
Chapter 9 Testing the Neuroevolutionary
System

Abstract In this chapter we test the newly created basic neuroevolutionary sys-
tem, by first testing each of its mutation operators, and then by applying the whole
system to the XOR mimicking problem. Though the XOR problem test will run to
completion and without errors, a more detailed, manual analysis of the evolved to-
pologies and genotypes of the fit agents will show a number of bugs to be present.
The origins of the bugs is then analyzed, and the errors are fixed. Afterwards, the
updated neuroevolutionary system is then successfully re-tested.

9.1 Testing the Mutation Operators

Having created the basic neuroevolutionary system, we need to test whether the
mutation operators work as we intended them to. We have set up all the
complexifying mutation operators to leave the system in a connected state. This
means that when we apply these mutation operators, the resulting NN topology is
such, that the signal can get from the sensors, all the way through the NN, and to
the actuators. The pruning mutation operators: remove_inlink, remove_outlink,
remove_neuron, remove_sensor, remove_actuator, may leave the NN in such a
state that it is no longer able to process information, by creating a break in the
connected graph, as shown in the example of Fig-9.1. We could start using the prun-
ing mutation operators later on, after we have first created a program inside the
genome_mutator module that ensures that all the resulting mutant NN systems are
not disconnected after such pruning mutation operators have been applied.

DOI 10.1007/978-1-4614- - , © Springer Science+Business Media New York 2013 4463 3_9
347 G.I. Sher, Handbook of Neuroevolution Through Erlang,

348

Fig. 9.1 Pruning mutation operators that leave a NN disconnected.

Let us now run a few mutation operator tests, to see if the resulting topologies
after we have applied some mutation operators to the NN, are as expected. When
you perform the same tests, the results may slightly differ from mine, since the el-
ements in your NN will have different Ids, and because the mutation operators are
applied randomly. The test of each mutation operator will have the following
steps:

1. Generate a test NN, which is composed of a single neuron, connected from the
sensor xor_GetInput, and connected to the actuator xor_SendOutput. This is
done by simply executing genotype:create_test(), which creates a xor_mimic
morphology based seed agent.

2. Apply an available mutation operator by executing: genome_mutator:test(test,
Mutator).

3. Execute genotype:print(test) to print the resulting genotype to console, and then
compare it to the original genotype to ensure that the resulting mutated geno-
type is as expected based on the mutation operator used.

4. Test the resulting NN on the simple XOR problem for which it has the sensor
and actuator, by executing exoself:start(test,void). There will not exist a popu-
lation_monitor process at this time, but that should not affect the results. The
goal here is to ensure that the NN does not stall, that the signals can go all the
way through it, from sensors to actuators, and that the NN system is functional.
In this case we do not expect the NN to solve the problem, because the topolo-
gy is not evolving towards any particular goal.

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 349

Let us now go through these steps for each mutation operator. For the sake of
being brief, I will show the entire console printout for the first mutation operator
test, but for all the other mutation operators I will only display the most significant
console printout parts.

mutate_weights: This mutation operator selects a random neuron in the NN
and perturbs/mutates its synaptic weights.

2> genotype:create_test().
{agent,test,0,undefined,test,
 {{origin,7.572689688224582e-10},cortex},
 {[{0,1}],
 [],
 [{sensor,undefined,xor_GetInput,undefined,
 {private,xor_sim},
 2,
 [{{0,7.572689688218573e-10},neuron}],
 undefined}],
 [{actuator,undefined,xor_SendOutput,undefined,
 {private,xor_sim},
 1,
 [{{0,7.572689688218573e-10},neuron}],
 undefined}]},
 {constraint,xor_mimic,[tanh,cos,gauss,abs]},
 [],undefined,0,
 [{0,[{{0,7.572689688218573e-10},neuron}]}]}
{cortex,{{origin,7.572689688224582e-10},cortex},
 test,
 [{{0,7.572689688218573e-10},neuron}],
 [{{-1,7.572689688218636e-10},sensor}],
 [{{1,7.572689688218589e-10},actuator}]}
{sensor,{{-1,7.572689688218636e-10},sensor},
 xor_GetInput,
 {{origin,7.572689688224582e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.572689688218573e-10},neuron}],
 undefined}
{neuron,{{0,7.572689688218573e-10},neuron},
 0,
 {{origin,7.572689688224582e-10},cortex},
 tanh,
 [{{{-1,7.572689688218636e-10},sensor},

 [{{1,7.572689688218589e-10},actuator}],
 [-0.08541081650616245,-0.028821611144310255]}],

350

 []}
{actuator,{{1,7.572689688218589e-10},actuator},
 xor_SendOutput,
 {{origin,7.572689688224582e-10},cortex},
 {private,xor_sim},
 1,
 [{{0,7.572689688218573e-10},neuron}],
 undefined}
{atomic,{atomic,[ok]}}
3> genome_mutator:test(test,mutate_weights).
{atomic,{atomic,ok}}
4> genotype:print(test).
{agent,test,0,undefined,test,
 {{origin,7.572689688224582e-10},cortex},
 {[{0,1}],
 [],
 [{sensor,undefined,xor_GetInput,undefined,
 {private,xor_sim},
 2,
 [{{0,7.572689688218573e-10},neuron}],
 undefined}],
 [{actuator,undefined,xor_SendOutput,undefined,
 {private,xor_sim},
 1,
 [{{0,7.572689688218573e-10},neuron}],
 undefined}]},
 {constraint,xor_mimic,[tanh,cos,gauss,abs]},
 [{mutate_weights,{{0,7.572689688218573e-10},neuron}}],
 undefined,0,
 [{0,[{{0,7.572689688218573e-10},neuron}]}]}
{cortex,{{origin,7.572689688224582e-10},cortex},
 test,
 [{{0,7.572689688218573e-10},neuron}],
 [{{-1,7.572689688218636e-10},sensor}],
 [{{1,7.572689688218589e-10},actuator}]}
{sensor,{{-1,7.572689688218636e-10},sensor},
 xor_GetInput,
 {{origin,7.572689688224582e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.572689688218573e-10},neuron}],
 undefined}
{neuron,{{0,7.572689688218573e-10},neuron},
 0,
 {{origin,7.572689688224582e-10},cortex},

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 351

 tanh,
 [{{{-1,7.572689688218636e-10},sensor},

 [{{1,7.572689688218589e-10},actuator}],
 []}
{actuator,{{1,7.572689688218589e-10},actuator},
 xor_SendOutput,
 {{origin,7.572689688224582e-10},cortex},
 {private,xor_sim},
 1,
 [{{0,7.572689688218573e-10},neuron}],
 undefined}
{atomic,[ok]}

As you can see from the printout, the mutate_weights operator chose a random
neuron in the NN, which in this case is just the single existing neuron, and then
mutated the synaptic weights associated with the sensor that it is connected from.
The synaptic weights were mutated from their original values of:

[-0.08541081650616245, -0.028821611144310255]

to:

[-1.81543903255671, 0.28220989176010963].

We now test the mutated NN system on the problem that its morphology de-
fines it for, the XOR mimicking problem.

5> exoself:start(test,void).
<0.128.0>
Finished updating genotype
Terminating the phenotype:
Cx_PId:<0.131.0>
SPIds:[<0.132.0>]
NPIds:[<0.134.0>]
APIds:[<0.133.0>]
ScapePids:[<0.130.0>]
Sensor:{{-1,7.572689688218636e-10},sensor} is terminating.
Agent:<0.128.0> terminating. Genotype has been backed up.
 Fitness:0.505631430344058
 TotEvaluations:52
 TotCycles:208
 TimeAcc:7226
Cortex:{{origin,7.572689688224582e-10},cortex} is terminating.

 [-1.81543903255671,0.28220989176010963]}],

352

It works! The exoself ran, and after having finished tuning the weights with our
augmented stochastic hill-climber algorithm, it updated the genotype, terminated
the phenotype by terminating all the processes associated with it (SPIds, NPIds,
APIds, and ScapePids), and then printed to screen the stats of the NN system’s
run: the total evaluations, total cycles, and the total time the NN system was run-
ning.

To see that the genotype was indeed updated, we can print it out again, to see
what the new synaptic weights are for the single neuron of this NN system:

7> genotype:print(test).
...
{neuron,{{0,7.572689688218573e-10},neuron},
 0,
 {{origin,7.572689688224582e-10},cortex},
 tanh,
 [{{{-1,7.572689688218636e-10},sensor},

 [{{1,7.572689688218589e-10},actuator}],
 []}
…

The original synaptic weights associated with the sensor were: [-
1.81543903255671, 0.28220989176010963] which have been tuned to the values:
[-1.81543903255671, -2.4665070928720794]. The synaptic weight vector is of
length two, and we can see that in this case only the second weight in the vector
was perturbed, where as when we applied the mutation operator, it mutated only
the first weight in the vector. The mutation and perturbation process is stochastic.

The system passed the test, the mutate_weights operator works, we have manu-
ally examined the resulting NN system, which has the right topology, which is the
same but with a mutated synaptic weight vector. We have tested the phenotype,
and have confirmed that it works. It ran for a total of 52 evaluations, so it made 52
attempts to tune the weights. We can guess that at least 50 did not work, because
we know that it takes, due to the MAX_ATTEMPTS = 50 in the exoself module,
50 failing attempts before exoself gives up tuning the weights. We also know that
1 of the evaluations was the very first one, when the NN system ran with the orig-
inal genotype. So we can even extrapolate that it was the second attempt, the se-
cond evaluation, during which the perturbed synaptic weights were improved in
this scenario. When you perform the test, your results will most likely be different.

add_bias: This mutation operator selects a random neuron in the NN and, if
the neuron’s input_idps list does not already have a bias, the mutation operator
adds one.

 [-1.81543903255671,-2.4665070928720794]}],

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 353

2> genotype:create_test().
...
{neuron,{{0,7.572678978164637e-10},neuron},
 0,
 {{origin,7.572678978164722e-10},cortex},
 gaussian,
 [{{{-1,7.572678978164681e-10},sensor},
 [0.41211176719508646,0.06709671037415732]}],
 [{{1,7.572678978164653e-10},actuator}],
 []}
...
3> genome_mutator:test(test,add_bias).
{atomic,{atomic,ok}}
4> genotype:print(test).
...
{neuron,{{0,7.572678978164637e-10},neuron},
 0,
 {{origin,7.572678978164722e-10},cortex},
 gaussian,
 [{{{-1,7.572678978164681e-10},sensor},
 [0.41211176719508646,0.06709671037415732]},
 {bias,[-0.1437300365267422]}],
 [{{1,7.572678978164653e-10},actuator}],
 []}
...
5> exoself:start(test,void).
…

It works! The original genotype had a neuron connected from the sensor, using
a gaussian activation function, with the synaptic weight vector associated with the
sensor: [0.41211176719508646, 0.06709671037415732]. After the add_bias mu-
tation operator was executed, the neuron acquired the bias weight: [-
0.1437300365267422]. Finally, we now test out the new NN system by converting
the genotype to its phenotype by executing the exoself:start(test,void) function. As
in the previous test, when I ran it with this mutated agent, there were no errors,
and the system terminated normally.

mutate_af: This mutation operator selects a random neuron in the NN and
changes its activation function to a new one, selected from the list available in the
constraint’s neural_afs list.

2> genotype:create_test().
...
{neuron,{{0,7.572652623199229e-10},neuron},
 0,

354

 {{origin,7.57265262319932e-10},cortex},
 absolute,
 [{{{-1,7.572652623199274e-10},sensor},
 [-0.16727779071660276,0.12410379914428638]}],
 [{{1,7.572652623199246e-10},actuator}],
 []}
...
3> genome_mutator:test(test,mutate_af).
{atomic,{atomic,ok}}
4> genotype:print(test).
...
{neuron,{{0,7.572652623199229e-10},neuron},
 0,
 {{origin,7.57265262319932e-10},cortex},
 cos,
 [{{{-1,7.572652623199274e-10},sensor},
 [-0.16727779071660276,0.12410379914428638]}],
 [{{1,7.572652623199246e-10},actuator}],
 []}
...
{atomic,[ok]}
25> exoself:start(test,void).
...

The original randomly selected activation function of the single neuron in the
test agent was the absolute activation function. After we have applied the mu-
tate_af operator to the NN system, the activation function was changed to cos. As
before, here too converting the genotype to phenotype worked, as there were no
errors when running exoself:start(test,void).

add_outlink & add_inlink: The add_outlink operator chooses a random neu-
ron and adds an output connection from it, to another randomly selected element
in the NN system. The add_inlink operator chooses a random neuron and adds an
input connection to it, from another randomly selected element in the NN. We will
only test one of them, the add_outlink, as they both function very similarly.

2> genotype:create_test().
...
{sensor,{{-1,7.572648155161364e-10},sensor},
 xor_GetInput,
 {{origin,7.572648155161404e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.572648155161313e-10},neuron}],
 undefined}

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 355

{neuron,{{0,7.572648155161313e-10},neuron},
 0,
 {{origin,7.572648155161404e-10},cortex},
 absolute,
 [{{{-1,7.572648155161364e-10},sensor},
 [-0.02132967923622686,-0.38581737041377817]}],
 [{{1,7.572648155161335e-10},actuator}],
 []}
{actuator,{{1,7.572648155161335e-10},actuator},
 xor_SendOutput,
 {{origin,7.572648155161404e-10},cortex},
 {private,xor_sim},
 1,
 [{{0,7.572648155161313e-10},neuron}],
 undefined}
{atomic,{atomic,[ok]}}
3> genome_mutator:test(test,add_outlink).
{atomic,{atomic,ok}}
4> genotype:print(test).
...
{sensor,{{-1,7.572648155161364e-10},sensor},
 xor_GetInput,
 {{origin,7.572648155161404e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.572648155161313e-10},neuron}],
 undefined}
{neuron,{{0,7.572648155161313e-10},neuron},
 0,
 {{origin,7.572648155161404e-10},cortex},
 absolute,
 [{{{0,7.572648155161313e-10},neuron},[-0.13154644819577532]},
 {{{-1,7.572648155161364e-10},sensor},
 [-0.02132967923622686,-0.38581737041377817]}],
 [{{0,7.572648155161313e-10},neuron},
 {{1,7.572648155161335e-10},actuator}],
 [{{0,7.572648155161313e-10},neuron}]}
{actuator,{{1,7.572648155161335e-10},actuator},
 xor_SendOutput,
 {{origin,7.572648155161404e-10},cortex},
 {private,xor_sim},
 1,
 [{{0,7.572648155161313e-10},neuron}],
 undefined}
{atomic,[ok]}

356

It works! The original neuron had the form:

{neuron,{{0,7.572648155161313e-10},neuron},
 0,
 {{origin,7.572648155161404e-10},cortex},
 absolute,
 [{{{-1,7.572648155161364e-10},sensor},
 [-0.02132967923622686,-0.38581737041377817]}],
 [{{1,7.572648155161335e-10},actuator}],
 []}

It only had a single input connection which was from the sensor, and a single
output connection to the actuator. After the add_outlink operator was executed,
the new NN system’s neuron had the following form:

{neuron,{{0,7.572648155161313e-10},neuron},
 0,
 {{origin,7.572648155161404e-10},cortex},
 absolute,
 [{{{0,7.572648155161313e-10},neuron},[-0.13154644819577532]},
 {{{-1,7.572648155161364e-10},sensor},
 [-0.02132967923622686,-0.38581737041377817]}],
 [{{0,7.572648155161313e-10},neuron},
 {{1,7.572648155161335e-10},actuator}],
 [{{0,7.572648155161313e-10},neuron}]}

In this case the neuron formed a new synaptic connection to another randomly
chosen element in the NN system, in this case that other element was itself. We
can see that this new connection is recursive, and we can tell this from the last el-
ement of the neuron defining tuple, which specifies ro_ids, a list of recurrent link
ids. There is also a new synaptic weight associated with this recurrent self connec-
tion: {{{0,7.572648155161313e-10},neuron},[-0.13154644819577532]}. The dia-
gram of this NN topology before and after the mutation operator was applied, is
shown in Fig-9.2.

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 357

Fig. 9.2 The NN system topology before and after add_outlink mutation operator was ap-
plied.

We now map the genotype to phenotype, to see if the new NN system is func-
tional:

5> exoself:start(test,void).
<0.101.0>
Finished updating genotype
Terminating the phenotype:
…

It works! Though I did not show the complete printout (which looked very sim-
ilar to the first fully shown console printout), the NN system worked and terminat-
ed successfully. With this test complete, we now move to a more complex muta-
tion operator, the addition of a new random neuron to the existing NN system.

add_neuron: This mutation operator chooses a random neural layer in the NN,
and then creates a new neuron and connects it from and to, two randomly selected
elements in the NN system respectively.

2> genotype:create_test().
...
{cortex,{{origin,7.572275935869961e-10},cortex},
 test,
 [{{0,7.572275935869875e-10},neuron}],

 [{{-1,7.57227593586992e-10},sensor}],

358

 [{{1,7.572275935869891e-10},actuator}]}
{sensor,{{-1,7.57227593586992e-10},sensor},
 xor_GetInput,
 {{origin,7.572275935869961e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.572275935869875e-10},neuron}],
 undefined}
{neuron,{{0,7.572275935869875e-10},neuron},
 0,
 {{origin,7.572275935869961e-10},cortex},
 cos,
 [{{{-1,7.57227593586992e-10},sensor},
 [0.43717109366382956,0.33904698258991184]}],
 [{{1,7.572275935869891e-10},actuator}],
 []}
{actuator,{{1,7.572275935869891e-10},actuator},
 xor_SendOutput,
 {{origin,7.572275935869961e-10},cortex},
 {private,xor_sim},
 1,
 [{{0,7.572275935869875e-10},neuron}],
 undefined}
{atomic,{atomic,[ok]}}
3> genome_mutator:test(test,add_neuron).
{aborted,”******** ERROR:link_FromNeuronToActuator:: Actuator already fully con-
nected”}
4> genome_mutator:test(test,add_neuron).
{atomic,{atomic,ok}}
5> genotype:print(test).
...
{cortex,{{origin,7.572275935869961e-10},cortex},
 test,
 [{{0,7.572275884968449e-10},neuron},
 {{0,7.572275935869875e-10},neuron}],
 [{{-1,7.57227593586992e-10},sensor}],
 [{{1,7.572275935869891e-10},actuator}]}
{sensor,{{-1,7.57227593586992e-10},sensor},
 xor_GetInput,
 {{origin,7.572275935869961e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.572275935869875e-10},neuron}],
 undefined}
{neuron,{{0,7.572275884968449e-10},neuron},

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 359

 0,
 {{origin,7.572275935869961e-10},cortex},
 gaussian,
 [{{{0,7.572275935869875e-10},neuron},[-0.17936473163045719]}],
 [{{0,7.572275935869875e-10},neuron}],
 [{{0,7.572275935869875e-10},neuron}]}
{neuron,{{0,7.572275935869875e-10},neuron},
 0,
 {{origin,7.572275935869961e-10},cortex},
 cos,
 [{{{0,7.572275884968449e-10},neuron},[0.2879930434277844]},
 {{{-1,7.57227593586992e-10},sensor},
 [0.43717109366382956,0.33904698258991184]}],
 [{{0,7.572275884968449e-10},neuron},
 {{1,7.572275935869891e-10},actuator}],
 [{{0,7.572275884968449e-10},neuron}]}
{actuator,{{1,7.572275935869891e-10},actuator},
 xor_SendOutput,
 {{origin,7.572275935869961e-10},cortex},
 {private,xor_sim},
 1,
 [{{0,7.572275935869875e-10},neuron}],
 undefined}
{atomic,[ok]}

Something very interesting happened in this test. In “2>“ we create a new test
NN system. A new NN system is fully connected to its sensors and actuators.
When we try to apply the add_neuron mutation operator in “3>“, the mutation op-
erator must have randomly chosen to connect the new neuron to the existing ac-
tuator. But the actuator already has all the connections it needs, the vector signal it
uses to execute its functionality, already has all the elements and is already con-
nected to all the neurons it requires to function, which in this case is just a single
neuron. So the mutation is rejected, as seen by the line: {aborted,”********
ERROR:link_FromNeuronToActuator:: Actuator already fully connected”}.
During the process of neuroevolution, at this point our topology and weight evolv-
ing artificial neural network (TWEANN) system would simply try another muta-
tion operator. Which is what I did manually in this test in “4>“.

The new mutation worked, it created a new neuron and connected it from and
to, the already existing neuron in the NN system. We can see the newly formed
connection in the genotype here:

{neuron,{{0,7.572275884968449e-10},neuron},
 0,
 {{origin,7.572275935869961e-10},cortex},

360

 gaussian,
 [{{{0,7.572275935869875e-10},neuron},[-0.17936473163045719]}],
 [{{0,7.572275935869875e-10},neuron}],
 [{{0,7.572275935869875e-10},neuron}]}
{neuron,{{0,7.572275935869875e-10},neuron},
 0,
 {{origin,7.572275935869961e-10},cortex},
 cos,
 [{{{0,7.572275884968449e-10},neuron},[0.2879930434277844]},
 {{{-1,7.57227593586992e-10},sensor},
 [0.43717109366382956,0.33904698258991184]}],
 [{{0,7.572275884968449e-10},neuron},
 {{1,7.572275935869891e-10},actuator}],
 [{{0,7.572275884968449e-10},neuron}]}

The initial test NN system had a single neuron with the id:
{{0,7.572275935869875e-10},neuron}, The newly added neuron has the id:
{{0,7.572275884968449e-10},neuron}. We can see that after the mutation, both
neurons have recurrent connections, which in our neuron record is represented by
the last list in the tuple. The original neuron’s recurrent connection list ro_ids is:
[{{0,7.572275884968449e-10},neuron}], containing the id of the new neuron. The
newly added neuron’s or_ids list is: [{{0,7.572275935869875e-10},neuron}], con-
taining in it the id of the original neuron.

Fig. 9.3 The NN system topology before and after the add_neuron mutation operator was
applied.

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 361

We can also see that the new neuron is using the gaussian activation function,
and that both of the neurons formed new weights for their new synaptic connec-
tions. The above figure shows the NN system’s topology before and after the
add_neuron mutation operator is applied.

We now test the new topology live, by mapping the genotype to its phenotype:

6> exoself:start(test,void).
<0.866.0>
Finished updating genotype
Terminating the phenotype:
Cx_PId:<0.868.0>
SPIds:[<0.869.0>]
NPIds:[<0.871.0>,<0.872.0>]

APIds:[<0.870.0>]
ScapePids:[<0.867.0>]
Sensor:{{-1,7.57227593586992e-10},sensor} is terminating.
Agent:<0.866.0> terminating. Genotype has been backed up.
 Fitness:1.3179457789331406
 TotEvaluations:163
 TotCycles:656
 TimeAcc:23321
Cortex:{{origin,7.572275935869961e-10},cortex} is terminating.

It works! And from the highlighted NPIds, we can see the two spawned neuron
PIds. The system terminated successfully, the topology we analyzed manually is
correct given the mutation operator, and the phenotype works perfectly. Thus this
mutation operator is functional, at least in this simple test, and we move on to the
next one.

outsplice: This mutation operator selects a random neuron A in the NN, then
selects the neuron’s random output connection to some element B, disconnects A
from B, creates a new neuron C in the layer between neuron A and element B
(creating the new layer if it does not already exist, or using an existing one if A
and B are one or more layers apart), and then reconnects A to B through C:

2> genotype:create_test().
...
{cortex,{{origin,7.57225527862836e-10},cortex},
 test,
 [{{0,7.572255278628331e-10},neuron}],
 [{{-1,7.572255278628343e-10},sensor}],
 [{{1,7.572255278628337e-10},actuator}]}
{sensor,{{-1,7.572255278628343e-10},sensor},
 xor_GetInput,
 {{origin,7.57225527862836e-10},cortex},

362

 {private,xor_sim},
 2,
 [{{0,7.572255278628331e-10},neuron}],
 undefined}
{neuron,{{0,7.572255278628331e-10},neuron},

 0,

 {{origin,7.57225527862836e-10},cortex},

 tanh,

 [{{{-1,7.572255278628343e-10},sensor},

 [0.4094174115111171,0.40477840576669655]}],

 [{{1,7.572255278628337e-10},actuator}],

 []}

{actuator,{{1,7.572255278628337e-10},actuator},
 xor_SendOutput,
 {{origin,7.57225527862836e-10},cortex},
 {private,xor_sim},
 1,
 [{{0,7.572255278628331e-10},neuron}],
 undefined}
{atomic,{atomic,[ok]}}
3> genome_mutator:test(test,outsplice).
{atomic,{atomic,ok}}
4> genotype:print(test).
...
{cortex,{{origin,7.57225527862836e-10},cortex},
 test,
 [{{0.5,7.572255205521553e-10},neuron},
 {{0,7.572255278628331e-10},neuron}],
 [{{-1,7.572255278628343e-10},sensor}],
 [{{1,7.572255278628337e-10},actuator}]}
{sensor,{{-1,7.572255278628343e-10},sensor},
 xor_GetInput,
 {{origin,7.57225527862836e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.572255278628331e-10},neuron}],
 undefined}
{neuron,{{0.5,7.572255205521553e-10},neuron},

 0,

 {{origin,7.57225527862836e-10},cortex},

 absolute,

 [{{{0,7.572255278628331e-10},neuron},[0.08385901270641671]}],

 [{{1,7.572255278628337e-10},actuator}],

 []}

{neuron,{{0,7.572255278628331e-10},neuron},

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 363

 0,

 {{origin,7.57225527862836e-10},cortex},

 tanh,

 [{{{-1,7.572255278628343e-10},sensor},

 [0.4094174115111171,0.40477840576669655]}],

 [{{0.5,7.572255205521553e-10},neuron}],

 []}

{actuator,{{1,7.572255278628337e-10},actuator},
 xor_SendOutput,
 {{origin,7.57225527862836e-10},cortex},
 {private,xor_sim},
 1,
 [{{0.5,7.572255205521553e-10},neuron}],
 0}
{atomic,[ok]}

It works! The genotype:create_test() function created the genotype of a simple
test NN system, with a single neuron:

{neuron,{{0,7.572255278628331e-10},neuron},
 0,
 {{origin,7.57225527862836e-10},cortex},
 tanh,
 [{{{-1,7.572255278628343e-10},sensor},
 [0.4094174115111171,0.40477840576669655]}],
 [{{1,7.572255278628337e-10},actuator}],
 []}

Which is connected from the sensor: {{-1,7.572255278628343e-10},sensor}
and is connected to the actuator: {{1,7.572255278628337e-10},actuator}. From
the neuron’s Id, we can see that it is in layer 0. After we executed the outsplice
mutation operator, our NN system acquired a new neuron, thus the NN now had
two neurons:

{neuron,{{0.5,7.572255205521553e-10},neuron},
 0,
 {{origin,7.57225527862836e-10},cortex},
 absolute,
 [{{{0,7.572255278628331e-10},neuron},[0.08385901270641671]}],
 [{{1,7.572255278628337e-10},actuator}],
 []}
{neuron,{{0,7.572255278628331e-10},neuron},
 0,
 {{origin,7.57225527862836e-10},cortex},
 tanh,

364

 [{{{-1,7.572255278628343e-10},sensor},
 [0.4094174115111171,0.40477840576669655]}],
 [{{0.5,7.572255205521553e-10},neuron}],
 []}

Note that where as in the initial genotype the NN was composed of a single
neuron: {{0,7.572255278628331e-10}, neuron}, which was connected from the
sensor: {{-1,7.572255278628343e-10}, sensor}, and connected to the actuator:
{{1,7.572255278628337e-10}, actuator}, after the mutation operator was applied,
the NN acquired a new neuron, which was inserted into a new layer 0.5 (we de-
termine that fact from its Id, which contains the layer index specification). Also
note that the original neuron is no longer connected to the actuator, but instead is
connected to the new neuron: {{0.5,7.572255205521553e-10},neuron}, which is
now the one connected to the actuator. The diagram of the before and after topol-
ogy of this NN system is shown in Fig-9.4.

Fig. 9.4 The NN System topology before and after the outsplice mutation operator is ap-
plied to it.

Let’s test this NN system by mapping its genotype to its phenotype, and apply-
ing it to the problem that its morphology defines (mimicking the XOR operator):

5> exoself:start(test,void).
<0.919.0>
Finished updating genotype
Terminating the phenotype:
Cx_PId:<0.921.0>
SPIds:[<0.922.0>]
NPIds:[<0.924.0>,<0.925.0>]

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 365

APIds:[<0.923.0>]
ScapePids:[<0.920.0>]
Agent:<0.919.0> terminating. Genotype has been backed up.
 Fitness:0.5311848171954074
 TotEvaluations:58
 TotCycles:236
 TimeAcc:7384
Cortex:{{origin,7.57225527862836e-10},cortex} is terminating.
Sensor:{{-1,7.572255278628343e-10},sensor} is terminating.

It works! And we can also see that there are two NPIds, since there are now
two neurons. We have visually inspected the NN system genotype before and after
the mutation operator was applied, and found the new genotype to be correct. We
have also tested the phenotype, to ensure that it is functional, and confirmed that it
is. We next test the two last remaining mutation operators: add_sensor and
add_actuator.

add_sensor & add_actuator: The add_sensor mutation operator adds a new
random sensor, still unused by the NN system. The sensor is chosen from the sen-
sor list available to the morphology of the NN based agent. A random neuron in
the NN is then chosen, and the sensor is connected to that neuron. The
add_actuator mutation operator adds a new random actuator, still unused by the
NN system. A random neuron in the NN is then chosen, and a link is established
between this neuron and the new actuator.

2> genome_mutator:test(test,add_sensor).
{aborted,”********ERROR:add_sensor(Agent_Id):: NN system is already using all available
sensors”}
3> genome_mutator:test(test,add_actuator).
{aborted,”********ERROR:add_actuator(Agent_Id):: NN system is already using all available
actuators”}

This is as expected. The test NN system uses the xor_mimic morphology, and
if we look in the morphology module, we see that it only has one sensor and one
actuator. Thus, when we run the mutation operators for this particular test, our
neuroevolutionary system does not add a new sensor, or a new actuator, because
there are no new ones available. When we begin expanding the neuroevolutionary
platform we’re designing here, we will see the affects of a system that can incor-
porate new sensors and actuators into itself as it evolves. We can similarly test the
mutation operators: add_sensorlink & add_actuatorlink, but just as the above two
mutation operators, they have no new elements to connect to and from, respective-
ly, when it comes to the seed NN.

We have now successfully tested most of the complexifying mutation operators
on the simple, seed NN based agent. But this does not necessarily mean that there
are no bugs in our system. Perhaps there are scenarios when it does fail, we just

366

haven’t come across them yet because we’ve only tested the operators on the most
simple type of topology, the single neuron NN system topology.

Before we proceed, let’s create a small program that applies X random muta-
tion operators to the test NN system, and then converts the mutated genotype to its
phenotype, to ensure that it still functions. The goal here is to ensure that the re-
sulting NN is simply connected, and does not crash, or stall during operation. Fur-
thermore, we can run this mutation operator test itself, a few thousand times. If at
any point it gets stuck, or there is an unexpected error, we can then try to figure
out what happened.

The following listing shows this simple, topological mutation testing function
that we add to the genome_mutator module:

Listing-9.1 The long_test/1 function, which creates a seed agent, and applies
TotMutateApplications number of mutation operators to it, and tests the resulting phenotype af-
terwards.

long_test(TotMutateApplications) when (TotMutateApplications > 0) ->
 genotype:create_test(),
 short_test(TotMutateApplications).

 short_test(0)->
 exoself:start(test,void);
 short_test(Index)->
 test(),
 short_test(Index-1).
%This is a simple function that executes the test() function the number of times with which the
long_test/1 function was initially called. The test/0 function executes mutate(test), which ap-
plies a random number of mutation operators to the genotype, where that number ranges from 1
to sqrt(Tot_neurons). After all the mutation operators have been applied successfully, the func-
tion executes exoself:start(test,void), mapping the genotype to phenotype, to test whether the
resulting NN system is functional.

The long_test/1 function will perform the following steps:

1. Create a test genotype.
2. Execute the mutate(test) function TotMutateApplications number of times.
3. Convert the genotype to phenotype to ensure that the resulting NN system is

functional.

Lets run the long_test function with TotMutateApplications = 300. For the sake
of being brief, I will only present the first and last few lines of the printout to con-
sole in the following Listing-9.2.

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 367

Listing-9.2 Running the long_test function, which applies a random number of mutation opera-
tors to the original seed agent, 300 times.

2>genome_mutator:long_test(300).
{agent,test,0,undefined,test,
 {{origin,7.571534416338085e-10},cortex},
 {[{0,1}],
 [],
 [{sensor,undefined,xor_GetInput,undefined,
 {private,xor_sim},
 2,
 [{{0,7.571534416338051e-10},neuron}],
 undefined}],
 [{actuator,undefined,xor_SendOutput,undefined,
 {private,xor_sim},
 1,
 [{{0,7.571534416338051e-10},neuron}],
 undefined}]},
 {constraint,xor_mimic,[tanh,cos,gaussian,absolute]},
 [],undefined,0,
 [{0,[{{0,7.571534416338051e-10},neuron}]}]}
…
Tot neurons:1 Performing Tot mutations:1 on:test
Mutation Operator:add_outlink
******** Mutation Succesful.
Tot neurons:1 Performing Tot mutations:1 on:test
Mutation Operator:add_actuator
******** Error:{aborted,”********ERROR:add_actuator(Agent_Id):: NN system is already
using all available actuators”}
Retrying with new Mutation...
Mutation Operator:outsplice
******** Mutation Succesful.
Tot neurons:2 Performing Tot mutations:1 on:test
Mutation Operator:mutate_af
******** Mutation Succesful.
...
Tot neurons:95 Performing Tot mutations:5 on:test
Mutation Operator:outsplice
Mutation Operator:add_bias
Mutation Operator:mutate_weights
Mutation Operator:add_outlink
Mutation Operator:mutate_af
******** Mutation Succesful.
<0.2460.0>
Finished updating genotype

368

Terminating the phenotype:
Cx_PId:<0.2463.0>
SPIds:[<0.2464.0>]
NPIds:[<0.2467.0>,<0.2468.0>,<0.2469.0>,<0.2470.0>,<0.2471.0>,<0.2472.0>,<0.2473.0>,
<0.2474.0>,<0.2475.0>,<0.2476.0>,<0.2477.0>,<0.2478.0>,<0.2479.0>,<0.2480.0>,
<0.2481.0>,<0.2482.0>,<0.2483.0>,<0.2484.0>,<0.2485.0>,<0.2486.0>,<0.2487.0>,
<0.2488.0>,<0.2489.0>,<0.2490.0>,<0.2491.0>,<0.2492.0>,<0.2493.0>,<0.2494.0>,
<0.2495.0>,<0.2496.0>,<0.2497.0>,<0.2498.0>,<0.2499.0>,<0.2500.0>,<0.2501.0>,
<0.2502.0>,<0.2503.0>,<0.2504.0>,<0.2505.0>,<0.2506.0>,<0.2507.0>,<0.2508.0>,
<0.2509.0>,<0.2510.0>,<0.2511.0>,<0.2512.0>,<0.2513.0>,<0.2514.0>,<0.2515.0>,
<0.2516.0>,<0.2517.0>,<0.2518.0>,<0.2519.0>,<0.2520.0>,<0.2521.0>,<0.2522.0>,
<0.2523.0>,<0.2524.0>,<0.2525.0>,<0.2526.0>,<0.2527.0>,<0.2528.0>,<0.2529.0>,
<0.2530.0>,<0.2531.0>,<0.2532.0>,<0.2533.0>,<0.2534.0>,<0.2535.0>,<0.2536.0>,
<0.2537.0>,<0.2538.0>,<0.2539.0>,<0.2540.0>,<0.2541.0>,<0.2542.0>,<0.2543.0>,
<0.2544.0>,<0.2545.0>,<0.2546.0>,<0.2547.0>,<0.2548.0>,<0.2549.0>,<0.2550.0>,
<0.2551.0>,<0.2553.0>,<0.2554.0>,<0.2555.0>,<0.2556.0>,<0.2557.0>,<0.2558.0>,
<0.2559.0>,<0.2560.0>,<0.2561.0>,<0.2562.0>,<0.2563.0>]
APIds:[<0.2465.0>,<0.2466.0>]
ScapePids:[<0.2461.0>,<0.2462.0>]
Sensor:{{-1,7.57153413903982e-10},sensor} is terminating.
Agent:<0.2460.0> terminating. Genotype has been backed up.
 Fitness:0.5162814284277237
 TotEvaluations:65
 TotCycles:132
 TimeAcc:21664
Cortex:{{origin,7.571534139039844e-10},cortex} is terminating.

From the above console printout, you can see that the first mutation operator
applied was the add_outlink, which was successful. The second was add_actuator,
which was not. At this stage, every time the mutate(test) gets executed, the func-
tion only applies a single mutation operator to the genotype, we know this from
the line: Tot neurons:1 Performing Tot mutations:1 on:test. We then skip to
the end, the last execution of the mutate(test). From the line: Tot neurons:95 Per-
forming Tot mutations:5 on:test, we can see that at this point the NN system has
95 neurons, and the randomly chosen number of mutation operators to be applied
is 5. This means that 5 mutation operators are applied in series to the NN system
to produce the mutant agent, and only after the 5 mutation operators are applied, is
the agent’s fitness evaluated.

Once all the mutation operators have been applied, the exoself converts the
genotype of the test NN system to its phenotype, applying it to the problem that its
morphology designated it for. From the console printout, we see that the NN sys-
tem successfully terminated, and so we can be assured that the NN topology does
not have any discontinuities, and that it does produce a functional, albeit not very

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 369

fit, phenotype. Also, none of the mutation operators produced any type of errors
that originate from actual crashes.

Having now tested the main mutation operators and the mapping from geno-
type to phenotype, we can move on and see if the population_monitor is function-
al, by running the small XOR based benchmark, as we did in Chapter-7.

9.2 Testing the Neuroevolutionary System on the Simple XOR
Benchmark

Having now tested some of the important independent functions and elements
of our topology and weight evolving artificial neural network (TWEANN) system,
we can move on to testing the system as a whole. Our morphology module con-
tains various morphologies at our disposal, where a morphology is a list of sensors
and actuators that a NN system can incorporate through evolution if it is of that
particular morphology. Furthermore, the sensors and actuators define what the NN
system can interface with, what the NN system does, and thus, what the problems
the NN system is applied to. For example, if the sensor available to our NN sys-
tem is one that reads values from a database, and the actuator is one that simply
outputs the NN’s output vector signal, and furthermore the database from which
the sensor reads its data is a XOR truth table, then we could train this NN system
to mimic a XOR logic operator. We could compare the NN based agent’s output
to what that output should be if the agent was a XOR logic operator, rewarding it
if it’s output is similar to the expected XOR operator output, and punishing it if
not.

If the sensors were to have been programs that interfaced with a simulated
world through sensors embedded in some simulated organism inhabiting a simu-
lated world, and if the actuators were to have been programs controlling the simu-
lated organism (avatar), then our NN system would be the evolving brain of an or-
ganism in an Artificial Life experiment. Thus, the sensors and actuators define
what the NN system does, and its morphology is a set of sensors and actuators, as
a package, available to the NN system during its evolution. Thus it is the mor-
phology that defines the problem to what the NN system is applied. We choose a
morphology to which the NN system belongs, and it evolves and learns how to use
the sensors and actuators belonging to that morphology.

Thus far we have only created one morphology, the xor_mimic. The xor_mimic
morphology contains a single sensor with the name xor_GetInput, and a single ac-
tuator with the name xor_SendOutput. Thus if we evolve agents of this particular
morphology, they will only be able to evolve into XOR logical operator mimics.
Agents cannot switch morphologies mid-evolution, but new sensors and actuators
can be added to the morphology by updating the morphology module, and after-
wards these new interfaces can then be incorporated into the NN system over time.

370

We created the population_monitor process which creates a seed population of
NN systems belonging to some specified morphologies, and then evolves those
NN based agents. Since the morphologies define the scapes the NN system inter-
faces with, and the scape computes the fitness score of the agent interfacing with
it, the population_monitor process has the ability to evolve the population by hav-
ing access to each agent’s fitness in the population, applying a selection function
to the population, and then mutating the selected agents, creating new and mutated
offspring from them. We now test this process by getting the population_monitor
process to spawn a seed population of agents with the xor_mimic morphology,
and see how quickly our current version of the neuroevolutionary system can
evolve a solution to this problem, how quickly it can evolve a XOR logic operator
using neurons as the basic elements of the evolving network.

We will run the population_monitor:test() function with the following parame-
ters:

%%%%%%%%%%%%%% Population Monitor Options & Parameters %%%%%%%%%%%
-define(SELECTION_ALGORITHM,competition).
-define(EFF,0.2).
-define(INIT_CONSTRAINTS,[#constraint{morphology=Morphology, neu-
ral_afs=Neural_AFs}|| Morphology<-[xor_mimic],Neural_AFs<-[[tanh]]]).
-define(SURVIVAL_PERCENTAGE,0.5).
-define(SPECIE_SIZE_LIMIT,10).
-define(INIT_SPECIE_SIZE,10).
-define(INIT_POPULATION_ID,test).
-define(OP_MODE,gt).
-define(INIT_POLIS,mathema).
-define(GENERATION_LIMIT,100).
-define(EVALUATIONS_LIMIT,100000).
-define(DIVERSITY_COUNT_STEP,500).
-define(GEN_UID,genotype:generate_UniqueId()).
-define(CHAMPION_COUNT_STEP,500).
-define(FITNESS_GOAL,inf).

The population will thus be composed of NN systems using the xor_mimic
morphology (and thus be applied to that particular problem), and whose neurons
will use only the tanh activation function. The population will maintain a size
close to 10. Finally, neuroevolution will continue for at most 100 generations, or
at most 100000 evaluations. The fitness goal is set to inf, which means that it is
not a stopping condition and the evolution will continue until one of the other ter-
minating conditions is reached. The fitness score for each agent is calculated by
the scape it is interfacing with. Having set up the parameters for our
neuroeovlutionary system, we compile the population_monitor module, and exe-
cute the population_monitor:test() function, as shown next:

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 371

2> population_monitor:test().
Specie_Id:7.570104741922324e-10 Morphology:xor_mimic
******** Population monitor started with parameters:{gt,test,competition}
…

...
******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:9 Population Generation:100 Eval_Acc:63960 Cycle_Acc:217798
Time_Acc:12912953

It works! Highlighted in green (2nd and 3rd line in the black & white printed

executed. It states that the population_monitor is started with selection algorithm
competition, a population with the id test
gt, whose operational importance we will set in a later chapter.

Based on how we designed our population_monitor system, every generation

is the 100th generation, and each agent with its fitness score. The most fit agent
with its fitness score in the last generation is: {91822.42396111514, 3,
{7.570065786458927e-10, agent}}. Based on how the xor_sim scape calculates
fitness, this fitness score amounts to the agent having a mean squared sum error of
1/91822, and it took a total of 63960 evaluations for our neuroevolutionary system
to reach it.

it prints out the fitness score of the population. Highlighted in red and italicized

Selection Algorirthm:competition
Valid_AgentSummaries:[{91822.42396111514,3,{7.570065786458927e-10,agent}},
 {82128.75594984594,3,{7.570065785419657e-10,agent}},
 {66717.38827549343,3,{7.570065785184491e-10,agent}},
 {66865.26402662563,4,{7.570065786995862e-10,agent}},
 {66859.35543290272,4,{7.570065785258691e-10,agent}},
 {60974.864233884604,4,{7.570065785388116e-10,agent}}]
Invalid_AgentSummaries:[{56725.927279906005,4,{7.570065787547878e-10,agent}},
 {46423.91939090131,4,{7.570065786090063e-10,agent}},
 {34681.35604691528,3,{7.570065790439459e-10,agent}},
 {67.37546054504678,4,{7.570065785110257e-10,agent}},
 {13.178830126581289,5,{7.570065785335377e-10,agent}}]
NeuralEnergyCost:13982.434363128335
NewPopAcc:9.218546902348272
Population size normalizer:0.9218546902348272
Agent_Id:{7.570065785388116e-10,agent} Normalized_MutantAlotment:1
Agent_Id:{7.570065785258691e-10,agent} Normalized_MutantAlotment:1
Agent_Id:{7.570065786995862e-10,agent} Normalized_MutantAlotment:1
Agent_Id:{7.570065785184491e-10,agent} Normalized_MutantAlotment:2

version) are the first two lines printed to screen after population monitor:test() is

, and op_mode (operational mode) being

372

This is quite a bit of computational time for such a simple problem, but it is not
usually the case to take the circuit to this level of accuracy. Let us change the fit-
ness goal to 1000, make MAX_ATTEMPTS = 10 in the exoself module, and then
try again.

In my experiment, I had the following results:

Valid_AgentSummaries:[{1000.4594763865106,2,{7.570051345044739e-10,agent}},
 {272.7339484226029,2,{7.570051345273578e-10,agent}},
 {249.64913390960575,2,{7.57005134500996e-10,agent}},
 {227.82980202627456,4,{7.570051345098297e-10,agent}},
 {193.32888692741093,2,{7.570051345440797e-10,agent}}]
Invalid_AgentSummaries:[{56.2580273824466,2,{7.570051346068126e-10,agent}},
 {18.43287953405122,2,{7.570051345575052e-10,agent}},
 {6.1532819188772505,2,{7.570051345123884e-10,agent}},
 {0.49999782678670823,3,{7.570051345394602e-10,agent}}]
…
…
…
******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:9 Population Generation:78 Eval_Acc:10701 Cycle_Acc:41178
Time_Acc:2259258

This time it took only 10701 evaluations. But there is something very interest-
ing that happened here. Take a look at the most fit agent in the population, with
the id: {1000.4594763865106,2,{7.570051345044739e-10,agent}}. It only has 2
neurons! That’s not possible, since this particular circuit requires at least 3 neu-
rons, if those neurons are using tanh activation function. We have the agent’s Id,
let’s check out its topology, as shown in the following listing:

Listing-9.3 The console printout of the topology of the fittest agent in the population.

3> genotype:print({7.570051345044739e-10,agent}).
{agent,{7.570051345044739e-10,agent},
 15,undefined,7.570051363681182e-10,
 {{origin,7.570051345042693e-10},cortex},
 {[{0,1},{0.5,1}],
 [{add_bias,{0.5,neuron}},
 {mutate_af,{0,neuron}},
 {mutate_weights,{0.5,neuron}},
 {add_actuator,{0,neuron},{1,actuator}},
 {outsplice,{0,neuron},{0.5,neuron},{1,actuator}},
 {mutate_weights,{0,neuron}},
 {mutate_af,{0,neuron}},

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 373

 {mutate_af,{0,neuron}},
 {mutate_weights,{0,neuron}},
 {mutate_af,{0,neuron}},
 {mutate_weights,{0,neuron}},
 {mutate_af,{0,neuron}},
 {mutate_weights,{0,neuron}},
 {add_bias,{0,neuron}},
 {add_inlink,{0,neuron},{0,neuron}}],
 [{sensor,undefined,xor_GetInput,undefined,

 {private,xor_sim},

 2,

 [{{0,7.570051345042682e-10},neuron}],

 undefined}],

 [{actuator,undefined,xor_SendOutput,undefined,

 {private,xor_sim},

 1,

 [{{0.5,7.570051345042677e-10},neuron}],

 11},

 {actuator,undefined,xor_SendOutput,undefined,

 {private,xor_sim},

 1,

 [{{0,7.570051345042682e-10},neuron}],
 undefined}]},

 {constraint,xor_mimic,[tanh]},
 [{add_bias,{{0.5,7.570051345042677e-10},neuron}},

 {mutate_af,{{0,7.570051345439552e-10},neuron}},

 {mutate_weights,{{0.5,7.570051346065783e-10},neuron}},
 {add_actuator,{{0,7.57005134638638e-10},neuron},

 {{1,7.57005134636634e-10},actuator}},

 {outsplice,{{0,7.57005134670089e-10},neuron},
 {{0.5,7.570051346689715e-10},neuron},
 {{1,7.570051346700879e-10},actuator}},
 {mutate_weights,{{0,7.570051347808065e-10},neuron}},
 {mutate_af,{{0,7.570051347949999e-10},neuron}},

 {mutate_af,{{0,7.570051348731883e-10},neuron}},

 {mutate_weights,{{0,7.57005134905699e-10},neuron}},
 {mutate_af,{{0,7.570051352005185e-10},neuron}},

 {mutate_weights,{{0,7.57005135384367e-10},neuron}},
 {mutate_af,{{0,7.570051357421974e-10},neuron}},

 {mutate_weights,{{0,7.570051357953169e-10},neuron}},
 {add_bias,{{0,7.570051361212367e-10},neuron}},

 {add_inlink,{{0,7.570051363350866e-10},neuron},
 {{0,7.570051363350866e-10},neuron}}],
 1000.4594763865106,0,
 [{0,[{{0,7.570051363631578e-10},neuron}]},

374

 {0.5,[{{0.5,7.570051346689715e-10},neuron}]}]}
{cortex,{{origin,7.570051345042693e-10},cortex},
 {7.570051345044739e-10,agent},
 [{{0.5,7.570051345042677e-10},neuron},
 {{0,7.570051345042682e-10},neuron}],
 [{{-1,7.570051345042671e-10},sensor}],
 [{{1,7.570051345042659e-10},actuator},
 {{1,7.570051345042664e-10},actuator}]}
{sensor,{{-1,7.570051345042671e-10},sensor},
 xor_GetInput,
 {{origin,7.570051345042693e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.570051345042682e-10},neuron}],
 undefined}
{neuron,{{0.5,7.570051345042677e-10},neuron},
 15,
 {{origin,7.570051345042693e-10},cortex},
 tanh,
 [{{{0,7.570051345042682e-10},neuron},[-4.9581978771372395]},
 {bias,[-2.444318048832683]}],
 [{{1,7.570051345042659e-10},actuator}],
 []}
{neuron,{{0,7.570051345042682e-10},neuron},
 14,
 {{origin,7.570051345042693e-10},cortex},
 tanh,
 [{{{0,7.570051345042682e-10},neuron},[6.283185307179586]},
 {{{-1,7.570051345042671e-10},sensor},
 [-4.3985975891263305,-2.3223009779757877]},
 {bias,[1.3462974501315348]}],
 [{{1,7.570051345042664e-10},actuator},
 {{0.5,7.570051345042677e-10},neuron},
 {{0,7.570051345042682e-10},neuron}],
 [{{0,7.570051345042682e-10},neuron}]}
{actuator,{{1,7.570051345042659e-10},actuator},

 xor_SendOutput,

 {{origin,7.570051345042693e-10},cortex},

 {private,xor_sim},

 1,

 [{{0.5,7.570051345042677e-10},neuron}],

 11}

{actuator,{{1,7.570051345042664e-10},actuator},

 xor_SendOutput,

 {{origin,7.570051345042693e-10},cortex},

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 375

 {private,xor_sim},

 1,

 [{{0,7.570051345042682e-10},neuron}],

 undefined}

{atomic,[ok,ok]}

Though we’ve decided to look at the NN system’s genotype to see how it was
possible for our neuroevolutionary system to evolve a solution with only two neu-
rons, instead, if you look through the genotype, you will see that we just uncov-
ered a large number of errors in the way our system functions. Let’s take a look at
each part in turn, before returning to the actual evolved topology of the NN sys-
tem.

Boldfaced in the console printout above are the following errors, discussed and
corrected in the following sections:

1. mutate_af operator is applied to the agent multiple times, but we have opted to
only use the tanh activation function, which means this mutation operator does
nothing to the network, and is a waste of a mutation attempt, and thus should
not be present.

2. When looking at the mutate_af, we also see that it is applied to neurons with
different Ids, 5 of them, even though there are only 2 neurons in the system.

3. This NN system evolved a connection to two actuators, but this morphology
supports only 1, what happened?

4. In the agent’s fingerprint, the sensors and actuators contain N_Ids. This is an
error, since the fingerprint must not contain any Id specific information, it must
only contain the general information about the NN system, so that we can have
an ability to roughly distinguish between different species of the NN systems
(those with different topologies, morphologies, sensors and actuators, or those
with significantly different sets of activation functions).

In the following sections, we deal with each of these errors one at a time.

9.2.1 The mutate_af Error

Looking at the agent’s evo_hist list, shown in Listing-9.4, we can see that mul-
tiple mutate_afs are applied. The goal of a mutation operator is to modify the NN
system, and if a mutation operator cannot be applied, due to for example the state
in which the NN system is, or because it leads to a non-functional NN, then we
should revert the mutation operator and try applying another one. Each NN sys-
tem, when being mutated, undergoes a specific number of mutations, ranging from
1 to sqrt(Tot_Neurons), chosen randomly. Thus, every time we apply a mutation
operator to the NN system, and it does nothing, that is one mutation attempt wast-
ed. This can result in a clone which was not mutated at all, or not mutated properly.

376

Listing-9.4 The agent’s evo_hist list.

 [{add_bias,{{0.5,7.570051345042677e-10},neuron}},
 {mutate_af,{{0,7.570051345439552e-10},neuron}},
 {mutate_weights,{{0.5,7.570051346065783e-10},neuron}},
 {add_actuator,{{0,7.57005134638638e-10},neuron},
 {{1,7.57005134636634e-10},actuator}},
 {outsplice,{{0,7.57005134670089e-10},neuron},
 {{0.5,7.570051346689715e-10},neuron},
 {{1,7.570051346700879e-10},actuator}},
 {mutate_weights,{{0,7.570051347808065e-10},neuron}},
 {mutate_af,{{0,7.570051347949999e-10},neuron}},
 {mutate_af,{{0,7.570051348731883e-10},neuron}},
 {mutate_weights,{{0,7.57005134905699e-10},neuron}},
 {mutate_af,{{0,7.570051352005185e-10},neuron}},
 {mutate_weights,{{0,7.57005135384367e-10},neuron}},
 {mutate_af,{{0,7.570051357421974e-10},neuron}},
 {mutate_weights,{{0,7.570051357953169e-10},neuron}},
 {add_bias,{{0,7.570051361212367e-10},neuron}},
 {add_inlink,{{0,7.570051363350866e-10},neuron},
 {{0,7.570051363350866e-10},neuron}}],

To solve this problem we need to check the genome_mutator:mutate_af/1 func-
tion, as shown in listing-9.5.

Listing-9.5 The mutate_af/1 function.

mutate_af(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 Generation = A#agent.generation,
 N = genotype:read({neuron,N_Id}),
 AF = N#neuron.af,

Afterwards, this clone is sent back into the environment to be evaluated. For
example assume a fit agent creates an offspring by first creating a clone of itself,
and then applying to it the mutate_af operator, if mutate_af is being applied to an
agent that only has tanh for its available activation functions list, the resulting off-
spring is exactly the same as its parent, since tanh was swapped for tanh. There is
no reason to test out a clone, since we already know how such a NN system func-
tions, because its parent has already been evaluated and tested for fitness. It is thus
essential that whatever is causing this error, is fixed.

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 377

 Activation_Functions = (A#agent.constraint)#constraint.neural_afs -- [AF],
 NewAF = genotype:generate_NeuronAF(Activation_Functions),
 U_N = N#neuron{af=NewAF,generation=Generation},
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{mutate_af,N_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A).

Though: Activation_Functions = (A#agent.constraint)#constraint.neural_afs –
[AF], does result in an empty list (since #constraint.neural_afs list is: [tanh]), it
does not matter because the genotype:generate_NeuronAF(Activation_Functions)
function itself chooses the default tanh activation function when executed with an
empty list parameter. This is the cause of this error. What we need to do is simply
exit the mutation operator as soon as we find that there is only one activation func-
tion, that it is already being used by the neuron, and that there is nothing to mu-
tate. We thus modify mutate_af/1 function to be as follows:

Listing-9.6 The mutate_af function after the fix is applied.

mutate_af(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 Generation = A#agent.generation,

 N = genotype:read({neuron,N_Id}),
 AF = N#neuron.af,
 case (A#agent.constraint)#constraint.neural_afs -- [AF] of

 [] ->

 exit(“********ERROR:mutate_af:: There are no other activation func-

tions to use.”);

 Activation_Functions ->
 NewAF = lists:nth(random:uniform(length(Activation_Functions)),
Activation_Functions),
 U_N = N#neuron{af=NewAF,generation=Generation},
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{mutate_af,N_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A)
 end.

378

The fix is shown in boldface. In this fixed function, as soon as the mutation op-
erator determines that there are no other activation functions that it can swap the
currently used one for, it simply exits with an error. The genome mutator then tries
out another mutation operator.

9.2.2 Same Neuron, But Different Ids in the evo_hist List

Looking at the Listing-9.3 again, we also see that even though the NN has only
2 neurons, as was shown in the original printout to console, there were 5 mu-
tate_af operators applied and each one was applied to a different neuron_id. But
how is that possible if there are only 2 neurons and thus only 2 different neuron
ids?

This error occurs because when we clone the NN, all neurons get a new id, but
we never update the evo_hist list, converting those old ids into new ones. This
means that the Ids within the evo_hist are not of the elements belonging to the
agent in its current state, but the element ids which belong to its ancestors. Though
it does not matter what the particular ids are, it is essential that they are consistent,
so that we can reconstruct the evolutionary path of the NN based system, which is
not possible if we don’t know which mutation operator was applied to which ele-
ment in the NN system being analyzed. To be able to see when, and to what par-
ticular elements of the topology the mutation operators were applied, we need a
consistent set of element ids in the evo_hist, so that the evolutionary path can be
reconstructed based on the actual ids used by the NN based agent.

To fix this, we need to modify the cloning process so that it does not only up-
date all the element ids in the NN system, but also the element ids in the evo_hist,
ensuring that the system is consistent. The cloning process is performed in the
genotype module, through the clone_Agent/2 function. Therefore, it is this func-
tion that we need to correct. The fix is simple, we need to create a new function
called map_EvoHist/2, and call it from the clone_Agent/2 function with the old
evo_hist list and an ETS table containing a map from old ids to new ones. The
map_EvoHist/2 function can then map the old ids to new ids in the evo_hist list.
The cloned agent will then use this updated evo_hist, with its updated new ids, in-
stead of the old ids which belonged to its parent. The updated map_EvoHist/2
function is shown in Listing-9.7.

Listing-9.7 A new function, map_EvoHist/2, which updates the element ids of the evo_hist list,
mapping the ids of the original agent to the ids of the elements used by its clone.

map_EvoHist(TableName,EvoHist)->
 map_EvoHist(TableName,EvoHist,[]).

map_EvoHist(TableName,[{MO,E1Id,E2Id,E3Id}|EvoHist],Acc)->

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 379

 Clone_E1Id = ets:lookup_element(TableName,E1Id,2),
 Clone_E2Id = ets:lookup_element(TableName,E2Id,2),
 Clone_E3Id = ets:lookup_element(TableName,E3Id,2),
 map_EvoHist(TableName,EvoHist,[{MO,Clone_E1Id,Clone_E2Id, Clone_E3Id}| Acc]);
map_EvoHist(TableName,[{MO,E1Id,E2Id}|EvoHist],Acc)->
 Clone_E1Id = ets:lookup_element(TableName,E1Id,2),
 Clone_E2Id = ets:lookup_element(TableName,E2Id,2),
 map_EvoHist(TableName,EvoHist,[{MO,Clone_E1Id,Clone_E2Id}|Acc]);
map_EvoHist(TableName,[{MO,E1Id}|EvoHist],Acc)->
 Clone_E1Id = ets:lookup_element(TableName,E1Id,2),
 map_EvoHist(TableName,EvoHist,[{MO,Clone_E1Id}|Acc]);
map_EvoHist(_TableName,[],Acc)->
 lists:reverse(Acc).
%map_EvoHist/2 is a wrapper for map_EvoHist/3, which in turn accepts the evo_hist list con-
taining the mutation operator tuples that have been applied to the NN system. The function is
used when a clone of a NN system is created. The function updates the original Ids of the ele-
ments the mutation operators have been applied to, to the ids used by the elements of the clone,
so that the updated evo_hist can reflect the clone’s topology, as if all the mutation operators
have been applied to it instead, and that it is not a clone. Once all the tuples in the evo_hist have
been updated with the clone’s element ids, the list is reversed to its proper order, and the updat-
ed list is returned to the caller.

Having fixed this bug, we move on to the next one.

9.2.3 Multiple Actuators of the Same Type

Looking again at the Listing-9.3, we see that one of the mutation operators was
add_actuator. Since only successful mutation operators are allowed to be in the
evo_hist list, it must be the case that only those mutation operators that actually
mutated the genotype are present in the evo_hist list, which is what allows us to
use it to trace back the evolutionary path of the evolved agent. But the presence of
add_actuator in evo_hist must be an error, because the xor_mimic morphology on-
ly gives the agent access to a single actuator, there are no variations of that actua-
tor, and the agent starts with that single actuator. It should not be possible to add a
new actuator to the NN system since there are no new ones available, and this tag
should not exist in the evo_hist list. This mutation operator was applied in error,
let’s find out why.

Looking at the add_actuator/1 in the genome_mutator module, we can see that
it does check whether all the actuators are already used. But if we look at the
agent’s fingerprint section of the console printout in Listing-9.3:

380

 [{actuator,undefined,xor_SendOutput,undefined,
 {private,xor_sim},
 1,
 [{{0.5,7.570051345042677e-10},neuron}],
 11},
 {actuator,undefined,xor_SendOutput,undefined,
 {private,xor_sim},
 1,
 [{{0,7.570051345042682e-10},neuron}],
 undefined}]

We notice the problem. The last element in the record defining the actuator in
the genotype is the generation element. One actuator has the generation set to 11,
the other has it set to undefined. In the add_actuator function, we do not reset the
generation value, as we do with the id and the cx_id. This must be it. When we
subtract the list of the actuators used by the agent from the morphology’s list of
available actuators, the resulting list is not empty. The reason why an actuator still
remains in the list, is because we did not set the generation parameter of the
agent’s actuator to undefined. Since the two actuators are not exactly the same
(with all their agent specific features been set to defaults), the actuator used by the
agent is not removed from the list of available actuators of the morphology’s actu-
ator list.

This also raises the issue of what should we do, in a consistent manner, with the
generation parameter of the actuator? Lets update the source code and treat the
generation of the actuator element as we treat it in the neuron elements: Initially
set it to the value of the generation when it was created, and update its value every
time it has been affected by a mutation. We make the same modification to the
sensor elements.

In the add_actuator/1 function we change the line:

...
case morphology:get_Actuators(Morphology)--[(genotype:read({actuator, A_Id}))#actuator{
cx_id=undefined, id=undefined, fanin_ids=[]} || A_Id<-A_Ids] of
...

To:

…
case morphology:get_Actuators(Morphology)--[(genotype:read({actuator, A_Id}))#actuator{
cx_id=undefined, id=undefined, fanin_ids=[],generation=undefined} || A_Id<-A_Ids] of
…

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 381

We do the same thing to the add_sensor/1 function. And then to ensure that the
actuator’s generation is updated every time a mutation operator affects it, we up-
date the function linkFromNeuronToActuator/3 from using the line:

 genotype:write(ToA#actuator{ fanin_ids=U_Fanin_Ids})

To one using:

 genotype:write(ToA#actuator{ fanin_ids = U_Fanin_Ids, generation=Generation})

To make sure that the sensor’s generation is also updated, we modify the func-
tion link_FromSensorTo/2 from:

link_FromSensor(FromS,ToId)->
 FromFanout_Ids = FromS#sensor.fanout_ids,
 case lists:member(ToId, FromFanout_Ids) of
 true ->
 exit(“******** ERROR:link_FromSensor[cannot add ToId to Sensor]: ~p al-
ready a member of ~p~n”,[ToId,FromS#sensor.id]);
 false ->
 FromS#sensor{
 fanout_ids = [ToId|FromFanout_Ids]
 }
 end.

To the function link_FromSensorTo/3:

link_FromSensor(FromS,ToId,Generation)->
 FromFanout_Ids = FromS#sensor.fanout_ids,
 case lists:member(ToId, FromFanout_Ids) of
 true ->
 exit(“******** ERROR:link_FromSensor[can not add ToId to Sensor]: ~p al-
ready a member of ~p~n”,[ToId,FromS#sensor.id]);
 false ->
 FromS#sensor{
 fanout_ids = [ToId|FromFanout_Ids],
 generation=Generation

 }
 end.

Finally, we also update the genotype module’s function construct_Cortex/3,
from using:

 Sensors = [S#sensor{id={{-1,generate_UniqueId()},sensor},cx_id=Cx_Id}|| S<-
morphology:get_InitSensors(Morphology)],

382

 Actuators = [A#actuator{id={{1,generate_UniqueId()},actuator},cx_id=Cx_Idn}||A<-
morphology:get_InitActuators(Morphology)],

To one using:

 Sensors = [S#sensor{id={{-1,generate_UniqueId()},sensor},cx_id=Cx_Id,
generation=Generation} || S<- morphology:get_InitSensors(Morphology)],
 Actuators = [A#actuator{id={{1,generate_UniqueId()},actuator},cx_id=Cx_Id,
generation=Generation} || A<-morphology:get_InitActuators(Morphology)],

Which ensures that we can keep track of the generation from the very start.

9.2.4 Making Fingerprint Store Generalized Sensors & Actuators

The fingerprint of the agent is used to vaguely represent the species that the
agent belongs to. For example, if we have two NN systems which are exactly the
same, except for the ids of their elements and the synaptic weights their neurons
use, then these two agents belong to the same species. We cannot compare them
directly to each other, because they will have those differences (the ids and the
synaptic weights), but we can create a more generalized fingerprint for each agent
which will be exactly the same for both. Some of the general features which we
might use to classify a species is the NN topology and the sensors and actuators
the NN system uses.

The 4th error we noticed was that we forgot to get rid of the N_Ids in the gener-
alized sensor and actuator tuples within the fingerprint. We got rid of all the Id
specific parts (the element’s own id, and the cx_id) of those tuples before entering
them into the fingerprint tuple, but forgot to do the same for the fanin_ids and the
fanout_ids in the actuator and sensor tuples respectively. The fix is very simple, in
the genotype module, we modify two lines in the update_fingerprint/1 function
from:

 GeneralizedSensors= [(read({sensor,S_Id}))#sensor{id=undefined,cx_id=undefined}
|| S_Id<-Cx#cortex.sensor_ids],
 GeneralizedActuators= [(read({actuator,A_Id}))#actuator{id=undefined, cx_id=undefined}
|| A_Id<-Cx#cortex.actuator_ids],

To:

 GeneralizedSensors= [(read({sensor,S_Id}))#sensor{id=undefined,cx_id=undefined,
fanout_ids =[]} || S_Id<-Cx#cortex.sensor_ids],

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 383

 GeneralizedActuators= [(read({actuator,A_Id}))#actuator{id=undefined,cx_id =undefined,
fanin_ids=[]} || A_Id<-Cx#cortex.actuator_ids],

This change fixes the 4th and final error we’ve noticed. With this done, we now
take our attention towards the remaining noticed anomaly, the 2 neuron NN solu-
tion. How is it possible?

9.2.5 The Quizzical Topology of the Fittest NN System

The first thing we noticed, and the reason for a closer analysis of the evolved
agent, was the NN’s topology, the fact that it had 2 neurons instead of 3+ neurons.
After our analysis though, and finding out that it also had 2 actuators, while inter-
facing with only a single private scape, which means that both actuators were
sending signals to it... there might be all kinds of different reasons for the 2 neuron
solution. Nevertheless, let us still build it to see what exactly has evolved. Fig-9.5
shows the diagram of the final evolved NN system, based on the genotype in List-
ing-9.3.

Fig. 9.5 The NN topology of the fittest agent in the population solving the XOR test, from
Listing-9.3.

If we ignore the strange part about this NN system having two actuators, the
reason behind which we have already solved in Section-9.2.3, we immediately
spot another interesting feature. We have evolved a recurrent NN!

384

A recurrent NN can use memory, which means that the evolved solution,
among other things, is most likely also sequence specific. This means that this so-
lution takes into account the order in which the input data is presented. Since in
the real world these types of signals would not be presented in any particular order
to the XOR logic operator in question, our evolved system would not simulate the
XOR operator properly anyway, even after having all the other errors fixed. A
proper XOR mimicking neural network must not be sequence specific. Thus it is
essential that for this problem we evolve a non recurrent NN system.

We need to be able to control and choose whether we want the evolving neural
network systems to have recurrent connections or not. In the same way that we
can choose what activation functions the NN system has access to (through the
constraint record), we can also specify whether recurrent connections are allowed
or not. To add this feature before we can retest our system, we need to: 1. Modify
the records.hrl file to add the new element to the constraint tuple. And 2. Modify
the genome_mutator module so that it checks whether recurrent or only
feedforward connections are allowed, before choosing which elements to link to-
gether.

Modifying the records.hrl file is easy, we simply change the constraint record
from:

-record(constraint,{
 morphology=xor_mimic, %xor_mimic
 neural_afs=[tanh,cos,gaussian,absolute] %[tanh,cos,gaussian,absolute,sin,sqrt,sigmoid]
 }).

To:

-record(constraint,{
 morphology=xor_mimic, %xor_mimic
 connection_architecture = recurrent, %recurrent|feedforward

 neural_afs=[tanh,cos,gaussian,absolute] %[tanh,cos,gaussian,absolute,sin,sqrt,sigmoid]
 }).

The new parameter: connection_architecture, can take on two values, either the
atom: recurrent, or the atom: feedforward. Though we’ve added the new element,
connection_architecture, to the constraint record, we still need to modify the ge-
nome_mutator module so that it actually knows how to use this new parameter. In
the genome_mutator module we need to modify all the mutation_operators that
add new connections, and ensure that before a new connection is created, the func-
tion takes the value of the connection_architecture parameter into consideration.
The mutation operators that we need to modify for this are: add_outlink/1,
add_inlink/1, and add_neuron/1.

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 385

The updated add_outlink/1 function first builds an output id pool, which is a
list of all available ids to which the selected neuron can choose to establish a link
to. The general id pool is composed by combining together the list of actuator and
neuron ids. We must remove from this id list the neuron’s own Output_Ids list,
which leaves a list of element Ids to which the neuron is not yet connected to. We
then check whether the agent allows for recurrent connections, or only
feedforward. If recurrent connections are allowed, then a random Id from this list
is chosen, and the neuron and the chosen element are linked together. If on the
other hand only the feedforward connections are allowed, the neuron’s own layer
index is checked, and then the composed id pool is filtered such that the remaining
id list contains only the element ids whose layer index is greater than that of the
neuron. This effectively creates a list of element ids which are 1 or more neural-
layers ahead of the chosen neuron, and to whom if a connection is established,
would be considered feedforward. To implement this new approach, we convert
the original add_outlinke/1 function from:

add_outlink(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,

 A_Ids = Cx#cortex.actuator_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 N = genotype:read({neuron,N_Id}),
 Output_Ids = N#neuron.output_ids,
 case lists:append(A_Ids,N_Ids) -- Output_Ids of
 [] ->
 exit(“********ERROR:add_outlink:: Neuron already connected to all ids”);
 Available_Ids ->
 To_Id = lists:nth(random:uniform(length(Available_Ids)),Available_Ids),
 link_FromElementToElement(Agent_Id,N_Id,To_Id),
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{add_outlink,N_Id,To_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_A)
 end.

To one that uses a filtered neuron id pool, Outlink_NIdPool, for the
feedforward connections, and the entire id pool for when recurrent connections are
allowed:

add_outlink(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),

386

 N_Ids = Cx#cortex.neuron_ids,
 A_Ids = Cx#cortex.actuator_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 N = genotype:read({neuron,N_Id}),
 Output_Ids = N#neuron.output_ids,
 Outlink_NIdPool = filter_OutlinkIdPool(A#agent.constraint,N_Id,N_Ids),

 case lists:append(A_Ids,Outlink_NIdPool) -- Output_Ids of
 [] ->
 exit(“********ERROR:add_outlink:: Neuron already connected to all ids”);
 Available_Ids ->
 To_Id = lists:nth(random:uniform(length(Available_Ids)),Available_Ids),
 link_FromElementToElement(Agent_Id,N_Id,To_Id),
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{add_outlink,N_Id,To_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_A)
 end.

The filter_OutlinkIdPool(Constraint,N_Id,N_Ids) function has to filter the neu-
ron ids (N_Ids) based on the specification in the constraint record. This new fil-
ter_OutlinkIdPool/3 function, is shown in the following listing:

Listing-9.8 The implementation of filter_OutlinkIdPool/3, a constraint based neuron id filtering
function.

filter_OutlinkIdPool(C,N_Id,N_Ids,Type)->
 case C#constraint.connection_architecture of
 recurrent ->
 N_Ids;
 feedforward ->
 {{LI,_},neuron} = N_Id,
 case Type of
 outlink ->
 [{{Outlink_LI,Outlink_UniqueId},neuron} || {{Outlink_LI,
Outlink_UniqueId}, neuron} <- N_Ids, Outlink_LI > LI];
 inlink ->
 [{{Inlink_LI,Inlink_UniqueId},neuron} || {{Inlink_LI,
Inlink_UniqueId},neuron} <- N_Ids, Inlink_LI < LI]
 end
 end.
%The function filter_OutlinkIdPool/3 uses the connection_architecture specification in the con-
straint record of the agent to return a filtered neuron id pool. For the feedforward connec-
tion_architecture, the function ensures that only the neurons in the forward facing layers are al-
lowed in the id pool.

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 387

We can modify the add_inlink/1 mutation operator in the same way. In this
function though, if we are to only have feedforward connections, then the filtered
neuron id pool needs to have neurons whose layer is less than that of the chosen
neuron which is trying to add an inlink. The add_inlink/1 function is modified in
the same manner as the add_outlink/1, only we create and use the fil-
ter_InlinkIdPool/3 function instead, which is shown in the following listing:

Listing-9.9 The implementation of filter_InlinkIdPool/3, a constraint based neuron ids filtering
function.

 filter_InlinkIdPool(C,N_Id,N_Ids)->
 case C#constraint.connection_architecture of
 recurrent ->
 N_Ids;
 feedforward ->
 {{LI,_},neuron} = N_Id,
 [{{Inlink_LI,Inlink_UniqueId},neuron} || {{Inlink_LI,
Inlink_UniqueId},neuron} <- N_Ids, Inlink_LI < LI]
 end.
%The function filter_InlinkIdPool/3 uses the connection_architecture specification in the con-
straint record of the agent to return a filtered neuron id pool. For the feedforward connec-
tion_architecture, the function ensures that only the neurons in the previous layers are allowed
in the filtered neuron id pool.

Finally, we modify the add_neuron/1 mutation operator. In this operator a new
neuron B is created, and is then connected from a randomly chosen neuron A, and
to a randomly chosen neuron C. As in the previous two mutation operators, we
compose an Id pool specified by the architecture_constraint parameter, from
which the Ids of A and C are then chosen. The modified version of the
add_neuron/1 function is shown in Listing-9.10.

Listing-9.10 The modified add_neuron/1 mutation operator, which now uses id pools that satis-
fy the connection_architecture constraint specification. The bold parts of the code are the added
and modified parts of the function.

add_neuron(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Generation = A#agent.generation,
 Pattern = A#agent.pattern,
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 S_Ids = Cx#cortex.sensor_ids,
 A_Ids = Cx#cortex.actuator_ids,
 {TargetLayer,TargetNeuron_Ids} = lists:nth(random:uniform(length(Pattern)),Pattern),

388

 NewN_Id = {{TargetLayer,genotype:generate_UniqueId()},neuron},
 U_N_Ids = [NewN_Id|N_Ids],
 U_Pattern = lists:keyreplace(TargetLayer, 1, Pattern,
{TargetLayer,[NewN_Id|TargetNeuron_Ids]}),
 SpecCon = A#agent.constraint,
 genotype:construct_Neuron(Cx_Id,Generation,SpecCon,NewN_Id,[],[]),
 Inlink_NIdPool = filter_InlinkIdPool(A#agent.constraint,NewN_Id,N_Ids),

 Outlink_NIdPool = filter_OutlinkIdPool(A#agent.constraint,NewN_Id,N_Ids),

 FromElementId_Pool = Inlink_NIdPool++S_Ids,
 ToElementId_Pool = Outlink_NIdPool,
 case (Inlink_NIdPool == []) or (Outlink_NIdPool == []) of

 true ->

 exit(“********ERROR::add_neuron(Agent_Id)::Can’t add new neuron

here, Inlink_NIdPool or Outlink_NIdPool is empty.”);

 false ->

 From_ElementId =
lists:nth(random:uniform(length(FromElementId_Pool)),FromElementId_Pool),
 To_ElementId =
lists:nth(random:uniform(length(ToElementId_Pool)),ToElementId_Pool),
 link_FromElementToElement(Agent_Id,From_ElementId,NewN_Id),
 link_FromElementToElement(Agent_Id,NewN_Id,To_ElementId),
 U_EvoHist = [{add_neuron,From_ElementId,NewN_Id, To_ElementId} |
A#agent.evo_hist],
 genotype:write(Cx#cortex{neuron_ids = U_N_Ids}),
 genotype:write(A#agent{pattern=U_Pattern,evo_hist=U_EvoHist})
 end.

We do not need to modify outsplice/1 mutation operator, even though it does
establish new connections. The reason for this is that if the connec-
tion_architecture allows recurrent connections, then there is nothing to modify,
and if it is feedforward, then all the connections are already made in the right di-
rection, since if we add a new neuron, we either create a new layer for it, or put it
in the layer located between the two spliced neurons, which allows the NN to re-
tain the feedforward structure.

9.3 Retesting Our Neuroevolutionary System

Having now modified all the broken mutation operators, and fixed all the er-
rors, we can compile all the modified modules, and retest our neuroevolutionary
system. First, we will once again apply multiple mutation operators to our NN sys-
tem, and then analyze the resulting NN architecture, manually checking if every-
thing looks as it supposed to. We will then run multiple xor_mimic tests, each test

Chapter 9 Testing the Neuroevolutionary System

9.3 Retesting Our Neuroevolutionary System 389

with a slightly different parameter set. This will give us a better understanding of
how our system performs.

During this test, we still let the NN evolve recurrent connections. In the follow-
ing listing we first compile and load the modules by executing polis:sync().We
then execute genome_mutator:long_test(10). And then finally, we print the result-
ing NN system’s genotype to console, so that we can visually inspect it:

Listing-9.11 The long_test function applied to our now fixed neuroevolutionary system.

3> genome_mutator:long_test(10).
...
4> genotype:print(test).
{agent,test,10,undefined,test, ...
 [{mutate_weights,{{0.5,7.565644036503407e-10},neuron}},
 {add_neuron,{{0.5,7.565644036503407e-10},neuron},
 {{0.5,7.565644036354212e-10},neuron},
 {{0.5,7.565644036503407e-10},neuron}},
 {add_bias,{{0,7.565644036525425e-10},neuron}},
 {add_outlink,{{0.5,7.565644036503407e-10},neuron},
 {{0,7.565644036562396e-10},neuron}},
 {add_outlink,{{0,7.565644036562396e-10},neuron},
 {{0,7.565644036525425e-10},neuron}},
 {mutate_af,{{0,7.565644036535494e-10},neuron}},
 {mutate_af,{{0,7.565644036562396e-10},neuron}},
 {add_bias,{{0,7.565644036535494e-10},neuron}},
 {outsplice,{{0,7.565644036562396e-10},neuron},
 {{0.5,7.565644036503407e-10},neuron},
 {{1,7.565644036562401e-10},actuator}},
 {mutate_af,{{0,7.565644036535494e-10},neuron}},
 {mutate_weights,{{0,7.565644036562396e-10},neuron}},
 {add_inlink,{{0,7.565644036525425e-10},neuron},
 {{0,7.565644036525425e-10},neuron}},
 {add_neuron,{{-1,7.565644036562414e-10},sensor},
 {{0,7.565644036525425e-10},neuron},
 {{0,7.565644036562396e-10},neuron}},
 {add_neuron,{{0,7.565644036562396e-10},neuron},
 {{0,7.565644036535494e-10},neuron},
 {{0,7.565644036562396e-10},neuron}},
 {add_outlink,{{0,7.565644036562396e-10},neuron},
 {{0,7.565644036562396e-10},neuron}}],
 0.13228659163157622,0,
 [{0,
 [{{0,7.565644036525425e-10},neuron},
 {{0,7.565644036535494e-10},neuron},

390

 {{0,7.565644036562396e-10},neuron}]},
 {0.5,
 [{{0.5,7.565644036354212e-10},neuron},
 {{0.5,7.565644036503407e-10},neuron}]}]}
{cortex,{{origin,7.56564403656243e-10},cortex},
 test,
 [{{0.5,7.565644036354212e-10},neuron},
 {{0.5,7.565644036503407e-10},neuron},
 {{0,7.565644036525425e-10},neuron},
 {{0,7.565644036535494e-10},neuron},
 {{0,7.565644036562396e-10},neuron}],
 [{{-1,7.565644036562414e-10},sensor}],
 [{{1,7.565644036562401e-10},actuator}]}
{sensor,{{-1,7.565644036562414e-10},sensor},
 xor_GetInput,
 {{origin,7.56564403656243e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.565644036525425e-10},neuron},
 {{0,7.565644036562396e-10},neuron}],
 3}
{neuron,{{0.5,7.565644036354212e-10},neuron},
 10,
 {{origin,7.56564403656243e-10},cortex},
 absolute,
 [{{{0.5,7.565644036503407e-10},neuron},[-0.07865790723708455]}],
 [{{0.5,7.565644036503407e-10},neuron}],
 [{{0.5,7.565644036503407e-10},neuron}]}
{neuron,{{0.5,7.565644036503407e-10},neuron},
 10,
 {{origin,7.56564403656243e-10},cortex},
 gaussian,
 [{{{0.5,7.565644036354212e-10},neuron},[0.028673644861684]},
 {{{0,7.565644036562396e-10},neuron},[0.344474633962796]}],
 [{{0.5,7.565644036354212e-10},neuron},
 {{0,7.565644036562396e-10},neuron},
 {{1,7.565644036562401e-10},actuator}],
 [{{0.5,7.565644036354212e-10},neuron},
 {{0,7.565644036562396e-10},neuron}]}
{neuron,{{0,7.565644036525425e-10},neuron},
 9,
 {{origin,7.56564403656243e-10},cortex},
 cos,
 [{{{0,7.565644036562396e-10},neuron},[0.22630117969617192]},
 {{{0,7.565644036525425e-10},neuron},[0.06839553053285097]},

Chapter 9 Testing the Neuroevolutionary System

9.3 Retesting Our Neuroevolutionary System 391

 {{{-1,7.565644036562414e-10},sensor},
 [0.4907662278024556,-0.3163769342514735]},
 {bias,[-0.4041650818621978]}],
 [{{0,7.565644036525425e-10},neuron},
 {{0,7.565644036562396e-10},neuron}],
 [{{0,7.565644036525425e-10},neuron},
 {{0,7.565644036562396e-10},neuron}]}
{neuron,{{0,7.565644036535494e-10},neuron},
 7,
 {{origin,7.56564403656243e-10},cortex},
 cos,
 [{{{0,7.565644036562396e-10},neuron},[0.30082326020002736]},
 {bias,[0.00990196169812485]}],
 [{{0,7.565644036562396e-10},neuron}],
 [{{0,7.565644036562396e-10},neuron}]}
{neuron,{{0,7.565644036562396e-10},neuron},
 9,
 {{origin,7.56564403656243e-10},cortex},
 tanh,
 [{{{0.5,7.565644036503407e-10},neuron},[0.29044390963714084]},
 {{{0,7.565644036525425e-10},neuron},[-0.11820697604732322]},
 {{{0,7.565644036535494e-10},neuron},[2.203261827127093]},
 {{{0,7.565644036562396e-10},neuron},[0.13355748834368064]},
 {{{-1,7.565644036562414e-10},sensor},
 [-2.786539611443157,3.0562965644493305]}],
 [{{0,7.565644036525425e-10},neuron},
 {{0.5,7.565644036503407e-10},neuron},
 {{0,7.565644036535494e-10},neuron},
 {{0,7.565644036562396e-10},neuron}],
 [{{0,7.565644036525425e-10},neuron},
 {{0,7.565644036535494e-10},neuron},
 {{0,7.565644036562396e-10},neuron}]}
{actuator,{{1,7.565644036562401e-10},actuator},
 xor_SendOutput,
 {{origin,7.56564403656243e-10},cortex},
 {private,xor_sim},
 1,
 [{{0.5,7.565644036503407e-10},neuron}],
 5}

It works! Figure-9.6 shows the visual representation of this NN system’s topol-
ogy. If we inspect the mutation operators, and the actual connections, everything
is in perfect order.

392

Fig. 9.6 The randomly evolved topology through the genome_mutator:long_test(10) execu-
tion.

We will now test our system on the xor_mimic problem with the following set
of parameters:

1. Constraint’s activation functions set to [tanh], and MAX_ATTEMPTS to 50,
10, and 1:
This is done by changing the MAX_ATTEMPTS in the exoself module, for
each separate test.

2. Activation functions are not constrained, connection_architecture is set to
feedforward, and MAX_ATTEMPTS is set to 50, 10, and 1:
This is done by changing the INIT_CONSTRAINTS in the population_monitor
module from one which previously constrained the activation functions, to one
that no longer does so:

-define(INIT_CONSTRAINTS,[#constraint{morphology=Morphology,neural_afs=
Neural_AFs, connection_architecture=CA} || Morphology<-[xor_mimic],Neural_AFs<-

[[tanh]], CA<-[feedforward]]).

To:

Chapter 9 Testing the Neuroevolutionary System

9.3 Retesting Our Neuroevolutionary System 393

-define(INIT_CONSTRAINTS, [#constraint{morphology=Morphology,
connection_architecture=CA} || Morphology<-[xor_mimic], CA<-[feedforward]]).

We have developed different kinds of activation functions, and created our
neuroevolutionary system to give NN systems the ability to incorporate these var-
ious functions based on their need. Also, the MAX_ATTEMPTS variable speci-
fies the duration of the tuning phases, how well each topology is tested before it is
given its final fitness score. A neuroevolutionary setup using MAX_ATTEMPTS
= 1 is equivalent to it using a standard genetic algorithm rather than a memetic al-
gorithm based approach, since the tuning phase then only acts as a way to assess
the NN system’s fitness, and all the mutation operators (including the weight per-
turbation) are applied in the topological mutation phase. When the
MAX_ATTEMPTS variable is set to 50, then each topology is tuned for a consid-
erable amount of time.

To acquire the test-results of the above specified setup, we first set the parame-
ters: INIT_CONSTRAINTS and the MAX_ATTEMPTS, to their new values, then
run polis:sync() to update and load the modified modules, and then run the popula-
tion_monitor:test() function to perform the actual test, the results of which are
shown next:

Activation function: tanh, MAX_ATTEMPTS=50:

******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:10 Population Generation:25 Eval_Acc:14806 Cycle_Acc:59224
Time_Acc:8038997

With the last generation’s NN systems having the number of neurons ranging
from: 6-9.

Activation function: tanh, MAX_ATTEMPTS=10:

******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:10 Population Generation:33 Eval_Acc:5396 Cycle_Acc:21584
Time_Acc:2456883

With the last generation’s NN systems having the number of neurons ranging
from: 7-9.

Activation function: tanh, MAX_ATTEMPTS=1:

******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:11 Population Generation:100 Eval_Acc:2281 Cycle_Acc:9124
Time_Acc:2630457

394

In this setup, the system failed to produce a solution, with the maximum fitness
reached being ~7. This is understandable, since in the standard genetic algorithm’s
97% of the mutations are weight perturbation based mutations, with the remainder
being topological mutation operators. In our setup though, because our system
does weight tuning in a different phase, the topological mutation phase uses the
weight_perturbation operator with the same probability as any other. We will
change this in the future.

Activation function: tanh, cos, gaussian, absolute MAX_ATTEMPTS=50:

******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:9 Population Generation:1 Eval_Acc:910 Cycle_Acc:3640
Time_Acc:234083

Activation function: tanh, cos, gaussian, absolute MAX_ATTEMPTS=10:

******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:10 Population Generation:4 Eval_Acc:694 Cycle_Acc:2776
Time_Acc:209243

Activation function: tanh, cos, gaussian, absolute MAX_ATTEMPTS=1:

******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:9 Population Generation:22 Eval_Acc:565 Cycle_Acc:2260
Time_Acc:266885

Fig. 9.7 The discovered solution for the XOR problem, using only a single neuron.

Chapter 9 Testing the Neuroevolutionary System

9.4 Summary 395

The benchmark results when we allow for all activation functions to be used,
are remarkably different. We’ve developed our neuroevolutionary system to allow
the evolving NN systems to efficiently incorporate any available activation func-
tions. In these last 3 scenarios, the evolved solutions all contained a single neuron,
as shown in Fig-9.7. In all 3 tests the solutions were reached within 1000 evalua-
tions, very rapidly. The discovered solution? It was a single neuron without a bias,
using a cos activation function.

We have now tested our neuroevolutionary system on the basic benchmark
problem. We have confirmed that it can evolve solutions, that it can evolve topol-
ogies and synaptic weights, that those solutions are correct, and that the evolved
topologies are as expected. Though we’ve only developed a basic neuroevolutionary
system thus far, it is decoupled and general enough that we can augment it, and
easily improve it further, which is exactly what we will do in later chapters.

9.4 Summary

In this chapter we have thoroughly tested every mutation operator that we’ve
added in the previous chapter. Though initially the mutation operator tests seemed
successful, when testing our system on the XOR problem, and applying numerous
mutation operators and then analyzing the evolved topology manually, we noticed
errors to be present. We explored the origin of these detected errors, and then cor-
rected them, re-testing our system on the XOR problem, successfully so.

The evolutionary algorithms built to evolve around problems, will also result in
being able to evolve around small errors present in the algorithm itself. Thus,
though it may seem that a test ran to completion, and did so successfully, as we’ve
found out in this chapter, sometimes it is worthwhile to analyze the results, and the
evolved agents, manually. It is during the thorough manual analysis that the more
difficult to find errors are discovered. We have done just that in this chapter, and
gained experience in the process of performing manual analysis of evolved NNs.
This will give us an advantage in the future, as we continue adding more advanced
features to our system, which will require debugging sooner or later.

	Chapter 9 Testing the Neuroevolutionary System
	9.1 Testing the Mutation Operators
	9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark
	9.2.1 The mutate_af Error
	9.2.2 Same Neuron, But Different Ids in the evo_hist List
	9.2.3 Multiple Actuators of the Same Type
	9.2.4 Making Fingerprint Store Generalized Sensors & Actuators
	9.2.5 The Quizzical Topology of the Fittest NN System

	9.3 Retesting Our Neuroevolutionary System
	9.4 Summary

