
Chapter 6
Eulerian and Hamiltonian Graphs

6.1 Introduction

The study of Eulerian graphs was initiated in the 18th century and that of
Hamiltonian graphs in the 19th century. These graphs possess rich structures; hence,
their study is a very fertile field of research for graph theorists. In this chapter, we
present several structure theorems for these graphs.

6.2 Eulerian Graphs

Definition 6.2.1. An Euler trail in a graph G is a spanning trail in G that contains
all the edges of G. An Euler tour of G is a closed Euler trail of G. G is called
Eulerian (Fig. 6.1a) if G has an Euler tour. It was Euler who first considered these
graphs, and hence their name.

It is clear that an Euler tour of G, if it exists, can be described from any vertex
of G. Clearly, every Eulerian graph is connected.

Euler showed in 1736 that the celebrated Königsberg bridge problem has no
solution. The city of Königsberg (now called Kaliningrad) has seven bridges linking
two islands A and B and the banks C and D of the Pregel (now called Pregalya)
River, as shown in Fig. 6.2.

The problem was to start from any one of the four land areas, take a stroll across
the seven bridges, and get back to the starting point without crossing any bridge a
second time. This problem can be converted into one concerning the graph obtained
by representing each land area by a vertex and each bridge by an edge. The resulting
graph H is the graph of Fig. 6.1b. The Königsberg bridge problem will have a
solution provided that this graph H is Eulerian. But this is not the case since it
has vertices of odd degrees (see Theorem 6.2.2).

Eulerian graphs admit, among others, the following two elegant characteriza-
tions, Theorems 6.2.2 and 6.2.3*.
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a bFig. 6.1 (a) Eulerian graph
G; (b) non-Eulerian graph H
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Fig. 6.2 Königsberg bridge problem

Theorem 6.2.2. For a nontrivial connected graph G, the following statements are
equivalent:

(i) G is Eulerian.
(ii) The degree of each vertex of G is an even positive integer.

(iii) G is an edge-disjoint union of cycles.

Proof. (i) ) (ii): Let T be an Euler tour of G described from some vertex v0 2
V.G/. If v 2 V.G/, and v ¤ v0, then every time T enters v, it must move out of v
to get back to v0. Hence two edges incident with v are used during a visit to v, and
therefore, d.v/ is even. At v0, every time T moves out of v0, it must get back to v0.
Consequently, d.v0/ is also even. Thus, the degree of each vertex of G is even.

(ii) ) (iii): As ı.G/ � 2, G contains a cycle C1 (Exercise 11.11 of Chap. 1). In
GnE.C1/, remove the isolated vertices if there are any. Let the resulting subgraph
of G be G1. If G1 is nonempty, each vertex of G1 is again of even positive degree.
Hence ı.G1/ � 2, and so G1 contains a cycle C2. It follows that after a finite number,
say r , of steps, GnE.C1 [ : : : [ Cr/ is totally disconnected. Then G is the edge-
disjoint union of the cycles C1; C2; : : : ; Cr .

(iii) ) (i): Assume that G is an edge-disjoint union of cycles. Since any cycle
is Eulerian, G certainly contains an Eulerian subgraph. Let G1 be a longest closed
trail in G. Then G1 must be G. If not, let G2 D GnE.G1/. Since G is an edge-
disjoint union of cycles, every vertex of G is of even degree � 2. Further, since G1

is Eulerian, each vertex of G1 is of even degree � 2. Hence each vertex of G2 is of
even degree. Since G2 is not totally disconnected and G is connected, G2 contains
a cycle C having a vertex v in common with G1. Describe the Euler tour of G1
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P1

P2

P3

e

Fig. 6.3 Eulerian graph with
edge e belonging to three
cycles

starting and ending at v and follow it by C . Then G1 [ C is a closed trail in G

longer than G1. This contradicts the choice of G1; and so G1 must be G. Hence G

is Eulerian. �

If G1; : : : ; Gr are subgraphs of a graph G that are pairwise edge-disjoint and
their union is G, then this fact is denoted by writing G D G1 ˚ : : : ˚ Gr . In the
above equation, if Gi D Ci , a cycle of G for each i , then G D C1 ˚ : : : Cr . The
set of cycles S D fC1; : : : ; Crg is then called a cycle decomposition of G. Thus,
Theorem 6.2.2 implies that a connected graph is Eulerian if and only if it admits a
cycle decomposition.

There is yet another characterization of Eulerian graphs due to McKee [138] and
Toida [175]. Our proof is based on Fleischner [63, 64].

Theorem 6.2.3*. A graph G is Eulerian if and only if each edge e of G belongs to
an odd number of cycles of G.

For instance, in Fig. 6.3, e belongs to the three cycles P1 [ e; P2 [ e, and P3 [ e.

Proof. Denote by �e the number of cycles of G containing e. Assume that �e is odd
for each edge e of G. Since a loop at any vertex v of G is in exactly one cycle of G

and contributes 2 to the degree of v in G, we may suppose that G is loopless.
Let S D fC1; : : : ; Cpg be the set of cycles of G. Replace each edge e of G

by �e parallel edges and replace e in each of the �e cycles containing e by one of
these parallel edges, making sure that none of the parallel edges is repeated. Let the
resulting graph be G0 and let the new set of cycles be S0 D fC 0

1 ; : : : ; C 0
pg. Clearly,

S0 is a cycle decomposition of G0. Hence, by Theorem 6.2.2, G0 is Eulerian. But
then dG0.v/ � 0 (mod 2) for each v 2 V.G0/ D V.G/. Moreover, dG.v/ D
dG0.v/ � P

e .�e � 1/, where e is incident at v in G and hence dG.v/ � 0 (mod 2),
�e being odd for each e 2 E.G/. Thus, G is Eulerian.

Conversely, assume that G is Eulerian. We proceed by induction on n D jV.G/j.
If n D 1, each edge is a loop and hence belongs to exactly one cycle of G.
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Fig. 6.4 Graph for proof of Theorem 6.2.3

Assume the result for graphs with fewer than n .� 2/ vertices. Let G be a graph
with n vertices. Let e D xy be an edge of G and let �.e/ be the multiplicity of e

in G.
The graph G ı e obtained from G by contracting the edge e (cf. Sect. 4.4 of

Chap. 4) is also Eulerian. Denote by z the new vertex of Gıe obtained by identifying
the vertices x and y of G. The set of edges incident with z in G ı e is partitioned
into three subsets (see Fig. 6.4):

1. Ez.x/ D set of edges arising out of edges of G incident with x but not with y

2. Ez.y/ D set of edges arising out of edges of G incident with y but not with x

3. Ez.xy/ D set of �.e/ � 1 loops of G ı e corresponding to the edges parallel to
e in G

Let k D jEz.x/j. Since G is Eulerian,

k C �.e/ D dG.x/ � 0.mod 2/: (6.1)

Let �f and � .ei ; ej / denote, respectively, the number of cycles in G ı e

containing the edge f and the pair .ei ; ej / of edges. Since jV.G ı e/j D n � 1,
and since G ı e is Eulerian by the induction assumption, �f is odd for each edge f

of G ı e. Now, any cycle of G containing e either consists of e and an edge parallel
to e in G (and there are �.e/ � 1 of them) or contains e, an edge ei of Ez.x/; and
an edge e0

j of Ez.y/. These correspond in G ı e, respectively, to a loop at z and to a
cycle containing the edges of G ı e that correspond to the edges ei and e0

j of G. By
abuse of notation, we denote these corresponding edges of G ı e also by ei and e0

j ,
respectively. Moreover, any cycle of G ı e containing an edge ei of Ez.x/ will also
contain either an edge ej of Ez.x/ or an edge e0

j of Ez.y/; but not both. A cycle of
the former type is counted once in �ei and once in �ej ; and these will not give rise
to cycles in G containing e. Thus,

�e D .�.e/ � 1/ C
X

ei 2Ez.x/

�ei �
X

fi;j g
i¤j

ei ; ej 2Ez.x/

� .ei ; ej /:
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Now, by the induction hypothesis, �ei � 1 (mod 2) for each ei , and � .ei ; ej / D
� .ej ; ei / in the last sum on the right, and hence this latter sum is even. Thus, �e �
.�.e/ � 1/ C k (mod 2) � 1 (mod 2) by relation (6.1). �

A consequence of Theorem 6.2.3 is a result of Bondy and Halberstam [26], which
gives yet another characterization of Eulerian graphs.

Corollary 6.2.4*. A graph is Eulerian if and only if it has an odd number of cycle
decompositions.

Proof. In one direction, the proof is trivial. If G has an odd number of cycle
decompositions, then it has at least one, and hence G is Eulerian.

Conversely, assume that G is Eulerian. Let e 2 E.G/ and let C1; : : : ; Cr be
the cycles containing e. By Theorem 6.2.3, r is odd. We proceed by induction on
m D jE.G/j with G Eulerian.

If G is just a cycle, then the result is true. Assume then that G is not a cycle. This
means that for each i; 1 � i � r , by the induction assumption, Gi D G � E.Ci /

has an odd number, say si , of cycle decompositions. (If Gi is disconnected, apply
the induction assumption to each of the nontrivial components of Gi .) The union of
each of these cycle decompositions of Gi and Ci yields a cycle decomposition of G.
Hence the number of cycle decompositions of G containing Ci is si ; 1 � i � r . Let
s.G/ denote the number of cycle decompositions of G. Then

s.G/ D
rX

iD1

si � r .mod 2/ .since si � 1 .mod 2//

� 1 .mod 2/:

�

Exercise 2.1. Find an Euler tour in the graph G below.

G
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a bFig. 6.5 (a) Hamiltonian
graph; (b) non-Hamiltonian
but traceable graph

Exercise 2.2. Does there exist an Eulerian graph with

(i) An even number of vertices and an odd number of edges?
(ii) An odd number of vertices and an even number of edges? Draw such a graph if

it exists.

Exercise 2.3. Prove that a connected graph is Eulerian if and only if each of its
blocks is Eulerian.

Exercise 2.4. If G is a connected graph with 2k.k > 0/ vertices of odd degree,
show that E.G/ can be partitioned into k open (i.e., not closed) trails.

Exercise 2.5. Prove that a connected graph is Eulerian if and only if each of its
edge cuts has an even number of edges.

6.3 Hamiltonian Graphs

Definition 6.3.1. A graph is called Hamiltonian if it has a spanning cycle (see
Fig. 6.5a). These graphs were first studied by Sir William Hamilton, a mathemati-
cian. A spanning cycle of a graph G, when it exists, is often called a Hamilton cycle
(or Hamiltonian cycle) of G.

Definition 6.3.2. A graph G is called traceable if it has a spanning path of G (see
Fig. 6.5b). A spanning path of G is also called a Hamilton path (or Hamiltonian
path) of G.

6.3.1 Hamilton’s “Around the World” Game

Hamilton introduced these graphs in 1859 through a game that used a solid
dodecahedron (Fig. 6.6). A dodecahedron has 20 vertices and 12 pentagonal faces.
At each vertex of the solid, a peg was attached. The vertices were marked
Amsterdam, Ann Arbor, Berlin, Budapest, Dublin, Edinburgh, Jerusalem, London,
Melbourne, Moscow, Novosibirsk, New York, Paris, Peking, Prague, Rio di Janeiro,
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Fig. 6.6 Solid dodecahedron
for Hamilton’s “Around the
World” problem

Rome, San Francisco, Tokyo, and Warsaw. Further, a string was also provided. The
object of the game was to start from any one of the vertices and keep on attaching
the string to the pegs as we move from one vertex to another along a particular edge
with the condition that we have to get back to the starting city without visiting any
intermediate city more than once. In other words, the problem asks one to find a
Hamilton cycle in the graph of the dodecahedron (see Fig. 6.6). Hamilton solved
this problem as follows: When a traveler arrives at a city, he has the choice of taking
the edge to his right or left. Denote the choice of taking the edge to the right by R

and that of taking the edge to the left by L. Let 1 denote the operation of staying
where he is.

Define the product O1O2 of two operations O1 and O2 as O1 followed by O2.
For example, LR denotes going left first and then going right. Two sequences of
operations are equal if, after starting at a vertex, the two sequences lead to the same
vertex. The product defined above is associative but not commutative. Further, it is
clear (see Fig. 6.6) that

R5 D L5 D 1

RL2R D LRL;

LR2L D RLR;

RL3R D L2; and

LR3L D R2:

These relations give

1 D R5 D R2R3 D .LR3L/R3 � .LR3/.LR3/ D .LR3/2 D .LR2R/2

D .L.LR3L/R/2 D .L2R3LR/2 D .L2..LR3L/R/LR/2 D .L3R3LRLR/2

D LLLRRRLRLRLLLRRRLRLR: (6.2)
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Fig. 6.7 A knight’s tour in a chessboard

The last sequence of operations contains 20 operations and contains no partial
sequence equal to 1. Hence, this sequence must represent a Hamilton cycle. Thus,
starting from any vertex and following the sequence of operations (6.2), we do
indeed get a Hamilton cycle of the graph of Fig. 6.6.

Knight’s Tour in a Chessboard 6.3.3. The knight’s tour problem is the problem of
determining a closed tour through all 64 squares of an 8 � 8 chessboard by a knight
with the condition that the knight does not visit any intermediate square more than
once. This is equivalent to finding a Hamilton cycle in the corresponding graph of
64 .D 8�8/ vertices in which two vertices are adjacent if and only if the knight can
move from one vertex to the other following the rules of the chess game. Figure 6.7
displays a knight’s tour.

Even though Eulerian graphs admit an elegant characterization, no decent
characterization of Hamiltonian graphs is known as yet. In fact, it is one of
the most difficult unsolved problems in graph theory. (Actually, it is an NP-
complete problem; see reference [71].) Many sufficient conditions for a graph to be
Hamiltonian are known; however, none of them happens to be an elegant necessary
condition.

We begin with a necessary condition. Recall that !.H/ stands for the number of
components of the graph H .

Theorem 6.3.4. If G is Hamiltonian, then for every nonempty proper subset S of
V; !.G � S/ � jS j.
Proof. Let C be a Hamilton cycle in G. Then, since C is a spanning subgraph of
G; !.G � S/ � !.C � S/. If jS j D 1; C � S is a path, and therefore !.C � S/ D
1 D jS j. The removal of a vertex from a path P results in one or two components,
according to whether the removed vertex is an end vertex or an internal vertex of P .
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Fig. 6.8 Theta graph

Hence, by induction, the number of components in C � S cannot exceed jS j. This
proves that !.G � S/ � !.C � S/ � jS j. �

It follows directly from the definition of a Hamiltonian graph or from Theo-
rem 6.3.4 that any Hamiltonian graph must be 2-connected. [If G has a cut vertex v,
then taking S D fvg, we see that !.G � S/ > jS j.] The converse, however, is not
true. For example, the theta graph of Fig. 6.8 is 2-connected but not Hamiltonian.
Here, P stands for a u-v path of any length � 2 containing neither x nor y.

Exercise 3.1. Show by means of an example that the condition in Theorem 6.3.4 is
not sufficient for G to be Hamiltonian.

Exercise 3.2. Use Theorem 6.3.4 to show that the Herschel graph (shown in
Fig. 5.4) is non-Hamiltonian.

Exercise 3.3. Do Exercise 3.2 by using Theorem 1.5.10 (characterization theorem
for bipartite graphs).

If a cubic graph G has a Hamilton cycle C , then GnE.C / is a 1-factor of G.
Hence, for a cubic graph G to be Hamiltonian, G must have a 1-factor F such that
GnE.F / is a Hamilton cycle of G. Now, the Petersen graph P (shown in Fig. 1.7)
has two different types of 1-factors (see Fig. 6.9), and for any such 1-factor F of
P; P nE.F / consists of two disjoint 5-cycles. Hence P is non-Hamiltonian.

Theorem 6.3.5 is a basic result due to Ore [150] which gives a sufficient condition
for a graph to be Hamiltonian.

Theorem 6.3.5 (Ore [150]). Let G be a simple graph with n � 3 vertices. If,
for every pair of nonadjacent vertices u; v of G; d.u/ C d.v/ � n, then G is
Hamiltonian.

Proof. Suppose that G satisfies the condition of the theorem, but G is not
Hamiltonian. Add edges to G (without adding vertices) and get a supergraph G�
of G such that G� is a maximal simple graph that satisfies the condition of the
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a b

Fig. 6.9 Petersen graph. The solid edges form a 1-factor of P

u = v1 v2 vi−1 vi vn−1 vn = v

Fig. 6.10 Hamilton path for proof of Theorem 6.3.5

theorem, but G� is non-Hamiltonian. Such a graph G� must exist since G is non-
Hamiltonian while the complete graph on V.G/ is Hamiltonian. Hence, for any pair
u and v of nonadjacent vertices of G�; G� C uv must contain a Hamilton cycle C .
This cycle C would certainly contain the edge e D uv. Then C � e is a Hamilton
path u D v1v2v3 : : : vn D v of G� (see Fig. 6.10).

Now, if vi 2 N.u/; vi�1 … N.v/; otherwise, v1 v2 : : : vi�1 vn vn�1 vn�2 : : : viC1

vi v1 would be a Hamilton cycle in G�. Hence, for each vertex vi adjacent to u, the
vertex vi�1 of V � fvg is nonadjacent to v. But then

dG�.v/ � .n � 1/ � dG� .u/:

This gives that dG� .u/ C dG� .v/ � n � 1, and therefore dG .u/ C dG .v/ � n � 1,
a contradiction. �
Corollary 6.3.6 (Dirac [54]). If G is a simple graph with n � 3 and ı � n

2
, then

G is Hamiltonian. �

Corollary 6.3.7. Let G be a simple graph with n � 3 vertices. If d.u/ C d.v/ �
n � 1 for every pair of nonadjacent vertices u and v of G, then G is traceable.

Proof. Choose a new vertex w and let G0 be the graph G _ fwg. Then each vertex
of G has its degree increased by one, and therefore in G0, d.u/ C d.v/ � n C 1 for
every pair of nonadjacent vertices. Since jV.G0/j D n C 1, by Theorem 6.3.5, G0 is
Hamiltonian. If C 0 is a Hamilton cycle of G0, then C 0 � w is a Hamilton path of G.
Thus, G is traceable. �
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Exercise 3.4. Show by means of an example that the conditions of Theorem 6.3.5
and its Corollary 6.3.6 are not necessary for a simple connected graph to be
Hamiltonian.

Exercise 3.5. Show that if a cubic graph G has a spanning closed trail, then G is
Hamiltonian.

Exercise 3.6. Prove that the n-cube Qn is Hamiltonian for every n � 2.

Exercise 3.7. Prove that the wheel Wn is Hamiltonian for every n � 4.

Exercise 3.8. Prove that a simple k-regular graph on 2k�1 vertices is Hamiltonian.

Exercise 3.9. For any vertex v of the Petersen graph P , show that P � v is
Hamiltonian. (A non-Hamiltonian graph G with this property, namely, for any
vertex v of G the subgraph G �v of G is Hamiltonian, is called a hypo-Hamiltonian
graph. In fact, P is the lowest-order graph with this property.)

Exercise 3.10. For any vertex v of the Petersen graph P , show that a Hamilton path
exists starting at v.

Exercise 3.11. If G D G.X; Y / is a bipartite Hamiltonian graph, show that
jX j D jY j.
Exercise 3.12. Let G be a simple graph on 2k vertices with ı.G/ � k. Show that
G has a perfect matching.

Exercise 3.13. Prove that a simple graph of order n with n even and ı � .nC2/

2
has

a 3-factor.
Bondy and Chvátal [25] observed that the proof of Theorem 6.3.5 is essentially

based on the following result.

Theorem 6.3.8. Let G be a simple graph of order n � 3 vertices. Then G is
Hamiltonian if and only if G C uv is Hamiltonian for every pair of nonadjacent
vertices u and v with d.u/ C d.v/ � n.

The last result has been instrumental for Bondy and Chvátal to define the closure
of a graph G.

Definition 6.3.9. The closure of a graph G, denoted cl.G/, is defined to be that
supergraph of G obtained from G by recursively joining pairs of nonadjacent
vertices whose degree sum is at least n until no such pair exists.

This recursive definition does not stipulate the order in which the new edges are
added. Hence, we must first show that the definition does not depend upon the order
of the newly added edges. Figure 6.11 explains the construction of cl.G/.

Theorem 6.3.10. The closure cl.G/ of a graph G is well defined.

Proof. Let G1 and G2 be two graphs obtained from G by recursively joining pairs
of nonadjacent vertices whose degree sum is at least n until no such pair exists. We
have to prove that G1 D G2.
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Fig. 6.11 Closure of a graph

Let fe1; : : : ; epg and ff1; : : : ; fqg be the sets of new edges added to G in these
sequential orderings to get G1 and G2; respectively. We want to show that each ei

is some fj (and therefore belongs to G2) and that each fk is some el (and therefore
belongs to G1). Let ei be the first edge in fe1; : : : ; epg not belonging to G2. Then
fe1; : : : ; ei�1g are all in both G1 and G2, and uv D ei … E.G2/. Let H D G C
fe1; : : : ; ei�1g. Then H is a subgraph of both G1 and G2. By the way cl.G/ is
defined,

dH .u/ C dH .v/ � n;

and hence,
dG2.u/ C dG2.v/ � n:

But this is a contradiction since u and v are nonadjacent vertices of G2, and G2

is a closure of G. Thus ei 2 E.G2/ for each i and similarly, fk 2 E.G1/ for
each k. �

An immediate consequence of Theorem 6.3.8 is the following.

Theorem 6.3.11. If cl.G/ is Hamiltonian, then G is Hamiltonian.

Corollary 6.3.12. If cl.G/ is complete, then G is Hamiltonian.
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Exercise 3.14. Determine the closure of the following graph.

We conclude this section with a result of Chvátal and Erdös [39].

Theorem 6.3.13 (Chvátal and Erdös). If, for a simple 2-connected graph G,
˛ � �, then G is Hamiltonian. (˛ is the independence number of G and � is the
connectivity of G.)

Proof. Suppose ˛ � � but G is not Hamiltonian. Let C W v0 v1 : : : vp�1 be a
longest cycle of G. We fix this orientation on C . By Dirac’s theorem (Exercise 6.4
of Chap. 3), p � �. Let v 2 V.G/ n V.C /. Then by Menger’s theorem (see also
Exercise 6.3 of Chap. 3), there exist � internally disjoint paths P1; : : : ; P� from v
to C . Let vi1 ; vi2 ; : : : ; vi� be the end vertices (with suffixes in the increasing order)
of these paths on C . No two of the consecutive vertices vi1 ; vi2 ; : : : ; vi� ; vi1 can be
adjacent vertices of C , since otherwise we get a cycle of G longer than C . Hence,
between any two consecutive vertices of fvi1 ; vi2 ; : : : ; vi� ; vi1g, there exists at least
one vertex of G. Let uij be the vertex next to vij in the vij -vij C1

path along C (see
Fig. 6.12a).

We claim that fui1 ; : : : ; ui� g is an independent set of G. Suppose uij is adjacent
to uim; m > j (suffixes taken modulo �); then

uij : : : vij C1
: : : vim P �1

m v Pj vij : : : vij �1 : : : uim uij

is a cycle of G longer than C , a contradiction.
Further, fv; ui1 : : : ; ui� g is also an independent set of G. [Otherwise, v uim 2

E.G/ for some m. See Fig. 6.12b. Then

v uim : : : vimC1
: : : vi� : : : vi1 : : : vim P �1

m v

is a cycle longer than C, a contradiction.] But this implies that ˛ > �, a
contradiction to our hypothesis. Thus G is Hamiltonian. �

This theorem, although interesting, is not powerful in that for the cycle Cn, � D 2

while ˛ D �
n
2

˘
and hence increases with n.

A graph G with at least three vertices is Hamiltonian-connected if any two
vertices of G are connected by a Hamilton path in G. For example, for n � 3, Kn is
Hamiltonian-connected, whereas for n � 4; Cn is not Hamiltonian-connected.

Theorem 6.3.14. If G is a simple graph with n � 3 vertices such that d.u/Cd.v/ �
nC1 for every pair of nonadjacent vertices of G, then G is Hamiltonian-connected.
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Fig. 6.12 Graphs for proof
of Theorem 6.3.13

Proof. Let u and v be any two vertices of G. Our aim is to show that a Hamilton
path exists from u to v in G.

Choose a new vertex w, and let G� D G [ fwu; wvg. We claim that cl.G�/ D
KnC1. First, the recursive addition of the pairs of nonadjacent vertices u and v of
G with d.u/ C d.v/ � n C 1 gives Kn. Further, each vertex of Kn is of degree
n � 1 in Kn and dG� .w/ D 2. Hence, cl.G�/ D KnC1. So by Corollary 6.3.12, G�
is Hamiltonian. Let C be a Hamilton cycle in G�. Then C � w is a Hamilton path
in G from u to v. �

6.4* Pancyclic Graphs

Definition 6.4.1. A graph G of order n .� 3/ is pancyclic if G contains cycles of
all lengths from 3 to n. G is called vertex-pancyclic if each vertex v of G belongs to
a cycle of every length l; 3 � l � n.

Example 6.4.2. Clearly, a vertex-pancyclic graph is pancyclic. However, the con-
verse is not true. Figure 6.13 displays a pancyclic graph that is not vertex-pancyclic.

The study of pancyclic graphs was initiated by Bondy [24], who showed that
Ore’s sufficient condition for a graph G to be Hamiltonian (Theorem 6.3.5) actually
implies much more. Note that if ı � n

2
, then m � n2

4
.
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Fig. 6.13 Pancyclic graph
that is not vertex-pancyclic

length r

C

v0

v1

vn−2

v
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w
Fig. 6.14 Graph for proof
of Theorem 6.4.3

Theorem 6.4.3. Let G be a simple Hamiltonian graph on n vertices with at least
d n2

4
e edges. Then G either is pancyclic or else is the complete bipartite graph K n

2 ; n
2
.

In particular, if G is Hamiltonian and m > n2

4
, then G is pancyclic.

Proof. The result can directly be verified for n D 3. We may therefore assume that
n � 4. We apply induction on n. Suppose the result is true for all graphs of order at
most n � 1.n � 4/, and let G be a graph of order n.

First, assume that G has a cycle C D v0 v1 : : : vn�2 v0 of length n � 1. Let
v be the (unique) vertex of G not belonging to C . If d.v/ � n

2
, v is adjacent

to two consecutive vertices on C , and hence G has a cycle of length 3. Suppose
for some r; 2 � r � n�1

2
, C has no pair of vertices u and w on C adjacent to

v in G with dC .u; w/ D r . Then, if vi1 ; vi2 ; : : : vid.v/
are the vertices of C that

are adjacent to v in G (recall that C contains all the vertices of G except v,)
then vi1Cr ; vi2Cr ; : : : ; vid.v/Cr are nonadjacent to v in G, where the suffixes are
taken modulo .n � 1/. Hence, 2d.v/ � n � 1, a contradiction. Thus, for each
r; 2 � r � n�1

2
; C has a pair of vertices u and w on C adjacent to v in G with

dC .u; w/ D r . So for each r; 2 � r � n�1
2

; G has a cycle of length r C 2 as well
as a cycle of length n � 1 � r C 2 D n � r C 1 (see Fig. 6.14). Consequently, G is
pancyclic. (Recall that G is already Hamiltonian.)

If d.v/ � n�1
2

, then GŒV.C /�, the subgraph of G induced by V.C / has at least
n2

4
� d.v/ � n2

4
� n�1

2
>

.n�1/2

4
edges. So by the induction assumption, GŒV.C /� is

pancyclic and hence G is pancyclic. (By hypothesis, G is Hamiltonian.)
Next, assume that G has no cycle of length n � 1. Then G is not pancyclic. In

this case, we show that G is K n
2 ; n

2
.

Let C D v0 v1 v2 : : : vn�1 v0 be a Hamiltonian cycle of G. We claim that of the
two pairs vi vk and viC1 vkC2 (where suffixes are taken modulo n), at most one of
them can be an edge of G. Otherwise, vk vk�1 vk�2 : : : viC1 vkC2 vkC3 vkC4 : : : vi vk

is an .n � 1/-cycle in G (as it misses only the vertex vkC1 of G), a contradiction.
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Hence, if d.vi / D r , then there are r vertices adjacent to vi in G and hence at
least r vertices that are nonadjacent to viC1. Thus, d.vi C 1/ � n � r , and d.vi / C
d.viC1/ � n.

Summing the last inequality over i from 0 to n � 1, we get 4m � n2. But by
hypothesis, 4m � n2. Hence, m D n2

4
and so n must be even. Again, this yields

d.vi / C d.viC1/ D n for each i , and therefore for each i and k,

exactly one of vi vk and viC1 vkC2 is an edge of G: (*)

Thus, if G ¤ K n
2 ; n

2
, then certainly there exist i and j such that vi vj 2 E and

i � j (mod 2). Hence, for some j , there exists an even positive integer s such
that vj C1 vj C1Cs 2 E . Choose s to be the least even positive integer with the above
property. Then vj vj Cs�1 … E . Hence, s � 4 (as s D 2 would mean that vj vj C1 …
E). Again by (*), vj �1 vj Cs�3 D vj �1 vj �1C.s�2/ 2 E.G/ contradicting the choice

of s. Thus, G D K n
2 ; n

2
. The last part follows from the fact that jE.K n

2 ; n
2
/j D n4

4
. �

Corollary 6.4.4. Let G ¤ K n
2 ; n

2
, be a simple graph with n � 3 vertices, and let

d.u/ C d.v/ � n for every pair of nonadjacent vertices of G. Then G is pancyclic.

Proof. By Ore’s theorem (Theorem 6.3.5), G is Hamiltonian. We show that G is
pancyclic by first proving that m � n2

2
and then invoking Theorem 6.4.3. This is

true if ı � n
2

(as 2m D
nP

iD1

di � ı n � n2=2). So assume that ı < n
2
.

Let S be the set of vertices of degree ı in G. For every pair .u; v/ of vertices of
degree ı; d.u/ Cd.v/ < n

2
C n

2
D n. Hence, by hypothesis, S induces a clique of G

and jS j � ı C 1. If jS j D ı C 1, then G is disconnected with GŒS� as a component,
which is impossible (as G is Hamiltonian). Thus jS j � ı. Further if v 2 S , v is
nonadjacent to n � 1 � ı vertices of G. If u is such a vertex, d.v/ C d.u/ � n

implies that d.u/ � n � ı. Further, v is adjacent to at least one vertex w … S and
d.w/ � ı C 1 by the choice of S . These facts give that

2m D
nX

iD1

di � .n � ı � 1/.n � ı/ C ı2 C .ı C 1/;

where the last .ı C 1/ comes out of the degree of w. Thus,

2m � n2 � n.2ı C 1/ C 2ı2 C 2ı C 1

which implies that

4m � 2n2 � 2n.2ı C 1/ C 4ı2 C 4ı C 2

D .n � .2ı C 1//2 C n2 C 1

� n2 C 1; since n > 2ı:

Consequently, m > n2

4
, and by Theorem 6.4.3, G is pancyclic. �
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6.5 Hamilton Cycles in Line Graphs

We now turn our attention to the existence of Hamilton cycles in line graphs.

Theorem 6.5.1. If G is Eulerian, then L.G/, the line graph of G is both Hamilto-
nian and Eulerian.

Proof. As G is Eulerian, it is connected and hence L.G/ is also connected. If
e1 e2 : : : em is the edge sequence of an Euler tour in G, and if vertex ui in L.G/

represents the edge ei ; 1 � i � m, then u1 u2 : : : um u1 is a Hamilton cycle of
L.G/. Further, if e D v1 v2 2 E.G/ and the vertex u in L.G/ represents the edge e,
then dL.G/.u/ D dG.v1/ C dG.v2/ � 2, which is even (and � 2) since both dG.v1/

and dG.v2/ are even (and � 2). Hence in L.G/ every vertex is of even degree (� 2).
So L.G/ is also Eulerian. �

Exercise 5.1. Disprove the converse of Theorem 6.5.1 by a counterexample.

Definition 6.5.2. A dominating trail of a graph G is a closed trail T in G (which
may be just a single vertex) such that every edge of G not in T is incident with T .

Example 6.5.3. For instance, in the graph of Fig. 6.13, the trail abcdbea is a
dominating trail.

Harary and Nash–Williams [94] characterized graphs that have Hamiltonian line
graphs.

Theorem 6.5.4 (Harary and Nash–Williams). The line graph of a graph G with
at least three edges is Hamiltonian if and only if G has a dominating trail.

Proof. Let T be a dominating trail of G and let fe1; e2; : : : ; esg be the
edge sequence representing T . Then every edge of G not in T is incident
to some vertex of T . Assume that e1 and e2 are incident at v1. Replace
the subsequence fe1; e2g of fe1; e2; : : : ; esg by the sequence fe1; e11; e12;

: : : ; e1r1; e2g, where e11; e12; : : : e1r1 are the edges of E.G/nE.T / incident at
v1 other than e1 and e2. Assume that we have already replaced the subsequence
fei ; eiC1g by fei ; ei1; : : : ; eiri ; eiC1g. Then replace feiC1; eiC2g by the sequence
feiC1; e.iC1/1; : : : ; e.iC1/r.iC1/

; eiC2g in E.G/nE.T /, where the new edges
e.iC1/1 : : : ; e.iC1/r.iC1/

have not appeared in the previous i subsequences.
(Here we take esC1 D e1.) The resulting edge sequence is e1 e11 e12 : : : e1r1

e2 e21 e22 : : : e2r2 e3 : : : es es1 es2 : : : esrs e1 and this gives the Hamilton cycle
u1 u11 u12 : : : u1r1 u2 u21 u22 : : : u2r2 u3 : : : us us1 us2 : : : usrs u1 in L.G/. [Here u1 is
the vertex of L.G/ that corresponds to the edge e1 of G, and so on.]

Conversely, assume that L.G/ has a Hamilton cycle C . Let C D u1 u2 : : : um u1

and let ei be the edge of G corresponding to the vertex ui of L.G/. Let T0 be
the edge sequence e1 e2 : : : em e1. We now delete edges from T0 one after another
as follows: Let ei ej ek be the first three distinct consecutive edges of T0 that
have a common vertex; then delete ej from the sequence. Let T 0

0 D T0 � ej

D fe1 e2 : : : ei ek : : : em e1g.
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Fig. 6.15 Graphs for proof of Theorem 6.5.6. (a) T [ fuv; vw; wug is longer than T ; (b)
.T nfuwg/ [ fuv; vwg is longer than T

Now proceed with T 0
0 as we did with T0. Continue this process until no such triad

of edges exists. Then the resulting subsequence of T0 must be a dominating trail or
a pair of adjacent edges incident at a vertex, say, v0. In the latter case, all the edges
of G are incident at v0, and hence we take fv0g as the dominating trail of G. �

Corollary 6.5.5. The line graph of a Hamiltonian graph is Hamiltonian.

Proof. Let G be a Hamiltonian graph with Hamilton cycle C . Then C is a
dominating trail of G. Hence, L.G/ is Hamiltonian. �

Exercise 5.2. Show that the line graph of a graph G has a Hamilton path if and
only if G has a trail T such that every edge of G not in T is incident with T .

Exercise 5.3. Draw the line graph of the graph of Fig. 6.13 and display a Hamilton
cycle in it.

Theorem 6.5.6 ( [12]). Let G be any connected graph. If each edge of G belongs
to a triangle in G, then G has a spanning, Eulerian subgraph.

Proof. Since G has a triangle, G has a closed trail. Let T be a longest closed trail
in G. Then T must be a spanning Eulerian subgraph of G. If not, there exists a
vertex v of G with v … T and v is adjacent to a vertex u of T .

By hypothesis, uv belongs to a triangle, say uvw. If none of the edges of this
triangle is in T; then T [ fuv; vw; wug yields a closed trail longer than T (see
Fig. 6.15). If uw 2 T , then .T � uw/ [ fuv; vwg would be a closed trail longer than
T . These contradictions prove that T is a spanning closed trail of G. �

Corollary 6.5.7. Let G be any connected graph. If each edge of G belongs to a
triangle, then L.G/ is Hamiltonian.

Proof. The proof is an immediate consequence of Theorems 6.5.4 and 6.5.6. �

Corollary 6.5.8 (Chartrand and Wall [35]). If G is connected and ı.G/ � 3,
then L2.G/ is Hamiltonian.

(Note: For n > 1, Ln.G/ D L.Ln�1.G//, and L0.G/ D G.)
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Proof. Since ı.G/ � 3, each vertex of L.G/ belongs to a clique of size at
least three, and hence each edge of L.G/ belongs to a triangle. Now apply
Corollary 6.5.7. �

Corollary 6.5.9 (Nebesky [146]). If G is a connected graph with at least three
vertices, then L.G2/ is Hamiltonian.

Proof. Since G is a connected graph with at least three vertices, every edge of G2

belongs to a triangle. Hence, L.G2/ is Hamiltonian by Corollary 6.5.7. �

Theorem 6.5.10. Let G be a connected graph in which every edge belongs to a
triangle. If e1 and e2 are edges of G such that Gnfe1; e2g is connected, then there
exists a spanning trail of G with e1 and e2 as its initial and terminal edges.

Proof. The proof is essentially the same as for Theorem 6.5.6 and is based on
considering the longest trail T in G with e1 and e2 as its initial and terminal edges,
respectively. �
Corollary 6.5.11 ( [12]). Let G be any connected graph with ı.G/ � 4. Then
L2.G/ is Hamiltonian-connected.

Proof. The edges incident to a vertex v of G will yield a clique of size d.v/ in L.G/.
Since ı.G/ � 4, each vertex of L.G/ belongs to a clique of order at least 4, and
hence L.G/ is 3-edge connected. Therefore, for any pair of distinct edges e1 and
e2 of L.G/; L.G/nfe1; e2g is connected. Further, each edge of L.G/ belongs to
a triangle. Hence, by Theorem 6.5.10, a spanning trail T in L.G/ exists having
e1 and e2 as the initial and terminal edges, respectively. Thus, if there are any
edges of L.G/ not belonging to T , they can only be “chords” of T . It follows
(see Exercise 5.2) that in L2.G/ there exists a Hamilton path starting and ending
at the vertices corresponding to e1 and e2, respectively. Since e1 and e2 are arbitrary,
L2.G/ is Hamiltonian-connected. �

Corollary 6.5.12 (Jaeger [113]). The line graph of a 4-edge-connected graph is
Hamiltonian.

To prove Corollary 6.5.12, we need the following lemma.

Lemma 6.5.13. Let S be a set of vertices of a nontrivial tree T , and let jS j D
2k; k � 1. Then there exists a set of k pairwise edge-disjoint paths in T whose end
vertices are all the vertices of S .

Proof. Certainly there exists a set of k paths in T whose end vertices are all the
vertices of S . (This is because between any two vertices of T , there is a unique path
in T .) Choose such a set of k paths, say P D fP1; P2; : : : ; Pkg with the additional
condition that the sum of their lengths is minimum.

We claim that the paths of P are pairwise edge-disjoint. If not, there exists a pair
fPi ; Pj g; i ¤ j , with Pi and Pj having an edge in common. In this case, Pi and Pj

have one or more disjoint paths of length at least 1 in common. Then Pi � Pj , the
symmetric difference of Pi and Pj , properly contains a disjoint union of two paths,
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Fig. 6.16 Graph for proof of
Lemma 6.5.13

say Qi and Qj , with their end vertices being disjoint pairs of vertices belonging to
S (Fig. 6.16).

If we replace Pi and Pj by Qi and Qj in P; then the resulting set of paths has
the property that their end vertices belong to S and that the sum of the lengths of
Qi and Qj is less than that of the sum of the lengths of the paths Pi and Pj in P .
This contradicts the choice of P , and hence P has the stated property. �

Proof of Corollary 6.5.12. Let G be a 4-edge-connected graph. In view of
Theorem 6.5.4, it suffices to show that G contains a dominating trail.

By Corollary 4.4.6, G contains two edge-disjoint spanning trees T1 and T2. Let S

be the set of vertices of odd degree in T1. Then jS j is even. Let jS j D 2k; k � 1. By
Lemma 6.5.13, there exists a set of k pairwise edge-disjoint paths fPl; P2; : : : ; Pkg
in T2 with the property stated in Lemma 6.5.13. Then G0 D T1 [ .P1 [ P2 [ : : : Pk/

is a connected spanning subgraph of G in which each vertex is of even degree. Thus,
G0 is a dominating trail of G. �

We conclude this section with a theorem on locally connected graphs (see
Definition 1.5.9 of Chap. 1).

Theorem 6.5.14* (Oberly and Sumner [149]). A connected, locally connected,
nontrivial K1;3-free graph is Hamiltonian.

Proof. Let G be a connected, locally connected, nontrivial K1;3-free graph. We may
assume that G has at least four vertices. Since G is locally connected, G certainly
has a cycle. Let C be a longest cycle of G. If C is not a Hamilton cycle, there exists
a vertex v 2 V.G/nV.C / that is adjacent to a vertex u of C . Let u1 and u2 be the
neighbors of u on C . Then, as the edges uv; uu1 and uu2 do not induce a K1;3 in G,
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Fig. 6.18 Graph for case 1
of proof of Theorem 6.5.14

u1u2 2 E.G/, since otherwise v is adjacent either to u1 or u2 and we get a cycle
longer than C , a contradiction (see Fig. 6.17).

For each x 2 V.G/, denote by G0.x/ the subgraph GŒNG.x/� of G. By
hypothesis, G0.u/ is connected, and hence there exists either a v-u1 path P in
G0.u/ not containing u2 or a v-u2 path Q in G0.u/ not containing u1. Let us say
it is the former. For the purpose of the proof of this theorem, we call a vertex
w 2 V0 D .V .C / \ V.P //nfu1g singular if neither of the two neighbors of w
on C is in NG.u/.

Case 1. Each vertex of V0 is singular. Then for any w 2 V0; w is adjacent to u
(since w 2 V.P / � V.G0.u/// but since w is singular, neither of the neighbors
w1 and w2 of w on C is adjacent to u in G. Then considering the K1;3 subgraph
fww1; ww2; wug, we see that w1 w2 2 E.G/. Now, describe the cycle C 0 as follows:
Start from u2, move away from u along C , and whenever we encounter a singular
vertex w, bypass it by going through the edge w1w2. After reaching u1, retrace the
u1-v path P �1 and follow it up by the path vuu2. Then C 0 traverses through each
vertex of C [ P exactly once. Thus, C 0 is a cycle longer than C , a contradiction to
the choice of C (see Fig. 6.18).
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Fig. 6.19 Cycle C 0 for case
2 of proof of Theorem 6.5.14

Case 2. V0 has a nonsingular vertex. Let w be the first nonsingular vertex as P is
traversed from v to u1. As before, let w1 and w2 be the neighbors of w along C . Then
at least one of w1 and w2 is adjacent to u. Without loss of generality, assume that w2

is adjacent to u. Let

C 0 D .C [ fw2u; uw; u1u2g/nfw2w; uu1; uu2g:

(See Fig. 6.19.)

Clearly, C and C 0 are of the same length, and therefore C 0 is also a longest cycle
of G. Then, by the choice w, the v-w section of P contains the only nonsingular
vertex w. Let w0 be the first singular vertex on this section. Consider the cycle C 00
described as follows: Start from w2 and move along C 0 away from u until we reach
the vertex preceding w0. Bypass w0 by moving through the neighbors of w0 along
C 0 (as in case 1), and repeat it for each nonsingular vertex after w0. After reaching
w, move along the w-v section of P �1 and follow it by the path vuw2 (see Fig. 6.20).
Then C 00 is a cycle longer than C 0 (as in case 1), a contradiction.

Hence, in any case, C cannot be a longest cycle of G. Thus, G is
Hamiltonian. �

6.6 2-Factorable Graphs

It is clear that if a graph G is r-factorable with k r-factors, then the degree of each
vertex of G is rk. In particular, if G is 2-factorable, then G is regular of even degree,
say, 2k. That the converse is also true is a result due to Petersen [158].

Theorem 6.6.1 (Petersen). Every 2k-regular graph, k � 1, is 2-factorable.
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Fig. 6.20 Cycle C 00 for case
2 of proof of Theorem 6.5.14

Proof. Let G be a 2k-regular graph with V D fv1; v2; : : : ; vng. We may assume
without loss of generality that G is connected. (Otherwise, we can consider the
components of G separately.) Since each vertex of G is of even degree, by
Theorem 6.2.2, G is Eulerian. Let T be an Euler tour of G. Form a bipartite graph H

with bipartition .V; W /, where V D fv1; v2; : : : ; vng and W D fw1; w2; : : : ; wng
and in which vi is made adjacent to wj if and only if vj follows vi immediately
in T . Since at every vertex of G there are k incoming edges and k outgoing edges
along T , H is k-regular. Hence, by Theorem 5.5.3, H is 1-factorable. Let the k

1-factors be M1; : : : ; Mk. Label the edges of Mi with the label i; 1 � i � k. Then
the k edges incident at each vi of H receive the k labels 1; 2; : : : ; k, and hence if
the edges vi wj and vj wr are in Mp, 1 � p � k, identifying the vertex wj with
the vertex vj for each j in Mp gives an edge labeling to G in which the edges vi vj

and vj vr receive the label p. It is then clear that the edges of Mp yield a 2-factor
of G with label p. Note that vi is nonadjacent to wi in H , 1 � i � k. Since this is
true for each of the 1-factors Mp; 1 � p � k, we get a 2-factorization of G into k

2-factors. �

A special case of Theorem 6.6.1 is the 2-factorization of K2pC1; which is
2p-regular. Actually, K2pC1 has a 2-factorization into Hamilton cycles.

Theorem 6.6.2. K2pC1 is 2-factorable into p Hamilton cycles.

Proof. Label the vertices of K2pC1 as v0; v1; : : : ; v2p . For i D 0; 1; : : : ; p, let Pi

be the path vi vi�1 viC1 vi�2 viC2 : : : viCp�1 vi�.p�1/ (suffixes taken modulo 2p),
and let Ci be the Hamilton cycle obtained from Pi by joining v2p to the end vertices
of Pi . The cycles Ci are edge-disjoint. This may be seen by placing the 2p vertices
v0; v1; : : : ; v2p�1 symmetrically on a circle and placing v2p at the center of the
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v1
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Fig. 6.21 Parallel chords and
edge-disjoint Hamilton cycles
in K7

circle and noting that the edges vi vi�1; viC1 vi�2; : : : ; viCp�1 vi�p form a set of p

parallel chords of this circle. �

Figure 6.21 displays the three sets of parallel chords and three edge-disjoint
Hamilton cycles in K7. The 2-factors are

F1 W v6 v0 v5 v1 v4 v2 v3 v6;

F2 W v6 v1 v0 v2 v5 v3 v4 v6;

F3 W v6 v2 v1 v3 v0 v4 v5 v6:

6.7 Exercises

7.1. Prove: A Hamiltonian-connected graph is Hamiltonian. (Note: The converse
is not true. See the next exercise.)

7.2. Show that a Hamiltonian-connected graph is 3-connected. Display a Hamil-
tonian graph of connectivity 3 that is not Hamiltonian-connected.

7.3. If G is traceable, show that for every proper subset S of V.G/; !.G � S/ �
jS j C 1. Disprove the converse by a counterexample.

7.4. If G is simple and ı � n�1
2

show that G is traceable. Disprove the converse.
7.5. If G is simple and ı � nC1

2
show that G is Hamiltonian-connected. Is the

converse true?
7.6. Give an example of a non-Hamiltonian simple graph G of order n .n � 3/

such that for every pair of nonadjacent vertices u and v; d.u/ Cd.v/ � n� 1.
[This shows that the condition in Ore’s theorem (Theorem 6.3.5) cannot be
weakened further.]

7.7. Show that if a cubic graph is Hamiltonian, then it has three disjoint 1-factors.
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7.8.* Show that if a cubic graph has a 1-factor, then it has at least three distinct
1-factors.

7.9. Show that a complete k-partite graph G is Hamiltonian if and only if
jV.G/nN j � jN j, where N is the size of a maximum part of G. (See
Aravamudhan and Rajendran [9].)

7.10. A graph is called locally Hamiltonian if GŒN.v/� is Hamiltonian for each
vertex v of G. Show that a locally Hamiltonian graph is 3-connected.

7.11. If jV.G/j � 5, prove that L.G/ is locally Hamiltonian if and only if G Š
K1;n.

7.12. If G is a 2-connected graph that is both K1;3-free and .K1;3 C e/-free, prove
that G is Hamiltonian. (Recall that a graph G is H -free if G does not contain
an isomorphic copy of H as an induced subgraph.)

7.13. Let G be a simple graph of order 2n .n � 2/. If for every pair of nonadjacent
vertices u and v; d.u/ C d.v/ > 2n C 2, show that G contains a spanning
cubic graph.

7.14. Show by means of an example that the square of a 1-connected (i.e., con-
nected) graph need not be Hamiltonian. (A celebrated result of H. Fleischner
states that the square of any 2-connected graph is Hamiltonian—a result that
was originally conjectured by M. D. Plummer.)

7.15.* Let G be a simple graph with degree sequence .d1; d2; : : : ; dn/, where d1 �
d2 � : : : � dn and n � 3. Suppose that there is no value of r less than n

2
for

which dr � r and dn�r < n � r . Show that G is Hamiltonian. (See Chvátal
[38] or reference [27].)

7.16. Does there exist a simple non-Hamiltonian graph with degree sequence
.2; 3; 5; 5; 5; 6; 6; 6; 6; 6/?

7.17. Draw a non-Hamiltonian simple graph with degree sequence
.3; 3; 3; 6; 6; 6; 9; 9; 9/.

7.18. Let G be a .2k C 1/-regular graph with the property that jŒS; NS�j � 2k for
every proper nonempty set S of V . Prove that G has k edge-disjoint 2-factors.
(Note that when k D 1, this is just Petersen’s result: Corollary 5.5.11. Hint:
Use Tutte’s 1-factor Theorem 5.6.5 to show that G has a 1-factor. Then apply
Petersen’s Theorem 6.6.1.)

Notes

Königsberg was part of East Prussia before Germany’s defeat in World War II. It has
been renamed Kaliningrad, and perhaps before long it will get back its original
name. It is also the birthplace of the German mathematician David Hilbert as well
as the German philosopher Immanuel Kant. It is interesting to note that even though
the Königsberg bridge problem did give birth to Eulerian graphs, Euler himself did
not use the concept of Eulerian graphs to solve this problem; instead, he relied on
an exhaustive case-by-case verification (see reference [24]).
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Ore’s theorem (Theorem 6.3.5) can be restated as follows: If G is a simple graph
with n � 3 vertices and jN.u/j C jN.v/j � n, for every pair of nonadjacent vertices
of G, then G is Hamiltonian. This statement replaces d.u/ in Theorem 6.3.5 by
jN.u/j. There are several sufficient conditions for a graph to be Hamiltonian using
the neighborhood conditions. A nice survey of these results is given in Lesniak
[131]. To give a flavor of these results, we give three results here of Faudree, Gould,
Jacobson, and Lesniak:

Theorem 1. If G is a 2-connected graph of order n such that jN.u/\N.u/j � 2n�1
3

for each pair u; v of nonadjacent vertices of G, then G is Hamiltonian.

Theorem 2. If G is a connected graph of order n such that jN.u/ \ N.v/j � 2n�2
3

for each pair u; v of nonadjacent vertices of G, then G is traceable.

Theorem 3. If G is a 3-connected graph of order n such that jN.u/ \ N.v/j > 2n
3

for each pair u; v of nonadjacent vertices of G, then G is Hamiltonian-connected.
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