
Chapter 13 The Benchmarker 

Abstract   In this chapter we add the benchmarker process which can sequentially 
spawn population_monitors and apply them to some specified problem/simulation. 
We also extend the database to include the experiment record, which the 
benchmarker uses to deposit the traces of the population’s evolutionary statistics, 
and to recover from crashes to continue with the specified experiment. The 
benchmarker can compose experiments by performing multiple evolutionary runs, 
and then produce statistical data and GNUplot ready files of the various evolution-
ary dynamics and averages calculated within the experiment. 

Though in the previous chapter we have completed the development of the 
most important part of keeping track of the population’s statistics and progress, we 
can still go a step further and add one more program, the benchmarker. When run-
ning a simulation or experiment, the progress of the population, the trace, repre-
sents a single evolutionary path of the population. When analyzing the functionali-
ty of our system, when we want to benchmark a new added element, we might 
wish to run the simulation multiple times, we might want to create multiple traces 
for the same problem, and then average them before starting to analyze the func-
tionality of our TWEANN, or the results of applying it to some simulation or 
problem. 

The benchmarker process we want to create here is in some sense similar to the 
one we implemented in Section-7.7. This program will offer us a concise and ro-
bust way in which to apply the population_monitor to some problem multiple 
times, and thus build a dataset by averaging the performance of our neuroevolu–
tionary system from multiple applications to the problem, from multiple evolu-
tionary runs. The benchmarker will be called with the following parameters:  

1. The INIT_CONSTRAINTS parameter, which will specify the type of problem 
the benchmarker will create the populations for.  

2. The parameter N, which will specify the number of times the benchmarker 
should apply the neuroevolutionary system to the problem.  

3. The termination condition parameters (evaluations limit, generation limit, and 
fitness goal). 

The benchmarker’s operational scenario would be as follows: The benchmarker 
process would first spawn the population_monitor. Then wait for the popula-
tion_monitor to reach its termination condition, send benchmarker the accumulat-
ed trace record, and then terminate. Afterwards, the benchmarker would store the 
trace into its trace accumulator, and spawn a new population_monitor which 
would try to solve the problem again. This would continue for N number of times, 
at which point the benchmarker would have accumulated N traces. It could then 
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average the trace results and form a single trace average (the various averages
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written to file in the format which can be graphed and visualized, by perhaps a 
program like gnuplot [1]. 

13.1 The benchmarker Architecture 

The purpose of the benchmarker process is simple, to spawn a popula-
tion_monitor, wait for it to finish solving the problem or reach a termination con-
dition and send its composed trace to the benchmarker process (if the 
benchmarker was the one that spawned the population_monitor), and then 
respawn another population_monitor, repeating the procedure N times. Once the 
benchmarker has done this N number of times, and thus has accumulated N traces, 
the benchmarker is to analyze the traces, build the averages of those traces, and 
write this data to a file, and optionally print it to console. 

Because gnuplot is so prevalent in plotting data in the scientific community, we 
want the benchmarker to write to file the resulting benchmark data in a format that 
can be directly used by gnuplot. Some of the information that can be plotted is: 
Fitness Vs. Evaluations, NN Size Vs. Evaluations, and Specie Diversity Vs. Evalu-
ations. 

Furthermore, assume that we are running our benchmark on a single machine. 
We planned on applying our neuroevolutionary system to some problem 100 
times, each for 100000 evaluations. And on the 90th evolutionary run there is a 
power outage, and we lose all 90 evolutionary run traces when we only had 10 
more to go before completing the full experiment composed of 100 evolutionary 
runs. To prevent such situations, we must of course save the trace results which 
belong to the same experiment, after every evolutionary run. Thus if there is a 
power outage, or we wish to stop the experiment at some point, we need to ensure 
that whichever evolutionary runs have already been done, will have their traces 
backed up, and thus give us a chance to continue with the experiment when we are 
ready again. 

between all the traces composing the experiment). This trace average can then be 

In the following sections we will implement this benchmarker process. The 
ability to determine and graph the performance statistics of a neuroevolutionary 
system allows one to advance it, to see where it might have flaws and what new 
features should be added, and the affect of those new features on its performance. 
The benchmarker program also assists in conducting research, for the results and 
applications of the neuroevolutionary system must be presented at one point or 
another, and thus a benchmark of the neuroevolutionary system’s general and av-
erage performance on some task must be composed. The experiment must be run 
multiple times, such that the accuracy and the standard deviation of the results can 
be calculated. And that is exactly what the benchmarker program will assist in 
doing. 
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To add such functionality, we will create a new mnesia table called experiment, 
which will allow for every experiment to have its own id or name, and a trace_acc 
list where it will accumulate the traces which belong to that particular experiment. 
It will be the benchmarker process that will backup the traces to their appropriate 
experiment entry, after every completed simulation or problem run. 

To accomplish all of this, the benchmarker process needs to be able to do the 
following tasks: 

4. Know how many evolutionary runs to perform for the experiment. 
5. Know the name of the experiment, so that it can store the traces to their appro-

priate locations in the mnesia table. 
6. Be able to specify the initial state parameters with which to start the popula-

tion_monitor process, and restart it after a crash. 

This means that other than adding the experiment record to the records.hrl file 
and creating a mnesia table of the same name, we must also modify how the popu-
lation_monitor is started. Currently, it uses the macros defined within the module. 
These macros define how large the initial population size should be, the termina-
tion conditions... This makes it difficult to start the population_monitor from an-
other module, and control the population_monitor’s parameters from the same. 

In the following sections we create the new records and add the new table to 
the mnesia database. We then make a small modification to the popula-
tion_monitor module, move the previously macro defined parameters into the state 
record, and add a new function with which the population_monitor can be started 
and have its state record initialized. Finally, we then create the actual benchmarker 
module. 

13.2 Adding New Records 

We need to modify the population_monitor’s state record, and then add two 
new records to the records.hrl file. The population_monitor’s new state record will 
include all the elements that were previously defined through the macros of that 
module. With regards to the two new records to be added to the records.hrl, one of 
them will be the new mnesia table, experiment, and the other record, pmp (popula-
tion monitor parameters) will be used specifically by the benchmarker to call and 
start the population_monitor process with a certain set of parameters, thus setting 
the population_monitor’s initial state tuple to the proper values. 

Thus we will need to expand its state record to include the previously macro 
tion with which to start the popula-

tion_monitor, a function which can be executed with a list of parameters, the

population_monitor is started. 

defined parameters, and add a new func

parameters that are then entered into the state tuple with which the 
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The population_monitor originally specified its state and other parameters for 
its operation using the macros and records at the top of the module, as shown in 
Listing-13.1. 

Listing-13.1 The macros and records originally used by the population_monitor process. 
 
-define(INIT_CONSTRAINTS,[#constraint{morphology=Morphology, connec-
tion_architecture=CA, population_evo_alg_f=steady_state} || Morphology<-[xor_mimic],CA<-
[feedforward]]).  
-define(SURVIVAL_PERCENTAGE,0.5).  
-define(SPECIE_SIZE_LIMIT,10).  
-define(INIT_SPECIE_SIZE,10).  
-define(INIT_POPULATION_ID,test).  
-define(OP_MODE,gt).  
-define(INIT_POLIS,mathema).  
-define(GENERATION_LIMIT,100).  
-define(EVALUATIONS_LIMIT,100000).  
-define(GEN_UID,genotype:generate_UniqueId()).  
-define(FITNESS_GOAL,1000).  
-record(state,{ op_mode, population_id, activeAgent_IdPs=[], agent_ids=[], tot_agents, 
agents_left, op_tag,agent_summaries=[], pop_gen=0, eval_acc=0, cycle_acc=0, time_acc=0, 
step_size, next_step, goal_status,evolutionary_algorithm, fitness_postprocessor,  
selection_algorithm, best_fitness }). 

Because the population_monitor’s macros are module specific, and we would 
like to be able to specify in which manner to start the population_monitor, what its 
fitness goal should be, evaluation and generation limits, and what polis it should 
use... we need to move all the macro defined elements into the popula-
tion_monitor’s state record. This way the benchmarker process can call the popu-
lation_monitor and specify all these previously macro defined parameters. We al-
so add one extra parameter to the state record, the benchmarker_pid element, 
which can be set to the PId of the benchmarker process, and then used by the pop-
ulation_monitor to send its trace to the benchmarker process that spawned it. The 
population_monitor’s new state record is shown in Listing-13.2, where the newly 
added elements are shown in boldface. 

Listing-13.2 The updated state record of the population_monitor module. 
 
-record(state,{  
 op_mode = gt,  
 population_id = test,  
 activeAgent_IdPs = [],  
 agent_ids = [],  
 tot_agents,  
 agents_left,  
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 op_tag,  
 agent_summaries = [],  
 pop_gen = 0,  
 eval_acc = 0,  
 cycle_acc = 0,  
 time_acc = 0,  
 tot_evaluations = 0,  
 step_size,  
 goal_status,  
 evolutionary_algorithm,  
 fitness_postprocessor,  
 selection_algorithm,  
 best_fitness,  
 survival_percentage = 0.5,  
 specie_size_limit = 10,  
 init_specie_size = 10,  
 polis_id = mathema,  
 generation_limit = 100,  
 evaluations_limit = 100000,  
 fitness_goal = inf , 
 benchmarker_pid 
}). 

When we start the population_monitor, we want to be able to define these ele-
ments. Their default values are shown in the state record, but every-time we run an 
experiment, we want to be able to set these parameters to whatever we want. Thus, 
we add the pmp (population monitor parameters) record to the records.hrl, so that 
it can be set by the benchmarker, and read by the population_monitor. This new 
record is shown in Listing-13.3, and its elements are defined as follows: 

1. op_mode: Allows the benchmarker to define the mode in which the popula-
tion_monitor operates. Thus far we only used the gt, which we have not yet used 
to specify any particular mode of operation, but we will in a much later chapter. In 
the future we can define new modes, for example the throughput mode during 
which the agents are not tuned or evaluated, but simply tested for whether they are 
functional, whether they can gather signals through sensors and output actions 
through their actuators. The throughput op_mode could also then be used to 
benchmark the speed of the cycle of the NN based agent, and thus used to test 
which topologies can process signals faster, and which designs and architectures 
and implementations of neurons, sensors, actuators, and cortexes are more effi-
cient. Or we could specify the op_mode as standard, which would make the pop-
ulation monitor function in some standard default manner. With regards to gt, it 
stands for genetic tuning, but due to our not yet having specified other operational 
modes, or taken advantage of this parameter, it is effectively the standard mode 
of operation until we add a new one in Chapter-19. 
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Listing-13.3 The new pmp (population monitor parameters) record added to the records.hrl 
 
-record(pmp,{  
 op_mode=gt,  
 population_id=test,  
 survival_percentage=0.5,  
 specie_size_limit=10,  
 init_specie_size=10,  
 polis_id = mathema,  
 generation_limit = 100,  
 evaluations_limit = 100000,  
 fitness_goal = inf , 
 benchmarker_pid 
}). 

2. population_id: Allows the benchmarker to set the population’s id. 
3. survival_percentage: Allows the benchmarker to set which percentage of the 

population survives during the selection phase. 
4. specie_size_limit: Allows the benchmarker to set the size limit of every spe-

cie within the population. This is an important parameter to define when start-
ing an experiment. 

5. init_specie_size: Allows the benchmarker to define the initial size of the spe-
cie. For example the experiment can be started where the initial specie size is 
set to 1000, but the specie size limit is set to 100. In this way, there would be 
a great amount of diversity (given the constraint is defined in such a manner 
that NN based agents have access to a variety of plasticity functions, activa-
tion functions...), but after a while only 100 are allowed to exist at any one 
time. Or things could be done in the opposite way, the initial specie size can be 
small, and the limit specie size large. Allowing the specie to rapidly expand in 
numbers and diversity, from some small initial bottleneck in the population. 

6. polis_id: Allows the benchmarker to define in which polis the popula-
tion_monitor will create the new agent population. 

7. generation_limit: Every experiment needs a termination condition, and the 
benchmarker specifies the generation limit based termination condition for the 
population_monitor, using this parameter. 

8. evaluations_limit: Lets the benchmarker specify the evaluations limit based 
termination condition. 

9. fitness_goal: Lets the benchmarker specify the fitness based termination con-
dition. 

10. benchmarker_pid: This parameter is set to undefined by default. If the popu-
lation_monitor has been spawned for a particular experiment by the 
benchmarker, then the benchmarker sets this parameter to its own PId. Using 
this PId, the population_monitor can, when the neuroevolutionary run has 
reached its termination condition, send its trace to the benchmarker process. 
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The pmp record does not necessarily need to be used only by the benchmarker. 
The researcher can of course, rather than specifying these parameters in the popu-
lation_monitor module and then recompiling it, simply start the popula-
tion_monitor using the pmp record and the new prep_PopState/2 function we will 
build in the next subsection, and in this way define all the necessary experiment 
parameters. 

The new experiment table we will add to the mnesia database will hold all the 
general, experiment specific data, particularly the traces. This is the record that the 
benchmarker populates as it runs the problem or experiment multiple times to 
generate multiple traces. The experiment record is shown in Listing-13.4, and its 
elements are defined as follows: 

1. id: Is the unique id or name of the experiment being conducted. Because we 
wish for this new mnesia table to hold numerous experiments, we need to be 
able to give each experiment its own particular id or name.  

2. backup_flag: This element is present for the use by the benchmarker. When 
we start the benchmarker program with the experiment tuple whose back-
up_flag is set to false, it does not backup that particular experiment to mnesia. 
This might be useful when we wish to quickly run an experiment but not write 
the results to the database.  

3. pm_parameters: This element will store the pmp record with which the pop-
ulation_monitor was started for this particular experiment. This will allow us to 
later on know what the experiment was for, and how the population_monitor 
was started (all the initial parameters) to produce the results and traces in the 
experiment entry. This way the experiment can be replicated later on. 

4. init_constraints: Similarly to the pm_parameters which defines how the pop-
ulation_monitor runs, we also need to remember the parameters of the popula-
tion itself, and the experiment to which the traces belong. This information is 
uniquely identified by the init_constraints list with which the population is 
created. Having the init_constraints will allow us to later on replicate the ex-
periment if needed. 

5. progress_flag: This element can be set to two values: in_progress and com-
pleted. The experiment is in progress until it has been run for tot_runs number 
of times, and thus the experiment has accumulated tot_runs number of traces 
in its trace_acc list. If for example during the experiment run there is a power 
outage, when we later go through all the experiments in the experiment table, 
we will be able to determine which of the experiments were interrupted, based 
on their progress_flag. Any experiment whose progress_flag is set to 
in_progress, but which is not currently running, must have been interrupted, 
and still needs to be completed. Once it is completed, the progress_flag is set 
to: completed. 

6. trace_acc: This is a list where we store the trace tuples. If we apply our 
TWEANN to some particular problem 10 times, and thus perform 10 evolu-
tionary runs, we keep pushing new trace tuples into this list until it contains 
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Listing-13.4 The experiment record. 
 
-record(experiment,{  
 id,  
 backup_flag = true,  
 pm_parameters,  
 init_constraints, 
 progress_flag=in_progress,  
 trace_acc=[],  
 run_index=1,  
 tot_runs=10,  
 notes,  
 started={date(),time()},  
 completed,  
 interruptions=[]  

all 10 traces, which we can later use at our leisure to build graphs and/or de-
duce performance statistics. 

7. run_index: We plan on running the experiment some tot_runs number of 
times. The run_index keeps track of what the current run index is. If the ex-
periment is interrupted, using this and other parameters we can restart and 
continue with the experiment where we left off. 

8. tot_runs: This element defines the total number of times that we wish to per-
form the evolutionary run, the total number of traces to build this particular 
experiment from. 

9. notes: This can contain a data of any form; string, lists, tuple... This element 
simply adds an extra open element where some other data can be noted, data 
which does not belong to any other element in this record. 

10. started: This element is the tuple: {date(), time()}, which specifies when the 
experiment was started. 

11. completed: Complementary to the started element, this one stores the date() 
and time() of when the experiment was finally completed. 

12. interruptions: This element is a list of tuples, whose form is: {date(), time()}. 
These tuples are generated every time the experiment has been restarted after 
an interruption. For example assume we are running an experiment, and on 
the 4th run, at which point the trace_acc already contains 3 trace tuples, the 
experiment was interrupted. Later on when we wish to continue with the ex-
periment, we look through the mnesia database, in the experiment table, for 
an experiment whose progress_flag is set to in_progress. When we find this 
experiment, we know it has been interrupted, we take its pm_parameters and 
init_constraints and continue with the experiment, but also, we push to the in-
terruptions list the tuple {date(),time()}, which ensures that this experiment 
notes that there was an interruption to the experiment, it was not a single con-
tinues run, and that though we do not know when that interruption occurred, 
we did continue with the experiment on the date: date(), and time: time(). 
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}).  

With all the new records defined, we can now move forward and make the 
small modification to the population_monitor module, creating its new 
prep_PopState/2 function, which will allow the benchmarker, and the researcher, 
to start the population_monitor process with its state parameters defined by the 
pmp record that the prep_PopState/2 is executed with. 

13.3 Updating the population_monitor Module 

Listing-13.5 The prep_PopState/2 function used to initialize the state parameters of the popula-
tion_monitor. 
 
prep_PopState(PMP,Specie_Constraints)->  
 S=#state{  
  op_mode=PMP#pmp.op_mode,  
  population_id = PMP#pmp.population_id,  
  survival_percentage=PMP#pmp.survival_percentage,  
  specie_size_limit=PMP#pmp.specie_size_limit,  
  init_specie_size=PMP#pmp.init_specie_size,  
  polis_id=PMP#pmp.polis_id,  
  generation_limit=PMP#pmp.generation_limit,  
  evaluations_limit=PMP#pmp.evaluations_limit,  
  fitness_goal=PMP#pmp.fitness_goal , 
  benchmarker_pid=PMP#pmp.benchmarker_pid 
 },  
 init_population(S,Specie_Constraints). 

As can be seen, we now execute the init_population/2 function with the state 
tuple rather than the original population_id and the opmode parameters. This 
means that all the other functions which originally used the macros of this module, 
need to be slightly modified to now simply use the parameters which are now 
specified within the population_monitor’s state record. The modifications are very 

Instead of using the macros, we now store all the parameters in the popula-
tion_monitor’s state record. To start the population_monitor with a particular set 
of parameters, we now need to create a new function in which we define and set 
the state to the particular parameters we want the population_monitor to operate 
under. To set everything up for a population_monitor, we only need the parame-
ters defined in the pmp and the constraint record. Thus we create the 
prep_PopState/2 function which is executed with the pmp record, and a list of 
constraint records, as its parameters. The new prep_PopState/2 function is shown 
in Listing-13.5. 
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small and few in number, and are thus not shown. The updated popula-
tion_monitor module can be found in the 13th chapter of the available supplemen-
tary material [2]. 

Finally, we modify the termination clause of the population_monitor, since 
now at the moment of termination, the population_monitor needs to check whether 
it was a benchmarker that had spawned it. The population_monitor accomplishes 
this by checking the benchmarker_pid parameter. If this parameter is set to unde-
fined, then the population_monitor does not need to send its trace anywhere. If the 
benchmarker_pid is defined, then the process forwards its trace to the specified 
PId. The updated terminate/2 callback is shown in Listing-13.6. 

Listing-13.6 The updated terminate/2 function, capable of sending the benchmarker the popula-
tion_monitor’s trace record, if the benchmarker was the one which spawned it. 
 
terminate(Reason, S) ->  
 case S of  
  [] ->  
   io:format(“******** Population_Monitor shut down with Reason:~p, with 
State: []~n”,[Reason]);  
  _ ->  
   OpMode = S#state.op_mode,  
   OpTag = S#state.op_tag,  
   TotEvaluations=S#state.tot_evaluations,  
   Population_Id = S#state.population_id,  
   case TotEvaluations < 500 of  
    true ->%So that there is at least one stat in the stats list.  
     gather_STATS(Population_Id,0);  
    false ->  
     ok  
   end,  
   P = genotype:dirty_read({population,Population_Id}),  
   T = P#population.trace,  
   U_T = T#trace{tot_evaluations=TotEvaluations},  
   U_P = P#population{trace=U_T},  
   genotype:write(U_P),  
   io:format(“******** TRACE START ********~n”),  
   io:format(“~p~n”,[U_T]),  
   io:format(“******** ^^^^ TRACE END ^^^^ ********~n”),  
   io:format(“******** Population_Monitor:~p shut down with Reason:~p 
OpTag:~p, while in OpMode:~p~n”,[Population_Id,Reason,OpTag,OpMode]),  
   io:format(“******** Tot Agents:~p Population Generation:~p 
Tot_Evals:~p~n”,[S#state.tot_agents,S#state.pop_gen,S#state.tot_evaluations]),  
   case S#state.benchmarker_pid of  
    undefined ->  



13.4 Implementing the benchmarker      557 

     ok;  
    PId ->  
     PId ! {S#state.population_id,completed,U_T}  
   end  
 end. 

With this done, and everything set up for the benchmarker to be able to spawn 
the population_monitor and store the experiment data if it wishes to do so, we now 
move forward to the next subsection and create this new benchmarker module. 

13.4 Implementing the benchmarker 

The benchmarker process will have three main functionalities: 

1. To run the population_monitor N number of times, waiting for the popula-
tion_monitor’s trace after every run.  

2. Create the experiment entry in the mnesia database, and keep updating its 
trace_acc as it itself accumulates the traces from the spawned popula-
tion_monitors. The benchmarker should only do this if the backup_flag is set to 
true in the experiment record with which the benchmarker was started. 

3. When the benchmarker has finished performing N number of evolutionary 
runs, and has accumulated N number of traces, it must print all the traces to 
console, calculate averages of the parameters between all the traces, and then 
finally write that data to file in the format which can be immediately graphed 
by GNUPlot. 

In addition, because the benchmarker might be interrupted as it accumulates the 
traces, we want to build a function which can continue with the experiment when 
executed. Because each experiment will have its own unique Id, and because each 
experiment is stored to mnesia, this continue function should be executed with the 
experiment id parameter. When executed, it should read from the mnesia database 
all the needed information about the experiment, and then run the popula-
tion_monitor the remaining number of times to complete the whole experiment.  

In Listing-13.7 we implement the new benchmarker module. The comments af-
ter each function describe its functionality and purpose.  

Listing-13.7 The implementation of the benchmarker module. 
 
-module(benchmarker).  
-compile(export_all).  
-include(“records.hrl”).  
%%% Benchmark Options %%% 
-define(DIR,”benchmarks/”).  
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-define(INIT_CONSTRAINTS,[#constraint{morphology=Morphology,  
connection_architecture =CA, population_evo_alg_f=generational} || Morphology<-
[xor_mimic], CA<-[feedforward]]).  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
start(Id)->  
 PMP = #pmp{  
  op_mode=gt,  
  population_id=Id,  
  survival_percentage=0.5,  
  specie_size_limit=10,  
  init_specie_size=10,  
  polis_id = mathema,  
  generation_limit = 100,  
  evaluations_limit = 10000,  
  fitness_goal = inf  
 },  
 E=#experiment{  
  id = Id,  
  backup_flag = true,  
  pm_parameters=PMP,  
  init_constraints = ?INIT_CONSTRAINTS, 
  progress_flag=in_progress,  
  run_index=1,  
  tot_runs=10,  
  started={date(),time()},  
  interruptions=[]  
 },  
 genotype:write(E),  
 register(benchmarker,spawn(benchmarker,prep,[E])).  
%start/1 is called with the experiment id or name. It first assigns all the parameters to the pmp 
and experiment records, and then writes the record to database (overwriting an existing one of 
the same name, if present), and then finally spawns and registers the actual benchmarker pro-
cess. 
 
continue(Id)->  
 case genotype:dirty_read({experiment,Id}) of  
  undefined ->  
   io:format(“Can’t continue experiment:~p, not present in the database.~n”,[Id]);  
  E ->  
   case E#experiment.progress_flag of  
    completed ->  
     Trace_Acc = E#experiment.trace_acc, 
     io:format(“Experiment:~p already completed:~p~n”, [Id, 
Trace_Acc]); 
    in_progress ->  
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     Interruptions = E#experiment.interruptions,  
     U_Interruptions = [now()|Interruptions], 
     U_E = E#experiment{  
      interruptions = U_Interruptions 
     },  
     genotype:write(U_E), 
     register(benchmarker,spawn(benchmarker,prep,[U_E]))  
   end  
 end.  
%The continue/1 function spawns a benchmarker to continue a previously stopped experiment. 
If the experiment with the name/id of the Id parameter is already present in the database, and its 
progress_flag is set to in_progress, which means that the experiment has not yet completed and 
should continue running and accumulating new traces into its trace_acc list, then this function 
updates the experiment’s interruptions list, and then spawns the benchmarker process using the 
experiment tuple as its parameter. The experiment record holds all the needed information to 
start the population_monitor, it contains a copy of the population monitor parameters, and the 
initial constraints used. 
 
prep(E)->  
 PMP = E#experiment.pm_parameters,  
 U_PMP = PMP#pmp{benchmarker_pid=self()},  
 Constraints = E#experiment.init_constraints,  
 Population_Id = PMP#pmp.population_id,  
 population_monitor:prep_PopState(U_PMP,Constraints),  
 loop(E#experiment{pm_parameters=U_PMP},Population_Id). 
%prep/1 function is run before the benchmarker process enters its main loop. This function ex-
tracts from the experiment all the needed information to run the popula-
tion_monitor:prep_PopState/2 function and to start the population_monitor process with the 
right set of population monitor parameters and specie constraints. 
 
loop(E,P_Id)->  
 receive  
  {P_Id,completed,Trace}->  
   U_TraceAcc = [Trace|E#experiment.trace_acc],  
   U_RunIndex = E#experiment.run_index+1,  
   case U_RunIndex >= E#experiment.tot_runs of  
    true ->  
     U_E = E#experiment{  
      trace_acc = U_TraceAcc,  
      run_index = U_RunIndex,  
      completed = {date(),time()},  
      progress_flag = completed  
     },  
     genotype:write(U_E),  
     report(U_E#experiment.id,”report”);  
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    false ->  
     U_E = E#experiment{  
      trace_acc = U_TraceAcc,  
      run_index = U_RunIndex  
     },  
     genotype:write(U_E),  
     PMP = E#experiment.pm_parameters,  
     Constraints = E#experiment.init_constraints,  
     population_monitor:prep_PopState(PMP,Constraints),  
     loop(U_E,P_Id)  
   end;  
  terminate ->  
   ok  
 end. 
%loop/2 is the main benchmarker loop, which can only receive two types of messages, a trace 
from the population_monitor process, and a terminate signal. The benchmarker is set to run the 
experiment, and thus spawn the population_monitor process tot_runs number of times. After 
receiving the trace tuple from the population_monitor, it checks whether this was the last run or 
not. If it is not the last run, the benchmarker updates the experiment tuple, writes it to the data-
base, and then spawns a new population_monitor by executing the popula-
tion_monitor:prep_PopState/2 function. If it is the last run, then the function updates the exper-
iment tuple, sets the progress_flag to completed, writes the updated experiment tuple to 
database, and runs the report function which calculates the averages and other statistical data, 
and produces the data for graphing, a file which can be used by the gnuplot program. 
 
report(Experiment_Id,FileName)->  
 E = genotype:dirty_read({experiment,Experiment_Id}),  
 Traces = E#experiment.trace_acc,  
 {ok, File} = file:open(?DIR++FileName++”_Trace_Acc”, write),  
 lists:foreach(fun(X) -> io:format(File, “~p.~n”,[X]) end, Traces), 
 file:close(File),  
 io:format(“******** Traces_Acc written to 
file:~p~n”,[?DIR++FileName++”_Trace_Acc”]),  
 Graphs = prepare_Graphs(Traces),  
 write_Graphs(Graphs,FileName++”_Graphs”), 
 Eval_List = [T#trace.tot_evaluations||T<-Traces],  
 io:format(“Avg Evaluations:~p~n”,[functions:avg(Eval_List),functions:std(Eval_List)]). 
%report/2 is called with the id of the experiment to report upon, and the FileName to which to 
write the gnuplot formatted graphable data calculated from the given experiment. The function 
first extracts the experiment record from the database, then opens a file in the ?DIR directory to 
deposit the traces there, then calls the prepare_Graphs/1 function with the trace list from the 
experiment, and finally, with the data having now been prepared by the prepare_Graphs/1 func-
tion, the report function executes write_Graphs/2 to write the produced graphable data to the 
file FileName. 
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-record(graph,{morphology,avg_neurons=[],neurons_std=[],avg_fitness=[],fitness_std=[], 
max_fitness=[], min_fitness=[],avg_diversity=[],diversity_std=[],evaluations=[],  
evaluation_Index=[]}).  
-record(avg,{avg_neurons=[],neurons_std=[],avg_fitness=[],fitness_std=[],max_fitness=[], 
min_fitness=[], avg_diversity=[],diversity_std=[],evaluations=[]}).  
%These two records contain the parameters specifically for the prepare_Graphs function. These 
records are used to accumulate data needed to calculate averages and other statistical data from 
the traces. 
 
prepare_Graphs(Traces)->  
 [T|_] = Traces,  
 [Stats_List|_] = T#trace.stats,  
 Morphologies = [S#stat.morphology || S<-Stats_List],  
 Morphology_Graphs = [prep_Traces(Traces,Morphology,[])|| Morphology <-  
Morphologies],  
 [io:format(“Graph:~p~n”,[Graph])|| Graph<-Morphology_Graphs],  
 Morphology_Graphs.  
%prepare_Graphs/1 first checks a single trace in the Traces list to build a list of the morpholo-
gies present in the population (the number and types of which stays stable in our current im-
plementation throughout the evolutionary run), since the statistical data is built for each mor-
phology as its own specie. The function then prepares the graphable lists of data for each of the 
morphologies in the trace. Finally, the function prints to screen the lists of values built from av-
eraging the traces. The data within the lists, like in the traces, is temporally sorted, composed 
every 500 evaluations by default. 
 
prep_Traces([T|Traces],Morphology,Acc)->  
 Morphology_Trace=lists:flatten([[S||S<-Stats,S#stat.morphology==Morphology]||Stats<-
T#trace.stats]),  
 prep_Traces(Traces,Morphology,[Morphology_Trace|Acc]);  
prep_Traces([],Morphology,Acc)->  
 Graph = avg_MorphologicalTraces(lists:reverse(Acc),[],[],[]),  
 Graph#graph{morphology=Morphology}.  
%prep_Traces/3 goes through every trace, and extracts from the stats list of those traces only 
the stats associated with the morphology with which the function was called. Once the function 
goes through every trace in the Traces list, and the morphologically specific trace data has been 
extracted, the function calls avg_MorphologicalTraces/4 to construct a tuple similar to the 
trace, but whose lists are composed of the average based values of all the morphology specific 

 
 avg_MorphologicalTraces([S_List|S_Lists],Acc1,Acc2,Acc3)->  
  case S_List of  
   [S|STail] -> 
    avg_MorphologicalTraces(S_Lists,[STail|Acc1],[S|Acc2],Acc3);  
   [] ->  
    Graph = avg_statslists(Acc3,#graph{}),  

traces, the average, std, max, min... of all the evolutionary runs in the experiment. 
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    Graph  
  end;  
 avg_MorphologicalTraces([],Acc1,Acc2,Acc3)->  
  avg_MorphologicalTraces(lists:reverse(Acc1),[],[],[lists:reverse(Acc2)|Acc3]).  
%avg_MorphologicalTraces/4 changes the dropped in S_lists from [Specie1_stats::[stat500, 
stat1000,...statN], Specie2_stats::[stat500,stat1000,...statN]...] to [[Spec1_Stat500, 
Spec2_Stat500... SpecN_Stat500], [Spec1_Stat1000, Spec2_Stat1000,... SpecN_Stat1000]...]. 
The trace accumulator contains a list of traces. A trace has a stats list, which is a list of lists of 
stat tuples. The stats list is a temporal list, since each stat list is taken every 500 evaluations, so 
the stats list traces-out the evolution of the population. Averages and other calculations need to 
be made for all experiments at the same temporal point, for example computing the average fit-
ness between all experiments at the end of the first 500 evaluations, or at the end of the first 
20000 evaluations... To do this, the function rebuilds the list from a list of separate temporal 
traces, to a list of lists where every such sublist contains the state of the specie (the stat) at that 
particular evaluation slot (at the end of 500, or 1000,...). Once this new list is built, the function 
calls avg_statslists/2, which calculates the various statistics of the list of lists. 
 
 avg_statslists([S_List|S_Lists],Graph)->  
  Avg = avg_stats(S_List,#avg{}),  
  U_Graph = Graph#graph{  
   avg_neurons = [Avg#avg.avg_neurons|Graph#graph.avg_neurons],  
   neurons_std = [Avg#avg.neurons_std|Graph#graph.neurons_std],  
   avg_fitness = [Avg#avg.avg_fitness|Graph#graph.avg_fitness],  
   fitness_std = [Avg#avg.fitness_std|Graph#graph.fitness_std],  
   max_fitness = [Avg#avg.max_fitness|Graph#graph.max_fitness],  
   min_fitness = [Avg#avg.min_fitness|Graph#graph.min_fitness],  
   evaluations = [Avg#avg.evaluations|Graph#graph.evaluations],  
   avg_diversity = [Avg#avg.avg_diversity|Graph#graph.avg_diversity],  
   diversity_std = [Avg#avg.diversity_std|Graph#graph.diversity_std]  
  },  
  avg_statslists(S_Lists,U_Graph);  
 avg_statslists([],Graph)->  
  Graph#graph{  
   avg_neurons = lists:reverse(Graph#graph.avg_neurons),  
   neurons_std = lists:reverse(Graph#graph.neurons_std),  
   avg_fitness = lists:reverse(Graph#graph.avg_fitness),  
   fitness_std = lists:reverse(Graph#graph.fitness_std),  
   max_fitness = lists:reverse(Graph#graph.max_fitness),  
   min_fitness = lists:reverse(Graph#graph.min_fitness),  
   evaluations = lists:reverse(Graph#graph.evaluations),  
   avg_diversity = lists:reverse(Graph#graph.avg_diversity),  
   diversity_std = lists:reverse(Graph#graph.diversity_std)  
  }.  
%avg_statslists/2 calculates the averages and other statistics for every list in the S_lists, where 
each sublist is a list of stat tuples on which it executes the avg_stats/2 function, which returns 
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back a tuple with all the various parameters calculated from that list of stat tuples of that partic-
ular evaluations time slot. 
 
 avg_stats([S|STail],Avg)->  
  U_Avg = Avg#avg{  
   avg_neurons = [S#stat.avg_neurons|Avg#avg.avg_neurons],  
   avg_fitness = [S#stat.avg_fitness|Avg#avg.avg_fitness],  
   max_fitness = [S#stat.max_fitness|Avg#avg.max_fitness],  
   min_fitness = [S#stat.min_fitness|Avg#avg.min_fitness],  
   evaluations = [S#stat.evaluations|Avg#avg.evaluations],  
   avg_diversity = [S#stat.avg_diversity|Avg#avg.avg_diversity]  
  },  
  avg_stats(STail,U_Avg);  
 avg_stats([],Avg)->  
  Avg#avg{  
   avg_neurons=functions:avg(Avg#avg.avg_neurons),  
   neurons_std=functions:std(Avg#avg.avg_neurons),  
   avg_fitness=functions:avg(Avg#avg.avg_fitness),  
   fitness_std=functions:std(Avg#avg.avg_fitness),  
   max_fitness=lists:max(Avg#avg.max_fitness),  
   min_fitness=lists:min(Avg#avg.min_fitness),  
   evaluations=functions:avg(Avg#avg.evaluations),  
   avg_diversity=functions:avg(Avg#avg.avg_diversity),  
   diversity_std=functions:std(Avg#avg.avg_diversity)  
  }.  
%avg_stats/2 function accepts a list of stat tuples as a parameter. First it extracts the various el-
ements of that tuple. For every tuple in the list (each of the tuples belongs to a different evolu-
tionary run) it puts the particular value of that tuple into its own list. Once all the values have 
been put into their own lists, the function uses the functions:avg/1 and functions:std/1 to calcu-
late the averages and standard deviations as needed, to finally build the actual single tuple of 
said values (avg_neurons, neurons_std...). The case is slightly different for the max and min fit-
ness values amongst all evolutionary runs, for which the function extracts the max amongst the 
maxs and the min amongst the mins, calculating the highest max and the lowest min achieved 
amongst all evolutionary runs. This can be further augmented to also simply calculate the avg 
of the max and min lists by changing the lists:min/1 and lists:max/1 to the function func-
tions:avg/1. 
 
write_Graphs([G|Graphs],Graph_Postfix)->  
 Morphology = G#graph.morphology,  
 U_G = G#graph{evaluation_Index=[500*Index || Index <-lists:seq(1, 
length(G#graph.avg_fitness))]},  
 {ok, File} = file:open(?DIR++”graph_”++atom_to_list(Morphology)++”_” 
++Graph_Postfix, write),  
 io:format(File,”#Avg Fitness Vs Evaluations, Morphology:~p~n”,[Morphology]),  
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 lists:foreach(fun({X,Y,Std}) -> io:format(File, “~p ~p ~p~n”,[X,Y,Std]) end, 
lists:zip3(U_G#graph.evaluation_Index,U_G#graph.avg_fitness,U_G#graph.fitness_std)),  
 io:format(File,”~n~n#Avg Neurons Vs Evaluations, Morphology:~p~n”,[Morphology]),  
 lists:foreach(fun({X,Y,Std}) -> io:format(File, “~p ~p ~p~n”,[X,Y,Std]) end, 
lists:zip3(U_G#graph.evaluation_Index,U_G#graph.avg_neurons,U_G#graph.neurons_std)),  
 io:format(File,”~n~n#Avg Diversity Vs Evaluations, Morphology:~p~n”,[Morphology]),  
 lists:foreach(fun({X,Y,Std}) -> io:format(File, “~p ~p ~p~n”,[X,Y,Std]) end, 
lists:zip3(U_G#graph.evaluation_Index,U_G#graph.avg_diversity,U_G#graph.diversity_std)),  
 io:format(File,”~n~n#Avg. Max Fitness Vs Evaluations, Morphology:~p~n”,[Morphology]),  
 lists:foreach(fun({X,Y}) -> io:format(File, “~p ~p~n”,[X,Y]) end, 
lists:zip(U_G#graph.evaluation_Index,U_G#graph.max_fitness)),  
 io:format(File,”~n~n#Avg. Min Fitness Vs Evaluations, Morphology:~p~n”,[Morphology]),  
 lists:foreach(fun({X,Y}) -> io:format(File, “~p ~p~n”,[X,Y]) end, 
lists:zip(U_G#graph.evaluation_Index,U_G#graph.min_fitness)),  
 io:format(File,”~n~n#Specie-Population Turnover Vs Evaluations, Morphology:~p~n”, 
[Morphology]),  
 lists:foreach(fun({X,Y}) -> io:format(File, “~p ~p~n”,[X,Y]) end, 
lists:zip(U_G#graph.evaluation_Index,U_G#graph.evaluations)),  
 file:close(File),  
 write_Graphs(Graphs,Graph_Postfix);  
write_Graphs([],_Graph_Postfix)->  
 ok. 
%write_Graphs/2 accepts a list of graph tuples, each of which was created for a particular spe-
cie/morphology within the experiment. Then for every graph, the function writes to file the var-
ious statistic results in the form readable by the gnuplot software. With the final result being a 
file which can be immediately used by the gnuplot to produce graphs of the various properties 
of the experiment. 

With the benchmarker now implemented, we test it in the next subsection to 
ensure that all of its features are functional. 

13.5 Compiling and Testing 

Because we have created a new record, we now need to either add it to the 
mnesia database independently, or simply reset the whole thing (database), by ex-
ecuting the polis:reset() function. We now also need to test our new benchmarker 
system, and see whether it functions properly and does indeed save the data to the 
database, is able to continue the experiment after an interruption, and is able to 
produce a file which can be used by the gnuplot. Also, due to the following line in 
the benchmarker module: -define(DIR,”benchmarks/”), our benchmarker will be 
expecting for this folder to exist. Thus this folder must first be added, before we 
perform the following tests. 
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To test all these new features we will first recompile the code, and then reset 
the database. Afterwards, we will test our system in the following manner and or-
der: 

1. Set the benchmarker’s pmp record to its current default, running the XOR mim-
icking experiment 10 times, to completion, using the generational evolutionary 
loop. 

2. Examine the resulting console printout, to ensure basic structural validity, and 
that no crashes occurred. 

3. Examine the two resulting files, the file that should have a list of traces, and the 
file which has data formatted in a gnuplot graphable format. 

4. Plot the data in the graph based file, performing a basic sanity check on the re-
sulting graph. 

5. Again run the benchmarker, only this time, in the middle of the experiment ex-
ecute: Ctrl-C to stop the interpreter midway, and then execute ‘a’ to abort. This 
simulates the crashing of the machine in the middle of the experiment. We then 
re-enter the interpreter, and start up the polis to check whether the half finished 
experiment is present in the database. Once its presence is confirmed, we test 
benchmarker:continue(Id) by executing: benchmarker:continue(test). 

6. Finally, we examine the resulting console printout and the final experiment en-
try in the database, to ensure that the progress_flag is now set to: completed. 

Because our implemented evolutionary loops (steady_state and generational) 
are independent of the evaluations accumulation, and thus the termination and the 
triggering of the benchmarker, we can simply perform these tests with the genera-
tional evolutionary loop, and not need to redo them with the steady_state evolu-
tionary loop. 

The default pmp and experiment records, and the ?INIT_CONSTRAINTS mac-
ro, are all set as follows: 

-define(INIT_CONSTRAINTS,[#constraint{morphology=Morphology,connection_architecture 
=CA, population_evo_alg_f=generational} || Morphology<-[xor_mimic],CA<-[feedforward]]).  
 
#pmp{ op_mode=gt, population_id=test, survival_percentage=0.5, specie_size_limit=10,  
init_specie_size=10, polis_id = mathema, generation_limit = 100, evaluations_limit = 10000, 
fitness_goal = inf }  
 
#experiment{ id = Id, backup_flag = true, pm_parameters=PMP, init_constraints 
=?INIT_CONSTRAINTS, progress_flag=in_progress, run_index=1, tot_runs=10, start-

Having set everything to the intended values, we now (assuming that the new 
source has been compiled, and the new mnesia database has been created with all 
the appropriate tables by executing polis:reset()) run the benchmarker:start(test) 
function, as shown in Listing-13.8. 

ed  ={date(),time()}, interruptions=[] } 
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Listing-13.8 Running the benchmarker:start(test) function to test the benchmarker functionality. 
 
2> benchmarker:start(test).  
... 
       [{stat,xor_mimic,7.544823116774118e-10,1.0,0.0,278.5367828868784,  
               235.4058314015377,979.1905253086005,112.76113310465351,4,500,  
               {1325,412119,825873}}]],  
       10000,500}  
******** ^^^^ TRACE END ^^^^ ********  
******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in 
OpMode:gt  
******** Tot Agents:10 Population Generation:36 Tot_Evals:10076  
******** Traces_Acc written to file:”benchmarks/report_Trace_Acc”  
Graph:{graph,xor_mimic,               
[1.1345679012345677,1.3708193041526373,1.4792929292929293,...1.9777777777777774],  
             [0.11516606301253175,0.3429379936199053,0.472713243338398, 
...0.28588178511708023],  
             [6376.044863498539,171964.06677104777,405553.7010466698, 
...948483.9530134387],  
             [13996.969949682387,305943.44537378295,421839.1376054512, 
...46957.98926294873],  
             [7595.914268861698,242099.32776384687,566599.7452288255, 
...999402.6491394333],               
[1736.703111779903,1157.4193567602842,227914.43647811364,...497519.90979294974],  
             [5.111111111111111,6.444444444444445,...7.0],  
             [0.7370277311900889,1.257078722109418,…2.1081851067789197],  
             [500.0,500.0,500.0,500.0,500.0,500.0,444.44444444444446,...500.0],  
             []}  

It works! The console printout looks proper, a graph record, where each list is 
the average between all the experiments, with the averages calculated within the 
same evaluation frames. When we look into the benchmark folder, we see the 
presence of two files within: the graph_xor_mimic_report_Graphs file, and the 
report_Trace_Acc file. The report_Trace_Acc file contains a list of traces as ex-
pected, and shown in Listing-13.9. 

Listing-13.9 The shortened contents of the report_Trace_Acc file. 
 
{trace,[[{stat,xor_mimic,7.544235757558436e-10,2.0,0.0,999793.8069900939,  
               20.85034690621442,999805.1547609345,999739.967822178,9,500,  
               {1325,515312,752712}}],... 
10000,500}.  
{trace,[[{stat,xor_mimic,7.544235772700672e-10,2.0,0.0,999796.4301657086,  
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               3.35162014431123,999799.6097959183,999792.3483220651,8,500,  
               {1325,515310,43590}}],... 
10000,500}. 
… 

Listing-13.10 The format of the graph_xor_mimic_report_Graphs file. 
 
#Avg Fitness Vs Evaluations, Morphology:xor_mimic  
500 6376.044863498539 13996.969949682387  
1000 171964.06677104777 305943.44537378295  
… 
#Avg Neurons Vs Evaluations, Morphology:xor_mimic  
500 1.1345679012345677 0.11516606301253175  
1000 1.3708193041526373 0.3429379936199053  
… 

So far so good, the report_Trace_Acc contains all 10 traces. Another file, with 
the name graph_xor_mimic_report_Graphs, is also present in the benchmark 
folder. This file contains rows of values in the format we specifically created so 
that we can then use gnuplot to plot the resulting data. A sample of the formatted 
data within the file is shown in Listing-13.10. 

Again, after analyzing the graph, all the data seems to be in proper order. If we 
wish, we can use this file to create a plot using the gnuplot program. An example 
of such a plot is shown in Fig-13.1. Fig-13.1a and Fig-13.1b show the plots of Fit-
ness (Avg, Max, and Min) vs. Evaluations, and Population Diversity vs. Evalua-
tions, respectively. In Fig-13.1a we see that the average and max fitness quickly 
increases, and within the first 1000 evaluations they have already reached a very 
good score. The Min fitness within the graph is shown to always go up and down, 
as is expected, since every offspring might have a mutation which might make it 
ineffective. But even in that plot, we see that the minimum fitness also reaches 
high values, primarily because the mutations that break the system in some way, 
are mitigated by the tuning of the synaptic weights. In Fig-13.2b we see the diver-
sity plotted against evaluations, with vertical error bars.  
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Fig. 13.1 The graphs produced with the data created by the benchmarker process, and 
plotted by the gnuplot program. Graph ‘a’ shows Fitness (Avg, Max, and Min) vs. Evalua-
tions, and graph ‘b’ shows Diversity vs. Evaluations. 

In the above figure we see that diversity never goes below 5 in a population of 
10. A diversity of 4 is only present during the seed population, and primarily be-
cause there are only so many ways to create the minimalistic 1 neuron NN topolo-
gy for this problem (through the use of different activation functions). The diversi-
ty in fact is increasing over time, not decreasing. The diversity reaches a stable 
value of 6-7, which means that 60%-70% of the population is different from one 
another, and the other 3-4 have similar topologies to those belonging to the 6-7 di-
verse topologies.  

High population diversity is one of the important features of a memetic algo-
rithm based TWEANN. In a system that we designed, it is simply not possible for 
diversity to shrink, because no matter which NN systems are fit or unfit, their off-
spring will have to be topologically different from them because they will pass 
through a topological mutation phase when created. As the size of the NN increas-
es, so does the possible number of mutation operators applied to the clone during 
offspring creation, and thus the number of possible topological permutations, fur-
ther increasing the number of mutants in the population, which results in an even 
higher diversity. As we increase the population size, again the result is greater di-
versity because now more agents can create offspring, and every one of those 
agents will produce a topological mutant, which will have a chance to be different 
from every other agent in the population and not just its parent.  

Thus, a memetic algorithm based topology and weight evolving artificial neural 
network has a naturally emerging high diversity within its population, unlike the 
standard TWEANNs which usually converge very rapidly, and thus have a lower 
chance of solving the more complex problems. At the same time, the memetic 
TWEANN is also able to very rapidly solve problems it is applied to, and in my 
experience almost always faster than the standard TWEANN no matter the prob-
lem or simulation it is being used for. We will have a chance to test this bold claim 
when we benchmark our system against other TWEANNs in the following chap-
ters. 
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With this done, we can now test the benchmarker’s ability to continue a 
crashed or stopped experiment. You will most likely get a different result when 
testing on your machine, depending on when you stop the interpreter. On my ma-
chine, after having started the benchmarker, and then almost immediately stopping 
it by executing Ctrl-C a, and then re-entering the interpreter, my results were as 
follows when performing steps 5 and 6: 

Listing-13.11 Crashing the benchmarker, and then attempting to continue by executing the 
benchmarker:continue(Id) function. 
 
2> polis:start().  
Parameters:{[],[]}  
******** Polis: ##MATHEMA## is now online.  
{ok,<0.35.0>}  
2> benchmarker:start(test).  
… 
Ctrl-C 
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded  
       (v)ersion (k)ill (D)b-tables (d)istribution  
a 
… 
******** Polis: ##MATHEMA## is now online.  
{ok,<0.34.0>}  
2> mnesia:dirty_read({experiment,test}).  
[{experiment,test,true,  
             {pmp,gt,test,0.5,10,10,mathema,100,10000,inf,<0.143.0>},  
             [{constraint,xor_mimic,feedforward, [tanh,cos,gaussian,absolute], [none], 
[dot_product], [all],...],  
             in_progress,  
             [{trace,[[{stat,xor_mimic,7.544226409998199e-10,  
                             2.0833333333333335,0.2763853991962833,833118.8760231837,  
                             372581.937787711,999804.3485638215,0.34056136711788676,8,  
                             500,  
                             {1325,516955,41224}}],  
... 
                     10000,500}],  
             2,10,undefined,  
             {{2012,1,2},{7,9,12}},  
             undefined,[]}]  
3>benchmarker:continue(test). 
… 
Graph:{graph,xor_mimic,...} 
4>mnesia:dirty_read({experiment,test}). 
… 
 completed, 
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 …(TRACES) 
  10,10,undefined,  
start      {{2012,1,2},{7,9,12}},  
end       {{2012,1,2},{7,14,51}},  
             [{1325,517268,871875}]}] 

It works! The benchmarker was first run and then abruptly stopped. After re-
starting the polis and checking the mnesia database, the experiment with the id test 
was present. Printing it to console showed, color coded in the above listing, that it 

13.6 Summary 

Every time an addition or extension is made to the neuroevolutionary system, it 
is important to see how it affects it as a whole. Is the neuroevolutionary system 
able to more effectively evolve agents? Is there high or low diversity? Does the 
neuroevolutionary approach taken converges too quickly, and is thus unable to in-
ject enough diversity to overcome fitness walls present on the fitness landscape? 
Using a benchmarker helps us answer these questions. 

We also created a new module called benchmarker, and a new table called ex-
periment, within the database. The experiment table holds multiple complete ex-
periment entries, each of which is composed of multiple traces, which are evolu-
tionary runs applied to some problem. This allows for the experiment entry to be 
used to calculate the average performance of multiple runs of the same simula-
tion/problem, thus giving us a general idea of how the system performs. We have 
created the benchmarker in such a way that it can run an experiment and save the 
traces to database after every successful run, such that in the case of a crash it can 
recover and continue with the experiment. 

contained the pmp record (green, and if you’re reading the black & white printed 
version, it’s the one starting with: “{pmp”), the constraints (blue, and starting 
with: “[{constraint”), and had a list of traces (red, and starting with: “[{trace”),  
2 of which were present, out of the 10 the full experiment must contain. Finally, 
we also see the in_progress tag, which confirms that this experiment was stopped 
abruptly and is not yet finished. The function benchmarker:continue(test) was 
then executed, and the benchmarker ran to completion, printing the Graph tuple to 
console at the end. Finally, when rechecking the experiment entry in the database 
by executing mnesia:dirty_read({experiment,test}), we see that it contains 10 out of 
10 evolutionary runs (traces), parameter completed is present, and we also see the 
start: {{2012,1,2},{7,9,12}} and end: {{2012,1,2},{7,9,12}} times respectively 
(which I marked with italicized “start” and “end” tags), are also present. The bench-
marker works as expected, and we have completed testing it. 
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features on. Thus we first need to create this new set of more complex benchmarks 
and problems. 

We need to create two types of new benchmarks. One standard neurocontroller 
benchmark, for which a recurrent and non recurrent solutions need to be evolved 
to solve it. This standard benchmark is called the pole balancing problem [3,4]. 
Another standard benchmark requires the NN based agent to learn as it interacts 
with the environment. We need such a benchmark to be able to tell whether the 
addition of neural plasticity to our evolved NN based systems improves them, and 
whether the added plasticity features work at all. The standard benchmark in this 
particular area is called the T-Maze navigation problem [5,6]. In the next chapter 
we will create both of these new problems, representing them as private scapes 
with which the evolving NN based agents can interact with. 

We are almost at the point where we can start adding new, much more ad-
vanced features. Features like plasticity, indirect encoding, crystallization... And 
though we can now perform benchmarks after adding such advanced features, we 
do not at this point have problems and simulations complex enough to test the new 

http://www.gnuplot.info/
https://github.com/CorticalComputer/NeuroevolutionThroughErlang
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