
Chapter 7
Graph Colorings

7.1 Introduction

Graph theory would not be what it is today if there had been no coloring problems.
In fact, a major portion of the 20th-century research in graph theory has its origin in
the four-color problem. (See Chap. 8 for details.)

In this chapter, we present the basic results concerning vertex colorings and
edge colorings of graphs. We present two important theorems on graph colorings,
namely, Brooks’ theorem and Vizing’s theorem. We also present a brief discussion
on “snarks” and Kirkman’s schoolgirl problem. In addition, a detailed description
of the Mycielskian of a graph is also presented.

7.2 Vertex Colorings

7.2.1 Applications of Graph Coloring

We begin with a practical application of graph coloring known as the storage prob-
lem. Suppose a university’s Department of Chemistry wants to store its chemicals.
It is quite probable that some chemicals cause violent reactions when brought
together. Such chemicals are incompatible chemicals. For safe storage, incompatible
chemicals should be kept in distinct rooms. The easiest way to accomplish this is,
of course, to store one chemical in each room. But this is certainly not the best
way of doing it since we will be using more rooms than are really needed (unless,
of course, all the chemicals are mutually incompatible!). So we ask: What is the
minimum number of rooms required to store all the chemicals so that in each room
only compatible chemicals are stored?

We convert the above storage problem into a problem in graphs. Form a graph
G D .V;E/ by making V correspond bijectively to the set of available chemicals
and making u adjacent to v if and only if the chemicals corresponding to u and
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144 7 Graph Colorings

v are incompatible. Then, any set of compatible chemicals correspond to a set
of independent vertices of G: Thus, a safe storing of chemicals corresponds to a
partition of V into independent subsets of G: The cardinality of such a minimum
partition of V is then the required number of rooms. The minimum cardinality is
called the chromatic number of the graph G:

Definition 7.2.1. The chromatic number �.G/ of a graph G is the minimum
number of independent subsets that partition the vertex set ofG:Any such minimum
partition is called a chromatic partition of V.G/:

The storage problem just described is actually a vertex coloring problem of G:
A vertex coloring of G is a map f W V ! S; where S is a set of distinct colors;
it is proper if adjacent vertices of G receive distinct colors of S: This means that
if uv 2 E.G/; then f .u/ ¤ f .v/: Thus, �.G/ is the minimum cardinality of S
for which there exists a proper vertex coloring of G by colors of S: Clearly, in any
proper vertex coloring ofG; the vertices that receive the same color are independent.
The vertices that receive a particular color make up a color class. This allows an
equivalent way of defining the chromatic number.

Definition 7.2.2. The chromatic number of a graph G is the minimum number of
colors needed for a proper vertex coloring of G: G is k-chromatic if �.G/ D k:

Definition 7.2.3. A k-coloring of a graph G is a vertex coloring of G that uses at
most k colors.

Definition 7.2.4. A graph G is said to be k-colorable if G admits a proper vertex
coloring using at most k colors.

In considering the chromatic number of a graph, only the adjacency of vertices
is taken into account. Hence, multiple edges and loops may be discarded while
considering chromatic numbers, unless needed otherwise. As a consequence, we
may restrict ourselves to simple graphs when dealing with (vertex) chromatic
numbers.

It is clear that �.Kn/ D n: Further, �.G/ D 2 if and only if G is bipartite having
at least one edge. In particular,�.T / D 2 for any tree T with at least one edge (since
any tree is bipartite). Further (see Fig. 7.1),

�.Cn/ D
(
2 if n is even

3 if n is odd.
(7.1)

Exercise 2.1. Prove �.G/ D 2 if and only ifG is a bipartite graph with at least one
edge.

Exercise 2.2. Determine the chromatic number of

(i) The Petersen graph
(ii) Wheel Wn (see Sect. 1.7, Chap. 1)

(iii) The Herschel graph (see Fig. 5.4)
(iv) The Grötzsch graph (see Fig. 7.6)
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Fig. 7.1 Illustration of proper vertex coloring

We next consider another application of graph coloring. LetS be a set of students.
Each student of S is to take a certain number of examinations for which he or she
has registered. Undoubtedly, the examination schedule must be such that all students
who have registered for a particular examination will take it at the same time.

Let P be the set of examinations and for p 2 P; let S.p/ be the set of students
who have to take the examination p: Our aim is to draw up an examination schedule
involving only the minimum number of days on the supposition that papers a and b
can be given on the same day provided they have no common candidate and that no
candidate shall have more than one examination on any day.

Form a graph G D G.P; E/; where a; b 2 P are adjacent if and only if
S.a/ \ S.b/ ¤ ;: Then each proper vertex coloring of G yields an examination
schedule with the vertices in any color class representing the schedule on a particular
day. Thus, �.G/ gives the minimum number of days required for the examination
schedule.

Exercise 2.3. Draw up an examination schedule involving the minimum number of
days for the following problem:

Set of students Examination subjects

S1 Algebra, real analysis, and topology
S2 Algebra, operations research, and complex analysis
S3 Real analysis, functional analysis, and complex analysis
S4 Algebra, graph theory, and combinatorics
S5 Combinatorics, topology, and functional analysis
S6 Operations research, graph theory, and coding theory
S7 Operations research, graph theory, and number theory
S8 Algebra, number theory, and coding theory
S9 Algebra, operations research, and real analysis

Exercise 2.4. If G is k-regular, prove that �.G/ � n
n�k :

Theorem 7.2.5 gives upper and lower bounds for the chromatic number of a graph
G in terms of its independence number and order.
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Theorem 7.2.5. For any graph G with n vertices and independence number ˛;

n
˛

� � � n � ˛ C 1:

Proof. There exists a chromatic partition fV1; V2; : : : ; V�g of V: Since each Vi is
independent, jVi j � ˛; 1 � i � �: Hence, n D P�

iD1 jVi j � ˛ �; and this gives the
inequality on the left.

To prove the inequality on the right, consider a maximum independent set S of ˛
vertices. Then the subsets of V nS of cardinality 1 together with S yield a partition
of V into .n � ˛/C 1 independent subsets. �
Remark 7.2.6. Unfortunately, none of the above bounds is a good one. For example,
ifG is the graph obtained by connectingC2r with a disjointK2r (r � 2), by an edge,
we have n D 4r; ˛ D r C 1; and � D 2r; and the above inequalities become 4r

rC1 �
2r � 3r: For a simple graph G; the number �c D �c.G/ D �.Gc/; the chromatic
number ofGc is the minimum number of subsets in a partition of V.G/ into subsets
each inducing a complete subgraph of G: Bounds on the sum and product of �.G/
and �c.G/ were obtained by Nordhaus and Gaddum [148] (see also reference [93]),
as given in Theorem 7.2.7.

Theorem 7.2.7 (Nordhaus and Gaddum [148]). For any simple graph G;

2
p
n � �C �c � nC 1; andn � ��c �

�
nC 1

2

�2
:

Proof. Let �.G/ D k and let V1; V2; : : : ; Vk be the k color classes in a chromatic
partition of G: Then

Pk
iD1 jVi j D n; and so max1�i�k jVi j � n

k
: Since each Vi

is an independent set of G; it induces a complete subgraph in Gc: Hence, �c �
max1�i�k jVi j; and so ��c D k �c � k ı max1�i�k jVi j � k ı n

k
D n: Further,

since the arithmetic mean of � and �c is greater than or equal to their geometric
mean, �C�c

2
� p

��c � p
n: Hence, � C �c � 2

p
n: This establishes both the

lower bounds.
To show that �C�c � nC1; we use induction on n:When n D 1; � D �c D 1;

and so we have equality in this case. So assume that � C �c � .n � 1/ C 1 D n

for all graphs G having n � 1 vertices, n � 2: Let H be any graph with n vertices,
and let v be any vertex of H: Then G D H � v is a graph with n � 1 vertices and
Gc D .H � v/c D Hc � v: By the induction assumption, �.G/C �.Gc/ � n:

Now �.H/ � �.G/ C 1 and �.Hc/ � �.Gc/ C 1: If either �.H/ � �.G/ or
�.Hc/ � �.Gc/; then �.H/ C �.Hc/ � �.G/ C �.Gc/ C 1 � n C 1: Suppose
then �.H/ D �.G/ C 1 and �.Hc/ D �.Gc/ C 1: �.H/ D �.G/ C 1 implies
that removal of v from H decreases the chromatic number, and hence dH .v/ �
�.G/: [If dH .v/ < �.G/; then in any proper coloring of G with �.G/ colors at
most �.G/ � 1 colors would have been used to color the neighbors of v in G; and
hence v can be given one of the left-out colors, and therefore we have a coloring
of H with �.G/ colors. Hence, �.H/ D �.G/; a contradiction.] For a similar
reason, �.Hc/ D �.Gc/C 1 implies that n � 1 � dH.v/ D dHc .v/ � �.Gc/I thus,
�.G/ C �.Gc/ � dH.v/ C n � 1 � dH .v/ D n � 1: This implies, however, that
�.H/C �.Hc/ D �.G/C �.Gc/C 2 � nC 1:
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Finally, applying the inequality
p
��c � �C�c

2
; we get ��c � .

�C�c
2
/2 �

. nC1
2
/2: �

Note 7.2.8. Since the publication of Theorem 7.2.7, there had been similar results
for other graph parameters (see, for instance, [115] for the domination number � ).
All these results have now come to be known as Nordhaus–Gaddum inequalities,
with reference to the parameters in question.

Exercise 2.5. For a simple graph G; prove that �.Gc/ � ˛.G/:

Exercise 2.6. Prove �.G/ � `C1;where ` is the length of a longest path inG: For
each positive integer `; give a graph G with chromatic number `C 1 and in which
any longest path has length `:

Exercise 2.7. Which numbers can be chromatic numbers of unicyclic graphs?
Draw a unicyclic graph on 15 vertices with� D 3 and having each of these numbers
as its chromatic number.

Exercise 2.8. If G is connected andm � n; show that �.G/ � 3:

Exercise 2.9. Let Gn be the graph defined by V.Gn/ D f.i; j / W 1 � i < j � ng;
and E.Gn/ D f�.i; j /.k; l/� W i < j D k < lg: Prove

(i) !.Gn/ D 2.
(ii) �.Gn/ D dlog2 ne: [Note that �.Gn/ ! 1 as n ! 1.]

Exercise 2.10. Prove that �.G�H/ D max.�.G/; �.H//:

Exercise 2.11. Prove �.G �H/ � min.�.G/; �.H/// (A celebrated conjecture of
Hedetniemi [104] states that �.G �H/ D min.�.G/; �.H///:

7.3 Critical Graphs

Definition 7.3.1. A graphG is called critical if for every proper subgraphH of G;
�.H/ < �.G/: Equivalently, �.G � e/ < �.G/ for each edge e of G: Also, G is
k-critical if it is k-chromatic and critical.

Remarks 7.3.2. If �.G/ D 1; thenG is either trivial or totally disconnected. Hence,
G is 1-critical if and only if G is K1: Again, �.G/ D 2 implies that G is bipartite
and has at least one edge. Hence, G is 2-critical if and only if G is K2: For an
odd cycle C; �.C / D 3; and if G contains an odd cycle C properly, G cannot be
3-critical.

Exercise 3.1. Prove that any critical graph is connected.

Exercise 3.2. Prove that for any graph G; �.G � v/ D �.G/ or �.G/ � 1 for any
v 2 V; and �.G � e/ D �.G/ or �.G/ � 1 for any e 2 E:
Exercise 3.3. Show that if G is k-critical, �.G � v/ D �.G � e/ D k � 1 for any
v 2 V and e 2 E:
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Exercise 3.4. [If �.G � e/ < �.G/ for any e of G; G is sometimes called edge-
critical, and if �.G � v/ < �.G/ for any vertex v of G; G is called vertex-critical.]
Show that a nontrivial connected graph is vertex-critical if it is edge-critical.
Disprove the converse by a counterexample.

Exercise 3.5. Show that a graph is 3-critical if and only if it is an odd cycle. It is
clear that any k-chromatic graph contains a k-critical subgraph. (This is seen by
removing vertices and edges in succession, whenever possible, without diminishing
the chromatic number.)

Theorem 7.3.3. If G is k-critical, then ı.G/ � k � 1:

Proof. Suppose ı.G/ � k � 2: Let v be a vertex of minimum degree in G: Since G
is k-critical, �.G�v/ D �.G/�1 D k�1 (see Exercise 3.3). Hence, in any proper
.k � 1/-coloring of G � v; at most .k � 2/ colors would have been used to color the
neighbors of v in G: Thus, there is at least one color, say c; that is left out of these
k � 1 colors. If v is given the color c; a proper .k � 1/-coloring of G is obtained.
This is impossible since G is k-chromatic. Hence, ı.G/ � .k � 1/: �

Corollary 7.3.4. For any graph G; �.G/ � 1C�.G/:

Proof. LetG be a k-chromatic graph, and letH be a k-critical subgraph ofG: Then
�.H/ D �.G/ D k: By Theorem 7.3.3, ı.H/ � k � 1; and hence k � 1C ı.H/ �
1C�.H/ � 1C�.G/: �

Exercise 3.6. Give another proof of Corollary 7.3.4 by using induction on n D
jV.G/j:
Exercise 3.7. If �.G/ D k; show that G contains at least k vertices each of degree
at least k � 1:

Exercise 3.8. Prove or disprove: If G is k-chromatic, then G contains a Kk:

Exercise 3.9. Prove: Any k (� 2)-critical graph contains a .k � 1/-critical
subgraph.

Exercise 3.10. For each of the graphsG of Exercise 2.2, find a critical subgraphH
of G with �.H/ D �.G/:

Exercise 3.11. Prove that the wheel W2n�1 D C2n�1 _ K1 is a 4-critical graph for
each n � 2: Does a similar statement apply to W2n?

Theorem 7.3.5. In a critical graph G; no vertex cut is a clique.

Proof. Suppose G is a k-critical graph and S is a vertex cut of G that is a clique
of G (i.e., a complete subgraph of G). Let Hi; 1 � i � r; be the components of
GnS; and let Gi D GŒV.Hi / [ S�: Then each Gi is a proper subgraph of G and
hence admits a proper .k�1/-coloring. Since S is a clique, its vertices must receive
distinct colors in any proper .k � 1/-coloring of Gi : Hence, by fixing the colors for
the vertices of S; and coloring for each i the remaining vertices of Gi so as to give
a proper .k � 1/-coloring of Gi ; we obtain a proper .k � 1/-coloring of G: This
contradicts the fact that G is k-chromatic (see Fig. 7.2). �
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Fig. 7.2 GŒS� ' K4

.r D 2/

Corollary 7.3.6. Every critical graph is a block.

Exercise 3.12.* Prove that every k-critical graph is .k � 1/-edge connected
(Dirac [53]).

Exercise 3.13. Show by means of an example that criticality is essential in
Exercise 3.12; that is, a k-chromatic graph need not be .k � 1/-edge connected.

7.3.1 Brooks’ Theorem

We next consider Brooks’ [31] theorem. Recall Corollary 7.3.4, which states that
�.G/ � 1C�.G/: If G is an odd cycle, �.G/ D 3 D 1C 2 D 1C�.G/; and if G
is a complete graph, say Kk; �.G/ D k D 1C .k � 1/ D 1C�.G/: That these are
the only extremal families of graphs for which �.G/ D 1 C �.G/ is the assertion
of Brooks’ theorem.

Theorem 7.3.7 (Brooks’ theorem). If a connected graphG is neither an odd cycle
nor a complete graph, then �.G/ � �.G/:

Proof. If �.G/ � 2; then G is either a path or a cycle. For a path G (other than
K1 and K2), and for an even cycle G; �.G/ D 2 D �.G/: According to our
assumption, G is not an odd cycle. So let �.G/ � 3:

The proof is by contradiction. Suppose the result is not true. Then there exists
a minimal graph G of maximum degree �.G/ D � � 3 such that G is not �-
colorable, but for any vertex v of G; G � v is �-colorable.

Claim 1. Let v be any vertex of G: Then in any proper �-coloring of G � v; all the
� colors must be used for coloring the neighbors v in G: Otherwise, if some color
i is not represented in NG.v/; then v could be colored using i; and this would give
a �-coloring of G; a contradiction to the choice of G: Thus, G is a �-regular graph
satisfying Claim 1.

For v 2 V.G/; letN.v/ D fv1; v2; : : : ; v�g: In a proper�-coloring ofG�v D H;

let vi receive color i; 1 � i � �: For i ¤ j; let Hij be the subgraph of H induced
by the vertices receiving the ith and jth colors.
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Fig. 7.3 Graphs for proof of
Theorem 7.3.7 (The numbers
inside the parentheses denote
the vertex colors)

Claim 2. vi and vj belong to the same component of Hij : Otherwise, the colors
i and j can be interchanged in the component of Hij that contains the vertex vj :
Such an interchange of colors once again yields a proper �-coloring of H: In this
new coloring, both vi and vj receive the same color, namely, i; a contradiction to
Claim 1. This proves Claim 2.

Claim 3. If Cij is the component of Hij containing vi and vj ; then Cij is a path in
Hij : As before, NH.vi / contains exactly one vertex of color j: Further, Cij cannot
contain a vertex, say y; of degree at least 3I for, if y is the first such vertex on a
vi � vj path in Cij that has been colored, say, with i; then at least three neighbors
of y in Cij have the color j: Hence, we can recolor y in H with a color different
from both i and j; and in this new coloring ofH; vi and vj would belong to distinct
components of Hij (see Fig. 7.3a). (Note that by our choice of y; any vi � vj path
in Hij must contain y:) But this contradicts Claim 3.

Claim 4. Cij \ Cik D fvi g for j ¤ k: Indeed, if w 2 Cij \ Cik; w ¤ vi ; then
w is adjacent to two vertices of color j on Cij and two vertices of color k on Cik
(see Fig. 7.3b). Again, we can recolor w in H by giving a color different from the
colors of the neighbors of w in H: In this new coloring of H; vi and vj belong to
distinct components ofHij ; a contradiction to Claim 2. This completes the proof of
Claim 4.
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Fig. 7.4 Different colorings of K3;3 � e

We are now in a position to complete the proof of the theorem. By hypothesis,G is
not complete. Hence,G has a vertex v; and a pair of nonadjacent vertices v1 and v2 in
NG.v/ (see Exercise 5.11, Chap. 1). Then the v1 � v2 path C12 inH12 ofH D G � v
contains a vertex y (¤ v2) adjacent to v1: Naturally, y would receive color 2: Since
� � 3; by Claim 1, there exists a vertex v3 2 NG.v/: Now interchange colors 1
and 3 in the path C13 of H13: This would result in a new coloring of H D G � v:
Denote the vi -vj path in H under this new coloring by C 0

ij (see Fig. 7.3c). Then
y 2 C 0

23 since v1 receives color 3 in the new coloring (whereas y retains color 2).
Also, y 2 C12 � v1 � C 0

12: Thus, y 2 C 0
23 \ C 0

12: This contradicts Claim 4 (since
y ¤ v2), and the proof is complete. �

7.3.2 Other Coloring Parameters

There are several other vertex coloring parameters of a graph G: We now mention
three of them. Let f be a k-coloring (not necessarily proper) of G; and let
.V1; V2; : : : ; Vk/ be the color classes of G induced by f: Coloring f is pseudo-
complete if between any two distinct color classes, there is at least one edge of G:
f is complete if it is pseudocomplete and each Vi ; 1 � i � k; is an independent set
of G: Thus, �.G/ is the minimum k for which G has a complete k-coloring f:

Definition 7.3.8. The achromatic number a.G/ of a graphG is the maximum k for
which G has a complete k-coloring.

Definition 7.3.9. The pseudoachromatic number  .G/ ofG is the maximum k for
which G has a pseudocomplete k-coloring.

Example 7.3.10. Figure 7.4 gives (a) a chromatic, (b) an achromatic, and (c) a
pseudoachromatic coloring of K3;3 � e:

It is clear that for any graph G; �.G/ � a.G/ �  .G/:

Exercise 3.14. LetG be a graph andH a subgraph of G: Prove that �.H/ � �.G/

and  .H/ �  .G/: Show by means of an example that a.H/ � a.G/ need not
always be true.
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Exercise 3.15. Prove

(i)  . � 1/ � 2m:

(ii)  .Ka _ Kc
b/ D aC 1:

From (ii) deduce that for any graph,  � n � ˛ C 1:

Exercise 3.16. If G has a complete coloring using k colors, prove that k �
1Cp

1C8m
2

: (m D size of G).

Exercise 3.17. Prove that for a complete bipartite graphG; a.G/ D 2:

Exercise 3.18. What is the minimum number of edges that a connected graph with
pseudoachromatic number  can have? Construct one such tree.

Exercise 3.19. If G is a subgraph of H; prove that  .G/ �  .H/:

Exercise 3.20. Prove:  .Kn;n/ D nC 1:

7.3.3 b-Colorings

Definition 7.3.11. A b-coloring of a graph G is a proper coloring with the
additional property that each color class contains a color-dominating vertex (c.d.v.),
that is, a vertex that has a neighbor in all the other color classes. The b-chromatic
number of G is the largest k such that G has a b-coloring using k colors; it is
denoted by b(G).

The concept of b-coloring was introduced by Irving and Manlove [111].
Exercise 3.21 guarantees the existence of the b-chromatic number for any graph

G and shows that �.G/ � b.G/: Note that b.Kn/ D n while b.Km;n/ D 2:

Exercise 3.21. Show that the chromatic coloring of a graphG is a b-coloring of G:

Exercise 3.22. Prove that Kn;n � F; n � 2; where F is a 1-factor ofKn;n; has a b-
coloring using 2 colors and n colors but none with k colors for any k in 2 < k < n:

Exercise 3.23. Prove b.G/ � 1 C�.G/: A better upper bound for b.G/ is given
in the next exercise.

Exercise 3.24. Let d1 � d2 � : : : � dn be the degree sequence of the graph G
with vertex set V D fv1; : : : ; vng; and di D d.vi /; 1 � i � n: Let M.G/ D
maxfi W di � i � 1; 1 � i � ng: Prove that b.G/ � M.G/: Show further that the
number of vertices of degree at least M.G/ in G is at most M.G/:

Exercise 3.25. LetQp be the hypercube of dimensionp: Prove b.Q1/ D b.Q2/D2;
and b.Q3/ D 4: [A result of Kouider and Mahéo [125] states that for p � 3;

b.Qp/ D p C 1.]

We complete this section by presenting a result of Kratochvı́l, Tuza, and Voigt
[126] that characterizes graphs with b-chromatic number 2: Let G be a bipartite
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graph with bipartition .X; Y /: A vertex x 2 X (respectively, y 2 Y ) is called a
full vertex (or a charismatic vertex) of X (respectively, Y ) if it is adjacent to all the
vertices of Y (respectively,X ).

Theorem 7.3.12 ( [126]). Let G be a nontrivial connected graph. Then b.G/ D 2

if and only if G is bipartite and has a full vertex in each part of the bipartition.

Proof. Suppose G is bipartite and has a full vertex in each part, say x 2 X and
y 2 Y . Naturally, in any b-coloring, the color class containing x; sayW1; is a subset
of X and that containing y; say W2; is a subset of Y: If G has a third color class W3

disjoint fromW1 and W2; then W3 must have a c.d.v. adjacent to a vertex of W1 and
a vertex of W2: This is impossible, as G is bipartite. Therefore, b.G/ D 2:

Conversely, let b.G/ D 2: Then �.G/ D 2 and therefore G is bipartite. Let
.X; Y / be the bipartition of G: Assume that G does not have a full vertex in at least
one part, say,X: Let x1 2 X:As x1 is not a full vertex, there exists a vertex y1 2 Y to
which it is not adjacent. LetX1 be the maximal subset ofX such that V1 D X1[fy1g
is independent in G: Now choose a new vertex x2 2 XnX1. Again, as X has no full
vertex, we can find a y2 2 Y nfy1g to which x2 is not adjacent. Let X2 be the
maximal subset ofXnX1 such that V2 D X2[fy2g is independent inG: In this way,
all the vertices of X would be exhausted and let V1; V2; : : : ; Vk be the independent
sets thus formed. Also, let Y0 denote the set of uncovered vertices of Y; if any.
Since G is connected, G ¤ hVi [ Vj i; and G ¤ hVl [ Y0i; i; j; l 2 f1; 2; : : : ; kg:
Hence, k � 2 when Y0 ¤ ; and k � 3 when Y0 D ;: Thus, the partition V D
V1[V2[: : :[Vk[fVkC1 D Y0g has at least 3 parts. If each of these parts has a c.d.v.,
we get a contradiction to the fact that b.G/ D 2: If not, assume that the class Vl has
no c.d.v. Then for each vertex x of Vl ; there exists a color class Vj ; j ¤ l; having no
neighbor of x: Then x could be moved to the class Vj : In this way, the vertices in Vl
can be moved to the other Vi ’s without disturbing independence. Let us call the new
classes V 0

1 ; V
0
2 ; : : : ; V

0
l�1; V 0

lC1; : : : ; V 0
kC1: If each of these color classes contains a

c.d.v., we get a contradiction as k � 3: Otherwise, argue as before and reduce the
number of color classes. As G is connected, successive reductions should end up in
at least three classes, contradicting the hypothesis that b.G/ D 2: �

A description of several other coloring parameters can be found in Jensen and
Toft [116].

7.4 Homomorphisms and Colorings

Homomorphisms of graphs generalize the concept of graph colorings.

Definition 7.4.1. Let G and H be simple graphs. A homomorphism from G to H
is a map f W V.G/ ! V.H/ such that f .x/f .y/ 2 E.H/ whenever xy 2 E.G/:
The map f is an isomorphism if f is bijective and xy 2 E.G/ if and only if
f .x/f .y/ 2 E.H/:
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We write f W G ! H to denote the fact that f is a homomorphism from G

to H and write G ' H to denote that G is isomorphic to H: If f W G ! H

is a graph homomorphism, then hff .x/ W x 2 V.G/gi; the subgraph induced in
H by the image set f .V.G// is the image of f: If f .V.G// D V.H/; f is an
onto-homomorphism. If f W G ! H; then for any vertex v of H; f �1.v/ is an
independent set of G: (If f �1.v/ D ;; then f �1.v/ is an independent subset of
V.G/; while if f �1.v/ contains an edge uw; then f .u/ D v D f .w/; and henceH
has a loop at v; a contradiction to the fact thatH is a simple graph).

Lemma 7.4.2. Let G1; G2, and G3 be graphs and let f1 W G1 ! G2; and f2 W
G2 ! G3 be homomorphisms. Then f2 ı f1 W G1 ! G3 is also a homomorphism.
[Here .f2 ı f1/.g/ D f2.f1.g//.]

Proof. Follows by direct verification. �

A graph homomorphism is a generalization of graph coloring. Suppose G ia a
given graph and there exists a homomorphism f W G ! Kk; where k is the least
positive integer with this property. Then f is onto and the sets Si D ff �1.vi / W
vi 2 Kkg; 1 � i � k; form a partition of V.G/: Moreover, between any two
sets Si and Sj ; i ¤ j; there must be an edge of G: Otherwise, A D Si [ Sj is
an independent set of G; and we can define a homomorphism from G to Kk�1 by
mapping A to the same vertex of Kk�1: Thus, �.G/ D k: We state this result as a
theorem.

Theorem 7.4.3. Let G be a simple graph. Suppose there exists a homomorphism
f W G ! Kk; and let k be the least positive integer with this property. Then
�.G/ D k:

Corollary 7.4.4. If there exists a homomorphism f W G ! Kp; then �.G/ � p:

Corollary 7.4.5. Let f W G ! H be a graph homomorphism. Then �.G/ �
�.H/:

Proof. Let �.H/ D k: Then there exists a homomorphism g W H ! Kk: By
Lemma 7.4.2, g ı f W G ! Kk is a homomorphism. Now apply Corollary 7.4.4.

�

Example 7.4.6. Let V1 D fu1; : : : ; u7g and V2 D fv1; : : : ; v5g be the vertex sets of
the cycles C7 and C5; respectively. Then the map f .u1/ D v1; f .u2/ D v2; f .u3/ D
v3; f .u4/ D v2; f .u5/ D v3; f .u6/ D v4; and f .u7/ D v5 is a homomorphism of
C7 to C5:

7.4.1 Quotient Graphs

Let f W G ! H be a graph homomorphism from G onto H: Let V.H/ D
fv1; : : : ; vkg; and Si D f �1.vi /; 1 � i � k: Then no Si is empty. The quotient
graphG=f is defined to be the graph with the sets Si as its vertices and in which two
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vertices Si and Sj are adjacent if vivj 2 E.H/: This defines a natural isomorphism
Qf W G=f ' H:

A consequence of the above remarks is the fact that a complete k-coloring
of G is just a homomorphism of G onto Kk: Recall that both the chromatic
and achromatic colorings are complete colorings. We now establish the coloring
interpolation theorem for the complete coloring.

Theorem 7.4.7 (Interpolation theorem for complete coloring). If a graph G
admits a complete k-coloring and a complete l-coloring, then it admits a complete
i -coloring for every i between k and l:

Proof. Let A1;A2; : : : ; Ak and B1;B2; : : : ; Bl be the color partitions in the two
complete colorings. We assume without loss of generality that k < l: Clearly, it
suffices to construct a complete .k C 1/-coloring of G: For each i D 0; 1; 2; : : : ; l;

let Ci D S
1�j�i Bj : Let �i denote the partition of V.G/ by the nonempty sets of

the sequence B1;B2; : : : ; Bi I A1 � Ci ; A2 � Ci ; : : : ; Ak � Ci : The partition�0 has
parts A1;A2; : : : ; Ak I the partition �l has parts B1;B2; : : : ; Bl (since Cl D V.G/;

Ai � Cl D ; for each j ). Hence, G=�0 ' Kk and G=�l ' Kl: Hence, there
must exist a first suffix j; 0 < j � l; such that G=�j is not k-colorable. By the
choice of j; this implies that G=�j is .k C 1/-colorable since we can simply color
Bj by the .kC1/-st color, and hence by Lemma 7.4.2,G is .kC1/-colorable. (Just
compose the two onto homomorphismsG ! G=�j ! KkC1.) �

Exercise 3.22 shows that an interpolation theorem similar to that of complete
coloring does not hold good for the b-coloring.

Exercise 4.1. Let f W G ! H be a graph homomorphism and let x; y 2 V.G/:

Prove dH.x; y/ � dG.x; y/:

Exercise 4.2. Assume that there exists a homomorphism fromG onto Ck; where k
is odd. Show that G must contain an odd cycle. Show by means of an example that
a similar statement need not hold good if k is even.

Exercise 4.3. Prove that there exists a homomorphism from C2lC1 to C2kC1 if and
only if l � k:

7.5 Triangle-Free Graphs

Definition 7.5.1. A graph G is triangle-free if G contains noK3:

Remark 7.5.2. Triangle-free graphs cannot contain aKk; k � 3; either. It is obvious
that if a graph G contains a clique of size k; then �.G/ � k: However, the
converse is not true. That is, if the chromatic number of G is large, then G need
not contain a clique of large size. The construction of triangle-free k-chromatic
graphs, for k � 3; was raised in the middle of the 20th century. In answer to this
question, Mycielski [144] developed an interesting graph transformation known as
the Mycielskian of a graph.
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Definition 7.5.3. Let G be a finite simple connected graph with vertex set V D
V.G/ and edge set E D E.G/: The Mycielskian �.G/ of G is defined as follows:
The vertex set V.�.G// of �.G/ is the disjoint union V [ V 0 [ fug; where V 0 D
fx0 W x 2 V g and the edge set of�.G/ isE.�.G// D E[fx0y W xy 2 Eg[fx0u W
x0 2 V 0g:

We denote V.�.G// by the triad fV; V 0; ug: For x 2 V; we call x0 2 V 0; the
twin of x in �.G/; and vice versa, and u; the root of �.G/: Figure 7.5 displays the
Mycielskian �.K1;3 C e/:

Remark 7.5.4. The following facts about �.G/; where G is of order n and size m;
are obvious:

(i) jV.�.G//j D 2nC 1:

(ii) For each v 2 V; d�.G/.v/ D 2dG.v/:
(iii) For each v0 2 V 0; d�.G/.v0/ D dG.v/C 1:

(iv) d�.G/.u/ D n:

We now establish some basic results concerning the Mycielskian.

Theorem 7.5.5. �.�.G// D �.G/C 1:

Proof. Assume that �.G/ D k: Consider a proper (vertex) k-coloring c of G using
the colors, say, 1; 2; : : : ; k: We now give a proper .kC 1/-coloring c0 for �.G/: For
v 2 V; set c0.v/ D c.v/: For the twin v0 2 V 0; set c0.v0/ D c.v/: For the root u
of �.G/; set c0.u/ D k C 1: Then c0 is a proper coloring for �.G/ using k C 1

colors and therefore �.�.G// � k C 1: [c0 is proper because for any edge xy0;
c0.x/ D c.x/ ¤ c.y/ D c0.y0/:] We now show that it is actually k C 1:

Suppose �.G/ has a proper k-coloring c00 using the colors 1; 2; : : : ; k: Assume,
without loss of generality, that c00.u/ D 1: Then for any v0 2 V 0; c00.v0/ ¤ 1:Recolor
each vertex of V that has been colored by 1 in c00 by the color of its twin under c00:
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Fig. 7.6 The Grötzsch graph,
�.C5/

Then this gives a proper coloring of V using the k � 1 colors 2; 3; : : : ; k: This is
impossible as �.G/ D k: This proves that �.�.G// D k C 1 D �.G/C 1: �
Theorem 7.5.6. If G triangle-free, then �.G/ is also triangle-free.

Proof. Assume that G is triangle-free. If �.G/ contains a triangle, it can only be
of the form vwz0; where v 2 V; w 2 V; and z0 2 V 0; so that vz0 and wz0 are edges
of �.G/: This means, by the definition of �.G/; that vz and wz are edges of G and
hence vwz is a triangle in G, a contradiction. �

Theorem 7.5.7 (Mycielski [144]). For any positive integer p; there exists a
triangle-free graph with chromatic number p:

Proof. For p D 1; 2; the result is trivial. [For p D 1; take G D K1; and for p D 2;

take G D K2: For p D 3; take G D �.K2/: �.K2/ D C5 is triangle-free and
�.C5/ D 3.] For p � 3; by Theorems 7.5.5 and 7.5.6, the iterated Mycielskian
�p�2.K2/ D �.�p�3.K2// is triangle-free and has chromatic number p: �

Remark 7.5.8. The graph �2.K2/ D �.C5/ is the Grötzsch graph of Fig. 7.6.

Theorem 7.5.9. If G is critical, then so is �.G/:

Proof. Assume that G is k-critical. Since by Theorem 7.4.5, �.�.G// D kC 1; we
have to show that �.G/ is .k C 1/-critical.
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Start with a .k C 1/-coloring c with colors 1; 2; : : : ; k C 1 of �.G/ with vertex
set fV; V 0; ug:

We first show that �.�.G/ � u/ D k: Without loss of generality, assume that
c.u/ D 1: Then 1 is not represented in V 0: Let S be the set of vertices receiving the
color 1 in V under c: Recolor each vertex v of S by the color of its twin v0 2 V 0:
This gives a proper coloring of�.G/�u using k colors and hence �.�.G/�u/ D k:

[Recall that adjacency of v and w in G implies adjacency of vw0 and v0w in �.G/.]
Next remove a vertex v0 of V 0 from �.G/: Without loss of generality, assume

that c.u/ D 1 and c.v0/ D 2: Now recolor the vertices of G � v by the k � 1 colors
3; : : : ; k; kC1 (this is possible asG is k-critical) and recolor the vertices of V 0 �v0;
if necessary, by the colors of their twins in V � v: Also, give color 1 to v: This
coloring of �.G/�v0 misses the color 2 and gives a proper k-coloring to �.G/�v0:

Lastly, we give a k-coloring to �.G/ � v; v 2 V: Color the vertices of G � v by
1; 2; : : : ; k�1 so that the resulting coloring ofG�v is proper. LetA be the subset of
G�v whose vertices have received color 1 in this new coloring and A0 � V 0 denote
the set of twins of the vertices in A: Now color the vertices of .V 0nA0/ � v0 by the
colors of their twins in G; the vertices of A0 [fv0g by color k; and u by color 1: This
coloring is a proper coloring of �.G/ � v; which misses the color k C 1 in the list
f1; 2; : : : ; k C 1g: Thus, �.G/ is .k C 1/-critical. �

Remark 7.5.10. Apply Theorem 7.5.12 to observe that for each k � 1; there
exists a k-critical triangle-free graph. Not every k-critical graph is triangle-free;
for example, the complete graphKk .k � 3/ is k�critical but is not triangle-free.

Lemma 7.5.11. Let f W G ! H be a graph isomorphism of G onto H: Then
f .NG.x// D NH.f .x//: Further, G � x ' H � f .x/; and G � NGŒx� ' H �
NHŒf .x/� under the restriction maps of f to the respective domains.

Proof. The proof follows from the definition of graph isomorphism. �

Theorem 7.5.12 ( [13]). For connected graphs G and H; �.G/ ' �.H/ if and
only if G ' H:

Proof. If G ' H; then trivially �.G/ ' �.H/: So assume that G and H are
connected and that �.G/ ' �.H/: When n D 2 or 3, the result is trivial. So
assume that n � 4: IfG is of order n; then�.G/ and�.H/ are both of order 2nC1;
and so H is also of order n: Let f W �.G/ ! �.H/ be the given isomorphism,
where V.�.G// and V.�.H// are given by the triads .V1; V 0

1 ; u1/ and .V2; V 0
2 ; u2/;

respectively.
We look at the possible images of the root u1 of�.G/ under f: Both u1 and u2 are

vertices of degree n: If f .u1/ D u2; then by Lemma 7.5.11,G D �.G/�NŒu1� '
�.H/�NŒu2� D H:

Next we claim that f .u1/ … V2: Suppose f .u1/ 2 V2: Since d�.H/.f .u1// D
d�.G/.u1/ D n; it follows from the definition of the Mycielskian that in �.H/; n

2

neighbors of f .u1/ belong to V2 while another n
2

neighbors (the twins) belong to
V 0
2 : (This forces n to be even.) These n neighbors of f .u1/ form an independent

subset of �.H/: Then H 0 D �.H/ � N�.H/Œf .u1/� ' �.G/ � N�.G/Œu1� D G:
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Now if x 2 V2 is adjacent to f .u1/ in �.H/; then x is adjacent to f .u1/0; the twin of
f .u1/ belonging to V 0

2 in �.H/: Further, dH 0.f .u1/0/ D 1 D dG.v/; where v 2 V1
(the vertex set of G) corresponds to f .u1/0 in �.H/: But then d�.G/.v/ D 2; while
d�.H/.f .u/0/ D n

2
C 1 > 2; as n � 4: Hence, this case cannot arise.

Finally, suppose that f .u1/ 2 V 0
2 : Set f .u1/ D y0: Then y; the twin of y0

in �.H/; belongs to V2: As d�.G/.u1/ D n; d�.H/.y
0/ D n: The vertex y0 has

n � 1 neighbors in V2; say, x1; x2; : : : ; xn�1: Then NH.y/ D fx1; x2; : : : ; xn�1g;
and hence y is also adjacent to x0

1; x
0
2; : : : ; x

0
n�1 in V 0

2 : Further, as N�.G/.u1/ is
independent,N�.H/.y0/ is also independent. Therefore,H D starK1;n�1 consisting
of the edges yx1; yx2; : : : ; yxn�1: Moreover, G D �.G/ � NŒu1� ' �.H/ �
NŒy0� D star K1;n�1 consisting of the edges yx0

1; yx
0
2; : : : ; yx

0
n�1: Thus, G '

K1;n�1 ' H: �

7.6 Edge Colorings of Graphs

7.6.1 The Timetable Problem

Suppose in a school there are r teachers, T1; T2; : : : ; Tr ; and s classes,
C1; C2; : : : ; Cs: Each teacher Ti is expected to teach the class Cj for pij periods.
It is clear that during any particular period, no more than one teacher can handle
a particular class and no more than one class can be engaged by any teacher. Our
aim is to draw up a timetable for the day that requires only the minimum number of
periods. This problem is known as the “timetable problem.”

To convert this problem into a graph-theoretic one, we form the bipartite graph
G D G.T;C /with bipartition .T; C /;where T represents the set of teachers Ti and
C represents the set of classes Cj : Further, Ti is made adjacent to Cj in G with pij
parallel edges if and only if teacher Ti is to handle class Cj for pij periods. Now
color the edges of G so that no two adjacent edges receive the same color. Then the
edges in a particular color class, that is, the edges in that color, form a matching inG
and correspond to a schedule of work for a particular period. Hence, the minimum
number of periods required is the minimum number of colors in an edge coloring
of G in which adjacent edges receive distinct colors; in other words, it is the edge-
chromatic number of G: We now present these notions as formal definitions.

Definition 7.6.1. An edge coloring of a loopless graph G is a function � W
E.G/ ! S; where S is a set of distinct colors; it is proper if no two adjacent
edges receive the same color. Thus, a proper edge coloring � of G is a function
� W E.G/ ! S such that �.e/ ¤ �.e0/ whenever edges e and e0 are adjacent in
G; and it is a proper k-edge coloring of G if jS j D k:

Definition 7.6.2. The minimum k for which a loopless graphG has a proper k-edge
coloring is called the edge-chromatic number or chromatic index of G: It is denoted
by �0.G/: G is k-edge-chromatic if �0.G/ D k:
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Further, if an edge uv is colored by color c; we say that c is represented at both
u and v: If G has a proper k-edge coloring,E.G/ is partitioned into k edge-disjoint
matchings.

It is clear that for any (loopless) graph G; �0.G/ � �.G/ since the �.G/ edges
incident at a vertex v of maximum degree�.G/must all receive distinct colors. For
bipartite graphs, however, equality holds.

Theorem 7.6.3 (KRonig). If G is a bipartite graph, �0.G/ D �.G/:

Proof. The proof is by induction on the size (i.e., number of edges) m of G: The
result is true form D 1:Assume the result for bipartite graphs of size at mostm�1:
LetG havem edges. Let e D uv 2 E.G/: ThenG�e has [since�.G�e/ � �.G/]
a proper �-edge coloring, say c: Out of these � colors, suppose that one particular
color is not represented at both u and v: Then in this coloring the edge uv can be
colored with this color, and a proper�-edge coloring of G is obtained.

In the other case (that is, in the case in which each of the � colors is represented
either at u or at v in G � e), since the degrees of u and v in G � e are at most�� 1;
there exists a color out of the � colors that is not represented in G � e at u; and
similarly there exists a color not represented at v: Thus, if color j is not represented
at u in c; then j is represented at v in c; and if color i is not represented at v in c;
then i is represented at u in c: Since G is bipartite and u and v are not in the same
parts of the bipartition, there can exist no u-v path in G in which the colors alternate
between i and j:

Let P be a maximal path in G � e starting from u in which the colors of the
edges alternate between i and j: Interchange the colors i and j in P: This would
still yield a proper edge coloring of G � e using the� colors in which color i is not
represented at both u and v: Now color the edge uv by the color i: This results in a
proper�-edge coloring of G: �
Exercise 6.1. Disprove the converse of Theorem 7.6.3 by a counterexample.

Next, we determine the chromatic index of the complete graphs.

Theorem 7.6.4. �0.Kn/ D
(
n � 1 if n is even,

n if n is odd:

Proof. (Berge) Since Kn is regular of degree n � 1; �0.Kn/ � n � 1:
Case 1. n is even. We show that �0.Kn/ � n � 1 by exhibiting a proper .n � 1/-
edge coloring ofKn: Label the n vertices ofKn as 0; 1; : : : ; n�1:Draw a circle with
center at 0 and place the remaining n�1 numbers on the circumference of the circle
so that they form a regular .n�1/-gon (Fig. 7.7). Then the n

2
edges .0; 1/; .2; n�1/;

.3; n� 2/; : : : ; . n
2
; n
2

C 1/ form a 1-factor of Kn: These n
2

edges are the thick edges
of Fig.7.7. Rotation of these edges through the angle 2�

n�1 in succession gives .n�1/
edge-disjoint 1-factors of Kn: This would account for n

2
.n � 1/ edges and hence all

the edges of Kn: (Actually, the above construction displays a 1-factorization of Kn

when n is even.) Each 1-factor can be assigned a distinct color. Thus, �0.Kn/ �
n � 1: This proves the result in Case 1.
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Fig. 7.7 Graph for proof
of Theorem 7.6.4

Case 2. n is odd. Take a new vertex and make it adjacent to all the n vertices ofKn:

This givesKnC1: By Case 1, �0.KnC1/ D n: The restriction of this edge coloring to
Kn yields a proper n-edge coloring ofKn:Hence, �0.Kn/ � n: However,Kn cannot
be edge colored properly with n�1 colors. This is because the size of any matching
of Kn can contain no more than n�1

2
edges, and hence n � 1 matchings of Kn can

contain no more than .n�1/2
2

edges. ButKn has n.n�1/
2

edges. Thus, �0.Kn/ � n; and
hence �0.Kn/ D n: �

Exercise 6.2. Show that a Hamiltonian cubic graph is 3-edge-chromatic.

Exercise 6.3. Show that the Petersen graph is 4-edge-chromatic.

Exercise 6.4. Show that the Herschel graph (see Fig. 5.4) is 4-edge-chromatic.

Exercise 6.5. Determine the edge-chromatic number of the GrRotzsch graph
(Fig. 7.6).

Exercise 6.6. Show that a simple cubic graph with a cut edge is 4-edge-chromatic.

Exercise 6.7. Describe a proper k-edge coloring of a k-regular bipartite graph.

Exercise 6.8. Show that any bipartite graphG of maximum degree� is a subgraph
of a�-regular bipartite graph. Hence, furnish an alternative proof of Theorem 7.6.3,
using Exercise 6.7.
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Fig. 7.8 Graph for proof of Theorem 7.6.5

7.6.2 Vizing’s Theorem

Although it is true that for any loopless graph G; �0.G/ � �.G/; it turns out that
for any simple graph G; �0.G/ � 1C�.G/: This major result in edge coloring of
graphs was established by Vizing [183] and independently by Gupta [81].

Theorem 7.6.5 (Vizing-Gupta). For any simple graph G; �.G/ � �0.G/ � 1 C
�.G/:

Proof. In a proper edge coloring of G; �.G/; colors are to be used for the edges
incident at a vertex of maximum degree in G: Hence, �0.G/ � �.G/:

We now prove that �0.G/ � 1C�; where� D �.G/:

If G is not .1C�/-edge-colorable, choose a subgraphH of G with a maximum
possible number of edges such that H is .1 C �/-edge-colorable. We derive a
contradiction by showing that there exists a subgraph H0 of G that is .1 C �/-
edge-colorable and has one edge more than H:

By our assumption, G has an edge uv1 … E.H/: Since d.u/ � �; and 1 C �

colors are being used in H; there is a color c that is not represented at u (i.e., not
used for any edge of H incident at u). For the same reason, there is a color c1 not
represented at v1: (See Fig. 7.8, where the color not represented at a particular vertex
is enclosed in a circle and marked near the vertex.)

There must be an edge, say uv2 ofH; colored c1I otherwise, uv1 can be assigned
the color c1; andH [ .uv1/; which has one edge more thanH; would have a proper
.1 C �/-edge coloring. Again, there is a color, say c2; not represented at v2: Then
as above, there is an edge uv3 colored c2 and there is a color, say c3; not represented
at v3:

In this way, we construct a sequence of edges fuv1; uv2; : : : ; uvkg such that color
ci is not represented at vertex vi ; 1 � i � k; and the edge uvjC1 receives the color
cj ; 1 � j � k � 1 (see Fig. 7.8).

Suppose at some stage, say the r th stage, where 1 � r � k; c (the missing
color at u) is not represented at vr :We then “cascade” (i.e., shift in order) the colors
c1; : : : ; cr�1 from uv2; uv3; : : : ; uvr to uv1; uv2; : : : ; uvr�1: Under this new coloring,
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cj=

Fig. 7.9 Another graph for proof of Theorem 7.6.5

c is not represented both at u and at vr ; and therefore we can color uvr with c: This
yields a proper .1C�/-edge coloring toH [ .uv1/; contradicting the choice ofH:
Hence, we may assume that c is represented at each of the vertices v1; v2; : : : ; vk:

Now we need to know why the sequence of edges uvi ; 1 � i � k; had stopped.
There are two possible reasons. Either there is no edge incident to u that is colored
ck; or the color ck D cj for some j < k�1 and so has already been represented at u:
Note that the sequence must stop at some finite stage since d.u/ is finite; however,
it may as well stop before all the edges incident to u are exhausted.

If ck is not represented at u in H; then we can cascade as before so that uvi gets
color ci ; 1 � i � k � 1; and then color uvk with color ck: Once again, we have a
contradiction to our assumption on H:

Thus, we must have ck D cj for come j < k � 1: In this case, cascade the
colors c1; c2; : : : ; cj so that uvi has color ci ; 1 � i � j; and leave uvjC1 uncolored
(Fig. 7.9). Let S D .H [ .uv1//� uvjC1: Then S and H have the same number of
edges.

Now consider Sccj ; the subgraph of S defined by the edges of S with colors c
and cj : Clearly, each component of Sccj is either an even cycle or a path in which
the adjacent edges alternate with colors c and cj :

Now, c is represented at each of the vertices v1; v2; : : : ; vk; and in particular at
vjC1 and vk:But cj is not represented at vjC1 and vk; since we have just moved cj to
uvj ; and cj D ck is not represented at vk: Hence in Sccj ; the degrees of vjC1 and vk
are both equal to 1. Moreover, cj is represented at u; but c is not. Therefore, u also
has degree 1 in Sccj : As each component of Sccj is either a path or an even cycle,
not all of u; vjC1; and vk can be in the same component of Sccj (since a nontrivial
path has only two vertices of degree 1).

If u and vjC1 are in different components of Sccj ; interchange the colors c and
cjC1 in the component containing vjC1: Then c is not represented at both u and
vjC1; and so we can color the edge uvjC1 with c: This gives a .1C�/-edge coloring
to the graph S [ .uvjC1/:
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Fig. 7.10 Graph illustrating
the generalized Vizing’s
theorem

Suppose then u and vjC1 are in the same components of Sccj : Then, necessarily,
vk is not in this component. Interchange c and cj in the component containing vk:
In this case, further cascade the colors so that uvi has color ci ; 1 � i � k � 1: Now
color uvk with color c:

Thus, we have extended our edge coloring of S with 1 C � colors to one more
edge of G: This contradiction proves that H D G; and thus �0.G/ � 1C�: �

Actually, Vizing proved a more general result than the one given above. Let G be
any loopless graph and let � denote the maximum number of edges joining two
vertices in G: Then the generalized Vizing’s theorem states that � � �0 � �C �:

This theorem is the best possible in that there are graphs with �0 D � C �: For
example, let G be the graph of Fig. 7.10. Since any two edges of G are adjacent,
�0 D m.G/ D 3� D �C �: For a proof of the generalized Vizing’s theorem, see
Yap [194].

Definition 7.6.6. Graphs for which �0 D � are called Class 1 graphs and those for
which �0 D 1C� are called Class 2 graphs.

Example 7.6.7. Bipartite graphs are of class 1 (see Theorem 7.6.3), whereas the
Petersen graph (see Exercise 6.3) and any simple cubic graph with a cut edge (see
Exercise 6.6) are of class 2.

For details relating to graphs of class 1 and class 2; see [62, 194].

Exercise 6.9. LetG be a simple�-edge-chromatic critical graph [i.e.,G is of class
1 and for every edge e of G; �0.G � e/ < �0.G/]. Prove that if uv 2 E.G/; then
d.u/C d.v/ � �C 2:

We now return to the timetable problem. Following are some examples of such a
problem.

Problem 1. In a social health checkup scheme, specialist physicians are to visit
various health centers. Given the places each physician has to visit and also the time
interval of his or her visit, how can we fit in an itinerary? The assumption is that
each health center can accommodate only one doctor at a time.

Problem 2. Mobile laboratories are to visit various schools in a city. Given the
places each lab has to visit and also the time interval (period) of visits in a day,
how can we fit in a timetable for the laboratories?
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Problem 3. In an educational institution, as is well known, teachers have to instruct
various classes. Given the various classes each teacher has to instruct in a day, how
can we fit in a timetable? It is presumed that a teacher can teach only one class at a
time and that each class could be taught by only one teacher at a time!

We shall now discuss Problem 3. Let x1; x2; : : : ; xn denote the teachers and
y1; y2; : : : ; ym the classes. Let tij denote the number of periods for which teacher
xi has to meet class yj : How can we draw up a timetable? If there are constraints
on the availability of classrooms, what is the minimum number of periods required
to implement a timetable? If the number of periods in a day is specified, what is the
minimum number of rooms required to implement the timetable? All these problems
could be analyzed by using a suitable graph.

Let G.T;C / be a bipartite graph formed with T D fx1; x2; : : : ; xpg and C D
fy1; y2; : : : ; yqg as the bipartition and in which there are tij parallel edges with
xi and yj as their common ends. If T denotes the set of teachers and C the
set of classrooms, a teaching assignment for a period determines a matching in
the bipartite graph G: Conversely, any matching in G corresponds to a teaching
assignment for one period. The edges ofG could be partitioned into� edge-disjoint
matchings (see Theorem 7.6.3). Corresponding to the � matchings, a �-period
timetable can be drawn up.

Let N be the total number of periods to be taught by all teachers put together.
Then, on average, N=� classes are to be taught per period. Hence, at least dN=�e
rooms are necessary to implement a�-period timetable. We present below a method
for drawing up such a timetable. For this, we need Lemma 7.6.8.

Lemma 7.6.8. Let M andN be disjoint matchings of a graphG with jM j > jN j:
Then there are disjoint matchings M 0 and N 0 of G with jM 0j D jM j � 1 and
jN 0j D jN j C 1 and with M 0 [N 0 D M [N:

Proof. Consider the subgraphH D GŒM [N�: Each component of H is either an
even cycle or a path with edges alternating between M and N: Since jM j > jN j;
some path component P of H must have its initial and terminal edges in M: Let
P D v0e1v1e2v2 : : : e2rC1v2rC1:

Now set

M 0 D .Mnfe1; e3; : : : ; e2rC1g/ [ fe2; e4; : : : ; e2rg
and

N 0 D .Nnfe2; e4; : : : ; e2rg/ [ fe1; e3; : : : ; e2rC1g:
ThenM 0 andN 0 are disjoint matchings ofG satisfying the conditions of the lemma.

�

Theorem 7.6.9. If G is a bipartite graph (withm edges), and if m � t � �; then
there exist t disjoint matchingsM1;M2; : : : ;Mt of G such that

E D M1 [M2 [ : : : [Mt
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Fig. 7.11 Bipartite graph
corresponding to Problem 1

and, for 1 � i � t;

bm=tc � jMi j � dm=te :

(In other words, any connected bipartite graph G is equitably t-edge-colorable,
wherem � t � �:)

Proof. By Theorem 7.6.3, �0 D �: Hence, E.G/ can be partitioned into �

matchings M 0
1;M

0
2; : : : ;M

0
�: So for t � �; there exist disjoint matchings

M 0
1;M

0
2; : : : ;M

0
t ; where M 0

i D ; for �C 1 � i � t; and

E D M 0
1 [M 0

2 [ : : :M 0
t :

Now repeatedly apply Lemma 7.6.8 to pairs of matchings that differ by more
than one in size. This would eventually result in matchings M1;M2; : : : ;Mt of G
satisfying the condition stated in the theorem. �
Coming back to our timetable problem, if the number of rooms available, say r;
is less than N=� (so that N=r > �/; then the number of periods is to be
correspondingly increased. Hence, starting with an edge partition of E.G/ into
matchings M 0

1;M
0
2; : : : ;M

0
�; we apply Lemma 7.6.8 repeatedly to get an edge

partition of E.G/ into disjoint matchingsM1;M2; : : : ;MdN=re: This partition gives
a dN=re-period timetable that uses r rooms.

Illustration. The teaching assignments of five professors, x1; x2; x3; x4; x5; in the
mathematics department of a particular university are given by the following array:

I Year II Year III Year IV Year

y1 y2 y3 y4
x1 1 2 � �
x2 1 1 1 �
x3 1 � � 2
x4 � � 1 �
x5 � � 1 1

The bipartite graphG corresponding to the above problem is shown in Fig. 7.11.
Each of the sets of edges drawn by the ordinary lines, dashed lines, and thick lines
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Table 7.1 Timetable Period

I II III

Professor: x1 y1 y2 y2
x2 y2 y3 y1
x3 y4 y1 y4
x4 � � y3
x5 y3 y4 �

gives a matching in G: The three matchings cover the edges of G: Hence, they can
be the basis of a three-period timetable. The corresponding timetable is given in
Table 7.1.

In each period, four classes are to be met. Hence, at least four rooms are needed
to implement this timetable. Here � D 3 and N D 12: Consequently, G could be
covered by three matchings each containing b12=3e or d12=3e edges, that is, exactly
four edges. This gives the edge partition

M 0 D fM 0
1;M

0
2;M

0
3g;

where

M 0
1 D fx1y1; x2y2; x3y4; x5y3g;

M 0
2 D fx1y2; x2y3; x3y1; x5y4g;

and

M 0
3 D fx1y2; x2y1; x3y4:x4y3g:

Now, take M 00 D fM 0
1;M

0
2;M

0
3;M

0
4 D ;g; and apply Lemma 7.6.8. This gives

an edge partitionM D fM1;M2;M3;M4g; whereM1 D fx1y1; x2y2; x3y4g; M2 D
fx1y2; x2y3; x5y4g; M3 D fx2y1; x3y4; x4y3g; and M4 D fx5y3; x3y1; x1y2g: The
above partition yields a four-period timetable using three rooms.

7.7 Snarks

A consequence of the Vizing–Gupta theorem is that if G is a simple cubic graph,
�0.G/ D 3 or 4: By Exercise 6.6, if G is a simple cubic graph with a cut edge,
�0.G/ D 4: So the natural question is: Are there 2-edge-connected, simple cubic
graphs that are 4-edge-chromatic? Such graphs are important in their own right,
since their existence is related to the four-color problem (see Chap. 8). The search
for such graphs has led to the study of snarks.

Definition 7.7.1. A snark is a cyclically 4-edge-connected cubic graph of girth at
least 5 that has chromatic index 4:

Exercise 7.1. Prove that no snark can be Hamiltonian.
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Fig. 7.12 Graph for proof of
Theorem 7.7.2

Clearly, the Petersen graph is a snark. In fact, Theorem 7.7.2 is an interesting result.

Theorem 7.7.2. The Petersen graph P is the smallest snark and it is the unique
snark on 10 vertices.

Proof. Let G be a snark and A a cyclical edge cut of G: Then G � A has two
components, each having a cycle of length at least 5 (since G is of girth at least 5).
Hence, jV.G/j � 10: Thus, P is a smallest snark since jV.P /j D 10:

We now show that any snark G on 10 vertices must be isomorphic to P: Let
A be a cyclical edge cut of G: If jAj D 4; then each component of G � A is
a 5-cycle. But this will not account for all the 15 edges of G: If jAj > 5; then
jE.G/j > 5C 5C 5 D 15; a contradiction. Hence, jAj D 5; and let A D fuivi W
1 � i � 5g: Then G � A consists of two 5-cycles. Let one of these cycles
be fu1; u2; u3; u4; u5g: Let vi be the third neighbor of ui not belonging to the set
fu1; u2; u3; u4; u5g for each i: If v1v2 or v1v5 is an edge of G; then G contains a
4-cycle (see Fig. 7.12).

Since G is cubic, v1v3 2 E.G/ and v1v4 2 E.G/: Similarly, v2v4; v2v5; and v3v5
are edges of G and hence G ' P: �

The construction of snarks is not easy. In 1975, Isaacs constructed two infinite
classes of snarks. Prior to that, only four kinds of snarks were known: (1) the
Petersen graph on 10 vertices, (2) BlanusLa’s graphs on 18 vertices, (3) Szekeres’
graph on 50 vertices, and (4) Blanche Descartes’ graph on 210 vertices.

7.8 Kirkman’s Schoolgirl Problem

Kirkman’s schoolgirl problem was introduced in 1850 by Reverend Thomas
J. Kirkman as “query 6” in page 48 of the Ladies and Gentlemen’s Diary. The
problem is the following: A teacher would like to take 15 schoolgirls out for a walk,
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Fig. 7.13 Kirkman’s schoolgirl problem

the girls being arranged in five rows of three. The teacher would like to ensure equal
chances of friendship between any two girls. Hence, it is desirable to find different
row arrangements for the seven days of the week such that any pair of girls walk in
the same row on exactly one day of the week.

Kirkman’s 15-schoolgirl problem has a solution. In fact, one of the possible
schedules is given in Fig. 7.13.
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In the general case, one wants to arrange 6n C 3 girls in 2n C 1 rows of three.
The problem is to find different row arrangements for 3nC1 different days in such a
way that any pair of girls walks in the same row on exactly one day out of the 3nC
1 days. The existence of such an arrangement was proved by Ray-Chaudhuri and
R. M. Wilson [164]. In graph-theoretic terminology, Kirkman’s schoolgirl problem
corresponds to an edge coloring C W E.K6nC3/ ! fc1; : : : ; c3nC1g of the complete
graph G D K6nC3 with 3n C 1 colors such that if Ei denotes the set of all edges
receiving the color ci and Gi D GŒEi �; then Gi has 2n C 1 components, each
component being a triangle.

The general problem can be tackled as follows: Consider the triangle graph
T of K6nC3 defined as follows: The vertex set of T is the set of all triads of
V.K6nC3/; and two distinct vertices of T are joined by an edge in T if and only if
the corresponding triads have two elements in common. Let S be any independent
set of T: Each vertex of S gives rise to three pairs of vertices of K6nC3; and each
such pair belongs to at most one vertex of S: Hence, we have 3 jS j � �

6nC3
2

�
; that

is, jS j � .2nC 1/.3nC 1/: We must then find an independent set S 0 of cardinality
jS 0j D .2n C 1/.3n C 1/: Such a set exists since every solution of the Kirkman’s
schoolgirl problem yields an independent set of T with .2nC 1/.3nC 1/ vertices.
We observe that S 0 covers each pair of V.K6nC3/ exactly once. Having found a
maximum independent set S 0 in T;we form a new graph T 0 as follows: We take S 0 as
its vertex set and join two vertices of T 0 by an edge if and only if the corresponding
triads have exactly one vertex in common. We note that each independent set of
T 0 is a partition of a subset of V.K6nC3/ into subsets of cardinality 3, and hence
each independent set of T 0 has at most .2n C 1/ vertices. If the chromatic number
of T 0 is 3nC 1; then there is a partition .V1; V2; : : : ; V3nC1/ of V.T 0/ into parts of
size 2nC 1 each. This partition is a solution to the Kirkman’s schoolgirl problem,
and conversely, each solution to the Kirkman’s schoolgirl problem yields such a
partition.

Exercise 8.1. Let m � n C 2 and let there exist edge partitions F and G of Kn

andKm; respectively, into triangles with F � G : Prove that m � 2nC 1:

7.9 Chromatic Polynomials

In 1946, Birkhoff and Lewis [23] introduced the chromatic polynomial of a graph
in their attempt to tackle the four-color problem (see Chap. 8) through algebraic
techniques.

For a graph G and a given set of 	 colors, the function f .GI	/ is defined to
be the number of ways of (vertex) coloring G properly using the 	 colors. Hence,
f .GI	/ D 0 when G has no proper 	-coloring. Clearly, the minimum 	 for which
f .GI	/ > 0 is the chromatic number �.G/ of G:

It is easy to see that f .KnI	/ D 	.	 � 1/ : : : .	 � n C 1/ for 	 � n: This is
because any vertex of Kn can be colored by any one of the given 	 colors. After
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coloring a vertex of Kn; a second vertex of Kn can be colored by any one of the
remaining .	 � 1/ colors, and so on. In particular, f .K3I	/ D 	.	 � 1/.	 � 2/:

Also, f .Kc
nI	/ D 	n:

Let e D uv be any edge of G: Recall (see Sect. 4.3, Chap. 4) that the graphG ı e
is obtained from G by contracting the edge e: Theorem 7.9.1 presents a simple
reduction formula to compute f .GI	/:
Theorem 7.9.1. Let G be any graph. Then f .GI	/ D f .G � eI	/ � f .G ı eI	/
for any edge e of G:

Proof. f .G�eI	/ denotes the number of proper colorings ofG�e using 	 colors.
Hence, it is the sum of the number of proper colorings of G � e in which u and v
receive the same color and the number of proper colorings of G � e in which u and
v receive distinct colors. The former number is f .G ı eI	/; and the latter number
is f .GI	/: �
Exercise 9.1. If G and H are disjoint graphs, show that

f .G [ H I	/ D f .GI	/f .H I	/:

Theorem 7.9.1 could be used recursively to determine f .GI	/ for graphs of small
size by taking the given graph on n vertices as G and successively deleting edges
until we end up with the totally disconnected graph Kc

n: It can also be determined
by taking the given graph asG�e and recursively adding a new edge e until we end
up with the complete graph Kn: For a fixed n; when m.G/; the number of edges of
G is small, the first method is preferable, and when it is large, the second method is
preferable. These two methods are illustrated for the graph C4: [Here the function
f .GI	/ is represented by the graph itself.]

Method 1

� �

��

e

G

f .C4I	/ D

� �

��

G � e

�

��

�D
G ı e

� �

�� �

� �

�D �
�

��

� �

�� �

� �

�D �

�

� �

��

�

D .	.	 � 1/2 � f	2.	 � 1/� 	.	 � 1/g � 	.	 � 1/.	 � 2/

D 	4 � 4	3 C 6	2 � 3	:
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Method 2
� �

��

G � e
f .C4I	/ D

4 � �

��

G

C
�

�

�

D

G ı e

e

� �

��

C
�

�

�

D

� �

��

� �

�

C
�

�

�

D C C
�

�

D f .K4I	/C f .K3I	/C f .K3I	/C f .K2I	/
D f .K4I	/C 2f .K3I	/C f .K2I	/
D 	.	 � 1/.	 � 2/.	 � 3/C 2	.	� 1/.	 � 2/C 	.	 � 1/

D 	4 � 4	3 C 6	2 � 3	:

The function f .C4I	/ computed above is a monic polynomial with integer
coefficients of degree n D 4 in which the coefficient of 	3 D �4 D �m; the
constant term is zero, and the coefficients alternate in sign. That this is the case
with all such functions f .GI	/ is the content of Theorem 7.9.2. For this reason,
the function f .GI	/ is called the chromatic polynomial of the graph G:

Theorem 7.9.2. For a simple graph G of order n and size m; f .GI	/ is a monic
polynomial of degree n in 	 with integer coefficients and constant term zero. In
addition, its coefficients alternate in sign and the coefficient of 	n�1 is �m:
Proof. The proof is by induction on m: If m D 0; G is Kc

n and f .Kc
nI	/ D 	n;

and if m D 1; G is K2 and f .K2I	/ D 	2 � 	; and the statement of the theorem
is trivially true in these cases. Suppose now that the theorem holds for all graphs
with fewer than m edges, where m � 2: Let G be any simple graph of order n and
size m; and let e be any edge of G: Both G � e and G ı e (after removal of multiple
edges, if necessary) are simple graphs with at most m � 1 edges, and hence, by the
induction hypothesis,

f .G � eI	/ D 	n � a0	n�1 C a1	
n�2 � : : :C .�1/n�1an�2	;

and

f .G ı eI	/ D 	n�1 � b1	n�2 C : : :C .�1/n�2bn�2	;

where a0; : : : ; an�2I b1; : : : ; bn�2 are nonnegative integers (so that the coefficients
alternate in sign), and a0 is the number of edges in G � e; which is m � 1: By
Theorem 7.9.1, f .GI	/ D f .G � eI	/ � f .G ı eI	/; and hence
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f .GI	/ D 	n � .a0 C 1/	n�1 C .a1 C b1/	
n�2 � : : :C .�1/n�1.an�2 C bn�2/	:

Since a0 C 1 D m; f .GI	/ has all the stated properties. �

Theorem 7.9.3. A simple graph G on n vertices is a tree if and only if f .GI	/ D
	.	 � 1/n�1:

Proof. Let G be a tree. We prove that f .GI	/ D 	.	 � 1/n�1 by induction on n:
If n D 1; the result is trivial. So assume the result for trees with at most n � 1

vertices, n � 2: Let G be a tree with n vertices, and e be a pendent edge of G: By
Theorem 7.9.1, f .GI	/ D f .G�eI	/�f .GıeI	/:Now,G�e is a forest with two
component trees of orders n�1 and 1; and hence f .G�eI	/ D .	.	�1/n�2/	 (see
Exercise 9.1). Since G ı e is a tree with n� 1 vertices, f .G ı eI	/ D 	.	� 1/n�2:
Thus, f .GI	/ D .	.	 � 1/n�2/	 � 	.	 � 1/n�2 D 	.	 � 1/n�1:

Conversely, assume that G is a simple graph with f .GI	/ D 	.	 � 1/n�1 D
	n � .n � 1/	n�1 C : : : C .�1/n�1	: Hence, by Theorem 7.9.2, G has n vertices
and n � 1 edges. Further, the last term, .�1/n�1	; ensures that G is connected (see
Exercise 9.2). Hence, G is a tree (see Theorem 4.2.4). �
Remark 7.9.4. Theorem 7.9.3 shows that the chromatic polynomial of a graph G
does not fix the graph uniquely up to isomorphism. For example, even though the
graphs K1;3 and P4 are not isomorphic, they have the same chromatic polynomial,
namely, 	.	 � 1/3:
Exercise 9.2. If G has ! components, show that 	! is a factor of f .GI	/:
Exercise 9.3. Show that there exists no graph with the following polynomials as
chromatic polynomial (i) 	5 � 4	4 C 8	3 � 4	2 C 	I (ii) 	4 � 3	3 C 	2I (iii)
	7 � 	6 C 1:

Exercise 9.4. Find a graphG whose chromatic polynomial is 	5�6	4C11	3�6	2:
Exercise 9.5. Show that for the cycle Cn of length n; f .CnI	/ D .	 � 1/n C
.�1/n.	 � 1/; n � 3:

Exercise 9.6. Show that for any graphG; f .G_K1I	/ D 	f .GI	�1/; and hence
prove that f .WnI	/ D 	.	 � 2/n C .�1/n	.	 � 2/:

Notes

A good reference for graph colorings is the book by Jensen and Toft [116]. The
book by Fiorini and Wilson [62] concentrates on edge colorings. Theorem 7.5.7
(Mycielski’s theorem) has also been proved independently by Blanche Descartes
[50] as well as by Zykov [195]. For a complete description of graph homomor-
phisms, see [105].
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The proof of Brooks’ theorem given in this chapter is based on the proof given
by Fournier [67] (see also references [27] and [106]).

The term “snark” was given to the snark graph by Martin Gardner after the
unusual creature that is described in Lewis Carroll’s poem, The Hunting of the
Snark. A detailed account of the snarks, including their constructions, can be found
in the interesting book by Holton and Sheehan [106].
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