
Chapter 2
Directed Graphs

2.1 Introduction

Directed graphs arise in a natural way in many applications of graph theory. The
street map of a city, an abstract representation of computer programs, and network
flows can be represented only by directed graphs rather than by graphs. Directed
graphs are also used in the study of sequential machines and system analysis in
control theory.

2.2 Basic Concepts

Definition 2.2.1. A directed graph D is an ordered triple .V .D/; A.D/; ID/; where
V.D/ is a nonempty set called the set of vertices of DI A.D/ is a set disjoint from
V.D/; called the set of arcs of DI and ID is an incidence map that associates with
each arc of D an ordered pair of vertices of D: If a is an arc of D; and ID.a/ D
.u; v/; u is called the tail of a; and v is the head of a: The arc a is said to join v with
u: u and v are called the ends of a: A directed graph is also called a digraph.

With each digraph D; we can associate a graph G (written G.D/ when reference
to D is needed) on the same vertex set as follows: Corresponding to each arc
of D; there is an edge of G with the same ends. This graph G is called the
underlying graph of the digraph D: Thus, every digraph D defines a unique
(up to isomorphism) graph G: Conversely, given any graph G; we can obtain a
digraph from G by specifying for each edge of G an order of its ends. Such a
specification is called an orientation of G:

Just as with graphs, digraphs have a diagrammatic representation. A digraph is
represented by a diagram of its underlying graph together with arrows on its edges,
the arrow pointing toward the head of the corresponding arc. A digraph and its
underlying graph are shown in Fig. 2.1.
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Fig. 2.1 Digraph D and its underlying graph G.D/

Many of the concepts and terminology for graphs are also valid for digraphs.
However, there are many concepts of digraphs involving the notion of orientation
that apply only to digraphs.

Definition 2.2.2. If a D .u; v/ is an arc of D; a is said to be incident out of u
and incident into v: v is called an outneighbor of u; and u is called an inneighbor
of v: N C

D .u/ denotes the set of outneighbors of u in D: Similarly, N �
D .u/ denotes

the set of inneighbors of u in D: When no explicit reference to D is needed, we
denote these sets by N C.u/ and N �.u/; respectively. An arc a is incident with u if
it is either incident into or incident out of u: An arc having the same ends is called a
loop of D: The number of arcs incident out of a vertex v is the outdegree of v and is
denoted by d C

D .v/ or d C.v/: The number of arcs incident into v is its indegree and
is denoted by d �

D .v/ or d �.v/:

For the digraph D of Fig. 2.2, we have d C.v1/ D 3; d C.v2/ D 3; d C.v3/ D 0;

d C.v4/ D 2; d C.v5/ D 0; d C.v6/ D 2; d �.v1/ D 2; d �.v2/ D 1; d �.v3/ D 4;

d �.v4/ D 1; d �.v5/ D 1; and d �.v6/ D 1: (The loop at v1 contributes 1 each to
d C.v1/ and d �.v1/:)

The degree dD.v/ of a vertex v of a digraph D is the degree of v in G.D/: Thus,
d.v/ D d C.v/ C d �.v/: As each arc of a digraph contributes 1 to the sum of the
outdegrees and 1 to the sum of indegrees, we have

X

v2V.D/

d C.v/ D
X

v2V.D/

d �.v/ D m.D/;

where m.D/ is the number of arcs of D:

A vertex of D is isolated if its degree is 0I it is pendant if its degree is 1:

Thus, for a pendant vertex v; either d C.v/ D 1 and d �.v/ D 0; or d C.v/ D 0 and
d �.v/ D 1:

Definitions 2.2.3. 1. A digraph D0 is a subdigraph of a digraph D if V.D0/ �
V.D/; A.D0/ � A.D/; and ID0 is the restriction of ID to A.D0/:
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Fig. 2.2 A strong digraph (left) and a symmetric digraph (right)

2. A directed walk joining the vertex v0 to the vertex vk in D is an alternating
sequence W D v0a1v1a2v2 : : : akvk; 1 � i � k; with ai incident out of vi�1

and incident into vi : Directed trails, directed paths, directed cycles, and induced
subdigraphs are defined analogously as for graphs.

3. A vertex v is reachable from a vertex u of D if there is a directed path in D from
u to v:

4. Two vertices of D are diconnected if each is reachable from the other in D:

Clearly, diconnection is an equivalence relation on the vertex set of D, and if
the equivalence classes are V1; V2; : : : ; V!; the subdigraphs of D induced by
V1; V2; : : : ; V! are called the dicomponents of D:

5. A digraph is diconnected (also called strongly-connected) if it has exactly one
dicomponent. A diconnected digraph is also called a strong digraph.

6. A digraph is strict if its underlying graph is simple. A digraph D is symmetric
if, whenever .u; v/ is an arc of D; then .v; u/ is also an arc of D (see Fig. 2.2).

Exercise 2.1. How many orientations does a simple graph of m edges have?

Exercise 2.2. Let D be a digraph with no directed cycle. Prove that there exists a
vertex whose indegree is 0: Deduce that there is an ordering v1; v2; : : : ; vn of V such
that, for 2 � i � n; every arc of D with terminal vertex vi has its initial vertex in
fv1; v2; : : : ; vi�1g:

2.3 Tournaments

A digraph D is a tournament if its underlying graph is a complete graph. Thus, in
a tournament, for every pair of distinct vertices u and v; either .u; v/ or .v; u/; but
not both, is an arc of D: Figures 2.3a, b display all tournaments on three and four
vertices, respectively.

The word ”tournament” derives its name from the usual round-robin tournament.
Suppose there are n players in a tournament and that every player is to play against
every other player. The results of such a tournament can be represented by a
tournament on n vertices, where the vertices represent the n players and an arc
.u; v/ represents the victory of player u over player v:

Suppose the players of a tournament have to be ranked. The corresponding
digraph T; a tournament, could be used for such a ranking. The ranking of the
vertices of T is as follows: One way of doing it is by looking at the sequence of
outdegrees of T: This is because d C

T .v/ stands for the number of players defeated by
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Fig. 2.3 Tournaments on (a) three and (b) four vertices

the player v: Another way of doing it is by finding a directed Hamilton path, that is,
a spanning directed path in T: One could rank the players as per the sequence of this
path so that each player defeats his or her successor. We now prove the existence of
a directed Hamilton path in any tournament.

Theorem 2.3.1 (RKedei [165]). Every tournament contains a directed Hamilton
path.

Proof. (By induction on the number of vertices n of the tournament.) The result can
be directly verified for all tournaments having two or three vertices. Hence, suppose
that the result is true for all tournaments on n � 3 vertices. Let T be a tournament on
n C 1 vertices v1; v2; : : : ; vnC1: Now, delete vnC1 from T: The resulting subdigraph
T 0 of T is a tournament on n vertices and hence by the induction hypothesis contains
a directed Hamilton path. Assume that the Hamilton path is v1v2 : : : vn, relabeling
the vertices, if necessary.

If the arc joining v1 and vnC1 has vnC1 as its tail, then vnC1v1v2 : : : vn is a directed
Hamilton path in T and the result stands proved (see Fig. 2.4a).

If the arc joining vn and vnC1 is directed from vn to vnC1; then v1v2 : : : vnvnC1 is
a directed Hamilton path in T (see Fig. 2.4b).

Now suppose that none of (vnC1; v1/ and .vn; vnC1/ is an arc of T: Hence,
.v1; vnC1/ and .vnC1; vn/ are arcs of T —the first arc incident into vnC1 and the
second arc incident out of vnC1: Thus, as we pass on from v1 to vn, we encounter
a reversal of the orientation of edges incident with vnC1: Let vi ; 2 � i � n; be
the first vertex where this reversal takes place, so that .vi�1; vnC1/ and .vnC1; vi / are
arcs of T: Then v1v2 : : : vi�1vnC1vi viC1 : : : vn is a directed Hamilton path of T (see
Fig. 2.4c). �

Theorem 2.3.2 (Moon [141, 143]). Every vertex of a diconnected tournament T

on n vertices with n � 3 is contained in a directed k-cycle, 3 � k � n: (T is then
said to be vertex-pancyclic.)

Proof. Let T be a diconnected tournament with n � 3 and u; a vertex of T: Let
S D N C.u/; the set of all outneighbors of u in T; and S 0 D N �.u/; the set of all
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Fig. 2.4 Digraphs for proof of Theorem 2.3.1
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Fig. 2.5 Digraphs for proof of Theorem 2.3.2

inneighbors of u in T: As T is diconnected, none of S and S 0 is empty. If ŒS; S 0�
denotes the set of all arcs of T having their tails in S and heads in S 0; then ŒS; S 0�
is also nonempty for the same reason. If .v; w/ is an arc of ŒS; S 0�; then .u; v; w; u/

is a directed 3-cycle in T containing u: (see Fig. 2.5a.)
Suppose that u belongs to directed cycles of T of all lengths k; 3 � k � p; where

p < n: We shall prove that there is a directed .p C 1/-cycle of T containing u:

Let C W .v0; v1; : : : ; vp�1; v0/ be a directed p-cycle containing u; where vp�1Du:

Suppose that v is a vertex of T not belonging to C such that for some i and j;

0 � i; j � p�1; i ¤ j; there exist arcs .vi ; v/ and .v; vj / of T (see Fig. 2.5b). Then
there must exist arcs .vr ; v/ and .v; vrC1/ of A.T /; i � r � j � 1 (suffixes taken
modulo p), and hence .v0; v1; : : : ; vr ; v; vrC1; : : : ; vp�1; v0/ is a directed .p C 1/-
cycle containing u (see Fig. 2.5b).
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If no such v exists, then for every vertex v of T not belonging to V.C /; either
.vi ; v/ 2 A.T / for every i; 0 � i � p � 1; or .v; vi / 2 A.T / for every i; 0 � i �
p � 1: Let S D fv 2 V.T / n V.C / W .vi ; v/ 2 A.T / for each i; 0 � i � p � 1g
and S 0 D fw 2 V.T / n V.C / W .w; vi / 2 A.T / for each i; 0 � i � p � 1g: The
diconnectedness of T implies that none of S; S 0; and ŒS; S 0� is empty. Let .v; w/ be
an arc of ŒS; S 0�: Then .v0; v; w; v2; : : : ; vp�1; v0/ is a directed .p C 1/-cycle of T

containing vp�1 D u (see Fig. 2.5c). �

Remark 2.3.3. Theorem 2.3.2 shows, in particular, that every diconnected tourna-
ment is Hamiltonian; that is, it contains a directed spanning cycle.

Exercise 3.1. Show that every tournament T is diconnected or can be made into
one by the reorientation of just one arc of T:

Exercise 3.2. Show that a tournament is diconnected if and only if it has a spanning
directed cycle.

Exercise 3.3. Show that every tournament of order n has at most one vertex v with
d C.v/ D n � 1:

Exercise 3.4. Show that for each positive integer n � 3; there exists a non-
Hamiltonian tournament of order n (that is, a tournament not containing a spanning
directed cycle).

Exercise 3.5. Show that if a tournament contains a directed cycle, then it contains
a directed cycle of length 3:

Exercise 3.6. Show that every tournament T contains a vertex v such that every
other vertex of T is reachable from v by a directed path of length at most 2:

2.4 k-Partite Tournaments

Definition 2.4.1. A k-partite graph, k � 2; is a graph G in which V.G/ is
partitioned into k nonempty subsets V1; V2; : : : ; Vk; such that the induced subgraphs
GŒV1�; GŒV2�; : : : ; GŒVk� are all totally disconnected. It is said to be complete if,
for i ¤ j; each vertex of Vi is adjacent to every vertex of Vj ; 1 � i; j � k:

A k-partite tournament is an oriented complete k-partite graph (see Fig. 2.6). The
subsets V1; V2; : : : ; Vk are often referred to as the partite sets of G:

The next three theorems are based on Goddard et al. [74]. We now give a
characterization of a k-partite tournament containing a 3-cycle.

Theorem 2.4.2. Let T be a k-partite tournament, k � 3: Then T contains a
directed 3-cycle if and only if there exists a directed cycle in T that contains vertices
from at least three partite sets.

Proof. Suppose that T contains a directed 3-cycle C: Then the three vertices of C

must belong to three distinct partite sets of T:
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Conversely, suppose that T contains a directed cycle C that in turn contains
vertices from at least three partite sets. Assume that C has the least possible length.
Then there exist three consecutive vertices x; y; z on C that belong to distinct partite
sets of T; say X; Y; Z; respectively. We claim that C is a directed 3-cycle.

As x and z are in different partite sets of the k-partite tournament T; either
.z; x/ 2 A.T /; the arc set of T; or .x; z/ 2 A.T /: If .z; x/ 2 A.T /; then .x; y; z; x/

is a directed 3-cycle containing vertices from three partite sets of T: If .x; z/ 2 A.T /;

then consider C 0 D .C � y/ C .x; z/: C 0 is a directed cycle of length one less than
that of C: So by assumption on C; C 0 contains vertices from only two partite sets,
namely, X and Z: Let u be the vertex of C immediately following z on C 0: Then
u 2 X: If .u; y/ 2 A.T /; then C 00

1 D .y; z; u; y/ is a directed 3-cycle containing
vertices from three partite sets of T: Hence, assume that .u; y/ … A.T /; and so
.y; u/ 2 A.T / (see Fig. 2.7a, b). Now consider C 00

2 D .C � z/ C .y; u/: C 00
2 is a
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directed cycle that is shorter than C and contains at least one vertex other than x; y;

and u: The successor of u in C 00
2 belongs to Z; and thus C 00

2 contains vertices from
three partite sets of T: This is a contradiction to the choice of C: Thus, .y; u/ does
not belong to A.T /; a contradiction. This proves the result. �

Theorem 2.4.3. Let T be a k-partite tournament, k � 3: Then every vertex u
belonging to a directed cycle in T must belong to either a directed 3-cycle or a
directed 4-cycle.

Proof. Let C be a shortest directed cycle in T that contains u: Suppose that C is
not a directed 3-cycle. We shall prove that u is a vertex of a directed 4-cycle. Let u;

x; y; and z be four consecutive vertices of C: If .u; y/ 2 A.T /; then C 0 D .C �
x/ C .u; y/ is a directed cycle in T containing u and having a length shorter than C:

This contradicts the choice of C: Hence .u; y/ … A.T /: Also, if .y; u/ 2 A.T /;

then .u; x; y; u/ is a directed 3-cycle containing u: This contradicts our assumption
on C: Hence, .y; u/ … A.T /: Consequently, y and u belong to the same partite set
of T: This means that u and z must belong to distinct partite sets of T: If .u; z/ 2
A.T /; then C 00 D .C � fx; yg/ C .u; z/ is a directed cycle containing u and having
length shorter than that of C: Hence .u; z/ … A.T /: Therefore, .z; u/ 2 A.T / and
.u; x; y; z; u/ is a directed 4-cycle containing u: �
Remark 2.4.4. Theorem 2.3.2 states that every vertex of a diconnected tournament
lies on a k-cycle for every k; 3 � k � n: However, this property is not
true for a diconnected k-partite tournament. The tournament T of Fig. 2.8 is a
counterexample. T is a 3-partite tournament with fx; wg; fug; and fvg as partite
sets, .uwvxu/ is a spanning directed cycle in T; and hence T is strongly connected,
but x is not a vertex of any directed 3-cycle.

Definition 2.4.5. The score of a vertex v in a tournament T is its outdegree. (This
corresponds to the number of players who are beaten by player v:) If v1; v2; : : : ; vn

are the vertices of T and S.vi / is the score of vi in T; then .S.v1/; S.v2/; : : : ; S.vn//

is the score vector of T . An ordered triple .u; v; w/ of vertices of T is a transitive
triple of T if .u; v/ 2 A.T / and .v; w/ 2 A.T /; then .u; w/ 2 A.T /:

Remarks 2.4.6. 1. If v is any vertex of a tournament T and u; w are two outneigh-
bors of v; then fu; v; wg determines a unique transitive triple in T: Such a transitive
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Fig. 2.9 Three-partite
tournaments with eight
directed 3-cycles .T1/ and
five directed 3-cycles .T2/:

Both T1 and T2 have the same
score vector

triple is said to be defined by the vertex v: Clearly, any transitive triple of T is
defined by some vertex of T: Further, the number of transitive triples defined by
v is

�
S.v/

2

�
:

2. The number of directed 3-cycles in a tournament T of order n is obtained by
subtracting the total number of transitive triples of vertices of T from the total
number of triples of vertices of T: Thus, the total number of directed 3-cycles in
T is equal to

�
n
3

� � P
v2V.T /

�
S.v/

2

� D n.n�1/.n�2/

6
� 1

2

P
v2V.T / S.v/.S.v/ � 1/:

Thus, the score vector of a tournament T determines the number of directed
3-cycles in T: But in a general k-partite tournament, the score vector need not
determine the number of directed 3-cycles. Consider the two 3-partite tournaments
T1 and T2 of Fig. 2.9. Both have the same score vector .2; 2; 2; 2; 2; 2/: But T1 has
eight directed 3-cycles, whereas T2 has only five directed 3-cycles.

Theorem 2.4.7 gives a formula for the number of directed 3-cycles in a k-partite
tournament.

Theorem 2.4.7. Let T be a k-partite tournament, k � 3; having partite sets
V0; V1; : : : ; Vk�1: Then the number of directed 3-cycles in T is given by
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X

0�i<j <`�k�1

jVi j jVj j jV`j �
X

v2V.T /

X

i<j

Oi .v/ Oj .v/;

where Oi .v/ denotes the number of outneighbors of v in Vi :

Proof. Let S denote the set of triples of vertices of T such that the three vertices of
the triple belong to three different partite sets, and let N D jS j: Then

N D
X

0�i<j <`�k�1

jVi j jVj j jV`j:

Any orientation of a triangle gives a directed 3-cycle or a transitive triple. Hence
the number of directed 3-cycles in T D N � N1; where N1 is the number of
transitive triples in T: Also, a triple of vertices of T is transitive if and only
if there exists a vertex of the triple having the other two vertices as outneighbors.
The number of such triples of T to which a vertex v can belong and for which
the other two vertices are outneighbors of v is

P
i<j Oi .v/ Oj .v/: Hence N1 DP

v2V.T /

P
i<j Oi .v/ Oj .v/: Thus the number of directed 3-cycles in T is given by

N �N1 D
X

0�i<j <`�k�1

jVi j jVj j jV`j�
X

v2V.T /

X

i<j

Oi .v/ Oj .v/: �

Remark 2.4.8. For k D 3; the results of Theorem 2.4.7 simplify as follows:

(i) The number of transitive triples in a 3-partite tournament equals

2X

iD0

X

v2Vi

OiC1.v/ OiC2.v/;

where the suffixes are taken modulo 3:

(ii) The number of directed 3-cycles in a 3-partite tournament is given by

jV0j jV1j jV2j �
2X

iD0

X

v2Vi

OiC1.v/ OiC2.v/;

where the suffixes are taken modulo 3:

Remark 2.4.9. Consider the two 3-partite tournaments of Fig. 2.10. T1 has
jV0jjV1jjV2j directed 3-cycles and has no transitive triples, whereas T2 contains
no directed 3-cycles but contains jV0jjV1jjV2j transitive triples.
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Fig. 2.10 Three-partite tournaments T1 (with directed 3-cycles and no transitive triples) and T2

(with transitive triples and no directed 3-cycles). Double arrows indicate that all arcs joining
corresponding partite sets have the same orientation

2.5 Exercises

5.1. If jVi j D ni ; 1 � i � k; find the number of edges in the complete multipartite
graph G.V1; V2; : : : ; Vk/: (See [27], p. 6.)

5.2. Show that if T is a strongly connected 3-partite tournament with partite sets V0;

V1; V2; then the maximum number of transitive triples in T is jV0jjV1jjV2j � 1

unless jV0j D jV1j D jV2j D 2; in which case T has at most jV0jjV1jjV2j � 2 D
6 transitive triples.

5.3. Construct a strongly connected 3-partite tournament containing exactly six
transitive triples.

5.4. Give a definition of digraph isomorphism similar to that of graph isomorphism.
5.5. Give an example of two nonisomorphic tournaments on five vertices. Justify

your answer.
5.6. If u and v are distinct vertices of a tournament T such that both d.u; v/ and

d.v; u/ are defined [where d.u; v/ denotes the length of a shortest directed
.u; v/-path in T ], show that d.u; v/ ¤ d.v; u/:

5.7. (A tournament T is called transitive if .a; b/ and .b; c/ are arcs of T; then .a; c/

is also an arc of T:) Prove that a transitive tournament contains a Hamilton
path with any preassigned orientation. [Hint: Use the fact that T has a vertex
of outdegree .n � 1/ and a vertex of outdegree zero.]

Notes

The earliest of the books on directed graphs is by Harary, Norman, and Cartwright
[97]. Topics on Tournaments by Moon [143] deals exclusively with tournaments.
Theorems 2.4.2, 2.4.3 and 2.4.7 are based on [74].
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