
Chapter 15 Neural Plasticity 

Abstract   In this chapter we add plasticity to our direct encoded NN system. We 
implement numerous plasticity encoding approaches, and develop numerous plas-
ticity learning rules, amongst which are variations of the Hebbian Learning Rule, 
Oja’s Rule, and Neural Modulation. Once plasticity has been added, we again test 
our TWEANN system on the T-Maze navigation benchmark. 

We have now built a truly advanced topology and weight evolving artificial 
neural network (TWEANN) platform. Our system allows for its various features to 
evolve, the NNs can evolve not only the topology and synaptic weights, but also 
evolutionary strategies, local and global search parameters, and the very way in 
which the neurons/processing-elements interact with input signals. We have im-
plemented our system in such a way that it can easily be further expanded and ex-
tended with new activation functions (such as logical operators, or activation func-
tions which simulate a transistor for example), mutation operators, mutation 
strategies, and almost every other feature of our TWEANN. We have also created 
two benchmarks, the double pole balancing benchmark and the T-Maze navigation 
benchmark, which allows us to test our system’s performance. 

There is something lacking at this point though, our evolved agents are but stat-
ic systems. Our NN based agents do not learn during their lifetimes, they are 
trained by the exoself, which applies the NN based system to the problem time af-
ter time, with different parameters, until one of the parameter/synaptic-weight 
combinations produces a more fit agent. This is not learning. Learning is the pro-
cess during which the NN changes due to its experience, due to its interaction with 
the environment. In biological organisms, evolution produces the combination of 
neural topology, plasticity parameters, and the starting synaptic weight values, 
which allows the NN, based on this plasticity and initial NN topology and setup, 
to learn how to interact with the environment, to learn and change and adapt dur-
ing its lifetime. The plasticity parameters allow the NN to change as it interacts 
with the environment. While the initial synaptic weight values send this newborn 
agent in the right direction, in hope that the plasticity will change the topology and 
synaptic weights in the direction that will drive the agent, the organism, further in 
its exploration, learning, adaptation, and thus towards a higher fitness. 

Of course with plasticity comes a new set of questions: What new mutation op-
erators need to be added? How do we make the mutation operators specific to that 
particular set of parameters used by the plasticity learning rule? What about the 
tuning phase when it comes to neurons with plasticity, what is the difference be-
tween plasticity enabled NNs which are evolved through genetic algorithm ap-
proaches, and those evolved through memetic algorithm approaches? During the 
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tuning phase, what do we perturb, the synaptic weights or the plasticity parame-
ters?... 

Plasticity is that feature which allows the neuron and its parameters to change 
due to its interaction with input signals. In this book’s neural network foundations 
chapters we discussed this in detail. In this chapter we will implement the various 
learning rules that add neural plasticity to our system. In this chapter we will cre-
ate 3 types of plasticity functions, the standard Hebbian plasticity, the more ad-
vanced Oja’s rule, and finally the most dynamic and flexible approach, neural 
plasticity through neuromodulation. We will first discuss and implement these 
learning rules, and then add the perturbation and mutation operators necessary to 
take advantage of the newly added learning mechanism. 

15.1 Hebbian Rule 

We discussed the Hebbian learning rule in Section-2.6.1. The principle behind 
the Hebbian learning rule is summarized by the quote “Neurons that fire together, 
wire together.” If a presynaptic neuron A which is connected to a neuron B, sends 
it an excitatory (SignalVal > 0) signal, and in return B produces an excitatory out-
put, then the synaptic weight between the two neurons increases in magnitude. If 
on the other hand neuron A sends an excitatory signal to B, and B’s resulting out-
put signal is inhibitory (SignalVal < 0), then B’s synaptic weight for A’s connec-
tion, decreases. In a symmetric fashion, an inhibitory signal from A that results in 
an inhibitory signal from B, increases the synaptic weight strength between the 
two, but an inhibitory signal from A resulting in an excitatory signal from B, de-
creases the strength of the connection.  

The simplest Hebbian rule used to modify the synaptic weight after the neuron 
has processed some signal at time t is:  

Delta_Weight = h * I_Val * Output,  

Thus:  

W(t+1) = W(t) + Delta_Weight.  

Where Delta_Weight is the change in the synaptic weight, and where the speci-
fied synaptic weight belongs to B, associated with the incoming input signal 
I_Val, coming from neuron A. The value h is the learning parameter, set by the re-
searcher. The algorithm and architecture of a neuron using a simple Hebbian 
learning rule, repeated from Section-2.6.1 for clarity, is shown in Fig-15.1. 
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Fig. 15.1 An architecture of a neuron using the Hebbian learning rule based plasticity. 

There is though a problem with the current architecture of our neuron, which 
prevents it from having plasticity. That problem is that the neuron’s input_idps list 
specifies only the Input_Id of the node that sends it an input signal, and the ac-
companying synaptic weight list Weights: [{Input_Id,Weights}...]. With the addi-
tion of plasticity, we must have the ability to also specify the various new parame-
ters (like the learning parameter for example) of the learning rule. There are 
multiple ways in which we can solve this dilemma, the following are four of them: 

1. Extend the input_idps from:  [{Input_Id,Weights}...] to: [{Input_Id, Weights, 
LearningParameters}...] 

2. Extend the neuron record to also include input_lpps, a list with the format: 
[{Input_Id,LPs}...], where input_lpps stands for input learning parameters 

This is the simplest Hebbian rule, but though computationally light, it is also 
unstable. Because the synaptic weight does not decay, if left unchecked, the 
Hebbian rule will keep increasing the magnitude of the synaptic weight, indefi-
nitely, and thus eventually drown out all other synaptic weights belonging to the 

less with regards to processing since the signal weighted by 1000 will most likely 
overpower other signals. No matter what the other 4 synaptic weights are, no mat-
ter what pattern they have evolved to pick up, the fifth weight with magnitude 
1000 will drown out everything, saturating the output. We will implement it for 
the sake of completeness, and also because it is so easy to implement. To deal 
with unchecked synaptic weight magnitudes, we will use our previously created 
functions:sat/1 and functions:sat/2 functions to ensure that the synaptic weights do 
not increase in magnitude unchecked, that they do not increase to infinity, and in-
stead get saturated at some level specified by the sat function and the 
?SAT_LIMIT parameter specified within the neuron module. 

neuron. For example, if a neuron has 5 synaptic weights, 4 of which are between
to 1000, this neuron is effectively use--Pi and P, and the fifth weight has climbed 
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plus, and the LPs list in the tuple stands for Learning Parameters, mirroring the 
input_idps list’s format. 

3. Extend the Weights list in the input_idps tuple list from: [W1,W2,W3...] To: 
[{W1,P1},{W2,P2},{W3,P3}...] 

4. Extend pf (Plasticity Function) specification from: atom()::FunctionName to: 
{atom()::FunctionName, ParameterList} 

All of these solutions would require us to modify the genotype, ge-
nome_mutator, exoself, neuron, signal_aggregator, and plasticity modules, so that 
these modules can properly create, mutate, map genotype to phenotype, and in 
general properly function when the NN system is active. DXNN uses the 3rd solu-
tion, but only because at one point I also allowed the evolved NN systems to use a 
modified back propagation learning algorithm, and Pi contained the learning pa-
rameter. There were also Di and Mi parameters, making the input_idps list of the 
neurons evolved by the DXNN platform have the following format: 
[{W1,P1,D1,M1},{W2,P2,D2,M2}...], where the value D contained the previous time 
step’s change in synaptic weight, and M contained the momentum parameter used 
by the backprop algorithm. 

Options 1-3 are appropriate for when there is a separate plasticity function, a 
separate synaptic weight modification and learning rule, for every synaptic weight. 
But in a lot of cases, the neuron has a single learning rule which is applied to all 
synaptic weights equally. This is the case with the Hebbian Learning Rule, where 
the neuron needs only a single learning parameter specifying the rate of change of 
the synaptic weights. For the learning rules that use a single parameter or a list of 
global learning parameters, rather than a separate list of learning parameters for 
every synaptic weight, option 4 is the most appropriate, in which we extend the 
plasticity function name with a parameter list used by that plasticity function. 

But what if at some point in the future we decide that every weight should be 
accompanied not by one extra parameter, but by 2, or 3, or 4... To solve this, we 
could use solution-3, but have each Pi be a list. If there is only one parameter, then 
it is a list of length 1: [A1], if two parameters are needed by some specific learning 
rule, then each P is a list of length 2: [A1,A2], and so on. If there is no plasticity, 
the list is empty.  

Are there such learning rules that require so many parameters? Yes, for exam-
ple some versions of neuromodulation can be set such that a single neuron simu-
lates having 5 other modulating neurons within, each of whom analyzes the input 
vectors to the neuron in question, and each of whom outputs a value which speci-
fies a particular parameter in the generalized Hebbian learning rule. This type of 
plasticity function could use anywhere from 2 to 5 parameters (in the version we 
will implement) for each synaptic weight (those 2-5 parameters are themselves 
synaptic weights of the embedded modulating neurons), and we will discuss that 
particular approach and neuromodulation in general in section 15.3. Whatever rule 
we choose, there is a price. Luckily though, due to the way we’ve constructed our 
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system, it is easy to fix and modify it, no matter which of the listed approaches we 
decide to go with. 

Let us choose the 3rd option where each Pi is a list of parameters for each 
weight Wi, and where that list length is dependent on the plasticity function the 
neuron uses. In addition, we will also implement the 4th option, which requires us 
to modify the pf parameter format. The pf parameter for every neuron will be 
specified as a tuple, composed of the plasticity function name and a global learn-
ing parameter list. This will, though making the implementation a bit more diffi-
cult, allow for a much greater level of flexibility in the types of plasticity rules we 
can implement. Using both methods, we will have access to plasticity functions 
which need to specify a parameter for every synaptic weight, and those which only 
need to specify a single or a few global parameters of the learning rule for the en-
tire neuron. 

15.1.1 Implementing the New input_idps & pf Formats 

We first update the specification format for the neuron’s pf parameter. This re-
quires only a slight modification in the neuron module, changing the line: 

 U_IPIdPs =plasticity:PF(Ordered_IAcc,Input_PIdPs,Output) 

To:  

 {PFName,PFParameters} = PF,  
 U_IPIdPs = plasticity:PFName(PFParameters,Ordered_IAcc,Input_PIdPs,Output), 

And a change in the genotype module, to allow us to use the plasticity function 
name to generate the PF tuple. The way we do this is by creating a special func-
tion in the plasticity module with arity 1 and of the form: plastici-
ty:PFName(neural_parameters), which returns the necessary plasticity function 
specifying tuple: {PFName, PL}, where PL is the Parameter List. In this manner, 
when we develop the plasticity functions, we can at the same time create the func-
tion of arity 1 which returns the appropriate tuple defining the actual plasticity 
function name and its parameters. The change in the genotype module is done to 
the generate_NeuronPF/1 function, changing it from: 

generate_NeuronPF(Plasticity_Functions)->  
 case Plasticity_Functions of  
  [] ->  
   none;  
  Other ->  
   lists:nth(random:uniform(length(Other)),Other)  
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 end. 

To: 

generate_NeuronPF(Plasticity_Functions)->  
 case Plasticity_Functions of  
  [] ->  
   {none,[]};  
  Other ->  
   PFName = lists:nth(random:uniform(length(Other)),Other),  
   plasticity:PFName(neural_parameters)  
 end. 

The most interesting modification occurs in the create_NeuralWeights func-
tion. We modify it from: 

create_NeuralWeights(0,Acc) ->  
 Acc;  
create_NeuralWeights(Index,Acc) ->  
 W = random:uniform()-0.5,  
 create_NeuralWeights(Index-1,[W|Acc]). 

To: 

create_NeuralWeightsP(_PFName,0,Acc) ->  
 Acc;  
create_NeuralWeightsP(PFName,Index,Acc) ->  
 W = random:uniform()-0.5,  
 create_NeuralWeightsP(PFName,Index-1,[{W,plasticity:PFName(weight_parameters)} | 
Acc]). 

With this modification completed, we can specify the global, neural level learn-
ing parameters. But to be able to specify synaptic weight level parameters, we 
have to augment the neuron’s input_idps list specification format. Because our 
new format for input_idps stays very similar to the original, we need only convert 
the original list’s form from: [{Input_Id, Weights}...] to: [{Input_Id,WeightsP}...]. 
Any function that does not directly operate on Weights, does not get affected by 
us changing Weights: [W1,W2...] to WeightsP: [{W1,PL1},{W2,PL2}...], where PL is 
the plasticity function’s Parameter List. The only function that does get affected 
by this change is the one in the genotype module which creates the input_idps 
list, create_NeuralWeights/2. In genome_mutator module, again the only affected 
function is the mutate_weights function which uses the perturb_weights function 
and thus needs to choose the weights rather than the learning parameters to mu-
tate. Finally, the neuron process also perturbs its synaptic weights, and so we will 
need to use a modified version of the perturb_weights function. 
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We also add to the plasticity module a secondary none function: none/1. This 
none/1 function can be executed with the neural_parameters or the 
weight_parameters atom, and in both cases it returns an empty list, since a neuron 
which does not have plasticity and thus uses the none/1 plasticity function, does 
not need learning parameters of any type. Thus, our plasticity module now holds 
two functions by the name none: one with arity 4, and one with arity 1: 

none(neural_parameters)->  
 [];  
none(weight_parameters)->  
 [].  
%none/0 returns a set of learning parameters needed by the none/0 plasticity function. Since 
this function specifies that the neuron has no plasticity, the parameter lists are empty. 
 
none(_NeuralParameters,_IAcc,Input_PIdPs,_Output)->  
 Input_PIdPs.  
%none/3 returns the original Input_PIdPs to the caller. 

The modification to the perturb_weights function (present in the neuron mod-
ule, and present in the genome_mutator module in a slightly modified form) is 
much simpler. The updated function has the form, where the changes have been 
highlighted in boldface: 

perturb_weightsP(Spread,MP,[{W,LPs}|WeightsP],Acc)->  
 U_W = case random:uniform() < MP of  
  true->  
   sat((random:uniform()-0.5)*2*Spread+W,-?SAT_LIMIT,?SAT_LIMIT);  
  false ->  
   W  
 end,  
 perturb_weightsP(Spread,MP,WeightsP,[{U_W,LPs}|Acc]);  
perturb_weightsP(_Spread,_MP,[],Acc)->  
 lists:reverse(Acc). 

The second version creates a list of tuples rather than a simple list of synaptic 
weights. Since each learning rule, each plasticity function, will have its own set of 

ter list to its own plasticity function. To 
have the plasticity function create an initial synaptic level parameter list, we will 
call it with the atom parameter: weight_parameters. Thus for every plasticity func-
tion, we will create a secondary clause, which takes as input a single parameter, 
and through the use of this parameter it will specify whether the plasticity function 
will return neural level learning rule parameters, or synaptic weight level learning 
rule parameters. The weight_parameters specification will make the plasticity 
function return a randomized list of parameters required by that learning rule at 
the synaptic weight level. 

parameters, we defer the creation of a parame
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All that has changed is the function name, and that instead of using: 
[W|Weights], we now use: [{W,LPs}|WeightsP], where the list LPs stands for 
Learning Parameters.  

Finally, we must also update the synaptic weight and plasticity function specif-
ic mutation operators. These functions are located in the genome_mutator module. 
These are the add_bias/1, mutate_pf/1, and the link_ToNeuron/4 functions. The 
add_bias/1 and link_ToNeuron/4 functions add new synaptic weights, and thus 
must utilize the new plasticity:PFName(weight_parameters) function, based on 
the particular plasticity function used by the neuron. The mutate_pf/1 is a muta-
tion operator function. Due to the extra parameter added to the input_idps list, 
when we mutate the plasticity function, we must also update the synaptic weight 
parameters so that they are appropriate for the format of the new learning rule. 
Only the mutate_pf/1 function requires a more involved modification to the source 
code, with the other two only needing for the plasticity function name to be ex-
tracted and used to generate the weight parameters from the plasticity module. The 
updated mutate_pf/1 function is shown in Listing-15.1, with the modified parts in 
boldface. 

Listing-15.1 The updated implementation of the mutate_pf/1 function. 
 
mutate_pf(Agent_Id)->  
 A = genotype:read({agent,Agent_Id}),  
 Cx_Id = A#agent.cx_id,  
 Cx = genotype:read({cortex,Cx_Id}),  
 N_Ids = Cx#cortex.neuron_ids,  
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),  
 Generation = A#agent.generation,  
 N = genotype:read({neuron,N_Id}),  
 {PFName,_NLParameters} = N#neuron.pf,  
 case (A#agent.constraint)#constraint.neural_pfns -- [PFName] of  
  [] ->  
   exit(“********ERROR:mutate_pf:: There are no other plasticity functions to 
use.”);  
  Other_PFNames ->  
            
New_PFName=lists:nth(random:uniform(length(Other_PFNames)),Other_PFNames),  
   New_NLParameters = plasticity:New_PFName(neural_parameters),  
   NewPF = {New_PFName,New_NLParameters},  
   InputIdPs = N#neuron.input_idps,  
   U_InputIdPs = [{Input_IdP,plasticity:New_PFName(weight_parameters)} 
|| {Input_IdP,_OldPL} <- InputIdPs],  
   U_N = N#neuron{pf=NewPF,input_idps = U_InputIdPs, generation 
=Generation},  
   EvoHist = A#agent.evo_hist,  
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   U_EvoHist = [{mutate_pf,N_Id}|EvoHist],  
   U_A = A#agent{evo_hist=U_EvoHist},  
   genotype:write(U_N),  
   genotype:write(U_A)  
 end. 

After making these modifications, we ensure that everything is functioning as it 
should, by executing: 

polis:sync(). 
polis:start(). 
population_monitor:test(). 

With this update completed, we can now create plasticity functions. Using our 
plasticity module implementation, we allow the plasticity functions to completely 
isolate and decouple their functionality and setup from the rest of the system, 
which will allow others to add and test new plasticity functions as they please, 
without disturbing or having to dig through the rest of the code. 

15.1.2 Implementing the Simple Hebbian Learning Rule 

From the above equation, it can be seen from the common h for all Ii and Wi, 
that the standard Hebbian learning rule is one where the neuron has a single, glob-
al, neural level learning parameter h, which is used to update all the synaptic 
weights belonging to that neuron. Because our neuron also has the ability to have 
a learning parameter per weight, we can also create a Hebbian learning rule where 
every synaptic weight uses its very own h. Though note that this approach will 
double the number of mutatable parameters for the neuron: a list of synaptic 

Which compiles the updated modules ensuring that there are no errors, then 
starts the polis process, and then finally runs a quick neuroevolutionary test. The 
function population_monitor:test/0 can be executed a few times (each execution 
done after the previous one runs to completion), to ensure that everything still works. 
Because neuroevolutionary systems function stochastically, the genotypes and to-
pologies evolved during one evolutionary run will be different from another, and 
so it is always a good idea to run it a few times, to test out the various combina-
tions and permutations of the evolving agents. 

We need to implement a rule where every synaptic weight Wi is updated every 
time the neuron processes an input vector and produces an output vector. The 
weight Wi must be updated using the rule: Updated_Wi= Wi + h*Ii*Output, where 
Ii is the float() input value associated with the synaptic weight Wi. The Updat-
ed_Wi must be, in the same way as done during weight perturbation, saturated at 
the value: , so that its magnitude does not increase indefinitely.   ?SAT_LIMIT
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weights, and a list of the same size of Hebbian learning parameters. For the sake 
of completeness, we will implement both versions. We will call the standard 
Hebbian learning function which uses a single learning parameter h for all synap-
tic weights, hebbian/4, and one which uses a separate learning parameter hi for 
every synaptic weight, hebbian_w/4 (where _w stands for weights). Let us first 
implement the hebbian_w function, which uses the following weight update rule: 
Updated_Wi= Wi + hi*Ii*Output, where Wi is the synaptic weight, hi is the learn-
ing parameter for neuron Wi, and Ii is the input signal associated with synaptic 
weight Wi. 

In the previous section we have updated our neuron to apply a learning rule to 
its weights through: U_IPIdPs = plasticity:PFName(Neural_Parameters, Or-
dered_IAcc,Input_PIdPs,Output), which gives the plasticity function access to the 
neural parameters list, the output signal, the synaptic weights and their associated 
learning parameters, and the accumulated input vector. To set up the plasticity 
function by the name hebbian_w, we first implement the function hebbian_w/1 
which returns a weight parameters list composed of a single element [H] when 
hebbian_w/1 is executed with the weights_parameters parameter, and an empty 
list when it is executed with the neural_parameters parameter. We then create the 
function hebbian_w/4 which implements this actual learning rule. The implemen-
tation of these two hebbian_w functions is shown in Listing-15.2. 

Listing 15.2 The implementation of hebbian_w/1 and hebbian_w/4 functions. 
 
hebbian_w(neural_parameters)->  
 [];  
hebbian_w(weight_parameters)->  
 [(lists:random()-0.5)].  
%hebbian_w/1 function produces the necessary parameter list for the hebbian_w learning rule 
to operate. The weights parameter list generated by hebbian_w learning rule is a list composed 
of a single parameter H: [H], for every synaptic weight of the neuron. When hebbian_w/1 is 
called with the parameter neural_parameters, it returns [].  
 
hebbian_w(_NeuralParameters,IAcc,Input_PIdPs,Output)->  
 hebbian_w1(IAcc,Input_PIdPs,Output,[]).  
 
 hebbian_w1([{IPId,Is}|IAcc],[{IPId,WPs}|Input_PIdPs],Output,Acc)->  
  Updated_WPs = hebbrule_w(Is,WPs,Output,[]),  
  hebbian_w1(IAcc,Input_PIdPs,Output,[{IPId,Updated_WPs}|Acc]);  
 hebbian_w1([],[],_Output,Acc)->  
  lists:reverse(Acc);  
 hebbian_w1([],[{bias,WPs}],Output,Acc)->  
  lists:reverse([{bias,WPs}|Acc]).  
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%hebbian_w/4 function operates on each Input_PIdP, calling the hebbian_w1/4 function which 
processes each of the complementary Is and WPs lists, producing the Updated_WPs lists in re-
turn, with the now updated/adapted weights, based on the hebbian_w learning rule.  
 
 hebbrule_w([I|Is],[{W,[H]}|WPs],Output,Acc)->  
  Updated_W = functions:saturation(W + H*I*Output,?SAT_LIMIT),  
  hebbrule_w(Is,WPs,Output,[{Updated_W,[H]}|Acc]);  
 hebbrule_w([],[],_Output,Acc)->  
  lists:reverse(Acc).  
%hebbrule_w/4 applies the Hebbian learning rule to each synaptic weight by using the input 
value I, the neuron’s calculated Output, and each W’s own distinct learning parameter H. 

With the modified Hebbian rule now implemented, let us implement the stand-
ard one. In the standard Hebbian rule, the hebbian/1 function generates an empty 
list when called with weight_parameters, and the list [H] when called with neu-
ral_parameters. Also, the hebbian/4 function that implements the actual learning 
rule will use a single common H learning parameter to update all the synaptic 
weights in the input_idps. Listing-15.3 shows the implementation of such standard 
Hebbian learning rule. 

Listing-15.3 The implementation of the standard Hebbian learning rule. 
 
hebbian(neural_parameters)->  
 [(lists:random()-0.5)];  
hebbian(weight_parameters)->  

Note that hebbian_w/1 generates a parameter list composed of a single value with 
a range between -0.5 and 0.5 (This range was chosen to ensure that from the very 
start the learning parameter will not be too large). The Hebbian rule which uses a 
negative learning parameter embodies Anti-Hebbian learning. The Anti-Hebbian 
learning rule decreases the postsynaptic weight between neurons outputting signals 
of the same sign, and increases magnitude of the postsynaptic weight between those 
neurons that are connected and output signals of differing signs. Thus, if a neuron A 
sends a signal to neuron B, and the presynaptic signal is positive, while the postsyn-
aptic neuron B’s output signal is negative, and it has H < 0, and is thus using the Anti-
Hebbian learning rule, then the B’s synaptic weight for the link from neuron A will 
increase in magnitude. This means that in the hebbian_w/4 learning rule implemen-
tation, some of the synaptic weights will be using Hebbian learning, and some Anti-
Hebbian. This will add some extra agility to our system that might prove useful, and 
allow the system to evolve more general learning networks.  

The function hebbian_w/4 calls hebbian_w1/4 with a list accumulator, which 
separately operates on the input vectors from each Input_PId by calling the 
hebbrule_w/4 function. It is the hebbrule_w/4 function that actually executes the 

?SAT_LIMIT), and updates the WeightsP list. 
modified Hebbian learning rule: Updated_W = functions:saturation(W+H*I*Output, 
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 [].  
%The hebbian/1 function produces the necessary parameter list for the Hebbian learning rule to 
operate. The parameter list for the standard Hebbian learning rule is a list composed of a single 
parameter H: [H], used by the neuron for all its synaptic weights. When hebbian/1 is called with 
the parameter weight_parameters, it returns [].  
 
hebbian([H],IAcc,Input_PIdPs,Output)->  
 hebbian(H,IAcc,Input_PIdPs,Output,[]).  
 
 hebbian(H,[{IPId,Is}|IAcc],[{IPId,WPs}|Input_PIdPs],Output,Acc)->  
  Updated_WPs = hebbrule(H,Is,WPs,Output,[]),  
  hebbian(H,IAcc,Input_PIdPs,Output,[{IPId,Updated_WPs}|Acc]);  
 hebbian(_H,[],[],_Output,Acc)->  
  lists:reverse(Acc);  
 hebbian(_H,[],[{bias,WPs}],Output,Acc)->  
  lists:reverse([{bias,WPs}|Acc]).  
%hebbian/4 function operates on each Input_PIdP, calling the hebbian/5 function which pro-
cesses each of the complementary Is and WPs lists, producing the Updated_WPs list in return, 
with the updated/adapted weights based on the standard Hebbian learning rule, using the neu-
ron’s single learning parameter H.  
 
 hebbrule(H,[I|Is],[{W,[]}|WPs],Output,Acc)->  
  Updated_W = functions:saturation(W + H*I*Output,?SAT_LIMIT),  
  hebbrule(H,Is,WPs,Output,[{Updated_W,[]}|Acc]);  
 hebbrule(H,[],[],_Output,Acc)->  
  lists:reverse(Acc).  
%hebbrule/5 applies the Hebbian learning rule to each weight, using the input value I, the neu-
ron’s calculated output Output, and the neuron’s single learning parameter H.  

The standard Hebbian learning rule has a number of flaws. One of these flaws 
is that without the saturation/2 function that we’re using, the synaptic weight 
would grow in magnitude to infinity. A more biologically faithful implementation 
of this auto-associative learning, is the Oja’s learning rule, which we discuss and 
implement next. 

15.2 Oja’s Rule 

The Oja’s learning rule is a modification of the standard Hebbian learning rule 
that solves its stability problems through the use of multiplicative normalization, 
derived in [1]. This learning rule is also closer to what occurs in biological neu-
rons. The synaptic weight update algorithm embodied by the Oja’s learning rule is 
as follows: Updated_Wi = Wi + h*O*(Ii – O*Wi )
ter, O is the output of the neuron based on its processing of the input vectors using 

, where h is the learning parame-
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its synaptic weights, Ii is the ith input signal, and Wi is the ith synaptic weight asso-
ciated with the Ii input signal. 

We can compare the instability of the Hebbian rule to the stability of the Oja’s 
rule by running this learning rule through a few iterations with a positive input 
signal I. Assuming our neuron only has a single synaptic weight for an input vec-
tor of length one, we test the stability of the synaptic weight updated through the 
Oja’s rule as follows: 

Initial setup: W = 0.5, h = 0.2, activation function is tanh, using a constant in-
put I = 1: 

1. O=math:tanh(W*I)=math:tanh(0.5*1)=0.46 
Updated_W = W + h*O*(I – O*W) = 0.5 + 0.2*0.46*(1 – 0.46*0.5) = 0.57 

2. O=math:tanh(W*I)=math:tanh(0.57*1)=0.52 
Updated_W = W + h*O*(I – O*W) = 0.57 + 0.2*0.52(1 – 0.52*0.57) = 0.64 

3. O=math:tanh(W*I)=math:tanh(0.64*1)=0.56 
Updated_W = W + h*O*(I - O*W) = 0.64 + 0.2*0.56*(1 - 0.56*0.64) = 0.71 

4. … 

This continues to increase, but once the synaptic weight achieves a value higher 
than the input, for example when W = 1.5, the learning rule takes the weight up-
date in the other direction: 

5. O=math:tanh(W*I)=math:tanh(1.5*1)=0.90 
Updated_W = W + h*O*(I - O*W) = 1.5 + 0.2*0.90*(1 - 0.90*1.5) = 1.43  

Thus this learning rule is indeed self stabilizing, the synaptic weights will not 
continue to increase in magnitude towards infinity, as was the case with the 
Hebbian learning rule. Let us now implement the two functions, one which returns 
the needed learning parameters for this learning rule, and the other implementing 
the actual Oja’s synaptic weight update rule. 

15.2.1 Implementing the Oja’s Learning Rule 

Like the Hebbian learning rule, the standard Oja’s rule too only uses a single 
parameter h to pace the learning rate of the synaptic weights. We implement 
ojas_w/1 in the same fashion we did the hebbian_w/1, it will be a variation of the 
Oja’s learning rule that uses a single learning parameter per synaptic weight, ra-
ther than a single learning parameter for the entire neuron. This synaptic weight 
update rule is as follows: 

Updated_Wi = Wi + hi*O*(Ii – O*Wi) 

We set the initial learning parameter to be randomly chosen between -0.5 and 
0.5. The implementation of ojas_w/1 and ojas_w/4 is shown in Listing-15.4. 
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Listing-15.4 The implementation of a modified Oja’s learning rule, and its initial learning pa-
rameter generating function. 
 
ojas_w(neural_parameters)->  
 [];  
ojas_w(synaptic_parameters)->  
 [(lists:random()-0.5)].  
%oja/1 function produces the necessary parameter list for the Oja’s learning rule to operate. 
The parameter list for Oja’s learning rule is a list composed of a single parameter H: [H] per 
synaptic weight. If the learning parameter is positive, then the postsynaptic neuron’s synaptic 
weight increases if the two connected neurons produce output signals of the same sign. If the 
learning parameter is negative, and the two connected neurons produce output signals of the 
same sign, then the synaptic weight of the postsynaptic neuron, decreases in magnitude.  
 
ojas_w(_Neural_Parameters,IAcc,Input_PIdPs,Output)->  
 ojas_w1(IAcc,Input_PIdPs,Output,[]).  
ojas_w1([{IPId,Is}|IAcc],[{IPId,WPs}|Input_PIdPs],Output,Acc)->  
 Updated_WPs = ojas_rule_w(Is,WPs,Output,[]),  
 ojas_w1(IAcc,Input_PIdPs,Output,[{IPId,Updated_WPs}|Acc]);  
ojas_w1([],[],_Output,Acc)->  
 lists:reverse(Acc);  
ojas_w1([],[{bias,WPs}],Output,Acc)->  
 lists:reverse([{bias,WPs}|Acc]).  
%ojas_w/4 function operates on each Input_PIdP, calling the ojas_rule_w/4 function which 
processes each of the complementary Is and WPs lists, producing the Updated_WPs list in re-
turn. In the returned Updated_WPs, the updated/adapted weights are based on the oja’s learning 
rule, using each synaptic weight’s distinct learning parameter.  
 
 ojas_rule_w([I|Is],[{W,[H]}|WPs],Output,Acc)->  
  Updated_W = functions:saturation(W + H*Output*(I - Output*W),?SAT_LIMIT), 
  ojas_rule_w(Is,WPs,Output,[{Updated_W,[H]}|Acc]);  
 ojas_rule_w([],[],_Output,Acc)->  
  lists:reverse(Acc).  
%ojas_weights/4 applies the oja’s learning rule to each weight, using the input value I, the neu-
ron’s calculated output Output, and each weight’s distinct learning parameter H. 

The standard implementation of Oja’s learning rule, which uses a single learn-
ing parameter H for all synaptic weights, is shown in Listing-15.5. The standard 
Oja’s rule uses the following weight update algorithm: Updated_Wi = Wi + 
h*O*(Ii – O*Wi).  

Listing-15.5 The implementation of the standard Oja’s learning rule. 
 
ojas(neural_parameters)->  
 [(lists:random()-0.5)];  
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ojas(synaptic_parameters)->  
 [].  
%oja/1 function produces the necessary parameter list for the oja’s learning rule to operate. The 
parameter list for oja’s learning rule is a list composed of a single parameter H: [H], used by the 
neuron for all its synaptic weights. If the learning parameter is positive, and the two connected 
neurons produce output signals of the same sign, then the postsynaptic neuron’s synaptic 
weight increases. Otherwise it decreases.  
 
ojas([H],IAcc,Input_PIdPs,Output)->  
 ojas(H,IAcc,Input_PIdPs,Output,[]).  
ojas(H,[{IPId,Is}|IAcc],[{IPId,WPs}|Input_PIdPs],Output,Acc)->  
 Updated_WPs = ojas_rule(H,Is,WPs,Output,[]),  
 ojas(H,IAcc,Input_PIdPs,Output,[{IPId,Updated_WPs}|Acc]);  
ojas(_H,[],[],_Output,Acc)->  
 lists:reverse(Acc);  
ojas(_H,[],[{bias,WPs}],Output,Acc)->  
 lists:reverse([{bias,WPs}|Acc]).  
%ojas/5 function operates on each Input_PIdP, calling the ojas_rule/5 function which processes 
each of the complementary Is and WPs lists, producing the Updated_WPs list in return, with the 
updated/adapted weights.  
 
 ojas_rule(H,[I|Is],[{W,[]}|WPs],Output,Acc)->  
  Updated_W = functions:saturation(W + H*Output*(I - Output*W),?SAT_LIMIT), 
  ojas_rule(H,Is,WPs,Output,[{Updated_W,[H]}|Acc]);  
 ojas_rule(_H,[],[],_Output,Acc)->  
  lists:reverse(Acc).  
%ojas_rule/5 updates every synaptic weight using the Oja’s learning rule. 

With the implementation of this learning rule complete, we now move forward 
and discuss neural plasticity through neuromodulation. 

15.3 Neuromodulation 

Thus far we have discussed and implemented the Hebbian learning, which is a 
homosynaptic plasticity (also known as homotropic modulation) method, where 
the synaptic strength changes based on its history of activation. It is a synaptic 
weight update rule which is a function of its post- and pre- synaptic activity, as 
shown in Fig-15.2. But research shows that there is another approach to synaptic 
plasticity which nature has discovered, a highly dynamic and effective one, plas-
ticity through neuromodulation. 
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Fig. 15.2 Homosynaptic mechanism for Neuron A’s synaptic weight updating, based on the 
pre- and post- synaptic activity of neuron A. 

Neuromodulation is a form of heterosynaptic plasticity. In heterosynaptic plas-
ticity the synaptic weights are changed due to the synaptic activity of other neu-
rons, due to the modulating signals other neurons can produce to affect the given 
neuron’s synaptic weights. For example, assume we have a neural circuit com-
posed of two neurons, a presynaptic neuron N1, and a postsynaptic neuron N2. 
There can be other neurons N3, N4... which also connect to N2, but their neuro-
transmitters affect N2’s plasticity, rather than being used as signals on which the 
N2’s output signal is based on. The accumulated signals, neurotransmitters, from 
N3, N4..., could then dictate how rapidly and in what manner N2’s connection 
strengths change. This type of architecture is shown in Fig-15.3.  

Fig. 15.3 Heterosynaptic mechanism for plasticity, where the Hebbian plasticity is modu-
lated by a modulatory signal from neurons N3 and N4. 
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The modulating neurons could be standard neurons, and whether their output 
signals are used as modulatory signals, or standard input signals, could be deter-
mined fully by the postsynaptic neuron to which they connect, as shown in Fig-
15.4.  

 
Fig. 15.4 Input signals used as standard signals, and as modulatory signals, dependent on 
how the postsynaptic neuron decides to treat the presynaptic signals. 

Another possible approach is to set-up secondary neurons to the postsynaptic 
neuron N2 which we want modulated, where the secondary neurons receive exact-
ly the same input signals as the postsynaptic neuron N2, but the output signals of 
these secondary neurons are used as modulatory signals of N2. This type of topo-
logical and architectural setup is shown in Fig-15.5. 

If we assume the use of the Generalized Hebbian learning rule for the synaptic 
weight update rule: Updated_Wi= Wi + h*(A*Ii*Output + B*Ii + C*Output + D), 
then the accumulated neuromodulatory signals from the other neurons could be 
used to calculate the learning parameter h, with the parameters A, B, C, and D 
evolved and specified within the postsynaptic neuron N2. In addition, the 
neuromodulatory signals from neurons N3, N4... could also be used to modulate 
and specify the parameters A, B, C, and D, as well. 
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Fig. 15.5 Secondary neurons, created and used specifically for neuromodulation. 

Through the use of dedicated modulatory neurons, it is possible to evolve 
whole modulatory networks. Complex systems whose main role is to modulate 
another neural network’s plasticity and learning, its long-term potentiation, its 
ability to form memory. In this method, the generated learning parameter is signal 
specific, and itself changes; the learning ability and form evolves with everything 
else. Unlike the simple Hebbian or Oja’s learning rule, these plasticity systems 
would depend on the actual input signals, on the sensory signals, and other regula-
tory and processing parts of the neural network system, which is a much more bio-
logically faithful neural network architecture, and would allow our system to 
evolve even more complex behaviors. 

Nature uses a combination of the architectures shown in figures 15.1 through 
15.5. We have already discussed the Hebbian learning rule, and implemented the 
architecture of Fig-15.2. We now add the functionality to give our 
neuroevolutionary system the ability to evolve NN systems with architectures 
shown in Fig-15.4 and Fig-15.5. This will give our systems the ability to evolve 
self adaptation, and learning. 

15.3.1 The Neuromodulatory Architecture 

The architecture in Fig-15.5 could be easily developed using our already exist-
ing architecture, and it would even increase the ratio of neural computations per-
formed by the neuron to the number of signals sent to the neuron. This is im-
portant because Erlang becomes more effective with big computations and small 
messages. The way we can represent this architecture is through the 
weight_parameters based approach. The weight_parameters could be thought of 
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as synaptic weights themselves, but for the secondary neurons. These secondary 
neurons share the process of the neuron they are to modulate, and because the sec-
ondary neurons need to process the same input vectors that the neuron they are 
modulating is processing, it makes this design highly efficient. This architectural 
implementation is shown in Fig-15.6.  

 
Fig. 15.6 The architectural implementation of neuromodulation through dedicat-
ed/embedded modulating neurons. 

In the above figure we see three neurons: N1, N2, and N3, connected to another 
neuron, which is expanded in the figure and whose architecture is shown. This 
neuron has a standard activation function, and a learning rule, but its input_idps 
list is extended. What we called parameters in the other learning rules, are here 
used as synaptic weights belonging to this neuron’s embedded/dedicated modulat-
ing neurons: D1, D2, and D3. Furthermore, each dedicated/embedded modulating 
neuron (D1,D2,D3) can have its own activation function, but usually just uses the 
tanh function. 

If each weight parameter list is of length 1, then there is only a single dedicated 
modulating neuron, and the dedicated neuron’s output can be designated as the 
learning parameter: h. The learning parameters A, B, C, and D, can be specified by 
the neural_parameters list. Or we can have the weight parameters list be of size 2, 
and thus specify 2 dedicated modulating neurons, whose outputs would dictate the 
learning parameters h and A, with the other parameters specified in the neu-
ral_parameters list. Finally, we can have the weight parameters list be of length 5, 
thus representing the synaptic weights of 5 dedicated modulating neurons, whose 
outputs specify all the parameters (h, A, B, C, D) of the General Hebbian learning 
rule. 
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Having 5 separate dedicated modulating neurons does have its problems 
though, because it magnifies the number of synaptic weights/parameters our 
neuroevolutionary system has to tune, mutate, and set up. If our original neuron, 
without plasticity, had a synaptic weight list of size 10, this new modulated neuron 
would have 60 synaptic weight parameters for the same 10 inputs. All of these pa-
rameters would somehow have to be specified, tuned, and made to work perfectly 
with each other, and this would all only be a single neuron. Nevertheless, it is an 
efficient implementation of the idea, and would be easy to add due to the way our 
neuroevolutionary system’s architecture is set up. 

To allow for general neuromodulation (Fig-15.3), so that the postsynaptic neu-
ron can designate some of the presynaptic signals as holding standard information, 
and others as holding modulatory information, could be done in a number of ways. 
Let us consider two of such approaches next: 

1. This approach would require us adding a new element to the neuron record, 
akin to input_idps. We could add a secondary such element and designate it in-
put_idps_modulation. It too would be represented as a list of tuples: [{In-
put_Id,Weight}...], but the resulting computed dot product, sent through its own 
activation function, would be used as a learning parameter. But which of the 
learning parameters? H, A, B, C, or D? The standard approach is to use the fol-
lowing equation: Updated_W = M_Output*H*(A*I*Output + B*Output + 
C*Output + D ), where M_Output is the output signal produced by processing 
the input signals using the synaptic weights specified in the in-
put_idps_modulation list, and where the parameters H, A, B, C, and D are 
simply neural_parameters, and as other parameters can be perturbed and 
evolved during the tuning phase and/or during the topological mutation phase. 

How would the post synaptic neuron decide whether the new connection (add-
ed during the topological mutation phase) should be used as a standard signal, and 
thus be added to the input_idps list, or as modulatory input signal, and thus added 
to input_idps_modulation list? We could set up a rule so that if the neuron is des-
ignated to have general modulation based plasticity, the very first connection to 
the neuron is designated as standard input, and then any new connections are ran-
domly sorted into either the input_idps or input_idps_modulation lists. To add this 
approach would only require adding a new list, and we would already have all the 
necessary functions to mutate its parameters, to clone it during neuronal cloning 
process, and to process input signals, because this new list would be exactly like 
the input_idps list. The overhead of simply adding this extra parameter, in-
put_idps_modulation, to the neuron record, would be minuscule, and this architec-
ture is what was represented in Fig-15.4.  

2. Another way a neuron could decide on whether the presynaptic signal sent to it 
is standard or modulatory, is by us having neuronal types, where some neurons 
are type: standard, and others are type: modulatory. The signals sent by modu-
latory neurons are always used by all postsynaptic neurons for modulating the 
generalized Hebbian plasticity rule. The architecture of this type of system is 
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shown in Fig-15.7. In this figure I show a NN topology composed of standard 
neurons (std), and modulatory neurons (mod). They are all interconnected, each 
can receive signals from any other. The difference in how those signals are 
processed is dependent on the presynaptic neuron’s type. If it is of type mod, 
then it is used as modulatory, if it is type std, then it is used as a standard input 
signal. Modulatory neurons can even modulate other modulatory neurons, 
while the outputs of the standard neurons can be used by both standard and 
modulatory neurons. 

 
Fig. 15.7 A topology of a heterosynaptic, general, neural network system with neurons of 
type standard (std) and modulatory (mod). 

3. But the first and second implementation does not solve the problem that the 
Hebbian learning rule uses multiple parameters, and we want to have the flexi-
bility to specify 1 or more of them, based on the incoming modulatory signals. 
Another solution that does solve this is by tagging input signals with tags i, h, 
a, b, c, d, where i tags the standard inputs, and h, a, b, c, and d, tag the modula-
tory input signals associated with the tag named modulating learning parame-
ter. Though this may at first glance seem like a more complex solution, we ac-
tually already have solved it, and it would require us only changing a few 
functions. 

We are already generating weight based parameters. Thus far they have been 
lists, but they can also be atomic tags as follows: [{Input_PId, [{Weight1,Tag1}, 
{Weight2,Tag2}...]}...]. This is a clean solution that would allow us to designate 
different incoming signals to be used for different things. Mutation operators 
would not need to be modified significantly either, we would simply add a clause 
stating that if the neuron uses the general_modulation plasticity function, then the 
Tag is generated randomly from the following list: [i, h, a, b, c, d]. The most sig-
nificant modification would have to be done to the signal_aggregation function, 
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since we would need to sort the incoming signals based on their tags, and then cal-
culate the different output signals based on their tags, with the i output signal be-
ing the standard one produced by the postsynaptic neuron, and the h, a, b, c, and d, 
output signals being used as modulatory learning parameters. But even that could 
be isolated to just the plasticity function, which has access to the IAcc, In-
put_PIdPs, and everything else necessary to compute output signals. The architec-
ture of a neuron using this approach to general neuromodulation is shown in Fig-
15.8. 

Fig. 15.8 Tag based architecture of a general neuromodulation capable neural network. 

What is the computational difference between all of these neuromodulation ap-
proaches? How would the neural networks act differently when evolved with one 
approach rather than another? Would it even be possible to see the difference? 
Should we implement them all, provide all of these options to the 
neuroevolutionary system in hopes that it can sort things out on its own, and use 
the best one (throwing everything at the wall, and see what sticks)? How do we 
test which of these plasticity type architectures is better? How do we define “bet-
ter”? Do we define it as the NN evolving faster (the neuroevolutionary system tak-
ing less number of evaluations to evolve a solution for some given problem)? Or 
do we define better as having the evolved NNs more dynamic, more adaptive, 
more general, but evolved slower due to so many different parameters for the evo-
lutionary process to having to deal with? These are all open research questions. 

We cannot test the effectiveness of plasticity enabled neural network systems 
on the standard double pole balancing, xor, or clustering type of benchmarks and 
tests. To test how well a plasticity enabled NN system functions, we need to apply 
our neuroevolutionary system to a problem where environment changes, where 
adaptation and learning over time gives an advantage. We could test plasticity by 
using it in the ALife simulation, T-Maze and double T-Maze navigation [2,3], or 
by applying it to some other robotics & complex navigation project. Though the 
small differences between these various modulatory approaches might require a 
lot of work to see, since evolution will tend to go around any small problems 
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posed by any one implementation or architecture over another. Nevertheless, the 
fact that it is so easy for us to implement, test, and research these advanced learn-
ing rules and plasticity approaches, means that we can find out, we can determine 
what works better, and what approach will yield a more general, more intelligent, 
neural network based agent. If our system were not have been written in Erlang, 
adding neuroplasticity would have posed a much greater problem. 

We will implement the dedicated neuromodulators (where the weight parame-
ters represent the synaptic weights of embedded secondary neurons, whose output 
dictates the parameters of the general Hebbian learning rule), and the general 
neuromodulation plasticity through the use of the input_idps_modulation element. 
Our plasticity function using the first of these two approaches will be called: 
self_modulation, and the second: general_modulation. In the next section we will 
further define and implement these neuromodulatory based learning rules. 

15.3.2 Implementing the self_modulation Learning Rules 

We will first implement the self_modulation plasticity function. Given the gen-
eral Hebbian learning rule for synaptic weight updating: Updated_Wi = Wi + 
H*(A*Ii*Output + B*Ii + C*Output + D), we can have multiple versions of this 
function. Version-1: where the secondary embedded neuron only outputs the H 
learning parameter, with the parameter A set to some predetermined constant val-
ue within the neural_parameters list, and B=C=D=0. Version-2: where A is gener-
ated randomly when generating the neural_parameters list, and B=C=D=0. Ver-
sion-3: where B, C, and D are also generated randomly in the neural_parameters 
list. Version-4: where the weight_parameters generates a list of length 2, thus al-
lowing the neuron to have 2 embedded modulatory neurons, one outputting a pa-
rameter we use for H, and another outputting the value we can use as A, with 
B=C=D=0. Version-5: Where B, C, and D are generated randomly by the 
PlasticityFunctionName(neural_parameters) function. And finally Version-6: 
Where the weight_parameters produces a list of length 5, allowing the neuron to 
have 5 embedded modulatory neurons, whose outputs are used for H, A, B, C, and 
D. All of these variations will have most of their functionality shared, and thus 
will be quick and easy to implement. 

The self_modulationV1, self_modulationV2, and self_modulationV3 are all very 
similar, mainly differing in the parameter lists returned by the 
PlasticityFunctionName(neural_parameters) function, as shown in Listing 15.6. 
All three of these plasticity functions use the neuromodulation/5 function which 
accepts the H, A, B, C, and D learning parameters, and updates the synaptic 
weights of the neuron using the general Hebbian rule: Updated_Wi = Wi + 
H*(A*Ii*Output + B*Ii + C*Output + D). 
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Listing-15.6 The self_modulationV1-3 functions of arity 1, generating the neural and weight 
parameters. 
 
self_modulationV1(neural_parameters)->  
 A=0.1,  
 B=0,  
 C=0,  
 D=0,  
 [A,B,C,D];  
self_modulationV1(weight_parameters)->  
 [(lists:random()-0.5)].  
 
self_modulationV1([A,B,C,D],IAcc,Input_PIdPs,Output)->  
 H = math:tanh(dot_productV1(IAcc,Input_PIdPs)),  
 neuromodulation([H,A,B,C,D],IAcc,Input_PIdPs,Output,[]).  
 
 dot_productV1(IAcc,IPIdPs)->  
  dot_productV1(IAcc,IPIdPs,0).  
 dot_productV1([{IPId,Input}|IAcc],[{IPId,WeightsP}|IPIdPs],Acc)->  
  Dot = dotV1(Input,WeightsP,0),  
  dot_productV1(IAcc,IPIdPs,Dot+Acc);  
 dot_productV1([],[{bias,[{_Bias,[H_Bias]}]}],Acc)->  
  Acc + H_Bias;  
 dot_productV1([],[],Acc)->  
  Acc.  
 
  dotV1([I|Input],[{_W,[H_W]}|Weights],Acc) ->  
   dotV1(Input,Weights,I*H_W+Acc);  
  dotV1([],[],Acc)->  
   Acc.  
 
neuromodulation([H,A,B,C,D],[{IPId,Is}|IAcc],[{IPId,WPs}|Input_PIdPs],Output,Acc)->  
 Updated_WPs = genheb_rule([H,A,B,C,D],Is,WPs,Output,[]),  
 neuromodulation([H,A,B,C,D],IAcc,Input_PIdPs,Output,[{IPId,Updated_WPs}|Acc]);  
neuromodulation(_NeuralParameters,[],[],_Output,Acc)->  
 lists:reverse(Acc);  
neuromodulation([H,A,B,C,D],[],[{bias,WPs}],Output,Acc)->  
 Updated_WPs = genheb_rule([H,A,B,C,D],[1],WPs,Output,[]),  
 lists:reverse([{bias,Updated_WPs}|Acc]).  
 
 genheb_rule([H,A,B,C,D],[I|Is],[{W,Ps}|WPs],Output,Acc)->  
  Updated_W = functions:saturation(W + H*(A*I*Output + B*I + C*Output + D), 
?SAT_LIMIT),  
  genheb_rule(H,Is,WPs,Output,[{Updated_W,Ps}|Acc]);  
 genheb_rule(_H,[],[],_Output,Acc)->  
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  lists:reverse(Acc).  
 
self_modulationV2(neural_parameters)->  
 A=(lists:random()-0.5),  
 B=0,  
 C=0,  
 D=0,  
 [A,B,C,D];  
self_modulationV2(weight_parameters)->  
 [(lists:random()-0.5)].  
 
self_modulationV2([A,B,C,D],IAcc,Input_PIdPs,Output)->  
 H = math:tanh(dot_productV1(IAcc,Input_PIdPs)),  
 neuromodulation([H,A,B,C,D],IAcc,Input_PIdPs,Output,[]).  
 
self_modulationV3(neural_parameters)->  
 A=(lists:random()-0.5),  
 B=(lists:random()-0.5),  
 C=(lists:random()-0.5),  
 D=(lists:random()-0.5),  
 [A,B,C,D];  
self_modulationV3(weight_parameters)->  
 [(lists:random()-0.5)].  
 
self_modulationV3([A,B,C,D],IAcc,Input_PIdPs,Output)->  
 H = math:tanh(dot_productV1(IAcc,Input_PIdPs)),  
 neuromodulation([H,A,B,C,D],IAcc,Input_PIdPs,Output,[]). 

The self_modulationV4 – V5 differ only in that the weight_parameters is a list 
of length 2, and the A parameter is no longer specified in the neural_parameters 
list, and is instead calculated by the second dedicated modulatory neuron. The 
self_modulationV6 function on the other hand specifies the neural_Parameters as 
an empty list, and the weight_parameters list is of length 5, a single weight for 
every embedded modulatory neuron. The implementation of self_modulationV6 is 
shown in Listing-15.7. 

Listing-15.7 The implementation of the self_modulationV6 plasticity function, composed of 5 
embedded modulatory neurons. 
 
self_modulationV6(neural_parameters)->  
 [];  
self_modulationV6(weight_parameters)->  
 [(lists:random()-0.5),(lists:random()-0.5),(lists:random()-0.5), (lists:random()-0.5), 
(lists:random()-0.5)].  
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self_modulationV6(_Neural_Parameters,IAcc,Input_PIdPs,Output)->  
 {AccH,AccA,AccB,AccC,AccD} = dot_productV6(IAcc,Input_PIdPs),  
 H = math:tanh(AccH),  
 A = math:tanh(AccA),  
 B = math:tanh(AccB),  
 C = math:tanh(AccC),  
 D = math:tanh(AccD),  
 neuromodulation([H,A,B,C,D],IAcc,Input_PIdPs,Output,[]).  
 
 dot_productV6(IAcc,IPIdPs)->  
  dot_productV6(IAcc,IPIdPs,0,0,0,0,0).  
 dot_productV6([{IPId,Input}|IAcc],[{IPId,WeightsP}|IPIdPs],AccH,AccA,AccB,AccC, 
AccD)->  
  {DotH,DotA,DotB,DotC,DotD} = dotV6(Input,WeightsP,0,0,0,0,0),  
 dot_productV6(IAcc,IPIdPs,DotH+AccH,DotA+AccA,DotB+AccB,DotC+AccC,DotD 
+AccD);  
 dot_productV6([],[{bias,[{_Bias,[H_Bias,A_Bias,B_Bias,C_Bias,D_Bias]}]}],AccH,AccA, 
AccB,AccC,AccD)->  
  {AccH + H_Bias,AccA+A_Bias,AccB+B_Bias,AccC+C_Bias,AccD+D_Bias};  
 dot_productV6([],[],AccH,AccA,AccB,AccC,AccD)->  
  {AccH,AccA,AccB,AccC,AccD}.  
 
 dotV6([I|Input],[{_W,[H_W,A_W,B_W,C_W,D_W]}|Weights],AccH,AccA,AccB,AccC, 
AccD) -> 
 dotV6(Input,Weights,I*H_W+AccH,I*A_W+AccA,I*B_W+AccB,I*C_W+AccC,I*D_W+
AccD); 
 dotV6([],[],AccH,AccA,AccB,AccC,AccD)->  
  {AccH,AccA,AccB,AccC,AccD}. 

The architecture of the neuron using this particular plasticity function is shown 
in Fig-15.9. Since every synaptic weight of this neuron has a complementary pa-
rameter list of length 5, with an extra synaptic weight for every secondary, embedded 
modulatory neuron that analyzes the same signals as the actual neuron, but whose 
output signals modulate the plasticity of the neuron, each neuron thus has x5 number  

 be tuned. This might be a price too high 
to pay by amplifying the curse of dimensionality. The more parameters that one 
needs to tune and set up concurrently, the more difficult it is to find a good com-
bination of such parameters. Nevertheless, the generality it provides, and the abil-
ity to use a single process to represent multiple embedded modulatory neurons, 
has its benefits in computational efficiency. Plus, our system does after all try to 
alleviate the curse of dimensionality through Targeted Tuning, by concentrating 
on the newly added and affected neurons of the NN system. And thus we might 
just be on the edge of this one. 

of parameters (synaptic weights) that need to
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Fig. 15.9 The architecture of the neuron using self_modulationV6 plasticity function. 

We noted earlier that there is another approach to neuromodulation, one that is 
more biologically faithful, in which a postsynaptic neuron uses some of the signals 
coming from the presynaptic neurons as modulatory signals, and others as stand-
ard signals. In the next section we will see what needs to be done to implement 
such a learning rule. 

15.3.3 Implementing the input_idps_modulation Based 
Neuromodulated Plasticity 

To implement neuromodulation using this method, we first modify the neuron’s 
record by adding the input_idps_modulation element to it. The input_idps_modulation 
element will have the same purpose and formating as the input_idps element, to hold 
a list of tuples of the form: {Input_PId, WeightP}. The Input_PIds will be associ-
ated with the elements that send the postsynaptic neuron its modulatory signals, 
with the WeightP being of the same format as in the input_Idps list.  

This particular implementation of neuromodulation will not require a lot of 
work, due to the input_idps_modulation list having a format which we already can 
process with the developed functions. The neuron cloning function in the genotype 
can be used to clone this list, the Id to PId conversion performed by the exoself to 
compose the Input_PIdPs list is also viable here. Even the synaptic weight pertur-
bation can be applied to this list, due to it having such a similar format. The main 
changes we have to perform are to the neuron’s main loop. 

We must convert the neuron’s main loop such that it can support 2 Input_PId 
lists, the SI_PIds (standard input PId list), and the MI_PIds (modulatory input PId 
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list), in the same way that the original neuron implementation supported the single 
Input_PIds list created from the Input_PIdPs. With these two lists we can then ag-
gregate the input signals, and sort them either in to the standard input signal ac-
cumulator, or the modulatory signal accumulator, dependent on whether the in-
coming signal was coming from an element with an SI_PId or an MI_PId. 

To make the implementation and the source code cleaner, we will create a state 
record for the neuron, which will contain all the necessary elements it requires for 
operation: 

-record(state,{  
 id,  
 cx_pid,  
 af,  
 pf,  
 aggrf,  
 si_pids=[],  
 si_pidps_current=[],  
 si_pidps_backup=[],  
 mi_pids=[],  
 mi_pidps_current=[],  
 mi_pidps_backup=[],  
 output_pids=[],  
 ro_pids=[]  
}). 

With this state record, we update the prep/1 function to use it, and clean the 
original loop function to hide all the non-immediately used lists and data in the 
state record. As in the original neuron process implementation, we have to create 
the Input_PId list so that the incoming signals can be sorted in the same order that 
the Input_PIdPs are sorted. This time though, we have two such lists, designated 
as the SI_PIdPs (the standard one), and the MI_PIdPs (the modulatory one). Thus 
we create two PId lists for the loop.  

The main problem here is that as the neuron accumulates its input signals, one 
of these PId lists will empty out first, which would require a new clause to deal 
with it, since our main loop uses: [SI_PId|SI_PIds],[MI_PId|MI_PIds]. We did not 
have such a problem when we only used a single list, because when that list emp-
tied out, the signal accumulation was finished. To avoid having to create a new 
clause, we add the atom ok 
loop(S,ExoSelf_PId,[ok],[ok],SIAcc,MIAcc) above the main loop. Because of the 

with the final state for both lists being [ok], which is achieved after the neuron has 
accumulated all the incoming standard and modulatory signals. The only problem 
with this setup is that the first clause is always pattern matched before the main 
loop, making the neuron process slower and less efficient. There are other ways to 

to the end of both PId lists, and put the clause: 

ok atom at the end of both lists, neither goes empty, letting us keep a single clause
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implement this, and we could even set up two different main process loops, one 
for when the neuron uses neuromodulation, and one for when it does not (and thus 
needing only a single PId list). But this implementation is the most concise, and 
cleanest. The neuron process can always be optimized later on. The modified 
prep/1 function, and the neuron’s new main loop, are shown in Listing-15.8. 

Listing-15.8 The updated implementation of the neuron process. 
 
prep(ExoSelf_PId) ->  
 random:seed(now()),  
 receive  
  {ExoSelf_PId,{Id,Cx_PId,AF,PF,AggrF,SI_PIdPs,MI_PIdPs,Output_PIds, 
RO_PIds}} ->  
   fanout(RO_PIds,{self(),forward,[?RO_SIGNAL]}),  
   SI_PIds = lists:append([IPId || {IPId,_W} <- SI_PIdPs, IPId =/= bias],[ok]),  
   MI_PIds = lists:append([IPId || {IPId,_W} <- MI_PIdPs, IPId =/= bias],[ok]),  
   io:format(“SI_PIdPs:~p ~nMI_PIdPs:~p~n”,[SI_PIdPs,MI_PIdPs]),  
   S=#state{  
    id=Id,  
    cx_pid=Cx_PId,  
    af=AF,  
    pf=PF,  
    aggrf=AggrF,  
    si_pids=SI_PIds,  
    si_pidps_current=SI_PIdPs,  
    si_pidps_backup=SI_PIdPs,  
    mi_pids=MI_PIds,  
    mi_pidps_current=MI_PIdPs,  
    mi_pidps_backup=MI_PIdPs,  
    output_pids=Output_PIds,  
    ro_pids=RO_PIds  
   },  
   loop(S,ExoSelf_PId,SI_PIds,MI_PIds,[],[])  
 end.  
%When gen/1 is executed, it spawns the neuron element and immediately begins to wait for its 
initial state message from the exoself. Once the state message arrives, the neuron sends out the 
default forward signals to any elements in its ro_ids list, if any. Afterwards, the prep function 
drops into the neuron’s main loop. 
 
loop(S,ExoSelf_PId,[ok],[ok],SIAcc,MIAcc)->  
 PF = S#state.pf,  
 AF = S#state.af,  
 AggrF = S#state.aggrf,  
 {PFName,PFParameters} = PF,  
 Ordered_SIAcc = lists:reverse(SIAcc),  
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 SI_PIdPs = S#state.si_pidps_current,  
 SAggregation_Product = signal_aggregator:AggrF(Ordered_SIAcc,SI_PIdPs),  
 SOutput = functions:AF(SAggregation_Product),  
 Output_PIds = S#state.output_pids,  
 [Output_PId ! {self(),forward,[SOutput]} || Output_PId <- Output_PIds],  
   
 Ordered_MIAcc = lists:reverse(MIAcc),  
 MI_PIdPs = S#state.mi_pidps_current,  
 MAggregation_Product = signal_aggregator:dot_product(Ordered_MIAcc,MI_PIdPs),  
 MOutput = functions:tanh(MAggregation_Product),  
 U_SI_PIdPs = plasticity:PFName([MOutput|PFParameters],Ordered_SIAcc,SI_PIdPs, 
SOutput),  
 U_S=S#state{  
  si_pidps_current = U_SI_PIdPs  
 },  
 SI_PIds = S#state.si_pids,  
 MI_PIds = S#state.mi_pids,  
 loop(U_S,ExoSelf_PId,SI_PIds,MI_PIds,[],[]);  
loop(S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc)->  
 receive  
  {SI_PId,forward,Input}->  
   loop(S,ExoSelf_PId,SI_PIds,[MI_PId|MI_PIds],[{SI_PId,Input}|SIAcc], 
MIAcc);  
  {MI_PId,forward,Input}->  
   loop(S,ExoSelf_PId,[SI_PId|SI_PIds],MI_PIds,SIAcc,[{MI_PId,Input}| 
MIAcc]);  
  {ExoSelf_PId,weight_backup}->  
   U_S = S#state{  
    si_pidps_backup=S#state.si_pidps_current,  
    mi_pidps_backup=S#state.mi_pidps_current  
   },  
   loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);  
  {ExoSelf_PId,weight_restore}->  
   U_S = S#state{  
    si_pidps_current=S#state.si_pidps_backup,  
    mi_pidps_current=S#state.mi_pidps_backup  
   },  
   loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);  
  {ExoSelf_PId,weight_perturb,Spread}->  
   Perturbed_SIPIdPs=perturb_IPIdPs(Spread,S#state.si_pidps_backup),  
   Perturbed_MIPIdPs=perturb_IPIdPs(Spread,S#state.mi_pidps_backup),  
   U_S = S#state{  
    si_pidps_current=Perturbed_SIPIdPs,  
    mi_pidps_current=Perturbed_MIPIdPs  
   },  
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   loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);  
  {ExoSelf_PId,reset_prep}->  
   neuron:flush_buffer(),  
   ExoSelf_PId ! {self(),ready},  
   RO_PIds = S#state.ro_pids,  
   receive  
    {ExoSelf_PId, reset}->  
     fanout(RO_PIds,{self(),forward,[?RO_SIGNAL]})  
   end,  
   loop(S,ExoSelf_PId,S#state.si_pids,S#state.mi_pids,[],[]);  
  {ExoSelf_PId,get_backup}->  
   NId = S#state.id,  
   ExoSelf_PId ! {self(),NId,S#state.si_pidps_backup,S#state.mi_pidps_backup},  
   loop(S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);  
  {ExoSelf_PId,terminate}->  
   io:format(“Neuron:~p is terminating.~n”,[self()])  
 end. 

With the implementation of the updated neuron now complete, we need to cre-
ate the neuromodulation function in the plasticity module. Since the modulatory 
signals will be used to compute a nonlinear value used to modulate the standard 
general Hebbian rule, we will not need any weight_parameters and so our plasticity 
function will produce an empty weight_parameters list. But we will need the general 
neural_parameters for the hebbian function, thus the neuromodulation/1 function exe-
cuted with the neuronal_parameters atom will return a list with 5 randomly generated 
(and later tuned and evolved) parameters: [H,A,B,C,D]. The neuromodulation/4 func-
tion is very simple, since it is executed with a list of all the necessary parameters to call 
the neurmodulation/5 function that applies the general hebbian rule to all the synaptic 
weights. These two added functions are shown in Listing-15.9. 

Listing-15.9 The implementation of the neuromodulation/1 and neuromodulation/4 functions. 
 
neuromodulation(neural_parameters)->  
 H = (lists:random()-0.5),  
 A = (lists:random()-0.5),  
 B = (lists:random()-0.5),  
 C = (lists:random()-0.5),  
 D = (lists:random()-0.5),  
 [H,A,B,C,D];  
neuromodulation(weight_parameters)->  
 [].  
 
neuromodulation([M,H,A,B,C,D],IAcc,Input_PIdPs,Output)->  
 Modulator = scale_dzone(M,0.33,?SAT_LIMIT),  
 neuromodulation([Modulator*H,A,B,C,D],IAcc,Input_PIdPs,Output,[]). 
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The value M is the one computed by using the synaptic weights of the in-
put_idps_modulation, using the dot_product signal aggregator, and the hyperbolic 
tangent (tanh) activation function. Since H scales the plasticity in general, multi-
plying the Modulator value by H allows for the modulation signal to truly modu-
late synaptic plasticity based on the parameters evolved by the neuron. 

The Modulator value is computed by executing the scale_dzone/3 function, 
which performs 2 tasks: 

1. Zero out M if it is between -0.33 and 0.33. 
2. If M is greater than 0.33 or less than -0.33, normalize and scale it to be between 

0 and ?SAT_LIMIT, or 0 and -?SAT_LIMIT, respectively. 

This means that M has to reach a particular magnitude for the Hebbian rule to 
be executed, since when the Modulator value is 0 and is multiplied by H, the 
weights are not updated. The scale_dzone/3 function, and its supporting function, 
are shown in Listing-15.10. 

Listing-15.10 The implementation of scale_dzone and scale function. 
 
scale_dzone(Val,Threshold,MaxMagnitude)->  
 if  
  Val > Threshold ->  
   (functions:scale(Val,MaxMagnitude,Threshold)+1)*MaxMagnitude/2;  
  Val < -Threshold ->  
   (functions:scale(Val,-Threshold,-MaxMagnitude)-1)*MaxMagnitude/2;  
  true ->  
   0  
 end.  
 
 scale(Val,Max,Min)-> 
  case Max == Min of  
   true ->  
    0;  
   false ->  
    (Val*2 - (Max+Min))/(Max-Min)  
  end. 
%The scale/3 function scales Val to be between -1 and 1, with the scaling dependent on the 
Max and Min value, using the equation: Scaled_Val = (Val*2 - (Max + Min))/(Max-Min). The 
function scale_dzone/3 zeroes the Val parameter if it is below the threshold, and scales it to be 
between Threshold and MaxMagnitude if it is above the threshold. 

Though we have now successfully implemented the autoassociative learning 
rules, and neuromodulation, we cannot use those features until we create the nec-
essary tuning and mutation operators, such that our neuroevolutionary system can 
actually tune in the various learning parameters, and add the synaptic weights 
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needed by the neuromodulation functionality. We discuss and implement these 
necessary features in the next section. 

15.4 Plasticity Parameter Mutation Operators 

For the plasticity based learning rules to be useful, our neuroevolutionary sys-
tem must be able to optimize them. For this we need to create new mutation opera-
tors. Though we could add the new mutation operators to the genome_mutator 
module, we will do something different instead. Since each plasticity function has 
its own restrictions (which learning parameters can/should be modified, and which 
can/should not be), and because there are so many of the different variants, and 
many more to be added as time goes on, it would not be effective to create these 
mutation operators inside the genome_mutator module. The genome_mutator 
should concentrate on the standard topology oriented mutation operators. 

To more effectively handle this, we can offload these specialized mutation op-
erators in the same way we offloaded the generation of the initial plasticity param-
eters, to the plasticity module itself. We can add a single mutation operator mu-
tate_plasticity, which when executed, executes the plasticity:PFName(Agent_Id, 
mutate) function. Then the researcher which created the various plasticity function 
variants and types, can also create the mutation operator functions for it, whether 
they simply perturb neural level learning parameters, synaptic weight level param-
eters, or perform a more complex mutation. And of course if the plasticity func-
tion is set to none, we will have the function plasticity:none(Agent_Id,mutate) ex-
ecute: exit(“Neuron does not support plasticity.”), which will allow our 
neuroevolutionary system to attempt another mutation operator, without wasting 
the topological mutation try. 

The plasticity specializing mutation operators should perform the following 
general operations: 

 If the neuron uses neural_parameters, randomly choose between 1 and 
math:sqrt(TotParameters) number of parameters, and perturb them with a value 
selected randomly between -Pi and Pi. 

 If the neuron uses weight_parameters, randomly choose between 1 and 
math:sqrt(TotWeightParameters) number of parameters, and perturb them with 
a value selected randomly between -Pi and Pi. 

 If the neuron uses both, neural_parameters and weight_parameters, randomly 
choose one or the other, and perturb that parameter list using one of the above 
approaches, depending which of the two apply. 

The neuromodulation is a special case, since it does not only have the global 
neural_level parameters which can be mutated/perturbed using the standard meth-
od listed above, but also allows for the establishment of new modulatory connec-
tions. Because the input_idps_modulation list has the same format as the standard 
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input_idps list, we can use the already existing synaptic connection establishing 
mutation operators and functions. The only modification we need to make so that 
some of the connections are standard, and others are modulatory, is set a case such 
that if the neuron to which the connection is being established has 
neuromodulation enabled, then the choice of whether the new connection will be 
standard or modulatory is 50/50, and if there is no neuromodulation enabled, then 
only the standard connection is allowed. 

15.4.1 Implementing the Weight Parameter Mutation Operator 

We first create the mutation operators which are applied to the 
weight_parameters. This mutation operator, executed when the plasticity function 
is run with the parameter: {N_Id,mutate}, performs similarly to the standard per-
turb_IPIdPs/2 function, but instead of mutating the synaptic weights, it operates 
on, and mutates the, parameter values. The probability for any weight parameter to 
be perturbed is 1/math:sqrt(TotParameters). The plasticity functions that only use 
weight_parameters are the hebbian_w and ojas_w. Because in both of these plas-
ticity functions the same implementation for the mutator is used, only the 
hebbian_w/1 version is shown (the difference for the ojas_w version is that instead 
of hebbian_w({N_Id,mutate}), we have ojas_w({N_Id,mutate})). This implemen-
tation is shown in Listing-15.11. 

Listing-15.11 Implementation of the plasticity function based weight_parameter mutation oper-
ators. 
 
hebbian_w({N_Id,mutate})->  
 random:seed(now()),  
 N = genotype:read({neuron,N_Id}),  
 InputIdPs = N#neuron.input_idps,  
 U_InputIdPs=perturb_parameters(InputIdPs,?SAT_LIMIT),  
 N#neuron{input_idps = U_InputIdPs};  
hebbian_w(neural_parameters)->  
 [];  
hebbian_w(weight_parameters)->  
 [(lists:random()-0.5)].  
%hebbian_w/1 function produces the necessary parameter list for the hebbian_w learning rule 
to operate. The parameter list for the simple hebbian_w learning rule is a parameter list com-
posed of a single parameter H: [H], for every synaptic weight of the neuron. When hebbian_w/1 
is called with the parameter neural_parameters, it returns []. When hebbian_w/1 is executed 
with the {N_Id,mutate} tuple, the function goes through every parameter in the neuron’s in-
put_idps, and perturbs the parameter value using the specified spread (?SAT_LIMIT).  
 
 perturb_parameters(InputIdPs,Spread)->  
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  TotParameters = lists:sum([lists:sum([length(Ps) || {_W,Ps} <- WPs]) || {_Input_Id, 
WPs} <- InputIdPs]),  
  MutationProb = 1/math:sqrt(TotParameters),  
  [{Input_Id,[{W,perturb(Ps,MutationProb,Spread,[])}|| {W,Ps} <- WPs]} || {Input_Id, 
WPs} <- InputIdPs].  

 
  perturb([Val|Vals],MutationProb,Spread,Acc)->  
   case random:uniform() < MutationProb of  
    true ->  
     U_Val = sat((random:uniform()-0.5)*2*Spread+Val,Spread, 
Spread),  
     perturb(Vals,MutationProb,Spread,[U_Val|Acc]);  
    false ->  
     perturb(Vals,MutationProb,Spread,[Val|Acc])  
   end;  
  perturb([],_MutationProb,_Spread,Acc)->  
   lists:reverse(Acc). 
%The perturb/5 function is executed with a list of values and a probability with which each 
value has the chance of being perturbed. The function then goes through every value and per-
turbs it with the given probability. 

15.4.2 Implementing the Neural Parameter Mutation Operator 

We next create the mutation operators which are applied to the neu-
ral_parameters, which are lists of values. To accomplish this, we just make that 
list pass through a function which with some probability, 1/sqrt(ListLength), per-
turbs the values within it. We add such mutation operators to the plasticity func-
tions which only use the neural_parameters. The following plasticity functions on-
ly use the neural_parameters: hebbian, ojas, and the neuromodulation. Since all 
3 would use exactly the same implementation, only the neuromodulation/1 im-
plementation is shown in Listing-15.12. 

Listing-15.12 Implementation of the neural_parameters mutation operator. 
 
neuromodulation({N_Id,mutate})->  
 random:seed(now()),  
 N = genotype:read({neuron,N_Id}),  
 {PFName,ParameterList} = N#neuron.pf,  
 MSpread = ?SAT_LIMIT*10,  

%The perturb_parameters/2 function goes through every tuple in the InputIdPs list, extracts the 
WeightPlus blocks for each input connection, calculates the total number of weight parameters
the neuron has, and from it the probability with which those parameters will be perturbed.
The function then executes perturb/4 to perturb the said parameters. 
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 MutationProb = 1/math:sqrt(length(ParameterList)),  
 U_ParameterList = perturb(ParameterList,MutationProb,MSpread,[]),  
 U_PF = {PFName,U_ParameterList},  
 N#neuron{pf=U_PF}; 
neuromodulation(neural_parameters)->  
 H = (lists:random()-0.5),  
 A = (lists:random()-0.5),  
 B = (lists:random()-0.5),  
 C = (lists:random()-0.5),  
 D = (lists:random()-0.5),  
 [H,A,B,C,D];  
neuromodulation(weight_parameters)->  
 []. 
%neuromodulation/1 function produces the necessary parameter list for the neuromodulation 
learning rule to operate. The parameter list for this learning rule is a list composed of parame-
ters H,A,B,C,D: [H,A,B,C,D]. When the function is executed with the {NId,mutate} parameter, 
it calculates the perturbation probability of every parameter through the equation: 
1/math:sqrt(length(ParameterList)), and then executes the perturb/5 function to perturb the ac-
tual parameters. 

The above shown mutation operator, called by executing neuromodulation/1 
with the parameter {N_Id,mutate}, uses the perturb/4 function from the 
weight_parameters based mutation operator which was shown in the previous list-
ing, Listing-15.11. 

15.4.3 Implementing the Hybrid, Weight & Neural Parameters 
Mutation Operator 

Finally, we also have plasticity functions which have both, neural_parameters 
and weight_parameters. This is the case for example for the self_modulationV5, 
V3, and V2 learning rules. For these type of plasticity functions, we create a com-
bination of the neural_parameters and weight_parameters mutation operators, as 
shown in Listing-15.13. 

Listing-15.13 A hybrid of the neural_parameters and weight_parameters mutation operator, im-
plemented here for the self_modulationV5 plasticity function. 
 
self_modulationV5({N_Id,mutate})-> 
 random:seed(now()),  
 N = genotype:read({neuron,N_Id}),  
 {PFName,ParameterList} = N#neuron.pf,  
 MSpread = ?SAT_LIMIT*10,  
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 MutationProb = 1/math:sqrt(length(ParameterList)),  
 U_ParameterList = perturb(ParameterList,MutationProb,MSpread,[]),  
 U_PF = {PFName,U_ParameterList},  
 InputIdPs = N#neuron.input_idps,  
 U_InputIdPs=perturb_parameters(InputIdPs,?SAT_LIMIT),  
 N#neuron{pf=U_PF,input_idps=U_InputIdPs};  
self_modulationV5(neural_parameters)->  
 B=(lists:random()-0.5),  
 C=(lists:random()-0.5),  
 D=(lists:random()-0.5),  
 [B,C,D];  
self_modulationV5(weight_parameters)->  
 [(lists:random()-0.5),(lists:random()-0.5)]. 

For this plasticity module, this is all that is needed, there are only these 3 vari-
ants. We now modify the genome_mutator module to include the mu-
tate_plasticity_parameters mutation operator, and modify the functions which 
deal with linking neurons together, so that we can add the modulatory connection 
establishment functionality. 

15.4.4 Updating the genome_mutator Module 

Since our neuroevolutionary system can only apply to a population the muta-
tion operators available in its constraint record, we first add the {mu-
tate_plasticity_parameters,1} tag to the constraint’s mutation_operators list. This 
means that the mutate_plasticity_parameter mutation operator has the same 
chance of being executed as any other mutation operator within the muta-
tion_operators list. After having modified the constraint record, we add the mu-
tate_plasticity_parameters/1 function to the genome_mutator module. It is a sim-
ple mutation operator that chooses a random neuron from the NN, and through the 
execution of plasticity:PFName({N_Id,mutate}) function, mutates the plasticity 
parameters of that neuron, if that neuron has plasticity. If the neuron does not have 
plasticity enabled, then the plasticity:none/1 function is executed, which exits the 
mutation operator, letting our neuroevolutionary system try another mutation. The 
implemented mutate_plasticity_parameters/1 function is shown in Listing-15.14. 

Listing-15.14 The implementation of the mutate_plasticity_parameters mutation operator. 
 
mutate_plasticity_parameters(Agent_Id)->  
 A = genotype:read({agent,Agent_Id}),  
 Cx_Id = A#agent.cx_id,  
 Cx = genotype:read({cortex,Cx_Id}),  
 N_Ids = Cx#cortex.neuron_ids,  



646      Chapter 15 Neural Plasticity 

 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),  
 N = genotype:read({neuron,N_Id}),  
 {PFName,_Parameters} = N#neuron.pf,  
 U_N = plasticity:PFName({N_Id,mutate}),  
 EvoHist = A#agent.evo_hist,  
 U_EvoHist = [{mutate_plasticity_parameters,N_Id}|EvoHist],  
 U_A = A#agent{evo_hist=U_EvoHist},  
 genotype:write(U_N),  
 genotype:write(U_A).  
%The mutate_plasticity_parameters/1 chooses a random neuron from the NN, and mutates the 
parameters of its plasticity function, if present. 

Having implemented the mutation operator, we now look for the connec-
tion/synaptic-link establishing functions. We need to modify these functions be-
cause we want to ensure that if the neuron uses the neuromodulation plasticity 
function, then some of the new connections that are added to it through evolution, 
are randomly chosen to be modulatory connections rather than standard ones. 

The functions that need to be updated are the following four:  

 add_bias/1: Because the input_idps_modulation can also use a bias weight. 
 remove_bias/1: Because the input_idps_modulation should also be able to rid 

itself of its bias. 
 link_ToNeuron/4: Which is the function that actually establishes new links, and 

adds the necessary tuples to the input_idps list. We should be able to randomly 
choose whether to add the new tuple to the standard input_idps list, or the 
modulatory input_idps_modulation list. 

 cutlink_ToNeuron/3: Which is the function which cuts the links to the neuron, 
and removes the synaptic weight containing tuple from the input_idps list. We 
should be able to randomly choose whether to remove such a tuple from the in-
put_idps or input_idps_modulation list. 

Again, because of the way we developed, and modularized the code in the ge-
nome_mutator module, almost everything with regards to linking is contained in 
the link_ToNeuron and cutlink_ToNeuron, so by just modifying those, and the 
add_bias/remove_bias functions, we will be done with the update. 

Originally the add_bias/1 function checks whether the input_idps list already 
has a bias, and then adds a bias if it does not, and exits if it does. We now have to 
check whether input_idps and input_idps_modulation lists already have biases. To 
do this, we randomly generate a value by executing random:uniform(2), which 
generates either 1 or 2. If value 2 is generated, and the input_idps_modulation 
does not have a bias, we add one to it. Otherwise, if the input_idps list does not 
have a bias, we add one to it, and thus in the absence of neuromodulation based 
plasticity, probability of adding the bias to input_idps does not change. The modi-
fied add_bias mutation operator is shown in Listing-15.15. 
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Listing-15.15 The updated add_bias mutation operator. 
 
add_bias(Agent_Id)->  
 A = genotype:read({agent,Agent_Id}),  
 Cx_Id = A#agent.cx_id,  
 Cx = genotype:read({cortex,Cx_Id}),  
 N_Ids = Cx#cortex.neuron_ids,  
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),  
 Generation = A#agent.generation,  
 N = genotype:read({neuron,N_Id}),  
 SI_IdPs = N#neuron.input_idps,  
 MI_IdPs = N#neuron.input_idps_modulation,  
 {PFName,_NLParameters} = N#neuron.pf,  
 case {lists:keymember(bias,1,SI_IdPs), lists:keymember(bias,1,MI_IdPs), PFName ==  
neuromodulation, random:uniform(2)} of  
  {_,true,true,2} ->  
   exit(“********ERROR:add_bias:: This Neuron already has a modulatory bias 
part.”);  
  {_,false,true,2} ->  
   U_MI_IdPs = lists:append(MI_IdPs,[{bias,[{random:uniform()-0.5,  
plasticity:PFName(weight_parameters)}]}]),  
   U_N = N#neuron{  
    input_idps_modulation = U_MI_IdPs,  
    generation = Generation},  
   EvoHist = A#agent.evo_hist,  
   U_EvoHist = [{{add_bias,m},N_Id}|EvoHist],  
   U_A = A#agent{evo_hist=U_EvoHist},  
   genotype:write(U_N),  
   genotype:write(U_A);  
  {true,_,_,1} ->  
   exit(“********ERROR:add_bias:: This Neuron already has a bias in in-
put_idps.”);  
  {false,_,_,_} ->  
   U_SI_IdPs = lists:append(SI_IdPs,[{bias,[{random:uniform()-0.5,  
plasticity:PFName(weight_parameters)}]}]),  
   U_N = N#neuron{  
    input_idps = U_SI_IdPs,  
    generation = Generation},  
   EvoHist = A#agent.evo_hist,  
   U_EvoHist = [{{add_bias,s},N_Id}|EvoHist],  
   U_A = A#agent{evo_hist=U_EvoHist},  
   genotype:write(U_N),  
   genotype:write(U_A)  
 end. 
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The remove_bias is modified in the same manner, and only a few elements of 
the source code are changed. Like the add_bias, we update the link_ToNeuron/4 
function to randomly choose whether to make the new link modulatory or stand-
ard, and only if the chosen list (either input_idps or input_idps_modulation), does 
not already have a link from the specified presynaptic element. The updated func-
tion is shown in Listing-15.16. 

Listing-15.16 The updated link_ToNeuron/4 function. 
 
link_ToNeuron(FromId,FromOVL,ToN,Generation)-> 
 ToSI_IdPs = ToN#neuron.input_idps,  
 ToMI_IdPs = ToN#neuron.input_idps_modulation,  
 {PFName,_NLParameters}=ToN#neuron.pf,  
 case {lists:keymember(FromId,1,ToSI_IdPs),lists:keymember(FromId,1,ToMI_IdPs)} of  
  {false,false} ->  
   case {PFName == neuromodulation, random:uniform(2)} of  
    {true,2} ->  
     U_ToMI_IdPs = [{FromId,  
genotype:create_NeuralWeightsP(PFName,FromOVL,[])}|ToMI_IdPs],  
     ToN#neuron{  
      input_idps = U_ToMI_IdPs,  
      generation = Generation  
     };  
    _ ->  
     U_ToSI_IdPs = [{FromId,  
genotype:create_NeuralWeightsP(PFName,FromOVL,[])}|ToSI_IdPs],  
     ToN#neuron{  
      input_idps = U_ToSI_IdPs,  
      generation = Generation  
     }  
   end;  
  _ ->  
   exit(“ERROR:add_NeuronI::[cannot add I_Id]: ~p already connected to ~p~n”, 
[FromId,ToN#neuron.id])  
 end. 
%link_ToNeuron/4 updates the record of ToN, so that it’s updated to receive a connection from 
the element FromId. The link emanates from element with the id FromId, whose output vector 
length is FromOVL, and the connection is made to the neuron ToN. In this function, either the 
ToN’s input_idps_modulation or input_idps list is updated with the tuple {FromId, [{W_1, 
WPs} ...{W_FromOVL,WPs}]}. Whether input_idps or input_idps_modulation is updated, is 
chosen randomly. Then the neuron’s generation is updated to Generation (the current, most re-
cent generation). After this, the updated ToN’s record is returned to the caller. On the other 
hand, if the FromId is already part of the ToN’s input_idps or input_idps_modulation list (de-
pendent on which was randomly chosen), which means that the standard or modulatory link al-
ready exists between the neuron ToN and element FromId, this function exits with an error. 
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Finally, we update the cutlink_ToNeuron/3 function. In this case, since there 
can only be one link between two elements, we simply first check if the specified 
input link is specified in the input_idps, and cut it if it does. If it does not, we 
check the input_idps_modulation next, and cut it if this link is modulatory. If such 
a link does not exist in either of the two lists, we exit the mutation operator with 
an error, printing to console that the specified link does not exist, neither in the 
synaptic weights list, nor in the synaptic parameters list. The implementation of 
the cutlink_ToNeuron/3, is shown in Listing-15.17. 

Listing-15.17 The cutlink_ToNeuron/3 implementation. 
 
 cutlink_ToNeuron(FromId,ToN,Generation)->  
  ToSI_IdPs = ToN#neuron.input_idps,  
  ToMI_IdPs = ToN#neuron.input_idps_modulation,  
  Guard1 = lists:keymember(FromId, 1, ToSI_IdPs),  
  Guard2 = lists:keymember(FromId, 1, ToMI_IdPs),  
  if  
   Guard1->  
    U_ToSI_IdPs = lists:keydelete(FromId,1,ToSI_IdPs),  
    ToN#neuron{  
     input_idps = U_ToSI_IdPs,  
     generation = Generation};  
   Guard2 ->  
    U_ToMI_IdPs = lists:keydelete(FromId,1,ToMI_IdPs),  
    ToN#neuron{  
     input_idps = U_ToMI_IdPs,  
     generation = Generation};  
   true ->  
    exit(“ERROR[can not remove I_Id]: ~p not a member of 
~p~n”,[FromId,ToN#neuron.id])  
  end.  
%cutlink_ToNeuron/3 cuts the connection on the ToNeuron (ToN) side. The function first 
checks if the FromId is a member of the ToN’s input_idps list, if it’s not, then the function 
checks if it is a member of the input_idps_modulation list. If it is not a member of either, the 
function exits with error. If FromId is a member of one of these lists, then that tuple is removed 
from that list, and the updated ToN record is returned to the caller. 

With these updates completed, the genome_mutator module is up to date. In the 
case that a plasticity is enabled in any neuron, the topological mutation phase will 
be able to mutate the plasticity function learning parameters, and add modulatory 
connections in the case the plasticity function is neuromodulation. The only re-
maining update we have to make is one to the tuning phase related functions. 



650      Chapter 15 Neural Plasticity 

15.5 Tuning of a NN which has Plastic Neurons 

It can be argued whether both standard synaptic weights and modulatory synap-
tic weights should be perturbed at the same time when the neuron has plasticity 
enabled, or just one or the other separately during the tuning phase. For example, 
should we allow for the neural_parameters to be perturbed during the tuning 
phase, rather than only during the topological mutation phase? What percentage of 
tuning should be dedicated to learning parameters and what percentage to synaptic 
weights? This of course can be tested, and benchmarked, and in general deduced 
through experimentation. After it has been decided on what and when to tune 
with regards to learning rules, there is still a problem with regards to the parameter 
and synaptic weight backup during the tuning phase. The main problem of this 
section is with regards to this dilemma, the dilemma of the backup process of the 
tuned weights. 

Consider a neuron that has plasticity enabled, no matter what plasticity function 
it’s using. The following scenario occurs when the neuron is perturbed: 

1. The neuron receives a perturbation request. 
2. Neuron selects random synaptic weights, weight_parameters, or even neu-

ral_parameters (though we do not allow for neural_parameters perturbation 
during the tuning phase, yet). 

3. Then the agent gets re-evaluated, and IF: 
4. Perturbed agent has a higher fitness: the neuron backups its current 

5. Perturbed agent has a lower fitness: the neuron restores its previous 
backed up weights/parameters. 

There is a problem with step 4. Because by the time it’s time to backup the 
synaptic weights, they have already changed from what they original started with 
during the evaluation, since they have adapted and learned due to their plasticity 
function. So we would not be backing up the synaptic weights of the agent that 
achieved the higher fitness score, but instead we would be backing up the learned 
and adapted agent with its adapted synaptic weights. 

The fact that the perturbed agent, or topologically mutated agent, is not simply 
a perturbed genotype on which its parent is based, but instead is based on the gen-
otype which has resulted from its parent’s experience (due to the parent having 
changed based on its learning rule, before its genotype was backed up), means that 
the process is now based on Lamarckian evolution, rather than the biologically 

rckian Evolution is based on the idea 
that an organism can pass on to its offspring the characteristics that it has acquired 
and learned during its lifetime (evaluation), all its knowledge and learned skills. 
Since plasticity affects the agent’s neural patterns, synaptic weights... all of which 
are defined and written back to the agent’s genotype, and the offspring is a mutat-
ed version of that genotype, the offspring thus in effect will to some extent inherit 

weights/parameters. 

correct Darwinian. The definition of Lama
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the agent’s adapted genotype, and not the original genotype with which the parent 
started when it was being evaluated. 

When the agent backs up its synaptic weights after it has been evaluated for fit-
ness, the agent uses Lamarckian evolution, because its experience, what it has 
learned during its evaluation (and what it has learned is reflected in how the syn-
aptic weights changed due to the used plasticity learning rule), is written to its ge-
nome, and it is this learned agent that gets perturbed. The cleanest way to solve 
this problem, and have control of whether we use Lamarckian or the biologically 
correct Darwinian evolution, is to add a new parameter to the agent, the darwini-
an/lamarckian flag.  

To implement the proper synaptic weight updating method to reflect the decid-
ed on hereditary approach during the tuning phase, we will need to add minor up-
dates to the records.hrl file, the exoself, the neuron, and the genotype modules. In 
the records.hrl, we have to update the agent record by adding the heredity_type 
flag to it, and modifying the constraint record by adding the heredity_types ele-
ment to it. The agent’s heredity_type element will simply store a tag, an atom 
which can either be : darwinian or lamarckian. The constraint’s heredity_types el-
ement will be a list of heredity_type tags. This list can either contain just a single 
tag, ‘darwinian’ or ‘lamarckian’ for example, or it could contain both. If both at-
oms are present in the heredity_types list, then during the creation of the seed 
population, some agents will use the darwinian method of passing on their heredi-

Darwinian vs. Lamarckian evolution, particularly in ALife simulations, could 
lead to interesting possibilities. When using Lamarckian evolution, and for exam-
ple applying our neuroevolutionary system to an ALife problem, the agent’s expe-
rience gained from interacting with the simulated environment, would be passed 
on to its offspring, and perturbed during the tuning phase. The perturbed organism 
(during the tuning phase, belonging to the same evaluation) would re-experience 
the interaction with the environment, and if it was even more successful, it would 
be backed up with its new experience (which means that the organism has now 
experienced and learned in the environment twice, since through plasticity the en-
vironment has affected its synaptic weights twice...). If the perturbed agent is less 
fit, then the previous agent, with its memories and synaptic weight combination, is 
reverted to, and re-perturbed. If we set the max_attempts counter to 1, then it will 
be genetic rather than a memetic based neuroevolutionary system. But again, 
when Lamarckian evolution is allowed, the memories of the parent are passed on 
to its offspring... A number of papers have researched the usefulness and efficien-
cy of Darwinian Vs. Lamarkian evolution [4,5,6,7]. The results vary, and so add-
ing a heredity flag to the agent will allow us to experiment and use both if we 
want to. We could then switch between the two heredity approaches (Darwinian or 
Lamarckian) easily, or perhaps even allow the hereditary flag to flip between the 
two during the topological mutation phase through some new topological mutation 
operator, letting the evolutionary process decide what suits the assigned problem 
best. 
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tary information, and others will use a lamarckian approach. It would be interest-
ing to see which of the two would have an advantage, or be able to evolve faster, 
and during what stages of evolution and in which problems... 

After updating the 2 records in records.hrl, we have to make a small update to 
the genotype module. In the genotype module we update the construct_Agent/3 
function, and set the agent’s heredity_type to one of the available heredity types in 
the constraint’s heredity_types list. We do this by adding the following line when 
setting the agent’s record: heredity_type = random_element 
(SpecCon#constraint.heredity_types). We then update the exoself module, by 
modifying the link_Neurons/2 function to link_Neurons/3 function, and pass to it 
the agent’s heredity_type parameter, the parameter which is then forwarded to 
each spawned neuron. 

With this done, we make the final and main source modification, which is all 
contained within the neuron module. To allow for Darwinian based heredity in the 
presence of learning and plastic neurons, we need to keep track of two states of 

We can call this new list the input_pidps_bl, where bl stands for Before Learn-
ing.  

When a neuron is requested to perturb its synaptic weights, right after the 
weights are perturbed, we want to save this new input_pidps list, before plasticity 
gets a chance to modify the synaptic weights. Thus, whereas before we stored the 
Perturbed_PIdPs in input_pidps_current, we now also save it to input_pidps_bl. 
Afterwards, the neuron can process the input signals using its input_pidps_current, 
and its learning rule can affect the input_pidps_current list. But input_pidps_bl 
will remain unchanged. 

When a neuron is sent the weight_backup message, it is here that heredity_type 
plays its role. When it’s darwinian, the neuron saves the input_pidps_bl to in-
put_pidps_backup, instead of the input_pidps_current which could have been 
modified by some learning rule by this point. On the other hand, when the heredi-
ty_type is lamarckian, the neuron saves the input_pidps_current to in-
put_pidps_backup. The input_pidps_current represents the synaptic weights that 
could have been updated if the neuron allows for plasticity, and thus the in-
put_pidps_backup will then contain not the initial states of the synaptic weight list 
with which the neuron started, but the state of the synaptic weights after the neu-
ron has experienced, processed, and had its synaptic weights modified by its learn-
ing rule. Using this logic we add to the neuron’s state the element input_pidps_bl, 
and update the loop/6 function, as shown in Listing-15.18. 

the input_pidps:  

1. The input_pidps that are currently effective and represent the neuron’s pro-
cessing dynamics, which is the input_pidps_current.  

2. A second input_pidps list, which represents the state of input_pidps right after
perturbation, before the synaptic weights are affected by the neuron’s plasticity
function.  
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Listing-15.18 The neuron’s loop/6 function which can use both, Darwinian and Lamarckian in-
heritance. 
 
loop(S,ExoSelf_PId,[ok],[ok],SIAcc,MIAcc)->  
 PF = S#state.pf,  
 AF = S#state.af,  
 AggrF = S#state.aggrf,  
 {PFName,PFParameters} = PF,  
 Ordered_SIAcc = lists:reverse(SIAcc),  
 SI_PIdPs = S#state.si_pidps_current,  
 SAggregation_Product = signal_aggregator:AggrF(Ordered_SIAcc,SI_PIdPs),  
 SOutput = functions:AF(SAggregation_Product),  
 Output_PIds = S#state.output_pids,  
 [Output_PId ! {self(),forward,[SOutput]} || Output_PId <- Output_PIds],  
 Ordered_MIAcc = lists:reverse(MIAcc),  
 MI_PIdPs = S#state.mi_pidps_current,  
 MAggregation_Product = signal_aggregator:dot_product(Ordered_MIAcc,MI_PIdPs),  
 MOutput = functions:tanh(MAggregation_Product),  
 U_SI_PIdPs = plasticity:PFName([MOutput|PFParameters],Ordered_SIAcc,SI_PIdPs, 
SOutput),  
 U_S=S#state{  
  si_pidps_current = U_SI_PIdPs  
 },  
 SI_PIds = S#state.si_pids,  
 MI_PIds = S#state.mi_pids,  
 loop(U_S,ExoSelf_PId,SI_PIds,MI_PIds,[],[]);  
loop(S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc)->  
 receive  
  {SI_PId,forward,Input}->  
   loop(S,ExoSelf_PId,SI_PIds,[MI_PId|MI_PIds],[{SI_PId,Input}|SIAcc], 
MIAcc);  
  {MI_PId,forward,Input}->  
  
 loop(S,ExoSelf_PId,[SI_PId|SI_PIds],MI_PIds,SIAcc,[{MI_PId,Input}|MIAcc]);  
  {ExoSelf_PId,weight_backup}->  
   U_S=case S#state.heredity_type of  
    darwinian ->  
     S#state{  
      si_pidps_backup=S#state.si_pidps_bl,  
      mi_pidps_backup=S#state.mi_pidps_current  
     };  
    lamarckian ->  
     S#state{  
      si_pidps_backup=S#state.si_pidps_current,  
      mi_pidps_backup=S#state.mi_pidps_current  
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     }  
   end,  
   loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);  
  {ExoSelf_PId,weight_restore}->  
   U_S = S#state{  
    si_pidps_bl=S#state.si_pidps_backup,  
    si_pidps_current=S#state.si_pidps_backup,  
    mi_pidps_current=S#state.mi_pidps_backup  
   },  
   loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);  
  {ExoSelf_PId,weight_perturb,Spread}->  
   Perturbed_SIPIdPs=perturb_IPIdPs(Spread,S#state.si_pidps_backup),  
   Perturbed_MIPIdPs=perturb_IPIdPs(Spread,S#state.mi_pidps_backup),  
   U_S=S#state{  
    si_pidps_bl=Perturbed_SIPIdPs,  
    si_pidps_current=Perturbed_SIPIdPs,  
    mi_pidps_current=Perturbed_MIPIdPs  
   },  
   loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);  
  {ExoSelf_PId,reset_prep}->  
   neuron:flush_buffer(),  
   ExoSelf_PId ! {self(),ready},  
   RO_PIds = S#state.ro_pids,  
   receive  
    {ExoSelf_PId, reset}->  
     fanout(RO_PIds,{self(),forward,[?RO_SIGNAL]})  
   end,  
   loop(S,ExoSelf_PId,S#state.si_pids,S#state.mi_pids,[],[]);  
  {ExoSelf_PId,get_backup}->  
   NId = S#state.id,  
   ExoSelf_PId ! {self(),NId,S#state.si_pidps_backup,S#state.mi_pidps_backup},  
   loop(S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);  
  {ExoSelf_PId,terminate}->  
   io:format(“Neuron:~p is terminating.~n”,[self()])  
  after 10000 ->  
   io:format(“neuron:~p stuck.~n”,[S#state.id])  
 end.  

With this modification, our neuroevolutionary system can be used with Dar-
winian and Lamarckian based heredity. If we start the population_monitor process 
with a constraint where the agents are allowed to have neurons with plasticity, and 
set the heredity_types to either [lamarckian] or [darwinian,lamarckian], then some 
of the agents will have plasticity and be able to use the Lamarckian inheritance.  
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We can next add a simple mutation operator which works similarly to the way 
the mutation operators of other evolutionary strategy parameters work. We simply 
check whether there are any other heredity types in the constraint’s heredity_types 
list, if there are, we change the currently used one to a new one, randomly chosen 
from the list. If there are no others, then the mutation operator exits with an error, 
without wasting the topological mutation attempt. This simple mu-
tate_heredity_type mutation operator implementation is shown in Listing-15.19. 

Listing-15.19 The implementation of the genome_mutator:mutate_heredity_type/1 mutation 
operator. 
 
mutate_heredity_type(Agent_Id)->  
 A = genotype:read({agent,Agent_Id}),  
 case (A#agent.constraint)#constraint.heredity_types -- [A#agent.heredity_type] of  
  [] ->  
   exit(“********ERROR:mutate_heredity_type/1:: Nothing to mutate, only a 
single function available.”);  
  Heredity_Type_Pool->  
   New_HT = lists:nth(random:uniform(length(Heredity_Type_Pool)),  
Heredity_Type_Pool),  
   U_A = A#agent{heredity_type = New_HT},  
   genotype:write(U_A)  
 end.  
%mutate_heredity_type/1 function checks if there are any other heredity types in the agent’s 
constraint record. If any other than the one currently used by the agent is present, the agent ex-
changes the heredity type it currently uses for a random one from the remaining list. If no other 
heredity types are available, the mutation operator exits with an error, and the 
neuroevolutionary system tries another mutation operator. 

Since this particular neuroevolutionary feature is part of the evolutionary strat-
egies, we add it to the evolutionary strategy mutator list, which we created earlier: 

-define(ES_MUTATORS,[  
 mutate_tuning_selection,  
 mutate_tuning_duration,  
 mutate_tuning_annealing,  
 mutate_tot_topological_mutations,  
 mutate_heredity_type  
]). 

With this final modification, our neuroevolutionary system can now fully em-
ploy plasticity, and two types of heredity inheritance methods. We now finally 
compile, and test our updated system on the T-Maze Navigation problem we de-
veloped in the previous chapter. 
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15.6 Compiling & Testing 

Our TWEANN system can now evolve NNs with plasticity, which means the 
evolved agents do not simply have an evolved response/reflex to sensory signals, 
but can also change, adapt, learn, modify their strategies as they interact with the 
ever changing and dynamic world. Having added this feature, and having created 
the T-Maze Navigation problem which requires the NN to change its strategy as it 
interacts with the environment, we can now test the various plasticity rules to see 
whether the agents will be able to achieve a fitness of 149.2, a fitness score 
achieved when the agent can gather the highest reward located in the right corner, 
and then when sensing that the reward is now not 1 but 0.2 in the right corner, 
start moving to the left corner to continue gathering the highest reward. 

Having so significantly modified the records and the various modules, we reset 
the mnesia database after recompiling the modules. To do this, we first execute 
polis:sync(), then polis:reset(), and then finally polis:start() to startup the polis 
process. We have created numerous plasticity learning rules: [hebbian_w, hebbian, 
ojas_w, ojas, self_modulationV1, self_modulationV2, self_modulationV3, 
self_modulationV4, self_modulationV5, self_modulationV6, neuromodulation], 
too many to show the console printouts of. Here I will show you the results I 
achieved while benchmarking the hebbian_w and the hebbian learning rules, and I 
highly recommend testing the other learning rules by using the provided source 
code in the supplementary material.  

To run the benchmarks, we first modify the ?INIT_CONSTRAINTS in the 
benchmarker module, setting the constraint’s parameter: neural_pfns, to one of 
these plasticity rules for every benchmark. We can leave the evaluations_limit in 
the pmp record as 5000, but in the experiments I’ve performed, I set the popula-
tion limit to 20 rather than 10, to allow for a greater diversity. The following are 
the results I achieved when running the experiments for the hebbian_w and the 
hebbian plasticity based benchmarks: 

T-Maze Navigation with neural_pfns=[hebbian_w]: 

Graph:{graph,discrete_tmaze, 
             [1.1185328852434115,1.1619749686158354,1.1524569668377718, 
              1.125571504518873,1.1289114832535887,1.1493175172780439, 
              1.136998936735779,1.151456292245766,1.1340011357153639, 
              1.1299993522129745], 
             [0.0726690757747553,0.08603433346506212,0.07855604082593783, 
              0.10142838037124464,0.07396159578145513,0.10671412852082847, 
              0.07508707481514428,0.09451139923220694,0.10140517337683815, 
              0.07774940615923569], 
             [91.76556804891021,101.28562704890575,111.38602998360439, 
              110.65857974481669,110.16398032961199,111.09056977671462, 
              110.92899944938112,110.89051253132838,115.36595268212, 
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              111.07567142455073], 
             [14.533256849468248,13.058657299854085,10.728855341054617, 
              10.993110357580642,10.14374645989871,8.753610288273324, 
              8.392536182954592,7.795296190771122,5.718415463002469, 
              8.367092075873826], 
             [122.0000000000001,122.0000000000001,148.4,149.2,149.2,149.2, 
              149.2,149.2,149.2,149.2], 
             [10.000000000000115,10.000000000000115,10.000000000000115, 
              10.000000000000115,10.000000000000115,10.000000000000115, 
              10.000000000000115,10.000000000000115,10.000000000000115, 
              10.000000000000115], 
             [11.45,14.3,15.3,15.8,15.3,16.15,16.15,15.55,15.95,15.7], 
             [1.5321553446044565,2.451530134426253,2.1702534414210706, 
              2.541653005427767,2.2825424421026654,2.7253440149823285, 
              2.127792283095321,2.0118399538730714,2.246664193866097, 
              2.0273134932713295], 
             [500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0], 
             []} 
Tot Evaluations Avg:5172.95 Std:103.65301491032471 

The boldfaced list shows the maximum achieved scores from all the evolution-
ary runs, and this time through plasticity, the score of 149.2 was achieved, imply-
ing our TWEANN’s ability to solve the T-Maze navigation problem in under 2000 
evaluationss (by the 4th of the 500th evaluations set). 

T-Maze Navigation with neural_pfns=[hebbian]: 

Graph:{graph,discrete_tmaze, 
             [1.1349113313586998,1.1720830155097892,1.1280659983291563, 
              1.1155462519936203,1.1394258373205741,1.1293439592742998, 
              1.1421323920317727,1.1734812130593864,1.1750255550524766, 
              1.2243932469319467], 
             [0.07930932911768754,0.07243567080038446,0.0632406890972406, 
              0.05913247338612391,0.07903341129827642,0.07030745338352402, 
              0.09215871275247499,0.09666623776054033,0.1597898002580627, 
              0.2447504142533042], 
             [90.66616594516601,97.25899378881999,104.36751796157071, 
              105.0985582137162,106.70360792131855,108.09892415530814, 
              108.23839098414494,109.28814527629243,108.0643063975331, 
              111.0103593241125], 
             [15.044059269853784,13.919179099169385,10.613477213673535, 
              13.557400867791436,13.380234103652047,12.413686820724935, 
              11.936102929326337,11.580780191261242,12.636714964991167, 
              12.816711475442705], 
             [122.0000000000001,147.8,145.60000000000002,149.2,149.2,149.2, 
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              149.2,149.2,149.2,149.2], 
             [10.000000000000115,10.000000000000115,10.000000000000115, 
              10.000000000000115,10.000000000000115,10.000000000000115, 
              10.000000000000115,10.000000000000115,10.000000000000115, 
              10.000000000000115], 
             [11.05,12.2,12.3,12.85,13.35,14.25,14.35,15.3,15.4,14.9], 
             [1.6271140095272978,2.6381811916545836,2.215851980616034, 
              1.7399712641305316,1.7399712641305318,2.2332711434127295, 
              1.9817921182606415,2.0760539492026697,1.9078784028338913, 
              2.046948949045872], 
             [500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0], 
             []} 
Tot Evaluations Avg:5145.65 Std:91.87234349900953 

In this case, our TWEANN again was able to solve the T-Maze problem. Plas-
tic NN based agents do indeed have the ability to solve the T-Maze problem which 
requires the agents to change their strategy as they interact with the maze which 
changes midway. Our TWEANN is now able to evolve such plastic NN based 
agents, our TWEANN can now evolve agents that can learn new things as they in-
teract with the environment, that can change their behavioral strategies based on 
their experience within the environment. 

15.7 Summary & Discussion 

Though we have tested only two of the numerous plasticity learning rules 
we’ve implemented, they both produced success. In both cases our TWEANN 
platform has been able to evolve NN based agents capable of solving the T-Maze 
problem, which was not solvable by our TWEANN in the previous chapter with-
out plasticity. Thus we have successfully tested our plasticity rule implementa-
tions, and the new performance capabilities of our TWEANN. Outside this text I 
have tested the learning rules which were not tested above, and they are also capa-
ble of solving this problem, with varying performance levels. All of this without 
us having even optimized our algorithms yet. 

With this benchmark complete, we have now finished developing numerous 
plasticity learning rules, implementing the said algorithms, and then benchmark-
ing their performance. Our TWEANN system has finally been able to solve the T-
Maze problem which requires the agents to change their strategy. Our TWEANN 
platform can now evolve not only complex topologies, but NN systems which  
can learn and adapt. Our system can now evolve thinking neural network based 
agents. There is nothing stopping us from producing more complex and more bio-
logically faithful plasticity based learning rules, which would further improve the 
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capabilities and potential of the types of neural networks our TWEANN system 
can evolve. 

With the plasticity now added, our next step is to add a completely different 
NN encoding, and thus further advance our TWEANN system. In the next chapter 
we will allow our TWEANN platform to evolve not only the standard encoded 
NN based agents we’ve been using up to this point, but also the new indirect en-
coded type of NN systems, the substrate encoded NN based systems.  
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