
Chapter 14 Creating the Two Slightly More 
Complex Benchmarks 

Abstract   To test the performance of a neuroevolutionary system after adding a 
new feature, or in general when trying to assess its abilities, it is important to have 
some standardized benchmarking problems. In this chapter we create two such 
benchmarking problems, the Pole Balancing Benchmarks (Single, Double, and 
With and Without dampening), and the T-Maze navigation benchmark, which is 
one of the problems used to assess the performance of recurrent and plasticity en-
abled neural network based systems. 

Though we have created an extendible and already rather advanced TWEANN 
platform, how can we prove it to be so when we only have the basic XOR bench-
mark to test it on? As we continue to improve and advance our system, we will 
need to test it on more advanced benchmarks. In this chapter we develop and add 
two such benchmarking problems, the pole balancing benchmark, and the T-Maze 
navigation benchmark. Both of these benchmarks are standard within the compu-
tational intelligence field, and our neuroevolutionary system’s ability to solve 
them is the minimum requirement to be considered functional. 

To allow our TWEANN to use these benchmarks, we need to create a simula-
tion/scape of the said problems, and create the agent morphology that contains the 
sensors/actuators that the NN based agents can use to interface with these new 
scapes. In the following sections we will first build the pole balancing simulation. 
Afterwards, we will develop the T-Maze simulation, a problem which can be 
much better solved by a NN system which can learn and adapt as it interacts with 
the environment, by a NN which has plasticity (a feature we will add to our 
neuroevolutionary system in Chapter-15). 

Once these two types of new simulations are created, we will briefly test them, 
and then move on to the next chapter, where we will begin advancing and expand-
ing our neuroevolutionary system. 

14.1 Pole Balancing Simulation 

The pole balancing benchmark consists of the NN based agent having to push a 
cart on a track, such that the pole standing on the cart is balanced and does not tip 
over and fall. Defined more specifically, the pole balancing problem is posed as 
follows: Given a two dimensional simulation of a cart on a 4.8 meter track, with a 
pole of length L on the top of a cart, attached to the cart by a hinge, and thus free 
to swing, the NN based controller must apply a force to the cart, pushing it back 
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The temporal granularity of the simulation is 0.01 seconds, which means that 
every 0.01 seconds we perform all the physics based calculations, to determine the 
position of the cart and the pole. The Agent requests sensory signals and acts eve-
ry 0.02 seconds. The simulation termination conditions are as follows: the cart 
must stay on the 4.8 meter track or the simulation ends, the simulation also ends if 
the pole falls outside the 36 degrees of the vertical.  

There are multiple versions of this problem, each one differs in its difficulty: 

1. The simple single pole balancing problem, as shown in Fig-14.1a. In this simu-
lation the NN based agent pushes the cart to balance the single 1 meter pole on 
it. This problem is further broken down into two different versions. 

 The NN receives as a sensory signal the cart’s position on the track (CPos), 
the cart’s velocity (CVel), the pole’s angular position (PAngle), and the pole’s 
angular velocity (PVel). Sensory_Signal = [CPos, CVel, PAngle, PVel]. 

 The NN receives as a sensory signal only the CPos and PAngle values. To 
figure out how to solve the problem, how to push the cart and in which di-
rection, the NN will need to figure out how to calculate the CVel and PVel 
values on its own, which requires recurrent connections. Sensory_Signal = 
[Cpos,PAngle]. 

It is possible to very rapidly move the cart back and forth, which keeps the pole 
balanced. To prevent this type of a solution, the problem is sometimes further 
modified with the fitness of the NN based agent not only being dependent on the 
amount of time it has balanced the pole, but on how smoothly it has pushed the 
cart. One type of fitness function simply rewards the NN based on the length of 
time it has balanced the pole, while the other rewards the NN based on the length 
of time it has balanced the pole, and penalizes it for very high velocities and rapid 
velocity changes. The first is the standard fitness function, while the other is called 
the damping fitness function. 

2. A more difficult version of the pole balancing problem is the double pole bal-
ancing version, as shown in Fig-14.1b. In this problem we try to balance two 
poles of differing lengths at the same time. The closer the lengths of the two 
poles are, the more difficult the problem becomes. Usually, the length of one 
pole is set to 0.1 meters, and the length of the second is set to 1 meter. As with 
the single pole balancing problem, there are two versions of this, and again for 
each version we can use either of the two types of fitness functions: 

and forth on the track, such that the pole stays balanced on the cart and within 36 
degrees of the cart’s vertical. For sensory inputs, the NN based agent is provided 
with the cart’s position and velocity, and the pole’s angular position (from the ver-
tical) and angular velocity. The output of the NN based agent is the force value F 
in newtons (N), saturated at 10N of magnitude. Positive F pushes the cart to the 
left, and negative pushes it to the right. Given these conditions, the problem is to 
balance the pole on the cart for 30 simulated minutes, or as long as possible, 
where the fitness is the amount of time the NN can keep the pole balanced by 
pushing the cart back and forth. 
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 The sensory signal gathered by the NN is composed of the cart’s position 
and velocity (CPos,CVel), the first pole’s angle and velocity (P1_Angle, 
P1_Vel), and the second pole’s angle and velocity (P2_Angle, P2_Vel). 
Sensory_Signal = [CPos,CVel,P1_Angle,P1_Vel,P2_Angle,P2_Vel]. 

 The second more complex version of the problem, just as with the single 
pole balancing problem, only provides the NN with partial state infor-
mation, the cart’s position, and the first and second pole’s angular position. 
Sensory_Signal = [CPos,P1_Angle,P2_Angle]. This requires the NN based 
agent to derive the velocities on its own, which can be done by evolving a 
recurrent NN topology. 

As with the single pole balancing problem, the fitness can be based on simply 
the amount of time the poles have been balanced, or also on the manner in which 
the agent pushes the cart, using the damping fitness function. 

 
Fig. 14.1 The architecture of single (A.) and double (B.) pole balancing simulations, repre-
sented as private scapes with which the agents can interface with, to push the cart and bal-
ance the pole/s. 

As with the XOR simulator, we will set the pole balancing simulation to be self 
contained in a private scape process, which will accept sense and push messages 
from the agent to whom it belongs. Since the simulation of the track/cart/pole is 
independent of the types of sense signals the agent wishes to use, we will only 
need to implement a single version of such private scape. We will implement the 
system using a realistic physical model of the system, and fourth order Runge-
Kutta integration, as is specified and done in [1].  

Because the two-pole balancing problem is simply an extension of the single 
pole balancing problem, and because the two poles are independent of each other, 
we can create a single double pole balancing simulator, which can then be used for 
either benchmark. It will be the sense and force messages that determine what in-
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formation is sent to the sensors of the NN based agent. Furthermore, depending on 
the parameters sent by the actuator of the agent, the scape will calculate the fitness 
and decide on whether to use both poles or only a single pole with regards to the 
termination conditions. 

Thus, the scape will always be simulating two poles. But if the agent is being 
applied to the single pole balancing problem, and this fact will be specified by the 
actuator and sensor pair used by the agent, the scape which receives the messages 
from the sensor and actuator of that agent, will simply not take into account the 
second pole. In this manner, if the second pole falls, deviates more than 36 de-
grees from the vertical... it will not trigger the termination condition or affect the 
fitness in any way. The parameter sent by the actuator will notify the scape that 
the agent is only concerned with the single pole being balanced.  

We will set up the functionality of each such pole balancing simulation, con-
tained and wrapped in a private scape, represented as a single process, to use the 
following steps: 

1. PB (pole balancing) private scape is spawned. 
2. The PB scape initializes the physical simulation, with the first pole’s initial an-

gle from the vertical randomly selected to be between -3.6 and 3.6 degrees, and 
the second pole’s angle set to 0 degrees. Furthermore, the first pole’s length 
will be set to 1 meter, and 0.1 meter for the second one. 

3. The PB process drops into its main loop, and awaits for sense and push mes-
sages. 

4. DO: 
5. If {From_PId, sense, Parameters} message is received: The Parameters 

value specifies what type of sensory information should be returned to 
the caller. If Parameters is set to 2, then the scape will return the cart po-
sition and the pole position information. If the Parameters value is set to 
3, then the scape will return the cart, pole_1, and pole_2 positions. If 4, 
then cart position and velocity, plus pole_1 angular position and velocity, 
will be returned. Finally, if Parameters is set to 6, then the scape will re-
turn the cart position and velocity, and the pole_1 and pole_2 angular po-
sitions and velocities. 

6. If {From_PId, push, Force, Parameters} message is received: The PB 
scape applies the force specified in the message to the cart, and calculates 
the results of the physical simulation. The response to the push are calcu-
lated for two 0.01s time steps, taking the simulation 0.02 seconds for-
ward, and then returning the scape back to waiting for the sense/push 
messages again. Furthermore, the Parameters value will have the form: 
{Damping_Flag, PB_Type}, where the Damping_Flag parameter speci-
fies whether the fitness function will be calculated with damping features 
to prevent the rapid shaking of the cart, and where the PB_Type parame-
ter specifies whether the private scape should be used as a single pole or 
double pole balancing simulator. If it is used as a single pole balancing 
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simulator, then the condition of the second pole will not affect the fitness 
value, and its reaching the termination condition (falling beyond 36 de-
grees from the vertical) will not end the simulation. 

UNTIL: Termination condition is reached (goal number of time steps, or one of 
the boundary condition breaches). 

The termination condition is considered to be any one of the following: 

 The simulation has run for 30 simulated minutes, which is composed of 90000 
0.02 second time steps. 

 The pole has deviated 36 or more degrees from the cart’s vertical. 
 The cart has left the track. The track itself is 4.8 meters long, and the cart will 

start at the center, and thus be 2.4 meters away from either side. If it goes be-
yond -2.4 or 2.4 point on the axis of the track, the termination condition is 
reached. 

Based on this architecture, we will in the following subsection create the pri-
vate scape process, and its main loop which after receiving the push message calls 
the function which does the physical simulation of the track/cart/pole system. Af-
terwards, we will create the sensors/actuators and the new morphology specifica-
tion entry in the morphology module. These will be the sensors and actuators used 
by the agents to interface with this type of private scape. Finally, we will then 
compile and run a quick test of this new problem, to see how well our system per-
forms. 

14.1.1 Implementing the Pole Balancing Scape 

For the pole balancing simulation, the process will need to keep track of the po-
sition of the cart on the track, its velocity, the angular position and velocity of both 
poles, the time step the simulation is currently in, the goal time steps, and finally 
the fitness accumulated by the interfacing agent. To keep track of all these values, 
we will use a state record. Listing-14.1 shows the implementation of the pb_sim/2, 
the pole balancing simulation scape. We will add the source code of this listing to 
the scape module. The comments after every function in Listing-14.1 elaborate on 
the details of its implementation. 

Listing-14.1 The complete implementation of the pole balancing simulation scape. 
 
-record(pb_state,{cpos=0,cvel=0,p1_angle=3.6*(2*math:pi()/360),p1_vel=0, p2_angle=0, 
p2_vel=0, time_step=0, goal_steps=90000,fitness_acc=0}).  
 
pb_sim(ExoSelf_PId)->  
 random:seed(now()),  
 pb_sim(ExoSelf_PId,#pb_state{}).  
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%pb_sim/1 is executed to initialize and startup the pole balancing simulation scape. Once exe-
cuted it creates initial #pb_state{}, and drops into the main simulation loop. 
 
pb_sim(ExoSelf_PId,S)->  
 receive  
  {From_PId,sense, [Parameter]}->  
   SenseSignal=case Parameter of  
    cpos -> [S#pb_state.cpos];  
    cvel -> [S#pb_state.cvel];  
    p1_angle -> [S#pb_state.p1_angle];  
    p1_vel -> [S#pb_state.p1_vel];  
    p2_angle -> [S#pb_state.p2_angle];  
    p2_vel -> [S#pb_state.p2_vel];  
    2 -> [S#pb_state.cpos,S#pb_state.p1_angle];  
    3 -> [S#pb_state.cpos,S#pb_state.p1_angle,S#pb_state.p2_angle];  
    4 -> [S#pb_state.cpos, S#pb_state.cvel, S#pb_state.p1_angle, 
S#pb_state.p1_vel];  
    6 -> [S#pb_state.cpos, S#pb_state.cvel, S#pb_state.p1_angle, 
S#pb_state.p1_vel, S#pb_state.p2_angle, S#pb_state.p2_vel]  
   end,  
   From_PId ! {self(),SenseSignal},  
   pb_sim(ExoSelf_PId,S);  
  {From_PId,push,[Damping_Flag,DPB_Flag], [F]}->  
   AL = 2*math:pi()*(36/360),  
   U_S=sm_DoublePole(F,S,2),  
   TimeStep=U_S#pb_state.time_step,  
   CPos=U_S#pb_state.cpos,  
   CVel=U_S#pb_state.cvel,  
   PAngle1=U_S#pb_state.p1_angle,  
   PVel1=U_S#pb_state.p1_vel,  
   case (abs(PAngle1) > AL) or (abs(U_S#pb_state.p2_angle)*DPB_Flag > AL) 
or (abs(CPos) > 2.4) or (TimeStep >= U_S#pb_state.goal_steps) of  
    true ->  
     From_PId ! {self(),0,1},  
     pb_sim(ExoSelf_PId,#pb_state{});  
    false ->  
     Fitness = case Damping_Flag of  
      without_damping ->  
       1;  
      with_damping ->  
       Fitness1 = TimeStep/1000,  
       Fitness2 = case TimeStep < 100 of  
        true ->  
         0;  
        false ->  
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         0.75/(abs(CPos) +abs(CVel) + 
abs(PAngle1) + abs(PVel1))  
       end,  
       Fitness1*0.1 + Fitness2*0.9  
     end,    
     From_PId ! {self(),Fitness,0},  
     pb_sim(ExoSelf_PId, U_S#pb_state{fitness_acc 
=U_S#pb_state.fitness_acc+Fitness})  
   end;  
  {ExoSelf_PId,terminate} ->  
   ok  
 end.  
%The pole balancing simulation scape can accept 3 types of messages, push, sense, and termi-
nate. When a sense message is received, the scape checks the Parameter value, and based on 
whether the Parameters == 2, 3,4, or 6, it returns a sensory list with an appropriate number of 
elements. 2 and 4 specify that the NN based agent wants a sensory signal associated with the 
single pole balancing problem, with partial or full system information, respectively. 4 and 6 im-
plies that the NN wants the scape to send it sensory information associated with double pole 
balancing, with partial or full system information respectively. When the scape receives the 
push message, based on the message it decides on what fitness function is used (with or without 
damping), the actual force to be applied to the cart, and whether the termination condition 
should be based on the single pole balancing problem (DPB_Flag=0) or double pole balancing 
problem (DPB_Flag=1). When the angle of the second pole is multiplied by DPB_Flag which is 
set to 0, the value will always be 0, and thus it cannot trigger the termination condition of being 
over 36 degrees from the vertical. When it is multiplied by DPB_Flag=1, then its actual angle is 
used in the calculation of whether the termination condition is triggered or not. Once the mes-
sage is received, the scape calculates the new position of the poles and the cart after force F is 
applied to it. The state of the poles/cart/track system is updated by executing the  
sm_DoublePole/3 function, which performs the physical simulation calculations.  
 
sm_DoublePole(_F,S,0)->  
 S#pb_state{time_step=S#pb_state.time_step+1};  
sm_DoublePole(F,S,SimStepIndex)->  
 CPos=S#pb_state.cpos,  
 CVel=S#pb_state.cvel,  
 PAngle1=S#pb_state.p1_angle,  
 PAngle2=S#pb_state.p2_angle,  
 PVel1=S#pb_state.p1_vel,  
 PVel2=S#pb_state.p2_vel,  
 X = CPos, %EdgePositions = [-2.4,2.4],  
 PHalfLength1 = 0.5, %Half-length of pole 1  
 PHalfLength2 = 0.05, %Half-length of pole 2  
 M = 1, %CartMass  
 PMass1 = 0.1, %Pole1 mass  
 PMass2 = 0.01, %Pole2 mass  
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 MUc = 0.0005, %Cart-Track Friction Coefficient  
 MUp = 0.000002, %Pole-Hinge Friction Coefficient  
 G = -9.81, %Gravity  
 Delta = 0.01, %Timestep  
 EM1 = PMass1*(1-(3/4)*math:pow(math:cos(PAngle1),2)),  
 EM2 = PMass2*(1-(3/4)*math:pow(math:cos(PAngle2),2)),  
 EF1 = Pmass1*PHalfLength1*math:pow(PVel1,2)*math:sin(PAngle1)+(3/4)*PMass1 
*math:cos(PAngle1)*(((MUp*PVel1)/(PMass1*PHalfLength1))+G*math:sin(PAngle1)),  
 EF2 = Pmass2*PHalfLength2*math:pow(PVel2,2)*math:sin(PAngle2)+(3/4)*PMass2 
*math:cos(PAngle2)*(((MUp*PVel2)/(PMass1*PHalfLength2))+G*math:sin(PAngle2)),  
 NextCAccel = (F - MUc*functions:sgn(CVel)+EF1+EF2)/(M+EM1+EM2),  
 NextPAccel1 = -(3/(4*PHalfLength1))*((NextCAccel*math:cos(PAngle1)) 
+(G*math:sin(PAngle1))+((MUp *PVel1)/(PMass1*PHalfLength1))),  
 NextPAccel2 = -(3/(4*PHalfLength2))*((NextCAccel*math:cos(PAngle2)) 
+(G*math:sin(PAngle2))+((MUp *PVel2)/(PMass2*PHalfLength2))),  
 NextCVel = CVel+(Delta*NextCAccel),  
 NextCPos = CPos+(Delta*CVel),  
 NextPVel1 = PVel1+(Delta*NextPAccel1),  
 NextPAngle1 = PAngle1+(Delta*NextPVel1),  
 NextPVel2 = PVel2+(Delta*NextPAccel2),  
 NextPAngle2 = PAngle2+(Delta*NextPVel2),  
 U_S=S#pb_state{  
  cpos=NextCPos,  
  cvel=NextCVel,  
  p1_angle=NextPAngle1,  
  p1_vel=NextPVel1,  
  p2_angle=NextPAngle2,  
  p2_vel=NextPVel2  
 },  
 sm_DoublePole(0,U_S,SimStepIndex-1). 
%sm_DoublePole/3 performs the calculations needed to keep track of the two poles and the 
cart, it simulates the physical properties of the track/cart/pole system. The granularity of the 
physical simulation is 0.1s, and so to get a state at the end of 0.2s, the calculation of the state is 
performed twice at the 0.1s granularity. During the first execution of the physical simulation we 
have the force set to the appropriate force sent by the neurocontroller. But during the second, 
F=0. Thus the agent actually only applies the force F for 0.1 seconds. This can be changed to 
have the agent apply the force F for the entire 0.2 seconds. 

With the simulation completed, we now need a way for our agents to spawn 
and interface with it. This will be done through the agent’s morphology, its sen-
sors and actuators, which we will create next. 
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14.1.2 Implementing the Pole Balancing morphology 

For both sensors and actuators we will again specify the scape element to be of 
type private: scape = {private, pb_sim}. For the sensor, we will set the parameters 
to: [2], this parameter can then be modified to 3, 4, or 6, dependent on what test 
we wish to apply the population of agents to. After every such parameters value 
change, the morphology module would then have to be recompiled before use. We 
could simply create multiple morphologies, for example: pole_balancing2, 
pole_balancing3, pole_balancing4, and pole_balancing6, but that would not add 
an advantage over changing the parameters and recompiling, since it would still 
require us to use our neuroevolutionary system on different problems and thus to 
change the constraints in either population_monitor or benchmarker modules, and 
then recompile them still...  

Listing-14.2 The pole_balancing morphology; adding the new pb_GetInput sensor and pb_Push 
actuator to the morphology module. 
 
pole_balancing(sensors)->  
 [  
  #sensor{name=pb_GetInput,scape={private,pb_sim},vl=2,parameters=[2]}  
 ];  
pole_balancing(actuators)->  
 [  
  #actuator{name=pb_SendOutput,scape={private,pb_sim},vl=1, parameters 
=[no_damping,0]}  
 ].  
%Both, the pole balancing sensor and actuator, interface with the pole balancing simulation. 
The type of benchmark the pole balancing simulation is used as (whether it is used as a double 

Like the case with the xor_mimic morphology function, which when called re-
turns the available sensors or actuators for that particular morphology, we will in 
this subsection develop the pole_balancing/1 morphology function which does the 
same. Unlike the xor_mimic though, here we will also populate the parameters el-
ement of the sensor and actuator records.  

Similarly, the actuator record’s parameters element is set to: [no_damping,0]. 
The no_damping tag specifies that the fitness function used should be the simple 
one that does not take damping into account. The 0 element of the list specifies, 
based on our implementation of the pb_sim, that the second pole should not be 
taken into account when calculating the fitness and whether the termination condi-
tion is reached. This is achieved in: (abs(U_S#pb_state.p2_angle)*DPB_Flag > 
AL) , where DPB_Flag is either 0 or 1. When set to 1, the second pole’s condi-
tion/angle is taken into account, and when 0, it is not. This is so because 0 = 
0*P2_Angle, and 0 is never greater than AL which is set to 36 degrees. Listing-
14.2 shows the implementation of this new addition to the morphology module. 
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pole or a single pole balancing benchmark) depends on the sensor and actuator parameters. The 
sensor’s vl and parameters specify that the sensor will request the private scape for the cart’s 
position and pole’s angular position. The actuator’s parameters specify that the scape should 
use no_damping type of fitness, and that since only a single pole is being used, that the termina-
tion condition associated with the second pole is zeroed out, by being multiplied by 0. When in-
stead of using 0 we use 1, the private scape will use the angular position of the second pole as 
an element in calculating whether the termination condition has been reached or not. 

Having specified the sensor and the actuator used by the pole_balancing mor-
phology, we now need to implement them both. The pb_GetInput sensor will be 
similar to the xor_GetInput, only it will use its Parameters value in its message to 
the private scape it is associated with, as shown in Listing-14.3. We add this new 
sensor function to the sensor module, placing it after the xor_GetInput/3 function. 

Listing-14.3 The implementation of the pb_GetInput sensor. 
 
pb_GetInput(VL,Parameters,Scape)->  
 Scape ! {self(),sense,Parameters},  
 receive  
  {Scape,percept,SensoryVector}->  
   case length(SensoryVector)==VL of  
    true ->  
     SensoryVector;  
    false ->  
     io:format(“Error in sensor:pb_GetInput/2, VL:~p 
SensoryVector:~p~n”, [VL,SensoryVector]),  
     lists:duplicate(VL,0)  
   end  
 end. 

Similarly, Listing-14.4 shows the implementation of the actuator 
pb_SendOutput/3 function, added to the actuator module. It too is similar to the 
xor_SendOutput/3 function, but unlike its neighbor, it sends its Parameters value 
as an element of the message that it forwards to the scape. Because we usually im-
plement the morphologies and the scapes together, we can set up any type of inter-
facing, and thus be able to implement complex scapes and messaging schemes 
with ease. 

Listing-14.4 The implementation of the pb_SendOutput actuator. 
 
pb_SendOutput([Output],Parameters,Scape)->  
 Scape ! {self(),push,Parameters,[10*functions:sat(Output,1,-1)]},  
 receive  
  {Scape,Fitness,HaltFlag}->  
   {Fitness,HaltFlag}  
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 end. 

Though simple to implement, this new problem allows us to test the ability of 
our neuroevolutionary system to evolve neurocontrollers on problems which re-
quire a greater level of complexity than the simple XOR mimicry problem. The 
benchmarking of our system on this problem also allows us to compare its results 
to those of other neuroevolutionary systems. Having implemented this new simu-
lation, we now move forward in running a quick test on it in the next subsection. 

14.1.3 Benchmark Results 

In the previous chapter we have developed the benchmarking and reporting 
tools specifically to improve our ability to test new additions to the system. Thus 
all we must do now is to decide which variation of the pole balancing test to apply 
our system to, and then execute the benchmarker:start/1 function with the appro-
priate constraint, pmp, and experiment parameters.  

Our benchmarker, on top of generating graphable data, also calculates the sim-
ple average number of evaluations from all the evolutionary runs within the exper-
iment, which is exactly the number we seek because the benchmark here is how 
quickly a solution can be evolved on average using our system. Let us run 3 exper-
iments, which will only entail us to execute the benchmarker:start/1 function 3 
times, each time with a different sensor and actuator specification. Thus we next 
run three experiments, each with its own morphological setup: 

1. The single pole, partial information, standard fitness function (without damp-
ing) benchmark: 

pole_balancing(sensors)->  
 [ #sensor{name=pb_GetInput,scape={private,pb_sim},vl=2,parameters=[2]} ];  
pole_balancing(actuators)->  
 [#actuator{name=pb_SendOutput,scape={private,pb_sim},vl=1, parameters 
=[without_damping,0]}]. 

2. The double pole, partial information, standard fitness function (without damp-
ing) benchmark: 

pole_balancing(sensors)->  
 [ #sensor{name=pb_GetInput,scape={private,pb_sim},vl=3,parameters=[3]} ];  
pole_balancing(actuators)->  
 [#actuator{name=pb_SendOutput,scape={private,pb_sim},vl=1, parameters 
=[without_damping,1]}]. 

3. The double pole, partial information, with damping fitness function benchmark: 
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pole_balancing(sensors)->  
 [ #sensor{name=pb_GetInput,scape={private,pb_sim},vl=3,parameters=[3]} ];  
pole_balancing(actuators)->  
 [ #actuator{name=pb_SendOutput,scape={private,pb_sim},vl=1, parameters 
=[with_damping,1]} ]. 

Furthermore, sometimes we wish to see just how quickly on average the 
neuroevolutionary system can generate a result for a problem, at those times we 
only care about the minimum number of evaluations needed to reach the solution. 
In our system no matter when the termination condition is reached, it is not until 
all the agents of the current generation, or all the currently active agents, have 
terminated, that the evolutionary run is complete. This means that the total number 
of evaluations keeps incrementing even after the goal has already been reached, 
simply because the currently-still-running agents are continuing being tuned.  

To solve both problems, we can allow each scape to inform the agent that it has 
reached the particular goal of the problem/scape when it has done so. At this point 
the agent would forward that message to the population_monitor, which could 
then stop counting the evaluations by freezing the tot_evaluations value. In this 
one move we allow each scape to use the extra feature of goal_reached notifica-
tion ability to be able to, on its own terms, use any fitness function, and at the 
same time be able to stop and notify the agent that it has reached the particular fit-
ness goal, or solved the problem, and thus stop the evaluations accumulator from 
incrementing. This will allow us to no longer need to calculate fitness goals for 
every problem by pre-calculating various values (fitness goals) and setting them in 
the population_monitor. This method will also allow us to deal with problems 
where the fitness score is not directly related to the completion of the problem or 
to the reaching of the goal, and thus cannot be used as the termination condition in 
the first place. Thus, before we run the benchmarks, let’s make this small program 
modification. 

We must also set the pmp’s fitness goal to 90000, since with the standard, 
without_damping fitness function, the 90000 fitness score represents the NN 
based agent’s ability to balance a pole for 30 minutes. But what about the 
with_damping simulation? In that event a neurocontroller will have different fit-
ness scores for the same number of time steps that it has balanced the pole/s, since 
the fitness will be based on its effectiveness of balancing the poles as well. In the 
same manner, different number of time steps of balancing the pole/s might map to 
the same fitness score... This situation arises due to the fact that the more compli-
cated problems will not have a one-to-one mapping with regards to fitness scores 
reached, and progress towards solving a given problem or achieving some goal. 
Different such simulations and problems will have different types of fitness 
scores, and using a termination condition based on a fitness goal value set in the 
population_monitor, will not work. On the other hand, each simulation/problem it-
self, will have all the necessary information about the agent’s performance to de-
cide whether a goal has been reached or not.  
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Currently when the agent has triggered the scape’s stopping condition, the 
scape sends back to the agent the message: {Scape_PId,0,1}, where 0 means that 
it has received 0 fitness points for this last event, and 1 means that this particular 
scape has reached its termination condition. The actuator does nothing with this 
value but pass it to the cortex, thus if we retain the same message structure, we can 
piggyback it with new functionality. We will allow each scape to also have, on top 
of the standard termination conditions, the ability to check for its own goal reach-
ing condition. When that goal condition is reached, instead of sending to the ac-
tuator the original message, the scape will send it: {Scape_PId,goal_reached,1}. 
The actuator does not have to be changed, its job is simply to forward this mes-
sage to the cortex. 

In the cortex we modify its receive clause to check whether the Fitness score 
sent to it is actually an atom goal_reached. The new receive clause is implement-
ed as follows: 

{APId,sync,Fitness,EndFlag} ->  
 case Fitness == goal_reached of  
  true ->  
   put(goal_reached,true),  
   loop(Id,ExoSelf_PId,SPIds,{APIds,MAPIds},NPIds,CycleAcc,FitnessAcc, 
EFAcc +EndFlag, active);  
  false ->  
   loop(Id,ExoSelf_PId,SPIds,{APIds,MAPIds},NPIds,CycleAcc,FitnessAcc 
+Fitness, EFAcc +EndFlag, active)  
 end; 

We also modify the cortex’s message to the exoself when its evaluation termi-
nation condition has been triggered by the EndFlag, when the actuator sends it the 
message of the form: {APId, sync, Fitness, EndFlag}. The new message the cortex 
sends to the exoself is extended to include the note on whether goal_reached is set 
to true or not. The new message format will be: {self(), evaluation_completed, 
FitnessAcc, CycleAcc, TimeDif, get(goal_reached)}. 

Reflectively, the exoself’s receive pattern is extended to receive the 
GoalReachedFlag message, and to then forward it to the population_monitor, as 
shown by the boldfaced source code in the following listing: 

Listing-14.5 The updated exoself’s receive pattern. 
 
loop(S)->  
 receive  
  {Cx_PId,evaluation_completed,Fitness,Cycles,Time,GoalReachedFlag}-> 
   case (U_Attempt >= S#state.max_attempts) or (GoalReachedFlag==true) of  
    true ->%End training  
     A=genotype:dirty_read({agent,S#state.agent_id}),  
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     genotype:write(A#agent{fitness=U_HighestFitness}),  
     backup_genotype(S#state.idsNpids,S#state.npids),  
     terminate_phenotype(S#state.cx_pid,S#state.spids,S#state.npids, 
S#state.apids, S#state.scape_pids),  
     io:format(“Agent:~p terminating. Genotype has been backed 
up.~n Fitness:~p~n TotEvaluations:~p~n TotCycles:~p~n TimeAcc:~p~n”, [self(), 
U_HighestFitness, U_EvalAcc,U_CycleAcc, U_TimeAcc]),  
     case GoalReachedFlag of  
      true ->  
       gen_server:cast(S#state.pm_pid, 
{S#state.agent_id, goal_reached);  
      _ ->  
       ok  
     end, 
     gen_server:cast(S#state.pm_pid,{S#state.agent_id,terminated, 
U_HighestFitness}); 
… 

handle_cast({_From,goal_reached},S)->  
 U_S=S#state{goal_reached=true},  
 {noreply,U_S}; 

handle_cast({From,evaluations,Specie_Id,AEA,AgentCycleAcc,AgentTimeAcc},S)->  
 AgentEvalAcc=case S#state.goal_reached of  
  true ->  
   0;  
  _ ->  
   AEA  
 end, 

population_monitor by first adding to its state record the 
goal_reached element, which is set to false by default, and then by adding to it a 
new handle_cast clause: 

Next, we update the 

This cast clause sets the goal_reached parameter to true when triggered. Final-
ly, we add to all population_monitor’s termination condition recognition cases the 
additional operator: “or S#state.goal_reached”, and modify the evaluations mes-
sage receiving handle_cast clause to: 

This ensures that the population_monitor stops counting evaluations when the 
goal_reached flag is set to true. These changes effectively modify our system, giv-
ing it the ability to use the goal_reached parameter. This entire modification is 
succinctly shown in Fig-14.2. 
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Fig. 14.2 The updated goal_reached message processing capable scape, and the 
goal_reached signal’s travel path: scape to actuator to cortex to exoself to popula-
tion_monitor. 

This small change allows us to continue with our pole_balancing benchmarking 
test. And thus we finally set the experiment’s tot_runs parameter to 50, which 
makes the benchmarker run 50 evolutionary runs in total, which means that the 
calculated average is based on 50 runs, which is a standard for this type of prob-
lem. 

To run the first benchmark, we simply use the morphology setup listed earlier, 
set the fitness_goal parameter of the pmp record to 90000, the tot_runs to 50, and 
leave everything else as default. We then compile and reload everything by run-
ning polis:sync(), and execute the benchmarker:start(spb_without_damping) func-
tion, where spb_without_damping is the Id we give to this experiment, which 
stands for Single Pole Balancing Without Damping.  

With this setup, the benchmarker will spawn the population_monitor process, 
wait for the evolutionary run to complete, add the resulting trace to the experi-
ment’s stats list, and then perform another evolutionary run. In total 50 evolution-
ary runs will comprise the benchmark. The result we are after is not the graphable 
data, but the report’s average evaluations value (the average number of evalua-
tions taken to reach the goal), and its standard deviation. The results of the first 
benchmark are shown in the following listing. 
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Listing-14.6 The results of the single pole balancing, partial information, without_damping, 
benchmark. 
 
3> benchmarker:start(spb_without_damping).  
... 
******** Traces_Acc written to file:”benchmarks/report_Trace_Acc”  
Graph:{graph,pole_balancing,  
             [1.1782424242424248],  
             [0.16452932686308724],  
             [60910.254989899],  
             [24190.827695700948],  
             [75696.42],  
             [32275.24],  
             [6.04],  
             [1.232233744059949],  
             [457.72],  
             []}  
Tot Evaluations Avg:646.78 Std:325.8772339394086  

When using the non topology and weight evolving neuroevolutionary systems 
(ESP, CMA-ES, and CoSyNE), the researcher must first create a topology he 
knows works (or have the neuroevolutionary system generate random topologies, 
rather than evolving one from another), and then the neuroevolutionary system 
simply optimizes the synaptic weights to a working combination of values. But 
such systems cannot be applied to previously unknown problems, or problems for 
which we do not know the topology, nor its complexity and size, beforehand. For 
complex problems, topology cannot be predicted, in fact this is why we use a to-
pology and weight evolving artificial neural network system, because we cannot 
predict and create the topology for non-toy problems on our own, we require the 
help of evolution. 

It works! The results are also rather excellent, on average taking only 646 eval-
uations (though as can be seen from the standard deviation, there were times when 
it was much faster). We achieved this high performance (as compared to the re-
sults of other neuroevolutionary systems) without even having taken the time to 
optimize or tune our neuroevolutionary system yet. If we compare the resulting 
evaluations average that we received from our benchmark (your results might dif-
fer slightly), to those done by others, for example compared to the list put together 
in paper [1], we see that our system is the most efficient of the topology and 
weight evolving artificial neural network systems on this benchmark. The two 
faster neuroevolutionary systems ESP [2], and CoSyNE [3], do not evolve topolo-
gy. The ESP and CoSyNE systems solved the problem in 589 and 127 evaluations 
respectively, while the CNE [4] and SANE [5] and NEAT [6] solved it in 724, 
1212, and 1523 evaluations on average, respectively.  
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Next we benchmark our system on the second problem, the more complex dou-
ble pole balancing problem which uses a standard fitness function without damp-
ing. Listing-14.7 shows the results of the experiment. 

Listing-14.7 The double pole balancing benchmark, using the without_damping fitness func-
tion. 
 
3> benchmarker:start(spb_without_damping).  
... 
Graph:{graph,pole_balancing,  
             [2.4315606060606063],  
             [0.8808311444164436],  
             [22194.480560606058],  
             [15614.417335306674],  
             [34476.74],  
             [6285.78],  
             [7.34],  
             [1.4779715829473847],  
             [500.0],  
             []}  
Tot Evaluations Avg:5184.0 Std:3595.622677645695  

Finally, we run the third benchmark, the double pole balancing with partial 
state information and with damping. Because we have added the goal_reached 
messaging by the scapes, we can deal with the non one-to-one mapping between 
the number of time steps the agent can balance the cart, and the fitness calculated 
for this balancing act. Thus, we modify the pmp’s fitness_goal back to inf, letting 
the scape terminate when the goal has been reached, and thus when the evaluation 
run should stop (we could have done the same thing during the previous experi-
ment, rather than using the fitness goal of 90000, which was possible due to the 
goal and fitness having a one-to-one mapping). The results of this experiment are 
shown in Listing-14.8. 

Listing-14.8 The results of running the double pole balancing with damping benchmark. 
 
Graph:{graph,pole_balancing,  
             [3.056909090909092],  
             [1.3611906067001034],  

Our system was able to solve the given problem in 5184 evaluations, whereas 
again based on the table provided in [1], the next closest TWEANN in that table is 
ESP [2], which solved it in 7374 evaluations on average. But, the DXNN system 
we discussed earlier was able to solve the same problem in 2359 evaluations on 
average. As we continue advancing and improving the system we’re developing 
together, it too will improve to such numbers. 
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             [67318.29389102172],  
             [84335.29879824212],  
             [102347.17542007213],  
             [11861.325171196118],  
             [7.32],  
             [1.5157836257197137],  
             [500.0],  
             []}  
Tot Evaluations Avg:4792.38 Std:3834.866761127432  

It works! The goal_reached feature has worked, and the average number of 
evaluations our neuroevolutionary system needed to produce a result is highly 
competitive to other state of the art systems as shown in Table-14.1 which quotes 
the benchmark results from [1]. The DXNN system’s benchmark results are also 
added to the table for comparison, with the results of our system added at the bot-
tom. Note that neither CMA-ES nor CoSyNE evolves neural topologies. These 
two systems only optimize the synaptic weights of the already provided NN. 

Table 14.1 Benchmark results for the pole balancing problem. 

* These do not evolve topologies, but only optimize the synaptic weights 

Having completed developing these two benchmarks, and having finished test-
ing our TWEANN system on the pole and double pole balancing benchmark, we 
move forward and begin developing the more complex T-Maze problem. 

14.2 T-Maze Simulation 

The T-Maze problem is another standard problem that is used to test the ability 
of a NN based system to learn and change its strategy while existing in, and inter-
acting with, a maze environment. In this problem an agent navigates a T shaped 
maze as shown in Fig-14.3. At one horizontal end of the maze is a low reward, 

Method Single-Pole/Incomplete state 
Information 

Double-Pole/Partial Information 
W/O Damping 

Double-Pole W/ 
Damping 

RWG 8557 415209 1232296 
SANE 1212 262700 451612 
CNE* 724 76906* 87623* 
ESP 589 7374 26342 
NEAT - - 6929 
CMA-ES* - 3521* 6061* 
CoSyNE* 127* 1249* 3416* 
DXNN Not Performed 2359 2313 
OurSystem 647 5184 4792 
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and at another a high reward. The agent is a simulated robot which navigates the 
maze. Every time the robot crashes into a wall or reaches one of the maze’s ends, 
its position is reset to the start of the maze. The whole simulation run (agent is al-
lowed to navigate the maze until it either finds the reward and its position resets to 
base, or crashes into a wall and its position is reset to base) lasts X number of 
maze runs, which is usually set to 100. At some random time during those 100 
maze runs, the high and low reward positions are swapped. The goal is for the 
agent to gather as many reward points as possible. Thus, if the agent has been 
reaching the high reward end of the maze, and suddenly there was a switch, the 
best strategy is for the agent when it has reached the location of where previously 
there was a high reward, is to realize that it now needs to change its strategy and 
always go to the other side of the maze, for the remainder of the simulation. To do 
this, the agent must remember what reward it has picked up and on what side, and 
change its traveling path after noticing that the rewards have been switched, which 
is most easily done when some of the agent’s neurons are plastic. 

Fig. 14.3 The T-Maze setup. 

We will create a simplified version of the T-Maze problem. It is used widely 
[6,7], and it does not require us to develop an entire 2d environment and robot 
simulation (which we will do in Chapter-18, when we create an Artificial Life 
simulation). Our T-Maze will have all the important features of the problem, but 
will not require true navigation in 2d space. We will create a discrete version of 
the T-Maze, as shown in Fig-14.4. 
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Fig. 14.4 A discrete version of the T-Maze simulation. 

The T-Maze will be contained in a private scape, and the movement and senses 
will, as in the previous simulation, be done through the sending and receiving of 
messages. Because we will create a discrete version of the maze, we can simulate 
the whole maze by simply deciding on the discrete length of each section of the 
corridor, and what the agent will receive as its sensory signals when in a particular 
section of the maze. The agent will use a combination of the following two sen-
sors: 

1. distance_sensor: A laser distance sensor pointing forward, to the left side, and 
to the right side, with respect to the simulated robot’s direction. Since the maze 
is self contained and closed, the sensors will always return a distance. When 
traveling down the single dimensional corridor, the forward sensor will return 
the distance to the wall ahead, and the side distance sensors will return 0, since 
there is no place to move sideways. When the agent reaches an intersection, the 
side range sensors will return the distances to the walls on the side, thus the 

The agents traveling through the maze will be able to move forward, and turn 
left or right, but there will be no width to the corridors. The corridors will have a 
certain discrete length, and the agent will see forward in a sense that its range sen-
sor will measure the distance to the wall ahead, and its side sensors will measure a 
distance to the sides of the “corridor” it is in, which when traveling down a single 
dimensional corridor will be 0, yet when reaching the T intersection, will show 
that it can turn left or right. The turns themselves will be discrete 90 degree turns, 
thus allowing the agent to turn left or right, and continue forward to gather the re-
ward at the end of the corridor. This version of the T-Maze though simple, still re-
quires the agent to solve the same problem as the non discrete Maze. In the dis-
crete version, the agent must still remember where the reward is, evolve an ability 
to move down the corridors and turn and move in the turned direction where there 
is space to move forward, and finally, remember on which side of the maze it last 
found the highest reward. 
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agent can decide which way to turn. If the agent has reached a dead end, then 
both the forward facing, and the side facing range sensors will return 0, which 
will require the agent to turn, at which point it can start traveling in the other 
direction. 

2. reward_consumed: The agent needs to know not only where the reward is, but 
how large it is, since the agent must explore the two rewards, and then for the 
remainder of the evaluation go towards the larger reward. To do this, the agent 
must have a sensory signal which tells it how large the reward it just consumed 
is. This sensor forwards to the NN a vector of length one: [RewardMagnitude], 
where RewardMagnitude is the magnitude of the actual reward. 

The agent must also be able to move around this simplified, discrete labyrinth. 
There are different ways that we could allow the NN based agent to control the 
simulated robot within the maze. We could create an actuator that uses a vector of 
length one, where this single value is then used to decide whether the agent is to 
turn left (if the value is < -0.33), or turn right (if the value is > 0.33) or continue 
moving forward (if the value is between -0.33 and 0.33). Another type of actuator 
could be based on the differential drive, similar to one used by the Khepera [5] ro-
bot (a small puck shaped robot). The differential_drive actuator would have as in-
put a vector of length 2: [Val1,Val2], where Val1 would control the rotation speed 
of the left wheel, and Val2 would control the rotation speed of the right wheel. In 
this manner if both wheels are spinning backwards (Val1 < 0, and Val2 < 0), the 
simulated robot moves backwards, if both spin forward with the same speed, then 
the robot moves forward. If they spin at different speeds, the robot either turns 
left or right depending on the angular velocities of the two wheels. Finally, we 
could create an actuator that accepts an input vector of length 2: [Val1,Val2], 
where Val1 maps directly to the simulated robot’s velocity on the Y axis, and 
Val2 maps to the robot’s velocity on the X axis. This would be a simple transla-
tion_drive actuator, and the simulated robot in this scenario would not be able to 
rotate. The inability to rotate could be alleviated if we add a third element to the 
vector, which we could than map to the angular velocity value, which would dic-
tate the robot’s rotation clockwise or counterclockwise, dependent on that value’s 
sign. Or Val1 could dictate the robot’s movement forward/backward, and Val2 
could dictate whether the robot should turn left, right, or not at all. There are many 
ways in which we could let the NN control the movement of the simulated robot. 
For our discrete version of the T-Maze problem, we will use the same movement 
control method that was used in paper [7] which tested another NN system on the 
discrete T-Maze problem. This actuator accepts an input from a single neuron, and 
uses this accumulated vector: [Val], to then calculate whether to move forward, 
turn counterclockwise and move forward in that direction, or turn clockwise and 
then move forward in that direction. If Val is between -0.33 and 0.33, the agent 
moves one step forward, if it is less than -0.33, the agent turns counterclockwise 
and then moves one step forward, and if Val is greater than 0.33, the agent turns 
clockwise and moves one step forward in the new direction. 
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Due to this being a discrete version of the maze, it can easily be represented as 
a state machine, or simply as a list of discrete sections. Looking back at Fig-14.4, 
we can use a list to keep track of all the sensor responses for every position and 
orientation within the maze. In the standard discrete T-Maze implementation used 
in [7], there are in total 4 sectors. The agent starts at the bottom of the T-Maze lo-
cated at {X=0,Y=0}, it can then move up to {0,1}, which is an intersection. At this 
point the agent can turn left and move a step forward to {-1,1}, or turn right and 
move a step forward to {1,1}. 

If we are to draw the maze on a Cartesian plane, the agent can be turned to face 
towards the positive X axis, at 0 degrees, the positive Y axis at 90 degrees, the 
negative X axis at 180 degrees, and finally the negative Y axis, at 270 degrees. 
And if the maze is drawn on the Cartesian plane, then each sector’s Id can be its 
coordinate on that plane. With the simulated robot in this maze being in one of the 
sectors (on one of the coordinates {0,0},{0,1},{1,1},or {-1,1}), and looking in one 
particular direction (at 0, 90, 180, or 270 degrees), we can then perfectly define 
what the sensory signals returned to the simulated robot should be. But before we 
can do that, we need a format for how to store the simulated robot’s location, 
viewing direction, and how it should perceive whether it is looking at a wall, or at 
a reward located at one of the maze’s ends. The superposition of the T-Maze on a 
Cartesian plane, with a few examples of 

 

Fig. 14.5 Discrete T-Maze, and the sensory signals the simulated robot receives at various 
locations and orientations. The agent is shown as a gray circle, with the arrow pointing in 
the direction the simulated robot is looking, its orientation. 

We will let each discrete sector keep track of the following: 

 id: It’s own id, its Cartesian coordinate. 

the agent’s position/orientation, and what  
sensory signals it receives there, is shown in Fig-14.5. 
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 r: The reward the agent gets for being in that sector. There will be only two 
sectors that give reward, the two horizontal endings of the “T”. This reward 
will be sensed by the reward_sensor.  

 

We will call the record containing all the sector information of a single sector: 
dtm_sector, which stands for Discrete T-Maze Sector. An example of the sector 
located at coordinate [0,0], and part of the maze shown in the above figure, is as 
follows: 

#dtm_sector{id=[0,0],description=[{0,[],[1,0,0]},{90,[0,1],[0,1,0]},{180,[],[0,0,1]},{270,[],[0,0,
0]}],r=0} 

Let’s take a closer look at this sector, located at [0,0], and on which the 
agent is for example turned at 90 degrees, and thus looking towards the positive Y 
axis. For this particular orientation when the agent requests sensory signals, they 
will come from the following tuple: {90,[0,1],[0,1,0]}, also highlighted in the 
above record. The first value, 90, is the orientation for which the follow-up senso-
ry information is listed. The [0,1] is the coordinate of the sector to which the agent 
will move if it decides to move forward at this orientation. The vector [0,1,0] is 
the range sensory signal, and is fed to the agent’s range sensor when requested. It 
states that on both sides, the agent’s left and right, there are walls right next to it, 
and the distance to them is 0, and that straight ahead the wall does not come up for 
1 sector. The value r=0 states that the current sector has no reward, and this is the 
value fed to the agent’s reward sensor. 

Thus this allows the agent to move around the discrete maze, travel from one 
sector to another, where each sector has all the information needed when the 
agent’s sensors send a request for percepts. These sectors will all be contained in a 
single record’s list, used by the private scape which represents the entire maze. 

description: This will be the list that contains all the sensory information 
available when the agent is in that particular sector. In this simulation it will 
contain the range sensory signals. This means that each section will contain 4 
sets of range sensory signals, one each for when the simulated robot is turned 
and is looking at 0, at 90, at 180, and at 270 degrees in that sector. Each of the 
range signals appropriate for the agent’s particular orientation can then be ex-
tracted through a key, where the key is the agent’s orientation in degrees (one 
of the four: 0, 90, 180, or 270). The complete form of the description list is as 
follows: [{0, NextSector, RangeSense}, {90, NextSector, RangeSense}, {180, 
NextSector, RangeSense}, {270, NextSector, RangeSense}]. The NextSector pa-
rameter specifies what is the coordinate of the next sector that is reachable from 
the current sector, given that the agent will move forward while in the current 
orientation. Thus, if for example the agent’s forward is at 90 degrees, looking 
toward the positive Y axis on the Cartesian coordinate, and its actuator speci-
fies that it should move forward, then we look at the 90 degree based tuple, and 
move the agent to the NextSector of that tuple. 
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We will call the record for this private scape: dtm_state, and it will have the fol-
lowing default format: 

-record(dtm_state,{agent_position=[0,0],agent_direction=90,sectors=[],tot_runs=60, 
run_index=0, switch_event, fitness_acc=0}). 

Let’s go through each of this record’s elements and discuss its meaning: 

 agent_position: Keeps track of the agent’s current position, the default is [0,0], 
the agent’s starting position in the maze. 

 agent_direction: Keeps track of the agent’s current orientation, the default is 
90 degrees, where the agent is looking down the maze, towards the positive Y 
axis. 

 sectors: This is a list of all the sectors: [SectorRecord1...SectorRecordN], each 
of which is represented by the dtm_sector record, and a list of which will repre-
sent the entire T-Maze. 

 tot_runs: Sets the total number of maze runs (trials) the agent performs per 
evaluation. 

 run_index: This parameter keeps track of the current maze run index. 
 switch_event: Is the run index during which the large and small reward loca-

tions are switched. This will require the agent, if it wants to continue collecting 
the larger reward, to first go to the large reward’s original position, at which it 
will now find the smaller reward, figure out that the location of the large re-
ward has changed, and during the following maze run go to the other side of 
the maze to collect the larger reward. 

 switched: Since the switch of the reward locations needs to take place only 
once during the entire tot_runs of maze runs, we will set this parameter to false 
by default, and then to true once the switch is made, so that this parameter can 
then be used as a flag to ensure that no other switch is performed for the re-
mainder of the maze runs. 

 step_index: If we let the agents travel through the maze for as long as they 
want, there might be certain phenotypes that simply spin around in one place, 
although not possible with our current type of actuator, which requires the 
agent to take a step every time, either forward, to the right, or to the left. To 
prevent such infinite spins when we decide to use another type of actuator, we 
will give each agent only a limited number of steps. It takes a minimum of 2 
steps to get from the base of the maze to one of the rewards, 1 step up the main 
vertical hall, and 1 turn/move step to the left or right. With an eye to the future, 
we will give the agents a maximum of 50 steps, after which the maze run ends 
as if the agent crashed into a wall. Though not useful in this implementation, it 
might become useful when you extend this maze and start exploring other actu-
ators, sensors... 

As with the pole balancing, this private scape will allow the agent to send it 
messages requesting sensory signals, either all signals (range sense, and the just 
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acquired reward size sense) merged into a single vector, or one sensory signal vec-
tor at a time. And it will allow the agent to send it signals from its actuators, dic-
tating whether it should move or rotate/move the simulated robot. 

and orientation, and be able to act on the messages sent from its sensor and actua-
tor, and based on them control the agent’s avatar. The T-Maze will start with the 
large and small rewards at the two opposite sides of the T-Maze, and then at some 
random maze run to which the switch_event is set (different for each evaluation), 
the large and small reward locations will flip, and require for the agent to figure 
this out and go to the new location if it wants to continue collecting the larger of 
the two rewards. As per the standard T-Maze implementation, the large reward is 
worth 1 point, and the small reward is worth 0.2 points. If at any time the agent 
hits a wall, by for example turn/moving when located at the base of the maze, and 
thus hitting the wall, the maze run ends and the agent is penalized with -0.4 fitness 
points, is then re-spawned at the base of the maze, and the run_index is increment-
ed. If the agent collects the reward, the maze run ends and the agent is re-spawned 
at the base of the maze, with the run_index incremented. Finally, once the agent 
has finished tot_runs number of maze runs, the evaluation of the agent’s fitness 
ends, at which point the exoself might perturb the NN’s synaptic weights, or end 
the tuning run... To ensure that the agents do not end up with negative fitness 
scores when setting the tot_runs to 100, we will start the agents off with 50 fitness 
points. Thus an agent that always crashes will have a minimum fitness score of 50 
– 100*0.4 = 10. 

Finally, though we will implement the T-Maze scenario where the agent gets to 
the reward at one of the maze’s ends, and is then teleported back to the base of the 
maze for another maze-run, there are other possible implementations and scenari-
os. For example, as is demonstrated in Fig-14.6, we could also extend the maze to 
have teleportation portals located at {-2,1} and {2,1}, through which the agent has 
to go after gathering the food, so that it is teleported back to the base to reset the 
rewards. Or we could require it to have to travel all the way back to the base man-
ually, though we would need to change the simple actuator so that it can rotate in 
place without crashing into walls. Finally, we could also create the T-Maze which 
allows for both options, teleportation and manual travel. All, the 3 extended T-
Mazes, and 1 default T-Maze which we will implement, are shown in the follow-
ing figure. 

Thus, putting all of this together: The scape will keep track of the agent’s position 



 
Fig. 14.6 The various possible scenarios for the T-Maze after the agent has acquired the 
reward. 

Having decided on the architecture, and having created Fig-14.5 and Fig-14.6d 
to guide us in the designing and setting the T-Maze system and each of its sectors, 
we can now move forward to the next subsection and implement this private T-
Maze scape, and the needed sensors and actuators to interface with it. 

14.2.1 T-Maze Implementation 

Through Fig-14.5 we can immediately map the maze’s architecture to its im-
plementation shown in Listing-14.9. For the implementation we first define the 
two new records needed by this new scape: the dtm_sector and dtm_state records. 
The function dtm_sim/1 prepares and starts up the maze, dropping into the pro-
cess’s main loop. In this main loop the scape process can accept requests for sen-
sory signals, and accept signals from the actuators and return to them a message 
containing the fitness points acquired. The sensors we will use will poll the private 
scape for an extended range sensor, which is a vector of length 4, and contains the 
signals from the agent’s range sensor, appended with the reward value in the cur-
rent maze sector: [Reward,L,F,R], where Reward is the value of the actual reward, 
L is the range to the left wall, F is the range to the wall in front, and R is the range 
to the wall on the right. 
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Listing-14.9 The implementation of the Discrete T-Maze scape. 
 
-record(dtm_sector,{ 
 id, 
 description=[], 
 r 
}). 
 
-record(dtm_state,{ 
 agent_position=[0,0], 
 agent_direction=90, 
 sectors=set_tmaze_sectors(), 
 tot_runs=100, 
 run_index=0, 
 switch_event=35+random:uniform(30), 
 switched=false, 
 step_index=0, 
 fitness_acc=50 
}). 
 
dtm_sim(ExoSelf_PId)-> 
 io:format(“Starting dtm_sim~n”), 
 random:seed(now()), 
 dtm_sim(ExoSelf_PId,#dtm_state{}). 
 
dtm_sim(ExoSelf_PId,S) when (S#dtm_state.run_index == S#dtm_state.switch_event) and 
(S#dtm_state.switched==false)-> 
 Sectors=S#dtm_state.sectors, 
 SectorA=lists:keyfind([1,1],2,Sectors), 
 SectorB=lists:keyfind([-1,1],2,Sectors), 
 U_SectorA=SectorA#dtm_sector{r=SectorB#dtm_sector.r}, 
 U_SectorB=SectorB#dtm_sector{r=SectorA#dtm_sector.r}, 
 U_Sectors=lists:keyreplace([-1,1],2,lists:keyreplace([1,1],2,Sectors, U_SectorA), 
U_SectorB), 
 scape:dtm_sim(ExoSelf_PId,S#dtm_state{sectors=U_Sectors, switched=true}); 
dtm_sim(ExoSelf_PId,S)-> 
 receive 
  {From_PId,sense,Parameters}-> 
   APos = S#dtm_state.agent_position, 
   ADir = S#dtm_state.agent_direction, 
   Sector=lists:keyfind(APos,2,S#dtm_state.sectors), 
   {ADir,NextSec,RangeSense} = lists:keyfind(ADir,1, Sec-
tor#dtm_sector.description), 
   SenseSignal=case Parameters of 
    [all] -> 
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     RangeSense++[Sector#dtm_sector.r]; 
    [range_sense]-> 
     RangeSense; 
    [reward] -> 
     [Sector#dtm_sector.r] 
   end, 
   From_PId ! {self(),percept,SenseSignal}, 
   scape:dtm_sim(ExoSelf_PId,S); 
  {From_PId,move,_Parameters,[Move]}-> 
   APos = S#dtm_state.agent_position, 
   ADir = S#dtm_state.agent_direction, 
   Sector=lists:keyfind(APos,2,S#dtm_state.sectors), 
   U_StepIndex = S#dtm_state.step_index+1, 
   {ADir,NextSec,RangeSense} = lists:keyfind(ADir,1,  
Sector#dtm_sector.description), 
   if 
    (APos == [1,1]) or (APos == [-1,1]) -> 
     Updated_RunIndex=S#dtm_state.run_index+1, 
     case Updated_RunIndex >= S#dtm_state.tot_runs of 
      true -> 
       From_PId ! {self(), S#dtm_state.fitness_acc 
+Sector#dtm_sector.r, 1}, 
       dtm_sim(ExoSelf_PId,#dtm_state{}); 
      false -> 
       From_PId ! {self(),0,0}, 
       U_S = S#dtm_state{ 
        agent_position=[0,0], 
        agent_direction=90, 
        run_index=Updated_RunIndex, 
        step_index = 0, 
        fitness_acc = S#dtm_state.fitness_acc 
+Sector#dtm_sector.r 
       }, 
       dtm_sim(ExoSelf_PId,U_S) 
     end; 
    Move > 0.33 -> %clockwise 
     NewDir=(S#dtm_state.agent_direction + 270) rem 360, 
     {NewDir,NewNextSec,NewRangeSense} = 
lists:keyfind(NewDir, 1, Sector#dtm_sector.description), 
     U_S = move(ExoSelf_PId,From_PId,S#dtm_state{ 
agent_direction =NewDir},NewNextSec,U_StepIndex), 
     dtm_sim(ExoSelf_PId,U_S); 
    Move < -0.33 -> %counterclockwise 
     NewDir=(S#dtm_state.agent_direction + 90) rem 360, 
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     {NewDir,NewNextSec,NewRangeSense} = 
lists:keyfind(NewDir, 1, Sector#dtm_sector.description), 
     U_S = move(ExoSelf_PId,From_PId,S#dtm_state{ 
agent_direction=NewDir},NewNextSec,U_StepIndex), 
     dtm_sim(ExoSelf_PId,U_S); 
    true -> %forward 
     move(ExoSelf_PId,From_PId,S,NextSec,U_StepIndex) 
   end; 
  {ExoSelf_PId,terminate} -> 
   ok 
 end. 
% The dtm_sim/2 function generates a simulated discrete T-Maze scape, with all the sensory 
information and the maze architecture specified through a list of sector records. The scape can 
receive signals from the agent’s sensor, to which it then replies with the sensory information, 
and it can receive the messages from the agent’s actuator, which it uses to move the agent’s av-
atar around the maze.  
 
 move(ExoSelf_PId,From_PId,S,NextSec,U_StepIndex)-> 
  case NextSec of 
   [] -> %wall crash/restart_state 
    Updated_RunIndex = S#dtm_state.run_index+1, 
    case Updated_RunIndex >= S#dtm_state.tot_runs of 
     true -> 
      From_PId ! {self(),S#dtm_state.fitness_acc-0.4,1}, 
      dtm_sim(ExoSelf_PId,#dtm_state{}); 
     false -> 
      From_PId ! {self(),0,0}, 
      U_S = S#dtm_state{ 
       agent_position=[0,0], 
       agent_direction=90, 
       run_index=Updated_RunIndex, 
       step_index = 0, 
       fitness_acc = S#dtm_state.fitness_acc-0.4 
      }, 
      dtm_sim(ExoSelf_PId,U_S) 
     end; 
   _ -> %move 
    From_PId ! {self(),0,0}, 
    U_S = S#dtm_state{ 
     agent_position=NextSec, 
     step_index = U_StepIndex 
    }, 
    dtm_sim(ExoSelf_PId,U_S) 
  end. 
%The move/5 function accepts as input the State S of the scape, and the specification of where 
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the agent wants to move its avatar next, NextSec. The function then determines whether that 
next sector exists, or whether the agent will hit a wall if it moves in its currently chosen direc-
tion. 
 
set_tmaze_sectors()-> 
 Sectors = [ 
  #dtm_sector{id=[0,0],description=[{0,[],[1,0,0]},{90,[0,1],[0,1,0]},{180,[],[0,0,1]}, 
{270,[], [0,0,0]}],r=0}, 
  #dtm_sector{id=[0,1],description=[{0,[1,1],[0,1,1]},{90,[],[1,0,1]},{180,[-1,1], 
[1,1,0]}, {270, [0,0], [1,1,1]}],r=0}, 
  #dtm_sector{id=[1,1],description=[{0,[],[0,0,0]},{90,[],[2,0,0]},{180,[0,1],[0,2,0]}, 
{270,[], [0,0,2]}],r=0.2}, 
  #dtm_sector{id=[-1,1],description=[{0,[0,1],[0,2,0]},{90,[],[0,0,2]},{180,[],[0,0,0]}, 
{270,[],[2,0,0]}],r=1} 
 ]. 

With the T-Maze implemented, we now need to develop the complementary 
sensor and the actuator. For the sensor, since the agent needs all the information 
appended: sensory vectors from the range_sensor, and the reward sensor, com-
bined into a single vector, we will create a single sensor which will contain the in-
formation from both of these sensors. What sensory signal the scape sends back to 
the agent’s sensor will be defined by the sensor’s parameter message. The actuator 
will simply forward the NN based agent’s output to the discrete T-Maze process, 
which will then interpret the signal as turning left and moving forward 1 step, 
turning right and moving forward 1 step, or just moving forward 1 step. We first 
create the morphology, which follows the same format as the one we created for 
the pole_balancing morphology. This morphology we will call discrete_tmaze, 
with its implementation shown in Listing-14.10, and which we add to the mor-
phology module. 

Listing-14.10 The discrete_tmaze morphology specification. 
 
discrete_tmaze(sensors)->  
 [  
  #sensor{name=dtm_GetInput,scape={private,dtm_sim},vl=4,parameters=[all]}  
 ];  
discrete_tmaze(actuators)->  
 [  
  #actuator{name=dtm_SendOutput,scape={private,dtm_sim},vl=1,parameters=[]}  
 ]. 

% The set_tmaze_sectors/0 function returns to the caller a list of sectors representing the T-
Maze. In this case, there are 4 such sectors, the vertical sector, the two horizontal sectors,
and the cross section sector. 
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Similarly, the sensor’s implementation is shown in Listing-14.11, which we 
add to the sensor module. 

Listing-14.11 The dtm_GetInput sensor implementation. 
 
dtm_GetInput(VL,Parameters,Scape)->  
 Scape ! {self(),sense,Parameters},  
 receive  
  {Scape,percept,SensoryVector}->  
   case length(SensoryVector)==VL of  
    true ->  
     SensoryVector;  
    false ->  
     io:format(“Error in sensor:dtm_GetInput/3, VL:~p 
SensoryVector:~p~n”, [VL,SensoryVector]),  
     lists:duplicate(VL,0)  
   end  
 end. 

Finally, the actuator implementation is shown in Listing-14.12, which we add it 
to the actuator module. 

Listing 14.12 The dtm_SendOutput actuator implementation. 
 
dtm_SendOutput(Output,Parameters,Scape)->  
 Scape ! {self(),move,Parameters,Output},  
 receive  
  {Scape,Fitness,HaltFlag}->  
   {Fitness,HaltFlag}  
 end. 

And with that we’ve completely developed all the parts of the discrete T-Maze 
benchmark. We’ve created the actual private scape that represents the maze and in 
which an agent can travel. And we created the complementary morphology, with 
its own sensor and actuator set, used to interface with the T-Maze scape. With this 
particular problem/benchmark, we will now be able to test whether our topology 
and weight evolving artificial neural network system is able to evolve NN based 
agents which can perform complex navigational tasks, evolve agents which have 
memory and can make choices based on it, and even learn when the neurons with-
in the tested NN have plasticity. 
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14.2.2 Benchmark Results 

Let’s run a quick test of our system by applying it to our newly developed 
problem. Though I do not expect our neuroevolutionary system to evolve an agent 
capable of effectively solving the problem at this stage, we still need to test 
whether the new scape, morphology, sensor, and actuator, are functional. Before 
we run the benchmark, let us figure out what fitness score value represents that the 
problem has been solved. 

An evaluation is composed of 100 total maze runs, and sometime during the 
midpoint, between run 35 and 65, the high and low rewards are flipped. In this 
implementation, we set the switch_event to occur on the run number: 
35+random:uniform(30). It will take at least one wrong trip to the reward to fig-
ure out that its position has been changed. Also, we should expect that eventually, 
evolution will create NNs that always first go to the maze corner located at [1,1], 
which holds the high reward before it is flipped. 

With this out of the way, we now set the Morphology element in the 
benchmarker module within the ?INIT_CONSTRAINTS macro, to discrete_tmaze. 
We then set generation limit to inf, and evaluations_limit to 5000, in the pmp rec-
ord. Finally, we run polis:sync() to recompile and load everything, then start the 
polis, and then finally execute benchmarker:start(dtm_test), as shown in Listing-
14.3. 

Listing-14.3 The results of running the T-Maze benchmark. 
 
Graph:{graph,discrete_tmaze, 

So then, the maximum possible score achievable in this problem, a score repre-
senting that the problem has been solved, is: 99*1 + 1*0.2 + 50 = 149.2, which 
represents an agent that first always goes to the right corner, at some point it goes 
there and notices that the reward is now small (0.2 instead of 1), and thus starts 
going to the [-1,1] corner. This allows the agent to achieve 99 high rewards, and 1 
low reward. A score which represents that the agent evolved to always go to 
{1,1}, is at most: 65*1 + 35*0.2 + 50 = 122, which is achieved during the best 
case scenario, when the reward is flipped on the 65th count, thus allowing the 
agent to gather high reward for 65 maze runs, and low reward for the remaining 35 
maze runs. The agent will perform multiple evaluations, during some evaluations 
the reward switch event will occur early, and every once in a while it will occur on 
the 65th maze run, which is the latest time possible. During that lucky evaluation, 
the agent can reach 122 fitness points by simply not crashing and always going to 
the {1,1} side. The agent can accomplish this by first having: 0.33> Output >-
0.33, which will make the avatar move forward, and during the second step have 
Output > 0.33, which will make the avatar turn right and move forward to get the 
reward. Finally, the smallest possible fitness is achieved when the agent always 
crashes into the wall: 50 – 100*0.4 = 10. 
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             [1.1300000000000001,1.12,1.195,1.1816666666666666, 
              1.1633333333333333,1.156111111111111,1.2322222222222223, 
              1.1400000000000001,1.1766666666666665,1.1800000000000002], 
             [0.10535653752852737,0.11661903789690603,0.10234744745229357, 
              0.10026354161796684,0.10214368964029706,0.08123088569087163, 
              0.13765675688483067,0.11575836902790224,0.1238726945070803, 
              0.092736184954957], 
             [111.38000000000011,115.31900000000012,112.4590000000001, 
              114.4511111111112,112.8790000000001,112.6335555555556, 
              112.13066666666677,111.12500000000009,110.68722222222232, 
              114.57700000000014], 
             [9.305813236896594,6.245812917467183,6.864250796700242, 
              8.069048898318606,8.136815662374111,9.383282426018074, 
              7.888934134455533,9.98991266228088,9.41834002503416, 
              8.867148978110151], 
             [122.0000000000001,122.0000000000001,122.0000000000001, 
              122.0000000000001,122.0000000000001,122.0000000000001, 
              122.0000000000001,122.0000000000001,122.0000000000001, 
              122.0000000000001], 
             [10.000000000000115,10.000000000000115,10.000000000000115, 
              10.000000000000115,10.000000000000115,10.000000000000115, 
              10.000000000000115,10.000000000000115,10.000000000000115, 
              10.000000000000115], 
             [8.1,8.8,9.1,8.9,8.0,7.75,8.1,7.65,7.9,7.8], 
             [0.8888194417315588,1.2884098726725124,0.8306623862918073, 
              0.7681145747868607,0.8366600265340756,0.8874119674649424, 
              0.9433981132056604,0.7262919523166975,1.57797338380595, 
              1.3638181696985856], 
             [500.0,500.0,500.0,500.0,500.0,500.0,500.0,475.0,500.0,500.0], 
             []} 
Tot Evaluations Avg:5083.75 Std:53.78835840588556 

We are not interested in the “Tot Evaluations Avg” value, since the benchmark 
was not set up to use the goal_reached feature. But from the graph printout we do 
see the score 122.00, boldfaced. I’ve boldfaced the list showing the highest fit-
ness scores achieved amongst all the evolutionary runs. Though as we guessed, the 
system did not produce a solution (which requires plasticity as we will see in the 
next chapter), it has rapidly (within the first 500 evaluations), produced the score 
of 122, which means that agents learned to always navigate to the right corner. 

It is always a good idea to at least once double check and printout all the in-
formation produced within the scape, following it in the console, and manually 
analyzing it to check for bugs. We will do that just this once, following a single 
extracted agent, and the signals its sensors acquire and its actuators produce. First, 
we run the function population_monitor:test() with the same parameters we started 
the benchmarker until a fit agent is evolved. We then add the line: 
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io:format(“Position:~p SenseSignal:~p “,[Apos,SenseSignal]),  

And lines: 

timer:sleep(1000),  
io:format(“Move:~p StepIndex:~p RunIndex:~p~n”, [Move,U_StepIndex, 
S#dtm_state.run_index]), 

To the receive sense and move pattern matchers, respectively. We then extract 
the evolved fit agent, and execute the function: exoself:start(AgentId,void) to ob-
serve the path the agent takes. A short console printout I saw when performing 
these steps is shown in Listing-14.4. The console printout shows the agent’s start-
ing moves, up to the point when the position of the rewards was switched, and a 
few steps afterwards. 

Listing-14.4 Console printout of a champion agent’s maze navigation. 

 

Starting dtm_sim 
Position:[0,0] SenseSignal:[0,1,0,0] <0.5846.1> 
Move:4.18876787545547e-15 StepIndex:1 RunIndex:0 
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:0 
Position:[1,1] SenseSignal:[0,0,0,1] Move:0.011886120521166272 StepIndex:3 RunIndex:0 
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.18876787545547e-15 StepIndex:1 RunIndex:1 
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:1 
Position:[1,1] SenseSignal:[0,0,0,1] Move:0.011886120521166272 StepIndex:3 RunIndex:1 
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.18876787545547e-15 StepIndex:1 RunIndex:2 
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:2 
Position:[1,1] SenseSignal:[0,0,0,1] Move:0.011886120521166272 StepIndex:3 RunIndex:2 
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.18876787545547e-15 StepIndex:1 RunIndex:3 
... 
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.18876787545547e-15 StepIndex:1 RunIndex:38 
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:38 
Position:[1,1] SenseSignal:[0,0,0,1] Move:0.011886120521166272 StepIndex:3 RunIndex:38 
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.1887678754555e-15 StepIndex:1 RunIndex:39 
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:39 
Position:[1,1] SenseSignal:[0,0,0,0.2] Move:0.837532377697202 StepIndex:3 RunIndex:39 
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.1887678754555e-15 StepIndex:1 RunIndex:40 
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:40 
Position:[1,1] SenseSignal:[0,0,0,0.2] Move:0.837532377697202 StepIndex:3 RunIndex:40 
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.18876787545547e-15 StepIndex:1 RunIndex:41 
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:41 
Position:[1,1] SenseSignal:[0,0,0,0.2] Move:0.837532377697202 StepIndex:3 RunIndex:41 
... 

exoself:start({7.513656492058022e-10,agent},void). 
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14.3 Summary & Discussion 

In this chapter we built two new problems to benchmark and test our 
neuroevolutionary system on. We built the Double Pole Balancing (DPB) simula-
tion, and the Discrete T-Maze (DTM) simulation. We created different versions of 
the pole balancing problem, the single pole balancing with and without damping, 
and with and without full system state information, and the double pole balancing 
with and without damping, and with and without full system state information. 
The complexity of solving the pole balancing problem grows when we increase 
the number of poles to balance simultaneously, when we remove the velocity in-
formation and thus require the NN based agent to derive it on its own, and when 
we use the damping based fitness function instead of the standard one. We also 
created a discrete version of the T-Maze navigation problem, where an agent must 
navigate a T shaped maze to collect a reward located at one of the horizontal maze 
ends. In this maze there are two rewards, located at the opposite ends of the maze, 
one large and one small, and their location is switched at a random point during 
the 100 maze runs in total. This requires the agent to remember where the large 
reward was last time, explore that position, find that the reward is now small, and 
during the remaining maze runs navigate to the other side of the maze to continue 
collecting the large reward. This problem can be further expanded by changing the 
fitness function used, and by requiring the agent to collect the reward and then re-
turn to the base of the maze, rather than being automatically teleported back as is 
the case with our current implementation. Furthermore, we could expand the T-
Maze into a Double T-Maze, with 4 corners where the reward can be collected, 
and thus requiring the agent to remember more navigational patterns and reward 
locations.  

Based on our benchmark, the system we’ve built thus far has performed very 
well on the DPB problem, with its results being higher than those of other Topol-
ogy and Weight Evolving Artificial Neural Networks (TWEANN), as was seen 
when the results we achieved were compared to the results of such systems refer-
enced from paper [1]. Yet still the performance was not higher than that of 
DXNN, because we have yet to tune our system. When we applied our TWEANN 
to the T-Maze Navigation problem, it evolved NNs that were not yet able to 
change their strategy based on their experience. Adding plasticity in the next chap-
ter will further expand the capabilities of the evolved NNs, giving us a chance to 

I’ve boldfaced the very first maze run, where we see the agent taking the steps 
from [0,0] to [0,1] to [1,1], and receiving the reward 1. Then we fast-forward and 
see that during the RunIndex:39, the reward has been switched. We know this 
because when the agent gets to [1,1] on that run, the reward is a mere 0.2 now. On 
the RunIndex: 40, the agent still goes to this same location, indicating it has not 
learned, and it has not evolved the ability to change its strategy. 
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again apply our system to this problem, and see that the performance improves, 
and allows the agents to achieve perfect scores. 

Having a good set of problems in our benchmark suit will allow us to add and 
create features that we can demonstrate to improve the system’s generalization 
abilities and general performance. The two new problems we added in this chapter 
will allow us to better test our system, and the performance of new features we 
add to it in the future. Finally, the T-Maze problem will allow us to test the im-
portant feature that we will add in the next chapter: neural plasticity. 
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