
Chapter 6 Developing a Feed Forward Neural 
Network  

As we discussed in an earlier chapter, Neural Networks (NN) are directed 
graphs composed of simple processing elements as shown in Figure-6.1. Every 
vertex in such a directed graph is a Neuron, every edge is an outgoing axon and a 
path along which the neuron sends information to other Neurons. A NN has an in-
put layer which is a set of neurons that receive signals from sensors, and an output 
layer which is a set of neurons that connect to actuators. In a general NN system 
the sensors can be anything, from cameras, to programs that read from a database 
and pass that data to the neurons. The Actuators too can range from functions 
which control motors, to simple programs which print the output signals to the 
screen. Every neuron processes its incoming signals, produces an output signal, 
and passes it on to other neurons.  

 
Fig. 6.1 A simple Neural Network. 

Whether the NN does something intelligent or useful is based on its topology 
and parameters. The method of modifying the NN topology and parameters to 
make it do something useful, is the task of its learning algorithm. A learning algo-
rithm can be supervised, like in the case of the error back propagation learning al-
gorithm, or it can be unsupervised like in the evolutionary or reinforcement learn-
ing algorithms. In a supervised learning algorithm the outputs of the NN need to 
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Abstract   In this chapter we discuss how a single artificial neuron processes sig-
nals, and how to simulate it. We then develop a single artificial neuron and test its 
functionality. Having discussed and developed a single neuron, we decide on the 
NN architecture we will implement, and then develop a genotype constructor, and a 
mapper from genotype to phenotype. Finally, we then ensure that that our simple 
NN system works by using a simple sensor and actuator attached to the NN to test 
its sense-think-act ability. 
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be known in advance, such that corrections can be given to the NN based on the 
differences in its produced outputs and the correct outputs. Once we have mini-
mized the differences between the answers we want and the answers the NN gives, 
we apply the NN to a new set of data, to another problem in the same field but one 
which the NN has not encountered during its training. In the case of unsupervised 
learning, it is only important to be able to tell whether one NN system performs 
better than another. There is no need to know exactly how the problem should be 
solved, the NNs will try to figure that out for themselves; the researcher only 
needs to choose the neural networks that produce better results over those that do 
not. We will develop these types of systems in future sections. 

In this chapter we will learn how to program a static neural network system 
whose topological and parametric properties are specified during its creation, and 
are not changed during training. We will develop a genotype encoding for a sim-
ple monolithic Neural Network, and then we’ll create a mapper program which 
converts the NN genotype to its phenotypic representation. The process of modify-
ing these weights, parameters, and the NN topology is the job of a learning algo-
rithm, the subject that we will cover in the chapters that follow. 

In the following sections when we discuss genotypes and phenotypes, we mean 
their standard definitions: a genotype is the organism’s full hereditary information, 
which is passed to offspring in mutated or unchanged form, and the phenotype is 
the organism’s actual observed properties, its morphology and behavior. The pro-
cess of mapping a genotypical representation of the organism to the phenotypical 
one is done through a process called development, to which we also will refer to 
as: mapping. A genotype of the organism is the form in which we store it in our 
database, on the other hand its phenotype is its representation and behavior when 
the organism, a NN in our case, is live and functioning. In the NN system that we 
build in this chapter, the genotype will be a list of tuples, and the phenotype a 
graph of interconnected processes sending and receiving messages from one an-
other. 

********Note******** 
The encoding of a genotype itself can either be direct, or indirect. A direct encoding is one in 
which the genotype encodes every topological and parametric aspect of the NN phenotype in a 
one to one manner, the genotype and the phenotype can be considered one and the same. An in-
direct encoding applies a set of programs, or functions to the genotype, through which the phe-
notype is developed. This development process can be highly complex and stochastic in nature 
which takes into consideration the environmental factors during the time of development, and 
producing a one too many mapping from a  genotype to the phenotype. An example of a direct 
encoding is that of a bit string which maps to a colored strip in which the 0s are directly con-
verted to white sections and 1s to black. An example of an indirect encoding is the case of 
DNA, where the development from the genotype to a phenotype is a multi-stage process, with 
complex interactions between the developing organism and the environment it is in. 
******************** 
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We will now slowly build up a NN system, from a single neuron, to a fully 
functional feed forward neural network. In the next section we take our first step 
and develop an artificial neuron using Erlang. 

6.1 Simulating A Neuron 

Let us again briefly review the representation and functionality of a single arti-
ficial neuron, as shown in Figure-6.2. A neuron is but a simple processing element 
which accepts input signals, weighs the importance of each signal by multiplying 
it by a weight associated with it, adds a bias to the result, applies an activation 
function to this sum, and then forwards the result to other elements it is connected 
to. As an example, assume we have a list of input signals to the neuron: 
[I1,I2,I3,I4], this input is represented as a vector composed of 4 elements. The 
neuron then must have a list of weights, one weight for every incoming signal: 
[W1,W2,W3,W4]. We weigh each signal with its weight by taking a dot product 
of the input vector and the weight vector as follows: Dot_Product = I1*W1 + 
I2*W2 + I3*W3 + I4*W4. If the neuron also has a threshold value or bias, we 
simply add this bias value to the Dot_Product. Finally, we apply the activation 

 
Fig. 6.2  An artificial Neuron.
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Mathematically, the neuron that uses a set of weights and a bias is equivalent to 
a neuron that accepts an “extended input vector” and uses an “extended weight 
vector” to weigh the signals. An extended input vector has “1” appended to the in-
put vector and an extended weight vector has the bias appended to the weight vec-
tor. Using the extended vectors, we then take a single dot product as follows: 
[I1,I2,I3,I4,1]dot[W1,W2,W3,W4,Bias]= (I1*W1) +(I2*W2) +(I3*W3) +(I4*W4) 
+(1*Bias), which is equal to the dot product of the input and weight vector, plus 
the bias as before. Neurons that do not use a bias would simply not append the ex-
tension to the input, and thus produce the dot product without a bias value. 

Lets simulate and test a very simple neuron, which we will represent using a 
process. The neuron will have a predetermined number of weights, 2, and it will 
include a bias. With 2 wights, this neuron can process input vectors of length 2. 
The activation function will be the standard sigmoid function, in our neuron it’s 
approximated by the hyperbolic tangent (tanh) function included in the math mod-
ule. The architecture of this neuron will be the same as in Figure-6.2. 

In the following algorithm, we spawn a process to represent our Neuron, and 
register it so that we can send and receive signals from it. We use a simple remote 
procedure call function called ‘sense’ to send signals to the registered neuron, and 
then receive the neuron’s output. 

tivation_Function(Dot_Product), and for a neuron that also has a bias: Output = 
Activation_Function(Dot_Product + Bias). A bias is an extra floating point pa-
rameter not associated with any particular incoming signal, and it adds a level of 
tunable asymmetry to the activation function. 

simple_neuron.erl 
-module(simple_neuron).  
-compile(export_all).  
 
create()->  
 Weights = [random:uniform()-0.5,random:uniform()-0.5,random:uniform()-0.5],  
 register(neuron, spawn(?MODULE,loop,[Weights])).  
%The create function spawns a single neuron, where the weights and the bias are generated 
randomly to be between -0.5 and 0.5.  
 
loop(Weights) ->  
 receive  
  {From, Input} ->  
   io:format(“****Processing****~n Input:~p~n Using 
Weights:~p~n”,[Input,Weights]),  
   Dot_Product = dot(Input,Weights,0),  
   Output = [math:tanh(Dot_Product)],  

function to the dot product to produce the final output of the neuron: Output = Ac-
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%The spawned neuron process accepts an input vector, prints it and the weight vector to the 
screen, calculates the output, and then sends the output to the contacting process. The output is 
also a vector of length one.  
 
 dot([I|Input],[W|Weights],Acc) ->  
  dot(Input,Weights,I*W+Acc);  
 dot([],[Bias],Acc)->  
  Acc + Bias.  
%The dot product function that we use works on the assumption that the bias is incorporated in-
to the weight list as the last value in that list. After calculating the dot product, the input list will 
empty out while the weight list will still have the single bias value remaining, which we then 
add to the accumulator.  
 
sense(Signal)->  
 case is_list(Signal) and (length(Signal) == 2) of  
  true->  
   neuron ! {self(),Signal},  
   receive  
    {result,Output}->  
    io:format(“ Output: ~p~n”,[Output])  
   end;  
  false->  
   io:format(“The Signal must be a list of length 2~n”)  
 end.  
%We use the sense function to contact the neuron and send it an input vector. The sense func-
tion ensures that the signal we are sending is a vector of length 2. 

Now let’s compile and test our module: 

1> c(simple_neuron). 
{ok,simple_neuron} 
2> simple_neuron:create(). 
true. 
3> simple_neuron:sense([1,2]). 
****Processing****  
 Input:[1,2]  
 Using Weights:[0.44581636451986995,0.0014907142064750634, -0.18867324519560702]  
 Output: [0.25441202264242263]  

   From ! {result,Output},  
   loop(Weights)  
 end.  
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It works! We can expand this neuron further by letting it accept signals only 
from certain predetermined list of PIds, and then output the result not back to 
those same processes, but instead to another set of PIds. With such modifications 
this neuron could then be used as a fully functional processing element in a NN. In 
the next section we will build a single neuron neural network that uses such pro-
cessing element. 

6.2 A One Neuron Neural Network 

Next we will create the simplest possible NN. Our NN topology will be com-
posed of a single Neuron which receives a signal from a Sensor, calculates an out-
put based on its weights and activation function, and then passes that output signal 
to the Actuator. This topology and architecture is shown in Figure-6.3. You will 
also notice that there is a 4th element called Cortex. This element is used to trigger 
the sensor to start producing sensory data, and it also contains the PIds of all the 
processes in the system so that it can be used to shut down the NN when we are 
done with it. Finally, this type of element can also be used as a supervisor of the 
NN, and play a role in the NN’s synchronization with the learning algorithm. The-
se features will become important when we start developing the more complex 
NN systems in the chapters that follow. 

 
Fig. 6.3 One Neuron Neural Network. 
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To create this system, we will need to significantly modify the functions in our 
simple_neuron module, and add new features as shown in the following source 
code: 

simplest_nn.erl 
-module(simplest_nn).  
-compile(export_all).  
 
create() ->  
 Weights = [random:uniform()-0.5,random:uniform()-0.5,random:uniform()-0.5],  
 N_PId = spawn(?MODULE,neuron,[Weights,undefined,undefined]),  
 S_PId = spawn(?MODULE,sensor,[N_PId]),  
 A_PId = spawn(?MODULE,actuator,[N_PId]),  
 N_PId ! {init,S_PId,A_PId},  
 register(cortex,spawn(?MODULE,cortex,[S_PId,N_PId,A_PId])).  
%The create function first generates 3 weights, with the 3rd weight being the Bias. The Neuron 
is spawned first, and is then sent the PIds of the Sensor and Actuator that it’s connected with. 
Then the Cortex element is registered and provided with the PIds of all the elements in the NN 
system.  
 
neuron(Weights,S_PId,A_PId) ->  
 receive  
  {S_PId, forward, Input} ->  
   io:format(“****Thinking****~n Input:~p~n with 
Weights:~p~n”,[Input,Weights]),  
   Dot_Product = dot(Input,Weights,0),  
   Output = [math:tanh(Dot_Product)],  
   A_PId ! {self(), forward, Output},  
   neuron(Weights,S_PId,A_PId);  
  {init, New_SPId, New_APId} ->  
   neuron(Weights,New_SPId,New_APId);  
  terminate ->  
   ok  
 end.  
%After the neuron finishes setting its SPId and APId to that of the Sensor and Actuator respec-
tively, it starts waiting for the incoming signals. The neuron expects a vector of length 2 as in-
put, and as soon as the input arrives, the neuron processes the signal and passes the output vec-
tor to the outgoing APId.  
 
 dot([I|Input],[W|Weights],Acc) ->  
  dot(Input,Weights,I*W+Acc);  
 dot([],[],Acc)->  



160      Chapter 6 Developing a Feed Forward Neural Network  

  Acc;  
 dot([],[Bias],Acc)->  
  Acc + Bias.  
%The dot function takes a dot product of two vectors, it can operate on a weight vector with 
and without a bias. When there is no bias in the weight list, both the Input vector and the 
Weight vector are of the same length. When Bias is present, then when the Input list empties 
out, the Weights list still has 1 value remaining, its Bias.  
 
sensor(N_PId) ->  
 receive  
  sync ->  
   Sensory_Signal = [random:uniform(),random:uniform()],  
   io:format(“****Sensing****:~n Signal from the environment 
~p~n”,[Sensory_Signal]),  
   N_PId ! {self(),forward,Sensory_Signal},  
   sensor(N_PId);  
  terminate ->  
   ok  
 end.  
%The Sensor function waits to be triggered by the Cortex element, and then produces a random 
vector of length 2, which it passes to the connected neuron. In a proper system the sensory sig-
nal would not be a random vector but instead would be produced by a function associated with 
the sensor, a function that for example reads and vector-encodes a signal coming from a GPS 
attached to a robot.  
 
actuator(N_PId) ->  
 receive  
  {N_PId,forward,Control_Signal}->  
   pts(Control_Signal),  
   actuator(N_PId);  
  terminate ->  
   ok  
 end.  
 
 pts(Control_Signal)->  
  io:format(“****Acting****:~n Using:~p to act on environ-
ment.~n”,[Control_Signal]).  
%The Actuator function waits for a control signal coming from a Neuron. As soon as the signal 
arrives, the actuator executes its function, pts/1, which prints the value to the screen.  
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cortex(Sensor_PId,Neuron_PId,Actuator_PId)->  
 receive  
  sense_think_act ->  
   Sensor_PId ! sync,  
   cortex(Sensor_PId,Neuron_PId,Actuator_PId);  
  terminate ->  
   Sensor_PId ! terminate,  
   Neuron_PId ! terminate,  
   Actuator_PId ! terminate,  
   ok  
 end.  
%The Cortex function triggers the sensor to action when commanded by the user. This process 
also has all the PIds of the elements in the NN system, so that it can terminate the whole system 
when requested. 

Lets compile and try out this system: 

1>c(simplest_nn). 
{ok,simplest_nn} 
2>simplest_nn:create(). 
true 
3> cortex ! sense_think_act. 
****Sensing****:  
 Signal from the environment [0.09230089279334841,0.4435846174457203]  
sense_think_act  
****Thinking****  
 Input:[0.09230089279334841,0.4435846174457203]  
 with Weights:[-0.4076991072066516,-0.05641538255427969,0.2230402056221108]  
****Acting****:  
 Using:[0.15902302907693572] to act on environment.  

It works! But though this system does embody many important features of a re-
al NN, it is still rather useless since it’s composed of a single neuron, the sensor 
produces random data, and the NN has no learning algorithm so we can not teach 
it to do something useful. In the following sections we are going to design a NN 
system for which we can specify different starting topologies, for which we can 
specify sensors and actuators, and which will have the ability to learn to accom-
plish useful tasks. 
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6.3 Planning Our Neural Network System’s Architecture 

A standard Neural Network (NN) is a graph of interconnected Neurons, where 
every neuron can send and receive signals from other neurons and/or sensors and 
actuators. The simplest of NN architectures is that of a monolithic feed forward 
neural network (FFNN), as shown in Figure-6.4. In a FFNN, the signals only 
propagate in the forward direction, from sensors, through the neural layers, and fi-
nally reaching the actuators which use the output signals to act on the environ-
ment. In such a NN system there are no recursive or cyclical connections. After 
the Actuators have acted upon the environment, the sensors once again produce 
and send sensory signals to the neurons in the first layer, and the “Sense-Think-
Act” cycle repeats. 

 
Fig. 6.4 A Feed Forward Neural Network. 

Every neuron must be able to accept a vector input of length 1+, and produce a 
vector output of length 1. Since all neural inputs and outputs are in vector form, 
and the sensory signals sent from the sensors are also in vector form, the neurons 
neither need to know nor care whether the incoming signals are coming from other 
neurons or sensors. Let’s take a closer look at the two types of connections that 
occur in a NN, the [neuron|sensor]-to-neuron and the neuron-to-actuator connec-
tion as shown in Figure-6.5.  
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Fig. 6.5 Neuron/Sensor-To-Neuron & Neuron-To-Actuator connections. 

Every input signal to a neuron is a list of values [I1...In], a vector of length 1 or 
greater. The neuron’s output signal is also a vector, a list of length 1, [O]. Because 
each Neuron outputs a vector of length 1, the actuators accumulate the signals 
coming from the Neurons into properly ordered vectors of length 1+. The order of 
values in the vector is the same as the order of PIds in its fanin pid list. Once the 
actuator has finished gathering the signals coming from all the neurons connected 
to it, it uses the accumulated vector as a parameter to its actuation function. 

Once all the neurons in the output layer have produced and forwarded their sig-
nals to actuators, the NN can start accepting new sensory inputs again (*Note* It 
is possible for a NN to process multiple sensory input vectors, one after the other, 
rather than one at a time and waiting until an output vector is produced before ac-
cepting a new wave of sensory vectors. This would be somewhat similar to the 
way a multi-stage pipeline in a CPU works, with every neural layer in the NN pro-
cessing signals at the same time, as opposed to the processing of sensory vectors 
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algorithm is also present. This synchronization will be done using the Cortex ele-
ment we’ve briefly discussed earlier. We will recreate a more complex version of 
the Cortex program which will synchronize the sensors producing sensory signals, 
the actuators gathering the output vectors from the NN’s output layer, and the 
learning algorithm modifying the weight parameters of the NN and allowing the 
system to learn.  

Putting all this information and elements together, our Neural Network will 
function as follows: The sensor programs poll/request input signals from the envi-
ronment, and then preprocess and fan out these sensory signals to the neurons in 
the first layer. Eventually the neurons in the output layer produce signals that are 
passed to the actuator program(s). Once an actuator program receives the signals 
from all the neurons it is connected from, it post-processes these signals and then 
acts upon the environment. A sensor program can be anything that produces sig-
nals, either by itself (random number generator) or as a result of interacting with 
the environment, like a camera, an intrusion detection system, or a program that 
simply reads from a database and passes those values to the NN for example. An 

propagating from first to last layer, one set of sensory input vectors at a time.) This 
Sense-Think-Act cycle requires some synchronization, especially if a learning  

 
Fig. 6.6 All the elements of a NN system. 
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A sensor, actuator, neuron, and the cortex are just 4 different types of processes 
that accept signals, process them, and execute some kind of element specific func-
tion. Lets discuss every one of these processes in detail, to see what information 
we might need to create them in their genotypic and phenotypic form. 

Sensor: A sensor is any process that produces a vector signal that the NN then 
processes. This signal can  be produced from the sensor interacting with the envi-
ronment, for example the data coming from a camera, or from the sensor some-
how generating the signal internally. 

Actuator: An actuator is a process that accepts signals from the Neurons in the 
output layer, orders them into a vector, and then uses this vector to control some 
function that acts on the environment or even the NN itself. An actuator might 
have incoming connections from 3 Neurons, in which case it would then have to 
wait until all 3 of the neurons have sent it their output signals, accumulate these 
signals into a vector, and then use this vector as a parameter to its actuation func-
tion. The function could for example dictate the voltage signal to be sent to a servo 
that controls a robot’s gripper. 

can accept a single floating point value,  post process the value so that its range is 
from -1 to 1, and then execute the motor driver using this value as the parameter, 
where the sign and magnitude of the parameter designates which way to steer and 
how hard. Another example actuator is one that accepts signals from the NN, and 
then buys or sells a stock based on that signal, with a complementary sensor which 
reads the earlier price values of the same stock. This type of NN system architec-
ture is visually represented in Figure-6.6.  

actuator program is any program that accepts signals and then acts upon the envi-
ronment based on those signals. For example, a robot actuator steering program 

Neuron: The neuron is a signal processing element. It accepts signals, accumu-
lates them into an ordered vector, then processes this input vector to produce an 
output, and finally passes the output to other elements it is connected to. The Neu-
ron never interacts with the environment directly, and even when it does receive 
signals and produces output signals, it does not know whether these input signals 
are coming from sensors or neurons, or whether it is sending its output signals to 
other neurons or actuators. All the neuron does is have a list of input PIds from 
which it expects to receive signals, a list of output PIds to which the neuron sends 
its output, a weight list correlated with the input PIds, and an activation function it 
applies to the dot product of the input vector and its weight vector. The neuron 
waits until it receives all the input signals, processes those signals, and then passes 
the output onwards. 

Cortex: The cortex is a NN synchronizing element. It needs to know the PId of 
every sensor and actuator, so that it will know when all the actuators have re-
ceived their control inputs, and that it’s time for the sensors to again gather and 
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Now that we know how these elements should work and process signals, we 
need to come up with an encoding which can be used to store any type of NN to-
pology in a database, or a flat file. This stored representation of the NN is its geno-
type. We should be able to specify the topology and the parameters of the NN 
within the genotype, and then generate from it a process based NN system, the 
phenotype. Using a genotype also allows us to train a NN to do something useful, 
and then save the updated and trained NN to a file for later use. Finally, once we 
decide to use an evolutionary learning algorithm, the NN genotypes are what the 
mutation operators will be applied to, and from what the mutated offspring will be 
generated.  

In the next section we will develop a simple, human readable, and tuple based 
genotype encoding for our NN system. This type of encoding will be easy to un-
derstand, work with, and easy to encode and operate on using standard directional 
graph based functions. The use of such a direct way to store the genotype will also 
make it easy to think about it, and thus to advance, scale, and utilize it in the more 
advanced systems we’ll develop in the future. 

6.4 Developing a Genotype Representation 

There are a number of ways to encode the genotype of a monolithic Neural 
Network (NN). Since NNs are directed graphs, we could simply use Erlang’s di-
graph module. The digraph module in particular has functions with which to cre-
ate Nodes/Neurons, Edges/Connections between the nodes, and even sub graphs, 
thus easily allowing us to develop modular topologies. Another simple way to en-
code the genotype is by representing the NN as a list of tuples, where every tuple 
is a record representing either a Neuron, Sensor, Actuator, or the Cortex element. 
Finally, we could also use a hash table, ets for example, instead of a simple list to 
store the tuples.  

In every one of these cases, every element in the genotype is encoded as a hu-
man readable tuple. Our records will directly reflect the information that would be 
included and needed by every process in the phenotype. The 4 elements can be 
represented using the following records: 

Sensor: -record(sensor, {id, cx_id, name, vl, fanout_ids}). 

fanout sensory data to the neurons in the input layer. At the same time, the Cortex 
element can also act as a supervisor of all the Neuron, Sensor, and Actuator ele-
ments in the NN system. 
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Actuator: -record(actuator, {id, cx_id, name, vl, fanin_ids}). 

The actuator id has the following format: {actuator, UniqueVal}. cx_id is the 
the Id of the Cortex element. ‘name’ is the name of the function the actuator exe-
cutes to act upon the environment, with the function parameter being the vector it 
accumulates from the incoming neural signals. ‘vl’ is the vector length of the ac-
cumulated actuation vector. Finally, the fanin_ids is a list of neuron ids which are 
connected to the actuator. 

Neuron: -record(neuron, {id, cx_id, af, input_idps, output_ids}). 

A neuron id uses the following format: {neuron,{LayerIndex, UniqueVal}}. 
cx_id is the the Id of the Cortex element. The activation function, af,  is the name 
of the function the neuron uses on the extended dot product (dot product plus bi-
as). The activation function that we will use in the simple NN we design in this 
chapter will be ‘tanh’, later we will extend the list of available activation functions 
our NNs can use. ‘input_idps’ stands for Input Ids “Plus”, which is a list of tuples 
as follows: [{Id1,Weights1} … {IdN,WeightsN},{bias,Val}].  Each tuple is com-
posed of the Id of the element that is connected to the neuron, and weights corre-
lated with the input vector coming from the neuron with the listed Id. The last tu-
ple in the input_idps is {bias,Val}, which is not associated with any incoming 
signal, and represents the Bias value. Finally, output_ids is a list of Ids to which 
the neuron will fanout its output signal.  

Cortex: -record(cortex, {id, sensor_ids, actuator_ids, nids}). 

The cortex Id has the following format: {cortex, UniqueVal}. ‘sensor_ids’ is a 
list of sensor ids that produce and pass the sensory signals to the neurons in the in-
put layer. ‘actuator_ids’ is a list of actuator ids that the neural output layer is con-
nected to. When the actuator is done affecting the environment, it sends the cortex 
a synchronization signal. After the cortex receives the sync signal from all the ids 
in its actuator_ids list, it triggers all the sensors in the sensor_ids list. Finally, nids 
is the list of all neuron ids in the NN. 

Figure-6.7 shows the correlation between the tuples/records and the process 
based phenotypic representations to which they map. Using this record representa-
tion in our genotype allows us to easily and safely store all the information of our 
NN. We need only decide whether to use a digraph, a hash table, or a simple list to 

The sensor id has the following format: {sensor, UniqueVal}. cx_id is the Id of 
the Cortex element. ‘name’ is the name of the function the sensor executes to gen-
erate or acquire the sensory data, and vl is the vector length of the produced senso-
ry signal. Finally, fanout_ids is a list of neuron ids to which the sensory data will 
be fanned out. 
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store the Genotype of a NN. Because we will be building a very simple Feed For-
ward Neural Network in this chapter, let us start by using a simple list. For the 
more advanced evolutionary NN systems that we’ll build in the later chapters, we 
will switch to an ETS or a Digraph representation. 

 
Fig. 6.7 Record to process correlation. 

In the next section we will develop a program which accepts high level specifi-
cation parameters of the NN genotype we wish to construct, and which outputs the 
genotype represented as a list of tuples. We will then develop a mapping function 
which will use our NN genotype to create a process based phenotype, which is the 
actual NN system that senses, thinks, and takes action based on its sensory signals 
and neural processing. 

6.5 Programming the Genotype Constructor 

Now that we’ve decided on the necessary elements and their genotypic repre-
sentation in our NN system, we need to create a program that accepts as input the 
high level NN specification parameters, and produces the genotype as output. 
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When creating a NN, we need to be able to specify the sensors it  will use, the ac-
tuators it will use, and the general NN topology. The  NN topology specification 
should state how many layers and how many neurons per layer the feed forward 
NN will have. Because we wish to keep this particular NN system very simple, we 
will only require that the genotype constructor is able to generate NNs with a sin-
gle sensor and actuator. For the number of layers and layer densities of the NN, all 
the information can be contained in a single LayerDensities list as shown in Fig-
ure-6.8. Thus, our genotype constructor should be able to construct everything 
from a parameter list composed of a sensor name, an actuator name, and a 
LayerDensities list. The LayerDensities parameter will actually only specify the 
hidden layer densities, where the hidden LayerDensities are all the non output lay-
er densities. The output layer density will be calculated from the vector length of 
the actuator. An empty HiddenLayerDensities list implies that the NN will only 
have a single neural layer, whose density is equal to the actuator’s vector length. 

 
Fig. 6.8 A NN composed of 3 layers, with a [3, 2, 2] layer density pattern. 

For example, a genotype creating program which accepts 
(SensorName,ActuatorName,[1,3]) as input, where the sensor vector length is 3 
and the actuator vector length is 1, should produce a NN with 3 layers, whose out-
put layer has 1 neuron, as shown in Figure-6.9. The input layer will have a single 
neuron which has 3 weights and a bias, so that the neurons in the first layer can 
process input vectors of length 3 coming from the sensor. The output layer has a 
single neuron, due to actuator’s vl equaling 1. 
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Fig. 6.9 Genotype with: LayerDensities == [1,3,1], and HiddenLayerDensities == [1,3]. 

We first create a file to contain the records representing each element we’ll use: 

records.hrl 
-record(sensor, {id, cx_id, name, vl, fanout_ids}).  
-record(actuator,{id, cx_id,  name, vl, fanin_ids}).  
-record(neuron, {id, cx_id, af, input_idps, output_ids}).  
-record(cortex, {id, sensor_ids, actuator_ids, nids}). 

Now we develop an algorithm that constructs the genotype of a general feed 
forward NN based on the provided sensor name, actuator name, and the hidden 
layer densities parameter:  

constructor.erl 
-module(constructor).  
-compile(export_all).  
-include(“records.hrl”).  
 
construct_Genotype(SensorName,ActuatorName,HiddenLayerDensities)->  
 construct_Genotype(ffnn,SensorName,ActuatorName,HiddenLayerDensities). 
construct_Genotype(FileName,SensorName,ActuatorName,HiddenLayerDensities)->  
 S = create_Sensor(SensorName),  
 A = create_Actuator(ActuatorName),  
 Output_VL = A#actuator.vl,  
 LayerDensities = lists:append(HiddenLayerDensities,[Output_VL]),  
 Cx_Id = {cortex,generate_id()},  
   
 Neurons = create_NeuroLayers(Cx_Id,S,A,LayerDensities),  
 [Input_Layer|_] = Neurons,  
 [Output_Layer|_] = lists:reverse(Neurons),  
 FL_NIds = [N#neuron.id || N <- Input_Layer],  
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 LL_NIds = [N#neuron.id || N <-  Output_Layer],  
 NIds = [N#neuron.id || N <- lists:flatten(Neurons)],  
 Sensor = S#sensor{cx_id = Cx_Id, fanout_ids = FL_NIds},  
 Actuator = A#actuator{cx_id=Cx_Id,fanin_ids = LL_NIds},  
 Cortex = create_Cortex(Cx_Id,[S#sensor.id],[A#actuator.id],NIds),  
 Genotype = lists:flatten([Cortex,Sensor,Actuator|Neurons]),  
 {ok, File} = file:open(FileName, write),  
 lists:foreach(fun(X) -> io:format(File, “~p.~n”,[X]) end, Genotype),  
 file:close(File).  
%The construct_Genotype function accepts the name of the file to which we’ll save the geno-
type, sensor name, actuator name, and the hidden layer density parameters. We have to generate 
unique Ids for every sensor and actuator. The sensor and actuator names are used as input to the 
create_Sensor and create_Actuator functions, which in turn generate the actual Sensor and Ac-
tuator representing tuples. We create unique Ids for sensors and actuators so that when in the 
future a NN uses 2 or more sensors or actuators of the same type, we will be able to differenti-
ate between them using their Ids. After the Sensor and Actuator tuples are generated, we extract 
the NN’s input and output vector lengths from the sensor and actuator used by the system. The 
Input_VL is then used to specify how many weights the neurons in the input layer will need, 
and the Output_VL specifies how many neurons are in the output layer of the NN. After ap-
pending the HiddenLayerDensites to the now known number of neurons in the last layer to gen-
erate the full LayerDensities list, we use the create_NeuroLayers function to generate the Neu-
ron representing tuples. We then update the Sensor and Actuator records with proper fanin and 
fanout ids from the freshly created Neuron tuples, compose the Cortex, and write the genotype 
to file.  
 
 create_Sensor(SensorName) ->  
  case SensorName of  
   rng ->  
    #sensor{id={sensor,generate_id()},name=rng,vl=2};  
   _ ->  
    exit(“System does not yet support a sensor by the 
name:~p.”,[SensorName])  
  end.  
   
 create_Actuator(ActuatorName) ->  
  case ActuatorName of  
   pts ->  
    #actuator{id={actuator,generate_id()},name=pts,vl=1};  
   _ ->  
    exit(“System does not yet support an actuator by the 
name:~p.”,[ActuatorName])  
  end.  
%Every sensor and actuator uses some kind of function associated with it, a function that either 
polls the environment for sensory signals (in the case of a sensor) or acts upon the environment 
(in the case of an actuator). It is the function that we need to define and program before it is 
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used, and the name of the function is the same as the name of the sensor or actuator itself. For 
example, the create_Sensor/1 has specified only the rng sensor, because that is the only sensor 
function we’ve finished developing. The rng function has its own vl specification, which will 
determine the number of weights that a neuron will need to allocate if it is to accept this sen-
sor’s output vector. The same principles apply to the create_Actuator function. Both, cre-
ate_Sensor and create_Actuator function, given the name of the sensor or actuator, will return a 
record with all the specifications of that element, each with its own unique Id.  
 
 create_NeuroLayers(Cx_Id,Sensor,Actuator,LayerDensities) ->  
  Input_IdPs = [{Sensor#sensor.id,Sensor#sensor.vl}],  
  Tot_Layers = length(LayerDensities),  
  [FL_Neurons|Next_LDs] = LayerDensities,  
  NIds = [{neuron,{1,Id}}|| Id <- generate_ids(FL_Neurons,[])],  
  cre-
ate_NeuroLayers(Cx_Id,Actuator#actuator.id,1,Tot_Layers,Input_IdPs,NIds,Next_LDs,[]).  
%The function create_NeuroLayers/3 prepares the initial step before starting the recursive cre-
ate_NeuroLayers/7 function which will create all the Neuron records. We first generate the 
place holder Input Ids “Plus”(Input_IdPs), which are tuples composed of Ids and the vector 
lengths of the incoming signals associated with them. The proper input_idps will have a weight 
list in the tuple instead of the vector length. Because we are only building NNs each with only a 
single Sensor and Actuator, the IdP to the first layer is composed of the single Sensor Id with 
the vector length of its sensory signal, likewise in the case of the Actuator. We then generate 
unique ids for the neurons in the first layer, and drop into the recursive create_NeuroLayers/7 
function.  
 
 cre-
ate_NeuroLayers(Cx_Id,Actuator_Id,LayerIndex,Tot_Layers,Input_IdPs,NIds,[Next_LD|LDs],
Acc) ->  
  Output_NIds = [{neuron,{LayerIndex+1,Id}} || Id <- generate_ids(Next_LD,[])],  
  Layer_Neurons = create_NeuroLayer(Cx_Id,Input_IdPs,NIds,Output_NIds,[]),  
  Next_InputIdPs = [{NId,1}|| NId <- NIds],  
  cre-
ate_NeuroLayers(Cx_Id,Actuator_Id,LayerIndex+1,Tot_Layers,Next_InputIdPs,Output_NIds,
LDs,[Layer_Neurons|Acc]);  
 create_NeuroLayers(Cx_Id,Actuator_Id,Tot_Layers,Tot_Layers,Input_IdPs,NIds,[],Acc) ->  
  Output_Ids = [Actuator_Id],  
  Layer_Neurons = create_NeuroLayer(Cx_Id,Input_IdPs,NIds,Output_Ids,[]),  
  lists:reverse([Layer_Neurons|Acc]).  
%During the first iteration, the first layer neuron ids constructed in create_NeuroLayers/3 are 
held in the NIds variable. In create_NeuroLayers/7, with every iteration we generate the Out-
put_NIds, which are the Ids of the neurons in the next layer. The last layer is a special case 
which occurs when LayerIndex == Tot_Layers. Having the Input_IdPs, and the Output_NIds, 
we are able to construct a neuron record for every Id in NIds using the function create_layer/4. 
The Ids of the constructed Output_NIds will become the NIds variable of the next iteration, and 
the Ids of the neurons in the current layer will be extended and become Next_InputIdPs. We 
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then drop into the next iteration with the newly prepared Next_InputIdPs and Output_NIds. Fi-
nally, when we reach the last layer, the Output_Ids is the list containing a single Id of the Actu-
ator element. We use the same function, create_NeuroLayer/4, to construct the last layer and re-
turn the result.  
 
  create_NeuroLayer(Cx_Id,Input_IdPs,[Id|NIds],Output_Ids,Acc) ->  
   Neuron = create_Neuron(Input_IdPs,Id,Cx_Id,Output_Ids),  
   create_NeuroLayer(Cx_Id,Input_IdPs,NIds,Output_Ids,[Neuron|Acc]);  
  create_NeuroLayer(_Cx_Id,_Input_IdPs,[],_Output_Ids,Acc) ->  
   Acc.  
%To create neurons from the same layer, all that is needed are the Ids for those neurons, a list 
of Input_IdPs for every neuron so that we can create the proper number of weights, and a list of 
Output_Ids. Since in our simple feed forward neural network all neurons are fully connected to 
the neurons in the next layer, the Input_IdPs and Output_Ids are the same for every neuron be-
longing to the same layer.  
    
  create_Neuron(Input_IdPs,Id,Cx_Id,Output_Ids)->  
   Proper_InputIdPs = create_NeuralInput(Input_IdPs,[]),  
   #neuron{id=Id,cx_id = 
Cx_Id,af=tanh,input_idps=Proper_InputIdPs,output_ids=Output_Ids}.  
 
   create_NeuralInput([{Input_Id,Input_VL}|Input_IdPs],Acc) ->  
    Weights = create_NeuralWeights(Input_VL,[]),  
    create_NeuralInput(Input_IdPs,[{Input_Id,Weights}|Acc]);  
   create_NeuralInput([],Acc)->  
    lists:reverse([{bias,random:uniform()-0.5}|Acc]).  
     
    create_NeuralWeights(0,Acc) ->  
     Acc;  
    create_NeuralWeights(Index,Acc) ->  
     W = random:uniform()-0.5,  
     create_NeuralWeights(Index-1,[W|Acc]).  
%Each neuron record is composed by the create_Neuron/3 function. The create_Neuron/3 func-
tion creates the Input list from the tuples [{Id,Weights}...] using the vector lengths specified in 
the place holder Input_IdPs. The create_NeuralInput/2 function uses create_NeuralWeights/2 to 
generate the random weights in the range of -0.5 to 0.5, adding the bias to the end of the list.  
 
   generate_ids(0,Acc) ->  
    Acc;  
   generate_ids(Index,Acc)->  
    Id = generate_id(),  
    generate_ids(Index-1,[Id|Acc]).  
   
   generate_id() ->  
    {MegaSeconds,Seconds,MicroSeconds} = now(),  
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    1/(MegaSeconds*1000000 + Seconds + MicroSeconds/1000000).  
%The generate_id/0 creates a unique Id using current time, the Id is a floating point value. The 
generate_ids/2 function creates a list of unique Ids.  
 
 create_Cortex(Cx_Id,S_Ids,A_Ids,NIds) ->  
  #cortex{id = Cx_Id, sensor_ids=S_Ids, actuator_ids=A_Ids, nids = NIds}.  
%The create_Cortex/4 function generates the record encoded genotypical representation of the 
cortex element. The Cortex element needs to know the Id of every Neuron, Sensor, and Actua-
tor in the NN.  

Note that the constructor can only create sensor and actuator records that are 
specified in the create_Sensor/1 and create_Actuator/1 functions, and it can only 
create the genotype if it knows the Sensor and Actuator vl parameters. Let us now 
compile and test our genotype constructing algorithm: 

1>c(constructor). 
{ok,constructor}. 
2>constructor:construct_Genotype(ffnn,rng,pts,[1,3]). 
ok 

It works! Make sure to open the file to which the Genotype was written (ffnn in 
the above example), and peruse the generated list of tuples to ensure that all the 
elements are properly interconnected by looking at their fanin/fanout and in-
put/output ids. This list is a genotype of the NN which is composed of 3 feed for-
ward neural layers, with 1 neuron in the first layer, 3 in the second, and 1 in the 
third. The created NN genotype uses the rng sensor and pts actuator. In the next 
section we will create a genotype to phenotype mapper which will convert inert 
genotypes of this form, into live phenotypes which can process sensory signals 
and act on the world using their actuators. 

6.6 Developing the Genotype to Phenotype Mapping Module 

We’ve invented a tuple based genotype representation for our Neural Network, 
and we have developed an algorithm which creates the NN genotypes when pro-
vided with 3 high level parameters, SensorName, ActuatorName, and 
HiddenLayerDensities. But our genotypical representation of the NN is only used 
as a method of storing it in a database or some file. We now need to create a func-
tion that converts the NN genotype, to an active phenotype. 

In the previous chapter we have discussed how Erlang, unlike any other lan-
guage, is perfect for developing fault tolerant and concurrent NN systems. The NN 
topology and functionality maps perfectly to Erlang’s process based architecture. 
We now need to design an algorithm that creates a process for every tuple encoded 



6.6 Developing the Genotype to Phenotype Mapping Module      175 

element (Cortex, Neurons, Actuator, Sensor) stored in the genotype, and then in-
terconnects those processes to produce the proper NN topology. This mapping is 
an example of direct encoding, where every tuple becomes a process, and every 
connection is explicitly specified in the genotype. The mapping is shown in Fig-
ure-6.10. 

 
Fig. 6.10 A direct genotype to phenotype mapping. 

In our genotype to phenotype direct mapping, we first spawn every element to 
create a correlation from  Ids to their respective process PIds, and then initialize 
every process’s state using the information in its correlated record. But to get these 
processes to communicate, we still need to standardize the messages they will ex-
change between each other. 

Because we want our neurons to be ambivalent to whether the signal is coming 
from another neuron or a sensor, all signal vector messages must be of the same 
form. We can let the messages passed from sensors and neurons to other neurons 
and actuators use the following form: {Sender_PId, forward, Signal_Vector}. The 
Sender_PId will allow the Neurons to match the Signal_Vector with its appropri-
ate weight vector. 
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Once the actuator has accumulated all the incoming neural signals, it should be 
able to notify the cortex element of this, so that the cortex can trigger the sensor 
processes to poll for new sensory data. The actuators will use the following mes-
sages for this task: {Actuator_PId,sync}. Once the cortex has received the sync 
messages from all the actuators connected to its NN, it will trigger all the sensors 
using a messages of the form: {Cx_PId,sync}. Finally, every element other than 
the cortex will also accept a message of the form: {Cx_PId,terminate}. The cortex 
itself should be able to receive the simple ‘terminate’ message. In this manner we 
can request that the cortex terminates all the elements in the NN it oversees, and 
then terminates itself. 

Now that we know what messages the processes will be exchanging, and how 
the phenotype is represented, we can start developing the cortex, sensor, actuator, 
neuron, and the phenotype constructor module we’ll call exoself. The ‘exoself’ 
module will not only contain the algorithm that maps the genotype to phenotype, 
but also a function that maps the phenotype back to genotype. The phenotype to 
genotype mapping is a backup procedure, which will allow us to backup pheno-
types that have learned something new, back to the database. 

We now create the cortex module: 

cortex.erl 
-module(cortex).  
-compile(export_all).  
-include(“records.hrl”).  
 
gen(ExoSelf_PId,Node)->  
 spawn(Node,?MODULE,loop,[ExoSelf_PId]).  
 
loop(ExoSelf_PId) ->  
 receive  
  {ExoSelf_PId,{Id,SPIds,APIds,NPIds},TotSteps} ->  
   [SPId ! {self(),sync} || SPId <- SPIds],  
   loop(Id,ExoSelf_PId,SPIds,{APIds,APIds},NPIds,TotSteps)  
 end.  
%The gen/2 function spawns the cortex element, which immediately starts to wait for a the 
state message from the same process that spawned it, exoself. The initial state message contains 
the sensor, actuator, and neuron PId lists. The message also specifies how many total Sense-
Think-Act cycles the Cortex should execute before terminating the NN system. Once we im-
plement the learning algorithm, the termination criteria will depend on the fitness of the NN, or 
some other useful property  
 
loop(Id,ExoSelf_PId,SPIds,{_APIds,MAPIds},NPIds,0) ->  
 io:format(“Cortex:~p is backing up and terminating.~n”,[Id]),  
 Neuron_IdsNWeights = get_backup(NPIds,[]),  
 ExoSelf_PId ! {self(),backup,Neuron_IdsNWeights},  
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 [PId ! {self(),terminate} || PId <- SPIds],  
 [PId ! {self(),terminate} || PId <- MAPIds],  
 [PId ! {self(),termiante} || PId <- NPIds];  
loop(Id,ExoSelf_PId,SPIds,{[APId|APIds],MAPIds},NPIds,Step) ->  
 receive  
  {APId,sync} ->  
   loop(Id,ExoSelf_PId,SPIds,{APIds,MAPIds},NPIds,Step);  
  terminate ->  
   io:format(“Cortex:~p is terminating.~n”,[Id]),  
   [PId ! {self(),terminate} || PId <- SPIds],  
   [PId ! {self(),terminate} || PId <- MAPIds],  
   [PId ! {self(),termiante} || PId <- NPIds]  
 end;  
loop(Id,ExoSelf_PId,SPIds,{[],MAPIds},NPIds,Step)->  
 [PId ! {self(),sync} || PId <- SPIds],  
 loop(Id,ExoSelf_PId,SPIds,{MAPIds,MAPIds},NPIds,Step-1).  
%The cortex’s goal is to synchronize the NN system such that when the actuators have received 
all their control signals, the sensors are once again triggered to gather new sensory information. 
Thus the cortex waits for the sync messages from the actuator PIds in its system, and once it has 
received all the sync messages, it triggers the sensors and then drops back to waiting for a new 
set of sync messages. The cortex stores 2 copies of the actuator PIds: the APIds, and the 
MemoryAPIds (MAPIds). Once all the actuators have sent it the sync messages, it can restore 
the APIds list from the MAPIds. Finally, there is also the Step variable which decrements every 
time a full cycle of Sense-Think-Act completes, once this reaches 0, the NN system begins its 
termination and backup process.  
 
 get_backup([NPId|NPIds],Acc)->  
  NPId ! {self(),get_backup},  
  receive  
   {NPId,NId,WeightTuples}->  
    get_backup(NPIds,[{NId,WeightTuples}|Acc])  
  end;  
 get_backup([],Acc)->  
  Acc.  
%During backup, cortex contacts all the neurons in its NN and requests for the neuron’s Ids and 
their Input_IdPs. Once the updated Input_IdPs from all the neurons have been accumulated, the 
list is sent to exoself for the actual backup and storage. 

Now the sensor module: 

sensor.erl 
-module(sensor).  
-compile(export_all).  
-include(“records.hrl”).  
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gen(ExoSelf_PId,Node)->  
 spawn(Node,?MODULE,loop,[ExoSelf_PId]).  
 
loop(ExoSelf_PId) ->  
 receive  
  {ExoSelf_PId,{Id,Cx_PId,SensorName,VL,Fanout_PIds}} ->  
   loop(Id,Cx_PId,SensorName,VL,Fanout_PIds)  
 end.  
%When gen/2 is executed it spawns the sensor element and immediately begins to wait for its 
initial state message.  
 
loop(Id,Cx_PId,SensorName,VL,Fanout_PIds)->  
 receive  
  {Cx_PId,sync}->  
   SensoryVector = sensor:SensorName(VL),  
   [Pid ! {self(),forward,SensoryVector} || Pid <- Fanout_PIds],  
   loop(Id,Cx_PId,SensorName,VL,Fanout_PIds);  
  {Cx_PId,terminate} ->  
   ok  
 end.  
%The sensor process accepts only 2 types of messages, both from the cortex. The sensor can ei-
ther be triggered to begin gathering sensory data based on its sensory role, or terminate if the 
cortex requests so.  
 
rng(VL)->  
 rng(VL,[]).  
rng(0,Acc)->  
 Acc;  
rng(VL,Acc)->  
 rng(VL-1,[random:uniform()|Acc]).  
 
%’rng’ is a simple random number generator that produces a vector of random values, each be-
tween 0 and 1. The length of the vector is defined by the VL, which itself is specified within the 
sensor record.  

The actuator module: 

actuator.erl 
-module(actuator).  
-compile(export_all).  
-include(“records.hrl”).  
 
gen(ExoSelf_PId,Node)->  
 spawn(Node,?MODULE,loop,[ExoSelf_PId]).  
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loop(ExoSelf_PId) ->  
 receive  
  {ExoSelf_PId,{Id,Cx_PId,ActuatorName,Fanin_PIds}} ->  
   loop(Id,Cx_PId,ActuatorName,{Fanin_PIds,Fanin_PIds},[])  
 end.  
%When gen/2 is executed it spawns the actuator element and immediately begins to wait for its 
initial state message.  
 
loop(Id,Cx_PId,AName,{[From_PId|Fanin_PIds],MFanin_PIds},Acc) ->  
 receive  
  {From_PId,forward,Input} ->  
   loop(Id,Cx_PId,AName,{Fanin_PIds,MFanin_PIds},lists:append(Input,Acc));  
  {Cx_PId,terminate} ->  
   ok  
 end;  
loop(Id,Cx_PId,AName,{[],MFanin_PIds},Acc)->  
 actuator:AName(lists:reverse(Acc)),  
 Cx_PId ! {self(),sync},  
 loop(Id,Cx_PId,AName,{MFanin_PIds,MFanin_PIds},[]).  
%The actuator process gathers the control signals from the neurons, appending them to the ac-
cumulator. The order in which the signals are accumulated into a vector is in the same order as 
the neuron ids are stored within NIds. Once all the signals have been gathered, the actuator 
sends cortex the sync signal, executes its function, and then again begins to wait for the neural 
signals from the output layer by reseting the Fanin_PIds from the second copy of the list.  
 
pts(Result)->  
 io:format(“actuator:pts(Result): ~p~n”,[Result]).  
%The pts actuation function simply prints to screen the vector passed to it.  

And finally the neuron module: 

neuron.erl 
-module(neuron).  
-compile(export_all).  
-include(“records.hrl”).  
 
gen(ExoSelf_PId,Node)->  
 spawn(Node,?MODULE,loop,[ExoSelf_PId]).  
 
loop(ExoSelf_PId) ->  
 receive  
  {ExoSelf_PId,{Id,Cx_PId,AF,Input_PIdPs,Output_PIds}} ->  
   loop(Id,Cx_PId,AF,{Input_PIdPs,Input_PIdPs},Output_PIds,0)  
 end.  
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%When gen/2 is executed it spawns the neuron element and immediately begins to wait for its 
initial state message.  
 
loop(Id,Cx_PId,AF,{[{Input_PId,Weights}|Input_PIdPs],MInput_PIdPs},Output_PIds,Acc)->  
 receive  
  {Input_PId,forward,Input}->  
   Result = dot(Input,Weights,0),  
   loop(Id,Cx_PId,AF,{Input_PIdPs,MInput_PIdPs},Output_PIds,Result+Acc);  
  {Cx_PId,get_backup}->  
   Cx_PId ! {self(),Id,MInput_PIdPs},  
  
 loop(Id,Cx_PId,AF,{[{Input_PId,Weights}|Input_PIdPs],MInput_PIdPs},Output_PIds,Acc);  
  {Cx_PId,terminate}->  
   ok  
 end;  
loop(Id,Cx_PId,AF,{[Bias],MInput_PIdPs},Output_PIds,Acc)->  
 Output = neuron:AF(Acc+Bias),  
 [Output_PId ! {self(),forward,[Output]} || Output_PId <- Output_PIds],  
 loop(Id,Cx_PId,AF,{MInput_PIdPs,MInput_PIdPs},Output_PIds,0);  
loop(Id,Cx_PId,AF,{[],MInput_PIdPs},Output_PIds,Acc)->  
 Output = neuron:AF(Acc),  
 [Output_PId ! {self(),forward,[Output]} || Output_PId <- Output_PIds],  
 loop(Id,Cx_PId,AF,{MInput_PIdPs,MInput_PIdPs},Output_PIds,0).  
   
 dot([I|Input],[W|Weights],Acc) ->  
  dot(Input,Weights,I*W+Acc);  
 dot([],[],Acc)->  
  Acc.  
%The neuron process waits for vector signals from all the processes that it’s connected from, 
taking the dot product of the input and weight vectors, and then adding it to the accumulator. 
Once all the signals from Input_PIds are received, the accumulator contains the dot product to 
which the neuron then adds the bias and executes the activation function on. After fanning out 
the output signal, the neuron again returns to waiting for incoming signals. When the neuron re-
ceives the {Cx_PId,get_backup} message, it forwards to the cortex its full MInput_PIdPs list, 
and its Id. Once the training/learning algorithm is added to the system, the MInput_PIdPs 
would contain a full set of the most recent and updated version of the weights.  
 
 tanh(Val)->  
  math:tanh(Val).  
%Though in this current implementation the neuron has only the tanh/1 function available to it, 
we will later extend the system to allow different neurons to use different activation functions. 

Now we create the exoself module, which will map the genotype to phenotype, 
spawning all the appropriate processes. The exoself module will also provide the 
algorithm for the Cortex element to update the genotype with the newly trained 
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weights from the phenotype, and in this manner saving the trained and learned 
NNs for future use. 

exoself.erl 
-module(exoself).  
-compile(export_all).  
-include(“records.hrl”).  
 
map()->  
 map(ffnn). 
map(FileName)->  
 {ok,Genotype} = file:consult(FileName),  
 spawn(exoself,map,[FileName,Genotype]).  
map(FileName,Genotype)->  
 IdsNPIds = ets:new(idsNpids,[set,private]),  
 [Cx|CerebralUnits] = Genotype,  
 Sensor_Ids = Cx#cortex.sensor_ids,  
 Actuator_Ids = Cx#cortex.actuator_ids,  
 NIds = Cx#cortex.nids,  
 spawn_CerebralUnits(IdsNPIds,cortex,[Cx#cortex.id]),  
 spawn_CerebralUnits(IdsNPIds,sensor,Sensor_Ids),  
 spawn_CerebralUnits(IdsNPIds,actuator,Actuator_Ids),  
 spawn_CerebralUnits(IdsNPIds,neuron,NIds),  
 link_CerebralUnits(CerebralUnits,IdsNPIds),  
 link_Cortex(Cx,IdsNPIds),  
 Cx_PId = ets:lookup_element(IdsNPIds,Cx#cortex.id,2),  
 receive  
  {Cx_PId,backup,Neuron_IdsNWeights}->  
   U_Genotype = update_genotype(IdsNPIds,Genotype,Neuron_IdsNWeights),  
   {ok, File} = file:open(FileName, write),  
   lists:foreach(fun(X) -> io:format(File, “~p.~n”,[X]) end, U_Genotype),  
   file:close(File),  
   io:format(“Finished updating to file:~p~n”,[FileName])  
 end.  
%The map/1 function maps the tuple encoded genotype into a process based phenotype. The 
map function expects for the Cx record to be the leading tuple in the tuple list it reads from the 
FileName. We create an ets table to map Ids to PIds and back again. Since the Cortex element 
contains all the Sensor, Actuator, and Neuron Ids, we are able to spawn each neuron using its 
own gen function, and in the process construct a map from Ids to PIds. We then use 
link_CerebralUnits to link all non Cortex elements to each other by sending each spawned pro-
cess the information contained in its record, but with Ids converted to Pids where appropriate. 
Finally, we provide the Cortex process with all the PIds in the NN system by executing the 
link_Cortex/2 function. Once the NN is up and running, exoself starts its wait until the NN has 
finished its job and is ready to backup. When the cortex initiates the backup process it sends 
exoself the updated Input_PIdPs from its neurons. Exoself uses the update_genotype/3 function 
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to update the old genotype with new weights, and then stores the updated version back to its 
file.  
 
 spawn_CerebralUnits(IdsNPIds,CerebralUnitType,[Id|Ids])->  
  PId = CerebralUnitType:gen(self(),node()),  
  ets:insert(IdsNPIds,{Id,PId}),  
  ets:insert(IdsNPIds,{PId,Id}),  
  spawn_CerebralUnits(IdsNPIds,CerebralUnitType,Ids);  
 spawn_CerebralUnits(_IdsNPIds,_CerebralUnitType,[])->  
  true.  
%We spawn the process for each element based on its type: CerebralUnitType, and the gen 
function that belongs to the CerebralUnitType module. We then enter the {Id,PId} tuple into 
our ETS table for later use.  
 
 link_CerebralUnits([R|Records],IdsNPIds) when is_record(R,sensor) ->  
  SId = R#sensor.id,  
  SPId = ets:lookup_element(IdsNPIds,SId,2),  
  Cx_PId = ets:lookup_element(IdsNPIds,R#sensor.cx_id,2),  
  SName = R#sensor.name,  
  Fanout_Ids = R#sensor.fanout_ids,  
  Fanout_PIds = [ets:lookup_element(IdsNPIds,Id,2) || Id <- Fanout_Ids],  
  SPId ! {self(),{SId,Cx_PId,SName,R#sensor.vl,Fanout_PIds}},  
  link_CerebralUnits(Records,IdsNPIds);  
 link_CerebralUnits([R|Records],IdsNPIds) when is_record(R,actuator) ->  
  AId = R#actuator.id,  
  APId = ets:lookup_element(IdsNPIds,AId,2),  
  Cx_PId = ets:lookup_element(IdsNPIds,R#actuator.cx_id,2),  
  AName = R#actuator.name,  
  Fanin_Ids = R#actuator.fanin_ids,  
  Fanin_PIds = [ets:lookup_element(IdsNPIds,Id,2) || Id <- Fanin_Ids],  
  APId ! {self(),{AId,Cx_PId,AName,Fanin_PIds}},  
  link_CerebralUnits(Records,IdsNPIds);  
 link_CerebralUnits([R|Records],IdsNPIds) when is_record(R,neuron) ->  
  NId = R#neuron.id,  
  NPId = ets:lookup_element(IdsNPIds,NId,2),  
  Cx_PId = ets:lookup_element(IdsNPIds,R#neuron.cx_id,2),  
  AFName = R#neuron.af,  
  Input_IdPs = R#neuron.input_idps,  
  Output_Ids = R#neuron.output_ids,  
  Input_PIdPs = convert_IdPs2PIdPs(IdsNPIds,Input_IdPs,[]),  
  Output_PIds = [ets:lookup_element(IdsNPIds,Id,2) || Id <- Output_Ids],  
  NPId ! {self(),{NId,Cx_PId,AFName,Input_PIdPs,Output_PIds}},  
  link_CerebralUnits(Records,IdsNPIds);  
 link_CerebralUnits([],_IdsNPIds)->  
  ok.  
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  convert_IdPs2PIdPs(_IdsNPIds,[{bias,Bias}],Acc)->  
   lists:reverse([Bias|Acc]);  
  convert_IdPs2PIdPs(IdsNPIds,[{Id,Weights}|Fanin_IdPs],Acc)->  
   convert_IdPs2PIdPs(IdsNPIds,Fanin_IdPs, 
[{ets:lookup_element(IdsNPIds,Id,2),Weights}|Acc]).  
%The link_CerebralUnits/2 converts the Ids to PIds using the created IdsNPids ETS table. At 
this point all the elements are spawned, and the processes are waiting for their initial states. 
convert_IdPs2PIdPs/3 converts the IdPs tuples into tuples that use PIds instead of Ids, such that 
the Neuron will know which weights are to be associated with which incoming vector signals. 
The last element is the bias, which is added to the list in a non tuple form. Afterwards, the list is 
reversed to take its proper order.  
 
 link_Cortex(Cx,IdsNPIds) ->  
  Cx_Id = Cx#cortex.id,  
  Cx_PId = ets:lookup_element(IdsNPIds,Cx_Id,2),  
  SIds = Cx#cortex.sensor_ids,  
  AIds = Cx#cortex.actuator_ids,  
  NIds = Cx#cortex.nids,  
  SPIds = [ets:lookup_element(IdsNPIds,SId,2) || SId <- SIds],  
  APIds = [ets:lookup_element(IdsNPIds,AId,2) || AId <- AIds],  
  NPIds = [ets:lookup_element(IdsNPIds,NId,2) || NId <- NIds],  
  Cx_PId ! {self(),{Cx_Id,SPIds,APIds,NPIds},1000}.  
%The cortex is initialized to its proper state just as other elements. Because we have not yet 
implemented a learning algorithm for our NN system, we need to specify when the NN should 
shutdown. We do this by specifying the total number of cycles the NN should execute before 
terminating, which is 1000 in this case.  
 
update_genotype(IdsNPIds,Genotype,[{N_Id,PIdPs}|WeightPs])->  
 N = lists:keyfind(N_Id, 2, Genotype),  
 io:format(“PIdPs:~p~n”,[PIdPs]),  
 Updated_InputIdPs = convert_PIdPs2IdPs(IdsNPIds,PIdPs,[]),  
 U_N = N#neuron{input_idps = Updated_InputIdPs},  
 U_Genotype = lists:keyreplace(N_Id, 2, Genotype, U_N),  
 io:format(“N:~p~n U_N:~p~n Genotype:~p~n 
U_Genotype:~p~n”,[N,U_N,Genotype,U_Genotype]),  
 update_genotype(IdsNPIds,U_Genotype,WeightPs);  
update_genotype(_IdsNPIds,Genotype,[])->  
 Genotype.  
   
 convert_PIdPs2IdPs(IdsNPIds,[{PId,Weights}|Input_PIdPs],Acc)->  
  con-
vert_PIdPs2IdPs(IdsNPIds,Input_PIdPs,[{ets:lookup_element(IdsNPIds,PId,2),Weights}|Acc]);  
 convert_PIdPs2IdPs(_IdsNPIds,[Bias],Acc)->  
  lists:reverse([{bias,Bias}|Acc]).  
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%For every {N_Id,PIdPs} tuple the update_genotype/3 function extracts the neuron with the id: 
N_Id, and updates its weights. The convert_PIdPs2IdPs/3 performs the conversion from PIds to 
Ids of every {PId,Weights} tuple in the Input_PIdPs list. The updated Genotype is then returned 
back to the caller. 

Now lets compile the cortex, neuron, sensor, actuator, and the exoself module, 
and test the NN system: 

1> c(cortex). 
ok 
… 

We now create a new NN genotype which uses the rng sensor, a pts actuator, 
and employs a [1,2] hidden density list. Then we map it to its phenotype by using 
the exoself module. 

1> constructor:construct_Genotype(ffnn,rng,pts,[1,2]). 
ok 
2> exoself:map(ffnn). 
... 

It works! Our NN system has sensed, thought, and acted using its sensor, neu-
rons, and the actuator, while being synchronized through the cortex process. Yet 
still this system does nothing but process random vectors using neural processes 
which themselves use random weights. We now need to develop a learning algo-
rithm, and then devise a problem on which to test how well the NN can learn and 
solve   problems using its learning method. In the next chapter we will develop an 
augmented version one of the most commonly used unsupervised learning algo-
rithms: the Stochastic Hill-Climber. 

6.  Summary 

We have started with just a discussion of how a single artificial neuron pro-
cesses an incoming signal, which is vector encoded. We then developed a simple 
sensor and actuator, so that the neuron has something to acquire sensory signals 
with, and so that it can use its output signal to act upon the world, in this case 
simply printing that output signal to screen. We then began designing the architec-
ture of the NN system we wish to develop, and the genotype encoding we wanted 
to store that NN system in. After we had agreed on the architecture and the encod-
ing, we created the genotype constructor which built the NN genotype, and then a 
mapper function which converted the genotype to its phenotype form. With this, 
we had now developed a system that can create NN genotypes, and convert them 
to phenotypes, We tested the ability of the NN to sense using its sensors, thinking 

7
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about the signals it acquired through its sensors, and then act upon the world by 
using its actuators; the system worked. Though our NN system does not yet have a 
way to learn, or be optimized for any particular task, we have developed a com-
plete encoding method, a genotypical and phenotypical representation of a fully 
concurrent NN system, in just a few pages. With Erlang, a neuron is a process, an 
action potential is a message, there is a 1:1 mapping, which made developing this 
system so easy. 
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