
Chapter 2 Introduction to Neural Networks

Abstract In this chapter we discuss how the biological neurons process infor-
mation, the difference between the spatiotemporal processing of frequency encod-
ed information conducted by a biological neuron and the amplitude and frequency
encoded signals processed by the artificial neural networks. We discuss the vari-
ous types of artificial neural networks that exist, their architectures and topologies,
and how to allow such neural networks to possess plasticity, which allows the neu-
rons to adapt and change as they process presynaptic signals.

Our brains are biological parallel computers, composed of roughly
100,000,000,000 (one hundred billion) signal processing elements called Neurons.
Like a vast graph, these neurons are connected with each other in complex topo-
logical patterns. Each neuron in this vast processing graph accepts signals from
thousands of other neurons, processes those signals, and then outputs a frequency
encoded signal and passes it onwards to thousands of other neurons. Though each
neuron on its own is relatively easy to understand, when you connect together a
few billion of them, it becomes incredibly difficult to predict the outcome given
some specific input. If you are careful and connect these biological signal pro-
cessing elements in some particular pattern, the final output of this vast graph
might even be something useful, an intelligent system for example. An output sig-
nal can for example control muscle tissue in your legs, so that they move in syn-
chrony and give you the ability to walk and run. Or this vast neural network’s out-
put can be a solution to some problem which was fed into it as an image from its
sensory organs, like cameras or eyes for example. We don’t yet completely know
how and which neurons, and in what patterns we need to connect them to allow us
to produce useful results, but we’re getting there, we’re reverse engineering the
brain [1].

Evolution used billions of years to try out trillions upon trillions of various
permutations of chemical setups for each neuron and connections between them...
we and other inhabitants of this planet are the result of this vast stochastic optimi-
zation, an optimization for a more fit replicator (a gene). We are, as Richard Daw-
kins noted, that replicator’s tools of survival, we are its survival machines [2,3].

In biological organisms born of evolution, there was only one goal, to create a
copy (usually mutated due to environmental factors), to create an offspring. Bil-
lions and billions of permutations of atoms and simple molecules and environ-
ments on this planet eventually resulted in a molecule which was able to copy it-
self if there was enough of the right material around it to do so. Of course as soon
as such a molecule appears in the environment, it quickly consumes all the raw
material its able to use to create copies of itself... but due to radiation and the sim-
ple fact that biology is not perfect, there are variations of this molecule. Some of

DOI 10.1007/978-1-4614- - , © Springer Science+Business Media New York 2013 4463 3_2
43 G.I. Sher, Handbook of Neuroevolution Through Erlang,

44 Chapter 2 Introduction to Neural Networks

these mutant clones of the molecule were smaller and unable to replicate, others
were able to do so more efficiently when using raw materials, yet others were
even able to break apart surrounding compounds to make the missing necessary
raw materials... though it’s still just chemistry at this point, in essence this is al-
ready competition and predation. The replicating molecules are competing against
each other, not by choice, but simply because that’s what naturally happens when
something can make copies of itself. Anything that does not make a copy, does not
take over the environment, and is either expunged from the environment, or used
as raw material by replicators.

The molecules split and vary/mutate, new features are added, so that for exam-
ple some new molecule is able to break apart another molecule, or merge with it.
If some complex molecule does not replicate in some manner or another, it has no
future... because it will not create an offspring molecule to carry its behavior for-
ward in time.

These mutations, variations, collisions between molecules and atoms, all giving
a chance for a more fit replicator to emerge, this was occurring on the entire sur-
face of the planet, and below it. The entire planet was like a computational system,
where every inch of the surface gave space for the calculations of the mutations
and permutations of molecules to take place... And after billions of years, trillions
upon trillions of these replications and mutations, more and more fit systems
emerged. Sure, most of the mutations were harmful and produced mostly unfit off-
spring that could not replicate at all, or were able to replicate but at a slower pace
or lower efficiency level... But when you have trillions of opportunities for im-
provement to work with... no matter how small the probability, eventually, every
once in a while... a better combination of molecules results in a better replicator,
able to take advantage of some niche within the environment... That is evolution.

Through these trillions of permutations, offspring and molecules combined into
better replicators, some of which could defend themselves against other replica-
tors, some of which could attack other kinds of replicators so that they could cre-
ate more of their own kind... To know whom to attack, to know who is composed
of the resources that you need to create an offspring, you need a system that is
able to tell the difference between the different kinds “stuff” out there, you need
some kind of sensory setup... These adaptations continued on and on, and the
competition still rages on to this day, from molecules to groups of molecules,
cells, the “Survival Machines”, tools evolved by the replicators to defend them-
selves, tools growing more and more complex to deal with other rival replicators
and their Survival Machines... a vast biological arms race.

Eventually, through evolution, a new information storage methods was discov-
ered, RNA evolved[9]... the result of all this turmoil is what we see around us to-
day. We are still banding together, we are still competing for limited resources, we
are the “Survival Machines” as Dawkins pointed out, machines used by these rep-
licators, by genes, to wage war on each other and make as many copies of them-
selves as possible. Their newest invention, a feature that evolved to deal with the

2.1 Biological Neural Network 45

ever changing and dangerous world, is an interconnected graph of cells that can
control these Survival Machines more precisely, deal with much more complex
Survival Machines, store information about the world, and keep the genes safe
long enough to create more copies of them, with their own survival machine to
control. One of the most significant features that arisen in biological organisms, is
the parallel biological computer, the vast neural network system, the brain. Over
the billions of years of evolution the brain too has been changed, evolution has
trended toward more complex brains. Evolution has been slowly exploring the
various neural network topologies.

This text is dedicated to the study of evolutionary methods as applied to simu-
lated neural networks. Instead of using atoms and molecules as the building blocks
for our evolutionary algorithms, we will use neurons. These neurons, when
grouped in particular patterns and topologies, form brains. Biological computers
evolved the ability to invent, imagine, scheme, and most importantly, these paral-
lel computers evolved self awareness. Thus we know that such things are possible
to evolve, it already happened, nature has proven it possible, we are the proof. In
this book we will develop non biological neural networks, and we will apply evo-
lutionary principles to evolve neural systems capable of solving complex prob-
lems, adapting to artificial environments, and build a platform that perhaps, some
day, could too evolve self aware NN based agents.

In the following section I will discuss in more detail the Biological Neural
Networks, how they work, how each neuron processes data, how the neuron en-
codes data, and how it connects to other neurons in the vast neural network we call
our brain.

2.1 Biological Neural Network

Our brain is a vast graph of interconnected neurons, a vast biological neural
network. A neuron is just a cell that can accept signals, and based on its chemical
and geometrical properties, produce an output. There are roughly 100 billion neu-
rons in the human brain, with trillions of connections between them. Though it
might seem surprising that they can work so coherently, the result of which is us,
our consciousness and intelligence, it is not surprising at all when we take into ac-
count that it took evolution billions of years and trillions of permutations to fine
tune this system to get the result that we see today.

A typical neuron, as shown in Fig-2.1, is a cell composed of three main parts,
the soma (cell body), the dendrites, and the axon. The soma is a compact body
containing the nucleus, and other standard cell internals, and the dendrites and ax-
on are filaments that extrude from it. A single neuron usually has a large number
of dendrites, all of which branch profusely but usually retain their filament thick-
ness. Unlike the case with the dendrites, a neuron has only a single axon, originating

46 Chapter 2 Introduction to Neural Networks

from a base of the neuron called the “axon hillock”. The axon is usually a long fil-
ament which can branch and thus connect to multiple other neurons, with the ax-
onal filament itself usually getting thinner the further it extends and the more it
branches. “Synaptic signals from other neurons are received by the soma and
dendrites; signals to other neurons are transmitted by the axon. A typical synapse,
then, is a contact between the axon of one neuron and a dendrite or soma of an-
other. Synaptic signals may be excitatory or inhibitory. If the net excitation re-
ceived by a neuron over a short period of time is large enough, the neuron gener-
ates a brief pulse called an action potential, which originates at the soma and
propagates rapidly along the axon, activating synapses onto other neurons as it
goes.” [22].

Fig. 2.1 A typical biological neuron.

2.1 Biological Neural Network 47

It would be difficult to describe the biological neuron and its operation any

pendium of human knowledge, Wikipedia: “Neurons are highly specialized for the
processing and transmission of cellular signals. Given the diversity of functions
performed by neurons in different parts of the nervous system, there is, as ex-
pected, a wide variety in the shape, size, and electrochemical properties of neu-
rons. For instance, the soma of a neuron can vary from 4 to 100 micrometers in
diameter.

 The soma is the central part of the neuron. It contains the nucleus of the cell,
and therefore is where most protein synthesis occurs. The nucleus ranges from
3 to 18 micrometers in diameter.

 The dendrites of a neuron are cellular extensions with many branches, and
metaphorically this overall shape and structure is referred to as a dendritic
tree. This is where the majority of input to the neuron occurs.

 The axon is a finer, cable-like projection that can extend tens, hundreds, or
even tens of thousands of times the diameter of the soma in length. The axon
carries nerve signals away from the soma (and also carries some types of in-
formation back to it). Many neurons have only one axon, but this axon may—
and usually will—undergo extensive branching, enabling communication with
many target cells. The part of the axon where it emerges from the soma is
called the axon hillock. Besides being an anatomical structure, the axon hillock
is also the part of the neuron that has the greatest density of voltage-dependent
sodium channels. This makes it the most easily-excited part of the neuron and
the spike initiation zone for the axon: in electrophysiological terms it has the
most negative action potential threshold. While the axon and axon hillock are
generally involved in information outflow, this region can also receive input
from other neurons.

 The axon terminal contains synapses, specialized structures where neuro-
transmitter chemicals are released to communicate with target neurons.”

in Fig-2.2. First an ion based electrical signal is propagated down the axon, and
towards every branch of that axon down to the axonal terminals. At the synaptic
cleft of those axonal terminals, where the axon is in very close proximity to the
cell bodies and dendrites of other neurons, the electrical signal is converted into a
chemical one. The neurotransmitters, chemical signals, pass the distance between
the axon terminal of the presynaptic neuron, and the dendrite (or soma, and some-
times even axons) of the post-synaptic neuron. How excited the post-synaptic neu-
ron gets, the strength of the signal that the dendrites perceive from these neuro-
transmitters, all depend on the number of receptors that are present on the surface
where the neurotransmitters contact the postsynaptic neuron. Thus, it is the num-
ber of, and type of receptors found on the soma and dendrites that weigh the in-
coming chemical signal, and decide whether it is excitatory when combined with
other signals, or inhibitory. The receptors convert the chemical signals they per-
ceive, back into electrical impulses. This train of signals continues its journey down

more clearly than is done in the following quote [22] from the ever growing com-

The neuron to neuron signaling is a three step electrochemical process, as shown

48 Chapter 2 Introduction to Neural Networks

the dendrites and towards the soma. Thus, as we can see, the complete signal is an
electrical one, converted into a chemical one, and then converted back into an
electrical one.

Fig. 2.2 Neuron to neuron signaling, a three step electrochemical process.

Furthermore, the way the signals are perceived is not based on a single spike, a
single electrical impulse that some neuron A sends to neuron B, but the signal’s
frequency. The message is encoded not in the amplitude, but in the frequency.
Evolutionary this makes perfect sense, in biological systems it would be difficult
to regulate a perfect amplitude as it passes down the wires, but frequency is much
simpler to manage using the imperfect biological wetware.

A neuron B could have hundreds to thousands of axons connecting to its soma
and dendrites. The way a neuron calculates whether it should produce an output
signal, also called action potential or simply spike, at any given time, depends on
the intensity of the electrical signal at the axon hillock at that time, as shown in
Fig-2.3. Since the intensity of the signal experienced by the axon hillock (trigger

2.1 Biological Neural Network 49

zone) depends on how many spikes at that moment excite that region at the same
time, the signal is based not only on how many spikes there are, but also on the
shape of the neuron and the timing of the signals. The neuron performs a spatio-
temporal integration of the incoming signals. If the excitation level at a given time
surpasses its threshold, an action potential is generated and passed down the axon.
Furthermore, the output signal’s amplitude is independent of signals arriving at the
axon hillock, it is an all-or-none type of system. The neuron either produces an ac-
tion potential (if there is enough excitation at the trigger zone), or it does not. Ra-
ther than encoding the message in the action potential’s amplitude, it is encoded in
the frequency, and the frequency depends on the spatiotemporal signal integration
and processing that occur within the soma and at the axon hillock.

The signal is based on the spatial properties of the incoming spikes, because if
the axon hillock is located in a strange position, or its properties are distributed in
space within the neuron differently, it will perceive the incoming signals in a dif-
ferent way. For example, thinking purely mathematically, if the trigger zone is
somehow spread thinly over a great area, then to trigger it we would need to send
electrical signals that intersect on this wide area, the distribution of the incoming
action potentials would have to cover this wide area, all the different places of the
axon hillock that sense the electrical signals. On the other hand, if the axon hillock
is concentrated at a single point, then to produce the same output we would need
to send just a few of the signals towards that point.

On the other hand, the neuron’s signal processing is temporal based processing
because, if for example 10 spikes come across the axon hillock, each at a rate of
1ms after the other, the axon hillock feels an excitation of only 1 spike every 1ms,
which might not be enough excitation beyond the threshold to trigger an output
action potential. On the other hand, if 10 spikes come from different sides, and all
come across the axon hillock at the same time, the intensity now is 10 spikes ra-
ther than one, during the same single ms, which will overcome the biological
threshold and the neuron will send an action potential down the axon.

Thus, the output signal, an electrical spike encoded signal produced by the neu-
ron, is based on the spatial and temporal properties of its input signals. Something

spikes will arrive at the trigger zone using t which defines the arrival at the trigger
zone, t-1 which defines arrival at the trigger zone in 1 delta, t-2 which defines the
arrival at the trigger zone in 2 deltas, and so on. At t-1 we see that there will be 4
spikes, at t-2 only 2. If it requires 3 spikes to overcome the threshold (which itself
is defined by the shape and chemical properties at the axon hillock) and to set off
an action potential down the axon, then the signals arriving at t-2, when they do
finally arrive at the hillock in 2 deltas (time units), will not trigger an action poten-
tial, while the signals currently at t-1 will generate a spike when they finally arrive
at the trigger zone.

similar is shown in Fig-2.3, where I loosely defined the timings of when the

50 Chapter 2 Introduction to Neural Networks

Fig. 2.3 Spatiotemporal signal integration.

Furthermore, the neurons don’t just accept incoming signals and produce out-
going signals, the neurons also change over time based on the signals they pro-
cess. This change in the way neurons respond to signals by adding more receptors
to the dendrites, or subtracting receptors from the dendrites, or modifying the way
their receptors work, is one of the processes by which a neural network learns and
changes its excitability towards certain signals, it is how we accumulate experi-
ence and form memories. Other ways by which a neural network learns is through
the axons branching and making new connections, or breaking old connections.
And finally the NN changes in the way it processes signals through having the
very fluid in which the neurons are bathed changed and chemically modified,
through drugs or other means for example.

The most important part to take away from this chapter is that the biological
neurons output frequency encoded signals, and that they process the incoming fre-
quency encoded signals through spatiotemporal integration of those signals. And

2.2 Artificial Neural Network 51

that the neurons can change over time based on the signals they process, the neu-
rons change biologically, they change their information processing strategies, and
they can form new connections to other neurons, and break old ones. This process
is called neuronal plasticity, or just plasticity. In the next section we will discuss
artificial neural networks, how they function, and how they can differ from their
biological counterparts.

2.2 Artificial Neural Network

Artificial neural networks (NN), as shown in Fig-2.4, are simulated biological
neural networks to different levels of precision. In this section we will cover the
typical artificial neural network, which are not perfect simulations. A typical arti-
ficial neuron, aka neurode, does not simulate a biological neuron at the atomic, or
even molecular level. Artificial neurons are abstractions of biological neurons,
they represent the essentials of biological neurons, their nonlinear signal integra-
tion, plasticity, and concurrency.

Fig. 2.4 An artificial neural network.

As shown in Fig-2.5, like a biological neuron, an artificial one accepts signals
through its artificial dendrites, processes those signals in its artificial soma, and
outputs the processed signals to other neurons it is connected with. It is a concise
representation of what a biological neuron does. A biological neuron simply ac-
cepts signals, weighs each signal, where the weight depends on the receptors on
the dendrites on which the axons from other neurons intercepted, then based on its
internal structure and chemical composition, produces the final frequency encoded
output and passes that output onwards to other neurons. In the same way, an artifi-
cial neuron accepts signals, weighs each signal using its weight parameters, inte-

52 Chapter 2 Introduction to Neural Networks

grates all the weighted signals through its activation function which simulates the
biological neuron’s spatiotemporal processing at the axon hillock, and then propa-
gates the final output signal to other neurons it is connected to.

Fig. 2.5 A detailed look at an artificial neuron’s schematic.

As can be seen from Fig-2.5, there are of course differences. We abstract the
functionality undertaken by the receptors on the dendrites with simple weights,
nevertheless, each incoming signal is weighted, and depending on whether the
weight is positive or negative, each incoming signal can act as an excitatory or in-
hibitory one, respectively. We abstract spatiotemporal signal integration that oc-
curs at the axon hillock with an activation function (which can be anything, and as
complex as the researcher desires), nevertheless, the weighted signals are integrat-
ed at the output point of the artificial neuron to produce the final output vector,
which is then passed onwards to other neurons. And finally, we abstract the func-
tionality undertaken by the axon with simple signal message passing, nevertheless,
the final output signal is propagated, diligently, to all postsynaptic artificial neu-
rons.

The biological neural network is a vast graph of parallel processing simple bio-
logical signal integrators, and the artificial neural network too is a vast graph of
parallel processing simple signal integrators. The neurons in a biological neural
network can adapt, and change its functionality over time, which too can be done
in artificial neural network through simulated neural plasticity, as we will discuss
in later sections, and eventually implement in the NN systems we will build our-
selves.

There is one thing though that differs significantly in the typical artificial neu-
ral networks, and the biological neural networks. The neurons in a biological NN

2.2 Artificial Neural Network 53

frequency encode their signals, whereas in the artificial NNs, the neurons ampli-
tude encode their signals. What has more flexibility? Frequency encoded NN sys-
tems or the amplitude encoded ones? It is difficult to say, but we do know that

means that both possess the same amount of flexibility. The implications of the
fact that both systems are universal Turing machines is that even if a single artifi-
cial neuron does not do as much, or perform as a complex computation as a single
biological neuron, we could put a few artificial neurons together into an artificial
neural circuit, and this artificial neural circuit will have the same processing power
and flexibility as a biological neuron. On the other hand, note that frequency en-
coding signals takes more time, because it will at least take the amount of time be-
tween multiple spikes in the spike train of the signal for the message to be for-
warded (since it is the frequency, the time between the spikes that is important),
whereas in an amplitude encoded message, the single spike, its amplitude, carries
all the information needed.

How much of the biology and chemistry of the biological neuron is actually
needed? After all, the biological neuron is the way it is now due to the fact that it

Wetware has no choice but to use ions instead of electrons for electrical signal
propagation. Wetware has no choice but to use frequency encoding, instead of
amplitude encoding, because wetware is so much more unreliable than hardware
(but the biological neural network as a whole, due to a high level of interconnec-
tions, is highly fault tolerant, reliable, and precise). The human neuron is not a
perfect processing element, it is simply the processing element that was found
through evolution, by chance, the easiest one to evolve over time, that’s all. Thus,
perhaps a typical plasticity incorporating artificial neuron has all the right features
already. We have after all evolved ALife organisms with just a few dozen neurons
that exhibited interesting and evolutionary appropriate behaviors with regards to
food foraging and hunting [5,6,7]. We do know one thing though, the limits of
speed, signal propagation, neural plasticity, life span of the neuron, integration of
new neural systems over the organism’s lifetime, are all limited in wetware by bi-
ology. None of these limitations are present in hardware, the only speed limit of
signal propagation is that of light in a hardware based neural computing system.
The non biological neural computer can add new neural circuits to itself over life-
time, and that lifetime span is unlimited, given that hardware upkeep is possible.

I think that amplitude encoded signaling is just as powerful, and the activation
functions of the artificial neurons, the integration of the weighted signals, is also
as flexible, or can be as flexible as the spatiotemporal signal integration performed
by a biological neuron. An artificial neuron can simulate different kinds of recep-
tor densities on the dendrites by different values for weights. An artificial neuron
can simulate different kinds of neuron types through the use of different kinds of
activation functions. Even plasticity is easy to add to an artificial neuron. And of

use frequency encoding like a biological neural network does. There is absolutely

both, biological and artificial neural networks are Turing complete [4], which

randomly found solution, the easiest solution found by evolution. was the first

course, there are also artificial spiking neural network systems [23,24,25], which

54 Chapter 2 Introduction to Neural Networks

no reason why artificial neural networks cannot achieve the same level of perfor-
mance, robustness, and intelligence, as biological neural networks have.

2.2.1 The Neurode in Detail

In this section we will do a more detailed analysis of the architecture of an arti-
ficial neuron, how it processes an incoming signal, and how such an artificial neu-
ron could be represented in software. In Fig-2.6 we use the schematic of an artifi-
cial neuron in a simple example where the neuron receives two incoming signals.

is simply a bias value, which modifies the neuron’s processing. The neuron pro-
cesses the signal based on its internals, and then forwards its output, in a vector
form, to postsynaptic neurons. In the figure, the “axon” of the neuron branches in-
to 3 strands.

Fig. 2.6 An artificial neuron in action, receiving signals from two other elements, a and b.

Artificial neurons accept vector input signals, and output a vector signal of
length 1. Each input signal is weighted; each element in the input vector is multi-
plied by a weight in a weight list associated with that input vector, and that partic-
ular element in the input vector. Thus, the integration of the incoming signals is
done by calculating a dot product of the incoming vectors and the weight vectors
associated with those input vectors. In the above figure, there are two incoming
signals from other elements, and a bias signal (which we’ll talk about next). The
incoming signal from element ‘a’ is a vector signal of length 2, the signal from el-
ement ‘b’, is a vector of length 3, and the bias signal is a vector of length 1. The
neuron has a weight list for each incoming signal. The weight lists weigh the im-
portance of each input vector. The way we integrate the input signal is by calculat-
ing a dot product of the weights and the input signals. Once the dot product is cal-
culated, we compute the output of the neuron, Output = F(X), where F is the
activation function, and X = Dot_Product + Bias. The neuron then packages this
result into a vector of length 1, like so: [Output], and then fans out this output vec-
tor to the elements that it is connected to. A sigmoid function, or hyperbolic tangent,

Each of the signals is a vector. The third signal is not from any other neuron, but

2.2 Artificial Neural Network 55

is the typically used activation function in artificial neurons. A multi-layered feed

work composed of such neural circuits can do anything.

Now regarding the bias input, it is simply an input vector which is used to in-
crease the flexibility of the neuron by giving it an extra weight that it can use to
skew the dot product of the input signals. Not every neuron needs to have a bias
input, it’s optional, and if the weight for the bias input is 0, then that is equivalent
to a neuron that does not have a bias input at all. The neuron can use the bias to
modify the point at which the weighted dot product produces a positive output
when passed through the activation function, in which case the bias acts as a
threshold. If the bias is a large positive number, then no matter what the input will
be, the neuron has a much greater chance of outputting a positive value. If the bias
is a negative number, then the incoming signals will have to be high enough to
overcome this bias for the neuron to output a positive value. In essence, the bias
controls how excitable in general the neuron is, whereas the weights of the non bi-
as inputs control how significant those inputs are, and whether the neuron consid-
ers them excitatory or inhibitory. In future figures we will use a much simpler
neuron schematic than the one we used in Fig-2.6. Having now demonstrated the
inner workings of a neuron, in the future when diagramming a neuron we will use
a circle, with multiple inputs, and an output link that fans out the neuron’s output
signal.

When we connect a few of these neurons together in the right topology and set
their weights to the right values, forming a small neural network like the one in
Fig-2.7, such a neural network could perform useful tasks. In Fig-2.7 for example,
the neural circuit composed of 3 neurons calculates the XOR of the inputs. We can
demonstrate that this neural circuit does indeed calculate the XOR of its inputs by
feeding it the signals from a XOR truth table, and comparing its output to the
proper output of the XOR logical operator. The input signals, in this case a single
vector of length 2, is fed from the truth table to the neurons A and B, each neuron
calculates an output signal based on its weights, and then forwards that signal to
neuron C. Then neuron C calculates an output based on the inputs it receives from
neuron A and B, and then forwards that output onwards. It is this final output, the
output of the neuron C, that is the output of the neural circuit. And it is this output

Table 1. The XOR truth table, and the vector form which can be used as input/output signals of a NN.
In this table, 1 == true, -1 == false.

Pattern [X1, X2, Y] Input: [X1, X2] Output: [Y]
1 [-1,-1,-1] [-1,-1] [-1]
2 [-1, 1, 1] [-1, 1] [1]
3 [1,-1, 1] [1,-1] [1]
4 [1, 1,-1] [1, 1] [-1]

forward neural circuit composed of neurons using sigmoid activation functions
can act as a universal function approximator [8], which means that a neural net-

that we will compare to the proper output that a XOR logical operator would produce

56 Chapter 2 Introduction to Neural Networks

when fed the same input signals as the neural circuit at hand. The XOR truth table is
shown in the following table, where X1 and X2 are the inputs to the XOR logical
operator, and Y is the XOR operator’s output.

We will now walk through the neural circuit, neuron by neuron, step by step,
and calculate its output for every input in the XOR truth table. As shown in Fig-
2.7, the neural circuit has 3 neurons, A, B, and C. Neuron A has the following
weight vector: [2.1081,2.2440,2.2533], where: W1=2.1081, W2=2.2440, and Bi-
as=2.2533. Neuron B has the following weight vector: [3.4963,-2.7463,3.5200],
where W1=3.4963, W2=-2.7463, and Bias = 3.5200. Finally, Neuron C has the
following weight vector: [-2.5983,2.7354,2.7255], where W1=-2.5983,
W2=2.7354, and Bias=2.7255. With this information we can now calculate the
output of the neural circuit for every input vector, as shown in Fig-2.7.

Fig. 2.7 Calculating the output of the XOR neural circuit.

As can be seen in the above figure, the neural circuit simulates a XOR. In this
manner we could even build a universal Turing machine, by combining such XOR
neural circuits. Another network of neurons with another set of activation func-
tions and neural weights would yield something different...

The main question though is, how do we figure out the synaptic weights and
the NN topologies needed to solve some problem, how for example did we figure
out the weights for each of these 3 neurons to get this neural circuit to act as a
XOR operator? The answer is, a learning algorithm, an automated algorithm that
sets up the weights. There are many types of algorithms that can be used to setup
the synaptic weights within a NN. Some require that we have some kind of train-
ing sample first, a set of inputs and outputs, which a mathematical function can
then use to set up the weights of a neural network. Other algorithms do not require
such prior knowledge, all that is needed is for each NN to be gaged on how well it
performed and how its performance on some problem compares to those of other
NNs. We will discuss the various learning algorithms in section 2.4, but before we

2.3 Neural Networks and Neural Network Based Systems 57

move on to that section, we will first cover the standard Neural Network terminol-
ogy when it comes to NN topological structures, and discuss the two types of
basic NN topologies, feedforward and recurrent, in the next section.

2.3 Neural Networks and Neural Network Based Systems

A neuron by itself is a simple processing element. It is when we interconnect
these neurons together, in parallel and in series, when we form a neural network
(NN), that true computational power emerges. A NN is usually composed of mul-
tiple layers, as the example shows in Fig. 2.8. The depth of a NN is the number of
layers that compose it.

Fig. 2.8 A multi-layered NN, with a NN composed of 3 layers. The first layer has 3 neurons,
the second layer has 1 neuron, and the third layer has 3 neurons.

Using layers when discussing and developing NN topologies gives us an ability
to see the depth of a NN, it gives us the ability to calculate the minimum number
of neurons the input has to be processed by in series, before a NN produces an
output. The depth tells us the minimum amount of non parallel processing that has
to be done by a distributed NN. Finally, assigning each neuron a layer allows us to

58 Chapter 2 Introduction to Neural Networks

see whether the connections from one neuron to another are feed forward, meaning
some neuron A sends signals to a neuron B which is in front of neuron A, or
whether the connection is recurrent, meaning some neuron A sends a signal to
neuron B which itself is behind A, and whose original output signal is either fed
directly to neuron A, or was forwarded to other neurons and then eventually got to
neuron A before it itself produced its output signal (the recurrent signal that it sent
back to neuron B). Indeed in recurrent NNs, one can have feedforward and feed-
back loop based neural circuits, and a neuron B could have sent a signal to neuron
A, which then processed it and sent its output back to neuron B... When a neural
network is composed of neurons whose output signals go only in the forward fac-
ing direction, such a network is called a feedforward NN. If the NN also includes
some recurrent connections, then it is a recurrent NN. An example of a
feedforward and a recurrent neural network is shown in Fig-2.9.

Fig. 2.9 An example of a Feedforward and a Recurrent neural network.

As can be seen in the recurrent NN example, neuron A receives a signal from
somewhere, processes it, sends a signal to neuron B, which processes the signals
sent to it and then sends an output signal to neuron C, D, but also a recurrent sig-
nal back to A and itself.

2.3 Neural Networks and Neural Network Based Systems 59

2.3.1 Recurrent Neural Networks and Memory Loops

What is significant about recurrent neural networks is that they can form
memory circuits. For example, the Fig-2.10 shows four examples of a recurrent
NN. Note that in 2.10A, the neuron sends a signal back to itself. This means that at
every moment, it is aware of its previous output, and that output is taken into ac-
count when producing a new output. The neuron has memory of its previous ac-
tion, and depending on the weight for that recurrent connection, its previous signal
at time step T can play a large or a small part in its output at a time step T+1. In
2.10C neuron 1 has a recurrent connection to neuron 2, which outputs a signal
back to neuron 1. This neural circuit too forms a memory system, because this cir-
cuit does not simply process signals, but takes into account the information from
time step T-2, when making a decision with regards to the output at time step T.

Fig. 2.10 An example of recurrent NNs that could potentially represent memory loops. A is
a general, 3 layer recurrent neural network, with 3 recurrent connections. B is a self recur-
rent neuron, which thus has a trailing memory of its previous output, depending on its
weight with its own recurrent connection. C is a two layer recurrent NN, with neuron-2 re-
ceiving a signal from neuron-1, which processes the signal that came from neuron-2 in the
first place, thus neuron-2 receives a signal that it itself produced T-2 steps before, pro-
cessed by neuron-1. Finally, D is a one layer recurrent NN, which has the topology of a flip
flop circuit.

Why T-2?, because at T-2 neuron 1 outputs a signal to 2 rather than itself, it is

60 Chapter 2 Introduction to Neural Networks

then at T-1 that 2 outputs a signal to 1, and it is only at time T that 1 outputs a sig-
nal after processing an input from some other element, and a signal it output at T-
2, which was processed by 2 before coming back to 1 again. Thus this memory
loop is deeper, and more involved. Even more complex systems can of course be
easily evolved, or engineered by hand.

2.3.2 A Neural Network Based System

We have discussed neural networks, and in all figures I’ve shown the NNs as
having input signals sent to them from the outside, but from where? In real im-
plementations the NNs have to interact with the real or simulated world, and the
signals they produce need to be somehow used to accomplish useful tasks and act
upon those real or simulated worlds. For example, our own brain accepts signals
from the outside world, and signals from our own body through the various senso-
ry organs, and the embedded sensory neurons within those organs. For example
our eyes, our skin, our nose... are all sensory organs with large concentrations of
sensory elements that feed the signals to the vast neural network we call our brain.
These sensory organs, these sensors, encode the signals in a form that can be for-
warded to, and understood by, the brain.

The output signals produced by our brains also have no action without some
actuators to interpret those signals, and then use those signals to act upon the
world. The output signals are made sense
ple evolved to know how to respond when receiving signals from the motor neu-
rons, and it is our muscles that perform actions upon the world based on the sig-
nals coming from the biological NN.

Thus, though it is the NN that thinks, it is the NN with sensors and actuators
that forms the whole system. Without our sensory organs, our brain is in the dark,
and without our muscles, it does not matter what we think, because we can have
no affect on, and no way to interact with, the world.

It is the same with artificial NNs. They require sensors, and actuators. A sensor
can be a camera, which can package its output signals in a way that can be under-
stood by the NN, for example by representing the sensory signals as vectors. An
actuator can be a motor, with a function that can translate the NN’s output vector
into electrical signals that controls the actual motor.

Thus it is the whole thing, the sensors connected to and sending the sensory
signals to the NN, and the NN connected to and sending its output signals to the
actuators, that forms the full system, as shown in Fig-2.11. In this book we will re-
fer to such a complete and self contained system, the Sensors connected to the
Neural Network, which itself is connected to Actuators, as the NN based system,

of by the actuators, our muscles for exam-

2.4 Learning Vs. Training 61

or NN based agent. It is only when we are discussing the NN in isolation, the to-
pology of a NN for example, that I will use the term NN on its own. When it’s
clear from the discussion though, the two terms will sometimes be used inter-
changeably.

Fig. 2.11 The Biological and the Artificial Neural Network Systems compared.

Having now discussed the basics of NNs, the different types of topologies, and
what a complete NN system is, and what parts form a NN system, we now move
forward and briefly cover how the classical, typical NNs learn and get trained. In
the following sections we will discuss the typical algorithms used to modify the
weights of the neurons belonging to some NN applied to a problem, and the dif-
ference between the term learning and training.

2.4 Learning Vs. Training

Though most of the time you will hear the terms learning and training used in-
terchangeably when people discuss the processes and algorithms that modify the
weights and the topology of a NN such that it is more fit, such that it is able to
solve some problem it is applied to, in this book we will discriminate between the
two. Take for example the Back Propagation (BP) Learning algorithm we will dis-

62 Chapter 2 Introduction to Neural Networks

cuss in the next section. In that algorithm we have a list of tuples of inputs and ex-
pected outputs. The inputs are the vectors we would feed to a NN system, and the
outputs are the expected outputs we’d like the NN system to produce. The way the

When we think of learning, we think of studying, of one looking at the data,
and then through logic, and explanation to oneself, coming to a conclusion that
something should work this way or that way. The starting NN, and the end result,
are the same NN, and the change to the reasoning, and thus to the topology and
synaptic weights is self initiated and self inflicted. We are the same before and af-
ter we learn something, in a sense that this change in our logic in our perception
was not done from the outside by some external system, but instead, it was us that
has done the change, it was us that had worked and came to the conclusion that
another way of thinking is better, or that something works this particular way...
That is learning. In the BP algorithm we just discussed above, the NNs are static,
they are not learning. We simply bring into existence a NN, see whether how it
behaves now is appropriate and whether it represents the answer to some question,
and then we change its weights, the synaptic weights of the neurons are modified
and optimized from the outside, by an outside supervisor. The NN is trained. This
is something that is referred to in the standard Neural Network literature as Super-
vised Learning, where the NN has a supervisor that tells it whether its answers are
right or wrong, and it is the supervisor (an external algorithm) that modifies the
NN so that the next time it will hopefully produce a better answer.

In true learning, the NNs are able to change on their own through experience.
The NN only lives ones, and during that lifetime it is modified through experi-
ence. And what experience it is exposed to is to a great degree guided by the NN
itself. In the way that what we choose to expose ourselves to, influences what we
learn, and how our perspectives, how we think, and what we know, changes. The
phenomenon of the neural networks changing and adapting through experience, is
due to neural plasticity. Neural plasticity is the ability of the neuron to change due
to experience. Thus for example if we create a large NN system composed of plas-
tic (those possessing plasticity) neurons, and then release it into a virtual environ-
ment and it improves on its behavior, it learns how to survive in the environment
through experience... that is what I would refer to as learning. This is called Unsu-
pervised Learning, and indeed that is completely possible to do in artificial neural

BP learning algorithm works is by letting a neural network output a vector based
on the input, and then use a gradient descent method to change the weight para-
meters of the neurons based on the difference of the NN’s actual output, and the
expected output. Through the application of the BP algorithm, eventually the
difference between the NN’s output and the expected output, is minimized. Once
the error, the difference between the NN’s output and the expected output is below
some threshold, we apply this NN to data that it has not yet seen, and use the NN’s
output as the result, hoping that the NN can generalize from the training set to this
new real world data. When using this algorithm, is the NN really learning?

2.5 Neural Network Supervised “Learning” Algorithms 63

networks, by for example giving each neurode the functionality which allows it to
change its information processing strategy based on the signals it processes.

Thus the main idea to be taken from this section with regards to the difference
between what I call training and learning, is this: The process of training a neural
network is accomplished by changing its weights and topology from the outside,
by some algorithm external to the NN based system. On the other hand, a neural
network is learning if it is adjusting and improving itself of its own volition,
through its exposure to experience and the change of its NN topology and neural
parameters. Thus it would be possible to bootstrap a NN system, by first training
some static system, then adding plasticity to the NN, and then releasing this boot-
strapped NN system into some environment, where based on the bootstrapped part
it is able to survive, and as it survives it is being exposed to the environment, at
which point its plastic neural system changes and adapts, and the NN learns. We
will explore this further in later chapters, after we’ve built a neuroevolutionary
system that can evolve NN systems, and where the NN systems are then released
into some simulated environment. We will evolve NN systems which have plastic-
ity, we will evolve them so that they can use that plasticity to learn new things on
their own.

In the following two sections we will discuss the typical supervised and unsu-
pervised training and learning algorithms respectively.

2.5 Neural Network Supervised “Learning” Algorithms

Supervised learning is a machine learning approach to inferring a target func-
tion from a training data set composed of a set of training examples. Each training
example is composed of an input vector, and a desired or expected output vector.
The desired output vector is also referred to as the supervisory signal. When ap-
plied to neural networks, supervised learning, or training, is an approach to the
modification and automation of weight setting of a neural network through the use
of a supervisor, or external system, that compares the NN’s output to a correct,
pre-calculated output, and thus expected output, and then based on the difference
between the NN’s output and the expected output, modifies the weights of the
neurons in the NN based on some optimization algorithm. A supervised “learning”
algorithm can only be applied to problems where you already know the answers,
where you can build a training set. A training set is a list of tuples, where every
tuple is composed of the input vector, and the expected output vector: [{Input,
ExpectedOutput}...]. Thus we need to know the outputs ahead of time, so that we
can train the neural network before we can use it with input signals it has not yet
seen. Note, this is not always possible. For example, let’s say we wish to create a
neurocontroller for a robot, to survive in some environment. There is no training
set for such a problem, there is no list of tuples where for every camera input that
act as robots eyes there is an expected and correct move that the robot must make.

64 Chapter 2 Introduction to Neural Networks

That is usually never the case, in fact, we do not know what the right move is, if
we knew that, we would not need to create the neurocontroller. Another example
is the creation of a neurocontroller that can make a robotic arm reach for some
point in space. Again, if we knew what the right combination of moves that the
motors needed to make, we would not need for the NN to figure that out.

The most widely used of such supervised algorithms, is the Error Backpropaga–
tion algorithm [10]. The backpropagation algorithm uses gradient descent to look
for the minimum error function between the NN’s output, and the expected output.
The most typical NN topology that this algorithm is applied to, is a standard feed-
forward neural network (though there is a BP algorithm for a recurrent NN topol-
ogy too). As we discussed, a supervised learning algorithm trains a NN to approx-
imate some function implicitly, by training the NN on a set of inputs and expected
outputs. The error that must be minimized is the error between the NN’s output,
and the expected output.

Because we will concentrate on neuroevolution, we will not cover this algo-
rithm in great detail. But an extensive coverage of this supervised learning algo-
rithm can be found in: [11,12]. In summary, the training of the NN through the
backprop algorithm works as follows:

1. Create a multi-layered feed forward neural network, where each neuron has a
random set of weights. Set the neurons in the first/input layer to have X number
of weights, plus bias, where X is the vector length of the input vectors. Set the
last/output layer to have Y number of neurons, where Y is the length of the ex-
pected output vector.

2. For every tuple(i) in the training list, DO:
3. Feedforward Phase:

1. Forward Input(i) vector to the neurons in the first layer of NN.
2. Gather the output signals from the neurons in the last layer of NN.
3. Combine the gathered signals into an Output(i) vector.

4. Backprop Phase:

1. Calculate the error between the NN’s Output(i) and ExpectedOutput(i)
2. Propagate the errors back to the neurons, and update the weights of the

neurons based on their contribution to that error. The weights are updat-
ed through gradient descent such that the error is decreased.

3. The errors are propagated recurrently from the last neural layer to the
first.

5. EndDO
6. Repeat steps 2-5 until the average total error between the NN’s outputs and the

expected outputs is less than some chosen value e.

Schematically, the feedforward phase and the error backprop phase, is demon-
strated in Fig. 2.12.

2.5 Neural Network Supervised “Learning” Algorithms 65

Fig. 2.12 The schematic of the backprop learning algorithm.

The steps of recursively updating the synaptic weights of all the neurons in the
feedforward NN based on the error between the NN’s output and the expected
output is demonstrated by the figure through the step numbers. Starting with step
1, the NN’s output is O, and the expected output is X. If there were more than one
output neurons, then each neuron i would produce an output Oi, and for each Oi
there would be an expected output Xi. The meaning of the steps is elaborated on in
the following list:

1. The neuron in the output layer of the feedforward NN produces an output O.
2. The error of the neuron’s output as compared to the expected output is e, calcu-

lated as: e = Xi-Oi where Xi and Oi are the output of neuron i, and expected
output i, respectively, if there are i number of output neurons in the NN.

3. We calculate b (beta) by multiplying the derivative of the activation function
by e: b = e*AF’(S), where S is the dot product of the neuron’s input signals and
synaptic weights for those input signals.

4. We then calculate the delta (change in) weight for each weight i as follows:
dw(i) = n*b*Xi, where n is a learning parameter chosen by the researcher (usu-
ally between 0.01 and 1), b is the value calculated in step-3, and Xi is the input
i to the neuron, associated with the weight i.

5. We updated every synaptic weight i of the neuron using the appropriate dw(i)
for each Wi. The updated weight is produced through: U_Wi = Wi+dw(i).

6. The next e (error) is recursively calculated for every presynaptic neuron using
the equation: e=Wi*b, where Wi is the synaptic weight associated with the neu-
ron whose output was Xi.

66 Chapter 2 Introduction to Neural Networks

7. We calculate b (beta) by multiplying the derivative of the neuron’s activation
function by e: b = e*AF’(s).

8. We then calculate delta weight for each weight i as follows: dw(i) = n*b*Xi
where n is a learning parameter chosen by the researcher (usually between 0.01
and 1), b is the value calculated in step-7, and Xi is the input i to the neuron,
associated with the weight i.

9. We updated every synaptic weight i of the neuron using the appropriate dw(i).
The updated weights of the neurons are calculated through: U_Wi = Wi+dw(i).

This procedure is continued recursively to the other presynaptic neurons, all the
way to, and including, the first layer neurons.

Thus, to optimize the neural network’s weights for some particular task for
which we have a training set, we would apply the backprop algorithm to the NN,
running it through the training set multiple times, until the total error between the
NN’s output and the expected output is low enough that we consider the NN’s
synaptic weights a solution. At this point we would apply the NN to the real prob-
lem for which we have been training it.

As noted, this can only be applied to the problems for which we already know
the answers, or a sample of answers. This algorithm is used only to train the neural
network, once it is trained, its weights will remain static, and the neural circuit is
used as a program, unchanging for the remainder of its life. There are numerous
extensions and improvements to this basic algorithm, covered in the referenced
texts. But no matter the improvements, at the end of the day it is still a supervised
approach, and the resulting NN is static. In the next section we will briefly discuss
unsupervised learning algorithms, the addition of plasticity to the neurons of a
NN, and other methods which allow the NN to self organize, and adapt and
change through the interaction with the environment, and/or data it comes across.

2.6 Neural Network Unsupervised Learning Algorithms

Unsupervised learning refers to the problem of trying to determine structure in
incoming, unlabeled data. In such a learning algorithm, because the input is unla-
beled, unlike the case with the training data set discussed in section 2.5, here there
is no error or reward signals which can be used to guide the modification process
of neural weights based on the difference between the output and the expected
output. Instead, the NN self modifies its parameters based on the inputs and its
own outputs through some algorithm. There are two general kinds of such learning
algorithms; a learning algorithm can either be a system that has a global view of
the NN, and which uses this global view to modify neural weights (kohonen,
competitive…), or a learning algorithm can be a local on, embedded in each neu-
ron and letting it modify its own synaptic weights based on its inputs and outputs
(hebbian, modulated…).

2.6 Neural Network Unsupervised Learning Algorithms 67

Our brains do not have an external supervisor, our brain, the biological neurons
that compose it, use different types of unsupervised learning, in a sense that they
have plasticity and they change based on their experience. There is evidence that

ries, which means that a neural circuit like the hippocampus can modulate, or af-
fect the topology and neural weights located in other parts of the brain, other neu-
ral networks. Thus, in a sense there is also modulation of learning algorithms at a
more global scale of the neural network, and not just at the level of single neurons.
Our brains of course have evolved the different features, the different rates of neu-
ral learning through experience, and the different neural circuits within our brain
which affect and modulate other parts of our brain...

Though we could include a form of hebbian learning in neurons (discussed
next), and create a large homogeneous hebbian or kohonen neural network... it
will still be nothing more than a clustering network, there will be no self aware-
ness within it. To create a truly intelligent neurocomputing system, we need to
combine static neurons, neurons with plasticity, and different forms of unsuper-
vised learning algorithms... all into a vast neural network. And combine it in a way
that all these different parts work together perfectly, and allow for the whole
emergent NN system to truly learn, which is the case with evolved biological neu-
ral networks.

In this section we cover the unsupervised learning approaches, how to make
neurons plastic, how to allow neurons to change their own weights through expe-
rience... The actual method of putting all these various systems together into a vast
network that can have the potential of true learning, will be the subject of the rest
of this book, with the method taken to accomplish this goal, being evolution. For
the sake of exposure, and because we will use these particular unsupervised forms
of NN learning once we’ve developed our basic neuroevolutionary platform and
began expanding it beyond the current state of the art, we will briefly cover 4 par-
ticular unsupervised learning algorithms next.

2.6.1 Hebbian Learning

In 1949 Donald Hebb proposed a computational algorithm to explain memory
and the computational adaptation process within the brain, he proposed a rule we
now refer to as the Hebbian learning. The Hebbian learning is a neural learning
algorithm that emulates plasticity exhibited by neurons, and which has been con-
firmed to a great extent to exist in the visual cortex [14].

As Hebb noted [26], “The general idea is an old one, that any two cells or sys-
tems of cells that are repeatedly active at the same time will tend to become ‘asso-
ciated’, so that activity in one facilitates activity in the other.”, or more concisely:
“neurons that fire together, wire together”.

the hippocampus plays a very important role [13] in the formation of new memo-

68 Chapter 2 Introduction to Neural Networks

The basic Hebbian rule for associative learning can be written as follows: For
every weight w(i) in a neuron B, we add to the weight w(i) the value dw(i) where
dw(i) = x(i)*O. This equation simply states that if we have a neuron B, which is
connected from a number of other elements, and which produces an output O after
processing the presynaptic x(i) input signals, and has a weight w(i) for every input
signal x(i), then the change in the weight w(i) is x(i)*O. We can see that if both
x(i) and O have the same sign, then the change in synaptic weight is positive and
the weight will increase, whereas if x(i) and O are of opposite signs, then the
weight will decrease for the synaptic connection between neuron B and the pre-
synaptic element which sent it the signal x(i). So then for example, imagine that
we have a NN with 2 neurons, in which neuron A is connected to neuron B. If
neuron A sends a positive signal to neuron B, and this makes neuron B output a
positive signal, then B’s synaptic weight for the connection coming from A in-
creases. On the other hand, if A’s signal to B makes B produce a negative signal,
then B’s synaptic weight associated with A’s signals is lowered. In this manner the
two neurons synchronize. Fig-2.13 demonstrates this scenario and shows the
hebbian rule in action.

Fig. 2.13 Neuroplasticity through Hebbian learning.

In the above figure, we can see that just from one signal coming from Neuron
A , a signal that was positive and thus producing a positive delta weight with re-
gards to the positive synaptic weight of B, B’s neural weight nearly doubled for
the connection with A . A few more signals from A , and the weight aw1 would
have grown significantly larger, and eventually drowned out any other weights to
other links. Thus the problem with the original and very simple Hebbian learning
rule is that it is computationally unstable. For example, as noted, the weights do
not saturate, they can continue growing indefinitely. If that does occur, then the
weights that grow fastest will eventually drown out all other signals, and the out-

2.6 Neural Network Unsupervised Learning Algorithms 69

put of the neuron, being a sigmoid of tanh, will always be 1. Thus eventually the
neuron will stop truly discerning between signals, since its weights will be so large
that no matter the input, 1 will always be the neuron’s output. Another problem is
that, unlike in a biological neuron, there is no weight decay in the original Hebb’s
rule, there is no way for the synaptic weights for the incoming signals to become
weaker.

New learning algorithms that fix computational instabilities of the original
Hebbian rule have been created. For example, three versions of such rules are the
Oja’s rule [15], the Generalized Hebbian Algorithm (GHA) aka Sanger’s rule
[16], and the BCM rule [17]. The Oja’s and BCM rules in particular, incorporate
weight decay, and are more biologically faithful. In Fig. 2.14 I demonstrate how a
neuron using the Oja’s learning algorithm updates its synaptic weights after hav-
ing processed its input vector.

Fig. 2.14 Neuroplasticity through Oja’s rule.

duces a smaller weight increase, but more importantly, if we process a few more
signals, then we would notice that the weight does not grow indefinitely. This
computational system is stable, the weight eventually saturates at some viable val-
ue, and if that particular synapse, and thus the synaptic weight associated with it,
is not stimulated any further by incoming signals (the incoming signals are not as
high in magnitude), the weight begins to decay, memory slowly deteriorates.

The only problem is that, if there were to have been more than one synaptic
weights (w1, w2...wi), they would all still follow the same type of rule, the same
learning rate ‘n’. To make that rule even more flexible, we can employ neuromodu–
lation, which allows for every synaptic weight to update differently from every

As can be seen in Fig-2.14, unlike the original Hebbian rule, Oja’s rule pro-

other, making the plasticity of the neuron even more flexible and realistic. This
form of unsupervised learning is discussed next.

70 Chapter 2 Introduction to Neural Networks

2.6.2 Neuromodulation

In biological neural networks, neuromodulation refers to the process of the re-
lease of several classes of neurotransmitters into the cerebrospinal fluid, which
then modulate a varied class of neurons within reach of the released neurotrans-
mitters. In this manner, a neural circuit that releases the neurotransmitters into the
cerebrospinal fluid, can affect some area of neural tissue, augmenting its behavior
by making it more easily exited or inhibited for example. Neuromodulation can al-
so be direct, when one neuron is connected to another, and depending on this
modulatory neuron’s signals, the behavior of the modulated neuron, the way it
processes information, is modified.

In artificial neural networks, the same can be accomplished. We can allow a
neuron or a neural circuit to use its output to modulate, or control the plasticity
type and the adaptation pace (learning parameter for example) of another neuron
or neural circuit. Thus for example assume that we have 2 neural circuits, A and
B, which form a neural network based system. Circuit A is connected from a set of
sensors, and to a set of actuators. Circuit B is also connected to the same set of
sensors, but its output signals, instead of going to the actuators, are used to modu-
late and dictate how the weights of the neurons in circuit A change and adapt over
time, as shown in Fig-2.15. Thus, in this neural network system circuit B modu-
lates circuit A, and controls that circuit’s ability to learn, pace of learning, and the
learning algorithm in general. Since a neural network is a universal function
approximator, this type of learning algorithm can be highly versatile and robust,
and the modulatory signals produced by the neural circuits can be of any form.

Fig. 2.15 A Neural Network based system with plasticity through neuromodulation. In this
figure, Circuit-B modulates Circuit-A’s learning algorithm.

2.6 Neural Network Unsupervised Learning Algorithms 71

The equation used to add plasticity to a neuron through neuromodulation is:
DWij = L = f*N(A*Oi*Oj + B*Oi + C*Oj). DWij is the delta weight, change in
the synaptic weight of neuron j for the link coming from neuron i. N is the learn-
ing rate, which dictates the general magnitude of weight change after the neuron
processes a signal. A, B, and C are parameters weighting the contribution of the
output signal coming from the presynaptic element i and the output signal pro-
duced by the postsynaptic neuron j, and together forming the non linear plasticity
factor. Finally, the value f is a further modulatory signal which dictates how rapid-
ly, and in what direction the weight will change based on the learning rule L. In
standard neuromodulation, the value f is produced by the modulating neuron or
neural circuit, and the parameters N, A, B, and C are set by the researcher, or
evolved and optimized through a neuroevolutionary process. But the parameters
N, A, B, and C can also be produced by the modulatory neural circuit B in vector
form for each neuron in circuit A, to modulate and give those neurons even more
dynamic neuroplasticity.

In a sense, we can think of Circuit-B as being the biological part of circuit A,
that part which produces plasticity. We can recreate the neural network shown in
Fig-2.15 to be composed not of two separate neural circuits, one which does the
actual processing (A) and one which does neuromodulation (B), but instead com-
posed of one neural network, where every neuron has an embedded circuit B,
which gives it plasticity. This type of neural architecture is shown in Fig-2.16.

Fig. 2.16 Another type of neuromodulatory architecture.

From the above figure, we can see that each neuron now has the functionality
of Circuit-B embedded inside of it. Also, there is a small change in how this new
Circuit-A functions. The embedded Circuit-B does not use as input the signals
coming from the two sensors, but instead uses as its input the same input as the
neuron to which it adds plasticity. In this manner the modulatory circuit sees the
input signals of the neuron which it modulates, making the modulation signal spe-
cific to the data of the neuron in which it is embedded.

72 Chapter 2 Introduction to Neural Networks

An actual example of the steps taken in processing signals by a neural network
with plasticity shown in Fig-2.15 is presented in Fig-2.17. The sequence of events
in such a NN is demonstrated by the numbers given for the various steps, and is
further elaborated in the following list:

1. The two sensors produce signals, and forward them to the neurons in the first
layers of Circuit-A and Circuit-B.

2. The two neurons of Circuit-A process the signals from the two sensors, and
produce outputs. The neuron of Circuit-B also at the same time processes the
signals from the two sensors, producing the output and forwarding it to the neu-
ron in the next neural layer of Circuit-B.

3. The second neuron in the Circuit-B processes the signal coming from the pre-
synaptic neuron.

4. Circuit-B produces the modulatory signal, sending it to all neurons of Circuit-
A. Since the first two neurons in Circuit-A have already processed their input
signals, they use this modulatory signal and then do both, update their synaptic
weights based on this modulatory signal, and update their learning rule parame-
ters, where the used learning rule might be: General Hebbian, Oja’s Rule, or
some other.

5. The neuron in the second layer of Circuit-A produces an output after pro-
cessing the signals sent to it by the two presynaptic neurons in the first layer of
Circuit-A.

6. The neuron in the second layer of Circuit-A uses the modulatory signal sent to
it by Circuit-B in step-4 to update its synaptic weights, and learning rule pa-
rameters.

7. The sensors produce another set of signals and forward those signals to the neu-
rons they are connected to. The loop repeats itself.

Fig. 2.17 Neuromodulation in action.

2.6 Neural Network Unsupervised Learning Algorithms 73

At this point you are probably asking yourself the following question: Sure,
now we can allow for some neuron to learn and adapt, to possess plasticity... but
plasticity is controlled by another type of neural network, so how do we set up that
other neural network’s synaptic weights and parameters so that it can actually
produce the modulatory signals that are useful in the first place? That is a valid
question, in fact, for example in the figure above where we modulate two neurons,
instead of having to set up those neuron’s synaptic weights, we have to set up the
weights of the neurons in Circuit-B, each possessing 2 weights. We can do this
through evolution. Evolution can optimize the synaptic weights and the various
parameters needed by the modulatory neural circuits, which would then modulate
effectively the other neural circuits of the complete neural network.

Unlike the static simple neurons, the neurons shown in the above figure are
complex, plastic, but highly robust and adaptive elements. A neural network of
such elements, evolved to work coherently as biological neural networks do,
would have quite a significant amount of learning ability. We will build such sys-
tems and variants of it in later chapters, we will embed such adaptive and plastic
neural networks in artificial organisms when we’ll apply our neuroevolutionary
system to ALife simulations, and as you will see, such systems do indeed have
high potency, and might be exactly the building blocks needed when the goal is to
evolve an intelligent neurocognitive system.

2.6.3 Competitive Learning

Competitive Learning [18] is another form of unsupervised learning, but unlike
the Hebbian and the neuromodulation methods which add plasticity to each neu-
ron, this one requires some system/process that has a global view of all the neu-
rons forming the neural network undergoing competitive learning. In competitive
learning we have a set of neurons, each of which is connected to a given list of
sensors, and where each neuron competes with the others for the right to respond
to a subset of sensory signals. Over time, competitive learning increases the spe-
cialization of each neuron for some particular set of signals, and thus allows the
NN to act and spontaneously form a clustering/classification network.

A NN which uses competitive learning (CL) is realized through the implemen-
tation of the following set of steps:

1. Choose j number of sensors whose signals you wish to cluster or classify.
2. Create i number of neurons, each connected to all j sensors, and each neuron

using a random set of synaptic weights.
3. DO:

1. Propagate the signals from sensors to the neurons.
2. Each neuron processes the sensory signals and produces an output signal.
3. An external CL process chooses the neuron with the highest output signal

magnitude.

74 Chapter 2 Introduction to Neural Networks

4. UNTIL: The network begins to cluster signals, and a pattern begins to emerge.

This is a simple learning rule that can be used to see if there is a pattern in the
data, and if those signals can be clustered. Fig-2.18 shows a diagram of a NN sys-
tem utilizing the competitive learning algorithm.

4. The CL updates the synaptic weights of that neuron by applying to it a
form of Hebbian learning (by using the Oja’s rule for example).

Fig. 2.18 A neural network employing competitive learning.

2.6.4 Kohonen/Self Organizing Map

A Kohonen map [19], also known as a self organizing map (SOM), is a type of
neural network that in a sense represents a hypercube or a multidimensional grid
of local functions, and through the use of a form of competitive learning the SOM
performs a mapping of data from a high dimensional space into a lower dimen-
sional one, while preserving that data’s topology. These types of neural networks
originated in the 80s and are loosely based on associative memory and adaptive
learning models of the brain. Like the competitive learning neural network, a
SOM system requires a process that has a global view of the NN, so that learning
can be achieved. An example of a 2d SOM system is shown in Fig-2.19.

2.6 Neural Network Unsupervised Learning Algorithms 75

Fig. 2.19 A self organizing map, where the SOM_LA process performs SOM based Learn-
ing Algorithm computations, and synaptic weight updates.

To set up a Kohonen map we create a hypercube based substrate with embed-
ded neurons within, where each neuron has a set of weights and a coordinate with-
in the substrate. Each axis of the hypercube ranges from -1 to 1, and the neurons
are embedded regularly within the substrate (this is somewhat similar to the hy-
percube representation we discussed in Chapter 1.2.10, which is used by the
HyperNEAT system). The actual density, the number of neurons forming the
SOM, is set by the researcher. Finally, each neuron in this hypercube is connected
to the same list of sensors.

The learning algorithm used by a SOM is somewhat similar to one utilized by
the competitive learning we discussed in the previous section. When the sensors
propagate their vectors to the neurons, we check which of the neurons within the
hypercube has a weight vector which is closest to the input vector based on a Car-
tesian distance to it. The neuron whose weight vector is the closest to the input

neurons in the hypercube, where Wv(t+1) is the updated weight vector, Wv(t) is
the neuron’s weight vector before the update, (t) is a monotonically decreasing
learning coefficient similar to the one used in simulated annealing [20,12], I(t) is

the BMU neuron, and decreases the further you move away from the BMU). Once
the new weight vector is calculated for every neuron in the hypercube, the sensors
once again fanout their sensory vectors to the neurons. We continue with this pro-
cess for some maximum X number of iterations, or until (t) reaches a low enough
value. Once this occurs, the SOM’s output can be used for data mapping. A trip
through a single iteration of the SOM learning algorithm is shown in Fig-2.20.

vector is called the best matching unit, or BMU. Once this neuron is found we

the input vector, and Θ(d) is usually the Gaussian or the Mexican-Hat function
on in question (thus it is greatest for of the distance between the BMU and the neur

Wv(t + 1) = Wv(t) + Θ (d)* α I(t) – Wv(t)), to all apply the weight update rule: (t)*(

76 Chapter 2 Introduction to Neural Networks

Fig. 2.20 Self Organizing Map in action.

The following list elaborates on each of the algorithm steps in the above figure:

1. The sensors forward their signals to all the neurons in the substrate (each neu-
ron has its own coordinate).

2. Each neuron in the substrate processes the incoming signals, and produces an
output.

3. A process by the name SOM_LA which has a global view of all the neurons in
the substrate, compares the neural weights to the input vectors for every neu-
ron.

4. SOM_LA finds the neuron whose synaptic weight vector is closest to the input
vector coming from the sensors.

5. SOM_LA updates that neuron’s synaptic weights, and updates the synaptic
weights of the neurons around it, with the synaptic weight update decreasing in
magnitude proportionally to the distance of those other neurons to the win-
ning/chosen neuron.

6. The sensors forward their signals to all the neurons in the substrate... The loop
repeats itself.

There are numerous variations on the original Kohonen map, for example the
General Topographic Map (GTM) and the Growing Self Organizing Map
(GSOM), are two of such advanced self organizing maps.

2.6.5 Putting it All Together

In this chapter we have discussed 4 different types of unsupervised learning al-
gorithms. There are of course many others, like the Hopfield memory network that
models associative memory, and the Attenuated Resonance Theory (ART) NN

2.6 Neural Network Unsupervised Learning Algorithms 77

that models a scalable memory system. We can see that such unsupervised learn-
ing algorithms add plasticity to the neurons, and the neural networks in general.
But, these types of learning algorithms themselves have parameters that need to be
set up before the system can function. And what about the general topology of the
NNs which possess plasticity? After all, we can’t simply add some unsupervised
learning algorithm to a random NN structure, and then expect it to immediately
possess intelligence. The way neurons are connected to one another in the NN, the
topology itself, is just as important, if not more so, than the synaptic weights of the
neurons. A neurocognitive system possessing intelligence will certainly have to
utilize many of these types of NNs and the different plasticity types they possess.
This possible future neurocognitive system will integrate all these learning neural
circuits into a single, cohesive, synchronized, vast neural network system, pos-
sessing the topology and architecture similar to an example shown in Fig-2.21.

Fig. 2.21 A possible vast NN composed of neurons with and without plasticity, and different
interconnected neural circuit modules. The flexibility of an evolved NN based system which
draws upon and uses all the available learning algorithms, encodings, neuron types... could
potentially be immense.

How can we figure out how to put these modules together, how to connect the
neurons in the right manner, how to bootstrap a NN system so that it can take over
from there, and so that its own intelligence and ability to learn can continue the
work from that point onwards? That problem has already been solved once before,
we are the result; the solution is evolution.

78 Chapter 2 Introduction to Neural Networks

2.7 Summary

In this section we have discussed how biological neurons process information,
their ability to integrate spatiotemporal input signals, and change their signal pro-
cessing strategy, a process called plasticity. We then discussed how artificial neu-
ral networks process signals, and that the most common such neural networks deal
with amplitude encoded signals, rather than frequency encoded signals as is the
case with biological neural networks. Although as noted, there are artificial neural
networks called spiking neural networks, which like biological NNs deal with fre-
quency encoded signals.

We then discussed the various topologies, architectures and NN plasticity rules.
We discussed how a recurrent NN exhibits memory, and how the Hebbian, Oja’s,
and neuromodulation learning rules allow for NNs to adapt and change as they in-
teract and process signals. Finally, we discussed how the various parameters and
topologies of these NNs can be set, through evolution, allowing for the eventual
vast NN to incorporate all the different types of learning rules, plasticity types, to-
pologies, and architectures.

With this covered, we move to the next chapter which will introduce the sub-
ject of evolutionary computation.

2.8 References

[1] The Blue Brain Project: http://bluebrain.epfl.ch/
[2] Dawkins R (1976) The Selfish Gene. (Oxford University Press), ISBN 0192860925.
[3] Dawkins R (1982) The Extended Phenotype. (Oxford University Press), ISBN 0192880519.
[4] Hornik K, Stinchcombe M, White H (1989) Multilayer Feedforward Networks are Universal

Approximators. Neural Networks 2, 359-366.
[5] Sher GI (2010) DXNN Platform: The Shedding of Biological Inefficiencies. Neuron, 1-36.

Available at: http://arxiv.org/abs/1011.6022.
[6] Parisi D, Cecconi F, Nolfi S (1990) Econets: Neural Networks That Learn in an Environment.

Network Computation in Neural Systems 1, 149-168.
[7] Predators and Prey in simulated 2d environment, Flatland: http://www.youtube.com/

watch?v=HzsDZt8EO70&list=UUdBTNtB1C3Jt90X1I26Vmhg&index=2&feature=plcp
[8] Hassoun MH (1995) Fundamentals of Artificial Neural Networks. (The MIT Press).
[9] Lynch M (2007) The Origins of Genome Architecture S. Associates, ed. (Sinauer Associates

Inc).
[10] Haykin S (1999) Neural Networks: A Comprehensive Foundation J. Griffin, ed. (Prentice

Hall).
[11] Rojas R (1996) Neural Networks: A Systematic Introduction. (Springer).
[12] Gupta MM, Jin L, Homma N (2003) Static and Dynamic Neural Networks From Fundamen-

tals to Advanced Theory. (John Wiley & Sons).
[13] Di GG, Grammaldo LG, Quarato PP, Esposito V, Mascia A, Sparano A, Meldolesi GN,

Picardi A (2006) Severe Amnesia Following Bilateral Medial Temporal Lobe Damage Oc-
curring On Two Distinct Occasions. Neurological sciences official journal of the Italian Neu-
rological Society and of the Italian Society of Clinical Neurophysiology 27, 129-133.

http://bluebrain.epfl.ch/
http://arxiv.org/abs/1011.6022
http://www.youtube.com/watch?v=HzsDZt8EO70&list=UUdBTNtB1C3Jt90X1I26Vmhg&index=2&feature=plcp
http://www.youtube.com/watch?v=HzsDZt8EO70&list=UUdBTNtB1C3Jt90X1I26Vmhg&index=2&feature=plcp

2.8 References 79

[14] Kirkwood A, Rioult MG, Bear MF (1996) Experience-Dependent Modification of Synaptic
Plasticity in Visual Cortex. Nature 381, 526-528.

[15] Oja E (1982) A Simplified Neuron as a Principal Component Analyzer. Journal of Mathe-
matical Biology 15, 267-273.

[16] Sanger T (1989) Optimal Unsupervised Learning in a Single-Layer Linear Feedforward
Neural Network. Neural Networks 2, 459-473.

[17] Bienenstock EL, Cooper LN, Munro PW (1982) Theory For The Development of Neuron
Selectivity: Orientation Specificity and Binocular Interaction in Visual Cortex. Journal of
Neuroscience 2, 32-48.

[18] Rumelhart DE, McClelland JL (1986) Parallel Distributed Processing M.I.T. Press, ed.
(MIT Press).

[19] Kohonen T (1982) Self-Organized Formation of Topologically Correct Feature Maps. Bio-
logical Cybernetics 43, 59-69.

[20] Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by Simulated Annealing. Science
220, 671-680.

[21] Cerny V (1985) Thermodynamical Approach to The Traveling Salesman Problem: An Effi-
cient Simulation Algorithm. Journal of Optimization Theory and Applications 45, 41-51.

[22] An excellent discussion of neuron and synapse: http://en.wikipedia.org/wiki/Neuron
[23] Gerstner W (1998) Spiking Neurons. In Pulsed Neural Networks, W. Maass and C. M.

Bishop, eds. (MIT-Press), pp. 3-53.
[24] Ang CH, Jin C, Leong PHW, Schaik AV (2011) Spiking Neural Network-Based Auto-

Associative Memory Using FPGA Interconnect Delays. 2011 International Conference on
FieldProgrammable Technology, 1-4.

[25] Qingxiang W, T MM, Liam PM, Rongtai C, Meigui C (2011) Simulation of Visual Atten-
tion Using Hierarchical Spiking Neural Networks. ICIC: 26-31

[26] Hebb DO (1949) The organization of behavior. Wiley, eds. (Wiley)

http://en.wikipedia.org/wiki/Neuron

	Chapter 2 Introduction to Neural Networks
	2.1 Biological Neural Network
	2.2 Artificial Neural Network
	2.2.1 The Neurode in Detail

	2.3 Neural Networks and Neural Network Based Systems
	2.3.1 Recurrent Neural Networks and Memory Loops
	2.3.2 A Neural Network Based System

	2.4 Learning Vs. Training
	2.5 Neural Network Supervised “Learning” Algorithms
	2.6 Neural Network Unsupervised Learning Algorithms
	2.6.1 Hebbian Learning
	2.6.2 Neuromodulation
	2.6.3 Competitive Learning
	2.6.4 Kohonen/Self Organizing Map
	2.6.5 Putting it All Together

	2.7 Summary
	2.8 References

