
Chapter 14 Creating the Two Slightly More
Complex Benchmarks

Abstract To test the performance of a neuroevolutionary system after adding a
new feature, or in general when trying to assess its abilities, it is important to have
some standardized benchmarking problems. In this chapter we create two such
benchmarking problems, the Pole Balancing Benchmarks (Single, Double, and
With and Without dampening), and the T-Maze navigation benchmark, which is
one of the problems used to assess the performance of recurrent and plasticity en-
abled neural network based systems.

Though we have created an extendible and already rather advanced TWEANN
platform, how can we prove it to be so when we only have the basic XOR bench-
mark to test it on? As we continue to improve and advance our system, we will
need to test it on more advanced benchmarks. In this chapter we develop and add
two such benchmarking problems, the pole balancing benchmark, and the T-Maze
navigation benchmark. Both of these benchmarks are standard within the compu-
tational intelligence field, and our neuroevolutionary system’s ability to solve
them is the minimum requirement to be considered functional.

To allow our TWEANN to use these benchmarks, we need to create a simula-
tion/scape of the said problems, and create the agent morphology that contains the
sensors/actuators that the NN based agents can use to interface with these new
scapes. In the following sections we will first build the pole balancing simulation.
Afterwards, we will develop the T-Maze simulation, a problem which can be
much better solved by a NN system which can learn and adapt as it interacts with
the environment, by a NN which has plasticity (a feature we will add to our
neuroevolutionary system in Chapter-15).

Once these two types of new simulations are created, we will briefly test them,
and then move on to the next chapter, where we will begin advancing and expand-
ing our neuroevolutionary system.

14.1 Pole Balancing Simulation

The pole balancing benchmark consists of the NN based agent having to push a
cart on a track, such that the pole standing on the cart is balanced and does not tip
over and fall. Defined more specifically, the pole balancing problem is posed as
follows: Given a two dimensional simulation of a cart on a 4.8 meter track, with a
pole of length L on the top of a cart, attached to the cart by a hinge, and thus free
to swing, the NN based controller must apply a force to the cart, pushing it back

DOI 10.1007/978-1-4614- - © Springer Science+Business Media New York 2013 4463 3_14,
573 G.I. Sher, Handbook of Neuroevolution Through Erlang,

574 Chapter 14 Creating the Two Slightly More Complex Benchmarks

The temporal granularity of the simulation is 0.01 seconds, which means that
every 0.01 seconds we perform all the physics based calculations, to determine the
position of the cart and the pole. The Agent requests sensory signals and acts eve-
ry 0.02 seconds. The simulation termination conditions are as follows: the cart
must stay on the 4.8 meter track or the simulation ends, the simulation also ends if
the pole falls outside the 36 degrees of the vertical.

There are multiple versions of this problem, each one differs in its difficulty:

1. The simple single pole balancing problem, as shown in Fig-14.1a. In this simu-
lation the NN based agent pushes the cart to balance the single 1 meter pole on
it. This problem is further broken down into two different versions.

 The NN receives as a sensory signal the cart’s position on the track (CPos),
the cart’s velocity (CVel), the pole’s angular position (PAngle), and the pole’s
angular velocity (PVel). Sensory_Signal = [CPos, CVel, PAngle, PVel].

 The NN receives as a sensory signal only the CPos and PAngle values. To
figure out how to solve the problem, how to push the cart and in which di-
rection, the NN will need to figure out how to calculate the CVel and PVel
values on its own, which requires recurrent connections. Sensory_Signal =
[Cpos,PAngle].

It is possible to very rapidly move the cart back and forth, which keeps the pole
balanced. To prevent this type of a solution, the problem is sometimes further
modified with the fitness of the NN based agent not only being dependent on the
amount of time it has balanced the pole, but on how smoothly it has pushed the
cart. One type of fitness function simply rewards the NN based on the length of
time it has balanced the pole, while the other rewards the NN based on the length
of time it has balanced the pole, and penalizes it for very high velocities and rapid
velocity changes. The first is the standard fitness function, while the other is called
the damping fitness function.

2. A more difficult version of the pole balancing problem is the double pole bal-
ancing version, as shown in Fig-14.1b. In this problem we try to balance two
poles of differing lengths at the same time. The closer the lengths of the two
poles are, the more difficult the problem becomes. Usually, the length of one
pole is set to 0.1 meters, and the length of the second is set to 1 meter. As with
the single pole balancing problem, there are two versions of this, and again for
each version we can use either of the two types of fitness functions:

and forth on the track, such that the pole stays balanced on the cart and within 36
degrees of the cart’s vertical. For sensory inputs, the NN based agent is provided
with the cart’s position and velocity, and the pole’s angular position (from the ver-
tical) and angular velocity. The output of the NN based agent is the force value F
in newtons (N), saturated at 10N of magnitude. Positive F pushes the cart to the
left, and negative pushes it to the right. Given these conditions, the problem is to
balance the pole on the cart for 30 simulated minutes, or as long as possible,
where the fitness is the amount of time the NN can keep the pole balanced by
pushing the cart back and forth.

14.1 Pole Balancing Simulation 575

 The sensory signal gathered by the NN is composed of the cart’s position
and velocity (CPos,CVel), the first pole’s angle and velocity (P1_Angle,
P1_Vel), and the second pole’s angle and velocity (P2_Angle, P2_Vel).
Sensory_Signal = [CPos,CVel,P1_Angle,P1_Vel,P2_Angle,P2_Vel].

 The second more complex version of the problem, just as with the single
pole balancing problem, only provides the NN with partial state infor-
mation, the cart’s position, and the first and second pole’s angular position.
Sensory_Signal = [CPos,P1_Angle,P2_Angle]. This requires the NN based
agent to derive the velocities on its own, which can be done by evolving a
recurrent NN topology.

As with the single pole balancing problem, the fitness can be based on simply
the amount of time the poles have been balanced, or also on the manner in which
the agent pushes the cart, using the damping fitness function.

Fig. 14.1 The architecture of single (A.) and double (B.) pole balancing simulations, repre-
sented as private scapes with which the agents can interface with, to push the cart and bal-
ance the pole/s.

As with the XOR simulator, we will set the pole balancing simulation to be self
contained in a private scape process, which will accept sense and push messages
from the agent to whom it belongs. Since the simulation of the track/cart/pole is
independent of the types of sense signals the agent wishes to use, we will only
need to implement a single version of such private scape. We will implement the
system using a realistic physical model of the system, and fourth order Runge-
Kutta integration, as is specified and done in [1].

Because the two-pole balancing problem is simply an extension of the single
pole balancing problem, and because the two poles are independent of each other,
we can create a single double pole balancing simulator, which can then be used for
either benchmark. It will be the sense and force messages that determine what in-

576 Chapter 14 Creating the Two Slightly More Complex Benchmarks

formation is sent to the sensors of the NN based agent. Furthermore, depending on
the parameters sent by the actuator of the agent, the scape will calculate the fitness
and decide on whether to use both poles or only a single pole with regards to the
termination conditions.

Thus, the scape will always be simulating two poles. But if the agent is being
applied to the single pole balancing problem, and this fact will be specified by the
actuator and sensor pair used by the agent, the scape which receives the messages
from the sensor and actuator of that agent, will simply not take into account the
second pole. In this manner, if the second pole falls, deviates more than 36 de-
grees from the vertical... it will not trigger the termination condition or affect the
fitness in any way. The parameter sent by the actuator will notify the scape that
the agent is only concerned with the single pole being balanced.

We will set up the functionality of each such pole balancing simulation, con-
tained and wrapped in a private scape, represented as a single process, to use the
following steps:

1. PB (pole balancing) private scape is spawned.
2. The PB scape initializes the physical simulation, with the first pole’s initial an-

gle from the vertical randomly selected to be between -3.6 and 3.6 degrees, and
the second pole’s angle set to 0 degrees. Furthermore, the first pole’s length
will be set to 1 meter, and 0.1 meter for the second one.

3. The PB process drops into its main loop, and awaits for sense and push mes-
sages.

4. DO:
5. If {From_PId, sense, Parameters} message is received: The Parameters

value specifies what type of sensory information should be returned to
the caller. If Parameters is set to 2, then the scape will return the cart po-
sition and the pole position information. If the Parameters value is set to
3, then the scape will return the cart, pole_1, and pole_2 positions. If 4,
then cart position and velocity, plus pole_1 angular position and velocity,
will be returned. Finally, if Parameters is set to 6, then the scape will re-
turn the cart position and velocity, and the pole_1 and pole_2 angular po-
sitions and velocities.

6. If {From_PId, push, Force, Parameters} message is received: The PB
scape applies the force specified in the message to the cart, and calculates
the results of the physical simulation. The response to the push are calcu-
lated for two 0.01s time steps, taking the simulation 0.02 seconds for-
ward, and then returning the scape back to waiting for the sense/push
messages again. Furthermore, the Parameters value will have the form:
{Damping_Flag, PB_Type}, where the Damping_Flag parameter speci-
fies whether the fitness function will be calculated with damping features
to prevent the rapid shaking of the cart, and where the PB_Type parame-
ter specifies whether the private scape should be used as a single pole or
double pole balancing simulator. If it is used as a single pole balancing

14.1 Pole Balancing Simulation 577

simulator, then the condition of the second pole will not affect the fitness
value, and its reaching the termination condition (falling beyond 36 de-
grees from the vertical) will not end the simulation.

UNTIL: Termination condition is reached (goal number of time steps, or one of
the boundary condition breaches).

The termination condition is considered to be any one of the following:

 The simulation has run for 30 simulated minutes, which is composed of 90000
0.02 second time steps.

 The pole has deviated 36 or more degrees from the cart’s vertical.
 The cart has left the track. The track itself is 4.8 meters long, and the cart will

start at the center, and thus be 2.4 meters away from either side. If it goes be-
yond -2.4 or 2.4 point on the axis of the track, the termination condition is
reached.

Based on this architecture, we will in the following subsection create the pri-
vate scape process, and its main loop which after receiving the push message calls
the function which does the physical simulation of the track/cart/pole system. Af-
terwards, we will create the sensors/actuators and the new morphology specifica-
tion entry in the morphology module. These will be the sensors and actuators used
by the agents to interface with this type of private scape. Finally, we will then
compile and run a quick test of this new problem, to see how well our system per-
forms.

14.1.1 Implementing the Pole Balancing Scape

For the pole balancing simulation, the process will need to keep track of the po-
sition of the cart on the track, its velocity, the angular position and velocity of both
poles, the time step the simulation is currently in, the goal time steps, and finally
the fitness accumulated by the interfacing agent. To keep track of all these values,
we will use a state record. Listing-14.1 shows the implementation of the pb_sim/2,
the pole balancing simulation scape. We will add the source code of this listing to
the scape module. The comments after every function in Listing-14.1 elaborate on
the details of its implementation.

Listing-14.1 The complete implementation of the pole balancing simulation scape.

-record(pb_state,{cpos=0,cvel=0,p1_angle=3.6*(2*math:pi()/360),p1_vel=0, p2_angle=0,
p2_vel=0, time_step=0, goal_steps=90000,fitness_acc=0}).

pb_sim(ExoSelf_PId)->
 random:seed(now()),
 pb_sim(ExoSelf_PId,#pb_state{}).

578 Chapter 14 Creating the Two Slightly More Complex Benchmarks

%pb_sim/1 is executed to initialize and startup the pole balancing simulation scape. Once exe-
cuted it creates initial #pb_state{}, and drops into the main simulation loop.

pb_sim(ExoSelf_PId,S)->
 receive
 {From_PId,sense, [Parameter]}->
 SenseSignal=case Parameter of
 cpos -> [S#pb_state.cpos];
 cvel -> [S#pb_state.cvel];
 p1_angle -> [S#pb_state.p1_angle];
 p1_vel -> [S#pb_state.p1_vel];
 p2_angle -> [S#pb_state.p2_angle];
 p2_vel -> [S#pb_state.p2_vel];
 2 -> [S#pb_state.cpos,S#pb_state.p1_angle];
 3 -> [S#pb_state.cpos,S#pb_state.p1_angle,S#pb_state.p2_angle];
 4 -> [S#pb_state.cpos, S#pb_state.cvel, S#pb_state.p1_angle,
S#pb_state.p1_vel];
 6 -> [S#pb_state.cpos, S#pb_state.cvel, S#pb_state.p1_angle,
S#pb_state.p1_vel, S#pb_state.p2_angle, S#pb_state.p2_vel]
 end,
 From_PId ! {self(),SenseSignal},
 pb_sim(ExoSelf_PId,S);
 {From_PId,push,[Damping_Flag,DPB_Flag], [F]}->
 AL = 2*math:pi()*(36/360),
 U_S=sm_DoublePole(F,S,2),
 TimeStep=U_S#pb_state.time_step,
 CPos=U_S#pb_state.cpos,
 CVel=U_S#pb_state.cvel,
 PAngle1=U_S#pb_state.p1_angle,
 PVel1=U_S#pb_state.p1_vel,
 case (abs(PAngle1) > AL) or (abs(U_S#pb_state.p2_angle)*DPB_Flag > AL)
or (abs(CPos) > 2.4) or (TimeStep >= U_S#pb_state.goal_steps) of
 true ->
 From_PId ! {self(),0,1},
 pb_sim(ExoSelf_PId,#pb_state{});
 false ->
 Fitness = case Damping_Flag of
 without_damping ->
 1;
 with_damping ->
 Fitness1 = TimeStep/1000,
 Fitness2 = case TimeStep < 100 of
 true ->
 0;
 false ->

14.1 Pole Balancing Simulation 579

 0.75/(abs(CPos) +abs(CVel) +
abs(PAngle1) + abs(PVel1))
 end,
 Fitness1*0.1 + Fitness2*0.9
 end,
 From_PId ! {self(),Fitness,0},
 pb_sim(ExoSelf_PId, U_S#pb_state{fitness_acc
=U_S#pb_state.fitness_acc+Fitness})
 end;
 {ExoSelf_PId,terminate} ->
 ok
 end.
%The pole balancing simulation scape can accept 3 types of messages, push, sense, and termi-
nate. When a sense message is received, the scape checks the Parameter value, and based on
whether the Parameters == 2, 3,4, or 6, it returns a sensory list with an appropriate number of
elements. 2 and 4 specify that the NN based agent wants a sensory signal associated with the
single pole balancing problem, with partial or full system information, respectively. 4 and 6 im-
plies that the NN wants the scape to send it sensory information associated with double pole
balancing, with partial or full system information respectively. When the scape receives the
push message, based on the message it decides on what fitness function is used (with or without
damping), the actual force to be applied to the cart, and whether the termination condition
should be based on the single pole balancing problem (DPB_Flag=0) or double pole balancing
problem (DPB_Flag=1). When the angle of the second pole is multiplied by DPB_Flag which is
set to 0, the value will always be 0, and thus it cannot trigger the termination condition of being
over 36 degrees from the vertical. When it is multiplied by DPB_Flag=1, then its actual angle is
used in the calculation of whether the termination condition is triggered or not. Once the mes-
sage is received, the scape calculates the new position of the poles and the cart after force F is
applied to it. The state of the poles/cart/track system is updated by executing the
sm_DoublePole/3 function, which performs the physical simulation calculations.

sm_DoublePole(_F,S,0)->
 S#pb_state{time_step=S#pb_state.time_step+1};
sm_DoublePole(F,S,SimStepIndex)->
 CPos=S#pb_state.cpos,
 CVel=S#pb_state.cvel,
 PAngle1=S#pb_state.p1_angle,
 PAngle2=S#pb_state.p2_angle,
 PVel1=S#pb_state.p1_vel,
 PVel2=S#pb_state.p2_vel,
 X = CPos, %EdgePositions = [-2.4,2.4],
 PHalfLength1 = 0.5, %Half-length of pole 1
 PHalfLength2 = 0.05, %Half-length of pole 2
 M = 1, %CartMass
 PMass1 = 0.1, %Pole1 mass
 PMass2 = 0.01, %Pole2 mass

580 Chapter 14 Creating the Two Slightly More Complex Benchmarks

 MUc = 0.0005, %Cart-Track Friction Coefficient
 MUp = 0.000002, %Pole-Hinge Friction Coefficient
 G = -9.81, %Gravity
 Delta = 0.01, %Timestep
 EM1 = PMass1*(1-(3/4)*math:pow(math:cos(PAngle1),2)),
 EM2 = PMass2*(1-(3/4)*math:pow(math:cos(PAngle2),2)),
 EF1 = Pmass1*PHalfLength1*math:pow(PVel1,2)*math:sin(PAngle1)+(3/4)*PMass1
math:cos(PAngle1)(((MUp*PVel1)/(PMass1*PHalfLength1))+G*math:sin(PAngle1)),
 EF2 = Pmass2*PHalfLength2*math:pow(PVel2,2)*math:sin(PAngle2)+(3/4)*PMass2
math:cos(PAngle2)(((MUp*PVel2)/(PMass1*PHalfLength2))+G*math:sin(PAngle2)),
 NextCAccel = (F - MUc*functions:sgn(CVel)+EF1+EF2)/(M+EM1+EM2),
 NextPAccel1 = -(3/(4*PHalfLength1))*((NextCAccel*math:cos(PAngle1))
+(G*math:sin(PAngle1))+((MUp *PVel1)/(PMass1*PHalfLength1))),
 NextPAccel2 = -(3/(4*PHalfLength2))*((NextCAccel*math:cos(PAngle2))
+(G*math:sin(PAngle2))+((MUp *PVel2)/(PMass2*PHalfLength2))),
 NextCVel = CVel+(Delta*NextCAccel),
 NextCPos = CPos+(Delta*CVel),
 NextPVel1 = PVel1+(Delta*NextPAccel1),
 NextPAngle1 = PAngle1+(Delta*NextPVel1),
 NextPVel2 = PVel2+(Delta*NextPAccel2),
 NextPAngle2 = PAngle2+(Delta*NextPVel2),
 U_S=S#pb_state{
 cpos=NextCPos,
 cvel=NextCVel,
 p1_angle=NextPAngle1,
 p1_vel=NextPVel1,
 p2_angle=NextPAngle2,
 p2_vel=NextPVel2
 },
 sm_DoublePole(0,U_S,SimStepIndex-1).
%sm_DoublePole/3 performs the calculations needed to keep track of the two poles and the
cart, it simulates the physical properties of the track/cart/pole system. The granularity of the
physical simulation is 0.1s, and so to get a state at the end of 0.2s, the calculation of the state is
performed twice at the 0.1s granularity. During the first execution of the physical simulation we
have the force set to the appropriate force sent by the neurocontroller. But during the second,
F=0. Thus the agent actually only applies the force F for 0.1 seconds. This can be changed to
have the agent apply the force F for the entire 0.2 seconds.

With the simulation completed, we now need a way for our agents to spawn
and interface with it. This will be done through the agent’s morphology, its sen-
sors and actuators, which we will create next.

14.1 Pole Balancing Simulation 581

14.1.2 Implementing the Pole Balancing morphology

For both sensors and actuators we will again specify the scape element to be of
type private: scape = {private, pb_sim}. For the sensor, we will set the parameters
to: [2], this parameter can then be modified to 3, 4, or 6, dependent on what test
we wish to apply the population of agents to. After every such parameters value
change, the morphology module would then have to be recompiled before use. We
could simply create multiple morphologies, for example: pole_balancing2,
pole_balancing3, pole_balancing4, and pole_balancing6, but that would not add
an advantage over changing the parameters and recompiling, since it would still
require us to use our neuroevolutionary system on different problems and thus to
change the constraints in either population_monitor or benchmarker modules, and
then recompile them still...

Listing-14.2 The pole_balancing morphology; adding the new pb_GetInput sensor and pb_Push
actuator to the morphology module.

pole_balancing(sensors)->
 [
 #sensor{name=pb_GetInput,scape={private,pb_sim},vl=2,parameters=[2]}
];
pole_balancing(actuators)->
 [
 #actuator{name=pb_SendOutput,scape={private,pb_sim},vl=1, parameters
=[no_damping,0]}
].
%Both, the pole balancing sensor and actuator, interface with the pole balancing simulation.
The type of benchmark the pole balancing simulation is used as (whether it is used as a double

Like the case with the xor_mimic morphology function, which when called re-
turns the available sensors or actuators for that particular morphology, we will in
this subsection develop the pole_balancing/1 morphology function which does the
same. Unlike the xor_mimic though, here we will also populate the parameters el-
ement of the sensor and actuator records.

Similarly, the actuator record’s parameters element is set to: [no_damping,0].
The no_damping tag specifies that the fitness function used should be the simple
one that does not take damping into account. The 0 element of the list specifies,
based on our implementation of the pb_sim, that the second pole should not be
taken into account when calculating the fitness and whether the termination condi-
tion is reached. This is achieved in: (abs(U_S#pb_state.p2_angle)*DPB_Flag >
AL) , where DPB_Flag is either 0 or 1. When set to 1, the second pole’s condi-
tion/angle is taken into account, and when 0, it is not. This is so because 0 =
0*P2_Angle, and 0 is never greater than AL which is set to 36 degrees. Listing-
14.2 shows the implementation of this new addition to the morphology module.

582 Chapter 14 Creating the Two Slightly More Complex Benchmarks

pole or a single pole balancing benchmark) depends on the sensor and actuator parameters. The
sensor’s vl and parameters specify that the sensor will request the private scape for the cart’s
position and pole’s angular position. The actuator’s parameters specify that the scape should
use no_damping type of fitness, and that since only a single pole is being used, that the termina-
tion condition associated with the second pole is zeroed out, by being multiplied by 0. When in-
stead of using 0 we use 1, the private scape will use the angular position of the second pole as
an element in calculating whether the termination condition has been reached or not.

Having specified the sensor and the actuator used by the pole_balancing mor-
phology, we now need to implement them both. The pb_GetInput sensor will be
similar to the xor_GetInput, only it will use its Parameters value in its message to
the private scape it is associated with, as shown in Listing-14.3. We add this new
sensor function to the sensor module, placing it after the xor_GetInput/3 function.

Listing-14.3 The implementation of the pb_GetInput sensor.

pb_GetInput(VL,Parameters,Scape)->
 Scape ! {self(),sense,Parameters},
 receive
 {Scape,percept,SensoryVector}->
 case length(SensoryVector)==VL of
 true ->
 SensoryVector;
 false ->
 io:format(“Error in sensor:pb_GetInput/2, VL:~p
SensoryVector:~p~n”, [VL,SensoryVector]),
 lists:duplicate(VL,0)
 end
 end.

Similarly, Listing-14.4 shows the implementation of the actuator
pb_SendOutput/3 function, added to the actuator module. It too is similar to the
xor_SendOutput/3 function, but unlike its neighbor, it sends its Parameters value
as an element of the message that it forwards to the scape. Because we usually im-
plement the morphologies and the scapes together, we can set up any type of inter-
facing, and thus be able to implement complex scapes and messaging schemes
with ease.

Listing-14.4 The implementation of the pb_SendOutput actuator.

pb_SendOutput([Output],Parameters,Scape)->
 Scape ! {self(),push,Parameters,[10*functions:sat(Output,1,-1)]},
 receive
 {Scape,Fitness,HaltFlag}->
 {Fitness,HaltFlag}

14.1 Pole Balancing Simulation 583

 end.

Though simple to implement, this new problem allows us to test the ability of
our neuroevolutionary system to evolve neurocontrollers on problems which re-
quire a greater level of complexity than the simple XOR mimicry problem. The
benchmarking of our system on this problem also allows us to compare its results
to those of other neuroevolutionary systems. Having implemented this new simu-
lation, we now move forward in running a quick test on it in the next subsection.

14.1.3 Benchmark Results

In the previous chapter we have developed the benchmarking and reporting
tools specifically to improve our ability to test new additions to the system. Thus
all we must do now is to decide which variation of the pole balancing test to apply
our system to, and then execute the benchmarker:start/1 function with the appro-
priate constraint, pmp, and experiment parameters.

Our benchmarker, on top of generating graphable data, also calculates the sim-
ple average number of evaluations from all the evolutionary runs within the exper-
iment, which is exactly the number we seek because the benchmark here is how
quickly a solution can be evolved on average using our system. Let us run 3 exper-
iments, which will only entail us to execute the benchmarker:start/1 function 3
times, each time with a different sensor and actuator specification. Thus we next
run three experiments, each with its own morphological setup:

1. The single pole, partial information, standard fitness function (without damp-
ing) benchmark:

pole_balancing(sensors)->
 [#sensor{name=pb_GetInput,scape={private,pb_sim},vl=2,parameters=[2]}];
pole_balancing(actuators)->
 [#actuator{name=pb_SendOutput,scape={private,pb_sim},vl=1, parameters
=[without_damping,0]}].

2. The double pole, partial information, standard fitness function (without damp-
ing) benchmark:

pole_balancing(sensors)->
 [#sensor{name=pb_GetInput,scape={private,pb_sim},vl=3,parameters=[3]}];
pole_balancing(actuators)->
 [#actuator{name=pb_SendOutput,scape={private,pb_sim},vl=1, parameters
=[without_damping,1]}].

3. The double pole, partial information, with damping fitness function benchmark:

584 Chapter 14 Creating the Two Slightly More Complex Benchmarks

pole_balancing(sensors)->
 [#sensor{name=pb_GetInput,scape={private,pb_sim},vl=3,parameters=[3]}];
pole_balancing(actuators)->
 [#actuator{name=pb_SendOutput,scape={private,pb_sim},vl=1, parameters
=[with_damping,1]}].

Furthermore, sometimes we wish to see just how quickly on average the
neuroevolutionary system can generate a result for a problem, at those times we
only care about the minimum number of evaluations needed to reach the solution.
In our system no matter when the termination condition is reached, it is not until
all the agents of the current generation, or all the currently active agents, have
terminated, that the evolutionary run is complete. This means that the total number
of evaluations keeps incrementing even after the goal has already been reached,
simply because the currently-still-running agents are continuing being tuned.

To solve both problems, we can allow each scape to inform the agent that it has
reached the particular goal of the problem/scape when it has done so. At this point
the agent would forward that message to the population_monitor, which could
then stop counting the evaluations by freezing the tot_evaluations value. In this
one move we allow each scape to use the extra feature of goal_reached notifica-
tion ability to be able to, on its own terms, use any fitness function, and at the
same time be able to stop and notify the agent that it has reached the particular fit-
ness goal, or solved the problem, and thus stop the evaluations accumulator from
incrementing. This will allow us to no longer need to calculate fitness goals for
every problem by pre-calculating various values (fitness goals) and setting them in
the population_monitor. This method will also allow us to deal with problems
where the fitness score is not directly related to the completion of the problem or
to the reaching of the goal, and thus cannot be used as the termination condition in
the first place. Thus, before we run the benchmarks, let’s make this small program
modification.

We must also set the pmp’s fitness goal to 90000, since with the standard,
without_damping fitness function, the 90000 fitness score represents the NN
based agent’s ability to balance a pole for 30 minutes. But what about the
with_damping simulation? In that event a neurocontroller will have different fit-
ness scores for the same number of time steps that it has balanced the pole/s, since
the fitness will be based on its effectiveness of balancing the poles as well. In the
same manner, different number of time steps of balancing the pole/s might map to
the same fitness score... This situation arises due to the fact that the more compli-
cated problems will not have a one-to-one mapping with regards to fitness scores
reached, and progress towards solving a given problem or achieving some goal.
Different such simulations and problems will have different types of fitness
scores, and using a termination condition based on a fitness goal value set in the
population_monitor, will not work. On the other hand, each simulation/problem it-
self, will have all the necessary information about the agent’s performance to de-
cide whether a goal has been reached or not.

14.1 Pole Balancing Simulation 585

Currently when the agent has triggered the scape’s stopping condition, the
scape sends back to the agent the message: {Scape_PId,0,1}, where 0 means that
it has received 0 fitness points for this last event, and 1 means that this particular
scape has reached its termination condition. The actuator does nothing with this
value but pass it to the cortex, thus if we retain the same message structure, we can
piggyback it with new functionality. We will allow each scape to also have, on top
of the standard termination conditions, the ability to check for its own goal reach-
ing condition. When that goal condition is reached, instead of sending to the ac-
tuator the original message, the scape will send it: {Scape_PId,goal_reached,1}.
The actuator does not have to be changed, its job is simply to forward this mes-
sage to the cortex.

In the cortex we modify its receive clause to check whether the Fitness score
sent to it is actually an atom goal_reached. The new receive clause is implement-
ed as follows:

{APId,sync,Fitness,EndFlag} ->
 case Fitness == goal_reached of
 true ->
 put(goal_reached,true),
 loop(Id,ExoSelf_PId,SPIds,{APIds,MAPIds},NPIds,CycleAcc,FitnessAcc,
EFAcc +EndFlag, active);
 false ->
 loop(Id,ExoSelf_PId,SPIds,{APIds,MAPIds},NPIds,CycleAcc,FitnessAcc
+Fitness, EFAcc +EndFlag, active)
 end;

We also modify the cortex’s message to the exoself when its evaluation termi-
nation condition has been triggered by the EndFlag, when the actuator sends it the
message of the form: {APId, sync, Fitness, EndFlag}. The new message the cortex
sends to the exoself is extended to include the note on whether goal_reached is set
to true or not. The new message format will be: {self(), evaluation_completed,
FitnessAcc, CycleAcc, TimeDif, get(goal_reached)}.

Reflectively, the exoself’s receive pattern is extended to receive the
GoalReachedFlag message, and to then forward it to the population_monitor, as
shown by the boldfaced source code in the following listing:

Listing-14.5 The updated exoself’s receive pattern.

loop(S)->
 receive
 {Cx_PId,evaluation_completed,Fitness,Cycles,Time,GoalReachedFlag}->
 case (U_Attempt >= S#state.max_attempts) or (GoalReachedFlag==true) of
 true ->%End training
 A=genotype:dirty_read({agent,S#state.agent_id}),

586 Chapter 14 Creating the Two Slightly More Complex Benchmarks

 genotype:write(A#agent{fitness=U_HighestFitness}),
 backup_genotype(S#state.idsNpids,S#state.npids),
 terminate_phenotype(S#state.cx_pid,S#state.spids,S#state.npids,
S#state.apids, S#state.scape_pids),
 io:format(“Agent:~p terminating. Genotype has been backed
up.~n Fitness:~p~n TotEvaluations:~p~n TotCycles:~p~n TimeAcc:~p~n”, [self(),
U_HighestFitness, U_EvalAcc,U_CycleAcc, U_TimeAcc]),
 case GoalReachedFlag of
 true ->
 gen_server:cast(S#state.pm_pid,
{S#state.agent_id, goal_reached);
 _ ->
 ok
 end,
 gen_server:cast(S#state.pm_pid,{S#state.agent_id,terminated,
U_HighestFitness});
…

handle_cast({_From,goal_reached},S)->
 U_S=S#state{goal_reached=true},
 {noreply,U_S};

handle_cast({From,evaluations,Specie_Id,AEA,AgentCycleAcc,AgentTimeAcc},S)->
 AgentEvalAcc=case S#state.goal_reached of
 true ->
 0;
 _ ->
 AEA
 end,

population_monitor by first adding to its state record the
goal_reached element, which is set to false by default, and then by adding to it a
new handle_cast clause:

Next, we update the

This cast clause sets the goal_reached parameter to true when triggered. Final-
ly, we add to all population_monitor’s termination condition recognition cases the
additional operator: “or S#state.goal_reached”, and modify the evaluations mes-
sage receiving handle_cast clause to:

This ensures that the population_monitor stops counting evaluations when the
goal_reached flag is set to true. These changes effectively modify our system, giv-
ing it the ability to use the goal_reached parameter. This entire modification is
succinctly shown in Fig-14.2.

14.1 Pole Balancing Simulation 587

Fig. 14.2 The updated goal_reached message processing capable scape, and the
goal_reached signal’s travel path: scape to actuator to cortex to exoself to popula-
tion_monitor.

This small change allows us to continue with our pole_balancing benchmarking
test. And thus we finally set the experiment’s tot_runs parameter to 50, which
makes the benchmarker run 50 evolutionary runs in total, which means that the
calculated average is based on 50 runs, which is a standard for this type of prob-
lem.

To run the first benchmark, we simply use the morphology setup listed earlier,
set the fitness_goal parameter of the pmp record to 90000, the tot_runs to 50, and
leave everything else as default. We then compile and reload everything by run-
ning polis:sync(), and execute the benchmarker:start(spb_without_damping) func-
tion, where spb_without_damping is the Id we give to this experiment, which
stands for Single Pole Balancing Without Damping.

With this setup, the benchmarker will spawn the population_monitor process,
wait for the evolutionary run to complete, add the resulting trace to the experi-
ment’s stats list, and then perform another evolutionary run. In total 50 evolution-
ary runs will comprise the benchmark. The result we are after is not the graphable
data, but the report’s average evaluations value (the average number of evalua-
tions taken to reach the goal), and its standard deviation. The results of the first
benchmark are shown in the following listing.

588 Chapter 14 Creating the Two Slightly More Complex Benchmarks

Listing-14.6 The results of the single pole balancing, partial information, without_damping,
benchmark.

3> benchmarker:start(spb_without_damping).
...
******** Traces_Acc written to file:”benchmarks/report_Trace_Acc”
Graph:{graph,pole_balancing,
 [1.1782424242424248],
 [0.16452932686308724],
 [60910.254989899],
 [24190.827695700948],
 [75696.42],
 [32275.24],
 [6.04],
 [1.232233744059949],
 [457.72],
 []}
Tot Evaluations Avg:646.78 Std:325.8772339394086

When using the non topology and weight evolving neuroevolutionary systems
(ESP, CMA-ES, and CoSyNE), the researcher must first create a topology he
knows works (or have the neuroevolutionary system generate random topologies,
rather than evolving one from another), and then the neuroevolutionary system
simply optimizes the synaptic weights to a working combination of values. But
such systems cannot be applied to previously unknown problems, or problems for
which we do not know the topology, nor its complexity and size, beforehand. For
complex problems, topology cannot be predicted, in fact this is why we use a to-
pology and weight evolving artificial neural network system, because we cannot
predict and create the topology for non-toy problems on our own, we require the
help of evolution.

It works! The results are also rather excellent, on average taking only 646 eval-
uations (though as can be seen from the standard deviation, there were times when
it was much faster). We achieved this high performance (as compared to the re-
sults of other neuroevolutionary systems) without even having taken the time to
optimize or tune our neuroevolutionary system yet. If we compare the resulting
evaluations average that we received from our benchmark (your results might dif-
fer slightly), to those done by others, for example compared to the list put together
in paper [1], we see that our system is the most efficient of the topology and
weight evolving artificial neural network systems on this benchmark. The two
faster neuroevolutionary systems ESP [2], and CoSyNE [3], do not evolve topolo-
gy. The ESP and CoSyNE systems solved the problem in 589 and 127 evaluations
respectively, while the CNE [4] and SANE [5] and NEAT [6] solved it in 724,
1212, and 1523 evaluations on average, respectively.

14.1 Pole Balancing Simulation 589

Next we benchmark our system on the second problem, the more complex dou-
ble pole balancing problem which uses a standard fitness function without damp-
ing. Listing-14.7 shows the results of the experiment.

Listing-14.7 The double pole balancing benchmark, using the without_damping fitness func-
tion.

3> benchmarker:start(spb_without_damping).
...
Graph:{graph,pole_balancing,
 [2.4315606060606063],
 [0.8808311444164436],
 [22194.480560606058],
 [15614.417335306674],
 [34476.74],
 [6285.78],
 [7.34],
 [1.4779715829473847],
 [500.0],
 []}
Tot Evaluations Avg:5184.0 Std:3595.622677645695

Finally, we run the third benchmark, the double pole balancing with partial
state information and with damping. Because we have added the goal_reached
messaging by the scapes, we can deal with the non one-to-one mapping between
the number of time steps the agent can balance the cart, and the fitness calculated
for this balancing act. Thus, we modify the pmp’s fitness_goal back to inf, letting
the scape terminate when the goal has been reached, and thus when the evaluation
run should stop (we could have done the same thing during the previous experi-
ment, rather than using the fitness goal of 90000, which was possible due to the
goal and fitness having a one-to-one mapping). The results of this experiment are
shown in Listing-14.8.

Listing-14.8 The results of running the double pole balancing with damping benchmark.

Graph:{graph,pole_balancing,
 [3.056909090909092],
 [1.3611906067001034],

Our system was able to solve the given problem in 5184 evaluations, whereas
again based on the table provided in [1], the next closest TWEANN in that table is
ESP [2], which solved it in 7374 evaluations on average. But, the DXNN system
we discussed earlier was able to solve the same problem in 2359 evaluations on
average. As we continue advancing and improving the system we’re developing
together, it too will improve to such numbers.

590 Chapter 14 Creating the Two Slightly More Complex Benchmarks

 [67318.29389102172],
 [84335.29879824212],
 [102347.17542007213],
 [11861.325171196118],
 [7.32],
 [1.5157836257197137],
 [500.0],
 []}
Tot Evaluations Avg:4792.38 Std:3834.866761127432

It works! The goal_reached feature has worked, and the average number of
evaluations our neuroevolutionary system needed to produce a result is highly
competitive to other state of the art systems as shown in Table-14.1 which quotes
the benchmark results from [1]. The DXNN system’s benchmark results are also
added to the table for comparison, with the results of our system added at the bot-
tom. Note that neither CMA-ES nor CoSyNE evolves neural topologies. These
two systems only optimize the synaptic weights of the already provided NN.

Table 14.1 Benchmark results for the pole balancing problem.

* These do not evolve topologies, but only optimize the synaptic weights

Having completed developing these two benchmarks, and having finished test-
ing our TWEANN system on the pole and double pole balancing benchmark, we
move forward and begin developing the more complex T-Maze problem.

14.2 T-Maze Simulation

The T-Maze problem is another standard problem that is used to test the ability
of a NN based system to learn and change its strategy while existing in, and inter-
acting with, a maze environment. In this problem an agent navigates a T shaped
maze as shown in Fig-14.3. At one horizontal end of the maze is a low reward,

Method Single-Pole/Incomplete state
Information

Double-Pole/Partial Information
W/O Damping

Double-Pole W/
Damping

RWG 8557 415209 1232296
SANE 1212 262700 451612
CNE* 724 76906* 87623*
ESP 589 7374 26342
NEAT - - 6929
CMA-ES* - 3521* 6061*
CoSyNE* 127* 1249* 3416*
DXNN Not Performed 2359 2313
OurSystem 647 5184 4792

14.2 T-Maze Simulation 591

and at another a high reward. The agent is a simulated robot which navigates the
maze. Every time the robot crashes into a wall or reaches one of the maze’s ends,
its position is reset to the start of the maze. The whole simulation run (agent is al-
lowed to navigate the maze until it either finds the reward and its position resets to
base, or crashes into a wall and its position is reset to base) lasts X number of
maze runs, which is usually set to 100. At some random time during those 100
maze runs, the high and low reward positions are swapped. The goal is for the
agent to gather as many reward points as possible. Thus, if the agent has been
reaching the high reward end of the maze, and suddenly there was a switch, the
best strategy is for the agent when it has reached the location of where previously
there was a high reward, is to realize that it now needs to change its strategy and
always go to the other side of the maze, for the remainder of the simulation. To do
this, the agent must remember what reward it has picked up and on what side, and
change its traveling path after noticing that the rewards have been switched, which
is most easily done when some of the agent’s neurons are plastic.

Fig. 14.3 The T-Maze setup.

We will create a simplified version of the T-Maze problem. It is used widely
[6,7], and it does not require us to develop an entire 2d environment and robot
simulation (which we will do in Chapter-18, when we create an Artificial Life
simulation). Our T-Maze will have all the important features of the problem, but
will not require true navigation in 2d space. We will create a discrete version of
the T-Maze, as shown in Fig-14.4.

592 Chapter 14 Creating the Two Slightly More Complex Benchmarks

Fig. 14.4 A discrete version of the T-Maze simulation.

The T-Maze will be contained in a private scape, and the movement and senses
will, as in the previous simulation, be done through the sending and receiving of
messages. Because we will create a discrete version of the maze, we can simulate
the whole maze by simply deciding on the discrete length of each section of the
corridor, and what the agent will receive as its sensory signals when in a particular
section of the maze. The agent will use a combination of the following two sen-
sors:

1. distance_sensor: A laser distance sensor pointing forward, to the left side, and
to the right side, with respect to the simulated robot’s direction. Since the maze
is self contained and closed, the sensors will always return a distance. When
traveling down the single dimensional corridor, the forward sensor will return
the distance to the wall ahead, and the side distance sensors will return 0, since
there is no place to move sideways. When the agent reaches an intersection, the
side range sensors will return the distances to the walls on the side, thus the

The agents traveling through the maze will be able to move forward, and turn
left or right, but there will be no width to the corridors. The corridors will have a
certain discrete length, and the agent will see forward in a sense that its range sen-
sor will measure the distance to the wall ahead, and its side sensors will measure a
distance to the sides of the “corridor” it is in, which when traveling down a single
dimensional corridor will be 0, yet when reaching the T intersection, will show
that it can turn left or right. The turns themselves will be discrete 90 degree turns,
thus allowing the agent to turn left or right, and continue forward to gather the re-
ward at the end of the corridor. This version of the T-Maze though simple, still re-
quires the agent to solve the same problem as the non discrete Maze. In the dis-
crete version, the agent must still remember where the reward is, evolve an ability
to move down the corridors and turn and move in the turned direction where there
is space to move forward, and finally, remember on which side of the maze it last
found the highest reward.

14.2 T-Maze Simulation 593

agent can decide which way to turn. If the agent has reached a dead end, then
both the forward facing, and the side facing range sensors will return 0, which
will require the agent to turn, at which point it can start traveling in the other
direction.

2. reward_consumed: The agent needs to know not only where the reward is, but
how large it is, since the agent must explore the two rewards, and then for the
remainder of the evaluation go towards the larger reward. To do this, the agent
must have a sensory signal which tells it how large the reward it just consumed
is. This sensor forwards to the NN a vector of length one: [RewardMagnitude],
where RewardMagnitude is the magnitude of the actual reward.

The agent must also be able to move around this simplified, discrete labyrinth.
There are different ways that we could allow the NN based agent to control the
simulated robot within the maze. We could create an actuator that uses a vector of
length one, where this single value is then used to decide whether the agent is to
turn left (if the value is < -0.33), or turn right (if the value is > 0.33) or continue
moving forward (if the value is between -0.33 and 0.33). Another type of actuator
could be based on the differential drive, similar to one used by the Khepera [5] ro-
bot (a small puck shaped robot). The differential_drive actuator would have as in-
put a vector of length 2: [Val1,Val2], where Val1 would control the rotation speed
of the left wheel, and Val2 would control the rotation speed of the right wheel. In
this manner if both wheels are spinning backwards (Val1 < 0, and Val2 < 0), the
simulated robot moves backwards, if both spin forward with the same speed, then
the robot moves forward. If they spin at different speeds, the robot either turns
left or right depending on the angular velocities of the two wheels. Finally, we
could create an actuator that accepts an input vector of length 2: [Val1,Val2],
where Val1 maps directly to the simulated robot’s velocity on the Y axis, and
Val2 maps to the robot’s velocity on the X axis. This would be a simple transla-
tion_drive actuator, and the simulated robot in this scenario would not be able to
rotate. The inability to rotate could be alleviated if we add a third element to the
vector, which we could than map to the angular velocity value, which would dic-
tate the robot’s rotation clockwise or counterclockwise, dependent on that value’s
sign. Or Val1 could dictate the robot’s movement forward/backward, and Val2
could dictate whether the robot should turn left, right, or not at all. There are many
ways in which we could let the NN control the movement of the simulated robot.
For our discrete version of the T-Maze problem, we will use the same movement
control method that was used in paper [7] which tested another NN system on the
discrete T-Maze problem. This actuator accepts an input from a single neuron, and
uses this accumulated vector: [Val], to then calculate whether to move forward,
turn counterclockwise and move forward in that direction, or turn clockwise and
then move forward in that direction. If Val is between -0.33 and 0.33, the agent
moves one step forward, if it is less than -0.33, the agent turns counterclockwise
and then moves one step forward, and if Val is greater than 0.33, the agent turns
clockwise and moves one step forward in the new direction.

594 Chapter 14 Creating the Two Slightly More Complex Benchmarks

Due to this being a discrete version of the maze, it can easily be represented as
a state machine, or simply as a list of discrete sections. Looking back at Fig-14.4,
we can use a list to keep track of all the sensor responses for every position and
orientation within the maze. In the standard discrete T-Maze implementation used
in [7], there are in total 4 sectors. The agent starts at the bottom of the T-Maze lo-
cated at {X=0,Y=0}, it can then move up to {0,1}, which is an intersection. At this
point the agent can turn left and move a step forward to {-1,1}, or turn right and
move a step forward to {1,1}.

If we are to draw the maze on a Cartesian plane, the agent can be turned to face
towards the positive X axis, at 0 degrees, the positive Y axis at 90 degrees, the
negative X axis at 180 degrees, and finally the negative Y axis, at 270 degrees.
And if the maze is drawn on the Cartesian plane, then each sector’s Id can be its
coordinate on that plane. With the simulated robot in this maze being in one of the
sectors (on one of the coordinates {0,0},{0,1},{1,1},or {-1,1}), and looking in one
particular direction (at 0, 90, 180, or 270 degrees), we can then perfectly define
what the sensory signals returned to the simulated robot should be. But before we
can do that, we need a format for how to store the simulated robot’s location,
viewing direction, and how it should perceive whether it is looking at a wall, or at
a reward located at one of the maze’s ends. The superposition of the T-Maze on a
Cartesian plane, with a few examples of

Fig. 14.5 Discrete T-Maze, and the sensory signals the simulated robot receives at various
locations and orientations. The agent is shown as a gray circle, with the arrow pointing in
the direction the simulated robot is looking, its orientation.

We will let each discrete sector keep track of the following:

 id: It’s own id, its Cartesian coordinate.

the agent’s position/orientation, and what
sensory signals it receives there, is shown in Fig-14.5.

14.2 T-Maze Simulation 595

 r: The reward the agent gets for being in that sector. There will be only two
sectors that give reward, the two horizontal endings of the “T”. This reward
will be sensed by the reward_sensor.

We will call the record containing all the sector information of a single sector:
dtm_sector, which stands for Discrete T-Maze Sector. An example of the sector
located at coordinate [0,0], and part of the maze shown in the above figure, is as
follows:

#dtm_sector{id=[0,0],description=[{0,[],[1,0,0]},{90,[0,1],[0,1,0]},{180,[],[0,0,1]},{270,[],[0,0,
0]}],r=0}

Let’s take a closer look at this sector, located at [0,0], and on which the
agent is for example turned at 90 degrees, and thus looking towards the positive Y
axis. For this particular orientation when the agent requests sensory signals, they
will come from the following tuple: {90,[0,1],[0,1,0]}, also highlighted in the
above record. The first value, 90, is the orientation for which the follow-up senso-
ry information is listed. The [0,1] is the coordinate of the sector to which the agent
will move if it decides to move forward at this orientation. The vector [0,1,0] is
the range sensory signal, and is fed to the agent’s range sensor when requested. It
states that on both sides, the agent’s left and right, there are walls right next to it,
and the distance to them is 0, and that straight ahead the wall does not come up for
1 sector. The value r=0 states that the current sector has no reward, and this is the
value fed to the agent’s reward sensor.

Thus this allows the agent to move around the discrete maze, travel from one
sector to another, where each sector has all the information needed when the
agent’s sensors send a request for percepts. These sectors will all be contained in a
single record’s list, used by the private scape which represents the entire maze.

description: This will be the list that contains all the sensory information
available when the agent is in that particular sector. In this simulation it will
contain the range sensory signals. This means that each section will contain 4
sets of range sensory signals, one each for when the simulated robot is turned
and is looking at 0, at 90, at 180, and at 270 degrees in that sector. Each of the
range signals appropriate for the agent’s particular orientation can then be ex-
tracted through a key, where the key is the agent’s orientation in degrees (one
of the four: 0, 90, 180, or 270). The complete form of the description list is as
follows: [{0, NextSector, RangeSense}, {90, NextSector, RangeSense}, {180,
NextSector, RangeSense}, {270, NextSector, RangeSense}]. The NextSector pa-
rameter specifies what is the coordinate of the next sector that is reachable from
the current sector, given that the agent will move forward while in the current
orientation. Thus, if for example the agent’s forward is at 90 degrees, looking
toward the positive Y axis on the Cartesian coordinate, and its actuator speci-
fies that it should move forward, then we look at the 90 degree based tuple, and
move the agent to the NextSector of that tuple.

596 Chapter 14 Creating the Two Slightly More Complex Benchmarks

We will call the record for this private scape: dtm_state, and it will have the fol-
lowing default format:

-record(dtm_state,{agent_position=[0,0],agent_direction=90,sectors=[],tot_runs=60,
run_index=0, switch_event, fitness_acc=0}).

Let’s go through each of this record’s elements and discuss its meaning:

 agent_position: Keeps track of the agent’s current position, the default is [0,0],
the agent’s starting position in the maze.

 agent_direction: Keeps track of the agent’s current orientation, the default is
90 degrees, where the agent is looking down the maze, towards the positive Y
axis.

 sectors: This is a list of all the sectors: [SectorRecord1...SectorRecordN], each
of which is represented by the dtm_sector record, and a list of which will repre-
sent the entire T-Maze.

 tot_runs: Sets the total number of maze runs (trials) the agent performs per
evaluation.

 run_index: This parameter keeps track of the current maze run index.
 switch_event: Is the run index during which the large and small reward loca-

tions are switched. This will require the agent, if it wants to continue collecting
the larger reward, to first go to the large reward’s original position, at which it
will now find the smaller reward, figure out that the location of the large re-
ward has changed, and during the following maze run go to the other side of
the maze to collect the larger reward.

 switched: Since the switch of the reward locations needs to take place only
once during the entire tot_runs of maze runs, we will set this parameter to false
by default, and then to true once the switch is made, so that this parameter can
then be used as a flag to ensure that no other switch is performed for the re-
mainder of the maze runs.

 step_index: If we let the agents travel through the maze for as long as they
want, there might be certain phenotypes that simply spin around in one place,
although not possible with our current type of actuator, which requires the
agent to take a step every time, either forward, to the right, or to the left. To
prevent such infinite spins when we decide to use another type of actuator, we
will give each agent only a limited number of steps. It takes a minimum of 2
steps to get from the base of the maze to one of the rewards, 1 step up the main
vertical hall, and 1 turn/move step to the left or right. With an eye to the future,
we will give the agents a maximum of 50 steps, after which the maze run ends
as if the agent crashed into a wall. Though not useful in this implementation, it
might become useful when you extend this maze and start exploring other actu-
ators, sensors...

As with the pole balancing, this private scape will allow the agent to send it
messages requesting sensory signals, either all signals (range sense, and the just

14.2 T-Maze Simulation 597

acquired reward size sense) merged into a single vector, or one sensory signal vec-
tor at a time. And it will allow the agent to send it signals from its actuators, dic-
tating whether it should move or rotate/move the simulated robot.

and orientation, and be able to act on the messages sent from its sensor and actua-
tor, and based on them control the agent’s avatar. The T-Maze will start with the
large and small rewards at the two opposite sides of the T-Maze, and then at some
random maze run to which the switch_event is set (different for each evaluation),
the large and small reward locations will flip, and require for the agent to figure
this out and go to the new location if it wants to continue collecting the larger of
the two rewards. As per the standard T-Maze implementation, the large reward is
worth 1 point, and the small reward is worth 0.2 points. If at any time the agent
hits a wall, by for example turn/moving when located at the base of the maze, and
thus hitting the wall, the maze run ends and the agent is penalized with -0.4 fitness
points, is then re-spawned at the base of the maze, and the run_index is increment-
ed. If the agent collects the reward, the maze run ends and the agent is re-spawned
at the base of the maze, with the run_index incremented. Finally, once the agent
has finished tot_runs number of maze runs, the evaluation of the agent’s fitness
ends, at which point the exoself might perturb the NN’s synaptic weights, or end
the tuning run... To ensure that the agents do not end up with negative fitness
scores when setting the tot_runs to 100, we will start the agents off with 50 fitness
points. Thus an agent that always crashes will have a minimum fitness score of 50
– 100*0.4 = 10.

Finally, though we will implement the T-Maze scenario where the agent gets to
the reward at one of the maze’s ends, and is then teleported back to the base of the
maze for another maze-run, there are other possible implementations and scenari-
os. For example, as is demonstrated in Fig-14.6, we could also extend the maze to
have teleportation portals located at {-2,1} and {2,1}, through which the agent has
to go after gathering the food, so that it is teleported back to the base to reset the
rewards. Or we could require it to have to travel all the way back to the base man-
ually, though we would need to change the simple actuator so that it can rotate in
place without crashing into walls. Finally, we could also create the T-Maze which
allows for both options, teleportation and manual travel. All, the 3 extended T-
Mazes, and 1 default T-Maze which we will implement, are shown in the follow-
ing figure.

Thus, putting all of this together: The scape will keep track of the agent’s position

Fig. 14.6 The various possible scenarios for the T-Maze after the agent has acquired the
reward.

Having decided on the architecture, and having created Fig-14.5 and Fig-14.6d
to guide us in the designing and setting the T-Maze system and each of its sectors,
we can now move forward to the next subsection and implement this private T-
Maze scape, and the needed sensors and actuators to interface with it.

14.2.1 T-Maze Implementation

Through Fig-14.5 we can immediately map the maze’s architecture to its im-
plementation shown in Listing-14.9. For the implementation we first define the
two new records needed by this new scape: the dtm_sector and dtm_state records.
The function dtm_sim/1 prepares and starts up the maze, dropping into the pro-
cess’s main loop. In this main loop the scape process can accept requests for sen-
sory signals, and accept signals from the actuators and return to them a message
containing the fitness points acquired. The sensors we will use will poll the private
scape for an extended range sensor, which is a vector of length 4, and contains the
signals from the agent’s range sensor, appended with the reward value in the cur-
rent maze sector: [Reward,L,F,R], where Reward is the value of the actual reward,
L is the range to the left wall, F is the range to the wall in front, and R is the range
to the wall on the right.

598 Chapter 14 Creating the Two Slightly More Complex Benchmarks

14.2 T-Maze Simulation 599

Listing-14.9 The implementation of the Discrete T-Maze scape.

-record(dtm_sector,{
 id,
 description=[],
 r
}).

-record(dtm_state,{
 agent_position=[0,0],
 agent_direction=90,
 sectors=set_tmaze_sectors(),
 tot_runs=100,
 run_index=0,
 switch_event=35+random:uniform(30),
 switched=false,
 step_index=0,
 fitness_acc=50
}).

dtm_sim(ExoSelf_PId)->
 io:format(“Starting dtm_sim~n”),
 random:seed(now()),
 dtm_sim(ExoSelf_PId,#dtm_state{}).

dtm_sim(ExoSelf_PId,S) when (S#dtm_state.run_index == S#dtm_state.switch_event) and
(S#dtm_state.switched==false)->
 Sectors=S#dtm_state.sectors,
 SectorA=lists:keyfind([1,1],2,Sectors),
 SectorB=lists:keyfind([-1,1],2,Sectors),
 U_SectorA=SectorA#dtm_sector{r=SectorB#dtm_sector.r},
 U_SectorB=SectorB#dtm_sector{r=SectorA#dtm_sector.r},
 U_Sectors=lists:keyreplace([-1,1],2,lists:keyreplace([1,1],2,Sectors, U_SectorA),
U_SectorB),
 scape:dtm_sim(ExoSelf_PId,S#dtm_state{sectors=U_Sectors, switched=true});
dtm_sim(ExoSelf_PId,S)->
 receive
 {From_PId,sense,Parameters}->
 APos = S#dtm_state.agent_position,
 ADir = S#dtm_state.agent_direction,
 Sector=lists:keyfind(APos,2,S#dtm_state.sectors),
 {ADir,NextSec,RangeSense} = lists:keyfind(ADir,1, Sec-
tor#dtm_sector.description),
 SenseSignal=case Parameters of
 [all] ->

600 Chapter 14 Creating the Two Slightly More Complex Benchmarks

 RangeSense++[Sector#dtm_sector.r];
 [range_sense]->
 RangeSense;
 [reward] ->
 [Sector#dtm_sector.r]
 end,
 From_PId ! {self(),percept,SenseSignal},
 scape:dtm_sim(ExoSelf_PId,S);
 {From_PId,move,_Parameters,[Move]}->
 APos = S#dtm_state.agent_position,
 ADir = S#dtm_state.agent_direction,
 Sector=lists:keyfind(APos,2,S#dtm_state.sectors),
 U_StepIndex = S#dtm_state.step_index+1,
 {ADir,NextSec,RangeSense} = lists:keyfind(ADir,1,
Sector#dtm_sector.description),
 if
 (APos == [1,1]) or (APos == [-1,1]) ->
 Updated_RunIndex=S#dtm_state.run_index+1,
 case Updated_RunIndex >= S#dtm_state.tot_runs of
 true ->
 From_PId ! {self(), S#dtm_state.fitness_acc
+Sector#dtm_sector.r, 1},
 dtm_sim(ExoSelf_PId,#dtm_state{});
 false ->
 From_PId ! {self(),0,0},
 U_S = S#dtm_state{
 agent_position=[0,0],
 agent_direction=90,
 run_index=Updated_RunIndex,
 step_index = 0,
 fitness_acc = S#dtm_state.fitness_acc
+Sector#dtm_sector.r
 },
 dtm_sim(ExoSelf_PId,U_S)
 end;
 Move > 0.33 -> %clockwise
 NewDir=(S#dtm_state.agent_direction + 270) rem 360,
 {NewDir,NewNextSec,NewRangeSense} =
lists:keyfind(NewDir, 1, Sector#dtm_sector.description),
 U_S = move(ExoSelf_PId,From_PId,S#dtm_state{
agent_direction =NewDir},NewNextSec,U_StepIndex),
 dtm_sim(ExoSelf_PId,U_S);
 Move < -0.33 -> %counterclockwise
 NewDir=(S#dtm_state.agent_direction + 90) rem 360,

14.2 T-Maze Simulation 601

 {NewDir,NewNextSec,NewRangeSense} =
lists:keyfind(NewDir, 1, Sector#dtm_sector.description),
 U_S = move(ExoSelf_PId,From_PId,S#dtm_state{
agent_direction=NewDir},NewNextSec,U_StepIndex),
 dtm_sim(ExoSelf_PId,U_S);
 true -> %forward
 move(ExoSelf_PId,From_PId,S,NextSec,U_StepIndex)
 end;
 {ExoSelf_PId,terminate} ->
 ok
 end.
% The dtm_sim/2 function generates a simulated discrete T-Maze scape, with all the sensory
information and the maze architecture specified through a list of sector records. The scape can
receive signals from the agent’s sensor, to which it then replies with the sensory information,
and it can receive the messages from the agent’s actuator, which it uses to move the agent’s av-
atar around the maze.

 move(ExoSelf_PId,From_PId,S,NextSec,U_StepIndex)->
 case NextSec of
 [] -> %wall crash/restart_state
 Updated_RunIndex = S#dtm_state.run_index+1,
 case Updated_RunIndex >= S#dtm_state.tot_runs of
 true ->
 From_PId ! {self(),S#dtm_state.fitness_acc-0.4,1},
 dtm_sim(ExoSelf_PId,#dtm_state{});
 false ->
 From_PId ! {self(),0,0},
 U_S = S#dtm_state{
 agent_position=[0,0],
 agent_direction=90,
 run_index=Updated_RunIndex,
 step_index = 0,
 fitness_acc = S#dtm_state.fitness_acc-0.4
 },
 dtm_sim(ExoSelf_PId,U_S)
 end;
 _ -> %move
 From_PId ! {self(),0,0},
 U_S = S#dtm_state{
 agent_position=NextSec,
 step_index = U_StepIndex
 },
 dtm_sim(ExoSelf_PId,U_S)
 end.
%The move/5 function accepts as input the State S of the scape, and the specification of where

602 Chapter 14 Creating the Two Slightly More Complex Benchmarks

the agent wants to move its avatar next, NextSec. The function then determines whether that
next sector exists, or whether the agent will hit a wall if it moves in its currently chosen direc-
tion.

set_tmaze_sectors()->
 Sectors = [
 #dtm_sector{id=[0,0],description=[{0,[],[1,0,0]},{90,[0,1],[0,1,0]},{180,[],[0,0,1]},
{270,[], [0,0,0]}],r=0},
 #dtm_sector{id=[0,1],description=[{0,[1,1],[0,1,1]},{90,[],[1,0,1]},{180,[-1,1],
[1,1,0]}, {270, [0,0], [1,1,1]}],r=0},
 #dtm_sector{id=[1,1],description=[{0,[],[0,0,0]},{90,[],[2,0,0]},{180,[0,1],[0,2,0]},
{270,[], [0,0,2]}],r=0.2},
 #dtm_sector{id=[-1,1],description=[{0,[0,1],[0,2,0]},{90,[],[0,0,2]},{180,[],[0,0,0]},
{270,[],[2,0,0]}],r=1}
].

With the T-Maze implemented, we now need to develop the complementary
sensor and the actuator. For the sensor, since the agent needs all the information
appended: sensory vectors from the range_sensor, and the reward sensor, com-
bined into a single vector, we will create a single sensor which will contain the in-
formation from both of these sensors. What sensory signal the scape sends back to
the agent’s sensor will be defined by the sensor’s parameter message. The actuator
will simply forward the NN based agent’s output to the discrete T-Maze process,
which will then interpret the signal as turning left and moving forward 1 step,
turning right and moving forward 1 step, or just moving forward 1 step. We first
create the morphology, which follows the same format as the one we created for
the pole_balancing morphology. This morphology we will call discrete_tmaze,
with its implementation shown in Listing-14.10, and which we add to the mor-
phology module.

Listing-14.10 The discrete_tmaze morphology specification.

discrete_tmaze(sensors)->
 [
 #sensor{name=dtm_GetInput,scape={private,dtm_sim},vl=4,parameters=[all]}
];
discrete_tmaze(actuators)->
 [
 #actuator{name=dtm_SendOutput,scape={private,dtm_sim},vl=1,parameters=[]}
].

% The set_tmaze_sectors/0 function returns to the caller a list of sectors representing the T-
Maze. In this case, there are 4 such sectors, the vertical sector, the two horizontal sectors,
and the cross section sector.

14.2 T-Maze Simulation 603

Similarly, the sensor’s implementation is shown in Listing-14.11, which we
add to the sensor module.

Listing-14.11 The dtm_GetInput sensor implementation.

dtm_GetInput(VL,Parameters,Scape)->
 Scape ! {self(),sense,Parameters},
 receive
 {Scape,percept,SensoryVector}->
 case length(SensoryVector)==VL of
 true ->
 SensoryVector;
 false ->
 io:format(“Error in sensor:dtm_GetInput/3, VL:~p
SensoryVector:~p~n”, [VL,SensoryVector]),
 lists:duplicate(VL,0)
 end
 end.

Finally, the actuator implementation is shown in Listing-14.12, which we add it
to the actuator module.

Listing 14.12 The dtm_SendOutput actuator implementation.

dtm_SendOutput(Output,Parameters,Scape)->
 Scape ! {self(),move,Parameters,Output},
 receive
 {Scape,Fitness,HaltFlag}->
 {Fitness,HaltFlag}
 end.

And with that we’ve completely developed all the parts of the discrete T-Maze
benchmark. We’ve created the actual private scape that represents the maze and in
which an agent can travel. And we created the complementary morphology, with
its own sensor and actuator set, used to interface with the T-Maze scape. With this
particular problem/benchmark, we will now be able to test whether our topology
and weight evolving artificial neural network system is able to evolve NN based
agents which can perform complex navigational tasks, evolve agents which have
memory and can make choices based on it, and even learn when the neurons with-
in the tested NN have plasticity.

604 Chapter 14 Creating the Two Slightly More Complex Benchmarks

14.2.2 Benchmark Results

Let’s run a quick test of our system by applying it to our newly developed
problem. Though I do not expect our neuroevolutionary system to evolve an agent
capable of effectively solving the problem at this stage, we still need to test
whether the new scape, morphology, sensor, and actuator, are functional. Before
we run the benchmark, let us figure out what fitness score value represents that the
problem has been solved.

An evaluation is composed of 100 total maze runs, and sometime during the
midpoint, between run 35 and 65, the high and low rewards are flipped. In this
implementation, we set the switch_event to occur on the run number:
35+random:uniform(30). It will take at least one wrong trip to the reward to fig-
ure out that its position has been changed. Also, we should expect that eventually,
evolution will create NNs that always first go to the maze corner located at [1,1],
which holds the high reward before it is flipped.

With this out of the way, we now set the Morphology element in the
benchmarker module within the ?INIT_CONSTRAINTS macro, to discrete_tmaze.
We then set generation limit to inf, and evaluations_limit to 5000, in the pmp rec-
ord. Finally, we run polis:sync() to recompile and load everything, then start the
polis, and then finally execute benchmarker:start(dtm_test), as shown in Listing-
14.3.

Listing-14.3 The results of running the T-Maze benchmark.

Graph:{graph,discrete_tmaze,

So then, the maximum possible score achievable in this problem, a score repre-
senting that the problem has been solved, is: 99*1 + 1*0.2 + 50 = 149.2, which
represents an agent that first always goes to the right corner, at some point it goes
there and notices that the reward is now small (0.2 instead of 1), and thus starts
going to the [-1,1] corner. This allows the agent to achieve 99 high rewards, and 1
low reward. A score which represents that the agent evolved to always go to
{1,1}, is at most: 65*1 + 35*0.2 + 50 = 122, which is achieved during the best
case scenario, when the reward is flipped on the 65th count, thus allowing the
agent to gather high reward for 65 maze runs, and low reward for the remaining 35
maze runs. The agent will perform multiple evaluations, during some evaluations
the reward switch event will occur early, and every once in a while it will occur on
the 65th maze run, which is the latest time possible. During that lucky evaluation,
the agent can reach 122 fitness points by simply not crashing and always going to
the {1,1} side. The agent can accomplish this by first having: 0.33> Output >-
0.33, which will make the avatar move forward, and during the second step have
Output > 0.33, which will make the avatar turn right and move forward to get the
reward. Finally, the smallest possible fitness is achieved when the agent always
crashes into the wall: 50 – 100*0.4 = 10.

14.2 T-Maze Simulation 605

 [1.1300000000000001,1.12,1.195,1.1816666666666666,
 1.1633333333333333,1.156111111111111,1.2322222222222223,
 1.1400000000000001,1.1766666666666665,1.1800000000000002],
 [0.10535653752852737,0.11661903789690603,0.10234744745229357,
 0.10026354161796684,0.10214368964029706,0.08123088569087163,
 0.13765675688483067,0.11575836902790224,0.1238726945070803,
 0.092736184954957],
 [111.38000000000011,115.31900000000012,112.4590000000001,
 114.4511111111112,112.8790000000001,112.6335555555556,
 112.13066666666677,111.12500000000009,110.68722222222232,
 114.57700000000014],
 [9.305813236896594,6.245812917467183,6.864250796700242,
 8.069048898318606,8.136815662374111,9.383282426018074,
 7.888934134455533,9.98991266228088,9.41834002503416,
 8.867148978110151],
 [122.0000000000001,122.0000000000001,122.0000000000001,
 122.0000000000001,122.0000000000001,122.0000000000001,
 122.0000000000001,122.0000000000001,122.0000000000001,
 122.0000000000001],
 [10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115],
 [8.1,8.8,9.1,8.9,8.0,7.75,8.1,7.65,7.9,7.8],
 [0.8888194417315588,1.2884098726725124,0.8306623862918073,
 0.7681145747868607,0.8366600265340756,0.8874119674649424,
 0.9433981132056604,0.7262919523166975,1.57797338380595,
 1.3638181696985856],
 [500.0,500.0,500.0,500.0,500.0,500.0,500.0,475.0,500.0,500.0],
 []}
Tot Evaluations Avg:5083.75 Std:53.78835840588556

We are not interested in the “Tot Evaluations Avg” value, since the benchmark
was not set up to use the goal_reached feature. But from the graph printout we do
see the score 122.00, boldfaced. I’ve boldfaced the list showing the highest fit-
ness scores achieved amongst all the evolutionary runs. Though as we guessed, the
system did not produce a solution (which requires plasticity as we will see in the
next chapter), it has rapidly (within the first 500 evaluations), produced the score
of 122, which means that agents learned to always navigate to the right corner.

It is always a good idea to at least once double check and printout all the in-
formation produced within the scape, following it in the console, and manually
analyzing it to check for bugs. We will do that just this once, following a single
extracted agent, and the signals its sensors acquire and its actuators produce. First,
we run the function population_monitor:test() with the same parameters we started
the benchmarker until a fit agent is evolved. We then add the line:

606 Chapter 14 Creating the Two Slightly More Complex Benchmarks

io:format(“Position:~p SenseSignal:~p “,[Apos,SenseSignal]),

And lines:

timer:sleep(1000),
io:format(“Move:~p StepIndex:~p RunIndex:~p~n”, [Move,U_StepIndex,
S#dtm_state.run_index]),

To the receive sense and move pattern matchers, respectively. We then extract
the evolved fit agent, and execute the function: exoself:start(AgentId,void) to ob-
serve the path the agent takes. A short console printout I saw when performing
these steps is shown in Listing-14.4. The console printout shows the agent’s start-
ing moves, up to the point when the position of the rewards was switched, and a
few steps afterwards.

Listing-14.4 Console printout of a champion agent’s maze navigation.

Starting dtm_sim
Position:[0,0] SenseSignal:[0,1,0,0] <0.5846.1>
Move:4.18876787545547e-15 StepIndex:1 RunIndex:0
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:0
Position:[1,1] SenseSignal:[0,0,0,1] Move:0.011886120521166272 StepIndex:3 RunIndex:0
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.18876787545547e-15 StepIndex:1 RunIndex:1
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:1
Position:[1,1] SenseSignal:[0,0,0,1] Move:0.011886120521166272 StepIndex:3 RunIndex:1
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.18876787545547e-15 StepIndex:1 RunIndex:2
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:2
Position:[1,1] SenseSignal:[0,0,0,1] Move:0.011886120521166272 StepIndex:3 RunIndex:2
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.18876787545547e-15 StepIndex:1 RunIndex:3
...
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.18876787545547e-15 StepIndex:1 RunIndex:38
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:38
Position:[1,1] SenseSignal:[0,0,0,1] Move:0.011886120521166272 StepIndex:3 RunIndex:38
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.1887678754555e-15 StepIndex:1 RunIndex:39
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:39
Position:[1,1] SenseSignal:[0,0,0,0.2] Move:0.837532377697202 StepIndex:3 RunIndex:39
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.1887678754555e-15 StepIndex:1 RunIndex:40
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:40
Position:[1,1] SenseSignal:[0,0,0,0.2] Move:0.837532377697202 StepIndex:3 RunIndex:40
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.18876787545547e-15 StepIndex:1 RunIndex:41
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:41
Position:[1,1] SenseSignal:[0,0,0,0.2] Move:0.837532377697202 StepIndex:3 RunIndex:41
...

exoself:start({7.513656492058022e-10,agent},void).

14.3 Summary & Discussion 607

14.3 Summary & Discussion

In this chapter we built two new problems to benchmark and test our
neuroevolutionary system on. We built the Double Pole Balancing (DPB) simula-
tion, and the Discrete T-Maze (DTM) simulation. We created different versions of
the pole balancing problem, the single pole balancing with and without damping,
and with and without full system state information, and the double pole balancing
with and without damping, and with and without full system state information.
The complexity of solving the pole balancing problem grows when we increase
the number of poles to balance simultaneously, when we remove the velocity in-
formation and thus require the NN based agent to derive it on its own, and when
we use the damping based fitness function instead of the standard one. We also
created a discrete version of the T-Maze navigation problem, where an agent must
navigate a T shaped maze to collect a reward located at one of the horizontal maze
ends. In this maze there are two rewards, located at the opposite ends of the maze,
one large and one small, and their location is switched at a random point during
the 100 maze runs in total. This requires the agent to remember where the large
reward was last time, explore that position, find that the reward is now small, and
during the remaining maze runs navigate to the other side of the maze to continue
collecting the large reward. This problem can be further expanded by changing the
fitness function used, and by requiring the agent to collect the reward and then re-
turn to the base of the maze, rather than being automatically teleported back as is
the case with our current implementation. Furthermore, we could expand the T-
Maze into a Double T-Maze, with 4 corners where the reward can be collected,
and thus requiring the agent to remember more navigational patterns and reward
locations.

Based on our benchmark, the system we’ve built thus far has performed very
well on the DPB problem, with its results being higher than those of other Topol-
ogy and Weight Evolving Artificial Neural Networks (TWEANN), as was seen
when the results we achieved were compared to the results of such systems refer-
enced from paper [1]. Yet still the performance was not higher than that of
DXNN, because we have yet to tune our system. When we applied our TWEANN
to the T-Maze Navigation problem, it evolved NNs that were not yet able to
change their strategy based on their experience. Adding plasticity in the next chap-
ter will further expand the capabilities of the evolved NNs, giving us a chance to

I’ve boldfaced the very first maze run, where we see the agent taking the steps
from [0,0] to [0,1] to [1,1], and receiving the reward 1. Then we fast-forward and
see that during the RunIndex:39, the reward has been switched. We know this
because when the agent gets to [1,1] on that run, the reward is a mere 0.2 now. On
the RunIndex: 40, the agent still goes to this same location, indicating it has not
learned, and it has not evolved the ability to change its strategy.

608 Chapter 14 Creating the Two Slightly More Complex Benchmarks

again apply our system to this problem, and see that the performance improves,
and allows the agents to achieve perfect scores.

Having a good set of problems in our benchmark suit will allow us to add and
create features that we can demonstrate to improve the system’s generalization
abilities and general performance. The two new problems we added in this chapter
will allow us to better test our system, and the performance of new features we
add to it in the future. Finally, the T-Maze problem will allow us to test the im-
portant feature that we will add in the next chapter: neural plasticity.

14.4 References

[1] Gomez F, Schmidhuber J, Miikkulainen R (2008) Accelerated Neural Evolution through Co-
operatively Coevolved Synapses. Journal of Machine Learning Research 9, 937-965.

[2] Sher GI (2010) DXNN Platform: The Shedding of Biological Inefficiencies. Neuron, 1-36.
Available at: http://arxiv.org/abs/1011.6022.

[3] Durr P, Mattiussi C, Soltoggio A, Floreano D (2008) Evolvability of Neuromodulated Learn-
ing for Robots. 2008 ECSIS Symposium on Learning and Adaptive Behaviors for Robotic
Systems LABRS, 41-46.

[4] Blynel J, Floreano D (2003) Exploring the T-maze: Evolving Learning-Like Robot Behaviors
using CTRNNs. Applications of evolutionary computing 2611, 173-176.

[5] Khepera robots: www.k-team.com
[6] Risi S, Stanley KO (2010) Indirectly Encoding Neural Plasticity as a Pattern of Local Rules.

Neural Plasticity 6226, 1-11.
[7] Soltoggio A, Bullinaria JA, Mattiussi C, Durr P, Floreano D (2008) Evolutionary Advantages

of Neuromodulated Plasticity in Dynamic, Reward-based Scenarios. Artificial Life 2, 569-
576.

http://arxiv.org/abs/1011.6022
http://www.k-team.com

	Chapter 14 Creating the Two Slightly More Complex Benchmarks
	14.1 Pole Balancing Simulation
	14.1.1 Implementing the Pole Balancing Scape
	14.1.2 Implementing the Pole Balancing morphology
	14.1.3 Benchmark Results

	14.2 T-Maze Simulation
	14.2.1 T-Maze Implementation
	14.2.2 Benchmark Results

	14.3 Summary & Discussion
	14.4 References

