
Chapter 5
Independent Sets and Matchings

5.1 Introduction

Vertex-independent sets and vertex coverings as also edge-independent sets and
edge coverings of graphs occur very naturally in many practical situations and
hence have several potential applications. In this chapter, we study the properties
of these sets. In addition, we discuss matchings in graphs and, in particular, in
bipartite graphs. Matchings in bipartite graphs have varied applications in operations
research. We also present two celebrated theorems of graph theory, namely, Tutte’s
1-factor theorem and Hall’s matching theorem. All graphs considered in this chapter
are loopless.

5.2 Vertex-Independent Sets and Vertex Coverings

Definition 5.2.1. A subset S of the vertex set V of a graph G is called independent
if no two vertices of S are adjacent in G. S � V is a maximum independent set of
G if G has no independent set S 0 with jS 0j > jS j. A maximal independent set of G

is an independent set that is not a proper subset of another independent set of G.
For example, in the graph of Fig. 5.1, fu; v; wg is a maximum independent set and

fx; yg is a maximal independent set that is not maximum.

Definition 5.2.2. A subset K of V is called a covering of G if every edge of G

is incident with at least one vertex of K . A covering K is minimum if there is no
covering K 0 of G such that jK 0j < jKjI it is minimal if there is no covering K1 of
G such that K1 is a proper subset of K .

In the graph W5 of Fig. 5.2, fv1; v2; v3; v4; v5g is a covering of W5 and
fv1; v3; v4; v6g is a minimal covering. Also, the set fx; yg is a minimum covering of
the graph of Fig. 5.1.
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Fig. 5.1 Graph with
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fu; v; wg and maximal
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Fig. 5.2 Wheel W5

The concepts of covering and independent sets of a graph arise very naturally in
practical problems. Suppose we want to store a set of chemicals in different rooms.
Naturally, we would like to store incompatible chemicals, that is, chemicals that
are likely to react violently when brought together, in distinct rooms. Let G be a
graph whose vertex set represents the set of chemicals and let two vertices be made
adjacent in G if and only if the corresponding chemicals are incompatible. Then any
set of vertices representing compatible chemicals forms an independent set of G.

Now consider the graph G whose vertices represent the various locations in a
factory and whose edges represent the pathways between pairs of such locations.
A light source placed at a location supplies light to all the pathways incident to that
location. A set of light sources that supplies light to all the pathways in the factory
forms a covering of G.

Theorem 5.2.3. A subset S of V is independent if and only if V nS is a covering
of G.

Proof. S is independent if and only if no two vertices in S are adjacent in G. Hence,
every edge of G must be incident to a vertex of V nS . This is the case if and only if
V nS is a covering of G. �
Definition 5.2.4. The number of vertices in a maximum independent set of G is
called the independence number (or the stability number) of G and is denoted by
˛.G/. The number of vertices in a minimum covering of G is the covering number
of G and is denoted by ˇ.G/. We denote these numbers simply by ˛ and ˇ when
there is no confusion.

Corollary 5.2.5. For any graph G, ˛ C ˇ D n.
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Proof. Let S be a maximum independent set of G. By Theorem 5.2.3, V nS is a
covering of G and therefore jV nS j D n � ˛ � ˇ. Similarly, let K be a minimum
covering of G. Then V nK is independent and so jV nKj D n � ˇ � ˛. These two
inequalities together imply that n D ˛ C ˇ. �

5.3 Edge-Independent Sets

Definitions 5.3.1. 1. A subset M of the edge set E of a loopless graph G is called
independent if no two edges of M are adjacent in G.

2. A matching in G is a set of independent edges.
3. An edge covering of G is a subset L of E such that every vertex of G is incident

to some edge of L. Hence, an edge covering of G exists if and only if ı > 0.
4. A matching M of G is maximum if G has no matching M 0 with jM 0j > jM j.

M is maximal if G has no matching M 0 strictly containing M . ˛0.G/ is the
cardinality of a maximum matching and ˇ0.G/ is the size of a minimum edge
covering of G.

5. A set S of vertices of G is said to be saturated by a matching M of G or M -
saturated if every vertex of S is incident to some edge of M . A vertex v of G is
M -saturated if fvg is M -saturated. v is M -unsaturated if it is not M -saturated.
For example, in the wheel W5 (Fig. 5.2), M D fv1v2; v4v6g is a maximal

matching; fv1v5; v2v3; v4v6g is a maximum matching and a minimum edge covering;
the vertices v1; v2; v4, and v6 are M -saturated, whereas v3 and v5 are M -unsaturated.

Remark 5.3.2. The edge analog of Theorem 5.2.3 is not true, however. For instance,
in the graph G of Fig. 5.3, the set E 0 D fe3; e4g is independent, but EnE 0 D
fe1; e2; e5g is not an edge covering of G. Also, E 00 D fe1; e3; e4g is an edge covering
of G; but EnE 00 is not independent in G. Again, E 0 is a matching in G that saturates
v2; v3; v4 and v5 but does not saturate v1.

Theorem 5.3.3. For any graph G for which ı > 0, ˛0 C ˇ0 D n.

Proof. Let M be a maximum matching in G so that jM j D ˛0. Let U be the set
of M -unsaturated vertices in G. Since M is maximum, U is an independent set of
vertices with jU j D n � 2˛0. Since ı > 0, we can pick one edge for each vertex in

v1 v2

v3

v4 v5

e1 e2 e3

e4 e5

G
Fig. 5.3 Graph illustrating
edge relationships
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Fig. 5.4 Herschel graph

U incident with it. Let F be the set of edges thus chosen. Then M [ F is an edge
covering of G. Hence, jM [ F j D jM j C jF j D ˛0 C n � 2˛0 � ˇ0, and therefore

n � ˛0 C ˇ0: (5.1)

Now let L be a minimum edge covering of G so that jLj D ˇ0. Let H D GŒL� be
the edge subgraph of G defined by L, and let MH be a maximum matching in H .
Denote the set of MH -unsaturated vertices in H by U . As L is an edge covering of
G, H is a spanning subgraph of G. Consequently, jLj� jMH j D jLnMH j � jU j D
n � 2jMH j and so jLj C jMH j � n. But since MH is a matching in G, jMH j � ˛0.
Thus,

n � jLj C jMH j � ˇ0 C ˛0: (5.2)

Inequalities (5.1) and (5.2) imply that ˛0 C ˇ0 D n. �

Exercise 3.1. Determine the values of the parameters ˛, ˛0, ˇ, and ˇ0 for

1. Kn,
2. The Petersen graph P ,
3. The Herschel graph (see Fig. 5.4).

Exercise 3.2. For any graph G with ı > 0, prove that ˛ � ˇ0 and ˛0 � ˇ.

Exercise 3.3. Show that for a bipartite graph G, ˛ ˇ � m and that equality holds if
and only if G is complete.

5.4 Matchings and Factors

Definition 5.4.1. A matching of a graph G is (as given in Definition 5.3.1) a set
of independent edges of G. If e D uv is an edge of a matching M of G, the end
vertices u and v of e are said to be matched by M .

If M1 and M2 are matchings of G, the edge subgraph defined by M1�M2, the
symmetric difference of M1 and M2, is a subgraph H of G whose components are
paths or even cycles of G in which the edges alternate between M1 and M2.
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Fig. 5.5 Graphs for proof of Theorem 5.4.4

Definition 5.4.2. An M -augmenting path in G is a path in which the edges
alternate between EnM and M and its end vertices are M -unsaturated. An M -
alternating path in G is a path whose edges alternate between EnM and M .

Example 5.4.3. In the graph G of Fig. 5.2, M1 D fv1v2; v3v4; v5v6g; M2 D
fv1v2; v3v6; v4v5g; and M3 D fv3v4; v5v6g are matchings of G. Moreover,
GŒM1�M2� is the even cycle .v3v4v5v6v3/. The path v2v3v4v6v5v1 is an M3-
augmenting path in G.

Maximum matchings have been characterized by Berge [19].

Theorem 5.4.4. A matching M of a graph G is maximum if and only if G has no
M -augmenting path.

Proof. Assume first that M is maximum. If G has an M -augmenting path P W
v0v1v2 : : : v2tC1 in which the edges alternate between EnM and M , then P has one
edge of EnM more than that of M . Define

M 0 D .M [ fv0v1; v2v3; : : : ; v2t v2tC1g/nfv1v2; v3v4; : : : ; v2t�1v2t g:

Clearly, M 0 is a matching of G with jM 0j D jM jC1, which is a contradiction since
M is a maximum matching of G.

Conversely, assume that G has no M -augmenting path. Then M must be
maximum. If not, there exists a matching M 0 of G with jM 0j > jM j. Let H be the
edge subgraph GŒM�M 0� defined by the symmetric difference of M and M 0. Then
the components of H are paths or even cycles in which the edges alternate between
M and M 0. Since jM 0j > jM j, at least one of the components of H must be a path
starting and ending with edges of M 0. But then such a path is an M -augmenting
path of G, contradicting the assumption (see Fig. 5.5). �

Definition 5.4.5. A factor of a graph G is a spanning subgraph of G. A k-factor of
G is a factor of G that is k-regular. Thus, a 1-factor of G is a matching that saturates
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G1 G2

G3 G4

Fig. 5.6 Graphs illustrating factorability

all the vertices of G. For this reason, a 1-factor of G is called a perfect matching of
G. A 2-factor of G is a factor of G that is a disjoint union of cycles of G. A graph
G is k-factorable if G is an edge-disjoint union of k-factors of G.

Example 5.4.6. In Fig. 5.6, G1 is 1-factorable and G2 is 2-factorable, whereas G3

has neither a 1-factor nor a 2-factor. The dotted, solid, and ordinary lines of G1

give the three distinct 1-factors, and the dotted and ordinary lines of G2 give its two
distinct 2-factors.

Exercise 4.1. Give an example of a cubic graph having no 1-factor.

Exercise 4.2. Show that Kn;n and K2n are 1-factorable.

Exercise 4.3. Show that the number of 1-factors of

(i) Kn;n is nŠ,
(ii) K2n is .2n/Š

2n nŠ
.

Exercise 4.4. The n-cube Qn is the graph whose vertices are binary n-tuples. Two
vertices of Qn are adjacent if and only if they differ in exactly one place. Show
that Qn (n � 2) has a perfect matching. (The 3-cube Q3 and the 4-cube Q4 are
displayed in Fig. 5.7.) It is easy to see that Qn ' K2�K2� : : : �K2 (n times).
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Fig. 5.7 (a) 3-cube Q3 and
(b) 4-cube Q4

Exercise 4.5. Show that the Petersen graph P is not 1-factorable. (Hint: Look at
the possible types of 1-factors of P .)

Exercise 4.6. Show that every tree has at most one perfect matching.

Exercise 4.7*. Show that if a 2-edge-connected graph has a 1-factor, then it has at
least two distinct 1-factors.

Exercise 4.8. Show that the graph G4 of Fig. 5.6 is not 1-factorable.

An Application to Physics 5.4.7. In crystal physics, a crystal is represented by
a three-dimensional lattice in which each face corresponds to a two-dimensional
lattice. Each vertex of the lattice represents an atom of the crystal, and an edge
between two vertices represents the bond between the two corresponding atoms.

In crystallography, one is interested in obtaining an analytical expression for
certain surface properties of crystals consisting of diatomic molecules (also called
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dimers). For this, one must find the number of ways in which all the atoms of the
crystal can be paired off as molecules consisting of two atoms each. The problem
is clearly equivalent to that of finding the number of perfect matchings of the
corresponding two-dimensional lattice.

Two different dimer coverings (perfect matchings) of the lattice defined by the
graph G4 are exhibited in Fig. 5.6—one in solid lines and the other in parallel lines.

5.5 Matchings in Bipartite Graphs

Assignment Problem 5.5.1. Suppose in a factory there are n jobs j1; j2; : : : ; jn

and s workers w1; w2; : : : ; ws . Also suppose that each job ji can be performed by a
certain number of workers and that each worker wj has been trained to do a certain
number of jobs. Is it possible to assign each of the n jobs to a worker who can do
that job so that no two jobs are assigned to the same worker?

We convert this job assignment problem into a problem in graphs as follows:
Form a bipartite graph G with bipartition .J; W /, where J D fj1; j2; : : : ; jng and
W D fw1; w2; : : : ; wsg; and make ji adjacent to wj if and only if worker wj can
do the job ji . Then our assignment problem translates into the following graph
problem: Is it possible to find a matching in G that saturates all the vertices of J ?

A solution to the above matching problem in bipartite graphs has been given by
Hall [90] (see also Hall, Jr. [91]).

For a subset S � V in a graph G, N.S/ denotes the neighbor set of S , that is,
the set of all vertices each of which is adjacent to at least one vertex in S .

Theorem 5.5.2 (Hall). Let G be a bipartite graph with bipartition .X; Y /. Then
G has a matching that saturates all the vertices of X if and only if

jN.S/j � jS j (5.3)

for every subset S of X .

Proof. If G has a matching that saturates all the vertices of X , then distinct vertices
of X are matched to distinct vertices of Y . Hence, trivially, jN.S/j � jS j for every
subset S � X .

Conversely, assume that the condition (5.3) above holds but that G has no
matching that saturates all the vertices of X . Let M be a maximum matching of G.
As M does not saturate all the vertices of X , there exists a vertex x0 2 X that is
M -unsaturated. Let Z denote the set of all vertices of G connected to x0 by M -
alternating paths. Since M is a maximum matching, by Theorem 5.4.4, G has no
M -augmenting path. As x0 is M -unsaturated, x0 is the only vertex of Z that is M -
unsaturated. Let A D Z \ X and B D Z \ Y . Then the vertices of Anfx0g get
matched under M to the vertices of B , and N.A/ D B . Thus, since jBj D jAj � 1,
jN.A/j D jBj D jAj � 1 < jAj, and this contradicts the assumption (5.3) (see
Fig. 5.8). �
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Fig. 5.8 Figure for proof of Theorem 5.5.2 (matching edges are boldfaced)

We now give some important consequences of Hall’s theorem.

Theorem 5.5.3. A k .� 1/-regular bipartite graph is 1-factorable.

Proof. Let G be k-regular with bipartition .X; Y /. Then E.G/ D the set of edges
incident to the vertices of X D the set of edges incident to the vertices of Y . Hence,
kjX j D jE.G/j D kjY j; and therefore jX j D jY j. If S � X , then N.S/ � Y ,
and N.N.S// contains S . Let E1 and E2 be the sets of edges of G incident to S

and N.S/, respectively. Then E1 � E2, jE1j D kjS j, and jE2j D kjN.S/j. Hence,
as jE2j � jE1j, jN.S/j � jS j. So by Hall’s theorem (Theorem 5.5.2), G has a
matching that saturates all the vertices of X ; that is, G has a perfect matching M .
Deletion of the edges of M from G results in a .k � 1/-regular bipartite graph.
Repeated application of the above argument shows that G is 1-factorable. �

König’s theorem: Consider any matching M of a graph G. If K is any (vertex)
covering for the graph, then it is clear that to cover each edge of M; we have to
choose at least one vertex of K . Thus, jM j � jKj. In particular, if M � is a maximum
matching and K� is a minimum covering of G, then

jM �j � jK�j: (5.4)

König’s theorem asserts that for bipartite graphs, equality holds in relation (5.4).
Before we establish this theorem, we present a lemma that is interesting in its own
right and is similar to Lemma 3.6.8.

Lemma 5.5.4. Let K be any covering and M any matching of a graph G with
jKj D jM j. Then K is a minimum covering and M is a maximum matching.

Proof. Let M � be a maximum matching and K� a minimum covering of G. Then
jM j � jM �j and jKj � jK�j. Hence, by (5.4) we have jM j � jM �j � jK�j � jKj.
Since jM j D jKj, we must have jM j D jM �j D jK�j D jKj, proving the lemma.

�
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Fig. 5.9 Graph for proof of Theorem 5.5.5

Theorem 5.5.5 (König). In a bipartite graph the minimum number of vertices that
cover all the edges of G is equal to the maximum number of independent edges; that
is, ˛ 0.G/ D ˇ.G/.

Proof. Let G be a bipartite graph with bipartition .X; Y /. Let M be a maximum
matching in G. Denote by A the set of vertices of X unsaturated by M (see Fig. 5.9).
As in the proof of Theorem 5.5.2, let Z stand for the set of vertices connected to A

by M -alternating paths starting in A. Let S D X \Z and T D Y \Z. Then clearly,
T D N.S/ and K D T [ .XnS/ is a covering of G, because if there is an edge e

not incident to any vertex in K , then one of the end vertices of e must be in S and
the other in Y nT; contradicting the fact that N.S/ D T . Clearly, jKj D jM j, and
so by Lemma 5.5.4, M is a maximum matching and K a minimum covering of G.

�

Let A be a binary matrix (so that each entry of A is 0 or 1). A line of A is a row
or column of A. A line covers all of its entries. Two 1’s of A are called independent
if they do not lie in the same line of A. The matrix version of KRonig’s theorem is
given in Theorem 5.5.6.

Theorem 5.5.6 (Matrix version of KRonig’s theorem). In a binary matrix, the
minimum number of lines that cover all the 1’s is equal to the maximum number of
independent 1’s.

Proof. Let A D .aij / be a binary matrix of size p by q. Form a bipartite graph G

with bipartition .X; Y /; where X and Y are sets of cardinality p and q; respectively,
say, X D fv1; v2; : : : ; vpg and Y D fw1; w2; : : : ; wqg. Make vi adjacent to wj in G

if and only if aij D 1. Then an entry 1 in A corresponds to an edge of G, and
two independent 1’s in A correspond to two independent edges of G. Further, each
vertex of G corresponds to a line of A. Thus, the matrix version of König’s theorem
is actually a restatement of K Ronig’s theorem. �
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A consequence of Theorem 5.5.2 is the theorem on the existence of a system of
distinct representatives (SDR) for a family of subsets of a given finite set.

Definition 5.5.7. Let F D fA˛ W ˛ 2 J g be a family of sets. An SDR for the
family F is a family of elements fx˛ W ˛ 2 J g such that x˛ 2 A˛ for every ˛ 2 J

and x˛ ¤ xˇ whenever ˛ ¤ ˇ.

Example 5.5.8. For instance, if A1 D f1g, A2 D f2; 3g, A3 D f3; 4g, A4 D
f1; 2; 3; 4g, and A5 D f2; 3; 4g, then the family fA1; A2; A3; A4g has f1; 2; 3; 4g as
an SDR, whereas the family fA1; A2; A3; A4; A5g has no SDR. It is clear that for F
to have an SDR, it is necessary that for any positive integer k, the union of any k sets
of F must contain at least k elements. That this condition is also sufficient when
F is a finite family of finite sets is the assertion of Hall’s theorem on the existence
of an SDR.

Theorem 5.5.9 (Hall’s theorem on the existence of an SDR [90]). Let F D
fAi W 1 � i � rg be a family of finite sets. Then F has an SDR if and only if the
union of any k members of F , 1 � k � r , contains at least k elements.

Proof. We need only prove the sufficiency part. Let
Sr

iD1 Ai D fy1; y2; : : : ; yng.
Form a bipartite graph G D G.X; Y / with X D fx1; x2; : : : ; xrg, where xi

corresponds to the set Ai , 1 � i � r , and Y D fy1; y2; : : : ; yng. Make xi

adjacent to yj in G if and only if yj 2 Ai . Then it is clear that F has an SDR
if and only if G has a matching that saturates all the vertices of X . But this is the
case, by Theorem 5.5.2, if for each S � X , jN.S/j � jS j, that is, if and only if
j S

xi 2S Ai j � jS j, which is precisely the condition stated in the theorem. �

Exercise 5.1. Prove Theorem 5.5.5 (König’s theorem) assuming Theorem 5.5.9.

Exercise 5.2. Show that a bipartite graph has a 1-factor if and only if jN.S/j � jS j
for every subset S of V . Does this hold for any graph G?

When does a graph have a 1-factor? Tutte’s celebrated 1-factor theorem answers
this question. The proof given here is due to Lovász [135]. A component of a graph
is odd or even according to whether it has an odd or even number of vertices. Let
O.G/ denote the number of odd components of G.

Theorem 5.5.10 (Tutte’s 1-factor theorem [179]). A graph G has a 1-factor if
and only if

O.G � S/ � jS j; (5.5)

for all S � V .

Proof. While considering matchings in graphs, we are interested only in the
adjacency of pairs of vertices. Hence, we may assume without loss of generality
that G is simple. If G has a 1-factor M , each of the odd components of G � S

must have at least one vertex, which is to be matched only to a vertex of S under M.
Hence, for each odd component of G � S , there exists an edge of the matching with
one end in S . Hence, the number of vertices in S should be at least as large as the
number of odd components in G � S ; that is, O.G � S/ � jS j.
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Fig. 5.10 Supergraph G� for proof of Theorem 5.5.10. Unbroken lines correspond to edges of G�

and broken lines correspond to edges not belonging to G�

Conversely, assume that condition (5.5) holds. If G has no 1-factor, we join pairs
of nonadjacent vertices of G until we get a maximal supergraph G� of G with G�
having no 1-factor. Condition (5.5) holds clearly for G� as

O.G� � S/ � O.G � S/: (5.6)

(When two odd components are joined by an edge, the result is an even component.)
Taking S D � in (5.5), we see that O.G/ D 0, and so n.G�/ .D n.G// D n is

even. Further, for every pair of nonadjacent vertices u and v of G�, G� C uv has a
1-factor, and any such 1-factor must necessarily contain the edge uv.

Let K be the set of vertices of G� of degree .n � 1/. K ¤ V , since otherwise
G� D Kn has a perfect matching. We claim that each component of G� � K is
complete. Suppose to the contrary that some component G1 of G� � K is not
complete. Then in G1 there are vertices x; y and z such that xy 2 E.G�/; yz 2
E.G�/, but xz does not belong to E.G�/ (Exercise 5.11 of Chap. 1). Moreover,
since y 2 V.G1/; dG�.y/ < n � 1 and hence there exists a vertex w of G� with
yw … E.G�/. Necessarily, w does not belong to K . (See Fig. 5.10.)

By the choice of G�, each of G� C xz and G� C yw has a 1-factor, say M1 and
M 2, respectively. Necessarily, xz 2 M1 and yw 2 M2. Let H be the subgraph of
G� C fxz; ywg induced by the edges in the symmetric difference M1�M2 of M1

and M2. Since M1 and M2 are 1-factors, each vertex of G� is saturated by both
M1 and M2, and H is a disjoint union of even cycles in which the edges alternate
between M1 and M2. There arise two cases:

Case 1. xz and yw belong to different components of H (Fig. 5.11a). If yw
belongs to the even cycle C , then the edges of M1 in C together with
the edges of M2 not belonging to C form a 1-factor in G�, contradicting
the choice of G�.

Case 2. xz and yw belong to the same component C of H . Since each component
of H is a cycle, C is a cycle (Fig. 5.11b). By the symmetry of x and z,
we may suppose that the vertices x; y; w, and z occur in that order on C .
Then the edges of M1 belonging to the yw : : : z section of C together
with the edge yz and the edges of M2 not in the yw : : : z section of C

form a 1-factor of G�, again contradicting the choice of G�. Thus, each
component of G� � K is complete.

By condition (5.6), O.G� � K/ � jKj. Hence, a vertex of each of the odd
components of G� � K is matched to a vertex of K . (This is possible since each
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Fig. 5.11 1-factors M1 and
M2 for (a) case 1 and (b) case
2 in proof of Theorem 5.5.10.
Ordinary lines correspond to
edges of M1 and bold lines
correspond to edges of M2

vertex of K is adjacent to every other vertex of G�.) Also, the remaining vertices in
each of the odd and even components of G� �K can be matched among themselves
(see Fig. 5.12). The total number of vertices thus matched is even. Since jV.G�/j is
even, the remaining vertices, if any, of K can be matched among themselves. This
gives a 1-factor of G�. Note that if K D ;; O.G�/ D 0, and the existence of a 1-
factor in G� is trivially true. But by choice, G� has no 1-factor. This contradiction
proves that G has a 1-factor. �

Corollary 5.5.11 (Petersen [158]). Every connected 3-regular graph having no
cut edges has a 1-factor.

Proof. Let G be a connected 3-regular graph without cut edges. Let S � V . Denote
by G1; G2; : : : ; Gk the odd components of G � S . Let mi be the number of edges of
G having one end in V.Gi / and the other end in S . Since G is a cubic graph,

X

v2V.Gi /

d.v/ D 3n.Gi /; (5.7)

and
X

v2S

d.v/ D 3jS j: (5.8)
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K

G1 G2 Gk

Fig. 5.12 Components of G� � K for proof of Theorem 5.5.10

v0
e3

e1 e2

e4 e5

a bFig. 5.13 (a) 3-regular graph
with cut edges having no
1-factor; (b) cubic graph with
a 1-factor having a cut edge

Now E.Gi / D ŒV .Gi /; V .Gi / [ S�nŒV .Gi /; S�, where ŒA; B� denotes the set of
edges having one end in A and the other end in B; A � V; B � V . Hence, mi D
jŒV .Gi /; S�j D P

v2V.Gi /
d.v/ � 2m.Gi/, and since d.v/ is 3 for each v and V.Gi /

is an odd component, mi is odd for each i . Further, as G has no cut edges, mi � 3.
Thus, O.G � S/ D k � 1

3

Pk
iD1 mi � 1

3

P
v2S d.v/ D 1

3
3jS j D jS j. Therefore,

by Tutte’s theorem (Theorem 5.5.10), G has a 1-factor. �

Example 5.5.12. A 3-regular graph with cut edges may not have a 1-factor (see
Fig. 5.13a). Again, a cubic graph with a 1-factor may have cut edges (see Fig. 5.13b).

In Fig. 5.13a, if S D fv0g; O.G � S/ D 3 > 1 D jS j, and so G has no 1-factor.
In Fig. 5.13b, fe1; e2; e3; e4; e5g is a 1-factor, and e3 is a cut edge of G.

If G has no 1-factor, by Theorem 5.5.10 there exists S � V.G/ with O.G�S/ >

jS j. Such a set S is called an antifactor set of GI clearly, S is a proper subset of
V.G/.

Let G be a graph of even order n and let S be an antifactor set of G. Then jS j
and O.G � S/ have the same parity, and therefore O.G � S/ � jS j (mod 2). Thus,
we make the following observation.
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e1

e2

f1

f1

f2f2

e5
e4e3

e6

f6f5f4

f3 f6

f5

f4

f3

Fig. 5.14 Figure for the proof of Corollary 5.5.14

Observation 5.5.13. If S is an antifactor set of a graph G of even order, then
O.G � S/ � jS j C 2.

Corollary 5.5.14 (W. H. Cunnigham; see [119]). The edge set of a simple
2-edge-connected cubic graph G can be partitioned into paths of length 3.

Proof. By Corollary 5.5.11, G is a union of a 1-factor and a 2-factor. Orient the
edges of each cycle of the above 2-factor in any manner so that each cycle becomes
a directed cycle. Then if e1 is any edge of the 1-factor, and f1; f 0

1 are the two arcs of
G having their tails at the end vertices of e1, then fe1; f1; f 0

1 g forms a typical 3-path
of the edge partition of G (see Fig. 5.14). �

Corollary 5.5.15. A .p � 1/-regular connected simple graph on 2p vertices has a
1-factor.

Proof. Proof is by contradiction. Let G be a .p � 1/-regular connected simple
graph on 2p vertices having no 1-factor. Then G has an antifactor set S . By
Observation 5.5.13, O.G � S/ � jS j C 2. Hence, jS j C .jS j C 2/ � 2p, and
therefore jS j � p � 1. Let jS j D p � r . Then r ¤ 1 since if r D 1; jS j D p � 1,
and therefore O.G � S/ D p C 1. (Recall that G has 2p vertices.) Hence, each odd
component of G � S is a singleton, and therefore each such vertex must be adjacent
to all the p�1 vertices of S [as G is .p�1/-regular]. But this means that every vertex
of S is of degree at least p C 1, a contradiction. Thus, jS j D p � r; 2 � r � p � 1.
If G0 is any component of G � S and v 2 V.G0/, then v can be adjacent to at most
jS j vertices of S . Therefore, as G is .p � 1/-regular, v must be adjacent to at least
.p�1/�.p�r/ D r �1 vertices of G0. Thus, jV.G0/j � r . Counting the vertices of
all the odd components of G�S and the vertices of S , we get .jS jC2/r CjS j � 2p,
or .p � r C 2/r C .p � r/ � 2p. This gives .r � 1/.r � p/ � 0, violating the
condition on r . �
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Our next result shows that there is another special family of graphs for which we
can immediately conclude that all the graphs of the family have a 1-factor.

Theorem 5.5.16* (D. P. Sumner [174]). Let G be a connected graph of even
order n. If G is claw-free (i.e., contains no K1;3 as an induced subgraph), then G

has a 1-factor.

Proof. If G has no 1-factor, G contains a minimal antifactor set S of G. There must
be an edge between S and each odd component of G � S . Since O.G � S/ > jS j
and G is of even order, by Observation 5.5.13, O.G � S/ � jS j C 2. Hence, there
are two possibilities: (i) There exists v 2 S , and vx; vy; vz are edges of G with x; y

and z belonging to distinct odd components of G � S . This cannot occur since by
hypothesis G is K1;3-free. (ii) There exist a vertex v of S , and edges vu and vw
of G with u and w in distinct odd components of G � S . Suppose Gu and Gw are
the odd components containing u and w, respectively. Then < Gu [ Gw [ fvg >

is an odd component of G � S1, where S1 D S � fvg. Further, O.G � S1/ D
O.G � S/ � 1 > jS j � 1 D jS1j, and hence S1 is an antifactor set of G with
jS1j D jS j � 1, a contradiction to the choice of S . Thus, G must have a 1-factor.
[Note that by Observation 5.5.13, the case jS j D 1 and O.G �S/ D 2 cannot arise.]

�
Exercise 5.3. Find a 1-factorization of (i) Q3, (ii) Q4.

Exercise 5.4. Prove that Qn; n � 2, is 1-factorable.

Exercise 5.5. Display a 2-factorization of K9.

Exercise 5.6. Show that a k-regular .k�1/-edge-connected graph of even order has
a 1-factor. (This result of F. Babler generalizes Petersen’s result (Corollary 5.5.11)
and can be shown by imitating the proof of Corollary 5.5.11).

Exercise 5.7. If G is a k-connected graph of even order having no K1;kC1 as an
induced subgraph, show that G has a 1-factor.

Exercise 5.8. Show that if G is a connected graph of even order, then G2 has a
1-factor.

Exercise 5.9. (A square matrix A D .aij / is called doubly stochastic if aij � 0

for each i and j , and the sum of the entries in each row and column of A is 1.)
Let A D .aij / be a doubly stochastic matrix of order n. Let G D G.X; Y / be the
bipartite graph with jX j D jY j D n obtained by setting xi xj 2 E.G/ if and only if
aij D 0. Prove that G has a perfect matching. (Hint: Apply Hall’s theorem.)

5.6* Perfect Matchings and the Tutte Matrix

It has been established by Tutte that the existence of a perfect matching in a
simple graph is related to the nonsingularity of a certain square matrix. This matrix
is called the “Tutte matrix” of the graph. We now define the Tutte matrix.
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Definition 5.6.1. Let G D .V; E/ be a simple graph of order n and let V D
fv1; v2; : : : ; vng. Let fxij W 1 � i < j � ng be a set of indeterminates. Then
the Tutte matrix of G is defined to be the n by n matrix T D .tij /, where

tij D
8
<

:

xij if vi vj 2 E.G/ and i < j

�xj i if vi vj 2 E.G/ and i > j

0 otherwise

Thus, T is a skew-symmetric matrix of order n.

Example 5.6.2. For example, if G is the graph

v1

v4 v3

v2

G

then

T D

2

6
6
4

t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44

3

7
7
5 D

2

6
6
4

0 0 x13 x14

0 0 x23 x24

�x13 �x23 0 x34

�x14 �x24 �x34 0

3

7
7
5 : (5.9)

Now, by the definition of a determinant of a square matrix, the determinant
of T .D det T / is given by det T D P

�2Sn
sgn.�/ t1�.1/ t2�.2/ : : : tn�.n/, where

� 2 Sn (i.e., � is a permutation on f1; 2; : : : ; ng), and sgn.�/ D 1 or �1,
according to whether � is an even or odd permutation. We denote the expression
t1�.1/t2�.2/ : : : tn�.n/ by t� . Hence, det T D P

�2Sn
sgn.�/ t� . Further, if n is odd,

say, � D .123/, then t� D t12t23t31 D x12x23.�x13/ [Note: We take xij D 0 if
vi vj … E.G/). Also, ��1 D .321/ and t��1 D t13t21t32 D x13.�x12/.�x23/, so that
t� C t��1 D 0. It is clear that the same relation is true for any odd n � 3.]

Now, for the Tutte matrix of relation (5.9), we have

det T D x2
13x2

24 C x2
14x2

23 � 2x13x24x14x23:

In this expression, the term x2
13x2

24 is obtained by choosing the entries
x13; x24; �x13 D x31, and �x24 D x42 of T , and hence it corresponds to the 1-factor
fv1v3; v2v4g. Similarly, the term x2

14x2
23 corresponds to the 1-factor fv1v4; v2v3g, and

the term x13x24x14x23 corresponds to the cycle .v1v3v2v4/ consisting of the edges
v1v3; v3v2; v2v4, and v4v1.



114 5 Independent Sets and Matchings

We are now ready to prove Tutte’s theorem, but before doing so, we make two
useful observations.

Observation 5.6.3. If � 2 Sn is a product of disjoint even cycles, then sgn.�/t� D
is a product of squares of the form x2

ij .
Indeed, in this case, n is even, and the edges of G corresponding to the alternate

transpositions in all of the even cycles of � form a 1-factor of G. [For example, for
the even cycle (1234), we take the alternate transpositions (12) and (34).] Further,
if vi ; vj .i < j / is an edge of this 1-factor, the partial product tij tj i D �x2

ij occurs
in t� . The number of such products is n

2
; and therefore

sgn.�/t� D .�1/
n
2 .�1/

n
2

Y
x2

ij D
Y

x2
ij ;

where the product runs over all pairs .i; j / with i < j such that vi ; vj is an edge of
the 1-factor corresponding to � .

Observation 5.6.4. If � 2 Sn has an odd cycle ˛ in its decomposition into the
product of disjoint cycles, consider �1 2 Sn, where �1 is obtained from � by
replacing ˛ by ˛�1 and retaining the remaining cycles in � . Then, from our earlier
remarks, it is clear that sgn.�/t� C sgn.�1/t�1 D 0.

Theorem 5.6.5 (W. T. Tutte). A simple graph G has a 1-factor if and only if its
Tutte matrix is invertible.

Proof. Let G be a simple graph having T as its Tutte matrix. Suppose
that det T ¤ 0. Then by Observation 5.6.4 and the fact that det T DP

�2Sn
sgn.�/ t1�.1/ t2�.2/ : : : tn�.n/, there exists a � 2 Sn containing no odd

cycle in its cycle decomposition. Then � is a product of even cycles and, by
Observation 5.6.3, sgn.�/t� D Q

x2
ij . The alternate transpositions of the even

cycles of � then yield a 1-factor of G.
Conversely, assume that G has a 1-factor. Let � 2 Sn be the product of those

transpositions corresponding to the 1-factor of G. [If vivj is an edge of the 1-factor,
the corresponding transposition is .ij /.] Then by Observation 5.6.3, sgn.�/t� DQ

x2
ij . Now set

xij D
(

1 if x2
ij appears in the product for sgn.�/t�

0 otherwise:

Then sgn.�/t� D 1, and for these values of xij ; sgn.�/t� D 0 for any � 2
Sn; � ¤ � . This means that the polynomial det T is not the zero polynomial. �

Remark 5.6.6. Actually, our definition of the Tutte matrix of G depends on the
order of the vertices of G. That is to say, the definition of T is based on regarding
G as a labeled graph. However, if T is nonsingular with regard to one labeling of
G, then the Tutte matrix of G will remain nonsingular with regard to any other
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labeling of G. This is because if T and T 0 are the Tutte matrices of G with regard
to two labelings of G, T 0 D P TP �1, where P is a permutation matrix of order n.
Hence, T is nonsingular if and only if T 0 is nonsingular.

Exercise 6.1. By evaluating the Tutte matrix of the following graph G, show that
G has a 1-factor.

G

Notes

Readers who are more interested in matching theory can consult [91, 136], and
[155]. Our proof of Tutte’s 1-factor theorem is due to Lovász [135] (see also [27]).
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