
Chapter 4
Trees

4.1 Introduction

“Trees” form an important class of graphs. Of late, their importance has grown
considerably in view of their wide applicability in theoretical computer science.

In this chapter, we present the basic structural properties of trees, their centers
and centroids. In addition, we present two interesting consequences of the Tutte–
Nash–Williams theorem on the existence of k pairwise edge-disjoint spanning trees
in a simple connected graph. We also present Cayley’s formula for the number
of spanning trees in the labeled complete graph Kn. As applications, we present
Kruskal’s algorithm and Prim’s algorithm, which determine a minimum-weight
spanning tree in a connected weighted graph and discuss Dijkstra’s algorithm, which
determines a minimum-weight shortest path between two specified vertices of a
connected weighted graph.

4.2 Definition, Characterization, and Simple Properties

Certain graphs derive their names from their diagrams. A “tree” is one such graph.
Formally, a connected graph without cycles is defined as a tree. A graph without
cycles is called an acyclic graph or a forest. So each component of a forest is a tree.
A forest may consist of just a single tree! Figure 4.1 displays two pairs of isomorphic
trees.

Remarks 4.2.1. 1. It follows from the definition that a forest (and hence a tree) is a
simple graph.

2. A subgraph of a tree is a forest and a connected subgraph of a tree T is a subtree
of T .

R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory,
Universitext, DOI 10.1007/978-1-4614-4529-6 4,
© Springer Science+Business Media New York 2012

73

74 4 Trees

Fig. 4.1 Examples of
isomorphic trees

In a connected graph, any two distinct vertices are connected by at least one path.
Trees are precisely those simple connected graphs in which every pair of distinct
vertices is joined by a unique path.

Theorem 4.2.2. A simple graph is a tree if and only if any two distinct vertices are
connected by a unique path.

Proof. Let T be a tree. Suppose that two distinct vertices u and v are connected by
two distinct u-v paths. Then their union contains a cycle (cf. Exercise 5.9, Chap. 1)
in T , contradicting that T is a tree.

Conversely, suppose that any two vertices of a graph G are connected by a unique
path. Then G is obviously connected. Also, G cannot contain a cycle, since any two
distinct vertices of a cycle are connected by two distinct paths. Hence G is a tree.�

A spanning subgraph of a graph G, which is also a tree, is called a spanning tree
of G. A connected graph G and two of its spanning trees T1 and T2 are shown in
Fig. 4.2.

The graph G of Fig. 4.2 shows that a graph may contain more than one spanning
tree; each of the trees T1 and T2 is a spanning tree of G.

A loop cannot be an edge of any spanning tree, since such a loop constitutes a
cycle (of length 1). On the other hand, a cut edge of G must be an edge of every
spanning tree of G. Theorem 4.2.3 shows that every connected graph contains a
spanning tree.

Theorem 4.2.3. Every connected graph contains a spanning tree.

Proof. Let G be a connected graph. Let C be the collection of all connected
spanning subgraphs of G. C is nonempty as G 2 C . Let T 2 C have the fewest
number of edges. Then T must be a spanning tree of G. If not, T would contain
a cycle of G, and the deletion of any edge of this cycle would give a (spanning)

4.2 Definition, Characterization, and Simple Properties 75

T2

e1

e2

e3

e4

e7 e8

e9

e10

e11

G

T1

e2

e2

e4

e5

e5

e6

e6

e7

e8

e8

e9

e10

e11

e11

Fig. 4.2 Graph G and two of
its spanning trees T1 and T2

subgraph in C having one edge less than that of T . This contradicts the choice of T .
Hence, T has no cycles and is therefore a spanning tree of G. �

There is a nice relation between the number of vertices and the number of edges
of any tree.

Theorem 4.2.4. The number of edges in a tree on n vertices is n � 1. Conversely, a
connected graph on n vertices and n � 1 edges is a tree.

Proof. Let T be a tree. We use induction on n to prove that m D n�1. When n D 1

or n D 2, the result is straightforward.
Now assume that the result is true for all trees on .n � 1/ or fewer vertices,

n � 3. Let T be a tree with n vertices. Let e D uv be an edge of T . Then uv is
the unique path in T joining u and v. Hence the deletion of e from T results in a
disconnected graph having two components T1 and T2. Being connected subgraphs
of a tree, T1 and T2 are themselves trees. As n.T1/ and n.T2/ are less than n.T /, by
an induction hypothesis, m.T1/ D n.T1/ � 1 and m.T2/ D n.T2/ � 1. Therefore,
m.T / D m.T1/ C m.T2/ C 1 D n.T1/ � 1 C n.T2/ � 1 C 1 D n.T1/ C n.T2/ � 1 D
n.T / � 1. Hence, the result is true for T . By induction, the result follows in one
direction.

76 4 Trees

Conversely, let G be a connected graph with n vertices and n � 1 edges. By
Theorem 4.2.3, there exists a spanning tree T of G. T has n vertices and being a
tree has .n � 1/ edges. Hence G D T , and G is a tree. �

Exercise 2.1. Give an example of a graph with n vertices and n � 1 edges that is
not a tree.

Theorem 4.2.5. A tree with at least two vertices contains at least two pendant
vertices (i.e., end vertices or vertices of degree 1).

Proof. Consider a longest path P of a tree T . The end vertices of P must be pendant
vertices of T ; otherwise, at least one of the end vertices of P has a second neighbor
in P , and this yields a cycle, a contradiction. �

Corollary 4.2.6. If ı.G/ � 2, G contains a cycle.

Proof. If G has no cycles, G is a forest and hence ı.G/ � 1 by Theorem 4.2.5. �

Exercise 2.2. Show that a simple graph with ! components is a forest if and only
if m D n � !.

Exercise 2.3. A vertex v of a tree T with at least three vertices is a cut vertex of T

if and only if v is not a pendant vertex.

Exercise 2.4. Prove that every tree is a bipartite graph.
Our next result is a characterization of trees.

Theorem 4.2.7. A connected graph G is a tree if and only if every edge of G is a
cut edge of G.

Proof. If G is a tree, there are no cycles in G. Hence, no edge of G can belong to
a cycle. By Theorem 3.2.7, each edge of G is a cut edge of G. Conversely, if every
edge of a connected graph G is a cut edge of G, then G cannot contain a cycle, since
no edge of a cycle is a cut edge of G. Hence, G is a tree. �

Theorem 4.2.8. A connected graph G with at least two vertices is a tree if and only
if its degree sequence .d1; d2; : : : ; dn/ satisfies the condition:

Pn
iD1 di D 2.n � 1/

with di > 0 for each i .

Proof. Let G be a tree. As G is connected and nontrivial, it can have no isolated
vertex. Hence every term of the degree sequence of G is positive. Further, by

Theorem 1.4.4,
nP

iD1

di D 2m D 2.n � 1/.

Conversely, assume that the condition
Pn

iD1 di D 2.n � 1/ holds. This implies
that m D n � 1 as

Pn
iD1 di D 2m. Now apply Theorem 4.2.4. �

Lemma 4.2.9. If u and v are nonadjacent vertices of a tree T , then T Cuv contains
a unique cycle.

Proof. If P is the unique u-v path in T , then P C uv is a cycle in T C uv. It is
unique, as the path P is unique in T . �

4.3 Centers and Centroids 77

Example 4.2.10. Prove that if m.G/ D n.G/ for a simple connected graph G, then
G is unicyclic, that is, a graph containing exactly one cycle.

Proof. By Theorem 4.2.3, G contains a spanning tree T . As T has n.G/ � 1 edges,
E.G/nE.T / consists of a single edge e. Then G D T [e is unicyclic. �

Exercise 2.5. If for a simple graph G, m.G/ � n.G/, prove that G contains a
cycle.

Exercise 2.6. Prove that every edge of a connected graph G that is not a loop is in
some spanning tree of G.

Exercise 2.7. Prove that the following statements are equivalent:

(i) G is connected and unicyclic (i.e., G has exactly one cycle).
(ii) G is connected and n D m.

(iii) For some edge e of G, G � e is a tree.
(iv) G is connected and the set of edges of G that are not cut edges forms a cycle.

Example 4.2.11. Prove that for a simple connected graph G, L.G/ is isomorphic to
G if and only if G is a cycle.

Proof. If G is a cycle, then clearly L.G/ is isomorphic to G. Conversely, let
G ' L.G/. Then n.G/ D n.L.G//, and m.G/ D m.L.G//. But since
n.L.G// D m.G/, we have m.G/ D n.G/. By Example 4.2.10, G is unicyclic.
Let C D v1v2 : : : vkv1 be the unique cycle in G. If G ¤ C , there must be an edge
e … E.C / incident with some vertex vi of C (as G is connected). Thus, there is
a star with at least three edges at vi . This star induces a clique of size at least 3 in
L.G/ (' G). This shows that there exists at least one more cycle in L.G/ distinct
from the cycle corresponding to C in G. This contradicts the fact that L.G/ ' G

(as G is unicyclic). �

4.3 Centers and Centroids

There are certain parameters attached to any connected graph. These are defined
below.

Definitions 4.3.1. Let G be a connected graph.

1. The diameter of G is defined as maxfd.u; v/ W u; v 2 V.G/g and is denoted by
diam.G/.

2. If v is a vertex of G, its eccentricity e.v/ is defined by e.v/ D maxfd.v; u/ W u 2
V.G/g.

3. The radius r.G/ of G is the minimum eccentricity of GI that is, r.G/ D
minfe.v/ W v 2 V.G/g. Note that diam.G/ D maxfe.v/ W v 2 V.G/g.

4. A vertex v of G is called a central vertex if e.v/ D r.G/. The set of central
vertices of G is called the center of G.

78 4 Trees

3

6

7

u v

G

T

3

3

3

3

4

4

4

5
5

5

5 4 5

6 6

6

6 6

6 6 7 7

Fig. 4.3 Eccentricities of vertices for graphs G and T

Example 4.3.2. Figure 4.3 displays two graphs T and G with the eccentricities of
their vertices. We find that r.T / D 4 and diam.T / D 7. Each of u and v is a central
vertex of T . Also, r.G/ D 3 and diam.G/ D 4. Further, G has five central vertices.

Remark 4.3.3. It is obvious that r.G/ � diam.G/. For a complete graph, r.G/ D
diam.G/ D 1. For a complete bipartite graph G.X; Y / with jX j � 2 and jY j � 2,
r.G/ D diam.G/ D 2. For the graphs of Fig. 4.3, r.G/ < diam.G/. The terms
”radius” and ”diameter” tempt one to expect that diam.G/ D 2r.G/. But this need
not be the case as the complete graphs and the graphs of Fig. 4.3 show. In a tree,
for any vertex u, d.u; v/ is maximum only when v is a pendant vertex. We use this
observation in the proof of Theorem 4.3.4.

Theorem 4.3.4 (Jordan [117]). Every tree has a center consisting of either a
single vertex or two adjacent vertices.

Proof. The result is obvious for the trees K1 and K2. The vertices of K1 and K2

are central vertices. Now let T be a tree with n.T / � 3. Then T has at least two
pendant vertices (cf. Theorem 4.2.5). Clearly, the pendant vertices of T cannot be
central vertices. Delete all the pendant vertices from T . This results in a subtree T 0
of T . As any maximum-distance path in T from any vertex of T 0 ends at a pendant
vertex of T , the eccentricity of each vertex of T 0 is one less than the eccentricity
of the same vertex in T . Hence the vertices of minimum eccentricity of T 0 are the
same as those of T . In other words, T and T 0 have the same center. Now, if T 00 is
the tree obtained from T 0 by deleting all the pendant vertices of T 0, then T 00 and
T 0 have the same center. Hence the centers of T 00 and T are the same. Repeat the

4.3 Centers and Centroids 79

4 5

6

7

T

4

55

5

5

6 6

6 6
6

6 6

7 7

3 4

5

T

3

4

4
4

2 3

5

3 2

v1

v2

v3 v4 v5

v6 v7

v8

v9 v10

v11 v12 v13 v14

v15 v16 v17

v0

v1

v1

v2

v2

v2

v3

v3

v3

v4

v4

v6

v8

v9 v10

11

T

T

Fig. 4.4 Determining the center of tree T

process of deleting the pendant vertices in the successive subtrees of T until there
results a K1 or K2. This will always be the case as T is finite. Hence the center of
T is either a single vertex or a pair of adjacent vertices. �

The process of determining the center described above is illustrated in Fig. 4.4
for the tree T of Fig. 4.3. We observe that the center of T consists of the pair of
adjacent vertices v2 and v3.

Exercise 3.1. Construct a tree with 85 vertices that has � D 5 and the center
consisting of a single vertex.

Exercise 3.2. Show that an automorphism of a tree on an odd number (� 3) of
vertices has a fixed vertex; that is, for any automorphism f of a tree T with n D
2k C 1 (k � 1) vertices, there exists a vertex v of T with f .v/ D v. (Hint: Use the
fact that f permutes the end vertices of T .)

80 4 Trees

B1B2

B3

u

Fig. 4.5 Tree showing three
branches at u

(7) (13)

(15)

(17)

(11)

(17)(15)

(15)

(14)

(17) (17)

(16)

(17) (17)

(17) (17) (17) (17)

Fig. 4.6 Weights of vertices of a tree

Exercise 3.3. Show that the distinct eccentricities of the vertices of a (connected)
graph G form a set of consecutive integers starting from the radius of G and ending
in the diameter of G.

Definitions 4.3.5. 1. A branch at a vertex u of a tree T is a maximal subtree
containing u as an end vertex. Hence the number of branches at u is d.u/.

For instance, in Fig. 4.5, there are three branches of the tree at u.
2. The weight of a vertex u of T is the maximum number of edges in any branch

at u.
3. A vertex v is a centroid vertex of T if v has minimum weight. The set of all

centroid vertices is called the centroid of T .
In Fig. 4.6 the numbers in the parentheses indicate the weights of the corre-

sponding vertices. It is clear that all the end vertices of T have the same weight,
namely, m.T /.

As in the case of centers, any tree has a centroid consisting of either two adjacent
vertices or a single vertex. But there is no relation between the center and centroid
of a tree either with regard to the number of vertices or with regard to their location.

Exercise 3.4. Give an example of

(i) A tree with just one central vertex that is also a centroidal vertex;
(ii) A tree with two central vertices, one of which is also a centroidal vertex;

(iii) A tree with two centroidal vertices, one of which is also a central vertex;

4.4 Counting the Number of Spanning Trees 81

(iv) A tree with two central vertices, both of which are also centroidal vertices; and
(v) A tree with a disjoint center and centroid.

Exercise 3.5. Show that the radius of a tree T is equal to
ldiam.T /

2

m
.

Exercise 3.6. Show that in a tree, any path of maximum length contains the center
of the tree.

Exercise 3.7. Show that the center of a tree consists of two adjacent vertices if and
only if its diameter is even.

4.4 Counting the Number of Spanning Trees

Counting the number of spanning trees in a graph occurs as a natural problem in
many branches of science. Spanning trees were used by Kirchoff to generate a “cycle
basis” for the cycles in the graphs of electrical networks. In this section, we consider
the enumeration of spanning trees in graphs.

The number of spanning trees of a connected labeled graph G will be denoted
by �.G/. If G is disconnected, we take �.G/ D 0. There is a recursive formula
for �.G/. Before we establish this formula, we shall define the concept of edge
contraction in graphs.

Definition 4.4.1. An edge e of a graph G is said to be contracted if it is deleted
from G and its ends are identified. The resulting graph is denoted by G ı e.

Edge contraction is illustrated in Fig. 4.7.
If e is not a loop of G, then n.G ı e/ D n.G/ � 1, m.G ı e/ D m.G/ � 1, and

!.G ı e/ D !.G/. For a loop e, n.G ı e/ D n.G/, m.G ı e/ D m.G/ � 1, and
!.G ı e/ D !.G/. Theorem 4.4.2 gives a recursive formula for �.G/.

Theorem 4.4.2. If e is not a loop of a connected graph G, �.G/ D �.G � e/ C
�.G ı e/.

v1v2

v3v4

v1 = v4

e1

e2

e3 e4e5

e6

G G ◦ e1 G ◦ e5

v1
v2

v3

v2

v3v4

e1

e2

e3

e4

e7

e2

e5
e6

e7

e4

e6

e7

e3

Fig. 4.7 Edge contraction

82 4 Trees

Proof. �.G/ is the sum of the number of spanning trees of G containing e and the
number of spanning trees of G not containing e.

Since V.G � e/ D V.G/, every spanning tree of G � e is a spanning tree of
G not containing e, and conversely, any spanning tree of G for which e is not an
edge is also a spanning tree of G � e. Hence the number of spanning trees of G not
containing e is precisely the number of spanning trees of G � e, that is, �.G � e/. If
T is a spanning tree of G containing e, the contraction of e in both T and G results
in a spanning tree T ı e of G ı e.

Conversely, if T0 is a spanning tree of G ı e, there exists a unique spanning tree
T of G containing e such that T ı e D T0. Thus, the number of spanning trees of G

containing e is �.G ı e/. Hence �.G/ D �.G � e/ C �.G ı e/. �

We illustrate below the use of Theorem 4.4.2 in calculating the number of
spanning trees. In this illustration, each graph within parentheses stands for the

number of its spanning trees. For example,
� �

�� stands for the number of spanning
trees of C4.

Example 4.4.3. Find �.G/ for the following graph G:

G

Proof.

e +=

+= e

4.4 Counting the Number of Spanning Trees 83

+=

e

+

+= + 2

= 1 + 3 + 2(4)

[By enumeration,

= = and =

]

Hence �.G/ D 12. �

We have seen in Sect. 3.2 that every connected graph has a spanning tree. When
will it have k edge-disjoint spanning trees? An answer to this interesting question
was given by both Tutte [181] and Nash-Williams [145] at just about the same time.

Theorem 4.4.4 (Tutte [181]; Nash-Williams [145]). A simple connected graph
G contains k pairwise edge-disjoint spanning trees if and only if for each partition
P of V.G/ into p parts, the number m.P/ of edges of G joining distinct parts is
at least k.p � 1/, 2 � p � jV.G/j.
Proof. We prove only the easier part of the theorem (necessity of the condition).
Suppose G has k pairwise edge-disjoint spanning trees. If T is one of them and if
P D fV1; : : : ; Vpg is a partition of V.G/ into p parts, then G must have at least
jPj � 1 edges of T . As this is true for each of the k pairwise edge-disjoint trees of
G, the number of edges joining distinct parts of P is at least k.p � 1/. �

For the proof of the converse part of the theorem, we refer the reader to the
references cited.

As a consequence of Theorem 4.4.4, we obtain immediately at least one family
of graphs that possesses the property stated in the theorem.

84 4 Trees

Corollary 4.4.5. Every 2k-edge-connected .k � 1/ graph contains k pairwise
edge-disjoint spanning trees.

Proof. Let G be 2k-edge connected, and let P D fV1; : : : ; Vpg be a partition of V

into p subsets. By hypothesis on G, there are at least 2k edges from each part Vi to
V nVi D Sp

j D1

j ¤i

Vj . The total number of such edges is at least kp (as each such edge

is counted twice). Hence, m.P/ � kp > k.p �1/. Theorem 4.4.4 now ensures that
there are at least k pairwise edge-disjoint spanning trees in G. �

Setting k D 2 in the above corollary, we get the result of Kundu.

Corollary 4.4.6 (Kundu [128]). Every 4-edge-connected graph contains two
edge-disjoint spanning trees.

Corollary 4.4.7. Every 3-edge-connected graph G has three spanning trees whose
intersection is a spanning totally disconnected subgraph of G.

Proof. Let G be a 3-edge-connected graph. Duplicate each edge of G by a
parallel edge. The resulting graph, say, G0, is 6-edge connected, and hence by
Corollary 4.4.5, G0 has three pairwise edge-disjoint spanning trees, say, T 0

1 , T 0
2 , and

T 0
3 . Hence E.T 0

1 \ T 0
2 \ T 0

3/ D �. Let Ti , 1 � i � 3, be the tree obtained from T 0
i

by replacing any parallel edge of G0 by its original edge in G. Then, clearly, T1, T2,
and T3 are three spanning trees of G with E.T1 \ T2 \ T3/ D � because neither an
edge of G nor its parallel edge can belong to all of T 0

1 , T 0
2 , and T 0

3 . �

4.5 Cayley’s Formula

Cayley was the first mathematician to obtain a formula for the number of spanning
trees of a labeled complete graph.

Theorem 4.5.1 (Cayley [33]). �.Kn/ D nn�2; where Kn is a labeled complete
graph on n vertices, n � 2.

Before we prove Theorem 4.5.1, we establish two lemmas.

Lemma 4.5.2. Let .d1; : : : ; dn/ be a sequence of positive integers with
Pn

iD1 di D
2.n � 1/. Then there exists a tree T with vertex set fv1; : : : ; vng and d.vi / D di ,
1 � i � n.

Proof. It is easy to prove the result by induction on n. �

Lemma 4.5.3. Let fv1; : : : ; vng, n � 2 be given and let fd1; : : : ; dng be a sequence
of positive integers such that

Pn
iD1 di D 2.n � 1/. Then the number of trees with

fv1; : : : ; vng as the vertex set in which vi has degree di , 1 � i � n, is .n�2/Š

.d1�1/Š ::: .dn�1/Š
.

4.5 Cayley’s Formula 85

Proof. We prove the result by induction on n. For n D 2, 2.n � 1/ D 2, so that
d1 C d2 D 2. Since d1 � 1 and d2 � 1, d1 D d2 D 1. Hence K2 is the only tree in
which vi has degree di , i D 1; 2. So the result is true for n D 2. Now assume that
the result is true for all positive integers up to n � 1, n � 3. Let fd1; : : : ; dng be a
sequence of positive integers such that

Pn
iD1 di D 2.n � 1/, and let fv1; : : : ; vng

be any set. If di � 2 for every i , 1 � i � n, then
Pn

iD1 di � 2n. Hence, there
exists an i , 1 � i � n, for which di D 1. For the sake of definiteness, assume
that dn D 1. By Lemma 4.5.2, there exists a tree T with V.T / D fv1; : : : ; vng
and degree of vi D di . Let vj be the unique vertex of T adjacent to vn. Delete vn

from T . The resulting graph is a tree T 0 with fv1; : : : ; vn�1g as its vertex set and
.d1; : : : ; dj �1; dj � 1; dj C1; : : : ; dn�1/ as its degree sequence.

In the opposite direction, given a tree T 0 with fv1; : : : ; vn�1g as its vertex set
and .d1; : : : ; dj �1; dj � 1; dj C1; : : : ; dn�1/ as its degree sequence, a tree T with
vertex set fv1; : : : ; vng and degree sequence .d1; : : : ; dn/, dn D 1, can be obtained
by introducing a new vertex vn and taking T D T 0 C vj vn. Hence the number of
trees with vertex set fv1; : : : ; vng and degree sequence .d1; : : : ; dn/ with dn D degree
of vn D 1 and vn adjacent to vj is the same as the number of trees with vertex set
fv1; : : : ; vn�1g and degree sequence .d1; : : : ; dj �1; dj � 1; dj C1; : : : ; dn�1/. By the
induction hypothesis, the latter number is equal to

.n � 3/Š

.d1 � 1/Š : : : .dj �1 � 1/Š .dj � 2/Š .dj C1 � 1/Š : : : .dn�1 � 1/Š

D .n � 3/Š.dj � 1/

.d1 � 1/Š : : : .dj �1 � 1/Š .dj � 1/Š .dj C1 � 1/Š : : : .dn�1 � 1/Š
:

Summing over j , the number of trees with fv1; : : : ; vng as its vertex set and
.d1; : : : ; dn/ as its degree sequence is

n�1X

j D1

.n � 3/Š .dj � 1/

.d1 � 1/Š : : : .dn�1 � 1/Š

D .n � 3/Š

.d1 � 1/Š : : : .dn�1 � 1/Š

n�1X

j D1

.dj � 1/

D .n � 3/Š

.d1 � 1/Š : : : .dn�1 � 1/Š

2

4

0

@
n�1X

j D1

dj

1

A � .n � 1/

3

5

D .n � 3/Š

.d1 � 1/Š : : : .dn�1 � 1/Š
Œ.2n � 3/ � .n � 1/�

D .n � 3/Š

.d1 � 1/Š : : : .dn�1 � 1/Š
.n � 2/

86 4 Trees

D .n � 2/Š

.d1 � 1/Š : : : .dn�1 � 1/Š

D .n � 2/Š

.d1 � 1/Š : : : .dn � 1/Š
.recall that dn D 1/:

This completes the proof of Lemma 4.5.2. �

Proof of theorem 4.5.1. The total number of trees Tn with vertex set fv1; : : : ; vng
is obtained by summing over all possible sequences .d1; : : : ; dn/ with

Pn
iD1 di D

2n � 2. Hence,

�.Kn/ D
X

di �1

.n � 2/Š

.d1 � 1/Š : : : .dn � 1/Š
with

nX

iD1

di D 2n � 2

D
X

ki � 0

.n � 2/Š

k1Š : : : knŠ
with

nX

iD1

ki D n � 2; where ki D di � 1; 1 � i � n:

Putting x1 D x2 D � � � D xn D 1 and m D n � 2 in the multinomial expansion

.x1 C x2 C � � � C xn/m D P

ki �0

x
k1

1 x
k2

2 : : : xkn
n

k1Š k2Š : : : knŠ
mŠ with .k1 C k2 C � � � C kn/ D m,

we get nn�2 D P

ki �0

.n � 2/Š

k1Š k2Š : : : knŠ
with .k1 C k2 C � � � C kn/ D n � 2. Thus,

�.Kn/ D nn�2. �

4.6 Helly Property

Definitions 4.6.1. A family fAi W i 2 I g of subsets of a set A is said to satisfy the
Helly property if, whenever J � I and Ai \ Aj ¤ � for every i; j 2 J , thenT

j 2J Aj ¤ �.

Theorem 4.6.2. Any family of subtrees of a tree satisfies the Helly property.

Proof. Let F D fTi W i 2 I g be a family of subtrees of a tree T . Suppose that for
all i; j 2 J � I , Ti \ Tj ¤ �. We have to prove that

T
j 2J Tj ¤ �. If for some

i 2 J , tree Ti is a single-vertex tree fvg (i.e., K1), then, clearly,
T

j 2J Tj D fvg.
We therefore suppose that each tree Ti 2 F with i 2 J has at least two vertices.

We now apply induction on the number of vertices of T . Let the result be true for
all trees with at most n vertices, and let T be a tree with .n C 1/ vertices. Let v0 be
an end vertex of T , and u0 its unique neighbor in T . Let T 0

i D Ti � v0, i 2 J , and
T 0 D T � v0. (If v0 … Ti , we take T 0

i D Ti .) By the induction assumption, the result
is true for the tree T 0. Moreover, T 0

i \ T 0
j ¤ � for any i; j 2 J . In fact, if Ti and Tj

have a vertex u (¤ v0) in common, then T 0
i and T 0

j also have u in common, whereas

4.7 Applications 87

if Ti and Tj have v0 in common, then Ti and Tj have u0 also in common and so
do T 0

i and T 0
j . Hence, by the induction assumption,

T
j 2J T 0

j ¤ �, and thereforeT
j 2J Tj ¤ �. �

Exercise 6.1. In the cycle C5, give a family of five paths such that the intersection
of the vertex sets of any two of them is nonempty while the intersection of the vertex
sets of all of them is empty.

Exercise 6.2. Prove that a connected graph G is a tree if and only if every family
of paths in G satisfies the Helly property.

4.7 Applications

We conclude this chapter by presenting some immediate applications of trees in
everyday life problems.

4.7.1 The Connector Problem

Problems 1. Various cities in a country are to be linked via roads. Given the
various possibilities of connecting the cities and the costs involved, what is the
most economical way of laying roads so that in the resulting road network, any
two cities are connected by a chain of roads? Similar problems involve designing
railroad networks and water-line transports.

Problems 2. A layout for a housing settlement in a city is to be prepared. Various
locations of the settlement are to be linked by roads. Given the various possibilities
of linking the locations and their costs, what is the minimum-cost layout so that any
two locations are connected by a chain of roads?

Problems 3. A layout for the electrical wiring of a building is to be prepared. Given
the costs of the various possibilities, what is the minimum-cost layout?

These three problems are particular cases of a graph-theoretical problem known
as the connector problem.

Definition 4.7.1. Let G be a graph. To each edge e of G, we associate a nonnegative
number w.e/ called its weight. The resulting graph is a weighted graph. If H is a
subgraph of G, the sum of the weights of the edges of H is called the weight of H .
In particular, the sum of the weights of the edges of a path is called the weight of the
path.

We shall now concentrate on Problem 1. Problems 2 and 3 can be dealt with
similarly. Let G be a graph constructed with the set of cities as its vertex set. An
edge of G corresponds to a road link between two cities. The cost of constructing a
road link is the weight of its corresponding edge. Then a minimum-weight spanning
tree of G provides the most economical layout for the road network.

88 4 Trees

We present two algorithms, Kruskal’s algorithm and Prim’s algorithm, for
determining a minimum-weight spanning tree in a connected weighted graph. We
can assume, without loss of generality, that the graph is simple because, since no
loop can be an edge of a spanning tree, we can discard all loops. Also, since we are
interested in determining a minimum-weight spanning tree, we can retain, from a
set of multiple edges having the same ends, an edge with the minimum weight, and
we can discard all the others.

First, we describe Kruskal’s algorithm [127].

4.7.2 Kruskal’s Algorithm

Let G be a simple connected weighted graph with edge set E D fe1; : : : ; emg. The
three steps of the algorithm are as follows:

Step 1 W Choose an edge e1 with its weight w.e1/ as small as possible.
Step 2 W If the edges e1; e2; : : : ; ei ; i � 1, have already been chosen, choose eiC1

from the set Enfe1; e2; : : : ; eig such that

(i) The subgraph induced by the edge set fe1; e2; : : : ; eiC1g is acyclic,
and

(ii) w.eiC1/ is as small as possible subject to (i).

Step 3 W Stop when step 2 cannot be implemented further.

We now show that Kruskal’s algorithm does indeed produce a minimum-weight
spanning tree.

Theorem 4.7.2. Any spanning tree produced by Kruskal’s algorithm is a minimum-
weight spanning tree.

Proof. Let G be a simple connected graph of order n with edge set E.G/ D
fe1; : : : ; emg. Let T � be a spanning tree produced by Kruskal’s algorithm and let
E.T �/ D fe1; : : : ; en�1g. For any spanning tree T of G, let f .T / be the least value
of i such that ei … E.T /. Suppose T � is not of minimum weight. Let T0 be any
minimum-weight spanning tree with f .T0/ as large as possible.

Suppose f .T0/ D k. This means that e1; : : : ; ek�1 are in both T0 and T �; but
ek … T0. Then T0 C ek contains a unique cycle C . Since not every edge of C can
be in T �, C must contain an edge e0

k not belonging to T �. Let T 0
0 D T0 C ek � e0

k .
Then T 0

0 is another spanning tree of G. Moreover,

w.T 0
0/ D w.T0/ C w.ek/ � w.e0

k/: (4.1)

Now, in Kruskal’s algorithm, ek was chosen as an edge with the smaller
weight such that GŒfe1; : : : ; ek�1; ekg� was acyclic. Since GŒfe1; : : : ; ek�1; e0

kg� is
a subgraph of the tree T0, it is also acyclic. Hence,

w.ek/ � w.e0
k/; (4.2)

4.7 Applications 89

Table 4.1 Mileage between Indian cities

Mumbai Hyderabad Nagpur Calcutta New Delhi Chennai

Mumbai (M)
Hyderabad (H) 385
Nagpur (N) 425 255
Calcutta (Ca) 1035 740 679
New Delhi (D) 708 773 531 816
Chennai (Ch) 644 329 860 1095

and therefore from (4.1) and (4.2),

w.T 0
0/ D w.T0/ C w.ek/ � w.e0

k/

� w.T0/:

But T0 is of minimum weight. Hence, w.T 0
0/ D w.T0/, and so T 0

0 is also of minimum
weight. However, as fe1; : : : ; ekg � E.T 0

0/,

f .T 0
0/ > k D f .T0/;

contradicting the choice of T0. Thus, T � is a minimum-weight spanning tree of G.
�

When the graph is not weighted, we can give the weight 1 to each of its edges
and then apply the algorithm. The algorithm then gives an acyclic subgraph with as
many edges as possible, that is, a spanning tree of G.

Illustration The distances in miles between some of the Indian cities connected by
air are given in Table 4.1.

Determine a minimum-cost operational system so that every city is connected to
every other city. Assume that the cost of operation is directly proportional to the
distance.

Let G be a graph with the set of cities as its vertex set. An edge corresponds to a
pair of cities for which the ticketed mileage is indicated. The ticketed mileage is the
weight of the corresponding edge (see Fig. 4.8).

The required operation system demands a minimum-cost spanning tree of G. We
shall apply Kruskal’s algorithm and determine such a system. The following is a
sequence of edges selected according to the algorithm.

HN; HC h; HM; ND; NCa:

The corresponding spanning tree is shown in bold lines, and its weight is 255 C
329 C 385 C 531 C 679 D 2; 179.

We next describe Prim’s algorithm [159].

90 4 Trees

HN, HCh, HM, ND, NCa.

Ca

M H

Ch

N D

644

385

740

816

531

1095

425

708

1035

329
773

860

679

255

Fig. 4.8 Graph of mileage between cities

4.7.3 Prim’s Algorithm

Let G be a simple connected weighted graph having n vertices. Let the vertices of
G be labeled as v1; v2; : : : ; vn. Let W D W.G/ D .wij / be the weight matrix of G.
That is, W is the n � n matrix with

(i) wi i D 1, for 1 � i � n,
(ii) wij D wj i D the weight of the edge .vi ; vj / if vi and vj are adjacent,

(iii) wij D wj i D 1 if vi and vj are nonadjacent.

The algorithm constructs a minimum-cost spanning tree.

Step 1: Start with v1. Connect v1 to vk , where vk is a nearest vertex to v1 (vk is
nearest to v1 if v1vk is an edge with minimum possible weight). The vertex
vk could be easily determined by observing the matrix W . Actually, vk is a
vertex corresponding to which the entry in row 1 of W is minimum.

Step 2: Having chosen vk , let vi ¤ v1 or vk be a vertex corresponding to the smallest
entry in rows 1 and k put together. Then vi is the vertex “nearest” the edge
subgraph defined by the edge v1vk . Connect vi to v1 or vk , according to
whether the entry is in the first row or kth row. Suppose it is, say, in the kth
row; then it is the .k; i/th entry of W .

Step 3: Consider the edge subgraph defined by the edge set fv1vk; vkvig. Determine
the nearest neighbor to the set of vertices fv1; vk; vig.

Step 4: Continue the process until all the n vertices have been connected by .n� 1/

edges. This results in a minimum-cost spanning tree.

Proof of correctness: Let T be a tree obtained by applying Prim’s algorithm. We
want to show that T is a minimum-weight spanning tree (that is, an optimal tree)

4.7 Applications 91

of G. We prove by induction on n D jV.G/j. Suppose e D v1v2 is an edge of least
weight incident at v1.

Claim. There exists a minimum-weight spanning tree of G that contains e. To see
this, consider an optimal tree T 0 of G. Suppose T 0 does not contain e. As T 0
contains the vertex v1; T 0 must contain some edge f of G incident at v1. By Prim’s
algorithm, w.e/ � w.e0/ for every edge e0 of G incident at v1 and consequently,
w.e/ � w.f /, where w denotes the weight function. Hence, the spanning tree
T 00 D T 0Ce�f of G has the property that w.T 00/ D w.T 0/Cw.e/�w.f / � w.T 0/.

As T 0 is optimal, T 00 is also optimal. But T 00 contains e. This establishes our
claim.

Let G0 D G ı e, the contraction of G obtained by contracting the edge e.
Every spanning tree of G that contains e gives rise to a unique spanning tree of
G0. Conversely, every spanning tree of G0 gives rise to a unique spanning tree of G

containing e.
Let S denote the set of vertices of the tree Tp (with e 2 E.Tp/) grown by Prim’s

algorithm at the end of p steps, p � 2, and S 0 denote the set of vertices of T 0
p D

Tpıe. Then ŒS; V .G/nS� D ŒS 0; V .G0/nS 0�. Therefore, an edge of minimum weight
in ŒS; V .G/nS� is also an edge of minimum weight in ŒS 0; V .G0/nS 0�. As the final
tree T is a Prim tree of G, the final tree T ı e of G0 is a Prim tree of G0. But then
G0 has one vertex less than that of G and so T ı e is an optimal tree of G ı e.
Consequently, T is an optimal tree of G. �

Illustration Consider the weighted graph G shown in Fig. 4.8. The weight matrix
W of G is

W W

2

6
6
6
6
6
6
4

M H N Ca D C h

M 1 385 425 1035 708 644

H 385 1 255 740 773 329

N 425 255 1 679 531 1
Ca 1035 740 679 1 816 860

D 708 773 531 816 1 1095

C h 644 329 1 860 1095 1

3

7
7
7
7
7
7
5

In row M (i.e., in the row corresponding to the city M , namely, Mumbai), the
smallest weight is 385, which occurs in column H . Hence join M and H . Now,
after omitting columns M and H , 255 is the minimum weight in the rows M and
H put together. It occurs in row H and column N . Hence, join H and N . Now,
omitting columns M , H , and N , the smallest number in the rows M , H , and N put
together is 329, and it occurs in row H and column C h, so join H and C h. Again,
the smallest entry in rows M; H; N and C h not belonging to the corresponding
columns is 531, and it occurs in row N and column D. So join N and D. Now,
the lowest entry in rows M; H; N; D and C h not belonging to the corresponding
columns is 679, and it occurs in row N and column Ca. So join N and Ca. This
construction gives the same minimum-weight spanning tree of Fig. 4.8.

92 4 Trees

Remark. In each iteration of Prim’s algorithm, a subtree of a minimum-weight
spanning tree is obtained, whereas in any step of Kruskal’s algorithm, just a
subgraph of a minimum-weight spanning tree is constructed.

4.7.4 Shortest-Path Problems

A manufacturing concern has a warehouse at location X and the market for the
product at another location Y . Given the various routes of transporting the product
from X to Y and the cost of operating them, what is the most economical way
of transporting the materials? This problem can be tackled using graph theory. All
such optimization problems come under a type of graph-theoretic problem known
as “shortest-path problems.” Three types of shortest-path problems are well known:

Let G be a connected weighted graph.

1. Determine a shortest path, that is, a minimum-weight path between two specified
vertices of G.

2. Determine a set of shortest paths between all pairs of vertices of G.
3. Determine a set of shortest paths from a specified vertex to all other vertices of G.

We consider only the first problem. The other two problems are similar. We
describe Dijkstra’s algorithm [52] for determining the shortest path between two
specified vertices. Once again, it is clear that in shortest-path problems, we could
restrict ourselves to simple connected weighted graphs.

4.7.5 Dijkstra’s Algorithm

Let G be a simple connected weighted graph having vertices v1; v2; : : : ; vn. Let s

and t be two specified vertices of G. We want to determine a shortest path from
s to t . Let W be the weight matrix of G. Dijkstra’s algorithm allots weights to the
vertices of G. At each stage of the algorithm, some vertices have permanent weights
and others have temporary weights.

To start with, the vertex s is allotted the permanent weight 0 and all other vertices
the temporary weight 1. In each iteration of the algorithm, one new vertex is
allotted a permanent weight by the following rules:

Rule 1: If vj is a vertex that has not yet been allotted a permanent weight, determine
for each vertex vi that had already been allotted a permanent weight,

˛ij D minfold weight of vj ; (old weight of vi / C wij g:

Let wj D Mini ˛ij . Then wj is a new temporary weight of vj not exceeding the
previous temporary weight.

4.7 Applications 93

A B

C D

EF

H

1

2

3 45

6

7

8

2

3

5 5

Fig. 4.9 Graph of mileage
between cities

Table 4.2 Steps of algorithm for shortest path from A to B

A B C D E F H

Iteration 0 0 1 1 1 1 1 1

Iteration 1 0 1 3 1 1 2 1

Iteration 2 0 1 3 1 3 2 7

Iteration 3 0 1 3 10 3 2 7

Iteration 4 0 8 3 6 3 2 7

Iteration 5 0 8 3 6 3 2 7

Iteration 6 0 8 3 6 3 2 7

Rule 2: Determine the smallest among the wj ’s. If this smallest weight is at vk; wk

becomes the permanent weight of vk . In case there is a tie, any one vertex is taken
for allotting a permanent weight.

The algorithm stops when the vertex t gets a permanent weight.
It is clear from the algorithm that the permanent weight of each vertex is the

shortest weighted distance from s to that vertex. The shortest path from s to t is
constructed by working backward from the terminal vertex t . Let P be a shortest
path and pi a vertex of P . The weight of pi�1, the vertex immediately preceding pi

on P , is such that the weight of the edge pi�1pi equals the difference in permanent
weights of pi and pi�1.

We present below an illustrative example. Let us find the shortest path from A to
B in the graph of Fig. 4.9.

We present the various iterations of the algorithm by arrays of weights of the
vertices, one consisting of weights before iteration and another after it. Temporary
weights will be enclosed in squares and the permanent weights enclosed in double
squares. The steps of the algorithm for determining the shortest path from vertex A

to vertex B in graph G of Fig. 4.9 are given in Table 4.2.

94 4 Trees

In our example, B is the last vertex to get a permanent weight. Hence the
algorithm stops after Iteration 6, in which B is allotted the permanent weight.
However, the algorithm may be stopped as soon as vertex B gets the permanent
weight.

The shortest distance from A to B is 8. A shortest path with weight 8 is
A F E D B .

4.8 Exercises

8.1. Show that any tree of order n contains a subtree of order k for every k � n.
8.2. Let u, v, w be any three vertices of a tree T . Show that either u, v, w all lie in

a path of T or else there exists a unique vertex z of T which is common to the
u-v, v-w, w-u paths of T .

8.3. Show that in a tree, the number of vertices of degree at least 3 is at most the
number of end vertices minus 2.

8.4. Show that if G is a connected graph with at least three vertices, then G

contains two vertices u and v such that G � fu; vg is also connected.
8.5. * If H is a graph of minimum degree at least k�1, then prove that H contains

every tree on k vertices. (Hint: Prove by induction on k.) (See [88].)
8.6. Prove that a nontrivial simple graph G is a tree if and only if for any set of

r distinct vertices in G, r � 2, the minimum number of edges required to
separate them is r � 1. (See E. Sampathkumar [168].)

8.7. Show that a simple connected graph contains at least m�nC1 distinct cycles.
8.8. Prove that for a connected graph G, r.G/ � diam.G/ � 2r.G/. (The graphs

of Fig. 4.3 show that the inequalities can be strict.)
8.9. Prove that a tree with at least three vertices has diameter 2 if and only if it is

a star.
8.10. Determine the number of spanning trees of the two graphs in Fig. 4.10:
8.11. If T is a tree with at least two vertices, show that there exists a set of edge-

disjoint paths covering all the vertices of T such that each of these paths has
at least one end vertex that is an end vertex of T .

8.12. Let T be a tree of order n with V.T / D f1; 2; : : : ; ng, and let A be a set
of transpositions defined by A D f.i; j / W ij 2 E.T /g. Show that A is a
minimal set of transpositions that generates the symmetric group Sn.

v5

v1 v2

v3v4

v1 v2

v3

v4v5

Fig. 4.10

4.8 Exercises 95

s

t

G

1 3
4

5
6

7
8

9

10

11

68

Fig. 4.11

8.13. For the graph G of Fig. 4.11, determine two distinct minimum-weight
spanning trees using

(i) Kruskal’s algorithm,
(ii) Prim’s algorithm.

What is the weight of such a tree? Also, determine a minimum-weight s-t
path using Dijkstra’s algorithm.

8.14. Apply Prim’s algorithm to the illustrative example given in Sect. 4.7.3 by
starting from the third row of the weight matrix.

8.15. If G is a connected weighted graph in which no two edges have the same
weight, show that G has a unique minimum-weight spanning tree.

8.16. Establish the correctness of Dijkstra’s algorithm.

Notes

In 1847, G. R. Kirchoff (1824–1887) developed the theory of trees for their appli-
cations in electrical networks. Ten years later, in 1857, the English mathematician
A. Cayley (1821–1895) rediscovered trees while he was trying to enumerate the
isomers of the saturated hydrocarbons CnH2nC2 (see also Chap. 1). Since then
“trees” have grown both vertically and horizontally. They are widely used today
in computer science.

There is also a simpler (?) proof of the converse part of Theorem 4.4.4 using
matroid theory (see pp. 126–127 of [191]).

Corollary 4.4.6 is due to Kilpatrick [122], but the elegant proof given here is due
to Jaeger [114]. The proof of Cayley’s theorem presented here (Theorem 4.5.1) is
based on Moon [142], which also contains nine other proofs. The book by Serre
[170] entitled Trees is mainly concerned with the connection between trees and the
group SL2.Qp/.

For general algorithmic results related to graphs, see [3, 72, 153].

	Chapter
4 Trees
	4.1 Introduction
	4.2 Definition, Characterization, and Simple Properties
	4.3 Centers and Centroids
	4.4 Counting the Number of Spanning Trees
	4.5 Cayley's Formula
	4.6 Helly Property
	4.7 Applications
	4.7.1 The Connector Problem
	4.7.2 Kruskal's Algorithm
	4.7.3 Prim's Algorithm
	4.7.4 Shortest-Path Problems
	4.7.5 Dijkstra's Algorithm

	4.8 Exercises
	 Notes

