
Chapter 3
Connectivity

3.1 Introduction

The connectivity of a graph is a “measure” of its connectedness. Some connected
graphs are connected rather “loosely” in the sense that the deletion of a vertex or
an edge from the graph destroys the connectedness of the graph. There are graphs
at the other extreme as well, such as the complete graphs Kn; n � 2; which remain
connected after the removal of any k vertices, 1 � k � n � 1:

Consider a communication network. Any such network can be represented by
a graph in which the vertices correspond to communication centers and the edges
represent communication channels. In the communication network of Fig. 3.1a, any
disruption in the communication center v will result in a communication breakdown,
whereas in the network of Fig. 3.1b, at least two communication centers have
to be disrupted to cause a breakdown. It is needless to stress the importance of
maintaining reliable communication networks at all times, especially during times
of war, and the reliability of a communication network has a direct bearing on its
connectivity.

In this chapter, we study the two graph parameters, namely, vertex connectivity
and edge connectivity. We also introduce the parameter cyclical edge connectivity.
We prove Menger’s theorem and several of its variations. In addition, the theorem
of Ford and Fulkerson on flows in networks is established.

3.2 Vertex Cuts and Edges Cuts

We now introduce the notions of vertex cuts, edge cuts, vertex connectivity, and
edge connectivity.
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Definitions 3.2.1. 1. A subset V 0 of the vertex set V.G/ of a connected graph G is
a vertex cut of G if G � V 0 is disconnected; it is a k-vertex cut if jV 0j D k: V 0
is then called a separating set of vertices of G: A vertex v of G is a cut vertex of
G if fvg is a vertex cut of G:

2. Let G be a nontrivial connected graph with vertex set V.G/ and let S be a
nonempty subset of V.G/: For NS D V nS ¤ ;; let ŒS; NS� denote the set of
all edges of G that have one end vertex in S and the other in NS: A set of edges of
G of the form ŒS; NS� is called an edge cut of G: An edge e is a cut edge of G if
feg is an edge cut of G: An edge cut of cardinality k is called a k-edge cut of G:

Example 3.2.2. For the graph of Fig. 3.2, fv2g; and fv3; v4g are vertex cuts. The edge
subsets fv3v5; v4v5g; fv1v2g; and fv4v6g are all edge cuts. Of these, v2 is a cut vertex,
and v1v2 and v4v6 are both cut edges. For the edge cut fv3v5; v4v5g, we may take
S D fv5g so that NS D fv1; v2; v3; v4; v6g:

Remarks 3.2.3. 1. If uv is an edge of an edge cut E 0; then all the edges having u
and v as their ends also belong to E 0:

2. No loop can belong to an edge cut.

Exercise 2.1. If fx; yg is a 2-edge cut of a graph G; show that every cycle of G that
contains x must also contain y:

Remarks 3.2.4. If G is connected and E 0 is a set of edges whose deletion results in
a disconnected graph, then E 0 contains an edge cut of G: It is clear that if e is a cut
edge of a connected graph G; then G � e has exactly two components.
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Remarks 3.2.5. Since the removal of a parallel edge of a connected graph does not
result in a disconnected graph, such an edge cannot be a cut edge of the graph. A
set of edges of a connected graph G whose deletion results in a disconnected graph
is called a separating set of edges. In particular, any edge cut of a connected graph
G is a separating set of edges of G:

We now characterize a cut vertex of G:

Theorem 3.2.6. A vertex v of a connected graph G with at least three vertices is a
cut vertex of G if and only if there exist vertices u and w of G distinct from v such
that v is in every u-w path in G:

Proof. If v is a cut vertex of G; then G � v is disconnected and has at least two
components, G1 and G2: Take u 2 V.G1/ and w 2 V.G2/: Then every u-w path in
G must contain v; as otherwise u and w would belong to the same component of
G � v:

Conversely, suppose that the condition of the theorem holds. Then the deletion
of v destroys every u-w path in G; and hence u and w lie in distinct components of
G � v: Therefore, G � v is disconnected and v is a cut vertex of G: �

Theorems 3.2.7 and 3.2.8 characterize a cut edge of a graph.

Theorem 3.2.7. An edge e D xy of a connected graph G is a cut edge of G if and
only if e belongs to no cycle of G:

Proof. Let e be a cut edge of G and let ŒS; NS� D feg be the partition of V defined
by G � e so that one of x and y belongs to S; and the other to NS; say, x 2 S and
y 2 NS: If e belongs to a cycle of G; then ŒS; NS� must contain at least one more edge,
contradicting that feg D ŒS; NS�: Hence, e cannot belong to a cycle.

Conversely, assume that e is not a cut edge of G: Then G � e is connected, and
hence there exists an x-y path P in G�e: Then P [feg is a cycle in G containing e:

�

Theorem 3.2.8. An edge e D xy is a cut edge of a connected graph G if and only
if there exist vertices u and v such that e belongs to every u-v path in G:

Proof. Let e D xy be a cut edge of G: Then G �e has two components, say, G1 and
G2. Let u 2 V.G1/ and v 2 V.G2/: Then, clearly, every u-v path in G contains e:

Conversely, suppose that there exist vertices u and v satisfying the condition of
the theorem. Then there exists no u-v path in G � e so that G � e is disconnected.
Hence, e is a cut edge of G. �

Remark 3.2.9. There exist graphs in which every edge is a cut edge. It follows from
Theorem 3.2.7 that if G is a simple connected graph with at least one edge and
without cycles, then every edge of G is a cut edge of G: A similar result is not true
for cut vertices. Our next result shows that not every vertex of a connected graph
(with at least two vertices) can be a cut vertex of G:

Theorem 3.2.10. A connected graph G with at least two vertices contains at least
two vertices that are not cut vertices.
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Proof. First, suppose that n.G/ � 3: Let u and v be vertices of G such that d.u; v/

is maximum. Then neither u nor v is a cut vertex of G: For if u were a cut vertex
of G; G � u would be disconnected, having at least two components. The vertex v
belongs to one of these components. Let w be any vertex belonging to a component
of G � u not containing v: Then every v-w path in G must contain u (see Fig. 3.3).
Consequently, d.v; w/ > d.v; u/; contradicting the choice of u and v: Hence, u is
not a cut vertex of G: Similarly, v is not a cut vertex of G:

If n.G/ D 2; then K2 is a spanning subgraph of G; and so no vertex of G is a
cut vertex of G: This completes the proof of the theorem. �

Proposition 3.2.11. A simple cubic (i.e., 3-regular) connected graph G has a cut
vertex if and only if it has a cut edge.

Proof. Let G have a cut vertex v0: Let v1; v2; v3 be the vertices of G that are adjacent
to v0 in G: Consider G � v0; which has either two or three components. If G � v0

has three components, no two of v1; v2; and v3 can belong to the same component of
G�v0: In this case, each of v0v1; v0v2; and v0v3 is a cut edge of G: (See Fig. 3.4a.) In
the case when G � v0 has only two components, one of the vertices, say v1; belongs
to one component of G � v0; and v2 and v3 belong to the other component. In this
case, v0v1 is a cut edge. (See Fig. 3.4b.)

Conversely, suppose that e D uv is a cut edge of G: Then the deletion of u results
in the deletion of the edge uv: Since G is cubic, G �u is disconnected. Accordingly,
u is a cut vertex of G: �

Exercise 2.2. Find the vertex cuts and edge cuts of the graph of Fig. 3.2.
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Exercise 2.3. Prove or disprove: Let G be a simple connected graph with
n.G/ � 3: Then G has a cut edge if and only if G has a cut vertex.

Exercise 2.4. Show that in a graph, the number of edges common to a cycle and an
edge cut is even.

3.3 Connectivity and Edge Connectivity

We now introduce two parameters of a graph that in a way measure the connected-
ness of the graph.

Definition 3.3.1. For a nontrivial connected graph G having a pair of nonadjacent
vertices, the minimum k for which there exists a k-vertex cut is called the vertex
connectivity or simply the connectivity of GI it is denoted by �.G/ or simply �

(kappa) when G is understood. If G is trivial or disconnected, �.G/ is taken to be
zero, whereas if G contains Kn as a spanning subgraph, �.G/ is taken to be n � 1:

A set of vertices and/or edges of a connected graph G is said to disconnect G if
its deletion results in a disconnected graph.

When a connected graph G (on n � 3 vertices) does not contain Kn as a spanning
subgraph, � is the connectivity of G if there exists a set of � vertices of G whose
deletion results in a disconnected subgraph of G while no set of � � 1 (or fewer)
vertices has this property.

Exercise 3.1. Prove that a simple graph G with n vertices, n � 2; is complete if
and only if �.G/ D n � 1:

Definition 3.3.2. The edge connectivity of a connected graph G is the smallest k

for which there exists a k-edge cut (i.e., an edge cut having k edges). The edge
connectivity of a trivial or disconnected graph is taken to be 0: The edge connectivity
of G is denoted by �.G/: If � is the edge connectivity of a connected graph G; there
exists a set of � edges whose deletion results in a disconnected graph, and no subset
of edges of G of size less than � has this property.

Exercise 3.2. Prove that the deletion of edges of a minimum-edge cut of a
connected graph G results in a disconnected graph with exactly two components.
(Note that a similar result is not true for a minimum vertex cut.)

Definition 3.3.3. A graph G is r-connected if �.G/ � r: Also, G is r-edge
connected if �.G/ � r:

An r-connected (respectively, r-edge-connected) graph is also `-connected
(respectively, `-edge connected) for each `; 0 � ` � r � 1:

For the graph G of Fig. 3.5, �.G/ D 1 and �.G/ D 2:

We now derive inequalities connecting �.G/; �.G/; and ı.G/:

Theorem 3.3.4. For any loopless connected graph G; �.G/ � �.G/ � ı.G/:
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� D 1; � D 2 and ı D 3

Proof. We observe that � D 0 if and only if � D 0: Also, ı D 0 implies that � D 0

and � D 0: Hence we may assume that �; �; and ı are all at least 1: Let E be an
edge cut of G with � edges. Let u and v be the end vertices of an edge of E : For
each edge of E that does not have both u and v as end vertices, remove an end vertex
that is different from u and v: If there are t such edges, at most t vertices have been
removed. If the resulting graph, say H; is disconnected, then � � t < �: Otherwise,
there will remain a subset of edges of E having u and v as end vertices, the removal
of which from H would disconnect G: Hence, in addition to the already removed
vertices, the removal of one of u and v will result in either a disconnected graph or
a trivial graph. In the process, a set of at most t C 1 vertices has been removed and
� � t C 1 � �:

Finally, it is clear that � � ı: In fact, if v is a vertex of G with dG.v/ D ı; then
the set Œfvg; V n fvg� of ı edges of G incident at v forms an edge cut of G: Thus,
� � ı: �

It is possible that the inequalities in Theorem 3.3.4 can be strict. See the graph G

of Fig. 3.6, for which � D 1; � D 2; and ı D 3:

Exercise 3.3. Prove or disprove: If H is a subgraph of G; then

(a) �.H/ � �.G/ and
(b) �.H/ � �.G/:

Exercise 3.4. Determine �.Kn/:

Exercise 3.5. Determine the connectivity and edge connectivity of the Petersen
graph P: (See graph P of Fig. 1.7. Note that P is a cubic graph.)

Theorem 3.3.5 gives a class of graphs for which � D �:

Theorem 3.3.5. The connectivity and edge connectivity of a simple cubic graph G

are equal.
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Fig. 3.7 Connected cubic graphs for proof of Theorem 3.3.5

Proof. We need only consider the case of a connected cubic graph. Again, since
� � � � ı D 3; we have only to consider the cases when � D 1; 2; or 3: Now,
Proposition 3.2.11 implies that for a simple cubic graph G; � D 1 if and only if
� D 1:

If � D 3; then by Theorem 3.3.4, 3 D � � � � ı D 3; and hence � D 3:

We shall now prove that � D 2 implies that � D 2:

Suppose � D 2 and fu; vg is a 2-vertex cut of G: The deletion of fu; vg results
in a disconnected subgraph G0 of G: Since each of u and v must be joined to each
component of G0; and since G is cubic, G0 can have at most three components.
If G0 has three components, G1; G2; and G3; and if ei and fi ; i D 1; 2; 3; join,
respectively, u and v with Gi ; then each pair fei ; fi g is an edge cut of G (see
Fig. 3.7a).

If G0 has only two components, G1 and G2; then each of u and v is joined to one
of G1 and G2 by a single edge, say, e and f; respectively, so that fe; f g is an edge
cut of G (see Fig. 3.7b–d).

Hence, in either case there exists an edge cut consisting of two edges. As such,
� � 2: But by Theorem 3.3.4, � � � D 2: Hence � D 2: Finally, the above
arguments show that if � D 3; then � D 3; and if � D 2; then � D 2: �
Exercise 3.6. Give examples of cubic graphs G1; G2; and G3 with �.G1/ D 1;

�.G2/ D 2; and �.G3/ D 3:
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Definition 3.3.6. A family of two or more paths in a graph G is said to be internally
disjoint if no vertex of G is an internal vertex of more than one path in the family.

We now state and prove Whitney’s characterization theorem of 2-connected
graphs.

Theorem 3.3.7 (Whitney [193]). A graph G with at least three vertices is
2-connected if and only if any two vertices of G are connected by at least two
internally disjoint paths.

Proof. Let G be 2-connected. Then G contains no cut vertex. Let u and v be two
distinct vertices of G: We now use induction on d.u; v/ to prove that u and v are
joined by two internally disjoint paths.

If d.u; v/ D 1; let e D uv: As G is 2-connected and n.G/ � 3; e cannot be a cut
edge of G; since if e were a cut edge, at least one of u and v must be a cut vertex.
By Theorem 3.2.7, e belongs to a cycle C in G: Then C � e is a u-v path in G;

internally disjoint from the path uv:

Now assume that any two vertices x and y of G with d.x; y/ D k �1; k � 2; are
joined by two internally disjoint x-y paths in G: Let d.u; v/ D k: Let P be a u-v path
of length k and w be the vertex of G just preceding v on P: Then d.u; w/ D k � 1.
By an induction hypothesis, there are two internally disjoint u-w paths, say P1 and
P2; in G: As G has no cut vertex, G � w is connected and hence there exists a u-v
path Q in G � w: Q is clearly a u-v path in G not containing w: Let x be the vertex
of Q such that the x-v section of Q contains only the vertex x in common with
P1 [ P2 (see Fig. 3.8).

We may suppose, without loss of generality, that x belongs to P1: Then the union
of the u-x section of P1 and x-v section of Q and P2 [ .wv/ are two internally
disjoint u-v paths in G: This gives the proof in one direction.

In the other direction, assume that any two distinct vertices of G are connected
by at least two internally disjoint paths. Then G is connected. Further, G cannot
contain a cut vertex, since if v were a cut vertex of G; there must exist vertices u and
w such that every u-w path contains v (compare with Theorem 3.2.6), contradicting
the hypothesis. Hence, G is 2-connected. �
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Theorem 3.3.8. A graph G with at least three vertices is 2-connected if and only if
any two vertices of G lie on a common cycle.

Proof. Let u and v be any two vertices of a 2-connected graph G: By Theorem 3.3.7,
there exist two internally disjoint paths in G joining u and v: The union of these two
paths is a cycle containing u and v:

Conversely, if any two vertices u and v lie on a cycle C; then C is the union of
two internally disjoint u-v paths. Again, by Theorem 3.3.7, G is 2-connected. �

Remark 3.3.9. If G is 2-connected, if u and v are distinct vertices of G, and if P

is a u-v path in G; it is not in general true that there exists another u-v path Q in
G such that P and Q are internally disjoint. For example, in the 2-connected graph
of Fig. 3.9, if P is the u-w0 path uwvv0u0w0; there exists no u-w0 path Q in G that is
internally disjoint from P: However, there do exist two internally disjoint u-w0 paths
in G:

Exercise 3.7. (a) Show that a graph G with at least three vertices is 2-connected if
and only if any vertex and any edge of G lie on a common cycle of G:

(b) Show that a graph G with at least three vertices is 2-connected if and only if
any two edges of G lie on a common cycle.

Exercise 3.8. Prove that a graph is 2-connected if and only if for every pair of
disjoint connected subgraphs G1 and G2; there exist two internally disjoint paths P1

and P2 of G between G1 and G2:

Exercise 3.9. Edge form of Whitney’s theorem: Prove that a graph G with n � 3

is 2-edge connected if and only if any two distinct vertices of G are connected by
at least two edge-disjoint paths in G: [Hint: Imitate the proof of Theorem 3.3.7, or
pass on to L.G/:]

Exercise 3.10. (a) Disprove by a counterexample: If �.G/ D k; then �.L.G//Dk:

(b) Prove: �.G/ � �.L.G//: Give an example of a graph G for which �.G/ <

�.L.G//:

Theorem 3.3.10. In a 2-connected graph G; any two longest cycles have at least
two vertices in common.

Proof. Let C1 D u1u2 : : : uku1 and C2 D v1v2 : : : vkv1 be two longest cycles in G:

If C1 and C2 are disjoint, there exist (since G is 2-connected) two disjoint paths,
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say, P1 joining ui and vj and P2 joining u` and vp; connecting C1 and C2 such that
ui ¤ u` and vj ¤ vp (see Exercise 3.8). ui and u` divide C1 into two subpaths. Let
L1 be the longer of these subpaths. (If both subpaths are of equal length, we take
either one of them to be L1:) Let L2 be defined in a similar manner in C2: Then
L1 [ P1 [ L2 [ P2 is a cycle of length greater than that of C1 (or C2). Hence, C1

and C2 cannot be disjoint. (See Fig. 3.10.)
Suppose that C1 and C2 have exactly one vertex, say u1 D v1; in common. Since

G is 2-connected, u1 is not a cut vertex of G; and so there exists a path P with one
end vertex ui in C1 � u1 and the other end vertex vj in C2 � v1; which is internally
disjoint from C1 [ C2: Let P1 denote the longer of the two u1-ui sections of C1;

and Q1 denote the longer of the two v1-vj sections of C2: If the two sections of C1

or of C2 are of equal length, take any one of them. Then P1 [ P [ Q1 is a cycle
longer than C1 (or C2). But this is impossible. Thus, C1 and C2 must have at least
two vertices in common. �

Theorem 3.3.11 gives a simple characterization of 3-edge-connected graphs.

Theorem 3.3.11. A connected simple graph G is 3-edge connected if and only if
every edge of G is the (exact) intersection of the edge sets of two cycles of G:

Proof. Let G be 3-edge connected and let x D uv be an edge of G: Since G � x is
2-edge connected, there exist two edge-disjoint u-v paths P1 and P2 in G � x (see
Exercise 3.9). Now, P1 [ fxg and P2 [ fxg are two cycles of G; the intersection
of whose edge sets is precisely fxg (see Fig. 3.11).
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Conversely, suppose that for each edge x D uv there exist two cycles C and C 0
such that fxg D E.C / \ E.C 0/: G cannot have a cut edge since, by hypothesis,
each edge belongs to two cycles and no cut edge can belong to a cycle; nor can
G contain an edge cut consisting of two edges x and y; by Exercise 2.1. (Since
any cycle that contains x also contains y; the intersection of any two such cycles
must contain both x and y; a contradiction.) Hence, �.G/ � 3; and G is 3-edge
connected. �

3.4 Blocks

In this section, we focus on connected graphs without cut vertices.

Definition 3.4.1. A graph G is nonseparable if it is nontrivial and connected and
has no cut vertices. A block of a graph is a maximal nonseparable subgraph of G: If
G has no cut vertex, G itself is a block.

In Fig. 3.12, a graph G and its blocks B1; B2; B3; and B4 are indicated. B1; B3;

and B4 are the end blocks of G (i.e., blocks having exactly one cut vertex of G). The
following facts are worthy of observation.

Remarks 3.4.2. Let G be a connected graph with n � 3:

1. Each block of G with at least three vertices is a 2-connected subgraph of G:

2. Each edge of G belongs to one and only one of its blocks. Hence G is an edge-
disjoint union of its blocks.

3. Any two blocks of G have at most one vertex in common. (Such a common
vertex is a cut vertex of G:)

4. A vertex of G that is not a cut vertex belongs to exactly one of its blocks.
5. A vertex of G is a cut vertex of G if and only if it belongs to at least two blocks

of G:

Whitney’s theorem (Theorem 3.3.7) implies that a graph with at least three
vertices is a block if and only if any two vertices of the graph are connected by
at least two internally disjoint paths. Again by Theorem 3.3.8, we see that any two
vertices of a block with at least three vertices belong to a common cycle. Thus, a
block with at least three vertices contains a cycle.

Theorem 3.4.3 (Ear decomposition of a block). If C is any cycle of a simple
block G; then there exists a sequence of nonseparable subgraphs C D B0; B1; : : : ;

Br D G such that BiC1 is an edge-disjoint union of Bi and a path Pi ; where the
only vertices common to Bi and Pi are the end vertices of Pi ; 0 � i � r � 1:

Proof. Assume that we have already determined Bi (see Fig. 3.13). If Bi ¤ G;

there exists (as G is connected) an edge e D uv not belonging to Bi but with u in
Bi : If v also belongs to Bi ; take Pi D uv and BiC1 D Bi [ Pi : Otherwise, e D uv
is an edge of G having only one of its ends, namely u; in Bi : Let u0 be any other
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vertex of Bi : Then since G is 2-connected, e and u0 belong to a common cycle Ci

(see Exercise 3.7). Let ui be the first vertex of Bi after u in the u-u0 section C 0 of Ci

containing v; and let Pi be the u-ui section of C 0: Define BiC1 D Bi [ Pi : Then
BiC1 is nonseparable and the proof follows by induction on i: �
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G H

Fig. 3.14 Graphs G.�.G/ D �c.G/ D 2/ and H.�.H/ D 1; �c.H/ D 2/

3.5 Cyclical Edge Connectivity of a Graph

In this section we introduce the parameter “cyclical edge connectivity of a graph.”
Unlike connectivity and edge connectivity, cyclical edge connectivity is not defined
for all graphs.

Definition 3.5.1. Let G be a simple connected graph containing at least two disjoint
cycles. Then the cyclical edge connectivity of G is defined to be the minimum
number of edges of G whose deletion results in a graph having two components,
each containing a cycle. It is denoted by �c.G/:

It is clear that � � �c: The graphs G and H of Fig. 3.14 show that both � D �c

and � < �c can happen.

Exercise 5.1. Show that the cyclical edge connectivity of the Petersen graph P is 5:

3.6 Menger’s Theorem

In this section we prove different versions of the celebrated Menger’s theorem,
which generalizes Whitney’s theorem (Theorem 3.3.7). Menger’s theorem [140]
relates the connectivity of a graph G to the number of internally disjoint paths
between pairs of vertices of G: The proofs given here make use of network analysis.
Hence we begin with the definition of a network.

Definition 3.6.1. A network N is a digraph D with two distinguished vertices s

and t; .s ¤ t/; and a nonnegative integer-valued function c defined on its arc set A:

s is called the source and t is called the sink of N: The source corresponds to the
supply center and the sink corresponds to a market. Vertices of N; other than s and
t; are called the intermediate vertices of N: The digraph D is called the underlying
digraph of N: The function c is called the capacity function of N and c.a/; for an
arc a; denotes the capacity of a:
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Example 3.6.2. A network N is diagrammatically represented by the underlying
digraph D; labeling each arc with its capacity. Figure 3.15 is a network with source
s and sink t; and three intermediate vertices. The numbers inside the brackets denote
the capacities of the respective arcs.

For a real-valued function f defined on A; and K � A;
P

a2K

f .a/ will be denoted

by f .K/: If K is a set of arcs of D of the form ŒS; NS�; that is, the set of arcs with
heads in S and tails in NS; where S � V.D/; NS D V.D/ n S; then f C.S/ and
f �.S/ denote f .ŒS; NS�/ and f .Œ NS; S�/; respectively. If S D fvg; then f C.S/ and
f �.S/ are denoted by f C.v/ and f �.v/; respectively.

Definition 3.6.3. A flow in a network N is an integer-valued function f defined on
A D A.N / such that 0 � f .a/ � c.a/ for all a 2 A and f C.v/ D f �.v/ for all
the intermediate vertices v of N:

Remarks 3.6.4. 1. f C.v/ is the flow out of v and f �.v/ is the flow into v: The
condition f C.v/ D f �.v/ for each intermediate vertex v then signifies that there
is conservation of flow at every such vertex.

2. If a D .u; v/; we denote f .a/ by fuv: Every network N has at least one flow
since the function f defined by f .a/ D 0 for all a 2 A is a flow. It is called the
zero flow in N:

3. A less trivial example of a flow in the network of Fig. 3.15 is given by f; where
fsa D 4; fsd D 3; fbs D 2; fat D 2; fab D 3; fba D 1; fbd D 1; fdb D 3;

fbt D 2; fdt D 3; and ftd D 2:

4. If S is a subset of vertices in a network N and f is a flow in N; f C.S/�f �.S/;

is called the resultant flow out of S and f �.S/ � f C.S/; the resultant flow into
S; relative to f:
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5. The flow along any arc .u; v/ is both the outflow at u along .u; v/ and the inflow
at v along .u; v/: Hence,

P
v2V.N / f C.v/ � P

v2V.N / f �.v/ D 0: This gives us

Œf C.s/ � f �.s/� C
X

v2V.N /

v¤s;t

.f C.v/ � f �.v// C Œf C.t/ � f �.t/� D 0:

But f C.v/ D f �.v/ for each v 2 V.N /; v ¤ s; t: Hence,

f C.s/ � f �.s/ D f �.t/ � f C.t/:

Thus, relative to any flow f; the resultant flow out of s is equal to the resultant
flow into t: For a similar reason, if S is any subset of V.N / containing s but
not t; X

v2S

f C.v/ �
X

v2S

f �.v/ D f C.s/ � f �.s/: (3.1)

This common quantity is called the value of f and is denoted by val f: Thus,

val f D f C.s/ � f �.s/ D f �.t/ � f C.t/:

The value of the flow f of the network of Fig. 3.15 is 5:

Definition 3.6.5. 1. A flow f in N is a maximum flow if there is no flow f 0 in N

such that val f 0 > val f:

2. A cut K in N is a set of arcs of the form ŒS; NS; � where s 2 S and t 2 NS: Such
a cut is said to separate s and t: For example, K D f.a; t/; .b; t/; .d; t/g is a cut
in the network of Fig. 3.15, where S D fs; a; b; d g:

3. The capacity of a cut K is the sum of the capacities of its arcs. We denote
the capacity of K by cap K: Thus, cap K D P

a2K c.a/: For the network of
Fig. 3.15, cap K D 2 C 2 C 3 D 7:

Theorem 3.6.6 gives the relation between the value of a flow and the capacity of
a cut in a network.

Theorem 3.6.6. In any network N; the value of any flow f is less than or equal to
the capacity of any cut K:

Proof. Let ŒS; NS� be any cut with s 2 S and t 2 T: We have, by (3.1),

val f D f C.s/ � f �.s/

D
X

v2S

f C.v/ �
X

v2S

f �.v/

D
X

v2S; u2S;

.v;u/2A.D/

fvu C
X

v2S; u2 NS;

.v;u/2A.D/

fvu �
X

u2S; v2S;

.u;v/2A.D/

fuv �
X

u2 NS; v2S;

.u;v/2A.D/

fuv:
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But
X

v2S; u2S;

.v;u/2A.D/

fvu �
X

u2S; v2S;

.u;v/2A.D/

fuv D 0:

Hence

val f D
X

v2S; u2 NS;

.v;u/2A.D/

fvu �
X

u2 NS; v2S;

.u;v/2A.D/

fuv: (3.2)

Since
X

u2 NS; v2S;

.u;v/2A.D/

fuv � 0

(recall that f is a nonnegative integer-valued function), we get
val f � P

v2S; u2 NS;

.v;u/2A.D/

fvu � P

v2S; u2 NS;

.v;u/2A.D/

c.v; u/ D c.ŒS; NS�/: �

Note 3.6.7. Note that we have shown in (3.2) that val f is the flow out of S minus
the flow into S for any S � V with s 2 S and t 2 NS:

By Theorem 3.6.6, in any network N; the value of any flow f does not exceed
the capacity of any cut K: In particular, if f � is a maximum flow in N and K� is a
minimum cut, that is, a cut with minimum capacity, then val f � � cap K�:

Lemma 3.6.8. Let f be a flow and K a cut in a network N such that val f D
cap K: Then f is a maximum flow and K is a minimum cut.

Proof. Let f � be a maximum flow and K� be a minimum cut in N: Then we have,
by Theorem 3.6.6, val f � val f � � cap K� � cap K: But by hypothesis, val f D
cap K: Hence, val f D val f � D cap K� D cap K: Thus, f is a maximum flow
and K is a minimum cut. �

Theorem 3.6.9 is the celebrated max-flow min-cut theorem due to Ford and
Fulkerson [65], which establishes the equality of the value of a maximum flow
and the minimum capacity of a cut separating s and t:

Theorem 3.6.9 (Ford and Fulkerson). In a given network N (with source s and
sink t), the maximum value of a flow is equal to the minimum value of the capacities
of all the cuts in N:

Proof. In view of Lemma 3.6.8, we need only prove that there exists a flow in N

whose value is equal to c.ŒS; NS�/ for some cut ŒS; NS� separating s and t in N: Let f

be a maximum flow in N with val f D w0: Define S � N recursively as follows:

(a) s 2 S; and
(b) If a vertex u 2 S and either fuv < c.u; v/ or fvu > 0; then include v in S:

Any vertex not belonging to S belongs to NS: We claim that t cannot belong to
S I indeed, if we suppose that t 2 S; then there exists a path P from s to t; say
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P W sv1v2 : : : vj vj C1 : : : vkt; with its vertices in S such that for any arc of P; either
fvj vj C1

< c.vj ; vj C1/ or fvj C1vj > 0: Call an arc joining vj and vj C1 of P a
forward arc if it is directed from vj to vj C1I otherwise, it is a backward arc.

Let ı1 be the minimum of all differences .c.vj ; vj C1/ � fvj vj C1
/ for forward

arcs, and let ı2 be the minimum of all flows in backward arcs of P: Both ı1 and ı2

are positive, by the definition of S: Let ı D minfı1; ı2g: Increase the flow in each
forward arc of P by ı and also decrease the flow in each backward arc of P by ı:

Keep the flows along the other arcs of N unaltered. Then there results a new flow
whose value is w0 C ı > w0; leading to a contradiction. [This is because among all
arcs incident at s; only in the initial arc of P; the flow value is increased by ı if it
is a forward arc or decreased by ı if it is a backward arc; see (5) of Remarks 3.6.4.]
This contradiction shows that t … S; and therefore t 2 NS: In other words, ŒS; NS�

is a cut separating s and t: If v 2 S and u 2 NS; we have, by the definition of S;

fvu D c.v; u/ if .v; u/ is an arc of N; and fuv D 0 if .u; v/ is an arc of N: Hence, as
in the proof of Theorem 3.6.6,

w0 D
X

u2S

v2 NS

fuv�
X

v2 NS
u2S

fvu D
X

u2S

v2 NS

fuv�0 D
X

u2S

v2 NS

c.u; v/ D c.ŒS; NS�/: �

We now use the max-flow min-cut theorem to prove a number of results due
to Menger. We shall first prove a result for a network in which each arc has unit
capacity.

Theorem 3.6.10. Let N be a network with source s and sink t: Let each arc of N

have unit capacity. Then,

(a) The value of a maximum flow in N is equal to the maximum number k of arc-
disjoint directed .s; t/-paths in N; and

(b) The capacity of a minimum cut in N is equal to the minimum number ` of arcs
whose deletion destroys all .s; t/-paths in N:

Proof. Let f � be a maximum flow in N; and let D� denote the digraph obtained
from D; the underlying digraph of N; by deleting all arcs whose flow is zero in
f �: Now, note that 0 < f �.a/ � c.a/ D 1 for all a 2 A.D�/; and therefore,
f �.a/ D 1 for all a 2 A.D�/: Hence,

(i) d C
D�.s/ � d �

D�.s/ D f �C

.s/ � f ��

.s/ D val f � D f ��

.t/ � f �C

.t/ D
d �

D�.t/ � d C
D�.t/ and

(ii) d C
D�.v/ D d �

D�.v/ for v 2 V.N / n fs; tg:
(i) and (ii) imply that there are val f � arc-disjoint directed .s; t/-paths in D� and
hence also in D: Thus, val f � � k: Now let P1; P2; : : : ; Pk be any system of k

arc-disjoint directed .s; t/-paths in N: Define a function f on A.N / by

f .a/ D
8
<

:

1 if a is an arc of
kS

iD1

Pi ;

0 otherwise.
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Then f is a flow in N with value k: Since f � is a maximum flow, we have
val f � � k: Consequently, val f � D k; proving (a).

Let K� D ŒS; NS� be a minimum cut in N so that jK�j � ` by the definition of `:

Then, cap K� D jK�j � `:

Now let Z be a set of ` arcs whose deletion destroys all directed .s; t/-paths,
and let T denote the set of all vertices including s joined to s by a directed path in
N � Z: Then since s 2 T; and t 2 NT ; K D ŒT; NT � is a cut in N: By the definition of
T; N � Z can contain no arc of ŒT; NT �; and hence K � Z: Since K� is a minimum
cut, we conclude that cap K� � cap K D jKj � jZj D `: Thus, cap K� D `: �

We now state and prove the edge version of Menger’s theorem for directed graphs.

Theorem 3.6.11. Let x and y be two vertices of a digraph D: Then the maximum
number of arc-disjoint directed .x; y/-paths in D is equal to the minimum number
of arcs whose deletion destroys all directed .x; y/-paths in D:

Proof. Apply Theorem 3.6.9 to the two results of Theorem 3.6.10. �

Theorem 3.6.12 is the edge version of Menger’s theorem for undirected graphs.

Theorem 3.6.12. Let x and y be two vertices of a graph G: Then the maximum
number of edge-disjoint .x; y/-paths in G is equal to the minimum number of edges
of G whose deletion destroys all .x; y/-paths in G:

Proof. Construct a digraph D.G/ from G as follows: V.G/ is also the vertex set
of D.G/ and if u; v 2 V.G/; then .u; v/ 2 A.D.G// if and only if u and v are
adjacent in GI that is, D.G/ is obtained from G by replacing each edge uv of G by a
symmetric pair of arcs .u; v/ and .v; u/: By Theorem 3.6.11, the maximum number
of arc-disjoint directed .x; y/-paths in D.G/ is equal to the minimum number of
arcs whose deletion destroys all directed .x; y/-paths in D.G/: But each directed
.x; y/-path in D.G/ gives rise to a unique .x; y/-path in G; and conversely an
.x; y/-path in G yields a unique directed .x; y/-path in D.G/: Hence, the deletion
of a set of � edges in G destroys all .x; y/-paths in G if and only if the deletion of
the corresponding set of � arcs in D.G/ destroys all directed .x; y/-paths in D.G/:

�

Theorem 3.6.13 is the vertex version of Menger’s theorem for digraphs.

Theorem 3.6.13. Let x and y be two vertices of a digraph D such that .x; y/ …
A.D/: Then the maximum number of internally disjoint directed .x; y/-paths in D

is equal to the minimum number of vertices whose deletion destroys all directed
.x; y/-paths in D:

Proof. Construct a new digraph D0 from D as follows:

(a) Split each vertex v 2 V n fx; yg into two new vertices, v0 and v00; and join them
by an arc .v0; v00/; and

(b) Replace

(i) Each arc .u; v/ of D where u … fx; yg and v … fx; yg by the arc .u00; v0/;
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u
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u v

v

v

w x yw w

D D

x y

Fig. 3.16 Digraphs D and D0 for proof of Theorem 3.6.13

(ii) Each arc .x; v/ of D by .x; v0/ and .v; x/ by .v00; x/; and
(iii) Each arc .v; y/ of D by .v00; y/ and .y; v/ by .y; v0/:

(See Fig. 3.16.)

Now, to each directed .x; y/-path in D0; there corresponds a directed .x; y/-path
in D obtained by contracting all arcs of the type .v0; v00/ [that is, delete the arc
.v0; v00/ and identify the vertices v0 and v00], and, conversely, to each directed .x; y/-
path in D; there corresponds a directed .x; y/-path in D0 obtained by splitting each
intermediate vertex of the path. Furthermore, two directed .x; y/-paths in D0 are arc-
disjoint if and only if the corresponding directed paths in D are internally disjoint.
Hence, the maximum number of arc-disjoint directed .x; y/-paths in D0 is equal to
the maximum number of internally disjoint directed .x; y/-paths in D:

Similarly, the minimum number of arcs in D0 whose deletion destroys all directed
.x; y/-paths in D0 is equal to the minimum number of vertices in D whose deletion
destroys all directed .x; y/-paths in D: To see this, let A0 be a minimum set of p

arcs of D0 whose deletion destroys all directed .x; y/-paths in D0; and let B 0 be a
minimum set of q vertices of D whose deletion destroys all directed .x; y/-paths
in D: We have to show that p D q: Any arc of A0 must contain either v0 or v00
corresponding to the vertex v of D: Then the deletion of all vertices v corresponding
to such arcs of D0 separates x and y in D and hence q � p: Conversely, if v 2 B 0;
delete the corresponding arc .v0; v00/ in D0: Then the deletion of the q arcs .v0; v00/
(which correspond to the q vertices of B 0) from D0 destroys all directed .x; y/-
paths in D0; and therefore p � q: Thus, p D q: The result now follows from
Theorem 3.6.11. �

Theorem 3.6.14 is the vertex version of Menger’s theorem for undirected graphs.

Theorem 3.6.14. Let x and y be two nonadjacent vertices of a graph G: Then the
maximum number of internally disjoint .x; y/-paths in G is equal to the minimum
number of vertices whose deletion destroys all .x; y/-paths.

Proof. Define D.G/ as in Theorem 3.6.12 and apply Theorem 3.6.13. �

Let G be an undirected graph with n � k C 1 vertices. Suppose G satisfies the
condition .�/ W
.�/ Any two distinct vertices of G are connected by k internally disjoint paths in G:
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u1
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u4
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u7

u8

u9u10

G

Fig. 3.17 A 2-connected and 3-edge connected graph

Then Theorem 3.6.14 implies that to separate two nonadjacent vertices x and y of
G; at least k vertices are to be removed. Hence if .�/ holds, G is k-connected.

Conversely, if G is k-connected, to separate any pair of nonadjacent vertices x

and y of G; at least k vertices are to be removed, and by Theorem 3.6.14, there are at
least k internally disjoint .x; y/-paths in G: However, if x and y are adjacent, then
since G�xy is .k�1/-connected, there are at least k internally disjoint .x; y/-paths,
including the edge xy: Thus, we have the following result of Whitney’s generalizing
Theorem 3.3.7.

Theorem 3.6.15 (Whitney). A graph G with n � k C 1 vertices is k-connected
if and only if any two vertices of G are connected by at least k internally disjoint
paths.

Example 3.6.16. The graph G of Fig. 3.17 is 2-connected and 3-edge connected.
The pair of vertices u5 and u10 are connected by the following two internally disjoint
paths:

u5u1u10 and u5u4u3u2u10

Moreover, they are connected by the following 3-edge-disjoint paths:

u5u1u10I u5u2u10I and u5u4u1u6u10:

Exercise 6.1. If u and v are vertices of a graph G such that any two u-v paths in G

have an internal common vertex, show that all the u-v paths in G have an internal
common vertex.

Exercise 6.2. Show that if G is k-connected, then G _ K1 is .k C 1/-connected.

Exercise 6.3. Let S be a subset of the vertex set of a k-connected graph G with
jS j D k: If v 2 V n S; show that there exist k internally disjoint paths from v to
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Fig. 3.18 A � -graph

the k vertices of S: [Remark: In particular, if C is a cycle of length at least k in a
k-connected graph G; and v 2 V.G/ n V.C /; then there are k internally disjoint
paths from v to C:]

The remark in Exercise 6.3 yields the following theorem of Dirac [55], which
generalizes Theorem 3.3.8.

Exercise 6.4. Dirac’s theorem [55]: If a graph is k-connected .k � 2/; then
any set of k vertices of G lie on a cycle of G: (Note: The cycle may contain
additional vertices besides these k vertices.) Hint: Use induction on k: If G is
.k C 1/-connected, and fv1; v2; : : : ; vk; vkC1g is any set of k C 1 vertices of G;

by the induction assumption, v1; v2; : : : ; vk all lie on a cycle C of G: If V.C / D
fv1; v2; : : : ; vkg; then the k disjoint paths from vkC1 to C must end in v1; v2; : : : ; vk:

Otherwise, V.C / ¥ fv1; v2; : : : ; vkg: Since G is .k C 1/-connected, by the
pigeonhole principle, the end vertices of two of the .k C 1/ disjoint paths from
vkC1 to C must belong to one of the k closed paths Œvi ; viC1�; 1 � i � k � 1

and Œvk; v1� on C: (Here Œvi ; viC1� and Œvk; v1� are those paths on C that contain no
other vj .)

Exercise 6.5. Show by means of an example that the converse of Dirac’s theorem
(Exercise 6.4) is false.

Exercise 6.6. Show that a k-connected simple graph on .k C 1/ vertices is KkC1:

Exercise 6.7. Dirac’s theorem [55]; see also [93]: Show that a graph G with at
least 2k vertices is k-connected if and only if for any two disjoint sets V1 and V2 of
k vertices each, there exist k disjoint paths from V1 to V2 in G:

Exercise 6.8. Show that a 2-connected non-Hamiltonian graph contains a �-
subgraph. (A �-graph is a graph of the form C [ P; where C is a cycle of length
at least 4 and P is a path of length at least 2 that joins two nonadjacent vertices of
C and is internally disjoint from C:) (See Fig. 3.18.)
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3.7 Exercises

7.1. Prove that there exists no simple connected cubic graph with fewer than 10

vertices containing a cut edge. (For a simple connected cubic graph having
exactly 10 vertices and having a cut edge, see Exercise 7.13)

7.2. Show that no vertex v of a simple graph can be a cut vertex of both G and Gc:

7.3. Show that a simple connected graph that is not a block contains at least two
end blocks.

7.4. Show that a connected k-regular bipartite graph is 2-connected.
7.5. Let b.v/ denote the number of blocks of a simple connected graph G to which

a vertex v belongs. Then prove that the number of blocks b.G/ of G is given
by b.G/ D 1 C P

v2V.G/.b.v/ � 1/:

(Hint: Use induction on the number of blocks of G:)
7.6. If c.B/ denotes the number of cut vertices of a simple connected graph G

belonging to the block B; prove that the number of cut vertices c.G/ of G is
given by c.G/ D 1 C P

.c.B/ � 1/; the summation being over the blocks of
G:

7.7. Show that a simple connected graph with at least three vertices is a path if
and only if it has exactly two vertices that are not cut vertices.

7.8. Prove that if a graph G is k-connected or k-edge connected, then m � nk
2

:

7.9. Construct a graph with � D 3; � D 4; and ı D 5:

7.10. For any three positive integers a; b; c; with a � b � c; construct a simple
graph with � D a; � D b; and ı D c:

7.11. Let G be a cubic graph with a 1-factor (i.e., a 1-regular spanning subgraph)
F of G: Prove that any cut edge of G belongs to F:

7.12. Let G be a k-connected graph and let S be a separating set of G2 such that
G2 � S has q components. Show that jS j � qk:

7.13. Find all the edge cuts of the above graph.
7.14. Let G be a 2-connected graph and let v1; v2 2 V.G/: Let n1 and n2 be positive

integers with n D n1 Cn2: Show that there exists a partition of V into V1 [ V2

with jVi j D ni ; GŒVi � connected, and vi 2 Vi for each i D 1; 2: (Remark:
The generalization of this result to k-connected graphs is also true [55].)
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Notes

Chronologically, Menger’s theorem appeared first [140]. Then followed Whitney’s
generalizations [193] of Menger’s theorem. Our proof of Menger’s theorem is based
on the max-flow min-cut theorem of Ford and Fulkerson [65, 66].
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