Chapter 10
Domination in Graphs

10.1 Introduction

“Domination in graphs” is an area of graph theory that has received a lot of attention
in recent years. It is reasonable to believe that “domination in graphs” has its origin
in “chessboard domination.” The “queen domination” problem asks: What is the
minimum number of queens required to be placed on an 8 x 8 chessboard so that
every square not occupied by any of these queens will be dominated (that is, can
be attacked) by one of these queens? Recall that a queen can move horizontally,
vertically, and diagonally on the chessboard. The answer to the above question is 5.
Figure 10.1 gives one set of dominating locations for the five queens.

10.2 Domination in Graphs

The concept of chessboard domination can be extended to graphs in the following
way:

Definition 10.2.1. Let G be a graph. A set S C V is called a dominating set of G
if every vertex u € V\S has a neighbor v € S. Equivalently, every vertex of G is
either in S or in the neighbor set N(S) = |J N(v) of S in G. A vertex u is said to

vES
be dominated by a vertex v € G if either u = voruv € E(G).

Definition 10.2.2. A y-set of G is a minimum dominating set of G, that is, a
dominating set of G whose cardinality is minimum. A dominating set S of G is
minimal if S properly contains no dominating set S’ of G.

Definition 10.2.3. The domination number of G is the cardinality of a minimum
dominating set (that is, y-set) of G; it is denoted by y(G).
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Fig. 10.1 Queen domination

Fig. 10.2 Petersen graph P
for which y(P) =3

Example 10.2.4. For the Petersen graph P, y(P) = 3. In Fig. 10.2, {v;, v, vo} is a
y-set of P while the set {v;, v, v3, v4, v5} is a minimal dominating set of P.

The study of domination was formally initiated by Ore [151]. A comprehensive
introduction to “domination in graphs” is given in the first volume of the two-volume
book by Haynes, Hedetniemi, and Slater [100,101]. The next three theorems are due
to Ore [151]. Given a dominating set S of G, when is S a minimal dominating set?
This question is answered in Theorem 10.2.5 below.

Theorem 10.2.5. Let S be a dominating set of a graph G. Then S is a minimal
dominating set of G if and only if for each vertex u of S, one of the following two
conditions holds:

(i) wis an isolated vertex of G[S], the subgraph induced by S in G.
(ii) There exists a vertex v € V\S such that u is the only neighbor of vin S.

Proof. Suppose that S is a minimal dominating set of G. Then for each vertex u of
S, S\{u} is not a dominating set of G. Hence, there exists v € V'\ (S\{u}) such that
v is dominated by no vertex of S\{u}.If v = u, then u is an isolated vertex of G[S],
and hence condition (i) holds. If v # u, as S is a dominating set of G, condition (ii)
holds.
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Conversely, assume that S is not a minimal dominating set of G. Then there
exists a vertex u € S, such that S\{u} is also a dominating set of G. Hence, u is
dominated by some vertex of S\{u}. This means that u is adjacent to some vertex
of S\{u}, and hence u is not an isolated vertex of G[S]. Moreover, if v is any vertex
of V'\ S, then v is adjacent to some vertex of S\{u}. Hence, neither condition (i) nor
condition (ii) holds. O

Notice that in Example 10.2.4, the set S = {vi, v, v3,v4,vs5} is a minimal
dominating set of the Petersen graph P in which no vertex is an isolated vertex
of P[S] and for eachi = 1,2,...,5, v; is the only vertex of S that is adjacent to
Vi+s.

Theorem 10.2.5 suggests the following definition.

Definition 10.2.6. Let S be a dominating set of a graph G, and u € S. The private
neighborhood of u relative to S in G is the set of vertices which are in the closed
neighborhood of u, but not in the closed neighborhood of any vertex in S\ {u}.

Thus, the private neighborhood Py (u, S) of u with respect to S is given by Py (u, S)
=Nu\( U NDPI).

veS\{u}
Note that u € Py (u, S) if and only if u is an isolated vertex of G[S] in G.

Theorem 10.2.5 can now be restated as follows:

Theorem 10.2.5'. A dominating set S of a graph G is a minimal dominating set of
G ifand only if Py (u, S) # @ for everyu € S.

Corollary 10.2.7. Let G be a graph having no isolated vertices. If S is a minimal
dominating set of G, then V\S is a dominating set of G.

Proof. As S is a minimal dominating set, by Theorem 10.2.5’, Py (u, S) # @ for
every u € S. This means that for every u € S, there exists v € V\S such that
uv € E(G), and consequently, I\ S is a dominating set of G. |

Corollary 10.2.8. Let G be a graph of order n > 2. If§(G) > 1, then y(G) < 3.

Proof. As §(G) > 1, G has no isolated vertices. If S is a minimal dominating set
of G, by Corollary 10.2.7, both S and V'\S are dominating sets of G. Certainly, at

least one of them is of cardinality at most % a
Corollary 10.2.9. If G is a connected graph of order n > 2, y(G) < 3.

Proof. As G is connected and n > 2, G has no isolated vertices. Now apply
Corollary 10.2.8. |

We note that the conclusion in Corollary 10.2.9 would remain valid even if G is
disconnected as long as no component of G is a K.
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10.3 Bounds for the Domination Number

In this section, we present lower and upper bounds for the domination number y(G).
We first make two observations:

Observation 10.3.1. (i) A vertex v dominates N(v) and |[N(v)| < A(G).
(i) Letv be any vertex of G. Then V\ N(v) is a dominating set of G.

These two observations yield the following lower and upper bounds for y(G).

Theorem 10.3.2. For any graph G, { —‘ <y(G) <n— AG).

n
T+A(G)
Proof. By Observation 10.3.1 (i), for any vertex v of G, the vertices of N[v]

will be dominated by v. To cover all the vertices of G, at least closed

T+A4(G)
neighborhoods are required. This gives the lower bound.
By Observation 10.3.1 (ii), y(G) < |V\N(v)| for each v € V(G). The minimum
is attained on the right when [N (v)| = A(G). Hence, y(G) < n — A(G). 0.
The lower bound in Theorem 10.3.2 is due to Walikar, Acharya, and Sampathku-
mar [187], while the upper bound is due to Berge [19].

10.4 Bound for the Size m in Terms of Order n
and Domination Number y(G)

In this section, we present a basic result of Vizing [184], which bounds m (the size
of G) in terms of n (the order of G) and y = y(G).

Theorem 10.4.1 (Vizing [184]). Let G be a graph of order n, size m, and
domination number y. Then

m < {%(n—y)(n—y+2)J. (10.1)

Proof. If y =1, %(n —y)n—y+2)= %(n2 — 1), while the maximum value for
m = %n(n — 1) (when G = K,,), and the result is true. If y = 2, %(n —y)(n —
y+2) = %n(n — 2). Now when y = 2 by Theorem 10.3.2, A < n — 2 and
m < %n(n — 2) (by Euler’s theorem), and the result is true. Thus, the result is true
for y = 1 and 2. We now assume that y > 3. We apply induction on n. Let G be
a graph of order n, size m, and y > 3. If v is a vertex of maximum degree A of G,
again by Theorem 10.3.2, |[IN(v)| = A < n — y, and hence A = n — y — r, where
0 < r (see Fig. 10.3).

Let S = VA\N|[v]. Then

[S|=|V]|-INW|—-1=n—(m—-y—r)—1=y+r—1. (10.2)



10.4 Bound for the Size m in Terms of Order #n and Domination Number y(G) 225

Fig. 10.3 The set S in the
proof of Theorem 10.4.1
mo m3
‘ ;
[
S

Let m; be the size of G[S], m; be the number of edges between S and N(v), and
ms3 be the size of G[N[v]]. Clearly, m = m; + my + m3. If D is a y-set of G[S],
then D U {v} is a dominating set of G. Hence,

v(G) =y = [D|+ L (10.3)

By the induction hypothesis, this implies, by virtue of (10.2) and (10.3), that

my < B(m 1D)(IS| - D] + 2)J

A

<[5l +r=D=G=Dlo+r=D-G-D+2| ey a03)

%r(r +2). (10.4)

Ifu € N(v), then (S\N(u)) U {u, v} is a dominating set of G. Therefore,

y < S\N@w)| +2
=|S|=1S N N@w)| +2
<(y+r—1)—|S 0 NG| + 2 (by (10.2)).

This is turn implies that for each vertex u € N(v), |S N Nw)| <r + 1.
Consequently,

m, = the number of edges between N(v) and S
INWI(r+1)
= A(r +1). (10.5)

IA

Now the sum of the degrees of the vertices of N[v] < (A 4+ 1)A. As there are m,
edges between N(v) and S,
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the sum of the degrees of the vertices of N[v] in G[N [v]]
= (the sum of the degrees of the vertices of N[v] in G) — m,

<AA+1)—my.

Thus,

From (10.4), (10.5), and (10.6), we get

m =m| +my+m3

IA

1 1
Er(r +2)+my+ E[A(A + 1) —my]

lr(r +2)+ l[A(A + 1) + my]

2 2
%r(r +2)+ %[A(A + 1)+ Al + DI(by(10.5)

%(n—y—A)(n—y—A—{-Z)—l—%[A(A—I—1)+A(r+1)](asA:n—y—r)

%(n—y)(n—y+2)—%[(n—y—A+2)+(n—y—A)—A—(A+1)(r+1)]

S0Py +2) = Sl —y +D 4 =)= A= (A D=+ 1)

%(n—y)(n—y+2)—§[(A+r+2)+(A+r)—A—(A+1)—(r—|—1)]

So-p—y+2 -5

S0y +Dfasr = 0). O

The bound given in Theorem 10.4.1 is sharp. In other words, there are graphs G
for which

m = %(n—y)(n—y+2). (10.7)

Example 10.4.2 (Vizing [184]). Let H; be the graph obtained from K, by removing
the edges of a minimum edge cover (that is, the smallest number of edges containing
all the vertices of K;) ¥. We construct for any positive integer n > 2, a graph G of
order n with domination number y satisfying (10.7).

Case (i). y = 2. Taket = n—2and G = H,. Now % has [%] edges. Hence,

m=m(G)={3n-2)n-3) -2} +21—2) = [1(n —2)n| = |3(n -
Y)(n—y+2)].
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Case (ii.) y > 2. Taket = n—y +2and G = H, U K;_z. Then y(G) =
24 (r=2)=rV(G)|=mn-y)+2+(y—2)=n,and

— —v—=1 —
o e -y )—[nzy]}+2(n—y)

2
Z(H—V)(n—y+3)_[n—y]
2 2
1
=5m=y)n—y+2).
b V3 V4
a
D A
—(o)—eo—(o)—o ® ®
A\ J v vy vy Ug

Fig. 10.4 (a) y(G) =2 =i(G) (b) y(G) = 2 while i (G) = 3

10.5 Independent Domination and Irredundance

Definition 10.5.1. A subset S of the vertex set of a graph G is an independent
dominating set of G if S is both an independent and a dominating set. The indepen-
dent domination number i (G) of G is the minimum cardinality of an independent
dominating set of G.

It is clear that y(G) < i(G) for any graph G. For the path Ps, y(Ps) = i(Ps5) = 2,
(see Fig. 10.4(a)) while for the graph G of Fig. 10.4(b), y(G) = 2 and i(G) =
3. In fact, {vy,vs} is a y-set for G, while {v;,v3,vs} is a minimum independent
dominating set of G.

Theorem 10.5.2. Every maximal independent set of a graph G is a minimal
dominating set.

Proof. Let S be a maximal independent set of G. Then S must be a dominating
set of G. If not, there exists a vertex v € V\S that is not dominated by S, and
so S U {v} is an independent set of G, violating the maximality of S. Further, S
must be a minimal dominating set of G. If not, there exists a vertex u of S such that
T = S\{u} is also a dominating set of G. This means, as u ¢ T, u has a neighbor
in T and hence S is not independent, a contradiction. O

Definition 10.5.3. A set S C V(G) is called irredundant if every vertex v of S has
at least one private neighbor.
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Fig. 10.5 S is an irredundant
but not a dominating set

This definition means that either v is an isolated vertex of G[S] or else v has a private
neighbor in V'\ §; that is, there exists at least one vertex w € V/\ S that is adjacent
only tovin S.

In Fig.10.5, S is irredundant but not a dominating set. Hence an irredundant
set S need not be dominating. If S is both irredundant and dominating, then it is
minimal dominating, and vice versa.

Theorem 10.5.4. A set S C V is a minimal dominating set of G if and only if S is
both dominating and irredundant.

Proof. Assume that S is both a dominating and an irredundant set of G. If S were
not a minimal dominating set, there exists v/ € S such that S \ {V'} is also a
dominating set. But as S is irredundant, v' has a private neighbor w’ (may be equal
toV'). Since w' has no neighbor in S \ v/, S \ {V'} is not a dominating set of G. Thus,
S is a minimal dominating set of G.

The proof of the converse is similar. O

We define below a few more well-known graph parameters:

(i) The minimum cardinality of a maximal irredundant set of a graph G is known
as the irredundance number and is denoted by ir (G).
(ii)) The maximum cardinality of an irredundant set is known as the upper
irredundance number and is denoted by I R(G).
(iii) The maximum cardinality of a minimal dominating set is known as the upper
domination number and is denoted by I'(G).

From our earlier results and definitions, one can prove the following result of
Cockeyne, Hedetniemi and Miller [45].

Theorem 10.5.5 ([45]). For any graph G, the following inequality chain holds:
ir(G) =y(G) =i(G) = Bo(G) = I'(G) = IR(G).

Proof. Exercise. O



10.7 Vizing’s Conjecture 229
10.6 Exercises

6.1. If G is a graph of diameter 2, show that y(G) < §(G).

6.2. If D is a dominating set of a graph G, show that D meets every closed
neighborhood of G.

6.3. Show that for any edge e of a graph G, y(G) < y(G —e) < y(G) + 1, and
that for any vertex vof G, y(G) — 1 < y(G —v).

64. Ifd, = d, > ... > d, is the degree sequence of a graph G, prove that

y(G) > min{k : k+ (dy +---+diy) = n}.

6.5. For any graph G, prove that y(G) < y(G°).

6.6. Show that every minimal dominating set in a graph G is a maximal irredun-
dant set of G.

6.7. Prove that an independent set is maximal independent if and only if it is
dominating and independent.

6.8. Prove: If y(G¢) > 3, then diam(G) < 2.

6.9. Prove: If G is connected, then ’7%-‘ < y(G).

6.10. For any graph G, n —m < y(G) < n + 1 — +/1 + 2m. Prove further that
y(G) = n —m if and only if G is a forest in which each component is a star.
[Hint: To establish the upper bound, use Vizing’s theorem (Theorem 10.4.1).]

6.11. Give the proof of Theorem 10.5.5.

6.12. For the graph G of Fig.10.6, determine the six parameters given in
Theorem 10.5.5.

Fig. 10.6 Refer Question @ L 4 @ @
6.12

6.13. Exhibit a graph (different from the graph of Fig.10.4b) for which no
minimum dominating set is independent.

10.7 Vizing’s Conjecture

All graphs considered in this section are simple. In this section we present Vizing’s
conjecture on the domination number of the Cartesian product of two graphs.
In 1963, Vizing [182] proposed the problem of determining a lower bound for the
domination number of the Cartesian product of two graphs. Five years later, in 1968,
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he presented it as a conjecture [185]. In the same year, E. Cockayne included it in
his survey article [44]. This conjecture is one of the major unsolved problems in
graph theory.

Conjecture 10.7.1 (Vizing [185]). For any two graphs G and H, y(GO H) >
y(G)y(H).

In what follows, we dwell upon some partial results toward this conjecture as
well as some of the techniques that have been adopted in attempts to tackle this
conjecture.

We write G < H to denote the fact that G is a spanning subgraph of H. By
definition (see Chap. 1),

G X H < G[H],

GOH <GHXH, and

GxH<GKXH.

It is clear that if G < H, then y(G) > y(H). Consequently, we have the
following result.

Theorem 10.7.2. For any two graphs G and H,
y(G[H]) < y(GR H) <min{y(GOH),y(G x H)}.

In the absence of a proof of Vizing’s conjecture, what is normally done is to
fix one of the two graphs, say G, and allow the other graph H to vary and see
if the conjecture 10.7.1 holds for all graphs H. Since the Cartesian product is
commutative, it is immaterial as to which of the two graphs is fixed and which
is varied. With this in view, we make the following definition:

Definition 10.7.3. A graph G is said to satisfy Vizing’s conjecture if and only if
y(GOH) > y(G)y(H) for every graph H.

Definition 10.7.4. A graph G is edge-maximal with respect to domination if y(G +
uv) < y(G) for every pair of nonadjacent vertices u, v of G.

For example, C, is edge-maximal since y(Cs +€) =1 < 2 = y(Cy).

Definition 10.7.5. A 2-packing of a graph G is a set P of vertices of G such that
N[x] N N[y] = @ for every pair of (distinct) vertices x, y of P. The 2-packing
number p(G) of a graph G is the largest cardinality of a 2-packing of G. In other
words, p(G) is the maximum number of pairwise disjoint closed neighborhoods
of G.

Before we set out to prove some theorems relating to Vizing’s conjecture, we point
out that in the relation y(GOH) > y(G) y(H ), both equality and strict inequality
are possible.

For instance, y(C40P;) = 3 > 2 x 1 = y(Cy) y(P3) (see Fig.1.28), while
y(COP) =2 = y(Cy(P2).

Most of the results supporting Vizing’s conjecture are of the following two
types:
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(1) If H is a graph related to G in some way, and if G satisfies Vizing’s conjecture,
then H also does.

(i) Let & be a graph property. If G satisfies &, then G satisfies Vizing’s
conjecture.

First, we present two results (Lemmas 10.7.6 and 10.7.7) that come under the first
category.

Lemma 10.7.6. Let K < G such that y(K) = y(G). If G satisfies Vizing’s
conjecture, then K also does.

Proof. The graph K is obtained from G by removing edges of G (if K = G,
there is nothing to prove). Let e € E(G)\E(K). Then K < G — e < G. Hence,
y(K) > y(G—e) > y(G). By hypothesis, y(K) = y(G). Hence y (G —e) = y(G),
and since (G — e)OH < GOH, we have
y((G —e)0H) = y(GOH)
> y(G) y(H)(by hypothesis)
Y(G —e)y(H).

Hence, G — e also satisfies Vizing’s conjecture. Now start from G — e and delete
edges in succession until the resulting graph is K. Thus, K also satisfies Vizing’s
conjecture. |

Lemma 10.7.6 is about edge deletion. We now consider vertex deletion.

Lemma 10.7.7. Let v € V(G) such that y(G —v) < y(G). If G satisfies Vizing’s
conjecture, then so does G — v.

Proof. The inequality y(G —v) < y(G) means that y(G —v) = y(G) — 1. Set
K = G —vsothat y(K) = y(G) — 1. Suppose the result is false. Then there exists
a graph H such that

y(KOH) < y(K) y(H).
Let A be a y-set of KOOH and B a y-set of H. (Recall that a y-set stands for a
minimum dominating set.) Set D = A U {(v,b) : b € B} = A U ({v} x B). Then
D is a dominating set of GLIH. But then, as the sets A and {v} x B are disjoint,

y(GOH) < |D| = |A] + |({v} x B)| = |A| + | B]
y(KOH) + y(H)
y(K)y(H) + y(H)
y(H) (y(K)+ 1)
y(H) y(G),

A

and this contradicts the hypothesis that G satisfies Vizing’s conjecture. a



232 10 Domination in Graphs

We next present a lower bound (Theorem 10.7.8) and an upper bound (Theorem
10.7.10) for y(GOH).

Theorem 10.7.8 (El-Zahar and Pareek [59]). y(GOH) > min{|V(G)|,|V(H)|}.

Proof. Let V(G) = {ui,ua,...,up} and V(H) = {vi,v2,...,v4}. We have to
prove that y(GOH) > min {p, ¢}. Suppose D is a dominating set of GCOH with

|D| < min{p, q}. (10.8)

Then |D| < p and |D| < q.

Recall that the G-fibers of GOH are pairwise disjoint. A similar statement
applies for the H-fibers of GOOH as well. In view of (10.8), D does not meet all
the G-fibers nor does it meet all the H -fibers. Hence, there exist a G-fiber, say G,
with y € V(H), and a H-fiber, say H,, with x € V(G), which are both disjoint
from D. Now any vertex that dominates (x, y) must belong either to G, or to H,.
But this is not the case as D is disjoint from both G, and H,. This contradicts the
fact that D is a dominating set of GO H. Thus, |D| > min {p, g}. |

Corollary 10.7.9 (Rall [99]). Let H be an arbitrary graph. Then there exists a
positive integer r = r(H) such that if G is any graph with y(G) < r and |V(G)| >
[V(H)|. then y(GUH) = y(G) y(H).

Proof. Recall that y(H) < 3|V(H)| (Corollary 10.2.7). Let ¢ = Y0l "and r =

ZGR

L%J . Then
y(GOH) > min{|V(G)|, |V (H)|}(by Theorem 10.7.8)

= |V(H)|(since by hypothesis |V(G)| > |V (H)]|)

_ )

c
> ry(H)
> y(G) y(H) (since y(G) < r). O

Theorem 10.7.10 (Vizing [182]). For any two graphs G and H,

y(GOH) = min{y(G) [V(H)|. y(H) [V(G)]}.

Proof. Let D be a y-set for G. Then ) H, is a dominating set for GO H. To see
v€D
this, consider any vertex (x, y) of GOH. As x € V(G), and D is a dominating set

of G, either x € D or there exists v € D with vx € E(G). Hence, either (x, y) €

D x V(H) or (v, y) dominates (x, y) in GOH. Thus, | J H, is a dominating set
v€D
of GOH. Further, | D| = y(G), and so
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y(GOH) < || H| = |D||V(H)| = y(G) |V(H)|.
veD

Similarly, y(GOH) < y(H) |V(G)|. O

Lemma 10.7.11. If D is any dominating set of GOH and x is any vertex of G,
then |D N (N[x] x V(H))| > y(H).

Proof. Let h be any vertex of H so that (x,h) is an arbitrary vertex of the
fiber H, = {x}0H. Let Ng[x] = {x,u,...,ux} < V(G), and let p
(N[x] x V(H)) — H, be the projection map defined by p((x,h)) = (x,h) and
p((u;,h)) = (x,h) fori = 1,...,k. Since D is a dominating set of GOH, D
must meet each closed neighborhood in GO H (see Exercise 6.2.). Now the closed
neighborhood of (x,4) in GOH is N[(x,h)] = {(x,h)} U ({x} x N(h)) U
(N(x) x {h}), and therefore D must contain (x,%) or a vertex either of the
form (x,h’), where i’ € N(h) C V(H) or of the form (u;,h), i = 1,...,k.
Now p((x,h)) = (x,h) and p((x,h")) = (x,h’), while p((u;,h)) = (x,h).
Thus, p(D N (N[x] x V(H))) dominates H, and so |D N (N[x] x V(H))| >
|p(D N (N[x] x V(H)| = y(Hy) = y(H) (as Hy ~ H), O

Next consider a set .7 of pairwise disjoint closed neighborhoods of G. Let H be
any graph, and D, a dominating set of GCOH. Then D must meet every star in ..
Hence if N[x] € ., then by Lemma 10.7.11,

|D N (N[x]x V(H))| = y(H).
As this is true for each of the closed neighborhoods in ., we have
|ID| = |Z|y(H). (10.9)

Recall that p(G) denotes the maximum number of pairwise disjoint closed
neighborhoods in the graph G. Replacing || by p(G) in (10.9), we get the
following result of Jacobson and Kinch.

Theorem 10.7.12 (Jacobson and Kinch [112]). For any two graphs G and H,
y(GOH) = max{p(G) y(H). p(H) y(G);.

Proof. Replacing || by p(G) in (10.9), we get
y(GOH) = p(G) y(H).

In a similar manner,
y(HOG) > p(H) y(G).
The result now follows from the fact that GOH ~ HOG. O
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Fig. 10.7 A graph G
satisfying Vizing’s conjecture

e

x w

If G is a graph for which p(G) = y(G), then Theorem 10.7.12 implies that
y(GOH) > y(G) y(H). In other words, Vizing’s conjecture is true for such graphs
G. Now Meir and Moon [139] have shown that for any tree T, p(T') = y(T'). Hence,
Vizing’s conjecture is true for all trees. This fact was first proved by Barcalkin and
German [15]. We state this result as a corollary.

Corollary 10.7.13 ([15]). If T is any tree, then T satisfies Vizing’s conjecture. [

Example 10.7.14. Let G be the graph of Fig.10.7 The set D = {x,u,z} is a y-
set for G so that y(G) = 3. Moreover, the closed neighborhoods N [a], N [b], and
N [c] are pairwise disjoint in G. Hence, by (10.9) or by Theorem 10.7.12, |D| >
3y(H) = y(G) y(H), and hence G satisfies Vizing’s conjecture.

10.8 Decomposable Graphs

In 1979, Barcalkin and German [15] showed that Vizing’s conjecture is true for
a very large class of graphs. Their result was published in Russian and remained
unnoticed until 1991. The result of Barcalkin—German is on the validity of Vizing’s
conjecture for any decomposable graph. So we now give the definition of a
decomposable graph.

Definition 10.8.1. A graph G is called decomposable if its vertex set can be
partitioned into y(G) subsets with each part inducing a clique (that is a complete
subgraph) of G.

Figure 10.8 displays a decomposable graph with y = 2.

Theorem 10.8.2 (Barcalkin and German [15]). If a graph G is decomposable,
then G satisfies Vizing’s conjecture.

However, the converse of Theorem 10.8.2 is false. For instance, the graph of
Fig. 10.9 is not decomposable, but it satisfies Vizing’s conjecture (as p = y = 2).

Theorem 10.8.2, when taken in conjunction with Lemma 10.7.6, yields the
following result.

Theorem 10.8.3. If H < G, y(H) = y(G) and G is decomposable, then H
satisfies Vizing’s conjecture.
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Fig. 10.8 A decomposable
graph with y = 2

Fig. 10.9 Graph not
decomposable but satisfies
Vizing’s conjecture

Fig. 10.10 Graph G of
Example 10.8.4

Example 10.8.4. Cs satisfies Vizing’s conjecture. This is because if G stands for
the graph of Fig. 10.10, then C5 < G, y(Cs) = y(G) = 2 and G is decomposable
as its vertex set can be partitioned into the cliques K3 and K.

Proof of Barcalkin—German theorem. Our proof is based on [30].

Let G be a decomposable graph with y(G) = k, and let € = (Cy,...,Ck)
be a partition of V(G) into cliques. Let {C;,...,C;,} be a set of p < k cliques
belonging to ¢". Suppose that S is a smallest set of vertices in G \ (C;; U...U C;)
which dominates (all the vertices of) C;; U ... U C; ,- In other words, S is a set of
vertices of G outside C;; U ... U C;, dominating the latter. Suppose further that

Cjy, ..., Cj, are those cliques of ¢ that have a nonempty intersection with S so that

q
(U Cj,) NS = S. We then claim the following:

t=1

q
Claim: Y (|(C;, N )| =1) = p. (10.10)
=1

Since any vertex of a clique will dominate that clique, the vertices in S will
dominate the p + ¢ cliques C;,, ..., C;,; Cj,...,Cj, . Hence, if [S| < p + ¢, then
all the cliques of € will be dominated by | S|+ (k—p—q) < k vertices; equivalently,
y(G) < k, a contradiction. This contradiction proves our claim.

We now complete the proof of the theorem. Let D be a minimum dominating set
of GOH. The main idea of the proof is that each vertex from D will get a label
from 1 to k, and for each label i, the projections to H of the vertices from D that
are labeled i form a dominating set of H. This means that there are at least y(H)
vertices in D that are labeled i, 1 < i < k, and this implies that |D| > k y(H) =

v(G)y(H).
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Fig. 10.11 The partition of
GOH into G-cells

Foreachh € V(H) andi, 1 <i < k, we call Cl.h = V(C;) x {h} a G-cell (see
Fig. 10.11, where the cell C/" is shaded).

We adopt the following labeling procedure: If a G-cell Ci” contains a vertex from
D, then one of the vertices from D N Cl.h is given the label ;. Hence, in the projection
to H, h will also get the label i. Note that we have not yet determined the labels of
the remaining vertices in D N Cl.h, if any.

Fix an arbitrary vertex 7 € V(H). We need to prove that for an arbitrary i,
1 < i < k, there exists a vertex from D, labeled by i, that is projected to the
neighborhood of 4.

There are two cases. First, if there exists a vertex of D in V(C;) x N[h], then
by our labeling procedure, there will be a vertex in N[h] to which the label i is
projected, and so this case is settled.

The second case is that there is no vertex of D in V(C;) x N[h], and we call
such C/' a missing G-cell for h. Let C}\.....C/' be the missing G-cells for /.
Now by the definition of the Cartesian product, the missing G-cells for 7 must
be dominated within the G-fiber G". Here there must be vertices in D N G that
dominate Ci’l’ U...u Cl.}[’) .LetC Jhl ,....C ]’; be the G-cells in G” that intersect D.

Since G" is isomorphic to G, by inequality (10.10) we have
q
Y (cknp|-1) = p.
=1

Thus, there are enough additional vertices in D N G” (that have not been already
labeled) so that for each missing G-cell C/*, the label i can be given to one of the
vertices in C ]”t N D, where |C j}i N D| > 2 (so that C;, has at least one unlabeled
vertex of D at this stage). Hence, in this case, the label i will be projected to /. This
concludes the proof. |

We now present two applications of Barcalkin—German theorem.

Corollary 10.8.5. If y(G) = 1, then G satisfies Vizing’s conjecture.
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Proof. If y(G) = 1, G is a spanning subgraph of the complete graph K.
As y(K,) = 1, the corollary follows. [Any complete graph satisfies Vizing’s
conjecture as y(K,0OH) = y(H).]

Corollary 10.8.6. If y(G) = 2, then G satisfies Vizing’s conjecture.

Proof. Let G’ be the graph obtained from G by adding edges so that G’ is
edge-maximal and y(G’) = 2. We prove that G’ is decomposable. This would
mean, by virtue of Theorem 10.8.3, that G satisfies Vizing’s conjecture.

Let Q; and Q, be disjoint cliques of G’ such that |V(Q1)| + |V(Q>2)] is
maximum. We claim that |[V(Q1)| + [V(Q2)| = |V(G)| (= [V(G))).

If not, there exists a vertex v of G, withv ¢ V(Q1)UV(Q>). v cannot be adjacent
to all the vertices of QO [else the subgraph induced by V(Q1) U{v} is a clique Q' of
G with |[V(QDI] + |[V(Q2)| = |[V(Q1)| + [V(Q2)| + 1, a contradiction]. Similarly,
v cannot be adjacent to all the vertices of Q,. Let w be a vertex of O, which is
nonadjacent to vin G’. As G’ is edge-maximal with respect to y, y(G’ + vw) = 1.
Hence, G’ +vw has a single vertex that forms a minimum dominating set of G’ +vw.
Such a vertex cannot be v (as v is not adjacent to all the vertices of 0,). Hence, it
can only be w (as only w dominates v in G’ + vw). This means that w is adjacent to
all the other vertices in V(G’) U {v}, and in particular to all vertices of Q. Let A be
the set of vertices in Q1 not adjacent to v in G’. Then each vertex of A4 is adjacent
to all the vertices of Q,. Then (Q; \ A) U {v} and Q, U A span cliques in G’
whose union contains one vertex more than Q; U Q. This contradiction proves that
[V(Q1)| + |V(Q2)| = |V(G')|, and so G’ is decomposable. O

The preceding theorems gave graphs G for which Vizing’s conjecture holds.
However, a result providing a general lower bound for y (GO H) for all graphs G
and H was given by Clark and Suen [42], stating that y(GOH) > % y(G)y(H)
for all graphs G and H. Another interesting result concerning Vizing’s conjecture is
the following result of Clark, Ismail, and Suen [43]. If G and H are both §-regular
graphs, then with only a few possible exceptions, Vizing’s conjecture holds for the
graph GOH.

While so much is known about the domination number of the Cartesian product
of two graphs, not much is known with regard to other products. We now present
two easy results on the direct product.

10.9 Domination in Direct Products

Theorem 10.9.1. Ler G and G, be graphs without isolated vertices. Then

Y(G1 x G2) <4y(G1)y(Ga).

The proof of Theorem 10.9.1 uses Lemma 10.9.2, which is an immediate conse-
quence of Theorem 10.2.5'.
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Lemma 10.9.2 ([160]). Let D be a y-set of a graph G, (that is, a minimum
dominating set) without isolated vertices. Then there exists a matching in E(D,V \
D) that saturates all the vertices of D.

Proof of theorem 10.9.1. Let D and D, be y-sets for G; and G,, respectively.
Let D| and D, be the matching vertex sets of D and D>, respectively, as given by
Lemma 10.9.2. Then | D| = |D}| = y(G)), and | D,| = |D}| = y(G>). Clearly,
(D1 xDy)U (D x D) U (D] x Dy)U(D] x D)) is a dominating set of G| x G»,
of cardinality 4y(G1)y(G»). |

Definition 10.9.3. A graph G is a split graph if V(G) can be partitioned into two
subsets K and / such that the subgraph, G[K], induced by K in G is a clique in G,
and / is an independent subset of G.

Definition 10.9.4. A subset D of the vertex set of a graph is called a roral
dominating set of G if any vertex v of G has a neighbor in D. (In other words, D
dominates not only vertices outside D but also vertices in D.) The total dominating
number, y;(G), of G is the minimum cardinality of a total dominating set of G.

Lemma 10.9.5. For any split graph G, y:(G) = y(G).

Proof. Let G = (K|I) be a split graph with K, a clique of G, and /, an independent
set of G. Let D be any minimum dominating set of G, and let D N K = K* and
D NI = 1% ByLemma 10.9.2, G contains a matching in H = E[D, V \ D] that
saturates all the vertices of D. Let I* = {uy,...,u;}. Then G contains matching
edges uyvy, ..., uxvg, where {v,..., v} C K \ K*. Clearly, K* U {vq,..., v} is
a minimum dominating set D; of G, and hence |D;| = y(G). Now since K is a
clique, D is a total dominating set. Thus, y,(G) < |D,| = y(G). Since y(G) <
y:(G) always (as any total dominating set of G is a dominating set of G), we have
Y(G) = y(G). O
Lemma 10.9.6. For any two graphs G| and G, with no isolates, y(G| x G;) <
Yi(G1)y:(G2).

Proof. Let A and B be minimum total dominating sets of G; and G, respectively.
Then for any (x, y) € V(G;) x V(Gy), there exista € A and b € B with (x,a) €
E(Gy) and (y,b) € E(G»). Hence, (x, y) is adjacent to (a,b) in G| x G,. This
means that A x B is a dominating set for G| x Gy, and hence y(G; X G2) <
|4 x B| = |A[|B| = y:(GD)y:(G). O

Theorem 10.9.7. If G| and G, are split graphs, then y(G x G3) < y(G1)y(G3).

Proof. The proof is an immediate consequence of Lemmas 10.9.5 and 10.9.6. O

Notes

“Domination in graphs” is one of the major areas of current research in graph
theory. The two-volume book by Haynes, Hedetniemi, and Slater [100, 101] is
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a comprehensive reference work on graph domination. Several special types of
domination in graphs have been studied by researchers—strong domination, weak
domination, global domination, connected domination, independent domination,
and so on.

As regards Vizing’s conjecture, the technique of partitioning the vertex set of a
graph, adopted by Barcalkin and German [15], has been exploited in two different
ways to expand the classes of graphs satisfying Vizing’s conjecture. In [98], Hartnell
and Rall introduce the Type y partition, which includes the Barcalkin—German class
of graphs. The second has been proposed by BreSar and Rall [29]. Chordal graphs
form yet another family that satisfies Vizing’s conjecture. This was first established
by Aharoni and Szabd [2] by using the approach of Clark and Suen [42], who
showed that y(GOH) > %y(G)y(H ) for all graphs G and H. For further details
on Vizing’s conjecture, the interested reader can refer to the article by Bresar et al.
[30].

Domination in graph products, other than the Cartesian product, remains an area
that has still not been fully explored.
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