
Chapter 15 Neural Plasticity

Abstract In this chapter we add plasticity to our direct encoded NN system. We
implement numerous plasticity encoding approaches, and develop numerous plas-
ticity learning rules, amongst which are variations of the Hebbian Learning Rule,
Oja’s Rule, and Neural Modulation. Once plasticity has been added, we again test
our TWEANN system on the T-Maze navigation benchmark.

We have now built a truly advanced topology and weight evolving artificial
neural network (TWEANN) platform. Our system allows for its various features to
evolve, the NNs can evolve not only the topology and synaptic weights, but also
evolutionary strategies, local and global search parameters, and the very way in
which the neurons/processing-elements interact with input signals. We have im-
plemented our system in such a way that it can easily be further expanded and ex-
tended with new activation functions (such as logical operators, or activation func-
tions which simulate a transistor for example), mutation operators, mutation
strategies, and almost every other feature of our TWEANN. We have also created
two benchmarks, the double pole balancing benchmark and the T-Maze navigation
benchmark, which allows us to test our system’s performance.

There is something lacking at this point though, our evolved agents are but stat-
ic systems. Our NN based agents do not learn during their lifetimes, they are
trained by the exoself, which applies the NN based system to the problem time af-
ter time, with different parameters, until one of the parameter/synaptic-weight
combinations produces a more fit agent. This is not learning. Learning is the pro-
cess during which the NN changes due to its experience, due to its interaction with
the environment. In biological organisms, evolution produces the combination of
neural topology, plasticity parameters, and the starting synaptic weight values,
which allows the NN, based on this plasticity and initial NN topology and setup,
to learn how to interact with the environment, to learn and change and adapt dur-
ing its lifetime. The plasticity parameters allow the NN to change as it interacts
with the environment. While the initial synaptic weight values send this newborn
agent in the right direction, in hope that the plasticity will change the topology and
synaptic weights in the direction that will drive the agent, the organism, further in
its exploration, learning, adaptation, and thus towards a higher fitness.

Of course with plasticity comes a new set of questions: What new mutation op-
erators need to be added? How do we make the mutation operators specific to that
particular set of parameters used by the plasticity learning rule? What about the
tuning phase when it comes to neurons with plasticity, what is the difference be-
tween plasticity enabled NNs which are evolved through genetic algorithm ap-
proaches, and those evolved through memetic algorithm approaches? During the

DOI 10.1007/978-1-4614- - © Springer Science+Business Media New York 2013 4463 3_15,
609 G.I. Sher, Handbook of Neuroevolution Through Erlang,

610 Chapter 15 Neural Plasticity

tuning phase, what do we perturb, the synaptic weights or the plasticity parame-
ters?...

Plasticity is that feature which allows the neuron and its parameters to change
due to its interaction with input signals. In this book’s neural network foundations
chapters we discussed this in detail. In this chapter we will implement the various
learning rules that add neural plasticity to our system. In this chapter we will cre-
ate 3 types of plasticity functions, the standard Hebbian plasticity, the more ad-
vanced Oja’s rule, and finally the most dynamic and flexible approach, neural
plasticity through neuromodulation. We will first discuss and implement these
learning rules, and then add the perturbation and mutation operators necessary to
take advantage of the newly added learning mechanism.

15.1 Hebbian Rule

We discussed the Hebbian learning rule in Section-2.6.1. The principle behind
the Hebbian learning rule is summarized by the quote “Neurons that fire together,
wire together.” If a presynaptic neuron A which is connected to a neuron B, sends
it an excitatory (SignalVal > 0) signal, and in return B produces an excitatory out-
put, then the synaptic weight between the two neurons increases in magnitude. If
on the other hand neuron A sends an excitatory signal to B, and B’s resulting out-
put signal is inhibitory (SignalVal < 0), then B’s synaptic weight for A’s connec-
tion, decreases. In a symmetric fashion, an inhibitory signal from A that results in
an inhibitory signal from B, increases the synaptic weight strength between the
two, but an inhibitory signal from A resulting in an excitatory signal from B, de-
creases the strength of the connection.

The simplest Hebbian rule used to modify the synaptic weight after the neuron
has processed some signal at time t is:

Delta_Weight = h * I_Val * Output,

Thus:

W(t+1) = W(t) + Delta_Weight.

Where Delta_Weight is the change in the synaptic weight, and where the speci-
fied synaptic weight belongs to B, associated with the incoming input signal
I_Val, coming from neuron A. The value h is the learning parameter, set by the re-
searcher. The algorithm and architecture of a neuron using a simple Hebbian
learning rule, repeated from Section-2.6.1 for clarity, is shown in Fig-15.1.

15.1 Hebbian Rule 611

Fig. 15.1 An architecture of a neuron using the Hebbian learning rule based plasticity.

There is though a problem with the current architecture of our neuron, which
prevents it from having plasticity. That problem is that the neuron’s input_idps list
specifies only the Input_Id of the node that sends it an input signal, and the ac-
companying synaptic weight list Weights: [{Input_Id,Weights}...]. With the addi-
tion of plasticity, we must have the ability to also specify the various new parame-
ters (like the learning parameter for example) of the learning rule. There are
multiple ways in which we can solve this dilemma, the following are four of them:

1. Extend the input_idps from: [{Input_Id,Weights}...] to: [{Input_Id, Weights,
LearningParameters}...]

2. Extend the neuron record to also include input_lpps, a list with the format:
[{Input_Id,LPs}...], where input_lpps stands for input learning parameters

This is the simplest Hebbian rule, but though computationally light, it is also
unstable. Because the synaptic weight does not decay, if left unchecked, the
Hebbian rule will keep increasing the magnitude of the synaptic weight, indefi-
nitely, and thus eventually drown out all other synaptic weights belonging to the

less with regards to processing since the signal weighted by 1000 will most likely
overpower other signals. No matter what the other 4 synaptic weights are, no mat-
ter what pattern they have evolved to pick up, the fifth weight with magnitude
1000 will drown out everything, saturating the output. We will implement it for
the sake of completeness, and also because it is so easy to implement. To deal
with unchecked synaptic weight magnitudes, we will use our previously created
functions:sat/1 and functions:sat/2 functions to ensure that the synaptic weights do
not increase in magnitude unchecked, that they do not increase to infinity, and in-
stead get saturated at some level specified by the sat function and the
?SAT_LIMIT parameter specified within the neuron module.

neuron. For example, if a neuron has 5 synaptic weights, 4 of which are between
to 1000, this neuron is effectively use--Pi and P, and the fifth weight has climbed

612 Chapter 15 Neural Plasticity

plus, and the LPs list in the tuple stands for Learning Parameters, mirroring the
input_idps list’s format.

3. Extend the Weights list in the input_idps tuple list from: [W1,W2,W3...] To:
[{W1,P1},{W2,P2},{W3,P3}...]

4. Extend pf (Plasticity Function) specification from: atom()::FunctionName to:
{atom()::FunctionName, ParameterList}

All of these solutions would require us to modify the genotype, ge-
nome_mutator, exoself, neuron, signal_aggregator, and plasticity modules, so that
these modules can properly create, mutate, map genotype to phenotype, and in
general properly function when the NN system is active. DXNN uses the 3rd solu-
tion, but only because at one point I also allowed the evolved NN systems to use a
modified back propagation learning algorithm, and Pi contained the learning pa-
rameter. There were also Di and Mi parameters, making the input_idps list of the
neurons evolved by the DXNN platform have the following format:
[{W1,P1,D1,M1},{W2,P2,D2,M2}...], where the value D contained the previous time
step’s change in synaptic weight, and M contained the momentum parameter used
by the backprop algorithm.

Options 1-3 are appropriate for when there is a separate plasticity function, a
separate synaptic weight modification and learning rule, for every synaptic weight.
But in a lot of cases, the neuron has a single learning rule which is applied to all
synaptic weights equally. This is the case with the Hebbian Learning Rule, where
the neuron needs only a single learning parameter specifying the rate of change of
the synaptic weights. For the learning rules that use a single parameter or a list of
global learning parameters, rather than a separate list of learning parameters for
every synaptic weight, option 4 is the most appropriate, in which we extend the
plasticity function name with a parameter list used by that plasticity function.

But what if at some point in the future we decide that every weight should be
accompanied not by one extra parameter, but by 2, or 3, or 4... To solve this, we
could use solution-3, but have each Pi be a list. If there is only one parameter, then
it is a list of length 1: [A1], if two parameters are needed by some specific learning
rule, then each P is a list of length 2: [A1,A2], and so on. If there is no plasticity,
the list is empty.

Are there such learning rules that require so many parameters? Yes, for exam-
ple some versions of neuromodulation can be set such that a single neuron simu-
lates having 5 other modulating neurons within, each of whom analyzes the input
vectors to the neuron in question, and each of whom outputs a value which speci-
fies a particular parameter in the generalized Hebbian learning rule. This type of
plasticity function could use anywhere from 2 to 5 parameters (in the version we
will implement) for each synaptic weight (those 2-5 parameters are themselves
synaptic weights of the embedded modulating neurons), and we will discuss that
particular approach and neuromodulation in general in section 15.3. Whatever rule
we choose, there is a price. Luckily though, due to the way we’ve constructed our

15.1 Hebbian Rule 613

system, it is easy to fix and modify it, no matter which of the listed approaches we
decide to go with.

Let us choose the 3rd option where each Pi is a list of parameters for each
weight Wi, and where that list length is dependent on the plasticity function the
neuron uses. In addition, we will also implement the 4th option, which requires us
to modify the pf parameter format. The pf parameter for every neuron will be
specified as a tuple, composed of the plasticity function name and a global learn-
ing parameter list. This will, though making the implementation a bit more diffi-
cult, allow for a much greater level of flexibility in the types of plasticity rules we
can implement. Using both methods, we will have access to plasticity functions
which need to specify a parameter for every synaptic weight, and those which only
need to specify a single or a few global parameters of the learning rule for the en-
tire neuron.

15.1.1 Implementing the New input_idps & pf Formats

We first update the specification format for the neuron’s pf parameter. This re-
quires only a slight modification in the neuron module, changing the line:

 U_IPIdPs =plasticity:PF(Ordered_IAcc,Input_PIdPs,Output)

To:

 {PFName,PFParameters} = PF,
 U_IPIdPs = plasticity:PFName(PFParameters,Ordered_IAcc,Input_PIdPs,Output),

And a change in the genotype module, to allow us to use the plasticity function
name to generate the PF tuple. The way we do this is by creating a special func-
tion in the plasticity module with arity 1 and of the form: plastici-
ty:PFName(neural_parameters), which returns the necessary plasticity function
specifying tuple: {PFName, PL}, where PL is the Parameter List. In this manner,
when we develop the plasticity functions, we can at the same time create the func-
tion of arity 1 which returns the appropriate tuple defining the actual plasticity
function name and its parameters. The change in the genotype module is done to
the generate_NeuronPF/1 function, changing it from:

generate_NeuronPF(Plasticity_Functions)->
 case Plasticity_Functions of
 [] ->
 none;
 Other ->
 lists:nth(random:uniform(length(Other)),Other)

614 Chapter 15 Neural Plasticity

 end.

To:

generate_NeuronPF(Plasticity_Functions)->
 case Plasticity_Functions of
 [] ->
 {none,[]};
 Other ->
 PFName = lists:nth(random:uniform(length(Other)),Other),
 plasticity:PFName(neural_parameters)
 end.

The most interesting modification occurs in the create_NeuralWeights func-
tion. We modify it from:

create_NeuralWeights(0,Acc) ->
 Acc;
create_NeuralWeights(Index,Acc) ->
 W = random:uniform()-0.5,
 create_NeuralWeights(Index-1,[W|Acc]).

To:

create_NeuralWeightsP(_PFName,0,Acc) ->
 Acc;
create_NeuralWeightsP(PFName,Index,Acc) ->
 W = random:uniform()-0.5,
 create_NeuralWeightsP(PFName,Index-1,[{W,plasticity:PFName(weight_parameters)} |
Acc]).

With this modification completed, we can specify the global, neural level learn-
ing parameters. But to be able to specify synaptic weight level parameters, we
have to augment the neuron’s input_idps list specification format. Because our
new format for input_idps stays very similar to the original, we need only convert
the original list’s form from: [{Input_Id, Weights}...] to: [{Input_Id,WeightsP}...].
Any function that does not directly operate on Weights, does not get affected by
us changing Weights: [W1,W2...] to WeightsP: [{W1,PL1},{W2,PL2}...], where PL is
the plasticity function’s Parameter List. The only function that does get affected
by this change is the one in the genotype module which creates the input_idps
list, create_NeuralWeights/2. In genome_mutator module, again the only affected
function is the mutate_weights function which uses the perturb_weights function
and thus needs to choose the weights rather than the learning parameters to mu-
tate. Finally, the neuron process also perturbs its synaptic weights, and so we will
need to use a modified version of the perturb_weights function.

15.1 Hebbian Rule 615

We also add to the plasticity module a secondary none function: none/1. This
none/1 function can be executed with the neural_parameters or the
weight_parameters atom, and in both cases it returns an empty list, since a neuron
which does not have plasticity and thus uses the none/1 plasticity function, does
not need learning parameters of any type. Thus, our plasticity module now holds
two functions by the name none: one with arity 4, and one with arity 1:

none(neural_parameters)->
 [];
none(weight_parameters)->
 [].
%none/0 returns a set of learning parameters needed by the none/0 plasticity function. Since
this function specifies that the neuron has no plasticity, the parameter lists are empty.

none(_NeuralParameters,_IAcc,Input_PIdPs,_Output)->
 Input_PIdPs.
%none/3 returns the original Input_PIdPs to the caller.

The modification to the perturb_weights function (present in the neuron mod-
ule, and present in the genome_mutator module in a slightly modified form) is
much simpler. The updated function has the form, where the changes have been
highlighted in boldface:

perturb_weightsP(Spread,MP,[{W,LPs}|WeightsP],Acc)->
 U_W = case random:uniform() < MP of
 true->
 sat((random:uniform()-0.5)*2*Spread+W,-?SAT_LIMIT,?SAT_LIMIT);
 false ->
 W
 end,
 perturb_weightsP(Spread,MP,WeightsP,[{U_W,LPs}|Acc]);
perturb_weightsP(_Spread,_MP,[],Acc)->
 lists:reverse(Acc).

The second version creates a list of tuples rather than a simple list of synaptic
weights. Since each learning rule, each plasticity function, will have its own set of

ter list to its own plasticity function. To
have the plasticity function create an initial synaptic level parameter list, we will
call it with the atom parameter: weight_parameters. Thus for every plasticity func-
tion, we will create a secondary clause, which takes as input a single parameter,
and through the use of this parameter it will specify whether the plasticity function
will return neural level learning rule parameters, or synaptic weight level learning
rule parameters. The weight_parameters specification will make the plasticity
function return a randomized list of parameters required by that learning rule at
the synaptic weight level.

parameters, we defer the creation of a parame

616 Chapter 15 Neural Plasticity

All that has changed is the function name, and that instead of using:
[W|Weights], we now use: [{W,LPs}|WeightsP], where the list LPs stands for
Learning Parameters.

Finally, we must also update the synaptic weight and plasticity function specif-
ic mutation operators. These functions are located in the genome_mutator module.
These are the add_bias/1, mutate_pf/1, and the link_ToNeuron/4 functions. The
add_bias/1 and link_ToNeuron/4 functions add new synaptic weights, and thus
must utilize the new plasticity:PFName(weight_parameters) function, based on
the particular plasticity function used by the neuron. The mutate_pf/1 is a muta-
tion operator function. Due to the extra parameter added to the input_idps list,
when we mutate the plasticity function, we must also update the synaptic weight
parameters so that they are appropriate for the format of the new learning rule.
Only the mutate_pf/1 function requires a more involved modification to the source
code, with the other two only needing for the plasticity function name to be ex-
tracted and used to generate the weight parameters from the plasticity module. The
updated mutate_pf/1 function is shown in Listing-15.1, with the modified parts in
boldface.

Listing-15.1 The updated implementation of the mutate_pf/1 function.

mutate_pf(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 Generation = A#agent.generation,
 N = genotype:read({neuron,N_Id}),
 {PFName,_NLParameters} = N#neuron.pf,
 case (A#agent.constraint)#constraint.neural_pfns -- [PFName] of
 [] ->
 exit(“********ERROR:mutate_pf:: There are no other plasticity functions to
use.”);
 Other_PFNames ->

New_PFName=lists:nth(random:uniform(length(Other_PFNames)),Other_PFNames),
 New_NLParameters = plasticity:New_PFName(neural_parameters),
 NewPF = {New_PFName,New_NLParameters},
 InputIdPs = N#neuron.input_idps,
 U_InputIdPs = [{Input_IdP,plasticity:New_PFName(weight_parameters)}
|| {Input_IdP,_OldPL} <- InputIdPs],
 U_N = N#neuron{pf=NewPF,input_idps = U_InputIdPs, generation
=Generation},
 EvoHist = A#agent.evo_hist,

15.1 Hebbian Rule 617

 U_EvoHist = [{mutate_pf,N_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A)
 end.

After making these modifications, we ensure that everything is functioning as it
should, by executing:

polis:sync().
polis:start().
population_monitor:test().

With this update completed, we can now create plasticity functions. Using our
plasticity module implementation, we allow the plasticity functions to completely
isolate and decouple their functionality and setup from the rest of the system,
which will allow others to add and test new plasticity functions as they please,
without disturbing or having to dig through the rest of the code.

15.1.2 Implementing the Simple Hebbian Learning Rule

From the above equation, it can be seen from the common h for all Ii and Wi,
that the standard Hebbian learning rule is one where the neuron has a single, glob-
al, neural level learning parameter h, which is used to update all the synaptic
weights belonging to that neuron. Because our neuron also has the ability to have
a learning parameter per weight, we can also create a Hebbian learning rule where
every synaptic weight uses its very own h. Though note that this approach will
double the number of mutatable parameters for the neuron: a list of synaptic

Which compiles the updated modules ensuring that there are no errors, then
starts the polis process, and then finally runs a quick neuroevolutionary test. The
function population_monitor:test/0 can be executed a few times (each execution
done after the previous one runs to completion), to ensure that everything still works.
Because neuroevolutionary systems function stochastically, the genotypes and to-
pologies evolved during one evolutionary run will be different from another, and
so it is always a good idea to run it a few times, to test out the various combina-
tions and permutations of the evolving agents.

We need to implement a rule where every synaptic weight Wi is updated every
time the neuron processes an input vector and produces an output vector. The
weight Wi must be updated using the rule: Updated_Wi= Wi + h*Ii*Output, where
Ii is the float() input value associated with the synaptic weight Wi. The Updat-
ed_Wi must be, in the same way as done during weight perturbation, saturated at
the value: , so that its magnitude does not increase indefinitely. ?SAT_LIMIT

618 Chapter 15 Neural Plasticity

weights, and a list of the same size of Hebbian learning parameters. For the sake
of completeness, we will implement both versions. We will call the standard
Hebbian learning function which uses a single learning parameter h for all synap-
tic weights, hebbian/4, and one which uses a separate learning parameter hi for
every synaptic weight, hebbian_w/4 (where _w stands for weights). Let us first
implement the hebbian_w function, which uses the following weight update rule:
Updated_Wi= Wi + hi*Ii*Output, where Wi is the synaptic weight, hi is the learn-
ing parameter for neuron Wi, and Ii is the input signal associated with synaptic
weight Wi.

In the previous section we have updated our neuron to apply a learning rule to
its weights through: U_IPIdPs = plasticity:PFName(Neural_Parameters, Or-
dered_IAcc,Input_PIdPs,Output), which gives the plasticity function access to the
neural parameters list, the output signal, the synaptic weights and their associated
learning parameters, and the accumulated input vector. To set up the plasticity
function by the name hebbian_w, we first implement the function hebbian_w/1
which returns a weight parameters list composed of a single element [H] when
hebbian_w/1 is executed with the weights_parameters parameter, and an empty
list when it is executed with the neural_parameters parameter. We then create the
function hebbian_w/4 which implements this actual learning rule. The implemen-
tation of these two hebbian_w functions is shown in Listing-15.2.

Listing 15.2 The implementation of hebbian_w/1 and hebbian_w/4 functions.

hebbian_w(neural_parameters)->
 [];
hebbian_w(weight_parameters)->
 [(lists:random()-0.5)].
%hebbian_w/1 function produces the necessary parameter list for the hebbian_w learning rule
to operate. The weights parameter list generated by hebbian_w learning rule is a list composed
of a single parameter H: [H], for every synaptic weight of the neuron. When hebbian_w/1 is
called with the parameter neural_parameters, it returns [].

hebbian_w(_NeuralParameters,IAcc,Input_PIdPs,Output)->
 hebbian_w1(IAcc,Input_PIdPs,Output,[]).

 hebbian_w1([{IPId,Is}|IAcc],[{IPId,WPs}|Input_PIdPs],Output,Acc)->
 Updated_WPs = hebbrule_w(Is,WPs,Output,[]),
 hebbian_w1(IAcc,Input_PIdPs,Output,[{IPId,Updated_WPs}|Acc]);
 hebbian_w1([],[],_Output,Acc)->
 lists:reverse(Acc);
 hebbian_w1([],[{bias,WPs}],Output,Acc)->
 lists:reverse([{bias,WPs}|Acc]).

15.1 Hebbian Rule 619

%hebbian_w/4 function operates on each Input_PIdP, calling the hebbian_w1/4 function which
processes each of the complementary Is and WPs lists, producing the Updated_WPs lists in re-
turn, with the now updated/adapted weights, based on the hebbian_w learning rule.

 hebbrule_w([I|Is],[{W,[H]}|WPs],Output,Acc)->
 Updated_W = functions:saturation(W + H*I*Output,?SAT_LIMIT),
 hebbrule_w(Is,WPs,Output,[{Updated_W,[H]}|Acc]);
 hebbrule_w([],[],_Output,Acc)->
 lists:reverse(Acc).
%hebbrule_w/4 applies the Hebbian learning rule to each synaptic weight by using the input
value I, the neuron’s calculated Output, and each W’s own distinct learning parameter H.

With the modified Hebbian rule now implemented, let us implement the stand-
ard one. In the standard Hebbian rule, the hebbian/1 function generates an empty
list when called with weight_parameters, and the list [H] when called with neu-
ral_parameters. Also, the hebbian/4 function that implements the actual learning
rule will use a single common H learning parameter to update all the synaptic
weights in the input_idps. Listing-15.3 shows the implementation of such standard
Hebbian learning rule.

Listing-15.3 The implementation of the standard Hebbian learning rule.

hebbian(neural_parameters)->
 [(lists:random()-0.5)];
hebbian(weight_parameters)->

Note that hebbian_w/1 generates a parameter list composed of a single value with
a range between -0.5 and 0.5 (This range was chosen to ensure that from the very
start the learning parameter will not be too large). The Hebbian rule which uses a
negative learning parameter embodies Anti-Hebbian learning. The Anti-Hebbian
learning rule decreases the postsynaptic weight between neurons outputting signals
of the same sign, and increases magnitude of the postsynaptic weight between those
neurons that are connected and output signals of differing signs. Thus, if a neuron A
sends a signal to neuron B, and the presynaptic signal is positive, while the postsyn-
aptic neuron B’s output signal is negative, and it has H < 0, and is thus using the Anti-
Hebbian learning rule, then the B’s synaptic weight for the link from neuron A will
increase in magnitude. This means that in the hebbian_w/4 learning rule implemen-
tation, some of the synaptic weights will be using Hebbian learning, and some Anti-
Hebbian. This will add some extra agility to our system that might prove useful, and
allow the system to evolve more general learning networks.

The function hebbian_w/4 calls hebbian_w1/4 with a list accumulator, which
separately operates on the input vectors from each Input_PId by calling the
hebbrule_w/4 function. It is the hebbrule_w/4 function that actually executes the

?SAT_LIMIT), and updates the WeightsP list.
modified Hebbian learning rule: Updated_W = functions:saturation(W+H*I*Output,

620 Chapter 15 Neural Plasticity

 [].
%The hebbian/1 function produces the necessary parameter list for the Hebbian learning rule to
operate. The parameter list for the standard Hebbian learning rule is a list composed of a single
parameter H: [H], used by the neuron for all its synaptic weights. When hebbian/1 is called with
the parameter weight_parameters, it returns [].

hebbian([H],IAcc,Input_PIdPs,Output)->
 hebbian(H,IAcc,Input_PIdPs,Output,[]).

 hebbian(H,[{IPId,Is}|IAcc],[{IPId,WPs}|Input_PIdPs],Output,Acc)->
 Updated_WPs = hebbrule(H,Is,WPs,Output,[]),
 hebbian(H,IAcc,Input_PIdPs,Output,[{IPId,Updated_WPs}|Acc]);
 hebbian(_H,[],[],_Output,Acc)->
 lists:reverse(Acc);
 hebbian(_H,[],[{bias,WPs}],Output,Acc)->
 lists:reverse([{bias,WPs}|Acc]).
%hebbian/4 function operates on each Input_PIdP, calling the hebbian/5 function which pro-
cesses each of the complementary Is and WPs lists, producing the Updated_WPs list in return,
with the updated/adapted weights based on the standard Hebbian learning rule, using the neu-
ron’s single learning parameter H.

 hebbrule(H,[I|Is],[{W,[]}|WPs],Output,Acc)->
 Updated_W = functions:saturation(W + H*I*Output,?SAT_LIMIT),
 hebbrule(H,Is,WPs,Output,[{Updated_W,[]}|Acc]);
 hebbrule(H,[],[],_Output,Acc)->
 lists:reverse(Acc).
%hebbrule/5 applies the Hebbian learning rule to each weight, using the input value I, the neu-
ron’s calculated output Output, and the neuron’s single learning parameter H.

The standard Hebbian learning rule has a number of flaws. One of these flaws
is that without the saturation/2 function that we’re using, the synaptic weight
would grow in magnitude to infinity. A more biologically faithful implementation
of this auto-associative learning, is the Oja’s learning rule, which we discuss and
implement next.

15.2 Oja’s Rule

The Oja’s learning rule is a modification of the standard Hebbian learning rule
that solves its stability problems through the use of multiplicative normalization,
derived in [1]. This learning rule is also closer to what occurs in biological neu-
rons. The synaptic weight update algorithm embodied by the Oja’s learning rule is
as follows: Updated_Wi = Wi + h*O*(Ii – O*Wi)
ter, O is the output of the neuron based on its processing of the input vectors using

, where h is the learning parame-

15.2 Oja’s Rule 621

its synaptic weights, Ii is the ith input signal, and Wi is the ith synaptic weight asso-
ciated with the Ii input signal.

We can compare the instability of the Hebbian rule to the stability of the Oja’s
rule by running this learning rule through a few iterations with a positive input
signal I. Assuming our neuron only has a single synaptic weight for an input vec-
tor of length one, we test the stability of the synaptic weight updated through the
Oja’s rule as follows:

Initial setup: W = 0.5, h = 0.2, activation function is tanh, using a constant in-
put I = 1:

1. O=math:tanh(W*I)=math:tanh(0.5*1)=0.46
Updated_W = W + h*O*(I – O*W) = 0.5 + 0.2*0.46*(1 – 0.46*0.5) = 0.57

2. O=math:tanh(W*I)=math:tanh(0.57*1)=0.52
Updated_W = W + h*O*(I – O*W) = 0.57 + 0.2*0.52(1 – 0.52*0.57) = 0.64

3. O=math:tanh(W*I)=math:tanh(0.64*1)=0.56
Updated_W = W + h*O*(I - O*W) = 0.64 + 0.2*0.56*(1 - 0.56*0.64) = 0.71

4. …

This continues to increase, but once the synaptic weight achieves a value higher
than the input, for example when W = 1.5, the learning rule takes the weight up-
date in the other direction:

5. O=math:tanh(W*I)=math:tanh(1.5*1)=0.90
Updated_W = W + h*O*(I - O*W) = 1.5 + 0.2*0.90*(1 - 0.90*1.5) = 1.43

Thus this learning rule is indeed self stabilizing, the synaptic weights will not
continue to increase in magnitude towards infinity, as was the case with the
Hebbian learning rule. Let us now implement the two functions, one which returns
the needed learning parameters for this learning rule, and the other implementing
the actual Oja’s synaptic weight update rule.

15.2.1 Implementing the Oja’s Learning Rule

Like the Hebbian learning rule, the standard Oja’s rule too only uses a single
parameter h to pace the learning rate of the synaptic weights. We implement
ojas_w/1 in the same fashion we did the hebbian_w/1, it will be a variation of the
Oja’s learning rule that uses a single learning parameter per synaptic weight, ra-
ther than a single learning parameter for the entire neuron. This synaptic weight
update rule is as follows:

Updated_Wi = Wi + hi*O*(Ii – O*Wi)

We set the initial learning parameter to be randomly chosen between -0.5 and
0.5. The implementation of ojas_w/1 and ojas_w/4 is shown in Listing-15.4.

622 Chapter 15 Neural Plasticity

Listing-15.4 The implementation of a modified Oja’s learning rule, and its initial learning pa-
rameter generating function.

ojas_w(neural_parameters)->
 [];
ojas_w(synaptic_parameters)->
 [(lists:random()-0.5)].
%oja/1 function produces the necessary parameter list for the Oja’s learning rule to operate.
The parameter list for Oja’s learning rule is a list composed of a single parameter H: [H] per
synaptic weight. If the learning parameter is positive, then the postsynaptic neuron’s synaptic
weight increases if the two connected neurons produce output signals of the same sign. If the
learning parameter is negative, and the two connected neurons produce output signals of the
same sign, then the synaptic weight of the postsynaptic neuron, decreases in magnitude.

ojas_w(_Neural_Parameters,IAcc,Input_PIdPs,Output)->
 ojas_w1(IAcc,Input_PIdPs,Output,[]).
ojas_w1([{IPId,Is}|IAcc],[{IPId,WPs}|Input_PIdPs],Output,Acc)->
 Updated_WPs = ojas_rule_w(Is,WPs,Output,[]),
 ojas_w1(IAcc,Input_PIdPs,Output,[{IPId,Updated_WPs}|Acc]);
ojas_w1([],[],_Output,Acc)->
 lists:reverse(Acc);
ojas_w1([],[{bias,WPs}],Output,Acc)->
 lists:reverse([{bias,WPs}|Acc]).
%ojas_w/4 function operates on each Input_PIdP, calling the ojas_rule_w/4 function which
processes each of the complementary Is and WPs lists, producing the Updated_WPs list in re-
turn. In the returned Updated_WPs, the updated/adapted weights are based on the oja’s learning
rule, using each synaptic weight’s distinct learning parameter.

 ojas_rule_w([I|Is],[{W,[H]}|WPs],Output,Acc)->
 Updated_W = functions:saturation(W + H*Output*(I - Output*W),?SAT_LIMIT),
 ojas_rule_w(Is,WPs,Output,[{Updated_W,[H]}|Acc]);
 ojas_rule_w([],[],_Output,Acc)->
 lists:reverse(Acc).
%ojas_weights/4 applies the oja’s learning rule to each weight, using the input value I, the neu-
ron’s calculated output Output, and each weight’s distinct learning parameter H.

The standard implementation of Oja’s learning rule, which uses a single learn-
ing parameter H for all synaptic weights, is shown in Listing-15.5. The standard
Oja’s rule uses the following weight update algorithm: Updated_Wi = Wi +
h*O*(Ii – O*Wi).

Listing-15.5 The implementation of the standard Oja’s learning rule.

ojas(neural_parameters)->
 [(lists:random()-0.5)];

15.3 Neuromodulation 623

ojas(synaptic_parameters)->
 [].
%oja/1 function produces the necessary parameter list for the oja’s learning rule to operate. The
parameter list for oja’s learning rule is a list composed of a single parameter H: [H], used by the
neuron for all its synaptic weights. If the learning parameter is positive, and the two connected
neurons produce output signals of the same sign, then the postsynaptic neuron’s synaptic
weight increases. Otherwise it decreases.

ojas([H],IAcc,Input_PIdPs,Output)->
 ojas(H,IAcc,Input_PIdPs,Output,[]).
ojas(H,[{IPId,Is}|IAcc],[{IPId,WPs}|Input_PIdPs],Output,Acc)->
 Updated_WPs = ojas_rule(H,Is,WPs,Output,[]),
 ojas(H,IAcc,Input_PIdPs,Output,[{IPId,Updated_WPs}|Acc]);
ojas(_H,[],[],_Output,Acc)->
 lists:reverse(Acc);
ojas(_H,[],[{bias,WPs}],Output,Acc)->
 lists:reverse([{bias,WPs}|Acc]).
%ojas/5 function operates on each Input_PIdP, calling the ojas_rule/5 function which processes
each of the complementary Is and WPs lists, producing the Updated_WPs list in return, with the
updated/adapted weights.

 ojas_rule(H,[I|Is],[{W,[]}|WPs],Output,Acc)->
 Updated_W = functions:saturation(W + H*Output*(I - Output*W),?SAT_LIMIT),
 ojas_rule(H,Is,WPs,Output,[{Updated_W,[H]}|Acc]);
 ojas_rule(_H,[],[],_Output,Acc)->
 lists:reverse(Acc).
%ojas_rule/5 updates every synaptic weight using the Oja’s learning rule.

With the implementation of this learning rule complete, we now move forward
and discuss neural plasticity through neuromodulation.

15.3 Neuromodulation

Thus far we have discussed and implemented the Hebbian learning, which is a
homosynaptic plasticity (also known as homotropic modulation) method, where
the synaptic strength changes based on its history of activation. It is a synaptic
weight update rule which is a function of its post- and pre- synaptic activity, as
shown in Fig-15.2. But research shows that there is another approach to synaptic
plasticity which nature has discovered, a highly dynamic and effective one, plas-
ticity through neuromodulation.

624 Chapter 15 Neural Plasticity

Fig. 15.2 Homosynaptic mechanism for Neuron A’s synaptic weight updating, based on the
pre- and post- synaptic activity of neuron A.

Neuromodulation is a form of heterosynaptic plasticity. In heterosynaptic plas-
ticity the synaptic weights are changed due to the synaptic activity of other neu-
rons, due to the modulating signals other neurons can produce to affect the given
neuron’s synaptic weights. For example, assume we have a neural circuit com-
posed of two neurons, a presynaptic neuron N1, and a postsynaptic neuron N2.
There can be other neurons N3, N4... which also connect to N2, but their neuro-
transmitters affect N2’s plasticity, rather than being used as signals on which the
N2’s output signal is based on. The accumulated signals, neurotransmitters, from
N3, N4..., could then dictate how rapidly and in what manner N2’s connection
strengths change. This type of architecture is shown in Fig-15.3.

Fig. 15.3 Heterosynaptic mechanism for plasticity, where the Hebbian plasticity is modu-
lated by a modulatory signal from neurons N3 and N4.

15.3 Neuromodulation 625

The modulating neurons could be standard neurons, and whether their output
signals are used as modulatory signals, or standard input signals, could be deter-
mined fully by the postsynaptic neuron to which they connect, as shown in Fig-
15.4.

Fig. 15.4 Input signals used as standard signals, and as modulatory signals, dependent on
how the postsynaptic neuron decides to treat the presynaptic signals.

Another possible approach is to set-up secondary neurons to the postsynaptic
neuron N2 which we want modulated, where the secondary neurons receive exact-
ly the same input signals as the postsynaptic neuron N2, but the output signals of
these secondary neurons are used as modulatory signals of N2. This type of topo-
logical and architectural setup is shown in Fig-15.5.

If we assume the use of the Generalized Hebbian learning rule for the synaptic
weight update rule: Updated_Wi= Wi + h*(A*Ii*Output + B*Ii + C*Output + D),
then the accumulated neuromodulatory signals from the other neurons could be
used to calculate the learning parameter h, with the parameters A, B, C, and D
evolved and specified within the postsynaptic neuron N2. In addition, the
neuromodulatory signals from neurons N3, N4... could also be used to modulate
and specify the parameters A, B, C, and D, as well.

626 Chapter 15 Neural Plasticity

Fig. 15.5 Secondary neurons, created and used specifically for neuromodulation.

Through the use of dedicated modulatory neurons, it is possible to evolve
whole modulatory networks. Complex systems whose main role is to modulate
another neural network’s plasticity and learning, its long-term potentiation, its
ability to form memory. In this method, the generated learning parameter is signal
specific, and itself changes; the learning ability and form evolves with everything
else. Unlike the simple Hebbian or Oja’s learning rule, these plasticity systems
would depend on the actual input signals, on the sensory signals, and other regula-
tory and processing parts of the neural network system, which is a much more bio-
logically faithful neural network architecture, and would allow our system to
evolve even more complex behaviors.

Nature uses a combination of the architectures shown in figures 15.1 through
15.5. We have already discussed the Hebbian learning rule, and implemented the
architecture of Fig-15.2. We now add the functionality to give our
neuroevolutionary system the ability to evolve NN systems with architectures
shown in Fig-15.4 and Fig-15.5. This will give our systems the ability to evolve
self adaptation, and learning.

15.3.1 The Neuromodulatory Architecture

The architecture in Fig-15.5 could be easily developed using our already exist-
ing architecture, and it would even increase the ratio of neural computations per-
formed by the neuron to the number of signals sent to the neuron. This is im-
portant because Erlang becomes more effective with big computations and small
messages. The way we can represent this architecture is through the
weight_parameters based approach. The weight_parameters could be thought of

15.3 Neuromodulation 627

as synaptic weights themselves, but for the secondary neurons. These secondary
neurons share the process of the neuron they are to modulate, and because the sec-
ondary neurons need to process the same input vectors that the neuron they are
modulating is processing, it makes this design highly efficient. This architectural
implementation is shown in Fig-15.6.

Fig. 15.6 The architectural implementation of neuromodulation through dedicat-
ed/embedded modulating neurons.

In the above figure we see three neurons: N1, N2, and N3, connected to another
neuron, which is expanded in the figure and whose architecture is shown. This
neuron has a standard activation function, and a learning rule, but its input_idps
list is extended. What we called parameters in the other learning rules, are here
used as synaptic weights belonging to this neuron’s embedded/dedicated modulat-
ing neurons: D1, D2, and D3. Furthermore, each dedicated/embedded modulating
neuron (D1,D2,D3) can have its own activation function, but usually just uses the
tanh function.

If each weight parameter list is of length 1, then there is only a single dedicated
modulating neuron, and the dedicated neuron’s output can be designated as the
learning parameter: h. The learning parameters A, B, C, and D, can be specified by
the neural_parameters list. Or we can have the weight parameters list be of size 2,
and thus specify 2 dedicated modulating neurons, whose outputs would dictate the
learning parameters h and A, with the other parameters specified in the neu-
ral_parameters list. Finally, we can have the weight parameters list be of length 5,
thus representing the synaptic weights of 5 dedicated modulating neurons, whose
outputs specify all the parameters (h, A, B, C, D) of the General Hebbian learning
rule.

628 Chapter 15 Neural Plasticity

Having 5 separate dedicated modulating neurons does have its problems
though, because it magnifies the number of synaptic weights/parameters our
neuroevolutionary system has to tune, mutate, and set up. If our original neuron,
without plasticity, had a synaptic weight list of size 10, this new modulated neuron
would have 60 synaptic weight parameters for the same 10 inputs. All of these pa-
rameters would somehow have to be specified, tuned, and made to work perfectly
with each other, and this would all only be a single neuron. Nevertheless, it is an
efficient implementation of the idea, and would be easy to add due to the way our
neuroevolutionary system’s architecture is set up.

To allow for general neuromodulation (Fig-15.3), so that the postsynaptic neu-
ron can designate some of the presynaptic signals as holding standard information,
and others as holding modulatory information, could be done in a number of ways.
Let us consider two of such approaches next:

1. This approach would require us adding a new element to the neuron record,
akin to input_idps. We could add a secondary such element and designate it in-
put_idps_modulation. It too would be represented as a list of tuples: [{In-
put_Id,Weight}...], but the resulting computed dot product, sent through its own
activation function, would be used as a learning parameter. But which of the
learning parameters? H, A, B, C, or D? The standard approach is to use the fol-
lowing equation: Updated_W = M_Output*H*(A*I*Output + B*Output +
C*Output + D), where M_Output is the output signal produced by processing
the input signals using the synaptic weights specified in the in-
put_idps_modulation list, and where the parameters H, A, B, C, and D are
simply neural_parameters, and as other parameters can be perturbed and
evolved during the tuning phase and/or during the topological mutation phase.

How would the post synaptic neuron decide whether the new connection (add-
ed during the topological mutation phase) should be used as a standard signal, and
thus be added to the input_idps list, or as modulatory input signal, and thus added
to input_idps_modulation list? We could set up a rule so that if the neuron is des-
ignated to have general modulation based plasticity, the very first connection to
the neuron is designated as standard input, and then any new connections are ran-
domly sorted into either the input_idps or input_idps_modulation lists. To add this
approach would only require adding a new list, and we would already have all the
necessary functions to mutate its parameters, to clone it during neuronal cloning
process, and to process input signals, because this new list would be exactly like
the input_idps list. The overhead of simply adding this extra parameter, in-
put_idps_modulation, to the neuron record, would be minuscule, and this architec-
ture is what was represented in Fig-15.4.

2. Another way a neuron could decide on whether the presynaptic signal sent to it
is standard or modulatory, is by us having neuronal types, where some neurons
are type: standard, and others are type: modulatory. The signals sent by modu-
latory neurons are always used by all postsynaptic neurons for modulating the
generalized Hebbian plasticity rule. The architecture of this type of system is

15.3 Neuromodulation 629

shown in Fig-15.7. In this figure I show a NN topology composed of standard
neurons (std), and modulatory neurons (mod). They are all interconnected, each
can receive signals from any other. The difference in how those signals are
processed is dependent on the presynaptic neuron’s type. If it is of type mod,
then it is used as modulatory, if it is type std, then it is used as a standard input
signal. Modulatory neurons can even modulate other modulatory neurons,
while the outputs of the standard neurons can be used by both standard and
modulatory neurons.

Fig. 15.7 A topology of a heterosynaptic, general, neural network system with neurons of
type standard (std) and modulatory (mod).

3. But the first and second implementation does not solve the problem that the
Hebbian learning rule uses multiple parameters, and we want to have the flexi-
bility to specify 1 or more of them, based on the incoming modulatory signals.
Another solution that does solve this is by tagging input signals with tags i, h,
a, b, c, d, where i tags the standard inputs, and h, a, b, c, and d, tag the modula-
tory input signals associated with the tag named modulating learning parame-
ter. Though this may at first glance seem like a more complex solution, we ac-
tually already have solved it, and it would require us only changing a few
functions.

We are already generating weight based parameters. Thus far they have been
lists, but they can also be atomic tags as follows: [{Input_PId, [{Weight1,Tag1},
{Weight2,Tag2}...]}...]. This is a clean solution that would allow us to designate
different incoming signals to be used for different things. Mutation operators
would not need to be modified significantly either, we would simply add a clause
stating that if the neuron uses the general_modulation plasticity function, then the
Tag is generated randomly from the following list: [i, h, a, b, c, d]. The most sig-
nificant modification would have to be done to the signal_aggregation function,

630 Chapter 15 Neural Plasticity

since we would need to sort the incoming signals based on their tags, and then cal-
culate the different output signals based on their tags, with the i output signal be-
ing the standard one produced by the postsynaptic neuron, and the h, a, b, c, and d,
output signals being used as modulatory learning parameters. But even that could
be isolated to just the plasticity function, which has access to the IAcc, In-
put_PIdPs, and everything else necessary to compute output signals. The architec-
ture of a neuron using this approach to general neuromodulation is shown in Fig-
15.8.

Fig. 15.8 Tag based architecture of a general neuromodulation capable neural network.

What is the computational difference between all of these neuromodulation ap-
proaches? How would the neural networks act differently when evolved with one
approach rather than another? Would it even be possible to see the difference?
Should we implement them all, provide all of these options to the
neuroevolutionary system in hopes that it can sort things out on its own, and use
the best one (throwing everything at the wall, and see what sticks)? How do we
test which of these plasticity type architectures is better? How do we define “bet-
ter”? Do we define it as the NN evolving faster (the neuroevolutionary system tak-
ing less number of evaluations to evolve a solution for some given problem)? Or
do we define better as having the evolved NNs more dynamic, more adaptive,
more general, but evolved slower due to so many different parameters for the evo-
lutionary process to having to deal with? These are all open research questions.

We cannot test the effectiveness of plasticity enabled neural network systems
on the standard double pole balancing, xor, or clustering type of benchmarks and
tests. To test how well a plasticity enabled NN system functions, we need to apply
our neuroevolutionary system to a problem where environment changes, where
adaptation and learning over time gives an advantage. We could test plasticity by
using it in the ALife simulation, T-Maze and double T-Maze navigation [2,3], or
by applying it to some other robotics & complex navigation project. Though the
small differences between these various modulatory approaches might require a
lot of work to see, since evolution will tend to go around any small problems

15.3 Neuromodulation 631

posed by any one implementation or architecture over another. Nevertheless, the
fact that it is so easy for us to implement, test, and research these advanced learn-
ing rules and plasticity approaches, means that we can find out, we can determine
what works better, and what approach will yield a more general, more intelligent,
neural network based agent. If our system were not have been written in Erlang,
adding neuroplasticity would have posed a much greater problem.

We will implement the dedicated neuromodulators (where the weight parame-
ters represent the synaptic weights of embedded secondary neurons, whose output
dictates the parameters of the general Hebbian learning rule), and the general
neuromodulation plasticity through the use of the input_idps_modulation element.
Our plasticity function using the first of these two approaches will be called:
self_modulation, and the second: general_modulation. In the next section we will
further define and implement these neuromodulatory based learning rules.

15.3.2 Implementing the self_modulation Learning Rules

We will first implement the self_modulation plasticity function. Given the gen-
eral Hebbian learning rule for synaptic weight updating: Updated_Wi = Wi +
H*(A*Ii*Output + B*Ii + C*Output + D), we can have multiple versions of this
function. Version-1: where the secondary embedded neuron only outputs the H
learning parameter, with the parameter A set to some predetermined constant val-
ue within the neural_parameters list, and B=C=D=0. Version-2: where A is gener-
ated randomly when generating the neural_parameters list, and B=C=D=0. Ver-
sion-3: where B, C, and D are also generated randomly in the neural_parameters
list. Version-4: where the weight_parameters generates a list of length 2, thus al-
lowing the neuron to have 2 embedded modulatory neurons, one outputting a pa-
rameter we use for H, and another outputting the value we can use as A, with
B=C=D=0. Version-5: Where B, C, and D are generated randomly by the
PlasticityFunctionName(neural_parameters) function. And finally Version-6:
Where the weight_parameters produces a list of length 5, allowing the neuron to
have 5 embedded modulatory neurons, whose outputs are used for H, A, B, C, and
D. All of these variations will have most of their functionality shared, and thus
will be quick and easy to implement.

The self_modulationV1, self_modulationV2, and self_modulationV3 are all very
similar, mainly differing in the parameter lists returned by the
PlasticityFunctionName(neural_parameters) function, as shown in Listing 15.6.
All three of these plasticity functions use the neuromodulation/5 function which
accepts the H, A, B, C, and D learning parameters, and updates the synaptic
weights of the neuron using the general Hebbian rule: Updated_Wi = Wi +
H*(A*Ii*Output + B*Ii + C*Output + D).

632 Chapter 15 Neural Plasticity

Listing-15.6 The self_modulationV1-3 functions of arity 1, generating the neural and weight
parameters.

self_modulationV1(neural_parameters)->
 A=0.1,
 B=0,
 C=0,
 D=0,
 [A,B,C,D];
self_modulationV1(weight_parameters)->
 [(lists:random()-0.5)].

self_modulationV1([A,B,C,D],IAcc,Input_PIdPs,Output)->
 H = math:tanh(dot_productV1(IAcc,Input_PIdPs)),
 neuromodulation([H,A,B,C,D],IAcc,Input_PIdPs,Output,[]).

 dot_productV1(IAcc,IPIdPs)->
 dot_productV1(IAcc,IPIdPs,0).
 dot_productV1([{IPId,Input}|IAcc],[{IPId,WeightsP}|IPIdPs],Acc)->
 Dot = dotV1(Input,WeightsP,0),
 dot_productV1(IAcc,IPIdPs,Dot+Acc);
 dot_productV1([],[{bias,[{_Bias,[H_Bias]}]}],Acc)->
 Acc + H_Bias;
 dot_productV1([],[],Acc)->
 Acc.

 dotV1([I|Input],[{_W,[H_W]}|Weights],Acc) ->
 dotV1(Input,Weights,I*H_W+Acc);
 dotV1([],[],Acc)->
 Acc.

neuromodulation([H,A,B,C,D],[{IPId,Is}|IAcc],[{IPId,WPs}|Input_PIdPs],Output,Acc)->
 Updated_WPs = genheb_rule([H,A,B,C,D],Is,WPs,Output,[]),
 neuromodulation([H,A,B,C,D],IAcc,Input_PIdPs,Output,[{IPId,Updated_WPs}|Acc]);
neuromodulation(_NeuralParameters,[],[],_Output,Acc)->
 lists:reverse(Acc);
neuromodulation([H,A,B,C,D],[],[{bias,WPs}],Output,Acc)->
 Updated_WPs = genheb_rule([H,A,B,C,D],[1],WPs,Output,[]),
 lists:reverse([{bias,Updated_WPs}|Acc]).

 genheb_rule([H,A,B,C,D],[I|Is],[{W,Ps}|WPs],Output,Acc)->
 Updated_W = functions:saturation(W + H*(A*I*Output + B*I + C*Output + D),
?SAT_LIMIT),
 genheb_rule(H,Is,WPs,Output,[{Updated_W,Ps}|Acc]);
 genheb_rule(_H,[],[],_Output,Acc)->

15.3 Neuromodulation 633

 lists:reverse(Acc).

self_modulationV2(neural_parameters)->
 A=(lists:random()-0.5),
 B=0,
 C=0,
 D=0,
 [A,B,C,D];
self_modulationV2(weight_parameters)->
 [(lists:random()-0.5)].

self_modulationV2([A,B,C,D],IAcc,Input_PIdPs,Output)->
 H = math:tanh(dot_productV1(IAcc,Input_PIdPs)),
 neuromodulation([H,A,B,C,D],IAcc,Input_PIdPs,Output,[]).

self_modulationV3(neural_parameters)->
 A=(lists:random()-0.5),
 B=(lists:random()-0.5),
 C=(lists:random()-0.5),
 D=(lists:random()-0.5),
 [A,B,C,D];
self_modulationV3(weight_parameters)->
 [(lists:random()-0.5)].

self_modulationV3([A,B,C,D],IAcc,Input_PIdPs,Output)->
 H = math:tanh(dot_productV1(IAcc,Input_PIdPs)),
 neuromodulation([H,A,B,C,D],IAcc,Input_PIdPs,Output,[]).

The self_modulationV4 – V5 differ only in that the weight_parameters is a list
of length 2, and the A parameter is no longer specified in the neural_parameters
list, and is instead calculated by the second dedicated modulatory neuron. The
self_modulationV6 function on the other hand specifies the neural_Parameters as
an empty list, and the weight_parameters list is of length 5, a single weight for
every embedded modulatory neuron. The implementation of self_modulationV6 is
shown in Listing-15.7.

Listing-15.7 The implementation of the self_modulationV6 plasticity function, composed of 5
embedded modulatory neurons.

self_modulationV6(neural_parameters)->
 [];
self_modulationV6(weight_parameters)->
 [(lists:random()-0.5),(lists:random()-0.5),(lists:random()-0.5), (lists:random()-0.5),
(lists:random()-0.5)].

634 Chapter 15 Neural Plasticity

self_modulationV6(_Neural_Parameters,IAcc,Input_PIdPs,Output)->
 {AccH,AccA,AccB,AccC,AccD} = dot_productV6(IAcc,Input_PIdPs),
 H = math:tanh(AccH),
 A = math:tanh(AccA),
 B = math:tanh(AccB),
 C = math:tanh(AccC),
 D = math:tanh(AccD),
 neuromodulation([H,A,B,C,D],IAcc,Input_PIdPs,Output,[]).

 dot_productV6(IAcc,IPIdPs)->
 dot_productV6(IAcc,IPIdPs,0,0,0,0,0).
 dot_productV6([{IPId,Input}|IAcc],[{IPId,WeightsP}|IPIdPs],AccH,AccA,AccB,AccC,
AccD)->
 {DotH,DotA,DotB,DotC,DotD} = dotV6(Input,WeightsP,0,0,0,0,0),
 dot_productV6(IAcc,IPIdPs,DotH+AccH,DotA+AccA,DotB+AccB,DotC+AccC,DotD
+AccD);
 dot_productV6([],[{bias,[{_Bias,[H_Bias,A_Bias,B_Bias,C_Bias,D_Bias]}]}],AccH,AccA,
AccB,AccC,AccD)->
 {AccH + H_Bias,AccA+A_Bias,AccB+B_Bias,AccC+C_Bias,AccD+D_Bias};
 dot_productV6([],[],AccH,AccA,AccB,AccC,AccD)->
 {AccH,AccA,AccB,AccC,AccD}.

 dotV6([I|Input],[{_W,[H_W,A_W,B_W,C_W,D_W]}|Weights],AccH,AccA,AccB,AccC,
AccD) ->
 dotV6(Input,Weights,I*H_W+AccH,I*A_W+AccA,I*B_W+AccB,I*C_W+AccC,I*D_W+
AccD);
 dotV6([],[],AccH,AccA,AccB,AccC,AccD)->
 {AccH,AccA,AccB,AccC,AccD}.

The architecture of the neuron using this particular plasticity function is shown
in Fig-15.9. Since every synaptic weight of this neuron has a complementary pa-
rameter list of length 5, with an extra synaptic weight for every secondary, embedded
modulatory neuron that analyzes the same signals as the actual neuron, but whose
output signals modulate the plasticity of the neuron, each neuron thus has x5 number

 be tuned. This might be a price too high
to pay by amplifying the curse of dimensionality. The more parameters that one
needs to tune and set up concurrently, the more difficult it is to find a good com-
bination of such parameters. Nevertheless, the generality it provides, and the abil-
ity to use a single process to represent multiple embedded modulatory neurons,
has its benefits in computational efficiency. Plus, our system does after all try to
alleviate the curse of dimensionality through Targeted Tuning, by concentrating
on the newly added and affected neurons of the NN system. And thus we might
just be on the edge of this one.

of parameters (synaptic weights) that need to

15.3 Neuromodulation 635

Fig. 15.9 The architecture of the neuron using self_modulationV6 plasticity function.

We noted earlier that there is another approach to neuromodulation, one that is
more biologically faithful, in which a postsynaptic neuron uses some of the signals
coming from the presynaptic neurons as modulatory signals, and others as stand-
ard signals. In the next section we will see what needs to be done to implement
such a learning rule.

15.3.3 Implementing the input_idps_modulation Based
Neuromodulated Plasticity

To implement neuromodulation using this method, we first modify the neuron’s
record by adding the input_idps_modulation element to it. The input_idps_modulation
element will have the same purpose and formating as the input_idps element, to hold
a list of tuples of the form: {Input_PId, WeightP}. The Input_PIds will be associ-
ated with the elements that send the postsynaptic neuron its modulatory signals,
with the WeightP being of the same format as in the input_Idps list.

This particular implementation of neuromodulation will not require a lot of
work, due to the input_idps_modulation list having a format which we already can
process with the developed functions. The neuron cloning function in the genotype
can be used to clone this list, the Id to PId conversion performed by the exoself to
compose the Input_PIdPs list is also viable here. Even the synaptic weight pertur-
bation can be applied to this list, due to it having such a similar format. The main
changes we have to perform are to the neuron’s main loop.

We must convert the neuron’s main loop such that it can support 2 Input_PId
lists, the SI_PIds (standard input PId list), and the MI_PIds (modulatory input PId

636 Chapter 15 Neural Plasticity

list), in the same way that the original neuron implementation supported the single
Input_PIds list created from the Input_PIdPs. With these two lists we can then ag-
gregate the input signals, and sort them either in to the standard input signal ac-
cumulator, or the modulatory signal accumulator, dependent on whether the in-
coming signal was coming from an element with an SI_PId or an MI_PId.

To make the implementation and the source code cleaner, we will create a state
record for the neuron, which will contain all the necessary elements it requires for
operation:

-record(state,{
 id,
 cx_pid,
 af,
 pf,
 aggrf,
 si_pids=[],
 si_pidps_current=[],
 si_pidps_backup=[],
 mi_pids=[],
 mi_pidps_current=[],
 mi_pidps_backup=[],
 output_pids=[],
 ro_pids=[]
}).

With this state record, we update the prep/1 function to use it, and clean the
original loop function to hide all the non-immediately used lists and data in the
state record. As in the original neuron process implementation, we have to create
the Input_PId list so that the incoming signals can be sorted in the same order that
the Input_PIdPs are sorted. This time though, we have two such lists, designated
as the SI_PIdPs (the standard one), and the MI_PIdPs (the modulatory one). Thus
we create two PId lists for the loop.

The main problem here is that as the neuron accumulates its input signals, one
of these PId lists will empty out first, which would require a new clause to deal
with it, since our main loop uses: [SI_PId|SI_PIds],[MI_PId|MI_PIds]. We did not
have such a problem when we only used a single list, because when that list emp-
tied out, the signal accumulation was finished. To avoid having to create a new
clause, we add the atom ok
loop(S,ExoSelf_PId,[ok],[ok],SIAcc,MIAcc) above the main loop. Because of the

with the final state for both lists being [ok], which is achieved after the neuron has
accumulated all the incoming standard and modulatory signals. The only problem
with this setup is that the first clause is always pattern matched before the main
loop, making the neuron process slower and less efficient. There are other ways to

to the end of both PId lists, and put the clause:

ok atom at the end of both lists, neither goes empty, letting us keep a single clause

15.3 Neuromodulation 637

implement this, and we could even set up two different main process loops, one
for when the neuron uses neuromodulation, and one for when it does not (and thus
needing only a single PId list). But this implementation is the most concise, and
cleanest. The neuron process can always be optimized later on. The modified
prep/1 function, and the neuron’s new main loop, are shown in Listing-15.8.

Listing-15.8 The updated implementation of the neuron process.

prep(ExoSelf_PId) ->
 random:seed(now()),
 receive
 {ExoSelf_PId,{Id,Cx_PId,AF,PF,AggrF,SI_PIdPs,MI_PIdPs,Output_PIds,
RO_PIds}} ->
 fanout(RO_PIds,{self(),forward,[?RO_SIGNAL]}),
 SI_PIds = lists:append([IPId || {IPId,_W} <- SI_PIdPs, IPId =/= bias],[ok]),
 MI_PIds = lists:append([IPId || {IPId,_W} <- MI_PIdPs, IPId =/= bias],[ok]),
 io:format(“SI_PIdPs:~p ~nMI_PIdPs:~p~n”,[SI_PIdPs,MI_PIdPs]),
 S=#state{
 id=Id,
 cx_pid=Cx_PId,
 af=AF,
 pf=PF,
 aggrf=AggrF,
 si_pids=SI_PIds,
 si_pidps_current=SI_PIdPs,
 si_pidps_backup=SI_PIdPs,
 mi_pids=MI_PIds,
 mi_pidps_current=MI_PIdPs,
 mi_pidps_backup=MI_PIdPs,
 output_pids=Output_PIds,
 ro_pids=RO_PIds
 },
 loop(S,ExoSelf_PId,SI_PIds,MI_PIds,[],[])
 end.
%When gen/1 is executed, it spawns the neuron element and immediately begins to wait for its
initial state message from the exoself. Once the state message arrives, the neuron sends out the
default forward signals to any elements in its ro_ids list, if any. Afterwards, the prep function
drops into the neuron’s main loop.

loop(S,ExoSelf_PId,[ok],[ok],SIAcc,MIAcc)->
 PF = S#state.pf,
 AF = S#state.af,
 AggrF = S#state.aggrf,
 {PFName,PFParameters} = PF,
 Ordered_SIAcc = lists:reverse(SIAcc),

638 Chapter 15 Neural Plasticity

 SI_PIdPs = S#state.si_pidps_current,
 SAggregation_Product = signal_aggregator:AggrF(Ordered_SIAcc,SI_PIdPs),
 SOutput = functions:AF(SAggregation_Product),
 Output_PIds = S#state.output_pids,
 [Output_PId ! {self(),forward,[SOutput]} || Output_PId <- Output_PIds],

 Ordered_MIAcc = lists:reverse(MIAcc),
 MI_PIdPs = S#state.mi_pidps_current,
 MAggregation_Product = signal_aggregator:dot_product(Ordered_MIAcc,MI_PIdPs),
 MOutput = functions:tanh(MAggregation_Product),
 U_SI_PIdPs = plasticity:PFName([MOutput|PFParameters],Ordered_SIAcc,SI_PIdPs,
SOutput),
 U_S=S#state{
 si_pidps_current = U_SI_PIdPs
 },
 SI_PIds = S#state.si_pids,
 MI_PIds = S#state.mi_pids,
 loop(U_S,ExoSelf_PId,SI_PIds,MI_PIds,[],[]);
loop(S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc)->
 receive
 {SI_PId,forward,Input}->
 loop(S,ExoSelf_PId,SI_PIds,[MI_PId|MI_PIds],[{SI_PId,Input}|SIAcc],
MIAcc);
 {MI_PId,forward,Input}->
 loop(S,ExoSelf_PId,[SI_PId|SI_PIds],MI_PIds,SIAcc,[{MI_PId,Input}|
MIAcc]);
 {ExoSelf_PId,weight_backup}->
 U_S = S#state{
 si_pidps_backup=S#state.si_pidps_current,
 mi_pidps_backup=S#state.mi_pidps_current
 },
 loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
 {ExoSelf_PId,weight_restore}->
 U_S = S#state{
 si_pidps_current=S#state.si_pidps_backup,
 mi_pidps_current=S#state.mi_pidps_backup
 },
 loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
 {ExoSelf_PId,weight_perturb,Spread}->
 Perturbed_SIPIdPs=perturb_IPIdPs(Spread,S#state.si_pidps_backup),
 Perturbed_MIPIdPs=perturb_IPIdPs(Spread,S#state.mi_pidps_backup),
 U_S = S#state{
 si_pidps_current=Perturbed_SIPIdPs,
 mi_pidps_current=Perturbed_MIPIdPs
 },

15.3 Neuromodulation 639

 loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
 {ExoSelf_PId,reset_prep}->
 neuron:flush_buffer(),
 ExoSelf_PId ! {self(),ready},
 RO_PIds = S#state.ro_pids,
 receive
 {ExoSelf_PId, reset}->
 fanout(RO_PIds,{self(),forward,[?RO_SIGNAL]})
 end,
 loop(S,ExoSelf_PId,S#state.si_pids,S#state.mi_pids,[],[]);
 {ExoSelf_PId,get_backup}->
 NId = S#state.id,
 ExoSelf_PId ! {self(),NId,S#state.si_pidps_backup,S#state.mi_pidps_backup},
 loop(S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
 {ExoSelf_PId,terminate}->
 io:format(“Neuron:~p is terminating.~n”,[self()])
 end.

With the implementation of the updated neuron now complete, we need to cre-
ate the neuromodulation function in the plasticity module. Since the modulatory
signals will be used to compute a nonlinear value used to modulate the standard
general Hebbian rule, we will not need any weight_parameters and so our plasticity
function will produce an empty weight_parameters list. But we will need the general
neural_parameters for the hebbian function, thus the neuromodulation/1 function exe-
cuted with the neuronal_parameters atom will return a list with 5 randomly generated
(and later tuned and evolved) parameters: [H,A,B,C,D]. The neuromodulation/4 func-
tion is very simple, since it is executed with a list of all the necessary parameters to call
the neurmodulation/5 function that applies the general hebbian rule to all the synaptic
weights. These two added functions are shown in Listing-15.9.

Listing-15.9 The implementation of the neuromodulation/1 and neuromodulation/4 functions.

neuromodulation(neural_parameters)->
 H = (lists:random()-0.5),
 A = (lists:random()-0.5),
 B = (lists:random()-0.5),
 C = (lists:random()-0.5),
 D = (lists:random()-0.5),
 [H,A,B,C,D];
neuromodulation(weight_parameters)->
 [].

neuromodulation([M,H,A,B,C,D],IAcc,Input_PIdPs,Output)->
 Modulator = scale_dzone(M,0.33,?SAT_LIMIT),
 neuromodulation([Modulator*H,A,B,C,D],IAcc,Input_PIdPs,Output,[]).

640 Chapter 15 Neural Plasticity

The value M is the one computed by using the synaptic weights of the in-
put_idps_modulation, using the dot_product signal aggregator, and the hyperbolic
tangent (tanh) activation function. Since H scales the plasticity in general, multi-
plying the Modulator value by H allows for the modulation signal to truly modu-
late synaptic plasticity based on the parameters evolved by the neuron.

The Modulator value is computed by executing the scale_dzone/3 function,
which performs 2 tasks:

1. Zero out M if it is between -0.33 and 0.33.
2. If M is greater than 0.33 or less than -0.33, normalize and scale it to be between

0 and ?SAT_LIMIT, or 0 and -?SAT_LIMIT, respectively.

This means that M has to reach a particular magnitude for the Hebbian rule to
be executed, since when the Modulator value is 0 and is multiplied by H, the
weights are not updated. The scale_dzone/3 function, and its supporting function,
are shown in Listing-15.10.

Listing-15.10 The implementation of scale_dzone and scale function.

scale_dzone(Val,Threshold,MaxMagnitude)->
 if
 Val > Threshold ->
 (functions:scale(Val,MaxMagnitude,Threshold)+1)*MaxMagnitude/2;
 Val < -Threshold ->
 (functions:scale(Val,-Threshold,-MaxMagnitude)-1)*MaxMagnitude/2;
 true ->
 0
 end.

 scale(Val,Max,Min)->
 case Max == Min of
 true ->
 0;
 false ->
 (Val*2 - (Max+Min))/(Max-Min)
 end.
%The scale/3 function scales Val to be between -1 and 1, with the scaling dependent on the
Max and Min value, using the equation: Scaled_Val = (Val*2 - (Max + Min))/(Max-Min). The
function scale_dzone/3 zeroes the Val parameter if it is below the threshold, and scales it to be
between Threshold and MaxMagnitude if it is above the threshold.

Though we have now successfully implemented the autoassociative learning
rules, and neuromodulation, we cannot use those features until we create the nec-
essary tuning and mutation operators, such that our neuroevolutionary system can
actually tune in the various learning parameters, and add the synaptic weights

15.4 Plasticity Parameter Mutation Operators 641

needed by the neuromodulation functionality. We discuss and implement these
necessary features in the next section.

15.4 Plasticity Parameter Mutation Operators

For the plasticity based learning rules to be useful, our neuroevolutionary sys-
tem must be able to optimize them. For this we need to create new mutation opera-
tors. Though we could add the new mutation operators to the genome_mutator
module, we will do something different instead. Since each plasticity function has
its own restrictions (which learning parameters can/should be modified, and which
can/should not be), and because there are so many of the different variants, and
many more to be added as time goes on, it would not be effective to create these
mutation operators inside the genome_mutator module. The genome_mutator
should concentrate on the standard topology oriented mutation operators.

To more effectively handle this, we can offload these specialized mutation op-
erators in the same way we offloaded the generation of the initial plasticity param-
eters, to the plasticity module itself. We can add a single mutation operator mu-
tate_plasticity, which when executed, executes the plasticity:PFName(Agent_Id,
mutate) function. Then the researcher which created the various plasticity function
variants and types, can also create the mutation operator functions for it, whether
they simply perturb neural level learning parameters, synaptic weight level param-
eters, or perform a more complex mutation. And of course if the plasticity func-
tion is set to none, we will have the function plasticity:none(Agent_Id,mutate) ex-
ecute: exit(“Neuron does not support plasticity.”), which will allow our
neuroevolutionary system to attempt another mutation operator, without wasting
the topological mutation try.

The plasticity specializing mutation operators should perform the following
general operations:

 If the neuron uses neural_parameters, randomly choose between 1 and
math:sqrt(TotParameters) number of parameters, and perturb them with a value
selected randomly between -Pi and Pi.

 If the neuron uses weight_parameters, randomly choose between 1 and
math:sqrt(TotWeightParameters) number of parameters, and perturb them with
a value selected randomly between -Pi and Pi.

 If the neuron uses both, neural_parameters and weight_parameters, randomly
choose one or the other, and perturb that parameter list using one of the above
approaches, depending which of the two apply.

The neuromodulation is a special case, since it does not only have the global
neural_level parameters which can be mutated/perturbed using the standard meth-
od listed above, but also allows for the establishment of new modulatory connec-
tions. Because the input_idps_modulation list has the same format as the standard

642 Chapter 15 Neural Plasticity

input_idps list, we can use the already existing synaptic connection establishing
mutation operators and functions. The only modification we need to make so that
some of the connections are standard, and others are modulatory, is set a case such
that if the neuron to which the connection is being established has
neuromodulation enabled, then the choice of whether the new connection will be
standard or modulatory is 50/50, and if there is no neuromodulation enabled, then
only the standard connection is allowed.

15.4.1 Implementing the Weight Parameter Mutation Operator

We first create the mutation operators which are applied to the
weight_parameters. This mutation operator, executed when the plasticity function
is run with the parameter: {N_Id,mutate}, performs similarly to the standard per-
turb_IPIdPs/2 function, but instead of mutating the synaptic weights, it operates
on, and mutates the, parameter values. The probability for any weight parameter to
be perturbed is 1/math:sqrt(TotParameters). The plasticity functions that only use
weight_parameters are the hebbian_w and ojas_w. Because in both of these plas-
ticity functions the same implementation for the mutator is used, only the
hebbian_w/1 version is shown (the difference for the ojas_w version is that instead
of hebbian_w({N_Id,mutate}), we have ojas_w({N_Id,mutate})). This implemen-
tation is shown in Listing-15.11.

Listing-15.11 Implementation of the plasticity function based weight_parameter mutation oper-
ators.

hebbian_w({N_Id,mutate})->
 random:seed(now()),
 N = genotype:read({neuron,N_Id}),
 InputIdPs = N#neuron.input_idps,
 U_InputIdPs=perturb_parameters(InputIdPs,?SAT_LIMIT),
 N#neuron{input_idps = U_InputIdPs};
hebbian_w(neural_parameters)->
 [];
hebbian_w(weight_parameters)->
 [(lists:random()-0.5)].
%hebbian_w/1 function produces the necessary parameter list for the hebbian_w learning rule
to operate. The parameter list for the simple hebbian_w learning rule is a parameter list com-
posed of a single parameter H: [H], for every synaptic weight of the neuron. When hebbian_w/1
is called with the parameter neural_parameters, it returns []. When hebbian_w/1 is executed
with the {N_Id,mutate} tuple, the function goes through every parameter in the neuron’s in-
put_idps, and perturbs the parameter value using the specified spread (?SAT_LIMIT).

 perturb_parameters(InputIdPs,Spread)->

15.4 Plasticity Parameter Mutation Operators 643

 TotParameters = lists:sum([lists:sum([length(Ps) || {_W,Ps} <- WPs]) || {_Input_Id,
WPs} <- InputIdPs]),
 MutationProb = 1/math:sqrt(TotParameters),
 [{Input_Id,[{W,perturb(Ps,MutationProb,Spread,[])}|| {W,Ps} <- WPs]} || {Input_Id,
WPs} <- InputIdPs].

 perturb([Val|Vals],MutationProb,Spread,Acc)->
 case random:uniform() < MutationProb of
 true ->
 U_Val = sat((random:uniform()-0.5)*2*Spread+Val,Spread,
Spread),
 perturb(Vals,MutationProb,Spread,[U_Val|Acc]);
 false ->
 perturb(Vals,MutationProb,Spread,[Val|Acc])
 end;
 perturb([],_MutationProb,_Spread,Acc)->
 lists:reverse(Acc).
%The perturb/5 function is executed with a list of values and a probability with which each
value has the chance of being perturbed. The function then goes through every value and per-
turbs it with the given probability.

15.4.2 Implementing the Neural Parameter Mutation Operator

We next create the mutation operators which are applied to the neu-
ral_parameters, which are lists of values. To accomplish this, we just make that
list pass through a function which with some probability, 1/sqrt(ListLength), per-
turbs the values within it. We add such mutation operators to the plasticity func-
tions which only use the neural_parameters. The following plasticity functions on-
ly use the neural_parameters: hebbian, ojas, and the neuromodulation. Since all
3 would use exactly the same implementation, only the neuromodulation/1 im-
plementation is shown in Listing-15.12.

Listing-15.12 Implementation of the neural_parameters mutation operator.

neuromodulation({N_Id,mutate})->
 random:seed(now()),
 N = genotype:read({neuron,N_Id}),
 {PFName,ParameterList} = N#neuron.pf,
 MSpread = ?SAT_LIMIT*10,

%The perturb_parameters/2 function goes through every tuple in the InputIdPs list, extracts the
WeightPlus blocks for each input connection, calculates the total number of weight parameters
the neuron has, and from it the probability with which those parameters will be perturbed.
The function then executes perturb/4 to perturb the said parameters.

644 Chapter 15 Neural Plasticity

 MutationProb = 1/math:sqrt(length(ParameterList)),
 U_ParameterList = perturb(ParameterList,MutationProb,MSpread,[]),
 U_PF = {PFName,U_ParameterList},
 N#neuron{pf=U_PF};
neuromodulation(neural_parameters)->
 H = (lists:random()-0.5),
 A = (lists:random()-0.5),
 B = (lists:random()-0.5),
 C = (lists:random()-0.5),
 D = (lists:random()-0.5),
 [H,A,B,C,D];
neuromodulation(weight_parameters)->
 [].
%neuromodulation/1 function produces the necessary parameter list for the neuromodulation
learning rule to operate. The parameter list for this learning rule is a list composed of parame-
ters H,A,B,C,D: [H,A,B,C,D]. When the function is executed with the {NId,mutate} parameter,
it calculates the perturbation probability of every parameter through the equation:
1/math:sqrt(length(ParameterList)), and then executes the perturb/5 function to perturb the ac-
tual parameters.

The above shown mutation operator, called by executing neuromodulation/1
with the parameter {N_Id,mutate}, uses the perturb/4 function from the
weight_parameters based mutation operator which was shown in the previous list-
ing, Listing-15.11.

15.4.3 Implementing the Hybrid, Weight & Neural Parameters
Mutation Operator

Finally, we also have plasticity functions which have both, neural_parameters
and weight_parameters. This is the case for example for the self_modulationV5,
V3, and V2 learning rules. For these type of plasticity functions, we create a com-
bination of the neural_parameters and weight_parameters mutation operators, as
shown in Listing-15.13.

Listing-15.13 A hybrid of the neural_parameters and weight_parameters mutation operator, im-
plemented here for the self_modulationV5 plasticity function.

self_modulationV5({N_Id,mutate})->
 random:seed(now()),
 N = genotype:read({neuron,N_Id}),
 {PFName,ParameterList} = N#neuron.pf,
 MSpread = ?SAT_LIMIT*10,

15.4 Plasticity Parameter Mutation Operators 645

 MutationProb = 1/math:sqrt(length(ParameterList)),
 U_ParameterList = perturb(ParameterList,MutationProb,MSpread,[]),
 U_PF = {PFName,U_ParameterList},
 InputIdPs = N#neuron.input_idps,
 U_InputIdPs=perturb_parameters(InputIdPs,?SAT_LIMIT),
 N#neuron{pf=U_PF,input_idps=U_InputIdPs};
self_modulationV5(neural_parameters)->
 B=(lists:random()-0.5),
 C=(lists:random()-0.5),
 D=(lists:random()-0.5),
 [B,C,D];
self_modulationV5(weight_parameters)->
 [(lists:random()-0.5),(lists:random()-0.5)].

For this plasticity module, this is all that is needed, there are only these 3 vari-
ants. We now modify the genome_mutator module to include the mu-
tate_plasticity_parameters mutation operator, and modify the functions which
deal with linking neurons together, so that we can add the modulatory connection
establishment functionality.

15.4.4 Updating the genome_mutator Module

Since our neuroevolutionary system can only apply to a population the muta-
tion operators available in its constraint record, we first add the {mu-
tate_plasticity_parameters,1} tag to the constraint’s mutation_operators list. This
means that the mutate_plasticity_parameter mutation operator has the same
chance of being executed as any other mutation operator within the muta-
tion_operators list. After having modified the constraint record, we add the mu-
tate_plasticity_parameters/1 function to the genome_mutator module. It is a sim-
ple mutation operator that chooses a random neuron from the NN, and through the
execution of plasticity:PFName({N_Id,mutate}) function, mutates the plasticity
parameters of that neuron, if that neuron has plasticity. If the neuron does not have
plasticity enabled, then the plasticity:none/1 function is executed, which exits the
mutation operator, letting our neuroevolutionary system try another mutation. The
implemented mutate_plasticity_parameters/1 function is shown in Listing-15.14.

Listing-15.14 The implementation of the mutate_plasticity_parameters mutation operator.

mutate_plasticity_parameters(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,

646 Chapter 15 Neural Plasticity

 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 N = genotype:read({neuron,N_Id}),
 {PFName,_Parameters} = N#neuron.pf,
 U_N = plasticity:PFName({N_Id,mutate}),
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{mutate_plasticity_parameters,N_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A).
%The mutate_plasticity_parameters/1 chooses a random neuron from the NN, and mutates the
parameters of its plasticity function, if present.

Having implemented the mutation operator, we now look for the connec-
tion/synaptic-link establishing functions. We need to modify these functions be-
cause we want to ensure that if the neuron uses the neuromodulation plasticity
function, then some of the new connections that are added to it through evolution,
are randomly chosen to be modulatory connections rather than standard ones.

The functions that need to be updated are the following four:

 add_bias/1: Because the input_idps_modulation can also use a bias weight.
 remove_bias/1: Because the input_idps_modulation should also be able to rid

itself of its bias.
 link_ToNeuron/4: Which is the function that actually establishes new links, and

adds the necessary tuples to the input_idps list. We should be able to randomly
choose whether to add the new tuple to the standard input_idps list, or the
modulatory input_idps_modulation list.

 cutlink_ToNeuron/3: Which is the function which cuts the links to the neuron,
and removes the synaptic weight containing tuple from the input_idps list. We
should be able to randomly choose whether to remove such a tuple from the in-
put_idps or input_idps_modulation list.

Again, because of the way we developed, and modularized the code in the ge-
nome_mutator module, almost everything with regards to linking is contained in
the link_ToNeuron and cutlink_ToNeuron, so by just modifying those, and the
add_bias/remove_bias functions, we will be done with the update.

Originally the add_bias/1 function checks whether the input_idps list already
has a bias, and then adds a bias if it does not, and exits if it does. We now have to
check whether input_idps and input_idps_modulation lists already have biases. To
do this, we randomly generate a value by executing random:uniform(2), which
generates either 1 or 2. If value 2 is generated, and the input_idps_modulation
does not have a bias, we add one to it. Otherwise, if the input_idps list does not
have a bias, we add one to it, and thus in the absence of neuromodulation based
plasticity, probability of adding the bias to input_idps does not change. The modi-
fied add_bias mutation operator is shown in Listing-15.15.

15.4 Plasticity Parameter Mutation Operators 647

Listing-15.15 The updated add_bias mutation operator.

add_bias(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 Generation = A#agent.generation,
 N = genotype:read({neuron,N_Id}),
 SI_IdPs = N#neuron.input_idps,
 MI_IdPs = N#neuron.input_idps_modulation,
 {PFName,_NLParameters} = N#neuron.pf,
 case {lists:keymember(bias,1,SI_IdPs), lists:keymember(bias,1,MI_IdPs), PFName ==
neuromodulation, random:uniform(2)} of
 {_,true,true,2} ->
 exit(“********ERROR:add_bias:: This Neuron already has a modulatory bias
part.”);
 {_,false,true,2} ->
 U_MI_IdPs = lists:append(MI_IdPs,[{bias,[{random:uniform()-0.5,
plasticity:PFName(weight_parameters)}]}]),
 U_N = N#neuron{
 input_idps_modulation = U_MI_IdPs,
 generation = Generation},
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{{add_bias,m},N_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A);
 {true,_,_,1} ->
 exit(“********ERROR:add_bias:: This Neuron already has a bias in in-
put_idps.”);
 {false,_,_,_} ->
 U_SI_IdPs = lists:append(SI_IdPs,[{bias,[{random:uniform()-0.5,
plasticity:PFName(weight_parameters)}]}]),
 U_N = N#neuron{
 input_idps = U_SI_IdPs,
 generation = Generation},
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{{add_bias,s},N_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A)
 end.

648 Chapter 15 Neural Plasticity

The remove_bias is modified in the same manner, and only a few elements of
the source code are changed. Like the add_bias, we update the link_ToNeuron/4
function to randomly choose whether to make the new link modulatory or stand-
ard, and only if the chosen list (either input_idps or input_idps_modulation), does
not already have a link from the specified presynaptic element. The updated func-
tion is shown in Listing-15.16.

Listing-15.16 The updated link_ToNeuron/4 function.

link_ToNeuron(FromId,FromOVL,ToN,Generation)->
 ToSI_IdPs = ToN#neuron.input_idps,
 ToMI_IdPs = ToN#neuron.input_idps_modulation,
 {PFName,_NLParameters}=ToN#neuron.pf,
 case {lists:keymember(FromId,1,ToSI_IdPs),lists:keymember(FromId,1,ToMI_IdPs)} of
 {false,false} ->
 case {PFName == neuromodulation, random:uniform(2)} of
 {true,2} ->
 U_ToMI_IdPs = [{FromId,
genotype:create_NeuralWeightsP(PFName,FromOVL,[])}|ToMI_IdPs],
 ToN#neuron{
 input_idps = U_ToMI_IdPs,
 generation = Generation
 };
 _ ->
 U_ToSI_IdPs = [{FromId,
genotype:create_NeuralWeightsP(PFName,FromOVL,[])}|ToSI_IdPs],
 ToN#neuron{
 input_idps = U_ToSI_IdPs,
 generation = Generation
 }
 end;
 _ ->
 exit(“ERROR:add_NeuronI::[cannot add I_Id]: ~p already connected to ~p~n”,
[FromId,ToN#neuron.id])
 end.
%link_ToNeuron/4 updates the record of ToN, so that it’s updated to receive a connection from
the element FromId. The link emanates from element with the id FromId, whose output vector
length is FromOVL, and the connection is made to the neuron ToN. In this function, either the
ToN’s input_idps_modulation or input_idps list is updated with the tuple {FromId, [{W_1,
WPs} ...{W_FromOVL,WPs}]}. Whether input_idps or input_idps_modulation is updated, is
chosen randomly. Then the neuron’s generation is updated to Generation (the current, most re-
cent generation). After this, the updated ToN’s record is returned to the caller. On the other
hand, if the FromId is already part of the ToN’s input_idps or input_idps_modulation list (de-
pendent on which was randomly chosen), which means that the standard or modulatory link al-
ready exists between the neuron ToN and element FromId, this function exits with an error.

15.4 Plasticity Parameter Mutation Operators 649

Finally, we update the cutlink_ToNeuron/3 function. In this case, since there
can only be one link between two elements, we simply first check if the specified
input link is specified in the input_idps, and cut it if it does. If it does not, we
check the input_idps_modulation next, and cut it if this link is modulatory. If such
a link does not exist in either of the two lists, we exit the mutation operator with
an error, printing to console that the specified link does not exist, neither in the
synaptic weights list, nor in the synaptic parameters list. The implementation of
the cutlink_ToNeuron/3, is shown in Listing-15.17.

Listing-15.17 The cutlink_ToNeuron/3 implementation.

 cutlink_ToNeuron(FromId,ToN,Generation)->
 ToSI_IdPs = ToN#neuron.input_idps,
 ToMI_IdPs = ToN#neuron.input_idps_modulation,
 Guard1 = lists:keymember(FromId, 1, ToSI_IdPs),
 Guard2 = lists:keymember(FromId, 1, ToMI_IdPs),
 if
 Guard1->
 U_ToSI_IdPs = lists:keydelete(FromId,1,ToSI_IdPs),
 ToN#neuron{
 input_idps = U_ToSI_IdPs,
 generation = Generation};
 Guard2 ->
 U_ToMI_IdPs = lists:keydelete(FromId,1,ToMI_IdPs),
 ToN#neuron{
 input_idps = U_ToMI_IdPs,
 generation = Generation};
 true ->
 exit(“ERROR[can not remove I_Id]: ~p not a member of
~p~n”,[FromId,ToN#neuron.id])
 end.
%cutlink_ToNeuron/3 cuts the connection on the ToNeuron (ToN) side. The function first
checks if the FromId is a member of the ToN’s input_idps list, if it’s not, then the function
checks if it is a member of the input_idps_modulation list. If it is not a member of either, the
function exits with error. If FromId is a member of one of these lists, then that tuple is removed
from that list, and the updated ToN record is returned to the caller.

With these updates completed, the genome_mutator module is up to date. In the
case that a plasticity is enabled in any neuron, the topological mutation phase will
be able to mutate the plasticity function learning parameters, and add modulatory
connections in the case the plasticity function is neuromodulation. The only re-
maining update we have to make is one to the tuning phase related functions.

650 Chapter 15 Neural Plasticity

15.5 Tuning of a NN which has Plastic Neurons

It can be argued whether both standard synaptic weights and modulatory synap-
tic weights should be perturbed at the same time when the neuron has plasticity
enabled, or just one or the other separately during the tuning phase. For example,
should we allow for the neural_parameters to be perturbed during the tuning
phase, rather than only during the topological mutation phase? What percentage of
tuning should be dedicated to learning parameters and what percentage to synaptic
weights? This of course can be tested, and benchmarked, and in general deduced
through experimentation. After it has been decided on what and when to tune
with regards to learning rules, there is still a problem with regards to the parameter
and synaptic weight backup during the tuning phase. The main problem of this
section is with regards to this dilemma, the dilemma of the backup process of the
tuned weights.

Consider a neuron that has plasticity enabled, no matter what plasticity function
it’s using. The following scenario occurs when the neuron is perturbed:

1. The neuron receives a perturbation request.
2. Neuron selects random synaptic weights, weight_parameters, or even neu-

ral_parameters (though we do not allow for neural_parameters perturbation
during the tuning phase, yet).

3. Then the agent gets re-evaluated, and IF:
4. Perturbed agent has a higher fitness: the neuron backups its current

5. Perturbed agent has a lower fitness: the neuron restores its previous
backed up weights/parameters.

There is a problem with step 4. Because by the time it’s time to backup the
synaptic weights, they have already changed from what they original started with
during the evaluation, since they have adapted and learned due to their plasticity
function. So we would not be backing up the synaptic weights of the agent that
achieved the higher fitness score, but instead we would be backing up the learned
and adapted agent with its adapted synaptic weights.

The fact that the perturbed agent, or topologically mutated agent, is not simply
a perturbed genotype on which its parent is based, but instead is based on the gen-
otype which has resulted from its parent’s experience (due to the parent having
changed based on its learning rule, before its genotype was backed up), means that
the process is now based on Lamarckian evolution, rather than the biologically

rckian Evolution is based on the idea
that an organism can pass on to its offspring the characteristics that it has acquired
and learned during its lifetime (evaluation), all its knowledge and learned skills.
Since plasticity affects the agent’s neural patterns, synaptic weights... all of which
are defined and written back to the agent’s genotype, and the offspring is a mutat-
ed version of that genotype, the offspring thus in effect will to some extent inherit

weights/parameters.

correct Darwinian. The definition of Lama

15.5 Tuning of a NN which has Plastic Neurons 651

the agent’s adapted genotype, and not the original genotype with which the parent
started when it was being evaluated.

When the agent backs up its synaptic weights after it has been evaluated for fit-
ness, the agent uses Lamarckian evolution, because its experience, what it has
learned during its evaluation (and what it has learned is reflected in how the syn-
aptic weights changed due to the used plasticity learning rule), is written to its ge-
nome, and it is this learned agent that gets perturbed. The cleanest way to solve
this problem, and have control of whether we use Lamarckian or the biologically
correct Darwinian evolution, is to add a new parameter to the agent, the darwini-
an/lamarckian flag.

To implement the proper synaptic weight updating method to reflect the decid-
ed on hereditary approach during the tuning phase, we will need to add minor up-
dates to the records.hrl file, the exoself, the neuron, and the genotype modules. In
the records.hrl, we have to update the agent record by adding the heredity_type
flag to it, and modifying the constraint record by adding the heredity_types ele-
ment to it. The agent’s heredity_type element will simply store a tag, an atom
which can either be : darwinian or lamarckian. The constraint’s heredity_types el-
ement will be a list of heredity_type tags. This list can either contain just a single
tag, ‘darwinian’ or ‘lamarckian’ for example, or it could contain both. If both at-
oms are present in the heredity_types list, then during the creation of the seed
population, some agents will use the darwinian method of passing on their heredi-

Darwinian vs. Lamarckian evolution, particularly in ALife simulations, could
lead to interesting possibilities. When using Lamarckian evolution, and for exam-
ple applying our neuroevolutionary system to an ALife problem, the agent’s expe-
rience gained from interacting with the simulated environment, would be passed
on to its offspring, and perturbed during the tuning phase. The perturbed organism
(during the tuning phase, belonging to the same evaluation) would re-experience
the interaction with the environment, and if it was even more successful, it would
be backed up with its new experience (which means that the organism has now
experienced and learned in the environment twice, since through plasticity the en-
vironment has affected its synaptic weights twice...). If the perturbed agent is less
fit, then the previous agent, with its memories and synaptic weight combination, is
reverted to, and re-perturbed. If we set the max_attempts counter to 1, then it will
be genetic rather than a memetic based neuroevolutionary system. But again,
when Lamarckian evolution is allowed, the memories of the parent are passed on
to its offspring... A number of papers have researched the usefulness and efficien-
cy of Darwinian Vs. Lamarkian evolution [4,5,6,7]. The results vary, and so add-
ing a heredity flag to the agent will allow us to experiment and use both if we
want to. We could then switch between the two heredity approaches (Darwinian or
Lamarckian) easily, or perhaps even allow the hereditary flag to flip between the
two during the topological mutation phase through some new topological mutation
operator, letting the evolutionary process decide what suits the assigned problem
best.

652 Chapter 15 Neural Plasticity

tary information, and others will use a lamarckian approach. It would be interest-
ing to see which of the two would have an advantage, or be able to evolve faster,
and during what stages of evolution and in which problems...

After updating the 2 records in records.hrl, we have to make a small update to
the genotype module. In the genotype module we update the construct_Agent/3
function, and set the agent’s heredity_type to one of the available heredity types in
the constraint’s heredity_types list. We do this by adding the following line when
setting the agent’s record: heredity_type = random_element
(SpecCon#constraint.heredity_types). We then update the exoself module, by
modifying the link_Neurons/2 function to link_Neurons/3 function, and pass to it
the agent’s heredity_type parameter, the parameter which is then forwarded to
each spawned neuron.

With this done, we make the final and main source modification, which is all
contained within the neuron module. To allow for Darwinian based heredity in the
presence of learning and plastic neurons, we need to keep track of two states of

We can call this new list the input_pidps_bl, where bl stands for Before Learn-
ing.

When a neuron is requested to perturb its synaptic weights, right after the
weights are perturbed, we want to save this new input_pidps list, before plasticity
gets a chance to modify the synaptic weights. Thus, whereas before we stored the
Perturbed_PIdPs in input_pidps_current, we now also save it to input_pidps_bl.
Afterwards, the neuron can process the input signals using its input_pidps_current,
and its learning rule can affect the input_pidps_current list. But input_pidps_bl
will remain unchanged.

When a neuron is sent the weight_backup message, it is here that heredity_type
plays its role. When it’s darwinian, the neuron saves the input_pidps_bl to in-
put_pidps_backup, instead of the input_pidps_current which could have been
modified by some learning rule by this point. On the other hand, when the heredi-
ty_type is lamarckian, the neuron saves the input_pidps_current to in-
put_pidps_backup. The input_pidps_current represents the synaptic weights that
could have been updated if the neuron allows for plasticity, and thus the in-
put_pidps_backup will then contain not the initial states of the synaptic weight list
with which the neuron started, but the state of the synaptic weights after the neu-
ron has experienced, processed, and had its synaptic weights modified by its learn-
ing rule. Using this logic we add to the neuron’s state the element input_pidps_bl,
and update the loop/6 function, as shown in Listing-15.18.

the input_pidps:

1. The input_pidps that are currently effective and represent the neuron’s pro-
cessing dynamics, which is the input_pidps_current.

2. A second input_pidps list, which represents the state of input_pidps right after
perturbation, before the synaptic weights are affected by the neuron’s plasticity
function.

15.5 Tuning of a NN which has Plastic Neurons 653

Listing-15.18 The neuron’s loop/6 function which can use both, Darwinian and Lamarckian in-
heritance.

loop(S,ExoSelf_PId,[ok],[ok],SIAcc,MIAcc)->
 PF = S#state.pf,
 AF = S#state.af,
 AggrF = S#state.aggrf,
 {PFName,PFParameters} = PF,
 Ordered_SIAcc = lists:reverse(SIAcc),
 SI_PIdPs = S#state.si_pidps_current,
 SAggregation_Product = signal_aggregator:AggrF(Ordered_SIAcc,SI_PIdPs),
 SOutput = functions:AF(SAggregation_Product),
 Output_PIds = S#state.output_pids,
 [Output_PId ! {self(),forward,[SOutput]} || Output_PId <- Output_PIds],
 Ordered_MIAcc = lists:reverse(MIAcc),
 MI_PIdPs = S#state.mi_pidps_current,
 MAggregation_Product = signal_aggregator:dot_product(Ordered_MIAcc,MI_PIdPs),
 MOutput = functions:tanh(MAggregation_Product),
 U_SI_PIdPs = plasticity:PFName([MOutput|PFParameters],Ordered_SIAcc,SI_PIdPs,
SOutput),
 U_S=S#state{
 si_pidps_current = U_SI_PIdPs
 },
 SI_PIds = S#state.si_pids,
 MI_PIds = S#state.mi_pids,
 loop(U_S,ExoSelf_PId,SI_PIds,MI_PIds,[],[]);
loop(S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc)->
 receive
 {SI_PId,forward,Input}->
 loop(S,ExoSelf_PId,SI_PIds,[MI_PId|MI_PIds],[{SI_PId,Input}|SIAcc],
MIAcc);
 {MI_PId,forward,Input}->

 loop(S,ExoSelf_PId,[SI_PId|SI_PIds],MI_PIds,SIAcc,[{MI_PId,Input}|MIAcc]);
 {ExoSelf_PId,weight_backup}->
 U_S=case S#state.heredity_type of
 darwinian ->
 S#state{
 si_pidps_backup=S#state.si_pidps_bl,
 mi_pidps_backup=S#state.mi_pidps_current
 };
 lamarckian ->
 S#state{
 si_pidps_backup=S#state.si_pidps_current,
 mi_pidps_backup=S#state.mi_pidps_current

654 Chapter 15 Neural Plasticity

 }
 end,
 loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
 {ExoSelf_PId,weight_restore}->
 U_S = S#state{
 si_pidps_bl=S#state.si_pidps_backup,
 si_pidps_current=S#state.si_pidps_backup,
 mi_pidps_current=S#state.mi_pidps_backup
 },
 loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
 {ExoSelf_PId,weight_perturb,Spread}->
 Perturbed_SIPIdPs=perturb_IPIdPs(Spread,S#state.si_pidps_backup),
 Perturbed_MIPIdPs=perturb_IPIdPs(Spread,S#state.mi_pidps_backup),
 U_S=S#state{
 si_pidps_bl=Perturbed_SIPIdPs,
 si_pidps_current=Perturbed_SIPIdPs,
 mi_pidps_current=Perturbed_MIPIdPs
 },
 loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
 {ExoSelf_PId,reset_prep}->
 neuron:flush_buffer(),
 ExoSelf_PId ! {self(),ready},
 RO_PIds = S#state.ro_pids,
 receive
 {ExoSelf_PId, reset}->
 fanout(RO_PIds,{self(),forward,[?RO_SIGNAL]})
 end,
 loop(S,ExoSelf_PId,S#state.si_pids,S#state.mi_pids,[],[]);
 {ExoSelf_PId,get_backup}->
 NId = S#state.id,
 ExoSelf_PId ! {self(),NId,S#state.si_pidps_backup,S#state.mi_pidps_backup},
 loop(S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
 {ExoSelf_PId,terminate}->
 io:format(“Neuron:~p is terminating.~n”,[self()])
 after 10000 ->
 io:format(“neuron:~p stuck.~n”,[S#state.id])
 end.

With this modification, our neuroevolutionary system can be used with Dar-
winian and Lamarckian based heredity. If we start the population_monitor process
with a constraint where the agents are allowed to have neurons with plasticity, and
set the heredity_types to either [lamarckian] or [darwinian,lamarckian], then some
of the agents will have plasticity and be able to use the Lamarckian inheritance.

15.5 Tuning of a NN which has Plastic Neurons 655

We can next add a simple mutation operator which works similarly to the way
the mutation operators of other evolutionary strategy parameters work. We simply
check whether there are any other heredity types in the constraint’s heredity_types
list, if there are, we change the currently used one to a new one, randomly chosen
from the list. If there are no others, then the mutation operator exits with an error,
without wasting the topological mutation attempt. This simple mu-
tate_heredity_type mutation operator implementation is shown in Listing-15.19.

Listing-15.19 The implementation of the genome_mutator:mutate_heredity_type/1 mutation
operator.

mutate_heredity_type(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 case (A#agent.constraint)#constraint.heredity_types -- [A#agent.heredity_type] of
 [] ->
 exit(“********ERROR:mutate_heredity_type/1:: Nothing to mutate, only a
single function available.”);
 Heredity_Type_Pool->
 New_HT = lists:nth(random:uniform(length(Heredity_Type_Pool)),
Heredity_Type_Pool),
 U_A = A#agent{heredity_type = New_HT},
 genotype:write(U_A)
 end.
%mutate_heredity_type/1 function checks if there are any other heredity types in the agent’s
constraint record. If any other than the one currently used by the agent is present, the agent ex-
changes the heredity type it currently uses for a random one from the remaining list. If no other
heredity types are available, the mutation operator exits with an error, and the
neuroevolutionary system tries another mutation operator.

Since this particular neuroevolutionary feature is part of the evolutionary strat-
egies, we add it to the evolutionary strategy mutator list, which we created earlier:

-define(ES_MUTATORS,[
 mutate_tuning_selection,
 mutate_tuning_duration,
 mutate_tuning_annealing,
 mutate_tot_topological_mutations,
 mutate_heredity_type
]).

With this final modification, our neuroevolutionary system can now fully em-
ploy plasticity, and two types of heredity inheritance methods. We now finally
compile, and test our updated system on the T-Maze Navigation problem we de-
veloped in the previous chapter.

656 Chapter 15 Neural Plasticity

15.6 Compiling & Testing

Our TWEANN system can now evolve NNs with plasticity, which means the
evolved agents do not simply have an evolved response/reflex to sensory signals,
but can also change, adapt, learn, modify their strategies as they interact with the
ever changing and dynamic world. Having added this feature, and having created
the T-Maze Navigation problem which requires the NN to change its strategy as it
interacts with the environment, we can now test the various plasticity rules to see
whether the agents will be able to achieve a fitness of 149.2, a fitness score
achieved when the agent can gather the highest reward located in the right corner,
and then when sensing that the reward is now not 1 but 0.2 in the right corner,
start moving to the left corner to continue gathering the highest reward.

Having so significantly modified the records and the various modules, we reset
the mnesia database after recompiling the modules. To do this, we first execute
polis:sync(), then polis:reset(), and then finally polis:start() to startup the polis
process. We have created numerous plasticity learning rules: [hebbian_w, hebbian,
ojas_w, ojas, self_modulationV1, self_modulationV2, self_modulationV3,
self_modulationV4, self_modulationV5, self_modulationV6, neuromodulation],
too many to show the console printouts of. Here I will show you the results I
achieved while benchmarking the hebbian_w and the hebbian learning rules, and I
highly recommend testing the other learning rules by using the provided source
code in the supplementary material.

To run the benchmarks, we first modify the ?INIT_CONSTRAINTS in the
benchmarker module, setting the constraint’s parameter: neural_pfns, to one of
these plasticity rules for every benchmark. We can leave the evaluations_limit in
the pmp record as 5000, but in the experiments I’ve performed, I set the popula-
tion limit to 20 rather than 10, to allow for a greater diversity. The following are
the results I achieved when running the experiments for the hebbian_w and the
hebbian plasticity based benchmarks:

T-Maze Navigation with neural_pfns=[hebbian_w]:

Graph:{graph,discrete_tmaze,
 [1.1185328852434115,1.1619749686158354,1.1524569668377718,
 1.125571504518873,1.1289114832535887,1.1493175172780439,
 1.136998936735779,1.151456292245766,1.1340011357153639,
 1.1299993522129745],
 [0.0726690757747553,0.08603433346506212,0.07855604082593783,
 0.10142838037124464,0.07396159578145513,0.10671412852082847,
 0.07508707481514428,0.09451139923220694,0.10140517337683815,
 0.07774940615923569],
 [91.76556804891021,101.28562704890575,111.38602998360439,
 110.65857974481669,110.16398032961199,111.09056977671462,
 110.92899944938112,110.89051253132838,115.36595268212,

15.6 Compiling & Testing 657

 111.07567142455073],
 [14.533256849468248,13.058657299854085,10.728855341054617,
 10.993110357580642,10.14374645989871,8.753610288273324,
 8.392536182954592,7.795296190771122,5.718415463002469,
 8.367092075873826],
 [122.0000000000001,122.0000000000001,148.4,149.2,149.2,149.2,
 149.2,149.2,149.2,149.2],
 [10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115],
 [11.45,14.3,15.3,15.8,15.3,16.15,16.15,15.55,15.95,15.7],
 [1.5321553446044565,2.451530134426253,2.1702534414210706,
 2.541653005427767,2.2825424421026654,2.7253440149823285,
 2.127792283095321,2.0118399538730714,2.246664193866097,
 2.0273134932713295],
 [500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0],
 []}
Tot Evaluations Avg:5172.95 Std:103.65301491032471

The boldfaced list shows the maximum achieved scores from all the evolution-
ary runs, and this time through plasticity, the score of 149.2 was achieved, imply-
ing our TWEANN’s ability to solve the T-Maze navigation problem in under 2000
evaluationss (by the 4th of the 500th evaluations set).

T-Maze Navigation with neural_pfns=[hebbian]:

Graph:{graph,discrete_tmaze,
 [1.1349113313586998,1.1720830155097892,1.1280659983291563,
 1.1155462519936203,1.1394258373205741,1.1293439592742998,
 1.1421323920317727,1.1734812130593864,1.1750255550524766,
 1.2243932469319467],
 [0.07930932911768754,0.07243567080038446,0.0632406890972406,
 0.05913247338612391,0.07903341129827642,0.07030745338352402,
 0.09215871275247499,0.09666623776054033,0.1597898002580627,
 0.2447504142533042],
 [90.66616594516601,97.25899378881999,104.36751796157071,
 105.0985582137162,106.70360792131855,108.09892415530814,
 108.23839098414494,109.28814527629243,108.0643063975331,
 111.0103593241125],
 [15.044059269853784,13.919179099169385,10.613477213673535,
 13.557400867791436,13.380234103652047,12.413686820724935,
 11.936102929326337,11.580780191261242,12.636714964991167,
 12.816711475442705],
 [122.0000000000001,147.8,145.60000000000002,149.2,149.2,149.2,

658 Chapter 15 Neural Plasticity

 149.2,149.2,149.2,149.2],
 [10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115],
 [11.05,12.2,12.3,12.85,13.35,14.25,14.35,15.3,15.4,14.9],
 [1.6271140095272978,2.6381811916545836,2.215851980616034,
 1.7399712641305316,1.7399712641305318,2.2332711434127295,
 1.9817921182606415,2.0760539492026697,1.9078784028338913,
 2.046948949045872],
 [500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0],
 []}
Tot Evaluations Avg:5145.65 Std:91.87234349900953

In this case, our TWEANN again was able to solve the T-Maze problem. Plas-
tic NN based agents do indeed have the ability to solve the T-Maze problem which
requires the agents to change their strategy as they interact with the maze which
changes midway. Our TWEANN is now able to evolve such plastic NN based
agents, our TWEANN can now evolve agents that can learn new things as they in-
teract with the environment, that can change their behavioral strategies based on
their experience within the environment.

15.7 Summary & Discussion

Though we have tested only two of the numerous plasticity learning rules
we’ve implemented, they both produced success. In both cases our TWEANN
platform has been able to evolve NN based agents capable of solving the T-Maze
problem, which was not solvable by our TWEANN in the previous chapter with-
out plasticity. Thus we have successfully tested our plasticity rule implementa-
tions, and the new performance capabilities of our TWEANN. Outside this text I
have tested the learning rules which were not tested above, and they are also capa-
ble of solving this problem, with varying performance levels. All of this without
us having even optimized our algorithms yet.

With this benchmark complete, we have now finished developing numerous
plasticity learning rules, implementing the said algorithms, and then benchmark-
ing their performance. Our TWEANN system has finally been able to solve the T-
Maze problem which requires the agents to change their strategy. Our TWEANN
platform can now evolve not only complex topologies, but NN systems which
can learn and adapt. Our system can now evolve thinking neural network based
agents. There is nothing stopping us from producing more complex and more bio-
logically faithful plasticity based learning rules, which would further improve the

15.8 References 659

15.8 References

[1] Oja E (1982) A Simplified Neuron model as a Principal Component Analyzer. Journal of
Mathematical Biology 15, 267-273.

[2] Soltoggio A, Bullinaria JA, Mattiussi C, Durr P, Floreano D (2008) Evolutionary Advantages
of Neuromodulated Plasticity in Dynamic, Reward-based Scenarios. Artificial Life 2, 569-
576.

[3] Blynel J, Floreano D (2003) Exploring the T-maze: Evolving Learning-Like Robot Behaviors
using CTRNNs. Applications of evolutionary computing 2611, 173-176.

[4] Whitley LD, Gordon VS, Mathias KE (1994) Lamarckian Evolution, The Baldwin Effect and
Function Optimization. In Parallel Problem Solving From Nature - PPSN III, Y. Davidor and
H. P. Schwefel, eds. (Springer), pp. 6-15.

[5] Julstrom BA (1999) Comparing Darwinian, Baldwinian, and Lamarckian Search in a Genetic
Algorithm For The 4-Cycle Problem. In Late Breaking Papers at the 1999 Genetic and Evolu-
tionary Computation Conference, S. Brave and A. S. Wu, eds., pp. 134-138.

[6] Castillo PA, Arenas MG, Castellano JG, Merelo JJ, Prieto A, Rivas V, Romero G (2006)
Lamarckian Evolution and the Baldwin Effect in Evolutionary Neural Networks. CoRR
abs/cs/060, 5.

[7] Esparcia-Alcazar A, Sharman K (1999) Phenotype Plasticity in Genetic Programming: A
Comparison of Darwinian and Lamarckian Inheritance Schemes. In Genetic Programming
Proceedings of EuroGP99, R. Poli, P. Nordin, W. B. Langdon, and T. C. Fogarty, eds.
(Springer-Verlag), pp. 49-64.

capabilities and potential of the types of neural networks our TWEANN system
can evolve.

With the plasticity now added, our next step is to add a completely different
NN encoding, and thus further advance our TWEANN system. In the next chapter
we will allow our TWEANN platform to evolve not only the standard encoded
NN based agents we’ve been using up to this point, but also the new indirect en-
coded type of NN systems, the substrate encoded NN based systems.

	Chapter 15 Neural Plasticity
	15.1 Hebbian Rule
	15.1.1 Implementing the New input_idps & pf Formats
	15.1.2 Implementing the Simple Hebbian Learning Rule

	15.2 Oja’s Rule
	15.2.1 Implementing the Oja’s Learning Rule

	15.3 Neuromodulation
	15.3.1 The Neuromodulatory Architecture
	15.3.2 Implementing the self_modulation Learning Rules
	15.3.3 Implementing the input_idps_modulation Based Neuromodulated Plasticity

	15.4 Plasticity Parameter Mutation Operators
	15.4.1 Implementing the Weight Parameter Mutation Operator
	15.4.2 Implementing the Neural Parameter Mutation Operator
	15.4.3 Implementing the Hybrid, Weight & Neural Parameters Mutation Operator
	15.4.4 Updating the genome_mutator Module

	15.5 Tuning of a NN which has Plastic Neurons
	15.6 Compiling & Testing
	15.7 Summary & Discussion
	15.8 References

