
Chapter 9
Triangulated Graphs

9.1 Introduction

Triangulated graphs form an important class of graphs. They are a subclass of the
class of perfect graphs and contain the class of interval graphs. They possess a wide
range of applications. We describe later in this chapter an application of interval
graphs in phasing the traffic lights at a road junction.

We begin with the definition of perfect graphs.

9.2 Perfect Graphs

For a simple graph G; we have the following parameters:

�.G/ W The chromatic number of G

!.G/ W The clique number of G (= the order of a maximum clique of G)
˛.G/ W The independence number of G

�.G/ W The clique covering number of G (= the minimum number of cliques of
G that cover the vertex set of G).

For instance, for the graph G of Fig. 9.1, �.G/ D !.G/ D 4 and ˛.G/ D
�.G/ D 4:

A minimum set of cliques that covers V.G/ is ff1g; f2g; f3; 4; 5; 6g; f7; 8; 9gg:
In any proper vertex coloring of G; the vertices of any clique must receive distinct
colors. Hence it is clear that �.G/ � !.G/: Further, if A is any independent set of
G; any clique of a clique cover of G can contain at most one vertex of A: Hence, to
cover the ˛.G/ vertices of a maximum independent set of G; at least ˛.G/ distinct
cliques of G are needed. Therefore, �.G/ � ˛.G/:

If G is an odd cycle C2nC1; n � 2; �.G/ D 3; !.G/ D 2; �.G/ D n C 1; and
˛.G/ D n: Hence, for such a G; �.G/ > !.G/; and �.G/ > ˛.G/: Moreover,
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Fig. 9.1 Graph G

A � V.G/ is an independent set of vertices of G if and only if A induces a clique
in Gc: Therefore, for any simple graph G;

�.G/ D �.Gc/; and

˛.G/ D !.Gc/: (9.1)

Definition 9.2.1. Let G be a simple graph. Then

(i) G is �-perfect if and only if for every A � V.G/; �.GŒA�/ D !.GŒA�/.
(ii) G is ˛-perfect if and only if for every A � V.G/; ˛.GŒA�/ D �.GŒA�/:

Remark 9.2.2. 1. By (9.1) above, it is clear that a graph is �-perfect if and only if
its complement is ˛-perfect.

2. Berge [19] conjectured that the concepts of �-perfectness and ˛-perfectness are
equivalent for any simple graph. This was shown to be true by Lovász [134] (and
independently by Fulkerson [69]). This result is often referred to in the literature
as the perfect graph theorem.

Theorem 9.2.3 (Perfect graph theorem). For a simple graph G; the following
statements are equivalent:

(i) G is �-perfect.
(ii) G is ˛-perfect.

(iii) ˛.GŒA�/ !.GŒA�/ � jAj for every A � V.G/:

In view of the perfect graph theorem, there is no need to distinguish between ˛-
perfectness and �-perfectness; hence, graphs that satisfy any one of these three
equivalent conditions can be referred to as merely perfect graphs. In particular, this
means that a simple graph G is perfect if and only if its complement is perfect. For
a proof of the perfect graph theorem, see [76] or [134].

Remark 9.2.4. If G is perfect, by what is mentioned above, G cannot contain an
odd hole, that is, an induced odd cycle C2nC1; n � 2I likewise, by (9.1), G cannot
contain an odd antihole, that is, an induced C c

2nC1; n � 2: Equivalently, if G

is perfect, then G can contain neither C2nC1; n � 2 nor its complement as an
induced subgraph. The converse of this result is the celebrated “strong perfect graph
conjecture” of Berge, settled affirmatively by Chudnovsky et al. [36] (see notes at
the end of this chapter).
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9.3 Triangulated Graphs

Definition 9.3.1. A simple graph G is called triangulated if every cycle of length
at least four in G has a chord, that is, an edge joining two nonconsecutive vertices of
the cycle (see Fig. 9.2). For this reason, triangulated graphs are also called chordal
graphs and sometimes rigid circuit graphs.

A graph is weakly triangulated if it contains neither a chordless cycle of length at
least 5 nor the complement of such a cycle as an induced subgraph. Note that any
triangulated graph is weakly triangulated.

Remark 9.3.2. It is clear that the property of a graph being triangulated is hered-
itary; that is, if G is triangulated, then every induced subgraph of G is also
triangulated.

Definition 9.3.3. A vertex v of a graph G is a simplicial vertex of G if the closed
neighborhood NGŒv� of v in G induces a clique in G.

Example 9.3.4. In Fig. 9.2a, the vertices u1; u2; u3; and u4 are simplicial, whereas
v1; v2; v3; and v4 are not.

Triangulated graphs can be recognized by the presence of a perfect vertex elimina-
tion scheme.

Definition 9.3.5. A perfect vertex elimination scheme (or, briefly, a perfect scheme)
of a graph G is an ordering fv1; v2; : : : ; vng of the vertex set of G in such a
way that, for 1 � i � n; vi is a simplicial vertex of the subgraph induced by
fvi ; viC1; : : : ; vng of G:

Example 9.3.6. For the graph of Fig. 9.2a, fu1; u2; u3; u4; v4; v2; v1; v3g is a per-
fect scheme.

Remark 9.3.7. Any vertex of degree 1 is trivially simplicial. Hence, any tree has a
perfect vertex elimination scheme. Also, any tree is trivially triangulated. It turns
out that these facts can be generalized to assert that any triangulated graph has
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Fig. 9.2 (a) Triangulated and (b) nontriangulated graphs
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a perfect vertex elimination scheme. (Based on this, Fulkerson and Gross [70]
gave a “good algorithm” to test for triangulated graphs, namely, repeatedly locate a
simplicial vertex and remove it from the graph until there is left out a single vertex
and the graph is triangulated, or else at some stage no simplicial vertex exists and
the graph is not triangulated.) Before we establish the above result, we need another
characterization of triangulated graphs. This result is due to Hajnal and Surányi [89]
and also due to Dirac [56].

Lemma 9.3.8. A graph G is triangulated if and only if every minimal vertex cut of
G is a clique.

Proof. Assume that G is triangulated and that S is a minimal vertex cut of G: Let a

and b be vertices in distinct components, say GA and GB; respectively, of GnS: Now
every vertex x of S must be adjacent to some vertex of GA; since if x is adjacent
to no vertex of GA; then Gn.Snx/ is disconnected and this would contradict the
minimality of S: Similarly, x is adjacent to some vertex of GB: Hence for any pair
x; y 2 S; there exist paths P1 W xa1 : : : ary and P2 W xb1 : : : bsy; with each
ai 2 GA and each bj 2 GB: Let us assume further that the ai ’s and bj ’s have been
so chosen that these x-y paths are of least length. Then xa1 : : : ar ybsbs�1 : : : b1x

is a cycle whose length is at least 4, and so it must have a chord. But such a chord
cannot be of the form ai aj or bkb` in view of the minimality of the length of P1 and
P2: Nor can it be ai bj for some i and j; as ai and bj belong to a distinct component
of GnS . Hence, it can be only xy: Thus, every pair x; y in S is adjacent, and S is a
clique.

Conversely, assume that every minimal vertex cut of G is a clique. Let
axby1y2 : : : yr a be a cycle C of length � 4 in G: If ab were not a chord of
C; denote by S a minimal vertex cut that puts a and b in distinct components of
GnS: Then S must contain x and yj for some j: By hypothesis, S is a clique, and
hence xyj 2 E.G/; and xyj is a chord of C: Thus, G is triangulated. �
Lemma 9.3.9. Every triangulated graph G has a simplicial vertex. Moreover, if G

is not complete, it has two nonadjacent simplicial vertices.

Proof. The lemma is trivial either if G is complete or if G has just two or three
vertices. Assume therefore that G is not complete, so that G has two nonadjacent
vertices a and b: Let the result be true for all graphs with fewer vertices than G: Let
S be a minimal vertex cut separating a and b; and let GA and GB be components of
GnS containing a and b; respectively, and with vertex sets A and B; respectively.
By the induction hypothesis, it follows that if GŒA [ S� is not complete, it has
two nonadjacent simplicial vertices. In this case, since GŒS� is complete (refer to
Lemma 9.3.8), at least one of the two simplicial vertices must be in A: Such a
vertex is then a simplicial vertex of G because none of its neighbors is in any other
component of GnS: Further, if GŒA [ S� is complete, then any vertex of A is a
simplicial vertex of G: In any case, we have a simplicial vertex of G in A: Similarly,
we have a simplicial vertex in B: These two vertices are then nonadjacent simplicial
vertices of G: �
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We are now ready to prove the second characterization theorem of triangulated
graphs.

Theorem 9.3.10. A graph G is triangulated if and only if it has a perfect vertex
elimination scheme.

Proof. The result is obvious for graphs with at most three vertices. So assume that
G is a triangulated graph with at least four vertices. Assume that every triangulated
graph with fewer vertices than G has a perfect vertex elimination scheme. By
Lemma 9.3.9, G has a simplicial vertex v: Then Gnv has a perfect vertex elimination
scheme. Then v followed by a perfect scheme of Gnv gives a perfect scheme of G:

Conversely, assume that G has a perfect scheme, say fv1; v2; : : : ; vng: Let C be
a cycle of length � 4 in G: Let j be the first suffix with vj 2 V.C /: Then V.C / �
GŒfvj ; vj C1; : : : ; vng� and, since vj is simplicial in GŒfvj ; vj C1; : : : ; vng�; the
neighbors of vj in C form a clique in G; and hence C has a chord. Thus, G is
triangulated. �
Theorem 9.3.11. A triangulated graph is perfect.

Proof. The result is clearly true for triangulated graphs of order at most 4. So
assume that G is a triangulated graph of order at least 5. We apply induction.
Assume that the theorem is true for all graphs having fewer vertices than G: If G is
disconnected, we can consider each component of G individually. So assume that
G is connected. By Lemma 9.3.9, G contains a simplicial vertex v: Let u be a vertex
adjacent to v in G: Since v is simplicial in G (and so in G�u), �.G�u/ D �.G/: By
the induction hypothesis, G � u is triangulated and therefore perfect and therefore
�.G � u/ D ˛.G � u/: Hence (see Exercise 7.4), �.G/ D �.G � u/ D ˛.G � u/ �
˛.G/: This together with the fact that �.G/ � ˛.G/ implies that �.G/ D ˛.G/:

The proof is complete since by the induction assumption, for any proper subset A

of V.G/; the subgraph GŒA� is triangulated and therefore perfect. �

9.4 Interval Graphs

One of the special classes of triangulated graphs is the class of interval graphs.

Definition 9.4.1. An interval graph G is the intersection graph of a family of
intervals of the real line. This means that for each vertex v of G; there corresponds
an interval J.v/ of the real line such that uv 2 E.G/ if and only if J.u/ \ J.v/ ¤ ;:

Figure 9.3 displays a graph G and its interval representation.

Remark 9.4.2. 1. Interval graphs occur in a natural manner in various applications.
In genetics, the Benzer model [18] deals with the conditions under which two
subsets of the fine structure inside a gene overlap. In fact, one can tell when they
overlap on the basis of mutation data. Is this overlap information consistent with
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the hypothesis that the fine structure inside the gene is linear? The answer is
“yes” if the graph defined by the overlap information is an interval graph.

2. It is clear that the intervals may be taken as either open or closed.
3. The cycle C4 is not an interval graph. In fact, if V.C4/ D fa; b; c; d g and if

ab; bc; cd; and da are the edges of C4; then J.a/ \ J.b/ ¤ ;; J.b/ \ J.c/ ¤
;; J.c/ \ J.d/ ¤ ;; and J.d/ \ J.a/ ¤ ; imply that either J.a/ \ J.c/ ¤ ;
or J.b/ \ J.d/ ¤ ; [i.e., ac 2 E.G/ or bd 2 E.G/�; which is not the case.
Hence, an interval graph cannot contain C4 as an induced subgraph. For a similar
reason, it can be checked that the graph H of Fig. 9.4 is not an interval graph.

Recall that an orientation of a graph G is an assignment of a direction to
each edge of G: Hence, an orientation of G converts G into a directed graph. As
mentioned in Chap. 2, an orientation is transitive if, when .a; b/ and .b; c/ are arcs
in the orientation, then .a; c/ is also an arc in the orientation.

Lemma 9.4.3. If G is an interval graph, Gc has a transitive orientation.

Proof. Let J.a/ denote the interval that represents the vertex a of the interval graph
G: Let ab 2 E.Gc/ and bc 2 E.Gc/ so that ab … E.G/ and bc … E.G/: Hence,
J.a/\J.b/ D ;; and J.b/\J.c/ D ;: Now, introduce an orientation for the edges
of Gc by orienting an edge xy of Gc from x to y if and only if J.x/ lies to the
left of J.y/: Then J.a/ lies to the left of J.b/ and J.b/ lies to the left of J.c/; and
therefore J.a/ lies to the left of J.c/: Hence, whenever .a; b/ and .b; c/ are arcs
in the defined orientation, arc .a; c/ also belongs to this orientation. Thus, Gc has a
transitive orientation. �

Gilmore and Hoffman [73] have shown that the above two properties (Remark 3
of 9.4.2 and Lemma 9.4.3) characterize interval graphs.

Theorem 9.4.4. A graph G is an interval graph if and only if G does not contain
C4 as an induced subgraph and Gc admits a transitive orientation.
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Proof. We have just seen the necessity of these two conditions. We now prove
their sufficiency. Assume that G has no induced C4 and that Gc has a transitive
orientation. We look at the set of maximal cliques of G and introduce a linear
ordering on it. If A and B are two distinct maximal cliques of G; then for any
a 2 A; there exists b 2 B with ab … E.G/ and therefore ab 2 E.Gc/: (Otherwise,
GŒA[B� would be a clique of G properly containing both A and B; a contradiction,
since A and B are maximal cliques in G:) If ab has the orientation from a to b in
the transitive orientation of Gc; we set A < B: This ordering is well defined in that
if a0 2 A and b0 2 B with a0b0 2 E.Gc/; then a0b0 must be oriented from a0 to b0
in Gc (see Fig. 9.5).

To see this, first assume that a ¤ a0 and b ¤ b0 and that edge a0b0 is oriented
from b0 to a0 in Gc: Then at least one of the edges ab0 and a0b must be an edge of
Gc: Otherwise, the edges aa0; a0b; bb0; and b0a induce a C4 in G; a contradiction.
Suppose then that a0b 2 E.Gc/: Then if a0b is oriented from a0 to b in Gc; by
the transitivity of the orientation in Gc; b0b 2 E.Gc/; a contradiction. A similar
argument applies when ba0; ab0; or b0a is an oriented arc of Gc: The cases when
a D a0 or b D b0 can also be treated similarly. Thus, if one arc of Gc goes from A

to B; then all the arcs between A and B go from A to B in Gc: In this case, we set
A < B: Since the number of maximal cliques of G is finite, and any two maximal
cliques can be ordered by “<;” we obtain a linear ordering of the set of maximal
cliques of G; say, K1 < K2 < : : : < Kp:

We now claim that if a vertex a of G belongs to Kr and Kt; where Kr < Kt;

then it also belongs to Ks; where Kr < Ks < Kt (see Fig. 9.6).
Suppose a … Ks: First note that there exists some vertex b in Ks such that b

is nonadjacent to a: If not, Ks _ fag would be a clique properly containing Ks; a
contradiction. But then, since Kr < Ks; the edge ab of Gc must be oriented from
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Fig. 9.7 Bipartite graph
B.G/ of G

a to b: But a 2 Kt; and this means that Kt < Ks; a contradiction. Thus, a 2 Ks

as well.
In f1; 2; : : : ; pg; let i be the smallest and j be the greatest numbers such that

a 2 Ki and a 2 Kj : We now define the interval J.a/ D the closed interval Œi; j �:

Then J.a/ \ J.b/ ¤ ; if and only if there exists a positive integer k such that
k 2 J.a/ \ J.b/: But this can happen if and only if both a and b are in Kk [i.e., if
and only if ab 2 E.G/�: Thus, G is an interval graph. �

9.5 Bipartite Graph B.G/ of a Graph G

Given a graph G; we define the associated bipartite graph B.G/ as follows:
Let V.G/ D fv1; v2; : : : ; vng: Corresponding to V.G/; take disjoint sets X D
fx1; x2; : : : ; xng and Y D fy1; y2; : : : ; yng and form the bipartite graph B.G/

by taking X and Y as sets of the bipartition of the vertex set of B.G/: Adjacency
in B.G/ is defined by setting xi yi 2 E.B.G// for every i; 1 � i � n; and for
i ¤ j; xi is adjacent to yj in B.G/ if and only if vi vj 2 E.G/ (Fig. 9.7).

Our next theorem relates the chordal nature of a graph G with that of the bipartite
graph B.G/: Since a bipartite graph has no odd cycles and a 4-cycle of a bipartite
graph cannot have a chord, a bipartite graph is defined to be chordal if each of its
cycles of length at least 6 has a chord.

Theorem 9.5.1. If the bipartite graph B.G/ formed out of G is chordal, then G is
chordal.

Proof. Let C D v1v2 : : : vpv1 be any cycle of G of length p � 4: If p is odd, take
C 0 to be the cycle x1y2x3y4 : : : xpypx1; while if p is even, take C 0 to be the cycle
x1y2x3y4 : : : xp�1ypxpy1x1 in B.G/: As B.G/ is chordal and C 0 is of length at
least 6; C 0 has a chord in B.G/: Such a chord can only be of the form xi yj ; where
ji � j j � 2: This means that vi vj is a chord of C: Thus, G is chordal. �
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9.6 Circular Arc Graphs

Circular arc graphs are similar to interval graphs except that the J.a/’s are now
taken to be arcs of a particular circle. Consider an interval graph G: Since the
number of intervals J.a/; a 2 V.G/; is finite, there are real numbers m and M such
that J.a/ � .m; M / for every a 2 V.G/: Consequently, identification of m and M

(i.e., conversion of the closed interval Œm; M � into a circle by the identification of
m and M ) makes G a circular arc graph. Thus, every interval graph is a circular arc
graph. Clearly, the converse is not true. However, if there exists a point p on the
circle that does not belong to any arc J.a/; then the circle can be cut at p and the
circular arc graph can be made into an interval graph.

9.7 Exercises

7.1 If e is an edge of a cycle of a triangulated graph G; show that e belongs to a
triangle of G:

7.2 What are the simplicial vertices of the triangulated graph of Fig. 9.2a?
7.3 Give a perfect elimination scheme for the triangulated graph of Fig. 9.2a.
7.4 If v is a simplicial vertex of a triangulated graph G; and vu 2 E.G/; prove

that �.G � u/ D �.G/:

7.5 Let t.G/ denote the smallest positive integer k such that Gk is triangulated.
Determine t.Cn/; n � 4:

7.6 Prove G and Gc are triangulated if and only if G does not contain C4; C c
4 , or

C5 as an induced subgraph. Hence, or otherwise, show that C c
n ; n � 5 is not

triangulated.
7.7 Prove that L.G/ is triangulated if and only if every block of G is either K2 or

K3: Hence, show that the line graph of a tree is triangulated.
7.8 Let K.G/ and L.G/ denote, respectively, the clique graph and the line graph

of a graph G: [K.G/ is defined as the intersection graph of the family of
maximal cliques of GI i.e., the vertices of K.G/ are the maximal cliques
of G; and two vertices of K.G/ are adjacent in K.G/ if and only if the
corresponding maximal cliques of G have a nonempty intersection.] Then
prove or disprove

(i) G is triangulated ) K.G/ is triangulated
(ii) K.G/ is triangulated ) G is triangulated

(iii) L.G/ is triangulated ) G is triangulated
(iv) G is triangulated ) L.G/ is triangulated

7.9 Show by means of an example that an even power of a triangulated graph
need not be triangulated.

7.10 Prove the following by means of a counterexample: G is chordal need not
imply that B.G/ is chordal.
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7.11 Draw the interval graph of the family of intervals below and display a
transitive orientation for Gc:

J(a) J(b)

J(c)

J(d)

J(e)

J(f )

J(g)

7.12 If G is cubic and if G does not contain an odd cycle of length at least 5 as an
induced subgraph, prove that G is perfect. (Hint: Use Brooks’ theorem.)

7.13 Show that every bipartite graph is perfect.
7.14 For a bipartite graph G; prove that �.Gc/ D !.Gc/:

7.15 Give an example of a triangulated graph that is not an interval graph.
7.16 Give an example of a perfect graph that is not triangulated.
7.17 Show that a 2-connected triangulated graph with at least four vertices is

locally connected. Hence, show that a 2-connected triangulated K1;3-free
graph is Hamiltonian. (See reference [149].)

7.18 Show by means of an example that a 2-connected triangulated graph need not
be Hamiltonian.

7.19 Show that the line graph of a 2-edge-connected triangulated graph is Hamil-
tonian.

7.20 Give an example of a circular arc graph that is not an interval graph.
7.21 * Show that a graph G is perfect if and only if every induced subgraph G0 of

G contains an independent set that meets all the maximum cliques of G0:
7.22 Let fv1; v2; : : : ; vng be a simplicial ordering of the vertices of a chordal graph

G: Let
di D deg.vi / in the subgraph hvi ; viC1; : : : ; vni of G:

Prove that the chromatic polynomial of G is given by
nQ

iD1

.t � di /: Hence

show that �.G/ D max
1�i�n

f1 C di g: (This shows that the roots of the chromatic

polynomial of a chordal graph are nonnegative integers.)

9.8 Phasing of Traffic Lights at a Road Junction

We present an application of interval graphs to the problem of phasing of traffic
lights at a road junction. The problem is to install traffic lights at a road junction in
such a way that traffic flows smoothly and efficiently at the junction.

We take a specific example and explain how our problem could be tackled.
Figure 9.8 displays the various traffic streams, namely, a; b; : : : ; g; that meet at
the Main Guard Gate road junction at Tiruchirappalli, Tamil Nadu (India).
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Fig. 9.8 Traffic streams at a road junction (ped = pedestrian crossing)
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Fig. 9.9 Compatibility graph
of Fig. 9.8

Certain traffic streams may be termed ”compatible” if their simultaneous flow
would not result in any accidents. For instance, in Fig. 9.8, streams a and d are
compatible, whereas b and g are not. The phasing of lights should be such that when
the green lights are on for two streams, they should be compatible. We suppose that
the total time for the completion of green and red lights during one cycle is two
minutes.

We form a graph G whose vertex set consists of the traffic streams in question,
and we make two vertices of G adjacent if and only if the corresponding streams
are compatible. This graph is the compatibility graph corresponding to the problem
in question. The compatibility graph of Fig. 9.8 is shown in Fig. 9.9.

We take a circle and assume that its perimeter corresponds to the total cycle
period, namely, 120 seconds. We may think that the duration when a given traffic
stream gets green light corresponds to an arc of this circle. Hence, two such arcs
of the circle can overlap only if the corresponding streams are compatible. The
resulting circular arc graph may not be the compatibility graph because we do
not demand that two arcs intersect whenever they correspond to compatible flows.
(There may be two compatible streams, but they need not get green light at the
same time.) However, the intersection graph H of this circular arc graph will be a
spanning subgraph of the compatibility graph.

The efficiency of our phasing may be measured by minimizing the total red light
time during a traffic cycle, that is, the total waiting time for all the traffic streams
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during a cycle. For the sake of concreteness, we may assume that at the time of
starting, all lights are red. This would ensure that H is an interval graph (see the last
sentence of Sect. 9.5 on circular arc graphs).

Figure 9.10 gives a feasible green light assignment whose corresponding in-
tersection graph H is given in Fig. 9.11. The maximal cliques of H are K1 D
fa; b; d g; K2 D fa; c; d g; K3 D fd; eg; and K4 D fe; f; gg: Since H is
an interval graph, by Theorem 9.4.4, H c has a transitive orientation. A transitive
orientation of H c is given in Fig. 9.12.

Since .b; c/; .c; e/; and .d; f / are arcs of H c; and since b 2 K1; c 2
K2; d; e 2 K3; and f 2 K4; etc., we have

K1 < K2 < K3 < K4

in the consecutive ordering of the maximal cliques of H: Each clique Ki ; 1 � i � 4;

corresponds to a phase during which all streams in that clique receive green lights.
We then start a given traffic stream with green light during the first phase in which
it appears, and we keep it green until the last phase in which it appears. Because of
the consecutiveness of the ordering of the phases Ki ; this gives an arc on the clock
circle. In phase 1, traffic streams a; b; and d receive a green light; in phase 2, a; c;

and d receive a green light, and so on.
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Suppose we assign to each phase Ki a duration di : Our aim is to determine the
di ’s .�0/ so that the total waiting time is minimum. Further, we may assume that
the minimum green light time for any stream is 20 seconds. Traffic stream a gets a
red light when the phases K3 and K4 receive a green light. Hence, a’s total red light
time is d3 C d4: Similarly, the total red light times of traffic streams b; c; d; e; f;

and g; respectively, are d2 C d3 C d4I d1 C d3 C d4I d4I d1 C d2I d1 C d2 C d3I and
d1 C d2 C d3: Therefore, the total red light time of all the streams in one cycle is
Z D 4d1C4d2C4d3C3d4: Our aim is to minimize Z subject to di � 0I 1 � i � 4;

and d1 C d2 � 20I d1 � 20; d2 � 20; d1 C d2 C d3 � 20; d3 C d4 � 20; d4 �
20; d3 � 0 and d1 C d2 C d3 C d4 D 120: (The condition d1 C d2 � 20 signifies
that the green light time that stream a receives, namely, the sum of the green light
times of phases K1 and K2; is at least 20. A similar reasoning applies to the other
inequalities. The last condition gives the total cycle time.) An optimal solution to
this problem is d1 D 80; d2 D 20; d3 D 0; and d4 D 20 and min Z D 480 (in
seconds). But this is not the end of our problem. There are other possible circular
arc graphs. Figures 9.13a,b give another feasible green light arrangement and its
corresponding intersection graph. With respect to this graph, min Z D 500 seconds.
Thus, we have to exhaust all possible circular arc graphs and then take the least of
all the minima thus obtained. The phasing that corresponds to this least value would
then be the best phasing of the traffic lights. (For the above particular problem, this
minimum value is 480 seconds.)

Notes

Exercise 7.9 shows that an even power of a triangulated graph need not be
triangulated. However, an odd power of a triangulated graph is triangulated [11].
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Fig. 9.13 (a) Another green
light arrangement; (b)
corresponding intersection
graph

Moreover, if Gk is triangulated, then so is GkC2 [130], and consequently, if G and
G2 are triangulated, then so are all the powers of G:

A simple graph G is called Berge if it contains neither an odd cycle of length
at least 5 nor its complement as an induced subgraph. The strong perfect graph
conjecture asserted that a graph G is perfect if it is Berge. This conjecture
was proposed by Claude Berge in 1960 and was settled affirmatively by Maria
Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas in 2002 [36]. The
authors show that every Berge graph is in one of the four classes of perfect graphs—
basic, 2-join, M-join, and balanced skew partition. Earlier the conjecture was proved
to be true for several classes of graphs: (i) K1;3-free graphs [154]; (ii) .K4 � e/-free

graphs [156]; (iii) K4-free graphs [178]; (iv) bull-free, that is,

�
� �

� � -free graphs
[40] (v) triangulated graphs (see Theorem 9.3.11); (vi) weakly triangulated graphs
[102] and so on.

Perfect graphs were first discovered by Berge in 1958–1959. Their importance
is both theoretical (because of their bearing on graph coloring problems) and prac-
tical (because of their applications to perfect communication channels, operations
research, optimization of municipal services, etc.).

Four books that give a very good account of perfect graphs are references [19,
21, 20, 76]. In addition to the classes of perfect graphs mentioned above, there are
also other known classes of perfect graphs, for instance, wing-triangulated graphs
and, more generally, strict quasi-parity graphs. For details, see reference [107]. Our
discussion on the phasing of traffic lights is based on Roberts [166], which also
contains some other applications of perfect graphs.
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