
Chapter 10 DXNN: A Case Study

Abstract This chapter presents a case study of a memetic algorithm based
TWEANN system that I developed in Erlang, called DXNN. Here we will discuss
how DXNN functions, how it is implemented, and the various details and imple-
mentation choices I made while building it, and why. We also discuss the various
features that it has, the features which we will eventually need to add to the system
we’re building together. Our system has a much cleaner and decoupled implemen-
tation, and which by the time we’ve reached the last chapter will supersede DXNN
in every way.

Deus Ex Neural Network (DXNN) platform is the original topology and weight
evolving artificial neural network system that I developed in Erlang. What you
and I are creating here in this book is the next generation of it. We’re developing a
more decoupled version, a simpler to generalize and more refined version, and one
with cleaner architecture and implementation. In this chapter we’ll discuss the al-
ready existing system, how it differs from what we’ve created so far, and what
features it has that we will in later chapters need to add to the system we’ve devel-
oped thus far. By the time this book ends, we’ll have created not just a TWEANN
system, but a Topology and Parameter Evolving Universal Learning Network

DXNN is a memetic algorithm based TWEANN platform. As we discussed, the
most advanced approach to neuroevolution and universal learning networks in
general, is through a system that uses evolutionary algorithms to optimize both,
the topology and the synaptic weights/node-parameters of the graph system. The
weights and topology of a NN are evolved so as to increase the NN system’s fit-
ness, based on some fitness criteria/function.

In the following sections we will cover the algorithm and the various features
that make up the DXNN system.

10.1 The Reason for the Memetic Approach to Synaptic Weight
Optimization

As we have discussed in the first chapters, the standard genetic algorithm per-
forms global and local search in a single phase, while the memetic algorithm sepa-

DOI 10.1007/978-1-4614- - © Springer Science+Business Media New York 2013 4463 3_10,
399 G.I. Sher, Handbook of Neuroevolution Through Erlang,

framework, capable of evolving neural networks, circuits, be used as a parallel
distributed genetic programming framework, posses some of the most advanced
features currently known, and designed in such a way that new features can easily
be added to it by simply incorporating new modules (hence the importance of
developing a system where almost everything is decoupled from everything else).

400 Chapter 10 DXNN: A Case Study

rates these two searches into separate stages. When it comes to neural networks,
the global search is done through the exploration of NN topologies, and the local
search is done through the optimization of synaptic weights.

Based on the benchmarks, and ALife performance of DXNN, the memetic ap-
proach has shown to be highly efficient and agile. The primary benefit of separat-
ing the two search phases is due to the importance of finding the right synaptic
weights for a particular topology before deciding on the final fitness score of that
topology. Standard TWEANNs typically operate using the standard genetic algo-
rithm based mutation operator probabilities. In such systems, when creating an
offspring the parent is chosen and then a single mutation operator is applied to it,
with a probability of more than 97% that the mutation operator will be a synaptic
weight perturbation operator. This type of operator simply selects some number of

The other mutation operators are the standard topology augmenting operators.

In standard TWEANNs, a system might generate an optimal topology for the
problem, but because during that one innovation of the new topology the at-that-
point existing synaptic weights make that topology ineffective, the new NN topol-
ogy might be disregarded and removed. Also, in most TWEANNs, the synaptic
weight perturbations are applied indiscriminately to all neurons of the NN, and
thus if for example a NN is composed of 1 million neurons, and a new neuron is
added, the synaptic weight mutations might be applied to any of the 1000001 neu-
rons... making the probability of optimizing the new and the right neuron and its
synaptic weights, very low.

As in the system we’ve built so far, the DXNN platform evolves new NN to-
pologies during each generation, and then through the application of an augmented
stochastic hill climbing optimizes the synaptic weights for those topologies. Thus,
when the “tuning phase”, which is what the local search phase is called in DXNN,
has completed, the tuned NN has roughly the best set of synaptic weights for its
particular topology, and thus the fitness that is given to the NN is a more accurate
representation of its true performance fitness and potential.

Furthermore, the synaptic weight optimization through perturbation is not ap-
plied to all the neurons indiscriminately throughout the NN, but instead is concen-
trated on primarily the newly created neurons, or those neurons which have been
recently affected by a mutation applied to the NN. Thus, the tuning phase optimiz-
es the newly added neural elements so that they work and contribute positively to
the NN they have been added to.

With this approach, the DXNN system is able to slowly grow and optimize the
NN systems. Adding new features/elements and optimizing them to work with the
already existing structures. This I believe gives DXNN a much greater ability to
scale, for there is zero chance of being able to create vast neural networks when

neurons and perturbs some random number of synaptic weights belonging to them

10.1 The Reason for the Memetic Approach to Synaptic Weight Optimization 401

cohesive and functional. Building the NN slowly, complexifying it, adding new
features and ensuring that they work with the existing system in a positive way, al-
lows us to concentrate and optimize those few newly added elements, no matter
how large the already existing NN system is.

Thus, during the local search phase, during the tuning phase, we optimize the
synaptic weights of the newly added and modified elements. And during the glob-
al search, during the topological mutation phase, we apply enough topological
mutation operators when creating an offspring, such that we are able to create in-
novation in the newly resulting NN system, but few enough of them such that the
newly added elements to the NN can still be optimized to work with the existing
much larger, already proven system.

Having discussed the why behind the memetic algorithm approach taken by
DXNN, we now cover the two approaches this system uses when creating off-
spring, clarified to a much greater detail in the next two sections. These two ap-
proaches are the generational evolution, and the steady_state evolution.

The most common approach to offspring creation, and timing of selection and
mutation operator application, is generational. Generational evolution simply
means that we create a population of some size X of seed agents, apply them to
some problem, wait until all agents in the population have been evaluated and giv-
en a fitness score, then select the best of the population, allow them to create off-
spring, and then create the next generation composed of the best agents of the
previous generation plus their offspring, or some other appropriate combination of
fit parents and newly created offspring. That is the essence of the standard genera-
tional evolution.

The steady state evolution tries to emulate the biological world to a slightly
greater degree. In this approach there is no wait for the entire population to be
evaluated before a new agent is created. Instead, as soon as one agent has finished
working on a problem (has been evaluated), or has perished or gathered enough
resources (in the case of an ALife simulation), a new offspring is created. The new
offspring is either created by some already existing agent through the execution of
a create_offspring actuator, or is created by the neuroevolutionary system itself,
after it has calculated what genotype/s to use as the base for the offspring creation
process, and whether the environment can support another agent. In this manner,
the population size working on a problem, or existing in a simulated environment,
is kept relatively constant. There are always organisms in the environment, when
some die, new ones are created. There is a constant turnover of new agents and
new genotypes and phenotypes in the population.

after adding a single new neuron to a 1000000 neuron NN system, we try to then
perturb random synaptic weights in hopes of somehow making the whole system

402 Chapter 10 DXNN: A Case Study

10.2 The DXNN Encoding and Architecture

The genotype encoding used by DXNN is almost exactly the same as the one
used by the system we are building together. It is tuple encoded, with the tuples
stored in the mnesia database. The list of records composing the genotype of each
NN system in the DXNN platform is as follows:

-record(dx,{id,cx_id,n_ids,specie_id,constraint,morphology,generation,fitness,
profile,summary, evo_hist,mode, evo_strat}).
-record(cortex,{id,sensors,actuators,cf,ct,type,plasticity,pattern,cids,su_id,
link_form,dimensions,densities, generation}).
-record(neuron,{id,ivl,i,ovl,o,lt,ro,type,dwp,su_id,generation}).

The dx record plays the role that the agent record does in our TWEANN. The
other thing that immediately stands out is that there are no sensor or actuator ele-
ments. If you look in the DXNN’s records.hrl [1] though, you will see those rec-
ords, but they are not independent elements, the sensors and actuators are part of
the cortex element. Indeed in the original DXNN system, the cortex element is not
a synchronization element, but a gatekeeper element. The cortex element talks di-
rectly to the neurons. The connection from the cortex to the neurons is accom-
plished through the ct list (connected to), and the signals it gathers from the neu-
rons is done through the cf list (connected from). The cortex also has a sensor and
actuator list, which contain the names of the sensor and actuator functions, and the
lists of the neurons that they are connected to and from respectively, based on the
ct/cf lists. This DXNN’s NN based agent architecture is shown in Fig-10.1.

TWEANN’s architecture, differs slightly from what we’ve been developing in the
past few chapters.

Before we begin discussing the general algorithm of the generational
steady_state evolution, before we begin discussing the DXNN system and its vari-
ous features, it would be helpful for me to first explain the architectures of the NN
systems that are evolved by it. The DXNN’s genotype encoding, and the

and

10.2 The DXNN Encoding and Architecture 403

Fig. 10.1 The original DXNN based NN agent architecture.

The way a NN based system shown in Fig-10.1 functions, is as follows:

1. The genotype is first converted to the phenotype, composed of the cortex and
the neurons, with the above shown architecture.

2. The cortex goes through all the sensor function names in its sensors list
which has the following format: [{Sensor1,[{N_Id1,FilterTag1}, {N_Id2,
FilterTag2}...]}...]. The cortex executes the sensor function names, and aggre-

functions. Because in the sensor list each sensor function comes with a list of
neuron ids to which the resulting sensory signals are destined for, it is able to
fanout those sensory signals to the specified neurons. Furthermore, in the above
shown sensor list, the FilterTag has the following format: {single,Index}.
{block,VL}, and {all,VL}. These tuples specify whether the sensor with a sen-
sory signal of size vl, sends the entire sensory signal to the neuron, or just a
single value from that vector list, a value located in the vector list at some par-
ticular Index, respectively. The third FilterTag: {all, VL}, specifies that the
cortex will append the sensory signals of all the sensors, and forward that list to
the neuron in question.

3. The cortex then gets the neuron ids stored in the ct list, and forwards sensory
signals to them, by mapping from the ct neuron ids to the sensor list neuron ids

was originally building the system, primarily because it originally also support-
ed supervised learning, which required this design).

4. The neurons in the NN then process the sensory signals until the signals are
generated by the neurons in the output layer.

5. The output layer neurons send their results to the cortex.

gates and packages the sensory signals generated through execution of the sensor

and their corresponding sensory vector signals (this design made sense when I

404 Chapter 10 DXNN: A Case Study

6. The cortex, as soon as it sends all the sensory signals to the neurons, waits until
it receives the signals from the neurons whose PIds are the same as the PIds in
its cf list, which are the signals destined for the actuators. It gathers these sig-
nals into its accumulator, which is a list of lists, since the incoming signals are
vectors.

7. After having gathered all the signals from the neurons, the cortex uses the actuators
list and maps the composed output signal vectors to their respective actuators, and
then executes the actuator functions using the output vectors as parameters.

8. GOTO 2

The original DXNN uses this particular convoluted architecture because I have
developed it over a number of years, adding on new features, and modifying old fea-
tures. Rather than redesigning the system once I’ve found a better way to represent or
implement something, I simply modified it. DXNN has a modular version as well [2],
where the evolved NN system is composed of modules called cores, where each core
is a neural circuit, as shown in Fig-10.2. In the modular DXNN, the cores can be hop-
field networks, standard evolved neural networks, and even substrate encoded NNs. At
one point, long ago, DXNN even had a back-propagation learning mode, which I
eventually removed as I never used it, and it was inferior to the non supervised learn-
ing algorithms I created. It is this long history of development, trial and error, testing
and benchmarking, that left a lot of baggage in its architecture and implementation.
Yet it is functional, and performs excellently.

Fig. 10.2 Modular DXNN.

10.3 Generational Evolution 405

In some sense, the neural modules within the modular DXNN system, were
meant to be used in emulation of the various brain regions. In this manner I hoped
to evolve different regions independently, and then put them together into a com-
plete system, or evolve the different modules at the same time as a single NN sys-
tem, or even let the NN start of as monolithic, and then modularize through evolu-
tion. The performance though could not be established to be superior to standard
homogeneous NN version at the time of experimentation, due to not yet having
found a project benefiting from such an architecture. Nevertheless, the lessons
learned were invaluable. The architecture of the TWEANN system we are devel-
oping in this book, is made with future use of modules in mind. Indeed, the system
we are developing here will not only have more features, and will be more decou-
pled, but also its architecture will be cleaner, its implementation easier to under-
stand, read, and expand, than that of DXNN. In the following sections I will ex-
plain the functionality, algorithms, and features that DXNN possesses.

10.3 Generational Evolution

I will first provide a simple list based overview of the steps taken by DXNN’s
general neuroevolutionary algorithm, and then elaborate on each of the more com-
plicated sub-algorithms the DXNN system uses. When using the generational ap-
proach, DXNN uses the following set of steps:

1. Initialization Phase:
Create a seed population of size K of topologically minimalistic NN genotypes.

2. DO (Generational Neuroevolutionary loop):
3. Convert genotypes to phenotypes.
4. DO (Tuning Phase):

5. Test fitness of the NN system.
6. Perturb recently added or mutation operator affected synaptic

weights.
UNTIL: NN’s fitness has not increased for M times in a row.
7. Convert the NN systems back to their genotypes, with the now updat-

ed and tuned synaptic weights.
8. Selection Phase:

9. Calculate the average energy cost of each neuron using the
following method:
TotFitnessPoints = Agent_Fitness(1) + Agent_Fitness(2) +
...Agent_Fitness(K),
TotPopNeurons = Agent_TotNs(1) + Agent_TotNs(2) +
…Agent_TotNs(K),
AvgNeuronCost = TotFitnessPoints/TotPopNeurons.

406 Chapter 10 DXNN: A Case Study

10.With all the NNs having now been given their fitness score,
sort the genotypes based on their scores.

11.Mark the top 50% of the population as valid (fit), and the bot-
tom 50% of the population as invalid (unfit).

12.Remove the bottom 50% of the population.
13.Calculate # of offspring for each agent:

14.For every agent(i) in K, calculate:
Agent(i)_NeuronsAllotted=Agent_Fitness(i)/AvgNeuronCost,
Agent(i)_OffspringAlloted=
 Agent(i)_NeuronsAlloted/Agent(i)_TotNs

15.To keep the population size of the new generation the same
as the previous, calculate the population normalizer, and then
normalize each agent’s allotted offspring value:
TotNewOffspring = Agent(1)_OffspringAlloted +
...Agent(i)_OffspringAlloted
Normalizer = TotNewOffspring/(K/2)

16.Now calculate the normalized number of offspring alloted for
each agent:
Agent(i)_OffspringAllotedNorm =
 round(Agent(i)_OffspringAlloted/Normalizer)

17.Create Agent(i)_OffspringAllotedNorm number of clones for every
Agent(i) that belongs to the fit subset of the agents in the population.
And then send each clone through the topological mutation phase,
which converts that clone into an offspring.

18.Topological mutation phase:
19.Create the offspring by first cloning the parent, and then ap-

plying to the clone, T number of mutation operators. The val-
ue T is randomly chosen with uniform distribution to be be-
tween 1 and sqrt(Agent(i)_TotNeurons), where TotNeurons is
the number of neurons in the parent NN. Thus, larger NNs
will produce offspring which have a chance of being pro-
duced through a larger number of applied mutation operators.

20.Compose the population of the next generation by combining the gen-
otypes of the fit parents with their newly created offspring.

 UNTIL: Termination condition is reached (max # of evaluations, time,
or fitness goal)

A diagram of this algorithm is shown in Fig-10.3. The steps 1 (Initialization
phase), 4 (Parametric Tuning Phase), 8 & 13 (The Selection Phase & Offspring
Allocation), and 18 (Topological Mutation Phase), are further elaborated on in the
subsections that follow.

10.3 Generational Evolution 407

Fig. 10.3 The different stages in the DXNN’s learning algorithm: Initialization Stage, Tun-
ing Phase, Selection Stage, and Topological Mutation Phase.

10.3.1 Step-1: Initialization Phase

During the initialization, every element created has its Generation set to 0. Ini-
tially a seed population of size X is created. Each agent in the population starts
with a minimal network, where the minimal starting topology depends on the total
number of Sensors and Actuators the researcher decides to start the system with. If
the NN is set to start with only 1 Sensor and 1 Actuator with a vl = 1, then the
DXNN starts with a single Cortex containing a single Neuron. For example, if the
output is a vector of length 1 like in the Double Pole Balancing (DPB) control
problem, the NN is composed of a single Neuron. If on the other hand the agent is
initiated with N number of Sensors and K number of actuators, the seed NNs will
contain 2 layers of fully interconnected Neurons. The first layer contains S Neu-
rons, and the second contains A1+...Ak Neurons. In this topology, S is the total
number of Sensors, and Ai is the size of the vector that is destined for Actuator i. It
is customary for the NNs to be initialized with a single Sensor and a single Actua-
tor, letting the agents discover any other auxiliary Sensors and Actuators through
topological evolution.

Furthermore, the link from a Cortex to a Neuron can be of 3 types listed below:

408 Chapter 10 DXNN: A Case Study

1. Single-type link, in which the Cortex sends the Neuron a single value from one
of its Sensors.

2. Block-type link, in which the Cortex sends the Neuron an entire vector that is
output by one of the Sensors.

3. All-type link, in which the Cortex sends the Neuron a concatenated list of vec-
tors from all the Sensors in its SensorList.

All this information is kept in the Cortex, the Neuron neither knows what type
nor originally from which sensor the signal is coming. Each neuron only keeps
track of the list of nodes it is connected from and the vector lengths coming from
those nodes. Thus, to the Neuron all 3 of the previous link-types look exactly the
same in its InputList, represented by a simple tuple {From_Id, Vector_Length}.
The Vector_Length variable might of course be different for each of those connec-
tions.

The different link-types add to the flexibility of the system and allow the Neu-
rons to evolve a connection where they can concentrate on processing a single
value or an entire vector coming from a Sensor, depending on the problem’s need.
I think this improves the general diversity of the population, allows for greater
compactness to be evolved, and also improves the NN’s ability to move through
the fitness landscape. Since it is never known ahead of time what sensory values
are needed and how they need to be processed to produce a proper output, differ-
ent types of links should be allowed.

For example, a Cortex is routing to the Neurons a vector of length 100 from
one of its Sensors. Assume that a solution requires that a Neuron needs to concen-
trate on the 53rd value in the vector and pass it through a cosine activation func-
tion. To do this, the Neuron would need to evolve weights equaling to 0 for all
other 99 values in the vector. This is a difficult task since zeroing each weight will
take multiple attempts, and during random weight perturbations zeroing one
weight might un-zero another. On the other hand evolving a single link-type to
that Sensor has a 1/100 chance of being connected to the 53rd value, a much better
chance. Now assume that a solution requires for a neuron to have a connection to
all of the 100 values in the vector. That is almost impossible to achieve, and would
require at least 100 topological mutations if only a single link-type is used, but has
a 1/3 chance of occurrence if we have block, all, and single type links at our dis-
posal. Thus the use of Link-Types allows the system to more readily deal with the
different and wide ranging lengths of signal vectors coming from the Sensors, and
having a better chance of establishing a proper connection needed by the problem
in question.

In a population, the agents themselves can also be of different types: Type =
“neural”, and Type = “substrate”. The “neural” type agent is one that is a standard
recursive Neural Network system. The “substrate” type agents use an architecture
where the NNs drive a neural substrate, an encoding that was popularized by

the output vector that comes from the substrate is parsed and routed to the actua-
HyperNEAT [3]. In such agents the sensory vector is routed to the substrate and

10.3 Generational Evolution 409

tors. The supervised NN itself is polled to produce the weights for the embedded
neurodes in the substrate. The type of substrates can further differ in density, and
dimensionality. A diagram of the agent architecture that utilizes a substrate encod-
ing is shown in Fig-10.4. We will discuss the substrate encoded NN systems in
greater detail in section 10.5.

Fig. 10.4 A DXNN evolved agent that uses a substrate encoded based architecture. In this
figure the cortex goes through its sensors to produce the sensory signals, which it then
packages and passes to the Substrate, which produces output signals and passes those to
the Cortex which then postprocesses them and executes its actuators using these output
vectors as parameters. The Substrate uses the NN to set the weights of its embedded
neurodes.

10.3.2 Step-4: Parametric Tuning Phase

then applying topological mutation operators to it, we can tag any neuron in the
NN that has been affected by the mutation operator. What counts as been affected
by the mutation operator is as follows:

1. Having been just created, for example when a new neuron has just been added
to the NN.

2. Having just acquired new input or output connection, for example when a neu-
ron has just created a new link to another element, or when another element has
just created a link to the neuron in question, the neuron is counted as having
been affected by the mutation operator.

3. When during the topological mutation phase, the neuron’s activation function,
plasticity, or another parameter (other than weights) has been mutated.

Since the offspring is created by taking the fit parent, creating its clone, and

410 Chapter 10 DXNN: A Case Study

Instead of just giving to such neurons the “mutationally affected” tag, their
generation parameter is reset, the same as is the case in the system we’ve built
thus far. Thus, every element in the NN is given a generation during the initial
seed population creation, and then every time the element is affected by a muta-
tion, its generation is reset to the current generation, where the “current” genera-
tion is N where N increments every topological mutation phase, and is kept track
of by the agent element. In this manner we can track which parts of the NN have
been mutating, and which topological structures have stabilized and for a number
of generations have not been affected by mutation. This stabilization usually oc-
curs when the mutation of such structures produces a less fit offspring than its par-
ent. So we can then, using this approach pick out the stabilized structures and
crystallize them, making those structures a single unit (and be potentially repre-
sented by a single process) that in the future will no longer be disturbed by muta-
tion.

To choose whose synaptic weights to perturb during the tuning event, first the
exoself chooses a random generation limit value as follows: GenLimit =

value between 0 and 1 with a uniform distribution. Thus GenLimit will always be
greater than 1, and have 50% of being 2, 25% of being 4... DXNN then uses the
randomly generated GenLimit to compose a pool of neurons which have been af-
fected by mutations within the last GenLimit of generations. In this neuron pool
each neuron is chosen with a probability of 1/sqrt(NeuronPoolSize) to have its
synaptic weights perturbed. The list of these chosen neurons is called the New
Generation Neurons (NGN). The chosen neurons are then each sent a message by
the exoself to have their synaptic weights perturbed. When a neuron receives such
a message, it goes through its synaptic weight list and chooses each weight for
perturbation with a probability of 1/sqrt(TotSynapticWeights). The neuron then
perturbs the chosen synaptic weights with a value randomly generated with uni-
form distribution between -Pi and Pi.

This particular approach has the following benefits: 1. It concentrates on tuning
and optimizing neurons that have only recently been added to the NN, thus ensur-
ing that newly added neurons can contribute in a positive way to the NN. 2. There
is a high variability in the number of neurons and weights that are chosen at any
given time, thus there are times when a large number of neurons are all perturbed
at the same time, and there are times when, by chance alone, only a few neurons
and a few of their synaptic weights are chosen. Thus this approach allows the sys-
tem to have a chance of doing both, tune into local optima on the fitness land-
scape, and also at times choose a large number of neurons and weights to perturb,
and thus search far and wide in the parametric space.

After NGN is composed, a variable MaxMistakes is created and set to
abs(BaseMaxMistakes + sqrt(TotWeights from NGNs)) rounded to the nearest in-
teger. The BaseMaxMistakes variable is set by the researcher. Finally, a variable
by the name AttemptCounter is created and set to 1.

1/random:uniform() where the random:uniform() function generates a random

10.3 Generational Evolution 411

The reason for the creation of the NGN list is due to the weight perturbations
being applied only to the these new or recently modified Neurons, a method I refer
to as “Targeted Tuning”. The reason to only apply perturbations to the NGNs is
because evolution in the natural world works primarily through complexification
and elaboration, there is no time to re-perturb all the neurons in the network after
some minor topological or other type of addition to the system. As NNs grow in
size it becomes harder and harder to set all the weights and parameters of all the
Neurons at the same time to such values that produces a fit individual. A system
composed of thousands of neurons might have millions of parameters in it. The
odds of finding proper values for them all at the same time by randomly perturb-
ing synaptic weights throughout the entire system after some minor topological
mutation, is slim to none. The problem only becomes more intractable as the
number of Neurons continues to grow. By concentrating on tuning only the newly
created or newly topologically/structurally augmented Neurons and making them
work with an already existing, tuned, and functional Neural Network, makes the
problem much more tractable. Indeed in many respects it is how complexification
and elaboration works in the biological NNs. In our organic brains the relatively
recent evolutionary addition of the Neocortex was not done through some refur-
bishing of an older NN structure, but through a completely new addition of neural
tissue covering and working with the more primordial parts. The Neocortex works
concurrently with the older regions, contributing and when possible overwriting
the signals coming from our more ancient neural structures evolved earlier in our
evolutionary history.

During the Tuning Phase each NN based agent tries to solve the problem based
on its morphology. Afterwards, the agents receive fitness scores based on their
performance in that problem. After being scored, each NN temporarily backs
up its parameters. Every neuron in the NGN list has a probability of
1/sqrt(Tot_NGNs) of being chosen for weight perturbation. The Exoself sends the-
se randomly chosen neurons a request to perturb some of their weights. Each cho-
sen Neuron, after receiving such a message, chooses a set of its own synaptic
weights, and perturbs them. The total number of weights to be perturbed is chosen
randomly by every Neuron itself. The number of weights chosen for perturbation
by each neuron is a random value between 1 and square root of total number of
weights in that Neuron. The perturbation value is chosen with uniform distribution
to be between -(WeightLimit/2) and (WeightLimit/2), where the WeightLimit is
set to 2*Pi. By randomly selecting the total number of Neurons, the total number
of weights to perturb, and using such a wide range for the perturbation intensity,
we can achieve a very wide range of parametric perturbation. Sometimes the NN
might have only a single weight in a single Neuron perturbed slightly, while at
other times it might have multiple Neurons with multiple weights perturbed to a
great degree. This allows the DXNN platform to make small intensity perturba-
tions to fine tune the parameters, but also sometimes very large intensity (number
of Neurons and weights) perturbations to allow NN based agents to jump over or
out of local optima, an impossibility when using only small perturbations applied

412 Chapter 10 DXNN: A Case Study

to a small number of Neurons. This high mutation variability method is referred to
in the DXNN platform as the Random Intensity Mutation (RIM). The range of mu-
tation intensities grows as the square root of the total number of NGNs, as it logi-
cally should since the greater the number of new or recently augmented Neurons
in the NN, the greater the number of perturbations that needs to be applied to
make a significant effect on the information processing capabilities of the system.
At the same time, the number of neurons and weights affected during perturbation
is limited only to the newly/recently added or topologically augmented elements,
so that the system can try to adjust the newly added structures and those elements
that are directly affected by them through new connections, to work and positively
contribute to an already existing neural system.

After all the weight perturbations have been applied to the NN based agent, it
attempts to solve the problem again. If the new fitness achieved by the agent is
greater than the previous fitness it achieved, then the new weights overwrite the
old backed up weights, the AttemptCounter is reset to 1, and a new set of weight
perturbations is applied to the NN based agent. Alternatively, if the new fitness is
not greater than the previous fitness, then the old weights are restored, the
AttemptCounter is incremented, and another set of weight perturbations is applied
to the individual.

When the agent’s AttemptCounter == MaxMistakes, implying that a
MaxMistakes number of unsuccessful RIMs have been applied in sequence with-
out a single one producing an increase in fitness, the agent with its final best fit-
ness and the correlated weights is backed up to the database through its conversion
back to a list of tuples, its genotype, followed by the termination of the agent it-
self. Utilizing the AttemptCounter and MaxMistakes strategy allows us, to some
degree at least, test each topology with varying weights and thus let each NN after
the tuning phase to represent roughly the best fitness that its topology can achieve.
In this way there is no need to forcefully and artificially speciate and protect the
various topologies since each NN represents roughly the highest potential that its
topology can reach in a reasonable amount of time after the tuning phase com-
pletes. This allows us to judge each NN based purely on its fitness. If one increas-
es the BaseMaxMistakes parameter, then on average each NN will have more test-
ing done on it with regards to weight perturbations, thus testing the particular
topology more thoroughly before giving it its final fitness score. On the other hand
the MaxMistakes parameter itself grows in proportion to the square root of the to-
tal sum of NGN weights that should be tunned, since the greater the number of
new weights that need to be tuned, the more attempts it would take to properly test
the various permutations of neurons and their synaptic weights.

10.3 Generational Evolution 413

10.3.3 Step-8 & 13: The Selection & Offspring Allocation Phase

There are many TWEANNs that implement speciation during selection. Spe-
ciation is used to promote diversity and protect unfit individuals who in the cur-
rent generation do not possess enough fitness to get a chance of producing off-
spring or mutating and achieving better results in the future. Promoters of
speciation algorithms state that new ideas need time to develop and speciation pro-
tects such innovations. Though I agree with the sentiment of giving ideas time to
develop, I must point to [4] in which it was shown that such artificial and forced
speciation and protection of unfit organisms can easily lead to neural bloating.
DXNN platform does not implement forced speciation, instead it tests its individ-
uals during the Tuning Phase and utilizes natural selection that also takes into ac-
count the complexity of each NN during the Selection Stage. In my system, as in
the natural world, smaller organisms require less energy and material to reproduce
than their larger counterparts. As an example, for the same amount of material and
energy that is required for a human to produce and raise an offspring, millions of
ants can produce and raise offspring. When calculating who survives and how
many offspring to allocate to each survivor, the DXNN platform takes complexity
into account instead of blindly and artificially defending the unfit and insufficient-
ly tested Neural Networks. In a way, it can also be thought that every NN topolo-
gy represents a specie in its own right, and the tuning phase concisely tests out the
different parametric permutations of that particular specie, same topologies with
different weights. I believe that speciation and niching should be done not force-
fully from the outside by the researcher, but by the artificial organisms themselves
within the artificial environments they inhabit, if their environments/problems al-
low for such a feat. When the organisms find their niches, they will automatically
acquire higher fitness and secure their survival that way.

Due to the Tuning Phase, by the time Selection Stage starts, each individual
presents its topology in roughly the best light it can reach within reasonable time.
This is due to the consistent application of Parametric RIM to each NN during tar-
geted tuning, and that only after a substantial number of continues failures to im-
prove is the agent considered to be somewhere at the limits of its potential. Thus
each NN can be judged purely by its fitness rather than have a need for artificial
protection. When individuals are artificially protected within the population, more
and more Neurons are added to the NN unnecessarily, thus producing the dreaded
neural/topological bloating. This is especially the case when new neurons are add-
ed, yet the synaptic weight perturbation and mutation is applied indiscriminately
to all the synaptic weights in the NN. Topological bloating dramatically and cata-
strophically hinders any further improvements due to a greater number of Neurons
unnecessarily being in the NN and needing to have their parameters set concur-
rently to just the right values to get the whole system functional. An example of
such topological bloating was demonstrated in the robot arm control experiment
using NEAT and EANT2 [4]. In that experiment, NEAT continued to fail due to
significant neural bloating, whereas EANT2 was successful, which like DXNN is

414 Chapter 10 DXNN: A Case Study

a memetic algorithm based TWEANN. Once a NN passes some topological bloat-
ing point, it simply cannot generate enough of concurrent perturbations to fix the
faulty parameters of all the new neurons it acquired. At the same time, most
TWEANN algorithms allow for only a small number of perturbations to be ap-
plied at any one instance. In DXNN, through the use of Targeted Tuning and RIMs
applied during the Tuning and Topological Mutation phases, we can successfully
avoid bloating.

Finally, when all NNs have been given their fitness rating, we must use some
method to choose those NNs that will be used for offspring creation. DXNN plat-
form uses a selection algorithm I call “Competition”, which tries to take into ac-
count not just the fitness of each NN, but also the NN’s size. The competition se-
lection algorithm is composed of the following steps:

1. Calculate the average energy cost of the Neuron using the following steps:
TotEnergy = Agent(1)_Fitness + Agent(2)_Fitness...
TotNeurons = Agent(1)_TotNeurons + Agent(2)_TotNeurons...
AverageEnergyCost = TotEnergy/TotNeurons

2. Sort the NNs in the population based on their fitness. If 2 or more NNs have the
same fitness, they are then sorted further based on size, more compact solutions
are considered of higher fitness than less compact solutions.

3. Remove the bottom 50% of the population.
4. Calculate the number of alloted offspring for each Agent(i):

AllotedNeurons = (Fitness/AverageEnergyCost),
AllotedOffsprings(i) = round(AllotedNeurons(i)/Agent(i)_TotNeurons)

5. Calculate total number of offspring being produced for the next generation:
TotalNewOffsprings = AllotedOffsprings(1)+...AllotedOffsprings(n).

6. Calculate PopulationNormalizer, to keep the population within a certain limit:
PopulationNormalizer = TotalNewOffsprings/PopulationLimit

7. Calculate the normalized number of offspring alloted to each Agent:
NormalizedAllotedOffsprings(i) =
round(AllotedOffsprings(i)/PopulationNormalizer(i)).

8. If NormalizedAllotedOffsprings (NAO) == 1, then the Agent is allowed to sur-
vive to the next generation without offspring, if NAO > 1, then the Agent is al-
lowed to produce (NAO -1) number of mutated copies of itself, if NAO = 0 the
Agent is removed from the population and deleted.

9. The Topological Mutation Phase is initiated, and the mutator program then
passes through the database creating the appropriate NAO number of mutated
clones of the surviving agents.

From this algorithm it can be noted that it becomes very difficult for bloated
NNs to survive when smaller systems produce better or similar results. Yet when a
large NN produces significantly better results justifying its complexity, it can
begin to compete and push out the smaller NNs. This selection algorithm takes in-
to account that a NN composed of 2 Neurons is doubling the size of a 1 Neuron
NN, and thus should bring with it sizable fitness gains if it wants to produce just

10.3 Generational Evolution 415

10.3.4 Step-18: The Topological Mutation Phase

An offspring of an agent is produced by first creating a clone of the parent
agent, then giving it a new unique Id, and then finally applying Mutation Opera-
tors to it. The Mutation Operators (MOs) that operate on the individual’s topology
are randomly chosen with uniform distribution from the following list:

1. “Add Neuron” to the NN and link it randomly to and from randomly chosen
Neurons within the NN, or one of the Sensors/Actuators.

2. “Add Link” (can be recurrent) to or from a Neuron, Sensor, or Actuator.
3. “Splice Neuron” such that that two random Neurons which are connected to

each other are disconnected and reconnected through a newly created Neuron.
4. “Change Activation Function” of a random Neuron.
5. “Change Learning Method” of a random Neuron.
6. “Add Bias”, all neurons are initially created without bias.
7. “Remove Bias”, removes a bias value in the neurons which have one.
8. “Add Sensor Tag” which connects a currently unused Sensor present in the

SensorList to a random Neuron in the NN. This mutation operator is selected
with a researcher defined probability of X. In this manner new connections can
be made to the newly added or previously unused sensors, thus expanding the
sensory system of the NN.

9. “Add Actuator Tag” which connects a currently unused Actuator present in the
ActuatorList to a random Neuron in the NN. This mutation operator is selected
with a researcher defined probability of Y. In this manner new connections can
be made to the newly added or previously unused actuators, thus expanding the
types of tools or morphological properties that are available for control by the
NN.

The “Add Sensor Tag” and “Add Actuator Tag” can both allow for new links
from/to the Sensor and Actuator programs not previously used by the NN to be-
come available to it. In this manner the NN can expand its senses and control over
new actuators and body parts. This feature becomes especially important when the
DXNN platform is applied to the Artificial Life and Robotics experiments where
new tools, sensors, and actuators might become available over time. The different
sensors can also simply represent various features of a problem, and in this man-
ner the DXNN platform naturally incorporates feature selection capabilities.

The total number of Mutation Operators (MOs) applied to each offspring of the
DXNN is a value randomly chosen between 1 and square root of the total number
of Neurons in the parent NN. In this way, once again a type of random intensity

as many offspring. On the other hand, a NN of size 101 is only slightly larger than
a NN of size 100, and thus should pay only slightly more per offspring. This is
exactly the principle behind the “competition” selection algorithm we implemented
in the system we are developing together in this book.

416 Chapter 10 DXNN: A Case Study

from their NN parent, while others might have a very large number of MOs ap-
plied to them, and thus differ drastically. This gives the offspring a chance to jump
out of large local optima that would otherwise prove impassible if a constant
number of mutational operators were to have been applied every time, independ-
ent of the parent NN’s complexity and size. As the complexity and size of each
NN increases, each new topological mutation plays a smaller and smaller part in
changing the network’s behavior, thus a larger and larger number of mutations
needs to be applied to produce significant differences to the processing capabili-
ties of that individual. For example, when the size of the NN is a single neuron,
adding another one has a large impact on the processing capabilities of that NN.
On the other hand, when the original size is a million neurons, adding the same
single neuron to the network might not produce the same amount of change in the
computational capabilities of that system. Increasing the number of MOs applied
based on the size of the parent NN’s size, allows us to make the mutation intensity
significant enough to allow the mutant offspring to continue producing innova-
tions in its behavior when compared to its parent, and thus exploring the topologi-
cal fitness landscape far and wide. At the same time, due to RIM, some offspring
will only acquire a few mutations and differ topologically only slightly and thus
have a chance to tune and explore the local topological areas on the topological
fitness landscape.

Because the sensors and actuators are represented by simple lists of existing
sensor and actuator programs, just like in the system we’re developing together in
this book, the DXNN platform allows for the individuals within the population to
expand their affecting and sensing capabilities. Such abilities integrated naturally
into the NN lets individuals gather new abilities and control over functions as they
evolve. For example, originally a population of very simple individuals with only
distance sensors is created. At some point a fit NN will create a mutant offspring
to whom the “Add Sensor Tag” or “Add Actuator Tag” mutational operator is ap-
plied. When either of these mutational operators is randomly applied to one of the
offspring of the NN, that offspring then has a chance of randomly linking from or
to a new Sensor or Actuator respectively. In this manner the offspring can acquire
color, sonar or other types of sensors present in the sensor list, or acquire control
of a new body part/actuator, and thus further expand its own morphology. These
types of expansions and experiments can be undertaken in the artificial

Player/Stage/Gazebo in particular has a list of existing sensor and actuator types,
making such experiments accessible at a very low cost.

Once all the offspring are generated, they and their parents once more enter the
tuning phase to continue the cycle as was diagrammed in Fig-10.3.

life/robotics simulation environments like the Player/Stage/Gazebo Project [5].

mutation (RIM) approach is utilized. Some mutant clones will only slightly differ

10.4 Steady-State Evolution 417

10.4 Steady-State Evolution

Though the generational evolution algorithm is the most common approach, when
applying neuroevolutionary systems to ALife, or even non ALife simulations and
problems, steady-state evolution offered by DXNN can provide an advantage due
to its content drift tracking ability, and a sub population called “Dead Pool” which
can immediately be used to develop committee machines. In a steady-state evolu-
tion, the population solving the problem or existing within the simulated world (in
the case of ALife for example) always maintains a constant operational popula-
tion. When an organism/agent dies, or when there is more room in the environ-
ment (either due to the expansion of the food source in ALife environment, or be-
cause more computational power is added, or more exploration is wanted...) more
concurrently existing agents are added to the operational phenotypes. The system
does not wait for every agent in the population to finish being evaluated before
generating a new agent and entering it into the population. Instead, the system
computes the fitness of the just having perished agent, and then immediately gen-
erates a new genotype from a pool of previously evaluated fit genotypes. Thus the
system maintains a relatively constant population size by consistently generating
new offspring at the same pace that agents complete their evaluations and are re-
moved from the live population.

In DXNN, the steady-state evolutionary algorithm uses an “Augmented Com-
petition” (AC) selection algorithm. The AC selection algorithm keeps a list of size
“PopulationSize” of dead NN genotypes, this list is called the “dead pool”. The
variable PopulationSize is specified by the researcher. When an Agent dies, its
genotype and fitness is entered into this list. If after entering the new genotype in-
to the dead pool the list’s size becomes greater than PopulationSize, then the low-
est scoring DXNN genotype in the dead pool is removed. In this manner the dead
pool is always composed of the top performing PopulationSize number of ancestor
genotypes.

In this augmented version of the selection algorithm, the AllottedOffspring var-
iables are converted into normalized probabilities used to select a parent from the
dead pool to produce a mutated offspring. Finally, there is a 10% chance that in-
stead of creating an offspring, the parent itself will enter the environment/scape or
be re-applied to the problem. Using this “re-entry” system, if the environment or
the manner in which the fitness is allotted changes, the old strategies and their
high fitness scores can be re-evaluated in the changed environment to see if they
still deserve to stay in the dead pool, and if so, what their new fitness should be.
This selection algorithm also has the side effect of having the dead pool implicitly
track content drift of the problem to which the TWEANN is applied.

For example assume that the steady-state evolution with the dead_pool list is
applied to an ALife simulation. Every time an agent in the simulated environment
dies (has been evaluated), it is entered into the dead pool, and a new offspring is
generated from the best in this dead pool. Once the dead pool size reaches that of

418 Chapter 10 DXNN: A Case Study

PopulationSize specified by the researcher, the DXNN system also begins to get
rid of the poorly performing genotypes in the dead_pool. But what is important is
that when an organism in the environment dies, there is a chance that a genotype
in the dead pool has a chance of re-entering the simulated environment, instead of
a new mutant offspring being generated. If it were not for this, then as the envi-
ronment changes with the dynamics and fitness scoring and life expectancy all
changing with it... and some organism dies, the old organisms, the genotypes from
the “old world” would be used to create the offspring. If the environment is highly
dynamic and malleable, after a while the whole thing might change, the useful
survival instincts and capabilities that were present in the environment to which
the dead_pool organisms belonged, might no longer be present in the current,
evolved environment. Suddenly we would be faced with a dead_pool of agents all
with high scores, which though achievable in the previously simple environment,
are no longer possible in the now much more complex and unforgiving environ-
ment. Thus it is essential to re-evaluate the organisms in the dead_pool, are they
still fit in the new environment, in the environment that itself has evolved and be-
come more complex? Can the old agents compete in the new world?

The re-entry system allows us to change and update the dead_pool with the or-
ganisms that are not simply more fit, but are more fit in the current state of the en-
vironment. The environment can be either the simulated environment of the ALife
system, or the new signal block in the time series of currency-pairs or stock prices
for example. The patterns of the market that existed last year, might have changed
completely this year, and it is essential that the new agents are judged by how they
perform on this year’s patterns and styles of the time series. This is the benefit of
the content drift tracking dead pool. The dead pool represents the best of the popu-
lation, a composition of agent genotypes that perform well in the relatively new
environment, that perform well in the world of today, rather than the one of last
year.

Furthermore, because the genotypes belonging to the dead_pool represent the
best of the population, we can directly use the genotypes in it to compose a com-
mittee machine. The current state of the dead pool is the voting population of the
committee machine, the type of system we discussed in Section-1.2.2. This type of
setup is shown in Fig-10.5.

10.4 Steady-State Evolution 419

Fig. 10.5 A DXNN system using steady-state evolution used to evolve currency trading
agents, and whose dead pool is used as a committee machine applied to real Forex trading.

The steps of the steady-state evolution algorithm in the DXNN platform are as
follows:

1. Initialization Phase:
2. Create a seed population of size K of topologically minimalistic NN

genotypes.
3. Convert genotypes to phenotypes.

4. DO (Steady-State Neuroevolutionary loop):
5. For Each Agent, DO (Tuning Phase):

6. Test fitness of the NN system
7. Perturb the synaptic weights of recently added or mutation

operator affected neurons
UNTIL: NN’s fitness has not increased for X times in a series
8. Convert the NN system back to its genotype, with the now updated

and tuned synaptic weights.
9. Add the agent’s genotype to the dead_pool list of size K.
10.Steady-State Selection Phase (For genotypes in the dead_pool list):

11.Calculate the average energy cost of each neuron using the
following method:
TotFitnessPoints = Agent_Fitness(1) + Agent_Fitness(2) +
...Agent_Fitness(K),
TotPopNeurons = Agent_TotNs(1) + Agent_TotNs(2) +
...Agent_TotNs(K),
AvgNeuronCost = TotFitnessPoints/TotPopNeurons.

420 Chapter 10 DXNN: A Case Study

12.With all the NNs having now been given their fitness score,
sort the genotypes based on their scores.

13.Extract the top K agents in this sorted dead_pool list, delete
the others. This is done for the case when the addition of the
new agent to the dead_pool, makes the size of the dead_pool
larger than K. We only want to keep K agents in the
dead_pool.

14.Select a dead_pool champion agent:
15.Agent(i)_NeuronsAllotted =

Agent_Fitness(i)/AvgNeuronCost,
Agent(i)_OffspringAllotted =
Agent(i)_NeuronsAllotted/Agent(i)_TotNs

16.Convert Agent(i)_OffspringAllotted for each agent
into a normalized percentage, such that a random
agent from this list can be chosen with the uniform
distribution probability proportional to its
Agent(i)_OffspringAllotted value.

17.Choose the agent through step-16, and designate that
agent as dead_pool champion.

18.Randomly choose whether to use the dead_pool
champion as the parent of a new offspring agent, or
whether to extract the champion from the dead_pool,
convert it to its phenotype, and re-apply it to the
problem. The split is 90/10, with 90% chance of us-
ing the champion’s genotype to create a new off-
spring, and 10% chance of removing the agent from
the dead_pool and re-applying (aka re-entry, re-
evaluation...) the agent to the problem.

19.IF champion selected to create offspring:
20.Topological mutation phase:

21.Create the offspring by first cloning the
parent, and then applying to the clone T
number of mutation operators, T is random-
ly chosen to be between 1 and
sqrt(Agent(i)_TotNeurons). Where the
TotNeurons is the number of neurons in the
parent NN, and T is chosen with uniform
distribution. Thus larger NNs will produce
offspring which have a chance of being
produced through a larger number of ap-
plied mutation operators to them.

22.Designate the offspring agent as New_Agent.
ELSE champion is chosen for re-entry:

23.Extract agent from the dead_pool.
24.Designate the agent as New_Agent.

10.5 Direct (Neural) and Indirect (Substrate) Encoding 421

25.Convert the agent designated as New_Agent to its phenotype.

UNTIL: Termination condition is reached (max # of evaluations, time, or fit-
ness goal)

As can be noted from these steps, the algorithm is similar to the generational
evolutionary approach, but in this case as soon as an agent dies (if in ALife exper-
iment), or finishes its training or being applied to the problem, its fitness is imme-
diately evaluated against the dead_pool agents, and a new agent is created (either
through offspring creation or re-entry) and applied to the problem, or released into
the simulated environment.

The tuning phase and the topological mutation phase are the same as in the
generational evolutionary loop, discussed in the previous section. The steady-state
selection algorithm only differs in that the allotted_offspring value is converted to
a percentage of being selected for each agent in the dead_pool. The selected agent
has a 90% chance of creating an offspring and 10% chance of being sent back to
the problem, and being re-evaluated with regards to its fitness.

The following sections will cover a few finer points and features of DXNN. In
the next section we will discuss its two types of encoding, neural and substrate. In
section 10.6 we will briefly discuss the flatland simulator, a 2d ALife environ-
ment. In section 10.7 we will discuss the modular version of DXNN. Finally, in
section 10.8 and 10.9 we will discuss the ongoing projects and features being inte-
grated into the DXNN system, and the neural network research repository being
worked on by the DXNN Research Group.

10.5 Direct (Neural) and Indirect (Substrate) Encoding

The DXNN platform evolves both direct and indirect encoded NN agents. The
direct encoded NN systems are as discussed in the above sections, these are stand-
ard neural networks where every neuron is encoded as a tuple, and the mapping
from the genotype to phenotype is direct. We simply translate the tuple containing
the synaptic weights and link specifications into a process, linked to other pro-
cesses and possessing the properties and synaptic weights dictated by the tuple.

The indirect encoding that the DXNN can also use is a form of substrate encod-
ing, popularized by the HyperNEAT [3]. There are many variations of substrate
encoding, and new ones are turning up every year. In a substrate encoded NN, the
actual NN is not directly used to process input sensory signals and produce output
signals to control the actuators. Instead, in a substrate encoded NN system the NN
“paints” the synaptic weights and connectivity patterns on a multidimensional
substrate of interconnected neurodes. This substrate, based on the synaptic weights
determined by the NN, is then used to process the input sensory signals and pro-

422 Chapter 10 DXNN: A Case Study

duce output signals used by the actuators. The architecture of such a system is
shown in the following figure.

Fig. 10.6 Substrate encoded neural network system. This diagram is of a substrate encoded
agent. The substrate, sensors, and actuators, are all part of the same process called Cortex.
The NN is used to generate the synaptic weights between neurodes in the substrate, based
on the coordinates of the presynaptic and postsynaptic neurodes. The sample agent shown
is one that controls a simulated robot in an ALife experiment, a simulated robot that has a
Range Sensor, a Distance Sensor, and a Differential Drive Actuator.

The neurodes in the substrate all use the sigmoid or tanh activation function,
though this of course can be changed. Furthermore, the NN’s output can be used
for anything, and not only used as the synaptic weights for the coordinate speci-
fied neurodes. For example, the output of the NN can be used and considered as
the Delta Weight, the change in the synaptic weight between the pre- and post-
synaptic neurodes, based on the coordinates of the said neurodes fed to the NN, in
addition with the pre-synaptic neurode’s output, the post-synaptic neurode’s out-
put, and the current synaptic weight between the two. We will further discuss the
details of substrates and their functionality in the following section, followed by a
discussion of the genotype encoding DXNN uses for substrates, the phenotype
representation that it uses for such substrate encoded agents, and finally the differ-
ent types of “substrate_sensors” and “substrate_actuators”, which further modify

10.5 Direct (Neural) and Indirect (Substrate) Encoding 423

the substrate encoded NN systems, allowing the NN to not only use the coordi-
nates of the two connected neurodes when computing the synaptic weight between

coordinates, planner coordinates, centripetal distance...

10.5.1 Neural Substrates

A neural substrate is simply a hypercube structure whose axis run from -1 to 1
on every dimension. The substrate has neurodes embedded in it, where each
neurode has a coordinate based on its location within the hypercube. The neurodes
are connected to each other, either in the feed forward fashion, a fully connected
fashion, or random connection based fashion. An example of a 2d substrate is
shown in Fig-10.7a, and a 3d substrate in Fig-10.7b.

Fig. 10.7 An example of different substrates in which the neurodes are connected to each
other in the feed forward fashion.

them, but various other geometrically significant features, like distance, spherical

424 Chapter 10 DXNN: A Case Study

From these examples you can see that the processing, input, and output
hyperlayers, are one dimension lower than the entire substrate. The sensory sig-
nals travel from the negative side of the axis of the most external dimension (Y in
the case of 2d, and Z in the case of 3d in the above examples), from the input
hyperlayer, through the processing hyperlayers, and finally to the output
hyperlayer, whose neurodes’ output counts as the output of the substrate (but
again, we could designate any neurode in the substrate as an output neurode, and
wait until all such output neurodes produce a signal, and count that as the sub-
strate’s output). The manner in which we package the output signals of the
neurodes within the output hyperlayer, and the manner in which we feed those
packaged vectors to the actuators, determines what the substrate encoded NN
based agent does. Finally, because the very first hyperlayer is the input to the sub-
strate, and the very last hyperlayer is the output of the substrate, there must be at
least 2 hyperlayers making up the substrate structure.

For example, assume we’d like to feed an image coming from a camera into the
substrate encoded NN system. The image itself is a bitmap, let’s say of resolution
10x10. This is perfect, for this type of input signal we can create a 3d substrate
with a 10x10 input hyperlayer, 3x3 hidden processing hyperlayer, and a 1x5 out-
put hyperlayer. Each hyperlayer is a 2d plane, all positioned on the 3rd dimension,
thus making the substrate 3d, as shown in Fig-10.8. As can be seen, the input be-
ing the very first layer located at Z = -1, has its signals sent to the second layer,
located at Z = 0, which processes it, and whose neurode outputs are sent to the 3rd

final output of the substrate.
layer at Z = 1, processed by the last 5 neurodes whose output is considered the

The density of the substrate refers to the number of neurons on a particular ax-
is. For example, if the substrate is a 2d one, and the density of the substrate is 5 by
3, then this plane substrate has 5 neurons, uniformly distributed on the x axis, with
3 total of such layers, which too are uniformly distributed on the y axis, as shown
in Fig-10.7a. The Fig-10.7b shows a 3d substrate with the density distribution of
3x3x3. In this substrate, there are 3 planes on the Z axis, where each plane is com-
posed out of 3x3 neurode patterns. Each plane is connected to the plane ahead of
it, hence it is a feed forward based substrate, since the signals travel from the -Z
direction, towards the +Z direction. We could of course have a fully connected
substrate, where every neurode is connected to every other neurode. Also, the sub-
strate does not necessarily need to be symmetric, it can have any type of pattern,
any number of neurons per layer or hyperlayer, and positioned in any pattern with-
in that layer or hyperlayer.

10.5 Direct (Neural) and Indirect (Substrate) Encoding 425

Fig. 10.8 A [{10,10},{3,3},{5,1}] substrate being fed a 2d plane image with a 10x10 ({10,10})
resolution.

You might be asking at this point “What is the advantage of using substrate en-
coding?” The answer is in the way we produce their weights. The weights are de-
termined by the NN which calculates the synaptic weight between two connected
neurodes based on their coordinates. The coordinates of the connected neurodes
act as the input to the NN. Since the NN has the coordinates as input, it can do the
following:

1. Extract geometrical patterns in the input hyperlayer, and thus it can be applied
to highly complex problems where such geometrical information can be ex-
ploited.

2. Be used to generate weights for very large and very dense substrates, with the
connectivity and synaptic weight patterns based on the coordinates, and thus
being of almost any complexity and form.

3. Due to never seeing the actual input signals, it cannot evolve a single synaptic
weight for some particular element in the input vector during training, it cannot
evolve some specific set of synaptic weights to pick out a particular single
small pattern. In other words, a substrate encoded NN has a much lower chance

thus it should be able to generalize that much better.
4. Because the NN produces a smooth function, and because each neurode in the

substrate has presynaptic connections from a smooth spread of neurodes, with
regards to their coordinates in the previous hyperlayer, the synaptic weights
produced by the NN for any particular neurode, varies smoothly. This is the
reason why it is much more difficult for such synaptic weights to overtrain on

of overtraining. It paints the synaptic weights broadly on the substrate, and

426 Chapter 10 DXNN: A Case Study

some single particular points in the input stream of signals. Hence the superior
generalization. The NN paints the synaptic weights and connectivity patterns
on the substrate in “broad strokes”, so to speak.

Let us discuss some of the things mentioned in more detail.

Geometrical Feature Sensitivity:

As discussed, the input to the NN is a list of coordinates for the connected pre-
synaptic and post-synaptic neurodes. Not only are the coordinates used as input to
the NN, but also the coordinates can be first converted to spherical coordinates,
polar coordinates, distance between the connected neurodes, distance to the center
of the substrate... before they are fed to the NN. Because a NN is a universal func-
tion approximator, and the inputs are various geometrical elements, and because
the input hyperlayer itself has coordinates, the NN gains the ability to pick out and
deal with the geometrical features of the substrate, and the sensory signals.

Large Neural Network Structures:

Since the substrate neurode density is independent of the actual NN which we
evolve, through substrate encoding it is possible to create very large/dense sub-
strates, with thousands or millions of neurodes. Thinking again about the substrate
analyzing the data/images coming from a camera, we can also see that the denser
the substrate, the higher the resolution of images it can analyze. Also the resolu-
tion of the sensory inputs and the output of the substrate, are independent of the
NN painting the connectivity and synaptic weights on it. The “curse of dimension-
ality” does not plague this type of system as much, since we can concentrate on a
smaller number of evolving parameters and topologies (of the actual evolving
NN), while controlling a vast substrate embedded NN. Finally, it is also possible
to implement synaptic plasticity using iterative, abc, and other types of substrate
learning rules [6], which we will discuss in detail and implement in later chapters.

The “Broad Stroke” property:

Because the neural network that calculates the synaptic weights for the
neurodes in the substrate does not see the actual input vectors, and instead only
deals with the coordinates. And because the output of the NN is a smooth func-
tion, and the input coordinates to the NN are based on the connected neurodes, and
each neurode is connected from a whole spectrum of neurodes in the previous hy-
per-layer, with their coordinates changing smoothly from -1 to 1. The synaptic
weights are painted in “Broad Strokes”. Meaning, due to the inability of the NN to
pick out any particular points in the incoming data, the synaptic weights it gener-
ates are smooth over the whole substrate. A change in the NN system changes the
weights, the output function of the substrate, in general and smoothly, bringing
values smoothly up or down... This means that over-training is more difficult be-
cause the weights of the neurodes do not lock up on some single particular data
point in the input signals. Thus the generalization of the substrate encoded agent

papers: “Evolving a Single Scalable Controller foris superior, as was shown in

10.5 Direct (Neural) and Indirect (Substrate) Encoding 427

10.5.2 Genotype Representation

As we saw in Fig-10.7, the substrate is part of the cortex process. The
genotypical specification for the cortex element in DXNN is:

{id,sensors,actuators,cf,ct, type,plasticity, pattern,cids,su_id, link_form,dimensions, densities,
generation}

When I say “processing hyperlayer” I mean the substrate hyperlayer (2d, 3d…
substrate layer of neurodes) that actually has neurodes that process signals. As was
noted in the discussion on the substrate, the sensory inputs, which are sometimes
multidimensional like in the case of the signals coming from a camera, are part of
the substrate, located at the -1 side of the axis defining the depth of the substrate.
The output hyperlayers of the substrate are of the processing type. Because the in-
put hyperlayers and output hyperlayers need to be tailored for the particular set of
sensors and actuators used by the agent, the input hyperlayers, processing
hyperlayers, and the output hyperlayers of the substrate, are all specified separate-
ly from one another.

So, to create the initial substrate for the agent, the substrate’s topology is speci-

composed of. This is done by analyzing all the sensors and actuators available to
the agent. In DXNN, the sensors and actuators not only specify the vector lengths
of the signals, but also the geometrical properties (if any) that the signals will ex-
hibit. This means that they specify whether the input signals are best viewed or
analyzed as a plane with a resolution of X by Y, or a cube of a resolution X by Y
by Z, or if there is no geometrical data and that the vector length L of the input
signal can be viewed as just a list. If the NN based agent is substrate based, then
the DXNN platform will use this extra geometry specification information to cre-
ate the substrate topology most appropriate for it. Thus, if the morphology of the
seed population being created is composed of 2 sensors and 3 actuators as follows:

an Octopus Arm with a Variable Number of Segments” [7] and “Evolving Chart
Pattern Sensitive Neural Network Based Forex Trading Agents” [12].

fied in 3 parts. First DXNN figures out how many dimensions the substrate will be

This tuple specifies the substrate dimensionsionality and its general properties
through the dimensions and densities elements. Because the sensors and actuators
of the substrate are independent of the actual substrate itself, the neurode densities
of the substrate, the specification for the “processing hyperlayers”, the “input
hyperlayers”, and the “output hyperlayers”, are independent. Though this may at
first sound somewhat convoluted, after the explanation you will notice the ad-
vantages of this setup, especially for a neural network based system that is meant
to evolve and grow.

428 Chapter 10 DXNN: A Case Study

sensors:
[#sensor{name=distance_scanner,id=cell_id,format={symmetric,Dim}, tot_vl=pow(Res,Dim),
parameters=[Spread,Res,ROffset]} || Spread<-[Pi/2],Res<-[5], Roffset<-[Pi*0/2]] ++
[#sensor{name=color_scanner,id=cell_id,format={symmetric,Dim}, tot_vl=pow(Res,Dim),
parameters=[Spread,Res,ROffset]} || Spread <-[Pi/2], Res <-[4], Roffset<-[Pi*0/2], Dim=2],

actuators:
[#actuator{name=two_wheels,id=cell_id,format=no_geo,tot_vl=2,parameters=[]},
#actuator{name=create_offspring,id=cell_id,format=no_geo,tot_vl=1,parameters=[]},
#actuator{name=spear,id=cell_id,format=no_geo,tot_vl=1,parameters=[]}]

Where the parameters element specifies the extra information necessary for the
proper use of the sensor or actuator, and the format element specifies the geomet-
rical formatting of the signal. We can see that the actuators all have their formats
set to no_geo meaning, no geometric information, so the actuators expect from the
substrate single dimensional vector outputs. On the other hand, the sensors both
use format= {symmetric,2}, which specifies a two dimensional sensory signal
with a symmetric resolution in both dimensions: X by Y where X = Y. The pa-
rameters also specify, since these sensors are part of the simulated robot with dis-
tance and color sensors, the simulated sensor’s coverage area (Spread), camera
resolution (Res), and sensor’s radial offset from the robot’s central line (based on
the actual simulation of the robot which is specified during the ALife simulation).
Based on the format, the DXNN knows that the sensors will produce two symmet-
ric 2d input signals, with a resolution of 5 and 4 respectively. Thus the first senso-
ry input will be a 5x5 plane, and the second a 4x4 plane. The DXNN also knows
that the actuators expect single dimensional output vectors, the one called
two_wheels expects the signal sent to it be a vector of length 2, with the other two
actuators expecting the signals sent to them to also be single dimensional lists,
vectors, and in this case of length 1 (the length is specified by the tot_vl parame-
ter).

Having this information, DXNN knows to expect input signals that will be at
least 2d (new sensors might be added in the future, which might of course have
higher, or lower dimension), and that the output signals will be 1d. The DXNN
thus calculates that the input hyperlayer composed of multiple 2d inputs will be at
least 3d (2d planes stacked on a 3rd dimension), and the output hyperlayer will be
at least 2d (1d outputs stacked on the 2nd dimension), which means that the sub-
strate must be at least 4d. But why 4d?

Though certainly it is possible to devise substrates whose dimension is the
same as the highest dimension of the sensor or actuator used by it, I usually

+2. The
implement a layer to layer feedforward substrate topology which requires the
substrate’s dimension to be the maximum sensor or actuator dimension,
reasoning for this is best explained through an example.

10.5 Direct (Neural) and Indirect (Substrate) Encoding 429

Let’s say the substrate encoded NN based agent uses 2 sensors, each of which
is 2d, and 2 actuators, each of which is 1d. The 2d input planes do not perform any
type of processing because the processing is done in the hidden processing
hyperlayers, and the output hyperlayer. So both of the 2d input planes must for-
ward their signals to the processing hyperlayers. So we must first put these 2d
planes on another dimension. Thus, to form an input hyperlayer we first put the 2d
planes on the third dimension, forming a 3d input hyperlayer. But for the 3d input
hyperlayer to forward its signals to another 3d processing hyperlayer, we need to
put both on a 4th dimension. Thus, the final substrate is 4d. The input hyperlayer is
3d. The output hyperlayer, though really only needing to be 2d (due to the output
signals being both 1d layers stacked on a 2nd dimension to form an output
hyperlayer), is also 3d because all neurodes haves to have the same dimensionali-
ty.

Fig. 10.9 Input and output hyperlayers composed by stacking the sensor input planes into a
single multidimensional input hyperlayer, and stacking the output processing planes into a
single multidimensional output hyperlayer with signals destined for actuators.

430 Chapter 10 DXNN: A Case Study

So, now we know how to compute the dimensionality of the input and output
hyperlayers. The number of the processing hyperlayers, if any (in the case where
only the input and output hyperlayers exist) is determined by the depth value set
by the researcher. In DXNN, the hidden processing hyperlayers, their topology
and dimensionality, is set to the resolution equal to the square root of the highest
resolution between the sensors and actuators of the agent’s morphology.

Thus through this process, when creating the seed population of the substrate
encoded NN based agents, DXNN can calculate both the dimension of the sub-
strate to create, its topology, and the resolution of each dimension. The resolution
of each hidden processing hyperlayer is set to square root of the highest resolution
of the signals coming from the sensors or towards actuators. The dimensionality is
set, as noted earlier, to the highest dimension between the sensors and actuators,
+2. The depth, the number of total hidden processing hyperlayers, is set by the re-
searcher, usually to 0 or 1. If it is set to 0, then there is only the input and output

Why give an extra dimension to put the input or output planes on? Because in
the future we might want to add more sensors and actuators, and have the sensors
and actuators stacked on another dimension makes it easy to do so. For example
we would simply add the new sensor based input plane on the same 3rd dimension,
and scoot the others a bit. In this manner we can add new sensors and actuators
indefinitely, without changing the substrate topology too much. Also the coordi-
nates of the neurodes in the input planes would change only slightly due to scoot-
ing, and so the synaptic weights determined by the NN could be more easily and
smoothly adjusted through synaptic weight tuning phase.

This is the gist of the idea when forming substrates dynamically, based on sen-
sors and actuators used, and expecting to use multiple such sensors and actuators
in the future. We will discuss substrate encoding in much more detail in Chapter-
16.

(which is able to process the sensory signals) hyperlayers, and 0 hidden processing
hyperlayers. When set to 1, the full substrate is composed of the input hyperlayer,
the hidden processing hyperlayer whose resolution was computed earlier from the
resolution of the sensors and actuators, and the processing output hyperlayer
whose dimensionality and topology was formed by analyzing the list of available
actuators for the agent, and the list of the actuators currently used by the agent.

For example, the substrate created based on the morphology composed from
the following sensors and actuators:

10.5 Direct (Neural) and Indirect (Substrate) Encoding 431

sensors:
[#sensor{name=internals_sensor,id=cell_id,format=no_geo,tot_vl=3,parameters=[]},
#sensor{name=color_scanner,id=cell_id,format={symmetric,2}, tot_vl=Density,
parameters=[Spread,Res,ROffset]} || Spread <-[Pi/2], Res <-[4], ROffset<-[Pi*0/2]],

actuators:
[#actuator{name=two_wheels,id=cell_id,format=no_geo,tot_vl=2,parameters=[]},
#actuator{name=create_offspring,id=cell_id,format=no_geo,tot_vl=1,parameters=[]}]

Will have the hidden processing hyperlayer resolutions set to 2, the dimension-
ality set to 4 = 2+2, and the depth set by the researcher to 1. Since the input and
output hyperplanes are created when the genotype is converted to phenotype, and
based on the number and types of sensors involved, assuming that in this example
the agent is using all the sensors and actuators, the substrate will have the follow-
ing form:

Fig. 10.10 The substrate belonging to an agent with 2 sensors and 2 actuators, with the di-
mensions = 4, and densities = [1,2,2,2]

Once the substrate and its properties are determined, the actual NN is then cre-
ated in a fashion similar to one created when standard direct/neural encoding is
used. Only in a substrate encoded NN based system, the sensors and actuators

ing form:

432 Chapter 10 DXNN: A Case Study

used by the NN are the substrate_sensors and substrate_actuators, because it is the
substrate that is using the real sensors and actuators, while the NN gets its input
(coordinates and other neurode parameters) from the substrate, and uses its output
signals to execute the substrate_actuators, which set up the synaptic weights (and
other parameters) between the neurodes.

In the NNs that use substrate encoding, since it is the substrate that accepts in-
puts from the environment and outputs signals to the outside world, and the NN is
just used to set the weights for the neurodes in the substrate, the system not only
has a set of sensors and actuators as in the standard NN system, but also a set of
substrate_sensors and substrate_actuators. The substrate_sensors and sub-
strate_actuators are used by the NN in the same way the standard, neural encoded
NN uses sensors and actuators, and new substrate_sensors and substrate_actuators
are also in the same way integrated into the NN as it evolves.

In the standard substrate encoded NN system, the NN is given an input that is a
vector composed of the coordinates of the two neurodes that are connected. In
DXNN, the set of substrate_sensors are coordinate processors that process the co-
ordinate vectors before feeding the resulting vector signals to the NN. The sub-
strate_actuators on the other hand process the NN’s output, and then based on
their function interact with the substrate by either setting the neurode synaptic
weights, changes a neurode’s currently set synaptic weights (which effectively
adds plasticity to the substrate), or performs some other function.

The DXNN system currently has the following list of substrate_sensors availa-
ble for the substrate encoded NNs:

1. none: Passes the Cartesian coordinates of the connected neurodes directly to
the NN.

2. cartesian_distance: Calculates the Cartesian distance between the neurodes,
and passes the result to the NN.

3. polar_coordinates (if substrate is 2d): Transforms the Cartesian coordinate vec-
tor to the polar coordinate vector, and passes that to the NN.

4. spherical_coordinates (if substrate is 3d): Transforms the Cartesian coordinate
vector to the spherical coordinate vector, and passes that to the NN.

5. centripetal_distance: Transforms the Cartesian coordinate vector from the con-
nected neurodes into a vector of length 2, composed of the distances of the two
neurodes to the center of the substrate.

6. distance_between_neurodes: Calculates the distance between the two connect-
ed neurodes, and passes that to the NN.

This set of substrate_sensors further allows the substrate encoded NN to extract
the geometrical patterns and information from its inputs, whatever dimension
those input signals have. An example of an architecture of a substrate encoded NN
using multiple substrate_sensors and multiple substrate_actuators, with the sub-
strate itself using multiple sensors and actuators as well, is shown in Fig-10.11.

10.5 Direct (Neural) and Indirect (Substrate) Encoding 433

Fig. 10.11 A substrate encoded NN using different types of substrate_sensors and sub-
strate_actuators, and standard sensors and actuators.

As can be seen from the figure, it is also possible to have different types of sub-
strate_actuators, not just the standard synaptic_weight substrate_actuator which
uses the NN’s output to set the synaptic weight between the two neurodes based
on their coordinates which were passed to the NN’s substrate_sensors. The stand-
ard substrate_actuator, synaptic_weight setter, is one that simply uses the signal
coming from the NN and converts it into a synaptic weight value using the algo-
rithm shown in Listing-10.1. In this listing, the substrate_actuator simply takes the
NN’s output, and computes the synaptic weight to be 0 if the NN’s output is be-
tween -0.33 and 0.33, and to be between -1 and 1 otherwise, normalizing the syn-
aptic weight value such that there is no hole between -0.33 and 0.33 when using
this below shown function:

Listing-10.1 The simple synaptic weight setting “substrate_actuator”.

set_weight(Output)->
 [Weight] = Output,
 Threshold = 0.33,
 Processed_Weight = if
 Weight > Threshold ->

434 Chapter 10 DXNN: A Case Study

 (functions:scale(Weight,1,Threshold)+1)/2;
 Weight < -Threshold ->
 (functions:scale(Weight,-Threshold,-1)-1)/2;
 true ->
 0
 end.

Currently there are a number of other substrate_actuators implemented as well.
For example a secondary substrate_actuator called synaptic_expression, decides
on whether there is a connection between the two neurodes at all, if there isn’t
then the weight is set to 0. This is different from the weight being set to 0 by the
synaptic_weight actuator, since using this secondary actuator the whole substrate
can be made more complex, there can be two different neural circuits, one decid-
ing on the synaptic weight, and one deciding on the connectivity pattern of the
substrate. Or for example instead of using the synaptic_weight actuator, an itera-
tive_plasticity, abc_plasticity, or some other learning algorithm can be used. Us-
ing these plasticity substrate_actuators, the NN can change and modify the synap-
tic weights after every sensory input is processed. One substrate_actuator could be
mutated into another during the topological mutation phase, new ones could be
added or removed throughout evolution.

These substrate_actuators further allow one to experiment with different types
of learning, adding more agility and robustness to the population and individual
agents, providing a greater leverage to evolution to overcome various discontinui-
ties and abstractions on the fitness landscape. Combined all together, with the var-
ious substrate specific mutation operators which increase the resolution/density of
the substrate, add new sensors and actuators, add new substrate_sensors and sub-
strate_actuators... the substrate encoding provided by the DXNN system is one of
the most advanced substrate encoded neuroevolutionary approaches currently
available.

The resolution and dimensionality of the substrate can be further mutated dur-
ing the topological mutation stage. When the agent is substrate encoded, the plat-
form’s standard mutation operator list is further augmented to include the follow-
ing substrate specific mutation operators:

1. mutate_resolution
2. mutate_dimensionality

Yes the method and representation is convoluted and could be made simpler.
The problem with DXNN, as noted earlier, is that it was built up slowly, evolving
through many of my various experiments and tests. And as we know, evolution
does not take the cleanest path from genotype A to genotype Z, instead it is all
based on the easiest and most direct path, which is based on the agent’s environ-
ment, and most easily achievable niche based on the agent’s genotype/phenotype
at that time. Here too, the DXNN is the way it is because of the order in which I
got the ideas for its various parts, and the initial, though at times mistaken, repre-

10.5 Direct (Neural) and Indirect (Substrate) Encoding 435

sentations and implementations I used. Once a few hundred or thousand lines of
code are written, the amount of motivation to recreate the system in a cleaner
manner decreases. But now that we are creating a completely new TWEANN sys-
tem together, and have the knowledge of my earlier experience within the field
and systems like DXNN to guide us, we can create our new system with foresight,
without having to go down the same dark alleys and dead ends I wondered into
during my first time around.

10.5.3 Substrate Phenotype Representation

The conversion of genotype to phenotype is similar to one used by the standard
direct encoded NNs in DXNN, and thus is similar to what we use in the system
we’ve built so far. As we discussed, in DXNN the cortex process is not a synchro-
nizer but instead is the signal gatekeeper between the NN and the sensors and ac-
tuators it itself is composed of. In the substrate encoded NNs, the cortex also takes
on the role of the substrate itself. In DXNN, the entire [substrate, cortex, sensors,
actuators, substrate_sensors, substrate_actuators] system is represented as a sin-
gle element/process, because it is possible to encode the substrate in a list form
and very efficiently perform calculations even when that substrate is composed of
thousands of neurodes.

When the exoself generates and connects all the elements (neurons and the cor-
tex), it does so in the same way it does with the direct encoded NN system. Since

actuator, substrate_sensor, and substrate_actuator list specifications. The neurons
and the NN that they compose neither know nor need to know that the agent is
substrate encoded. In both versions, the direct encoded and the indirect encoded
NN system, the input and the output layer neurons are connected to the cortex, so
nothing changes for them. The cortex is the one that needs to keep track of when
to use the substrate sensors/actuators, and when to use the actual sensors/actuators.

The algorithm that the substrate encoded cortex follows is specified in the fol-
lowing steps, with a follow-up paragraphs elaborating on the more intricate parts.

1. The cortex process is spawned by the exoself, and immediately begins to wait
for its initial parameters from the same.

2. The cortex receives all its InitState in the form:

{ExoSelf_PId,Id,Sensors,Actuators,CF,CT,Max_Attempts,Smoothness,OpMode,Type,
Plasticity, Morphology,Specie_Id,TotNeurons,Dimensions,Densities}

3. The cortex checks the agent Type, whether it is neural or substrate. In the steps
that follow we assume that the Type is substrate.

the cortex knows, based on its parameters, that it is a substrate encoded system,
once it is created it builds a substrate based on dimension, densities, sensor,

436 Chapter 10 DXNN: A Case Study

4. Cortex constructs the substrate:
5. The cortex reads the number of dimensions, and the densities.
6. The input hyperlayer is built based on the sensors the agent uses, with the

neurode coordinates based on the number of dimensions (If the entire sub-
strate has 3 dimensions, then each coordinate is [X,Y,Z], if 4d then
[X,Y,Z,T]...).

7. If depth > 0, then hidden processing hyperlayers are constructed based on
the densities and dimension specified, and with each neurode in the first
hidden processing hyperlayer having the right number of synaptic weights
to deal with the input hyperlayer.

8. The output processing hyperlayer is constructed, and each neurode must
have the right number of synaptic weights to deal with the signals coming
from the hidden processing hyperlayers.

9. The cortex combines the input, processing, and output hyperlayers into a
single hypercube substrate.

10. DO Sense-Think-Act loop:
11. DO For each neurode in the substrate:

12. The cortex goes through the substrate_sensors, using the tuples like
in the standard sensors, to forward the neurode properties (coordi-
nates, and other parameters based on the substrate_sensor used) to
the connected neurons in the NN.

13. The output signals of the NN are then used to execute the sub-
strate_actuators to set the synaptic weights and other parameters be-
tween the neurodes in the substrate.

UNTIL: All neurodes have been assigned their synaptic weights and other
parameters.
14. The cortex goes through every sensor, and maps the sensory signals to

the input hyperlayer of the substrate.
15. The substrate processes the sensory signals.
16. The output hyperlayer produces the output signals destined for the actua-

tors. Since the output hyperlayer is created based on the actuators the
agent uses, the output signals are implicitly of the right dimensionality
and in the right order, such that the signals are packaged into vectors of
proper lengths, and are then used as parameters to execute the actuator
functions.

17. The cortex goes through every actuator, executing the actuator function
using the output signals produced by the substrate as the parameter of
their respective actuators.

UNTIL: Termination condition is reached, tuning has ended, or interrupt signal is
sent by the exoself.

During the tuning phase, after every evaluation of the NN, the exoself chooses
which neurons should perturb their synaptic weights. After the neurons in the NN
have perturbed their synaptic weights, the cortex takes the substrate through the

10.5 Direct (Neural) and Indirect (Substrate) Encoding 437

step 11 loop, updating all the synaptic weights of the neurodes in the substrate by
polling the NN for weights.

Thus the cortex first executes all the sensor functions to gather all the sensory
signals, then it goes through every neurode in the substrate, until the processing
output hyperlayer produces the output signals, which the cortex gathers, packages
into appropriate vectors, and executes all the actuators in its actuator list with the
appropriate output vector signals.

The phenotypic architecture of the substrate encoded NN based agent, com-
posed of the Exoself, Cortex, and Neuron elements, with the Sense-Think-Act
loop steps specified, is shown in Fig-10.12.

Fig. 10.12 The phenotypic architecture of the substrate encoded NN based agent, composed
of the concurrent Exoself, Cortex, and Neuron processes, with the processing steps listed.

Let’s quickly go over the shortened processing loop shown in the above figure.

1. The exoself creates the cortex.
2. The exoself sends the created cortex its InitState parameters.
3. The cortex creates the substrate based on sensors, actuators, and other specifi-

cations.
4. The cortex/substrate uses the substrate_sensors to forward to the NN the coor-

dinates and other parameters of the connected neurodes within the substrate.
5. The NN processes the signals passed to it by its substrate_sensors.

438 Chapter 10 DXNN: A Case Study

6. The substrate_actuators and the signals produced by the NN, used as parame-
ters for the substrate_actuators, are used to set the synaptic weights and other
parameters of the embedded neurodes.

7. The cortex gathers the sensory signals from its sensors.
8. The cortex maps the sensory signals to the substrate’s input hyperlayer.
9. The substrate processes the sensory signals coming from the input hyperlayer.
10.The cortex maps the output signals of the neurodes in the output hyperlayer to

their appropriate actuators.
11.The cortex executes the actuators with the substrate produced output signals as

their parameters.

The substrate, due to it being a single process, and capable of being composed
of millions of neurodes each with millions of connections, and because each
neurode simply does vector multiplication, is a perfect candidate for being accel-
erated with a GPU. Substrate encoding is an important field of neurocomputation,
it allows for very large NNs to be constructed, for neuroplasticity and geometrical
pattern sensitive systems to be composed, and in general substrate encoded NNs
are more effective, and perhaps with some new topological structure and with fur-
ther expansions, might be the path toward general computational intelligence.

Have you ever seen a PET scan? You know that activity pattern that it shows?
It is difficult not to look at the NN computing the synaptic weights and therefore
activity pattern on the substrate, as the tool which could carve out that high densi-
ty, and highly complex architecture. With a substrate having enough neurons (100
billion let’s say), and with the NN, the universal function approximator, having
the right function, it could possibly carve out the architecture and the activation
patterns similar to something one would see in a PET scan... But we are not at that
point just yet.

We will add substrate encoding capabilities to the TWEANN system we are
developing together, and thus we will discuss further the algorithms and a way to
represent the substrate in great detail. We will of course, having foresight, develop
our system to have a more concise and flexible representation. As we develop the
next generation TWEANN in this book, we will avoid making the mistakes I made
when I first developed the architecture of DXNN.

In the following sections we will discuss the current and ongoing projects that
DXNN is being used for, and thus what the system we’re developing here (which
will replace DXNN, by becoming the new DXNN) will be applied to once devel-
oped. The system we’re creating here is meant to supersede and replace DXNN, it
is the next generation of a fully concurrent, highly general and scalable, Topology
and Parameter Evolving Universal Learning Network (TPEULN).

10.6 DXNN Research Group & the NN Research Repository 439

10.6 DXNN Research Group & the NN Research Repository

DXNN Research group [8] is currently a small research group composed of a
few mathematicians, computer scientists, and me. We are working on further ex-
panding the DXNN platform, and finding new projects to apply it to. One of these
projects is the application of DXNN to Cyberwarfare. Another deals with ex-
changing the neuron elements with logic gates and transistors, so that the platform
can be applied towards the evolution and optimization of large scale digital cir-
cuits. The currently explored application of DXNN is towards the evolution and
optimization of OpenSPARC [9], some progress has been made, but not enough to
publish. The DXNN Research group is also currently working on interfacing the
DXNN with the Player/Stage/Gazebo [5] project, allowing it to be used in 3d

the same. The Player/Stage/Gazebo robot simulators provide 2d and 3d simulation
environments, and the drivers to interface the evolved NNs with actual hardware.
The use of Player gives us the ability to evolve systems in artificial environments,
and immediately have the ability to apply them to real hardware, and thus usable
and applicable in the real world. The current main project and interest in this area
is the evolution of neurocontrollers for the control of Unmanned Combat Ariel

warring, populations of Combat UAVs in the 3d simulated environment, through
Gazebo for example. Due to the use of the Player interface, we can then transfer
the evolved intelligence to real UCAV systems.

The main reasons why we are trying to create a highly decoupled
neuroevolutionary system is because it will allow us to easily augment it, and then
provide it to the public so that crowdsourcing is used to further expand the plat-
form, letting anyone with interest and skill to contribute various modules and
computational packages to the system, further expanding and augmenting it, mak-
ing it more general, and applicable to new projects, which benefits the entire
community using the TWEANN system. DXNN Neural Network Research Repos-
itory [10] provides the specifications on how to add new modules to the DXNN
TWEANN, where to submit them...

The goal of the Neural Network Research Repository (NNRR) is also to be-
come the repository of neural network systems evolved through the DXNN sys-
tem. NNs are by their very nature blackbox systems, different neural networks can
be evolved to solve the same problem, or inhabit same environments (when NN
based agents are used in ALife). NNRR provides a place where individuals can
submit the NN systems they have evolved, and specify the fitness functions and
other parameters they used to evolve these agents. Because everyone else on the
NNRR is also using DXNN, they can then try to see what types of NN topologies
they can evolve given the same fitness function and TWEANN parameters. Thus,
the NNRR should over time accumulate useful NN based agents. Those who wish
to simply start using these agents can do so, others can try to download the hun-

ALife experiments, and the evolution of robotic systems and neurocontrollers for

Vehicles (UCAVs). This is accomplished through the co-evolution of two, forever

440 Chapter 10 DXNN: A Case Study

dreds of the already evolved NN based systems for some problem, and try to data-
mine their topologies, try to see what are the essential parts of these NN based sys-
tems, what are the common threads? Through this approach we can try to start
building a path towards illuminating the blackbox. These types of databases also
provide the data needed to figure out where the DXNN system is perhaps having
difficulties when solving problems.

Finally, with the standardized interfaces between the various processes, and
with the specified genotypical encoding system, the community can contribute the
various activation functions, neural plasticity rules, neuron types, substrate topol-
ogies, fitness functions, selection functions... Every decoupled element is a self
contained module, and thus anyone can augment the DXNN system by simply
conforming to the proper interface specifications. The NNRR will propel us, and
allow for the capabilities and applicability of this neuroevolutionary system to ex-
pand dramatically, making the evolved systems available globally, providing al-
ready evolved solutions to those interested, and giving a place for researchers to
contribute, while at the same time giving them a place where they can gather tools
and data for their own further research.

10.7 Currently Active Projects

The DXNN research group is currently actively pursuing three projects:

1. Cyberwarfare.
2. Coevolution of Unmanned Ariel Vehicle Combat Maneuvers.
3. CPU Evolution and Optimization.

 When successful, the results of these 3 projects could potentially be game
changing for the industrial and military sector.

10.7.1 Cyberwarfare

One of the exciting applications the DXNN platform is currently being applied
toward is the evolution of offensive and defensive cyberwarfare agents. We are
currently trying to evolve agents capable of using parameterized metasploit (a
penetration testing program) and other tools to effectively penetrate and attack
other machines, and agents capable of defending their host network against such
attacks, by monitoring signals on its network for attacks being carried out against
it, and then using various available tools and methods to thwart and counterattack.
This is done by creating scapes, simulated network environments using network
simulators like NS3, with simulated host targets, and then interfacing the NN
based agents with programs like metasploit, letting them evolve the ability to

10.7 Currently Active Projects 441

combine the various attack commands to penetrate the simple hosts. With regards
to the evolution of defensive agents, the NN based agents are fed signals coming
from the ports, and they are required to make a decision of whether they are being
actively attacked or not. If they are, they must decide on what they should do, lock
the port, fully disconnect, counter-attack...

There are a number of difficulties in evolving cyberwarfare agents, because un-
like in the natural environments, there are no smooth evolutionary paths from
simply existing on a network, to being able to forge attack vectors using
metasploit. Neither is there a smooth evolutionary path leading from mere exist-
ence, to the ability to detect more and more complex attacks being carried out
against your own host. In standard ALife, there is an evolutionary path from simp-
ly running after a prey and then eating it, to trying different approaches, hiding,
baiting the prey... it’s all a smooth progression of intelligence. That is not the case
in cyberwarfare, things are more disconnected, more arcane, requiring beforehand
knowledge and experience. Nevertheless, through bootstrapping simple skills, and
forging fitness functions, our preliminary results have demonstrated that the goals
of this project are achievable.

10.7.2 Coevolving Unmanned Ariel Vehicle Combat Maneuvers

Another exciting application and field where evolved neurocognitive systems
can provide a significant advantage is of course robotics. As with cyberwarfare,
there is a significant amount of both industrial and military applications, with the
successful system and implementation being potentially game changing. Due to
the current increased use of unmanned aerial vehicles, particularly in combat,
there is a great opportunity in evolving neural network agents specifically for con-
trolling such systems. At the moment the UAVs are programmed to scout, or fly to
particular way-points. Once the UAV gets there, a real pilot takes over. The pilot
sits somewhere in the base and controls the UAV, looking at the screen which is
fed by the UAV’s camera. This of course provides a much lower level of situa-
tional awareness to the pilot when compared to that available when sitting in a
cockpit. Also, the maneuvers available to the drone are limited by the human op-
erator, and the time delay in the connection due to the distance of the UAV from
the human operator. All of this combined, puts the Unmanned Combat Ariel Vehi-
cle (UCAV) at a disadvantage in a standard dogfight against a piloted fighter jet.
Yet a UCAV can undertake g forces and perform maneuvers that are impossible
for a human piloted jet fighter. Furthermore, an evolved NN would be able to in-
tegrate the signals from many more sensors, and make the decisions faster, than
any biological pilot can. Thus, it is possible for the UCAVs to have performance
levels, precision levels, situational awareness, and general capabilities that far sur-
pass those of pilots and piloted jets.

442 Chapter 10 DXNN: A Case Study

This can be mitigated by evolving NN based agents specifically for controlling
UCAVs, allowing the NN systems to take full advantage of all the sensory data,
and use the UCAV to its full potential with regards to maneuverability. I think that
this would give the drone an advantage over standard manned aerial vehicles. To
evolve such NN based agents we once again do so through an ALife
coevolutionary approach. As discussed in the “Motivations and Applications”
chapter, by creating a detailed simulation through a simulator like Gazebo, and
creating the simulated UCAVs with high enough detail, and a set of prepro-
grammed or even evolving fighter jet simulations constrained to the physical lim-
its of the pilot, it is possible to coevolve UCAV controlling NN systems. To ac-
complish this, we can put two populations of forever warring UCAVs into a
simulated 3d environment, to coevolve the ever more intelligent digital minds
within. This, as in the Predator Vs. Prey [11] simulations, will yield ever more
creative NN based agents, evolving neurocontrollers with innovative combat ma-
neuvers, and having the ability to use the full potential of unmanned combat air-
craft, the full potential of metal that is not limited by flesh.

The preliminary testing in this project has started. At the time of this writing,
the interface between the DXNN platform and the Player/Gazebo has been devel-
oped, and the work is being concentrated on developing simulations of the
UCAVs which are modular enough to allow for morphological evolution. Based
on the performance of DXNN in ALife, there seems to be no reason why it would
not evolve highly adaptive, flexible, and potent UCAV piloting agents.

10.7.3 Evolving New CPU Architectures & Optimizing Existing
Ones

The third project currently being pursued by the DXNN research group, deals
with the DXNN platform being applied to the evolution and optimization of digital
circuits. Because the neurons in the evolving NN topologies can have any type of
connections and activation functions, the DXNN platform does not in reality
evolve NNs, but Universal Learning Networks, where the nodes can be anything.
In this particular application, the nodes use logic operators and transistor simula-
tions as activation functions, thus the evolved topologies are those of digital cir-
cuits.

The OpenSPARC project provides the whole architecture and topology of the
OpenSPARC T2 CPU, which our team is hoping to take advantage of. The goal of
our project is composed of two parts. 1. Create the tuple encoded genotype of a
system which recreates the OpenSPARC T2 architecture, and then through its mu-
tation operators (complexifying and pruning), optimize the CPU, by reducing the
number of gates used while retaining the functionality. 2. By specifying particular
goals through the fitness function, such as increased throughput, higher core count

10.9 References 443

coherency, and certain new features, evolve the existing architecture into a more
advanced one.

Because OpenSPARC T2 also provides a testing suit, it is possible to mutate
the existing architecture and immediately test its functionality and performance.
But due to the architecture’s high level of complexity, the project is still in the
process of having new mutation operators being developed, the fitness functions
being crafted for optimization and evolution of the CPU, and the creation of the
genotype representing the OpenSPARC-T2 architecture. DXNN has been used to
evolve and optimize much smaller digital circuits, which gives hope that it can
successfully be applied here as well. The potential payoffs could be immense, im-
proving and optimizing CPUs automatically, and adding new features, would rev-
olutionize the landscape of this field. At the moment, we are only beginning to
scratch the surface of this project.

10.8 Summary and Future Work

In this chapter we have discussed the DXNN Platform, a general Topology and
Weight Evolving Artificial Neural Network system and framework. I briefly ex-
plored its various features, its ability to evolve complex NN topologies and its par-
ticular approach to the optimization of synaptic weights in the evolved NN topol-
ogies. We discussed how DXNN uses the size of the NN in the determination of
how long to tune the new synaptic weights, which synaptic weights to tune, and
which NNs should be allowed to create offspring and be considered fit. We have
also discussed the substrate encoding used by the DXNN, which allows it to very
effectively build substrates composed of a very large number of neurodes.

Finally, we have went into some detail discussing the DXNN Research group’s
current projects. The Neural Network Research Repository, the Cyberwarfare pro-
ject, the Combat UAV project, and the CPU Evolution project. DXNN is the first
neuroevolutionary system built purely through Erlang, and which was designed
from the very beginning to be implemented only in Erlang. Without Erlang, some-
thing as complex, dynamic, and general as this neuroevolutionary platform, could
not be created by a single individual so easily. There is an enormous room for
growth and further improvement in this system. And it is this that you and I are
working on in this book, we are building the next phase of DXNN.

10.9 References

[1] DXNN’s records.hrl is available at: https://github.com/CorticalComputer/DXNN

TWEANN. Available at: http://arxiv.org/abs/1008.2412
[2] Sher GI (2010) Discover & eXplore Neural Network (DXNN) Platform, a Modular

https://github.com/CorticalComputer/DXNN
http://arxiv.org/abs/1008.2412

444 Chapter 10 DXNN: A Case Study

[3] Gauci J, Stanley KO (2007) Generating Large-Scale Neural Networks Through Discovering
Geometric Regularities. Proceedings of the 9th annual conference on Genetic and evolution-
ary computation GECCO 07, 997.

[4] Siebel NT, Sommer G (2007) Evolutionary Reinforcement Learning of Artificial Neural
Networks. International Journal of Hybrid Intelligent Systems 4, 171-183.

[5] Player/Stage/Gazebo: http://playerstage.sourceforge.net/
[6] Risi S, Stanley KO (2010) Indirectly Encoding Neural Plasticity as a Pattern of Local Rules.

Neural Plasticity 6226, 1-11.
[7] Woolley BG, Stanley KO (2010) Evolving a Single Scalable Controller for an Octopus Arm

with a Variable Number of Segments. Parallel Problem Solving from Nature PPSN XI, 270-
279.

[8] DXNN Research Group: www.DXNNResearch.com
[9] OpenSPARC: http://www.opensparc.net/
[10] DXNN Neural Network Research Repository: www.DXNNResearch.com/NNRR

[12] Sher GI (2012) Evolving Chart Pattern Sensitive Neural Network Based Forex
TradingAgents. Available at: http://http://arxiv.org/abs/1111.5892.

[11] Prdator Vs. Prey Simulation recording:
http://www.youtube.com/watch?v=HzsDZt8EO70& feature=related

http://playerstage.sourceforge.net/
http://www.DXNNResearch.com
http://www.opensparc.net/
http://www.DXNNResearch.com/NNRR
http://arxiv.org/abs/1111.5892

	Chapter 10 DXNN: A Case Study
	10.1 The Reason for the Memetic Approach to Synaptic Weight Optimization
	10.2 The DXNN Encoding and Architecture
	10.3 Generational Evolution
	10.3.1 Step-1: Initialization Phase
	10.3.2 Step-4: Parametric Tuning Phase
	10.3.3 Step-8 & 13: The Selection & Offspring Allocation Phase
	10.3.4 Step-18: The Topological Mutation Phase

	10.4 Steady-State Evolution
	10.5 Direct (Neural) and Indirect (Substrate) Encoding
	10.5.1 Neural Substrates
	10.5.2 Genotype Representation
	10.5.3 Substrate Phenotype Representation

	10.6 DXNN Research Group & the NN Research Repository
	10.7 Currently Active Projects
	10.7.1 Cyberwarfare
	10.7.2 Coevolving Unmanned Ariel Vehicle Combat Maneuvers
	10.7.3 Evolving New CPU Architectures & Optimizing Existing Ones

	10.8 Summary and Future Work
	10.9 References

