
Chapter 9

A Model for Fracture Characterization of Adhesively-Bonded Joints

Jianghui Mao, Sayed A. Nassar, and Xianjie Yang

Abstract In this paper, an analytical model is proposed to characterize the fracture behavior of an adhesively bonded joint

loaded in peel. Unlike previous theories, the current model includes some new parameters, such as young’s modulus of

adhesive material, thickness of adhesive layer, and parameter c in the stress function, which will be determined by solving a

nonlinear equation. The new developed model also takes into account the crack tip rotation. To verify the current work,

comprehensive comparison is made between previous theories, experimental data, and current model. Result shows that the

current model is better than previous theories in regards to the coincidence with experimental data. The effect of each key

parameter on the prediction is also discussed in this paper.
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9.1 Introduction

Adhesively bonded joints, especially composite laminated joints, have been widely used in automotive and aerospace

industry nowadays. Various kinds of failure modes have been identified in everyday use, among which delamination is the

most life-limiting mechanism in bonding joint. The analysis of adhesive joint is usually based on through-thickness averages

of stress and strain, then, the basic variables are the peel stress, s, the shear stress, t, the opening distance, w, and the shear

deformation, v, of the adhesive layer. The shear loading case for adhesive joint has been studied in Nassar et al. [1], current

study will focus on the peel loading case using Double Cantilever Beam (DCB) model.

The adhesively bonded joint loaded in peel has been intensively studied. Whitney [2] carried out experiments on

composite joint and discussed a number of approaches for data reduction schemes, El-Zein [3] tested a composite joint in

elevated temperature and proposed a theory for determining critical load, the developed model only took adherend into

account, and crack tip opening was neglect. Hashemi et al. [4] analyzed some DCB composite joints using corrected beam

theory, Johnson et al. [5] investigated the environmental durability of a series of bonded systems, Shindo et al. [6]

experimentally and analytically investigated the cryogenic Mode I interlaminar fracture behavior and toughness of SL-E

woven glass-epoxy laminate, Jyoti et al. [7] experimentally explored the effect of adhesive layer to the critical energy release

rate of specimen, Xie et al. [8] discussed methodologies and techniques used for characterizing metal/epoxy interfaces,

latter, Pradeep et al. [9] used the evaluation methodologies for assessing the interfacial integrity using FEA, the methodology

considered the effect of adhesive properties such as Young’s modulus and thickness, however the crack tip rotation wasn’t

taken into account. In contrary to the above mentioned researches, increasing number of researches (Barenblatt [10], Yang

et al. [11], Andersson et al. [12] and Andersson et al. [13], Ouyang et al. [14]) used cohesive zone model (CZM) to solve the

adhesively bonded joint. The CZM was critically dependent on accurate constitutive models, i.e. stress-elongation (s-w)
relation of adhesive layer, it had been proven very hard to correlate the bulk properties of adhesives with their behavior in a

thin and constrained layer [15], also, a stress-elongation relation works fine for this adherend material may not work for other

adherend material, hence repeated works were need to determine stress-elongation relation for other adherend material,
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It’s well known that the fracture energy and morphology varies with the thickness of the adhesive layer [16], previous

studies either neglect the existence of adhesive layer [2, 5, 17], or model the adhesive layer as spring [18–20], or neglect

the crack tip rotation [9, 17], others using stress-elongation relation to represent the property of adhesive layer [12–14],

they were suitable for modeling very thin adhesive or interfacial behavior of adhesively bonded joint, however, due to

the lack of consideration about the adhesive material properties and geometry properties, the results obtained by

previous were very limited to specific cases. In this study, a model is developed which takes into account of the adhesive

material properties and adhesive thickness and their geometry configuration, also a novel parameter c is introduced, and
it’s determined by solving a nonlinear equation, in addition, crack tip rotation is considered. Various cases were

compared and discussed to verify the novel developed model. The effective of each key parameter in the model is

discussed.

9.2 Analytical Model

The geometric model for the analysis is presented in Fig. 9.1. Two adherends with same size, length l, height h, and width b
are bonded by an adhesive layer with one end leaving unbounded and this end is subjected to peel load P as in Fig. 9.1a. The

adhesive layer has a thickness of ha, and length l-a. the coordinate is originated at the center of left end in Fig.9.1a. The free
body diagram of adherend is shown in Fig. 9.1b.

Fig. 9.1 Schematic of

analysis model
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For the unbounded adherend portion, the moment is expressed as

MðxÞ ¼ Pðl� xÞ l� a � x � l (9.1)

For the bonded ahderend portion, the moment can be given as

MðxÞ ¼ Pðl� xÞ � b

ðl�a�x

0

ssðxþ sÞds 0 � x � l� a (9.2)

as can be seen in Fig. 9.1b, s is a new coordinate parallels with x-axis, and originated at x.
Force equilibrium of upper adherend gives

b

ðl�a

0

sðxÞdx ¼ P (9.3)

where sðxÞis the stress distribution along the bonding interface, and it is assumed to be

sðxÞ ¼ s0ecðx�lþaÞ (9.4)

where s0 is the stress at the crack tip, and c is the material parameter.

From Eqs.9.3 and 9.4,

bs0
c

1� ecða�lÞ
h i

¼ P (9.5)

The moment and deflection relationship of adherend can be give as

w00ðxÞ ¼ �MðxÞ
E
ð1Þ
x I

(9.6)

where E
ð1Þ
x is the adherend Young’s modulus in x direction. I is the Moment of Inertia.

9.2.1 Modeling of Bonded Region (0 � x � l� a)

For the upper half adhesive, the elongation in y direction is obtained as

wðxÞ ¼ � ha
2

sðxÞ
E
ð2Þ
y

0 � x � l� a (9.7)

where E
ð2Þ
y is the adhesive Young’s modulus in y direction.

First derivative of Eq. 9.7 gives

w0ðxÞ ¼ � hac

2E
ð2Þ
y

sðxÞ 0 � x � l� a (9.8)

Substitute Eq. 9.2 into Eq. 9.6, and using Eqs. 9.4 and 9.5, one obtains,

1

cecðl�aÞ þ
E
ð1Þ
x Iha

2E
ð2Þ
y ecðl�aÞ

c3

b

 !
ecx � xþ l� a� 1

c

1� ecða�lÞ ¼ l� x (9.9)
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From Eq. 9.9, c is depended on x. Following Nayfeh et al. [21], a continuum mixture format is carried out to eliminating

the x-dependence by integrating both side of Eq. 9.9 from 0 to l-a, and divided by l-a, then, a nonlinear equation can be

obtained from Eq. 9.9 for determining parameter c as follows

1

c2ðl� aÞ þ
E
ð1Þ
x Iha
2E2

y

c2

bðl� aÞ þ
1

2
l� að Þ � 1

c
1� ecða�lÞ ¼ 1

2
lþ að Þ (9.10)

Equation 9.10 can be solved by Newton–Raphson method. Theoretically, there are four solutions for this equation, but the

realistic one should be real number, and not far away from 0, otherwise it will cause numerical problem.

9.2.2 Modeling of Unbounded Region (l� a � x � l)

From Eqs. 9.1 and 9.6

Eð1Þ
x Iw0 ¼ 1

2
Px2 � Plxþ B1 (9.11)

Eð1Þ
x Iw ¼ 1

6
Px3 � 1

2
Plx2 þ B1xþ B2 (9.12)

B1 and B2 are constant, to be determined by boundary condition. The continuity condition at x ¼ l� a gives

1

2
P l� að Þ2 � Pl l� að Þ þ B1 ¼ �E

ð1Þ
x Iha

2E
ð2Þ
y

cs0 (9.13)

1

6
P l� að Þ3 � 1

2
Pl l� að Þ2 þ B1 l� að Þ þ B2 ¼ �E

ð1Þ
x Iha

2E
ð2Þ
y

s0 (9.14)

Equations 9.13 and 9.14 give the value of B1 and B2 as

B1 ¼ �E
ð1Þ
x Iha

2E
ð2Þ
y

cs0 � 1

2
P l� að Þ2 þ Pl l� að Þ (9.15)

B2 ¼ �E
ð1Þ
x Iha

2E
ð2Þ
y

s0 1� cðl� aÞ½ � þ 1

3
P l� að Þ3 � 1

2
Pl l� að Þ2 (9.16)

Then, the deflection of unbounded region of adherend can be determined as

w ¼ 1

E
ð1Þ
x I

1

6
Px3 � 1

2
Plx2 þ �E

ð1Þ
x Iha
2E2

y

cs0 � 1

2
P l� að Þ2 þ Pl l� að Þ

" #
x

(

�E
ð1Þ
x Iha

2E
ð2Þ
y

s0 1� cðl� aÞ½ � þ 1

3
P l� að Þ3 � 1

2
Pl l� að Þ2

)
l� a � x � l (9.17)
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9.2.3 Joint Fracture Properties

The loadline deflection will be given by

wP ¼ � 1

E
ð1Þ
x I

E
ð1Þ
x Iha

2E
ð2Þ
y

s0ðcaþ 1Þ þ 1

3
Pl3 þ Pðl� aÞ2l� Pl2ðl� aÞ � 1

3
Pðl� aÞ3

" #
(9.18)

The Crack Open Displacement COD of loadline for the joint is obtained as

COD ¼ 2

E
ð1Þ
x I

E
ð1Þ
x Iha

2E
ð2Þ
y

s0ðcaþ 1Þ þ 1

3
Pl3 þ Pðl� aÞ2l� Pl2ðl� aÞ � 1

3
Pðl� aÞ3

" #
(9.19)

and Crack Tip Opening Displacement CTOD is

CTOD ¼ has0

E
ð2Þ
y

(9.20)

From Eqs. 9.5 and 9.9, the compliance of the joint can be obtained. In the determination of c, the continuum mixture

theory is used, which eliminates the x-dependence of c. A closed examination finds that using the continuum mixture theory,

the prediction tends to deviate from experiment, the deviation is related to crack length and joint length as (l-a)/l/k, which is
called the correction factor in this paper, and k is a constant, which can be determined experimentally or using FEA method.

With the correction factor in consideration for bonded joint region, the compliance of the joint can be expressed as

C ¼ 2

E
ð1Þ
x I

E
ð1Þ
x Ihacðcaþ 1Þðl� aÞ
2E

ð2Þ
y b½1� ecða�lÞ�lk

þ 1

3
l3 þ ðl� aÞ2l� l2ðl� aÞ � 1

3
ðl� aÞ3

" #
(9.21)

The Strain Energy Release Rate (SERR) of the joint can be given as

GI ¼ P2

2b

dC

da
¼ P2

E
ð1Þ
x Ib

E
ð1Þ
x Ihac

2ðl� aÞ
2E

ð2Þ
y blk

1þ caecða�lÞ

½1� ecða�lÞ�2
þ a2

( )
(9.22)

In Eqs. 9.21 and 9.22, the correction factor is incorporated directly after derivation.

Compared to previous studies (shown in Table 9.1, Summary of different theories), such as beam theory (crack tip

rotation is not considered), El-Zein [3], more variables are taken in to account, such as Young’s modulus of adhesive

material and thickness of adhesive layer, although Penado [18] considered these parameters, he modeled the adhesive layer

as spring, while our model treated the adhesive layer more naturally as continuummaterial, and the parameter c is introduced
in the model, in addition, the crack tip rotation is taken into account. The advantages of introducing these variables will be

illustrated subsequently.

9.3 Results and Discussion

One distinct difference of current theory is the introduction of c, which will be determined by Eq. 9.10 using

Newton–Raphson method. Another one is k in the correction factor, FEA method is used, and it’s determined as k ¼ 22.

To compare various theories listed in Table 9.1 Summary of different theories with current theory, three joints are

considered. The experimental results are obtained from various sources, the material properties of each components are

listed in Table 9.2 Material properties , and specimens configuration are shown in Table 9.3 specimen geometry, unit: mm

In regards to the APC-2/AS4-CFRP composite joint, the adhesive properties was unspecified [22], E ¼ 12.5415 MPa, and

n ¼0.4 is assumed.
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9.3.1 Critical Load

Critical load of APC-2/AS4-CFRP joint predicted by different theories is shown in Table 9.4. Note that the adhesive

thickness is relatively thick in this case. From Table 9.4, all the theories give closed prediction with experiment result [22]

except Penado’s theory [18], and the current theory is the most closed one.

For Al/FM®73 M/Al joint, the critical load predicted is shown in Fig. 9.2. From Fig. 9.2, Beam theory and Pradeep’s

theory give prediction almost double the experimental result at small crack length, however, with the increase of crack

length, the results predicted by these two theories improve a lot. On the other hand, El-Zein and Penado’s theory

overestimate the result at small crack length, but underestimated the result at larger crack length. Compared to the other

theories, current theory improves a lot for the whole examined crack length region.

In regards to Titanium/FM-X5/Titanium joint, the results are shown in Fig. 9.3, From Fig. 9.3, Beam theory, El-Zein and

Pradeep’s theories overestimated the critical load about 70% at small crack length, with the increase of crack length,

prediction improves greatly. Current theory gives the best agreement with experiment result.

Table 9.1 Summary of different theories

Theories Compliance Strain energy release rate

Beam theory C ¼ 8a3

Ebh3
GI ¼ 3Pd

2ba

Area method - GI ¼ 1
b
DA
Da ¼ 1

2bDa P1d2 � P2d1ð Þ
where DA is the area under the P� d curve

El-Zein, 1988 [17] C ¼ 12
bh3

a11a
3

3
� a26h

3

24

� �
where aij is the component of adherend compliance matrix

GI ¼ 6P2a11a
2

b2h3

Penado, 1993 [18] C ¼ 8

E
ð1Þ
x b

a
h

� �3
1þ 3

Bh0:25
h
aþ 3 1

B2h0:5
þ E

ð1Þ
x

8G
ð1Þ
x

� �
h
a

� �2 þ 3
2B3h0:75

h
a

� �3� 	
For small h/a, C � 8

E
ð1Þ
x b

a
h

� �3
Superscript 1 and 2 denotes adherend and adhesive respectively,

G is shear modulus of adherend, B ¼
ffiffiffiffi
3k
Eb

4

q
, k ¼ 1

1
kadherend

þ 1
kadhesive

,

kadherend ¼ 4
E
ð1Þ
y b

h , kadhesive ¼ b
ha

E
ð2Þ
y

1�uxyuyx

GI ¼ 12P2

E
ð1Þ
x b2h

a
h

� �2
1þ 2

Bh0:25
h
a þ 1

B2h0:5
þ E

ð1Þ
x

8G
ð1Þ
x

� �
h
a

� �2h i
For small h/a, GI � 12P2

E
ð1Þ
x b2h

a
h

� �2

Pradeep, 2010 [9]
C ¼ a3

3
1

ðEIÞ1 þ
1

ðEIÞ2

h i
, where ðEIÞ1 ¼ D

ð1Þ
11 1� D

ð1Þ
12

D
ð1Þ
11

� �2
" #

,

ðEIÞ2 ¼ �D11 1� �D12
�D11

� �2� 	
, �D11 ¼ D

ð2Þ
11 þ D

ð3Þ
11 ;

�D12 ¼ D
ð2Þ
12 þ D

ð3Þ
12 ;

D
ðkÞ
11 ¼ EkIk=ð1� n2kÞ, DðkÞ

12 ¼ nkD
ðkÞ
11 , Ik ¼ bh3k=12, subscript

k(k ¼ 1,2,3) represent upper adherend, adhesive, lower
adherend, respectively

GI ¼ P2a2

2b
1

ðEIÞ1 þ
1

ðEIÞ2

h i

Table 9.2 Material properties

Material

Properties

Ex, Ey, Ez GPa G12, G13, G23 GPa n12, n13, n23
Adherend APC-2/AS4-CFRP [22] 121, 9, 5.2 5.2, 5.2, 1.9 0.34, 0.34, 0.46

7075-T6 Aluminum [5] 70.8 26.62 0.33

Titanium [5] 110 41.98 0.31

Adhesive FM®73 M [5] 2.07 0.77 0.34

FM-X5 [5] 5 1.92 0.3

Table 9.3 Specimen geometry, unit: mm

APC-2/AS4-CFRP joint [22] Al/FM®73 M/Al [5] Titanium/FM-X5/Titanium [5]

l 185 305 305

a 55 vary vary

h 2.5 9.53 6.604

ha 2.5 0.25 0.338

b 10 27.127 27.127
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9.3.2 Strain Energy Release Rate

Critical SERR of APC-2/AS4-CFRP joint is listed in Table 9.4. From Table 9.4, current theory gives the critical SERR very

close to Pradeep, El-Zein, and beam theory. For Al/FM-73 M/Al joint, the results are listed in Table 9.5, the critical SERR

varies a little with crack length, the average critical SERR is about 2.88 � 103 J/m2 from experiment, current theory and

Penado’s theory are closer to experimental one. For Titanium/FM-X5/Titanium joint (see Table 9.6), current theory is even

better than Penado’s theory.

From the above comparison, current theory has wider application than others. El-Zein, and beam theory doesn’t consider

the adhesive Young’s modulus and thickness, the predictions given by these theories are poor when adhesive Young’s

modulus is relatively high, for example, the Titanium/FM-X5/Titanium joint, Pradeep’s theory doesn’t take the crack tip

rotation into account, the application into studied case is not good as shown above, Penado modeled the adhesive as spring,

while the adhesive is relatively thick, the result is very bad as for APC-2/AS4-CFRP joint.

In order to investigate the effect of various variables on the model prediction, parametric study is conducted, and Al/FM-

73 M/Al joint mentioned above is used in the study.

Table 9.4 Comparison of

different theories in calculating

of critical load and Critical SERR

for APC-2/AS4-CFRP joint

Critical load, N GIC, 10
3 J/m2

EXP. 65 –

Current theory 65.02813 0.813683716

Penado93 [18] 27.39576 0.342422089

Pradeep2010 [9] 65.10282 0.813726064

El-Zein88 [17] 65.09943 0.967903038

Beam theory 65.09943 0.812440909

500

1000

1500

2000

2500

50 70 90 110 130 150 170

C
ri
ti
ca

l 
L

oa
d 

P
, 
N

Crak length a, mm

EXP.

Current theory

Pradeep, 2010

Penado, 1993

El-Zein, 1988

Beam theory

Fig. 9.2 Critical load

determined by various

theories for Al/FM-73 M/Al

joint, EXP. is the experimental

result from [5]

200

400

600

800

1000

1200

1400

1600

1800

2000

50 100 150 200

C
ri
ti
ca

l 
L

oa
d,

 N

Crack length a, mm

EXP.

Current theory

Pradeep, 2010

Penado, 1993

El -Zein, 1988

Beam theory

Fig. 9.3 Critical load

determined by various

theories for Titanium/FM-X5/

Titanium joint, EXP. is the

experimental result from [5]

9 A Model for Fracture Characterization of Adhesively-Bonded Joints 87



9.3.3 Effect of Adhesive Young’s Modulus

Figure 9.4 shows the effect of adhesive Young’s modulus on critical SERR, with x-axis showing the Young’s modulus ratio

of adherend to adhesive, and y-axis showing the critical SERR normalized by its initial value. The Young’s modulus ratio of

adherend to adhesive is accomplished by changing the adhesive Young’s modulus, and keep adherend’s constant. From

Fig. 9.4, the adhesive Young’s modulus affects the critical SERR differently at different crack length. When the crack length

is relatively small compared to joint length, the change of adhesive Young’s modulus affects the joint’s critical SERR

significantly, increase of Ea decreases the critical SERR nonlinearly. However, the influence of Ea tends to disappear with

the increase of crack length. At a/l ¼ 0.38, the change of Ea almost have no impact on the critical SERR, and further

increase of crack length, the curves seems to be overlapping as in Fig. 9.4. The result indicates that adhesive Young’s

Table 9.5 Strain energy release rate calculated by various theories for Al/FM-73 M/Al joint, original experiment data from [5], Unit: 103 J/m2

a, mm EXP.a Current theory Beam theory Pradeep (2010) Penado (1993) El-Zein (1988)

57.6 2.488905 3.107943 3.580419 5.855193 3.514229 2.20118

69.81 2.566863 2.935684 3.510627 4.824342 3.163628 1.813645

77.48 3.00945 2.619628 3.145701 4.023975 2.750794 1.512758

90.16 2.87214 2.808973 3.157013 3.945006 2.844677 1.483071

100.39 3.003159 3.124819 3.462503 4.144193 3.089528 1.557953

115.8 2.950404 3.150254 3.457107 3.903236 3.025984 1.467368

128.12 2.808355 3.046448 3.336363 3.61755 2.87414 1.359968

141.18 3.49567 2.969125 3.277991 3.399757 2.759343 1.278092

154.51 2.723483 3.090733 3.25183 3.434655 2.83846 1.291211

167.9 – 2.9156 3.103577 3.162394 2.653622 1.188859

Average 2.879825 2.976921 3.328313 4.03103 2.951441 1.51541
aEXP. Area method is used in data reduction

Table 9.6 Energy release rate calculated by various theories for Titanium/FM-X5/Titanium joint, original experiment data from [5], Unit: 103 J/m2

a, mm EXP.a Theory Beam theory Pradeep (2010) Penado (1993) El-Zein (1988)

57.79 2.5759641 2.695957 3.245316916 5.059703 3.496242 5.314588

71.34 2.6274945 2.791347 3.337686341 4.517814 3.347762 4.745402

81.63 2.7653341 2.647826 3.142969859 3.936969 3.02941 4.135296

93.48 2.9477465 2.694341 3.107263735 3.708148 2.949602 3.894948

105.88 2.9099332 2.726367 2.991920052 3.520433 2.87634 3.697777

129.58 1.486955 2.162289 1.943941124 2.555824 2.166875 2.684575

175.76 1.9748004 1.738753 1.695481897 1.863362 1.649902 1.95723

202.57 – 2.597676 2.50584707 2.698627 2.428324 2.834572

Average 2.4697468 2.506819 2.746303374 3.48261 2.743057 3.658048
aEXP. Area method is used in data reduction
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modulus is necessary to be considered when the crack length is relatively small, however, in a large crack length joint, the

adhesive Young’s modulus is almost irrelevant.

9.3.4 Effect of Adhesive Thickness

Effect of adhesive thickness is investigated by changing the adhesive thickness at fixed adherend thickness. The result shown

in Fig. 9.5 is obtained at crack length a ¼ 69.81 mm. From Fig. 9.5, the change of adhesive thickness ha has almost no

influence on critical SERR when the thickness ratio of adherend to adhesive is below about 100, beyond which, however, the

influence becomes significant, decrease of ha greatly increases critical SERR. In real application, the thickness ratio of

adherend to adhesive is rare beyond 100, current study provides a theoretical support for other theories which neglect the

effect of adhesive thickness.

9.3.5 Effect of Crack Length

Joint compliance C versus crack length a is shown in Fig. 9.6. It is illustrated in the figure that joint compliance increases

nonlinearly with the extension of crack length, the increase rate becomes larger as crack length increase. This indicates that

the load is going to decrease as crack propagates as shown in Fig. 9.2, meanwhile, the critical SERR almost keeps unchanged

as can been seen in Table 9.5, this is in agreement with the statement in [23].
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9.3.6 Effect of k in the Correction Factor

The introduction of correction factor is mainly due to the using of continuum mixture theory for reduction of x-dependence
of c. The effect of k in the correction factor is investigated. Figures 9.7 and 9.8 show, respectively, the effect of k in

correction factor on the joint compliance and critical SERR. From these figures, the joint compliance is in inverse proportion

to k, increase of k decreases joint compliance at a given crack length, and results in an increased nonlinearity compliance

versus crack length curve, meanwhile, the curves becomes much closer. On the contrary, the critical SERR is in direct

proportion to k, increase of k increases critical SERR, while the rate of increase is decreased as the tangent of the curve

decrease.

9.4 Conclusion

Analytical model is developed to characterize the fracture behavior of an adhesively bonded joint loaded in peel. The

model takes various variables into account, and continuum mixture theory is used for determining new introduced

parameter c, also, the crack tip rotation is considered. The model has been applied to 3 different joints, current prediction

has a better agreement with experiment compared with other theories. The parametric study leads to the following

conclusion.
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Adhesive Young’s modulus is necessary to be considered when the crack length is relatively small (less than 20% of joint

length), however, in a large crack length joint (above 38% of joint length), the adhesive Young’s modulus is almost

irrelevant.

The adhesive thickness has little influence on the critical SERR when h/ha is approximately less than 100, but significant

effect is observed beyond this value. Although it rarely happens in real application that thickness ratio of adherend to

adhesive is bigger than 100, current study does provide a justification for other theories which neglect the effect of adhesive

thickness.

Crack length affect joint compliance in direct proportion. With the increase of crack length, joint compliance goes up.

Constant k in the correction factor affects the joint compliance in inverse proportion at a given crack length, however, it

affects the SERR in direct proportion.
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