
Chapter 7 Adding the “Stochastic Hill-Climber”
Learning Algorithm

Abstract In this chapter we discuss the functionality of an optimization method
called the Stochastic Hill Climber, and the Stochastic Hill Climber With Random
Restarts. We then implement this optimization algorithm, allowing the exoself
process to train and optimize the neural network it is overlooking. Afterwards, we
implement a new problem interfacing method through the use of public and pri-
vate scapes, which are simulated environments, not necessarily physical. We ap-
ply the new system to the XOR emulation problem, testing its performance on it.
Finally, looking to the future and the need for us to be able to test and benchmark
our neuroevolutionary system as we add new features to it, we create the
benchmarker process, which summons the trainer and the NN it trains, applying it
to some specified problem X number of times. Once the benchmarker has applied
the trainer to the problem X number of times and accumulated the resulting statis-
tics, it calculates the averages and the associated standard deviations for the im-
portant performance parameters of the benchmark.

Though we have now created a functional NN system, synchronized by the cor-
tex element and able to use sensors and actuators to interact with the world, it still
lacks the functionality to learn or be trained to solve a given problem or perform
some given task. What our system needs now is a learning algorithm, a method by
which we can train the NN to do something useful. Beside the learning algorithm
itself, we will also need some external system that can automatically train and ap-
ply this learning algorithm to the NN, and a system that can monitor the NN for
any unexpected crashes or errors, restoring it to a functional state when necessary.
Finally, though we have implemented sensors and actuators which the NN can use
to interact with the world and other programs, we have not yet developed a way to
present to the NN the problems we wish it to solve, or tasks that we wish to train it
to perform. It is these extensions that we will concern ourselves with in this chapter.

Here we will continue extending the NN system we’ve developed in the previ-
ous chapter. In the following sections we will discuss and add these new algo-
rithms and features, and develop the necessary modules and module extensions to
incorporate the new functionality.

DOI 10.1007/978-1-4614- - , © Springer Science+Business Media New York 2013 4463 3_7
187 G.I. Sher, Handbook of Neuroevolution Through Erlang,

188 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

7.1 The Learning Method

An evolutionary algorithm (EA) is a population based optimization algorithm
which works by utilizing biologically analogous operators: Selection, Mutation,
and Crossover. We will begin developing a population based approach in the next
chapter, at this point though, we will still use a single NN based system. In such a
case, there is one particular optimization algorithm that is commonly compared to
an EA due to some similarities, that algorithm is the Stochastic Hill-Climber
(SHC), and is the one we will be implementing.

In an evolutionary algorithm we use a population of organisms/agents, all of
whom we apply to the same problem in parallel. Afterwards, based on the fitness
each agent demonstrated, we use a selection algorithm to pick the fit from the un-
fit, and then create offspring from these chosen fit agents. The offspring are creat-
ed by taking the fit agents and perturbing/mutating them, or by crossing two or
more fit agents together to create a new one. The new population is then com-
posed from some combination of the original fit agents and their offspring (their
mutated forms, and/or their crossover based combinations). In this manner,
through selection and mutation, with every new generation we produce organisms
of greater and greater fitness.

In the Stochastic Hill-Climbing algorithm that we will apply to a single agent,
we do something similar. We apply a single NN to a problem, gage its perfor-
mance on the problem, save its genotype and fitness, and then mutate/perturb its
genome in some manner and then re-apply the resulting mutant to the problem
again. If the mutated agent performs better, then we save its genotype and fitness,
and mutate it again. If the mutated agent performs worse, then we simply reset the
agent’s genotype to its previous state, and mutate it again to see if the new mutant
will perform better. In this manner we slowly climb upwards on the fitness land-
scape, taking a step back if the new mutant performs worse, and retrying in a dif-
ferent direction until we generate a mutant that performs better. If at some point it
is noticed that no new mutants of this agent (in our case the agent is a NN based
system) seem to be increasing in fitness, we then consider our agent to have
reached a local optimum, at which point we could save its genotype and fitness
score, and then apply this fit NN to the problem it was optimized for. Or we could
try to restart the whole thing again, generate a completely new random genotype
and try to hill-climb it to greater fitness. By generating a completely new NN gen-
otype we hope that its initial weight (or topology and weight) combination will
spawn it in a new and perhaps better location of the fitness landscape, from which
a higher local optimum is reachable. In this manner the random restart stochastic
hill-climber optimization algorithm can reach local and even global optimum.

The following steps represent the Stochastic Hill-Climbing (SHC) algorithm:

1. Repeat:
2. Apply the NN to some problem.

7.1 The Learning Method 189

3. Save the NN’s genotype and its fitness.
4. Perturb the NN’s synaptic weights, and re-apply the NN to the same prob-

lem.
5. If the fitness of the perturbed NN is higher, discard original NN and keep

the new. If the fitness of the original NN is higher, discard the perturbed
NN and keep the old.

6. Until: Acceptable solution is found, or some stopping condition is reached.
7. Return: The genotype with the fittest combination of weights.

The algorithm is further extended by generating completely new random geno-
types when the NN currently being trained ceases to make progress. The following
steps extend the SHC to the Random-Restart SHC version:

8. Repeat:
9. Generate a completely new genotype, and perform steps 1-7 again.
10.If the new genotype reaches a higher fitness, overwrite the old genotype

with the new one. If the new genotype reaches a lower fitness, discard the
new genotype.

11.Until: Acceptable solution is found, or some stopping condition is reached.
12.Return: The final resulting genotype with its fitness score.

Steps 8-11 are necessary in the case that the original/seed combination of NN
topology and weights could not be optimized (hill climbed) to the level that would
solve the problem. Generating a new genotype, either of the same topology but
with different random weights, or of a different topology and weights, could land
this new genotype in a place of the fitness landscape from which a much higher
fitness can be reached. We will create a process which can apply steps 8-12 to a
NN system, and we’ll call this process: trainer.

We will not use the most basic version of the SHC. Instead we will modify it to
be a bit more flexible and dynamic. Rather than perturbing the NN’s weights some
predefined K number of times before giving up, we will make K dynamic and
based on a Max_Attempts value, which itself can be defined by the researcher or
based on some feature of the NN that is being optimized. If for example we have
perturbed the NN’s weights K==Max_Attempts number of times, and none of
them improved the NN’s fitness, this implies that based on where it was originally
created on the fitness landscape, the particular genotype has reached a good com-
bination of weights, and that the NN is roughly the best that its topology allows it
to be. But if on K =< Max_Attempts the NN’s fitness improves, we reset K back to
0. Since the NN has just improved its fitness, it might have just escaped from
some local optimum on the fitness landscape, and thus deserves another full set of
attempts to try and improve its weights further. Thus, before the NN is considered
to be at the top of its reachable potential, it has to fail to improve its fitness
Max_Attempts number of times in a row. Max_Attempts can be set up by the re-
searcher, the larger the Max_Attempts value, the more processing we’re willing to
spend on tunning the NN’s synaptic weights. This method will ensure that if the
NN can jump to a fitter place from the location on the fitness landscape that it’s

190 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

currently on, it will be given that chance. Using this augmented SHC algorithm we
will tune the NN’s synaptic weights, allowing the particular NN topology to reach
its potential, before considering that this NN and its topology is at its limits.

The number of times the trainer process should create a new genotype (same
topology but with a new set of random weights), will also be based on a similar
approach. The trainer process will use Trainer_MaxAttempts variable for this. And
it is only after Trainer_MaxAttempts number of genotypes in a row fail to produce
higher fitness, will the training phase be considered complete. Once training is
complete, the trainer process will return the best found genotype, and store it in
the file with the name “best”. This augmented SHC is diagrammed in Fig-7.1.

Fig. 7.1 Augmented Stochastic Hill Climber algorithm.

Further deviation from the standard algorithm will be with regards to the inten-
sity of the weight perturbations we’ll apply, and which weights and neurons we
will apply those perturbations to:

1. Each neuron in the trained NN will be chosen for perturbation with a probabil-
ity of 1/sqrt(NN_Size), where NN_Size is the total number of neurons in the
NN.

2. Within the chosen neuron, the weights which will be perturbed will be chosen
with the probability of 1/sqrt(Tot_Weights), where Tot_Weights is the total
number of synaptic weights in the weights list.

3. The intensity of the synaptic weight perturbation will be randomly chosen with
uniform distribution between -Pi and Pi.

4. Max_Attempts variable will be proportional to sqrt(NN_Size).

Features 1, 2 & 3 allow our system to have a chance of producing very high in-
tensity mutations, where perturbations are large and applied to many neurons and
many synaptic weights within those neurons, all at once. At the same time there is

7.1 The Learning Method 191

a chance that the general perturbation intensity will be small, and applied only to a
few neurons and a few of their synaptic weights. Thus this approach allows our
system to use highly variable mutation/perturbation intensities. Small intensity
mutations can fine tune the weights of the NN, while large intensity mutations
give our NN a chance to jump out of local synaptic weight optima. Feature 4 will
ensure that larger NNs will have a greater amount of processing resources allocat-
ed to the tuning of their synaptic weights, because the larger the NN the greater
the chance that a larger combination of weights needs to be set to just the right
values all at once for the NN to become fitter, which requires a larger number of
attempts to do so.

7.1.1 Comparing EA to Random Restart SHC

Note how similar the random-restart stochastic hill-climber (RR-SHC) and the
standard evolutionary algorithm (EA) are. The RR-SHC is almost like a sequential
version of the EA. The following list is a comparison of that:

1.

– EA: In generational EA we start by creating a population of NNs, each
with the same topology and thus belonging to the same species. Though
each individual will have the same NN topology, each one will have a dif-
ferent combination of synaptic weights.

– RR-SHC: In RR-SHC we create a particular genotype, a NN topology. We
then try out different combinations of weights. Each new combination of
weights represents an individual belonging to the same species. We are
thus trying out the different individuals belonging to the same specie se-
quentially, one at a time, instead of all in parallel.
*But unlike in EA, these different individuals belonging to the same species
are not generated randomly, and are not tried in a random order. Instead
we generate one individual by perturbing its “ancestor”. Each new indi-
vidual in the specie is based on the previous version of itself, which is used
as a stepping stone in an attempt to create a fitter version.

2.

– EA: After all the organisms have been given their fitness, we create the
next generation from the subset of the fit organisms. The next generation
might contain new NN topologies and new species, generated from the old
species through mutation and crossover. Again, each NN species will con-
tain multiple members whose only difference is in their synaptic weights.
*But here the new species are generated as an attempt at improvement
(hill climbing), with the parent individuals acting as the stepping stone for
the next topological and parametric innovation.

192 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

– RR-SHC: After trying out the different permutations of synaptic weights
for the original topology, we generate a new one (either the same or a new
topology). We then again try out the different synaptic weight combina-
tions for the genotype that starts from a different spot on the fitness land-
scape.
*But here we are trying out the same topology. Although of course the al-
gorithm can be augmented, and during this step we could generate a new
genotype, not simply having a different set of starting weights but one hav-
ing a topology that is a perturbation of the previous version, or even com-
pletely new and random.

The EA will eventually have a population composed of numerous species, each
with multiple members, and thus EA explores the solution space far and wide. If
one species or a particular combination of weights in a species leads to a dead end
on the fitness landscape, there will be plenty of others working in parallel which
will, if there is a path, find a way to higher fitness by another route.

On the other hand the RR-SHC, during its generation of a new genotype or per-
turbation of weights, can only select that 1 option, the first combination that leads
to a greater fitness is the path selected. If that particular selection is on the path to
a dead end, it will not be known until it’s too late and the system begins to fail to
produce individuals of greater fitness. A dead-end that is reached when perturbing
weights is not so bad because our system also generates and tries out new geno-
types. But if we start generating new topologies based on the old ones in this se-
quential hill climbing manner, then the topological dead end reached at this point
could be much more dire, since we will not know when the first step towards the
dead end was taken, and we will not have multiple other species exploring paths
around the topological dead end in parallel... Fig-7.2 shows the similarities and
differences in the evolutionary paths taken by organisms optimized using these
two methods.

In the following figure, the red colored NNs represent the most fit NNs within
the particular specie they belong to. For the evolutionary computation, the flow of
time is from top to bottom, whereas for the RR-SHC it is from top to bottom for a
species, but the NNs and species are tried one after the other, so it is also from left
to right. Evolutionary process for both, the evolutionary computation algorithm
and the RR-SHC algorithm, is outlined by the step numbers, discussed next.

7.1 The Learning Method 193

Fig. 7.2 Similarities and Differences in the evolutionary paths taken by organisms evolved
through EA and RR-SHC.

Let us first go through the evolutionary path taken by the Evolutionary Compu-
tation algorithm, by following the specified steps:

1. Species-1 and Species-2 are created, each with 4 NNs, thus the population is
composed of 8 NNs in total, separated into 2 species.

2. In Species-1, NN2 and NN3 are the most fit. NN2 creates 3 offspring, which
all belong to Species-1. NN3 creates offspring which belong to Species-4. In
Species-2, NN1 and NN2 are the most fit. The NN1 of Species-2 creates off-
spring which make up Species-3, while NN2 creates offspring which go into
Species-4. In this scenario, the parents do not survive when creating an off-
spring, and thus Species-2 does not make it to the next generation.

3. During the second generation, the population is composed of Species-1, Species-4,
and Species-3, and 9 NNs in total. In this population, the most fit NNs are
NN2 and NN3 of Species-1, and NN3 of Species-4. NN2 of Species-1 creates 3
offspring, all of which have the topology of Species-3. NN3 creates 3 offspring,
all of which have the topology of Species-4. Finally, NN3 of Species-4 creates 3
offspring, all of which have a new topology, and are thus designated as Spe-
cies-5.

4. The third generation, composed of Species-3, Species-4, and Species-5, make
up the population of size 9. The most fit of this population is the NN1 of Spe-
cies-3, NN2 of Species-4, and NN1 of Species-5. The most fit of the three NNs,
is NN1 of Species-5, which is designated as Champion.

Similarly, let us go through the steps taken by the RR-SHC algorithm:

194 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

1. The RR-SHC creates Species-2 (if we are to compare the topologies to those
created by the evolutionary computation algorithm that is, otherwise we can
designate the topology with any value).

2. First NN1 is created and tested. Then NN2 is created by perturbing NN1. NN2
has a higher fitness than NN1. The fitness has thus just increased, and NN2’s
fitness is now the highest reached thus far for this run.

3. We perturb NN2, creating a NN3. NN3 does not have a higher fitness value, so
we re-perturb NN2 and create NN4, which also does not have a higher fitness
than NN2. We perturb NN2 again and create NN5, which does have a higher
fitness than NN2. We designate NN5 as the most fit at this time.

4. NN5 is perturbed to create NN6, which is not fitter. NN5 is perturbed again to
create NN7, which is fitter than NN5, thus NN7 is now designated as the most fit.

5. NN7 is perturbed to create NN8, which is not fitter, and it is then perturbed to
create NN9, which is also not fitter. We perturb NN7 for the third time to create
NN10, which is also not fitter. If we assume that we set our RR-SHC algo-
rithm’s Max_Attempts to 3, then our system has just failed to produce a fitter
agent 3 times in a row. Thus we designate NN7 of this optimization run, to be
the most fit.

6. NN7 is saved as the best NN achieved during this stochastic hill climbing run.
7. The RR-SHC creates a new random NN11, whose topology designates it to be

of Species-3.
8. The NN11 is perturbed to create NN12, which is not fitter than NN11. It is per-

turbed again to create NN13, which is fitter than NN11, and is thus designated
as the fittest thus far achieved in this particular optimization run.

9. This continues until termination condition is reached for this hill climbing run
as well. At which point we see that NN20 is the most fit.

10. A new random NN21 is generated. It is optimized through the same process.
Until finally NN30 is designated to be the most fit of this hill climbing run.

11. Amongst the three most fit NNs, [NN7, NN20, NN30], produced from 3 ran-
dom restarts of the hill climbing optimization algorithm, NN7 is the most fit.
Thus, NN7 is designated as the champion produced by the RR-SHC algorithm.

We will return to these issues again in later chapters. And eventually build a
hybrid composed of these two approaches, in an attempt to take advantage of the
greedy and effective manner in which SHC can find good combinations of synap-
tic weights, and the excellent global optima searching abilities of the population
based evolutionary approach.

7.2 The Trainer

The trainer will be a very simple program that first generates a NN genotype
under the name “experimental”, and then applies it to the problem. After the
exoself (discussed in the next section) finishes performing synaptic weight tuning

7.3 The Exoself 195

of its NN, it sends the trainer process a message with the NN’s highest achieved
fitness score and total number of evaluations it took to reach it (the number of
times NN’s total fitness had been evaluated). The trainer will then compare this
NN’s fitness to the fitness of the genotype under the name “best” (which will be 0
if there is no genotype under such name yet). If the fitness of “experimental” is
higher than that of “best”, the trainer will rename experimental to best, thus over-
writing and removing it. If the fitness of “best” is higher than that of “experi-
mental”, the trainer will not overwrite the old genotype. In either case, the trainer
then generates a new genotype under the name “experimental”, and repeats the
process.

As noted in section 7.1, the trainer will use Trainer_MaxAttempts variable to
determine how many times to generate a new genotype. Only once the Trainer
fails to generate a fitter genotype Trainer_MaxAttempts number of times in a row,
will it be finished, at which point the trainer process will have stored the fittest
genotype in the file “best”.

7.3 The Exoself

We now need to create an external process to the NN system which tunes the
NN’s weights through the use of augmented SHC algorithm. A modified version
of the Exoself process we created in the previous chapter is an excellent contender
for this role. We cannot use the cortex element for this new functionality because
it is part of the NN system itself. The cortex is the synchronizer, and also the ele-
ment that can perform duties that require global view of the neural topology. For
example in something like competitive learning where the neural response intensi-
ties to some signal need to be compared to one another for the entire network, an
element like cortex can be used. But if for example it is necessary to shut down
the entire NN system, or to add new sensors and actuators or new neurons while
the NN itself is live and running, or update the system’s source code, or recover a
previous state of the NN system, that duty could be better performed by an exter-
nal process like the exoself.

Imagine an advanced ALife scenario where a simulated organism is controlled
by a NN. In this simulation the organism is already able to modify its own neural
topology and add new sensors and actuators to itself. To survive in the environ-
ment, it learned to experiment with its own sensors, actuators, and neural architec-
ture so as to give itself an advantage. During one of its experimentations, some-
thing goes terribly wrong: synchronization becomes broken and the whole NN
system stops functioning. For example the NN based agent (an infomorph) is ex-
perimenting with its own neural topology, and by mistake deletes a large chunk of
itself. The system would become too broken to fix itself after such a thing, and
thus the problem would have to be fixed from the outside of the NN system, by

196 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

some process that is monitoring it and can revert it back to its previous functional
state. For such, and more common events, we need a process which would act as a
constant monitor of the self, while being external to the self. This process is the
Exoself.

The exoself is a process that will function in a cooperative manner with the self
(NN). It will perform jobs like backing up the NN’s genotype to file, reverting to
earlier versions of the NN, adding new neurons in live systems when asked by the
NN itself... In slightly less advanced scenarios, the exoself will be used to opti-
mize the weights of the NN it is monitoring. Since the exoself is outside the NN, it
could keep track of which combination of weights in the NN produced a fitter in-
dividual, and then tell the NN when to perturb its neural weights, and when to re-
vert to the previous combination of the weights if that yielded a fitter form. The
architecture of such a system is presented in Fig-7.3.

Fig. 7.3 The architecture of a NN system with an exoself process.

7.4 The Scape 197

Having now covered the trainer and the exoself, which act as the appliers of the
augmented RR-SHC optimization algorithm to the NN system, we now need to
come up with a way to apply the NN to the problems, or present tasks to the NN
that we wish it to learn how to perform. The simulations, tasks, and problems that
we wish to apply our NN to, will be abstracted into scape packages, which we dis-
cuss in the next section.

7.4 The Scape

Scapes are composed of two parts, a simulation of an environment or a problem
we are applying the NN to, and a function that can keep track of the NN’s perfor-
mance. Scapes run outside the NN systems, as independent processes with which
the NNs interact using their sensors and actuators. There are 2 types of scapes.
One type of scapes, private, is spawned for each NN during the NN’s creation, and
destroyed when that NN is taken offline. Another type of scapes, public, is persis-
tent, they exist regardless of the NNs, and allow multiple NNs to interact with
them at the same time, and thus they can allow those NNs to interact with each
other too. The following are examples of these two types of scapes:

1. For example, let’s assume we wish to use a NN to control a simulated robot in
a simulated environment where other simulated robots exist. The fitness in this
environment is based on how many simulated plants the robot eats before run-
ning out of energy. The robot’s energy decreases at some constant rate. First we
generate the NN with appropriate Sensors and Actuators with which it can in-
terface with the scape. The sensors could be cameras, and the actuators could
control the speed and direction of the robot’s navigation through the environ-
ment, as shown in Fig-7.4. This scape exists outside the NN system, and for the
scape to be able to judge how well the NN is able to control the simulated ro-
bot, it needs a way to give the NN fitness points. Furthermore, the scape can ei-
ther give the NN a fitness point every time the robot eats a plant (event based),
or it can keep track of the number of plants eaten throughout the robot’s life-
time, until the robot runs out of energy, at which point the scape would use
some function to give the NN its total fitness (life based) by processing the to-
tal number of plants eaten using that function. The simulated environment
could have many robots in it, interacting with the simulated environment and
each other. When one of the simulated robots within the scape runs out of ener-
gy, or dies, it is removed from the scape, while the remaining organisms in the
scape persist. The scape continues to exist independently of the NNs interacting
with it, it is a public scape.

198 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

Fig. 7.4 Public simulation, with multiple organisms being controlled by NNs.

2.
pushed back and forth on a 2 meter track, as shown in Fig-7.5. We could create
a scape with the physics simulation of the pole and the cart, which can be inter-
acted with through the NN’s sensors and actuators. The job of the NN would be
to push the cart back and forth, thus balancing the pole on it. The NN’s sensors
would gather information like the velocity and the position of the cart, and the
angular velocity and the position of the pole. The NN’s actuators would push
the cart back and forth on the track. The scape, having access to the whole sim-
ulation, could then distribute fitness points to the NN based on how well and
how long it balances the pole. When the NN is done with its pole balancing
training and is deactivated, the scape is deactivated with it. If there are 3 differ-
ent NNs, each will have its own pole balancing simulation scape created, and
those simulations will only exist for as long as the NNs exist. Some problems
or simulations are created specifically, and only, for that NN which needs it.
This is an example of a private scape.

We want to create a NN that is able to balance a pole on a cart which can be

Fig. 7.5 Private simulation, with multiple NN based agents, each with its own private scape.

7.5 Scapes, Sensors, Actuators, Morphologies, and Fitness 199

Though both of these problems (Artificial life and pole balancing) are repre-
sented as scapes, they have an important difference. The first scape is a 3d envi-
ronment where multiple robots can exist, the scape’s existence is fully independ-
ent of the NNs interacting with it, it is a public scape. The scape exists on its own,
whether there are organisms interacting with it or not. It has to be spawned inde-
pendently and before the NNs can start interacting with it. The second scape ex-
ample on the other hand is created specifically for each NN when that neural net-
work goes online, it is an example of a private scape. A private scape is in a sense
summoned by the NN itself for the purpose of practicing something, or training to
perform some task in isolation, a scape to which other organisms should not have
access. It’s like a privately spawned universe which is extinguished when the NN
terminates.

We will present the problems we wish our NNs to learn to solve through these
scape environments. Furthermore, we will specify within the sensors and actuators
which scapes the NN should spawn (if the scape is private), or interface with (if
the scape is public). Sensors and actuators are created to interact with things, thus
they provide a perfect place where we can specify what scapes, if any, they should
spawn or interface with. The next important design decision is: how do we want
the scapes to notify the NNs of their fitness scores. A problem we solve in the next
section.

7.5 Scapes, Sensors, Actuators, Morphologies, and Fitness

Now that we’ve agreed on the definition of a scape, (a simulation of an envi-
ronment, not necessarily physical or 3 dimensional, that can also gage fitness and
which can be interfaced with, through sensors and actuators), we will need to de-
vise a way by which the Scape can contact the NN and give it its fitness score.

The NN uses the sensors and actuators to interface with the scape, and since a
scape exists as a separate process, the sensors and actuators will interact with it by
sending it messages. When the cortex sends a particular sensor the {Cx_PId,
sync} message, that sensor is awoken to action and if it is the type of sensor that
interfaces with a scape, it will send the scape a message and tell it what kind of
sensory data it needs. We will make the message from sensor to scape have the
following format: {Sensor_PId, sensor_name}, and the scape will then send the
Sensor_PId the sensory signals based on the sensor_name. If the sensor is a cam-
era, it will tell the scape that it needs camera based data associated with that sen-
sor. If the sensor is a sonar scanner, then it would request sonar data. The scape
then sends some sensor-specific data as a reply to the sensor’s message. Finally,
the sensor could then preprocess this data, package it, and forward the vector to
the neurons and neural structures it’s connected to.

After the NN has processed the sensory data, the actuator will have received
the output signals from all the neurons connecting to it. The actuator could then
postprocess the accumulated vector and, if it is the type of actuator that interfaces

200 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

with a scape, it will then send this scape the {Actuator_PId, actuator_name, Ac-
tion} message. At this point the actuator could be finished, and then inform the
cortex of it by sending it the {self(), sync} message. But we could also, instead of
making our actuator immediately send the cortex a sync message, take this oppor-
tunity to make the actuator wait for the scape to send it some message. For exam-
ple at this point, based on the actuator’s action, the scape could send back to it a
fitness score message. Or it could send the NN a message telling it that the simu-
lated robot had just exploded. If the scape uses this opportunity to send some fit-
ness based information back to the actuator, the actuator could then, instead of
simply sending the {self(), sync} message to the cortex, send a message contain-
ing the fitness points it was rewarded with by the scape, and whether the scape has
notified it that the simulation or some training session has just ended. For exam-
ple, in the case where the simulated organism dies within the simulated environ-
ment, or in the case where the NN has solved or won the game... there needs to be
a way for the scape to notify the NN that something significant had just happened.
This approach could be a way to do just that.

What makes the actuator a perfect process to which the scape should send this
information, is: 1. Because each separate actuator belonging to the same NN could
be interfacing with a different scape and so different scapes could each send to the
cortex a message through its own interfacing actuator, and 2. Because the cortex
synchronizes the sensors based on the signals it receives from actuators. This is
important because if at any point one of the actuators sends it a halt message, the
cortex has the chance to stop or pause the whole thing by simply not triggering the
sensors to action. Thus if any of the actuators propagates the “end of the simula-
tion/training message” from the scape to the cortex, the cortex will then know that
the simulation is over, that it should not trigger the sensors to action, and that it
should await new instructions from the exoself. If we were to allow the scape to
contact the cortex directly, for example by sending it a message containing the
gaged performance of the NN, and send it information of whether the training ses-
sion is over or not, then there would be a chance that all the actuators had already
contacted it, and that the cortex has already triggered its sensors to action. Using
the actuators for this purpose ensures that we can stop the NN at the end of its
training session and sense-think-act cycle.

Once the cortex receives some kind of halting message from the actuators, it
could inform the exoself that it’s done, and pass to it the accumulated fitness
points as the NN’s final fitness score. The exoself could then decide what to do
next, whether to perturb the NN’s weights, or revert the weights back to their pre-
vious state... the cortex will sit and wait until the exoself decides on its next action.

We will implement the above described interface between the sen-
sor/actuator/cortex and scape programs. Figure-7.6 shows the signal exchange
steps. After exoself spawns the NN, the cortex immediately calls the sensors to ac-
tion by sending them the: {CxPId,sync} messages (1). When a sensor receives the
sync message from the cortex, it contacts the scape (if any) that it interfaces with,

7.5 Scapes, Sensors, Actuators, Morphologies, and Fitness 201

by sending it the: {SPId,ControlMsg} message (2). When the scape receives a
message from a sensor, it executes the function associated with the ControlMsg,
and then returns the sensory signal back to the calling sensor process. The sensory
signal is sent to the sensor through the message: {ScPId,percept,SensoryVector}
(3). After the sensor preprocesses (if at all) the sensory signal, it fans out the sen-
sory vector to the neurons it is connected to (4). Then the actual neural net pro-
cesses the sensory signal, (5), this is the thinking part of the NN system’s sense-
think-act loop. Once the neural net has processed the signal, the actuator gathers
the processed signals from the output layer neurons (6). At this point the actuator
does some postprocessing (if at all) of the output vector, and then executes the ac-
tuator function. The actuator function, like the sensory function, could be an ac-
tion in itself, or an action message sent to some scape. In the case where the actua-
tor is interfacing with a scape, it sends the scape a message of the form:
{APid,ControlMsg,Output} (7). The scape executes the particular function associ-
ated with the ControlMsg atom, with the Output as the parameter. The executed
function IS the action that the NN system takes within the virtual environment of
the scape. After the scape executes the function that was requested by the actuator,
it sends that same actuator a message: {SCPId,Fitness,HaltFlag}. This message
contains the NN’s complete or partial gage of fitness, and a notification if the sim-
ulation has ended, or if the avatar that the NN system controls within the scape has
perished... or anything else one might wish to use the HaltFlag for (8). Finally, the
actuator passes the message to the cortex in the form of a message:
{APId,sync,Fitness,HaltFlag}, (9).

Fig. 7.6 The signal flow between the scape, sensors, actuators, cortex, and the exoself.

202 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

The cortex accumulates all the messages from the actuators, adding together
the fitness scores, and seeing if any of the scapes have triggered the HaltFlag,
which is set to 1 when triggered. If none of the HaltFlags were set to 1, then the
cortex process syncs up the sensors, calling them to action, and the steps 1-9 re-
peat again. If any of the scapes set the HaltFlag to 1, then the cortex process takes
a different course of action. At this point we could make the cortex decide whether
to restart the scape, whether to start off some particular set of functions, or do any
other useful task. In the version of the NN we are building in this chapter though,
the XOR simulation scape will activate the HaltFlag when the training has ended,
when the simulation has ran to completion. At this point the cortex simply pauses
and informs the exoself process that it has finished and that the NN has been eval-
uated, by sending exoself the message: {CxPId, evaluation_complete, FitnessAcc,
CycleAcc, TimeAcc} (a). Once again, the actions that the exoself takes are based
on operational mode we chose for the system, and in the version of the system
we’re building in this chapter, it will apply the SHC optimization algorithm to the
NN, and then reactivate the NN system by sending cortex the following message:
{ExoselfPId, reactivate} (b). After receiving the reactivation message from the
exoself, the cortex’s process again loops through the steps 1-9. Note that these 9
steps represent the standard Sense-Think-Act cycle, where Sense is steps 1-4,
Think is step 5, and Act is steps 6-9.

In the next section we extend the previous chapter’s architecture by developing
and adding the new features we’ve discussed here.

7.6 Developing the Extended Architecture

Having discussed what new features are needed to extend the architecture so
that it can be applied to various problems and simulations presented through
scapes, and having decided what algorithms our system should use to optimize its
neural weights, we are ready to extend the last chapter’s system. After we finish
modifying the source code, our NN systems should be optimizable by the exoself
& trainer processes, and be able to interact with both, public and private scapes in
various manners as shown in Fig-7.7.

In the following subsections we will add the new trainer and scape modules,
and modify the exoself, cortex, morphology, sensor, actuator, and neuron mod-
ules. Finally, we will also switch from lists to ets for the purpose of storing geno-
types. And because we isolated the genotype reading, writing, loading, and saving
functions in genotype.erl, the switch will be composed of simply modifying 4
functions to use ets instead of lists. Because we decoupled the storage and inter-
face methods in the last chapter, it is easy for us to move to whatever storage
method we find most effective for our system. Thus, modifying the genotype
module to use ets instead of lists will be our first step.

7.6 Developing the Extended Architecture 203

Fig. 7.7 Possible combinations of NN systems and their public/private scape interaction.

7.6.1 Modifying the genotype Module

Ets tables provide us with an efficient way to store and retrieve terms. Particu-
larly if we need to access random terms within the table, it is better done using ets.
The quick modification applied to the genotype.erl to switch from lists to ets is
shown in the following listing.

Listing-7.1 Changing the genotype storage method from the simple list and file to the ets table.

save_genotype(FileName,Genotype)->
 TId = ets:new(FileName, [public,set,{keypos,2}]),
 [ets:insert(TId,Element) || Element <- Genotype],
 ets:tab2file(TId,FileName).
%The save_genotype/2 function expects that the Genotype is a list composed of the neuron,
sensor, actuator, cortex, and exoself elements. The function creates a new ets table, writes all
the element representing tuples from the Genotype list to the ets table, and then writes the ets
table to file.

save_to_file(Genotype,FileName)->
 ets:tab2file(Genotype,FileName).
%The save_to_file/2 function saves the ets table by the name Genotype to the file by the name
FileName.

204 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

load_from_file(FileName)->
 {ok,TId} = ets:file2tab(FileName),
 TId.
%The load_from_file/1 loads an ets representing file by the name FileName, returning the ets
table id to the caller.

read(TId,Key)->
 [R] = ets:lookup(TId,Key),
 R.
%The read/2 function reads a record associated with Key from the ets table with the id TId, re-
turning the record R to the caller. It expects that only a single record exists with the specified
Key.

write(TId,R)->
 ets:insert(TId,R).
%The function write/2 writes the record R to the ets table with the id TId.

print(FileName)->
 Genotype = load_from_file(FileName),
 Cx = read(Genotype,cortex),
 SIds = Cx#cortex.sensor_ids,
 NIds = Cx#cortex.nids,
 AIds = Cx#cortex.actuator_ids,
 io:format(“~p~n”,[Cx]),
 [io:format(“~p~n”,[read(Genotype,Id)]) || Id <- SIds],
 [io:format(“~p~n”,[read(Genotype,Id)]) || Id <- NIds],
 [io:format(“~p~n”,[read(Genotype,Id)]) || Id <- Aids].
%The function print/1 reads a stored Genotype from the file FileName, and then prints to con-
sole all the elements making up the NN’s genotype.

The function print/1 is a new addition. It is a simple and easy way to dump the
tuple encoded genotype to terminal. It is useful when you wish to see what the to-
pology looks like, and when you need to analyze the genotype when debugging
the system.

7.6.2 Modifying the morphology Module

As we discussed earlier, we want to specify the scape and its type in the sensors
and actuators belonging to some particular morphology. We thus modify the rec-
ords.hrl file and extend the sensor and actuator records to also contain the scape
element. The new sensor and actuator records will be represented as:

7.6 Developing the Extended Architecture 205

-record(sensor,{id,name,cx_id,scape,vl,fanout_ids}).
-record(actuator,{id,name,cx_id,scape,vl,fanin_ids}).

In the previous chapter, we only had one type of morphology called: test, we
now modify the morphology module by removing “test”, and adding xor_mimic.
Both, the sensor and the actuator of the xor_mimic morphology, interact with a
private scape called xor_sim. Because the same private scape is specified for both
the sensor and the actuator, only one private scape by the name xor_sim will be
spawned, and they (the sensor and the actuator) will both connect to it, rather than
each separately spawning its own separate xor_sim scape. The following listing
shows the new xor_mimic morphology with its lists of sensors and actuators.

Listing-7.2: The new morphological type and specification added to morphology.erl

xor_mimic(sensors)->
 [
 #sensor{id={sensor,generate_id()}, name=xor_GetInput, scape={private,xor_sim},
vl=2}
];
xor_mimic(actuators)->
 [
 #actuator{id={actuator,generate_id()}, name=xor_SendOutput,
scape={private,xor_sim}, vl=1}
].

Having now modified the genotype to use ets tables, and having extended the
records of our sensors and actuators, we are ready to start adding new features to
our system.

7.6.3 Developing the trainer Module

When training a NN we should be able to specify all the stopping conditions,
the NN based agent’s morphology, and the neural network’s topology. Thus the
trainer process should perform the following steps:

1. Repeat:
2. Create a NN of specified topology with random weights.
3. Wait for the trained NN’s final fitness
4. Compare the trained NN’s fitness to an already stored NN’s fitness, if any.
5. If the new NN is better, overwrite the old one with it.

6. Until: One of the stopping conditions is reached
7. Return: Best genotype and its fitness score.

206 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

We will implement all 3 types of stopping conditions:

1. A fitness score that we wish to reach,
2. The Max_Attempts that we’re willing to perform before giving up.
3. The maximum number of evaluations we’re willing to perform before giving

up.

If any one of these conditions is triggered, the training ends. For default, we set
maximum number of evaluations (EVAL_LIMIT) and the minimum required fit-
ness (FITNESS_TARGET) to inf, which means that these conditions will never be
reached since in Erlang an atom is considered greater than a number. Thus when
starting the trainer by executing go/2, the process will default to simply using
MAX_ATTEMPTS, which is set to 5. The complete source code for trainer.erl is
shown in the following listing.

Listing-7.3 The implementation of the trainer module.

-module(trainer).
-compile(export_all).
-include(“records.hrl”).
-define(MAX_ATTEMPTS,5).
-define(EVAL_LIMIT,inf).
-define(FITNESS_TARGET,inf).

go(Morphology,HiddenLayerDensities)->
 go(Morphology,HiddenLayerDensities,?MAX_ATTEMPTS,?EVAL_LIMIT,
?FITNESS_TARGET).
go(Morphology,HiddenLayerDensities,MaxAttempts,EvalLimit,FitnessTarget)->
 PId = spawn(trainer,loop,[Morphology,HiddenLayerDensities,FitnessTarget,
{1,MaxAttempts},{0,EvalLimit},{0,best},experimental]),
 register(trainer,PId).
%The function go/2 is executed to start the training process based on the Morphology and
HiddenLayerDensities specified. The go/2 function uses a default values for the Max_Attempts,
Eval_Limit, and Fitness_Target parameters, which makes the training based purely on the
Max_Attempts value. Function go/5 allows for all the stopping conditions to be specified.

loop(Morphology,_HLD,FT,{AttemptAcc,MA},{EvalAcc,EL},{BestFitness,BestG},_ExpG,
CAcc,TAcc) when (AttemptAcc>=MA) or (EvalAcc>=EL) or (BestFitness>=FT)->
 genotype:print(BestG),
 io:format(“ Morphology:~p Best Fitness:~p EvalAcc:~p~n”, [Morphology, BestFitness,
EvalAcc]);
loop(Morphology,HLD,FT,{AttemptAcc,MA},{EvalAcc,EvalLimit},{BestFitness,BestG},
ExpG,CAcc,TAcc)->
 genotype:construct(ExpG,Morphology,HLD),
 Agent_PId=exoself:map(ExpG),

7.6 Developing the Extended Architecture 207

 receive
 {Agent_PId,Fitness,Evals,Cycles,Time}->
 U_EvalAcc = EvalAcc+Evals,
 U_CAcc = CAcc+Cycles,
 U_TAcc = TAcc+Time,
 case Fitness > BestFitness of
 true ->
 file:rename(ExpG,BestG),
 ?MODULE:loop(Morphology,HLD,FT,{1,MA}, {U_EvalAcc,
EvalLimit}, {Fitness,BestG},ExpG,U_CAcc,U_TAcc);
 false ->
 ?MODULE:loop(Morphology,HLD,FT,{AttemptAcc+1,MA},
{U_EvalAcc,EvalLimit}, {BestFitness,BestG}, ExpG,U_CAcc,U_TAcc)
 end;
 terminate ->
 io:format(“Trainer Terminated:~n”),
 genotype:print(BestG),
 io:format(“ Morphology:~p Best Fitness:~p EvalAcc:~p~n”, [Morphology,
BestFitness,EvalAcc])
 end.
%loop/7 generates new NNs and trains them until a stopping condition is reached. Once any
one of the stopping conditions is reached, the trainer prints to screen the genotype, the morpho-
logical name of the organism being trained, the best fitness score achieved, and the number of
evaluations taken to find this fitness score.

7.6.4 Modifying the exoself Module

The Exoself’s purpose is to train and monitor the NN system. Though at this
point we will only implement the NN activation, training, and termination. But the
way we will design the exoself process, and its general position in the NN based
agent’s architecture, will allow it to be modified (and we eventually will modify
it) to support the NN’s fault tolerance and self repair functionality. In the follow-
ing listing we add to the exoself module the necessary source code it needs to train
the NN system using the augmented SHC algorithm we covered in section 7.1.

Listing-7.4: Modifications added to the exoself.erl

prep(FileName,Genotype)->
 {V1,V2,V3} = now(),
 random:seed(V1,V2,V3),
 IdsNPIds = ets:new(idsNpids,[set,private]),
 Cx = genotype:read(Genotype,cortex),
 Sensor_Ids = Cx#cortex.sensor_ids,

208 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

 Actuator_Ids = Cx#cortex.actuator_ids,
 NIds = Cx#cortex.nids,
 ScapePIds=spawn_Scapes(IdsNPIds,Genotype,Sensor_Ids,Actuator_Ids),
 spawn_CerebralUnits(IdsNPIds,cortex,[Cx#cortex.id]),
 spawn_CerebralUnits(IdsNPIds,sensor,Sensor_Ids),
 spawn_CerebralUnits(IdsNPIds,actuator,Actuator_Ids),
 spawn_CerebralUnits(IdsNPIds,neuron,NIds),
 link_Sensors(Genotype,Sensor_Ids,IdsNPIds),
 link_Actuators(Genotype,Actuator_Ids,IdsNPIds),
 link_Neurons(Genotype,NIds,IdsNPIds),
 {SPIds,NPIds,APIds}=link_Cortex(Cx,IdsNPIds),
 Cx_PId = ets:lookup_element(IdsNPIds,Cx#cortex.id,2),
 loop(FileName,Genotype,IdsNPIds,Cx_PId,SPIds,NPIds,APIds,ScapePIds,0,0,0,0,1).
%Once the FileName and the Genotype are dropped into the prep/2 function, the function uses
the current time to create a new random seed. Then the cortex is extracted from the genotype
and the Sensor, Actuator, and Neural Ids are extracted from it. The sensors and actuators are
dropped into the spawn_Scapes/4, which extracts the scapes that need to be spawned, and then
spawns them. Afterwards, the sensor, actuator, neuron, and the cortex elements are spawned.
Then the exoself process sends these spawned elements the PIds of the elements they are con-
nected to, thus linking all the elements together into a proper interconnected structure. The cor-
tex element is the last one to be linked, because once it receives the message from the exoself
with all the data, it immediately starts synchronizing the NN by prompting the sensors to action.
Afterwards, prep/2 drops into the exoself’s main process loop.

loop(FileName,Genotype,IdsNPIds,Cx_PId,SPIds,NPIds,APIds,ScapePIds,HighestFitness,
EvalAcc,CycleAcc,TimeAcc,Attempt)->
 receive
 {Cx_PId,evaluation_completed,Fitness,Cycles,Time}->
 {U_HighestFitness,U_Attempt}=case Fitness > HighestFitness of
 true ->
 [NPId ! {self(),weight_backup} || NPId <- NPIds],
 {Fitness,0};
 false ->
 Perturbed_NPIds=get(perturbed),
 [NPId ! {self(),weight_restore} || NPId <- Perturbed_NPIds],
 {HighestFitness,Attempt+1}
 end,
 case U_Attempt >= ?MAX_ATTEMPTS of
 true ->%End training
 U_CycleAcc = CycleAcc+Cycles,
 U_TimeAcc = TimeAcc+Time,
 backup_genotype(FileName,IdsNPIds,Genotype,NPIds),
 terminate_phenotype(Cx_PId,SPIds,NPIds,APIds,ScapePIds),
 io:format(“Cortex:~p finished training. Genotype has been

7.6 Developing the Extended Architecture 209

backed up.~n Fitness:~p~n TotEvaluations:~p~n TotCycles:~p~n TimeAcc:~p~n”, [Cx_PId,
U_HighestFitness, EvalAcc, U_CycleAcc, U_TimeAcc]),
 case whereis(trainer) of
 undefined ->
 ok;
 PId ->
 PId!{self(),U_HighestFitness, EvalAcc,
U_CycleAcc, U_TimeAcc}
 end;
 false -> %Continue training
 Tot_Neurons = length(NPIds),
 MP = 1/math:sqrt(Tot_Neurons),
 Perturb_NPIds=[NPId || NPId <- NPIds,random:uniform()<MP],
 put(perturbed,Perturb_NPIds),
 [NPId ! {self(),weight_perturb} || NPId <- Perturb_NPIds],
 Cx_PId ! {self(),reactivate},
 loop(FileName,Genotype, IdsNPIds,Cx_PId,SPIds, NPIds,APIds,
ScapePIds,U_HighestFitness, EvalAcc+1, CycleAcc+Cycles, TimeAcc+Time, U_Attempt)
 end
 end.
%The main process loop waits for the NN to complete the task, receive its fitness score, and
send Exoself the: {Cx_PId,evaluation_completed,Fitness,Cycles,Time} message. The message
contains all the information about that particular evaluation, the acquired fitness score, the
number of total Sense-Think-Act cycles executed, and the time it took to complete the evalua-
tion. The exoself then compares the Fitness to the one it has on record (if any), and based on
that decides whether to revert the previously perturbed neurons back to their original state or
not. If the new Fitness is lower, then the perturbed neurons are contacted and their weights are
reverted. If the new Fitness is greater than the one stored on record, then the NN is backed up to
file, and the variable EvalAcc is reset to 0. Finally, depending on whether the NN has failed to
improve its fitness Max_Attempts number of times, the exoself decides whether another NN
perturbation attempt is warranted. If it is warranted, then the exoself chooses which neurons to
mutate by randomly choosing each neuron with the probability of 1/sqrt(Tot_Neurons), where
Tot_Neurons is the total number of neurons in the neural network. The exoself saves the PIds of
those chosen neurons to process dictionary, and then sends those neurons a signal that they
should perturb their weights. Finally it tells cortex to reactivate and start syncing the sensors
and actuators again. But if the NN has failed to improve its fitness for Max_Attempts number
of times, if EvalAcc > Max_Attempts, then the exoself terminates all the elements in the NN,
and if there is a registered process by the name ‘trainer’, the exoself sends it the HighestFitness
score that its NN achieved and the number of total evaluations it took to achieve it.

 spawn_Scapes(IdsNPIds,Genotype,Sensor_Ids,Actuator_Ids)->
 Sensor_Scapes = [(genotype:read(Genotype,Id))#sensor.scape || Id<-Sensor_Ids],
 Actuator_Scapes = [(genotype:read(Genotype,Id))#actuator.scape || Id<-

210 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

Actuator_Ids],
 Unique_Scapes = Sensor_Scapes++(Actuator_Scapes--Sensor_Scapes),
 SN_Tuples=[{scape:gen(self(),node()),ScapeName} || {private,ScapeName}<-
Unique_Scapes],
 [ets:insert(IdsNPIds,{ScapeName,PId}) || {PId,ScapeName} <- SN_Tuples],
 [ets:insert(IdsNPIds,{PId,ScapeName}) || {PId,ScapeName} <-SN_Tuples],
 [PId ! {self(),ScapeName} || {PId,ScapeName} <- SN_Tuples],
 [PId || {PId,_ScapeName} <-SN_Tuples].
%spawn_Scapes/4 first extracts all the scape names from sensors and actuators, then builds a
list of unique scapes, and then finally extracts and spawns the private scapes. The public scapes
are not spawned since they are independent of the NN, and should already be running. The rea-
son for extracting the list of unique scapes is because if both, a sensor and an actuator are point-
ing to the same scape, then that means that they will interface with the same scape, and it does
not mean that each one should spawn its own scape of the same name. Afterwards we use the
IdsNPids ETS table to create a map from scape PId to scape name, and from scape name to
scape PId for later use. The function then sends each spawned scape a message composed of
the exoself’s PId, and the scape’s name: {self(),ScapeName}. Finally, a spawned scape PId list
is composed and returned to the caller.

We also modify the terminate_Phenotype function to also accept the ScapePIds
parameter, and terminate all the scapes before terminating the Cortex process.
Thus the following line is added to the function:

[PId ! {self(),terminate} || PId <- ScapePIds]

Having created the function which extracts the names of the scapes from the
sensors and actuators of the NN system, we now develop our first scape and the
very first problem on which we’ll test our learning algorithm on.

7.6.5 Developing the scape Module

Looking ahead, we will certainly apply our Neuroevolutionary system to many
different problems. Our system should be able to deal with ALife problems as eas-
ily as with pole balancing, financial trading, circuit design & optimization, image
analysis, or any other of the infinite problems that exist. It is for this reason that
we’ve made the sensors/actuators/scape a separate part from the NN itself, all
specified through the morphology module. This way, for every problem we wish
to apply our neuroevolutionary system to, we can keep the NN specific modules
the same, and simply create a new morphology/scape packages.

7.6 Developing the Extended Architecture 211

Because there will be many scapes, a new scape for almost every problem that
we’ll want to solve or apply our neuroevolutionary system to, we will use the
same scape.erl module and specify the different scapes within it by function name.
Because the first and standard problem to apply a NN to is the XOR (Exclusive-
OR) problem, our first scape will be a scape called xor_sim. The xor problem is
the “hello world” of NN problems. The goal is to teach a NN to act like a XOR
operation. The truth table of the 2 input XOR operation is presented in the follow-
ing listing.

Listing-7.5: Truth table of the XOR operation.

X1 X2 X1 XOR X2
false true true
false false false
true false true
true true false

Because the range of tanh, the activation function of our neuron, is between -1
and 1, we will represent false as -1, and true as 1 (a bipolar encoding), rather than
0 and 1 (a unipolar encoding). This way we can use the full output range of our
neurons. The following listing shows the complete source code of the scape mod-
ule, which at this point contains only the single scape named xor_sim.

Listing-7.6: The complete scape module.

-module(scape).
-compile(export_all).
-include(“records.hrl”).

gen(ExoSelf_PId,Node)->
 spawn(Node,?MODULE,prep,[ExoSelf_PId]).

prep(ExoSelf_PId) ->
 receive
 {ExoSelf_PId,Name} ->
 scape:Name(ExoSelf_PId)
 end.
%gen/2 is executed by the exoself. The function spawns prep/1 process, and awaits the name of
the scape from the exoself. Each scape is a separate and independent process, a self contained
system that was developed to interface with the sensors and actuators from which its name was
extracted. The name of the scape is the name of its main process loop.

212 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

xor_sim(ExoSelf_PId)->
 XOR = [{[-1,-1],[-1]},{[1,-1],[1]},{[-1,1],[1]},{[1,1],[-1]}],
 xor_sim(ExoSelf_PId,{XOR,XOR},0).

xor_sim(ExoSelf_PId,{[{Input,CorrectOutput}|XOR],MXOR},ErrAcc) ->
 receive
 {From,sense} ->
 From ! {self(),percept,Input},
 xor_sim(ExoSelf_PId,{[{Input,CorrectOutput}|XOR],MXOR},ErrAcc);
 {From,action,Output}->
 Error = list_compare(Output,CorrectOutput,0),
 case XOR of
 [] ->
 MSE = math:sqrt(ErrAcc+Error),
 Fitness = 1/(MSE+0.00001),
 From ! {self(),Fitness,1},
 xor_sim(ExoSelf_PId,{MXOR,MXOR},0);
 _ ->
 From ! {self(),0,0},
 xor_sim(ExoSelf_PId,{XOR,MXOR},ErrAcc+Error)
 end;
 {ExoSelf_PId,terminate}->
 ok
 end.

 list_compare([X|List1],[Y|List2],ErrorAcc)->
 list_compare(List1,List2,ErrorAcc+math:pow(X-Y,2));
 list_compare([],[],ErrorAcc)->
 math:sqrt(ErrorAcc).
%xor_sim/3 is a scape that simulates the XOR operation, interacts with the NN, and gages the
NN’s performance. xor_sim expects two types of messages from the NN, one message from the
sensor and one from the actuator. The message: {From,sense} prompts the scape to send the
NN the percept, which is a vector of length 2 and contains the XOR input. The second expected
message from the NN is the message from the actuator, which is expected to be an output of the
NN and packaged into the form: {From,action,Output}. At this point xor_sim/3 compares the
Output with the expected output that is associated with the sensory message that should have
been gathered by the sensors, and then sends back to the actuator process a message composed
of the scape’s PId, Fitness, and a HaltFlag which specifies whether the simulation has ended for
the NN. The scape keeps track of the Mean Squared Error between the NN’s output and the
correct output. Once the NN has processed all 4 signals for the XOR, the scape computes the
total MSE, converts it to fitness, and finally forwards this fitness and the HaltFlag=1 to the NN.
This particular scape uses the lifetime based fitness, rather than step-based fitness. During all
the other steps the scape sends the actuator the signal: {Scape_PId,0,0}, while it accumulates
the errors, and only at the very end does it calculate the total fitness, which is the inverse of the
error with a small extra added value to avoid the divide by 0 errors. Afterwards, xor_sim resets
back to its initial state and awaits anew for signals from the NN.

7.6 Developing the Extended Architecture 213

7.6.6 Modifying the cortex Module

As in the previous chapter, the cortex element still acts as the synchronizer of
the sensors and actuators. But now, it will also keep track of the accumulated fit-
ness score, propagated to it by the actuators. The cortex will also keep track of
whether the HaltFlag==1 was sent to it by any of the actuators, which would sig-
nify that the cortex element should halt, notify its exoself of the achieved fitness
score, and then await for further instructions from it. Finally, the cortex will also
keep track of the number of sense-think-act cycles performed during its lifetime.
The augmented cortex module is shown in the following listing.

Listing-7.7 The updated cortex module.

-module(cortex).
-compile(export_all).
-include(“records.hrl”).
-record(state,{id,exoself_pid,spids,npids,apids,cycle_acc=0,fitness_acc=0,endflag=0,status}).

gen(ExoSelf_PId,Node)->
 spawn(Node,?MODULE,prep,[ExoSelf_PId]).

prep(ExoSelf_PId) ->
 {V1,V2,V3} = now(),
 random:seed(V1,V2,V3),
 receive
 {ExoSelf_PId,Id,SPIds,NPIds,APIds} ->
 put(start_time,now()),
 [SPId ! {self(),sync} || SPId <- SPIds],
 loop(Id,ExoSelf_PId,SPIds,{APIds,APIds},NPIds,1,0,0,active)
 end.
%The gen/2 function spawns the cortex element, which immediately starts to wait for its initial
state message from the same process that spawned it, exoself. The initial state message contains
the sensor, actuator, and neuron PId lists. Before dropping into the main loop, CycleAcc,
FitnessAcc, and HFAcc (HaltFlag Acc), are all set to 0, and the status of the cortex is set to ac-
tive, prompting it to begin the synchronization process and call the sensors to action.

loop(Id, ExoSelf_PId, SPIds, {[APId|APIds], MAPIds}, NPIds, CycleAcc, FitnessAcc, HFAcc,
active) ->
 receive
 {APId,sync,Fitness,HaltFlag} ->
 loop(Id,ExoSelf_PId,SPIds,{APIds,MAPIds},NPIds,CycleAcc,FitnessAcc+
Fitness, HFAcc+HaltFlag,active);
 terminate ->
 io:format(“Cortex:~p is terminating.~n”,[Id]),
 [PId ! {self(),terminate} || PId <- SPIds],

214 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

 [PId ! {self(),terminate} || PId <- MAPIds],
 [PId ! {self(),termiante} || PId <- NPIds]
 end;
loop(Id,ExoSelf_PId,SPIds,{[],MAPIds},NPIds,CycleAcc,FitnessAcc,HFAcc,active)->
 case EFAcc > 0 of
 true ->%Organism finished evaluation
 TimeDif=timer:now_diff(now(),get(start_time)),
 ExoSelf_PId ! {self(),evaluation_completed,FitnessAcc,CycleAcc,TimeDif},
 loop(Id,ExoSelf_PId,SPIds,{MAPIds,MAPIds},NPIds,CycleAcc,FitnessAcc,
HFAcc, inactive);
 false ->
 [PId ! {self(),sync} || PId <- SPIds],

 loop(Id,ExoSelf_PId,SPIds,{MAPIds,MAPIds},NPIds,CycleAcc+1,FitnessAcc,
HFAcc,active)
 end;
loop(Id, ExoSelf_PId, SPIds, {MAPIds,MAPIds}, NPIds, _CycleAcc, _FitnessAcc, _HFAcc,
inactive)->
 receive
 {ExoSelf_PId,reactivate}->
 put(start_time,now()),
 [SPId ! {self(),sync} || SPId <- SPIds],
 loop(Id,ExoSelf_PId,SPIds,{MAPIds,MAPIds},NPIds,1,0,0,active);
 {ExoSelf_PId,terminate}->
 ok
 end.
%The cortex’s goal is to synchronize the NN system’s sensors and actuators. When the actua-
tors have received all their control signals, they forward the sync messages, the Fitness, and the
HaltFlag messages to the cortex. The cortex accumulates these Fitness and HaltFlag signals,
and if any of the HaltFlag signals have been set to 1, HFAcc will be greater than 0, signifying
that the cortex should halt. When EFAcc > 0, the cortex calculates the total amount of time it
has ran (TimeDiff), and forwards to exoself the values: FitnessAcc, CycleAcc, and TimeDiff.
Afterwards, the cortex enters the inactive mode and awaits further instructions from the exoself.
If none of the HaltFlags were set to 0, then the value HFAcc == 0, and the cortex triggers off
another Sense-Think-Act cycle. The reason the cortex process stores 2 copies of the actuator
PIds: the APIds, and the MemoryAPIds (MAPIds), is so that once all the actuators have sent it
the sync messages, it can restore the APIds list from the MAPIds.

7.6.7 Modifying the neuron Module

To allow the exoself process to optimize the weights of the NN through the
SHC algorithm, we will need to give our neurons the ability to have their weights
perturbed when requested to do so by the exoself, and have their weights reverted

7.6 Developing the Extended Architecture 215

when/if requested by the same. We will also specify the range of these weight per-
turbations in this module, and the weight saturation values, the maximum and
minimum values that the weights can take. It is usually not a good idea to let the
weights reach very large positive or negative values, as that would allow any sin-
gle weight to completely overwhelm other synaptic weights of the same neuron.
For example if a neuron has 100 weights in total, and one of the weights has a val-
ue of 1000000, no other weight can compete with it unless it too is raised to such a
high value. This results in a single weight controlling the information processing
ability of the entire neuron. It is important that no weight can overwhelm all others
(which prevents the neuron from performing coherent processing of signals), for
this reason we will set the saturation limit to 2*Pi, and the perturbation intensity to
half that. The perturbation intensity is half the value of weight saturation point so
that there will always be a chance that the weight could flip from a positive to a
negative value. The range of the weight perturbation intensity is specified by the
DELTA_MULTIPLIER macro as: -define(DELTA_MULTIPLIER,math:pi()*2),
since we will multiply it by (random:uniform()-0.5), the actual range will be be-
tween -Pi and Pi.

The complete neuron module is shown in the following listing.

Listing-7.8 The neuron module.

-module(neuron).
-compile(export_all).
-include(“records.hrl”).
-define(DELTA_MULTIPLIER,math:pi()*2).
-define(SAT_LIMIT,math:pi()*2).

gen(ExoSelf_PId,Node)->
 spawn(Node,?MODULE,prep,[ExoSelf_PId]).

prep(ExoSelf_PId) ->
 {V1,V2,V3} = now(),
 random:seed(V1,V2,V3),
 receive
 {ExoSelf_PId,{Id,Cx_PId,AF,Input_PIdPs,Output_PIds}} ->
 loop(Id,ExoSelf_PId,Cx_PId,AF,{Input_PIdPs,Input_PIdPs},Output_PIds,0)
 end.
%When gen/2 is executed it spawns the neuron element, which seeds the pseudo random num-
ber generator, and immediately begins to wait for its initial state message. It is essential that we
seed the random number generator to make sure that every NN will have a different set of mu-
tation probabilities and different combination of perturbation intensities. Once the initial state
signal from the exoself is received, the neuron drops into its main loop.

216 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

loop(Id,ExoSelf_PId,Cx_PId,AF,{[{Input_PId,Weights}|Input_PIdPs],MInput_PIdPs},Output_
PIds,Acc)->
 receive
 {Input_PId,forward,Input}->
 Result = dot(Input,Weights,0),

 loop(Id,ExoSelf_PId,Cx_PId,AF,{Input_PIdPs,MInput_PIdPs},Output_PIds,Result+Acc);
 {ExoSelf_PId,weight_backup}->
 put(weights,MInput_PIdPs),

 loop(Id,ExoSelf_PId,Cx_PId,AF,{[{Input_PId,Weights}|Input_PIdPs],MInput_PIdPs},Outp
ut_PIds,Acc);
 {ExoSelf_PId,weight_restore}->
 RInput_PIdPs = get(weights),

 loop(Id,ExoSelf_PId,Cx_PId,AF,{RInput_PIdPs,RInput_PIdPs},Output_PIds,Acc);
 {ExoSelf_PId,weight_perturb}->
 PInput_PIdPs=perturb_IPIdPs(MInput_PIdPs),

 loop(Id,ExoSelf_PId,Cx_PId,AF,{PInput_PIdPs,PInput_PIdPs},Output_PIds,Acc);
 {ExoSelf_PId,get_backup}->
 ExoSelf_PId ! {self(),Id,MInput_PIdPs},

 loop(Id,ExoSelf_PId,Cx_PId,AF,{[{Input_PId,Weights}|Input_PIdPs],MInput_PIdPs},Outp
ut_PIds,Acc);
 {ExoSelf_PId,terminate}->
 ok
 end;
loop(Id,ExoSelf_PId,Cx_PId,AF,{[Bias],MInput_PIdPs},Output_PIds,Acc)->
 Output = neuron:AF(Acc+Bias),
 [Output_PId ! {self(),forward,[Output]} || Output_PId <- Output_PIds],
 loop(Id,ExoSelf_PId,Cx_PId,AF,{MInput_PIdPs,MInput_PIdPs},Output_PIds,0);
loop(Id,ExoSelf_PId,Cx_PId,AF,{[],MInput_PIdPs},Output_PIds,Acc)->
 Output = neuron:AF(Acc),
 [Output_PId ! {self(),forward,[Output]} || Output_PId <- Output_PIds],
 loop(Id,ExoSelf_PId,Cx_PId,AF,{MInput_PIdPs,MInput_PIdPs},Output_PIds,0).

 dot([I|Input],[W|Weights],Acc) ->
 dot(Input,Weights,I*W+Acc);
 dot([],[],Acc)->
 Acc.

7.6 Developing the Extended Architecture 217

%The neuron process waits for vector signals from all the processes that it’s connected from.
As the presynaptic signals fanin, the neuron takes the dot product of the input and their associ-
ated weight vectors, and then adds it to the accumulator. Once all the signals from Input_PIds
are received, the accumulator contains the dot product to which the neuron then adds the bias (if
it exists) and executes the activation function. After fanning out the output signal, the neuron
again returns to waiting for incoming signals. When the neuron receives the {ExoSelf_PId,
get_backup} message, it forwards to the exoself its full MInput_PIdPs list, and its Id. The
MInput_PIdPs contains the current version of the neural weights. When the neuron receives the
{ExoSelf_PId,weight_perturb} message, it executes the perturb_IPIdPs/1, after which the neu-
ron drops back into the loop but with MInput_PIdPs replaced by the new PInput_PIdPs. It is
important to note that the neuron expects to be synchronized, and expects that it has at this
point not received any signals from the other elements it is connected from, because if it has
and it then changes out the Input_PIdPs with PInput_PIdPs, it might start waiting for signals
from the elements from which it has already received the signals. When the neuron receives the
{ExoSelf_PId,weight_backup}, it stores its weights in its process dictionary. When the neuron
receives the {ExoSelf,weight_restore}, it restores its weights to the state they were before being
perturbed by restoring the saved synaptic weights from its process dictionary.

 tanh(Val)->
 math:tanh(Val).
%The activation function is a sigmoid function, tanh.

perturb_IPIdPs(Input_PIdPs)->
 Tot_Weights=lists:sum([length(Weights) || {_Input_PId,Weights}<-Input_PIdPs]),
 MP = 1/math:sqrt(Tot_Weights),
 perturb_IPIdPs(MP,Input_PIdPs,[]).
perturb_IPIdPs(MP,[{Input_PId,Weights}|Input_PIdPs],Acc)->
 U_Weights = perturb_weights(MP,Weights,[]),
 perturb_IPIdPs(MP,Input_PIdPs,[{Input_PId,U_Weights}|Acc]);
perturb_IPIdPs(MP,[Bias],Acc)->
 U_Bias = case random:uniform() < MP of
 true-> sat((random:uniform()-0.5)*?DELTA_MULTIPLIER+Bias,-
?SAT_LIMIT,?SAT_LIMIT);
 false -> Bias
 end,
 lists:reverse([U_Bias|Acc]);
perturb_IPIdPs(_MP,[],Acc)->
 lists:reverse(Acc).
%perturb_IPIdPs/1 first calculates the probability that a weight will be perturbed, the probabil-
ity being the inverse square root of the total number of weights in the neuron. The function then
drops into perturb_IPIdPs/3, which executes perturb_weights/3 for every set of weights associ-
ated with a particular Input_PId in the Input_PIdPs list. If bias is present in the weights list, it is

218 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

 perturb_weights(MP,[W|Weights],Acc)->
 U_W = case random:uniform() < MP of
 true->
 sat((random:uniform()-0.5)*?DELTA_MULTIPLIER+W,-
?SAT_LIMIT,?SAT_LIMIT);
 false ->
 W
 end,
 perturb_weights(MP,Weights,[U_W|Acc]);
 perturb_weights(_MP,[],Acc)->
 lists:reverse(Acc).

 sat(Val,Min,Max)->
 if
 Val < Min -> Min;
 Val > Max -> Max;
 true -> Val
 end.
%perturb_weights/3 accepts a probability value, a list of weights, and an empty list to act as an
accumulator. The function then goes through the weight list perturbing each weight with a
probability of MP. The weights are constrained to be within the range of -?SAT_LIMIT and
SAT_LIMIT through the use of the sat/3 function.

7.6.8 Modifying the sensor Module

We have already created the xor_sim scape which expects a particular set of
messages from the sensors and actuators interfacing with it. The scape expects the
message: {Sensor_PId,sense} from the sensor, to which it responds with the sensory

reached last and perturbed just as any other weight, based on the probability. Afterwards, the
perturbed and inverted version of the Input_PIdPs is reversed back to the proper order and re-
turned to the calling function.

data sent in the: {Scape_PId,percept,SensoryVector} format. We now add to the
sensor module a new function which can send and receive such messages. As we
decided in the morphology module, the name of the new sensor will be
xor_GetInput. The new function is shown in the following listing.

Listing-7.9 The implementation of the xor_GetInput sensor.

xor_GetInput(VL,Scape)->
 Scape ! {self(),sense},
 receive
 {Scape,percept,SensoryVector}->
 case length(SensoryVector)==VL of

 219

 true ->
 SensoryVector;
 false ->
 io:format(“Error in sensor:xor_sim/2, VL:~p
SensoryVector:~p~n”, [VL,SensoryVector]),
 lists:duplicate(VL,0)
 end
 end.
%xor_GetInput/2 contacts the XOR simulator and requests the sensory vector, which in this
case should be a vector of length 2. The sensor checks that the incoming sensory signal, the
percept, is indeed of length 2. If the vector length differs, then this is printed to the console and
a dummy vector of appropriate length is constructed and used. This prevents unnecessary
crashes in the case of errors, and gives the researcher a chance to fix the error and hotswap the
code.

The scape expects the message: {Actuator_PId,action,Output} from the actua-
tor, to which it responds with the: {Scape_PId,FItness,EndFlag} message. We de-
cided in the morphology module to call the actuator that will interface with the
xor_sim scape: xor_SendOutput. The following listing shows this newly added
function to the actuator module.

Listing-7.10 The implementation of the xor_SendOutput actuator.

xor_SendOutput(Output,Scape)->
 Scape ! {self(),action,Output},
 receive
 {Scape,Fitness,HaltFlag}->
 {Fitness,HaltFlag}

7.6.9 Modifying the actuator Module

 end.
%xor_SendOutput/2 function simply forwards the Output vector to the XOR simulator, and
then waits for the resulting Fitness and HaltFlag message from the scape.

7.7 Compiling Modules & Simulating the XOR Operation

We have now added all the new features, functions, and elements we needed to
implement the learning algorithm with our NN system. When modifying our sys-
tem to give it the ability to learn through the use of the augmented stochastic hill-
climbing, we also implemented the xor_sim scape and the associated morphology
with its sensors and actuators. We now compile all the modules we’ve created and

7.7 Compiling Modules & Simulating the XOR Operation

220 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

modified to see if they work, and then test if our system can indeed learn. To
compile everything in one step, make sure you’re in the folder where all the mod-
ules are stored, and then execute the following command:

1>make:all([load]).
…
up_to_date

Now that everything is compiled, we can test to see if our NN can learn to sim-
ulate the XOR operation. The XOR operation cannot be performed by a single
neuron. To solve this problem by a strictly feed forward neural network, the min-
imum required topology to perform this task is: [2,1], 2 neurons in the first layer
and 1 in the output layer. We can specify the morphology, the NN topology, and
the stopping condition, right from the trainer. The morphology, xor_mimic, speci-
fies the problem we wish to apply the NN to, and the sensors and actuators that
will interface with the xor_sim scape which will simulate the XOR operation and
gage the NN’s ability to simulate it. For the stopping condition we will choose to
use fitness. We’ll decide on the minimum fitness we wish our NN to achieve by
calculating the total error in the NN’s approximation of XOR that we’re willing to
accept. For example, a maximum error of 0.001 translates into a minimum fitness
of 1/(0.01+ 0.00001), or: 99.9. Since we do not wish to use other stopping condi-
tions, we’ll set them to inf. Thus each training session will run until the NN can
approximate XOR with an error no greater than 0.001 (a fitness no less than 99.9).

1>trainer:go(xor_mimic,[2],inf,inf,99.9).
Finished updating genotype to file:experimental
Cortex:<0.104.0> finished training. Genotype has been backed up.
 Fitness:188.94639182995695
 TotEvaluations:224
 TotCycles:896
{cortex,cortex,
 [{sensor,7.617035388076853e-10}],
 [{actuator,7.617035388076819e-10}],
 [{neuron,{1,7.61703538807679e-10}},
 {neuron,{1,7.617035388076778e-10}},
 {neuron,{2,7.617035388076755e-10}}]}
{sensor,{sensor,7.617035388076853e-10},
 xor_GetInput,cortex,undefined,
 {private,xor_sim},
 2,
 [{neuron,{1,7.61703538807679e-10}},{neuron,{1,7.617035388076778e-10}}],
 undefined,[],[]}
{neuron,{neuron,{1,7.61703538807679e-10}},
 cortex,tanh,
 [{{sensor,7.617035388076853e-10},

7.7 Compiling Modules & Simulating the XOR Operation 221

 [-6.283185307179586,6.283185307179586]},
 {bias,-6.283185307179586}],
 [{neuron,{2,7.617035388076755e-10}}]}
{neuron,{neuron,{1,7.617035388076778e-10}},
 cortex,tanh,
 [{{sensor,7.617035388076853e-10},
 [-5.663623085487123,6.283185307179586]},
 {bias,6.283185307179586}],
 [{neuron,{2,7.617035388076755e-10}}]}
{neuron,{neuron,{2,7.617035388076755e-10}},
 cortex,tanh,
 [{{neuron,{1,7.617035388076778e-10}},[-6.283185307179586]},
 {{neuron,{1,7.61703538807679e-10}},[6.283185307179586]},
 {bias,6.283185307179586}],
 [{actuator,7.617035388076819e-10}]}
{actuator,{actuator,7.617035388076819e-10},
 xor_SendOutput,cortex,undefined,
 {private,xor_sim},
 1,
 [{neuron,{2,7.617035388076755e-10}}],
 undefined,[],[]}
 Morphology:xor_mimic Best Fitness:188.94639182995695 EvalAcc:224

It works!. The trainer used the specified morphology to generate genotypes
with the particular set of sensors and actuators to interface with the scape, and
eventually produced a trained NN. In this particular case, the best fitness was
188.9, and it took only 224 evaluations to reach it. The trainer also used the geno-
type:print/1 function to print the genotype topology to screen when it was done,
which allows us to now analyze the genotype and double check it for accuracy.

Since the learning algorithm is stochastic, the number of evaluations it takes
will differ from one attempt to another, some will go as high as a few thousand,
other will stay in the hundreds. But if you’ve attempted this exercise, you might
have also noted that you got roughly the same fitness, and this requires an expla-
nation.

We’re using tanh as the activation function. This activation function has 1 and -
1 as its limit, and because we’re using the weight saturation limit set to 2*PI, the
neuron’s output can only get so close to -1 and 1 through the tanh function, and
hence the final error in the XOR operation approximation. Thus the fitness we can
achieve is limited by how close tanh(PI*2) can get to 1, and tanh(-PI*2) can get
to -1. Since you and I are using the same SAT_LIMIT parameters, we can achieve
the same maximum fitness scores, which is what we saw in the above result:
(188.9), when using the SAT_LIMIT = 2*PI. If we for example modify the
SAT_LIMIT in our neuron module as follows:

222 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

From: -define(SAT_LIMIT,math:pi()*2)
To: -define(SAT_LIMIT,math:pi()*20)

Then recompile and apply the NN to the problem again, then the best fitness
will come out to be 99999.99. Nevertheless, the SAT_LIMIT equaling to
math:pi()*2 is high enough for most situations, and as noted, when we allow the
weights to take a value of any magnitude, we run the risk of any one synaptic
weight to overwhelm the whole neuron and make it essentially useless. Also, re-
turning the neural weight that has ran afoul and exploded in magnitude back to an
appropriate value would be difficult with small perturbations... Throughout the
years I’ve found that having the SAT_LIMIT set to math:pi() or math:pi()*2 is the
most effective choice.

We’ve now created a completely functional, static feed forward neural network
system that can be applied to a lot of different problem types through the use of
the system’s scape, sensors, and actuators packages. It’s an excellent start, and
because our learning algorithm is unsupervised, we can even use our NNs as con-
trollers in ALife. But there is also a problem, our NN system is only feedforward
and so it does not possess memory, achievable through recursive connections. Al-
so, our system only uses the tanh activation function, which might make problems
like fourier analysis, fourier synthesis, and many other problems difficult to tackle.
Our system can achieve an even greater flexibility if it can use other activation
functions, and just like randomly choosing synaptic weights during neuron crea-
tion, it should be able to randomly choose activation functions from some prede-
termined list of said functions. Another problem we’ve noticed even when solving
the XOR problem is that we had to know the minimal topology beforehand. If in
the previous problem we would have chosen a topology of: [1] or [2], our NN
would not have been able to solve that problem. Thus our NN has a flaw, the flaw
is that we need to know the proper topology, or the minimal topology which can
solve the problem we’re applying our NN to. We need to devise a plan to over-
come this problem, by letting our NN evolve topology as well. Another problem is
that even though our NN “learns”, it actually does not. It is, in reality, just being
optimized by an external process, the exoself. What is missing is neural plasticity,
the ability of the neurons to self modify based on sensory signals, and past experi-
ence... that would be true learning, learning as self modification based on interac-
tion with the environment within the lifetime of the organism. Finally, even
though our system does have all the necessary features for us to start implement-
ing supervision trees and process monitoring, we will first implement and develop
the neuroevolutionary functionality, before transforming our system into a truly

Before we continue on to the next chapter where we will start adding some of
these mentioned features, and finally move to a population based approach and
topological evolution, we first need to create a small benchmarking function. For
example, we’ve used the trainer to solve the XOR problem and we noted that it

fault tolerant distributed CI system.

7.8 Adding the benchmarker Module 223

took K number of evaluations to solve it. When you’ve solved it with a trainer on
your computer, you probably have gotten another value... we need to create a
function that automates the process of applying the trainer to some problem many
times, and then calculates the average performance of the system. We need a
benchmarking method because it will allow us to calculate dependable average
performance of our system and allow us to compare it to other machine learning
approaches. It will also allow us to test new features and get a good idea of what
affect they have on our system’s performance across the spectrum of problems we
might have in our benchmark suit. Thus, in the next section we will develop a
small benchmarking function.

7.8 Adding the benchmarker Module

In this section we want to create a small system that performs benchmarking of
the NN system we’ve developed, on some problem or problem set. This bench-
marking system should be able to summon the trainer process X number of times,
applying it to some problem of our choosing. After the benchmarker process has
spawned the trainer, it should wait for it to finish optimizing the NN system. At
some point the trainer will reach its stopping condition, and then send the bench-
marking process the various performance statistics of the optimization run. For
example the trainer could send to the benchmarker the number of evaluations it
took to train the NN to solve some problem, the amount of time it took it, and the
NN size required to solve it. The benchmarker should accumulate a list of these
values, and once it has applied the trainer to the chosen problem X number of
times, it should calculate the averages and standard deviations of these various
performance statistics. Finally, our benchmarking system should print these per-
formance results to console. At this point the researcher could use this perfor-
mance data to for example compare his system to other state of the art machine
learning algorithms, or the researcher could vary some parameter or add some new
features to his system and benchmark it again, and in this manner see if the new
features make the system more or less effective. Thus our benchmarker should
perform the following steps:

1. Repeat:
2. Apply the trainer to some experiment or problem.
3. Receive from the trainer the resulting data (total evaluations, total cycles,

NN size...).
4. Add this data to the statistics accumulator.

5. Until: The trainer has been applied to the given problem, X number of times.
6. Return: Calculate averages and standard deviations of the various features in

the accumulator.

224 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

The following listing shows the implementation of the benchmarker module.

Listing-7.11: The implementation of the benchmarker module.

-module(benchmarker).
-compile(export_all).
-include(“records.hrl”).
-define(MAX_ATTEMPTS,5).
-define(EVAL_LIMIT,inf).
-define(FITNESS_TARGET,inf).
-define(TOT_RUNS,100).
-define(MORPHOLOGY,xor_mimic).

go(Morphology,HiddenLayerDensities)->
 go(Morphology,HiddenLayerDensities,?TOT_RUNS).
go(Morphology,HiddenLayerDensities,TotRuns)->
 go(Morphology,HiddenLayerDensities,?MAX_ATTEMPTS,?EVAL_LIMIT,
?FITNESS_TARGET,TotRuns).
go(Morphology,HiddenLayerDensities,MaxAttempts,EvalLimit,FitnessTarget,TotRuns)->
 PId = spawn(benchmarker,loop,[Morphology,HiddenLayerDensities,MaxAttempts,
EvalLimit,FitnessTarget,TotRuns,[],[],[],[]]),
 register(benchmarker,PId).
% The benchmarker is started through the go/2, go/3, or go/6 function. The parameters the
benchmark uses can be specified through the macros, and then used by executing go/2 or go/3
for which the researcher simply specifies the Morphology (the problem on which the NN will
be benchmarked) and the HiddenLayerDensities (NN topology). The go/2 and go/3 functions
execute go/6 function with default parameters. The benchmarker can also be started through
go/6, using which the researcher can manually specify all the parameters: morphology, NN to-
pology, Max Attempts, Max Evaluations, target fitness, and the total number of times to run the
trainer. Before dropping into the main loop, go/6 registers the benchmarker process so that the
trainer can send it the performance stats when it finishes.

loop(Morphology,_HiddenLayerDensities,_MA,_EL,_FT,0,FitnessAcc,EvalsAcc,CyclesAcc,
TimeAcc)->
 io:format(“Benchmark results for:~p~n”,[Morphology]),
 io:format(“Fitness::~n Max:~p~n Min:~p~n Avg:~p~n Std:~p~n”,
 [lists:max(FitnessAcc),lists:min(FitnessAcc),avg(FitnessAcc),std(FitnessAcc)]),
 io:format(“Evals::~n Max:~p~n Min:~p~n Avg:~p~n Std:~p~n”,
 [lists:max(EvalsAcc),lists:min(EvalsAcc),avg(EvalsAcc),std(EvalsAcc)]),
 io:format(“Cycles::~n Max:~p~n Min:~p~n Avg:~p~n Std:~p~n”,
 [lists:max(CyclesAcc),lists:min(CyclesAcc),avg(CyclesAcc),std(CyclesAcc)]),
 io:format(“Time::~n Max:~p~n Min:~p~n Avg:~p~n Std:~p~n”,
 [lists:max(TimeAcc),lists:min(TimeAcc),avg(TimeAcc),std(TimeAcc)]);

7.8 Adding the benchmarker Module 225

loop(Morphology,HiddenLayerDensities,MA,EL,FT,BenchmarkIndex,FitnessAcc,EvalsAcc,
CyclesAcc,TimeAcc)->
 Trainer_PId = trainer:go(Morphology,HiddenLayerDensities,MA,EL,FT),
 receive
 {Trainer_PId,Fitness,Evals,Cycles,Time}->
 loop(Morphology,HiddenLayerDensities,MA,EL,FT,BenchmarkIndex-1,
[Fitness|FitnessAcc],[Evals|EvalsAcc],[Cycles|CyclesAcc],[Time|TimeAcc]);
 terminate ->
 loop(Morphology,HiddenLayerDensities,MA,EL,FT,0,FitnessAcc,EvalsAcc,
CyclesAcc,TimeAcc)
 end.
% Once the benchmarker is started, it drops into its main loop. The main loop spawns the train-
er and waits for it to finish optimizing the NN system, after which it sends to the benchmarker
the performance based statistics. The benchmarker accumulates these performance statistics in
lists, rerunning the trainer TotRuns number of times. Once the benchmarker has ran the trainer
TotRuns number of times, indicated to be so when BenchmarkIndex reaches 0, it calculates the
Max, Min, Average, and Standard Deviation values for every statistic list it accumulated.

avg(List)->
 lists:sum(List)/length(List).
avg_std(List)->
 Avg = avg(List),
 std(List,Avg,[]).

 std([Val|List],Avg,Acc)->
 std(List,Avg,[math:pow(Avg-Val,2)|Acc]);
 std([],_Avg,Acc)->
 Variance = lists:sum(Acc)/length(Acc),
 math:sqrt(Variance).
%avg/1 and std/1 functions calculate the average and the standard deviation values of the lists
passed to them.

To make the whole system functional, we also have to slightly modify the
trainer module so that when the stopping condition is reached, the trainer prints
the genotype to console, unregisters itself, checks if a process by the name
benchmarker exists, and if it does, sends it the performance stats of the optimiza-
tion session. To make this modification, we add the following lines of code to our
trainer module:

unregister(trainer),
case whereis(benchmarker) of
 undefined ->
 ok;
 PId ->
 PId ! {self(),BestFitness,EvalAcc,CAcc,TAcc}
end;

226 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

We now compile and recompile the benchmarker and the trainer modules re-
spectively, and then test our new benchmarker system. To test it, we apply it to the
XOR problem, executing it with the following parameters:

 Morphology: xor_mimic
 HiddenLayerDensities: [2]
 MaxAttempts: inf
 EvalLimit: inf
 FitnessTarget: 100
 TotRuns: 100

Based on these parameters, each trainer will generate genotypes until one of
them solves the problem with a fitness of at least 100. Thus, the benchmarker will
calculate the resulting performance statistics from 100 experiments. To start the
benchmarker, execute the following command:

1>benchmarker:go(xor_mimic,[2],inf,inf,100,100).
…
Benchmark results for:xor_mimic
Fitness::
 Max:99999.99999999999
 Min:796.7693071321515
 Avg:96674.025859051
 Std:16508.11828048093
Evals::
 Max:2222
 Min:258
 Avg:807.1
 Std:415.8308670601546
...

It works! The benchmarker ran 100 training sessions and calculated averages,
standard deviations, maxs, and mins for the accumulated Fitness, Evaluations, Cy-
cles, and Time lists. Our system now has all the basic features of a solid machine
learning platform.

7.9 Summary

In this chapter we added the augmented stochastic hill-climber optimization al-
gorithm to our system, and extended the exoself process so that it can use it to
tune its NN’s synaptic weights. We also developed a trainer, a system which fur-
ther extends the SHC optimization algorithm by restarting genotypes when the
exoself had tuned the NN’s synaptic weights and reached its stopping condition.
This effectively allows the trainer process to use the Random Restart Stochastic

7.9 Summary 227

Hill Climbing optimization algorithm to train NNs. Finally, we created the
benchmarker program, a system that can apply the trainer process to some prob-
lem, X number of times, and then average the performance statistics and print the
results to console.

Our NN system now has all the features necessary to solve and be applied to
various problems and simulations. The learning algorithm our system implements
is the simple yet very powerful augmented version of the random-restart stochastic
hill-climber. We also now have a standardized method of presenting simulations,
training scenarios, and problems to our NN system, all through the decoupled
scape packages and morphologies.

In the next chapter we will take this system even further, combining it with
population based evolutionary computation and topological mutation, thus creat-
ing a simple topology and weight evolving artificial neural network system.

	Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm
	7.1 The Learning Method
	7.1.1 Comparing EA to Random Restart SHC

	7.2 The Trainer
	7.3 The Exoself
	7.4 The Scape
	7.5 Scapes, Sensors, Actuators, Morphologies, and Fitness
	7.6 Developing the Extended Architecture
	7.6.1 Modifying the genotype Module
	7.6.2 Modifying the morphology Module
	7.6.3 Developing the trainer Module
	7.6.4 Modifying the exoself Module
	7.6.5 Developing the scape Module
	7.6.6 Modifying the cortex Module
	7.6.7 Modifying the neuron Module
	7.6.8 Modifying the sensor Module
	7.6.9 Modifying the actuator Module

	7.7 Compiling Modules & Simulating the XOR Operation
	7.8 Adding the benchmarker Module
	7.9 Summary

