
Chapter 8
Planarity

8.1 Introduction

The study of planar and nonplanar graphs and, in particular, the several attempts
to solve the four-color conjecture have contributed a great deal to the growth of
graph theory. Actually, these efforts have been instrumental to the development of
algebraic, topological, and computational techniques in graph theory.

In this chapter, we present some of the basic results on planar graphs. In
particular, the two important characterization theorems for planar graphs, namely,
Wagner’s theorem (same as the Harary–Tutte theorem) and Kuratowski’s theorem,
are presented. Moreover, the nonhamiltonicity of the Tutte graph on 46 vertices (see
Fig. 8.28 and also the front wrapper) is explained in detail.

8.2 Planar and Nonplanar Graphs

Definition 8.2.1. A graph G is planar if there exists a drawing of G in the plane in
which no two edges intersect in a point other than a vertex of G; where each edge
is a Jordan arc (that is, a simple arc). Such a drawing of a planar graph G is called
a plane representation of G: In this case, we also say that G has been embedded in
the plane. A plane graph is a planar graph that has already been embedded in the
plane.

Example 8.2.2. There exist planar as well as nonplanar graphs. In Fig. 8.1, a planar
graph and two of its plane representations are shown. Note that all trees are planar
as also are cycles and wheels. The Petersen graph is nonplanar (a proof of this result
is given later in this chapter.).

Before proceeding further, let us recall here the celebrated Jordan curve theorem.
If J is any closed Jordan curve in the plane, the complement of J (with respect
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Planar graph K4 Two plane embeddings of K4

Fig. 8.1 A planar graph with two plane embeddings
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to the plane) is partitioned into two disjoint open connected subsets of the plane,
one of which is bounded and the other unbounded. The bounded subset is called the
interior of J and is denoted by int J: The unbounded subset is called the exterior
of J and is denoted by ext J: The Jordan curve theorem (of topology) states that
if J is any closed Jordan curve in the plane, any arc joining a point of int J and a
point of ext J must intersect J at some point (see Fig. 8.2) (the proof of this result,
although intuitively obvious, is tedious).

Let G be a plane graph. Then the union of the edges (as Jordan arcs) of a cycle
C of G form a closed Jordan curve, which we also denote by C: A plane graph G

divides the rest of the plane (i.e., plane minus the edges and vertices of G), say �;

into one or more faces, which we define below. We define an equivalence relation �
on �:

Definition 8.2.3. We say that for points A and B of �; A � B if and only if there
exists a Jordan arc from A to B in �: Clearly, � is an equivalence relation on �:

The equivalence classes of the above equivalence relation are called the faces of G:

Remark 8.2.4. 1. We claim that a connected graph is a tree if and only if it has only
one face. Indeed, since there are no cycles in a tree T; the complement of a plane
embedding of T in the plane is connected (in the above sense), and hence a tree
has only one face. Conversely, it is clear that if a connected plane graph has only
one face, then it must be a tree.

2. Any plane graph has exactly one unbounded face. The unbounded face is also
referred to as the exterior face of the plane graph. All other faces, if any, are
bounded. Figure 8.3 represents a plane graph with seven faces.

The distinction between bounded and unbounded faces of a plane graph is only
superfluous, as there exists a plane representation G1 of a plane graph G in which
any specified face of G1 becomes the unbounded face, as is shown below. (This of
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course means that there exists a plane representation of G such that any specified
vertex or edge belongs to the unbounded face.) We consider embeddings of a graph
on a sphere. A graph is embeddable on a sphere S if it can be drawn on the surface of
S so that its edges intersect only at its vertices. Such a drawing, if it exists, is called
an embedding of G on S: Embeddings on a sphere are called spherical embeddings.
What we have given here is only a naive definition. For a more rigorous description
of spherical embeddings, see [79].

To prove the next theorem, we need to recall the notion of stereographic
projection. Let S be a sphere resting on a plane P so that P is a tangent plane
to S: Let N be the “north pole,” the point on the sphere diametrically opposite the
point of contact of S and P: Let the straight line joining N and a point s of SnfN g
meet P at p: Then the mapping � W SnfN g ! P defined by �.s/ D p is called the
stereographic projection of S from N (see Fig. 8.4).

Theorem 8.2.5. A graph is planar if and only if it is embeddable on a sphere.

Proof. Let a graph G be embeddable on a sphere and let G0 be a spherical
embedding of G: The image of G0 under the stereographic projection � of the
sphere from a point N of the sphere not on G0 is a plane representation of G on P:

Conversely, if G00 is a plane embedding of G on a plane P; then the inverse of the
stereographic projection of G00 on a sphere touching the plane P gives a spherical
embedding of G: �
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Fig. 8.5 Plane graph with
four faces

Theorem 8.2.6. (a) Let G be a plane graph and f be a face of G: Then there exists
a plane embedding of G in which f is the exterior face.

(b) Let G be a planar graph. Then G can be embedded in the plane in such a
way that any specified vertex (or edge) belongs to the unbounded face of the
resulting plane graph.

Proof. (a) Let n be a point of int f: Let G0 D �.G/ be a spherical embedding of G

and let N D �.n/: Let � be the stereographic projection of the sphere with N

as the north pole. Then the map �� (� followed by �) gives a plane embedding
of G that maps f onto the exterior face of the plane representation .��/.G/

of G:

(b) Let f be a face containing the specified vertex (respectively, edge) in a plane
representation of G: Now, by part (a) of the theorem, there exists a plane
embedding of G in which f becomes the exterior face. The specified vertex
(respectively, edge) then becomes a vertex (respectively, edge) of the new
unbounded face. �

Remark 8.2.7. 1. Let G be a connected plane graph. Each edge of G belongs to one
or two faces of G: A cut edge of G belongs to exactly one face, and conversely,
if an edge belongs to exactly one face of G; it must be a cut edge of G: An edge
of G that is not a cut edge belongs to exactly two faces and conversely.

2. The union of the vertices and edges of G incident with a face f of G is called the
boundary of f and is denoted by b.f /: The vertices and edges of a plane graph
G belonging to the boundary of a face of G are said to be incident with that face.
If G is connected, the boundary of each face is a closed walk in which each cut
edge of G is traversed twice. When there are no cut edges, the boundary of each
face of G is a closed trail in G: (See, for instance, face f1 of Fig. 8.3.) However,
if G is a disconnected plane graph, then the edges and the vertices incident with
the exterior face will not define a trail.

3. The number of edges incident with a face f is defined as the degree of f: In
counting the degree of a face, a cut edge is counted twice. Thus, each edge of a
plane graph G contributes two to the sum of the degrees of the faces. It follows
that if F denotes the set of faces of a plane graph G; then

P

f 2F
d.f / D 2m.G/;

where d.f / denotes the degree of the face f:
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In Fig. 8.5, d.f1/ D 3; d.f2/ D 9; d.f3/ D 6; and d.f4/ D 8:

Theorem 8.2.8 connects the planarity of G with the planarity of its blocks.

Theorem 8.2.8. A graph G is planar if and only if each of its blocks is planar.

Proof. If G is planar, then each of its blocks is planar, since a subgraph of a
planar graph is planar. Conversely, suppose that each block of G is planar. We now
use induction on the number of blocks of G to prove the result. Without loss of
generality, we assume that G is connected. If G has only one block, then G is
planar.

Now suppose that G has k planar blocks and that the result is true for all
connected graphs having .k � 1/ planar blocks. Choose any end block B0 of G and
delete from G all the vertices of B0 except the unique cut vertex, say v0; of G in B0:

The resulting connected subgraph G0 of G contains .k�1/ planar blocks. Hence, by
the induction hypothesis, G0 is planar. Let QG0 be a plane embedding of G0 such that
v0 belongs to the boundary of the unbounded face, say f 0 (refer to Theorem 8.2.6).
Let QB0 be a plane embedding of B0 in f 0 so that v0 is in the boundary of the exterior
face of QB0: Then (by the identification of v0 in the two embeddings), QG0 [ QB0 is a
plane embedding of G: �

Remark 8.2.9. In testing for the planarity of a graph G; one may delete multiple
edges and loops of G; if any. This is so because if a graph H is nonplanar, the
removal of loops and parallel edges of H results in a subgraph of H; which is also
nonplanar. Also, by Theorem 8.2.8, G can be assumed to be a block and hence 2-
connected. If G has a vertex of degree 2, say v0; and vv0v0 is the path formed by
the two edges incident with v0; contraction of vv0 and deletion of the multiple edges
(if any) thus formed again result in a planar graph. Let G0 be the graph obtained
from G by performing such contractions successively at vertices of degree 2 and
deleting the resulting multiple edges. Then G is planar if and only if G0 is planar.
From these observations, it is clear that in designing a planarity algorithm (i.e., an
algorithm to test planarity), it suffices to consider only 2-connected simple graphs
with minimum degree at least 3. (For a planarity algorithm, see [49].)

Exercise 2.1. Show that every graph with at most three cycles is planar.

Exercise 2.2. Find a simple graph G with degree sequence (4, 4, 3, 3, 3, 3)
such that

(a) G is planar.
(b) G is nonplanar.

Exercise 2.3. Redraw the following planar graph so that the face f becomes the
exterior face.
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f

8.3 Euler Formula and Its Consequences

We have noted that a planar graph may have more than one plane representation
(see Fig. 8.1). A natural question that would arise is whether the number of faces is
the same in each such representation. The answer to this question is provided by the
Euler formula.

Theorem 8.3.1 (Euler formula). For a connected plane graph G; n � m C �� D 2;

where n; m; and �� denote the number of vertices, edges, and faces of G; respectively.

Proof. We apply induction on ��.
If �� D 1; then G is a tree and m D n � 1: Hence, n � m C �� D 2:

Now assume that the result is true for all plane graphs with �� � 1 faces, �� � 2;

and suppose that G has �� faces. Since �� � 2; G is not a tree, and hence contains a
cycle C: Let e be an edge of C: Then e belongs to exactly two faces, say f1 and
f2; of G and the deletion of e from G results in the formation of a single face from
f1 and f2 (see Fig. 8.5). Also, since e is not a cut edge of G; G � e is connected.
Further, the number of faces of G � e is �� � 1: So applying induction to G � e; we
get n � .m � 1/ C .�� � 1/ D 2; and this implies that n � m C �� D 2: This completes
the proof of the theorem. �

Below are some of the consequences of the Euler formula.

Corollary 8.3.2. All plane embeddings of a given planar graph have the same
number of faces.

Proof. Since �� D m � n C 2; the number of faces depends only on n and m; and not
on the particular embedding. �

Corollary 8.3.3. If G is a simple planar graph with at least three vertices, then
m � 3n � 6:

Proof. Without loss of generality, we can assume that G is a simple connected plane
graph. Since G is simple and n � 3; each face of G has degree at least 3. Hence,
if F denotes the set of faces of G;

P
f 2F d.f / � 3��: But

P
f 2F d.f / D 2m:

Consequently, 2m � 3��; so that �� � 2m
3

:
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By the Euler formula, m D nC ���2: Now �� � 2m
3

implies that m � nC�
2m
3

��2:

This gives m � 3n � 6: �
The above result is not valid if n D 1 or 2: Also, the condition of Corollary 8.3.3
is not sufficient for the planarity of a simple connected graph as the Petersen graph
shows. For the Petersen graph, m D 15; n D 10; and hence m � 3n � 6; but the
graph is not planar (see Corollary 8.3.7 below).

Example 8.3.4. Show that the complement of a simple planar graph with 11 vertices
is nonplanar.

Solution. Let G be a simple planar graph with n.G/ D 11: Since G is planar,
m.G/ � 3n � 6 D 27: If Gc were also planar, then m.Gc/ � 3n � 6 D 27:

On the one hand, m.G/ C m.Gc/ � 27 C 27 D 54; whereas, on the other hand,
m.G/ C m.Gc/ D m.K11/ D �

11

2

� D 55: Hence, we arrive at a contradiction. This
contradiction proves that Gc is nonplanar. �

Corollary 8.3.5. For any simple planar graph G; ı.G/ � 5:

Proof. If n � 6; then �.G/ � 5: Hence ı.G/ � �.G/ � 5; proving the result
for such graphs. So assume that n � 7: By Corollary 8.3.3, m � 3n � 6: Now,
ın � P

v2V.G/ dG.v/ D 2m � 2.3n � 6/ D 6n � 12: Hence n.ı � 6/ � �12:

Consequently, ı � 6 is negative, implying that ı � 5: �

Recall that the girth of a graph G is the length of a shortest cycle in G:

Theorem 8.3.6. If the girth k of a connected plane graph G is at least 3, then
m � k.n�2/

.k�2/
:

Proof. Let F denote the set of faces and ��; as before, denote the number of faces
of G: If f 2 F ; then d.f / � k: Since 2m D P

f 2F d.f /; we get 2m � k ��:
By Theorem 8.3.1, �� D 2 � n C m: Hence, 2m � k.2 � n C m/; implying that

m.k � 2/ � k.n � 2/: Thus, m � k.n�2/

.k�2/
: �

Corollary 8.3.7. The Petersen graph P is nonplanar.

Proof. The girth of the Petersen graph P is 5; n.P / D 10; and m.P / D 15: Hence,
if P were planar, 15 � 5.10�2/

5�2
; which is not true. Hence, P is nonplanar. �

Exercise 3.1. Show that every simple bipartite cubic planar graph contains a C4:

Exercise 3.2. A nonplanar graph G is called planar-vertex-critical if G � v is
planar for every vertex v of G: Prove that a planar-vertex-critical graph must be
2-connected.
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Exercise 3.3. Verify Euler’s formula for the plane graph P .

Exercise 3.4. Let G be a simple plane cubic graph having eight faces. Determine
n.G/: Draw two such graphs that are nonisomorphic.

Exercise 3.5. Prove that if G is a simple connected planar bipartite graph, then
m � 2n � 4; where n � 3:

Exercise 3.6. Prove that a simple planar graph (with at least four vertices) has at
least four vertices each of degree 5 at most.

Exercise 3.7. If G is a nonplanar graph, show that it has either five vertices of
degree at least 4, or six vertices of degree at least 3.

Exercise 3.8. Prove that a simple planar graph with minimum degree at least five
contains at least 12 vertices. Give an example of a simple planar graph on 12 vertices
with minimum degree 5.

Exercise 3.9. Show that there is no 6-connected planar graph.

Exercise 3.10. Let G be a plane graph of order n and size m in which every face is
bounded by a k-cycle. Show that m D k.n�2/

.k�2/
.

Definition 8.3.8. A graph G is maximal planar if G is planar, but for any pair of
nonadjacent vertices u and v of G; G C uv is nonplanar.

Remark 8.3.9. Any planar graph is a spanning subgraph of a maximal planar
graph. Indeed, if QG is a plane embedding of a planar graph G with at least three
vertices, and if e D uv is a cut edge of QG embedded in a face f of QG; it is clear
that there exists a vertex w on the boundary of f such that the edge uw or vw can be
drawn in f so that either QG C .vw/ or QG C .uw/ is also a plane graph (see Fig. 8.6a).
Further, if C0 is any cycle bounding a face f0 of a plane graph H; then edges can be
drawn in int C0 without crossing each other so that f0 is divided into triangles (see
Fig. 8.6b).
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Fig. 8.6 Procedure to get maximal planar graphs

Definition 8.3.10. A plane triangulation is a plane graph in which each of its faces
is bounded by a triangle. A plane triangulation of a plane graph G is a plane
triangulation H such that G is a spanning subgraph of H:

Remark 8.3.11. Remark 8.3.9 shows that a plane embedding of a simple maximal
planar graph is a plane triangulation.

Note that any simple plane graph is a subgraph of a simple maximal plane graph and
hence is a spanning subgraph of some plane triangulation. Thus, to any simple plane
graph G that is not already a plane triangulation, we can add a set of new edges to
obtain a plane triangulation. The set of new edges thus added need not be unique.

Figure 8.7a is a simple plane graph G and Fig. 8.7b is a plane triangulation of G;
Fig. 8.7c is a plane triangulation of G isomorphic to the graph of Fig. 8.7b having
only straight-line edges. (A result of Fáry [60] states that every simple planar graph
has a plane embedding in which each edge is a straight line.)

Exercise 3.11. Embed the 3-cube Q3 (see Exercise 4.4 of Chap. 5) in a maximal
planar graph having the same vertex set as Q3: Count the number of new edges
added.

Exercise 3.12. Prove that for a simple maximal planar graph on n � 3 vertices,
m D 3n � 6:

Exercise 3.13. Use Exercise 3.12 to show that for any simple planar graph, m �
3n � 6:

Exercise 3.14. Show that every plane triangulation of order n � 4 is 3-connected.

Exercise 3.15. Let G be a maximal planar graph with n � 4: Let ni denote the
number of vertices of degree i in G: Then prove that 3n3 C 2n4 C n5 D 12 C n7 C
2n8 C 3n9 C 4n10 C : : : : (Hint: Use the fact that n D n3 C n4 C n5 C n6 C : : : :/

Exercise 3.16. Generalize the Euler formula for disconnected plane graphs.
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Fig. 8.7 (a) Graph G and (b), (c) are plane triangulations of G

8.4 K5 and K3;3 are Nonplanar Graphs

In this section we prove that K5 and K3;3 are nonplanar. These two graphs are basic
in Kuratowski’s characterization of planar graphs (see Theorem 8.7.5 given later
in this chapter). For this reason, they are often referred to as the two Kuratowski
graphs.

Theorem 8.4.1. K5 is nonplanar.

First proof. This proof uses the Jordan curve theorem. Assume the contrary,
namely, K5 is planar. Let v1; v2; v3; v4; and v5 be the vertices of K5 in a plane
representation of K5: The cycle C D v1v2v3v4v1 (as a closed Jordan curve) divides
the plane into two faces, namely, the interior and the exterior of C: The vertex v5

must belong either to int C or to ext C: Suppose that v5 belongs to int C (a similar
proof holds if v5 belongs to ext C ). Draw the edges v5v1; v5v2; v5v3; and v5v4 in int
C: Now there remain two more edges v1v3 and v2v4 to be drawn. None of these can
be drawn in int C; since it is assumed that K5 is planar. Thus, v1v3 lies in ext C: Then
one of v2 and v4 belongs to the interior of the closed Jordan curve C1 D v1v5v3v1 and
the other to its exterior (see Fig. 8.8). Hence, v2v4 cannot be drawn without violating
planarity. �
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Fig. 8.8 Graph for first proof
of Theorem 8.4.1
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Fig. 8.9 Graph for first proof
of Theorem 8.4.3

Remark 8.4.2. The first proof of Theorem 8.4.1 shows that all the edges of K5

except one can be drawn in the plane without violating planarity. Hence for any
edge e of K5; K5 � e is planar.

Second proof. If K5 were planar, it follows from Theorem 8.3.6 that 10 � 3.5�2/

.3�2/
;

which is not true. Hence K5 is nonplanar. �

Theorem 8.4.3. K3;3 is nonplanar.

First proof. The proof is by the use of the Jordan curve theorem. Suppose that K3;3

is planar. Let U D fu1; u2; u3g and V D fv1; v2; v3g be the bipartition of K3;3 in a
plane representation of the graph. Consider the cycle C D u1v1u2v2u3v3u1: Since
the graph is assumed to be planar, the edge u1v2 must lie either in the interior of C

or in its exterior. For the sake of definiteness, assume that it lies in int C (a similar
proof holds if one assumes that the edge u1v2 lies in ext C ). Two more edges remain
to be drawn, namely, u2v3 and u3v1: None of these can be drawn in int C without
crossing the edge u1v2: Hence, both of them are to be drawn in ext C: Now draw
u2v3 in ext C: Then one of v1 and u3 belongs to the interior of the closed Jordan
curve C1 D u1v2u2v3u1 and the other to the exterior of C1 (see Fig. 8.9). Hence,
the edge v1u3 cannot be drawn without violating planarity. This shows that K3;3 is
nonplanar. �
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Second proof. Suppose K3;3 is planar. Let �� be the number of faces of G D K3;3 in
a plane embedding of G and F ; the set of faces of G: As the girth of K3;3 is 4, we

have m D 1
2

P
f 2F d.f / � 4��

2
D 2��: By Theorem 8.3.1, n � m C �� D 2: For K3;3;

n D 6; and m D 9: Hence, �� D 2Cm�n D 5: Thus, 9 � 2:5 D 10; a contradiction.
�

Exercise 4.1. Give yet another proof of Theorem 8.4.3.

Exercise 4.2. Find the maximum number of edges in a planar complete tripartite
graph with each part of size at least 2.

Remark 8.4.4. As in the case of K5; for any edge e of K3;3; K3;3 � e is planar.
Observe that the graphs K5 and K3;3 have some features in common.

1. Both are regular graphs.
2. The removal of a vertex or an edge from each graph results in a planar graph.
3. Contraction of an edge results in a planar graph.
4. K5 is a nonplanar graph with the smallest number of vertices, whereas K3;3 is a

nonplanar graph with the smallest number of edges. (Hence, any nonplanar graph
must have at least five vertices and nine edges.)

8.5 Dual of a Plane Graph

Let G be a plane graph. One can form out of G a new graph H in the following way.
Corresponding to each face f of G; take a vertex f � and corresponding to each edge
e of G; take an edge e�: Then edge e� joins vertices f � and g� in H if and only
if edge e is common to the boundaries of faces f and g in G: (It is possible that f

may be the same as g:) The graph H is then called the dual (or more precisely, the
geometric dual) of G (see Fig. 8.10). If e is a cut edge of G embedded in face f of
G; then e� is a loop at f �: H is a planar graph and there exists a natural way of
embedding H in the plane. Vertex f �; corresponding to face f; is placed in face f

of G: Edge e�; joining f � and g�; is drawn so that e� crosses e once and only once
and crosses no other edge. This procedure is illustrated in Fig. 8.11. This embedding
is the canonical embedding of H: H with this canonical embedding is denoted by
G�: Any two embeddings of H; as described above, are isomorphic.

The definition of the dual implies that m.G�/ D m.G/; n.G�/ D ��.G/; and
dG�.f �/ D dG.f /; where dG.f / denotes the degree of the face f of G:

From the manner of construction of G�; it follows that

(i) An edge e of a plane graph G is a cut edge of G if and only if e� is a loop of
G�; and it is a loop of G if and only if e� is a cut edge of G�.

(ii) G� is connected whether G is connected or not (see graphs G and G� of
Fig. 8.12).

The canonical embedding of the dual of G� is denoted by G��: It is easy to check
that G�� is isomorphic to G if and only if G is connected. Graph isomorphism
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Fig. 8.10 A plane graph G

and its dual H
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Fig. 8.11 Procedure for drawing the dual graph



188 8 Planarity

does not preserve duality; that is, isomorphic plane graphs may have nonisomorphic
duals. The graphs G and H of Fig. 8.13 are isomorphic plane graphs, but G� 6' H �:

G has a face of degree 5, whereas no face of H has degree 5. Hence, G� has a
vertex of degree 5, whereas H � has no vertex of degree 5. Consequently, G� 6' H �:

Exercise 5.1. Draw the dual of

(i) The Herschel graph (graph of Fig. 5.4).
(ii) The graph G given below:

G

f1

f2 f3

f∗
1

f∗
2 f∗

3

e1 e2

e3

e4 e5

e6

e∗
1

e∗
2

e∗
3

e∗
4

e∗
5

e∗
6

G

G∗
Fig. 8.12 A disconnected
graph G and its (connected)
dual G�

u1 u2

u3u4

u5

u1 u2

u3u4

u5

G H

u6u6

Fig. 8.13 Isomorphic graphs G and H for which G� 6' H �
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Exercise 5.2. A plane graph G is called self-dual if G ' G�: Prove the
following:

(i) All wheels Wn .n � 3/ are self-dual.
(ii) For a self-dual graph, 2n D m C 2:

Exercise 5.3. Construct two infinite families of self-dual graphs.

8.6 The Four-Color Theorem and the Heawood
Five-Color Theorem

What is the minimum number of colors required to color the world map of countries
so that no two countries having a common boundary receive the same color? This
simple-looking problem manifested itself into one of the most challenging problems
of graph theory, popularly known as the four-color conjecture (4CC).

The geographical map of the countries of the world is a typical example of a
plane graph. An assignment of colors to the faces of a plane graph G so that no
two faces having a common boundary containing at least one edge receive the same
color is a face coloring of G: The face-chromatic number ��.G/ of a plane graph G

is the minimum k for which G has a face coloring using k colors. The problem of
coloring a map so that no two adjacent countries receive the same color can thus be
transformed into a problem of face coloring of a plane graph G: The face coloring
of G is closely related to the vertex coloring of the dual G� of G: The fact that
two faces of G are adjacent in G if and only if the corresponding vertices of G�
are adjacent in G� shows that G is k-face-colorable if and only if G� is k-vertex-
colorable.

It was young Francis Guthrie who conjectured, while coloring the district map
of England, that four colors were sufficient to color the world map so that adjacent
countries receive distinct colors. This conjecture was communicated by his brother
to De Morgan in 1852. Guthrie’s conjecture is equivalent to the statement that any
plane graph is 4-face-colorable. The latter statement is equivalent to the conjecture:
Every planar graph is 4-vertex-colorable.

After the conjecture was first published in 1852, many attempted to settle it. In the
process of settling the conjecture, many equivalent formulations of this conjecture
were found. Assaults on the conjecture were made using such varied branches of
mathematics as algebra, number theory, and finite geometries. The solution found
the light of the day when Appel, Haken, and Koch [8] of the University of Illinois
established the validity of the conjecture in 1976 with the aid of computers (see also
[6,7]). The proof includes, among other things, 1010 units of operations, amounting
to a staggering 1200 hours of computer time on a high-speed computer available at
that time.
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Although the computer-oriented proof of Appel, Haken, and Koch settled the
conjecture in 1976 and has stood the test of time, a theoretical proof of the four-
color problem is still to be found.

Even though the solution of the 4CC has been a formidable task, it is rather easy
to establish that every planar graph is 6-vertex-colorable.

Theorem 8.6.1. Every planar graph is 6-vertex-colorable.

Proof. The proof is by induction on n; the number of vertices of the graph.
The result is trivial for planar graphs with at most six vertices. Assume the result
for planar graphs with n � 1; n � 7; vertices. Let G be a planar graph with n

vertices. By Corollary 8.3.5, ı.G/ � 5; and hence G has a vertex v of degree at
most 5. By hypothesis, G � v is 6-vertex-colorable. In any proper 6-vertex coloring
of G � v; the neighbors of v in G would have used only at most five colors,
and hence v can be colored by an unused color. In other words, G is 6-vertex-
colorable. �

It involves some ingenious arguments to reduce the upper bound for the
chromatic number of a planar graph from 6 to 5. The upper bound 5 was obtained
by Heawood [103] as early as 1890.

Theorem 8.6.2 (Heawood’s five-color theorem). Every planar graph is 5-vertex-
colorable.

Proof. The proof is by induction on n.G/ D n: Without loss of generality, we
assume that G is a connected plane graph. If n � 5; the result is clearly true.
Hence, assume that n � 6 and that any planar graph with fewer than n vertices is
5-vertex-colorable. G being planar, ı.G/ � 5 by Corollary 8.3.5, and so G contains
a vertex v0 of degree not exceeding 5. By the induction hypothesis, G � v0 is 5-
vertex-colorable.

If d.v0/ � 4; at most four colors would have been used in coloring the neighbors
of v0 in G in a 5-vertex coloring of G � v0: Hence, an unused color can then be
assigned to v0 to yield a proper 5-vertex coloring of G:

If d.v0/ D 5; but only four or fewer colors are used to color the neighbors of v0

in a proper 5-vertex coloring of G � v0; then also an unused color can be assigned
to v0 to yield a proper 5-vertex coloring of G:

Hence assume that the degree of v0 is 5 and that in every 5-coloring of G � v0;

the neighbors of v0 in G receive five distinct colors. Let v1; v2; v3; v4; and v5 be the
neighbors of v0 in a cyclic order in a plane embedding of G: Choose some proper
5-coloring of G�v0 with colors, say, c1; c2; : : : ; c5: Let fV1; V2; : : : ; V5g be the color
partition of G � v0; where the vertices in Vi are colored ci ; 1 � i � 5: Assume
further that vi 2 Vi ; 1 � i � 5:

Let Gij be the subgraph of G � v0 induced by Vi [ Vj : Suppose vi and vj ; 1 �
i; j � 5; belong to distinct components of Gij : Then the interchange of the colors
ci and cj in the component of Gij containing vi would give a recoloring of G � v0

in which only four colors are assigned to the neighbors of v0: But this is against our
assumption. Hence, vi and vj must belong to the same component of Gij : Let Pi;j
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Fig. 8.14 Graph for proof
of Theorem 8.6.2

be a vi -vj path in Gij : Let C denote the cycle v0v1P13v3v0 in G (Fig. 8.14). Then C

separates v2 and v4I that is, one of v2 and v4 must lie in int C and the other in ext C:

In Fig. 8.14, v2 2 int C and v4 2 ext C: Then P24 must cross C at a vertex of C: But
this is clearly impossible since no vertex of C receives either of the colors c2 and
c4: Hence this possibility cannot arise, and G is 5-vertex-colorable. �

Note that the bound 4 in the inequality �.G/ � 4 for planar graphs G is best
possible since K4 is planar and �.K4/ D 4:

Exercise 6.1. Show that a planar graph G is bipartite if and only if each of its faces
is of even degree in any plane embedding of G:

Exercise 6.2. Show that a connected plane graph G is bipartite if and only if G� is
Eulerian. Hence, show that a connected plane graph is 2-face-colorable if and only
if it is Eulerian.

Exercise 6.3. Prove that a Hamiltonian plane graph is 4-face-colorable and that its
dual is 4-vertex-colorable.

Exercise 6.4. Show that a plane triangulation has a 3-face coloring if and only if it
is not K4: (Hint: Use Brooks’ theorem.)

Remark 8.6.3. (Grötzsch): If G is a planar graph that contains no triangle, then G

is 3-vertex-colorable.

8.7 Kuratowski’s Theorem

Definition 8.7.1. 1. A subdivision of an edge e D uv of a graph G is obtained by
introducing a new vertex w in e; that is, by replacing the edge e D uv of G by
the path uwv of length 2 so that the new vertex w is of degree 2 in the resulting
graph (see Fig. 8.15a).
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Fig. 8.15 (a) Subdivision of edge e of graph G; (b) two homeomorphs of graph G

2. A homeomorph or a subdivision of a graph G is a graph obtained from G by
applying a finite number of subdivisions of edges in succession (see Fig. 8.15b).
G itself is regarded as a subdivision of G:

3. Two graphs G1 and G2 are called homeomorphic if they are both homeomorphs
of some graph G: Clearly, the graphs of Fig. 8.15b are homeomorphic, even
though neither of the two graphs is a homeomorph of the other.

Kuratowski’s theorem [129] characterizing planar graphs was one of the major
breakthrough results in graph theory of the 20th century. As mentioned earlier,
while examining planarity of graphs, we need only consider simple graphs since
the presence of loops and multiple edges does not affect the planarity of graphs.
Consequently, a graph is planar if and only if its underlying simple graph is planar.
We therefore consider in this section only (finite) simple graphs. We recall that for
any edge e of a graph G; G � e is the subgraph of G obtained by deleting the
edge e; whereas G ı e denotes the contraction of e: We always discard isolated
vertices when edges get deleted and remove the new multiple edges when edges
get contracted. More generally, for a subgraph H of G; G ı H denotes the graph
obtained by the successive contractions of all the edges of H in G: The resulting
graph is independent of the order of contraction. Moreover, if G is planar, then G ıe

is planar; consequently, G ı H is planar. In other words, if G ı H is nonplanar for
some subgraph H of G; then G is also nonplanar. Further, any two homeomorphic
graphs are contractible to the same graph.

Definition 8.7.2. If G ı H D K; we call K a contraction of GI we also say that
G is contractible to K: G is said to be subcontractible to K if G has a subgraph
H contractible to K: We also refer to this fact by saying that K is a subcontraction
of G:
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Fig. 8.16 Graph G subcontractible to triangle abc

Example 8.7.3. For instance, in Fig. 8.16, graph G is subcontractible to the triangle
abc: (Take H to be the cycle abcd and contract the edge ad in H: By abuse of
notation, the new vertex is denoted by a or d:) We note further that if G0 is a
homeomorph of G; then contraction of one of the edges incident at each vertex
of degree 2 in V.G0/nV.G/ results in a graph homeomorphic to G:

Our first aim is to prove the following result, which was established by Wagner
[186] and, independently, by Harary and Tutte [96].

Theorem 8.7.4 ([96,186]). A graph is planar if and only if it is not subcontractible
to K5 or K3;3:

As a consequence, we establish Kuratowski’s characterization theorem for planar
graphs.

Theorem 8.7.5 (Kuratowski [129]). A graph is planar if and only if it has no
subgraph homeomorphic to K5 or K3;3:

The proofs of Theorems 8.7.4 and 8.7.5, as presented here, are due to Fournier [68].
Recall that any subgraph and any contraction of a planar graph are both planar.

Definition 8.7.6. A simple connected nonplanar graph G is irreducible if, for each
edge e of G; G ı e is planar.

For instance, both K5 and K3;3 are irreducible.

Proof of theorem 8.7.4. If G has a subgraph G0 contractible to K5 or K3;3; then
since K5 and K3;3 are nonplanar, G0 and therefore G are nonplanar.

We now prove the converse. Assume that G is a simple connected nonplanar graph.
By Theorem 8.2.8, at least one block of G is nonplanar. Hence, assume that G

is a simple 2-connected nonplanar graph. We now show that G has a subgraph
contractible to K5 or K3;3:

Keep contracting edges of G (and delete the new multiple edges, if any, at each
stage of the contraction) until a (2-connected) irreducible (nonplanar) graph H

results. Clearly, ı.H/ � 3: Now, if e and f are any two distinct edges of G; then
.G ı e/ � f D .G � f / ı e: Hence, the graph H may as well be obtained by
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Fig. 8.17 Graph H for case 1 of proof of Theorem 8.7.4

deleting a set (which may be empty) of edges of G; resulting in a subgraph G0 of G

and then contracting a subgraph of G0: We now complete the proof of the theorem
by showing that H has a subgraph K homeomorphic (and hence contractible) to K5

or K3;3: In this case, G has the subgraph G0; which is contractible to K5 or K3;3:

Let e D ab 2 E.H/ and H 0 D H � fa; bg: Then H 0 is connected. If not, fa; bg
is a vertex cut of H: Let G0

1; : : : ; G0
r be the components of H 0: As H is irreducible,

H � V.G0
r / is planar, and there exists a plane embedding of H 0 in which the edge

ab is in the exterior face. As G0
r is planar, G0

r can be embedded in this exterior face
of H 0: This would make H a planar graph, a contradiction. Thus, H 0 is connected.]

Case 1. H 0 has a cut vertex v: Let G1; G2; : : : ; Gr .r � 2/ be the components of
H 0�fvg; and let G1; G2; : : : ; Gs; 0 � s � r; be those components that are connected
to both a and b: (see Fig. 8.17). If r > s; then each of GsC1; : : : ; Gr is connected
to only one of a or b: Assume that Gr is connected to b and not to a: From the
plane representation of G ı .GsC1 [ : : : [ Gr/; the contraction of G obtained by
contracting the edges of GsC1; : : : ; Gr ; we can obtain a plane representation of H 0
(see Fig. 8.17). [In fact, if Gr is contracted to the vertex wr ; then as the subgraph
Ar D hv; b; v.Gr/i of H 0 is planar, the pair of edges fvwr ; wr bg can be replaced
by the planar subgraph Ar and so on.] Hence this case cannot arise. Consequently,
r D s: If r D s D 2; the plane embeddings of H 0 ı G1 and H 0 ı G2 yield a plane
embedding of H 0; a contradiction (see Fig. 8.18). Consequently, r D s � 3: In this
case, H 0 contains a homeomorph of K3;3 (see Fig. 8.19), with fw1; w2; w3 I a; b; vg
being the vertex set of K3;3: (Other possibilities for w1; w2; w3 will also yield a
homeomorph of K3;3:)

Case 2. H 0 is 2-connected. Then H 0 contains a cycle C of length at least 3.
Consider a plane embedding of H ı e (where e D ab; as above). If c denotes
the new vertex to which a and b get contracted, .H ıe/�c D H 0: We may therefore
suppose without loss of generality that c is in the interior of the cycle C in the plane
embedding of H ı e:
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a b

Fig. 8.18 Plane embedding
for case 1 of proof of
Theorem 8.7.4

G1 G2 G3 Gr
w1 w2 w3

a b

v

Fig. 8.19 Homeomorph for case 1 of proof of Theorem 8.7.4

Now, the edges of H ı e incident to c arise out of edges of H incident to a or b:

There arise three possibilities with reference to the positions of the edges of H ı e

incident to c relative to the cycle C:

(i) Suppose the edges incident to c occur so that the edges incident to a and the
edges incident to b in H are consecutive around c in a plane embedding of
H ı e; as shown in Fig. 8.20a. Since H is a minimal nonplanar graph, the
paths from c to C can only be single edges. Then the plane representation of
H ı e gives a plane representation of H; as in Fig. 8.20b, a contradiction. So
this possibility cannot arise.

(ii) Suppose there are three edges of H ı e incident with c; with each edge
corresponding to a pair of edges of H; one incident to a and the other to b;

as in Fig. 8.21a. Then H contains a subgraph contractible to K5; as shown in
Fig. 8.21b.

We are now left with only one more possibility.
(iii) There are four edges of H ı e incident to c; and they arise alternately out

of edges incident to a and b in H; as in Fig. 8.22a. Then there arises in H
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Fig. 8.20 First configuration for case 2 of proof of Theorem 8.7.4. Edges incident to a and b are
marked a and b; respectively
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Fig. 8.21 Second configuration for case 2 of proof of Theorem 8.7.4. Edges incident to both a and
b are marked ab
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Fig. 8.22 Third configuration for case 2 of proof of Theorem 8.7.4

a homeomorph of K3;3; as shown in Fig. 8.22b. The sets X D fa; t2; t4g and
Y D fb; t1; t3g are the sets of the bipartition of this homeomorph of K3;3: �

We now proceed to prove Theorem 8.7.5.

Proof of theorem 8.7.5. The “sufficiency” part of the proof is trivial. If G contains
a homeomorph of either K5 or K3;3; G is certainly nonplanar, since a homeomorph
of a planar graph is planar.
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Fig. 8.23 Graphs for proof
of Theorem 8.7.5

Assume that G is connected and nonplanar. Remove edges from G one after
another until we get an edge-minimal connected nonplanar subgraph G0 of GI that
is, G0 is nonplanar and for any edge e of G; G0 � e is planar. Now contract the
edges in G0 incident with vertices of degree at most 2 in some order. Let us denote
the resulting graph by G0

0: Then G0
0 is nonplanar, whereas G0

0 � e is planar for any
edge e of G0

0; and the minimum degree of G0
0 is at least 3. We now have to show that

G0
0 contains a homeomorph of K5 or K3;3:

By Theorem 8.7.4, G0
0 is subcontractible to K5 or K3;3: This means that G0

0

contains a subgraph H that is contractible to K5 or K3;3: As G0
0 � e is planar for

any edge e of G0
0; G0

0 D H: Thus, G0
0 itself is contractible to K5 or K3;3: If G0

0

is either K5 or K3;3; we are done. Assume now that G0
0 is neither K5 nor K3;3:

Let e1; e2; : : : ; er be the edges of G0
0; when contracted in order, that result in a K5

or K3;3:

First, let us assume that r D 1; so that G0
0 ı e1 is either K5 or K3;3: Suppose

that G0
0 ı e1 D K3;3 with fx1; x2; x3g and fy1; y2; y3g as the partite sets of vertices.

Suppose that x1 is the vertex obtained by identifying the ends of e1: We may then
take e1 D x1a (by abuse of notation), where a is a vertex distinct from the xi ’s
and yj ’s (Fig. 8.23a). If a is adjacent to all of y1; y2 and y3; then fa; x2; x3g and
fy1; y2; y3g form a bipartition of a K3;3 in G0

0: If a is adjacent to only one or two of
fy1; y2; y3g (Fig. 8.23b), then again G0

0 contains a homeomorph of K3;3:

Next, let us assume that G0
0 ı e1 D K5 with vertex set fv1; v2; v3; v4; v5g:

Suppose that v1 is the vertex obtained by identifying the ends of e1: As before,
we may take e1 D v1a; where a … fv1; v2; v3; v4; v5g: If a is adjacent to
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Fig. 8.24 Graphs for proof of Theorem 8.7.5

all of fv2; v3; v4; v5g; then G0
0 � v1 is a K5; contradiction to the fact that any

proper subgraph of G0
0 is planar. If a is adjacent to only three of fv2; v3; v4; v5g;

say v2; v3; and v4; then the edge-induced subgraph of G0
0 induced by the edges

av1; av2; av3; av4; v1v5; v2v3; v2v4; v2v5; v3v4; v3v5; and v4v5 is a homeomorph of K5:

In this case, G0
0 also contains a homeomorph of K3;3: Since dG0

0
.v1/ � 3; v1 is

adjacent to at least one of v2; v3; and v4; say v2: Then the edge-induced subgraph of
G0

0 induced by the edges in fav1; av3; av4; v1v2; v2v3; v2v4; v1v5; v3v5; v4v5g is a K3;3;

with fa; v4; v5g and fv1; v2; v3g forming the bipartition. We now consider the case
when a is adjacent to only two of v2; v3; v4 and v5; say v2 and v3: Then, necessarily,
v1 is adjacent to v4 and v5 (since on contraction of the edge v1a; v1 is adjacent to
v2; v3; v4; and v5). In this case G0

0 also contains a K3;3 (see Fig. 8.24b). Finally, the
case when a is adjacent to at most one of v2; v3; v4; and v5 cannot arise since the
degree of a is at least 3 in G0

0: Thus, in any case, we have proved that when r D 1;

G0
0 contains a homeomorph of K3;3: The result can now easily be seen to be true by

induction on r: Indeed, if H2 D H1 ı e and H2 contains a homeomorph of K3;3;

then H1 contains a homeomorph of K3;3: �
The nonplanarity of the Petersen graph (Fig. 8.25a) can be established by

showing that it is contractible to K5 (see Fig. 8.25b) or by showing that it contains a
homeomorph of K3;3 (see Fig. 8.25c).

Exercise 7.1. Prove that the following graph is nonplanar.
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Fig. 8.25 Nonplanarity of the Petersen graph. (a) The Petersen graph P; (b) contraction of P to
K5; (c) A subdivision of K3;3 in P

8.8 Hamiltonian Plane Graphs

An elegant necessary condition for a plane graph to be Hamiltonian was given by
Grinberg [78].

Theorem 8.8.1. Let G be a loopless plane graph having a Hamilton cycle C: ThenPn
iD2.i �2/.�0

i ��00
i / D 0; where �0

i and �00
i are the numbers of faces of G of degree

i contained in int C and ext C; respectively.

Proof. Let E 0 and E 00 denote the sets of edges of G contained in int C and ext C;

respectively, and let jE 0j D m0 and jE 00j D m00: Then int C contains exactly m0 C 1

faces (see Fig. 8.26), and so

nX

iD2

�0
i D m0 C 1: (8.1)

(Since G is loopless, �0
1 D �00

1 D 0:)
Moreover, each edge in int C is on the boundary of exactly two faces in int C;

and each edge of C is on the boundary of exactly one face in int C: Hence, counting
the edges of all the faces in int C; we get
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C

Fig. 8.26 Graph for proof of
Theorem 8.8.1

nX

iD2

i�0
i D 2m0 C n: (8.2)

Eliminating m0 from (8.1) and (8.2), we get

nX

iD2

.i � 2/�0
i D n � 2: (8.3)

Similarly,
nX

iD2

.i � 2/�00
i D n � 2: (8.4)

Equations (8.3) and (8.4) give the required result. �

Grinberg’s condition is quite useful in that by applying this result, many plane
graphs can easily be shown to be non-Hamiltonian by establishing that they do not
satisfy the condition.

Example 8.8.2. The Herschel graph G of Fig. 5.4 is non-Hamiltonian.

Proof. G has nine faces and all the faces are of degree 4. Hence, if G were
Hamiltonian, we must have 2.�0

4 � �00
4 / D 0: This means that �0

4 D �00
4 : This is

impossible, since �0
4 C �00

4 D (number of faces of degree 4 in G) D 9 is odd.
Hence, G is non-Hamiltonian. (In fact, it is the smallest planar non-Hamiltonian
3-connected graph.)

Exercise 8.1. Does there exist a plane Hamiltonian graph with faces of degrees 5,
7, and 8, and with just one face of degree 7?

Exercise 8.2. Prove that the Grinberg graph given in Fig. 8.27 is non-Hamiltonian.

8.9 Tait Coloring

In an attempt to solve the four-color problem, Tait considered edge colorings of
2-edge-connected cubic planar graphs. He conjectured that every such graph was
3-edge colorable. Indeed, he could prove that his conjecture was equivalent to the
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Fig. 8.27 The Grinberg
graph

Fig. 8.28 The Tutte graph

four-color problem (see Theorem 8.9.1). Tait did this in 1880. He even went to the
extent of giving a “proof” of the four-color theorem using this result. Unfortunately,
Tait’s proof was based on the wrong assumption that any 2-edge-connected cubic
planar graph is Hamiltonian. A counterexample to his assumption was given by
Tutte in 1946 (65 years later). The graph given by Tutte is the graph of Fig. 8.28.
It is a non-Hamiltonian cubic 3-connected (and therefore 3-edge-connected; see
Theorem 3.3.4) planar graph. Tutte used ad hoc techniques to prove this result.
(The Grinberg condition does not establish this result.)

We indicate below the proof of the fact that the Tutte graph of Fig. 8.28 is non-
Hamiltonian. The graphs G1 to G5 mentioned below are shown in Fig. 8.29.

It is easy to check that there is no Hamilton cycle in the graph G1 containing both
of the edges e1 and e2: Now, if there is a Hamilton cycle in G2 containing both of
the edges e0

1 and e0
2; then there will be a Hamilton cycle in G1 containing e1 and e2:

Hence there is no Hamilton cycle in G2 containing e0
1 and e0

2: In G3 � e0; u and w
are vertices of degree 2. Hence if G3 � e0 were Hamiltonian, then in any Hamilton
cycle of G3 � e0; both the edges incident to u as well as both the edges incident to w
must be consecutive. This would imply that G2 has a Hamilton cycle containing e0

1

and e0
2; which is not the case. Consequently, any Hamilton cycle of G3 must contain

the edge e0: It follows that there exists no Hamilton path from x to y in G3 � w:

A redrawing of G3 � w is the graph G4: It is called the “Tutte triangle.” The Tutte
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Fig. 8.29 Graphs G1 to G5
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Fig. 8.30 Graph for proof of
(i) ) (ii) in Theorem 8.9.1

graph (Fig. 8.28) contains three copies of G4 together with a vertex v0. It has been
redrawn as graph G5 of Fig. 8.29. Suppose G5 is Hamiltonian with a Hamilton cycle
C: If we describe C starting from v0; it is clear that C must visit each copy of G4

exactly once. Hence, if C enters a copy of G4; it must exit that copy through x or
y after visiting all the other vertices of that copy. But this means that there exists a
Hamilton path from y to x (or from x to y) in G4; a contradiction. Thus, the Tutte
graph G5 is non-Hamiltonian.

We now give the proof of Tait’s result. Recall that by Vizing–Gupta’s theorem
(Theorem 7.5.5), every simple cubic graph has chromatic index 3 or 4. A 3-edge
coloring of a cubic planar graph is often called a Tait coloring.

Theorem 8.9.1. The following statements are equivalent:

(i) All plane graphs are 4-vertex-colorable.
(ii) All plane graphs are 4-face-colorable.

(iii) All simple 2-edge-connected cubic planar graphs are 3-edge-colorable (i.e.,
Tait colorable).

Proof. (i) ) (ii). Let G be a plane graph. Let G� be the dual of G (see Sect. 8.4).
Then, since G� is a plane graph, it is 4-vertex-colorable. If v� is a
vertex of G�; and fv is the face of G corresponding to v�; assign to
fv the color of v� in a 4-vertex coloring of G�: Then, by the definition
of G�; it is clear that adjacent faces of G will receive distinct colors.
(See Fig. 8.30, in which fv and fw receive the colors of v� and w�;

respectively.) Thus, G is 4-face-colorable.
(ii) ) (iii). Let G be a plane embedding of a 2-edge-connected cubic planar

graph. By assumption, G is 4-face-colorable. Denote the four colors
by .0; 0/; .1; 0/; .0; 1/; and .1; 1/; the elements of the ring Z2 � Z2:

If e is an edge of G that separates the faces, say f1 and f2; color e

with the color given by the sum (in Z2 �Z2) of the colors of f1 and f2:

Since G has no cut edge, each edge is the common boundary of exactly
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e
f1 f2

Color of f1 = (a, b) Color of f2 = (c, d)

Color of e = ((a+c)(mod2), (b+d)(mod2))

Fig. 8.31 Graph for proof of
(ii) ) (iii) in Theorem 8.9.1
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Fig. 8.32 Graph for proof of
(iii) ) (i) for Theorem 8.9.1

two faces of G: This gives a 3-edge coloring of G using the colors
.1; 0/; .0; 1/; and .1; 1/; since the sum of any two distinct elements of
Z2 � Z2 is not .0; 0/ (see Fig. 8.31).

(iii) ) (i) Let G be a planar graph. We want to show that G is 4-vertex-colorable.
We may assume without loss of generality that G is simple. Let QG be
a plane embedding of G: Then QG is a spanning subgraph of a plane
triangulation T; (see Sect. 8.2), and hence it suffices to prove that T is
4-vertex-colorable.

Let T � be the dual of T: Then T � is a 2-edge-connected cubic plane graph. By
our assumption, T � is 3-edge-colorable using, for example, the colors c1; c2; and c3:

Since T � is cubic, each of the above three colors is represented at each vertex of T �:

Let T �
ij be the edge subgraph of T � induced by the edges of T � which have been

colored using the colors ci and cj : Then T �
ij is a disjoint union of even cycles, and

thus it is 2-face-colorable. But each face of T � is the intersection of a face of T �
12

and a face of T �
23 (see Fig. 8.32). Now the 2-face colorings of T �

12 and T �
23 induce a

4-face coloring of T � if we assign to each face of T � the (unordered) pair of colors
assigned to the faces whose intersection is f: Since T � D T �

12 [ T �
23; this defines a

proper 4-face coloring of T �: Thus, �.G/ D �. QG/ � �.T / D ��.T �/ � 4; and G

is 4-vertex-colorable. (Recall that ��.T �/ is the face-chromatic number of T �:) �

Exercise 9.1. Exhibit a 3-edge coloring for the Tutte graph (see Fig. 8.28).
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Notes

The proof of Heawood’s theorem uses arguments based on paths in which the
vertices are colored alternately by two colors. Such paths are called “Kempe
chains” after Kempe [121], who first used such chains in his “proof” of the 4CC.
Even though Kempe’s proof went wrong, his idea of using Kempe chains and
switching the colors in such chains had been effectively exploited by Heawood
[103] in proving his five-color theorem (Theorem 8.6.2) for planar graphs, as
well as by Appel, Haken, and Koch [8] in settling the 4CC. As the reader might
notice, the same technique had been employed in the proof of Brooks’ theorem
(Theorem 7.3.7). Chronologically, Francis Guthrie conceived the four-color theorem
in 1852 (if not earlier). Kempe’s purported “proof” of the 4CC was given in 1879,
and the mistake in his proof was pointed out by Heawood in 1890. The Appel–
Haken–Koch proof of the 4CC was first announced in 1976. Between 1879 and
1976, graph theory witnessed an unprecedented growth along with the methods to
tackle the 4CC. The reader who is interested in getting a detailed account of the
four-color problem may consult Ore [152] and Kainen and Saaty [120].

Even though the Tutte graph of Fig. 8.28 shows that not every cubic 3-connected
planar graph is Hamiltonian, Tutte himself showed that every 4-connected planar
graph is Hamiltonian [180].
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