesion-reducing areas acted as crack initiation sites that helped

spawn delamination upon film deposition. There appears to be a fine line between

creating delaminations on the patterned areas and creating them on the rest of the

wafer. Controlling the exact amount of compressive residual stress is critical for

this method to succeed in the consistent creation of microchannels.

8.6 Conclusions and Outlook

By using photolithography to create adhesion-reducing layers, buckling

delaminations have been controlled and show potential use as microchannels.

Delamination morphology depends on two conditions: (1) the buckling stress

Fig. 8.14 Delamination morphology with different photoresist widths: (a) Telephone cord

delamination and (b) straight-sided delamination
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which is controlled by the adhesion-reducing layer’s width and (2) the amount of

compressive residual stress in the thin film. Here, telephone cord delaminations

were observed at larger photoresist widths and straight-sided delaminations were

observed for smaller photoresist widths. Line widths between 80 and 220 mm were

created.

By using standard lithography techniques, areas of low adhesion were created to

control delamination morphology. This could be used as a new method for creating

microchannels for transporting, mixing, and storing fluids in microfluidic devices.

Current methods for creating microchannels involve etching and wafer bonding.

The potential advantages of this new method are found in its ease of manufacturing

and its cost-effectiveness. Proof of concept was provided here by using a photore-

sist as the adhesion-reducing layer. By controlling the photoresist line width, the

delamination morphology was consequently controlled.

Microfluidics has been a rapidly growing field, along with the rest of the

microelectronics boom. In the late 1980s the early stages of microfluidics were

dominated by the development of microflow sensors, micropumps, and microvalves

[1]. Like many different areas of engineering, having everyone agree on a set

definition is sometimes difficult. Microfluidics does not differ in this regard. One

point that the majority can agree upon is that a microscopic quantity of fluid is the

key issue in microfluidics. One main advantage of microfluidics is utilizing scaling

laws for achieving better sensor performance. As the fluid volume is decreased,

there will also be a need to decrease the size of the channels the fluid is transported

in. Some possible delamination sizes created here are shown in Fig. 8.15. The

delamination channel width was varied from 25 to 60 mm and the height was varied

from 0.75 to 2 mm.

An interesting effect has been observed with the introduction of water at the film/

substrate interface of highly compressed films. Water appears to reduce interfacial

toughness, thereby allowing for the initiation of spontaneous delamination propa-

gation. Figure 8.16 shows the propagation of a telephone cord delamination, over a
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90-s time interval, when water was introduced at the lower left-hand corner [31]. In

this case (Fig. 8.16), the delamination microchannels could be used as a one-time

use, disposable microfluidic device.

Using film delaminations to create microchannels shows promise in the field of

microfluidics. The key to creating the microchannels is in utilizing areas of reduced

adhesion to control the delamination morphology. Possible areas for future work

could be in finding better choices for adhesion-reducing layers and developing

more complex delamination patterns. Creating the microchannels is only a small

component of the overall picture if they are to be used in microfluidic devices.

Integration of the microchannels onto a “lab-on-a-chip”-type device [32] is the

overall goal, but many questions still need to be answered on how the fluid will be

placed into the microchannels and how the fluid will be transported once inside the

microchannels.
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Chapter 9

Mechanical Self-Assembly on Curved Substrates

Xi Chen and Jie Yin

Abstract Self-assembled buckling patterns of thin films on compliant substrates

have been subjected to extensive studies and shown great promise in micro-

fabrication. However, most previous studies were limited to planar substrates,

and the study of buckling of films on curved substrates has not received sufficient

attention. With the constraining effect from various types of substrate curvature,

numerous new types of buckling morphologies may emerge which not only enable

true three-dimensional (3D) fabrication of microstructures and microdevices but

also have important implications for the morphogenesis of quite a few natural and

biological systems. We review the scientific aspects of elastic buckling of thin films

on several representative curved substrates, emphasizing the critical effect of

substrate curvature, its interaction with other material/system parameters, and

ways to control the buckles based on mechanical and physical principles and bridge

them with prospect applications in biology, biomedical engineering, and small-

scale fabrication.
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9.1 Introduction

Self-assembled buckling of thin films on compliant substrates can achieve

highly ordered patterns when the film deformation mismatches with that of the

substrate, which has vast potential applications in stretchable interconnects [1, 2],

flexible integrated circuits [3], optical gratings [4], measuring the film modulus [5],

and producing wrinkled substrate to control the direction of cell growth [6],

among others.

Bowden et al. [7] first reported that when a thin metal film of submicron

thickness was deposited on a compliant planar PDMS substrate, spontaneous elastic

buckling patterns were observed in the film as the system was cooled owing to the

mismatched thermal deformation, with typical wavelengths on the order of

microns. Since their pioneering experiment, extensive experimental, theoretical,

and numerical studies were carried out to explore the buckling mechanisms and

investigate the feasibility of quantitative control of the patterns for applications in

micro- or nanostructures. Among experimental efforts, the substrate surface topol-

ogy may be manipulated to change the local film stress so as to generate a variety of

ordered patterns [8]. Similarly, local physical properties of the thin film can be

perturbed to result in various buckle patterns [9], and more refined nanoscale

patterns may be achieved by modifying the surfaces using focused ion beam [10].

External constraints may be applied, where a pre-patterned mold was held against

the film as the buckles were formed, and the resulting pattern was quite stable after

the removal of the mold [11]. The substrate may also be pre-strained [12], where

silicon nano-ribbons bonded to a pre-stretched flat PDMS could generate wavy

layouts upon releasing the substrate strain. Besides solid substrates, a recent work

[13] reported wrinkle-to-fold transition of buckled thin polyester film on water or

soft gel substrates.

In order to explain the formation mechanisms of various intriguing buckling

patterns from theoretical aspects, Chen and Hutchinson [14, 15] showed that upon

equi-biaxial compression of a film bonded to a planar semi-infinite compliant

substrate, the herringbone pattern possesses less strain energy than its competitors

and thus is more favorable. A more comprehensive discussion of the herringbone

mode was given by Audoly and Boudaoud [16]. A study on the kinetic buckling of

elastic films on viscoelastic substrates showed that both energetics and kinetics play

important roles in determining the critical condition, growth rate, and wavelength

[17]. Through the control of anisotropic strains in films, Huang et al. [18] simulated

the evolution and transition of stripes, herringbone, and labyrinth buckling patterns.

Genzer and Groenewold [19] gave extensive examples of patterns achievable via

film wrinkling and bridged that with skin wrinkles and possible ways of material

characterization and fabrication.

Besides the potential applications of self-assembly in micro- and nano-

fabrications, spontaneous buckling instability also plays a critical role in the

morphogenetic processes of some plants, including plant pattern formation, phyl-

lotaxis, and shape of leaves. Green pioneered the biophysical explanation for the
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patterns commonly observed in plant shoots and flowers [20, 21], and proposed the

hypothesis that buckling of the compressed tunica is the governing mechanism for

determining the local phyllotactic pattern. Dumais and Steele [22] showed that

since the sunflower capitulum is under circumferential compression, buckling may

be a plausible explanation for the primordium initiation in the captitulum. Shipman

and Newell [23] demonstrated that the local phyllotaxis and the deformation

configurations on plant surfaces may be resulted from the energy-minimizing

buckling pattern of a compressed shell on an elastic foundation. A recent experi-

ment on eggplant leaf [24] showed that by applying the growth hormone auxin to

the edge of the leaf to cause a large local expansion, a normally flat leaf could

buckle into a wavy one. Inspired by the similarity between wrinkled edges of torn

plastic sheets and a wavy leaf, Sharon et al. [25] suggested that some leaves may

form wavy edges through spontaneous buckling. Recently Liang and Mahadevan

[26] reproduced the typical shape of a long leaf, saddle-like in the center and wavy

in the edge, by differentially stretching a foam ribbon; they proposed that the origin

of the leaf morphology may arise from instability driven by the in-plane differential

growth in leaves. Similar studies on Antirrhinum [27] and Arabidopsis [28]

have also suggested a role for mechanical force in the regulation of local plant

morphology through its interaction with biological processes.

However, most previous works were limited to the elastic buckling patterns of

planar thin films (either with or without an underlying substrate that is also planar),

yet the buckling characteristics of closed thin film (shell) on curved substrate

(core) have important implications in both morphogenesis of quite a few natural

and biological systems and three-dimensional self-assembly fabrication of micro-

and nanostructures.

The intriguing wrinkling-like ordered patterns observed in quite a few fruits,

vegetables, animal skins, tissues, and cells [29–33] may be related to mechanics-

driven buckling process owing to the mismatched deformation between the

shell/film (e.g., skin of fruit or membrane of cell) and the underlying curved

core/substrate (e.g., flesh of fruit or cytoplasm of cell), [34] during which the

curvature of the substrate plays a dominant role in shaping the distinctive overall

appearance of quite a few natural and biological systems. In addition, the new

varieties of buckling patterns spontaneously formed on curved substrates at the

micron and submicron scales could enable true three-dimensional structures (which

are otherwise difficult to fabricate using traditional techniques such as photolithog-

raphy) [35, 36] and significantly expand applications in biomedical engineering

[37], optics [9], optoelectronics, and display technologies [38–40].

In this chapter, we summarize some recent progresses on the mechanics and

physics principles governing the elastic buckling patterns of thin films on curved

compliant substrates, with a special emphasize on the effect of substrate curvature.

Consider a substrate with Young’s modulus Es and Poisson’s ratio ns, and a thin

film of thickness t, Young’s modulus Ef (Es=Ef ¼ 1), and Poisson’s ratio nf , is
bonded to the substrate in the due course of buckling; both the film and substrate are

assumed to be homogeneous, isotropic, and elastic unless otherwise denoted. The

mismatched deformation between the film and substrate can be induced by various
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ways, including differential growth, thermal expansion mismatch, electric field-

responsive deformation mismatch, phase transformation-induced strain mismatch,

swelling or dehydration mismatch, osmotic pressure, environmental pH variation,

etc., such that the overall effect is that either the substrate shrinks more than the film

or the film expands more than the substrate, and that would render the film in

compression and when such a stress exceeds the threshold, spontaneous buckles

would occur with a distinct pattern. If the stress field in the film is anisotropic and

inhomogeneous (which in this chapter is mainly caused by the effect of substrate

curvature), buckles are likely to occur in the regions with more prominent stress and

align in preferred directions so as to relieve the strain energy more effectively. The

two most critical parameters for characterizing the buckles are the critical buckling

stress and buckling wavelength.

For the extensively studied case where the substrate is planar (and semi-infinite),

when the system undergoes equi-biaxial compression, very often the herringbone

pattern would emerge, and the critical buckling wavelength and critical stress are [14]

l
equi

cr ¼ 2pt
Ef

3Es

� �1
3

and sequicr ¼ 1

4
9Es

2
Ef

� �1
3
; (9.1)

respectively, where Ef ¼ Ef=ð1� n2f Þ and Es ¼ Es=ð1� n2s Þ. If the compression is

uniaxial the corresponding parameters are [41]

l
uni

cr ¼ 2ptO
Ef

Es

� �1
3

and sunicr ¼ X E
2

sEf

� �1
3
; (9.2)

where O ¼ ð3� 4nsÞð1� nsÞ2=12
h i1

3
and X ¼ 3 12ð3� 4nsÞ2=ð1� nsÞ4

h i�1
3
.

Perhaps the easiest approach of incorporating the substrate curvature effect is to

introduce a uniform curvature along one direction of the initial planar substrate, and

in this case the substrate becomes cylindrical. The geometry of cylindrical-like shell/

core structure is often found in micro/nanowires, fibers, plant stem, animal body, as

well as some tissues such as arteries and collagen fibers. When the principal

curvature is uniform in all directions, the spherical substrate, which is widely

observed in bubbles, brain cortex, cells, nucleus, etc., deserves another fundamental

case study. Spheroidal substrate, which may be regarded as a modification of the

spherical one, is a good approximation of quite a few fruits, vegetables, eggs, etc.

Finally, when the cylindrical substrate is combined with a spherical cap, a model

fingertip emerges and its wrinkling pattern upon water immersion may be interest-

ing. In what follows, for each representative type of substrate, we demonstrate the

interaction and coupling between the substrate curvature effect and other material

and system variables, the ways to control the characteristics of buckles, as well as the

potential applications and implications of these self-assembled buckling patterns on

curved substrates in morphogenesis and three-dimensional fabrications.
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9.2 Cylindrical Substrate

9.2.1 Effect of Curvature on Critical Buckling
Stress and Wavelength

Consider a long cylindrical substrate with radius R (R=t>>1) and length L, the
lateral surface of which is completely covered by the film. In such a plane strain

system with the increase of the mismatched deformation between the film and

substrate, the hoop stress in the film will build up. The magnitude of the uncon-

strained strain mismatch between the film and substrate is De. For instance, upon
thermal expansion mismatch, let the coefficient of thermal expansion (CTE) of

the film and substrate to be af and as, respectively, thenDe ¼ af � asj jDT, where in
case af<as,DT is the temperature drop during cooling, and in case af>as,DT is the

temperature increase during heating. Similarly, for growth, swelling, or dehydra-

tion mismatch, one can replace af and as by the respective growth coefficients, and
DT by the effective growth time. The magnitude of film stress in the pre-buckling

state is

sf0 ¼ EfEs 2R
2 þ 2Rtþ t2ð ÞDe

2Esð1� n2f ÞR2 þ Es 1þ nfð Þ þ Ef 1þ nsð Þ 1� 2nsð Þ½ � 2Rtþ t2ð Þ : (9.3)

Equation (9.3) is valid for film/shell of any thickness; for thin film, the higher

order terms related to t2 can be omitted. Figure 9.1 gives the variation of sf0/s1 as

a function of R/t, for several different Ef=Es values (the Poisson’s ratio for both

substrate and film is assumed to be 0.35 in this chapter unless otherwise denoted).

Here, s1 ¼ EfDe is the limit for planar substrate (i.e., when R=t ! 1 in (9.3)).

It can be seen that if Ef=Es is relatively small, with the increase of the substrate

radius of curvature R/t, the film stress quickly approaches to the planar limit,

whereas the convergence is much slower when the film is much stiffer than the

substrate; that is, the substrate curvature effect is coupled with the elastic mis-

match effect.

When sf0 exceeds a critical value, the film will buckle. The critical buckling

wavelength can be obtained from a simplified plane-strain ring-foundation model

[34], where the exact solution of the corresponding wrinkle wave number ncr can be
given by minimizing the following equation with respect to n [34]:

pn ¼
EfI 1þ K

� �
R3

ðn2 � 1Þ2 þ Kð1þ AR2 I= Þ
h i

n2 � 1þ K � K þ K
2

� �
n2=

h i ; (9.4)

where pn is the critical bifurcation line pressure of the nth mode and A and I are the
area and moment of inertia of the cross section of the film, respectively;
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K ¼ ~EsR Ef t
�

is the dimensionless Winkler foundation stiffness [41] where

~Es ¼ Es=ð1� 2nsÞð1þ nsÞ. If the substrate is inhomogeneous, e.g., containing a

stiff or a compliant core, then K can be revised accordingly and (9.4) is still

valid. For instance, if the substrate contains an empty core with radius a, then

K ¼ EsR

Ef t
R2þa2

R2�a2 � ns
1�ns

� ��1

.

The exact solution of ncr , however, must be derived numerically. Instead, one

may simplify (9.4) by assuming that K is small compared with n, and thus the

reduced solution of the critical buckling wave number ncr , wavelength l̂cr , and
critical stress ŝcr can be derived in closed form [34]:

ncr ¼ R

t

� �3
4 12 ~Es

Ef

� �1
4

; l̂cr ¼ 2pR
ncr

¼ 2pt
R

t

� �1
4 Ef

12 ~Es

� �1
4

and ŝcr ¼ Ef
~Es

3

� �1
2 t

R

� �1
2
:

(9.5)

Comparing (9.5) with (9.1) and (9.2), the effect of substrate curvature t=R on

buckling characteristics is obvious. Figure 9.2 shows that for a planar substrate, the

critical buckling wavelength is almost the same under uniaxial and equi-biaxial

compressions. For both planar and cylindrical substrates, the buckling wavelength

Fig. 9.1 The effect of substrate curvature (t/R) on the pre-buckling stress of thin films on

cylindrical and spherical substrates with different film/substrate modulus mismatch (Ef Es= ). Here

the pre-buckling stress is normalized by its counterpart for planar substrate of respective scenarios
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increases with the modulus mismatch Ef/Es and t. However, the wavelength of the

curved substrate also depends on the normalized curvature and it increases with R/t.
Moreover, for planar substrates, the critical buckling stress is independent of the

film thickness, whereas t also affects the bifurcation of cylindrical film/substrate

system through the term R/t. Such a qualitative comparison illustrates the impor-

tance of the substrate curvature.

The buckle amplitude A can be obtained from the deformation compatibility

between the film and substrate, which is given by

A

t
¼ 2

3

sf
ŝcr

� 1

� �	 
1
2 ¼ 2

3

ef
êcr

� 1

� �	 
1
2

; (9.6)

where sf and ef are the film stress and strain in the buckled state, respectively.

êcr ¼ ð ~Est 3Ef

�
RÞ12 is the critical buckling strain. Although the format of (9.6) is

similar to that of thin film on a planar substrate [14, 42], the effect of substrate

curvature is implicitly embedded in the terms ef and êcr.

Fig. 9.2 The normalized buckling wavelength as a function of film/substrate stiffness mis-

match, presented for different curvatures of the cylindrical substrate and compared with the

planar counterparts under uniaxial and equi-biaxial compression. Note that since the cylindrical

film is closed, as R/t is increased, its wavelength does not necessarily converge to the planar

solution
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9.2.2 Application: Mechanical Self-Assembly
of Gear-Like Structures

The explicit equations (9.5) and (9.6) have been validated by simulations based

on finite element method (FEM) [34, 35]. They provide the basis for mechanical

self-assembly of ordered patterns on cylindrical substrates, in particular gear-like

profiles the geometrical properties of which (gear teeth number and teeth amplitude)

may be controlled precisely via the adjustment of material property, substrate geome-

try, film thickness, and degree of mismatched deformation. For example, in order to

increase the teeth number, one should increase R/t or decrease Ef=Es, with the former

method more effective and the latter one able to be applied if the size of gear is fixed.

If one wishes to reduce the critical buckling threshold such that the gear profile

emerges more easily on the cylindrical substrate, then R/t and/or Ef=Es should be

increased. To enhance the teeth amplitude, in addition to increasingDe, one may also

reduce the critical buckling threshold by increasing R/t and/or Ef=Es.

In ref. [35], preliminary experiment was carried where a polyvinyl chloride

(PVC) film (t ¼ 50 mm) was bonded on the lateral surface of a cylindrical polyure-

thane substrate (R ¼ 1–6mm). Upon dehydration of the substrate, the gear-like

buckling profile emerged the wavelength of which followed closely of that in (9.5)

(and remain unchanged during the process), and the teeth amplitude increased

nonlinearly with time (or the mismatch strain, (9.6)).

Figure 9.3 shows the mechanical self-assembly of gear-like profiles via spontane-

ous buckling of films on curved cylindrical substrates: (a) Experiment of two spur

gears self-assembled on shallow cylindrical substrates (with low aspect ratio L/R), the

smaller one with R/t ¼ 125 and Ef Es

� ¼ 1; 516, and the larger one with R/t ¼ 250

and Ef Es

� ¼ 1; 273; relevant FEM simulation is shown. (b) Experiment of bevel

gears with the smaller radius R1/t ¼ 150, aspect ratio L/R1 ¼ 0.4, cone apex angle

90o, and Ef Es

� ¼ 1; 273; matching FEM simulation is shown. (c) Simulated gear

formed on the external surface of a hollow cylindrical substrate [35]. (d) Simulated

gear formed on the internal surface of an annular cylindrical substrate [35]. (a)–(d)

are modified from ref. [35]. (e) Simulated high-aspect-ratio gear, which is similar to

the gear-like profile formed on a microscale cylindrical substrate with R/t ¼ 1,500

and Ef Es

� ¼ 100 from the experiment in Ref. [8]. (f) Wrinkled surface topologies

with longitudinal grooves observed on a long electrospun polymer microfiber; the

inset shows the wrinkled cross-section profile [43].

In Fig. 9.3a, b, the good agreements between experiment and simulation on spur

gear and bevel gear are demonstrated. The demonstrated new mechanical self-

assembly technique using soft materials also has the additional advantage of

biocompatibility for potential biomedical applications.

Using the same principle, wrinkles may also be created on a hollow substrate

(Fig. 9.3c), or the internal surface of an annular cylindrical substrate (Fig. 9.3d),

as well as fabricating a high-aspect-ratio gear (Fig. 9.3e). In the case of the

high-aspect-ratio gear (Fig. 9.3e), the simulated profile is also qualitatively
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consistent with an experiment by Bowden et al. [8] on a cylindrical substrate at the

micron scale, where the thin film was obtained by oxidation of the surface of the

elastic polymer substrate and the uniform film buckling pattern was induced by

thermal expansion mismatch.

In addition to potential applications in micro-machines and soft machines [44],

the gear-like wrinkled surface morphologies may largely increase the surface area

of micro- or nanofibers and modify their wetting properties. For example, wrinkled

surface topographies are often observed in electrospun polymer microfibers as

shown in Fig. 9.3f [43]. During solvent evaporation, a glassy thin film formed on

the soft cylindrical substrate, and the relative shrinkage of the substrate resulted in

the wrinkled morphologies. As revealed in the surface structure of water spider

legs, the microsetae with fine nanoscale axial grooves account for its remarkable

water repellence [45]. Using spontaneous buckles formed on micro- and nanofibers,

similar axial grooves can be engineered with tunable wavelength and amplitude

(following the mechanical principles, (9.5) and (9.6)), enabling the design of

superhydrophobic micro- and nanostructures.

In essence, with the underlying cylindrical substrate, the hoop stress developed

in the film is about two times the axial stress, and thus the initial bifurcation always

makes the wrinkles parallel to the axial direction like those in Fig. 9.3. To break

the axisymmetry and create true 3D patterns on cylindrical substrates, anisotropy

is needed.

9.2.3 Anisotropic Film and Implication for 3D Fabrication

If one can make the axial stress to be comparable or even higher than the hoop

stress, then the circumferential wrinkles would appear. This requires anisotropy

Fig. 9.3 Mechanical self-assembly of gear-like profiles via spontaneous buckling of films on

curved cylindrical substrates [44], reproduced by permission of The Royal Society of Chemistry.

The article in which this figure was originally published is located at the following link: http://

pubs.rsc.org/en/content/articlelanding/2010/sm/c0sm00401d
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such that either the mismatched deformation in the axial direction is much larger

than that in the hoop direction, or the film stiffness in the axial direction is much

smaller than that in the hoop axis. For instance, if the mismatched strain De in the

axial (longitudinal) direction is 1.5, 2, or 2.5 times that in the hoop direction,

numerical simulations show that the resulting hoop stress is about 1.15, 1.0, and

0.9 times the longitudinal stress; in the first row of Fig. 9.4 (with R/t ¼ 50, L/R ¼ 3,

Ef Es

� ¼ 30), the resulted buckle morphology becomes herringbone, square, and

latitudinal, respectively, except near the edges due to the boundary effect. These

new 3D profiles may find potential applications in micro-fabrication, and they may

also shed some light to some natural and biological systems; for example, the

latitudinal pattern is somewhat like that observed on an elephant’s tail [34] or a

Fig. 9.4 Simulated morphologies of gears with 3D features induced by anisotropic properties. Top
row (left to right): Effect of anisotropic growth where the mismatched strain in the axial direction

is 1.5, 2, and 2.5 times that in the hoop direction. Bottom row: Inclined gears formed by buckling of

an orthotropic film on a cylindrical substrate, where the material anisotropy axes (1, 2) are

misaligned with the principal curvature axes (y, z) of the substrate; the resulting gear pattern

examples showing different teeth inclination angles and different aspect ratios [44], reproduced by

permission of The Royal Society of Chemistry. The article in which this figure was originally

published is located at the following link: http://pubs.rsc.org/en/content/articlelanding/2010/sm/

c0sm00401d
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Shar-Pei’s skin [19], indicating possible anisotropic local skin growth of the

elephant or the dog.

In practice, the anisotropic film stiffness may be easier to achieve or control than

anisotropic growth or shrinking. Consider an orthotropic film, the Young’s modulus

of which is E1 and E2 along the local material axes 1 and 2, is bonded to an elastic

and isotropic cylindrical substrate as shown in the inset of Fig. 9.4. In general, the

angle between the local film material axis and the global substrate hoop (y)
direction, a , can be nonzero. In terms of the spontaneous buckle pattern and

representative examples given in the second row of Fig. 9.4, the anisotropic effect

couples strongly with the curvature effect [36]. For example, the buckles do not

align with the material anisotropy direction (unless the substrate is completely flat

[46]), and the difference between the inclination angle of formed buckles (b) and the
material anisotropy angle (a) increases nonlinearly with substrate curvature (t/R).
Moreover, a� b is also largely affected by the boundary (edge) effect, and such a

difference is larger when L/R is smaller [36]. In essence, b depends on a , R/t,
and aspect ratio L/R, as well as the ratio between the two orthotropic moduli,

m ¼ E2=E1 . If the substrate radius of curvature is relatively large (R/t > 50) and

the edge effect is relatively small (L/R > 4), then b becomes close to the direction

of the minimum bending stiffness of the orthotropic plate [36].

The critical buckling wavelength (i.e., the normal spacing between neighboring

inclined teeth of the gear-like profile, along the x-direction), on the other hand, is

insensitive to L/R. Along the buckled direction (x), the effective modulus Ex can be

obtained via transformation of the stiffness matrix of the orthotropic film, which is a

function of a, b, and orthotropic elastic constants. Based on the study of Yin and

Chen [36], the critical buckling wavelength l̂xcr and critical buckling stress ŝ
x
cr can be

approximately derived as

l̂xcr ¼ 2pt
R

t

� �1
4 Eb

12 ~Es cos b

� �1
4

and ŝxcr ¼
Eb ~Es cos b

3

� �1
2 t

R

� �1
2
: (9.7)

Note that the form is similar to that in (9.5). Moreover, the expression of the

buckle amplitude is identical to that in (9.6). Despite these similarities, we remark

that in (9.7) b is also a nonlinear function of R/t; in other words, the effects of

substrate curvature on the buckling characteristics (including the critical stress,

wavelength, and amplitude) are much more complicated in the case of anisotropic

thin film.

The simulated profiles in Fig. 9.4 are illustrative examples of true 3D patterns

and microstructures that are otherwise difficult to make using conventional

techniques such as photolithography (the high-aspect-ratio gear in Fig. 9.3 is

another such example). It is demonstrated that mechanical self-assembly of buckles

on curved substrates may provide an alternative approach to fabricate ordered 3D

microstructures in a quick, simple, and cost-effective way.
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9.2.4 Thick Shell and Global Instability of Coiling of Long
Cylindrical Shell/Core Systems

When the thickness of film (or shell) is much smaller than that of the underlying

compliant substrate (or core), i.e., t�R, upon bifurcation the strain energy is

mainly released through the wrinkled film surface morphology (as described in

previous sections). However, when the thickness of the shell is comparable to that

of the cylindrical core, under mismatched axial deformation a global instability

mode may take place in long cylindrical shell/core systems, forming spring- or coil-

like structures via global bending and/or twisting.

Through coaxial electrospinning, nanofibers with stiff shell and soft core struc-

ture were produced by Chen et al. [47] (Fig. 9.5a), in which, upon differential

shrinkage between the shell and core, the axial compressive stress developed in

the shell may trigger global buckling and form nanosprings or nanocoils, Fig. 9.5b, c.

Their studies revealed that when the core radius was comparable to the shell

thickness (e.g., t/R ¼ 0.5 and 0.34), significant nanospring formation was observed;

nanocoils may be formed with relatively large core size (e.g., t/R ¼ 0.21).

Fig. 9.5 Global instability mode of several long cylindrical shell/core structures [44], reproduced

by permission of The Royal Society of Chemistry. The article in which this figure was originally

published is located at the following link: http://pubs.rsc.org/en/content/articlelanding/2010/sm/

c0sm00401d For nanofibers: (a) Nanofibers with stiff shell and soft core structure produced by

coaxial electrospinning. With excessive shrinkage of the core, the axial compressive stress in shell

triggers the global buckling of the nanofibers into (b) nanosprings if the core size is comparable

with the shell thickness and (c) nanocoils if the shell is thinner. For tissues: (d) Arterial tortuosity
or kinking induced by bending buckling, (e) coiling of human internal carotid, and similar coiling

morphology are also often observed in (f) plant tendrils and (g) natural hair, among others
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In addition, the nanospring structure was also observed in soft shell/stiff core

systems, suggesting comparable contributions of the strain energies in the shell

and core.

Although the global bifurcation mode of coaxial long nanowires (with rela-

tively thick shell) provides a new approach for fabricating 3D springlike and coil-

like nanostructures, the underlying quantitative physical mechanisms remain

unclear. Future mechanics studies are required to correlate the curvature and

coil pitch of nanosprings and nanocoils with R/t, Ef=Es, De, and any geometrical

defects. The solution of such a problem will also provide valuable guidance for

designing nanosprings and nanocoils, which have potential applications in

nanoelectromechanical system (NEMS) as sensors, transducers, resonators, and

photonics [48].

Other than these inorganic nanocoils, coiling is also often observed in helices,

DNA, arteries, hair, plant tendrils, etc. Arteries are subjected to significant mechan-

ical load from the blood pressure and the longitudinal tension arising from

surrounding tissue. An artery can be regarded approximately as a long circular

cylinder comprising an external thick wall and a fluidic core. Under certain

combined loads, mechanical buckling of arterial vessels may occur and that

would lead to arterial tortuosity or kinking (Fig. 9.5d), which are associated with

significant clinical complications. The similar global buckling instability mode was

employed by Han [49], showing the significant effect of longitudinal strain (which

may be caused by reduced axial tension or other clinical observations) on the

bending buckling of arteries. In addition to the bending deformation in kinking,

arterial coiling may also occur with twisting deformation, which was observed on

human internal carotid arteries (Fig. 9.5e) [50]. Understanding of the global insta-

bility mode can once again shed light on the role of stress on the formation of

kinking and coiling in arteries, plant tendrils (Fig. 9.5f), human/animal hair [51]

(Fig. 9.5g), and many others.

9.3 Spherical Substrate

9.3.1 Effect of Sphere Curvature on Critical Buckling
Stress And Wavelength

Another fundamental geometry of curved substrate is spherical, which has a

uniform curvature 1/R in all directions. Assuming that the sphere surface is

completely covered by an isotropic film, we use the same symbols to denote film

and substrate properties. In such a system with the increase of the mismatched strain

between the film and substrate (De), the equi-biaxial stress in the film will build up.

The magnitude of film stress in the pre-buckling state is
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sf0 ¼ EEsð3R3 þ 3R2tþ 3Rt2 þ t3ÞDe
3EsR3ð1� nÞ þ Esð1þ nÞð3R2tþ 3Rt2 þ t3Þ þ 2Eð1� 2nsÞtð3R2 þ 3Rtþ t2Þ :

(9.8)

When compared with the cylindrical counterpart in Fig. 9.1, we can see that for

a spherical substrate, the film stress varies slightly slower as R/t is changed. Other
trends are close to the case of cylindrical substrate. Note that (9.8) is valid for any

film thickness. For thin films, the higher order terms are negligible. When sf0
exceeds a critical value, the film will buckle and because the stress is isotropic and

uniform, there is no preferential orientation of the buckles. When the elastic

mismatch between the film and substrate is fixed, reticular and labyrinth wrinkle

patterns emerge at small and large R/t, respectively (and widespread over the

entire surface of the film) [52]. With increased mismatch strain, the reticular

pattern may transit to labyrinth one. In Fig. 9.6 we compare the normalized

buckling wavelength between spherical and cylindrical substrates (computed

from FEM simulations). For both substrates, the normalized wavelength increases

nonlinearly with the dimensionless substrate radius R/t and stiffness mismatch

Ef/Es. However, the wavelength in the spherical substrate is slightly lower than

that in the cylindrical one when the two systems have the same curvature and

modulus ratio.

Fig. 9.6 Comparison between spherical and cylindrical substrates from FEM simulation:

The normalized buckling wavelength as a function of the substrate radius of curvature. Different

film/substrate stiffness mismatch ratios are shown
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9.3.2 Application: Mechanical Self-Assembly
on Spherical Surfaces

The mechanical principles reveal that the substrate curvature t/R, elastic modulus

mismatch Ef=Es , and mismatched strain De are the governing parameters of

buckling patterns. Labyrinth pattern emerges when R/t is relatively large, Ef=Es is

relatively small, or De is relatively large; the curvature effect is coupled with the

other two effects. For spherical substrate, the buckling wavelength can be enhanced

by increasing Ef=Es or R/t. The critical buckling threshold can be reduced by

increasing R/t or decreasing Ef=Es , and the larger buckling amplitude can be

obtained by increasing De.
Cao et al. [52] demonstrated an experiment of spontaneous buckling pattern

formation on spherical substrates. Using coevaporation technique, a thin SiO2 film

with thickness of about t ¼ 150 nm was bonded to a nearly spherical Ag substrate at

high temperature; the substrate radius varied from R ¼ 1 to 50 mm.When the system

was cooled owing to the thermal strainmismatch the SiO2 film buckled, and the shape,

wavelength, and critical stress conformedwell to themechanics principles. Figure 9.7a

Fig. 9.7 Experiments of self-assembly on spherical shell/core systems [44], reproduced by

permission of The Royal Society of Chemistry. The article in which this figure was originally

published is located at the following link: http://pubs.rsc.org/en/content/articlelanding/2010/sm/

c0sm00401d. Solid inorganic systems: (a) Experiment of reticular pattern formed on a spherical

system (SiO2 film/Ag substrate), with R/t ¼ 20 and �Ef
�Es= ¼ 5 . (b) Microlens arrays self-

assembled on a hemispherical soft substrate using constrained local buckles. (c) Interconnected

silicon ribbonlike photodetectors on a hemispherical elastomer substrate. Instability patterns of
microbubbles: (d) Nanoscale hexagonal pattern self-assembled on a stable microbubble, which is

in part due to (e) differential shrinkage-induced buckling of the bubble surface, and (f) the pattern

can be strongly influenced by the bubble curvature
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shows an example with R ¼ 3 mm and at this relatively small R/t, reticular pattern
was produced via spontaneous buckling. This is another example of buckling

self-assembly fabrication of true 3D structures at micro- or submicron scales.

Among other limited experiments of fabricating 3D micro/nanopatterns and

microstructures on curved substrates, Chan and Crosby [9] confined surface

wrinkles in small local pre-patterned regions, and when such a technique was

applied to a hemispherical surface, microlens arrays were self-assembled

(Fig. 9.7b). Recently, Shin et al. [53] assembled interconnected silicon ribbonlike

photodetectors on a hemispherical elastomer substrate, and the ribbons were in

buckled profiles owing to pre-stretch (Fig. 9.7c). It should be noted that in these

experiments, the buckle features created were much smaller than the substrate

radius of curvature; in other words, the versatile effect and potential of substrate

curvature were not fully utilized to regulate the self-assembled buckles.

Besides the aforementioned solid systems, buckling self-assembly was also

demonstrated on fluidic spherical shell/hollow coremicrostructures, i.e.,microbubbles.

In a recent experiment on the nanopatterning of stable microbubbles, Dressaire et al.

[54] created a nanoscale hexagonal interface pattern as shown in Fig. 9.7d through the

shrinkage of the bubbles.By covering a surfactant layer on the surface ofmicrobubbles,

due to the differential shrinkage the initial smooth bubble buckled into a nano-

hexagonal patterned one (Fig. 9.7e). Figure 9.7f further demonstrates the important

effect ofcurvature on the surfacewrinklingpattern, as thebubble radiuswasvaried from

500 nm to 3 mm. Note that besides mechanical buckling, phase separation and other

surface mechanisms may also underpin the pattern domains in microbubbles, and

various pattern formations were reported including polygons, dendrites, beans,

networks, etc. [55]. A recent review [55] has nicely summarized the nanopatterning

on stable microbubbles, which have implications for biomedical applications.

It is envisioned that by coupling the intriguing substrate curvature effect with local

inhomogeneous or controlled mismatch deformation, more varieties of buckling

patterns that underpin micro- or nanopatterns and structures may be spontaneously

fabricated on curved substrates, thereby extending the scope of the present chapter.

9.3.3 Implications for Morphogenesis of Cell and Brain Cortex

Under certain conditions, a cell with initial smooth surface morphology may

become wrinkled, which is often observed in bacterial cells (Fig. 9.8a where the

average wrinkle wavelength is about 100 nm) [56] and non-tissue cells such as

human neutrophil cells (Fig. 9.8b) [57], macrophages, lymphocytes [58], and mast

cells [59]. The wrinkled morphology may increase the surface area of the cell by

more than 100% [60], which may accommodate potential membrane expansion and

spreading during extravasation and osmotic swelling. From a mechanics point of

view, Yin et al. [34] argued that cell wrinkling may be regarded as a buckling

instability behavior induced by the mismatched deformation between the cell

membrane and the cytoplasm. Such a mismatched deformation may arise from
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the relative shrinkage of the cytoplasm under hyper-osmotic pressure [56] (e.g., that

in Fig. 9.8a) or the relative expansion of the cell membrane surface area during cell

growth or phagocytosis [61] (e.g., that in Fig. 9.8b).

Other than the cell membrane surface wrinkles, recently similar wrinkled mor-

phology was observed inside the cell, e.g., on the cell nucleus due to hyper-osmotic

shrinkage, Fig. 9.8c [62]. In their work, Finan and Guilak [62] suggested that the

nucleus wrinkles can be explained by the mechanical buckling of shell/core struc-

ture [34], where the contraction of the soft core (nucleoplasm) renders the stiffer

shell (nuclear lamina) in compression to initiate the buckles. Under hypo-osmotic

pressure, the swelling of nucleoplasm will make the lamina in tension and stretch

the lamina into a smooth shape as shown in Fig. 9.8d [62].

In addition to the explanation of the wrinkle profile, the mechanical buckling

principles may also enable the in situ characterization of cellular properties. For

instance, within the mechanics framework the wrinkle wavelength and amplitude

can be established as functions of the ratio between the shell thickness and core radius,

elastic modulus ratio between the shell and core, and mismatched deformation

(e.g., Fig. 9.6 for spherical shell/core systems). If by using high-resolutionmicroscopy

the wrinkle wavelength and amplitude can be measured in situ (for either cell

Fig. 9.8 The morphogenesis of some cells and tissues may be related to the wrinkling instability

of nearly spherical shell/core systems [44], reproduced by permission of The Royal Society of

Chemistry. The article in which this figure was originally published is located at the following link:

http://pubs.rsc.org/en/content/articlelanding/2010/sm/c0sm00401d. For cells: (a) Wrinkled bacte-

rial cell owing to the relative shrinkage of the cytoplasm under hyper-osmotic pressure. (b)

Wrinkled human neutrophil cell due to the relative expansion of the cell membrane surface area

during cell growth or phagocytosis. (c) Wrinkled cell nucleus due to hyper-osmotic shrinkage, and

(d) the wrinkles may disappear with the swelling of nucleoplasm under hypo-osmotic pressure.

The folding pattern of brain cortex: (e) The surface is relatively smooth in the fetus period yet (f) it

folds into a pattern with bumps and grooves during growth. The cross-sectional view of brain

cortex shows that (g) during the early stage the surface is relatively smooth, and (f) during the later

stage the wrinkled morphology is observed
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membrane [56] or nucleus [62], e.g., Fig. 9.8), the critical cellular properties such as

the effective membrane stiffness may be deduced and provide useful insight on its

mechanical and biological functions [62]. It should be noted that the mechanicsmodel

discussed in this chapter is oversimplified for cells, and future refinements are needed

by incorporating the osmotic pressure and other more realistic material and geometri-

cal features of the cellular system.

Besides the cellular scale, the wrinkled morphology is also frequently observed at

larger tissue or organ scales. An example of the wrinkled brain cortex is shown in

Fig. 9.8f. The cortical morphology has fascinated scientists for centuries and the

paradigm for the morphogenesis of folding patterns in brain cortex remains an open

question. In fact, the human brain cortex is not born with wrinkles and folds; in the

fetus period it is smooth (see Fig. 9.8e). As the neurons continue to divide, grow, and

migrate, the cortex folds and forms a recognizable yet unique pattern of bumps and

grooves. The cross section of the hemispherical cortex reveals the detailed information

on the formation of the gyri (ridge) and sulci (groove) during development [63].

Figure 9.8g shows a relatively smooth cross section of the cerebral cortex at

gestational week (GW) 20, where the multilayer architecture of the cerebral cortex

is demonstrated, which consists of the superficial marginal zone (MZ), cortical plate

(CP), intermediate zone (IZ), subventricular zone (SVZ), and ventricular zone (VZ)

from exterior to interior. At GW 24, the wrinkled morphology is observed (Fig. 9.8h).

Understanding of the folding pattern of brain cortex has important implications

in medical science, since that is closely associated with intelligence and some brain

diseases including schizophrenia and autism [64]. Neurological disorders such as

the Williams syndrome [65] and lissencephaly may result in abnormal cortical

folding [66], where the folding wavelength increases and the amplitude of wrinkle

becomes smaller. Recently, Zhang et al. [67] reported the reduced cortical folding

in mental retardation (MR), where significantly reduced gyrification was observed

in multiple brain regions compared with the healthy counterparts, which was

possibly attributed to the abnormalities in the subcortical structure.

A number of hypotheses and models were proposed to explain how and why the

cortex folds in a characteristic pattern from the biological, biochemical, and mechani-

cal viewpoints [68–72]. Among them, Richman et al. [68] first proposed a mechanical

buckling model where the cerebral cortex was modeled as a bilayer shell rested on a

soft spherical core. The excessive growth of the shell relative to that of the core leads to

the development of compressive stress in the shell, and the subsequent buckling may

lead to the cortical folding. Despite some encouraging initial results, the model was

oversimplified and some important features in the brain cortex development were

missing, for example, the variable thickness of each layer during growth [73], the

curvature effect on the folding pattern, anisotropy and heterogeneity in material

properties, and the anisotropic cortical growth in the tangential and radial directions

[74]. An improved shell/core model and the more sophisticated buckling mechanisms

may help to understand the morphogenesis of cerebral cortex, including the healthy

and the abnormal cortical folding patterns with implications to various diseases. It is

envisioned that the extension of the fundamental model presented in this chapter, with

the incorporation of the more realistic multilayer structure, anisotropy and heteroge-

neity, and growth behavior of the cerebral cortex tissues, may explain some factors

188 X. Chen and J. Yin



affecting the fold pattern and fold number in the cerebral cortex, and provide useful

insights for understanding several brain diseases.

It is arguable that the overall geometry of some cells and brain cortex may not be

spherical, and they may be better modeled as spheroids. The spontaneous buckling

pattern formation on spheroidal substrate is discussed next.

9.4 Spheroidal Substrate

9.4.1 Buckling Patterns and Governing Parameters

Owing to the isotropic and homogeneous film stress field, an ideal spherical

substrate may lead to only two types of patterns (reticular or labyrinth); yet a

simple variation of the substrate geometry to spheroidal may render more variety

of 3D self-assembled buckling profiles (driven by anisotropic and inhomogeneous

film stress field), which may also be bridged with the morphogenesis of quite a few

natural and biological systems elucidated in the next section.

Consider a model spheroidal substrate ðx2 þ y2Þ=R2 þ z2=b2 ¼ 1 in Cartesian

coordinates, which is completely covered by (and remains bonded to) a thin film of

thickness t. Two dimensionless factors may effectively characterize the normalized

substrate radius of curvature: the normalized equator radius R/t and the aspect ratio
k ¼ b/R. If we neglect the relatively minor influence of the Poisson’s ratio, then the

buckling characteristics will additionally depend on the elastic mismatch between

film and substrate, Ef=Es, and the mismatch strain between them, De. The effects of
these four governing parameters on the buckling morphology are given below.

In the pre-buckling state, owing to the inhomogeneous curvature of the spheroi-

dal system, upon mismatched deformation between film and substrate, the pre-

buckling stress in the film is nonuniform (inhomogeneous) and anisotropic [34].

In a prolate spheroidal system (k < 1.0), for example, the hoop stress at the equator

(z ¼ 0) is the most prominent component and thus when the system is just above

critical, longitudinal ridge-like buckles first appear near the equator. For an oblate

spheroid (k < 1.0), circumferential undulations first occur around the polar region

to release the most prominent local longitudinal stress.

With the increase of De, the ridged pattern in prolate extends to the poles and the

circumferential pattern in oblate extends to the equator. If De becomes sufficiently

high, however, labyrinth patternsmay become amore effective way of relieving strain

energies, especially in those structures with large R/t and those with k closer to 1.0; in
this case the labyrinth pattern will be widespread over the surface (somewhat similar

to the brain cortex [68, 75]). In what follows, we focus on the effect of R/t and how it

interacts with that of k andEf=Es, and we are more interested in the initial bifurcation

mode at lowDe just above critical since large stress may not be preferred in biological

systems nor fabrication, two of the main applications of the present chapter.

The results obtained from FEM simulations are summarized in Fig. 9.9.
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In a distinct prolate system (k� 1:3, which is more often observed in natural and

biological systems than the oblate system), when the substrate is relatively small

with low value of R/t, the ridged pattern prevails and the wave number of ribs

increases rapidly with R/t. Meanwhile, when R/t is large the formation of circum-

ferential waves is possible, and thus the reticular buckles may appear almost

uniformly on the surface (especially when k is small, close to the case of spherical

substrate [52]). The interaction between R/t and Ef Es

�
further shows that at small

Ef Es

�
and large R/t, reticular pattern has advantage over ribbed one, and with the

increase of modulus mismatch, the number of ribs in the undulated film decreases.

When the substrate curvature is relatively large (R/t < 40), the ribbed patterns may

remain stable for a large range of modulus ratio (5�Ef Es

� � 200) although the rib

number may vary.

Quantitatively, for distinct prolates, the ridge number is a function of R/t and

Ef Es

�
, which can be well described by (9.5); similarly, (9.6) works fairly well for

predicting the buckle amplitude of prolate systems. Although these two equations

should, in principle, be applied to cases where k approaches infinity, extensive

analyses show that the principles work quite well in general for k� 1:3 [34].

Therefore, the ways to control the buckle wave number and amplitude for distinct

prolate film–substrate systems are essentially the same as those described in

Sect. 9.2.2, which underpin the application below.

Fig. 9.9 Deformation map of spheroidal shell/core systems as the three geometrical parameters

are varied [44], reproduced by permission of The Royal Society of Chemistry. The article in which

this figure was originally published is located at the following link: http://pubs.rsc.org/en/content/

articlelanding/2010/sm/c0sm00401d. Left: R/t vs. k with �Ef
�Es= ¼30. Right: R/t vs. �Ef

�Es= with

k ¼ 1.3. The bright color shows the concave “bottom” of buckles. The number of longitudinal

ridges is shown on the top corner of each relevant pattern. Here R is the equator radius and thus

consistent with other geometrical profiles of curved substrate discussed in this chapter
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9.4.2 Application to Organic and Inorganic Systems:
Morphogenesis and 3D Fabrication

Many fruits, including varieties of cucumis melons, gourds, tomatoes, peppers,

and pumpkins, take approximate spheroidal shapes with stiff skin (film/shell)

bonded to compliant flesh (substrate/core) and exhibit distinctive wrinkle-like

undulation morphologies (Fig. 9.10). For example, the Korean melon and ridged

gourd are distinguishable by 10 equidistant longitudinal ridges. Small pumpkins,

acorn squashes, and carnival squashes often have about 10 uniformly spaced ribs,

whereas the large pumpkins often have about 20 or more ridges. Cantaloupes

Fig. 9.10 Morphogenesis of spheroidal-like natural and biological systems, where in each

example, the observation (larger picture) matches reasonably with the simulation based on the

simple spheroidal shell/core model (smaller picture). [44], reproduced by permission of The Royal

Society of Chemistry. The article in which this figure was originally published is located at the

following link: http://pubs.rsc.org/en/content/articlelanding/2010/sm/c0sm00401d
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exhibit reticular patterns on their surfaces. More complicated and intriguing

phyllotactic patterns are often observed in plant shoots, flowers, and the cactus

head. Such distinctive yet elementary global (overall) features may be contributed

in part by the stress-driven spontaneous buckling (due to the mismatched growth

between the stiff skin and compliant flesh), the bifurcation mode of which may set

up the template for parallel biological processes [29, 34].

Using the simple spheroidal shell/core model, various global appearances of

quite a few fruits and vegetables can be reproduced [29, 34]; several examples

obtained from FEM simulations are shown in the first two rows in Fig. 9.10, where a

distinct morphology emerges when the governing parameters (k, R/t, Ef Es

�
) are

within a particular range. In the first and second row of Fig. 9.10, the morphologies

of several fruits and vegetables, including Korean melon, acorn squash, ridged

gourd, wax apple, large pumpkin, and cantaloupe, can be reproduced via the

spheroidal shell/core model. In the third row of Fig. 9.10, plant phyllotaxis includ-

ing cactus and succulent (1st and 2nd cases) can be explained using instability

theory, from ref. [23]; the model of spheroidal elastic shell/foundation model may

also explain the ridged pattern in cactus (3rd case). In the last row of Fig. 9.10, the

same principles are applicable to dehydrated fruits such as dried mini tomato and

raisin, as well as in 3D self-assembly application using SiO2 film/Ag substrate.

Moreover, the stable ribbed patterns are insensitive to minor perturbations, such as

the inclusion of a rigid or a compliant core, or boundary constraints at poles [34].

Major perturbations, including the variation of the substrate curvature, anisotropic

growth rate, or elastic properties, do affect the buckling pattern considerably [34],

which echoes those described earlier. The same principles can be easily extended to

those observed on eggs, dehydrated fruits (last row of Fig. 9.10), cells, tissues, etc.

[29, 34]; some have been discussed earlier for spherical substrates and are extend-

able to spheroidal systems.

Besides these global morphologies, the local phyllotaxis on plant surfaces

may also be due to similar buckling instability. Shipman and Newell [23]

reproduced a wide spectrum of plant patterns observed in nature, and two

examples of cactus and succulent are given in the third row of Fig. 9.10. The

cactus can also be modeled as a thin spheroidal elastic shell rested on an elastic

foundation, and such a model may explain the configuration transition between

the whorl pattern and the ridged pattern observed in cactus (third image in the

third row of Fig. 9.10).

Regarding engineering applications, for the same 3D fabrication experiment

carried out in Sect. 9.3.2, when the inorganic substrate is spheroidal-like, the last

image of Fig. 9.10 shows the SEM photo of the rib-dominated buckled patterns

observed in a prolate system (Ag core/SiO2 shell), where k ¼ 1.15, R/t � 55, and

Ef Es

� �5, respectively. In all examples demonstrated in this section, the profiles

obtained from numerical simulation, the buckling shape and wavelength predicted

from theoretical equations (e.g., (9.5) and (9.6)), and the experimental (or practical)

observations agree well with each other.
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9.5 Combined Cylindrical and Spherical Substrates

Most previous mechanics studies on skin wrinkles were confined to planar

substrates [19] and there was little emphasis on the potential influence of the

underlying substrate tissue curvature. We use the common phenomenon that every-

body has experienced, the wrinkles appear on human fingertip upon water immer-

sion, to illustrate the role of substrate curvature and further bridge the buckling

mechanism with morphology of biological components. From recent advances in

physiological studies [76–78], the driving force for fingertip skin wrinkle is

believed due to vasoconstriction of the underlying tissue, which decreases the

turgor and effectively shrinks the tissue volume to produce compressive stress in

the skin [79].

As a first-order approximation, the substrate of fingertip may be regarded as

roughly half cylinder topped with a hemisphere (the flat surface on the backside

corresponds to the “nail” region that does not wrinkle). A typical radius of the

substrate is R ¼ 7.5 mm and skin thickness is t ¼ 0.15 mm. When the compressive

stress in the film is just above critical, longitudinal wrinkles first appear near the

conjunction of the cylindrical and spherical parts (which corresponds to the center

of finger pad). With continued increase ofDe (i.e., with prolonged water immersion

time), the longitudinal wrinkles propagate along the cylindrical pad whereas retic-

ular concaves are observed on the spherical fingertip. When De is relatively large,

the labyrinth pattern takes over on the finger pad, Fig. 9.11 [79]. The wrinkle

amplitude increases nonlinearly with De whereas the wavelength remains almost

a constant. Owing to the boundary constraint, along the circumferential direction

the wrinkle amplitude is the largest at the center of finger pad and decays away near

the nail region. Since the wrinkles in the cylindrical section are more prominent, the

mechanical principles developed in Sect. 9.2 apply well; for example if the sub-

strate curvature is increased (while other parameters remain fixed, e.g., from thumb

to little finger), the wrinkle wavelength and amplitude decrease, and the wrinkles

become more difficult. All these features are qualitatively consistent with practical

observations.

The substrate geometry can be further refined based on the anatomical structure

of the human fingertip; moreover, in order to capture the skin behavior more

realistically, the multilayer structure of the skin and tissue can be taken into

account, which includes stratum corneum, viable epidermis, dermis, subcutaneous,

and bone [79]. The simulation example shown in Fig. 9.11c reveals similar features

as those using the simplified model (Figs. 9.11a, b). A parametric study can be

carried out to explore the role of each individual layer on wrinkling characteristics,

which provide useful insights into skin aging and suppressing wrinkles [79], hence

useful for biomedical and cosmetic science.

9 Mechanical Self-Assembly on Curved Substrates 193



9.6 Concluding Remarks

The main objective of this chapter is to summarize some recent research progresses

of the buckling patterns self-assembled in thin films on curved compliant substrates,

including the underlying mechanical principles, the ways to control them, and

relevant applications, which may stimulate future works on controlling the buckle

morphologies by efficiently using the substrate curvature effect.

On a curved substrate depending on its principal curvature, upon mismatched

deformation between the film and substrate, the compressive stress generated in the

film may be anisotropic and nonuniform. This enables various types and features of

buckling patterns that underpin mechanical self-assembly fabrication of 3D

microstructures and devices, as well as being potentially linked to various

intriguing morphological problems in biology and biomedical engineering.

Figure 9.12 summarizes the possible interactions among mechanics, morphogene-

sis, and fabrication, all based on the wrinkling patterns of films on curved

substrates. Although the central role of mechanical principle is emphasized

(Fig. 9.12), we note that in terms of morphogenesis, the hypothesis of the integrated

effort of the mechanical and biological processes needs to be verified from future

Fig. 9.11 Wrinkling of water-immersed fingertips. First row: Representative wrinkled morphol-

ogy of fingertips (index and thumb); second row: simulations from the corresponding reduced

model and full anatomical model with qualitative agreement. [44], reproduced by permission of

The Royal Society of Chemistry. The article in which this figure was originally published is

located at the following link: http://pubs.rsc.org/en/content/articlelanding/2010/sm/c0sm00401d
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biological experiments; in terms of micro- or nanofabrication, the effectiveness of

the new technique requires further validation via small-scale experiments (which

can be guided by the underlying mechanical principles), and additional challenges

associated with defects need to be thoroughly investigated.

This chapter focuses on a few representative substrate shapes. More inspirations

may be obtained from the unlimited possible types of substrate geometries in

natural and biological systems and engineering practices. Moreover, the film and

substrate properties can be anisotropic (as illustrated in Sect. 9.2.3) [36], nonuni-

form and heterogeneous, of gradient, elastoplastic or viscoelastic, and the system

may be subject to external load, gravity, pre-strain, etc.—some of these scenarios

were already demonstrated on planar film/substrate systems [12, 46, 80, 81] and they

may lead to more varieties of spontaneous buckling patterns on curved substrates.

Furthermore, the buckles may be constrained in local regions [9, 53] where the

boundary effect can further interact with the substrate curvature effect. Buckle

delamination pattern on curved substrate [82] is another broad and open area. For

Fig. 9.12 Postulated interactions among mechanics, morphogenesis, and fabrication. Mechanics
vs. morphogenesis: Due to certain biological processes occurring at the cellular level in some

systems [22, 83] the film and substrate undergo mismatched deformation, and the resulting stress-

driven buckling sets up a template for the overall systemmorphology. The processes of cell growth

and cell differentiation [21, 84–87] may follow the mechanical template to help stabilize the global

pattern features. On the other hand, the bifurcation mode is also closely related to the effective

material and geometrical properties (which are based on biological processes). Mechanics vs.
fabrication: Mechanical buckling further underpins the novel technique of self-assembly fabrica-

tion of 3D microstructures, which is inherently simple, quick, and cost-effective
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biological systems refined and more realistic models of cell/tissue growth and

response are required. These will be examples of interesting problems to be explored

in future, from both fundamental (underlying mechanical/physical principles) and

application (soft matter in biology, biomedical engineering, and small-scale fabrica-

tion) point of views and across different length scales.
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