

Handbook of Neuroevolution Through Erlang

Gene I. Sher

Handbook of Neuroevolution
Through Erlang

ISBN 978-1-4614- -
DOI 10.1007/978-1-4614-4463-3
Springer New York Heidelberg Dordrecht London

4462 6 ISBN 978-1-4614-4463-3 (eBook)

© Springer Science+Business Media New York 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Gene I. Sher
Department of Electrical Engineering and Computer Science
University of Central Florida
Orlando, FL, USA

Library of Congress Control Number: 2012941276

Foreword
by Joe Armstrong

I was delighted to be asked to write a foreword to Gene Sher’s book on

Neuroevolution.

To be honest I didn’t have a clue what Neuroevolution was before I started
reading his manuscript, but the more I read the more I became engaged in the con-
tent.

Gene addresses what is a fascinating problem: How can we simulate a biologi-
cal system in a computer. Can we make a system that learns from its mistakes?

Gene chose to program his system in Erlang, which is where I come in. Erlang
was designed over twenty five years ago to solve a completely different problem.
What we were trying to do at the time and we are still trying, is to make a lan-
guage for programming extremely large systems that never stop.

Our application was telephony. We wanted to write the control software for a
set of large telephone exchanges. This software should in principle run forever.
The telephone networks span the planet, and the control systems for these net-
works were running before the invention of the computer.

Any system like this must be able to tolerate both software and hardware fail-
ures, and thus we built a programming language where failures were not a prob-
lem. Our approach was to say, “well if something crashes, some other part of the
system will detect the error, fix the problem and the system as a whole will not
fail.”

We also thought that such a system should evolve and change with time. It
would never be the case that the software in the system would be correct, right
from the start, instead we would have to change the software many times during
the life of the product. And we would also have to make these changes without
stopping the system.

The view of the world that Erlang presents the programmer is intrinsically dis-
tributed, intrinsically changing and capable of self-repair. Neuroevolution was far
from our thoughts.

Twenty years later Gene comes along and discovers Erlang - to him, Erlang
processes are neurons. Well of course Erlang processes are not neurons, but they
can easily be programmed to behave like neurons.

v

Foreword

vi

Erlang was designed to scale. So today we can run a few million processes per
node, and a few dozen nodes per chip. Computer architectures have changed from
the single core Von-Neumann machine, to the multicore processor, and the archi-
tectures will change again. Nobody actually knows how they are going to change,
but my bet is that the change will be towards network-on-chip architectures.

We’re already talking about putting a few hundred to a thousand cores on a
single chip, but for this to happen we have to move to network on chip architec-
tures. We can imagine large regular matrices of CPUs connected into a regular
switching infrastructure. So we’ll soon end up with thousands of cores, each capa-
ble of running millions of Erlang processes.

What will we do with such a monster computer and how are we going to pro-
gram it? Well I suspect Gene has an answer to this question; he’ll want to build a
brain.

This book will tell you how. Will it work in the near future or will this take
hundreds of years? Nobody knows, but the journey will be interesting and we
might build some other useful things on the way.

Joe Armstrong

Stockholm

Dedication

To my father Ilya Aleksandrovich Sher

To my mother Zinaida Lvovna Sher

Preface

We biological organisms are fragile things. We are machines whose only armor is
skin, a thin layer composed of lipids and proteins, easily damageable. The cells
that make us up require constant nourishment, this nourishment is supplied by our
blood, which itself easily and rapidly begins to leak when our thin shield is pene-
trated. We can only exist in a very limited range of temperatures. 36.7 degrees
Celsius is our standard, a few degrees above that and we are uncomfortable, a bit
higher and our cells begin to die and our flesh suffers permanent damage. When
our temperature drops below 36.7 by a few degrees Celsius, we too can begin to
suffer permanent damage unless the temperature is raised again. We burn easily.
Our sensory organs are limited, we see electromagnetic radiation in only a very
narrow spectrum, between 400 and 800 THz. The same for pressure waves, sound,
which we only perceive between 12 and 20000 Hz. Our actuators, how and where
we can move are, once again, extremely limited. The maximum speed we can
achieve on land, without mechanical assistance, is 44.72km/h (record by Usain
Bolt), and only for a limited amount of time, in water 2.29 m/s (record by Tom
Jager). We require a constant supply of energy, food and fluid, if we do not con-
sume fluids for just a few days we die, we survive only a bit longer when left
without food. We are mortal, decaying, with only a few decades of being func-
tional, and that only if everything else goes perfectly right.

We can study as much as we want, but at the end of the day we will still be lim-
ited by our biological nature. Within our brains the signals propagate from neuron
to neuron at a maximum speed of 120m/s, this cannot be improved much further.
The best of our kind, Feynman, Newton, Gauss, Einstein... They are at the limit of
what our specie can achieve, and yet even they are limited by time and what they
can do with it. Because there is no longer an evolutionary push towards greater
level of intelligence, evolution will not save us, we will not give birth to another
biological specie with greater minds, and natural evolution is too slow in either
case. Plus, let us be perfectly honest, the evolutionary pressure in our modern so-
ciety is actually against intelligence, the Feynmans, Newtons and Einsteins of our
world have less children on average than anyone else.

But we have Science on our side, and through the application of the Scientific
method we are hill climbing towards deeper knowledge and understanding of what
we are, how we work, and most importantly, how to improve upon our condition.

Make no mistake, there is absolutely nothing mystical about the human brain. It
is but a vast graph of interconnected simple biological signal integrators. But
though our brain is limited, the non biological based intelligence does not have to
be so. Unlike a biological computer, the non biological one, its speed, the vastness

ix

x

[1] The Blue Brain Project EPFL, http://bluebrain.epfl.ch

-Gene I. Sher

Preface

and the complexity it can achieve, can all be improved and increased at the speed
of technological evolution, which would be under its own control. The brain is
complex, and we are actively trying to reverse engineer it [1]... so we are on our
way. But even if we somehow won’t be able to reverse engineer our own brains,
there is another approach to the creation of intelligence, by creating a new one
using the basic elements that we know work, neurons, and through a process that
we know works, evolution. We know that this method works, we are the proof
of it. We are the proof that evolution works, that simple spatio-temporal signal
processors evolved to be connected in vast topologies can produce intelligent
systems. If we can supply the elements flexible enough, the environment complex
enough, the evolutionary process dynamic enough, and enough computational
power to simulate trillions of organisms... it will only be a matter of time... once
again, we are the proof of that.

http://bluebrain.epfl.ch

Acknowledgments

I would like to thank my father for always showing by example, for his love of

knowledge and erudition and instilling the same in me, for his creativity and dedi-
cation, for his support of my work and research, for teaching me to always pursue
the highest possible standard within all my work, and to never waste a moment. I
would also like to thank Joe Armstrong for his Foreword, and his numerous con-
tributions to Erlang, and for Erlang itself, a language which I believe is the future

of computational intelligence. And finally, I would like to thank my editors, for
making the publication of this volume such a pleasant experience.

xi

Contents

Chapter 1 Introduction: Applications & Motivations .. 1
1.1 Motivations ... 2
1.2 Applications .. 5

1.2.1 Robotics .. 5
1.2.2 Financial Markets .. 10
1.2.3 Artificial Life .. 14
1.2.4 Image Analysis & Computer Vision ... 18
1.2.5 Data Compression ... 19
1.2.6 Games & Entertainment .. 21
1.2.7 Cyber Warfare ... 22
1.2.8 Circuit Creation & Optimization .. 26
1.2.9 Optimizing Shapes and Structures .. 30
1.2.10 Computational Intelligence & Towards Singularity 34

1.3 A Whirlwind Overview .. 34
1.4 Endgame ... 37
1.5 References .. 38

PART I
FOUNDATIONS

Chapter 2 Introduction to Neural Networks ... 43
2.1 Biological Neural Network ... 45
2.2 Artificial Neural Network ... 51

2.2.1 The Neurode in Detail ... 54
2.3 Neural Networks and Neural Network Based Systems 57

2.3.1 Recurrent Neural Networks and Memory Loops 59
2.3.2 A Neural Network Based System ... 60

2.4 Learning Vs. Training .. 61
2.5 Neural Network Supervised “Learning” Algorithms 63
2.6 Neural Network Unsupervised Learning Algorithms 66

2.6.1 Hebbian Learning .. 67
2.6.2 Neuromodulation .. 70
2.6.3 Competitive Learning ... 73
2.6.4 Kohonen/Self Organizing Map ... 74
2.6.5 Putting it All Together .. 76

2.7 Summary ... 78
2.8 References .. 78

xiii

Contents

xiv

Chapter 3 Introduction to Evolutionary Computation 81
3.1 Evolution .. 81
3.2 Extracting the Essentials of Biological Evolution 85
3.3 Formulating a Given Problem in Evolutionary Terms 88
3.4 The Different Flavors of Evolutionary Algorithms 93

3.4.1 Genetic Algorithms ... 94
3.4.2 Genetic Programming ... 96
3.4.3 Evolutionary Strategies ... 97
3.4.4 Evolutionary Programming ... 98

3.5 A Few Words on Memetic Computing .. 98
3.6 The Different Sides of the Same Coin .. 102
3.7 References .. 103

Chapter 4 Introduction to Neuroevolutionary Methods 105
4.1 Neural Network Encoding Approaches and Mutation Operators 106

4.1.1 Neural Network Mutation Operators .. 106
4.1.2 Neural Network Genotype Encoding .. 108
4.1.3 The Neural Network Phenotype .. 113

4.2 Neuroevolution Through Genetic Algorithms ... 118
4.2.1 Example 1: Evolving a XOR Logical Operator 118
4.2.2 Example 2: Evolving a pole balancing neurocontroller 123
4.2.3 Example 3: End Game; Evolving Intelligence 127

4.3 Neuroevolution Through Memetic Algorithms .. 135
4.4 Neural Networks as Graph Based Genetic Programming Systems 138
4.5 References .. 14

Chapter 5 The Unintentional Neural Network Programming Language 143
5.1 The Necessary Features .. 144
5.2 Erlang: From Telecommunications Networks To Neural Networks 146
5.3 The Conceptual Mapping of a NN to Erlang’s Architecture 147
5.4 Robustness and Fault Tolerance in Computational Intelligence 149
5.5 I’ve Done This Once Before; And We Are On Our Way 149
5.6 References .. 150

PART II
NEUROEVOLUTION: TAKING THE FIRST STEP

Chapter 6 Developing a Feed Forward Neural Network 153
6.1 Simulating A Neuron .. 155
6.2 A One Neuron Neural Network .. 158
6.3 Planning Our Neural Network System’s Architecture 162
6.4 Developing a Genotype Representation ... 166
6.5 Programming the Genotype Constructor .. 168
6.6 Developing the Genotype to Phenotype Mapping Module 174
6.7 Summary ... 184

0

Contents

xv

Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm 187
7.1 The Learning Method ... 188

7.1.1 Comparing EA to Random Restart SHC .. 191
7.2 The Trainer ... 194
7.3 The Exoself ... 195
7.4 The Scape ... 197
7.5 Scapes, Sensors, Actuators, Morphologies, and Fitness 199
7.6 Developing the Extended Architecture .. 202

7.6.1 Modifying the genotype Module .. 203
7.6.2 Modifying the morphology Module ... 204
7.6.3 Developing the trainer Module ... 205
7.6.4 Modifying the exoself Module .. 207
7.6.5 Developing the scape Module ... 210
7.6.6 Modifying the cortex Module ... 213
7.6.7 Modifying the neuron Module .. 214
7.6.8 Modifying the sensor Module ... 218
7.6.9 Modifying the actuator Module .. 219

7.7 Compiling Modules & Simulating the XOR Operation 219
7.8 Adding the benchmarker Module ... 223
7.9 Summary ... 226

Chapter 8 Developing a Simple Neuroevolutionary Platform 229
8.1 The New Architecture .. 231
8.2 The New Data Structures .. 233
8.3 Developing the polis Module ... 236
8.4 Updating the genotype Module .. 242

8.4.1 Moving from ETS to Mnesia .. 243
8.4.2 A NN Based Adaptive Agent .. 243
8.4.3 A New Neuron Id Structure; Adding Recursive Connections 244
8.4.4 Seed Computational Intelligence .. 247
8.4.5 Constraints .. 248
8.4.6 The Updated genotype Module ... 249

8.5 Developing the genotype_mutator ... 262
8.5.1 The Precursor Connection Making and Breaking Functions 266
8.5.2 mutate_weights ... 274
8.5.3 add_bias & remove_bias ... 276
8.5.4 mutate_af ... 278
8.5.5 add_outlink .. 279
8.5.6 add_inlink .. 281
8.5.7 add_sensorlink .. 284
8.5.8 add_actuatorlink .. 285
8.5.9 add_neuron .. 287
8.5.10 outsplice .. 289
 8.5.11 add_sensor ... 294
8.5.12 add_actuator .. 296

Contents

xvi

8.5.13 Planning the Remaining Few Details of the Genotype Mutator
Module .. 298

8.5.14 Implementing the genotype_mutator Module 301
8.5.15 Developing the population_monitor ... 309
8.5.16 Updating the exoself Module .. 327
8.5.17 Updating the neuron Module .. 337

Chapter 9 Testing the Neuroevolutionary System .. 347
9.1 Testing the Mutation Operators .. 347
9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 369

9.2.1 The mutate_af Error .. 375
9.2.2 Same Neuron, But Different Ids in the evo_hist List 378
9.2.3 Multiple Actuators of the Same Type ... 379
9.2.4 Making Fingerprint Store Generalized Sensors & Actuators 382
9.2.5 The Quizzical Topology of the Fittest NN System 383

9.3 Retesting Our Neuroevolutionary System .. 388
9.4 Summary ... 395

PART III
A CASE STUDY

Chapter 10 DXNN: A Case Study ... 399
10.1 The Reason for the Memetic Approach to Synaptic Weight

Optimization ... 399
10.2 The DXNN Encoding and Architecture ... 402
10.3 Generational Evolution ... 405

10.3.1 Step-1: Initialization Phase ... 407
10.3.2 Step-4: Parametric Tuning Phase .. 409
10.3.3 Step-8 & 13: The Selection & Offspring Allocation Phase 413
10.3.4 Step-18: The Topological Mutation Phase 415

10.4 Steady-State Evolution ... 417
10.5 Direct (Neural) and Indirect (Substrate) Encoding 421

10.5.1 Neural Substrates .. 423
10.5.2 Genotype Representation .. 427
10.5.3 Substrate Phenotype Representation ... 435

10.6 DXNN Research Group & the NN Research Repository 439
10.7 Currently Active Projects ... 440

10.7.1 Cyberwarfare ... 440
10.7.2 Coevolving Unmanned Ariel Vehicle Combat Maneuvers 441
10.7.3 Evolving New CPU Architectures & Optimizing Existing Ones ... 442

10.8 Summary and Future Work .. 443
10.9 References .. 443

 8.6 Summary ..345
8.7 Reference ...346

Contents

xvii

PART IV
ADVANCED NEUROEVOLUTION: CREATING THE CUTTING EDGE

Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform 447
11.1 What Can be Decoupled? ... 448
11.2 Updating the Genotype Representation .. 451

11.2.1 The sensor & actuator Records ... 452
11.2.2 The neuron Record .. 453
11.2.3 The agent Record .. 454
11.2.4 The population Record .. 456
11.2.5 The constraint Record ... 457

11.3 Updating the records.hrl ... 460
11.4 Updating the Modules .. 465

11.4.1 Updating the genotype Module ... 465
11.4.2 Updating the genome_mutator Module .. 468
11.4.3 Updating the population_monitor Module 478
11.4.4 Creating the selection_algorithm Module 485
11.4.5 Creating the fitness_postprocessor Module 489
11.4.6 Creating the steady_state Evolutionary Loop 490
11.4.7 Updating the exoself Module .. 495
11.4.8 Updating the neuron Module .. 508
11.4.9 Creating the signal_aggregator Module .. 514
11.4.10 Creating the plasticity Module .. 516

11.5 Compiling & Testing the New System ... 518
11.6 Summary & Discussion .. 525
11.7 References .. 526

Chapter 12 Keeping Track of Important Population and Evolutionary
Stats ... 527

12.1 The Necessary Additions to the System ... 528
12.2 The Trace Format ... 530
12.3 Implementation ... 532

12.3.1 Updating records.hrl ... 532
12.3.2 Building the Topological Summary of a Neural Network 533
12.3.3 Implementing the Trace Updating Cast Clause 535
12.3.4 Updating the exoself Module .. 541

12.4 Compiling & Testing .. 542
12.5 Summary & Discussion .. 545

Chapter 13 The Benchmarker .. 547
13.1 The benchmarker Architecture ... 548
13.2 Adding New Records ... 549
13.3 Updating the population_monitor Module ... 555
13.4 Implementing the benchmarker .. 557

xviii Contents

13.5 Compiling and Testing ... 564
13.6 Summary ... 570
13.7 References .. 571

Chapter 14 Creating the Two Slightly More Complex Benchmarks 573
14.1 Pole Balancing Simulation ... 573

14.1.1 Implementing the Pole Balancing Scape .. 577
14.1.2 Implementing the Pole Balancing morphology 581
14.1.3 Benchmark Results ... 583

14.2 T-Maze Simulation ... 590
14.2.1 T-Maze Implementation .. 598
14.2.2 Benchmark Results ... 604

14.3 Summary & Discussion .. 607
14.4 References .. 608

Chapter 15 Neural Plasticity ... 609
15.1 Hebbian Rule .. 610

15.1.1 Implementing the New input_idps & pf Formats 613
15.1.2 Implementing the Simple Hebbian Learning Rule 617

15.2 Oja’s Rule ... 620
15.2.1 Implementing the Oja’s Learning Rule .. 621

15.3 Neuromodulation .. 623
15.3.1 The Neuromodulatory Architecture .. 626
15.3.2 Implementing the self_modulation Learning Rules 631
15.3.3 Implementing the input_idps_modulation Based

Neuromodulated Plasticity .. 635
15.4 Plasticity Parameter Mutation Operators ... 641

15.4.1 Implementing the Weight Parameter Mutation Operator 642
15.4.2 Implementing the Neural Parameter Mutation Operator 643
15.4.3 Implementing the Hybrid, Weight & Neural Parameters

Mutation Operator ... 644
15.4.4 Updating the genome_mutator Module .. 645

15.5 Tuning of a NN which has Plastic Neurons ... 650
15.6 Compiling & Testing .. 656
15.7 Summary & Discussion .. 658
15.8 References .. 659

Chapter 16 Substrate Encoding .. 661
16.1 A Brief Overview of Substrate Encoding ... 662
16.2 The Updated Architecture of Our NN Based Systems 669
16.3 The Genotype of the Substrate Encoded NN ... 672
16.4 The SENN Phenotype ... 679
16.5 Implementing the substrate_cpps & substrate_ceps 686

16.5.1 Implementing the substrate_cpp Module .. 691
16.5.2 Implementing the substrate_cep Module .. 694

Contents

xix

16.6 Updating the genotype Module .. 696
16.7 Updating the exoself Module ... 70
16.8 Implementing the substrate Module ... 705
16.9 Updating the genome_mutator Module .. 724
16.10 Implementing the add_cpp and add_cep Mutation Operators 726
16.11 Testing the New Encoding Method .. 728
16.12 Summary and Discussion ... 733
16.13 References .. 733

Chapter 17 Substrate Plasticity .. 735
17.1 The Updated Architecture .. 736
17.2 Implementing the abcn Learning Rule ... 737

17.2.1 Updating the substrate Module ... 737
17.2.2 Updating the Morphology Module ... 741
17.2.3 Updating the substrate_cpp & substrate_cep Modules 743
17.2.4 Benchmarking the New Substrate Plasticity 745

17.3 Implementing the iterative Learning Rule .. 746
17.3.1 Benchmarking the New iterative Substrate Plasticity 750

17.4 Discussion ... 752

PART V
APPLICATIONS

Chapter 18 Artificial Life .. 755
18.1 Simulated Environment and Artificial Organisms: Flatland 755
18.2 The Scape and the Fitness Function .. 756

18.2.1 Public Scape Architectures, Polis Interface, and Scape Sectors 759
18.2.2 The Flatland Interface ... 761

18.3 Flatland’s Avatar Encoding .. 762
18.4 Updating the Morphology, Sensor, and Actuator Modules 763
18.5 Updating the exoself Module ... 766
18.6 The Simulation and Results .. 768

18.6.1 Simple Food Gathering Simulation .. 769
18.6.2 Dangerous Food Gathering Simulation .. 773
18.6.3 Predator Vs. Prey Simulation .. 776

18.7 Discussion ... 781
18.8 Summary ... 782
18.9 References .. 783

Chapter 19 Evolving Currency Trading Agents ... 785
19.1 Introduction to Forex .. 786
19.2 Trading and the Objective .. 788
19.3 The Forex Simulator ... 794
19.4 Implementing the Forex Simulator ... 797

1

Contents

xx

19.5 Implementing the New Sensors and Actuators 806
19.6 Generalization Testing .. 809
19.7 Benchmark & Results ... 815

19.7.1 Running the Benchmark ... 817
19.8 Discussion ... 822
19.9 Summary ... 823
19.10 References .. 824

PART VI
PROMISES KEPT

Chapter 20 Conclusion .. 829
20.1 References .. 830

 Abbreviations ... 831

Chapter 1 Introduction: Applications &
Motivations

Abstract This chapter discusses the numerous reasons for why one might wish to
study the subject of neuroevolution. I cover a number of different applications of
such a system, giving examples and scenarios of a neuroevolutionary system being
applied within a variety of different fields. A discussion then follows on where all
of this research is heading, and what the next step within this field might be. Final-
ly, a whirlwind introduction of the book is given, with a short summary of what is
covered in every chapter.

One of the most ambitious and long standing goals within the field of Compu-
tational Intelligence (CI), is the creation of thinking and self aware machines of
human and greater than human intelligence. An intelligent system that once seed-
ed, can learn, improve on itself, and then cut its own evolutionary path upwards.
We have come a long way, we have made progress. Starting with symbol manipu-
lation based “good old fashioned AI” systems of the 1950s, we have advanced to
artificial neurocomputation. Today, these intelligent systems can analyze images,
control the walking gait of a robot, navigate an Unmanned Aerial Vehicle (UAV)
through the sky, and even act as brains for artificial organisms inhabiting artificial
worlds [1,2,3]. We have advanced a lot in the past few decades. Like the history of
flying machines, most believed that flight could either not be achieved, or if
achieved could only be done so through machines that would flap their wings or
were lighter than air... Yet today, we have made super flying machines. Our tech-
nological flying machines can do what the biological flying machines would not
even dream off, leave and go beyond this planet. I have no doubt that the same
story will repeat itself with regards to intelligent machines.

Today’s most advanced approaches to computational intelligence are through
neuroevolution [4,5,6], a combination of artificial neural networks and evolution-
ary computation. The discipline of Neuroscience has progressed rapidly, and
we’ve learned quite a bit about the biological neural circuits, and the process of
cognition. We’ve also had a lot of time to experiment with Evolutionary Biology,
and know very well of its power when it comes to problem solving. After all, we
are one of its solutions. Neuroevolution is based on the extrapolation of the con-
cepts we’ve learned in neuroscience and evolutionary biology, and the application
of those concepts to machine intelligence.

Both, evolution and neurocomputation, are highly distributed and concurrent
problem solving approaches. Evolution is the process of change in the inherited
traits within populations due to the constant competition of the organisms within
it. As the billions of organisms fight for resources, some survive and create off-
spring, while others die out. Those that survive and create offspring pass on their

DOI 10.1007/978-1-4614- - , © Springer Science+Business Media New York 2013
 1

4463 3_1
 G.I. Sher, Handbook of Neuroevolution Through Erlang,

2 Chapter 1 Introduction: Applications & Motivations

traits to their offspring; and those organisms that create less offspring than others
are slowly expunged from the environment. Thus evolutionary computation occurs
on the entire surface of the planet, billions of organisms solving the problem of
survival in a harsh environment, all in parallel. On the other hand, the carbon
based cognitive computer we call our brain, is composed of over a hundred billion
neurons, each neuron processing information in parallel with other neurons, each
being affected to some degree by the signals it processes. The emergent property
of this neurocomputation is self awareness, the mind, and the ability to learn and
act upon the world.

If we are to map biological neurocomputational systems and evolutionary pro-
cesses to software, we need to use a tool that makes this mapping as direct and as
true as possible. Beyond the direct mapping of these processes from biological
representations to their software representations, we also need to take into account
their robustness, the fault tolerance of these biological processes. There is one par-
ticular programming language that has all these features, the language that was
developed from the very start for highly distributed and fault tolerant systems, that
language is Erlang, and it will be our primary tool in this book.

****A note from the author****
References: I have added references to a number of books and papers that I
came across over the years, and which I had the chance to read. Though I
have included a reference section in a number of chapters, the referenced
material is neither needed, nor is it essential, for the understanding of this
volume, but it is there if you’d like to take a look.
Species/Specie: The word species is both plural and singular. But when
programming and having to go between different species and single species
and Ids of species, and species in populations, and agents which belong to
multiple species and single species… things become confusing. Thus at
times I had to use the incorrect term: Specie. Nevertheless, I do believe that
the use of the word Specie allowed for some discussions to be much clearer.

1.1 Motivations

I will start this book by answering the why & what-for of neuroevolution. You
want to know why you should study this subject, why should you be interested in
it, and what you would gain from being able to build such computational intelli-
gence systems. The answer to the later stands with the fact that traditional neural
networks, and thus by extension even more so with regards to neuroevolutionary
systems, have already proven themselves in numerous problem domains, the fol-
lowing of which is but a brief list:

1.1 Motivations 3

1. Optimization: You have a problem to solve, you know what you want but you
don’t exactly know how to achieve that result, thus you need an intelligent
agent to figure out the patterns of this problem for you and come up with an ef-
ficient solution. [7,8,9]

2. Neurocontroller: You have a complex task that needs to be performed, the
task itself changes and thus you need an intelligent agent to learn how to
perform this task through experience, learn how to use the tools necessary to
perform the task, and perform that task efficiently and without tiring.
[10,11,12,13,14,15]

3. Invention: You have a rough idea or a database of already existing inventions
and you want to create a system that will improve on the designs, creating
new patents. Or you wish to explore new designs in previously unexplored
fields. For this you need an intelligent agent that can extrapolate ideas from
existing designs, or come up with and explore new ideas within various fields.
[16,17,18]

Neuroevolutionary systems are force multipliers. Even if you yourself don’t
know how to program a controller that uses the robot’s cameras and servomotors
to move around on a rough terrain while panning & tilting its solar array to collect
energy, you can evolve a brain that will perform these tasks efficiently. If you
know just a little bit about financial markets, about stock market or foreign ex-
change market (forex/FX), you can still create a system that learns on its own how
to buy and sell profitably (but it is not easy, and thus far the profits from such sys-
tems have not been staggering, nevertheless we will build such a system). The set
of problem domains to which such systems are applied is growing, and as we con-
tinue to advance these systems, making them more powerful and adaptable, the
rewards gained from using these NN based intelligent agents will only continue to
grow. Application domains like financial market analysis, robotics, art, and enter-
tainment, are but the tip of the iceberg.

With regards to the why of neuroevolution, the answer stands with the fact that
neuroevolutionary systems, particularly the Topology and Weight Evolving Arti-
ficial Neural Networks (TWEANNS), are the most advanced forms of computa-
tional intelligence creation. These systems are our best bet at creating intelligence
that rivals our own, achieving what some call, a technological singularity.
TWEANN systems use evolutionary processes to evolve complex systems with
neural elements acting as the main building blocks. We already have proof that in-
telligence through neural networks can be evolved, that proof is you and I. That
which makes you who you are, that part which allows you to think, adapt, learn, is
a result of billions of years of evolution. The problem domain was that of survival
in a hostile and volatile environment, and the solution was a carbon based parallel
computational machine, a learning system which could deal with such complex
environments. These neurocomputational machines which we call brains, have
been evolving for a long time, starting with a simple cell that could sense the pres-
ence of some chemical percept... over the billions of years these simple systems
became more advanced, these cells became more specialized for signal processing

4 Chapter 1 Introduction: Applications & Motivations

and began to resemble something we today call neurons. Evolution generated var-
ious interconnected networks of these cells, various topologies, because different
groups of neurons could more effectively deal with complex signals than a single
neuron could... and after trillions of permutations of neural types and topologies in
which they are joined, eventually a stable solution emerged... A few billions of
years of building on top of that stable solution, evolving new features and neural
circuits through random mutation and perturbation, and the result is a vast parallel
neurocomputational system which resides within our skulls. This is the process of
neuroevolution.

Why Erlang? Though a more detailed answer will be given in Chapter-5, the
quick version is that Erlang’s architecture perfectly matches that of evolutionary
and neurocomputational systems. Everything is concurrent and distributed, each
neuron is an independent and concurrent element which processes its information
along with over a hundred billion other neurons. When it comes to evolution, each
organism in a population exists in parallel with all other organisms. All of these
features can be easily mapped to Erlang’s architecture through its process based
and message passing approach to computing. And because there is such a direct
match, we will not have to worry as much about how to first map these distributed
and complex systems into a form that some programming language uses. Thus,
because our systems will be much more concise and because our programs will so
naturally represent these concurrent systems, it will be easier for us to further ex-
pand them, to add new features, features that would otherwise have proven too
difficult to add or even consider due to the way in which some programming lan-
guage represents its programs.

By the time you finish this book, you will have created a system which can
generate a population of intelligent agents which are able to interact with the real
world, and simulated worlds called scapes. These intelligent agents will be pow-
ered by complex neural networks (NNs), evolved synthetic brains whose topologies
can expand and learn as they interact with their environment. When we get to the
Artificial Life chapter of this book, these intelligent agents will be embodied
through simulated robots, existing and moving around in a Flatland, interacting
with each other, fighting each other, and collaborating with each other... These
NN based intelligent agents will have morphologies, sensors and actuators through
which the NNs will be able to learn how to interact with simulated environments
and other programs... These agents will live, die, create offspring, form new spe-
cies... they can be uploaded into UAVs and other mechanical bodies, embodying
those machines with the ability to learn and to survive... Though some of this may
sound like science fiction, it is not the case, for by the end of this book you and I
will have built neurocomputational systems capable of all these things.

1.2 Applications 5

1.2 Applications

In this section I will provide examples and scenarios of the various problem
domains to which NN based intelligent agents can be applied to. Where possible, I
will cite already existing projects in that field, and the results of said projects.

When reading through the examples, you will notice that all the scenarios fol-
low the basic evolutionary loop shown in Fig-1.1a. Also, when I mention neural
network based intelligent agents, I simply refer to programs that use NNs to pro-
cess their sensory signals and use their actuators when interacting with the world,
as shown in Fig-1.1b.

1.2.1 Robotics

When discussing computational intelligence the first thing that comes to mind
is robotics and cybernetics. How to make all the parts of a robot act intelligently
and in a cohesive manner such that the robot can move around, either on wheels or
legs, accomplish useful tasks, and learn from its experience. Or for example how
to evolve a controller for a teleoperated robot, where the robot mimics the actions
of the human agent. All of these applications can be accomplished using a
neuroevolutionary system.

Fig. 1.1 utionary loop. and b. A NN based agent.a. The standard evolutionary/neuroevol

6 Chapter 1 Introduction: Applications & Motivations

To evolve a NN based intelligent agent for this particular task, we first decide
on what the robot should do, and whether we want to evolve the neurocontroller
(the brain of the robot) in the real world, or in a simulated world and then have it
transferred into a real world robot. Whichever of the two approaches we take, we
then need to agree on what types of behavioral patterns we wish to evolve, and
what behavioral patterns we wish our evolved neurocontroller to avoid. For exam-
ple, the longer the robot lasts without losing all of its power the better, if the robot
can, when low on energy, go to an outlet and recharge itself, that type of behavior
needs to be rewarded. If we wish to create a robot that services the house by clean-
ing it, moving around and not bumping into anything, making tea... these things
should also be rewarded. What should be punished is bumping into things and
breaking stuff. Having decided on what behaviors should be rewarded and what
behaviors should be punished, we then need to decide how our robot, real or simu-
lated, will interface with the world.

What type of sensors and actuators our robot will use, and have access to in
general? Let us in this example assume that the robot will use cameras, audio sen-
sors, and pressure sensors covering its surface. For actuators it will use 2 wheels, a
differential drive (like the type used in the khepera robot [19] for example).

After having decided on how the robots will interface with the environment,
and what we want the robots to do, we need to develop a function that gives fit-
ness points to the simulated robot when it does what we want it to do, and penaliz-
es the robot when it does something we don’t want it to do. A fitness function
based on this reward/punishment system allows the evolutionary process to rank
the NNs to see which ones are better than others, based on their comparative per-
formance. We will use a simple fitness function for the ranking of how well the
various simulated robots clean rooms:

Fitness = A*(# of minutes active) + B*(% of environment cleaned) - C*(# of furniture bumps)

Where A, B, and C are weight variables set by the researcher, and depend on
which of these qualities the researcher finds most important. If we have decided to
evolve a simulated robot in a simulated world before transferring the resulting NN
into a real robot in a real world, we need to create a simulation of the environment
as close to the real world as possible, an environment that should also be able to
keep track of the robot’s behavior. Since the simulated world has knowledge of
where all the things within it are located, it can keep track of furniture collisions
through collision detection. Such a simulated world should very easily be able to
track the robot’s fitness. After the robot runs out of energy, or after it has lived for
some predetermined amount of time, the fitness tracking virtual world will score
the NN that controlled the robot. In this document, we will call such self contained
simulated worlds: scapes, or scape for singular.

Having now agreed on the fitness function, and having decided to simulate the
robot and the virtual world using one of the more popular of such simulators,

Example 1: Evolving the neurocomputational brain of a robot.

1.2 Applications 7

Player/Stage/Gazebo [20,21] for example, we can now run the neuroevolutionary
system. The system generates an initial population of random NN based intelligent
agents, each controlling its own simulated robot within a scape. After some time
the neuroevolutionary system scores each NN, removes the bottom 50% of the
population, and then creates mutant offspring from the surviving fit 50% (the ratio
of fit to unfit agents can of course be set to a different value) of the genotypes. Af-
ter the mutants have been created to replace the removed 50% of the NNs, the
neuroevolutionary platform applies the NNs to the simulations again. This process
goes on and on, every new generation comes with new mutants, each of which has
a chance of outperforming its parent, though in most cases it will not... Given long
enough time (in hours, rather than billions of years) and a flexible & powerful
enough neuroevolutionary system/algorithm with a detailed enough scape, eventu-
ally NN based intelligent agents will be evolved that are adapted to their chosen
environment. The neuroevolutionary process will evolve NNs that can make tea,
clean all the rooms, and not bump into furniture. Once highly fit NNs become pre-
sent in the population, we simply extract them and import them into real robot
bodies (Fig. 1.2).

Fig. 1.2 Evolving fit simulated robots, and then uploading the evolved NN based controllers
from a simulation into a real robot body.

8 Chapter 1 Introduction: Applications & Motivations

The reason that we need to make our simulations of environments and robots as
detailed as possible is because real sensors, actuators, environments, motors... are
flawed, and there is always noise in the data which needs to be taken into account
when evolving intelligent agents, so that they are ready for this noise when up-
loaded to real bodies. The more detailed the simulations, the greater the chance
that a NN evolved to control a simulated robot, will be able to just as effectively
control a real robot.

Example 2: Evolving aerial dogfighting abilities

In another scenario, we might want a killing robot rather than a cleaning one.

to engage other fighter jets in combat. The approach will be the same as before,
first we create a detailed simulation of the UCAV and the simulation environ-
ment/scape. Then we develop a fitness function through which we can guide evo-
lution in the right direction:

Fitness = A(Amount of damage inflicted) – B(Amount of damage sustained) + C(Efficiency)

Where A, B, and C are functions specified by the researcher.

At this point we can populate the simulated skies with preprogrammed simulat-
ed fighter jets against which the UCAV will fight and evolve, or, we can use co-
evolution. We can create 2 separate specie populations of NNs, and instead of
having the UCAVs engage in combat against preprogrammed jets, the UCAVs
from one population will engage the UCAVs from another (Fig-1.3). We could for
example have every NN from population A, engage every individual from popula-
tion B, in this manner every individual in population A and B will have a fitness
score based on how many of the UCAVs it is able to destroy from another popula-
tion in a 1 on 1 combat.

Then we apply selection and mutation phases to each population separately,
and repeat the process... Eventually, evolution will generate capable NNs in both
populations, as the NNs from each population will try to out maneuver and out-
smart each other. And because we used coevolution, we could spark an arms race
between the two populations in which case our UCAV neurocontrollers might
achieve fitness levels even higher than when evolved against static strategies. An-
other benefit of co-evolution is that both sides, specie A & B, start as incompe-
tents, and then slowly improvise and improve their fighting tactics. If we had just
used population A and evolved the NNs in it against static but already advanced
air combat tactics, our results could have gotten stuck because the early incompe-
tent NNs would have been killed too quickly, and thus not giving the scape
enough time to gage the NN’s performance. There could have been no evolution-
ary path for the seed NNs by which to improve and score points against the al-
ready existing, preprogrammed and deadly UCAVs. Coevolution allows the two

Lets say we want to evolve a neurocontroller for an Unmanned Combat Aerial
Vehicle (UCAV), we want to evolve a neural network which will enable the UCAV

1.2 Applications 9

species to build their own fitness landscape which provides for a smooth evolu-
tionary path upwards as both species try to improve from seed, to competent level.

Fig. 1.3 Coevolution of UCAV Neurocontrollers.

With regards to using real robot systems in the evolution of NN based control-
lers: To evolve the neurocontrollers directly inside the real robots, we will either:
1. Need to somehow create a supervisor program within the robot itself which
would tell it when it bumps into stuff, or when the robot does not clean the room
properly, or 2. We could have the NN’s fitness based on how the owner responds
to the robot, whether the owner for example yells at the robot (fitness point is sub-
tracted) or thanks the robot (fitness point is added)... When using real robots, the
evolution is slower since it has to occur in real time, and on top of that, we will not
have access to all the information from which to calculate the fitness of the
neurocontroller. For example, how do we establish the percentage of the house
cleaned by the robot, who keeps track of this information, and how? Another
problem is that real robots cost money, so it could be much more expensive as
well. Do we buy a large number of robots to establish an evolutionary robotics
system? Or do we buy just one robot and then try out all the different NNs in the
population using that same robot, giving them access to this robot one at a time
(Fig-1.4)... In all cases we follow a similar pattern, except that when using a scape,
the scape has all the data about the robot’s performance and environment, and
when using real robots, we need to find another way to make those fitness value
calculations.

10 Chapter 1 Introduction: Applications & Motivations

Fig. 1.4 Evolutionary robotics experiment with 3 real robots, but a population of 6 NNs.
Since only 3 robots exist, 3 NNs are uploaded into real robot bodies and have their fitness
gaged, while the other 3 wait for the first 3 to finish.

There is an advantage to using real robots though. When evolving
neurocontrollers inside real robots, when a solution finally is evolved, we can be
sure that it will behave exactly the same during application as it did during train-
ing because the real robot’s fitness scores were based on its real world perfor-
mance.

1.2.2 Financial Markets

Financial analysis is another area where NN based systems can be successfully
applied. Because NNs are universal function approximators, if the market does
have an exploitable pattern, NN based systems are our best bet at finding it. With
this in mind, we can try evolving a NN based algorithmic trader.

Example 1: Automated currency trader

Unlike the stock market, Forex (FX) market deals with trading currencies and
is up ~ 24/7. FX market had a turnover of roughly $4 trillion in 2011, and a huge

1.2 Applications 11

trading volume leading to its high liquidity. It is thus reasonable to think that with
a flexible enough system and a well chosen training set, we could teach a NN to
buy and sell currencies automatically.

To evolve a NN based currency trader we first need to decide on how and what
to present to the NN’s sensors. The most direct approach would be to implement a
type of sliding window protocol with regards to the traded currency’s historical
data. In this approach we feed the NN the historical data from X number of ticks
(A tick is a calculated opening or closing price taken every K number of seconds)
until the current time T, and ask it to make a decision of whether to buy, hold, or
sell this currency at time T+1, as shown in We could for example inform
the NN that yesterday Euro traded against the Dollar at a ratio of 1.4324, and then
ask the NN to output its decision on whether we should buy, sell, or hold our Eu-
ros today.

Fig. 1.5 A currency trading NN that uses a sliding window protocol.

Let’s set up a system where we wish to trade Dollars against JPY (Japanese
Yen). In this scenario our scape will be a simulated FX market using real histori-
cal data. Our NN based intelligent agent will interface with the scape using sen-
sors which read some amount and some particular combination of historical data,
and then immediately output a trinary signal, -1, 0, or 1. The output will be fed in-
to an actuator which will, based on this signal, make a decision of whether to buy,
sell, or hold (if there is anything to hold) a certain amount of JPY. As soon as the
trade request is made, the scape will move the sliding window 1 tick forward, and
feed our NN the new set of historical data. This can be done for a 1000 ticks for
example, after which the scape will calculate the fitness of the NN, which in this

12 Chapter 1 Introduction: Applications & Motivations

case can be the actual profit after those 1000 ticks. We can set up the fitness func-
tion to be as follows:

Fitness = 300 + P

Where 300 is the amount of money the NN initially started with, and P is a pos-
itive or negative number that represents the amount of profit generated during
1000 ticks.

Again we would use evolution to evolve a population of this type of currency
traders, choosing those that were more profitable over those that were not, letting
them create mutant offspring with yet higher profit generating potential. Once our
neuroevolutionary system has finally generated a profitable NN, we would test it
on new currency data to make sure that the trading NN can generalize and be used
on currency data it has not yet seen, and if it can, we would then modify its sen-
sors and actuators to interface with the real FX trading software instead of a simu-
lated one. We will build this type of system in the Applications part of the book.

Example 2: Financial oracle

Another option is to create a financial oracle, which instead of trading directly,
simply predicts whether price of the currency will go up or down during the next
tick, or during the next T amount of time. We could use a setup very similar to the
one we’ve used in Example-1, but instead of the NN’s fitness being based directly
on how much profit it makes, it would be based on the number of correct predic-
tions. The fitness function could then be formulated as follows:

Fitness = P(correct # of predictions) + N(incorrect # of predictions)

Where P and N are weight parameters which we would choose based on how
aggressive or careful we want our system to be when making a prediction. The
evolved NN based intelligent agent would print its predictions to screen, which we
would then take into consideration and execute the trade ourselves.

Example 3: Financial oracle committee machine

Finally, because our evolutionary approach will produce many NNs, and be-
cause we can have multiple neuroevolutionary systems running at the same time,
we could form NN oracle committees. Some of the champion (high fitness) NNs
will have very different internal structure from other champions, we could form
groups of these high fitness NNs, ask them all the same question (input signal),
then weigh their votes (output signal), and base the final suggestion of the com-
mittee on the weighted average of these votes.

A committee machine is simply a group of trained agents, where the final ac-
tion is based on this committee as opposed to being based on any single agent.
Furthermore, one can setup a committee in different ways. We could form the
committee from champion NNs which were evolved on all historical information

1.2 Applications 13

indiscriminately, and then simply ask the group of these champion NNs the same
question and weigh their votes. This type of committee is called a homogeneous
committee. Or we could create 7 different populations, and then evolve each of the
7 populations on a different training set. We could evolve the first population on
the financial historical data of every Monday in the dataset, the second population
on the financial historical data of every Tuesday, and so on. We would do this be-
cause the market’s behavior has patterns, and those patterns are specific to certain
months and certain hours of day due to the market’s dependency on seasons (when
certain crops become available for example) and on active trading hours of certain
countries (when USA’s brokers sleep, Japan’s brokers are actively trading, and
vice versa). These patterns might require different trading strategies, and each
population would concentrate on that particular trading strategy. After each of the-
se populations has evolved a set of high fitness NNs, we would extract the cham-
pions from them and put them into groups within the committee. The committee
would then filter the input signals, routing the signals to the cluster of NN cham-
pions which specializes in that particular data set (Monday data, or second half of
the day data...). These types of committees are called filtered or specialized com-
mittees. These two different types of committees are shown in Fig. 1.6.

Fig. 1.6 The architectures of the homogenious and specialized committee machines.

Basing our trading decision on a large population of highly diverse champion
NNs could yield a safer trading signal (Fig-1.7), since for our whole committee’s
final action to be wrong, it would require for the majority of the champion NNs to
all be wrong at the same time. We could further try to tune our committee system
by specifying that at least X% of NNs in the committee have to agree on the trad-
ing signal before the committee executes the trade... Though this might decrease

14 Chapter 1 Introduction: Applications & Motivations

the number of trades our committee machine executes in total, it could further im-
prove the chance that when the trade is executed, it is a lucrative one.

Fig. 1.7. A committee machine of NN traders.

1.2.3 Artificial Life

Artificial life, or ALife, imitates traditional biology by trying to recreate bio-
logical phenomena in software. The goal of ALife is to study logic and emergent
phenomena of living systems in simulated environments. The organisms populat-
ing these simulated worlds should also have brains and the minds that brains gen-
erate. Artificial neural networks are the perfect choice for such a role.
Neuroevolution allows us to populate these simulated worlds with learning organ-
isms. Through neuroevolution the simulated environments allow the behavior of
these artificial organisms to evolve over time, changing as the organisms interact
with the environment and compete against each other.

If the software based sensors and actuators are themselves implemented as
nodes, similar to how neurons are implemented, then through mutation operators
they too can be added and removed to and from the NN during evolution. Through
such an implementation we can then allow a neuroevolutionary system to evolve
not merely the brain of the artificial organism, but also its morphology. Using this
approach, the evolutionary processes will allow for the created mutant offspring to

1.2 Applications 15

expand and try out different combinations of sensors and actuators, and thus po-
tentially different types of bodily morphologies.

Example 1: Predator vs. Prey

We could populate a simulated 3d world with two populations of artificial or-
ganisms. Those artificial organisms could be in the form of small tanks controlled
by NNs. The prey tank population would have wheel based propulsion, and no
gun turret. The predator tank population would start with track based propulsion,
and a small gun turret which it could use to fire. Furthermore, each organism
would start with range based sensors. Each tank would have a certain amount of
energy, and a maximum lifespan of 20 simulated hours. In this simulated world,
the prey organisms can only gain energy for propulsion by drinking it from the
randomly scattered and self replenishing energy pools. The predator organisms
can only gain energy by killing the prey, thus consuming their energy. We will ac-
tually implement and use our neuroevolutionary platform in a similar, though
slightly simpler, ALife simulation in Chapter-18.

In the scenario above the prey start with the following list of sensors:
[Range_Sensor], and the following list of actuators: [Differential_WheelDrive].
While the predators start with [Range_Sensor] sensors, and [Differen-
tial_TracksDrive,Gun_Turret] actuators. Each sensor and actuator name is a tag, a
name of a program that we need to develop. These programs either act as simulat-
ed sensors/actuators (if the robot itself is simulated for example), or interface with
a hardware driver of the real sensors/actuators. Furthermore, each sensor and actu-
ator will need to have some visual and physical representation if implemented in a
virtual environment. The NNs should be able to poll the sensor programs for sig-
nals, and output signals to the actuator programs, which themselves can then fur-
ther post-process and act upon those signals.

In this particular example, the offspring are simply mutated versions of their fit
parents. In the real world, not only the neural structures but also the organism mor-
phologies evolve. Morphological evolution can be integrated as a sort of side effect of
neuroevolution. We can accomplish this by extending the list of mutation opera-
tors used by our neuroevolutionary system. One of these possible additional muta-
tional operators could be an Add_Random_Sensor, or Add_Random_Actuator. Us-
ing the sensor and actuator based mutation operators, we could generate offspring
which will have a chance of integrating a new sensor or actuator into their simu-
lated bodies. Through new sensor and actuator incorporation the organism’s mor-
phology, visual representation, and physical properties would change, and thus al-
low evolution from simple organisms, to the more complex ones with regards to
both, morphology and neurocognitive ability (structural morphology and neural
network based brains).

To use Add_Random_Sensor and Add_Random_Actuator mutation operators,
we also need to build the extended sensor and actuator lists, so that the neuro-
evolutionary system will actually have some new sensors and actuators to randomly

16 Chapter 1 Introduction: Applications & Motivations

There is a problem though, in such ALife simulations we cannot use the “gen-
erational” evolutionary approach, where we wait for all organisms to finish their
evaluation on the problem (In this case, surviving in the environment) and then
calculate which ones are more fit. Instead we need to maintain a constant or semi-
constant population size within the environment, we need to set up a steady state
evolutionary loop. One of the ways in which to set up such a system is as follows:
When a NN dies, a tuple composed of its genotype and its achieved fitness score is
entered into a Dead_Pool list of some finite size. Immediately afterwards, a new
offspring is generated of the same specie, with the parent of the offspring chosen
from the NN genotypes stored in the Dead_Pool. The probability with which a
parent genotype is chosen from the Dead_Pool is based on that genotype’s fitness.
In this manner the populations are constantly replenished, as soon as an organism
dies, another one of the same specie is spawned.

Thus the hypothetical sequence of events in such an ALife system could go as
follows: The two initial species of NNs controlling predator and prey tanks are
created. Each NN has its own random minimalistic initial NN topology and set of
sensors and actuators, the sensors and actuators the NN is using are reflected by
the morphology and physical properties of the tank the NN is controlling in the
virtual world. The NN controlled organisms/tanks interact with the environment
and each other. When an organism dies, another organism is generated by select-
ing a parent NN from the dead pool of that specie with the probability dependent
on that NN’s fitness. The offspring is a mutated version of the parent. Through
statistics alone, one of the offspring undergoes a mutation of the form:
Add_Random_Sensor, which adds a Color_Sensor. Though perhaps this particular
organism will not have the NN capable of making any effective use of the new
sensory data, and thus will die out or be just as fit as other NNs not using color da-
ta, eventually, after a few thousand of such occurrences, one of the mutant NNs
will have the topology capable of using the Color_Sensor at least to some degree.
If the predator and prey tanks are of different colors, then the color sensing NN
mutant will have an advantage over other organisms since it will be able to tell the
difference between prey and predators, and know which ones to avoid. If the color
sensing mutant offspring is a predator NN (NN controlling a predator tank), then it
too will have an advantage over its fellow predator NNs, since it will now be able
to discern the prey from the predators, and thus be able to choose its targets more
effectively.

choose from when using these mutation operators. For the prey we could provide

Add_Random_Sensor operator could choose its sensors. And the following list
of actuators: [Differential_WheelDrive,Drop_Smokebomb,Extended_Fueltank,
Change_Color,Range_Sensor_PanTilter,Color_Sensor_PanTilter]. For the pre-
dators we could provide the same sensor list as for the prey, and the follow-
ing actuator list: [Differential_TracksDrive,Rockets,Afterburner,Change_Color,
Range_Sensor_PanTilter,Color_Sensor_PanTilter].

the following sensor list: [Range_Sensor,Color_Sensor], from which the

1.2 Applications 17

Over time, evolution will produce predators that use better weaponry (new ac-
tuators) and larger NNs capable of more complex reasoning and the ability to take
control of these newly integrated actuators. At the same time, only those prey will
survive that can better evade such predatory tanks... and only those predators will
survive which can hunt these smarter prey... In this manner, evolution will pro-
duce smarter and more complex versions of predator and prey, with better strate-
gies, more sensory modules, and greater offensive and defensive capabilities (Fig-
1.8). Evolution will fit together through trial and error, fitter NNs and morpholo-
gies of the organisms inhabiting the scape. Evolution will create these fit NNs
(and their tank representations in the ALife simulation) by trying the different var-
iations and permutations of neurons, sensors, and actuators.

Fig. 1.8 A possible evolutionary path of the predator and prey tanks. Evolving morphology
and the NNs.

This scenario should remind you a bit of the robotics application, they are re-
lated. Although in ALife the goal is to simply observe the evolved behaviors and
the emergent properties, rather than to upload the evolved NNs to real robots, the
transference to hardware is also possible. If these simulated sensor and actuator
modules have real world counterparts, in which case this evolutionary approach
will not only evolve the brains of these autonomous hunting and evading tanks,
but also their morphologies by putting together a good combination of offensive
and defensive modules on some standardized chassis, being controlled by the fit
NN which can effectively use these modules, then the utilization of the evolved

18 Chapter 1 Introduction: Applications & Motivations

NNs based agents in actual robot systems would follow the same steps as in the
robotics application example.

The scenario in this section is actually very easy to implement, and we will
have a chance to develop a similar 2d version of this ALife simulation.

1.2.4 Image Analysis & Computer Vision

Image data is just like any other type of data, and thus we can evolve NNs to
analyze and pick out certain features within the image. As alluded to in a previous
section, where the predators and prey evolved the ability to recognize the various
environmental and organism features through their color and range sensors, NNs
can evolve an ability to process visual signals. In this section the possible applica-
tion scenario concentrates only on the computer vision and image analysis appli-
cations.

Example 1: Evolving a NN for visual feature selection

As shown in Fig-1.9, in this problem we encode the visual data in a manner ac-
ceptable by the neural network. For this particular problem we will need to create
a training set, a list of tuples composed of images, and the cluster where that im-
age belongs. We then run the NN through the training set of images, and reward
the NN with a fitness point every time it clusters or recognizes the image correct-
ly, and give it 0 points every time it does not. In this scenario, we want the NN to
cluster the happy faces into group A, and sad faces into group B. Once the NN has
went through the whole training list, it will have its full fitness score.

Fig. 1.9 The image is first encoded as a vector (a bitmap for example), and then fed into a
NN which decides whether the image belongs to cluster A or B.

1.2 Applications 19

We generate a population of NNs, each NN goes through the training set and at
the end once all the NNs are scored, we again choose the most fit networks and let
them generate mutant offspring. Some of these offspring will recognize or cluster
the images better than others, and through this selection-mutation-application
loop, eventually the neuroevolutionary process will generate highly fit NNs. Once
a particular/goal fitness score is reached, or the population no longer generates or-
ganisms of greater fitness, we choose the most fit NN within the population, and
count it as the solution generated by our neuroevolutionary system. This champion
NN can now be applied to the real world image analysis problem for which it was
evolved.

Example-2: Facial stress signal analysis

To create the necessary training set for this type of problem, we would have to
manually generate images of faces that show stress and those that do not, and then
flag these training images with stress|no_stress tags. With this type of training set,
a neuroevolutionary system can properly score the NN’s performance and fitness.
In a more complex version, the images do not have to be static, they could be fluid
images coming directly from a camera.

Thus performing the same type of training as in Example-1, we would evolve a
stress recognizing NN, which could then be used in various applications. This type
of NN system can be connected to a camera at an ATM machine for example, and
then used to signal duress, which might further imply that the withdrawal is being
made under pressure, and that the person might require help. There are numerous
other possible, and useful applications for such a NN system.

1.2.5 Data Compression

Even data compression can be done through NNs. The next example demon-
strates two simple approaches to give an idea of how to tackle this type of prob-
lem.

Example 1: Transmitting compressed signals.

Shown in Fig-1.10 is a feed forward neural network composed of 3 layers.
The first layer has 10 neurons, the second 5, and the third 10 neurons again.
Assume we have a dataset A composed of 100 values. We divide these 100 values
into sets of 10, and then evolve the weights of the NN such that it can output
the same signal as its input. So that for example if the input of the NN is the
vector: [0,0,0,1,0,1,0,1,1,1], then its output would be the same vector:
[0,0,0,1,0,1,0,1,1,1].

Once the NN is able to output the same signals as its input, we break the NN
into two parts. The first is the compressor/transmitter part composed of the first
two layers, and the second is the decompresser/receiver network composed of the

20 Chapter 1 Introduction: Applications & Motivations

last, 3rd layer, as shown in Fig-1.10. When you pass the signal of length 10 to the
transmitter NN, it outputs a compressed signal of length 5. This signal can then be
stored or passed to another machine over the net, where the receiver NN is wait-
ing. This receiver NN would accept the compressed signal of length 5 and convert
it back to the original signal of length 10. This is so because the combination of
the Transmitter-NN and Receiver-NN, form the original NN system which accepts
and outputs the same signal of length 10.

Fig. 1.10 A simple Feed Forward NN composed of 3 layers with a topology of: [10,5,10].

Though simple, this data compression NN can produce a half sized compressed
signal, which can later be decompressed by the receiver NN. This approach could
be further extended. It is not known ahead of time whether the compression of this
magnitude is possible (or perhaps whether it is possible to compress the signal at
all), and whether it is possible with a neural network of the topology we originally
chose as a guess (the [10,5,10] feed forward NN).

A better approach to this problem would be to use neuroevolution and evolve
the topology of the compression NN. In such a scenario we would constrain the
NN to use the sensor (input channel) which can read signals of length 10, an ac-
tuator (output channel) which outputs a signal of length 10, and one hidden layer
whose length is initially set to 1. Then through neuroevolution we would evolve
various topologies of the hidden layers. In this manner, a compression solution can
be evolved for any unknown data. Evolution will strive to produce a fit compres-
sor, though perhaps not optimal, it will be evolved for that particular type of data,
rather than any general dataset.

1.2 Applications 21

Fig. 1.11 The Feed Forward NN broken into its transmitter/compressor and receiv-
er/decompressor parts.

1.2.6 Games & Entertainment

It would be great to see Non-Player Characters (NPCs) in a computer game
evolve and advance over time as you play. Wouldn’t it be great if the NPCs inside
a game learned from their experience, and interacted with you in new and exciting
ways, with you never knowing what they would come up with next? It would keep
the game challenging, the game would be a world of its own, and you interacting
with that living and breathing system. Because the NPCs already have morpholo-
gies and the game usually has goals (gathering gold coins, fragging other players,
driving better than others within the race...), it would be very easy to extract a fit-
ness function for NPCs, and then use neuroevolution to evolve new NPCs as time
went on. This would be similar to the Artificial Life example, here the artificial
organisms are the NPCs, the game world is their scape, and their fitness functions
would be based on the game’s goal. Not much would have to be changed from the
examples given in the ALife section, except that now you get to interact with them
through your own avatar within their scape. Games would become ALife simula-
tions, with you a traveler through the simulated world.

Another approach to improving games is by using a neuroevolutionary system
to generate new game features, as for example is done in the Galaxy War [23]
game. In Galaxy War, the neural networks determine the various properties of the
player’s ship weapons, such as the shape of the laser beams, the shot’s trajectory,
the color of the laser and plasma blasts, the speed of the projectiles... In that game,

22 Chapter 1 Introduction: Applications & Motivations

each player can further choose to randomly mutate the NN whose output parame-
terizes/specifies the weapon’s various properties. In Galaxy War, the player can
find new weapons, and new mutated NNs specifying the weapon’s properties are
constantly generated, allowing for an ever changing and evolving weaponry to
populate the game world. In this game, you never run out of the different types of
weapons you can find, the game content evolves with the players, it never gets
old, things are always changing. This game feature could further be extended in
the future to also have the NPCs evolve as well, based on the experience of all
NPCs and how well they performed against the players…

Another application is the generation of terrains. The NN’s input could be the
coordinate in a game world, and the NN’s output could be the terrain feature. For
example a population of NN generated terrains are released for some game to the
beta tester players of the said game. The next day we ask the players to score the
various terrains they tried out, to see which they liked best. After the players score
the various terrains, we average the scores for each terrain, and let these average
scores be the fitness scores of the terrain generating NNs. We then use
neuroevolution to generate new terrains from these best scoring NNs, and repeat
the process. After a few months, the beta testers themselves would have guided
the evolution of the terrains in their game, terrains that they find most appealing.

Although this and the previous application requires a human in the loop, the re-
sult is an exploration of possibilities, possibilities that would not have been con-
sidered without the help of the evolutionary process and the NN’s generating the
features of the said applications. And because neural networks are universal func-
tion approximators, neuroevolution provides the flexibility and the variety of the
results that would have been more difficult, or perhaps even impossible to create
with other methods.

1.2.7 Cyber Warfare

If you have been reading these listed application scenarios/examples in order,
then you’re already familiar with the pattern of applying a neuroevolutionary sys-
tem to a problem. The pattern is:

1. Create a virtual environment (scape) for the problem, where if the goal is to
simply train the NN on some training set (rather than interact with some simu-
lation), then that virtual environment should interface with the NN’s sensors
and actuators, present to it the training set, and gage the NN’s performance.

2. Let all the NNs in the population solve the problem, or be trained on some
training set until the terminating condition is reached, at which point the scape
scores each NN’s performance.

3. Sort the NNs in the population based on their performance.

1.2 Applications 23

4. Choose some percentage of the top performing NNs, and use their genotypes to
generate mutant offspring by mutating the parent NN’s topology and/or
weights.

5. Apply the new population composed of the top performing NNs and their mu-
tant offspring to the problem again.

6. Finally, repeat steps 2-5 until some terminating condition is reached, where
such a condition could be an emergence of a NN in the population with some
fitness/performance level that you are seeking, or when the population is no
longer generating better performing NNs, when evolution has stagnated.

In the scenario covered here, the neuroevolutionary system is used to evolve
NN based computer system attackers and defenders, cyberwarfare agents.

Example-1: Cyber warfare, evolving offensive cyberwarfare agents.

The way we apply a neuroevolutionary system to a cyber warfare or network
security application is similar to the way we dealt with robotics and artificial life,
as shown in Fig-1.12. In this particular scenario the simulated environment is not a
2d or 3d world, but a computer network, with various simulated hosts. Instead of
having the evolving NNs control simulated tanks or UCAVs, they control offen-
sive and defensive software packages, like metasploit [24] for example. In the fig-
ure, these NN based cyberwarfare agents are represented with a red lightning bolt.
The sensors are used to gather signals coming from the network to the local host
on which the NN and the attack package is running, and the actuators use the out-
put of the NN to interface with a software package that can execute attacks, a
parametrized metasploit suit would work in this scenario as such an attack pack-
age. Metasploit can be looked at as a large library of prepared attacks/exploits, the
way to select the various attacks, methods of running those attacks and options to
execute them with, can be parameterized, and the NN’s output can then be used to
make these various choices.

Let’s say the NN sends to an actuator a vector of length 20, this particular actu-
ator uses the values in this vector to decide: 1. Which particular attack vector to
select from the metasploit or another custom tailored network penetration pack-

should this attack be applied to. The scape where we would evolve these cyber
warfare agents is a simulated computer network, built using a network simulator
like ns3 [25], or DETER [26] perhaps. The simulated computer networks would
have simulated hosts with some intrusion detection capabilities. The scape which
has access to the entire network simulation could then see whether any of the tar-
gets have been compromised, and whether the attacker was traced, and thus gage
how well a NN is attacking the simulated targets, and how well it is concealing it-
self from detection, if at all. As before, we use an entire population of such NNs,
each interacting with its own scape. After some time, when they are all scored
based on their performance, we again sort them, select the best, and create a new
population composed of these champion NNs and their mutant offspring. This is
effectively an ALife simulation, the primary difference is the avatars controlled by

age. 2. What options to use with this attack. 3. To what (IP, port...) target

24 Chapter 1 Introduction: Applications & Motivations

the NNs, and the environment being not a 2d or 3d system, but a simulated com-
puter network. As before, the NNs are simply evolving to exploit the environment
they inhabit.

Fig. 1.12 Evolving a population of NN controlled network attackers. The offensive network
program, like metasploit for example, is controlled by a NN and is represented as a red
lightning bolt in the figure. The other simulated hosts on the network are represented as
laptop computers.

As with ALife, eventually the neuroevolutionary process will produce NNs that
are capable of properly using their parametrized defensive and offensive software
packages. Evolution will produce NNs able to “see” and properly react to the sig-

proper offensive or defensive programs to protect its host, and attack others.

Example-2: Coevolution of NN controlled cyber attackers and defenders

Again, as in the ALife example, we can evolve all the NNs in the same scape,
interacting with, and attacking/defending against each other rather than the simu-
lated static hosts as in Example-1. We could evolve two species, one composed of
cyber attackers, and another composed of cyber defenders (just like the scenario
where we evolved predator and prey tanks), all populating the same simulated
computer network, as shown in Fig-1.13. The goal of the cyber attackers, their fit-
ness, is based on how well they can attack other hosts on the network. The fitness
of the cyber defenders on the other hand can be based on how well they defend the
host machine they are located on. The cyber defenders could be NNs whose sen-
sors gather the signals which intersect their host, and their actuators would control
the ports, either allowing those signals through, or blocking and tagging those sig-

nals intersecting its host’s ports, and NNs able to select based on the situation, the

1.2 Applications 25

nals as offensive. The defensive NNs could simply be evolved for the purpose of
effectively controlling an intrusion detection program.

Fig. 1.13 Co-evolving cyberwarfare agents. Attackers and defenders populating the same
network scape.

At the same time there should be a number of untouchable simulated hosts
which send out normal, non aggressive signals to the various hosts on the network,
thus simulating normal network traffic. Because the simulated network, and the
operating attackers and defenders are all within the same scape, the scape will
know which of the signals are non offensive (coming from the untouchable normal
hosts), which are offensive (coming from the cyber attackers), and thus the scape
will be able to properly distribute fitness scores to the NN based systems interfac-
ing with it. The fitness functions for the cyber attackers and defenders respectively
could be of the following form:

Attacker_Fitness = A(# cyber defenders compromised) – B(# times detected)
Defender_Fitness = A(# attacks blocked) + B(# normal signals passed) – C(# compromised)

In this manner we can co-evolve these two species, we hope that this co-
evolution will spark an arms race between them. Since at the very start both of the
species would be composed of random and incompetent NNs, both of these spe-
cies can start on equal footing. Both of these species, attackers and defenders, can
then slowly climb upwards as they try to out-compete each other in their environ-
ment.

26 Chapter 1 Introduction: Applications & Motivations

1.2.8 Circuit Creation & Optimization

The way each neuron in a neural network processes information is by first ac-
cumulating its incoming signals, then weighing those signals, and then adding the
weighted signals together and passing the sum through an activation function (any
type of mathematical function). The most commonly used activation functions are:
sigmoid, sinusoidal, and Gaussian. But we could just as easily allow the activation
functions to be selected from the following list: AND, NOT, and OR, and set all
the neural weights to 1. If we do that, then our NN is essentially a digital circuit,
and our neuroevolutionary system will be evolving not new neural networks, but
new and novel circuit designs, as shown in Fig-1.14.

Fig. 1.14 Similarities between evolving NNs and evolving digital circuits.

The neuroevolutionary platform we will be developing in this book will be very
flexible, and every feature fully decoupled from the rest. We will allow the re-
searcher to specify the list of activation functions from which the
neuroevolutionary platform should be choosing its activation functions during the
offspring creation and mutation phase, and so switching from evolving neural
networks to evolving digital circuits will be as easy as specifying whether the plat-
form should use list A, composed of [tanh, sin, Gaussian...] or list B, composed of
[AND, NOT, OR...] activation functions.

1.2 Applications 27

Example-1: Evolving a circuit.

Because we evolve our circuits with a particular behavior and feature set in
mind, we can easily come up with a fitness function for it. The first thing we do is
build a training set, a list composed of training tuples: [{X1,Y1},

to produce an output Yi. We want to evolve not only a correct circuit, that has the
logic based on the training set, but also an efficient circuit. Our fitness function
should take into account the transistor cost of every gate. To take both, the cor-
rectness and the efficiency of the circuit into account, our fitness function should
be as follows:

Fitness = A(% of correct outputs) - B(# of AND gates) - C(# of OR gates) - D(# of NOT gates)

Where A, B, C, and D would be set up by the researcher, and be dependent on
how important each of the said features is. The parameters (or even potentially
functions) B, C, and D ensure that the evolved circuits which have the lowest
number of gates but the same correctness as their less efficient cousins, will have a
higher fitness.

Having now set up the training set, the activation function (AF) list our evolv-
ing network will take its AFs from, and the fitness function our neuroevolutonary
system will use, we can start evolving the circuits. As before, we start by creating
a random population of minimalistic digital circuits (NNs). We let each of the
networks go through the training set, and using the fitness function we let the
scape calculate the circuit’s fitness. Once every circuit in the population has fin-
ished, we sort the circuits based on their fitness, choose the most top performing
of the networks, and create their offspring. We generate the circuit offspring in the
same way we did with NNs: first the parent is cloned, and then we mutate the
clone’s topology and parameters. The parametric mutation operators could include
one which mutates one activation function into another. For example the paramet-
ric mutation operator could take any logic gate in the circuit, and then change it to
one of the other gates in the gate list available (OR, NOT, AND). On the other
hand the topological mutation operator could add a new gate in series or in parallel
with another randomly chosen gate already in the network.

Once all of the mutant offspring have been created, we apply the new popula-
tion composed of the fit parents and their mutant offspring to the training set
again, repeating the whole process. In this manner we evolve a circuit through a
complexification process. Let’s go through a possible flow of events in evolving a

that figure the initial population at generation-1, is composed of 4 minimalistic
random circuits: A, B, C and D. We apply each circuit to the training set com-
posed of the input: {[1,1],[-1,-1],[-1,1],[1,-1]}, to which a XOR operation is ex-
pected to produce an output: {-1,-1,1,1}.

{X2,Y2}...{Xi,Yi}], because we know that for every input Xi, we want our circuit

XOR operation from the AND, NOT, and OR gates as shown in Fig-1.15. In

28 Chapter 1 Introduction: Applications & Motivations

Fig. 1.15 This figure shows a possible flow of events in evolving a XOR operation from
AND, NOT, and OR gates.

Let’s say that in this simple example, the fitness function is: Fitness = (% of
correct outputs). Each circuit in the population is fed the input signals, and the cir-
cuits output is checked against the expected output for each input (Note that the
NOT circuit (A) can only accept the first value of each input vector in the input
vector set, and does not care about the value of the second value). Once all the cir-
cuits have produced their outputs to the given inputs, using the fitness function we
calculated that circuits A and B belong to the top 50% of the population, with
scores 0.5 and 0.75 respectively. To maintain a constant population of 4, we re-
move the bottom 50% of the population (circuits C and D), and create two off-
spring from the fit circuits. Though both circuits A and B survive to the second
generation, because circuit B scored higher than A, we allow it to create both of
the new offspring.

Circuit B creates 2 mutant offspring called: E and F. Offspring E is created by
applying two random topological mutation operators to B’s clone. The first opera-
tor adds a random gate before OR, in this case that random gate is AND, and the
second operator adds the OR gate in parallel to the new AND gate. The resulting
circuit is ((p OR q) or (p AND q)). Offspring F is created by applying one muta-
tion operator to B’s clone. This randomly chosen mutation operator adds a NOT

1.2 Applications 29

gate after the existing OR gate. The resulting circuit is: NOT(p OR q). Finally, the
two fit parents themselves, A and B, also both survive to the next generation.

Once all the circuits of the second generation have been created, we again feed
them the Input vectors, and compare their outputs to the Expected Outputs. During
the second generation, circuits B and E are the best performing, both with an equal
score of 0.75. Thus both B and E survive to the next generation, and each creates a
single offspring.

The third generation is composed of the circuits G, B, E, and H, with G and H
being the new mutant offspring. We again test each of the circuits against the In-
put and the Expected Output. During this evaluation, Circuit H gets a perfect score
of 4/4, which means that it has evolved the XOR behavior and is the evolved solu-
tion to the problem.

Though the flow of events could have went differently, sooner or later, even if
it would have taken a few hundred generations and thousands of mutation opera-
tors, a XOR circuit would have been evolved.

Example-2: Optimizing an existing circuit

If we already have an existing circuit, we could try to optimize it by attempting
to decrease the number of gates used, or by creating a version of the circuit whose
topology is more concise. Neuroevolution can use any mutation operators that its
designer wishes to implement. Usually it works by mutating various parameters,
and by adding elements to, and/or deleting elements from, the NN.
Complexification is the neuroevolutionary process of starting from a minimalistic
network and slowly making it more complex by adding various features and struc-
tures, as the evolutionary process tries to create a fitter organism. The process of
pruning on the other hand starts from a complex topology, and then slowly chips
away the unnecessary elements of the network, while trying to maintain the same
functionality and fitness. A complete neuroevolutionary system could use a com-
bination of both, thus it is possible to start with an existing complex network, and
re-factor it into a more concise version if that’s what the fitness function dictates
of evolution.

This type of problem would be tackled by initially creating a population com-
posed of the circuit we wish to optimize and a few of its mutant offspring. We
then apply this initial population to the training set. As would be expected, the ac-
tual circuit we wish to optimize will get the perfect score with regards to function-
ality, but if any of its offspring possess the same level of functionality but with a
more concise topology, they will have the higher total fitness. We could use the
same fitness function as in Example-1 to accomplish this:

Fitness = A(% of correct outputs) - B(# of AND gates) - C(# of OR gates) - D(# of NOT gates)

Here we would make sure that A has the greatest amount of weight, so that the
circuit does not lose any of its functionality during its topological optimization.

30 Chapter 1 Introduction: Applications & Motivations

The B, C, and D of the fitness function will ensure that if through evolution one of
the mutants is a more concise version of the original network, yet it still retains the
same functionality, its fitness score will be higher than that of the original circuit.

The possible mutation operators that we’d want our neuroevolutionary platform
to have for this type of problem are:

1. Desplice: This mutation operator deletes a randomly chosen gate in the circuit,
and directly connects the wires that originally lead to and from this chosen gate
respectively.

2. Perturb_Gate: This mutation operator chooses a random gate and then changes
it from one type to another (from OR to AND or NOT for example).

3. Hard_Delete: This mutation operator removes one of the gates and the wires
leading to and from it, potentially even breaking the circuit.

To produce offspring, we would apply a random number of these mutation op-
erators to each clone. Thus by performing the same steps as in the previous exam-
ple, then if it is possible, a more efficient digital circuit will eventually evolve.
One of the possible open source circuits to which this could be applied is the
OpenSPARC [27] CPU. It is a very large and complex circuit, perhaps applying a
pruning method to some parts of this circuit would work. In the same way, one
could try to evolve OpenSPARC beyond what it currently is through
complexification. Finally, we could also evolve new modules for OpenSPARC,
advancing the CPU even further. With a clever enough graph-evolving algorithm,
this is possible, and advanced and highly effective NN branch predictors have
been evolved [34] for CPUs in this manner. Perhaps soon it will be easier to
evolve the next generation of CPUs and all other advanced circuits, rather than
further engineer them.

1.2.9 Optimizing Shapes and Structures

Even the optimization of multidimensional shapes and structures can be ac-
complished through neuroevolution. Let’s say that you’re trying to create some
aerodynamic 3d shape, you also need to make sure that this particular structure
adheres to certain constraints, perhaps some specific mass and volume constraints.
How would you present this problem in such a way that you could use a
neuroevolutionary system to solve it?

One way to solve this problem is by using the NN to paint the shape on a mul-
tidimensional substrate (Fig-1.16). A substrate is a hypercube with each of its co-
ordinate axis ranging from -1 to 1. The range for each axis is then divided into K
parts, effectively determining the resolution of that axis. For example if we have a
hypercube with 2 dimensions: X and Y, and we decided that each dimension will
have a resolution of 3, then we divide X and Y ranges into 3 sections each. The X
axis’ sections will range from: -1 to -0.33, -0.33 to 0.33, and 0.33 to 1. The Y ax-

1.2 Applications 31

is’ sections will range from: -1 to -0.33, -0.33 to 0.33, 0.33 to 1. We then give a
coordinate to each section, placing that coordinate at its section’s center. The sec-
tion coordinates for X and Y will be at points: -0.66, 0, and 0.66. What this ac-
complishes is that we now have created a plane whose resolution is 3 by 3, and
each “pixel” on this plane has its own [X,Y] coordinate. For example as shown in
Figure-1.16b, the pixel in the very center is 0.66 by 0.66 units of length on each
side, and has a coordinate of [0,0]. The units of length used, if any, is determined
by the researcher, and is chosen to be specific to the particular problem this meth-
odology is applied, and scaled accordingly.

Fig. 1.16 Examples of multidimensional substrates, with a single dimension in (A), two di-
mensions in (B), and 3 dimensions in (C).

Instead of a 2d substrate, we could use the same approach to create a 3d sub-
strate on the X, Y, and Z axis. Once we’ve decided on the resolution of each axis
in a new 3d substrate we wish to create, the way we can make the NN “paint” or
form the 3d shapes in this hypercube is by feeding it the coordinates [X,Y,Z] of
each voxel, and use the NN’s output to determine whether that voxel is expressed
or not, whether it is filled or whether it’s empty, and even what color it should be
given. For example if we have a NN that accepts an input vector of length 3, and
outputs a vector of length 1, then we can feed the coordinates (vector: [X,Y,Z]),
and use the output vector (vector: [O]) to determine whether that voxel is filled in
or is empty. If O >= 0, then the voxel is filled in, and if O < 0, then the voxel is
empty.

This method could be extended even further, for example our NN could output
a vector of length 3: [E, C, P], where E would determine whether the voxel is ex-
pressed, C would determine the voxel’s color, and P could determine the physical
properties of that voxel. A NN used to shape and determine the properties of a
substrate is shown in Fig-1.17. In this figure a 3d substrate with a resolution of
3x3x3 is simulated in a scape. The NN interfaces with the scape, and requests a
coordinate of each voxel in the substrate, and outputting a vector: [E,C,P], which
specifies whether that voxel is expressed, its color, and from what material the
voxel is made.

32 Chapter 1 Introduction: Applications & Motivations

Fig. 1.17 A NN interfacing with a scape, in which it paints the form, color, and material
used on a 3d substrate.

There are a number of Neural Network systems that are used for this approach,
popularized by HyperNEAT [28], painting shapes on the 2d and 3d substrates. For
example, a 2d version of such system is the Pic Breeder [29], and a 3d version is
the Endless Forms project [30].

In the next example we will examine a possible scenario of evolving an opti-
mized shape for a gas tank using a neuroevolutionary system.

Example-1: Evolving the shape for a gas tank.

We first decide on the number of dimensions. Because a gas tank is a three di-
mensional object, we want to use a 3d substrate to evolve its shape. Because the
substrate’s axis are each -1 to 1, and what we’re evolving is a physical object, we
will need to decide what -1 to 1 represents in real physical units of length, that is,
how this range scales. We could decide that -1 to 1 on a substrate is equivalent to -
0.5m to 0.5m in real space. Thus our substrate, when converted to physical units,
is a 1 cubic meter slab of material, on which we will carve out (evolve) the shape
of the gas tank. We also want to use high resolution for each axis, high enough
that the NN has a smooth enough 3d slab of “clay” to shape, but we don’t want the
resolution to be too high, since we will need to pass each voxel’s coordinate
through the NN. If for example the resolution of each axis is 1000000, then there
are a total of 1000000*1000000*1000000 coordinate triplets that will need to be
passed to the NN, which might make the evaluation of the physical properties of
each evolved shape too slow. For this example, let’s say that the resolution for

1.2 Applications 33

each axis is chosen to be 100. Once the shape has been evolved/optimized, we can
always smooth it out through averaging methods, before creating the metal repli-
ca. In summary, we’re using a 3d substrate, every point [X,Y,Z] in the substrate
specifies a voxel with sides of length 1cm, and we’re using the NN to evolve a 3d
form by painting with 1 cubic cm voxels.

Having now agreed on the substrate’s properties, we need to decide on the in-
terpretation of the NN’s output. Let’s assume that we only wish to evolve the
shape of the gas tank, rather than have the NN to also play around with different
materials from which this gas tank can be shaped. Then, our NNs for this problem
should output a vector of length 1: [E], where E specifies whether the voxel is
filled in or left empty. For every 3d coordinate of a voxel in the substrate sent to
the NN, the network outputs an E, where if E >= 0 then the voxel is filled in, and
if E < 0, then the voxel is empty.

Finally, we now need to come up with a fitness function by which we would
gage how good the evolved gas tank shapes are. Because the physical shape of the
gas tank needs to be made up to some specification, our fitness function should
take various physical constraints into account. If for example we need for the gas
tank to hold at least 1 litre, be no larger than 0.5 meters on each side, and also that
it must be aerodynamic (perhaps this is a miniature plane wing that also holds
fuel), then these constraints need to be somehow represented in the fitness func-
tion, for example as follows:

Fitness = A(% fuel hold constraint) – B(% overstep on dimensional constraint) +
C(aerodynamic properties).

The more fuel the evolved shape can hold, while not overstepping the length,
width, and height, and being as aerodynamic as possible, the more fit is the NN.
By setting A, B, and C, the researcher weighs the importance of each constraint of
the design.

Having now set everything, we can begin the neuroevolutionary process like
we did in other examples. We start a population of minimalistic NNs, and analyze
the shapes they generate in the substrate. Each NN’s crafted 3d shape is scored
based on how well it fulfills the constraints, the NN’s are then sorted based on
their fitness, and the best of the population are allowed to create offspring. Once
the new population composed of the offspring and their fit parents is created, the
process repeats. Neuroevolution continues until a stopping condition is reached (a
NN with a fitness level we find high enough is reached, or after the
neuroevolutionary process has ran for a long enough time). Once the shape is gen-
erated, we can create a physical version of it, perhaps using a 3d printer.

Example-2: Two and three dimensional shape exploration.

It is also possible to “optimize” and explore multidimensional shapes with a re-
searcher being part of the neuroevolutionary process. In this scenario a population
of NNs describe two or three dimensional shapes, and we use the following steps:

34 Chapter 1 Introduction: Applications & Motivations

1. The shapes are presented to a researcher.
2. The researcher decides which of the shapes he finds most interesting.
3. The NN which generated that shape is then chosen to create mutant offspring,

which are the mutated versions of the interesting shapes, with variations of
those shapes and images (if 2d).

4. Then the shape produced by the chosen NN and its offspring are again present-
ed to the researcher...

In a sense, this is selective breeding of art and structure, and an approach based
on Richard Dawkin’s Biomorphs [31]. There are a number of such implementa-
tions available to play around with online. As mentioned, an example of a
neuroevolutionary system that works with 2d substrates, exploring 2d images, is the
Pic Breeder [29]. Another one that explores 3d structures is Endless Forms [30].

1.2.10 Computational Intelligence & Towards Singularity

Perhaps you have picked up this book because you are as immensely interested
in computational intelligence as I am. Because you wish to contribute to the field,
advance it further, and get us that much closer to what some call, the technological
singularity. There is no reason why human or greater than human intelligence
cannot be reached through neuroevolution. After all, it has been done before, and
we are the proof of that, we are the product of that. Our very own brains, carbon
based neurocomputers, have been evolved over billions of years. We already
know the end goal, the approach, the basic building blocks that we should use, so
perhaps we could do the same thing faster in silicone, or some other substrate. To
that end, the field of Neural Networks, and a related and more general field of
Universal Learning Networks (to some degree, this book is in a sense the presenta-
tion of Topology and Parameter Evolving Universal Learning Networks, rather
than simply Neural Networks, since our nodes will be much more general than
neurons) can take you towards that goal. And I’m hoping that this book will help
you on your way of creating such a system, a system capable of evolving some-
thing of that level of complexity, and intelligence.

1.3 A Whirlwind Overview

This book covers the theory and methodology behind a neuroevolutionary sys-
tem. The aim of the book is to present new algorithms, new concepts, and to pro-
vide a detailed tutorial on how to develop a state of the art Topology and Weight
Evolving Artificial Neural Networks (TWEANN) platform using Erlang. This text

1.3 A Whirlwind Overview 35

will guide you step by step, from simulating a single neuron, to building up a
complete and fully general evolutionary platform able to evolve neural network
systems for any application. Source code for everything covered in this book will
be provided and explained within the text, and also be available online as supple-
mentary material [33].

Chapter-1 covers the goals this book seeks to achieve, and the various motiva-
tions for the creation and application of neuroevolutionary systems. In Chapter-2
we begin exploring the morphological and information processing properties of a
single biological neuron, followed by a brief introduction to the properties of bio-
logical neural networks. We then extrapolate the important parts of neural net-
works, and see how an artificial neuron can mirror these signal processing fea-
tures. In Chapters 3 and 4 we discuss evolution, how it optimizes organisms over
time, and how the evolutionary process can be used to optimize and evolve neural
networks. With these basics covered, in Chapter-5 I will make my claims with re-
gards to Erlang, and why I think that it is perfect for computational intelligence re-
search and development, and why I consider it the quintessential neural network
programming language.

In Chapter-6 we will take our first step in developing a concurrent neural net-
work based system. We will implement a single artificial neuron, represented by a
process. Then we will combine multiple such neurons into a simple feed forward
neural network (NN), with each neuron an independent process and thus the whole
neural network being fully concurrent. Having implemented a simple static feed
forward NN, we will develop a genotype encoding for the representation of our
neural network, and a mapping function from this genotype to its phenotype,
which is the actual neural system.

In Chapter-7 we will implement an augmented version of the stochastic hill-
climbing (SHC) optimization algorithm, and add it to the simple NN system we
have created. Having created a proper optimization algorithm and a decoupled
method of applying our NN system to problems through something we call a
Scape, we will conclude the chapter with us benchmarking the developed
optimizable NN system on the XOR emulation problem.

In Chapter-8 we take our first step towards neuroevolution. Having developed a
NN system capable of having its synaptic weights optimized, we will combine it
with an evolutionary algorithm. We will create a population_monitor, a process
that spawns a population of NN systems, monitors their performance, applies a se-
lection algorithm to the NNs in the population, and generates the mutant offspring
from the fit NNs, while removing the unfit. We add topological mutation operators
to our neuroevolutionary system, which will allow the population_monitor to
evolve the NNs by adding new neural elements to their topologies. With these fea-
tures added to our neuroevolutionary system, the chapter concludes with us now
having developed a simple yet fully distributed and powerful Topology and
Weight Evolving Artificial Neural Network (TWEANN) platform.

36 Chapter 1 Introduction: Applications & Motivations

In Chapter-9 we test the various mutation operators, observing the types of to-
pologies the operator produces when applied to a simple default seed NN. This
chapter concentrates on debugging, testing, and analyzing our neuroevolutionary
system. Because we have implemented quiet a number of mutation operators, we
test how they work, and debug the problem hiding within.

Before moving forward with further expanding and improving our TWEANN
platform, we take Chapter-10 to discuss a TWEANN case study. In this chapter I
present a case study of a memetic algorithm based TWEANN system called
DXNN which I developed through Erlang. In this chapter we discuss the various
details and implementation choices made while building it. We also discuss the
various features that it has, and which we will need to add to the system we’re
building in this book, which itself has a much cleaner and decoupled implementa-
tion, and which by the time we’re done will supersede DXNN. After exploring the
ideas contained in the DXNN case study, we continue with advancing our own
platform in the following chapters.

In Chapter-11 we modify the implementation of our TWEANN system, making
all its parts decoupled from one another. By doing so, the plasticity functions, the
activation functions, the evolutionary loops, the mutation operators... become in-
dependent, called and referenced through their own modules and function names,
and thus allowing for our system to be crowdsourced, letting anyone else modify
and add new activation functions, mutation operators, and other features, without
having to modify or augment any other part of the TWEANN system. This effectively
makes our system more scalable, and easier to augment and improve in the future.

In Chapter-12 we extend the population_monitor process to keep track of the
evolved population, building up a trace of its performance, and keeping track of
the various evolutionary parameters of the evolving species by calculating perfor-
mance statistics every X number of evaluations, where X is set by the researcher.

In Chapter-13 we add the benchmarker process which can sequentially spawn
population_monitors and apply them to some specified problem. We also extend
the database to include the experiment record, which the benchmarker uses to de-
posit the traces of the population’s evolutionary statistics, and to recover from crashes
to continue with the specified experiment. The benchmarker can compose experi-
ments by performing multiple evolutionary runs, and then produce statistical data
and gnuplot ready files of the various statistics calculated from the experiment.

In Chapter-14 we create two new benchmarking problems. To be able to test a
neuroevolutionary system after having made some modification requires problems
more complex than the simple XOR mimicking problem. Thus in this chapter we
create the pole balancing benchmark (single and double pole, with and without
damping), and the T-Maze benchmarking problem.

In Chapter-15 we add plasticity to our direct encoded NN system. We imple-
ment numerous plasticity encoding approaches, and develop numerous plasticity

1.4 Endgame 37

learning rules, amongst which are variations of the Hebbian Learning Rule, Oja’s
Rule, and Neural Modulation.

In Chapter-16 we add substrate encoding to our neuroevolutionary platform.
Substrate encoding, popularized by HyperNEAT, is a powerful encoding method
which uses the NN to paint the synaptic weights and connectivity patterns on a
multidimensional substrate with embedded neurodes within. A Substrate Encoded
NN system (SENN) offers superior geometrical regularity exploitation abilities to
the NN based agent, when such geometrical regularity is present within the prob-
lem domain.

In Chapter-17 we add substrate based plasticity. We implement the ABC and
the Iterative plasticity rules.

At this point we will have one of the most advanced, fully distributed, and an
incredibly general TWEANN platforms to date (as you will see, this is not an
overstatement). Thus we begin the applications part of the book, and apply our
developed systems to two very different and interesting areas: Artificial Life, and
autonomous currency trading.

In Chapter-18 we develop Flatland, a 2d artificial life simulator. We create
new morphological specifications, sensors, and actuators, which can then be used
by our NN based system to spawn an avatar within the flatland simulated 2d
world. Through the avatar the NN will be able to interact with the environment,
and other avatars inhabiting it. Afterwards, we run a number of experiments ap-
plying our system to the ALife simulation, and then plot the results produced by
the benchmarker process for each such experiment.

In Chapter-19 we create a Forex simulator, a private scape with which our
neuroevolutionary system can interface, and evolve to autonomously trade curren-
cy pairs. We perform numerous experiments, and develop a system that analyzes
not merely the sliding window based input signals, but the actual graphical charts,
and through substrate encoding is able to extract the geometrical patterns within
those charts.

With the entire platform now developed, Chapter-20 will conclude this book
with a concluding discussion on neuroevolution, the new and improved version of
the DXNN platform that we’ve developed here, the role such systems will play in
evolving general computational intelligence based systems in the future, and the
movement towards singularity.

1.4 Endgame

Make no mistake, there is absolutely nothing mystical about the human brain, it
is nothing more than a carbon based neurocomputational machine, a vast directed
graph structure composed of biological signal processing elements we call neu-

38 Chapter 1 Introduction: Applications & Motivations

rons. A vast parallel computing system carved out in flesh by billions of years of
evolution. The goal of creating a non-biological substrate based Computational In-
telligence(CI) system of similar and greater potential is not a matter of if, but of
when. The projects like “The Blue Brain Project” [32] in which large cortical col-
umns are simulated on a super computer, demonstrate that the silicone based sys-
tems perform just like their biological counterparts. We already know that it is
possible for machines to think, you and I are the very proof of that, our brains are
organic computers, chemical based computing machines and nothing more. It does
not matter what performs the computation, a wet slimy cell, or an immaculate sili-
cone based processing unit... as long as both elements can accept the same input
and produce the same response, they will generate the same minds. It makes no
difference whether this vast Neural Network system called the brain is carved on a
biological substrate, or etched in a non-biological one. And unlike the supersti-
tious and backwards humans, the universe itself simply does not care whether the
computations are conducted in flesh, or in machine, as long as they are the same
computations...

But before all these grand goals are realized though, we still need to create the
tools to build systems with such potential, we still need to build the substrate, the
hardware fast enough to support such a CI system, and finally we need a pro-
gramming language capable of representing such dynamic, fault tolerant, and fully
distributed Neural Networks and the ideas behind them. The necessary hardware is
improving at a steady pace, moving in the right direction of ever increasing num-
ber of cores and per-core computational power with every year, and so it is only
the programming language which could offer the scalability, extendibility, and ro-
bustness to the neurocomputational system that is still lacking. I believe that I
found this neural network programming language in Erlang, and I will demon-
strate that fact in this book.

1.5 References

[1] Bedau M (2003) Artificial Life: Organization, Adaptation and Complexity From the Bottom
Up. Trends in Cognitive Sciences 7, 505-512.

[2] Edition S (2005) Artificial Life Models in Software A. Adamatzky and M. Komosinski, eds.
(Springer).

[3] Johnston J (2008) The Allure of Machinic Life: Cybernetics, Artificial Life, and The New AI.
(MIT Press).

[4] Gauci J, Stanley K (2007) Generating Large-Scale Neural Networks Through Discovering
Geometric Regularities. Proceedings of the 9th annual conference on Genetic and evolution-
ary computation GECCO 07, 997.

[5] Siebel NT, Sommer G (2007) Evolutionary Reinforcement Learning of Artificial Neural
Networks. International Journal of Hybrid Intelligent Systems 4, 171-183.

[6] Gomez F, Schmidhuber J, Miikkulainen R (2008) Accelerated Neural Evolution through Co-
operatively Coevolved Synapses. Journal of Machine Learning Research 9, 937-965.

[7] Back T, Schwefel HP (1993) An Overview of Evolutionary Algorithms for Parameter
Optimization. Evolutionary Computation 1, 1-23.

1.5 References 39

[8] Fonseca CM, Fleming PJ (1995) An Overview of Evolutionary Algorithms in Multiobjective
Optimization. Evolutionary Computation 3, 1-16.

[9] Alfredo AM, Carlos AC, Efren MM (2011) Evolutionary Algorithms Applied to Multi-
Objective Aerodynamic Shape Optimization. Studies in Computational Intelligence.

[10] Alon K (2004) Analyzing Evolved Fault-Tolerant Neurocontrollers. In Proceedings of the
Ninth International Conference on the Simulation and Synthesis of Living Systems.
(ALIFE9).

[11] Floreano D, Mondada F (1998) Evolutionary Neurocontrollers For Autonomous Mobile
Robots. Neural Networks 11, 1461-1478.

[12] Engel Y, Szabo P, Volkinshtein D (2006) Learning to Control an Octopus Arm with Gauss-
ian Process Temporal Difference Methods. Advances in Neural Information Processing Sys-
tems 18 c, 347-354.

[13] Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement Learning: A Survey. Journal
of Artificial Intelligence Research 4, 237-285.

[14] Braun H, Weisbrod J (1993) Evolving Feedforward Neural Networks. In Proceedings of
ANNGA93, International Conference on Artificial Neural Networks and Genetic Algorithms.
Inns-bruck: Springer-Verlag

[15] Floreano D, Urzelai J (2000) Evolutionary Robots With On-Line Self-Organization and Be-
havioral Fitness. Neural Networks 13, 431-443.

[16] Boden MA (1994) Dimensions of creativity M. A. Boden, ed. (MIT Press).
[17] Bringsjord S, Ferrucci DA (2000) Artificial Intelligence and Literary Creativity: Inside the

Mind of BRUTUS, a Storytelling Machine. Computational Linguistics 26, 642-647.
[18] Bentley, P., and Corne, D. (2002). Creative Evolutionary Systems P. Bentley and D. Corne,

eds. (Morgan Kaufmann Pub).
[19] Khepera robot: http://www.k-team.com/
[20] The Player Project: http://playerstage.sourceforge.net/
[21] Gazebo, a modern open source 3d robot simulator: http://gazebosim.org/
[22] Sher GI (2010) DXNN Platform: The Shedding of Biological Inefficiencies. Neuron, 1-36.

Available at: http://arxiv.org/abs/1011.6022.
[23] Hastings EJ, Guha RK, Stanley KO (2009) Automatic Content Generation in the Galactic

Arms Race Video Game. IEEE Transactions on Computational Intelligence and AI in Games
1, 1-19.

[24] Penetration Testing Software, Metasploit: http://www.metasploit.com/
[25] A discrete-event network simulator for Internet systems, ns-3: http://www.nsnam.org/
[26] DETER Network Security Testbed: http://isi.deterlab.net/
[27] OpenSPARC, an open source 64bit CMT Microprocessor: http://www.opensparc.net/
[28] Gauci J, Stanley K (2007) Generating Large-Scale Neural Networks Through Discovering

Geometric Regularities. Proceedings of the 9th annual conference on Genetic and evolution-
ary computation GECCO 07, 997.

[29] Picbreeder, a collaborative evolutionary art project: http://picbreeder.org/
[30] Collaborative art, evolving 3d shapes: http://endlessforms.com/
[31] Dawkins R (1986) The Blind Watchmaker. (Norton), ISBN 0393315703.
[32] The Blue Brain Project: http://bluebrain.epfl.ch/
[33] All source code developed in this book is also available at: https://github.com/

[34] Vintan LN, Iridon M (2002) Towards a High Performance Neural Branch Predictor. In
IJCNN99 International Joint Conference on Neural Networks Proceedings (IEEE Service
Center), p. 868-873.

CorticalComputer/Book_NeuroevolutionThroughErlang

http://www.k-team.com/
http://playerstage.sourceforge.net/
http://gazebosim.org/
http://arxiv.org/abs/1011.6022
http://www.metasploit.com/
http://www.nsnam.org/
http://isi.deterlab.net/
http://www.opensparc.net/
http://picbreeder.org/
http://endlessforms.com/
http://bluebrain.epfl.ch/
https://github.com/CorticalComputer/Book_NeuroevolutionThroughErlang
https://github.com/CorticalComputer/Book_NeuroevolutionThroughErlang

Part I

FOUNDATIONS

In this first part we will cover the necessary foundations for this text. We will

first discuss what neural networks are and how they function, both the biological
and the artificial kind. Afterwards we will briefly cover evolutionary computation,
its history, and how the various flavors (genetic algorithms, genetic programming,
evolutionary programming, evolutionary strategies) are related to each other. Hav-
ing now covered the two main parts separately, neural networks and evolution, we
will delve into how the combination of the two works, and thus start our discus-
sion on Neuroevolution. We will talk about a few different approaches to
neuroevolution, and the accomplishments such systems have made thus far.
We will note how related they are to genetic programming, and how indeed

neuroevolutionary systems can be simply considered as a variation on genetic

d. What benefit we will gain by using it, and
ge of choice for this text, and this research in

general.

programming language for this fiel
programming systems. Finally, we will discuss why Erlang is such an important

why I have chosen it as the langua

Chapter 2 Introduction to Neural Networks

Abstract In this chapter we discuss how the biological neurons process infor-
mation, the difference between the spatiotemporal processing of frequency encod-
ed information conducted by a biological neuron and the amplitude and frequency
encoded signals processed by the artificial neural networks. We discuss the vari-
ous types of artificial neural networks that exist, their architectures and topologies,
and how to allow such neural networks to possess plasticity, which allows the neu-
rons to adapt and change as they process presynaptic signals.

Our brains are biological parallel computers, composed of roughly
100,000,000,000 (one hundred billion) signal processing elements called Neurons.
Like a vast graph, these neurons are connected with each other in complex topo-
logical patterns. Each neuron in this vast processing graph accepts signals from
thousands of other neurons, processes those signals, and then outputs a frequency
encoded signal and passes it onwards to thousands of other neurons. Though each
neuron on its own is relatively easy to understand, when you connect together a
few billion of them, it becomes incredibly difficult to predict the outcome given
some specific input. If you are careful and connect these biological signal pro-
cessing elements in some particular pattern, the final output of this vast graph
might even be something useful, an intelligent system for example. An output sig-
nal can for example control muscle tissue in your legs, so that they move in syn-
chrony and give you the ability to walk and run. Or this vast neural network’s out-
put can be a solution to some problem which was fed into it as an image from its
sensory organs, like cameras or eyes for example. We don’t yet completely know
how and which neurons, and in what patterns we need to connect them to allow us
to produce useful results, but we’re getting there, we’re reverse engineering the
brain [1].

Evolution used billions of years to try out trillions upon trillions of various
permutations of chemical setups for each neuron and connections between them...
we and other inhabitants of this planet are the result of this vast stochastic optimi-
zation, an optimization for a more fit replicator (a gene). We are, as Richard Daw-
kins noted, that replicator’s tools of survival, we are its survival machines [2,3].

In biological organisms born of evolution, there was only one goal, to create a
copy (usually mutated due to environmental factors), to create an offspring. Bil-
lions and billions of permutations of atoms and simple molecules and environ-
ments on this planet eventually resulted in a molecule which was able to copy it-
self if there was enough of the right material around it to do so. Of course as soon
as such a molecule appears in the environment, it quickly consumes all the raw
material its able to use to create copies of itself... but due to radiation and the sim-
ple fact that biology is not perfect, there are variations of this molecule. Some of

DOI 10.1007/978-1-4614- - , © Springer Science+Business Media New York 2013 4463 3_2
43 G.I. Sher, Handbook of Neuroevolution Through Erlang,

44 Chapter 2 Introduction to Neural Networks

these mutant clones of the molecule were smaller and unable to replicate, others
were able to do so more efficiently when using raw materials, yet others were
even able to break apart surrounding compounds to make the missing necessary
raw materials... though it’s still just chemistry at this point, in essence this is al-
ready competition and predation. The replicating molecules are competing against
each other, not by choice, but simply because that’s what naturally happens when
something can make copies of itself. Anything that does not make a copy, does not
take over the environment, and is either expunged from the environment, or used
as raw material by replicators.

The molecules split and vary/mutate, new features are added, so that for exam-
ple some new molecule is able to break apart another molecule, or merge with it.
If some complex molecule does not replicate in some manner or another, it has no
future... because it will not create an offspring molecule to carry its behavior for-
ward in time.

These mutations, variations, collisions between molecules and atoms, all giving
a chance for a more fit replicator to emerge, this was occurring on the entire sur-
face of the planet, and below it. The entire planet was like a computational system,
where every inch of the surface gave space for the calculations of the mutations
and permutations of molecules to take place... And after billions of years, trillions
upon trillions of these replications and mutations, more and more fit systems
emerged. Sure, most of the mutations were harmful and produced mostly unfit off-
spring that could not replicate at all, or were able to replicate but at a slower pace
or lower efficiency level... But when you have trillions of opportunities for im-
provement to work with... no matter how small the probability, eventually, every
once in a while... a better combination of molecules results in a better replicator,
able to take advantage of some niche within the environment... That is evolution.

Through these trillions of permutations, offspring and molecules combined into
better replicators, some of which could defend themselves against other replica-
tors, some of which could attack other kinds of replicators so that they could cre-
ate more of their own kind... To know whom to attack, to know who is composed
of the resources that you need to create an offspring, you need a system that is
able to tell the difference between the different kinds “stuff” out there, you need
some kind of sensory setup... These adaptations continued on and on, and the
competition still rages on to this day, from molecules to groups of molecules,
cells, the “Survival Machines”, tools evolved by the replicators to defend them-
selves, tools growing more and more complex to deal with other rival replicators
and their Survival Machines... a vast biological arms race.

Eventually, through evolution, a new information storage methods was discov-
ered, RNA evolved[9]... the result of all this turmoil is what we see around us to-
day. We are still banding together, we are still competing for limited resources, we
are the “Survival Machines” as Dawkins pointed out, machines used by these rep-
licators, by genes, to wage war on each other and make as many copies of them-
selves as possible. Their newest invention, a feature that evolved to deal with the

2.1 Biological Neural Network 45

ever changing and dangerous world, is an interconnected graph of cells that can
control these Survival Machines more precisely, deal with much more complex
Survival Machines, store information about the world, and keep the genes safe
long enough to create more copies of them, with their own survival machine to
control. One of the most significant features that arisen in biological organisms, is
the parallel biological computer, the vast neural network system, the brain. Over
the billions of years of evolution the brain too has been changed, evolution has
trended toward more complex brains. Evolution has been slowly exploring the
various neural network topologies.

This text is dedicated to the study of evolutionary methods as applied to simu-
lated neural networks. Instead of using atoms and molecules as the building blocks
for our evolutionary algorithms, we will use neurons. These neurons, when
grouped in particular patterns and topologies, form brains. Biological computers
evolved the ability to invent, imagine, scheme, and most importantly, these paral-
lel computers evolved self awareness. Thus we know that such things are possible
to evolve, it already happened, nature has proven it possible, we are the proof. In
this book we will develop non biological neural networks, and we will apply evo-
lutionary principles to evolve neural systems capable of solving complex prob-
lems, adapting to artificial environments, and build a platform that perhaps, some
day, could too evolve self aware NN based agents.

In the following section I will discuss in more detail the Biological Neural
Networks, how they work, how each neuron processes data, how the neuron en-
codes data, and how it connects to other neurons in the vast neural network we call
our brain.

2.1 Biological Neural Network

Our brain is a vast graph of interconnected neurons, a vast biological neural
network. A neuron is just a cell that can accept signals, and based on its chemical
and geometrical properties, produce an output. There are roughly 100 billion neu-
rons in the human brain, with trillions of connections between them. Though it
might seem surprising that they can work so coherently, the result of which is us,
our consciousness and intelligence, it is not surprising at all when we take into ac-
count that it took evolution billions of years and trillions of permutations to fine
tune this system to get the result that we see today.

A typical neuron, as shown in Fig-2.1, is a cell composed of three main parts,
the soma (cell body), the dendrites, and the axon. The soma is a compact body
containing the nucleus, and other standard cell internals, and the dendrites and ax-
on are filaments that extrude from it. A single neuron usually has a large number
of dendrites, all of which branch profusely but usually retain their filament thick-
ness. Unlike the case with the dendrites, a neuron has only a single axon, originating

46 Chapter 2 Introduction to Neural Networks

from a base of the neuron called the “axon hillock”. The axon is usually a long fil-
ament which can branch and thus connect to multiple other neurons, with the ax-
onal filament itself usually getting thinner the further it extends and the more it
branches. “Synaptic signals from other neurons are received by the soma and
dendrites; signals to other neurons are transmitted by the axon. A typical synapse,
then, is a contact between the axon of one neuron and a dendrite or soma of an-
other. Synaptic signals may be excitatory or inhibitory. If the net excitation re-
ceived by a neuron over a short period of time is large enough, the neuron gener-
ates a brief pulse called an action potential, which originates at the soma and
propagates rapidly along the axon, activating synapses onto other neurons as it
goes.” [22].

Fig. 2.1 A typical biological neuron.

2.1 Biological Neural Network 47

It would be difficult to describe the biological neuron and its operation any

pendium of human knowledge, Wikipedia: “Neurons are highly specialized for the
processing and transmission of cellular signals. Given the diversity of functions
performed by neurons in different parts of the nervous system, there is, as ex-
pected, a wide variety in the shape, size, and electrochemical properties of neu-
rons. For instance, the soma of a neuron can vary from 4 to 100 micrometers in
diameter.

 The soma is the central part of the neuron. It contains the nucleus of the cell,
and therefore is where most protein synthesis occurs. The nucleus ranges from
3 to 18 micrometers in diameter.

 The dendrites of a neuron are cellular extensions with many branches, and
metaphorically this overall shape and structure is referred to as a dendritic
tree. This is where the majority of input to the neuron occurs.

 The axon is a finer, cable-like projection that can extend tens, hundreds, or
even tens of thousands of times the diameter of the soma in length. The axon
carries nerve signals away from the soma (and also carries some types of in-
formation back to it). Many neurons have only one axon, but this axon may—
and usually will—undergo extensive branching, enabling communication with
many target cells. The part of the axon where it emerges from the soma is
called the axon hillock. Besides being an anatomical structure, the axon hillock
is also the part of the neuron that has the greatest density of voltage-dependent
sodium channels. This makes it the most easily-excited part of the neuron and
the spike initiation zone for the axon: in electrophysiological terms it has the
most negative action potential threshold. While the axon and axon hillock are
generally involved in information outflow, this region can also receive input
from other neurons.

 The axon terminal contains synapses, specialized structures where neuro-
transmitter chemicals are released to communicate with target neurons.”

in Fig-2.2. First an ion based electrical signal is propagated down the axon, and
towards every branch of that axon down to the axonal terminals. At the synaptic
cleft of those axonal terminals, where the axon is in very close proximity to the
cell bodies and dendrites of other neurons, the electrical signal is converted into a
chemical one. The neurotransmitters, chemical signals, pass the distance between
the axon terminal of the presynaptic neuron, and the dendrite (or soma, and some-
times even axons) of the post-synaptic neuron. How excited the post-synaptic neu-
ron gets, the strength of the signal that the dendrites perceive from these neuro-
transmitters, all depend on the number of receptors that are present on the surface
where the neurotransmitters contact the postsynaptic neuron. Thus, it is the num-
ber of, and type of receptors found on the soma and dendrites that weigh the in-
coming chemical signal, and decide whether it is excitatory when combined with
other signals, or inhibitory. The receptors convert the chemical signals they per-
ceive, back into electrical impulses. This train of signals continues its journey down

more clearly than is done in the following quote [22] from the ever growing com-

The neuron to neuron signaling is a three step electrochemical process, as shown

48 Chapter 2 Introduction to Neural Networks

the dendrites and towards the soma. Thus, as we can see, the complete signal is an
electrical one, converted into a chemical one, and then converted back into an
electrical one.

Fig. 2.2 Neuron to neuron signaling, a three step electrochemical process.

Furthermore, the way the signals are perceived is not based on a single spike, a
single electrical impulse that some neuron A sends to neuron B, but the signal’s
frequency. The message is encoded not in the amplitude, but in the frequency.
Evolutionary this makes perfect sense, in biological systems it would be difficult
to regulate a perfect amplitude as it passes down the wires, but frequency is much
simpler to manage using the imperfect biological wetware.

A neuron B could have hundreds to thousands of axons connecting to its soma
and dendrites. The way a neuron calculates whether it should produce an output
signal, also called action potential or simply spike, at any given time, depends on
the intensity of the electrical signal at the axon hillock at that time, as shown in
Fig-2.3. Since the intensity of the signal experienced by the axon hillock (trigger

2.1 Biological Neural Network 49

zone) depends on how many spikes at that moment excite that region at the same
time, the signal is based not only on how many spikes there are, but also on the
shape of the neuron and the timing of the signals. The neuron performs a spatio-
temporal integration of the incoming signals. If the excitation level at a given time
surpasses its threshold, an action potential is generated and passed down the axon.
Furthermore, the output signal’s amplitude is independent of signals arriving at the
axon hillock, it is an all-or-none type of system. The neuron either produces an ac-
tion potential (if there is enough excitation at the trigger zone), or it does not. Ra-
ther than encoding the message in the action potential’s amplitude, it is encoded in
the frequency, and the frequency depends on the spatiotemporal signal integration
and processing that occur within the soma and at the axon hillock.

The signal is based on the spatial properties of the incoming spikes, because if
the axon hillock is located in a strange position, or its properties are distributed in
space within the neuron differently, it will perceive the incoming signals in a dif-
ferent way. For example, thinking purely mathematically, if the trigger zone is
somehow spread thinly over a great area, then to trigger it we would need to send
electrical signals that intersect on this wide area, the distribution of the incoming
action potentials would have to cover this wide area, all the different places of the
axon hillock that sense the electrical signals. On the other hand, if the axon hillock
is concentrated at a single point, then to produce the same output we would need
to send just a few of the signals towards that point.

On the other hand, the neuron’s signal processing is temporal based processing
because, if for example 10 spikes come across the axon hillock, each at a rate of
1ms after the other, the axon hillock feels an excitation of only 1 spike every 1ms,
which might not be enough excitation beyond the threshold to trigger an output
action potential. On the other hand, if 10 spikes come from different sides, and all
come across the axon hillock at the same time, the intensity now is 10 spikes ra-
ther than one, during the same single ms, which will overcome the biological
threshold and the neuron will send an action potential down the axon.

Thus, the output signal, an electrical spike encoded signal produced by the neu-
ron, is based on the spatial and temporal properties of its input signals. Something

spikes will arrive at the trigger zone using t which defines the arrival at the trigger
zone, t-1 which defines arrival at the trigger zone in 1 delta, t-2 which defines the
arrival at the trigger zone in 2 deltas, and so on. At t-1 we see that there will be 4
spikes, at t-2 only 2. If it requires 3 spikes to overcome the threshold (which itself
is defined by the shape and chemical properties at the axon hillock) and to set off
an action potential down the axon, then the signals arriving at t-2, when they do
finally arrive at the hillock in 2 deltas (time units), will not trigger an action poten-
tial, while the signals currently at t-1 will generate a spike when they finally arrive
at the trigger zone.

similar is shown in Fig-2.3, where I loosely defined the timings of when the

50 Chapter 2 Introduction to Neural Networks

Fig. 2.3 Spatiotemporal signal integration.

Furthermore, the neurons don’t just accept incoming signals and produce out-
going signals, the neurons also change over time based on the signals they pro-
cess. This change in the way neurons respond to signals by adding more receptors
to the dendrites, or subtracting receptors from the dendrites, or modifying the way
their receptors work, is one of the processes by which a neural network learns and
changes its excitability towards certain signals, it is how we accumulate experi-
ence and form memories. Other ways by which a neural network learns is through
the axons branching and making new connections, or breaking old connections.
And finally the NN changes in the way it processes signals through having the
very fluid in which the neurons are bathed changed and chemically modified,
through drugs or other means for example.

The most important part to take away from this chapter is that the biological
neurons output frequency encoded signals, and that they process the incoming fre-
quency encoded signals through spatiotemporal integration of those signals. And

2.2 Artificial Neural Network 51

that the neurons can change over time based on the signals they process, the neu-
rons change biologically, they change their information processing strategies, and
they can form new connections to other neurons, and break old ones. This process
is called neuronal plasticity, or just plasticity. In the next section we will discuss
artificial neural networks, how they function, and how they can differ from their
biological counterparts.

2.2 Artificial Neural Network

Artificial neural networks (NN), as shown in Fig-2.4, are simulated biological
neural networks to different levels of precision. In this section we will cover the
typical artificial neural network, which are not perfect simulations. A typical arti-
ficial neuron, aka neurode, does not simulate a biological neuron at the atomic, or
even molecular level. Artificial neurons are abstractions of biological neurons,
they represent the essentials of biological neurons, their nonlinear signal integra-
tion, plasticity, and concurrency.

Fig. 2.4 An artificial neural network.

As shown in Fig-2.5, like a biological neuron, an artificial one accepts signals
through its artificial dendrites, processes those signals in its artificial soma, and
outputs the processed signals to other neurons it is connected with. It is a concise
representation of what a biological neuron does. A biological neuron simply ac-
cepts signals, weighs each signal, where the weight depends on the receptors on
the dendrites on which the axons from other neurons intercepted, then based on its
internal structure and chemical composition, produces the final frequency encoded
output and passes that output onwards to other neurons. In the same way, an artifi-
cial neuron accepts signals, weighs each signal using its weight parameters, inte-

52 Chapter 2 Introduction to Neural Networks

grates all the weighted signals through its activation function which simulates the
biological neuron’s spatiotemporal processing at the axon hillock, and then propa-
gates the final output signal to other neurons it is connected to.

Fig. 2.5 A detailed look at an artificial neuron’s schematic.

As can be seen from Fig-2.5, there are of course differences. We abstract the
functionality undertaken by the receptors on the dendrites with simple weights,
nevertheless, each incoming signal is weighted, and depending on whether the
weight is positive or negative, each incoming signal can act as an excitatory or in-
hibitory one, respectively. We abstract spatiotemporal signal integration that oc-
curs at the axon hillock with an activation function (which can be anything, and as
complex as the researcher desires), nevertheless, the weighted signals are integrat-
ed at the output point of the artificial neuron to produce the final output vector,
which is then passed onwards to other neurons. And finally, we abstract the func-
tionality undertaken by the axon with simple signal message passing, nevertheless,
the final output signal is propagated, diligently, to all postsynaptic artificial neu-
rons.

The biological neural network is a vast graph of parallel processing simple bio-
logical signal integrators, and the artificial neural network too is a vast graph of
parallel processing simple signal integrators. The neurons in a biological neural
network can adapt, and change its functionality over time, which too can be done
in artificial neural network through simulated neural plasticity, as we will discuss
in later sections, and eventually implement in the NN systems we will build our-
selves.

There is one thing though that differs significantly in the typical artificial neu-
ral networks, and the biological neural networks. The neurons in a biological NN

2.2 Artificial Neural Network 53

frequency encode their signals, whereas in the artificial NNs, the neurons ampli-
tude encode their signals. What has more flexibility? Frequency encoded NN sys-
tems or the amplitude encoded ones? It is difficult to say, but we do know that

means that both possess the same amount of flexibility. The implications of the
fact that both systems are universal Turing machines is that even if a single artifi-
cial neuron does not do as much, or perform as a complex computation as a single
biological neuron, we could put a few artificial neurons together into an artificial
neural circuit, and this artificial neural circuit will have the same processing power
and flexibility as a biological neuron. On the other hand, note that frequency en-
coding signals takes more time, because it will at least take the amount of time be-
tween multiple spikes in the spike train of the signal for the message to be for-
warded (since it is the frequency, the time between the spikes that is important),
whereas in an amplitude encoded message, the single spike, its amplitude, carries
all the information needed.

How much of the biology and chemistry of the biological neuron is actually
needed? After all, the biological neuron is the way it is now due to the fact that it

Wetware has no choice but to use ions instead of electrons for electrical signal
propagation. Wetware has no choice but to use frequency encoding, instead of
amplitude encoding, because wetware is so much more unreliable than hardware
(but the biological neural network as a whole, due to a high level of interconnec-
tions, is highly fault tolerant, reliable, and precise). The human neuron is not a
perfect processing element, it is simply the processing element that was found
through evolution, by chance, the easiest one to evolve over time, that’s all. Thus,
perhaps a typical plasticity incorporating artificial neuron has all the right features
already. We have after all evolved ALife organisms with just a few dozen neurons
that exhibited interesting and evolutionary appropriate behaviors with regards to
food foraging and hunting [5,6,7]. We do know one thing though, the limits of
speed, signal propagation, neural plasticity, life span of the neuron, integration of
new neural systems over the organism’s lifetime, are all limited in wetware by bi-
ology. None of these limitations are present in hardware, the only speed limit of
signal propagation is that of light in a hardware based neural computing system.
The non biological neural computer can add new neural circuits to itself over life-
time, and that lifetime span is unlimited, given that hardware upkeep is possible.

I think that amplitude encoded signaling is just as powerful, and the activation
functions of the artificial neurons, the integration of the weighted signals, is also
as flexible, or can be as flexible as the spatiotemporal signal integration performed
by a biological neuron. An artificial neuron can simulate different kinds of recep-
tor densities on the dendrites by different values for weights. An artificial neuron
can simulate different kinds of neuron types through the use of different kinds of
activation functions. Even plasticity is easy to add to an artificial neuron. And of

use frequency encoding like a biological neural network does. There is absolutely

both, biological and artificial neural networks are Turing complete [4], which

randomly found solution, the easiest solution found by evolution. was the first

course, there are also artificial spiking neural network systems [23,24,25], which

54 Chapter 2 Introduction to Neural Networks

no reason why artificial neural networks cannot achieve the same level of perfor-
mance, robustness, and intelligence, as biological neural networks have.

2.2.1 The Neurode in Detail

In this section we will do a more detailed analysis of the architecture of an arti-
ficial neuron, how it processes an incoming signal, and how such an artificial neu-
ron could be represented in software. In Fig-2.6 we use the schematic of an artifi-
cial neuron in a simple example where the neuron receives two incoming signals.

is simply a bias value, which modifies the neuron’s processing. The neuron pro-
cesses the signal based on its internals, and then forwards its output, in a vector
form, to postsynaptic neurons. In the figure, the “axon” of the neuron branches in-
to 3 strands.

Fig. 2.6 An artificial neuron in action, receiving signals from two other elements, a and b.

Artificial neurons accept vector input signals, and output a vector signal of
length 1. Each input signal is weighted; each element in the input vector is multi-
plied by a weight in a weight list associated with that input vector, and that partic-
ular element in the input vector. Thus, the integration of the incoming signals is
done by calculating a dot product of the incoming vectors and the weight vectors
associated with those input vectors. In the above figure, there are two incoming
signals from other elements, and a bias signal (which we’ll talk about next). The
incoming signal from element ‘a’ is a vector signal of length 2, the signal from el-
ement ‘b’, is a vector of length 3, and the bias signal is a vector of length 1. The
neuron has a weight list for each incoming signal. The weight lists weigh the im-
portance of each input vector. The way we integrate the input signal is by calculat-
ing a dot product of the weights and the input signals. Once the dot product is cal-
culated, we compute the output of the neuron, Output = F(X), where F is the
activation function, and X = Dot_Product + Bias. The neuron then packages this
result into a vector of length 1, like so: [Output], and then fans out this output vec-
tor to the elements that it is connected to. A sigmoid function, or hyperbolic tangent,

Each of the signals is a vector. The third signal is not from any other neuron, but

2.2 Artificial Neural Network 55

is the typically used activation function in artificial neurons. A multi-layered feed

work composed of such neural circuits can do anything.

Now regarding the bias input, it is simply an input vector which is used to in-
crease the flexibility of the neuron by giving it an extra weight that it can use to
skew the dot product of the input signals. Not every neuron needs to have a bias
input, it’s optional, and if the weight for the bias input is 0, then that is equivalent
to a neuron that does not have a bias input at all. The neuron can use the bias to
modify the point at which the weighted dot product produces a positive output
when passed through the activation function, in which case the bias acts as a
threshold. If the bias is a large positive number, then no matter what the input will
be, the neuron has a much greater chance of outputting a positive value. If the bias
is a negative number, then the incoming signals will have to be high enough to
overcome this bias for the neuron to output a positive value. In essence, the bias
controls how excitable in general the neuron is, whereas the weights of the non bi-
as inputs control how significant those inputs are, and whether the neuron consid-
ers them excitatory or inhibitory. In future figures we will use a much simpler
neuron schematic than the one we used in Fig-2.6. Having now demonstrated the
inner workings of a neuron, in the future when diagramming a neuron we will use
a circle, with multiple inputs, and an output link that fans out the neuron’s output
signal.

When we connect a few of these neurons together in the right topology and set
their weights to the right values, forming a small neural network like the one in
Fig-2.7, such a neural network could perform useful tasks. In Fig-2.7 for example,
the neural circuit composed of 3 neurons calculates the XOR of the inputs. We can
demonstrate that this neural circuit does indeed calculate the XOR of its inputs by
feeding it the signals from a XOR truth table, and comparing its output to the
proper output of the XOR logical operator. The input signals, in this case a single
vector of length 2, is fed from the truth table to the neurons A and B, each neuron
calculates an output signal based on its weights, and then forwards that signal to
neuron C. Then neuron C calculates an output based on the inputs it receives from
neuron A and B, and then forwards that output onwards. It is this final output, the
output of the neuron C, that is the output of the neural circuit. And it is this output

Table 1. The XOR truth table, and the vector form which can be used as input/output signals of a NN.
In this table, 1 == true, -1 == false.

Pattern [X1, X2, Y] Input: [X1, X2] Output: [Y]
1 [-1,-1,-1] [-1,-1] [-1]
2 [-1, 1, 1] [-1, 1] [1]
3 [1,-1, 1] [1,-1] [1]
4 [1, 1,-1] [1, 1] [-1]

forward neural circuit composed of neurons using sigmoid activation functions
can act as a universal function approximator [8], which means that a neural net-

that we will compare to the proper output that a XOR logical operator would produce

56 Chapter 2 Introduction to Neural Networks

when fed the same input signals as the neural circuit at hand. The XOR truth table is
shown in the following table, where X1 and X2 are the inputs to the XOR logical
operator, and Y is the XOR operator’s output.

We will now walk through the neural circuit, neuron by neuron, step by step,
and calculate its output for every input in the XOR truth table. As shown in Fig-
2.7, the neural circuit has 3 neurons, A, B, and C. Neuron A has the following
weight vector: [2.1081,2.2440,2.2533], where: W1=2.1081, W2=2.2440, and Bi-
as=2.2533. Neuron B has the following weight vector: [3.4963,-2.7463,3.5200],
where W1=3.4963, W2=-2.7463, and Bias = 3.5200. Finally, Neuron C has the
following weight vector: [-2.5983,2.7354,2.7255], where W1=-2.5983,
W2=2.7354, and Bias=2.7255. With this information we can now calculate the
output of the neural circuit for every input vector, as shown in Fig-2.7.

Fig. 2.7 Calculating the output of the XOR neural circuit.

As can be seen in the above figure, the neural circuit simulates a XOR. In this
manner we could even build a universal Turing machine, by combining such XOR
neural circuits. Another network of neurons with another set of activation func-
tions and neural weights would yield something different...

The main question though is, how do we figure out the synaptic weights and
the NN topologies needed to solve some problem, how for example did we figure
out the weights for each of these 3 neurons to get this neural circuit to act as a
XOR operator? The answer is, a learning algorithm, an automated algorithm that
sets up the weights. There are many types of algorithms that can be used to setup
the synaptic weights within a NN. Some require that we have some kind of train-
ing sample first, a set of inputs and outputs, which a mathematical function can
then use to set up the weights of a neural network. Other algorithms do not require
such prior knowledge, all that is needed is for each NN to be gaged on how well it
performed and how its performance on some problem compares to those of other
NNs. We will discuss the various learning algorithms in section 2.4, but before we

2.3 Neural Networks and Neural Network Based Systems 57

move on to that section, we will first cover the standard Neural Network terminol-
ogy when it comes to NN topological structures, and discuss the two types of
basic NN topologies, feedforward and recurrent, in the next section.

2.3 Neural Networks and Neural Network Based Systems

A neuron by itself is a simple processing element. It is when we interconnect
these neurons together, in parallel and in series, when we form a neural network
(NN), that true computational power emerges. A NN is usually composed of mul-
tiple layers, as the example shows in Fig. 2.8. The depth of a NN is the number of
layers that compose it.

Fig. 2.8 A multi-layered NN, with a NN composed of 3 layers. The first layer has 3 neurons,
the second layer has 1 neuron, and the third layer has 3 neurons.

Using layers when discussing and developing NN topologies gives us an ability
to see the depth of a NN, it gives us the ability to calculate the minimum number
of neurons the input has to be processed by in series, before a NN produces an
output. The depth tells us the minimum amount of non parallel processing that has
to be done by a distributed NN. Finally, assigning each neuron a layer allows us to

58 Chapter 2 Introduction to Neural Networks

see whether the connections from one neuron to another are feed forward, meaning
some neuron A sends signals to a neuron B which is in front of neuron A, or
whether the connection is recurrent, meaning some neuron A sends a signal to
neuron B which itself is behind A, and whose original output signal is either fed
directly to neuron A, or was forwarded to other neurons and then eventually got to
neuron A before it itself produced its output signal (the recurrent signal that it sent
back to neuron B). Indeed in recurrent NNs, one can have feedforward and feed-
back loop based neural circuits, and a neuron B could have sent a signal to neuron
A, which then processed it and sent its output back to neuron B... When a neural
network is composed of neurons whose output signals go only in the forward fac-
ing direction, such a network is called a feedforward NN. If the NN also includes
some recurrent connections, then it is a recurrent NN. An example of a
feedforward and a recurrent neural network is shown in Fig-2.9.

Fig. 2.9 An example of a Feedforward and a Recurrent neural network.

As can be seen in the recurrent NN example, neuron A receives a signal from
somewhere, processes it, sends a signal to neuron B, which processes the signals
sent to it and then sends an output signal to neuron C, D, but also a recurrent sig-
nal back to A and itself.

2.3 Neural Networks and Neural Network Based Systems 59

2.3.1 Recurrent Neural Networks and Memory Loops

What is significant about recurrent neural networks is that they can form
memory circuits. For example, the Fig-2.10 shows four examples of a recurrent
NN. Note that in 2.10A, the neuron sends a signal back to itself. This means that at
every moment, it is aware of its previous output, and that output is taken into ac-
count when producing a new output. The neuron has memory of its previous ac-
tion, and depending on the weight for that recurrent connection, its previous signal
at time step T can play a large or a small part in its output at a time step T+1. In
2.10C neuron 1 has a recurrent connection to neuron 2, which outputs a signal
back to neuron 1. This neural circuit too forms a memory system, because this cir-
cuit does not simply process signals, but takes into account the information from
time step T-2, when making a decision with regards to the output at time step T.

Fig. 2.10 An example of recurrent NNs that could potentially represent memory loops. A is
a general, 3 layer recurrent neural network, with 3 recurrent connections. B is a self recur-
rent neuron, which thus has a trailing memory of its previous output, depending on its
weight with its own recurrent connection. C is a two layer recurrent NN, with neuron-2 re-
ceiving a signal from neuron-1, which processes the signal that came from neuron-2 in the
first place, thus neuron-2 receives a signal that it itself produced T-2 steps before, pro-
cessed by neuron-1. Finally, D is a one layer recurrent NN, which has the topology of a flip
flop circuit.

Why T-2?, because at T-2 neuron 1 outputs a signal to 2 rather than itself, it is

60 Chapter 2 Introduction to Neural Networks

then at T-1 that 2 outputs a signal to 1, and it is only at time T that 1 outputs a sig-
nal after processing an input from some other element, and a signal it output at T-
2, which was processed by 2 before coming back to 1 again. Thus this memory
loop is deeper, and more involved. Even more complex systems can of course be
easily evolved, or engineered by hand.

2.3.2 A Neural Network Based System

We have discussed neural networks, and in all figures I’ve shown the NNs as
having input signals sent to them from the outside, but from where? In real im-
plementations the NNs have to interact with the real or simulated world, and the
signals they produce need to be somehow used to accomplish useful tasks and act
upon those real or simulated worlds. For example, our own brain accepts signals
from the outside world, and signals from our own body through the various senso-
ry organs, and the embedded sensory neurons within those organs. For example
our eyes, our skin, our nose... are all sensory organs with large concentrations of
sensory elements that feed the signals to the vast neural network we call our brain.
These sensory organs, these sensors, encode the signals in a form that can be for-
warded to, and understood by, the brain.

The output signals produced by our brains also have no action without some
actuators to interpret those signals, and then use those signals to act upon the
world. The output signals are made sense
ple evolved to know how to respond when receiving signals from the motor neu-
rons, and it is our muscles that perform actions upon the world based on the sig-
nals coming from the biological NN.

Thus, though it is the NN that thinks, it is the NN with sensors and actuators
that forms the whole system. Without our sensory organs, our brain is in the dark,
and without our muscles, it does not matter what we think, because we can have
no affect on, and no way to interact with, the world.

It is the same with artificial NNs. They require sensors, and actuators. A sensor
can be a camera, which can package its output signals in a way that can be under-
stood by the NN, for example by representing the sensory signals as vectors. An
actuator can be a motor, with a function that can translate the NN’s output vector
into electrical signals that controls the actual motor.

Thus it is the whole thing, the sensors connected to and sending the sensory
signals to the NN, and the NN connected to and sending its output signals to the
actuators, that forms the full system, as shown in Fig-2.11. In this book we will re-
fer to such a complete and self contained system, the Sensors connected to the
Neural Network, which itself is connected to Actuators, as the NN based system,

of by the actuators, our muscles for exam-

2.4 Learning Vs. Training 61

or NN based agent. It is only when we are discussing the NN in isolation, the to-
pology of a NN for example, that I will use the term NN on its own. When it’s
clear from the discussion though, the two terms will sometimes be used inter-
changeably.

Fig. 2.11 The Biological and the Artificial Neural Network Systems compared.

Having now discussed the basics of NNs, the different types of topologies, and
what a complete NN system is, and what parts form a NN system, we now move
forward and briefly cover how the classical, typical NNs learn and get trained. In
the following sections we will discuss the typical algorithms used to modify the
weights of the neurons belonging to some NN applied to a problem, and the dif-
ference between the term learning and training.

2.4 Learning Vs. Training

Though most of the time you will hear the terms learning and training used in-
terchangeably when people discuss the processes and algorithms that modify the
weights and the topology of a NN such that it is more fit, such that it is able to
solve some problem it is applied to, in this book we will discriminate between the
two. Take for example the Back Propagation (BP) Learning algorithm we will dis-

62 Chapter 2 Introduction to Neural Networks

cuss in the next section. In that algorithm we have a list of tuples of inputs and ex-
pected outputs. The inputs are the vectors we would feed to a NN system, and the
outputs are the expected outputs we’d like the NN system to produce. The way the

When we think of learning, we think of studying, of one looking at the data,
and then through logic, and explanation to oneself, coming to a conclusion that
something should work this way or that way. The starting NN, and the end result,
are the same NN, and the change to the reasoning, and thus to the topology and
synaptic weights is self initiated and self inflicted. We are the same before and af-
ter we learn something, in a sense that this change in our logic in our perception
was not done from the outside by some external system, but instead, it was us that
has done the change, it was us that had worked and came to the conclusion that
another way of thinking is better, or that something works this particular way...
That is learning. In the BP algorithm we just discussed above, the NNs are static,
they are not learning. We simply bring into existence a NN, see whether how it
behaves now is appropriate and whether it represents the answer to some question,
and then we change its weights, the synaptic weights of the neurons are modified
and optimized from the outside, by an outside supervisor. The NN is trained. This
is something that is referred to in the standard Neural Network literature as Super-
vised Learning, where the NN has a supervisor that tells it whether its answers are
right or wrong, and it is the supervisor (an external algorithm) that modifies the
NN so that the next time it will hopefully produce a better answer.

In true learning, the NNs are able to change on their own through experience.
The NN only lives ones, and during that lifetime it is modified through experi-
ence. And what experience it is exposed to is to a great degree guided by the NN
itself. In the way that what we choose to expose ourselves to, influences what we
learn, and how our perspectives, how we think, and what we know, changes. The
phenomenon of the neural networks changing and adapting through experience, is
due to neural plasticity. Neural plasticity is the ability of the neuron to change due
to experience. Thus for example if we create a large NN system composed of plas-
tic (those possessing plasticity) neurons, and then release it into a virtual environ-
ment and it improves on its behavior, it learns how to survive in the environment
through experience... that is what I would refer to as learning. This is called Unsu-
pervised Learning, and indeed that is completely possible to do in artificial neural

BP learning algorithm works is by letting a neural network output a vector based
on the input, and then use a gradient descent method to change the weight para-
meters of the neurons based on the difference of the NN’s actual output, and the
expected output. Through the application of the BP algorithm, eventually the
difference between the NN’s output and the expected output, is minimized. Once
the error, the difference between the NN’s output and the expected output is below
some threshold, we apply this NN to data that it has not yet seen, and use the NN’s
output as the result, hoping that the NN can generalize from the training set to this
new real world data. When using this algorithm, is the NN really learning?

2.5 Neural Network Supervised “Learning” Algorithms 63

networks, by for example giving each neurode the functionality which allows it to
change its information processing strategy based on the signals it processes.

Thus the main idea to be taken from this section with regards to the difference
between what I call training and learning, is this: The process of training a neural
network is accomplished by changing its weights and topology from the outside,
by some algorithm external to the NN based system. On the other hand, a neural
network is learning if it is adjusting and improving itself of its own volition,
through its exposure to experience and the change of its NN topology and neural
parameters. Thus it would be possible to bootstrap a NN system, by first training
some static system, then adding plasticity to the NN, and then releasing this boot-
strapped NN system into some environment, where based on the bootstrapped part
it is able to survive, and as it survives it is being exposed to the environment, at
which point its plastic neural system changes and adapts, and the NN learns. We
will explore this further in later chapters, after we’ve built a neuroevolutionary
system that can evolve NN systems, and where the NN systems are then released
into some simulated environment. We will evolve NN systems which have plastic-
ity, we will evolve them so that they can use that plasticity to learn new things on
their own.

In the following two sections we will discuss the typical supervised and unsu-
pervised training and learning algorithms respectively.

2.5 Neural Network Supervised “Learning” Algorithms

Supervised learning is a machine learning approach to inferring a target func-
tion from a training data set composed of a set of training examples. Each training
example is composed of an input vector, and a desired or expected output vector.
The desired output vector is also referred to as the supervisory signal. When ap-
plied to neural networks, supervised learning, or training, is an approach to the
modification and automation of weight setting of a neural network through the use
of a supervisor, or external system, that compares the NN’s output to a correct,
pre-calculated output, and thus expected output, and then based on the difference
between the NN’s output and the expected output, modifies the weights of the
neurons in the NN based on some optimization algorithm. A supervised “learning”
algorithm can only be applied to problems where you already know the answers,
where you can build a training set. A training set is a list of tuples, where every
tuple is composed of the input vector, and the expected output vector: [{Input,
ExpectedOutput}...]. Thus we need to know the outputs ahead of time, so that we
can train the neural network before we can use it with input signals it has not yet
seen. Note, this is not always possible. For example, let’s say we wish to create a
neurocontroller for a robot, to survive in some environment. There is no training
set for such a problem, there is no list of tuples where for every camera input that
act as robots eyes there is an expected and correct move that the robot must make.

64 Chapter 2 Introduction to Neural Networks

That is usually never the case, in fact, we do not know what the right move is, if
we knew that, we would not need to create the neurocontroller. Another example
is the creation of a neurocontroller that can make a robotic arm reach for some
point in space. Again, if we knew what the right combination of moves that the
motors needed to make, we would not need for the NN to figure that out.

The most widely used of such supervised algorithms, is the Error Backpropaga–
tion algorithm [10]. The backpropagation algorithm uses gradient descent to look
for the minimum error function between the NN’s output, and the expected output.
The most typical NN topology that this algorithm is applied to, is a standard feed-
forward neural network (though there is a BP algorithm for a recurrent NN topol-
ogy too). As we discussed, a supervised learning algorithm trains a NN to approx-
imate some function implicitly, by training the NN on a set of inputs and expected
outputs. The error that must be minimized is the error between the NN’s output,
and the expected output.

Because we will concentrate on neuroevolution, we will not cover this algo-
rithm in great detail. But an extensive coverage of this supervised learning algo-
rithm can be found in: [11,12]. In summary, the training of the NN through the
backprop algorithm works as follows:

1. Create a multi-layered feed forward neural network, where each neuron has a
random set of weights. Set the neurons in the first/input layer to have X number
of weights, plus bias, where X is the vector length of the input vectors. Set the
last/output layer to have Y number of neurons, where Y is the length of the ex-
pected output vector.

2. For every tuple(i) in the training list, DO:
3. Feedforward Phase:

1. Forward Input(i) vector to the neurons in the first layer of NN.
2. Gather the output signals from the neurons in the last layer of NN.
3. Combine the gathered signals into an Output(i) vector.

4. Backprop Phase:

1. Calculate the error between the NN’s Output(i) and ExpectedOutput(i)
2. Propagate the errors back to the neurons, and update the weights of the

neurons based on their contribution to that error. The weights are updat-
ed through gradient descent such that the error is decreased.

3. The errors are propagated recurrently from the last neural layer to the
first.

5. EndDO
6. Repeat steps 2-5 until the average total error between the NN’s outputs and the

expected outputs is less than some chosen value e.

Schematically, the feedforward phase and the error backprop phase, is demon-
strated in Fig. 2.12.

2.5 Neural Network Supervised “Learning” Algorithms 65

Fig. 2.12 The schematic of the backprop learning algorithm.

The steps of recursively updating the synaptic weights of all the neurons in the
feedforward NN based on the error between the NN’s output and the expected
output is demonstrated by the figure through the step numbers. Starting with step
1, the NN’s output is O, and the expected output is X. If there were more than one
output neurons, then each neuron i would produce an output Oi, and for each Oi
there would be an expected output Xi. The meaning of the steps is elaborated on in
the following list:

1. The neuron in the output layer of the feedforward NN produces an output O.
2. The error of the neuron’s output as compared to the expected output is e, calcu-

lated as: e = Xi-Oi where Xi and Oi are the output of neuron i, and expected
output i, respectively, if there are i number of output neurons in the NN.

3. We calculate b (beta) by multiplying the derivative of the activation function
by e: b = e*AF’(S), where S is the dot product of the neuron’s input signals and
synaptic weights for those input signals.

4. We then calculate the delta (change in) weight for each weight i as follows:
dw(i) = n*b*Xi, where n is a learning parameter chosen by the researcher (usu-
ally between 0.01 and 1), b is the value calculated in step-3, and Xi is the input
i to the neuron, associated with the weight i.

5. We updated every synaptic weight i of the neuron using the appropriate dw(i)
for each Wi. The updated weight is produced through: U_Wi = Wi+dw(i).

6. The next e (error) is recursively calculated for every presynaptic neuron using
the equation: e=Wi*b, where Wi is the synaptic weight associated with the neu-
ron whose output was Xi.

66 Chapter 2 Introduction to Neural Networks

7. We calculate b (beta) by multiplying the derivative of the neuron’s activation
function by e: b = e*AF’(s).

8. We then calculate delta weight for each weight i as follows: dw(i) = n*b*Xi
where n is a learning parameter chosen by the researcher (usually between 0.01
and 1), b is the value calculated in step-7, and Xi is the input i to the neuron,
associated with the weight i.

9. We updated every synaptic weight i of the neuron using the appropriate dw(i).
The updated weights of the neurons are calculated through: U_Wi = Wi+dw(i).

This procedure is continued recursively to the other presynaptic neurons, all the
way to, and including, the first layer neurons.

Thus, to optimize the neural network’s weights for some particular task for
which we have a training set, we would apply the backprop algorithm to the NN,
running it through the training set multiple times, until the total error between the
NN’s output and the expected output is low enough that we consider the NN’s
synaptic weights a solution. At this point we would apply the NN to the real prob-
lem for which we have been training it.

As noted, this can only be applied to the problems for which we already know
the answers, or a sample of answers. This algorithm is used only to train the neural
network, once it is trained, its weights will remain static, and the neural circuit is
used as a program, unchanging for the remainder of its life. There are numerous
extensions and improvements to this basic algorithm, covered in the referenced
texts. But no matter the improvements, at the end of the day it is still a supervised
approach, and the resulting NN is static. In the next section we will briefly discuss
unsupervised learning algorithms, the addition of plasticity to the neurons of a
NN, and other methods which allow the NN to self organize, and adapt and
change through the interaction with the environment, and/or data it comes across.

2.6 Neural Network Unsupervised Learning Algorithms

Unsupervised learning refers to the problem of trying to determine structure in
incoming, unlabeled data. In such a learning algorithm, because the input is unla-
beled, unlike the case with the training data set discussed in section 2.5, here there
is no error or reward signals which can be used to guide the modification process
of neural weights based on the difference between the output and the expected
output. Instead, the NN self modifies its parameters based on the inputs and its
own outputs through some algorithm. There are two general kinds of such learning
algorithms; a learning algorithm can either be a system that has a global view of
the NN, and which uses this global view to modify neural weights (kohonen,
competitive…), or a learning algorithm can be a local on, embedded in each neu-
ron and letting it modify its own synaptic weights based on its inputs and outputs
(hebbian, modulated…).

2.6 Neural Network Unsupervised Learning Algorithms 67

Our brains do not have an external supervisor, our brain, the biological neurons
that compose it, use different types of unsupervised learning, in a sense that they
have plasticity and they change based on their experience. There is evidence that

ries, which means that a neural circuit like the hippocampus can modulate, or af-
fect the topology and neural weights located in other parts of the brain, other neu-
ral networks. Thus, in a sense there is also modulation of learning algorithms at a
more global scale of the neural network, and not just at the level of single neurons.
Our brains of course have evolved the different features, the different rates of neu-
ral learning through experience, and the different neural circuits within our brain
which affect and modulate other parts of our brain...

Though we could include a form of hebbian learning in neurons (discussed
next), and create a large homogeneous hebbian or kohonen neural network... it
will still be nothing more than a clustering network, there will be no self aware-
ness within it. To create a truly intelligent neurocomputing system, we need to
combine static neurons, neurons with plasticity, and different forms of unsuper-
vised learning algorithms... all into a vast neural network. And combine it in a way
that all these different parts work together perfectly, and allow for the whole
emergent NN system to truly learn, which is the case with evolved biological neu-
ral networks.

In this section we cover the unsupervised learning approaches, how to make
neurons plastic, how to allow neurons to change their own weights through expe-
rience... The actual method of putting all these various systems together into a vast
network that can have the potential of true learning, will be the subject of the rest
of this book, with the method taken to accomplish this goal, being evolution. For
the sake of exposure, and because we will use these particular unsupervised forms
of NN learning once we’ve developed our basic neuroevolutionary platform and
began expanding it beyond the current state of the art, we will briefly cover 4 par-
ticular unsupervised learning algorithms next.

2.6.1 Hebbian Learning

In 1949 Donald Hebb proposed a computational algorithm to explain memory
and the computational adaptation process within the brain, he proposed a rule we
now refer to as the Hebbian learning. The Hebbian learning is a neural learning
algorithm that emulates plasticity exhibited by neurons, and which has been con-
firmed to a great extent to exist in the visual cortex [14].

As Hebb noted [26], “The general idea is an old one, that any two cells or sys-
tems of cells that are repeatedly active at the same time will tend to become ‘asso-
ciated’, so that activity in one facilitates activity in the other.”, or more concisely:
“neurons that fire together, wire together”.

the hippocampus plays a very important role [13] in the formation of new memo-

68 Chapter 2 Introduction to Neural Networks

The basic Hebbian rule for associative learning can be written as follows: For
every weight w(i) in a neuron B, we add to the weight w(i) the value dw(i) where
dw(i) = x(i)*O. This equation simply states that if we have a neuron B, which is
connected from a number of other elements, and which produces an output O after
processing the presynaptic x(i) input signals, and has a weight w(i) for every input
signal x(i), then the change in the weight w(i) is x(i)*O. We can see that if both
x(i) and O have the same sign, then the change in synaptic weight is positive and
the weight will increase, whereas if x(i) and O are of opposite signs, then the
weight will decrease for the synaptic connection between neuron B and the pre-
synaptic element which sent it the signal x(i). So then for example, imagine that
we have a NN with 2 neurons, in which neuron A is connected to neuron B. If
neuron A sends a positive signal to neuron B, and this makes neuron B output a
positive signal, then B’s synaptic weight for the connection coming from A in-
creases. On the other hand, if A’s signal to B makes B produce a negative signal,
then B’s synaptic weight associated with A’s signals is lowered. In this manner the
two neurons synchronize. Fig-2.13 demonstrates this scenario and shows the
hebbian rule in action.

Fig. 2.13 Neuroplasticity through Hebbian learning.

In the above figure, we can see that just from one signal coming from Neuron
A , a signal that was positive and thus producing a positive delta weight with re-
gards to the positive synaptic weight of B, B’s neural weight nearly doubled for
the connection with A . A few more signals from A , and the weight aw1 would
have grown significantly larger, and eventually drowned out any other weights to
other links. Thus the problem with the original and very simple Hebbian learning
rule is that it is computationally unstable. For example, as noted, the weights do
not saturate, they can continue growing indefinitely. If that does occur, then the
weights that grow fastest will eventually drown out all other signals, and the out-

2.6 Neural Network Unsupervised Learning Algorithms 69

put of the neuron, being a sigmoid of tanh, will always be 1. Thus eventually the
neuron will stop truly discerning between signals, since its weights will be so large
that no matter the input, 1 will always be the neuron’s output. Another problem is
that, unlike in a biological neuron, there is no weight decay in the original Hebb’s
rule, there is no way for the synaptic weights for the incoming signals to become
weaker.

New learning algorithms that fix computational instabilities of the original
Hebbian rule have been created. For example, three versions of such rules are the
Oja’s rule [15], the Generalized Hebbian Algorithm (GHA) aka Sanger’s rule
[16], and the BCM rule [17]. The Oja’s and BCM rules in particular, incorporate
weight decay, and are more biologically faithful. In Fig. 2.14 I demonstrate how a
neuron using the Oja’s learning algorithm updates its synaptic weights after hav-
ing processed its input vector.

Fig. 2.14 Neuroplasticity through Oja’s rule.

duces a smaller weight increase, but more importantly, if we process a few more
signals, then we would notice that the weight does not grow indefinitely. This
computational system is stable, the weight eventually saturates at some viable val-
ue, and if that particular synapse, and thus the synaptic weight associated with it,
is not stimulated any further by incoming signals (the incoming signals are not as
high in magnitude), the weight begins to decay, memory slowly deteriorates.

The only problem is that, if there were to have been more than one synaptic
weights (w1, w2...wi), they would all still follow the same type of rule, the same
learning rate ‘n’. To make that rule even more flexible, we can employ neuromodu–
lation, which allows for every synaptic weight to update differently from every

As can be seen in Fig-2.14, unlike the original Hebbian rule, Oja’s rule pro-

other, making the plasticity of the neuron even more flexible and realistic. This
form of unsupervised learning is discussed next.

70 Chapter 2 Introduction to Neural Networks

2.6.2 Neuromodulation

In biological neural networks, neuromodulation refers to the process of the re-
lease of several classes of neurotransmitters into the cerebrospinal fluid, which
then modulate a varied class of neurons within reach of the released neurotrans-
mitters. In this manner, a neural circuit that releases the neurotransmitters into the
cerebrospinal fluid, can affect some area of neural tissue, augmenting its behavior
by making it more easily exited or inhibited for example. Neuromodulation can al-
so be direct, when one neuron is connected to another, and depending on this
modulatory neuron’s signals, the behavior of the modulated neuron, the way it
processes information, is modified.

In artificial neural networks, the same can be accomplished. We can allow a
neuron or a neural circuit to use its output to modulate, or control the plasticity
type and the adaptation pace (learning parameter for example) of another neuron
or neural circuit. Thus for example assume that we have 2 neural circuits, A and
B, which form a neural network based system. Circuit A is connected from a set of
sensors, and to a set of actuators. Circuit B is also connected to the same set of
sensors, but its output signals, instead of going to the actuators, are used to modu-
late and dictate how the weights of the neurons in circuit A change and adapt over
time, as shown in Fig-2.15. Thus, in this neural network system circuit B modu-
lates circuit A, and controls that circuit’s ability to learn, pace of learning, and the
learning algorithm in general. Since a neural network is a universal function
approximator, this type of learning algorithm can be highly versatile and robust,
and the modulatory signals produced by the neural circuits can be of any form.

Fig. 2.15 A Neural Network based system with plasticity through neuromodulation. In this
figure, Circuit-B modulates Circuit-A’s learning algorithm.

2.6 Neural Network Unsupervised Learning Algorithms 71

The equation used to add plasticity to a neuron through neuromodulation is:
DWij = L = f*N(A*Oi*Oj + B*Oi + C*Oj). DWij is the delta weight, change in
the synaptic weight of neuron j for the link coming from neuron i. N is the learn-
ing rate, which dictates the general magnitude of weight change after the neuron
processes a signal. A, B, and C are parameters weighting the contribution of the
output signal coming from the presynaptic element i and the output signal pro-
duced by the postsynaptic neuron j, and together forming the non linear plasticity
factor. Finally, the value f is a further modulatory signal which dictates how rapid-
ly, and in what direction the weight will change based on the learning rule L. In
standard neuromodulation, the value f is produced by the modulating neuron or
neural circuit, and the parameters N, A, B, and C are set by the researcher, or
evolved and optimized through a neuroevolutionary process. But the parameters
N, A, B, and C can also be produced by the modulatory neural circuit B in vector
form for each neuron in circuit A, to modulate and give those neurons even more
dynamic neuroplasticity.

In a sense, we can think of Circuit-B as being the biological part of circuit A,
that part which produces plasticity. We can recreate the neural network shown in
Fig-2.15 to be composed not of two separate neural circuits, one which does the
actual processing (A) and one which does neuromodulation (B), but instead com-
posed of one neural network, where every neuron has an embedded circuit B,
which gives it plasticity. This type of neural architecture is shown in Fig-2.16.

Fig. 2.16 Another type of neuromodulatory architecture.

From the above figure, we can see that each neuron now has the functionality
of Circuit-B embedded inside of it. Also, there is a small change in how this new
Circuit-A functions. The embedded Circuit-B does not use as input the signals
coming from the two sensors, but instead uses as its input the same input as the
neuron to which it adds plasticity. In this manner the modulatory circuit sees the
input signals of the neuron which it modulates, making the modulation signal spe-
cific to the data of the neuron in which it is embedded.

72 Chapter 2 Introduction to Neural Networks

An actual example of the steps taken in processing signals by a neural network
with plasticity shown in Fig-2.15 is presented in Fig-2.17. The sequence of events
in such a NN is demonstrated by the numbers given for the various steps, and is
further elaborated in the following list:

1. The two sensors produce signals, and forward them to the neurons in the first
layers of Circuit-A and Circuit-B.

2. The two neurons of Circuit-A process the signals from the two sensors, and
produce outputs. The neuron of Circuit-B also at the same time processes the
signals from the two sensors, producing the output and forwarding it to the neu-
ron in the next neural layer of Circuit-B.

3. The second neuron in the Circuit-B processes the signal coming from the pre-
synaptic neuron.

4. Circuit-B produces the modulatory signal, sending it to all neurons of Circuit-
A. Since the first two neurons in Circuit-A have already processed their input
signals, they use this modulatory signal and then do both, update their synaptic
weights based on this modulatory signal, and update their learning rule parame-
ters, where the used learning rule might be: General Hebbian, Oja’s Rule, or
some other.

5. The neuron in the second layer of Circuit-A produces an output after pro-
cessing the signals sent to it by the two presynaptic neurons in the first layer of
Circuit-A.

6. The neuron in the second layer of Circuit-A uses the modulatory signal sent to
it by Circuit-B in step-4 to update its synaptic weights, and learning rule pa-
rameters.

7. The sensors produce another set of signals and forward those signals to the neu-
rons they are connected to. The loop repeats itself.

Fig. 2.17 Neuromodulation in action.

2.6 Neural Network Unsupervised Learning Algorithms 73

At this point you are probably asking yourself the following question: Sure,
now we can allow for some neuron to learn and adapt, to possess plasticity... but
plasticity is controlled by another type of neural network, so how do we set up that
other neural network’s synaptic weights and parameters so that it can actually
produce the modulatory signals that are useful in the first place? That is a valid
question, in fact, for example in the figure above where we modulate two neurons,
instead of having to set up those neuron’s synaptic weights, we have to set up the
weights of the neurons in Circuit-B, each possessing 2 weights. We can do this
through evolution. Evolution can optimize the synaptic weights and the various
parameters needed by the modulatory neural circuits, which would then modulate
effectively the other neural circuits of the complete neural network.

Unlike the static simple neurons, the neurons shown in the above figure are
complex, plastic, but highly robust and adaptive elements. A neural network of
such elements, evolved to work coherently as biological neural networks do,
would have quite a significant amount of learning ability. We will build such sys-
tems and variants of it in later chapters, we will embed such adaptive and plastic
neural networks in artificial organisms when we’ll apply our neuroevolutionary
system to ALife simulations, and as you will see, such systems do indeed have
high potency, and might be exactly the building blocks needed when the goal is to
evolve an intelligent neurocognitive system.

2.6.3 Competitive Learning

Competitive Learning [18] is another form of unsupervised learning, but unlike
the Hebbian and the neuromodulation methods which add plasticity to each neu-
ron, this one requires some system/process that has a global view of all the neu-
rons forming the neural network undergoing competitive learning. In competitive
learning we have a set of neurons, each of which is connected to a given list of
sensors, and where each neuron competes with the others for the right to respond
to a subset of sensory signals. Over time, competitive learning increases the spe-
cialization of each neuron for some particular set of signals, and thus allows the
NN to act and spontaneously form a clustering/classification network.

A NN which uses competitive learning (CL) is realized through the implemen-
tation of the following set of steps:

1. Choose j number of sensors whose signals you wish to cluster or classify.
2. Create i number of neurons, each connected to all j sensors, and each neuron

using a random set of synaptic weights.
3. DO:

1. Propagate the signals from sensors to the neurons.
2. Each neuron processes the sensory signals and produces an output signal.
3. An external CL process chooses the neuron with the highest output signal

magnitude.

74 Chapter 2 Introduction to Neural Networks

4. UNTIL: The network begins to cluster signals, and a pattern begins to emerge.

This is a simple learning rule that can be used to see if there is a pattern in the
data, and if those signals can be clustered. Fig-2.18 shows a diagram of a NN sys-
tem utilizing the competitive learning algorithm.

4. The CL updates the synaptic weights of that neuron by applying to it a
form of Hebbian learning (by using the Oja’s rule for example).

Fig. 2.18 A neural network employing competitive learning.

2.6.4 Kohonen/Self Organizing Map

A Kohonen map [19], also known as a self organizing map (SOM), is a type of
neural network that in a sense represents a hypercube or a multidimensional grid
of local functions, and through the use of a form of competitive learning the SOM
performs a mapping of data from a high dimensional space into a lower dimen-
sional one, while preserving that data’s topology. These types of neural networks
originated in the 80s and are loosely based on associative memory and adaptive
learning models of the brain. Like the competitive learning neural network, a
SOM system requires a process that has a global view of the NN, so that learning
can be achieved. An example of a 2d SOM system is shown in Fig-2.19.

2.6 Neural Network Unsupervised Learning Algorithms 75

Fig. 2.19 A self organizing map, where the SOM_LA process performs SOM based Learn-
ing Algorithm computations, and synaptic weight updates.

To set up a Kohonen map we create a hypercube based substrate with embed-
ded neurons within, where each neuron has a set of weights and a coordinate with-
in the substrate. Each axis of the hypercube ranges from -1 to 1, and the neurons
are embedded regularly within the substrate (this is somewhat similar to the hy-
percube representation we discussed in Chapter 1.2.10, which is used by the
HyperNEAT system). The actual density, the number of neurons forming the
SOM, is set by the researcher. Finally, each neuron in this hypercube is connected
to the same list of sensors.

The learning algorithm used by a SOM is somewhat similar to one utilized by
the competitive learning we discussed in the previous section. When the sensors
propagate their vectors to the neurons, we check which of the neurons within the
hypercube has a weight vector which is closest to the input vector based on a Car-
tesian distance to it. The neuron whose weight vector is the closest to the input

neurons in the hypercube, where Wv(t+1) is the updated weight vector, Wv(t) is
the neuron’s weight vector before the update, (t) is a monotonically decreasing
learning coefficient similar to the one used in simulated annealing [20,12], I(t) is

the BMU neuron, and decreases the further you move away from the BMU). Once
the new weight vector is calculated for every neuron in the hypercube, the sensors
once again fanout their sensory vectors to the neurons. We continue with this pro-
cess for some maximum X number of iterations, or until (t) reaches a low enough
value. Once this occurs, the SOM’s output can be used for data mapping. A trip
through a single iteration of the SOM learning algorithm is shown in Fig-2.20.

vector is called the best matching unit, or BMU. Once this neuron is found we

the input vector, and Θ(d) is usually the Gaussian or the Mexican-Hat function
on in question (thus it is greatest for of the distance between the BMU and the neur

Wv(t + 1) = Wv(t) + Θ (d)* α I(t) – Wv(t)), to all apply the weight update rule: (t)*(

76 Chapter 2 Introduction to Neural Networks

Fig. 2.20 Self Organizing Map in action.

The following list elaborates on each of the algorithm steps in the above figure:

1. The sensors forward their signals to all the neurons in the substrate (each neu-
ron has its own coordinate).

2. Each neuron in the substrate processes the incoming signals, and produces an
output.

3. A process by the name SOM_LA which has a global view of all the neurons in
the substrate, compares the neural weights to the input vectors for every neu-
ron.

4. SOM_LA finds the neuron whose synaptic weight vector is closest to the input
vector coming from the sensors.

5. SOM_LA updates that neuron’s synaptic weights, and updates the synaptic
weights of the neurons around it, with the synaptic weight update decreasing in
magnitude proportionally to the distance of those other neurons to the win-
ning/chosen neuron.

6. The sensors forward their signals to all the neurons in the substrate... The loop
repeats itself.

There are numerous variations on the original Kohonen map, for example the
General Topographic Map (GTM) and the Growing Self Organizing Map
(GSOM), are two of such advanced self organizing maps.

2.6.5 Putting it All Together

In this chapter we have discussed 4 different types of unsupervised learning al-
gorithms. There are of course many others, like the Hopfield memory network that
models associative memory, and the Attenuated Resonance Theory (ART) NN

2.6 Neural Network Unsupervised Learning Algorithms 77

that models a scalable memory system. We can see that such unsupervised learn-
ing algorithms add plasticity to the neurons, and the neural networks in general.
But, these types of learning algorithms themselves have parameters that need to be
set up before the system can function. And what about the general topology of the
NNs which possess plasticity? After all, we can’t simply add some unsupervised
learning algorithm to a random NN structure, and then expect it to immediately
possess intelligence. The way neurons are connected to one another in the NN, the
topology itself, is just as important, if not more so, than the synaptic weights of the
neurons. A neurocognitive system possessing intelligence will certainly have to
utilize many of these types of NNs and the different plasticity types they possess.
This possible future neurocognitive system will integrate all these learning neural
circuits into a single, cohesive, synchronized, vast neural network system, pos-
sessing the topology and architecture similar to an example shown in Fig-2.21.

Fig. 2.21 A possible vast NN composed of neurons with and without plasticity, and different
interconnected neural circuit modules. The flexibility of an evolved NN based system which
draws upon and uses all the available learning algorithms, encodings, neuron types... could
potentially be immense.

How can we figure out how to put these modules together, how to connect the
neurons in the right manner, how to bootstrap a NN system so that it can take over
from there, and so that its own intelligence and ability to learn can continue the
work from that point onwards? That problem has already been solved once before,
we are the result; the solution is evolution.

78 Chapter 2 Introduction to Neural Networks

2.7 Summary

In this section we have discussed how biological neurons process information,
their ability to integrate spatiotemporal input signals, and change their signal pro-
cessing strategy, a process called plasticity. We then discussed how artificial neu-
ral networks process signals, and that the most common such neural networks deal
with amplitude encoded signals, rather than frequency encoded signals as is the
case with biological neural networks. Although as noted, there are artificial neural
networks called spiking neural networks, which like biological NNs deal with fre-
quency encoded signals.

We then discussed the various topologies, architectures and NN plasticity rules.
We discussed how a recurrent NN exhibits memory, and how the Hebbian, Oja’s,
and neuromodulation learning rules allow for NNs to adapt and change as they in-
teract and process signals. Finally, we discussed how the various parameters and
topologies of these NNs can be set, through evolution, allowing for the eventual
vast NN to incorporate all the different types of learning rules, plasticity types, to-
pologies, and architectures.

With this covered, we move to the next chapter which will introduce the sub-
ject of evolutionary computation.

2.8 References

[1] The Blue Brain Project: http://bluebrain.epfl.ch/
[2] Dawkins R (1976) The Selfish Gene. (Oxford University Press), ISBN 0192860925.
[3] Dawkins R (1982) The Extended Phenotype. (Oxford University Press), ISBN 0192880519.
[4] Hornik K, Stinchcombe M, White H (1989) Multilayer Feedforward Networks are Universal

Approximators. Neural Networks 2, 359-366.
[5] Sher GI (2010) DXNN Platform: The Shedding of Biological Inefficiencies. Neuron, 1-36.

Available at: http://arxiv.org/abs/1011.6022.
[6] Parisi D, Cecconi F, Nolfi S (1990) Econets: Neural Networks That Learn in an Environment.

Network Computation in Neural Systems 1, 149-168.
[7] Predators and Prey in simulated 2d environment, Flatland: http://www.youtube.com/

watch?v=HzsDZt8EO70&list=UUdBTNtB1C3Jt90X1I26Vmhg&index=2&feature=plcp
[8] Hassoun MH (1995) Fundamentals of Artificial Neural Networks. (The MIT Press).
[9] Lynch M (2007) The Origins of Genome Architecture S. Associates, ed. (Sinauer Associates

Inc).
[10] Haykin S (1999) Neural Networks: A Comprehensive Foundation J. Griffin, ed. (Prentice

Hall).
[11] Rojas R (1996) Neural Networks: A Systematic Introduction. (Springer).
[12] Gupta MM, Jin L, Homma N (2003) Static and Dynamic Neural Networks From Fundamen-

tals to Advanced Theory. (John Wiley & Sons).
[13] Di GG, Grammaldo LG, Quarato PP, Esposito V, Mascia A, Sparano A, Meldolesi GN,

Picardi A (2006) Severe Amnesia Following Bilateral Medial Temporal Lobe Damage Oc-
curring On Two Distinct Occasions. Neurological sciences official journal of the Italian Neu-
rological Society and of the Italian Society of Clinical Neurophysiology 27, 129-133.

http://bluebrain.epfl.ch/
http://arxiv.org/abs/1011.6022
http://www.youtube.com/watch?v=HzsDZt8EO70&list=UUdBTNtB1C3Jt90X1I26Vmhg&index=2&feature=plcp
http://www.youtube.com/watch?v=HzsDZt8EO70&list=UUdBTNtB1C3Jt90X1I26Vmhg&index=2&feature=plcp

2.8 References 79

[14] Kirkwood A, Rioult MG, Bear MF (1996) Experience-Dependent Modification of Synaptic
Plasticity in Visual Cortex. Nature 381, 526-528.

[15] Oja E (1982) A Simplified Neuron as a Principal Component Analyzer. Journal of Mathe-
matical Biology 15, 267-273.

[16] Sanger T (1989) Optimal Unsupervised Learning in a Single-Layer Linear Feedforward
Neural Network. Neural Networks 2, 459-473.

[17] Bienenstock EL, Cooper LN, Munro PW (1982) Theory For The Development of Neuron
Selectivity: Orientation Specificity and Binocular Interaction in Visual Cortex. Journal of
Neuroscience 2, 32-48.

[18] Rumelhart DE, McClelland JL (1986) Parallel Distributed Processing M.I.T. Press, ed.
(MIT Press).

[19] Kohonen T (1982) Self-Organized Formation of Topologically Correct Feature Maps. Bio-
logical Cybernetics 43, 59-69.

[20] Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by Simulated Annealing. Science
220, 671-680.

[21] Cerny V (1985) Thermodynamical Approach to The Traveling Salesman Problem: An Effi-
cient Simulation Algorithm. Journal of Optimization Theory and Applications 45, 41-51.

[22] An excellent discussion of neuron and synapse: http://en.wikipedia.org/wiki/Neuron
[23] Gerstner W (1998) Spiking Neurons. In Pulsed Neural Networks, W. Maass and C. M.

Bishop, eds. (MIT-Press), pp. 3-53.
[24] Ang CH, Jin C, Leong PHW, Schaik AV (2011) Spiking Neural Network-Based Auto-

Associative Memory Using FPGA Interconnect Delays. 2011 International Conference on
FieldProgrammable Technology, 1-4.

[25] Qingxiang W, T MM, Liam PM, Rongtai C, Meigui C (2011) Simulation of Visual Atten-
tion Using Hierarchical Spiking Neural Networks. ICIC: 26-31

[26] Hebb DO (1949) The organization of behavior. Wiley, eds. (Wiley)

http://en.wikipedia.org/wiki/Neuron

Chapter 3 Introduction to Evolutionary
Computation

Abstract In this chapter we discuss biological evolution, and the way it has
evolved the organisms and structures that we see around us today. We then extract
the essentials of this natural stochastic search method, and discuss how one could
implement the same, or an even more efficient version, in software. Once the
standard evolutionary algorithm methods are introduced (genetic algorithms, ge-
netic programming, evolutionary strategies, and evolutionary programming), we
also discuss the slightly lesser known memetic algorithm approaches (hybrid algo-
rithms), and how it compares to the already discussed methods. Finally, we dis-
cuss the equivalency between all these methods, and the fact that all of them are
just different sides of the same coin.

Evolutionary computation algorithms are population based optimization algo-
rithms inspired and derived from the Darwinian principles of biological evolution.
Instead of simply listing the general steps of an evolutionary algorithm, let us dis-
cuss evolution in general, and then extract the essence of it, and see how such
principles can be implemented in software, and used to evolve solutions to any
problem.

As has been mentioned to some degree in the first and second chapter, evolu-
tion is the driving force, the phenomenon that has birthed us. What are the princi-
ples of evolution, how does it work? Let us again discuss the history of life on
earth, the path it took, and the evolutionary principles that shaped it.

3.1 Evolution

At its core, replication, creating copies, is really the main thing [1,2,3]. There
can really be no other way for life to emerge, without it all starting with a replica-
tor. After all, whatever does not replicate, does not make copies, and thus will
eventually be drowned out by a system that uses up all the available resources and
makes copies of itself. But how do we get to a replicator, even the most simplest
of ones? It is for this reason why it took billions of years, once you have a replica-
tor things get easy. A simple replicator is just a molecule that through chemical
reactions can make a copy of itself, given that there are resources around it that
can be used. Through physical principles alone, such a molecule simply makes
copies of itself [4,5], a physical chain reaction. But how do we get to such a mole-
cule in the first place is of course the question.

DOI 10.1007/978-1-4614- - , © Springer Science+Business Media New York 2013 4463 3_3
81 G.I. Sher, Handbook of Neuroevolution Through Erlang,

82 Chapter 3 Introduction to Evolutionary Computation

If such a molecule is small and simple enough, then, given enough time (bil-
lions of years), if you randomly bang atoms against each other, in different envi-
ronments, under different circumstances, trillions upon trillions of times per se-
cond, eventually you’ll hit the right combination and such a molecule will arise.
Now there are trillions of stars in our universe, multiple planets for each star, each
planet with a different environment. If simple molecules and atoms are banging
against each other, and normal chemical reactions take place on those planets, and
they do, then given a few billion years, by statistics alone, there is 100% chance
that at one point or another, the right combination of simple inorganic molecules
and atoms will combine just right to create such a simple replicator. And then it
starts...

There’s no avoiding it, probability itself demands it. If there is a chance that
through standard physical properties a particular combination of molecules and at-
oms can come together to form a replicator, then given enough permutations and
chances, that combination of atoms will occur. It might be so rare though, that we
might even be the first ones, but we won’t be the last. Given enough time, sooner
or later another planet will have the right conditions, and be at the right place at
the right time, that after a few billion years on its surface too, the right combina-
tion will occur through probability and chance alone. And that is the spark, that is
the start, after that, there is no choice but for evolution to start carving out a path
toward complexity.

When making copies, sooner or later, there will always be an error. At some
point or another, either due to the environment the replicator is in, or due to a high
energy photon slamming into the replicator, there will be an error, the copy will be
slightly different. Certainly, majority, almost all the errors will end up in the mu-
tated copy being damaged in one way or another. But every once in a while, the
mutant copy will be an even better replicator. It might perhaps be a bit more ro-
bust, and not affected by errors as much (thus being able to produce more surviv-
ing offspring), or it might be more efficient. Whatever the minuscule advantage, if
there is one, then it and its kind will make more copies of itself than its parent rep-
licator, in the long run. Of course at this point there is now not a homogeneous
pool of replicators using up all the available resources, but different kinds, varia-
tions of each other. We now have competition, even if the replicators themselves
don’t know this. After all, the replicator wants to make a copy of itself, and its fit-
ness is defined by how many copies it makes... If another replicator is using up the
same resources, or space, then this is competition.

At this point the replicators could have spread out through the entire planet,
slowly using up the resources, converting the resources into copies of themselves.
And again, due to probability alone, due to stochastics alone, one of the errors dur-
ing replication will end up generating a clone offspring that has the ability to break
apart other replicators around, through its chemical properties alone. This would
be a great evolutionary discovery, this would be the discovery of predation. At the
same time, this would spark a new type of drive towards complexity, because now

3.1 Evolution 83

replicators can affect each other, they are more unstable too, because they can
break each other apart. There is also now a direct competition, if you can be bro-
ken apart by another replicator merely because you are proximal to it, you will not
create any offspring. Any error, where the error is simply a mutation in the created
offspring, that leads to the offspring ability to not be absorbed, or be able to some-
how chemically sense the aggressive replicator, will be of great benefit. Sooner or
later, that combination of mutations will occur.

When such a mutant offspring is birthed, it will be able to create many more
offspring than its parent. Which also means that the amount of replicators that can
be broken up by the aggressive replicators will dwindle... Another mutation that
results in the aggressive replicator having the ability to break apart these new re-
sistant replicators, will certainly be useful. Though of course, it would again take
trillions of mutations that lead no where... but sooner or later, the right mutation
combination, if such a combination of mutations is possible, will occur. This will
lead to a more and more complex type of replicators. It is an arms race between
replicating molecules. It is evolution.

Now remember, all of this is guided simply by the fact that replicators repli-
cate. There is no thinking, it’s simply what they do, create copies. This is a com-
pletely natural process; there is no other way for evolution to be. It has to be repli-
cation, and replication has to be at its core. This is what the natural world is based
on. As soon as a replicator is introduced to the environment through stochastic
processes, there is no other path that can be taken than a path towards an arms race
and evolution towards complexity as the replicators make copies of themselves,
make errors during the creation of those copies, and unknowingly compete for
limited resources as each replicator makes a copy.

At some point a mutation might lead to a replicator to form a sort of molecular
boundary around itself. This will give it an advantage against predation. Again
complexity will have to rise. Stochastic processes will try out different combina-
tions of morphologies. Different combinations of attacking and defending... The
older parents, the first ones, do not necessarily have to be wiped out. But some
will, and some will remain.

We are now at a level of an organism, a replicator with a shell, a replicator with
some kind of protective boundary. Its complexity is increased, this is at the level
of single celled organisms. From there, multi celled organisms are just a few mil-
lion years, a few trillions of combinations and mutation attempts away.

With every new species, with every new biological invention through evolu-
tion, the organisms are not just interacting with each other, they are interacting
with the environment itself. If we start off with a completely flat and boring envi-
ronment, and all the organisms are adept at existing in that simple environment,
and then suddenly one of the organisms evolves an ability to modify it, by for ex-
ample digging holes... then that takes everyone to a whole new level of complexi-
ty. On the one hand, the organism that can dig holes, does not only make the envi-

84 Chapter 3 Introduction to Evolutionary Computation

ronment more complex, but also creates its own niche, and therefore could be-
come more fit and create more offspring. If that organism eventually becomes
dominant through replication, then evolution will drive other organisms towards
species that can deal with this more complex environment... which would require
some kind of chemical or other type of sensory ability. As new organisms arise
that can deal with the new environmental complexity, and have abilities to attack
or defend themselves from environment modifying organisms... new evolved in-
ventions will follow.

The organisms modify the environment, and the environment grows more
complex, requiring the organisms to evolve new methods of dealing with it, of
sensing it, of traversing and surviving in it. The organisms change the entire planet
through their interaction with it. This is a never ending drive towards complexity,
and as you can see, there is really no other way for it to happen. This is what com-
petition and replication leads to.

The stochastic processes of mutation, and the never ending replication and the
resulting competition for resources to replicate continues for billions of years, tril-
lions upon trillions of failed attempts at improvement, and a few successful ones...
until finally you see in front of you what you see today. The replicators have
evolved through arms race a new type of boundary around themselves for protec-
tion against each other.... that eventual end result, through the slow path of time
and mutation, through evolution, that protective boundary and that invention is
you and I, or as Richard Dawkins put it: one of the ultimate survivor machines [6]
that the replicators had evolved.

Now before we begin extracting the algorithm from this biological phenome-
non of evolution, and see how we can do the same thing with software, let us tack-
le the final question, which will also be useful for our understanding of the evolu-
tionary process. The question is, why are there broken links in the organisms we
see today? Why don’t we see a smooth spectrum, all the way from the first repli-
cator, to the complex organisms like mammals?

There are many reasons for this phenomenon, we will cover two of the sim-
plest. The first way in which such breakages in the phylogenetic tree can occur is
through extinction. Some organism might just be very good at consuming a par-
ticular species. If that organism consumes some other species at a fast enough rate,
that other species will become extinct. If the environment continues to change as
the new, and younger species interact with it, the older species from eons past,
might not be fit for it, and they will become extinct. For example, as plankton and
other oxygen releasing organisms covered earth, more and more oxygen was re-
leased, and higher and higher concentration of it were present everywhere. Any
species to which oxygen was toxic, for some reason due to its chemical makeup
for example, that species would become extinct if it did not evolve fast enough in-
to an oxygen tolerant species, and evolution is just stochastics, so not every spe-
cies would have the chance to evolve. Any species that needed a high carbon dioxide

3.2 Extracting the Essentials of Biological Evolution 85

content in the atmosphere, would become extinct as the concentration of oxygen
increased at the expense of carbon dioxide...

The second reason for the breakages in the phylogenetic tree is due to the evo-
lution of the species as a whole through interbreeding. For example, let’s say there
is some ape that creates an offspring. That offspring has had just the right muta-
tions which gave it a slightly larger brain. Its genetics are different, we have just
witnessed the birth of a new type of ape. Now that ape is still close enough genet-
ically to its parents, and so it can breed with the apes in that species. His genetic
mutation is advantageous. This new ape will breed, and some of his offspring will
inherit this genetic pattern that gives them a larger brain. Eventually that new mu-
tation will spread through the population, over the next hundreds of generations.
Thus, this whole population, the community of apes, will integrate this new com-
plementary mutation, and the whole population evolves together. The old popula-
tion, the old species, changes into a new one as it integrates new genetic patterns.
Through such mutations we can go from species A to species B smoothly, over
thousands of generations, without even leaving a trace of there ever being an A,
because through slow change the population has become B. Then today, we would
only see a species B.

With regards to reason 2, you might then pose a question, what about the fact
that we do sometimes see species A and B? That also can occur, as another exam-
ple, let’s say we have a population, and as it explores the environment and spreads
through it, it separates into a few different groups. The mutation is rare, and it will
occur in one of the groups, in one of those subpopulations. If those subpopula-
tions, if those groups do not interbreed, because for example they have become
separated by a large distance, geographically, then when one of these populations
A begins to evolve towards B, the other groups will still stay as A. At some later
time, after thousands of generations, we have a population that has evolved from
A to B, and another that might have not acquired any new mutations, or have went
into another evolutionary direction. And so we would have A, B, and perhaps
some population that evolved in another direction, C for example. Then we would
have 3 species, the original A, and the mutated but sufficiently different species B
and C that can no longer breed with A or each other.

We have now covered the biological properties, how evolution occurs and the
path it takes. In the next section, we will figure out and extract the most essential
parts of evolution, and then see how to create the same form of optimization in
non biological systems.

3.2 Extracting the Essentials of Biological Evolution

The evolutionary process discussed in the previous section needs the following
elements to work: We have to have a population of organisms/agents, and some

86 Chapter 3 Introduction to Evolutionary Computation

way of representing their genome. We need a way to represent their genome be-
cause the process of evolution requires variation, it requires for a process of creat-
ing offspring that have a chance of being different from their parents. The way we
create mutated offspring is by applying mutation operators to the genomes of their
parents, by for example first cloning the parent genome and then mutating that
cloned genome. Another element that is required is the process of selection. In bi-
ological evolution, the most fit organisms are the ones that create the most off-
spring, indeed the ability to create offspring (which requires the organism to have
enough resources, and be able to successfully compete against other organisms) is
that which defines the organism’s fitness.

But when we evolve programs, they are not always applied to the problem
where they have control over their replication processes. Neither do we want to
add any more complexity to the agents, the complexity which would be needed for
their ability to decide on when and how to replicate. Finally, each agent will not
know his own fitness with relation to the rest, thus each agent will not know how
many offspring it should create if any, and we would not want to leave such deci-
sions in that agent’s “hands” in the first place, since we want to be able to guide
the evolution ourselves. Thus, the selection process is a method of choosing those
agents, or those genomes, that are more fit than others.

If you think about the genotype being in a search space, and the phenotype be-
ing in the solution space, with the evolutionary algorithm trying out genotypes in
the search space, and mapping each genotype to a phenotype in the solution space,
to see whether it is, or how close it is, to the right solution, then an evolutionary
algorithm is simply an advanced search algorithm. It is an optimization algorithm,
where the term optimization simply means, searching for the best. The algorithm
conducts a search for solutions, trying out different genotypes, and checking if
they represent better solutions or not, as shown in Fig-3.1.

Fig. 3.1 Evolution as a search algorithm, from search space to solution space.

Thus, to sum it up, an evolutionary process requires a population of agents and
a way to represent their genotypes in the search space. It requires reproduction, a
way for parents to create offspring by creating new variations of their own geno-
types. It requires a mapping system, to convert the genotype (in the case of biological

3.2 Extracting the Essentials of Biological Evolution 87

organisms, DNA & RNA) in the search space, to phenotypes (the actual organism,
its morphology, and its behavior) in the solution space. Finally, it requires a selec-
tion method, a way to choose the fit agents, a way to discern the fit from the unfit.
Thus, evolution is a directed parallel search, directed by the principle of survival
of the fittest, however that fitness is defined.

In the biological evolution, there was a point before the first replicator
emerged, when various atoms and molecules simply collided with each other ran-
domly... until one of those combinations was a replicator. But in artificial evolu-
tion, we do not need to have that moment, we can create the initial population of
simple organisms, and decide how their genotypes are represented, so that they
can be mutated, mapped to their phenotypic forms, and evaluated for fitness.
Based on all these essentials, the evolutionary process can be represented with the
following set of steps:

1. Create a seed population of simple organisms. The organisms must have both,
genotypic and phenotypic representations, and a function capable of mapping
between the two. The genotype must have a form such that mutation operators
can be applied to it, thus allowing the population of organisms to evolve.

2. Create a fitness function, a function that can give each agent in the population a
fitness score, such that the agents can be compared against one another, to see
which is more fit.

3. DO:

1. Evaluate each organism’s fitness in the population. Give each organism a
fitness score using the fitness function, based on that organism’s perfor-
mance.

2. Choose the fit organisms within the population.
3. Remove the unfit organisms from the population.
4. Create offspring from the fit agent genotypes. The offspring are variations

on the genotype of their fit parents. The offspring can be created through
the process of cross over, mutation, or both. For example an offspring can
be created by first creating a clone of a fit parent, and then applying vari-
ous mutation operators to the clone, and thus generating a mutant of the fit
parent.

5. Compose the new population from the offspring and their parents (this
method is called an elitist selection, because the fit organisms of each gen-
eration always survive to the next generation).

4. UNTIL: Termination condition is reached. Where that condition can be some
goal fitness score, or some maximum amount of computational power or time
expanded on the problem to which the evolutionary algorithm is being applied.

Now when I say evaluate each organism’s fitness, I of course refer to the phe-
notype of the organism. The genotype is the representation, it is that to which we
apply mutation operators, it is that string or program from which the actual pheno-
type of the organism can be derived. The genotype is a mutatable encoding of the

88 Chapter 3 Introduction to Evolutionary Computation

organism, a point in the search space of all possible genotypes. The phenotype is
the actual characteristics of the organism, its behavior and morphological proper-
ties, a point on the solution space, of all possible solutions.

For example, in the case of biological organisms, our DNA is our genotype.
Evolution occurs through the mutation of our genotype. We, you and I, are pheno-
types mapped from our genotypes. A genotype is converted to the phenotype by
using some type of mapping function. In the case of biological organisms, it is the
biological process of translating from genes to proteins, and the composition of
those proteins into a cohesive and synchronized organism. It is the phenotype
whose fitness is judged, it is the phenotype that interacts directly with the envi-
ronment it inhabits. And if it is fit enough to survive, and thus to create offspring,
it passes on its genome, sometimes in a mutated form so as to explore other points
in the search space, and thus giving its offspring a chance to perhaps find a better
position in the solution space and achieve an even greater fitness than its parent.

********Note********
Evolution is the process undertaken by a population of agents. What is evolving is the popula-
tion rather than an individual. It is the population as a whole that is changing, through the gen-
eration of new mutant individuals within the population, some of which have the traits more fit
for the environment in which they exist. In a sense, an individual within the population repre-
sents the current state that the population achieved through evolution at that point in its evolu-
tionary history. When it is clear from the content, I will at times state “as the agent evolves…”,
because we can look at any given agent and concentrate only on that agent’s evolutionary
path by back-tracing it through its ancestors, or its earlier forms. Or if we concentrate only on a
genotype’s future offspring which are more fit than it is, and thus trace forward the path of the
genotype through its surviving offspring, the term “as the agent evolves…” also applies.

Though we now know the essentials of evolution, and even the evolutionary
algorithm and the necessary parts that allow it to create variation, and explore
genotypic variations in search for a more fit one, there are still the following two
linked questions we need to answer before we can put this knowledge to use: How
do we represent these genotypes and phenotypes in software? and how do we for-
mulate the problem we’re working on, in evolutionary terms?

In the next section we will discuss the task of problem formulation, and geno-
type/phenotype representation.

3.3 Formulating a Given Problem in Evolutionary Terms

Let us first set out in concrete terms the problem and solution that biological
evolution solves in the real world.

3.3 Formulating a Given Problem in Evolutionary Terms 89

 Problem: If you are a replicator, how do you create as many copies of yourself
as possible in a dynamic and hazardous environment?

 Solution: Put the replicator inside a survival machine, an adaptable system able
to create copies of the replicator with its own similar copy of a survival ma-
chine that can deal with the hardships the environment produces. The replicator
is the gene, as noted by Richard Dawkins.

The way biological evolution solved the problem is by creating trillions of so-
lutions, and then evaluating how good those solutions were. The way to evaluate
the solution is to simply let it interact with the hazardous environment, those solu-
tions that are able to replicate, have a high fitness (dependent on how many copies
it was able to make). The replicator offspring will differ slightly from the parent,
and in this way new solutions are explored again and again, in a hill climbing
fashion. Hill climbing in the sense that if an inferior solution to the current one is
found, it usually does not do well when compared (when it competes) to the cur-
rent solutions, and so it does not survive. There are millions of possible solutions,
ranging from single celled survival machines without any type of adaptive capa-
bilities, to multicellular survival machines that have some embedded information
about the environment, a predisposition of learning certain essential patterns with-
in the environment, and an organ that can remember and adapt to new challenges
within the environment.

Thus, the way the problem is solved is: Take the problem, and let it evaluate
the fitness of the different solutions. Create multiple solutions, and let the problem
decide which are good and which are bad. Then take the good ones, create new
variations of those good solutions, and then repeat this cycle.

We see that the answer depends heavily on the problem to which we wish to
evolve a solution. Let us now take a non biological problem, and formulate it in
such a way that we can apply an evolutionary algorithm to it, and evolve a solu-
tion. For example, let’s say that we have the following problem: We are given
some unknown graph, as shown in Fig-3.2, and we want to find a mathematical
function that represents this graph. How can this problem be formulated in evolu-
tionary terms?

Fig. 3.2 A graph, the problem to which a solution, a function which describes it, needs to be
evolved.

90 Chapter 3 Introduction to Evolutionary Computation

An organism in this problem is some function f(x). The function f(x) is the
genotype of the individual organism. The solution space for this problem is one of
all possible graphs, where we are searching for the graph shown in the figure
above. Thus we map the genotype f(x), to its phenotype, the actual graph of that
function. Finally, the fitness is decided by the solution space, and is based on how
close the graph represented by the organism is to the one in the above figure.

Thus, to evolve a solution to the problem, we would first need to create a seed
population of very simple agents, where each agent is simply a function. We then
compare the graph of each of the functions to the above graph, calculating the
Cartesian distance between each point on the given graph, and the coordinate on
the graph the agent function represents. The fitness is then 1/Cartesian_Distance.
The smaller the total Cartesian distance, the greater the fitness of the agent, and
the more offspring it should be allowed to create. The offspring are mutated ver-
sions of the parent equation; we compose them by taking the fit function, and then
adding, subtracting, multiplying, and dividing it by other primitive functions and
constants. Once the low fitness agents are removed and replaced by offspring
agents, we re-evaluate the whole population again, as per the evolutionary algo-
rithm discussed in the previous section. Eventually, by chance, there will be off-
spring agents, offspring functions, which represent graphs that are closer to the
given graph than their parents. Thus, through evolution, eventually we will find
better and better approximation to the given graph. Eventually, we will evolve a
solution, a function whose phenotype, the graph, is very close to, or even exactly
as, the above given graph.

The above sounds like it should work, and indeed it does work, it is using an
evolutionary approach. We have simply replaced the biological organism’s DNA
by a string f(x) representing the function, and the organism’s phenotype by the
function’s graph. Each organism can have a higher or lower fitness, and that fit-
ness is evaluated based on its performance in the environment, how close the
graph produced by f(x) is to the given graph. Although in this case, unlike in the
biological system, the creation of offspring is done not by the organism/agent it-
self, but by the researcher, or some other outside system created by the researcher.
Nevertheless, the offspring creation process is still dependent on the fitness of the
organism, and thus the main features of evolution are retained. Finally, as men-
tioned, the environment in this problem is not a three dimensional world, but in-
stead is a scape. The environment is the given graph in a sense, and the way to
survive in this environment is to possess a graph that is as close to the given graph
as possible. The only thing we have not yet decided on is how to represent the
genotypes of these agents.

We need to create a genotype to represent these agents such that it makes it
easy for us to apply mutation operators to them, such that it makes it easy for us to
create mutant offspring. The phenotype on the other hand is what is getting evalu-
ated. The phenotype can be the same thing as the genotype, and depending on the

3.3 Formulating a Given Problem in Evolutionary Terms 91

problem, that might even be optimal. For example, the problem might be such that
the goal is to create a particular genotype, in which case we could then evaluate
the fitness of the genotype directly by comparing it to the provided goal genotype.
In this problem though, the phenotype is the actual graph that the function paints,
and we do not know what the genotype of the goal phenotype is. Thus, our agent’s
genotype is the function f(x), and the phenotype of our agent is the graph that f(x)
represents, a graph which can be compared to the goal graph.

One of the representations for a computer program, or a function, which yields
easily to mutation and variation, is through the use of trees, as shown in Fig-3.3.
This is the representation used in Genetic Programming popularized by John Koza
[7,8,9,10].

Fig. 3.3 Function as a tree structure, the genetic programming way.

In such a representation, the non-leaf nodes represent mathematical operators,
and the leaf nodes represent inputs, whether those inputs be variables or constants.
We can then evaluate this tree structure by following the paths from the leafs to
the root, executing the mathematical operators on the input values.

The leaf nodes can be elements like: 0, 1, Pi, X(i) input. The non leaf nodes are
the mathematical functions, and other types of programs. When the problem posed
is mathematical in nature, we can use the following nodes: tanh, +,-, %, /, *, sin,
cos, tan… basically any standard mathematical operators, and trigonometric func-
tions that can be used to form various functions.

This representation makes it very easy to create mutant offspring. For example
we can mutate agents by simply adding new nodes to the tree, in random locations
of that tree. Or we can take two or more trees and swap branches between them,

92 Chapter 3 Introduction to Evolutionary Computation

Fig. 3.4 Evaluating and mutating tree encoded genotypes.

Thus, having now decided on the genotype representation, on the phenotype
representation, and on the fitness function (graph similarity through Cartesian dis-
tance between the agent graph and the goal graph), we can employ the evolution-

thus creating an offspring not through mutation but through crossover. The follow-
ing figure shows the agents with tree like genotypes, the functions that those geno-
types evaluate to, and the mutated genotypes produced through the application of
mutation operators and cross-over.

would then map each of the genotypes to their phenotypes, the graphs they repre-
sent in two dimensional space. For each graph, we would see how close it is to the
wanted graph, and using the fitness function give each of the individuals its fitness
score. Based on these fitness scores we could then choose the top 50% of the pop-
ulation, the most fit of the population, and discard the bottom 50%. We then allow
each of these fit individuals to create a single offspring. The offspring can be mu-
tated clones of their parents, or some crossover between the fittest agents in the
population. Once the offspring are created, we form a new population composed
of the fit parents and their offspring, this new population represents the next gen-
eration. The new population is then once again evaluated for fitness... The evolu-
tionary loop continues.

ary process to evolve a solution to this problem. We would start with a seed popu-
lation of very simple functions, whose genotypes are represented as trees. We

3.3 Formulating a Given Problem in Evolutionary Terms 93

This could continue on and on, and through evolution, through the search con-
ducted in the solution space, more and more fit individuals would arise, those
whose graphs, whose phenotypes, are closer to the wanted graph.

Using these same set of steps we could apply the evolutionary algorithms to
other problems. For example we could create a genotype encoding for antennas,
where the fitness of those antennas is their performance, signal clarity of their re-
ception. In this way we could then evolve new antennas, better at catching some
particular signal. Or we could create an encoding for circuits, after all, circuits are
simply graphs, and graphs are trees with more than one root, as shown in Fig-3.5.

Fig. 3.5 Multi-rooted trees as graphs, and graphs as circuits.

We are then only limited by our imagination, and coming up with how to en-
code the genotypes of something we wish to evolve. There are numerous varia-
tions and “sub categories” of evolutionary algorithms. In the next section we will
briefly discuss them, and how they differ from one another.

3.4 The Different Flavors of Evolutionary Algorithms

You already know how to apply evolutionary computation to various problems.
You need only create a genotype encoding with a mapping to phenotype, a fitness

The fitness function could then be the lowest number of logic gates or transistors,
while maintaining the same functionality as the original circuit. Then, through
evolution, we could evolve more efficient circuits, more efficient CPUs...

94 Chapter 3 Introduction to Evolutionary Computation

function, a selection algorithm, and the mutation operators you wish to apply dur-
ing the reproduction/offspring-creation phase to create variation in the offspring.
The evolutionary process takes care of the rest. Indeed it is so robust, that even a
poorly formulated approach will still usually lead to a good enough solution.

Granted, some approaches do get stuck in local optima. Being deceived by the
environment, by the solution space, and lead to local optimal solutions, never being
able to jump out of that area using the given mutation operators. Thus there are all
kinds of extensions, and advancements made to the simple formulation we’ve
covered. The increasing number of phases during evolution, the specialized muta-
tion operators to give a chance for the offspring to jump far enough from its parent
in the solution space such that it can explore other areas, which might lead to the
global optima... There are approaches that divide the population into species, with
each species only competing with others of its kind, and thus not letting any one
particular highly fit organism to take over. An idea similar to niche finding in evo-
lutionary biology. There are variations on the original algorithm that make fitness
functions take into account how different the genotype, or even the phenotype, of
the agent is from everyone else in the population, giving extra fitness points to
agents that are different from others. Such advanced evolutionary computation al-
gorithms can dramatically improve the speed at which solutions are found, and the
final fitness of the solution.

For the sake of completeness, in this section we briefly discuss the four most
commonly known variations of evolutionary computation (EC) flavors. The four
most common EC flavors are: Genetic Algorithms, Genetic Programming, Evolu-
tionary Strategies, and the Evolutionary Algorithms.

discuss natural evolutionary processes, and emulate the same in artificial systems,
his algorithm implements the standard features of evolution, selection, crossover,
mutation, and survival of the fittest.

The algorithm primarily relies on crossover. Putting the fit individuals into a
“matting pool” from which two random fit parents are then drawn, and their geno-
type is then used to create an offspring. The offspring is created by taking the gen-
otype of individual A, choosing a random sequence slice of it (if represented as a
string), of random length, then doing the same with individual B, and then finally
creating a new offspring C by putting the two sequence slices from A and B to-

3.4.1 Genetic Algorithms

Genetic algorithms (GA) is one of the most well known approaches to evolu-
tionary computation. Although computer simulation of evolution was being ex-
plored as early as 1954, they became popularized in early 1970s, due to John Hol-
land’s book Adaptation in Natural and Artificial Systems [11]. In his attempt to

3.4 The Different Flavors of Evolutionary Algorithms 95

gether. Mutation is also used for the purpose of creating offspring, but is usually
only used lightly, and only for the purpose of maintaining some minimal level of
diversity within the population.

A simple example of evolving individuals through crossover, where the geno-
type is represented as a binary string, and the phenotype as simply the translation
of the bits 0 and 1 to colors green and white respectively, is shown in Fig-3.6.

Fig. 3.6 Evolving an individual that can blend in with a green background, with offspring
creation through crossover.

In the figure above we use GA to evolve an individual capable of blending into
its background, which we have decided to be green. This is somewhat similar to
the story of light and dark moths [12]. The dark moths had an advantage over their
lighter variants due to the background on which the moths would sit being dark,
letting the darker moths blend into their background more effectively than their
lighter cousins. Eventually most of the moths in the location in question became
dark, as the lighter ones stood out in their environment, got eaten by predators, and
thus on average produced less offspring. In this simple setup, the genotype is repre-
sented as a binary string. The phenotype is created by mapping 0 to white, and 1 to
green. If the fitness function is then based on how well an individual is able to
blend into a green background, we would then assume that green individuals are
more fit in such environments, than white individuals which would stand out. In
this example we use crossover. The population is composed of 4 individuals, and
each generation we choose 2 of the 4 individuals that are most fit, and use those fit
individuals to create 2 offspring for the next generation. The offspring are created
by taking parent A and cutting its genotype in two, then taking B and cutting its
genotype in two, finally, we create the two offspring by connecting the random
half from A to a half from B, creating the two new offspring. As can be seen from
the example, eventually, when generation 3 is reached, one of the offspring is
completely green. At this point we would have reached the termination condition,
having achieved the maximum fitness level within the green environment.

96 Chapter 3 Introduction to Evolutionary Computation

Genetic algorithm systems also use mutations, and indeed this same problem
can be just as easily solved through mutation alone, as shown in the next figure.

Fig. 3.7 Evolving an individual that can blend into a green background, through mutation
alone.

The main drawback with old GA approaches is that they primarily utilized stat-
ic sized genotypes. The genotypes could not grow or shrink, if you had started
with a genotype string of size 4, that is all you would have to work with. Later on
this problem was eliminated by simply adding a few extra mutation operators that
could add and subtract sequences from the string encoded genotype, resulting in a
dynamically sized genotype.

3.4.2 Genetic Programming

Genetic programming (GP) is a specialized type of GA that deals with not
string encoded genotypes or chromosomes, but tree based programs. GP evolves
programs represented as trees, similar to the types we developed in Section-3.2
when evolving a solution for the graph problem. GP also comes with a specialized
set of mutation operators, like branch swapping between two individuals to create
an offspring through crossover. Node mutation, node addition, and other types of
mutation operators that the researcher decides to implement. Also, unlike the orig-
inal GA, the genotypes in GP are of variable length, GP can expand and grow
programs/trees of any size. Of course this can also be done by modifying the GA
approach as we discussed, by adding mutation operators to grow and shrink the
string encoded genomes.

GP was originally introduced by Cramer [13], but popularized by Koza [1992].
John Koza has also further modified the genotypes and specialized GP to be ap-
plied in evolution of new materials, antennas, and other structures [14,15]. Having
access to a large cluster of machines, a cluster which he dubbed the “Invention
Machine” [16], John Koza is able to run parallel GP algorithms with large popula-
tions, evolving new programs, and applying the approach to the evolution of pa-
tentable materials and hardware. This invention machine has produced numerous

3.4 The Different Flavors of Evolutionary Algorithms 97

artifacts for which patents were granted. Thus when used to its full potential, evo-
lution is easily able to generate results rivaling, or on par and competitive with, the
innovations produced by human inventors.

3.4.3 Evolutionary Strategies

Thus far we spoke of mutation operators, and said that there is a certain chance
that so and so mutation is applied, or so and so number of offspring are created
from a fit parent... In actual evolutionary systems, we have to specify these proba-
bilities. For example, let us say we have a GP system which creates offspring
purely through the application of mutation operators. For such a system, we can
specify the following evolutionary parameters:

 Only the top X% of the population gets to create offspring, where X = 50.
 Each fit individual creates Y number of offspring, where Y is proportional to

the individual’s fitness in comparison to others, and the available amount of
free space in the population, based on the number of individuals removed due
to being unfit, where: FreeSpace% = 100% - X%, and thus the number of off-
spring that can be created during the generation to fill up the provided free
space: TotalNumberOfNewOffspring = (FreeSpace%)*PopulationSizeLimit.

 Offspring are created by first cloning the fit parent, and then applying K ran-
domly chosen mutation operators from the following list: [Add_New_Node,
Remove_Node, Swap_Node]. Where each mutation operator has a probability
M(i) of being chosen.

 The program representing the non leaf node is chosen randomly from the fol-
lowing list: [*, /, %, +, -, sin, cos, tan, tanh], each being chosen with a proba-
bility of N(k).

 The program representing the leaf node is chosen randomly from the following
list: [Input(n), 1, 0, Pi], each being chosen with a probability of L(I).

As you can see, there are lots of different parameters that need to be set up be-
fore we can run the evolutionary algorithm. The parameters specify the mutation
probabilities, selection probabilities... Evolutionary Strategies (ES), is another var-
iation on the simple GA approach, which evolves not only the genotype, but also
these evolutionary parameters, the evolutionary strategy itself. Thus, as each or-
ganism evolves, the probabilities with which mutation operators are applied, and
various other evolutionary strategy parameters, are also mutated and evolved. The
evolutionary algorithm itself, can change over time for every agent. Thus, we end
up not just with a population of genetically different individuals, but genetically
different individuals which also evolve at different rates, and use different proba-
bilities for choosing various mutation operators during their reproduc-
tion/offspring-creation phase.

98 Chapter 3 Introduction to Evolutionary Computation

Evolutionary strategies [17,18,19] were originally proposed and introduced by
Schwefel, and then continued being researched by Rechenberg a decade later.
There are advantages to this approach. The evolutionary process itself evolves as
well, which is a phenomenon that exists in biological evolution. After all, we are
all susceptible to mutation rates at different levels. Our DNA differs in robustness
from one another, though to a low degree. So there are certainly features in the bi-
ological world where evolutionary strategy changes, if not due to the way DNA itself
is structured, then at least due to the fact that different environments on this planet
have different levels of exposure to mutagens, radiation... Which means that or-
ganisms living in different environments, will have different number of mutation
operators applied to their genotype, and at different intensities. The intensities can
be based on the level of exposure and presence of mutagens in the particular envi-
ronmental niches that the organisms inhabit.

3.4.4 Evolutionary Programming

Evolutionary Programming (EP) is a search algorithm closely related to ES, but
developed earlier, independently, and specialized to the evolution of state transi-
tion tables for finite state machines (FSM). Developed by Lawerence Fogel [20] in
the 1960s during the rise of Artificial Intelligence popularity, and developed for
the purpose of evolving Finite State Machines (FSM) with ability to predict next
actions and environmental states, this particular search algorithm eventually be-
came less and less used, until it finally fell into obscurity. In the 1980s though, it
again gained popularity as it was further advanced and reintroduced to the compu-
tational intelligence community by David Fogel.

This is another variation and specialization of evolutionary algorithms. Like
genetic programming and genetic algorithms, this approach simply specializes in
evolving a different type of genotype. Instead of applying the evolutionary algo-
rithm to the evolution of strings, or tree structure encoded programs, it is instead
used to evolve FSM based systems, with an inclusion of the self adaptability used
by evolutionary strategies.

3.5 A Few Words on Memetic Computing

Memetic Algorithms (MA) sometimes also referred to as Hybrid Algorithms
(HA), are evolutionary algorithms that separate the evolutionary process into two
phases, global search and local search. The global search part of the evolutionary
algorithm might be the type that produces offspring that are spread far and wide
within the solution space by creating those offspring through the use of powerful

3.5 A Few Words on Memetic Computing 99

and high impact mutation operators. The local search would then allow each such
individual in the population to self optimize, to tune in further and explore its local
space/optima and find the best position on it. These types of algorithms have been
found to be extremely efficient, more so than the standard, single phase algorithms
[21,22].

Let us consider an example where we wish to find/evolve a single small trigo-
nometric function as shown in Fig-3.8, using a memetic algorithm. Unlike the
problem discussed in Section-3.3 though, this one is a very simple function, and
we will use a very short, static string based genotype encoding. This simple geno-
type encoding will be as follows: A+B*F(X*C+D)^E, where A, B, C, D, and E are
variables, and F is a function. The variables span the entire number line, whereas
F is a function that can be chosen from the following trigonometric function list:
[Sin, Cos, Tan, Tanh].

Fig. 3.8 Evolving a function using a memetic algorithm to match the goal graph.

Since the evolution is separated into two phases in memetic algorithms, we will
also have two different classes of mutation operators, one for global search, and
one for local search. The global search would then search through all the types of

100 Chapter 3 Introduction to Evolutionary Computation

trigonometric functions. The list composing the mutation operators (in this case
just a single one) for the global search, is as follows: [ChangeF]. The global
search mutation operator list is composed of a single mutation operator that
changes the individual’s trigonometric function from the one it is currently using
to a new one in the trigonometric function list. Each trigonometric function is very
different from every other in its nature, and thus the agents/graphs produced from
the different trigonometric functions will be very different from one another. The
local search is composed of the following mutation operator: [Perterb_Value].
Where the mutation operator is applied to one of the values in the genotype: [A,
B, C, D, E], adding a random value to one of these variables to see if the new phe-
notype, the graph, is a better match to the goal graph. The local search, the explo-
ration of the local solution space by tuning in the values of the function, allows us
to explore each local space of the trigonometric function used, before deciding on
its final fitness score. As can be seen, while the change in the trigonometric func-
tion drastically changes the phenotype, the mutation and perturbation of the A, B,
C, D, or E variables, results in the tuning and small/local changes of the same
phenotype.

When using standard evolutionary algorithms, sometimes evolution might pro-
duce the perfect genotype, it’s just that a few of the parameters need to take on
different values before the phenotype can truly shine. But because evolutionary
algorithm is just a “one-off” type of deal, if this genotype does not have the right
values right there and then, it is given a low fitness score, and then most likely
discarded off. Think of it this way, there might be a position on the solution space
where there is a high fitness position, but the evolutionary algorithm created a so-
lution that is right at the bottom of the this fitness hill. It would be more effective
for each solution to search locally, optimize itself, to truly achieve the potential
that its global parameters possess. This is graphically represented in Fig-3.8,
which again shows the mapping from the genotype/search space to the solution
space, with the solution space also showing the various fitness scores.

Fig. 3.9 A global search, and a local search. Moving up the fitness hill.

3.5 A Few Words on Memetic Computing 101

For example, walking only on two legs requires a significant amount of bal-
ance, it leaves our hands free to use tools. What if a genotype specifying a pair of
legs came into existence, but the part of the brain that deals with balance was still
solving a problem for a quadrupedal system? The phenotype would be unable to
balance, it would thus be given a poor fitness score, and would disappear from the
population. For the bipedal system to work, it would have to be reinvented by evo-
lution with the right balancing neurocontroller at the same time, before it would be
given its true fitness. Solving two problems at the same time, like rolling two dice
to try and hit the same number at the same time, has a much lower probability than
rolling a single die, and then re-rolling the second die until the same number is hit
again. The probability of evolving the right set of parameters in the genotype to
yield a balancing neurocontroller for a bipedal form might be very low. The prob-
ability of evolving bipedal morphology might also be very low. Thus, evolving
both at the same time, to be just right to work together, might have an especially
low probability of occurring. On the other hand, if we have came across the geno-
type for bipedal morphology, and then tune in the various parameters to achieve
the best performance with this morphology and thus produce a neurocontroller to
make this morphology achieve its full potential, is much easier (has a higher prob-
ability of being achieved through pure stochastic processes). That is the pattern of
operation when it comes to memetic algorithms, separating the global and local
searches, however they are defined for a particular genome encoding.

In a sense, a memetic algorithm gives each individual’s genotype in the popula-
tion a chance to demonstrate its best possible fitness. It allows each individual to
show what is possible using its general genotypical properties, given that we can
tune its “local” parameters to work best with its more globally affecting genotypic
structures.

The final example I’ll give for memetic computing, and this is us jumping
slightly ahead to the subject that will be discussed in detail in the next chapter, is
one of evolving neural network systems. In neural networks in particular, as we
saw in Chapter 2, we can make a clear distinction between the neural network to-
pologies, the manner in which the neurons are interconnected, and the synaptic
weights those neurons possess. The global search part could then be done through
the mutation operators which modify the NN’s topology itself. While the local
search can then be accomplished through the tuning of synaptic weights. This
would provide us with scenarios where we could, through mutation, add and con-
nect a few new neurons to an existing NN. But of course simply connecting new
neurons to a NN, each with its own randomly selected activation function and
synaptic weights, will disrupt that NN system, and most likely make it less fit. So
if we then take the time during a separate phase to see if we can tune the synaptic
weights of these new neurons, we can try to make these newly added neurons
work complementary with the already existing and fit NN system.

102 Chapter 3 Introduction to Evolutionary Computation

Through this approach, we give each NN topology a chance to show its true
fitness. We give it time to adjust the synaptic weights, and are then able to judge
the actual topological structure, rather than judging how a random topology works
with a random set of synaptic weights. This two phase memetic approach has
proven to work exceptionally well, and is the method being popularized by the to-
pology and weight evolving systems like DXNN [23] and EANT [24,25].

Are all these systems different: GA, GP, ES, EP, MA? Or are they simply dif-
ferent sides of the same coin? The concluding section of this chapter discusses just
that, before we take our first step and dive into neuroevolution.

3.6 The Different Sides of the Same Coin

Today there are advanced versions of GA, GP, ES, EP, and MA. The lines be-
tween these flavors of evolutionary computation are blurred to the point where it’s
difficult to pinpoint where one system ends and another begins. Indeed, they are
all technically the same. After all, GP is just GA that operates on a tree algorithm.
And if we add the ability to also mutate evolutionary strategy parameters, then
we’ve just went from GA to ES. EP is just GA specialized for finite state ma-
chines, and Memetic Computing (MC) is simply a variation on the standard evolu-
tionary computing, which splits the local and global search into separate phases...

How we represent the genotype and phenotype, and how we map from geno-
type to phenotype, is entirely up to us. Whether we also wish to include the muta-
tion of the evolutionary strategy, the mutation operator probabilities and the par-
ticular list of mutation operators; all of this is up to the researcher to choose. Thus,
all of this is simply evolutionary computation.

For example, there are GP approaches that evolve not trees but strings, and the-
se strings encode operations taken by a computer, a program in linear form. This
type of approach is called linear genetic programming. On the other hand, if in-
stead of a tree we use a graph, the approach is called Cartesian GP. A Cartesian
GP can use any type of function or program for the nodes. If we decide that each
of the nodes should first sum up the incoming signals and then apply the tanh
function to the sum, our Cartesian GP system becomes a neuroevolutionary sys-
tem. Yet in a neuroevolutionary system, the neurons can also use tanh, sin, cos, or
really any other function as well. Learning networks which use different kinds of
activation functions, not just tanh, are referred to as Universal Learning Networks
rather than Neural Networks...

We can use GA to evolve building architectures, by for example encoding in
the string the position of the various elements of the building, and then evolving a
population of such genotypes for some particular fitness, for some particular size
and aerodynamic properties for example. We could also represent the genotype of

the building as a tree, or as a graph, to make it easier for the GA to apply certain
mutation operators... We could also split the single phase of reproduction where
offspring are created through mutation, into two phases. In one phase the offspring
are created through the application of large scale, high intensity mutations. Then
during another phase the offspring could use something like hill climbing, a local
search algorithm, to tune in the various parameters of their phenotype, looking
around in close proximity to their position on the solution space. At this point our
GA would be called MA...

As you can see, everything is pretty much blurred together, a few modifications
to your algorithm, modifications that simply make it easier to encode the genotype
for some particular project you are working on, and there will be those who will
start calling your evolutionary algorithm approach by a new name. These different
names simply make it a bit easier to describe quickly some of the features of your
evolutionary approach. But in reality, when you continue to advance any evolu-
tionary algorithm, trying to make it more agile, more robust, applicable to more
problems... you will continue adding more and more features, including graph en-
coding, linear encoding, multi phase evolution, evolutionary parameter adaptation,
the ability to use functions like tanh, logical operators like XOR, AND... and pro-
grams like IF, While... for the nodes within the genotype... An advanced evolu-
tionary system, one that can be applied to any problem and self adapt to it, seeing
on its own which features, which encoding, and which evolutionary strategy is
best for it, will most likely need to have all of these features.

In conclusion, you can encode the genotype of a system using any type of data
structure you want, as long as you can also create the mutation operators to oper-
ate on that data structure, and a mapper that can map the genotype from that data
structure to its phenotype. It does not matter what that data structure is, or what set
of mutation operators you’re using, whether you’re also using crossover or not,
and whether your evolutionary parameters themselves adapt or not. It’s all the
same evolutionary system, tailored to your problem, by you.

The next chapter introduces neuroevolution, the evolutionary process applied to
the evolution of neural networks.

3.7 References

[1] Cracraft J, Donoghue MJ (2004) Assembling the Tree of Life J. Cracraft and M. J. Do-
noghue, eds. (Oxford University Press), ISBN 0195172345.

[2] Lewontin RC (1970) The Units of Selection. Annual Review of Ecology and Systematics 1,
1-18.

[3] Kimura M (1991) The Neutral Theory of Molecular Evolution: A Review of Recent Evi-
dence. Japan Journal of Genetics 66, 367-386.

[4] Tjivikua T, Ballester P, Rebek J (1990) Self-Replicating System. Journal of the American
Chemical Society 112, 1249-1250.

3.7 References 103

104 Chapter 3 Introduction to Evolutionary Computation

[5] Graur D, Li WH (2000) Fundamentals of Molecular Evolution D. Graur and W.-H. Li, eds.
(Sinauer Associates), ISBN 0878932666.

[6] Dawkins R (1976) The Selfish Gene. (Oxford University Press), ISBN 0192860925.
[7] Luke S, Hohn C, Farris J, Jackson G, Hendler J (1997) Co-evolving Soccer Softbot Team

Coordination with Genetic Programming. Proceedings of the First International Workshop on
RoboCup at the International Joint Conference on Artificial Intelligence 1395: 398-411.

[8] Koza JR (1992) Genetic Programming: On the Programming of Computers by Means of Nat-
ural Selection. (MIT Press), ISBN 0262111705.

[9] Koza JR (1994) Genetic Programming II: Automatic Discovery of Reusable Programs. (MIT
Press), ISBN 0262111896.

[10] Koza JR et al. (1998) Genetic Programming. Morgan Kaufmann Publishers. ISBN
1558605487.

[11] Holland JH (1975) Adaptation in Natural and Artificial Systems J. H. Holland, ed. (Univer-
sity of Michigan Press).

[12] Mike M (1998) Melanism: Evolution In Action. (Oxford University Press).
[13] Cramer NL (1985) A Representation for the Adaptive Generation of Simple Sequential Pro-

grams. In Proceedings of an International Conference on Genetic Algorithms and the Appli-
cations, J. J. Grefenstette, ed. (Lawrence Erlbaum Associates), pp. 183-187.

[14] Koza JR, Bennett FH, Andre D, Keane MA (1999) Genetic Programming III: Darwinian In-
vention and Problem Solving (Morgan Kaufmann), Springer. ISBN 1558605436.

[15] Koza JR, Keane MA, Streeter MJ, Mydlowec W, Yu J, Lanza G (2003) Genetic Program-
ming: Routine Human-Competitive Machine Intelligence. (Kluwer Academic Publishers),
Springer. ISBN 1402074468.

[16] Koza JR, Keane MA, Yu J, Bennett FH, Mydlowec W (2000) Automatic Creation of Hu-
man-Competitive Programs and Controllers by Means of Genetic Programming. Genetic
Programming and Evolvable Machines 1, 121-164.

[17] Hans S. (1974) Numerische Optimerung von Computer-Modellen. (PhD thesis).
[18] Back T, Hoffmeister F, Schwefel HP (1991) A Survey of Evolution Strategies. In Proceed-

ings of the Fourth International Conference on Genetic Algorithms, L. B. Belew and R. K.
Booker, eds. (Morgan Kaufmann), pp. 2-9.

[19] Auger A, Hansen N (2011) Theory of Evolution Strategies: a New Perspective. In Theory of
Randomized Search Heuristics Foundations and Recent Developments, A. Auger and B.
Doerr, eds. (World Scientific Publishing), pp. 289-325.

[20] Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial Intelligence through Simulated Evolution
L. J. Fogel, A. J. Owens, and M. J. Walsh, eds. (John Wiley & Sons).

[21] Moscato P (1989) On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts:
Towards memetic Algorithms. citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.9474 Ac-
cessed March 20 2012

[22] Krasnogor, N. (1999). Coevolution of Genes and Memes in Memetic Algorithms. Proceed-
ings of the 1999 Genetic And Evolutionary Computation Conference Workshop Program,
1999-1999.

[23] Sher GI (2010) DXNN Platform: The Shedding of Biological Inefficiencies. Neuron, 1-36.
Available at: http://arxiv.org/abs/1011.6022.

[24] Kassahun Y, Sommer G (2005) Efficient Reinforcement Learning Through Evolutionary
Acquisition of Neural Topologies. In Proceedings of the 13th European Symposium on Arti-
ficial Neural Networks ESANN 2005 (ACM Press), pp. 259-266.

[25] Siebel NT, Sommer G (2007) Evolutionary Reinforcement Learning of Artificial Neural
Networks. International Journal of Hybrid Intelligent Systems 4, 171-183.

Chapter 4 Introduction to Neuroevolutionary
Methods

Abstract Neuroevolution is the machine learning approach through neural net-
works and evolutionary computation. Before a neural network can do something
useful, before it can learn, or be applied to some problem, its topology and the
synaptic weights and other parameters of every neuron in the neural network must
be set to just the right values to produce the final functional system. Both, the to-
pology and the synaptic weights can be set using the evolutionary process. In this
chapter we discuss what Neuroevolution is, what Topology and Weight Evolving
Artificial Neural Network (TWEANN) systems are, and how they function. We
also discuss how this highly advanced approach to computational intelligence can
be implemented, and what some of the problems that the evolved neural network
based agents can be applied to.

We have talked about how the genotype encoding, the mapping from genotype
to phenotype, and the phenotypic representation of that genotype, is all completely
up to us. We can apply the evolutionary process to any problem, just as long as we
can come up with a good genotype encoding and a set of mutation operators that
we can use to generate offspring from the fit individuals in the population.

In Chapter 2 we discussed neural networks, ways to optimize and train them
(through back propagation for example), and how to imbue them with plasticity,
such that they can truly learn and self organize, and adapt on their own, as biolog-
ical neural systems do. Still though, the self organizing maps, and the Hebbian
learning rule based plasticity imbued neurons, are not general. Self organizing
maps (SOM) can only be applied to some specific problems, and when we are cre-
ating a SOM, we don’t really know what map density we should use, what param-
eters we should use with the map, and what set of inputs to feed it with. The same
goes for competitive neural networks. Finally, with regards to plasticity imbued
neurons, though each neuron can adapt and learn, it is the neural network as a
whole, all its various parameters, and the NN’s topology that determines what the
cognitive system does. Each neuron might have plasticity, but it only learns if eve-
rything is synchronized in the neurocognitive computer, only if the parameters the
neurons are using and the topology of the NN as a whole, all have the right set-
tings to do something useful.

Thus, we still need a way to set up all these various parameters in the NN, and
to be able to grow and interconnect vast neural networks composed of neurons
which have plasticity. For complex problems, supervised learning like the back-
propagation will not work, plus we need something to set the right topology and
NN parameters, not just the synaptic weights of the neurons...

DOI 10.1007/978-1-4614- - , © Springer Science+Business Media New York 2013 4463 3_4
105 G.I. Sher, Handbook of Neuroevolution Through Erlang,

106 Chapter 4 Introduction to Neuroevolutionary Methods

There is one optimization algorithm that can do all of this, that can optimize
and grow neural network (NN) systems. That algorithm is of course, the evolu-
tionary algorithm. In this chapter we discuss how we can combine neural networks
and evolutionary computing into a single system: a neuroevolutionary system.

4.1 Neural Network Encoding Approaches and Mutation
Operators

As we discussed, an evolutionary approach can be used with anything, as long
as we can come up with its genotype representation, genotype encoding, and a set
of mutation operators (programs that can change the genotype). Neural networks
are graphs, which themselves are simply multi rooted trees. All that is necessary is
for us to come up with how to represent the genotype, how to encode it, and a set
of mutation operators that is flexible enough for the evolutionary process to be able

 given the chance to apply some set of
these mutation operators in some order.

4.1.1 Neural Network Mutation Operators

What would be a good set of mutation operators for the evolution of neural
network systems? Well, we know that we need a way to tune the weights of the
neurons, thus we need some kind of mutation operator that can modify a synaptic
weight. We also need the NN to be able to expand, grow, and have new neurons
added to it. Thus, we need a mutation operator that adds new neurons. There are
different ways of adding a new neuron: for example we can select an existing lay-
er in the NN and then add a new neuron to that layer and connect it randomly from
some randomly chosen neuron and to some randomly chosen neuron in the NN.
Or, we can grab two neurons that are already connected, and then disconnect them
and reconnect them through a newly created neuron. Finally, another mutation op-
erator that could be of use is one that adds new synaptic connections. For this new
synaptic connection establishing mutation operator, we choose a random neuron in
the NN, and then connect it to another randomly selected neuron in the NN. These
types of mutation operators are referred to as: “complexifying”, they add to the ex-
isting NN and make it more complex, they grow the NN. A few examples of these
types of mutation operators being applied to a simple NN, are shown in Fig-4.1.

to evolve any genotype A into a genotype B,

4.1 Neural Network Encoding Approaches and Mutation Operators 107

Fig. 4.1 Complexifying mutation operators.

Fig. 4.2 Deleterious mutation operators.

 , . .

type of graph A to a graph B, where
graph B is a subgraph of A. Thus, a neuroevolutionary system should also have
access to mutation operators that can randomly select and delete neurons in the
NN, and randomly select and delete connections between neurons and other ele-
ments in the NNs, as shown in Fig-4.2.

computation and allow it to get from any

Sometimes it is also a good idea to be able to prune, or remove connections and
neurons from a NN. After all, environments change, and a phenotypic feature that
might have been useful at one point, might no longer be useful in the new envi-
ronment. A way to simplify a NN, or a graph in general, can be useful in evolutionary

108 Chapter 4 Introduction to Neuroevolutionary Methods

In Chapter-2 we also noted the distinction between NNs and NN systems,
where the NN systems are NNs connected to the sensors and actuators from which
and to which they receive and send signals respectively. Thus, the ability of evolu-
tion to integrate and add new sensors and actuators to the NN system is of course a
must. After all, though we might start the evolutionary process with a simple NN
system, evolving a neurocontroller for a robot when that robot only has access to a
camera for a sensor, and a set of motors connected to wheels for actuators, over
time there might be new sensors and actuators that are built and become available
to that robot. Thus, we want our neuroevolutionary system to have the mutation
operators that can integrate and try out these new sensor and actuator systems with
the evolving NN over time, to test out if the resulting NN becomes more robust
and more fit when taking advantage of its new hardware. A diagram example of
such evolutionary paths, and mutation operators applied to a NN, is shown in Fig-4.3.

Fig. 4.3 Mutation operators that add new sensors and actuators.

The way we implement all these various mutation operators (MO) will of
course depend on the genotype encoding we use, it will depend on how and what
kind of data types we use to represent the NN system. MOs are a set of programs
that operate on the genotype, to produce the mutation effects we’ve just discussed.
In the following section we will briefly discuss a few ways in which we can en-
code the NN genotypes.

4.1.2 Neural Network Genotype Encoding

There are any infinite number of ways that we can come up with to
store/encode and represent neural network systems. They are after all graphs, and
so we could choose any standard manner in which graphs are usually stored. We

4.1 Neural Network Encoding Approaches and Mutation Operators 109

could encode our NN systems using a string format, strings composed of tuples
that contain the input and output node ids, and synaptic weights. A string encoding
method is for example the method used in a neuroevolutionary system called

maps to, is shown in Fig-4.4.

Fig. 4.4 A string encoded neural network.

You can note that just by reading the string, it is not so easy to immediately
form the image of what the phenotype, what the actual NN looks like based on its
genome. The genotype is composed of two parts, a string of tuples that specify the
node ids and node types, and a string of tuples that dictate the connections and
synaptic weights between the neurons.

The mutation operators we would need to implement to work with this type of
genome encoding would need to be able to add and delete such tuples. For exam-
ple a mutation operator that adds a new connection between two nodes would first
randomly choose the ids of two nodes from the node string, and then compose a
tuple that specifies the link between these two nodes, and a random synaptic
weight for the postsynaptic neuron of this connection. A synaptic link deleting
mutation operator would simply remove any one of the tuples in the connection

other nodes in the NN, would first simply create a new tuple in the node string,
with its own unique id, and then add two tuples to the connection string. One tuple
would specify the connection from some existing presynaptic node to the new
node, and the other tuple would specify a synaptic connection from the new node
to some other random postsynaptic existing node in the neural network. Two ex-
amples of mutation operators being applied to this form of genotype encoding, and
the resulting phenotypes, are shown in Fig-4.5.

NEAT [1]. An example of this genotype encoding method, and the small NN it

string. A mutation operator that adds a new node and connects it randomly to

110 Chapter 4 Introduction to Neuroevolutionary Methods

Fig. 4.5 Applying mutation operators to a string encoded neural network.

Another encoding method, which is relational database friendly, human reada-
ble, and is thus much easier to reason about and change/mutate, is the one used by
DXNN [2] neuroevolutionary system. The encoding simply specifies all the details
of each neuron in its own tuple, where the simplified version of this type of tuple
has the following format: {Id, Input_IdPs,Output_Ids}, where Input_IdPs is a list
of tuples of the form: [{Input_Id,SynapticWeights}....], and where Output_Ids is a
list of ids: [OutputId1,OutputId2...]. Each tuple is self contained, possessing all the
information needed to define a processing element it represents, whether it be a
neuron, a sensor, or an actuator. Each node representing tuple keeps track of the
the Ids of the presynaptic elements and the synaptic weights associated with them,
and a list of postsynaptic Ids. This genotype encoding makes it very easy for a
human to read it, allowing the person to comfortably see which elements are con-
nected together, and what the general topology of the NN system is. Finally, be-
cause each node representing tuple has its own Id, this encoding also has the per-
fect form for being stored in a relational database. An example of a neural network
genotype encoded using this method, and the neural network system it maps to, is
shown in Fig-4.6.

You will notice in the following figure that in the case of the sensor and actua-
tor, their ids are respectively as follows: {sensor_function_name,1} and {actua-
tor_function_name,5}. The ids include not only unique identifiers (1 and 5), but
also sensor and actuator function names. Like neurons, the sensor and actuator
nodes can be represented as processes, and these nodes could then execute the
sensor or actuator functions through the function names. If we are talking about a
sensor node, then when it executes the function sensor_function_name, it would

4.1 Neural Network Encoding Approaches and Mutation Operators 111

produce sensory signals that it would then forward, by message passing, to the
neurons it is connected to. If we are talking about an actuator, then the actuator
would accumulate the incoming signals from the presynaptic neurons, and then
use this composed vector as a parameter when executing the actua-
tor_function_name function. It is a much more dynamic and flexible approach
than the above demonstrated string encoding. The few extra bytes of space this tu-
ple encoding method takes, is well paid for by the utility, flexibility, readability,
scalability, and usability it provides. Today, even a laptop can easily hold over
16Gb of ram. Why make a system less understandable, and thus much more diffi-
cult to work on, expand, and advance, by using a poorly formed encoding that
lacks the agility, and does not provide an easy way to think about it? The simpler
and more architecturally direct the encoding, the easier it is for the researcher to
improve it, work with it, and use and apply it to new areas.

Fig. 4.6 A tuple based neural network genotype encoding.

This tuple encoded genotype makes no attempt at emulating a biological ge-
nome. It takes full advantage of the much greater flexibility that software pro-
vides. Since the genotype is very similar to how graphs are usually represented,
the mutation operators are also very easy to develop and apply. For example, to
create a synaptic connection between two neurons, the program simply chooses
two random neurons A and B from the NN, and adds a synaptic link from neuron
A to B by adding the id of B to A’s output_ids list, and by adding the id and a new
synaptic weight for A to neuron B’s input_idps list. To add a new neuron to the
genotype, the mutator program simply generates a new neuron tuple, with a new
unique id C, and sets up a link between C and some randomly chosen presynaptic
neuron A, and to some randomly chosen postsynaptic neuron B. These mutation
operators are just graph operators. A few examples of mutation operators being
applied to a tuple encoded NN, and the resulting phenotypes, are shown in Fig-
4.7.

In Fig-4.7a I show the genotype of the initial NN system, and its phenotype. I
then apply a mutation operator where I add a new neuron with id {neuron,6} to the
initial NN system, the added parts of the genotype are presented in bold in Fig-
4.7b, with the phenotype shown on the right side of the updated genotype. Finally,
in Fig-4.7c I apply to the initial genotype a mutation operator that removes a random

112 Chapter 4 Introduction to Neuroevolutionary Methods

neuron from the NN, in this case this neuron’s Id is {neuron,3}. The updated geno-
type and the phenotype is then shown, with the removed parts of the genotype

Fig. 4.7 Mutation operators applied to a tuple encoded NN genotype, and the resulting
phenotypes.

Undoubtedly there are many other ways to encode neural network systems.
Back in the day when storage space and ram was limited, there were a number of
encoding approaches that tried to minimize the amount of space used by such en-
codings. But today, storage space and ram are no longer the limiting factors. Our
current computational intelligence systems are only limited by our ability to rea-
son about them, expand them, and improve them. Thus, we should strive to repre-
sent the genotypes in manners that are not most space conservative, but in ways
which makes them most easily accessible to being reasoned about. We should cre-
ate the genotypes and phenotypes in a way that makes it easy to work with, to
think about, to expand, and to improve.

highlighted with red (looks as bold font in the black & white printed version).

4.1 Neural Network Encoding Approaches and Mutation Operators 113

When it comes to neural networks, tuple encoding is one such genotype encod-
ing method, and as we will find out in the next chapter, Erlang gives us the ability
to create a phenotypic representation that is just as easy to reason about and work
with as its genotype, if not more so. But more importantly, the phenotype imple-
mentation in Erlang is a direct mapping of the NN representation, making it un-
precedentedly easy to work with, scale, and improve. Neural networks are vast
graphs, and so we use an encoding approach that is prevalent in graph representa-
tions [3], and one that yields to graph operations most easily. We can go through
the genotype and quickly see what type of phenotype, what type of neural network
structure that it represents. And because it is so easy to see it, to visualize it, it is
easier for us to modify it, it is easier for us to, in the future, expand this encoding
method, and to add to it as our knowledge of neuroevolutionary systems and com-
putational intelligence increases.

The ability to easily visualize the system, gives us the ability to think about it
more clearly and without us having to constantly map the NNs in our mind back
and forth between the way which makes it easy to reason about, and the way in
which they are actually implemented in some programming language that does not
have the same architecture as the NN systems.

4.1.3 The Neural Network Phenotype

The phenotype is the actual, functional representation of the neural network. It
is the system that can process the input signals, and based on those input signals
produce output signals from the neurons in the output layer (those neurons which
are connected to the actuators). The actual input signals that the NN acquires as
input is based on the sensors that it uses to sense the environment, and the actions
the NN system takes within the world is done through its actuators, which act up-
on the world using the control signals coming from the presynaptic neurons. In bi-
ological organisms, our DNA is our genotype, and our nervous system is part of
our complete phenotype.

The mapping from genotype to phenotype can be direct, where the genotype

has to go through some kind of developmental cycle, or use some other external
information to construct the actual phenotype. We have seen the direct encoded
neural networks in the previous subsection. The genotype directly represented the
phenotype, every synaptic weight, every connection, and every neuron, was speci-
fied within the tuple encoded and string encoded genotypes discussed. Thus, next
we will briefly discuss what the indirect encoded NNs are.

specifies every part of the phenotype directly, or indirect [4], where the genotype

114 Chapter 4 Introduction to Neuroevolutionary Methods

Fig. 4.8 Environment affected development of a neural network.

The above figure shows two scenarios; in Fig-4.8a a NN is controlling an agent
in an ALife environment where most of the agents around it are green, thus the
NN created has all 5 of its sensors be green color sensing, such that the agent can
better discern the various elements within its environment, and have a higher abil-
ity to extract features in a world where most of the things are green. In Fig-4.8b, a
neurocontroller is created in an area where there are agents and features in the en-
vironment of all kinds of colors, and so the same neurocontroller as in Fig-4.8a

In indirect encoding the resulting phenotype is not directly based on the geno-
type, but is merely controlled or guided by it as it develops. The development pro-
cess is the mapping of genotype to phenotype, sometimes through multiple stages,
and where the phenotype can also be affected or produced by incorporating multi-
ple features generated by stochastic processes and through the system’s initial in-
teraction with the environment in which it is developing, as shown in Fig-4.8. In
this manner, the phenotypes might also be somewhat environment specific, since

multiple colors in a green environment, its green resolution is too low, and it
would not compete well in that niche where its color sensing abilities are not

composed of agents of different colors, it would be blind to anyone that is not
green, and thus not be able to compete with color discerning agents. But because

now has a different set of sensors, each concentrating on a different color, and thus
allowing the agent to have the ability to discern between all the different colored
agents within the environment. If we are to create an agent with an ability to see

the phenotype is not directly specified by the genotype, and because as the geno-
type is developing/being-mapped to a phenotype, it is being affected by the chem-

e environmental features during the their development can be influenced by th
mapping process.

needed. If we are to create the green color specializing agent in an environment

4.1 Neural Network Encoding Approaches and Mutation Operators 115

istry of the environment, the phenotype is specialized for the environment in
which it is born. If these organisms were biological, and there were two environ-
ments, an underground tunnel environment, and a color filled jungle environment,
it would be advantageous for the organism born in the tunnel environment to start
off with sonar sensors, but color sensors when born in the jungle environment.

Another type of indirect encoding is shown in Fig-4.9. Here it is the particular
mapping and the NN implementation that defines what the resulting phenotype is,
and how it behaves. The genotype shown is a composition of a tuple encoded NN
system shown in the previous subsection, with an extra third and fourth element in
the NN. The third element is a list: [3,5,2], and the fourth element is the tuple:
{SensorList,ActuatorList}. What is interesting here is that it is the third list, [3,5,2]
that defines the actual sensory signal processing, and actuator signal producing,
NN. The [3,5,2] list defines a neural substrate composed of 3 layers, with 3
neurodes in the first, 5 in the second, and 2 in the third. Furthermore, it is implicit
that this neural substrate is two dimensional, and each neurode in this substrate is
given a Cartesian coordinate based on its position in the layer, and its layer’s posi-

Y = -1, the second at Y =0, and the last at Y = 1 end.

Fig. 4.9 Substrate encoded neural network system.

tion in the substrate. The program that constructs the phenotype, spaces out these
layers equidistantly from each other, with the first layer of density 3 positioned at

116 Chapter 4 Introduction to Neuroevolutionary Methods

It is further implicit that the first layer of density 3 defines the sensory signal
outports, rather than neurons, and that all neurodes in each layer are equally
spaced from each other, and thus each neurode has its own coordinate [X,Y]. It is
also this first neurode layer that specifies the sensory resolution, but is independ-
ent of the neural network, and thus can be specified through development based on
the environment (after all, higher resolution requires more processing power, and
some environments might not require high resolution…). Finally, the implementa-
tion is such, that the directly encoded NN is fed the coordinates of these substrate
embedded neurodes (and sensory outports), and the output signal produced by the
direct encoded NN is the synaptic weight between the connected neurodes in the
substrate. Thus the synaptic weights of the neurodes are defined by this secondary
NN.

At the end we end up with a substrate where each embedded neurode has the
synaptic weight for its presynaptic connection. The first layer at Y = -1 represents
the sensory outports, with the sensors specified in the SensorList (in this case just
a single sensor), and the output layer at Y = 1 is connected to the actuators speci-
fied in the ActuatorList (in this case a single actuator which can accept a signal of

Though slightly more complex than the direct encoded NN discussed earlier,
we also note that there is a lot of information implicit in the architecture. The gen-
otype does not on its own dictate every part of this NN, even the synaptic weights
of the embedded neurodes depend on the density of each layer, which might
change without us having to re-specify the synaptic weights for each of these
neurodes. The substrate density can depend on the environment, or be generated
stochastically. Thus, with this type of encoding, it is possible to create very dense
neural substrates with thousands of neurons and millions of synaptic connections
and weights, yet use a relatively little amount of information to specify all the
synaptic weights and connections between the embedded neurodes, if the synaptic
weights and connection expression is all dictated by the much smaller directly en-
coded and specified NN. Through indirect encoding, a genotype can specify a NN
based system of a much greater complexity than it could through direct encoding.

On top of the standard mutation operators we would use to mutate the directly
encoded NN which specifies the synaptic weights of the substrate embedded
neurodes, we could add the following:

 Increase_Density: This mutation operator chooses a random layer, and increas-
es its density.

 Increase_Dimensionality: This mutation operator adds a new dimension to the
substrate, and updates the necessary features of the NN needed to deal with this
extra dimensionality, and thus the increased length of the input vector fed to the
directly encoded NN (For example moving from 2d to 3d would result in
switching from feeding the NN [X1,Y1,X2,Y2] to [X1,Y1,Z1,X2,Y2,Z2]).

eate a much more advanced
vector length 2). This is in essence a very simplified version of substrate encoding
popularized by the HyperNEAT system [17]. We will cr
substrate encoded system in Chapter-16.

4.1 Neural Network Encoding Approaches and Mutation Operators 117

 Decrease_Dimensionality: Same as the “Increase_Dimensionality” function,
but in reverse.

 Add_Coordinate_Preprocessor: The directly encoded NN is fed the coordinates
of the two connected neurodes, but we can also first preprocess those coordi-
nates, changing them from Cartesian to polar, or spherical... or instead of feed-
ing the coordinates, we can feed a vector composed of the distances between
the Cartesian points where the neurodes are located... This mutation operator
performs a task analogous to the Add_Sensor and Add_Actuator, but adds pre-
processors used by the NN.

 And of course we could add many other mutation operators, problem specific
or general in nature.

For example, you and I are not a direct representation of our DNA, instead, we
are based on our DNA, the development process, the chemical environment of the
womb, and the nutrition we’ve been provided with at an early stage of our devel-
opment. All of this influenced our various phenotypic features, body size and type,
and even intelligence. For example, given the same DNA, a fetus in a womb of a
mother who consumes alcohol and methamphetamines, will certainly be born with
different features than if the mother did not consume these drugs during pregnan-
cy. Thus the mapping from DNA to the actual organism is an indirect process, it is
not one-to-one. There are a number of systems that use indirect encoding to pro-

In general, the phenotype, the way the neural network system is represented, is
at the discretion of the researcher. We can implement the phenotype in hardware
[10,11,12,13], on FPGAs for example, in software, or even in wetware using the
technology that allows us to grow and connect biological neurons on a substrate
[14,15,16]. When implementing in software, we can decide whether the phenotype
is fully distributed, like a biological neural network system, or whether it will ac-
tually be all processed in series, on a single core. Whatever the choice, as long as
the information is processed in the same way, as long as the plasticity and the
weights are the same, as long as the events occur at the same time and at the same
rate in all these implementations, it does not matter whether the phenotype is
hardware, software, or wetware based. The results will be the same; at the end, it’s
all just information processing.

 Decrease_Density: This mutation operator chooses a random layer, and de-
creases its density.

duce the resulting neural networks, by simulating chemical diffusion [5,6,7], by

lop an indirect encoding approach
using multiple development phases and phase timing [8,9], and many other
approaches. And we too will discuss and deve
in this book, though in a much later chapter.

118 Chapter 4 Introduction to Neuroevolutionary Methods

The mapping from genotype to phenotype itself is done by a program that can
read the genotype and then produce the phenotype based on that data. The mapper
for the direct or indirect encoded NN system can also be a program implemented
in many different ways, and the implementation is of course dependent on the
genotype and the phenotype chosen. If for example the genotype is tuple encoded,
stored in the Mnesia database, and the phenotype is a process based neural net-
work system, and all of it is written in Erlang, then the mapper simply reads every
tuple representing the neurons, sensors, and actuators from the mnesia database,
and creates a process for each such node with the properties specified within the
tuples. Each process then knows the Ids of the elements it is connected from and
from which it should be expecting signals, and the elements to which it is con-
nected to and to which it should be sending its output signals. Had the genotype
been string encoded, and the actual neural network represented on an FPGA, then
the mapping would have to be completely different.

********Note********
In a biological organism, a ribosome reads the information in RNA and produces proteins mak-
ing up and used by our bodies. Thus a ribosome, and all the machinery needed for it to work, is
a part of the biological mapper program.

4.2 Neuroevolution Through Genetic Algorithms

In this section we discuss how a standard, single phased, genetic algorithm
based neuroevolutionary approach works. We’ve seen in the previous section two
different ways to encode a NN genotype, and the possible mutation operators
needed to evolve populations composed of NNs encoded using such methods.
Given this, how do we solve problems through neuroevolution?

To demonstrate how neuroevolution works, we will apply it to the following
three example problems: 1. Creating a neural network system that functions as a
XOR gate, 2. Creating a neural network system that balances a pole on a moving
cart, and 3. Evolving a NN based intelligent system, with all the perks of neural
plasticity, the ability to learn, and even the ability to modify its own neural struc-
ture, its own brain.

4.2.1 Example 1: Evolving a XOR Logical Operator

As we have seen in Section 2.2.1, if we connect 3 neurons in just the right
manner, and set their synaptic weights to the right values, the neural circuit will
behave as a XOR operator. But how do we figure out what the right neural net-
work topology is, what is the most optimal topology, and what the right synaptic
weights for each neuron in that topology should be set to?

 119

********Note********
How do we apply a NN to some specific problem? There is no need to change the actual neural
network genotype encoding or its phenotype representation for every different problem. The
problems solved do not depend on the encoding we use, since it is not how the NN system and
its genotype are represented that matters, but it’s the ability of a NN to interact with the prob-
lem or environment at hand. How the NN system can interact with the environment, problem,
or other programs, is solely specified by the sensors and actuators it uses. Like biological or-
ganisms, the way you interact and interface with the real world is through your sensors, and
through your muscles/actuators. We can use the same NN, but its functionality will differ de-
pending on whether the signals are fed to it from a camera sensor, a database sensor, a gyro-
scope sensor... and what it does will differ depending on whether the NN’s signals are used to
control a differential drive actuator, the servos of a robotic hand, or the position of a mouse
pointer on a screen.

For each problem, we need only to create and set up a set of sensors and actua-
tors that the NN system will use to interface with the environment/scape of that
problem. We need only one sensor for this problem, one that can read from the
XOR truth table a value, then feed it to the NN in a vector form, and then move to
the next row in the truth table. We also need only a single actuator, one to which
the NN passes its signal, and where the actuator then simply prints that value to
console. The environment or scape in this case, is not some kind of 3d simulation,
but instead is the truth table itself, a small database that contains the inputs and the
expected outputs, and a small program that monitors the NN system’s output, cal-
culates how close it is to the correct output, and then gives the NN a fitness score
based on the total error. The system setup is diagrammed in Fig-4.10.

Fig. 4.10 A neuroevolutionary system setup to evolve a XOR logic operator.

What set of steps will a neuroevolutionary system follow to evolve a solution?
The set of events would go something like this:

4.2 Neuroevolution Through Genetic Algorithms

120 Chapter 4 Introduction to Neuroevolutionary Methods

1. We develop a general neuroevolutionary system, which uses a tuple based gen-
otype encoding, and which uses a fully distributed, process based, NN system
implementation. The mapping from tuple encoded genotype to phenotype is
performed by reading the tuples from the database, and converting each tuple to
a process. Each such process expects signals coming from some set of ids, and
after it has processed all the expected signals, it outputs a signal to the ids in its
output_ids list, or it executes some function (if it is an actuator for example),
and then begins the wait for the input signals anew.

2. We develop a set of general mutation operators, whose names and functionality
are as follows:

– add_Neuron
Generates a new neuron, and connects it from some randomly chosen neu-
ron in the NN, and to some randomly chosen neuron in the NN.

– add_SynapticConnection
Selects a random neuron, which then randomly selects and adds either an
input or output synaptic link to another randomly selected element in the
NN system (neuron, sensor, or actuator).

– splice
Chooses a random neuron, then a random element that the neuron is con-

created neuron.
– add_Bias

Chooses a random neuron without a bias, and adds a bias to its weights list.

3. We set up a fitness function for this problem. In this case, since we wish to
minimize the general error between the NN system’s output and the correct
output based on the truth table, the fitness function is as follows: Fitness =
1/Error_Sum, where: Error_Sum = sqrt((Output1-ExpectedOutput1)^2
+(Output2-ExpectedOoutput2)^2 …). The fitness is an inverse of the Er-
ror_Sum because we wish for higher fitness to be represented by higher values,
and through this fitness function we can ensure that the lower the error then the
higher the fitness score.

4. We create an initial/seed population of very simple neural networks, randomly
generated, with random synaptic weights. Let us imagine that in this example
the population size is only 4, and our seed population is composed of the fol-
lowing genotypes:

NN_1: [{s_id1,[n_id1]},{a_id1,[n_id1]},{n_id1,[{s_id1,0.3},{bias,0.2}],[a_id1]}]
NN_2: [{s_id2,[n_id2]},{a_id2,[n_id2]},{n_id2,[{s_id2,0.5}],[a_id2]}]
NN_3: [{s_id3,[n_id3]},{a_id3,[n_id3]},{n_id3,[{s_id3,-1}],[a_id3]}]
NN_4: [{s_id4,[n_id4]},{a_id4,[n_id4]},{n_id4,[{s_id4,-0.2}],[a_id4]}]

nected to, disconnects the two, and then reconnects them through a newly

4.2 Neuroevolution Through Genetic Algorithms 121

Genotype encoding is tuple based: [{sensor_id, fanout_ids}, {actuator_id,
fanin_ids}, {neuron_id, input_idps, output_ids} …]. The possible initial popu-

just a single neuron NN connected from a sensor and to an actuator, and where
the single neuron in NN_1 starts off with a bias value in its weights list.

5. We convert each genotype in the population to its phenotype, and then calcu-
late the fitness of each individual/phenotype by going through each input vector
in the truth table and having the NN produce an output, which is then compared
to the correct output of the truth table. The fitness of the phenotype is based on
the general error of the 4 outputs the NN system provides for the 4 inputs it
senses from the truth table. The fitness is calculated using the equation in step
3.

6. We choose 50% of the most fit individuals in the population for the next step,
and remove the remaining least fit 50% of the population. Because the popula-
tion size in this example is 4, this translates into choosing the two most fit
agents within the population, and removing the 2 least fit agents.

7. We then use the genotype of these two individuals to create two offspring. To
do so, we first clone both genotypes, and then apply X number of mutation op-
erators to each of the clones to produce the mutant clones which are then des-
ignated as offspring of the fit NNs. For each clone, the value X is chosen ran-
domly to be between 1 and the square root of total number of neurons the NN

choose X (we might apply just 1 mutation operator, or as many as
sqrt(Tot_Neurons) to create the offspring). This method gives the mutant
clones a chance to both, be genetically close to their parents if only a few muta-
tion operators are applied, and be far out on the search and solution space if a
large number of mutation operators is applied.

8. We compose the new population from the two parents, and the two mutant off-
spring. This new population is the new generation, and is again of size 4.

9. Go to step 5, until one of the NN systems achieves a fitness of at least 1000
(An error of less than 0.001).

In evolution it’s all about exploring new genotypes and phenotypes, and the
more permutations and combinations of synaptic weights and NN system topolo-
gies that is tried out, the greater the chance that an offspring superior to its parent
is evolved. The greater the population size, the more varied the mutation opera-
tors, and the more varied the number of said mutation operators applied to the
clone to produce an offspring, which results in greater NN population diversity. In
an actual neuroevolutionary system, we would use a population size greater than
4. Though of course, each individual in the population requires computational

lation might be composed of the above genotypes, where each genotype is

is composed of. Thus, the larger the NN, the greater the range from which we

122 Chapter 4 Introduction to Neuroevolutionary Methods

time to think, and so the larger the population, the more computational time re-
quired to evaluate it... Whether it is better to have a larger population or a smaller
one, whether it is best to choose the top 90%, top 50%, or only top 10% of the
population to produce offspring from... are all dependent on the system and the
mutation operators used. And even all of these features can be dynamic and evolv-
able, as is the case with the previously briefly discussed approach called “evolu-
tionary strategies”.

By going through steps 1-9, we would eventually evolve a neural circuit that
acts as a XOR logic operator. Assuming that the available activation functions to

towards a solution is shown in the following figure.

Fig. 4.11 A possible evolutionary path towards a XOR logic operator.

the neurons in this hypothetical neuroevolutionary system are the functions com-
posing: [tanh,cos,sin,abs,gaussian,sgn], one of the possible evolutionary paths

4.2 Neuroevolution Through Genetic Algorithms 123

4.2.2 Example 2: Evolving a pole balancing neurocontroller

The problem: Let us say that we have been given a problem of having to devel-
op a way to balance two poles on a cart, where the cart itself is positioned on a 2
meter track, as shown in Fig-4.12. Our only ability to affect the environment is by
pushing the cart with a force we choose, either back or forth on the track, every
0.02 seconds. Furthermore, every 0.02 seconds we are allowed to measure the an-
gle that the two poles make with the vertical, and the cart’s position on the track.
Finally, the solution must satisfy the following constraints: The cart must always
remain on the track, the poles must never be more than 35 degrees from the verti-
cal, the poles must be balanced for at least 30 minutes, and we can only interact
with the track/cart/poles system by pushing the cart back and forth on the track.
What we are seeking is to create a neurocontroller that can produce the force val-
ues with which to push the cart to balance these poles, how can this be done
through neuroevolution?

Fig. 4.12 The double pole balancing problem.

Let us do the same thing we did in the previous section. For this problem we
will decide on what needs to be set up, before evolution can take its toll and
evolve a neural network system that solves the given problem by sensing the sys-
tem state, and outputting force values to control the cart.

The Problem representation: If we are given the actual hardware, the physical
track, cart, and the poles attached to it, we would not really be able to apply an
evolutionary process to it to create a neurocontroller that can push and pull the cart
to balance the poles, since it would require us to create physical pushers and pull-
ers, each controlled with its own neurocontroller... It would be a mess. Not to

124 Chapter 4 Introduction to Neuroevolutionary Methods

mention, since we have to at least balance the pole for 30 minutes, and everything
is done in real time, it would take us an enormous amount of effort, real hardware,
and time to do this. Every evaluation of a NN’s performance would take from a
few seconds to 30 minutes, and it could take thousands of evaluations in total
(thousands of offspring tested) before one of high enough fitness is found. Finally,
we would also need the same number of cart/track/poles systems as the number of
NNs in the population, if we wish to perform the said tasks in parallel. Otherwise
we would need to perform the evaluations of the NNs one after the other, and thus
further decrease the speed at which we would evolve a fit NN.

What we could do instead is create a simulation of the whole thing. Since the
cart has to stay on the track, and the pole is attached with a hinge to the cart, it is
constrained to two dimensions. The physical simulation would be rather simple,
and require just a few equations to implement. Also, because we can use a simula-
tion of the whole thing, we do not have to run it in real time, we can run the simu-
lation as fast as our computer allows. So then, the way we can represent this prob-
lem and evolve a neurocontroller to solve it, is through a simulation of the track-
cart-poles system, with the ability for the cart to be pushed back and forth on the
track. The next question is, how do we represent the neural network genotype en-
coding?

The Genotype: We can use the same NN genotype encoding as in the previous
problem, it is general enough to be used almost for anything, easy to read, easy to
operate on, and easy to store in databases. In fact, the NN genotype encoding is
independent of the problems we apply the NN based controllers to. Using the
same NN genotype encoding, we need only to figure out how our NN would inter-
face with the track-cart-pole simulation scape so that the NN can push the cart.

The Interface: We’ve created the simulation of the problem we’d like to solve.
We know how to encode our NN genotypes. Our goal is to evolve a NN system
that decides when to push the cart on the track, and from which side. So then, we
know that our NN can have access to the cart’s position on the track, and the an-
gles between the poles and the vertical every 0.02 seconds of the simulation. We
need to create a way for our NN to interface with the simulation, and that is where
sensors and actuators come into play. It is the sensors and actuators that, in a
sense, define what the NN is applied to and what it does. Our brain might be a
highly adaptive system, capable of learning and processing very complex data in-
puts, but without our body, without our arms, legs, muscles, without our eyes,
ears, and nose, we cannot interface with the world, and there would be no way of
telling what any of those output neural signals mean if they were not connected to
our biological actuators.

4.2 Neuroevolution Through Genetic Algorithms 125

For the NN to be able to interface with the simulation of the track-cart-poles
system, we create a sensor that can gather a vector signal from the simulation eve-
ry 0.02 seconds and feed it to its NN, which then processes that signal and sends
its output to the actuator. The actuator of the NN needs to be able to use this signal
to then push the cart back or forth. Thus, the actuator interfaces with the simula-
tion, and tells the physical simulation from which side of the cart the force should
be applied to push it. Furthermore, the sensor will forward to the NN a sensory

CartPos is cart position value, Pole1Ang is the first pole’s angle to the vertical,
and Pole2Ang is the second pole’s angle to the vertical. The actuator will accept a
connection from a single neuron in the NN, because it only needs one value, be-
tween -1 and 1, which dictates which way to push the cart, and with what force.
Thus the NN will forward to the actuator a vector of length 1: [F], where F is
force. The only remaining thing to consider is how to set it all up into a
neuroevolutionary process.

The setup: Having decided on all the parts, the NN encoding, the problem for-
mulation (A simulation) so that we can solve it through evolution, and the way in
which the NN systems will interface with the simulation so that we can assess
their phenotypic fitness, we can now put it all together to evolve a solution to the
given problem. A diagram of the setup of how a NN system would interface with
the pole balancing simulation through its sensors and actuators, is shown in Fig-4.13.

Fig. 4.13 This figure shows a neural network system interfacing with the pole balancing
simulation. The NN based agent can sense the position of the cart, and the pole_1 & pole_2
angles with respect to the vertical, and push the cart on the track using its sensors and ac-
tuators respectively, to interface with the pole balancing simulation scape.

signal encoded as a vector of length 3: [CartPos,Pole1Ang,Pole2Ang], where

126 Chapter 4 Introduction to Neuroevolutionary Methods

Our neuroevolutionary approach would take the following set of steps to pro-
duce a solution:

1. We develop a general neuroevolutionary system, which uses a tuple based gen-
otype encoding, and which uses a fully distributed, process based, NN system
implementation. The mapping from tuple encoded genotype to phenotype is
performed by reading the tuples from the database, and converting each tuple to
a process. Each such process expects signals coming from some set of ids, and
after it has processed all the expected signals, it outputs a signal to the ids in its
output_ids list, or it executes some function (if it is an actuator for example),
and then begins the wait for the input signals anew.

2. We develop a set of general mutation operators, whose names and functionali-
ties are as follows:

– add_Neuron
Generates a new neuron, and connects it to a random postsynaptic neuron
in the NN, and a random presynaptic neuron in the NN.

– add_SynapticConnection
Selects a random neuron, which then randomly selects and adds either an
input or output synaptic link to another randomly selected element (neu-
ron, sensor, or actuator) in the NN system.

– splice
Chooses a random neuron, then a random element that the neuron is con-
nected to, disconnects the two, and then reconnect them through a newly
created neuron.

– add_Bias
Chooses a random neuron without a bias, and adds a bias to its weights list.

3. We set up a fitness function for this problem. In this case, the longer a NN sys-
tem is able to keep the poles balanced by pushing the cart with its actuators, the
higher its fitness. Thus : Fitness = Simulated_Time_Balanced.

4. We create an initial or seed population of very simple neural networks, ran-
domly generated, with random synaptic weights.

5. We convert each genotype in the population to its phenotype, and then calcu-
late the fitness of each individual. Each phenotype interfaces with its own pri-
vate scape, a private simulation of the track-cart-poles system. Each tries to
balance the poles for as long as it can by pushing the cart back and forth. As
soon as any of the two poles deviates more than 35 degrees from the vertical, or
the cart goes outside the 2 meter track, the simulation is over. At this point the
NN system is given its fitness score based on the time it balanced the two
poles. This is done for every individual/NN in the population.

6. We choose 50% of the most fit individuals in the population for the next step,
and remove the least fit in the population by deleting their genotypes from the
database.

4.2 Neuroevolution Through Genetic Algorithms 127

7. We then use the genotype of these fit individuals to create offspring. We clone
the fit genotypes, and then apply X number of mutation operators to each of the
clones to produce the mutant clones which we designate as the offspring. For
each clone, X is chosen randomly to be between 1 and the square root of total
number of neurons making up the clone’s NN. Thus, the larger the NN, the
greater the range from which we choose X (we might apply just 1 mutation op-
erator, or as many as sqrt(Tot_Neurons) to produce a mutant-clone/offspring).

8. We compose the new population from the fit parents, and their offspring. This
new population is the new generation.

9. Go to step 5, until one of the NN systems achieves a fitness of at least 30 simu-
lated minutes balanced. This resulting NN system is the sought after
neurocontroller.

Once such a NN system is generated, we extract it from the population, and
embed the phenotype into the hardware that supplies the sensors and actuators.
The NN system is then connected and embedded in this robot system, the actual
piece of hardware that interfaces with the physical track-cart-poles system. The
robot’s sensors then feed the NN with the signals it gathers from the track-cart-
poles system (like our eyes that gather the visual information, propagating it to our
brain), and the NN’s output controls the robot’s actuator, which then based on
those signals (like our muscles based on the nerve signals coming from our brain)
pushes the physical cart on the track.

Thus we have taken this problem all the way from formulating it in
neuroevolutionary terms, to evolving the solution, and then using the evolved
solution to solve the actual problem. In the next section we try to see how we
would use the same principles to solve a slightly more complex problem.

4.2.3 Example 3: End Game; Evolving Intelligence

What if the goal is to evolve intelligence? There is no better approach than the
one through neuroevolution. Biological evolution had to evolve both: The mor-
phology of the organism, and the neurocognitive computer to control it. It did this
protein by protein, taking billions of years and trillions of permutations, but we
can cut a few corners. And where the biologically evolved intelligence was simply
a side effect of evolving a survival machine which can replicate in a hostile and
uncertain world, where learning and adapting to the ever capricious environment
is a must, for our problem we can ensure that adaptability and intelligence are di-
rectly tied in with the fitness function.

As we previously discussed though, there is a certain problem with the granu-
larity of simulation, and the dynamic and complexifying environment, as well as
the organisms. For there to be a smooth evolutionary path from a simple organism
to an intelligent and complex one, not only the organisms must smoothly increase

128 Chapter 4 Introduction to Neuroevolutionary Methods

in complexity as they evolve, but they must also be able to affect the environment,
and the environment must have a granularity fine enough that it too can slowly be-
come complex, such that the complexifying organisms and the environment com-
pose a positive feedback loop, slowly ratcheting their mutual complexity upwards.

The place where we can cut corners and speed things up is in the actual geno-
type representation, morphology, and neural network systems. With regards to ge-
nome, we do not need for the evolutionary process to discover RNA and evolve it
into DNA, we can start off with systems which already have this genome encoding
mechanism. We also don’t need for the evolutionary process to discover from
scratch how to create a biological information-processing element, the neuron. We
can start off using agents which can already use neurons from the very start. We
also can cut a few corners with regards to evolving viable morphologies. We could
provide the NN with the various sensors and actuators that it can integrate into it-
self through evolution. The sensors and actuators would in effect represent the
morphology of the organism, and so we could allow the evolution, through this
approach, to evolve agents from the morphological form which uses a simple fla-
gella to move, to an agent with a sophisticated neurocognitive computer and bi-
pedal morphology. We need not rediscover bipedal organisms, legs, fins... and we
do not need to rediscover the various chemical pathways to use energy, or support-
ive structures like bones... thus our evolutionary system just needs to primarily
concentrate on the evolution of the neurocognitive computer, the rest is taken care
of by science and engineering, rather than chance.

What about the fitness function? We could of course create organisms which
are capable of producing offspring once they have gathered enough energy from
the artificial environment, thus letting them control their own reproductive cycles.
Or we could create an outside system that chooses the genotypes from which to
create the offspring. It is interesting to consider what would be the difference in
evolutionary paths taken by such two disparate approaches. The organisms capa-
ble of initiating their own reproductive cycle need no fitness function because only
those will survive whom can create offspring, since only they will be able to pass
their genetic material to the next generation, and their offspring too will try to cre-
ate offspring of their own, mutating and evolving over time. The ability of an
agent to control its reproductive cycle, and having to compete for resources, will
drive the system towards complexity. But since we start the seed population with
random and very simple NN systems, initially no one would be able to create their
own offspring, or have capabilities to effectively gather the needed resources to do

For the environment to provide enough flexibility for the organisms to interact
with, it must be simulated at a very high level of granularity, perhaps even atomic.
The population size must also be vast, after all, it took billions of years of evolu-
tion with the population of various species and organisms inhabiting and spread
out across the entire planet. All of this will require an enormous amount of
computational power.

4.2 Neuroevolution Through Genetic Algorithms 129

so. So we would actually have to bootstrap the system until it has achieved a
steady-state. To do so, we would run the simulation, restarting populations and
generating new offspring, until finally one of the individuals in the population

comes to creating their offspring. This is similar to how it took a few billion years
of random collisions and molecular permutations on our planet, before by chance
alone, one of the combinations of those molecules formed a chemical replicator.

If we were to not allow self initiated reproduction, and instead used a program
which chose whom of the individuals had the most fit and diverse genotype, and
whom should be chosen as the base for offspring creation, then we would have to
think which of the traits and accomplishments of the organism during its lifetime
that we should reward? Where to place the new offspring in the physical environ-
ment? In the case of self initiated reproduction, the offspring can be placed right
next to the parent, which might also evolve the behavior of teaching, after all,
those offspring that have the neural plasticity to learn, and a parent that can teach
it the already learned tricks of survival, would have a much greater chance of sur-
viving, and thus passing onwards its genotype which encoded for teaching its off-
spring in the first place... To solve this problem we could set up spawning pools,
certain designated areas where we would put offspring. Or we could randomly po-
sition them somewhere in the environment. Or perhaps we could randomly choose
an organism in the environment that most closely resembles the genome of the
new offspring, and place that offspring next to that currently living individual. All
of these are viable approaches, but for this example, we will choose the bootstrap-
ping self initiated reproduction approach.

Let us then think how, if computational power was limitless, and high precision
physics simulations at the level of atomic particles was also available, would we
then set up a neuroevolutionary system to evolve intelligence? We will follow the
same steps and approaches we did in the previous section, we will define the prob-
lem, the possible genotype encoding, the interface, and the setup.

The Problem: Evolve a population of organisms capable of intelligence, learn-
ing, adaptation, and inhabiting/controlling a body similar to the form of a sapient
organism.

The Genotype Encoding: The NN system genotype encoding is the same as in
the previous two sections. But because we need for there to be a whole different
set of morphologies, all the way from a bacteria to that of a bipedal robot, we need
to somehow include the evolution of morphology, integrated with the evolution of
the NN, all in a single system. We can do this through the use of sensors, actua-
tors, and modular robotics, as shown in Fig-4.14.

h point the agents will take over when it acquires the ability to reproduce, at whic

130 Chapter 4 Introduction to Neuroevolutionary Methods

Fig. 4.14 Evolving morphology through sensor and actuator modules of the NN system.

The above figure demonstrates how to encode morphological properties and in-
tegrate them into the same encoding as the NN, and thus evolve morphology flu-
ently and in synchrony with the neural network. A sensor is a program used by the
NN to gather data from the scape it interfaces with. A sensor can be anything, and
a sensor program can also define, when simulated in some physical environment, a
shape, or morphological property, location on a body... An actuator is a program
that the NN uses to act upon the world. There can be many different kinds of actu-
ators, each possessing some particular morphological property, look, and defining
some particular body part. But also, just like the case with the sensor which might
read sensory signals coming from inside the NN, the actuator might be a system
that affects the agent’s own NN topology. Again, a sensor and an actuator is any-
thing we can come up with to feed the NN signals, and used by the NN to perform

We can further tie-in the sensor and actuator combinations with particular body
structures when simulated inside environments. For example there could be a fla-
gella actuator, and if some NN uses a chemical receptor sensor, and has a flagella
actuator, meaning the NN gathers data from the environment through its chemical
receptor, and can only move through the environment using its flagella, then the
physical simulation can represent this individual as a bacteria, with the appropriate
physical properties and size. The sensor and the actuator both have a particular
way they look, and their own physical properties. When for example the noted

the sensor as a small attachment capable of sensing the chemical properties of the
avatar’s immediate surroundings.

some function, respectively.

sensors and actuators occur together in the NN, the scape would set the morphology
of the NN’s avatar to a bacterium, representing the actuator as the flagella, and

4.2 Neuroevolution Through Genetic Algorithms 131

Thus, on top of the tuple encoded NN genotype, we also want to have a very
large list of sensors and actuators that the NN systems can integrate over time into
themselves through the application of the add_sensor, add_actuator, and
swap_sensor/swap_actuator mutation operators. The swap_sensor and
swap_actuator mutation operators choose an already integrated sensor or actuator,
and swap it with a new randomly chosen sensor or actuator respectively. The dif-
ferent sensors could be as follows: [chemo_sensor, photo_sensor, pressure_sensor,
monoscopic_camera, telescopic_camera...]. The different actuators could be as
follows: [flagella, differential_drive_wheels, 3_degfree_leg, 4_degfree_leg,

4_fingeredhand, 5_fingeredhand, 6_fingeredhand, pivot_tilt_sensor_mount,
3part_torso, 4part_torso...]. The sensor and actuator tags are names of functions,
which when integrated into a NN existing in a simulation, also have simulated
physical representations. The sensors and actuators do not need to be evolved
from atomic or molecular building blocks, the NN needs only to learn how to con-
trol these mountable interfaces.

Furthermore, the type of actuators used and integrated could define the general

use a finer level of granularity when adding new sensors and actuators, and simply
add one joint at a time, thus building up the gripper and other types of actuators.
This could then possibly make the add_sensor and add_actuator mutations more
flexible, allow them to randomly also specify the position where to attach the sim-
ple new morphological pieces (joints, connectors…), but at the same time this
would provide a few orders of magnitude more permutations resulting in unusable,
unstable, and unfit morphologies.

Finally, we could also add a sensor list as follows: [read_self_genotype,
read_other_genotype] and actuator list as follows: [modify_node, next_node,
swap_node, move_node...]. These functions would allow the organisms to evolve
capabilities to self augment, and to have the ability to read the genotypes belong-
ing to others, which would perhaps require the simulation environment to set up
certain rules, like having the other organism be willing, or be subdued or killed
first, before its genotype can be examined.

These are all possibilities, and there is really no reason why abilities to use the-
se types of skills should not be possible to evolve. As long as the environment and
the mutation operators available are flexible and robust enough, there will be an
evolutionary path to integrate these capabilities. In this book, when we begin dis-
cussing applications, we will actually build a small 2d ALife system, where prey
organisms could evolve “teeth”, and learn how to attack other prey. In fact I have
implemented such a system, and indeed simple prey and predators did evolve to
hunt and evade each other, to use plants (simulated food elements) as bait, and
even evolve from prey to predator by evolving (through the use of add_sensor and
add_actuator mutation operators) new morphological parts, integrating them, and
becoming more effective at hunting, evading, and navigating.

5_degfree_leg, 3_degfree_arm, 4_degfree_arm, 5_degfree_arm, 3_fingeredhand,

body type, and we could set it up such that the increase in size of the neural network
automatically increases the general size of the body and energy drain. Or we could

132 Chapter 4 Introduction to Neuroevolutionary Methods

The Interface: Somewhat of a continuation of the above, the interface of the
NN to the physical simulated environment is done through the sensors and actua-
tors. The NN receives through the sensors all the information that its avatar sens-
es, and whatever signals it sends to the actuators, the avatar performs. When the
avatar dies, the NN dies, at which point the phenotype’s, and therefore the NN
system’s performance in the environment, is given a fitness score depending on
the organism’s achievements during its lifetime. The achievements could be the
following: the amount of food gathered during lifetime, the number of inventions
made, the amount of world explored, or simply the number of offspring created if
the system is a bootstrapped one where agents can replicate of their own accord.

The Setup: In this hypothetical example we will choose to use a bootstrapped
approach, bootstrapping the initial seed population of organisms, until one emerg-
es that can effectively use the create_offspring actuator to produce an offspring
when it has enough energy to do so. The environment, the world, is a simulated 3d
environment. It is simulated all the way at the atomic level, since we assume that
we have access to unlimited computational power, and thus the processing power
required to simulate an entire planet at an atomic level is not an issue. Each NN
interfaces with the simulated world through its avatar, a simulated body whose
sensors feed sensory signals to the NN, and whose actuators are controlled by the
NN. We could even go as far as simulate the actual NN topology in physical form,
and position that NN physical representation inside the avatar.

The physical form the organism takes is determined by the sensors and actua-
tors that belong to the NN, the sensors and actuators that the NN evolved over
time. The size and shape of the avatar is further dependent on the size of the NN
system, and the energy requirements, the amount of energy the organism burns per
simulated second, also depends on the sensors, actuators, the NN size, and the or-
ganism’s size. Each organism will also start with a create_offspring actuator,
which requires a certain amount of energy and time to be used, after which there is
a delay time during which an offspring is created. The offspring is created in the
same fashion as in the previous section, it is a mutated clone of the organism, and
the number of mutation operators applied to produce it depends, with random in-
tensity, on the complexity of the parent’s NN. Unlike in the previous problem,
each NN system does not interface with their own private scape, but instead all
the NN systems (the avatars/agents), inhabit the same large simulated world, the
same public scape. Because each organism creates its own offspring based on the
energy it has gathered by eating other organisms in the environment, we do not
need to set up a fitness function. Instead only the create_offspring function needs
to be set up in such a way that it has a cost to the organism, and that perhaps dur-
ing the first few simulated years of the offspring, the offspring does not function at
full capacity, and neither does it function at full capacity when it is in its more ad-
vanced age. Its power output, efficiency, speed, could follow a Gaussian curve

4.2 Neuroevolution Through Genetic Algorithms 133

proportional to its age. Finally, the organisms are set to die when they get eaten, or
when reaching some specific age, which might itself be based on the total number
of sense-think-act cycles the NN has performed. This could have an interesting ef-
fect, since larger NNs will not react as quickly as smaller ones, due to it taking a
longer time to process a signal with 100 billion neurons than it does with a single
neuron. This will mean that more complex organisms, though slower, will live
longer (same number of sense-think-act cycles, but longer period of time), and be
able to do much more complex computations per cycle than simpler organisms. So
age could also be based on the neural network complexity of the organism. With
this in mind, the evolutionary system might follow the following steps:

1. We develop a general neuroevolutionary system, which uses a tuple based gen-
otype encoding, and which uses a fully distributed, process based, NN system
implementation. The mapping from tuple encoded genotype to phenotype is
performed by reading the tuples from the database, and converting each tuple to
a process. Each such process expects signals coming from some set of ids, and
after it has processed all the expected signals, it outputs a signal to the ids in its
output_ids list, or it executes some function (if it is an actuator for example),
and then begins the wait for the input signals anew.

2. We develop a set of general mutation operators, whose names and functionali-
ties are as follows:

– add_Neuron
Generates a new neuron, and connects it to a random postsynaptic neuron
in the NN, and a random presynaptic neuron in the NN.

– add_SynapticConnection
Selects a random neuron, which then randomly selects and adds either an
input or output synaptic link to another randomly selected element (neu-
ron, sensor, or actuator) in the NN system.

– splice
Chooses a random neuron, then a random element that the neuron is con-
nected to, disconnects the two, and then reconnect them through a newly
created neuron.

– add_Bias
Chooses a random neuron without a bias, and adds a bias to its weights list.

– add_sensor
This mutation operator chooses a random sensor from the available list of
sensors, and connects it to a randomly chosen neuron in the NN.

– swap_sensor
This mutation operator randomly chooses a currently used sensor, and
swaps it for another available sensor.

– add_actuator
This mutation operator chooses a random actuator from the available list of
actuators, and connects to it a random neuron in the NN.

134 Chapter 4 Introduction to Neuroevolutionary Methods

3. We set up the physical simulation of the environment, and all non biological
properties to be ran by the simulation. We also set up the metabolism simula-
tion within the environment, such that agents are drained of energy proportion-
al to the size of their avatars, and NN size.

4. We create an initial/seed population of very simple neural network systems,
each with its own set of sensors and actuators that defines the morphological
properties of their avatars.

5. We convert each genotype in the population to its phenotype, and then let the
organisms live out their lives. Some will starve to death, some will flourish.

6. If all organisms die, and non are able to create an offspring, we supplement the
population by creating offspring from the genotypes that were most fit, exhibit-
ed most intelligence, survived the longest... (this is the population bootstrap-
ping part, used until one of the generated agents can control its create_offspring
actuator, and is able to create an offspring that can continue the cycle).

7. Once the organisms begin to emerge which know how to use create_offspring
actuators, and the population stabilizes and begins to grow, the bootstrapping
and population supplementation stops. Whereas until this point we in a sense
simulated the stochastic collisions and interactions and the creation of various
invalid replicators, after this point a replicator has been generated through ran-
dom processes, and evolution takes over where stochastic search left off. At
this point the properties of the simulated world and evolution take over.

8. Due to the flexibility and fine granularity of the environment, it is morphed and
shaped by the evolving organisms, which are morphed and shaped by co-
evolution, arms race, competition, and the environment that they shape and
morph.

9. As organisms compete with each other in an environment that is growing ever
more complex, different species will begin to emerge as various agents find
niches in the environment to exploit, separating from others to occupy and spe-
cialize in those niches. Different sized NNs and avatars will begin to emerge...

10. The simulation is allowed to run indefinitely, so that the increasing complex-
ity of the environment and agent interaction ratchets the increase in complexity
of the system... setting up a positive feedback loop. If at any moment complexi-
ty stops increasing, if it stabilizes, or evolution takes the wrong turn some-
where, and becomes unable through mutation to jump out of a local intelligence
optima, the researcher can then modify the environment to try to set up scenar-
ios that require an increase in intelligence. This can be done by for example set-
ting up famine scenarios, increasing the difficulty of reaching certain foods,
adding new elements to the environment that require cleverness to be exploited,
or making the environment more fine grained, more realistic.

– swap_actuator
This mutation operator randomly chooses a currently used actuator, and
swaps it for another available actuator.

 135

4.3 Neuroevolution Through Memetic Algorithms

A memetic algorithm subdivides the search algorithm into two phases, global
search and local search. In neural networks, this separation into two phases might
mean the separation of the topological mutation operators from the synaptic
weight mutation operators. When we mutate the topology of the neural network,
we are exploring NN systems that differ from each other significantly. On the oth-
er hand, when we tune and perturb synaptic weights, we are exploring the local so-
lution space of the NN system of a particular topology, tuning the synaptic
weights and guiding them towards the local optima that the topology can achieve.
The following figure shows and compares the steps of the genetic and memetic al-
gorithm based neuroevolutionary systems.

Fig. 4.15 The comparison of genetic and memetic algorithm based neuroevolution.

There are both, advantages and at times disadvantages when using memetic
computing instead of genetic computing. One of the main advantages is that when
we evolve a new topology for an organism, we do not immediately discard it if it

As you can see, the setup is pretty much the same as in the previous examples.
As long as we can formulate the problem in evolutionary terms, and any problem
can be, we can then evolve a solution for it. In the next section we will briefly ex-
plore a variation on the standard evolutionary algorithm based approach. In the
next section we will discuss a memetic algorithm based neuroevolution.

4.3 Neuroevolution Through Memetic Algorithms

136 Chapter 4 Introduction to Neuroevolutionary Methods

setups before discarding the topological innovation. Thus, where memetic algo-
rithm keeps topology as a constant while searching through the synaptic weights
that make this new topology functional (before trying out a new topology), the ge-
netic algorithm system hopes to hit the perfect combination with regards to the
NN topology and its synaptic weights in one throw. But getting both at the same
time, from the sea of such combinations, is not likely to occur, and it is for this
reason why evolution takes so much time.

But there are a few disadvantages to memetic algorithm based systems as well,
particularly in ALife simulations where organisms can create offspring by their
own initiative. For example, how do we do weight tuning in such a scenario? If to
perform weight tuning we use a stochastic hill-climbing (SHC) algorithm, how
can we allow the organism to create offspring during its lifetime? After all, the
whole point of SCH is that we see if the new locally found solution is better than
previous one, and if not we destroy it and recreate a new one from the originally
fit system. To weight tune, we need to have a fitness score for the organism, which
is usually given once it dies. In a genetic algorithm based system, an organism or
agent simply creates an offspring. But in a memetic algorithm driven system, at
what point do we perform global search? At what point do we perform local
search? Also, during the local search we would try one organism at a time with a
different set of local parameters, to see if it’s better or worse than its parent, but
that is not possible in an ALife scenario. The parent creates an offspring and now
both are alive, and we won’t know which is better until both are dead. If both are
dead, what will create a new offspring to continue local search?...

Thus, when using a memetic algorithm based neuroevolutionary approach, it is
no longer as trivial as giving an organism an actuator that allows it to create an
offspring. Thus if we are willing to have a program external to the ALife simula-
tion create the offspring of the agents within the scape, then memetic algorithm

when we mutate a topology, there are usually only a few new weights added
(when adding a new neuron, making new synaptic connections, or adding a bi-
as...), and so it would not be difficult or costly, to try out a few different weight

does not function better than its parent. Instead we give it time to tune in the syn-
aptic weights for its neural topology, giving it time to reach its full potential (giv-
en a reasonable amount of computational time), and only then judge it. In a genet-
ic algorithm type system, we would randomly mutate a fit topology, giving the
new features random synaptic weights, and then expect it to outperform its parent.
That is of course highly unlikely, after all, when we perturb a functional topology
with random features which can technically be considered garbage DNA until
proven otherwise, there is very little chance that the new synaptic weights will be
in tune with the whole system and make it superior to its parent. At the same time,

4.3 Neuroevolution Through Memetic Algorithms 137

Fig. 4.16 Using spawning pools in ALife for offspring creation.

A spawning pool is basically a designated location where the offspring will be
spawned. We might set up as many spawning pools as there are different species
in the population, and position the spawning pools in the area which has the high-
est density of its species around. Then, when an offspring is created, it is not cre-
ated near the parent, but in the species communal spawning pool. To perform syn-
aptic weight tuning in ALife when using the memetic algorithm approach, we
would then wait for the parent to die, and then respawn it with a new set of synap-
tic weights. The organism would be spawned in the spawning pool location. We
would do this multiple times, as appropriate for a memetic algorithm. Once we’ve
given enough processing time to tune the synaptic weights of some given geno-
type, we would give that agent’s genotype its final fitness score. At this point,
when a new offspring is created from some set of fit genotypes, that list of fit gen-
otypes (to which I also refer to as dead_pool at times) has the newly scored geno-
type added to it, with its true fitness score.

calculates each organism’s fitness during its lifetime. When some agent within the
environment dies, this program creates an offspring based on some already dead
but fit genotype. Finally, this selection algorithm program then randomly positions
this newly created offspring in some kind of spawning pool in the ALife environ-
ment.

based neuroevolution can also be used in ALife. To do this, we remove the ability
of each organism to control its own reproduction, and use an external program that

138 Chapter 4 Introduction to Neuroevolutionary Methods

Fig. 4.17 Tree encoding to graph encoding to neural networks.

Where in Chapter-3 we saw how genetic programming can be used to evolve
circuits, here instead of letting each node be a logic gate, it is a function that
weighs incoming signals with synaptic weights, sums up the weighted signals in
some fashion, and then applies some activation function to this sum to produce the
final output. A neuron is just a particular set of functions, it can be considered as a
program, and thus a genetic programming approach, whether it be tree encoded
(single output) or graph encoded (multi-input and multi-output), is effectively a
neural network.

slightly different encoding method. Neuroevolution can be added to this list as just
another side of the coin, and which is basically a specialization of a graph based
genetic programming system, as shown in Fig-4.17.

4.4 Neural Networks as Graph Based Genetic Programming
Systems

We discussed in Chapter-3 four flavors of evolutionary computation: genetic
algorithms, genetic programming, evolutionary algorithms, and evolutionary pro-
gramming. We also noted that they are all virtually the same thing, just with a

4.4 Neural Networks as Graph Based Genetic Programming Systems 139

Fig. 4.18 Neural network as a graph of neural circuits using tanh activation functions.

Thus, an advanced enough neuroevolutionary system, and an advanced enough
genetic programming system, would be equivalent. Whatever nodes a genetic pro-
gramming framework would have access to, a neuroevolutionary system could al-
so have access to. Sure, it would feel less like a neural network if we were to start
using activation functions: “while” and “if” from the very start inside the neu-
rons... But why? After all, a threshold neuron is basically an if, and a recurrent
connection is in some sense a while loop. Why not allow access to these programs
directly, rather than having to re-evolve them through combinations of activation
functions and particular topologies, neuron by neuron? In the same way, a Hop-
field network circuit, or a small self organizing map, can be evolved through ge-
netic programming by letting the programs be neurons...

tions to be used by the neurons. The more advanced these two types of frame-
works become, the more the same they become. If we are to take the position of
stating that neuroevolution is a specialized form of genetic programming which
concentrates on using smooth functions in its nodes, we have to admit that a neu-
ral circuit whose neurons use tanh as activation functions, is a universal function
approximator... and since a neural network is a graph of interconnected neural cir-
cuits, then a neural network is a graph of any type of functions as well, as shown
in Fig-4.18.

Just as you may create a genetic programming framework, and provide a num-

ber of different programs to be used as nodes in your system, so may you create a
neuroevolutionary framework, and provide a number of different activation func-

140 Chapter 4 Introduction to Neuroevolutionary Methods

Though I know I’ve already made a comment to the effect that all these sys-
tems, genetic algorithms, genetic programming, evolutionary strategies, evolu-
tionary programming, neural networks, universal networks... are all the same, it is
important that this is seen. A genetic algorithm works on string based genotypes,
genetic programming is just a genetic algorithm that is applied to tree based en-
coding, and a graph encoded genetic programming system is a standard genetic
programming algorithm applied to multi-rooted trees. Evolutionary strategies is
just a standard genetic algorithm which also allows for the parameters dictating

4.5 References

[1] Stanley KO, Risto M (2002) Efficient Reinforcement Learning through Evolving Neural
Network Topologies. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence.

[2] Sher GI (2012) Evolving Chart Pattern Sensitive Neural Network Based Forex
TradingAgents. Available at: http://arxiv.org/abs/1111.5892.

[3] Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to Algorithms T. H.
Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, eds. (MIT Press).

[4] Stanley KO, Miikkulainen R (2003) A Taxonomy for Artificial Embryogeny. Artificial Life
9, 93-130.

Neural Networks. Network Computation in Neural Systems 5, 497-515.
[6] Turing AM (1952) The Chemical Basis of Morphogenesis. Philosophical Transactions of the

Royal Society B Biological Sciences 237, 37-72.
[7] Fleischer K, Barr AH (1993) A Simulation Testbed for The Study of Multicellular Develop-

ment: The Multiple Mechanisms of Morphogenesis. In C. G. Langton (Ed.), Artificial life III,
389-416.

[8] De M, Suzuki R, Arita T (2007) Heterochrony and Evolvability in Neural Network Devel-
opment. Artificial Life and Robotics 11, 175-182.

[9] Matos A, Suzuki R, Arita T (2009) Heterochrony and Artificial Embryogeny: a Method for
Analyzing Artificial Embryogenies Based on Developmental Dynamics. Artificial Life 15,
131-160.

[10] Thiran P, Peiris V, Heim P, Hochet B (1994) Quantization Effects in Digitally Behaving
Circuit Implementations of Kohonen Networks. IEEE Transactions on Neural Networks 5,
450-458.

[11] Glesner M, Pochmuller W, (1994) An Overview of Neural Networks in VLSI. Chapman &
Hall, London.

[12] Schwartz TJ (1990) A Neural Chips Survey. AI Expert 5, 34-38.
[13] Heemskerk JNH (1995) Overview of Neural Hardware. Neurocomputers for BrainStyle

Processing Design Implementation and Application, 1-23.

the various evolutionary features to mutate, and evolutionary programming is just
genetic programming applied to finite state machines instead of tree, or graph
encoded systems... Nevertheless, as per the standard, in this book we will view
a graph as a neural network if the majority of the nodes are biologically inspired.

[5] Cangelosi A, Parisi D, Nolfi S (1994) Cell Division and Migration in a “Genotype” for

4.5 References 141

[14] Matsuzawa M, Potember RS, Stenger DA, et al (1993) GABA-Activated Whole-Cell Cur-
rents in Containment and Growth of Neuroblastoma Cells on Chemically Patterned Sub-
strates. J. Neurosci. Meth. 50, 253-260.

[15] Matsuzawa M, Kobayashi K, Sugioka K, Knoll W (1998) A Biocompatible Interface for
The Geometrical Guidance of Central Neurons in Vitro. Journal of Colloid and Interface Sci-
ence 202, 213-221.

[16] Matsuzawa M, Krauthamer V, Richard S (1999) Fabrication of Biological Neuronal Net-
works for the Study of Physiological Information Processing. Johns Hopkins APL Tech. Dig.
20(3), 262-270

Chapter 5 The Unintentional Neural Network
Programming Language

We have discussed what neural networks are, how they process data, and one
of the goals in computational intelligence, the creation of one that rivals our own. I
think that neural networks are really the best way to achieve singularity, and to
create general computational intelligence, a truly intelligent neurocognitive sys-
tem. But there is a problem, the way neural networks function, their architecture,
the way they process information, the amount of processing they require, the con-
currency the NN system needs, and how such neural networks need to be distrib-
uted among available computing systems, is not easily mapped-to by the standard
programming language architectures like C/C++/C#/Java/Lisp...

DOI 10.1007/978-1-4614- - , © Springer Science+Business Media New York 2013 4463 3_5
143 G.I. Sher, Handbook of Neuroevolution Through Erlang,

Abstract The programming language Erlang has a perfect 1:1 mapping to the
problem domain of developing neural network computational intelligence based
systems. Erlang was created to develop distributed, process based, message pass-
ing paradigm oriented, robust, fault tolerant, concurrent systems. All of these fea-
tures are exactly what a programming language created specifically for developing
neural network based systems would have. In this chapter I make claims to why Er-
lang is such a perfect choice for the development of distributed computational in-
telligence systems, and how the features of this programming language map per-
fectly to the features needed by a neural network programming language. In this
chapter I briefly discuss my reasons for considering Erlang to be, though uninten-
tionally so, the quintessential neural network programming language.

If you’re wondering “Why should it matter?”, here is the thing: If you wanted
to build a neural network system in C++, and there have been a number of such
systems built, you have to think in C++ and its architecture, and translate those
ideas into the NN architecture. Though it does not sound like it should matter, it
does, and it has to do with linguistic determinism [1], which roughly states that it is
difficult to think in, and create new ideas in, languages which have not been de-
signed for, or have the elements required for, such ideas. For example, if your nat-
ural language does not support the concept of mathematics, thinking about math-
ematics would be very difficult, it would require a revolution within the language,
making it support such concepts. When you are programming in C++, you are
thinking about systems in C++, instead of thinking and visualizing neural network
systems, which is the real goal of your project. You are thinking about C++ and
worrying about how you can represent NNs through it. Neural Networks are very
different in their architecture from the programming languages used today. To de-
velop robust NN systems, to advance them, to be able to concentrate just on com-
putational intelligence (CI) without having to worry about the programming lan-
guage, and to have to the tools which can concisely map to the NN based CI

144 Chapter 5 The Unintentional Neural Network Programming Language

architecture is important. It not only makes things easier, it makes it possible to
consider such things, and thus it makes it possible to create and develop such
things. This is what Erlang [4,5,6] offers.

5.1 The Necessary Features

If you had the chance to make a programming language from scratch, with any
features you wanted, and you wanted to create a language with the architecture
that maps perfectly to neural networks, and for the development of true computa-
tional intelligence, what features would it need?

We would of course first want the programming language to make it architec-
turally mirror neural networks, so that all ideas and inventions in the field of neu-
ral computation could exactly and directly be represented by this new program-
ming language. This means that this programming language must have structures
similar to neural networks. To do this, the programming language would need the
following:

1. Neural networks are composed of independent, concurrent, distributed pro-
cessing units called neurons. Thus the programming language architecture
would need to support having such elements, having independently acting pro-
cesses which can all function in parallel, and which can be easily distributed
throughout the modern parallel hardware.

2. The neurons in NNs communicate with each other through signals. Thus the
programming language architecture needs to allow the processes to communi-
cate with each other through messages or signals too.

Having the programming language’s architecture that mirrors the architecture
of neural networks is not enough. Our brains are robust, we usually don’t encoun-
ter situations where we get a “bug”, and suddenly we crash. In other words, our
brains, our neural systems, our biological makeup is robust, fault tolerant, and self
recovering/healing. For the language architecture to support the creation of a true
computational intelligence, it needs to allow for a similar level of robustness. To
accommodate this it needs the following features:

1. Allow for an easy way to recover from errors.
2. If one of the elements of the computational intelligence system crashes or goes

down, the CI system must have features that can recover and restart the crashed
elements automatically. There must be multiple levels of security, such that the
processes are able to watch each other’s performance, monitoring for crashes
and assisting in recovering the crashed elements.

But simply being able to recover from crashes is not enough, simply being ro-
bust is not enough. Though the neural network itself takes care of the learning
part, performs the incorporation of new ideas, the growth and experience gaining,

5.1 The Necessary Features 145

there is one thing that biological organisms do not have the ability to do with re-
gards to their intelligence. Biological organisms do not have the ability to modify
their our own neural structures, we do not have the ability to rewrite our neural
networks at will, the ability to update the very manner in which our biological
neural networks process information... but that is the limitation of biological sys-
tems only, and non biological systems need not have such limitations. Thus a pro-
gramming language architecture must also provide the following features:

1. The programming language must allow for code hot-swapping. For the ability
for the CI system to rewrite the code that defines its own structure, its own neu-
ral network, or fix errors and then update itself, its own source code without
taking anything offline.

2. The programming language architecture must allow for the CI system to be
able to run forever, crashes should be local in nature, which should be fixable
by the CI itself.

Finally, taking into account that the neural network based CI systems should be
able to interface and control robotic systems, be used in Unmanned Ariel Vehicles
(UAVs), or in humanoid robots, the programming language should from the start
make it easy to develop and allow for control of a lot of different types of hard-
ware. It should allow: for an easy ability to develop different and numerous hard-
ware drivers.

In short, the programming language architecture that we are looking for must
process information through the use of independent concurrent and distributed
processes. It should allow for code hot-swapping. It should allow for fault toler-
ance, and error fixing, and self healing and recovery. And finally, it should be
made with ability to interface with large number of hardware parts, it should allow
for an easy way to develop hardware drivers, so that not only the software part of
the CI be allowed to grow and self modify and update, but it should also be able to
incorporate and add new hardware parts, whatever those new parts may be.

A list of features that a neural network based computational intelligence system
needs, as quoted from the list made by Bjarne Dacker [2], is as follows:

1. The system must be able to handle very large numbers of concurrent activities.
2. Actions must be performed at a certain point in time or within a certain time.
3. Systems may be distributed over several computers.
4. The system is used to control hardware.
5. The software systems are very large.
6. The system exhibits complex functionality such as, feature interaction.
7. The systems should be in continuous operation for many years.
8. Software maintenance (reconfiguration, etc) should be performed without stop-

ping the system.
9. There are stringent quality, and reliability requirements.
10.Fault tolerance

146 Chapter 5 The Unintentional Neural Network Programming Language

5.2 Erlang: From Telecommunications Networks To Neural
Networks

Erlang is a concurrency oriented (CO) programming language. It was devel-
oped at Ericsson, a project lead by Dr. Joe Armstrong. Erlang was created for the
purpose of developing telecom switching systems. Telecom switching systems
have a number of demanding requirements, such systems are required to be highly
reliable, fault tolerant, they should be able to operate forever, and act reasonably
in the presence of hardware and software errors. And these features are so close to
those needed by NN based systems, that the resulting language’s features are ex-
actly those of a neural network programming language. Quoting these necessary
features of the programming language from [3]:

1. “Encapsulation primitives — there must be a number of mechanisms for limit-
ing the consequences of an error. It should be possible to isolate processes so
that they cannot damage each other.

2. Concurrency — the language must support a lightweight mechanism to create
parallel process, and to send messages between the processes. Context switch-
ing between process, and message passing, should be efficient. Concurrent
processes must also time-share the CPU in some reasonable manner, so that
CPU bound processes do not monopolize the CPU, and prevent progress of
other processes which are “ready to run.”

3. Fault detection primitives — which allow one process to observe another pro-
cess, and to detect if the observed process has terminated for any reason.

4. Location transparency — If we know the PId of a process then we should be
able to send a message to the process.

5. Dynamic code upgrade — It should be possible to dynamically change code in
a running system. Note that since many processes will be running the same
code, we need a mechanism to allow existing processes to run “old” code, and
for “new” processes to run the modified code at the same time.

With a set of libraries to provide:

6. Stable storage — this is storage which survives a crash.
7. Device drivers — these must provide a mechanism for communication with the

outside world.
8. Code upgrade — this allows us to upgrade code in a running system.
9. Infrastructure — for starting, and stopping the system, logging errors , etc. “

Surprisingly enough, Dacker was not talking about neural network based
general computational intelligence systems when he made this list, he was talking
about telecom switching systems.

5.3 The Conceptual Mapping of a NN to Erlang’s Architecture 147

It is this that Erlang provides, and it is for this reason why we use it for the de-
velopment of neural network based systems in this book. I have found this lan-
guage to be so perfect for the task, that I must admit to be unable to see myself us-
ing anything else in future research within this field.

Whereas before I would need to first create the NN algorithms, topologies, and
architectures separately, and then try to figure out how to map the programming
language like C++ to the task, or even worse, think in C++, and thus create a sub-
par and compromised NN based system, or still worse think in C++ and not be
able to see the forest for the trees when it comes to CI and NN... With Erlang, the
ideas, the algorithms and NN structures are mapped to Erlang perfectly, and vice
versa. The ideas that would otherwise be impossible to implement, or even con-
sider when one thinks in one of the more commonly used languages, are easily
and clearly mapped to Erlang. You do not need to switch from thinking about neu-
ral network systems, algorithms, and architecture of a NN based CI when develop-
ing in Erlang. The conciseness of the language, the clarity of the code and the pro-
gramming language’s architecture... make even the most complex problems which
would otherwise not be possible to solve, effortless.

5.3 The Conceptual Mapping of a NN to Erlang’s Architecture

In Erlang, concurrency is achieved through processes. Processes are self con-
tained, independent, concurrently running micro server/clients, only able to inter-
act with each other through message passing. Already you can visualize that these
processes are basically neurons, independent, distributed, concurrent... only able
to communicate with each other by sending signals, action potentials.

Once again taking a quote from Armstrong’s thesis, where he notes the im-
portance of there being a one to one mapping between the problem and the pro-
gram, the architecture of the programming language and that which is being de-
veloped with it: “It is extremely important that the mapping is exactly 1:1. The
reason for this is that it minimizes the conceptual gap between the problem and
the solution. If this mapping is not 1:1 the program will quickly degenerate, and
become difficult to understand. This degeneration is often observed when non-CO
languages are used to solve concurrent problems. Often the only way to get the
program to work is to force several independent activities to be controlled by the
same language thread or process. This leads to an inevitable loss of clarity, and
makes the programs subject to complex and irreproducible interference errors. “
We see that the mapping from Erlang’s architecture to neural networks is 1:1, as
shown in Fig-5.1.

From the figure it becomes obvious that indeed, there is a perfect correlation
between the architecture of this programming language, and the NN problem do-
main. In the figure each neuron is directly mapped to a process, each connection

148 Chapter 5 The Unintentional Neural Network Programming Language

between the neurons is a connection between processes. Every signal, simulated
action potential that is sent from one neuron to another is a signal, a message in
vector/list or tuple form, from one process to another. We could not have hoped
for a better mapping.

Erlang was created to be not just concurrent, but distributed, over the web or
any other medium. Thus again, the CI system that needs to be distributed over a
number of machines, or over Internet, is achievable through Erlang, in fact it is a
natural quality when being written in Erlang.

Fig. 5.1 The mapping from Erlang’s architecture to the domain of neural network based
CI.

Erlang was also created with an eye towards scaling to millions of processes
working in parallel, so even here we are in great luck, for the future in this field will

ith millions or even billions of neurons
on every computing node. Also, because robotics is such a close field to computa-
tional intelligence, the evolved NN based systems will need to be able to interface
with the sensors and actuators, with the hardware in which the CI is embedded and
which it inhabits; again Erlang is perfect for this, it was made for this, it was cre-
ated to interface and interact with varied types of hardware, and it was created
such that developing drivers is easy.

require vast neural network based systems, w

5.5 I’ve Done This Once Before; And We Are On Our Way 149

But of course there are other important features, beyond that of scaling and the
perfect mapping from the problem to the solution domain. There is also the issue
of fault tolerance, the issue of robustness...

5.4 Robustness and Fault Tolerance in Computational
Intelligence

It would be rather comical if it were possible for an advanced CI system to be
brought down by a single bug. Here again Erlang saves us. This programming
language was designed to develop systems that must run forever, that can not be
taken offline, even when there is a bug, and even when it absolutely must be fixed.
Through supervision trees Erlang allows for processes to monitor each other, and
to restore each other. Thus if any element of the neural network crashes, another
part, an exoself of the CI system can restore it to the previously functional form.
But not only can it restore the CI to a previously functional form in the case of
emergency, but it can also allow for the bug to be fixed, and the new updated
source to be ran without going offline. It allows for the system to fix itself, to self
heal, to recover, to upgrade and evolve. What other programming language offers
such features so easily and so effortlessly?

5.5 I’ve Done This Once Before; And We Are On Our Way

In the following chapters we will develop a neural network based computation-
al intelligence system. All these features that are offered by Erlang will make it
easy for you and I to create it. If you think that the thus far described type of NN
based CI system is unreachable, or impossible... you will be surprised, because we
will build it by the end of this book. We will create ALife simulations, we will al-
low the NN systems to control the simulated organisms, evolving ability to hunt in
a virtual 2d environment, to find food, to trick and bait prey... We will create a
system that can evolve NNs which recognize visual patterns in financial data, ana-
lyzing the actual charts and plots, rather than simply lists of prices. We will create
a universal learning network, a system that can be used to evolve and optimize
digital circuits. And all of this will be easily achieved, to a great extent thanks to
Erlang.

It is incredible that a single individual can create a system of such complexity,
or more precisely, create a system that can evolve intelligent systems of such
complexity, all by himself. And you will be that individual, by the end of this vol-
ume you will have created such a system, and you will know exactly how to de-
velop a neuroevolutionary platform that can evolve general neural networks,

150 Chapter 5 The Unintentional Neural Network Programming Language

evolved for intelligence, for pattern recognition, for anything you can imagine and
apply them to.

There are no requirements for this book, you need only have the most basic ex-
perience with Erlang. Everything about neural networks and neuroevolution I’ll
show you. We’ll build this first NN CI system together, I’ve built one before and
so I can guide you. By the time we’re done, we’ll have built one of the most ad-
vanced neuroevolutionary systems currently available in the world. Afterwards,
you’ll continue your travels on your own, and you’ll use what you’ve learned here
to build something that even I can’t foretell. So common, what are you waiting
for, let’s go!

5.6 References

[1] Everett DL (2005). Cultural Constraints on Grammar and Cognition in Piraha Another Look
at the Design Features of Human Language. Current Anthropology 46, 621-646.

[2] Dacker B (2000) Concurrent Functional Programming for Telecommunications: A Case
Study of Technology Introduction. Masters thesis KTH Royal Institute of Technology Stock-
holm.

[3] Joe Armstrong (2003) Making Reliable Distributed Systems in The Presence of Software Er-
rors. The Royal Institute of Technology Stockholm, Sweden, (PhD thesis).

[4] Armstrong, J. (2007). Programming Erlang Software for a Concurrent World. Pragmatic
Bookshelf. ISBN 9781934356005.

[5] Thompson SJ; Cesarini F (2009) Erlang Programming: A Concurrent Approach to Software
Development. Sebastopol, California: O’Reilly Media, Inc. ISBN 978059651818.

[6] Logan M, Merritt E, Carlsson R (2010) Erlang and OTP in Action. Greenwich, CT: Manning
Publications. ISBN 9781933988788.

Part II

NEUROEVOLUTION: TAKING THE FIRST STEP
In this part of the book we will develop a simple yet powerful Topology and

Weight Evolving Artificial Neural Network (TWEANN) platform. We will devel-
op it in Erlang, and I will present all the source code within the chapters. Most
functions that we will develop will require some function by function explanation
and elaboration, and I will add the description and elaboration of the functions de-
veloped through the use of comments within the presented source code. In this
manner, you will be able to read the source code and the comments in the same
flow. It is important to read the comments, as they make up part of the text, and
will assist in the explanation of how the particular functions work, and what it is
that they do.

In Chapter-6 we will develop the genotype encoding, the phenotype representa-
tion, and the mapping between the two for our NN system. In Chapter-7 we will
add a local search algorithm, the stochastic hill climber, and the random restart
stochastic hill climbing optimization algorithm, and test our simple optimizable
NN on the XOR problem. In Chapter-8 we will expand our system further, devel-
op the population_monitor and the genome_mutator, thus transforming our system
into a simple, yet already very powerful TWEANN. Finally, in Chapter-9 we will
analyze our system, and find a few difficult to notice bugs. This chapter will show
how to look for errors in a system such as this, and how easy it is to miss small
logical based errors. The evolutionary algorithm tends to route around such small
errors, allowing the system to still function and find solutions even in the presence
of such errors, and thus hiding them and making them difficult to spot.

All the code developed in the following chapters is available at: https:
//github.com/CorticalComputer/Book_NeuroevolutionThroughErlang. This provides
the folders containing the source code for each chapter, so that you can follow
along and perform the testing, code exploration, and try out examples if you wish
so. Or if you wish, you can just look over the code within the text as you read,
without performing the demonstrated tests in the console yourself.

Chapter 6 Developing a Feed Forward Neural
Network

As we discussed in an earlier chapter, Neural Networks (NN) are directed
graphs composed of simple processing elements as shown in Figure-6.1. Every
vertex in such a directed graph is a Neuron, every edge is an outgoing axon and a
path along which the neuron sends information to other Neurons. A NN has an in-
put layer which is a set of neurons that receive signals from sensors, and an output
layer which is a set of neurons that connect to actuators. In a general NN system
the sensors can be anything, from cameras, to programs that read from a database
and pass that data to the neurons. The Actuators too can range from functions
which control motors, to simple programs which print the output signals to the
screen. Every neuron processes its incoming signals, produces an output signal,
and passes it on to other neurons.

Fig. 6.1 A simple Neural Network.

Whether the NN does something intelligent or useful is based on its topology
and parameters. The method of modifying the NN topology and parameters to
make it do something useful, is the task of its learning algorithm. A learning algo-
rithm can be supervised, like in the case of the error back propagation learning al-
gorithm, or it can be unsupervised like in the evolutionary or reinforcement learn-
ing algorithms. In a supervised learning algorithm the outputs of the NN need to

DOI 10.1007/978-1-4614- - , © Springer Science+Business Media New York 2013

4463 3_6

153 G.I. Sher, Handbook of Neuroevolution Through Erlang,

Abstract In this chapter we discuss how a single artificial neuron processes sig-
nals, and how to simulate it. We then develop a single artificial neuron and test its
functionality. Having discussed and developed a single neuron, we decide on the
NN architecture we will implement, and then develop a genotype constructor, and a
mapper from genotype to phenotype. Finally, we then ensure that that our simple
NN system works by using a simple sensor and actuator attached to the NN to test
its sense-think-act ability.

154 Chapter 6 Developing a Feed Forward Neural Network

be known in advance, such that corrections can be given to the NN based on the
differences in its produced outputs and the correct outputs. Once we have mini-
mized the differences between the answers we want and the answers the NN gives,
we apply the NN to a new set of data, to another problem in the same field but one
which the NN has not encountered during its training. In the case of unsupervised
learning, it is only important to be able to tell whether one NN system performs
better than another. There is no need to know exactly how the problem should be
solved, the NNs will try to figure that out for themselves; the researcher only
needs to choose the neural networks that produce better results over those that do
not. We will develop these types of systems in future sections.

In this chapter we will learn how to program a static neural network system
whose topological and parametric properties are specified during its creation, and
are not changed during training. We will develop a genotype encoding for a sim-
ple monolithic Neural Network, and then we’ll create a mapper program which
converts the NN genotype to its phenotypic representation. The process of modify-
ing these weights, parameters, and the NN topology is the job of a learning algo-
rithm, the subject that we will cover in the chapters that follow.

In the following sections when we discuss genotypes and phenotypes, we mean
their standard definitions: a genotype is the organism’s full hereditary information,
which is passed to offspring in mutated or unchanged form, and the phenotype is
the organism’s actual observed properties, its morphology and behavior. The pro-
cess of mapping a genotypical representation of the organism to the phenotypical
one is done through a process called development, to which we also will refer to
as: mapping. A genotype of the organism is the form in which we store it in our
database, on the other hand its phenotype is its representation and behavior when
the organism, a NN in our case, is live and functioning. In the NN system that we
build in this chapter, the genotype will be a list of tuples, and the phenotype a
graph of interconnected processes sending and receiving messages from one an-
other.

********Note********
The encoding of a genotype itself can either be direct, or indirect. A direct encoding is one in
which the genotype encodes every topological and parametric aspect of the NN phenotype in a
one to one manner, the genotype and the phenotype can be considered one and the same. An in-
direct encoding applies a set of programs, or functions to the genotype, through which the phe-
notype is developed. This development process can be highly complex and stochastic in nature
which takes into consideration the environmental factors during the time of development, and
producing a one too many mapping from a genotype to the phenotype. An example of a direct
encoding is that of a bit string which maps to a colored strip in which the 0s are directly con-
verted to white sections and 1s to black. An example of an indirect encoding is the case of
DNA, where the development from the genotype to a phenotype is a multi-stage process, with
complex interactions between the developing organism and the environment it is in.

6.1 Simulating A Neuron 155

We will now slowly build up a NN system, from a single neuron, to a fully
functional feed forward neural network. In the next section we take our first step
and develop an artificial neuron using Erlang.

6.1 Simulating A Neuron

Let us again briefly review the representation and functionality of a single arti-
ficial neuron, as shown in Figure-6.2. A neuron is but a simple processing element
which accepts input signals, weighs the importance of each signal by multiplying
it by a weight associated with it, adds a bias to the result, applies an activation
function to this sum, and then forwards the result to other elements it is connected
to. As an example, assume we have a list of input signals to the neuron:
[I1,I2,I3,I4], this input is represented as a vector composed of 4 elements. The
neuron then must have a list of weights, one weight for every incoming signal:
[W1,W2,W3,W4]. We weigh each signal with its weight by taking a dot product
of the input vector and the weight vector as follows: Dot_Product = I1*W1 +
I2*W2 + I3*W3 + I4*W4. If the neuron also has a threshold value or bias, we
simply add this bias value to the Dot_Product. Finally, we apply the activation

Fig. 6.2 An artificial Neuron.

156 Chapter 6 Developing a Feed Forward Neural Network

Mathematically, the neuron that uses a set of weights and a bias is equivalent to
a neuron that accepts an “extended input vector” and uses an “extended weight
vector” to weigh the signals. An extended input vector has “1” appended to the in-
put vector and an extended weight vector has the bias appended to the weight vec-
tor. Using the extended vectors, we then take a single dot product as follows:
[I1,I2,I3,I4,1]dot[W1,W2,W3,W4,Bias]= (I1*W1) +(I2*W2) +(I3*W3) +(I4*W4)
+(1*Bias), which is equal to the dot product of the input and weight vector, plus
the bias as before. Neurons that do not use a bias would simply not append the ex-
tension to the input, and thus produce the dot product without a bias value.

Lets simulate and test a very simple neuron, which we will represent using a
process. The neuron will have a predetermined number of weights, 2, and it will
include a bias. With 2 wights, this neuron can process input vectors of length 2.
The activation function will be the standard sigmoid function, in our neuron it’s
approximated by the hyperbolic tangent (tanh) function included in the math mod-
ule. The architecture of this neuron will be the same as in Figure-6.2.

In the following algorithm, we spawn a process to represent our Neuron, and
register it so that we can send and receive signals from it. We use a simple remote
procedure call function called ‘sense’ to send signals to the registered neuron, and
then receive the neuron’s output.

tivation_Function(Dot_Product), and for a neuron that also has a bias: Output =
Activation_Function(Dot_Product + Bias). A bias is an extra floating point pa-
rameter not associated with any particular incoming signal, and it adds a level of
tunable asymmetry to the activation function.

simple_neuron.erl
-module(simple_neuron).
-compile(export_all).

create()->
 Weights = [random:uniform()-0.5,random:uniform()-0.5,random:uniform()-0.5],
 register(neuron, spawn(?MODULE,loop,[Weights])).
%The create function spawns a single neuron, where the weights and the bias are generated
randomly to be between -0.5 and 0.5.

loop(Weights) ->
 receive
 {From, Input} ->
 io:format(“****Processing****~n Input:~p~n Using
Weights:~p~n”,[Input,Weights]),
 Dot_Product = dot(Input,Weights,0),
 Output = [math:tanh(Dot_Product)],

function to the dot product to produce the final output of the neuron: Output = Ac-

6.1 Simulating A Neuron 157

%The spawned neuron process accepts an input vector, prints it and the weight vector to the
screen, calculates the output, and then sends the output to the contacting process. The output is
also a vector of length one.

 dot([I|Input],[W|Weights],Acc) ->
 dot(Input,Weights,I*W+Acc);
 dot([],[Bias],Acc)->
 Acc + Bias.
%The dot product function that we use works on the assumption that the bias is incorporated in-
to the weight list as the last value in that list. After calculating the dot product, the input list will
empty out while the weight list will still have the single bias value remaining, which we then
add to the accumulator.

sense(Signal)->
 case is_list(Signal) and (length(Signal) == 2) of
 true->
 neuron ! {self(),Signal},
 receive
 {result,Output}->
 io:format(“ Output: ~p~n”,[Output])
 end;
 false->
 io:format(“The Signal must be a list of length 2~n”)
 end.
%We use the sense function to contact the neuron and send it an input vector. The sense func-
tion ensures that the signal we are sending is a vector of length 2.

Now let’s compile and test our module:

1> c(simple_neuron).
{ok,simple_neuron}
2> simple_neuron:create().
true.
3> simple_neuron:sense([1,2]).
****Processing****
 Input:[1,2]
 Using Weights:[0.44581636451986995,0.0014907142064750634, -0.18867324519560702]
 Output: [0.25441202264242263]

 From ! {result,Output},
 loop(Weights)
 end.

158 Chapter 6 Developing a Feed Forward Neural Network

It works! We can expand this neuron further by letting it accept signals only
from certain predetermined list of PIds, and then output the result not back to
those same processes, but instead to another set of PIds. With such modifications
this neuron could then be used as a fully functional processing element in a NN. In
the next section we will build a single neuron neural network that uses such pro-
cessing element.

6.2 A One Neuron Neural Network

Next we will create the simplest possible NN. Our NN topology will be com-
posed of a single Neuron which receives a signal from a Sensor, calculates an out-
put based on its weights and activation function, and then passes that output signal
to the Actuator. This topology and architecture is shown in Figure-6.3. You will
also notice that there is a 4th element called Cortex. This element is used to trigger
the sensor to start producing sensory data, and it also contains the PIds of all the
processes in the system so that it can be used to shut down the NN when we are
done with it. Finally, this type of element can also be used as a supervisor of the
NN, and play a role in the NN’s synchronization with the learning algorithm. The-
se features will become important when we start developing the more complex
NN systems in the chapters that follow.

Fig. 6.3 One Neuron Neural Network.

6.2 A One Neuron Neural Network 159

To create this system, we will need to significantly modify the functions in our
simple_neuron module, and add new features as shown in the following source
code:

simplest_nn.erl
-module(simplest_nn).
-compile(export_all).

create() ->
 Weights = [random:uniform()-0.5,random:uniform()-0.5,random:uniform()-0.5],
 N_PId = spawn(?MODULE,neuron,[Weights,undefined,undefined]),
 S_PId = spawn(?MODULE,sensor,[N_PId]),
 A_PId = spawn(?MODULE,actuator,[N_PId]),
 N_PId ! {init,S_PId,A_PId},
 register(cortex,spawn(?MODULE,cortex,[S_PId,N_PId,A_PId])).
%The create function first generates 3 weights, with the 3rd weight being the Bias. The Neuron
is spawned first, and is then sent the PIds of the Sensor and Actuator that it’s connected with.
Then the Cortex element is registered and provided with the PIds of all the elements in the NN
system.

neuron(Weights,S_PId,A_PId) ->
 receive
 {S_PId, forward, Input} ->
 io:format(“****Thinking****~n Input:~p~n with
Weights:~p~n”,[Input,Weights]),
 Dot_Product = dot(Input,Weights,0),
 Output = [math:tanh(Dot_Product)],
 A_PId ! {self(), forward, Output},
 neuron(Weights,S_PId,A_PId);
 {init, New_SPId, New_APId} ->
 neuron(Weights,New_SPId,New_APId);
 terminate ->
 ok
 end.
%After the neuron finishes setting its SPId and APId to that of the Sensor and Actuator respec-
tively, it starts waiting for the incoming signals. The neuron expects a vector of length 2 as in-
put, and as soon as the input arrives, the neuron processes the signal and passes the output vec-
tor to the outgoing APId.

 dot([I|Input],[W|Weights],Acc) ->
 dot(Input,Weights,I*W+Acc);
 dot([],[],Acc)->

160 Chapter 6 Developing a Feed Forward Neural Network

 Acc;
 dot([],[Bias],Acc)->
 Acc + Bias.
%The dot function takes a dot product of two vectors, it can operate on a weight vector with
and without a bias. When there is no bias in the weight list, both the Input vector and the
Weight vector are of the same length. When Bias is present, then when the Input list empties
out, the Weights list still has 1 value remaining, its Bias.

sensor(N_PId) ->
 receive
 sync ->
 Sensory_Signal = [random:uniform(),random:uniform()],
 io:format(“****Sensing****:~n Signal from the environment
~p~n”,[Sensory_Signal]),
 N_PId ! {self(),forward,Sensory_Signal},
 sensor(N_PId);
 terminate ->
 ok
 end.
%The Sensor function waits to be triggered by the Cortex element, and then produces a random
vector of length 2, which it passes to the connected neuron. In a proper system the sensory sig-
nal would not be a random vector but instead would be produced by a function associated with
the sensor, a function that for example reads and vector-encodes a signal coming from a GPS
attached to a robot.

actuator(N_PId) ->
 receive
 {N_PId,forward,Control_Signal}->
 pts(Control_Signal),
 actuator(N_PId);
 terminate ->
 ok
 end.

 pts(Control_Signal)->
 io:format(“****Acting****:~n Using:~p to act on environ-
ment.~n”,[Control_Signal]).
%The Actuator function waits for a control signal coming from a Neuron. As soon as the signal
arrives, the actuator executes its function, pts/1, which prints the value to the screen.

6.2 A One Neuron Neural Network 161

cortex(Sensor_PId,Neuron_PId,Actuator_PId)->
 receive
 sense_think_act ->
 Sensor_PId ! sync,
 cortex(Sensor_PId,Neuron_PId,Actuator_PId);
 terminate ->
 Sensor_PId ! terminate,
 Neuron_PId ! terminate,
 Actuator_PId ! terminate,
 ok
 end.
%The Cortex function triggers the sensor to action when commanded by the user. This process
also has all the PIds of the elements in the NN system, so that it can terminate the whole system
when requested.

Lets compile and try out this system:

1>c(simplest_nn).
{ok,simplest_nn}
2>simplest_nn:create().
true
3> cortex ! sense_think_act.
****Sensing****:
 Signal from the environment [0.09230089279334841,0.4435846174457203]
sense_think_act
****Thinking****
 Input:[0.09230089279334841,0.4435846174457203]
 with Weights:[-0.4076991072066516,-0.05641538255427969,0.2230402056221108]
****Acting****:
 Using:[0.15902302907693572] to act on environment.

It works! But though this system does embody many important features of a re-
al NN, it is still rather useless since it’s composed of a single neuron, the sensor
produces random data, and the NN has no learning algorithm so we can not teach
it to do something useful. In the following sections we are going to design a NN
system for which we can specify different starting topologies, for which we can
specify sensors and actuators, and which will have the ability to learn to accom-
plish useful tasks.

162 Chapter 6 Developing a Feed Forward Neural Network

6.3 Planning Our Neural Network System’s Architecture

A standard Neural Network (NN) is a graph of interconnected Neurons, where
every neuron can send and receive signals from other neurons and/or sensors and
actuators. The simplest of NN architectures is that of a monolithic feed forward
neural network (FFNN), as shown in Figure-6.4. In a FFNN, the signals only
propagate in the forward direction, from sensors, through the neural layers, and fi-
nally reaching the actuators which use the output signals to act on the environ-
ment. In such a NN system there are no recursive or cyclical connections. After
the Actuators have acted upon the environment, the sensors once again produce
and send sensory signals to the neurons in the first layer, and the “Sense-Think-
Act” cycle repeats.

Fig. 6.4 A Feed Forward Neural Network.

Every neuron must be able to accept a vector input of length 1+, and produce a
vector output of length 1. Since all neural inputs and outputs are in vector form,
and the sensory signals sent from the sensors are also in vector form, the neurons
neither need to know nor care whether the incoming signals are coming from other
neurons or sensors. Let’s take a closer look at the two types of connections that
occur in a NN, the [neuron|sensor]-to-neuron and the neuron-to-actuator connec-
tion as shown in Figure-6.5.

6.3 Planning Our Neural Network System’s Architecture 163

Fig. 6.5 Neuron/Sensor-To-Neuron & Neuron-To-Actuator connections.

Every input signal to a neuron is a list of values [I1...In], a vector of length 1 or
greater. The neuron’s output signal is also a vector, a list of length 1, [O]. Because
each Neuron outputs a vector of length 1, the actuators accumulate the signals
coming from the Neurons into properly ordered vectors of length 1+. The order of
values in the vector is the same as the order of PIds in its fanin pid list. Once the
actuator has finished gathering the signals coming from all the neurons connected
to it, it uses the accumulated vector as a parameter to its actuation function.

Once all the neurons in the output layer have produced and forwarded their sig-
nals to actuators, the NN can start accepting new sensory inputs again (*Note* It
is possible for a NN to process multiple sensory input vectors, one after the other,
rather than one at a time and waiting until an output vector is produced before ac-
cepting a new wave of sensory vectors. This would be somewhat similar to the
way a multi-stage pipeline in a CPU works, with every neural layer in the NN pro-
cessing signals at the same time, as opposed to the processing of sensory vectors

164 Chapter 6 Developing a Feed Forward Neural Network

algorithm is also present. This synchronization will be done using the Cortex ele-
ment we’ve briefly discussed earlier. We will recreate a more complex version of
the Cortex program which will synchronize the sensors producing sensory signals,
the actuators gathering the output vectors from the NN’s output layer, and the
learning algorithm modifying the weight parameters of the NN and allowing the
system to learn.

Putting all this information and elements together, our Neural Network will
function as follows: The sensor programs poll/request input signals from the envi-
ronment, and then preprocess and fan out these sensory signals to the neurons in
the first layer. Eventually the neurons in the output layer produce signals that are
passed to the actuator program(s). Once an actuator program receives the signals
from all the neurons it is connected from, it post-processes these signals and then
acts upon the environment. A sensor program can be anything that produces sig-
nals, either by itself (random number generator) or as a result of interacting with
the environment, like a camera, an intrusion detection system, or a program that
simply reads from a database and passes those values to the NN for example. An

propagating from first to last layer, one set of sensory input vectors at a time.) This
Sense-Think-Act cycle requires some synchronization, especially if a learning

Fig. 6.6 All the elements of a NN system.

6.3 Planning Our Neural Network System’s Architecture 165

A sensor, actuator, neuron, and the cortex are just 4 different types of processes
that accept signals, process them, and execute some kind of element specific func-
tion. Lets discuss every one of these processes in detail, to see what information
we might need to create them in their genotypic and phenotypic form.

Sensor: A sensor is any process that produces a vector signal that the NN then
processes. This signal can be produced from the sensor interacting with the envi-
ronment, for example the data coming from a camera, or from the sensor some-
how generating the signal internally.

Actuator: An actuator is a process that accepts signals from the Neurons in the
output layer, orders them into a vector, and then uses this vector to control some
function that acts on the environment or even the NN itself. An actuator might
have incoming connections from 3 Neurons, in which case it would then have to
wait until all 3 of the neurons have sent it their output signals, accumulate these
signals into a vector, and then use this vector as a parameter to its actuation func-
tion. The function could for example dictate the voltage signal to be sent to a servo
that controls a robot’s gripper.

can accept a single floating point value, post process the value so that its range is
from -1 to 1, and then execute the motor driver using this value as the parameter,
where the sign and magnitude of the parameter designates which way to steer and
how hard. Another example actuator is one that accepts signals from the NN, and
then buys or sells a stock based on that signal, with a complementary sensor which
reads the earlier price values of the same stock. This type of NN system architec-
ture is visually represented in Figure-6.6.

actuator program is any program that accepts signals and then acts upon the envi-
ronment based on those signals. For example, a robot actuator steering program

Neuron: The neuron is a signal processing element. It accepts signals, accumu-
lates them into an ordered vector, then processes this input vector to produce an
output, and finally passes the output to other elements it is connected to. The Neu-
ron never interacts with the environment directly, and even when it does receive
signals and produces output signals, it does not know whether these input signals
are coming from sensors or neurons, or whether it is sending its output signals to
other neurons or actuators. All the neuron does is have a list of input PIds from
which it expects to receive signals, a list of output PIds to which the neuron sends
its output, a weight list correlated with the input PIds, and an activation function it
applies to the dot product of the input vector and its weight vector. The neuron
waits until it receives all the input signals, processes those signals, and then passes
the output onwards.

Cortex: The cortex is a NN synchronizing element. It needs to know the PId of
every sensor and actuator, so that it will know when all the actuators have re-
ceived their control inputs, and that it’s time for the sensors to again gather and

166 Chapter 6 Developing a Feed Forward Neural Network

Now that we know how these elements should work and process signals, we
need to come up with an encoding which can be used to store any type of NN to-
pology in a database, or a flat file. This stored representation of the NN is its geno-
type. We should be able to specify the topology and the parameters of the NN
within the genotype, and then generate from it a process based NN system, the
phenotype. Using a genotype also allows us to train a NN to do something useful,
and then save the updated and trained NN to a file for later use. Finally, once we
decide to use an evolutionary learning algorithm, the NN genotypes are what the
mutation operators will be applied to, and from what the mutated offspring will be
generated.

In the next section we will develop a simple, human readable, and tuple based
genotype encoding for our NN system. This type of encoding will be easy to un-
derstand, work with, and easy to encode and operate on using standard directional
graph based functions. The use of such a direct way to store the genotype will also
make it easy to think about it, and thus to advance, scale, and utilize it in the more
advanced systems we’ll develop in the future.

6.4 Developing a Genotype Representation

There are a number of ways to encode the genotype of a monolithic Neural
Network (NN). Since NNs are directed graphs, we could simply use Erlang’s di-
graph module. The digraph module in particular has functions with which to cre-
ate Nodes/Neurons, Edges/Connections between the nodes, and even sub graphs,
thus easily allowing us to develop modular topologies. Another simple way to en-
code the genotype is by representing the NN as a list of tuples, where every tuple
is a record representing either a Neuron, Sensor, Actuator, or the Cortex element.
Finally, we could also use a hash table, ets for example, instead of a simple list to
store the tuples.

In every one of these cases, every element in the genotype is encoded as a hu-
man readable tuple. Our records will directly reflect the information that would be
included and needed by every process in the phenotype. The 4 elements can be
represented using the following records:

Sensor: -record(sensor, {id, cx_id, name, vl, fanout_ids}).

fanout sensory data to the neurons in the input layer. At the same time, the Cortex
element can also act as a supervisor of all the Neuron, Sensor, and Actuator ele-
ments in the NN system.

6.4 Developing a Genotype Representation 167

Actuator: -record(actuator, {id, cx_id, name, vl, fanin_ids}).

The actuator id has the following format: {actuator, UniqueVal}. cx_id is the
the Id of the Cortex element. ‘name’ is the name of the function the actuator exe-
cutes to act upon the environment, with the function parameter being the vector it
accumulates from the incoming neural signals. ‘vl’ is the vector length of the ac-
cumulated actuation vector. Finally, the fanin_ids is a list of neuron ids which are
connected to the actuator.

Neuron: -record(neuron, {id, cx_id, af, input_idps, output_ids}).

A neuron id uses the following format: {neuron,{LayerIndex, UniqueVal}}.
cx_id is the the Id of the Cortex element. The activation function, af, is the name
of the function the neuron uses on the extended dot product (dot product plus bi-
as). The activation function that we will use in the simple NN we design in this
chapter will be ‘tanh’, later we will extend the list of available activation functions
our NNs can use. ‘input_idps’ stands for Input Ids “Plus”, which is a list of tuples
as follows: [{Id1,Weights1} … {IdN,WeightsN},{bias,Val}]. Each tuple is com-
posed of the Id of the element that is connected to the neuron, and weights corre-
lated with the input vector coming from the neuron with the listed Id. The last tu-
ple in the input_idps is {bias,Val}, which is not associated with any incoming
signal, and represents the Bias value. Finally, output_ids is a list of Ids to which
the neuron will fanout its output signal.

Cortex: -record(cortex, {id, sensor_ids, actuator_ids, nids}).

The cortex Id has the following format: {cortex, UniqueVal}. ‘sensor_ids’ is a
list of sensor ids that produce and pass the sensory signals to the neurons in the in-
put layer. ‘actuator_ids’ is a list of actuator ids that the neural output layer is con-
nected to. When the actuator is done affecting the environment, it sends the cortex
a synchronization signal. After the cortex receives the sync signal from all the ids
in its actuator_ids list, it triggers all the sensors in the sensor_ids list. Finally, nids
is the list of all neuron ids in the NN.

Figure-6.7 shows the correlation between the tuples/records and the process
based phenotypic representations to which they map. Using this record representa-
tion in our genotype allows us to easily and safely store all the information of our
NN. We need only decide whether to use a digraph, a hash table, or a simple list to

The sensor id has the following format: {sensor, UniqueVal}. cx_id is the Id of
the Cortex element. ‘name’ is the name of the function the sensor executes to gen-
erate or acquire the sensory data, and vl is the vector length of the produced senso-
ry signal. Finally, fanout_ids is a list of neuron ids to which the sensory data will
be fanned out.

168 Chapter 6 Developing a Feed Forward Neural Network

store the Genotype of a NN. Because we will be building a very simple Feed For-
ward Neural Network in this chapter, let us start by using a simple list. For the
more advanced evolutionary NN systems that we’ll build in the later chapters, we
will switch to an ETS or a Digraph representation.

Fig. 6.7 Record to process correlation.

In the next section we will develop a program which accepts high level specifi-
cation parameters of the NN genotype we wish to construct, and which outputs the
genotype represented as a list of tuples. We will then develop a mapping function
which will use our NN genotype to create a process based phenotype, which is the
actual NN system that senses, thinks, and takes action based on its sensory signals
and neural processing.

6.5 Programming the Genotype Constructor

Now that we’ve decided on the necessary elements and their genotypic repre-
sentation in our NN system, we need to create a program that accepts as input the
high level NN specification parameters, and produces the genotype as output.

6.5 Programming the Genotype Constructor 169

When creating a NN, we need to be able to specify the sensors it will use, the ac-
tuators it will use, and the general NN topology. The NN topology specification
should state how many layers and how many neurons per layer the feed forward
NN will have. Because we wish to keep this particular NN system very simple, we
will only require that the genotype constructor is able to generate NNs with a sin-
gle sensor and actuator. For the number of layers and layer densities of the NN, all
the information can be contained in a single LayerDensities list as shown in Fig-
ure-6.8. Thus, our genotype constructor should be able to construct everything
from a parameter list composed of a sensor name, an actuator name, and a
LayerDensities list. The LayerDensities parameter will actually only specify the
hidden layer densities, where the hidden LayerDensities are all the non output lay-
er densities. The output layer density will be calculated from the vector length of
the actuator. An empty HiddenLayerDensities list implies that the NN will only
have a single neural layer, whose density is equal to the actuator’s vector length.

Fig. 6.8 A NN composed of 3 layers, with a [3, 2, 2] layer density pattern.

For example, a genotype creating program which accepts
(SensorName,ActuatorName,[1,3]) as input, where the sensor vector length is 3
and the actuator vector length is 1, should produce a NN with 3 layers, whose out-
put layer has 1 neuron, as shown in Figure-6.9. The input layer will have a single
neuron which has 3 weights and a bias, so that the neurons in the first layer can
process input vectors of length 3 coming from the sensor. The output layer has a
single neuron, due to actuator’s vl equaling 1.

170 Chapter 6 Developing a Feed Forward Neural Network

Fig. 6.9 Genotype with: LayerDensities == [1,3,1], and HiddenLayerDensities == [1,3].

We first create a file to contain the records representing each element we’ll use:

records.hrl
-record(sensor, {id, cx_id, name, vl, fanout_ids}).
-record(actuator,{id, cx_id, name, vl, fanin_ids}).
-record(neuron, {id, cx_id, af, input_idps, output_ids}).
-record(cortex, {id, sensor_ids, actuator_ids, nids}).

Now we develop an algorithm that constructs the genotype of a general feed
forward NN based on the provided sensor name, actuator name, and the hidden
layer densities parameter:

constructor.erl
-module(constructor).
-compile(export_all).
-include(“records.hrl”).

construct_Genotype(SensorName,ActuatorName,HiddenLayerDensities)->
 construct_Genotype(ffnn,SensorName,ActuatorName,HiddenLayerDensities).
construct_Genotype(FileName,SensorName,ActuatorName,HiddenLayerDensities)->
 S = create_Sensor(SensorName),
 A = create_Actuator(ActuatorName),
 Output_VL = A#actuator.vl,
 LayerDensities = lists:append(HiddenLayerDensities,[Output_VL]),
 Cx_Id = {cortex,generate_id()},

 Neurons = create_NeuroLayers(Cx_Id,S,A,LayerDensities),
 [Input_Layer|_] = Neurons,
 [Output_Layer|_] = lists:reverse(Neurons),
 FL_NIds = [N#neuron.id || N <- Input_Layer],

6.5 Programming the Genotype Constructor 171

 LL_NIds = [N#neuron.id || N <- Output_Layer],
 NIds = [N#neuron.id || N <- lists:flatten(Neurons)],
 Sensor = S#sensor{cx_id = Cx_Id, fanout_ids = FL_NIds},
 Actuator = A#actuator{cx_id=Cx_Id,fanin_ids = LL_NIds},
 Cortex = create_Cortex(Cx_Id,[S#sensor.id],[A#actuator.id],NIds),
 Genotype = lists:flatten([Cortex,Sensor,Actuator|Neurons]),
 {ok, File} = file:open(FileName, write),
 lists:foreach(fun(X) -> io:format(File, “~p.~n”,[X]) end, Genotype),
 file:close(File).
%The construct_Genotype function accepts the name of the file to which we’ll save the geno-
type, sensor name, actuator name, and the hidden layer density parameters. We have to generate
unique Ids for every sensor and actuator. The sensor and actuator names are used as input to the
create_Sensor and create_Actuator functions, which in turn generate the actual Sensor and Ac-
tuator representing tuples. We create unique Ids for sensors and actuators so that when in the
future a NN uses 2 or more sensors or actuators of the same type, we will be able to differenti-
ate between them using their Ids. After the Sensor and Actuator tuples are generated, we extract
the NN’s input and output vector lengths from the sensor and actuator used by the system. The
Input_VL is then used to specify how many weights the neurons in the input layer will need,
and the Output_VL specifies how many neurons are in the output layer of the NN. After ap-
pending the HiddenLayerDensites to the now known number of neurons in the last layer to gen-
erate the full LayerDensities list, we use the create_NeuroLayers function to generate the Neu-
ron representing tuples. We then update the Sensor and Actuator records with proper fanin and
fanout ids from the freshly created Neuron tuples, compose the Cortex, and write the genotype
to file.

 create_Sensor(SensorName) ->
 case SensorName of
 rng ->
 #sensor{id={sensor,generate_id()},name=rng,vl=2};
 _ ->
 exit(“System does not yet support a sensor by the
name:~p.”,[SensorName])
 end.

 create_Actuator(ActuatorName) ->
 case ActuatorName of
 pts ->
 #actuator{id={actuator,generate_id()},name=pts,vl=1};
 _ ->
 exit(“System does not yet support an actuator by the
name:~p.”,[ActuatorName])
 end.
%Every sensor and actuator uses some kind of function associated with it, a function that either
polls the environment for sensory signals (in the case of a sensor) or acts upon the environment
(in the case of an actuator). It is the function that we need to define and program before it is

172 Chapter 6 Developing a Feed Forward Neural Network

used, and the name of the function is the same as the name of the sensor or actuator itself. For
example, the create_Sensor/1 has specified only the rng sensor, because that is the only sensor
function we’ve finished developing. The rng function has its own vl specification, which will
determine the number of weights that a neuron will need to allocate if it is to accept this sen-
sor’s output vector. The same principles apply to the create_Actuator function. Both, cre-
ate_Sensor and create_Actuator function, given the name of the sensor or actuator, will return a
record with all the specifications of that element, each with its own unique Id.

 create_NeuroLayers(Cx_Id,Sensor,Actuator,LayerDensities) ->
 Input_IdPs = [{Sensor#sensor.id,Sensor#sensor.vl}],
 Tot_Layers = length(LayerDensities),
 [FL_Neurons|Next_LDs] = LayerDensities,
 NIds = [{neuron,{1,Id}}|| Id <- generate_ids(FL_Neurons,[])],
 cre-
ate_NeuroLayers(Cx_Id,Actuator#actuator.id,1,Tot_Layers,Input_IdPs,NIds,Next_LDs,[]).
%The function create_NeuroLayers/3 prepares the initial step before starting the recursive cre-
ate_NeuroLayers/7 function which will create all the Neuron records. We first generate the
place holder Input Ids “Plus”(Input_IdPs), which are tuples composed of Ids and the vector
lengths of the incoming signals associated with them. The proper input_idps will have a weight
list in the tuple instead of the vector length. Because we are only building NNs each with only a
single Sensor and Actuator, the IdP to the first layer is composed of the single Sensor Id with
the vector length of its sensory signal, likewise in the case of the Actuator. We then generate
unique ids for the neurons in the first layer, and drop into the recursive create_NeuroLayers/7
function.

 cre-
ate_NeuroLayers(Cx_Id,Actuator_Id,LayerIndex,Tot_Layers,Input_IdPs,NIds,[Next_LD|LDs],
Acc) ->
 Output_NIds = [{neuron,{LayerIndex+1,Id}} || Id <- generate_ids(Next_LD,[])],
 Layer_Neurons = create_NeuroLayer(Cx_Id,Input_IdPs,NIds,Output_NIds,[]),
 Next_InputIdPs = [{NId,1}|| NId <- NIds],
 cre-
ate_NeuroLayers(Cx_Id,Actuator_Id,LayerIndex+1,Tot_Layers,Next_InputIdPs,Output_NIds,
LDs,[Layer_Neurons|Acc]);
 create_NeuroLayers(Cx_Id,Actuator_Id,Tot_Layers,Tot_Layers,Input_IdPs,NIds,[],Acc) ->
 Output_Ids = [Actuator_Id],
 Layer_Neurons = create_NeuroLayer(Cx_Id,Input_IdPs,NIds,Output_Ids,[]),
 lists:reverse([Layer_Neurons|Acc]).
%During the first iteration, the first layer neuron ids constructed in create_NeuroLayers/3 are
held in the NIds variable. In create_NeuroLayers/7, with every iteration we generate the Out-
put_NIds, which are the Ids of the neurons in the next layer. The last layer is a special case
which occurs when LayerIndex == Tot_Layers. Having the Input_IdPs, and the Output_NIds,
we are able to construct a neuron record for every Id in NIds using the function create_layer/4.
The Ids of the constructed Output_NIds will become the NIds variable of the next iteration, and
the Ids of the neurons in the current layer will be extended and become Next_InputIdPs. We

6.5 Programming the Genotype Constructor 173

then drop into the next iteration with the newly prepared Next_InputIdPs and Output_NIds. Fi-
nally, when we reach the last layer, the Output_Ids is the list containing a single Id of the Actu-
ator element. We use the same function, create_NeuroLayer/4, to construct the last layer and re-
turn the result.

 create_NeuroLayer(Cx_Id,Input_IdPs,[Id|NIds],Output_Ids,Acc) ->
 Neuron = create_Neuron(Input_IdPs,Id,Cx_Id,Output_Ids),
 create_NeuroLayer(Cx_Id,Input_IdPs,NIds,Output_Ids,[Neuron|Acc]);
 create_NeuroLayer(_Cx_Id,_Input_IdPs,[],_Output_Ids,Acc) ->
 Acc.
%To create neurons from the same layer, all that is needed are the Ids for those neurons, a list
of Input_IdPs for every neuron so that we can create the proper number of weights, and a list of
Output_Ids. Since in our simple feed forward neural network all neurons are fully connected to
the neurons in the next layer, the Input_IdPs and Output_Ids are the same for every neuron be-
longing to the same layer.

 create_Neuron(Input_IdPs,Id,Cx_Id,Output_Ids)->
 Proper_InputIdPs = create_NeuralInput(Input_IdPs,[]),
 #neuron{id=Id,cx_id =
Cx_Id,af=tanh,input_idps=Proper_InputIdPs,output_ids=Output_Ids}.

 create_NeuralInput([{Input_Id,Input_VL}|Input_IdPs],Acc) ->
 Weights = create_NeuralWeights(Input_VL,[]),
 create_NeuralInput(Input_IdPs,[{Input_Id,Weights}|Acc]);
 create_NeuralInput([],Acc)->
 lists:reverse([{bias,random:uniform()-0.5}|Acc]).

 create_NeuralWeights(0,Acc) ->
 Acc;
 create_NeuralWeights(Index,Acc) ->
 W = random:uniform()-0.5,
 create_NeuralWeights(Index-1,[W|Acc]).
%Each neuron record is composed by the create_Neuron/3 function. The create_Neuron/3 func-
tion creates the Input list from the tuples [{Id,Weights}...] using the vector lengths specified in
the place holder Input_IdPs. The create_NeuralInput/2 function uses create_NeuralWeights/2 to
generate the random weights in the range of -0.5 to 0.5, adding the bias to the end of the list.

 generate_ids(0,Acc) ->
 Acc;
 generate_ids(Index,Acc)->
 Id = generate_id(),
 generate_ids(Index-1,[Id|Acc]).

 generate_id() ->
 {MegaSeconds,Seconds,MicroSeconds} = now(),

174 Chapter 6 Developing a Feed Forward Neural Network

 1/(MegaSeconds*1000000 + Seconds + MicroSeconds/1000000).
%The generate_id/0 creates a unique Id using current time, the Id is a floating point value. The
generate_ids/2 function creates a list of unique Ids.

 create_Cortex(Cx_Id,S_Ids,A_Ids,NIds) ->
 #cortex{id = Cx_Id, sensor_ids=S_Ids, actuator_ids=A_Ids, nids = NIds}.
%The create_Cortex/4 function generates the record encoded genotypical representation of the
cortex element. The Cortex element needs to know the Id of every Neuron, Sensor, and Actua-
tor in the NN.

Note that the constructor can only create sensor and actuator records that are
specified in the create_Sensor/1 and create_Actuator/1 functions, and it can only
create the genotype if it knows the Sensor and Actuator vl parameters. Let us now
compile and test our genotype constructing algorithm:

1>c(constructor).
{ok,constructor}.
2>constructor:construct_Genotype(ffnn,rng,pts,[1,3]).
ok

It works! Make sure to open the file to which the Genotype was written (ffnn in
the above example), and peruse the generated list of tuples to ensure that all the
elements are properly interconnected by looking at their fanin/fanout and in-
put/output ids. This list is a genotype of the NN which is composed of 3 feed for-
ward neural layers, with 1 neuron in the first layer, 3 in the second, and 1 in the
third. The created NN genotype uses the rng sensor and pts actuator. In the next
section we will create a genotype to phenotype mapper which will convert inert
genotypes of this form, into live phenotypes which can process sensory signals
and act on the world using their actuators.

6.6 Developing the Genotype to Phenotype Mapping Module

We’ve invented a tuple based genotype representation for our Neural Network,
and we have developed an algorithm which creates the NN genotypes when pro-
vided with 3 high level parameters, SensorName, ActuatorName, and
HiddenLayerDensities. But our genotypical representation of the NN is only used
as a method of storing it in a database or some file. We now need to create a func-
tion that converts the NN genotype, to an active phenotype.

In the previous chapter we have discussed how Erlang, unlike any other lan-
guage, is perfect for developing fault tolerant and concurrent NN systems. The NN
topology and functionality maps perfectly to Erlang’s process based architecture.
We now need to design an algorithm that creates a process for every tuple encoded

6.6 Developing the Genotype to Phenotype Mapping Module 175

element (Cortex, Neurons, Actuator, Sensor) stored in the genotype, and then in-
terconnects those processes to produce the proper NN topology. This mapping is
an example of direct encoding, where every tuple becomes a process, and every
connection is explicitly specified in the genotype. The mapping is shown in Fig-
ure-6.10.

Fig. 6.10 A direct genotype to phenotype mapping.

In our genotype to phenotype direct mapping, we first spawn every element to
create a correlation from Ids to their respective process PIds, and then initialize
every process’s state using the information in its correlated record. But to get these
processes to communicate, we still need to standardize the messages they will ex-
change between each other.

Because we want our neurons to be ambivalent to whether the signal is coming
from another neuron or a sensor, all signal vector messages must be of the same
form. We can let the messages passed from sensors and neurons to other neurons
and actuators use the following form: {Sender_PId, forward, Signal_Vector}. The
Sender_PId will allow the Neurons to match the Signal_Vector with its appropri-
ate weight vector.

176 Chapter 6 Developing a Feed Forward Neural Network

Once the actuator has accumulated all the incoming neural signals, it should be
able to notify the cortex element of this, so that the cortex can trigger the sensor
processes to poll for new sensory data. The actuators will use the following mes-
sages for this task: {Actuator_PId,sync}. Once the cortex has received the sync
messages from all the actuators connected to its NN, it will trigger all the sensors
using a messages of the form: {Cx_PId,sync}. Finally, every element other than
the cortex will also accept a message of the form: {Cx_PId,terminate}. The cortex
itself should be able to receive the simple ‘terminate’ message. In this manner we
can request that the cortex terminates all the elements in the NN it oversees, and
then terminates itself.

Now that we know what messages the processes will be exchanging, and how
the phenotype is represented, we can start developing the cortex, sensor, actuator,
neuron, and the phenotype constructor module we’ll call exoself. The ‘exoself’
module will not only contain the algorithm that maps the genotype to phenotype,
but also a function that maps the phenotype back to genotype. The phenotype to
genotype mapping is a backup procedure, which will allow us to backup pheno-
types that have learned something new, back to the database.

We now create the cortex module:

cortex.erl
-module(cortex).
-compile(export_all).
-include(“records.hrl”).

gen(ExoSelf_PId,Node)->
 spawn(Node,?MODULE,loop,[ExoSelf_PId]).

loop(ExoSelf_PId) ->
 receive
 {ExoSelf_PId,{Id,SPIds,APIds,NPIds},TotSteps} ->
 [SPId ! {self(),sync} || SPId <- SPIds],
 loop(Id,ExoSelf_PId,SPIds,{APIds,APIds},NPIds,TotSteps)
 end.
%The gen/2 function spawns the cortex element, which immediately starts to wait for a the
state message from the same process that spawned it, exoself. The initial state message contains
the sensor, actuator, and neuron PId lists. The message also specifies how many total Sense-
Think-Act cycles the Cortex should execute before terminating the NN system. Once we im-
plement the learning algorithm, the termination criteria will depend on the fitness of the NN, or
some other useful property

loop(Id,ExoSelf_PId,SPIds,{_APIds,MAPIds},NPIds,0) ->
 io:format(“Cortex:~p is backing up and terminating.~n”,[Id]),
 Neuron_IdsNWeights = get_backup(NPIds,[]),
 ExoSelf_PId ! {self(),backup,Neuron_IdsNWeights},

6.6 Developing the Genotype to Phenotype Mapping Module 177

 [PId ! {self(),terminate} || PId <- SPIds],
 [PId ! {self(),terminate} || PId <- MAPIds],
 [PId ! {self(),termiante} || PId <- NPIds];
loop(Id,ExoSelf_PId,SPIds,{[APId|APIds],MAPIds},NPIds,Step) ->
 receive
 {APId,sync} ->
 loop(Id,ExoSelf_PId,SPIds,{APIds,MAPIds},NPIds,Step);
 terminate ->
 io:format(“Cortex:~p is terminating.~n”,[Id]),
 [PId ! {self(),terminate} || PId <- SPIds],
 [PId ! {self(),terminate} || PId <- MAPIds],
 [PId ! {self(),termiante} || PId <- NPIds]
 end;
loop(Id,ExoSelf_PId,SPIds,{[],MAPIds},NPIds,Step)->
 [PId ! {self(),sync} || PId <- SPIds],
 loop(Id,ExoSelf_PId,SPIds,{MAPIds,MAPIds},NPIds,Step-1).
%The cortex’s goal is to synchronize the NN system such that when the actuators have received
all their control signals, the sensors are once again triggered to gather new sensory information.
Thus the cortex waits for the sync messages from the actuator PIds in its system, and once it has
received all the sync messages, it triggers the sensors and then drops back to waiting for a new
set of sync messages. The cortex stores 2 copies of the actuator PIds: the APIds, and the
MemoryAPIds (MAPIds). Once all the actuators have sent it the sync messages, it can restore
the APIds list from the MAPIds. Finally, there is also the Step variable which decrements every
time a full cycle of Sense-Think-Act completes, once this reaches 0, the NN system begins its
termination and backup process.

 get_backup([NPId|NPIds],Acc)->
 NPId ! {self(),get_backup},
 receive
 {NPId,NId,WeightTuples}->
 get_backup(NPIds,[{NId,WeightTuples}|Acc])
 end;
 get_backup([],Acc)->
 Acc.
%During backup, cortex contacts all the neurons in its NN and requests for the neuron’s Ids and
their Input_IdPs. Once the updated Input_IdPs from all the neurons have been accumulated, the
list is sent to exoself for the actual backup and storage.

Now the sensor module:

sensor.erl
-module(sensor).
-compile(export_all).
-include(“records.hrl”).

178 Chapter 6 Developing a Feed Forward Neural Network

gen(ExoSelf_PId,Node)->
 spawn(Node,?MODULE,loop,[ExoSelf_PId]).

loop(ExoSelf_PId) ->
 receive
 {ExoSelf_PId,{Id,Cx_PId,SensorName,VL,Fanout_PIds}} ->
 loop(Id,Cx_PId,SensorName,VL,Fanout_PIds)
 end.
%When gen/2 is executed it spawns the sensor element and immediately begins to wait for its
initial state message.

loop(Id,Cx_PId,SensorName,VL,Fanout_PIds)->
 receive
 {Cx_PId,sync}->
 SensoryVector = sensor:SensorName(VL),
 [Pid ! {self(),forward,SensoryVector} || Pid <- Fanout_PIds],
 loop(Id,Cx_PId,SensorName,VL,Fanout_PIds);
 {Cx_PId,terminate} ->
 ok
 end.
%The sensor process accepts only 2 types of messages, both from the cortex. The sensor can ei-
ther be triggered to begin gathering sensory data based on its sensory role, or terminate if the
cortex requests so.

rng(VL)->
 rng(VL,[]).
rng(0,Acc)->
 Acc;
rng(VL,Acc)->
 rng(VL-1,[random:uniform()|Acc]).

%’rng’ is a simple random number generator that produces a vector of random values, each be-
tween 0 and 1. The length of the vector is defined by the VL, which itself is specified within the
sensor record.

The actuator module:

actuator.erl
-module(actuator).
-compile(export_all).
-include(“records.hrl”).

gen(ExoSelf_PId,Node)->
 spawn(Node,?MODULE,loop,[ExoSelf_PId]).

6.6 Developing the Genotype to Phenotype Mapping Module 179

loop(ExoSelf_PId) ->
 receive
 {ExoSelf_PId,{Id,Cx_PId,ActuatorName,Fanin_PIds}} ->
 loop(Id,Cx_PId,ActuatorName,{Fanin_PIds,Fanin_PIds},[])
 end.
%When gen/2 is executed it spawns the actuator element and immediately begins to wait for its
initial state message.

loop(Id,Cx_PId,AName,{[From_PId|Fanin_PIds],MFanin_PIds},Acc) ->
 receive
 {From_PId,forward,Input} ->
 loop(Id,Cx_PId,AName,{Fanin_PIds,MFanin_PIds},lists:append(Input,Acc));
 {Cx_PId,terminate} ->
 ok
 end;
loop(Id,Cx_PId,AName,{[],MFanin_PIds},Acc)->
 actuator:AName(lists:reverse(Acc)),
 Cx_PId ! {self(),sync},
 loop(Id,Cx_PId,AName,{MFanin_PIds,MFanin_PIds},[]).
%The actuator process gathers the control signals from the neurons, appending them to the ac-
cumulator. The order in which the signals are accumulated into a vector is in the same order as
the neuron ids are stored within NIds. Once all the signals have been gathered, the actuator
sends cortex the sync signal, executes its function, and then again begins to wait for the neural
signals from the output layer by reseting the Fanin_PIds from the second copy of the list.

pts(Result)->
 io:format(“actuator:pts(Result): ~p~n”,[Result]).
%The pts actuation function simply prints to screen the vector passed to it.

And finally the neuron module:

neuron.erl
-module(neuron).
-compile(export_all).
-include(“records.hrl”).

gen(ExoSelf_PId,Node)->
 spawn(Node,?MODULE,loop,[ExoSelf_PId]).

loop(ExoSelf_PId) ->
 receive
 {ExoSelf_PId,{Id,Cx_PId,AF,Input_PIdPs,Output_PIds}} ->
 loop(Id,Cx_PId,AF,{Input_PIdPs,Input_PIdPs},Output_PIds,0)
 end.

180 Chapter 6 Developing a Feed Forward Neural Network

%When gen/2 is executed it spawns the neuron element and immediately begins to wait for its
initial state message.

loop(Id,Cx_PId,AF,{[{Input_PId,Weights}|Input_PIdPs],MInput_PIdPs},Output_PIds,Acc)->
 receive
 {Input_PId,forward,Input}->
 Result = dot(Input,Weights,0),
 loop(Id,Cx_PId,AF,{Input_PIdPs,MInput_PIdPs},Output_PIds,Result+Acc);
 {Cx_PId,get_backup}->
 Cx_PId ! {self(),Id,MInput_PIdPs},

 loop(Id,Cx_PId,AF,{[{Input_PId,Weights}|Input_PIdPs],MInput_PIdPs},Output_PIds,Acc);
 {Cx_PId,terminate}->
 ok
 end;
loop(Id,Cx_PId,AF,{[Bias],MInput_PIdPs},Output_PIds,Acc)->
 Output = neuron:AF(Acc+Bias),
 [Output_PId ! {self(),forward,[Output]} || Output_PId <- Output_PIds],
 loop(Id,Cx_PId,AF,{MInput_PIdPs,MInput_PIdPs},Output_PIds,0);
loop(Id,Cx_PId,AF,{[],MInput_PIdPs},Output_PIds,Acc)->
 Output = neuron:AF(Acc),
 [Output_PId ! {self(),forward,[Output]} || Output_PId <- Output_PIds],
 loop(Id,Cx_PId,AF,{MInput_PIdPs,MInput_PIdPs},Output_PIds,0).

 dot([I|Input],[W|Weights],Acc) ->
 dot(Input,Weights,I*W+Acc);
 dot([],[],Acc)->
 Acc.
%The neuron process waits for vector signals from all the processes that it’s connected from,
taking the dot product of the input and weight vectors, and then adding it to the accumulator.
Once all the signals from Input_PIds are received, the accumulator contains the dot product to
which the neuron then adds the bias and executes the activation function on. After fanning out
the output signal, the neuron again returns to waiting for incoming signals. When the neuron re-
ceives the {Cx_PId,get_backup} message, it forwards to the cortex its full MInput_PIdPs list,
and its Id. Once the training/learning algorithm is added to the system, the MInput_PIdPs
would contain a full set of the most recent and updated version of the weights.

 tanh(Val)->
 math:tanh(Val).
%Though in this current implementation the neuron has only the tanh/1 function available to it,
we will later extend the system to allow different neurons to use different activation functions.

Now we create the exoself module, which will map the genotype to phenotype,
spawning all the appropriate processes. The exoself module will also provide the
algorithm for the Cortex element to update the genotype with the newly trained

6.6 Developing the Genotype to Phenotype Mapping Module 181

weights from the phenotype, and in this manner saving the trained and learned
NNs for future use.

exoself.erl
-module(exoself).
-compile(export_all).
-include(“records.hrl”).

map()->
 map(ffnn).
map(FileName)->
 {ok,Genotype} = file:consult(FileName),
 spawn(exoself,map,[FileName,Genotype]).
map(FileName,Genotype)->
 IdsNPIds = ets:new(idsNpids,[set,private]),
 [Cx|CerebralUnits] = Genotype,
 Sensor_Ids = Cx#cortex.sensor_ids,
 Actuator_Ids = Cx#cortex.actuator_ids,
 NIds = Cx#cortex.nids,
 spawn_CerebralUnits(IdsNPIds,cortex,[Cx#cortex.id]),
 spawn_CerebralUnits(IdsNPIds,sensor,Sensor_Ids),
 spawn_CerebralUnits(IdsNPIds,actuator,Actuator_Ids),
 spawn_CerebralUnits(IdsNPIds,neuron,NIds),
 link_CerebralUnits(CerebralUnits,IdsNPIds),
 link_Cortex(Cx,IdsNPIds),
 Cx_PId = ets:lookup_element(IdsNPIds,Cx#cortex.id,2),
 receive
 {Cx_PId,backup,Neuron_IdsNWeights}->
 U_Genotype = update_genotype(IdsNPIds,Genotype,Neuron_IdsNWeights),
 {ok, File} = file:open(FileName, write),
 lists:foreach(fun(X) -> io:format(File, “~p.~n”,[X]) end, U_Genotype),
 file:close(File),
 io:format(“Finished updating to file:~p~n”,[FileName])
 end.
%The map/1 function maps the tuple encoded genotype into a process based phenotype. The
map function expects for the Cx record to be the leading tuple in the tuple list it reads from the
FileName. We create an ets table to map Ids to PIds and back again. Since the Cortex element
contains all the Sensor, Actuator, and Neuron Ids, we are able to spawn each neuron using its
own gen function, and in the process construct a map from Ids to PIds. We then use
link_CerebralUnits to link all non Cortex elements to each other by sending each spawned pro-
cess the information contained in its record, but with Ids converted to Pids where appropriate.
Finally, we provide the Cortex process with all the PIds in the NN system by executing the
link_Cortex/2 function. Once the NN is up and running, exoself starts its wait until the NN has
finished its job and is ready to backup. When the cortex initiates the backup process it sends
exoself the updated Input_PIdPs from its neurons. Exoself uses the update_genotype/3 function

182 Chapter 6 Developing a Feed Forward Neural Network

to update the old genotype with new weights, and then stores the updated version back to its
file.

 spawn_CerebralUnits(IdsNPIds,CerebralUnitType,[Id|Ids])->
 PId = CerebralUnitType:gen(self(),node()),
 ets:insert(IdsNPIds,{Id,PId}),
 ets:insert(IdsNPIds,{PId,Id}),
 spawn_CerebralUnits(IdsNPIds,CerebralUnitType,Ids);
 spawn_CerebralUnits(_IdsNPIds,_CerebralUnitType,[])->
 true.
%We spawn the process for each element based on its type: CerebralUnitType, and the gen
function that belongs to the CerebralUnitType module. We then enter the {Id,PId} tuple into
our ETS table for later use.

 link_CerebralUnits([R|Records],IdsNPIds) when is_record(R,sensor) ->
 SId = R#sensor.id,
 SPId = ets:lookup_element(IdsNPIds,SId,2),
 Cx_PId = ets:lookup_element(IdsNPIds,R#sensor.cx_id,2),
 SName = R#sensor.name,
 Fanout_Ids = R#sensor.fanout_ids,
 Fanout_PIds = [ets:lookup_element(IdsNPIds,Id,2) || Id <- Fanout_Ids],
 SPId ! {self(),{SId,Cx_PId,SName,R#sensor.vl,Fanout_PIds}},
 link_CerebralUnits(Records,IdsNPIds);
 link_CerebralUnits([R|Records],IdsNPIds) when is_record(R,actuator) ->
 AId = R#actuator.id,
 APId = ets:lookup_element(IdsNPIds,AId,2),
 Cx_PId = ets:lookup_element(IdsNPIds,R#actuator.cx_id,2),
 AName = R#actuator.name,
 Fanin_Ids = R#actuator.fanin_ids,
 Fanin_PIds = [ets:lookup_element(IdsNPIds,Id,2) || Id <- Fanin_Ids],
 APId ! {self(),{AId,Cx_PId,AName,Fanin_PIds}},
 link_CerebralUnits(Records,IdsNPIds);
 link_CerebralUnits([R|Records],IdsNPIds) when is_record(R,neuron) ->
 NId = R#neuron.id,
 NPId = ets:lookup_element(IdsNPIds,NId,2),
 Cx_PId = ets:lookup_element(IdsNPIds,R#neuron.cx_id,2),
 AFName = R#neuron.af,
 Input_IdPs = R#neuron.input_idps,
 Output_Ids = R#neuron.output_ids,
 Input_PIdPs = convert_IdPs2PIdPs(IdsNPIds,Input_IdPs,[]),
 Output_PIds = [ets:lookup_element(IdsNPIds,Id,2) || Id <- Output_Ids],
 NPId ! {self(),{NId,Cx_PId,AFName,Input_PIdPs,Output_PIds}},
 link_CerebralUnits(Records,IdsNPIds);
 link_CerebralUnits([],_IdsNPIds)->
 ok.

6.6 Developing the Genotype to Phenotype Mapping Module 183

 convert_IdPs2PIdPs(_IdsNPIds,[{bias,Bias}],Acc)->
 lists:reverse([Bias|Acc]);
 convert_IdPs2PIdPs(IdsNPIds,[{Id,Weights}|Fanin_IdPs],Acc)->
 convert_IdPs2PIdPs(IdsNPIds,Fanin_IdPs,
[{ets:lookup_element(IdsNPIds,Id,2),Weights}|Acc]).
%The link_CerebralUnits/2 converts the Ids to PIds using the created IdsNPids ETS table. At
this point all the elements are spawned, and the processes are waiting for their initial states.
convert_IdPs2PIdPs/3 converts the IdPs tuples into tuples that use PIds instead of Ids, such that
the Neuron will know which weights are to be associated with which incoming vector signals.
The last element is the bias, which is added to the list in a non tuple form. Afterwards, the list is
reversed to take its proper order.

 link_Cortex(Cx,IdsNPIds) ->
 Cx_Id = Cx#cortex.id,
 Cx_PId = ets:lookup_element(IdsNPIds,Cx_Id,2),
 SIds = Cx#cortex.sensor_ids,
 AIds = Cx#cortex.actuator_ids,
 NIds = Cx#cortex.nids,
 SPIds = [ets:lookup_element(IdsNPIds,SId,2) || SId <- SIds],
 APIds = [ets:lookup_element(IdsNPIds,AId,2) || AId <- AIds],
 NPIds = [ets:lookup_element(IdsNPIds,NId,2) || NId <- NIds],
 Cx_PId ! {self(),{Cx_Id,SPIds,APIds,NPIds},1000}.
%The cortex is initialized to its proper state just as other elements. Because we have not yet
implemented a learning algorithm for our NN system, we need to specify when the NN should
shutdown. We do this by specifying the total number of cycles the NN should execute before
terminating, which is 1000 in this case.

update_genotype(IdsNPIds,Genotype,[{N_Id,PIdPs}|WeightPs])->
 N = lists:keyfind(N_Id, 2, Genotype),
 io:format(“PIdPs:~p~n”,[PIdPs]),
 Updated_InputIdPs = convert_PIdPs2IdPs(IdsNPIds,PIdPs,[]),
 U_N = N#neuron{input_idps = Updated_InputIdPs},
 U_Genotype = lists:keyreplace(N_Id, 2, Genotype, U_N),
 io:format(“N:~p~n U_N:~p~n Genotype:~p~n
U_Genotype:~p~n”,[N,U_N,Genotype,U_Genotype]),
 update_genotype(IdsNPIds,U_Genotype,WeightPs);
update_genotype(_IdsNPIds,Genotype,[])->
 Genotype.

 convert_PIdPs2IdPs(IdsNPIds,[{PId,Weights}|Input_PIdPs],Acc)->
 con-
vert_PIdPs2IdPs(IdsNPIds,Input_PIdPs,[{ets:lookup_element(IdsNPIds,PId,2),Weights}|Acc]);
 convert_PIdPs2IdPs(_IdsNPIds,[Bias],Acc)->
 lists:reverse([{bias,Bias}|Acc]).

184 Chapter 6 Developing a Feed Forward Neural Network

%For every {N_Id,PIdPs} tuple the update_genotype/3 function extracts the neuron with the id:
N_Id, and updates its weights. The convert_PIdPs2IdPs/3 performs the conversion from PIds to
Ids of every {PId,Weights} tuple in the Input_PIdPs list. The updated Genotype is then returned
back to the caller.

Now lets compile the cortex, neuron, sensor, actuator, and the exoself module,
and test the NN system:

1> c(cortex).
ok
…

We now create a new NN genotype which uses the rng sensor, a pts actuator,
and employs a [1,2] hidden density list. Then we map it to its phenotype by using
the exoself module.

1> constructor:construct_Genotype(ffnn,rng,pts,[1,2]).
ok
2> exoself:map(ffnn).
...

It works! Our NN system has sensed, thought, and acted using its sensor, neu-
rons, and the actuator, while being synchronized through the cortex process. Yet
still this system does nothing but process random vectors using neural processes
which themselves use random weights. We now need to develop a learning algo-
rithm, and then devise a problem on which to test how well the NN can learn and
solve problems using its learning method. In the next chapter we will develop an
augmented version one of the most commonly used unsupervised learning algo-
rithms: the Stochastic Hill-Climber.

6. Summary

We have started with just a discussion of how a single artificial neuron pro-
cesses an incoming signal, which is vector encoded. We then developed a simple
sensor and actuator, so that the neuron has something to acquire sensory signals
with, and so that it can use its output signal to act upon the world, in this case
simply printing that output signal to screen. We then began designing the architec-
ture of the NN system we wish to develop, and the genotype encoding we wanted
to store that NN system in. After we had agreed on the architecture and the encod-
ing, we created the genotype constructor which built the NN genotype, and then a
mapper function which converted the genotype to its phenotype form. With this,
we had now developed a system that can create NN genotypes, and convert them
to phenotypes, We tested the ability of the NN to sense using its sensors, thinking

7

6.7 Summary 185

about the signals it acquired through its sensors, and then act upon the world by
using its actuators; the system worked. Though our NN system does not yet have a
way to learn, or be optimized for any particular task, we have developed a com-
plete encoding method, a genotypical and phenotypical representation of a fully
concurrent NN system, in just a few pages. With Erlang, a neuron is a process, an
action potential is a message, there is a 1:1 mapping, which made developing this
system so easy.

Chapter 7 Adding the “Stochastic Hill-Climber”
Learning Algorithm

Abstract In this chapter we discuss the functionality of an optimization method
called the Stochastic Hill Climber, and the Stochastic Hill Climber With Random
Restarts. We then implement this optimization algorithm, allowing the exoself
process to train and optimize the neural network it is overlooking. Afterwards, we
implement a new problem interfacing method through the use of public and pri-
vate scapes, which are simulated environments, not necessarily physical. We ap-
ply the new system to the XOR emulation problem, testing its performance on it.
Finally, looking to the future and the need for us to be able to test and benchmark
our neuroevolutionary system as we add new features to it, we create the
benchmarker process, which summons the trainer and the NN it trains, applying it
to some specified problem X number of times. Once the benchmarker has applied
the trainer to the problem X number of times and accumulated the resulting statis-
tics, it calculates the averages and the associated standard deviations for the im-
portant performance parameters of the benchmark.

Though we have now created a functional NN system, synchronized by the cor-
tex element and able to use sensors and actuators to interact with the world, it still
lacks the functionality to learn or be trained to solve a given problem or perform
some given task. What our system needs now is a learning algorithm, a method by
which we can train the NN to do something useful. Beside the learning algorithm
itself, we will also need some external system that can automatically train and ap-
ply this learning algorithm to the NN, and a system that can monitor the NN for
any unexpected crashes or errors, restoring it to a functional state when necessary.
Finally, though we have implemented sensors and actuators which the NN can use
to interact with the world and other programs, we have not yet developed a way to
present to the NN the problems we wish it to solve, or tasks that we wish to train it
to perform. It is these extensions that we will concern ourselves with in this chapter.

Here we will continue extending the NN system we’ve developed in the previ-
ous chapter. In the following sections we will discuss and add these new algo-
rithms and features, and develop the necessary modules and module extensions to
incorporate the new functionality.

DOI 10.1007/978-1-4614- - , © Springer Science+Business Media New York 2013 4463 3_7
187 G.I. Sher, Handbook of Neuroevolution Through Erlang,

188 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

7.1 The Learning Method

An evolutionary algorithm (EA) is a population based optimization algorithm
which works by utilizing biologically analogous operators: Selection, Mutation,
and Crossover. We will begin developing a population based approach in the next
chapter, at this point though, we will still use a single NN based system. In such a
case, there is one particular optimization algorithm that is commonly compared to
an EA due to some similarities, that algorithm is the Stochastic Hill-Climber
(SHC), and is the one we will be implementing.

In an evolutionary algorithm we use a population of organisms/agents, all of
whom we apply to the same problem in parallel. Afterwards, based on the fitness
each agent demonstrated, we use a selection algorithm to pick the fit from the un-
fit, and then create offspring from these chosen fit agents. The offspring are creat-
ed by taking the fit agents and perturbing/mutating them, or by crossing two or
more fit agents together to create a new one. The new population is then com-
posed from some combination of the original fit agents and their offspring (their
mutated forms, and/or their crossover based combinations). In this manner,
through selection and mutation, with every new generation we produce organisms
of greater and greater fitness.

In the Stochastic Hill-Climbing algorithm that we will apply to a single agent,
we do something similar. We apply a single NN to a problem, gage its perfor-
mance on the problem, save its genotype and fitness, and then mutate/perturb its
genome in some manner and then re-apply the resulting mutant to the problem
again. If the mutated agent performs better, then we save its genotype and fitness,
and mutate it again. If the mutated agent performs worse, then we simply reset the
agent’s genotype to its previous state, and mutate it again to see if the new mutant
will perform better. In this manner we slowly climb upwards on the fitness land-
scape, taking a step back if the new mutant performs worse, and retrying in a dif-
ferent direction until we generate a mutant that performs better. If at some point it
is noticed that no new mutants of this agent (in our case the agent is a NN based
system) seem to be increasing in fitness, we then consider our agent to have
reached a local optimum, at which point we could save its genotype and fitness
score, and then apply this fit NN to the problem it was optimized for. Or we could
try to restart the whole thing again, generate a completely new random genotype
and try to hill-climb it to greater fitness. By generating a completely new NN gen-
otype we hope that its initial weight (or topology and weight) combination will
spawn it in a new and perhaps better location of the fitness landscape, from which
a higher local optimum is reachable. In this manner the random restart stochastic
hill-climber optimization algorithm can reach local and even global optimum.

The following steps represent the Stochastic Hill-Climbing (SHC) algorithm:

1. Repeat:
2. Apply the NN to some problem.

7.1 The Learning Method 189

3. Save the NN’s genotype and its fitness.
4. Perturb the NN’s synaptic weights, and re-apply the NN to the same prob-

lem.
5. If the fitness of the perturbed NN is higher, discard original NN and keep

the new. If the fitness of the original NN is higher, discard the perturbed
NN and keep the old.

6. Until: Acceptable solution is found, or some stopping condition is reached.
7. Return: The genotype with the fittest combination of weights.

The algorithm is further extended by generating completely new random geno-
types when the NN currently being trained ceases to make progress. The following
steps extend the SHC to the Random-Restart SHC version:

8. Repeat:
9. Generate a completely new genotype, and perform steps 1-7 again.
10.If the new genotype reaches a higher fitness, overwrite the old genotype

with the new one. If the new genotype reaches a lower fitness, discard the
new genotype.

11.Until: Acceptable solution is found, or some stopping condition is reached.
12.Return: The final resulting genotype with its fitness score.

Steps 8-11 are necessary in the case that the original/seed combination of NN
topology and weights could not be optimized (hill climbed) to the level that would
solve the problem. Generating a new genotype, either of the same topology but
with different random weights, or of a different topology and weights, could land
this new genotype in a place of the fitness landscape from which a much higher
fitness can be reached. We will create a process which can apply steps 8-12 to a
NN system, and we’ll call this process: trainer.

We will not use the most basic version of the SHC. Instead we will modify it to
be a bit more flexible and dynamic. Rather than perturbing the NN’s weights some
predefined K number of times before giving up, we will make K dynamic and
based on a Max_Attempts value, which itself can be defined by the researcher or
based on some feature of the NN that is being optimized. If for example we have
perturbed the NN’s weights K==Max_Attempts number of times, and none of
them improved the NN’s fitness, this implies that based on where it was originally
created on the fitness landscape, the particular genotype has reached a good com-
bination of weights, and that the NN is roughly the best that its topology allows it
to be. But if on K =< Max_Attempts the NN’s fitness improves, we reset K back to
0. Since the NN has just improved its fitness, it might have just escaped from
some local optimum on the fitness landscape, and thus deserves another full set of
attempts to try and improve its weights further. Thus, before the NN is considered
to be at the top of its reachable potential, it has to fail to improve its fitness
Max_Attempts number of times in a row. Max_Attempts can be set up by the re-
searcher, the larger the Max_Attempts value, the more processing we’re willing to
spend on tunning the NN’s synaptic weights. This method will ensure that if the
NN can jump to a fitter place from the location on the fitness landscape that it’s

190 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

currently on, it will be given that chance. Using this augmented SHC algorithm we
will tune the NN’s synaptic weights, allowing the particular NN topology to reach
its potential, before considering that this NN and its topology is at its limits.

The number of times the trainer process should create a new genotype (same
topology but with a new set of random weights), will also be based on a similar
approach. The trainer process will use Trainer_MaxAttempts variable for this. And
it is only after Trainer_MaxAttempts number of genotypes in a row fail to produce
higher fitness, will the training phase be considered complete. Once training is
complete, the trainer process will return the best found genotype, and store it in
the file with the name “best”. This augmented SHC is diagrammed in Fig-7.1.

Fig. 7.1 Augmented Stochastic Hill Climber algorithm.

Further deviation from the standard algorithm will be with regards to the inten-
sity of the weight perturbations we’ll apply, and which weights and neurons we
will apply those perturbations to:

1. Each neuron in the trained NN will be chosen for perturbation with a probabil-
ity of 1/sqrt(NN_Size), where NN_Size is the total number of neurons in the
NN.

2. Within the chosen neuron, the weights which will be perturbed will be chosen
with the probability of 1/sqrt(Tot_Weights), where Tot_Weights is the total
number of synaptic weights in the weights list.

3. The intensity of the synaptic weight perturbation will be randomly chosen with
uniform distribution between -Pi and Pi.

4. Max_Attempts variable will be proportional to sqrt(NN_Size).

Features 1, 2 & 3 allow our system to have a chance of producing very high in-
tensity mutations, where perturbations are large and applied to many neurons and
many synaptic weights within those neurons, all at once. At the same time there is

7.1 The Learning Method 191

a chance that the general perturbation intensity will be small, and applied only to a
few neurons and a few of their synaptic weights. Thus this approach allows our
system to use highly variable mutation/perturbation intensities. Small intensity
mutations can fine tune the weights of the NN, while large intensity mutations
give our NN a chance to jump out of local synaptic weight optima. Feature 4 will
ensure that larger NNs will have a greater amount of processing resources allocat-
ed to the tuning of their synaptic weights, because the larger the NN the greater
the chance that a larger combination of weights needs to be set to just the right
values all at once for the NN to become fitter, which requires a larger number of
attempts to do so.

7.1.1 Comparing EA to Random Restart SHC

Note how similar the random-restart stochastic hill-climber (RR-SHC) and the
standard evolutionary algorithm (EA) are. The RR-SHC is almost like a sequential
version of the EA. The following list is a comparison of that:

1.

– EA: In generational EA we start by creating a population of NNs, each
with the same topology and thus belonging to the same species. Though
each individual will have the same NN topology, each one will have a dif-
ferent combination of synaptic weights.

– RR-SHC: In RR-SHC we create a particular genotype, a NN topology. We
then try out different combinations of weights. Each new combination of
weights represents an individual belonging to the same species. We are
thus trying out the different individuals belonging to the same specie se-
quentially, one at a time, instead of all in parallel.
*But unlike in EA, these different individuals belonging to the same species
are not generated randomly, and are not tried in a random order. Instead
we generate one individual by perturbing its “ancestor”. Each new indi-
vidual in the specie is based on the previous version of itself, which is used
as a stepping stone in an attempt to create a fitter version.

2.

– EA: After all the organisms have been given their fitness, we create the
next generation from the subset of the fit organisms. The next generation
might contain new NN topologies and new species, generated from the old
species through mutation and crossover. Again, each NN species will con-
tain multiple members whose only difference is in their synaptic weights.
*But here the new species are generated as an attempt at improvement
(hill climbing), with the parent individuals acting as the stepping stone for
the next topological and parametric innovation.

192 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

– RR-SHC: After trying out the different permutations of synaptic weights
for the original topology, we generate a new one (either the same or a new
topology). We then again try out the different synaptic weight combina-
tions for the genotype that starts from a different spot on the fitness land-
scape.
*But here we are trying out the same topology. Although of course the al-
gorithm can be augmented, and during this step we could generate a new
genotype, not simply having a different set of starting weights but one hav-
ing a topology that is a perturbation of the previous version, or even com-
pletely new and random.

The EA will eventually have a population composed of numerous species, each
with multiple members, and thus EA explores the solution space far and wide. If
one species or a particular combination of weights in a species leads to a dead end
on the fitness landscape, there will be plenty of others working in parallel which
will, if there is a path, find a way to higher fitness by another route.

On the other hand the RR-SHC, during its generation of a new genotype or per-
turbation of weights, can only select that 1 option, the first combination that leads
to a greater fitness is the path selected. If that particular selection is on the path to
a dead end, it will not be known until it’s too late and the system begins to fail to
produce individuals of greater fitness. A dead-end that is reached when perturbing
weights is not so bad because our system also generates and tries out new geno-
types. But if we start generating new topologies based on the old ones in this se-
quential hill climbing manner, then the topological dead end reached at this point
could be much more dire, since we will not know when the first step towards the
dead end was taken, and we will not have multiple other species exploring paths
around the topological dead end in parallel... Fig-7.2 shows the similarities and
differences in the evolutionary paths taken by organisms optimized using these
two methods.

In the following figure, the red colored NNs represent the most fit NNs within
the particular specie they belong to. For the evolutionary computation, the flow of
time is from top to bottom, whereas for the RR-SHC it is from top to bottom for a
species, but the NNs and species are tried one after the other, so it is also from left
to right. Evolutionary process for both, the evolutionary computation algorithm
and the RR-SHC algorithm, is outlined by the step numbers, discussed next.

7.1 The Learning Method 193

Fig. 7.2 Similarities and Differences in the evolutionary paths taken by organisms evolved
through EA and RR-SHC.

Let us first go through the evolutionary path taken by the Evolutionary Compu-
tation algorithm, by following the specified steps:

1. Species-1 and Species-2 are created, each with 4 NNs, thus the population is
composed of 8 NNs in total, separated into 2 species.

2. In Species-1, NN2 and NN3 are the most fit. NN2 creates 3 offspring, which
all belong to Species-1. NN3 creates offspring which belong to Species-4. In
Species-2, NN1 and NN2 are the most fit. The NN1 of Species-2 creates off-
spring which make up Species-3, while NN2 creates offspring which go into
Species-4. In this scenario, the parents do not survive when creating an off-
spring, and thus Species-2 does not make it to the next generation.

3. During the second generation, the population is composed of Species-1, Species-4,
and Species-3, and 9 NNs in total. In this population, the most fit NNs are
NN2 and NN3 of Species-1, and NN3 of Species-4. NN2 of Species-1 creates 3
offspring, all of which have the topology of Species-3. NN3 creates 3 offspring,
all of which have the topology of Species-4. Finally, NN3 of Species-4 creates 3
offspring, all of which have a new topology, and are thus designated as Spe-
cies-5.

4. The third generation, composed of Species-3, Species-4, and Species-5, make
up the population of size 9. The most fit of this population is the NN1 of Spe-
cies-3, NN2 of Species-4, and NN1 of Species-5. The most fit of the three NNs,
is NN1 of Species-5, which is designated as Champion.

Similarly, let us go through the steps taken by the RR-SHC algorithm:

194 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

1. The RR-SHC creates Species-2 (if we are to compare the topologies to those
created by the evolutionary computation algorithm that is, otherwise we can
designate the topology with any value).

2. First NN1 is created and tested. Then NN2 is created by perturbing NN1. NN2
has a higher fitness than NN1. The fitness has thus just increased, and NN2’s
fitness is now the highest reached thus far for this run.

3. We perturb NN2, creating a NN3. NN3 does not have a higher fitness value, so
we re-perturb NN2 and create NN4, which also does not have a higher fitness
than NN2. We perturb NN2 again and create NN5, which does have a higher
fitness than NN2. We designate NN5 as the most fit at this time.

4. NN5 is perturbed to create NN6, which is not fitter. NN5 is perturbed again to
create NN7, which is fitter than NN5, thus NN7 is now designated as the most fit.

5. NN7 is perturbed to create NN8, which is not fitter, and it is then perturbed to
create NN9, which is also not fitter. We perturb NN7 for the third time to create
NN10, which is also not fitter. If we assume that we set our RR-SHC algo-
rithm’s Max_Attempts to 3, then our system has just failed to produce a fitter
agent 3 times in a row. Thus we designate NN7 of this optimization run, to be
the most fit.

6. NN7 is saved as the best NN achieved during this stochastic hill climbing run.
7. The RR-SHC creates a new random NN11, whose topology designates it to be

of Species-3.
8. The NN11 is perturbed to create NN12, which is not fitter than NN11. It is per-

turbed again to create NN13, which is fitter than NN11, and is thus designated
as the fittest thus far achieved in this particular optimization run.

9. This continues until termination condition is reached for this hill climbing run
as well. At which point we see that NN20 is the most fit.

10. A new random NN21 is generated. It is optimized through the same process.
Until finally NN30 is designated to be the most fit of this hill climbing run.

11. Amongst the three most fit NNs, [NN7, NN20, NN30], produced from 3 ran-
dom restarts of the hill climbing optimization algorithm, NN7 is the most fit.
Thus, NN7 is designated as the champion produced by the RR-SHC algorithm.

We will return to these issues again in later chapters. And eventually build a
hybrid composed of these two approaches, in an attempt to take advantage of the
greedy and effective manner in which SHC can find good combinations of synap-
tic weights, and the excellent global optima searching abilities of the population
based evolutionary approach.

7.2 The Trainer

The trainer will be a very simple program that first generates a NN genotype
under the name “experimental”, and then applies it to the problem. After the
exoself (discussed in the next section) finishes performing synaptic weight tuning

7.3 The Exoself 195

of its NN, it sends the trainer process a message with the NN’s highest achieved
fitness score and total number of evaluations it took to reach it (the number of
times NN’s total fitness had been evaluated). The trainer will then compare this
NN’s fitness to the fitness of the genotype under the name “best” (which will be 0
if there is no genotype under such name yet). If the fitness of “experimental” is
higher than that of “best”, the trainer will rename experimental to best, thus over-
writing and removing it. If the fitness of “best” is higher than that of “experi-
mental”, the trainer will not overwrite the old genotype. In either case, the trainer
then generates a new genotype under the name “experimental”, and repeats the
process.

As noted in section 7.1, the trainer will use Trainer_MaxAttempts variable to
determine how many times to generate a new genotype. Only once the Trainer
fails to generate a fitter genotype Trainer_MaxAttempts number of times in a row,
will it be finished, at which point the trainer process will have stored the fittest
genotype in the file “best”.

7.3 The Exoself

We now need to create an external process to the NN system which tunes the
NN’s weights through the use of augmented SHC algorithm. A modified version
of the Exoself process we created in the previous chapter is an excellent contender
for this role. We cannot use the cortex element for this new functionality because
it is part of the NN system itself. The cortex is the synchronizer, and also the ele-
ment that can perform duties that require global view of the neural topology. For
example in something like competitive learning where the neural response intensi-
ties to some signal need to be compared to one another for the entire network, an
element like cortex can be used. But if for example it is necessary to shut down
the entire NN system, or to add new sensors and actuators or new neurons while
the NN itself is live and running, or update the system’s source code, or recover a
previous state of the NN system, that duty could be better performed by an exter-
nal process like the exoself.

Imagine an advanced ALife scenario where a simulated organism is controlled
by a NN. In this simulation the organism is already able to modify its own neural
topology and add new sensors and actuators to itself. To survive in the environ-
ment, it learned to experiment with its own sensors, actuators, and neural architec-
ture so as to give itself an advantage. During one of its experimentations, some-
thing goes terribly wrong: synchronization becomes broken and the whole NN
system stops functioning. For example the NN based agent (an infomorph) is ex-
perimenting with its own neural topology, and by mistake deletes a large chunk of
itself. The system would become too broken to fix itself after such a thing, and
thus the problem would have to be fixed from the outside of the NN system, by

196 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

some process that is monitoring it and can revert it back to its previous functional
state. For such, and more common events, we need a process which would act as a
constant monitor of the self, while being external to the self. This process is the
Exoself.

The exoself is a process that will function in a cooperative manner with the self
(NN). It will perform jobs like backing up the NN’s genotype to file, reverting to
earlier versions of the NN, adding new neurons in live systems when asked by the
NN itself... In slightly less advanced scenarios, the exoself will be used to opti-
mize the weights of the NN it is monitoring. Since the exoself is outside the NN, it
could keep track of which combination of weights in the NN produced a fitter in-
dividual, and then tell the NN when to perturb its neural weights, and when to re-
vert to the previous combination of the weights if that yielded a fitter form. The
architecture of such a system is presented in Fig-7.3.

Fig. 7.3 The architecture of a NN system with an exoself process.

7.4 The Scape 197

Having now covered the trainer and the exoself, which act as the appliers of the
augmented RR-SHC optimization algorithm to the NN system, we now need to
come up with a way to apply the NN to the problems, or present tasks to the NN
that we wish it to learn how to perform. The simulations, tasks, and problems that
we wish to apply our NN to, will be abstracted into scape packages, which we dis-
cuss in the next section.

7.4 The Scape

Scapes are composed of two parts, a simulation of an environment or a problem
we are applying the NN to, and a function that can keep track of the NN’s perfor-
mance. Scapes run outside the NN systems, as independent processes with which
the NNs interact using their sensors and actuators. There are 2 types of scapes.
One type of scapes, private, is spawned for each NN during the NN’s creation, and
destroyed when that NN is taken offline. Another type of scapes, public, is persis-
tent, they exist regardless of the NNs, and allow multiple NNs to interact with
them at the same time, and thus they can allow those NNs to interact with each
other too. The following are examples of these two types of scapes:

1. For example, let’s assume we wish to use a NN to control a simulated robot in
a simulated environment where other simulated robots exist. The fitness in this
environment is based on how many simulated plants the robot eats before run-
ning out of energy. The robot’s energy decreases at some constant rate. First we
generate the NN with appropriate Sensors and Actuators with which it can in-
terface with the scape. The sensors could be cameras, and the actuators could
control the speed and direction of the robot’s navigation through the environ-
ment, as shown in Fig-7.4. This scape exists outside the NN system, and for the
scape to be able to judge how well the NN is able to control the simulated ro-
bot, it needs a way to give the NN fitness points. Furthermore, the scape can ei-
ther give the NN a fitness point every time the robot eats a plant (event based),
or it can keep track of the number of plants eaten throughout the robot’s life-
time, until the robot runs out of energy, at which point the scape would use
some function to give the NN its total fitness (life based) by processing the to-
tal number of plants eaten using that function. The simulated environment
could have many robots in it, interacting with the simulated environment and
each other. When one of the simulated robots within the scape runs out of ener-
gy, or dies, it is removed from the scape, while the remaining organisms in the
scape persist. The scape continues to exist independently of the NNs interacting
with it, it is a public scape.

198 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

Fig. 7.4 Public simulation, with multiple organisms being controlled by NNs.

2.
pushed back and forth on a 2 meter track, as shown in Fig-7.5. We could create
a scape with the physics simulation of the pole and the cart, which can be inter-
acted with through the NN’s sensors and actuators. The job of the NN would be
to push the cart back and forth, thus balancing the pole on it. The NN’s sensors
would gather information like the velocity and the position of the cart, and the
angular velocity and the position of the pole. The NN’s actuators would push
the cart back and forth on the track. The scape, having access to the whole sim-
ulation, could then distribute fitness points to the NN based on how well and
how long it balances the pole. When the NN is done with its pole balancing
training and is deactivated, the scape is deactivated with it. If there are 3 differ-
ent NNs, each will have its own pole balancing simulation scape created, and
those simulations will only exist for as long as the NNs exist. Some problems
or simulations are created specifically, and only, for that NN which needs it.
This is an example of a private scape.

We want to create a NN that is able to balance a pole on a cart which can be

Fig. 7.5 Private simulation, with multiple NN based agents, each with its own private scape.

7.5 Scapes, Sensors, Actuators, Morphologies, and Fitness 199

Though both of these problems (Artificial life and pole balancing) are repre-
sented as scapes, they have an important difference. The first scape is a 3d envi-
ronment where multiple robots can exist, the scape’s existence is fully independ-
ent of the NNs interacting with it, it is a public scape. The scape exists on its own,
whether there are organisms interacting with it or not. It has to be spawned inde-
pendently and before the NNs can start interacting with it. The second scape ex-
ample on the other hand is created specifically for each NN when that neural net-
work goes online, it is an example of a private scape. A private scape is in a sense
summoned by the NN itself for the purpose of practicing something, or training to
perform some task in isolation, a scape to which other organisms should not have
access. It’s like a privately spawned universe which is extinguished when the NN
terminates.

We will present the problems we wish our NNs to learn to solve through these
scape environments. Furthermore, we will specify within the sensors and actuators
which scapes the NN should spawn (if the scape is private), or interface with (if
the scape is public). Sensors and actuators are created to interact with things, thus
they provide a perfect place where we can specify what scapes, if any, they should
spawn or interface with. The next important design decision is: how do we want
the scapes to notify the NNs of their fitness scores. A problem we solve in the next
section.

7.5 Scapes, Sensors, Actuators, Morphologies, and Fitness

Now that we’ve agreed on the definition of a scape, (a simulation of an envi-
ronment, not necessarily physical or 3 dimensional, that can also gage fitness and
which can be interfaced with, through sensors and actuators), we will need to de-
vise a way by which the Scape can contact the NN and give it its fitness score.

The NN uses the sensors and actuators to interface with the scape, and since a
scape exists as a separate process, the sensors and actuators will interact with it by
sending it messages. When the cortex sends a particular sensor the {Cx_PId,
sync} message, that sensor is awoken to action and if it is the type of sensor that
interfaces with a scape, it will send the scape a message and tell it what kind of
sensory data it needs. We will make the message from sensor to scape have the
following format: {Sensor_PId, sensor_name}, and the scape will then send the
Sensor_PId the sensory signals based on the sensor_name. If the sensor is a cam-
era, it will tell the scape that it needs camera based data associated with that sen-
sor. If the sensor is a sonar scanner, then it would request sonar data. The scape
then sends some sensor-specific data as a reply to the sensor’s message. Finally,
the sensor could then preprocess this data, package it, and forward the vector to
the neurons and neural structures it’s connected to.

After the NN has processed the sensory data, the actuator will have received
the output signals from all the neurons connecting to it. The actuator could then
postprocess the accumulated vector and, if it is the type of actuator that interfaces

200 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

with a scape, it will then send this scape the {Actuator_PId, actuator_name, Ac-
tion} message. At this point the actuator could be finished, and then inform the
cortex of it by sending it the {self(), sync} message. But we could also, instead of
making our actuator immediately send the cortex a sync message, take this oppor-
tunity to make the actuator wait for the scape to send it some message. For exam-
ple at this point, based on the actuator’s action, the scape could send back to it a
fitness score message. Or it could send the NN a message telling it that the simu-
lated robot had just exploded. If the scape uses this opportunity to send some fit-
ness based information back to the actuator, the actuator could then, instead of
simply sending the {self(), sync} message to the cortex, send a message contain-
ing the fitness points it was rewarded with by the scape, and whether the scape has
notified it that the simulation or some training session has just ended. For exam-
ple, in the case where the simulated organism dies within the simulated environ-
ment, or in the case where the NN has solved or won the game... there needs to be
a way for the scape to notify the NN that something significant had just happened.
This approach could be a way to do just that.

What makes the actuator a perfect process to which the scape should send this
information, is: 1. Because each separate actuator belonging to the same NN could
be interfacing with a different scape and so different scapes could each send to the
cortex a message through its own interfacing actuator, and 2. Because the cortex
synchronizes the sensors based on the signals it receives from actuators. This is
important because if at any point one of the actuators sends it a halt message, the
cortex has the chance to stop or pause the whole thing by simply not triggering the
sensors to action. Thus if any of the actuators propagates the “end of the simula-
tion/training message” from the scape to the cortex, the cortex will then know that
the simulation is over, that it should not trigger the sensors to action, and that it
should await new instructions from the exoself. If we were to allow the scape to
contact the cortex directly, for example by sending it a message containing the
gaged performance of the NN, and send it information of whether the training ses-
sion is over or not, then there would be a chance that all the actuators had already
contacted it, and that the cortex has already triggered its sensors to action. Using
the actuators for this purpose ensures that we can stop the NN at the end of its
training session and sense-think-act cycle.

Once the cortex receives some kind of halting message from the actuators, it
could inform the exoself that it’s done, and pass to it the accumulated fitness
points as the NN’s final fitness score. The exoself could then decide what to do
next, whether to perturb the NN’s weights, or revert the weights back to their pre-
vious state... the cortex will sit and wait until the exoself decides on its next action.

We will implement the above described interface between the sen-
sor/actuator/cortex and scape programs. Figure-7.6 shows the signal exchange
steps. After exoself spawns the NN, the cortex immediately calls the sensors to ac-
tion by sending them the: {CxPId,sync} messages (1). When a sensor receives the
sync message from the cortex, it contacts the scape (if any) that it interfaces with,

7.5 Scapes, Sensors, Actuators, Morphologies, and Fitness 201

by sending it the: {SPId,ControlMsg} message (2). When the scape receives a
message from a sensor, it executes the function associated with the ControlMsg,
and then returns the sensory signal back to the calling sensor process. The sensory
signal is sent to the sensor through the message: {ScPId,percept,SensoryVector}
(3). After the sensor preprocesses (if at all) the sensory signal, it fans out the sen-
sory vector to the neurons it is connected to (4). Then the actual neural net pro-
cesses the sensory signal, (5), this is the thinking part of the NN system’s sense-
think-act loop. Once the neural net has processed the signal, the actuator gathers
the processed signals from the output layer neurons (6). At this point the actuator
does some postprocessing (if at all) of the output vector, and then executes the ac-
tuator function. The actuator function, like the sensory function, could be an ac-
tion in itself, or an action message sent to some scape. In the case where the actua-
tor is interfacing with a scape, it sends the scape a message of the form:
{APid,ControlMsg,Output} (7). The scape executes the particular function associ-
ated with the ControlMsg atom, with the Output as the parameter. The executed
function IS the action that the NN system takes within the virtual environment of
the scape. After the scape executes the function that was requested by the actuator,
it sends that same actuator a message: {SCPId,Fitness,HaltFlag}. This message
contains the NN’s complete or partial gage of fitness, and a notification if the sim-
ulation has ended, or if the avatar that the NN system controls within the scape has
perished... or anything else one might wish to use the HaltFlag for (8). Finally, the
actuator passes the message to the cortex in the form of a message:
{APId,sync,Fitness,HaltFlag}, (9).

Fig. 7.6 The signal flow between the scape, sensors, actuators, cortex, and the exoself.

202 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

The cortex accumulates all the messages from the actuators, adding together
the fitness scores, and seeing if any of the scapes have triggered the HaltFlag,
which is set to 1 when triggered. If none of the HaltFlags were set to 1, then the
cortex process syncs up the sensors, calling them to action, and the steps 1-9 re-
peat again. If any of the scapes set the HaltFlag to 1, then the cortex process takes
a different course of action. At this point we could make the cortex decide whether
to restart the scape, whether to start off some particular set of functions, or do any
other useful task. In the version of the NN we are building in this chapter though,
the XOR simulation scape will activate the HaltFlag when the training has ended,
when the simulation has ran to completion. At this point the cortex simply pauses
and informs the exoself process that it has finished and that the NN has been eval-
uated, by sending exoself the message: {CxPId, evaluation_complete, FitnessAcc,
CycleAcc, TimeAcc} (a). Once again, the actions that the exoself takes are based
on operational mode we chose for the system, and in the version of the system
we’re building in this chapter, it will apply the SHC optimization algorithm to the
NN, and then reactivate the NN system by sending cortex the following message:
{ExoselfPId, reactivate} (b). After receiving the reactivation message from the
exoself, the cortex’s process again loops through the steps 1-9. Note that these 9
steps represent the standard Sense-Think-Act cycle, where Sense is steps 1-4,
Think is step 5, and Act is steps 6-9.

In the next section we extend the previous chapter’s architecture by developing
and adding the new features we’ve discussed here.

7.6 Developing the Extended Architecture

Having discussed what new features are needed to extend the architecture so
that it can be applied to various problems and simulations presented through
scapes, and having decided what algorithms our system should use to optimize its
neural weights, we are ready to extend the last chapter’s system. After we finish
modifying the source code, our NN systems should be optimizable by the exoself
& trainer processes, and be able to interact with both, public and private scapes in
various manners as shown in Fig-7.7.

In the following subsections we will add the new trainer and scape modules,
and modify the exoself, cortex, morphology, sensor, actuator, and neuron mod-
ules. Finally, we will also switch from lists to ets for the purpose of storing geno-
types. And because we isolated the genotype reading, writing, loading, and saving
functions in genotype.erl, the switch will be composed of simply modifying 4
functions to use ets instead of lists. Because we decoupled the storage and inter-
face methods in the last chapter, it is easy for us to move to whatever storage
method we find most effective for our system. Thus, modifying the genotype
module to use ets instead of lists will be our first step.

7.6 Developing the Extended Architecture 203

Fig. 7.7 Possible combinations of NN systems and their public/private scape interaction.

7.6.1 Modifying the genotype Module

Ets tables provide us with an efficient way to store and retrieve terms. Particu-
larly if we need to access random terms within the table, it is better done using ets.
The quick modification applied to the genotype.erl to switch from lists to ets is
shown in the following listing.

Listing-7.1 Changing the genotype storage method from the simple list and file to the ets table.

save_genotype(FileName,Genotype)->
 TId = ets:new(FileName, [public,set,{keypos,2}]),
 [ets:insert(TId,Element) || Element <- Genotype],
 ets:tab2file(TId,FileName).
%The save_genotype/2 function expects that the Genotype is a list composed of the neuron,
sensor, actuator, cortex, and exoself elements. The function creates a new ets table, writes all
the element representing tuples from the Genotype list to the ets table, and then writes the ets
table to file.

save_to_file(Genotype,FileName)->
 ets:tab2file(Genotype,FileName).
%The save_to_file/2 function saves the ets table by the name Genotype to the file by the name
FileName.

204 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

load_from_file(FileName)->
 {ok,TId} = ets:file2tab(FileName),
 TId.
%The load_from_file/1 loads an ets representing file by the name FileName, returning the ets
table id to the caller.

read(TId,Key)->
 [R] = ets:lookup(TId,Key),
 R.
%The read/2 function reads a record associated with Key from the ets table with the id TId, re-
turning the record R to the caller. It expects that only a single record exists with the specified
Key.

write(TId,R)->
 ets:insert(TId,R).
%The function write/2 writes the record R to the ets table with the id TId.

print(FileName)->
 Genotype = load_from_file(FileName),
 Cx = read(Genotype,cortex),
 SIds = Cx#cortex.sensor_ids,
 NIds = Cx#cortex.nids,
 AIds = Cx#cortex.actuator_ids,
 io:format(“~p~n”,[Cx]),
 [io:format(“~p~n”,[read(Genotype,Id)]) || Id <- SIds],
 [io:format(“~p~n”,[read(Genotype,Id)]) || Id <- NIds],
 [io:format(“~p~n”,[read(Genotype,Id)]) || Id <- Aids].
%The function print/1 reads a stored Genotype from the file FileName, and then prints to con-
sole all the elements making up the NN’s genotype.

The function print/1 is a new addition. It is a simple and easy way to dump the
tuple encoded genotype to terminal. It is useful when you wish to see what the to-
pology looks like, and when you need to analyze the genotype when debugging
the system.

7.6.2 Modifying the morphology Module

As we discussed earlier, we want to specify the scape and its type in the sensors
and actuators belonging to some particular morphology. We thus modify the rec-
ords.hrl file and extend the sensor and actuator records to also contain the scape
element. The new sensor and actuator records will be represented as:

7.6 Developing the Extended Architecture 205

-record(sensor,{id,name,cx_id,scape,vl,fanout_ids}).
-record(actuator,{id,name,cx_id,scape,vl,fanin_ids}).

In the previous chapter, we only had one type of morphology called: test, we
now modify the morphology module by removing “test”, and adding xor_mimic.
Both, the sensor and the actuator of the xor_mimic morphology, interact with a
private scape called xor_sim. Because the same private scape is specified for both
the sensor and the actuator, only one private scape by the name xor_sim will be
spawned, and they (the sensor and the actuator) will both connect to it, rather than
each separately spawning its own separate xor_sim scape. The following listing
shows the new xor_mimic morphology with its lists of sensors and actuators.

Listing-7.2: The new morphological type and specification added to morphology.erl

xor_mimic(sensors)->
 [
 #sensor{id={sensor,generate_id()}, name=xor_GetInput, scape={private,xor_sim},
vl=2}
];
xor_mimic(actuators)->
 [
 #actuator{id={actuator,generate_id()}, name=xor_SendOutput,
scape={private,xor_sim}, vl=1}
].

Having now modified the genotype to use ets tables, and having extended the
records of our sensors and actuators, we are ready to start adding new features to
our system.

7.6.3 Developing the trainer Module

When training a NN we should be able to specify all the stopping conditions,
the NN based agent’s morphology, and the neural network’s topology. Thus the
trainer process should perform the following steps:

1. Repeat:
2. Create a NN of specified topology with random weights.
3. Wait for the trained NN’s final fitness
4. Compare the trained NN’s fitness to an already stored NN’s fitness, if any.
5. If the new NN is better, overwrite the old one with it.

6. Until: One of the stopping conditions is reached
7. Return: Best genotype and its fitness score.

206 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

We will implement all 3 types of stopping conditions:

1. A fitness score that we wish to reach,
2. The Max_Attempts that we’re willing to perform before giving up.
3. The maximum number of evaluations we’re willing to perform before giving

up.

If any one of these conditions is triggered, the training ends. For default, we set
maximum number of evaluations (EVAL_LIMIT) and the minimum required fit-
ness (FITNESS_TARGET) to inf, which means that these conditions will never be
reached since in Erlang an atom is considered greater than a number. Thus when
starting the trainer by executing go/2, the process will default to simply using
MAX_ATTEMPTS, which is set to 5. The complete source code for trainer.erl is
shown in the following listing.

Listing-7.3 The implementation of the trainer module.

-module(trainer).
-compile(export_all).
-include(“records.hrl”).
-define(MAX_ATTEMPTS,5).
-define(EVAL_LIMIT,inf).
-define(FITNESS_TARGET,inf).

go(Morphology,HiddenLayerDensities)->
 go(Morphology,HiddenLayerDensities,?MAX_ATTEMPTS,?EVAL_LIMIT,
?FITNESS_TARGET).
go(Morphology,HiddenLayerDensities,MaxAttempts,EvalLimit,FitnessTarget)->
 PId = spawn(trainer,loop,[Morphology,HiddenLayerDensities,FitnessTarget,
{1,MaxAttempts},{0,EvalLimit},{0,best},experimental]),
 register(trainer,PId).
%The function go/2 is executed to start the training process based on the Morphology and
HiddenLayerDensities specified. The go/2 function uses a default values for the Max_Attempts,
Eval_Limit, and Fitness_Target parameters, which makes the training based purely on the
Max_Attempts value. Function go/5 allows for all the stopping conditions to be specified.

loop(Morphology,_HLD,FT,{AttemptAcc,MA},{EvalAcc,EL},{BestFitness,BestG},_ExpG,
CAcc,TAcc) when (AttemptAcc>=MA) or (EvalAcc>=EL) or (BestFitness>=FT)->
 genotype:print(BestG),
 io:format(“ Morphology:~p Best Fitness:~p EvalAcc:~p~n”, [Morphology, BestFitness,
EvalAcc]);
loop(Morphology,HLD,FT,{AttemptAcc,MA},{EvalAcc,EvalLimit},{BestFitness,BestG},
ExpG,CAcc,TAcc)->
 genotype:construct(ExpG,Morphology,HLD),
 Agent_PId=exoself:map(ExpG),

7.6 Developing the Extended Architecture 207

 receive
 {Agent_PId,Fitness,Evals,Cycles,Time}->
 U_EvalAcc = EvalAcc+Evals,
 U_CAcc = CAcc+Cycles,
 U_TAcc = TAcc+Time,
 case Fitness > BestFitness of
 true ->
 file:rename(ExpG,BestG),
 ?MODULE:loop(Morphology,HLD,FT,{1,MA}, {U_EvalAcc,
EvalLimit}, {Fitness,BestG},ExpG,U_CAcc,U_TAcc);
 false ->
 ?MODULE:loop(Morphology,HLD,FT,{AttemptAcc+1,MA},
{U_EvalAcc,EvalLimit}, {BestFitness,BestG}, ExpG,U_CAcc,U_TAcc)
 end;
 terminate ->
 io:format(“Trainer Terminated:~n”),
 genotype:print(BestG),
 io:format(“ Morphology:~p Best Fitness:~p EvalAcc:~p~n”, [Morphology,
BestFitness,EvalAcc])
 end.
%loop/7 generates new NNs and trains them until a stopping condition is reached. Once any
one of the stopping conditions is reached, the trainer prints to screen the genotype, the morpho-
logical name of the organism being trained, the best fitness score achieved, and the number of
evaluations taken to find this fitness score.

7.6.4 Modifying the exoself Module

The Exoself’s purpose is to train and monitor the NN system. Though at this
point we will only implement the NN activation, training, and termination. But the
way we will design the exoself process, and its general position in the NN based
agent’s architecture, will allow it to be modified (and we eventually will modify
it) to support the NN’s fault tolerance and self repair functionality. In the follow-
ing listing we add to the exoself module the necessary source code it needs to train
the NN system using the augmented SHC algorithm we covered in section 7.1.

Listing-7.4: Modifications added to the exoself.erl

prep(FileName,Genotype)->
 {V1,V2,V3} = now(),
 random:seed(V1,V2,V3),
 IdsNPIds = ets:new(idsNpids,[set,private]),
 Cx = genotype:read(Genotype,cortex),
 Sensor_Ids = Cx#cortex.sensor_ids,

208 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

 Actuator_Ids = Cx#cortex.actuator_ids,
 NIds = Cx#cortex.nids,
 ScapePIds=spawn_Scapes(IdsNPIds,Genotype,Sensor_Ids,Actuator_Ids),
 spawn_CerebralUnits(IdsNPIds,cortex,[Cx#cortex.id]),
 spawn_CerebralUnits(IdsNPIds,sensor,Sensor_Ids),
 spawn_CerebralUnits(IdsNPIds,actuator,Actuator_Ids),
 spawn_CerebralUnits(IdsNPIds,neuron,NIds),
 link_Sensors(Genotype,Sensor_Ids,IdsNPIds),
 link_Actuators(Genotype,Actuator_Ids,IdsNPIds),
 link_Neurons(Genotype,NIds,IdsNPIds),
 {SPIds,NPIds,APIds}=link_Cortex(Cx,IdsNPIds),
 Cx_PId = ets:lookup_element(IdsNPIds,Cx#cortex.id,2),
 loop(FileName,Genotype,IdsNPIds,Cx_PId,SPIds,NPIds,APIds,ScapePIds,0,0,0,0,1).
%Once the FileName and the Genotype are dropped into the prep/2 function, the function uses
the current time to create a new random seed. Then the cortex is extracted from the genotype
and the Sensor, Actuator, and Neural Ids are extracted from it. The sensors and actuators are
dropped into the spawn_Scapes/4, which extracts the scapes that need to be spawned, and then
spawns them. Afterwards, the sensor, actuator, neuron, and the cortex elements are spawned.
Then the exoself process sends these spawned elements the PIds of the elements they are con-
nected to, thus linking all the elements together into a proper interconnected structure. The cor-
tex element is the last one to be linked, because once it receives the message from the exoself
with all the data, it immediately starts synchronizing the NN by prompting the sensors to action.
Afterwards, prep/2 drops into the exoself’s main process loop.

loop(FileName,Genotype,IdsNPIds,Cx_PId,SPIds,NPIds,APIds,ScapePIds,HighestFitness,
EvalAcc,CycleAcc,TimeAcc,Attempt)->
 receive
 {Cx_PId,evaluation_completed,Fitness,Cycles,Time}->
 {U_HighestFitness,U_Attempt}=case Fitness > HighestFitness of
 true ->
 [NPId ! {self(),weight_backup} || NPId <- NPIds],
 {Fitness,0};
 false ->
 Perturbed_NPIds=get(perturbed),
 [NPId ! {self(),weight_restore} || NPId <- Perturbed_NPIds],
 {HighestFitness,Attempt+1}
 end,
 case U_Attempt >= ?MAX_ATTEMPTS of
 true ->%End training
 U_CycleAcc = CycleAcc+Cycles,
 U_TimeAcc = TimeAcc+Time,
 backup_genotype(FileName,IdsNPIds,Genotype,NPIds),
 terminate_phenotype(Cx_PId,SPIds,NPIds,APIds,ScapePIds),
 io:format(“Cortex:~p finished training. Genotype has been

7.6 Developing the Extended Architecture 209

backed up.~n Fitness:~p~n TotEvaluations:~p~n TotCycles:~p~n TimeAcc:~p~n”, [Cx_PId,
U_HighestFitness, EvalAcc, U_CycleAcc, U_TimeAcc]),
 case whereis(trainer) of
 undefined ->
 ok;
 PId ->
 PId!{self(),U_HighestFitness, EvalAcc,
U_CycleAcc, U_TimeAcc}
 end;
 false -> %Continue training
 Tot_Neurons = length(NPIds),
 MP = 1/math:sqrt(Tot_Neurons),
 Perturb_NPIds=[NPId || NPId <- NPIds,random:uniform()<MP],
 put(perturbed,Perturb_NPIds),
 [NPId ! {self(),weight_perturb} || NPId <- Perturb_NPIds],
 Cx_PId ! {self(),reactivate},
 loop(FileName,Genotype, IdsNPIds,Cx_PId,SPIds, NPIds,APIds,
ScapePIds,U_HighestFitness, EvalAcc+1, CycleAcc+Cycles, TimeAcc+Time, U_Attempt)
 end
 end.
%The main process loop waits for the NN to complete the task, receive its fitness score, and
send Exoself the: {Cx_PId,evaluation_completed,Fitness,Cycles,Time} message. The message
contains all the information about that particular evaluation, the acquired fitness score, the
number of total Sense-Think-Act cycles executed, and the time it took to complete the evalua-
tion. The exoself then compares the Fitness to the one it has on record (if any), and based on
that decides whether to revert the previously perturbed neurons back to their original state or
not. If the new Fitness is lower, then the perturbed neurons are contacted and their weights are
reverted. If the new Fitness is greater than the one stored on record, then the NN is backed up to
file, and the variable EvalAcc is reset to 0. Finally, depending on whether the NN has failed to
improve its fitness Max_Attempts number of times, the exoself decides whether another NN
perturbation attempt is warranted. If it is warranted, then the exoself chooses which neurons to
mutate by randomly choosing each neuron with the probability of 1/sqrt(Tot_Neurons), where
Tot_Neurons is the total number of neurons in the neural network. The exoself saves the PIds of
those chosen neurons to process dictionary, and then sends those neurons a signal that they
should perturb their weights. Finally it tells cortex to reactivate and start syncing the sensors
and actuators again. But if the NN has failed to improve its fitness for Max_Attempts number
of times, if EvalAcc > Max_Attempts, then the exoself terminates all the elements in the NN,
and if there is a registered process by the name ‘trainer’, the exoself sends it the HighestFitness
score that its NN achieved and the number of total evaluations it took to achieve it.

 spawn_Scapes(IdsNPIds,Genotype,Sensor_Ids,Actuator_Ids)->
 Sensor_Scapes = [(genotype:read(Genotype,Id))#sensor.scape || Id<-Sensor_Ids],
 Actuator_Scapes = [(genotype:read(Genotype,Id))#actuator.scape || Id<-

210 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

Actuator_Ids],
 Unique_Scapes = Sensor_Scapes++(Actuator_Scapes--Sensor_Scapes),
 SN_Tuples=[{scape:gen(self(),node()),ScapeName} || {private,ScapeName}<-
Unique_Scapes],
 [ets:insert(IdsNPIds,{ScapeName,PId}) || {PId,ScapeName} <- SN_Tuples],
 [ets:insert(IdsNPIds,{PId,ScapeName}) || {PId,ScapeName} <-SN_Tuples],
 [PId ! {self(),ScapeName} || {PId,ScapeName} <- SN_Tuples],
 [PId || {PId,_ScapeName} <-SN_Tuples].
%spawn_Scapes/4 first extracts all the scape names from sensors and actuators, then builds a
list of unique scapes, and then finally extracts and spawns the private scapes. The public scapes
are not spawned since they are independent of the NN, and should already be running. The rea-
son for extracting the list of unique scapes is because if both, a sensor and an actuator are point-
ing to the same scape, then that means that they will interface with the same scape, and it does
not mean that each one should spawn its own scape of the same name. Afterwards we use the
IdsNPids ETS table to create a map from scape PId to scape name, and from scape name to
scape PId for later use. The function then sends each spawned scape a message composed of
the exoself’s PId, and the scape’s name: {self(),ScapeName}. Finally, a spawned scape PId list
is composed and returned to the caller.

We also modify the terminate_Phenotype function to also accept the ScapePIds
parameter, and terminate all the scapes before terminating the Cortex process.
Thus the following line is added to the function:

[PId ! {self(),terminate} || PId <- ScapePIds]

Having created the function which extracts the names of the scapes from the
sensors and actuators of the NN system, we now develop our first scape and the
very first problem on which we’ll test our learning algorithm on.

7.6.5 Developing the scape Module

Looking ahead, we will certainly apply our Neuroevolutionary system to many
different problems. Our system should be able to deal with ALife problems as eas-
ily as with pole balancing, financial trading, circuit design & optimization, image
analysis, or any other of the infinite problems that exist. It is for this reason that
we’ve made the sensors/actuators/scape a separate part from the NN itself, all
specified through the morphology module. This way, for every problem we wish
to apply our neuroevolutionary system to, we can keep the NN specific modules
the same, and simply create a new morphology/scape packages.

7.6 Developing the Extended Architecture 211

Because there will be many scapes, a new scape for almost every problem that
we’ll want to solve or apply our neuroevolutionary system to, we will use the
same scape.erl module and specify the different scapes within it by function name.
Because the first and standard problem to apply a NN to is the XOR (Exclusive-
OR) problem, our first scape will be a scape called xor_sim. The xor problem is
the “hello world” of NN problems. The goal is to teach a NN to act like a XOR
operation. The truth table of the 2 input XOR operation is presented in the follow-
ing listing.

Listing-7.5: Truth table of the XOR operation.

X1 X2 X1 XOR X2
false true true
false false false
true false true
true true false

Because the range of tanh, the activation function of our neuron, is between -1
and 1, we will represent false as -1, and true as 1 (a bipolar encoding), rather than
0 and 1 (a unipolar encoding). This way we can use the full output range of our
neurons. The following listing shows the complete source code of the scape mod-
ule, which at this point contains only the single scape named xor_sim.

Listing-7.6: The complete scape module.

-module(scape).
-compile(export_all).
-include(“records.hrl”).

gen(ExoSelf_PId,Node)->
 spawn(Node,?MODULE,prep,[ExoSelf_PId]).

prep(ExoSelf_PId) ->
 receive
 {ExoSelf_PId,Name} ->
 scape:Name(ExoSelf_PId)
 end.
%gen/2 is executed by the exoself. The function spawns prep/1 process, and awaits the name of
the scape from the exoself. Each scape is a separate and independent process, a self contained
system that was developed to interface with the sensors and actuators from which its name was
extracted. The name of the scape is the name of its main process loop.

212 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

xor_sim(ExoSelf_PId)->
 XOR = [{[-1,-1],[-1]},{[1,-1],[1]},{[-1,1],[1]},{[1,1],[-1]}],
 xor_sim(ExoSelf_PId,{XOR,XOR},0).

xor_sim(ExoSelf_PId,{[{Input,CorrectOutput}|XOR],MXOR},ErrAcc) ->
 receive
 {From,sense} ->
 From ! {self(),percept,Input},
 xor_sim(ExoSelf_PId,{[{Input,CorrectOutput}|XOR],MXOR},ErrAcc);
 {From,action,Output}->
 Error = list_compare(Output,CorrectOutput,0),
 case XOR of
 [] ->
 MSE = math:sqrt(ErrAcc+Error),
 Fitness = 1/(MSE+0.00001),
 From ! {self(),Fitness,1},
 xor_sim(ExoSelf_PId,{MXOR,MXOR},0);
 _ ->
 From ! {self(),0,0},
 xor_sim(ExoSelf_PId,{XOR,MXOR},ErrAcc+Error)
 end;
 {ExoSelf_PId,terminate}->
 ok
 end.

 list_compare([X|List1],[Y|List2],ErrorAcc)->
 list_compare(List1,List2,ErrorAcc+math:pow(X-Y,2));
 list_compare([],[],ErrorAcc)->
 math:sqrt(ErrorAcc).
%xor_sim/3 is a scape that simulates the XOR operation, interacts with the NN, and gages the
NN’s performance. xor_sim expects two types of messages from the NN, one message from the
sensor and one from the actuator. The message: {From,sense} prompts the scape to send the
NN the percept, which is a vector of length 2 and contains the XOR input. The second expected
message from the NN is the message from the actuator, which is expected to be an output of the
NN and packaged into the form: {From,action,Output}. At this point xor_sim/3 compares the
Output with the expected output that is associated with the sensory message that should have
been gathered by the sensors, and then sends back to the actuator process a message composed
of the scape’s PId, Fitness, and a HaltFlag which specifies whether the simulation has ended for
the NN. The scape keeps track of the Mean Squared Error between the NN’s output and the
correct output. Once the NN has processed all 4 signals for the XOR, the scape computes the
total MSE, converts it to fitness, and finally forwards this fitness and the HaltFlag=1 to the NN.
This particular scape uses the lifetime based fitness, rather than step-based fitness. During all
the other steps the scape sends the actuator the signal: {Scape_PId,0,0}, while it accumulates
the errors, and only at the very end does it calculate the total fitness, which is the inverse of the
error with a small extra added value to avoid the divide by 0 errors. Afterwards, xor_sim resets
back to its initial state and awaits anew for signals from the NN.

7.6 Developing the Extended Architecture 213

7.6.6 Modifying the cortex Module

As in the previous chapter, the cortex element still acts as the synchronizer of
the sensors and actuators. But now, it will also keep track of the accumulated fit-
ness score, propagated to it by the actuators. The cortex will also keep track of
whether the HaltFlag==1 was sent to it by any of the actuators, which would sig-
nify that the cortex element should halt, notify its exoself of the achieved fitness
score, and then await for further instructions from it. Finally, the cortex will also
keep track of the number of sense-think-act cycles performed during its lifetime.
The augmented cortex module is shown in the following listing.

Listing-7.7 The updated cortex module.

-module(cortex).
-compile(export_all).
-include(“records.hrl”).
-record(state,{id,exoself_pid,spids,npids,apids,cycle_acc=0,fitness_acc=0,endflag=0,status}).

gen(ExoSelf_PId,Node)->
 spawn(Node,?MODULE,prep,[ExoSelf_PId]).

prep(ExoSelf_PId) ->
 {V1,V2,V3} = now(),
 random:seed(V1,V2,V3),
 receive
 {ExoSelf_PId,Id,SPIds,NPIds,APIds} ->
 put(start_time,now()),
 [SPId ! {self(),sync} || SPId <- SPIds],
 loop(Id,ExoSelf_PId,SPIds,{APIds,APIds},NPIds,1,0,0,active)
 end.
%The gen/2 function spawns the cortex element, which immediately starts to wait for its initial
state message from the same process that spawned it, exoself. The initial state message contains
the sensor, actuator, and neuron PId lists. Before dropping into the main loop, CycleAcc,
FitnessAcc, and HFAcc (HaltFlag Acc), are all set to 0, and the status of the cortex is set to ac-
tive, prompting it to begin the synchronization process and call the sensors to action.

loop(Id, ExoSelf_PId, SPIds, {[APId|APIds], MAPIds}, NPIds, CycleAcc, FitnessAcc, HFAcc,
active) ->
 receive
 {APId,sync,Fitness,HaltFlag} ->
 loop(Id,ExoSelf_PId,SPIds,{APIds,MAPIds},NPIds,CycleAcc,FitnessAcc+
Fitness, HFAcc+HaltFlag,active);
 terminate ->
 io:format(“Cortex:~p is terminating.~n”,[Id]),
 [PId ! {self(),terminate} || PId <- SPIds],

214 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

 [PId ! {self(),terminate} || PId <- MAPIds],
 [PId ! {self(),termiante} || PId <- NPIds]
 end;
loop(Id,ExoSelf_PId,SPIds,{[],MAPIds},NPIds,CycleAcc,FitnessAcc,HFAcc,active)->
 case EFAcc > 0 of
 true ->%Organism finished evaluation
 TimeDif=timer:now_diff(now(),get(start_time)),
 ExoSelf_PId ! {self(),evaluation_completed,FitnessAcc,CycleAcc,TimeDif},
 loop(Id,ExoSelf_PId,SPIds,{MAPIds,MAPIds},NPIds,CycleAcc,FitnessAcc,
HFAcc, inactive);
 false ->
 [PId ! {self(),sync} || PId <- SPIds],

 loop(Id,ExoSelf_PId,SPIds,{MAPIds,MAPIds},NPIds,CycleAcc+1,FitnessAcc,
HFAcc,active)
 end;
loop(Id, ExoSelf_PId, SPIds, {MAPIds,MAPIds}, NPIds, _CycleAcc, _FitnessAcc, _HFAcc,
inactive)->
 receive
 {ExoSelf_PId,reactivate}->
 put(start_time,now()),
 [SPId ! {self(),sync} || SPId <- SPIds],
 loop(Id,ExoSelf_PId,SPIds,{MAPIds,MAPIds},NPIds,1,0,0,active);
 {ExoSelf_PId,terminate}->
 ok
 end.
%The cortex’s goal is to synchronize the NN system’s sensors and actuators. When the actua-
tors have received all their control signals, they forward the sync messages, the Fitness, and the
HaltFlag messages to the cortex. The cortex accumulates these Fitness and HaltFlag signals,
and if any of the HaltFlag signals have been set to 1, HFAcc will be greater than 0, signifying
that the cortex should halt. When EFAcc > 0, the cortex calculates the total amount of time it
has ran (TimeDiff), and forwards to exoself the values: FitnessAcc, CycleAcc, and TimeDiff.
Afterwards, the cortex enters the inactive mode and awaits further instructions from the exoself.
If none of the HaltFlags were set to 0, then the value HFAcc == 0, and the cortex triggers off
another Sense-Think-Act cycle. The reason the cortex process stores 2 copies of the actuator
PIds: the APIds, and the MemoryAPIds (MAPIds), is so that once all the actuators have sent it
the sync messages, it can restore the APIds list from the MAPIds.

7.6.7 Modifying the neuron Module

To allow the exoself process to optimize the weights of the NN through the
SHC algorithm, we will need to give our neurons the ability to have their weights
perturbed when requested to do so by the exoself, and have their weights reverted

7.6 Developing the Extended Architecture 215

when/if requested by the same. We will also specify the range of these weight per-
turbations in this module, and the weight saturation values, the maximum and
minimum values that the weights can take. It is usually not a good idea to let the
weights reach very large positive or negative values, as that would allow any sin-
gle weight to completely overwhelm other synaptic weights of the same neuron.
For example if a neuron has 100 weights in total, and one of the weights has a val-
ue of 1000000, no other weight can compete with it unless it too is raised to such a
high value. This results in a single weight controlling the information processing
ability of the entire neuron. It is important that no weight can overwhelm all others
(which prevents the neuron from performing coherent processing of signals), for
this reason we will set the saturation limit to 2*Pi, and the perturbation intensity to
half that. The perturbation intensity is half the value of weight saturation point so
that there will always be a chance that the weight could flip from a positive to a
negative value. The range of the weight perturbation intensity is specified by the
DELTA_MULTIPLIER macro as: -define(DELTA_MULTIPLIER,math:pi()*2),
since we will multiply it by (random:uniform()-0.5), the actual range will be be-
tween -Pi and Pi.

The complete neuron module is shown in the following listing.

Listing-7.8 The neuron module.

-module(neuron).
-compile(export_all).
-include(“records.hrl”).
-define(DELTA_MULTIPLIER,math:pi()*2).
-define(SAT_LIMIT,math:pi()*2).

gen(ExoSelf_PId,Node)->
 spawn(Node,?MODULE,prep,[ExoSelf_PId]).

prep(ExoSelf_PId) ->
 {V1,V2,V3} = now(),
 random:seed(V1,V2,V3),
 receive
 {ExoSelf_PId,{Id,Cx_PId,AF,Input_PIdPs,Output_PIds}} ->
 loop(Id,ExoSelf_PId,Cx_PId,AF,{Input_PIdPs,Input_PIdPs},Output_PIds,0)
 end.
%When gen/2 is executed it spawns the neuron element, which seeds the pseudo random num-
ber generator, and immediately begins to wait for its initial state message. It is essential that we
seed the random number generator to make sure that every NN will have a different set of mu-
tation probabilities and different combination of perturbation intensities. Once the initial state
signal from the exoself is received, the neuron drops into its main loop.

216 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

loop(Id,ExoSelf_PId,Cx_PId,AF,{[{Input_PId,Weights}|Input_PIdPs],MInput_PIdPs},Output_
PIds,Acc)->
 receive
 {Input_PId,forward,Input}->
 Result = dot(Input,Weights,0),

 loop(Id,ExoSelf_PId,Cx_PId,AF,{Input_PIdPs,MInput_PIdPs},Output_PIds,Result+Acc);
 {ExoSelf_PId,weight_backup}->
 put(weights,MInput_PIdPs),

 loop(Id,ExoSelf_PId,Cx_PId,AF,{[{Input_PId,Weights}|Input_PIdPs],MInput_PIdPs},Outp
ut_PIds,Acc);
 {ExoSelf_PId,weight_restore}->
 RInput_PIdPs = get(weights),

 loop(Id,ExoSelf_PId,Cx_PId,AF,{RInput_PIdPs,RInput_PIdPs},Output_PIds,Acc);
 {ExoSelf_PId,weight_perturb}->
 PInput_PIdPs=perturb_IPIdPs(MInput_PIdPs),

 loop(Id,ExoSelf_PId,Cx_PId,AF,{PInput_PIdPs,PInput_PIdPs},Output_PIds,Acc);
 {ExoSelf_PId,get_backup}->
 ExoSelf_PId ! {self(),Id,MInput_PIdPs},

 loop(Id,ExoSelf_PId,Cx_PId,AF,{[{Input_PId,Weights}|Input_PIdPs],MInput_PIdPs},Outp
ut_PIds,Acc);
 {ExoSelf_PId,terminate}->
 ok
 end;
loop(Id,ExoSelf_PId,Cx_PId,AF,{[Bias],MInput_PIdPs},Output_PIds,Acc)->
 Output = neuron:AF(Acc+Bias),
 [Output_PId ! {self(),forward,[Output]} || Output_PId <- Output_PIds],
 loop(Id,ExoSelf_PId,Cx_PId,AF,{MInput_PIdPs,MInput_PIdPs},Output_PIds,0);
loop(Id,ExoSelf_PId,Cx_PId,AF,{[],MInput_PIdPs},Output_PIds,Acc)->
 Output = neuron:AF(Acc),
 [Output_PId ! {self(),forward,[Output]} || Output_PId <- Output_PIds],
 loop(Id,ExoSelf_PId,Cx_PId,AF,{MInput_PIdPs,MInput_PIdPs},Output_PIds,0).

 dot([I|Input],[W|Weights],Acc) ->
 dot(Input,Weights,I*W+Acc);
 dot([],[],Acc)->
 Acc.

7.6 Developing the Extended Architecture 217

%The neuron process waits for vector signals from all the processes that it’s connected from.
As the presynaptic signals fanin, the neuron takes the dot product of the input and their associ-
ated weight vectors, and then adds it to the accumulator. Once all the signals from Input_PIds
are received, the accumulator contains the dot product to which the neuron then adds the bias (if
it exists) and executes the activation function. After fanning out the output signal, the neuron
again returns to waiting for incoming signals. When the neuron receives the {ExoSelf_PId,
get_backup} message, it forwards to the exoself its full MInput_PIdPs list, and its Id. The
MInput_PIdPs contains the current version of the neural weights. When the neuron receives the
{ExoSelf_PId,weight_perturb} message, it executes the perturb_IPIdPs/1, after which the neu-
ron drops back into the loop but with MInput_PIdPs replaced by the new PInput_PIdPs. It is
important to note that the neuron expects to be synchronized, and expects that it has at this
point not received any signals from the other elements it is connected from, because if it has
and it then changes out the Input_PIdPs with PInput_PIdPs, it might start waiting for signals
from the elements from which it has already received the signals. When the neuron receives the
{ExoSelf_PId,weight_backup}, it stores its weights in its process dictionary. When the neuron
receives the {ExoSelf,weight_restore}, it restores its weights to the state they were before being
perturbed by restoring the saved synaptic weights from its process dictionary.

 tanh(Val)->
 math:tanh(Val).
%The activation function is a sigmoid function, tanh.

perturb_IPIdPs(Input_PIdPs)->
 Tot_Weights=lists:sum([length(Weights) || {_Input_PId,Weights}<-Input_PIdPs]),
 MP = 1/math:sqrt(Tot_Weights),
 perturb_IPIdPs(MP,Input_PIdPs,[]).
perturb_IPIdPs(MP,[{Input_PId,Weights}|Input_PIdPs],Acc)->
 U_Weights = perturb_weights(MP,Weights,[]),
 perturb_IPIdPs(MP,Input_PIdPs,[{Input_PId,U_Weights}|Acc]);
perturb_IPIdPs(MP,[Bias],Acc)->
 U_Bias = case random:uniform() < MP of
 true-> sat((random:uniform()-0.5)*?DELTA_MULTIPLIER+Bias,-
?SAT_LIMIT,?SAT_LIMIT);
 false -> Bias
 end,
 lists:reverse([U_Bias|Acc]);
perturb_IPIdPs(_MP,[],Acc)->
 lists:reverse(Acc).
%perturb_IPIdPs/1 first calculates the probability that a weight will be perturbed, the probabil-
ity being the inverse square root of the total number of weights in the neuron. The function then
drops into perturb_IPIdPs/3, which executes perturb_weights/3 for every set of weights associ-
ated with a particular Input_PId in the Input_PIdPs list. If bias is present in the weights list, it is

218 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

 perturb_weights(MP,[W|Weights],Acc)->
 U_W = case random:uniform() < MP of
 true->
 sat((random:uniform()-0.5)*?DELTA_MULTIPLIER+W,-
?SAT_LIMIT,?SAT_LIMIT);
 false ->
 W
 end,
 perturb_weights(MP,Weights,[U_W|Acc]);
 perturb_weights(_MP,[],Acc)->
 lists:reverse(Acc).

 sat(Val,Min,Max)->
 if
 Val < Min -> Min;
 Val > Max -> Max;
 true -> Val
 end.
%perturb_weights/3 accepts a probability value, a list of weights, and an empty list to act as an
accumulator. The function then goes through the weight list perturbing each weight with a
probability of MP. The weights are constrained to be within the range of -?SAT_LIMIT and
SAT_LIMIT through the use of the sat/3 function.

7.6.8 Modifying the sensor Module

We have already created the xor_sim scape which expects a particular set of
messages from the sensors and actuators interfacing with it. The scape expects the
message: {Sensor_PId,sense} from the sensor, to which it responds with the sensory

reached last and perturbed just as any other weight, based on the probability. Afterwards, the
perturbed and inverted version of the Input_PIdPs is reversed back to the proper order and re-
turned to the calling function.

data sent in the: {Scape_PId,percept,SensoryVector} format. We now add to the
sensor module a new function which can send and receive such messages. As we
decided in the morphology module, the name of the new sensor will be
xor_GetInput. The new function is shown in the following listing.

Listing-7.9 The implementation of the xor_GetInput sensor.

xor_GetInput(VL,Scape)->
 Scape ! {self(),sense},
 receive
 {Scape,percept,SensoryVector}->
 case length(SensoryVector)==VL of

 219

 true ->
 SensoryVector;
 false ->
 io:format(“Error in sensor:xor_sim/2, VL:~p
SensoryVector:~p~n”, [VL,SensoryVector]),
 lists:duplicate(VL,0)
 end
 end.
%xor_GetInput/2 contacts the XOR simulator and requests the sensory vector, which in this
case should be a vector of length 2. The sensor checks that the incoming sensory signal, the
percept, is indeed of length 2. If the vector length differs, then this is printed to the console and
a dummy vector of appropriate length is constructed and used. This prevents unnecessary
crashes in the case of errors, and gives the researcher a chance to fix the error and hotswap the
code.

The scape expects the message: {Actuator_PId,action,Output} from the actua-
tor, to which it responds with the: {Scape_PId,FItness,EndFlag} message. We de-
cided in the morphology module to call the actuator that will interface with the
xor_sim scape: xor_SendOutput. The following listing shows this newly added
function to the actuator module.

Listing-7.10 The implementation of the xor_SendOutput actuator.

xor_SendOutput(Output,Scape)->
 Scape ! {self(),action,Output},
 receive
 {Scape,Fitness,HaltFlag}->
 {Fitness,HaltFlag}

7.6.9 Modifying the actuator Module

 end.
%xor_SendOutput/2 function simply forwards the Output vector to the XOR simulator, and
then waits for the resulting Fitness and HaltFlag message from the scape.

7.7 Compiling Modules & Simulating the XOR Operation

We have now added all the new features, functions, and elements we needed to
implement the learning algorithm with our NN system. When modifying our sys-
tem to give it the ability to learn through the use of the augmented stochastic hill-
climbing, we also implemented the xor_sim scape and the associated morphology
with its sensors and actuators. We now compile all the modules we’ve created and

7.7 Compiling Modules & Simulating the XOR Operation

220 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

modified to see if they work, and then test if our system can indeed learn. To
compile everything in one step, make sure you’re in the folder where all the mod-
ules are stored, and then execute the following command:

1>make:all([load]).
…
up_to_date

Now that everything is compiled, we can test to see if our NN can learn to sim-
ulate the XOR operation. The XOR operation cannot be performed by a single
neuron. To solve this problem by a strictly feed forward neural network, the min-
imum required topology to perform this task is: [2,1], 2 neurons in the first layer
and 1 in the output layer. We can specify the morphology, the NN topology, and
the stopping condition, right from the trainer. The morphology, xor_mimic, speci-
fies the problem we wish to apply the NN to, and the sensors and actuators that
will interface with the xor_sim scape which will simulate the XOR operation and
gage the NN’s ability to simulate it. For the stopping condition we will choose to
use fitness. We’ll decide on the minimum fitness we wish our NN to achieve by
calculating the total error in the NN’s approximation of XOR that we’re willing to
accept. For example, a maximum error of 0.001 translates into a minimum fitness
of 1/(0.01+ 0.00001), or: 99.9. Since we do not wish to use other stopping condi-
tions, we’ll set them to inf. Thus each training session will run until the NN can
approximate XOR with an error no greater than 0.001 (a fitness no less than 99.9).

1>trainer:go(xor_mimic,[2],inf,inf,99.9).
Finished updating genotype to file:experimental
Cortex:<0.104.0> finished training. Genotype has been backed up.
 Fitness:188.94639182995695
 TotEvaluations:224
 TotCycles:896
{cortex,cortex,
 [{sensor,7.617035388076853e-10}],
 [{actuator,7.617035388076819e-10}],
 [{neuron,{1,7.61703538807679e-10}},
 {neuron,{1,7.617035388076778e-10}},
 {neuron,{2,7.617035388076755e-10}}]}
{sensor,{sensor,7.617035388076853e-10},
 xor_GetInput,cortex,undefined,
 {private,xor_sim},
 2,
 [{neuron,{1,7.61703538807679e-10}},{neuron,{1,7.617035388076778e-10}}],
 undefined,[],[]}
{neuron,{neuron,{1,7.61703538807679e-10}},
 cortex,tanh,
 [{{sensor,7.617035388076853e-10},

7.7 Compiling Modules & Simulating the XOR Operation 221

 [-6.283185307179586,6.283185307179586]},
 {bias,-6.283185307179586}],
 [{neuron,{2,7.617035388076755e-10}}]}
{neuron,{neuron,{1,7.617035388076778e-10}},
 cortex,tanh,
 [{{sensor,7.617035388076853e-10},
 [-5.663623085487123,6.283185307179586]},
 {bias,6.283185307179586}],
 [{neuron,{2,7.617035388076755e-10}}]}
{neuron,{neuron,{2,7.617035388076755e-10}},
 cortex,tanh,
 [{{neuron,{1,7.617035388076778e-10}},[-6.283185307179586]},
 {{neuron,{1,7.61703538807679e-10}},[6.283185307179586]},
 {bias,6.283185307179586}],
 [{actuator,7.617035388076819e-10}]}
{actuator,{actuator,7.617035388076819e-10},
 xor_SendOutput,cortex,undefined,
 {private,xor_sim},
 1,
 [{neuron,{2,7.617035388076755e-10}}],
 undefined,[],[]}
 Morphology:xor_mimic Best Fitness:188.94639182995695 EvalAcc:224

It works!. The trainer used the specified morphology to generate genotypes
with the particular set of sensors and actuators to interface with the scape, and
eventually produced a trained NN. In this particular case, the best fitness was
188.9, and it took only 224 evaluations to reach it. The trainer also used the geno-
type:print/1 function to print the genotype topology to screen when it was done,
which allows us to now analyze the genotype and double check it for accuracy.

Since the learning algorithm is stochastic, the number of evaluations it takes
will differ from one attempt to another, some will go as high as a few thousand,
other will stay in the hundreds. But if you’ve attempted this exercise, you might
have also noted that you got roughly the same fitness, and this requires an expla-
nation.

We’re using tanh as the activation function. This activation function has 1 and -
1 as its limit, and because we’re using the weight saturation limit set to 2*PI, the
neuron’s output can only get so close to -1 and 1 through the tanh function, and
hence the final error in the XOR operation approximation. Thus the fitness we can
achieve is limited by how close tanh(PI*2) can get to 1, and tanh(-PI*2) can get
to -1. Since you and I are using the same SAT_LIMIT parameters, we can achieve
the same maximum fitness scores, which is what we saw in the above result:
(188.9), when using the SAT_LIMIT = 2*PI. If we for example modify the
SAT_LIMIT in our neuron module as follows:

222 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

From: -define(SAT_LIMIT,math:pi()*2)
To: -define(SAT_LIMIT,math:pi()*20)

Then recompile and apply the NN to the problem again, then the best fitness
will come out to be 99999.99. Nevertheless, the SAT_LIMIT equaling to
math:pi()*2 is high enough for most situations, and as noted, when we allow the
weights to take a value of any magnitude, we run the risk of any one synaptic
weight to overwhelm the whole neuron and make it essentially useless. Also, re-
turning the neural weight that has ran afoul and exploded in magnitude back to an
appropriate value would be difficult with small perturbations... Throughout the
years I’ve found that having the SAT_LIMIT set to math:pi() or math:pi()*2 is the
most effective choice.

We’ve now created a completely functional, static feed forward neural network
system that can be applied to a lot of different problem types through the use of
the system’s scape, sensors, and actuators packages. It’s an excellent start, and
because our learning algorithm is unsupervised, we can even use our NNs as con-
trollers in ALife. But there is also a problem, our NN system is only feedforward
and so it does not possess memory, achievable through recursive connections. Al-
so, our system only uses the tanh activation function, which might make problems
like fourier analysis, fourier synthesis, and many other problems difficult to tackle.
Our system can achieve an even greater flexibility if it can use other activation
functions, and just like randomly choosing synaptic weights during neuron crea-
tion, it should be able to randomly choose activation functions from some prede-
termined list of said functions. Another problem we’ve noticed even when solving
the XOR problem is that we had to know the minimal topology beforehand. If in
the previous problem we would have chosen a topology of: [1] or [2], our NN
would not have been able to solve that problem. Thus our NN has a flaw, the flaw
is that we need to know the proper topology, or the minimal topology which can
solve the problem we’re applying our NN to. We need to devise a plan to over-
come this problem, by letting our NN evolve topology as well. Another problem is
that even though our NN “learns”, it actually does not. It is, in reality, just being
optimized by an external process, the exoself. What is missing is neural plasticity,
the ability of the neurons to self modify based on sensory signals, and past experi-
ence... that would be true learning, learning as self modification based on interac-
tion with the environment within the lifetime of the organism. Finally, even
though our system does have all the necessary features for us to start implement-
ing supervision trees and process monitoring, we will first implement and develop
the neuroevolutionary functionality, before transforming our system into a truly

Before we continue on to the next chapter where we will start adding some of
these mentioned features, and finally move to a population based approach and
topological evolution, we first need to create a small benchmarking function. For
example, we’ve used the trainer to solve the XOR problem and we noted that it

fault tolerant distributed CI system.

7.8 Adding the benchmarker Module 223

took K number of evaluations to solve it. When you’ve solved it with a trainer on
your computer, you probably have gotten another value... we need to create a
function that automates the process of applying the trainer to some problem many
times, and then calculates the average performance of the system. We need a
benchmarking method because it will allow us to calculate dependable average
performance of our system and allow us to compare it to other machine learning
approaches. It will also allow us to test new features and get a good idea of what
affect they have on our system’s performance across the spectrum of problems we
might have in our benchmark suit. Thus, in the next section we will develop a
small benchmarking function.

7.8 Adding the benchmarker Module

In this section we want to create a small system that performs benchmarking of
the NN system we’ve developed, on some problem or problem set. This bench-
marking system should be able to summon the trainer process X number of times,
applying it to some problem of our choosing. After the benchmarker process has
spawned the trainer, it should wait for it to finish optimizing the NN system. At
some point the trainer will reach its stopping condition, and then send the bench-
marking process the various performance statistics of the optimization run. For
example the trainer could send to the benchmarker the number of evaluations it
took to train the NN to solve some problem, the amount of time it took it, and the
NN size required to solve it. The benchmarker should accumulate a list of these
values, and once it has applied the trainer to the chosen problem X number of
times, it should calculate the averages and standard deviations of these various
performance statistics. Finally, our benchmarking system should print these per-
formance results to console. At this point the researcher could use this perfor-
mance data to for example compare his system to other state of the art machine
learning algorithms, or the researcher could vary some parameter or add some new
features to his system and benchmark it again, and in this manner see if the new
features make the system more or less effective. Thus our benchmarker should
perform the following steps:

1. Repeat:
2. Apply the trainer to some experiment or problem.
3. Receive from the trainer the resulting data (total evaluations, total cycles,

NN size...).
4. Add this data to the statistics accumulator.

5. Until: The trainer has been applied to the given problem, X number of times.
6. Return: Calculate averages and standard deviations of the various features in

the accumulator.

224 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

The following listing shows the implementation of the benchmarker module.

Listing-7.11: The implementation of the benchmarker module.

-module(benchmarker).
-compile(export_all).
-include(“records.hrl”).
-define(MAX_ATTEMPTS,5).
-define(EVAL_LIMIT,inf).
-define(FITNESS_TARGET,inf).
-define(TOT_RUNS,100).
-define(MORPHOLOGY,xor_mimic).

go(Morphology,HiddenLayerDensities)->
 go(Morphology,HiddenLayerDensities,?TOT_RUNS).
go(Morphology,HiddenLayerDensities,TotRuns)->
 go(Morphology,HiddenLayerDensities,?MAX_ATTEMPTS,?EVAL_LIMIT,
?FITNESS_TARGET,TotRuns).
go(Morphology,HiddenLayerDensities,MaxAttempts,EvalLimit,FitnessTarget,TotRuns)->
 PId = spawn(benchmarker,loop,[Morphology,HiddenLayerDensities,MaxAttempts,
EvalLimit,FitnessTarget,TotRuns,[],[],[],[]]),
 register(benchmarker,PId).
% The benchmarker is started through the go/2, go/3, or go/6 function. The parameters the
benchmark uses can be specified through the macros, and then used by executing go/2 or go/3
for which the researcher simply specifies the Morphology (the problem on which the NN will
be benchmarked) and the HiddenLayerDensities (NN topology). The go/2 and go/3 functions
execute go/6 function with default parameters. The benchmarker can also be started through
go/6, using which the researcher can manually specify all the parameters: morphology, NN to-
pology, Max Attempts, Max Evaluations, target fitness, and the total number of times to run the
trainer. Before dropping into the main loop, go/6 registers the benchmarker process so that the
trainer can send it the performance stats when it finishes.

loop(Morphology,_HiddenLayerDensities,_MA,_EL,_FT,0,FitnessAcc,EvalsAcc,CyclesAcc,
TimeAcc)->
 io:format(“Benchmark results for:~p~n”,[Morphology]),
 io:format(“Fitness::~n Max:~p~n Min:~p~n Avg:~p~n Std:~p~n”,
 [lists:max(FitnessAcc),lists:min(FitnessAcc),avg(FitnessAcc),std(FitnessAcc)]),
 io:format(“Evals::~n Max:~p~n Min:~p~n Avg:~p~n Std:~p~n”,
 [lists:max(EvalsAcc),lists:min(EvalsAcc),avg(EvalsAcc),std(EvalsAcc)]),
 io:format(“Cycles::~n Max:~p~n Min:~p~n Avg:~p~n Std:~p~n”,
 [lists:max(CyclesAcc),lists:min(CyclesAcc),avg(CyclesAcc),std(CyclesAcc)]),
 io:format(“Time::~n Max:~p~n Min:~p~n Avg:~p~n Std:~p~n”,
 [lists:max(TimeAcc),lists:min(TimeAcc),avg(TimeAcc),std(TimeAcc)]);

7.8 Adding the benchmarker Module 225

loop(Morphology,HiddenLayerDensities,MA,EL,FT,BenchmarkIndex,FitnessAcc,EvalsAcc,
CyclesAcc,TimeAcc)->
 Trainer_PId = trainer:go(Morphology,HiddenLayerDensities,MA,EL,FT),
 receive
 {Trainer_PId,Fitness,Evals,Cycles,Time}->
 loop(Morphology,HiddenLayerDensities,MA,EL,FT,BenchmarkIndex-1,
[Fitness|FitnessAcc],[Evals|EvalsAcc],[Cycles|CyclesAcc],[Time|TimeAcc]);
 terminate ->
 loop(Morphology,HiddenLayerDensities,MA,EL,FT,0,FitnessAcc,EvalsAcc,
CyclesAcc,TimeAcc)
 end.
% Once the benchmarker is started, it drops into its main loop. The main loop spawns the train-
er and waits for it to finish optimizing the NN system, after which it sends to the benchmarker
the performance based statistics. The benchmarker accumulates these performance statistics in
lists, rerunning the trainer TotRuns number of times. Once the benchmarker has ran the trainer
TotRuns number of times, indicated to be so when BenchmarkIndex reaches 0, it calculates the
Max, Min, Average, and Standard Deviation values for every statistic list it accumulated.

avg(List)->
 lists:sum(List)/length(List).
avg_std(List)->
 Avg = avg(List),
 std(List,Avg,[]).

 std([Val|List],Avg,Acc)->
 std(List,Avg,[math:pow(Avg-Val,2)|Acc]);
 std([],_Avg,Acc)->
 Variance = lists:sum(Acc)/length(Acc),
 math:sqrt(Variance).
%avg/1 and std/1 functions calculate the average and the standard deviation values of the lists
passed to them.

To make the whole system functional, we also have to slightly modify the
trainer module so that when the stopping condition is reached, the trainer prints
the genotype to console, unregisters itself, checks if a process by the name
benchmarker exists, and if it does, sends it the performance stats of the optimiza-
tion session. To make this modification, we add the following lines of code to our
trainer module:

unregister(trainer),
case whereis(benchmarker) of
 undefined ->
 ok;
 PId ->
 PId ! {self(),BestFitness,EvalAcc,CAcc,TAcc}
end;

226 Chapter 7 Adding the “Stochastic Hill-Climber” Learning Algorithm

We now compile and recompile the benchmarker and the trainer modules re-
spectively, and then test our new benchmarker system. To test it, we apply it to the
XOR problem, executing it with the following parameters:

 Morphology: xor_mimic
 HiddenLayerDensities: [2]
 MaxAttempts: inf
 EvalLimit: inf
 FitnessTarget: 100
 TotRuns: 100

Based on these parameters, each trainer will generate genotypes until one of
them solves the problem with a fitness of at least 100. Thus, the benchmarker will
calculate the resulting performance statistics from 100 experiments. To start the
benchmarker, execute the following command:

1>benchmarker:go(xor_mimic,[2],inf,inf,100,100).
…
Benchmark results for:xor_mimic
Fitness::
 Max:99999.99999999999
 Min:796.7693071321515
 Avg:96674.025859051
 Std:16508.11828048093
Evals::
 Max:2222
 Min:258
 Avg:807.1
 Std:415.8308670601546
...

It works! The benchmarker ran 100 training sessions and calculated averages,
standard deviations, maxs, and mins for the accumulated Fitness, Evaluations, Cy-
cles, and Time lists. Our system now has all the basic features of a solid machine
learning platform.

7.9 Summary

In this chapter we added the augmented stochastic hill-climber optimization al-
gorithm to our system, and extended the exoself process so that it can use it to
tune its NN’s synaptic weights. We also developed a trainer, a system which fur-
ther extends the SHC optimization algorithm by restarting genotypes when the
exoself had tuned the NN’s synaptic weights and reached its stopping condition.
This effectively allows the trainer process to use the Random Restart Stochastic

7.9 Summary 227

Hill Climbing optimization algorithm to train NNs. Finally, we created the
benchmarker program, a system that can apply the trainer process to some prob-
lem, X number of times, and then average the performance statistics and print the
results to console.

Our NN system now has all the features necessary to solve and be applied to
various problems and simulations. The learning algorithm our system implements
is the simple yet very powerful augmented version of the random-restart stochastic
hill-climber. We also now have a standardized method of presenting simulations,
training scenarios, and problems to our NN system, all through the decoupled
scape packages and morphologies.

In the next chapter we will take this system even further, combining it with
population based evolutionary computation and topological mutation, thus creat-
ing a simple topology and weight evolving artificial neural network system.

Chapter 8 Developing a Simple
Neuroevolutionary Platform

Abstract In this chapter, we take our first step towards neuroevolution. Having
developed a NN system capable of having its synaptic weights optimized, we will
combine it with an evolutionary algorithm. We will create a population_monitor, a
process that spawns a population of NN systems, monitors their performance, ap-
plies a selection algorithm to the NNs in the population, and generates the mutant
offspring from the fit NNs, while removing the unfit. In this chapter we also add
topological mutation operators to our neuroevolutionary system, which will allow
the population_monitor to evolve the NNs by adding new neural elements to their
topologies. By the end of this chapter, our system becomes a fully-fledged Topol-
ogy and Weight Evolving Artificial Neural Network.

In this book, we develop an entire neuroevolutionary platform, from a simple
neuron, to an advanced topology and weight evolving artificial neural network
platform. The final platform will be able to evolve fully distributed NNs, substrate
encoded NNs, circuits, and NNs capable of learning within their lifetime through
neural plasticity. Thus far we’ve developed a tuple based genotype encoder, a
mapper from the genotype to the phenotype, a process based phenotype represen-
tation, and an exoself program which runs outside the NN it’s coupled to, capable
of performing various assistive functions (though at this point exoself’s only func-
tion is the ability to tune the NN’s weights, map between the genotype and pheno-
type, and backup the NN’s genotype to database). Finally, we also created a train-
er program that generates and applies the NN systems to a problem specified by
the researcher. The NNs generated by the trainer are all of the same topology, and
the NNs are generated and applied to a problem in series, so that at any one time
only a single NN is active. We now make our first leap towards neuroevolution.

Evolution is “the change over time of one or more inherited traits of individuals
found in a population.” When it comes to neuroevolution, the individuals of the
population are neural network based systems. As we discussed in Chapter-4, a
neuroevolutionary system performs the following steps:

1. Seed initial population of simple NNs.
2. Repeat:

3. Apply each NN in the population to some problem.
4. Calculate fitness score of each NN.
5. Using a selection algorithm, choose the most fit NNs of the population.
6. Let the fit NNs create offspring, where the offspring’s genotype is generated

through any of the following approaches:

DOI 10.1007/978-1-4614- - , © Springer Science+Business Media New York 2013 4463 3_8
229 G.I. Sher, Handbook of Neuroevolution Through Erlang,

230 Chapter 8 Developing a Simple Neuroevolutionary Platform

– Mutation: by mutating the parent’s genotype.
– Crossover: by somehow combining the genotypes of two or more fit parents.
– Using a combination of mutation and crossover.
7. Create a new population composed of the fit parents and their offspring.

8. Until: A stopping condition (if any) is reached.

If we have been evolving the NNs for some particular problem or application,
then once the stopping condition is reached, we can pick out the best performing
NNs within the population, and count these NNs as solutions.

In the previous chapter, we have created a standardized method of training and
applying NNs to problems through the use of scapes, which can gage the fitness of
the NNs interfacing with them. Thus, we have the solution for step 3 (if we are to
use more than one NN based system in parallel at any one time) and 4 of this loop.
Step 5 requires us to develop a selection algorithm, a function which can pick out
the most fit NNs in the population, and use them as the base from which to create
the offspring for the next generation. This also means that since we will now deal
with populations of NNs instead of a single NN, we will need to create some kind
of database which can store these populations of genotypes. Step 6 requires that
we create a function which can generate offspring that are based on, but genetical-
ly differ from, their parents. This is done through mutation and crossover, and we
will need to create modules that can perform these types of operations on the gen-
otypes of fit NNs. For step 7 we will compose the new population by simply re-
placing the unfit NNs in the population by the newly created offspring. For step 8,
we can use the same approach to stopping conditions as we used in the trainer
program. The evolutionary process will stop either when one of the NNs in the
population has reached a level of fitness that we find high enough, or when there
is innovation stagnation in the population. Meaning, the evolutionary process has
stopped generating fitter organisms for a long enough time that makes us believe
that a local or global optimum has been reached.

Whereas before the trainer program trained and dealt with a single NN at a
time, we now need something that can monitor and supervise an entire population
of NNs. Thus, we will remove the trainer program and develop a popula-
tion_monitor program that can synchronize the evolutionary processes of a popu-
lation of NN based intelligent agents. The population_monitor system shall be the
one that will synchronize all these noted steps and functions, an independent pro-
cess that constantly monitors the agents, and decides when and who creates off-
spring... but because it is dependent on all these other parts, we will create and
discuss in detail the population_monitor last.

********Note********
Due to the source code heaviness of this chapter, it is essential that the comments within the
presented source code be read. It is the comments that elaborate on, and explain how the pre-
sented functions work, what they do, and how they do it.

8.1 The New Architecture 231

8.1 The New Architecture

Before we begin putting together the neuroevolutionary platform, we will first
create a diagram of the whole architecture, to try and visualize what new data
structures we might need, as shown in Fig-8.1.

Fig. 8.1 The architecture of a complete neuroevolutionary platform.

Figure 8.1 shows the diagram of the entire neuroevolutionary platform, and the
manner in which the various modules are linked and related to each other. We are
already familiar with NNs, private and public scapes, but the new elements of this
architecture: database, population, species, Stat. Accumulator, and Error Logger,
still need to be further explained.

We are now dealing with populations of NNs; we need a safe and secure way to
store a large number of genotypes. This is done by using a stable and robust data-
base, Mnesia. The database though does not start itself, so we need some kind of
startup procedure for the whole neuroevolutionary platform so that when we start
it, it starts mnesia and sets up all other types of global parameters and processes
that might be necessary. In addition, as we discussed in the previous chapter, there
are public and private scapes. The private scapes are summoned by each NN inde-

232 Chapter 8 Developing a Simple Neuroevolutionary Platform

pendently, but the public scapes should already be running. These public scapes
can be initiated and started during this initial startup procedure, indeed, these pub-
lic scapes can belong, and be monitored by, some initial startup process. Also er-
ror logging, and the gathering of, and accumulation of, statistics and system per-
formance data, are all independent of the NNs and the evolutionary process, thus
if we are to use these systems, they too should be started during the very start of
the initialization of the neuroevolutionary platform. Thus we want to create a
startup procedure that starts the Mnesia database, spawns the public scapes, the er-
ror logger, and the statistics accumulator. This startup system basically creates the
infrastructure needed for populations of NNs to exist, and for evolution to occur.

We need to give a name to the module in which this infrastructure will be cod-
ed, and the process which in some sense represents this infrastructure. Let us call
that module: polis, a Greek word that means an independent city state. Polis is the
infrastructure necessary for the neuroevolutionary system to function, an infra-
structure that brings together all the parts necessary for the NN based agents to ex-
ist and evolve. Polis acts as a system in which all this functionality exists, it sum-
mons the needed public scapes, and it is the top most monitoring element.

Once the infrastructure has been created, we can then start spawning popula-
tions of NNs and begin applying them to some problem or simulation. The archi-
tecture diagram of Fig-8.1 shows two independent populations, and that in itself
requires an explanation. What is a population? A better question is, when do we
need to create a population of NNs? We create a NN population when we are try-
ing to solve a particular problem, or wish to apply our NNs to some simulation.
Thus, a population of NNs is spawned for a particular purpose. Each simulation or
application requires a specific set of morphologies (sensors, actuators, activation
functions...), we can specify such constraints in the population data structure. The
population element would at a high abstraction level dictate what the given group
of NNs are allowed to interface with, what type of selection functions they are al-
lowed to use, what activation functions they are allowed to use, what morpholo-
gies make up the population… For this reason we should have multiple popula-
tions, because we will be running multiple simulations and experiments using the
same system, and we want to safely store these populations in the same database.
If we allow the polis to have different populations, where each population is keep-
ing track of its own NNs and the types of morphologies those NNs have access to,
then we can run different experiments and simulations in parallel.

Furthermore, each population is composed of many evolving NNs. When NNs
evolve, their genotypes change. When the difference of two genotypes is greater
than some threshold X, then those genotypes belong to two different species. It
would be useful for us to track speciation of NNs, and how these new species are
formed, because speciation implies innovation. Thus we should also be able to
group the NNs into different species through the use of a specie data structure.
Each population should be broken down into species, where the number of species

8.2 The New Data Structures 233

and the size of each species, should be completely dynamic and depend on the
NNs composing the population.

Finally, the Stat. Accumulator and Error Logger should be explained. We are
now creating a rather large system, we need a way to keep track of errors, and a
way to keep track of various statistics of the experiments we are running. For ex-
ample we should keep track of how quickly the fitness is increasing on average, or
how many evaluations it took to solve some problem, or how many generations, or
what were the most and least fit NNs and when during evolution they came into ex-
istence... or the running average fitness of some species... Keeping track of this
will be the job of the Stat. Accumulator. Finally, the Error Logger is another pro-
cess that should always be running, keeping track and catching any errors or alerts
that occur during the time that the polis is online.

********Note********
Technically an error logger already exists within the Erlang system itself. Thus we have a
choice of taking advantage of this already existing and robust system, or creating our own. Also
the Stat. Accumulator can be implemented in many different ways, not all requiring it to be a
completely separate process. For example the population_monitor will already have access to
all the NNs belonging to a particular population. It will already have access to their sizes, fit-
ness scores… and all other features, since it will be the one mutating them. Thus, the popula-
tion_monitor can easily also perform the function of performance statistics accumulation and
tracking.

Having now agreed on the new architecture of our system, we can start devis-
ing the necessary data structures for our platform.

8.2 The New Data Structures

A population is a group of agents, in a neuroevolutionary system those agents
are NN based systems. The genotypes of our NNs are represented as lists of rec-
ords. Currently in our system, each NN genome is composed of a single cortex,
one or more sensors, one or more actuators, and one or more neurons. Each ele-
ment of the NN system knows what other elements it is connected to through ele-
ment ids. But that is not the whole story, there is also meta-information that each
NN should keep track off. For example, the NN topology that we specify during
the genotype creation, such as: [1,2,3], which specifies a NN with 1 neuron in the
first layer, 2 neurons in the second, and 3 in the third, is an important piece of in-
formation which can specify what specie this NN belongs to. Besides the NN to-
pology, the following other features should be tracked by each NN:

1. id: The unique Id of the NN based agent by which the population_monitor can
identify it, and contact it if necessary.

234 Chapter 8 Developing a Simple Neuroevolutionary Platform

2. population_id: The Id of the population the NN belongs to.
3. specie_id: The Id of the specie the NN belongs to.
4. cx_id: The Id of the cortex of the NN, the cortex element which has the Ids of

all the neurons, sensors and actuators of the NN.
5. fingerprint: The NN’s particular “fingerprint”, a tuple composed of the NN’s

topological structure, and the types of sensors and actuators it is using. Finger-
prints can be used to calculate how much one NN system differs from another.

7. evo_hist: The evolutionary history of the NN, a list of mutation operators that
were used on the seed NN system to evolve the current NN based system. It is
the NN’s evolutionary path from the simple topology it started with, to its cur-
rent state. This way we can keep track of how the particular NN topology was
reached, what path it took, and perhaps extract the why behind it all.

8. fitness: The NN’s current fitness.
9. innovation_factor: The number of generations that have passed since the NN

last increased in fitness.
10.pattern: The NN’s topology.
11.generation: The generation to which this NN system belongs. The seed NN

system has a generation of 0. When an offspring is created, its generation is
that of its parent +1.

Since the cortex already performs a specific function in the NN system, which
is synchronizing the sensors, actuators, and neurons into a cohesive
neurocomputational system, we should not overburden it with also having to track
this new data. Instead what we will do is create a wrapper, another element to be
added to the NN system’s genotype. This new element will be part of the genotype
and store this useful information. We will call this new element: agent, and it will
store in itself these 11 noted features. Each NN based system will now also have
its own id, the id of the agent element, an id by which it can be uniquely identified
within a population. Finally, the reason why we name this new element agent, is
because that is in essence what our NN based adaptive systems are, intelligent
adaptive agents.

As we noted, each NN will belong to its own species, which is dependent on
that NN’s particular fingerprint. We thus also need to create a species data struc-
ture. The species abstraction should keep track of the following information:

6. constraint: Constraint will define the NN’s morphological type, what types
of sensors, actuators, activation functions, and other features that the NN has
access to during its evolution. Different species will have different constraints,
and different constraints will define what different elements the NN and its off-
spring can integrate during evolution. In essence, constraint keeps track of the
available parameters, mutation operators, activation functions, morphologies,
and various other parameters available to the NN as it evolves. It ensures that
the NN using a particular constraint tuple produces offspring related to it in a
particular manner, in a manner that ensures that the offspring too can be ap-
plied to the same problem, or stay within certain specification constraints.

8.2 The New Data Structures 235

1. id: The species’ unique Id.
2. fingerprint: The particular rough identification of the species, any NN with the

same fingerprint belongs to this species.
3. agent_ids: The list of agent Ids which belong to this species.
4. champion_ids: A list of Ids of the best performing agents within the species,

the species’ champions.
5. avg_fitness: The average fitness of this species.
6. innovation_factor: Innovation factor is based on how long ago the average fit-

ness of this species increased.
7. population_id: The Id of the population that this species belongs to.

An even higher level of abstraction is that of the population. A population con-
tains all the NN based agents associated with some particular experiment or simu-
lation. Thus if we wish to run multiple experiments, we don’t want these NNs to
intermingle; they belong to different worlds or simulation runs and experiments.
To keep track of our populations, we will need to create a population abstraction.
Through populations, we can for example stop an experiment at any time, at
which point the NNs will be reverted back to their genotypes and stored in the da-
tabase. We can then start another experiment with another population, which will
have its own id. At some other point we might want to continue with our original
simulation or experiment, and so all we would have to do is summon that original
population, which would in return spawn all the NNs belonging to it, and the orig-
inal simulation would continue from where it was left off. The population abstrac-
tion should contain the following information:

1. id: A unique population Id or the id/name of the experiment.
2. specie_ids: The list of the species Ids that belong to this population.
3. avg_fitness: The average fitness of this population.
4. innovation_factor: Innovation factor is based on how long ago the average fit-

ness of this population increased.
5. morphologies: List of available morphologies for this population. The list of

morphologies defines the list of sensors and actuators available to the NNs in
this population. Since the morphology defines the sensors and actuators of the

8. constraint: Constraint specifies the list of sensors, actuators, activation func-
tions... that the agents belonging to this species have access to. And the name
of the morphology of this species.

During one of our simulations we might want to start the experiment with many
different species. Since the NNs depend on their morphologies, we can create a
population with two different species, each with its own morphology. Then,
when the NNs are created in those species, they would naturally start off with
different sets of sensors and actuators, and the sensor and actuator sets available
to them and belonging to the particular species they were seeded in. For example,
this would be the case in the ALife simulation where we want to start the experi-
ment with two separate species, predator and prey, each having its own different
morphology, and access to its own set of different sensors and actuators.

236 Chapter 8 Developing a Simple Neuroevolutionary Platform

NN system, this list effectively defines the problem or simulation to which the
evolving population of NN systems will be applied, and for what purpose the
agents will be evolved.

Having now discussed what new data structures we need, it is time to begin de-
veloping our neuroevolutionary platform. In the next section we will add the
needed records to our records.hrl to accommodate these new data structures, and
develop the polis module.

8.3 Developing the polis Module

The polis module should contain the functions that perform general, global
tasks, and deal with initializing, starting, stopping and deleting the mnesia data-
base used by the neuroevolutionary platform. Furthermore, it should also have the
functions to initialize and start or spawn public scapes specified through their pa-
rameters. Because there should be only one mnesia database per node, there needs
to be only a single polis per node, representing a single neuroevolutionary plat-
form. The following list summarizes the types of functions we want to be able to
execute through the polis module:

1. Initialize new mnesia database.
2. Reset the mnesia database.
3. Start all the neuroevolutionary platform supporting processes (scapes, any error

logging and statistics tracking programs...), so that the population_monitor sys-
tems will have all the necessary infrastructure they need to apply evolutionary
processes to their populations.

4. Stop and shut down the neuroevolutionary platform.

The following listing shows the polis module:

Listing-8.1: The polis module.

-module(polis).
%% API
-export([start/1,start/0,stop/0,init/2,create/0,reset/0,sync/0]).
%% gen_server callbacks
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,terminate/2, code_change/3]).
-behaviour(gen_server).
-include(“records.hrl”).
%%=== Polis Configuration Options
-record(state,{active_mods=[],active_scapes=[]}).
-record(scape_summary,{address,type,parameters=[]}).
-define(MODS,[]).
-define(PUBLIC_SCAPES,[]).

8.3 Developing the polis Module 237

%The MODS list contains the names of the processes, functions, or other databases that also
need to be executed and started when we start our neuroevolutionary platform. In the same
manner, when we have created a new public scape, we can add a scape_summary tuple with
this scape’s information to the PUBLIC_SCAPES list, so that it is initialized and started with
the system. The state record for the polis has all the elements needed to track the currently ac-
tive mods and public scapes, which are either started during the startup of the
neuroevolutionary platform, or spawned later, while the polis is already online.

%%=== API
sync()->
 make:all([load]).
% A sync/1 function can compile and reload all the modules pertaining to the project within the
folder.

start() ->
 case whereis(polis) of
 undefined ->
 gen_server:start(?MODULE, {?MODS,?PUBLIC_SCAPES}, []);
 Polis_PId ->
 io:format(“Polis:~p is already running on this node.~n”,[Polis_PId])
 end.

start(Start_Parameters) ->
 gen_server:start(?MODULE, Start_Parameters, []).
init(Pid,InitState)->
 gen_server:cast(Pid,{init,InitState}).
%The start/0 function first checks whether a polis process has already been spawned, by check-
ing if one is registered. If it’s not, then the start/1 function starts up the neuroevolutionary plat-
form.

stop()->
 case whereis(polis) of
 undefined ->
 io:format(“Polis cannot be stopped, it is not online~n”);
 Polis_PId ->
 gen_server:cast(Polis_PId,{stop,normal})
 end.
%The stop/0 function first checks whether a polis process is online. If there is an online polis
process running on the node, then the stop function sends a signal to it requesting it to stop.

%%== gen_server callbacks
init({Mods,PublicScapes}) ->
 {A,B,C} = now(),
 random:seed(A,B,C),
 process_flag(trap_exit,true),

238 Chapter 8 Developing a Simple Neuroevolutionary Platform

 register(polis,self()),
 io:format(“Parameters:~p~n”,[{Mods,PublicScapes}]),
 mnesia:start(),
 start_supmods(Mods),
 Active_PublicScapes = start_scapes(PublicScapes,[]),
 io:format(“******** Polis: ##MATHEMA## is now online.~n”),
 InitState = #state{active_mods=Mods,active_scapes=Active_PublicScapes},
 {ok, InitState}.
%The init/1 function first seeds random with a new seed, in the case a random number genera-
tor will be needed. The polis process is then registered, the mnesia database is started, and the
supporting modules, if any, are then started through the start_supmods/1 function. Then all the
specified public scapes, if any, are activated. Having called our neuroevolutionary platform po-
lis, we give this polis a name “MATHEMA”, which is a Greek word for knowledge, and learn-
ing. Finally we create the initial state, which contains the PIds of the currently active public
scapes, and the names of the activated mods. Finally, the function then drops into the main
gen_server loop.

handle_call({get_scape,Type},{Cx_PId,_Ref},S)->
 Active_PublicScapes = S#state.active_scapes,
 Scape_PId = case lists:keyfind(Type,3,Active_PublicScapes) of
 false ->
 undefined;
 PS ->
 PS#scape_summary.address
 end,
 {reply,Scape_PId,S};
handle_call({stop,normal},_From, State)->
 {stop, normal, State};
handle_call({stop,shutdown},_From,State)->
 {stop, shutdown, State}.
%At this point the polis only accepts a get_scape call, to which it replies with the PId or unde-
fined message, and the two standard {stop,normal} and {stop,shutdown} calls.

handle_cast({init,InitState},_State)->
 {noreply,InitState};
handle_cast({stop,normal},State)->
 {stop, normal,State};
handle_cast({stop,shutdown},State)->
 {stop, shutdown, State}.
%At this point the polis allows only for 3 standard casts: {init,InitState}, {stop,normal}, and
{stop,shutdown}.

handle_info(_Info, State) ->
 {noreply, State}.
%The handle_info/2 function is unused by the polis process at this time.

8.3 Developing the polis Module 239

terminate(Reason, S) ->
 Active_Mods = S#state.active_mods,
 stop_supmods(Active_Mods),
 stop_scapes(S#state.active_scapes),
 io:format(“******** Polis: ##MATHEMA## is now offline, terminated with rea-
son:~p~n”,[Reason]),
 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.
%When polis is terminated, it first shuts down all the supporting mods by calling the
stop_supmods/1 function, and then it shuts down all the public scapes by calling the
stop_scapes/1 function.

%%--
%%% Internal functions
%%--
create()->
 mnesia:create_schema([node()]),
 mnesia:start(),
 mnesia:create_table(agent,[{disc_copies, [node()]},{type,set},{attributes, rec-
ord_info(fields,agent)}]),
 mnesia:create_table(cortex,[{disc_copies, [node()]},{type,set},{attributes, rec-
ord_info(fields,cortex)}]),
 mnesia:create_table(neuron,[{disc_copies, [node()]},{type,set},{attributes, rec-
ord_info(fields,neuron)}]),
 mnesia:create_table(sensor,[{disc_copies, [node()]},{type,set},{attributes, rec-
ord_info(fields,sensor)}]),
 mnesia:create_table(actuator,[{disc_copies, [node()]},{type,set},{attributes, rec-
ord_info(fields,actuator)}]),
 mnesia:create_table(population,[{disc_copies, [node()]},{type,set},{attributes, rec-
ord_info(fields,population)}]),
 mnesia:create_table(specie,[{disc_copies, [node()]},{type,set},{attributes, rec-
ord_info(fields,specie)}]).
%The create/0 function sets up new mnesia database composed of the agent, cortex, neuron,
sensor, actuator, polis, population, and specie tables.

reset()->
 mnesia:stop(),
 ok = mnesia:delete_schema([node()]),
 polis:create().
%The reset/0 function deletes the schema, and recreates a fresh database from scratch.

%Start/Stop environmental modules: DBs, Environments, Network Access systems, and tools...

240 Chapter 8 Developing a Simple Neuroevolutionary Platform

start_supmods([ModName|ActiveMods])->
 ModName:start(),
 start_supmods(ActiveMods);
start_supmods([])->
 done.
%The start_supmods/1 function expects a list of module names of the mods that are to be start-
ed with the startup of the neuroevolutionary platform. Each module must have a start/0 function
that starts-up the supporting mod process.

stop_supmods([ModName|ActiveMods])->
 ModName:stop(),
 stop_supmods(ActiveMods);
stop_supmods([])->
 done.
%The stop_supmods/1 expects a list of supporting mod names, the mod’s name must be the
name of its module, and that module must have a stop/0 function that stops the module.
stop_supmods/1 goes through the list of the mods, and executes the stop() function for each
one.

start_scapes([S|Scapes],Acc)->
 Type = S#scape_summary.type,
 Parameters = S#scape_summary.parameters,
 {ok,PId} = scape:start_link({self(),Type,Parameters}),
 start_scapes(Scapes,[S#scape_summary{address=PId}|Acc]);
start_scapes([],Acc)->
 lists:reverse(Acc).
%The start_scapes/2 function accepts a list of scape_summary records, which specify the
names of the public scapes and any parameters with which those scapes should be started. What
specifies the scape which is going to be created by the scape module is the Type that is dropped
into the function. Of course the scape module should already be able to create the Type of scape
that is dropped into the start_link function. Once the scape is started, we record its PId in its
scape_summary’s record. Once all the public scapes have been started, the function returns a
list of updated scape_summary records.

stop_scapes([S|Scapes])->
 PId = S#scape_summary.address,
 gen_server:cast(PId,{self(),stop,normal}),
 stop_scapes(Scapes);
stop_scapes([])->
 ok.
%The stop_scapes/1 function accepts a list of scape_summary records, and then stops all the
scapes in the list. The function extracts a PId from every scape_summary in the list, and then
requests the specified scapes to terminate themselves.

8.3 Developing the polis Module 241

The polis process represents an interfacing point with the neuroevolutionary
platform infrastructure. Through the polis module we can start and initialize the
mnesia database that will support the evolutionary processes and store the geno-
type of the NN based systems. Polis is the infrastructure and the system within
which the database, the NN based agents, and the scapes they interface with, exist.
It is for this reason that I gave this module the name polis, an independent and self
governing city state of intelligent agents. Perhaps at some future time when multi-
ple such systems are running on different nodes, each polis itself will have its own
id, and each polis will concentrate on some particular goal towards which the
neuroevolutionary system is aimed. It is only fitting to give this polis the name:
“MATHEMA”, which stands for knowledge and learning.

We saw in the previous listing that the create/0 function creates a new mnesia
database composed of the following list of tables: sensor, actuator, neuron, cortex,
agent, specie, and population. Our original records.hrl is still missing the follow-
ing records to accommodate the listed tables: agent, specie, population, and polis.
The updated records.hrl is shown in the following listing.

Listing-8.2: Updated contents of records.hrl

-record(sensor,{id,name,cx_id,scape,vl,fanout_ids=[]}).
-record(actuator,{id,name,cx_id,scape,vl,fanin_ids=[]}).
-record(neuron, {id, generation, cx_id, af, input_idps=[], output_ids=[], ro_ids=[]}).
-record(cortex, {id, agent_id, sensor_ids=[], actuator_ids=[]}).
-record(agent,{id, generation, population_id, specie_id, cx_id,fingerprint, constraint,
evo_hist=[], fitness, innovation_factor, pattern=[]}).
-record(specie,{id,population_id, fingerprint, constraint, agent_ids=[], champion_ids=[],
avg_fitness, innovation_factor}).
-record(population,{id,polis_id,specie_ids=[],morphologies=[],innovation_factor}).

As you’ve noted from the updated records.hrl file, we’ve also added the ele-
ments: generation and ro_ids, to the neuron record. The generation element will
track the number of generations that had passed since the last time the neuron was
either mutated, or affected directly by some mutation which affects the NN’s to-
pology. In this way we can keep track of which parts of the NN system were most
recently added to the network. The ro_ids (recurrent output ids) element keeps
track of the recurrent output connections, and is a subset of the output_ids list.
Thus, if a neuron A sends an output to a neuron B, and neuron B is located in the
layer whose index is lower than A’s layer, then B’s id is entered not only into the
output_ids list, but also into the ro_ids list. We need the ro_ids element because
we need a way to track recurrent connections. Recurrent connections have to be
treated differently than standard synaptic connections in a NN, as we will see and
discuss in the following sections.

Before moving forward though, let’s test the polis module and create a mnesia
database. To do so, we first create the mnesia database by executing the function

242 Chapter 8 Developing a Simple Neuroevolutionary Platform

polis:create(), and then test the polis starting and stopping functions by executing
polis:start() and polis:stop():

1> polis:create().
{atomic,ok}
2> polis:start().
Parameters:{[],[]}
******** Polis: ##MATHEMA## is now online.
{ok,<0.133.0>}
3> polis:stop().
ok
******** Polis: ##MATHEMA## is now offline, terminated with reason:normal

It works!. With the polis:create() function we created the necessary mnesia da-
tabase tables, which we will need when we start testing other modules as we up-
date and create them. The start function took the polis online successfully, and the
stop function took the polis offline successfully. With this done, we can now move
forward and begin updating the genotype module.

8.4 Updating the genotype Module

The genotype module encapsulates the NN based system creation and NN gen-
otype access and storage. The move from ETS to Mnesia requires us to update the
genotype access and storage functions. The addition of the agent record as part of
the NN based system requires us to modify the NN system creation module. The
new ability to add recursive connections to neurons will require us to rethink the
way we represent the NN’s topology, and the element’s id structure.

Unlike in static NN based systems, topology and weight evolving artificial neu-
ral network systems (TWEANNs) can modify the very topology and structure of a
NN. We do not need to figure out what NN topology we should give to our NN
system, because it will evolve the topology most optimal for the problem we give
it. Plus, we never really know ahead of time what the most optimal NN topology
needed to solve some particular problem anyway. The seed NN genotype should
be the simplest possible, given the particular morphology of the agent, we let the
neuroevolutionary process to complexify the topology of the NN system over
time. Finally, because we will now use different kinds of activation functions, not
only tanh but also sin, abs, sgn... we might wish for some species in the population
to be started with a particular subset of these activation functions, and other spe-
cies with another subset, to perhaps observe how and which evolutionary paths
they take due to these different constraints. For this reason, we will also imple-
ment a constraint record which the population_monitor can use when construct-
ing agents. The constraint record specifies which morphology and which set of

8.4 Updating the genotype Module 243

activation functions the seed agent and its offspring should have access to during
evolution. In the following subsections we discuss in more detail each of these
factors, and then update our genotype module’s source code.

8.4.1 Moving from ETS to Mnesia

Again, because we wrapped the retrieval and storage functions of the NN sys-
tem elements inside their own functions within the genotype, the move from ETS
to Mnesia will only necessitate the update of those specific functions. The main
functions, read/2 and write/2, will need to be updated so that they use mnesia. The
functions save_genotype/2, save_to_file/2, load_from_file/2, are no longer need-
ed. Whereas the original save_genotype/2 function expected the genotype to be
dropped in as a list, which it then entered into a table one record at a time, our new
genotype will save each element as soon as it’s created, instead of first forming a
list of all the tuples and then saving them all at once. The save_to_file/2 and
load_from_file/2 functions are ETS specific. Since mnesia is started and stopped
by the polis, these two functions no longer have a role to play in our
neuroevolutionary platform.

8.4.2 A NN Based Adaptive Agent

Our NN based adaptive system has been increasing in the number of elements,
functions, and processes that it is composed of, and which define it. We now add
another element to the genotype, the agent element. The agent element will store
all the supporting information that the NN based system needs to keep track of the
evolutionary history and other supplementary information not kept track of by the
other elements. Neurons, Sensors, Actuators, and the Cortex elements keep track
of only the data needed for their own specific functionality, whereas the agent el-
ement will maintain all the global NN data (general topology of the NN, con-
straints, specie id...). Thus, the complete NN based system genotype will now be
composed of: one or more neuron records, one or more sensor records, one or
more actuator records, a cortex record, and an agent record. Mirroring the geno-
type, the phenotype of our NN based system is composed of: one or more neuron
processes, one or more sensor processes, one or more actuator processes, the NN
synchronizing cortex process, and the exoself process. In a way, the exoself pro-
cess embodies the agent record of the genotype. The exoself process performs as-
sistive services that might be needed by the NN system, it is the process that is ex-
ternal to the NN, but is part of the whole NN based system, and it also has a PId
that is unique to the agent, since an agent can have multiple sensors and actuators,
but only a single exoself. It contains information about the entire NN based sys-
tem; information that might be needed to restore and recover a NN, and perform

244 Chapter 8 Developing a Simple Neuroevolutionary Platform

other numerous supportive tasks. This type of NN based system can also be re-
ferred to as an adaptive agent, and thus for the remainder of the book, I will use
the terms: “NN based system”, “adaptive agent”, and “agent”, interchangeably.

8.4.3 A New Neuron Id Structure; Adding Recursive Connections

Neuroevolution allows for any neuron to make a connection to any other neu-
ron, and that includes recursive connections. Our current neuron Id structure is a
tuple containing the atom neuron (to identify the id as that which belongs to a neu-
ron element), an integer based layer index (to specify where in the NN the neuron
is located), and a unique Id (to ensure that every neuron id is unique):
{{LayerIndex, Unique_Id}, neuron}. Using this neuron id structure, we can en-
code both, feed forward, and recursive NNs... but there is a problem.

As shown in Fig-8.2, imagine we have a NN which contains a neuron A in lay-
er N and a neuron B in layer M. If we now apply a mutation to this NN, establish-
ing a connection from neuron A to neuron B, and M > N, then the resulting NN is
simply a feed forward connection, and everything works. If you we start with the
same simple initial NN, and this time the mutation produces a connection from B
to A, because M > N, the connection is recursive... everything still works ok. But
what if during the mutation a new neural layer is added, right in the middle of lay-
er N and M?

This scenario occurs when for example a new neuron is added to the NN, and it
is not added to an existing layer, but instead it is added as an element of a new
layer (thus increasing the depth of the NN), in the middle of two other existing
neural layers. One of the possible mutation operators that produces this effect is
the splice mutation operator. For example the splice mutation chooses a random
neuron A in the NN, it then chooses a random output Id of neuron A to neuron B,
disconnects neuron A from B, and then reconnects them through a newly created
neuron C, placed in between them.

8.4 Updating the genotype Module 245

Fig. 8.2 Three types of mutations, showing the NN topologies before and after those muta-
tions are applied. In A, a new link is created from neuron {1,A1} in layer 1, to neuron
{2,B2} in layer 2. In B, a new recursive link is created from neuron {2,B2} in layer 2, to
neuron {1,A2} in layer 1. In C, a splice is done, neurons {1,A2} and {2,B2} are un-
linked/disconnected, and then relinked/connected through a new neuron, which is placed
in a new layer between the two neurons. Due to a new layer, the Ids of B1 and B2 have to
be adjusted, since the B1 and B2 neurons are moved from layer 2 to layer 3.

The problem is that when a mutation adds a new layer, it changes the topology,
the layer indecies change for all the layers that come after the newly inserted lay-
er. Since the layer index is a part of the neuron’s id which is needed to keep track
of whether the synaptic connections are feed forward or recursive, after such a
mutation we must go in and update the ids of every neuron contained in the layers
located after the newly inserted layer, and we need to update all the output id lists
of the neurons which connect to these affected neurons. Since we don’t know
which neurons are affected and which neurons are connected to which ahead of
time, after every such mutation, we have to access the NN genotype, go through

246 Chapter 8 Developing a Simple Neuroevolutionary Platform

every neuron and update all the affected Ids. Then we would have to go through
every sensor and actuator and update their fanout_ids and fanin_ids respectively
as well, in case they are connected to any of the affected neurons. But there is a
simpler solution.

We use layers only to keep track of whether the connections that are made be-
tween the neurons are feed forward, or recurrent. Thus the most important part of the
layer index is not its number, but the location on the number line, the order, mean-
ing, whether a layer M is greater or smaller than layer N. So for example, if we have
neurons in layer M=3 connected to neurons in layer N=4, and a mutation adds an-
other layer between M and N, we can give this new layer an index of K = (N+M)/2,
which is 3.5 in this case. Its value indicates that it is in the middle, thus if any neuron
from layer M makes a connection to it, it will be feed forward. And if any neuron
from layer N makes a connection to it, it will be recursive. All the necessary features
are retained, using this method we can still properly track whether the connections
are feedforward or recursive, and we do not have to update any of the already exist-
ing ids when inserting a new layer, as shown in Fig-8.3.

Eventually we will update our neuroevolutionary system to allow the NN based
systems to modify their own topology, read their own NN topology using sensors,
and change their own NN topology using actuators... Since the inputs and outputs
of the NNs are usually normalized to be vectors containing values between -1 and
1, we should think ahead and use a system where the layer indices are also all be-
tween -1 and 1. This is easy, we simply decide that the sensors will be located at
the -1 point, and so no neural layer can be located at -1. And we let the actuators
be located at 1, and so no neural layer can be located at 1. Thus, when creating
seed NN topologies, as discussed in the next section, we create them with that first
initial neural layer at index 0, as shown in Fig-8.4. Then, if a new layer is added
after this initial layer, it is given an index at (0+1)/2, if a new layer is added be-
fore, then its index is set to (0+(-1))/2. Once a new layer has been added after lay-
er 0, we will now have the layers [0,0.5] composing the NN. If we need to add an-
other layer after layer index 0.5, we follow the same pattern: (0.5 + 1)/2, thus the
new layer index after 0.5, is 0.75. If on the other hand we need to add a new layer
between 0.5 and 0, we give that layer an index of (0+0.5)/2, or 0.25. In this man-
ner we can have infinitely many layers, and when adding or removing layers, none
of the already existing neuron ids need to be modified or updated.

Fig. 8.3 A new way to designate neural layer indices, and the resulting ability to easily add
and remove new layers without disrupting or having to update existing neural Ids.

8.4 Updating the genotype Module 247

8.4.4 Seed Computational Intelligence

We can neither predict nor derive ahead of time, not how large the NN should
be nor what the topology of that NN should be, to optimally adapt to some envi-
ronment, or solve some problem. The job of devising the proper topology, archi-
tecture, functionality... everything, is that of evolution. Evolution alone decides
what is fit to survive, and what is not. Evolution complexifies systems overtime,
adding new features, elements, topological structures. Retaining what is useful,
discarding what is not. Thus, we need only seed the minimal NN topologies, start
with the simplest NN topologies and let evolution convert them into the more
complex structures over time.

Fig. 8.4 Four types of minimalistic seed NN topologies are shown. Type A starts with a sin-
gle Sensor and a single Actuator with an input vector length of 1, resulting in a NN with 1
neuron in layer 0 (the preferred seed topology). Type B starts with 1 sensor and 1 actuator
whose input vl > 1. Type C starts with a single sensor and multiple actuators. And type D
starts with multiple sensors and actuators.

The simplest seed NNs are composed of a single layer of neurons, connected

from sensors, and connected to actuators, as shown in Fig-8.4. The minimal start-
ing topology depends on the total number of Sensors and Actuators the researcher
decides to seed the population with. If the NN is set to start with P number of Sen-
sors and one Actuator, where the actuator’s input vector length is 1, then the seed
NN starts with a single neuron connected from all the sensors and connected to a
single actuator. If on the other hand the NN is initiated with P number of Sensors

248 Chapter 8 Developing a Simple Neuroevolutionary Platform

and K number of actuators, the seed NNs will contain 1 layer of neurons, where
each neuron is connected to a random subset of P Sensors, and to exactly 1 actua-
tor. This neural layer will contain A1+...Ak total Neurons, where Ai is the size of
the vector that is destined for each Actuatori. It is customary for the seed NNs to
be initialized with a single Sensor and a single Actuator, letting the NN systems
discover any other existing Sensors and Actuators through neuroevolution.

8.4.5 Constraints

The constraints should do just that, specify the set of general evolutionary
guidelines for a particular organism, or neural network based system. The con-
straints tuple specifies the morphology, and therefore the set of sensors and actua-
tors that the NN system can draw its new sensor and actuator based elements from
during evolution, and a set of neural activation functions: neural_afs. The idea be-
hind constraints is that it allows us to start a population with multiple constraints,
and therefore with multiple species and multiple fitness functions (one for each
specie). For example, we can start a new population of size 100 with a list of two
constraints, one whose morphology is prey, and the other whose morphology is
predator. The prey and predator morphologies have different sets of sensors and
actuators available for their species to draw from. The population monitor, seeing
that there are two constraints, could then create the population composed of two
species, each species of size 50, and each species using its own constraints. Since
the constraints are inherited by the agent systems, the offspring an agent produces
would be created based on its constraints. Constraints also allow us to perform the
following experiment: Assume that we would like to see whether neural networks
that use tanh and sin activation functions, or whether a neural networks that use
sin, abs, and gauss activation functions, evolve a more profitable stock trading NN
based agent. We can do this by starting a population with a list of two constraints
which use the same morphology, but different neural_afs lists. This would divide
the population into two seed species, each with its own set of neural_afs to draw
from. We could even create two species of the same type/morphology, and release
them into a public scape, where the only difference between the two species is
their constraints with regards to neural_afs available to the evolving agents. This
would allow us to see what set of neural_afs is better suited to evolve intelli-
gent/adaptive systems faster and more effectively in the provided environment. It
would even allow us to let the two species of the same type/morphology compete
and fight each other, demonstrating which set of activation functions is more fit in
that way. Finally, the constraint record also simply allows us to specify the mor-
phology and neural_afs that we’d like to use during any particular simulation or
experiment, the list of sensors, actuators, and activation functions that we would
like our evolving NN based systems to incorporate their elements from, as they try
to solve some particular problem. The constraint record we will add to our rec-
ords.hrl file will use the following format:

8.4 Updating the genotype Module 249

-record(constraint,{morphology=[], neural_afs=[]}).

During the seed population creation, the function constructing the genotypes of
the NN based systems would then be passed the specie id that the agents will be-
long to, the id that the created agent should use, and the constraint record, set
within the population_monitor beforehand.

8.4.6 The Updated genotype Module

Having now covered all the new features and properties of the genotype mod-
ule, we can put these parts together: The construct_Agent function accepts as its
parameters the specie_Id, agent_Id, and the constraint tuple. It then uses these pa-
rameters to construct a seed population. The NNs in this seed population use min-
imalistic topologies, connected to and from one of the sensors and actuators be-
longing to the morphology specified within the constraints. Each neuron is created
with a random set of weights but without a bias/threshold value, which can be lat-
er incorporated through a mutation if needed. Finally, the activation function for
the neuron is randomly chosen from the neural_afs list specified within the con-
straint record.

Beyond these additions, we add to the genotype module three new functions:
delete_Agent/1, clone_Agent/2, mutate/1, and test/0. The first three will be neces-
sary when we begin deleting unfit NNs, and creating offspring based on the fit
NNs. One of the ways to create an offspring based on a fit genotype in the population
is by first cloning that genotype, and then mutating it, which is the approach we
take for offspring creation in our neuroevolutionary platform. All mutation opera-
tor functions will be kept in one module, while the mutate function wrapper is
kept in the genotype module. This will allow us to keep the genome mutator mod-
ule indifferent to where and how the genotype is stored, since the genotype mod-
ule will keep track of that. In this manner, it will be mostly the genotype module
which will need to deal with mnesia transactions, and be aware of how the ge-
nome is stored. The fourth function we create will be test/0, we will use this func-
tion to test whether our module can create a new agent, then clone it, then print the
genotypes of the two agents (original and its clone) to console, and then finally de-
lete them both.

The following listing shows the source code for the updated genotype module:

Listing-8.3 The updated genotype module.

-module(genotype).
-compile(export_all).
-include(“records.hrl”).

250 Chapter 8 Developing a Simple Neuroevolutionary Platform

construct_Agent(Specie_Id,Agent_Id,SpecCon)->
 random:seed(now()),
 Generation = 0,
 {Cx_Id,Pattern} = construct_Cortex(Agent_Id,Generation,SpecCon),
 Fingerprint = create_fingerprint(Agent_Id),
 Agent = #agent{
 id = Agent_Id,
 cx_id = Cx_Id,
 specie_id = Specie_Id,
 fingerprint = Fingerprint,
 constraint = SpecCon,
 generation = Generation,
 pattern = Pattern,
 evo_hist = []
 },
 write(Agent).
%The population monitor should have all the information with regards to the morphologies and
species constraints under which the agent’s genotype should be created. Thus the con-
struct_Agent/3 is ran with the parameter Specie_Id to which this NN based system will belong,
the Agent_Id that this NN based intelligent agent will have, and the SpecCon (specie con-
straint) that will define the list of activation functions and other parameters from which the
seed agent can choose its parameters. In this function, first the generation is set to 0, since the
agent is just created, then the construct_Cortex/3 is ran, which creates the NN and returns its
Cx_Id. Once the NN is created and the cortex’s id is returned, we can fill out the information
needed by the agent record, and then finally write it to the mnesia database

construct_Cortex(Agent_Id,Generation,SpecCon)->
 Cx_Id = {{origin,generate_UniqueId()},cortex},
 Morphology = SpecCon#constraint.morphology,
 Sensors = [S#sensor{id={{-1,generate_UniqueId()},sensor},cx_id=Cx_Id}|| S <-
 morphology:get_InitSensors(Morphology)],
 Actuators = [A#actuator{id={{1,generate_UniqueId()},actuator},cx_id=Cx_Id}||A<-
morphology:get_InitActuators(Morphology)],
 N_Ids=construct_InitialNeuroLayer(Cx_Id,Generation,SpecCon,Sensors,Actuators,[],[]),
 S_Ids = [S#sensor.id || S<-Sensors],
 A_Ids = [A#actuator.id || A<-Actuators],
 Cortex = #cortex{
 id = Cx_Id,
 agent_id = Agent_Id,
 neuron_ids = N_Ids,
 sensor_ids = S_Ids,
 actuator_ids = A_Ids
 },
 write(Cortex),
 {Cx_Id,[{0,N_Ids}]}.

8.4 Updating the genotype Module 251

%construct_Cortex/3 generates a new Cx_Id, extracts the morphology from the constraint
record passed to it in SpecCon, and then extracts the initial sensors and actuators for that mor-
phology. After the sensors and actuators are extracted, the function calls con-
struct_InitialNeuroLayer/7, which creates a single layer of neurons connected from the speci-
fied sensors and to the specified actuators, and then returns the ids of the created neurons.
Finally, the sensor and actuator ids are extracted from the sensors and actuators, and the cortex
record is composed and written to the database.

 construct_InitialNeuroLayer(Cx_Id,Generation,SpecCon,Sensors,[A|Actuators],
AAcc,NIdAcc)->
 N_Ids = [{{0,Unique_Id},neuron}|| Unique_Id<-generate_ids(A#actuator.vl,[])],
 U_Sensors=construct_InitialNeurons(Cx_Id,Generation,SpecCon,N_Ids,Sensors,A),
 U_A = A#actuator{fanin_ids=N_Ids},
 construct_InitialNeuroLayer(Cx_Id,Generation,SpecCon,U_Sensors,Actuators,
[U_A|AAcc],lists:append(N_Ids,NIdAcc));
 construct_InitialNeuroLayer(_Cx_Id,_Generation,_SpecCon,Sensors,[],AAcc,NIdAcc)->
 [write(S) || S <- Sensors],
 [write(A) || A <- AAcc],
 NIdAcc.
%construct_InitialNeuroLayer/7 creates a set of neurons for each Actuator in the actuator list.
The neurons are initialized in the construct_InitialNeurons/6, where they are connected to the
actuator, and from a random subset of the sensors passed to the function. The con-
struct_InitialNeurons/6 function returns the updated sensors, some of which have now an up-
dated set of fanout_ids which includes the new neuron ids they were connected to. The actua-
tor’s fanin_ids is then updated to include the neuron ids that were connected to it. Once all the
actuators have been connected to, the sensors and the actuators are written to the database, and
the set of neuron ids created within the function is returned to the caller.

 construct_InitialNeurons(Cx_Id,Generation,SpecCon,[N_Id|N_Ids], Sensors,Actuator)->
 case random:uniform() >= 0.5 of
 true ->
 S = lists:nth(random:uniform(length(Sensors)),Sensors),
 U_Sensors = lists:keyreplace(S#sensor.id, 2, Sensors,
S#sensor{fanout_ids=[N_Id|S#sensor.fanout_ids]}),
 Input_Specs = [{S#sensor.id,S#sensor.vl}];
 false ->
 U_Sensors = [S#sensor{fanout_ids=[N_Id|S#sensor.fanout_ids]} || S <-
Sensors],
 Input_Specs=[{S#sensor.id,S#sensor.vl}||S<-Sensors]
 end,
 construct_Neuron(Cx_Id,Generation,SpecCon,N_Id,Input_Specs, [Actua-
tor#actuator.id]),
 construct_InitialNeurons(Cx_Id,Generation,SpecCon,N_Ids, U_Sensors,Actuator);
 construct_InitialNeurons(_Cx_Id,_Generation,_SpecCon,[],Sensors,_Actuator)->
 Sensors.

252 Chapter 8 Developing a Simple Neuroevolutionary Platform

%construct_InitialNeurons/6 accepts the list of sensors and a single actuator, connects each
neuron to the actuator, and randomly chooses whether to connect it from all the sensors or a
subset of the given sensors. Once all the neurons have been connected to the actuator and from
the sensors, the updated sensors whose fanout_ids have been updated with the ids of the neu-
rons, are returned to the caller.

 construct_Neuron(Cx_Id,Generation,SpecCon,N_Id,Input_Specs,Output_Ids)->
 Input_IdPs = create_InputIdPs(Input_Specs,[]),
 Neuron=#neuron{
 id=N_Id,
 cx_id = Cx_Id,
 generation=Generation,
 af=generate_NeuronAF(SpecCon#constraint.neural_afs),
 input_idps=Input_IdPs,
 output_ids=Output_Ids,
 ro_ids = calculate_ROIds(N_Id,Output_Ids,[])
 },
 write(Neuron).

 create_InputIdPs([{Input_Id,Input_VL}|Input_IdPs],Acc) ->
 Weights = create_NeuralWeights(Input_VL,[]),
 create_InputIdPs(Input_IdPs,[{Input_Id,Weights}|Acc]);
 create_InputIdPs([],Acc)->
 Acc.

 create_NeuralWeights(0,Acc) ->
 Acc;
 create_NeuralWeights(Index,Acc) ->
 W = random:uniform()-0.5,
 create_NeuralWeights(Index-1,[W|Acc]).
%Each neuron record is composed by the construct_Neuron/6 function. The con-
struct_Neuron/6 creates the Input list from the tuples [{Id,Weights}...] using the vector lengths
specified in the Input_Specs list. The create_InputIdPs/3 function uses create_NeuralWeights/2
to generate the random weights in the range of -0.5 to 0.5. The activation function that the neu-
ron uses is chosen randomly from the neural_afs list within the constraint record passed to the
construct_Neuron/6 function. construct_Neuron uses calculate_ROIds/3 to extract the list of re-
cursive connection ids from the Output_Ids passed to it. Once the neuron record is filled in, it is
saved to database.

 generate_NeuronAF(Activation_Functions)->
 case Activation_Functions of
 [] ->
 tanh;
 Other ->
 lists:nth(random:uniform(length(Other)),Other)

8.4 Updating the genotype Module 253

 end.
%The generate_NeuronAF/1 accepts a list of activation function tags, and returns a randomly
chosen one. If an empty list was passed as the parameter, the function returns the standard tanh
tag.

 calculate_ROIds(Self_Id,[Output_Id|Ids],Acc)->
 case Output_Id of
 {_,actuator} ->
 calculate_ROIds(Self_Id,Ids,Acc);
 Output_Id ->
 {{TLI,_},_NodeType} = Self_Id,
 {{LI,_},_} = Output_Id,
 case LI =< TLI of
 true ->
 calculate_ROIds(Self_Id,Ids,[Output_Id|Acc]);
 false ->
 calculate_ROIds(Self_Id,Ids,Acc)
 end
 end;
 calculate_ROIds(_Self_Id,[],Acc)->
 lists:reverse(Acc).
%The function calculate_ROIds/3 accepts as input the Self_Id of the neuron, and the Out-
put_Ids of the elements the neuron connects to. Since each element specifies its type and, in the
case of neurons, the layer index it belongs to, the function checks if the Output_Id’s layer index
is lower than the Self_Id’s layer index. If it is, the output connection is recursive and the Out-
put_Id is added to the recursive output list. Once the recursive connection ids have been ex-
tracted from the Output_Ids, the extracted id list is returned to the caller.

 generate_ids(0,Acc) ->
 Acc;
 generate_ids(Index,Acc)->
 Id = generate_UniqueId(),
 generate_ids(Index-1,[Id|Acc]).

 generate_UniqueId()->
 {MegaSeconds,Seconds,MicroSeconds} = now(),
 1/(MegaSeconds*1000000 + Seconds + MicroSeconds/1000000).
%The generate_UniqueId/0 creates a unique Id using current time, the Id is a floating point val-
ue. The generate_ids/2 function creates a list of unique Ids.

create_fingerprint(Agent_Id)->
 A = read({agent,Agent_Id}),
 Cx = read({cortex,A#agent.cx_id}),
 GeneralizedSensors = [(read({sensor,S_Id}))#sensor{id=undefined,cx_id=undefined} ||
S_Id<-Cx#cortex.sensor_ids],

254 Chapter 8 Developing a Simple Neuroevolutionary Platform

 GeneralizedActuators = [(read({sensor,A_Id}))#actuator{id=undefined,cx_id=undefined} ||
A_Id<-Cx#cortex.actuator_ids],
 GeneralizedPattern = [{LayerIndex,length(LNIds)}||{LayerIndex,LNIds}<-A#agent.pattern],
 GeneralizedEvoHist = generalize_EvoHist(A#agent.evo_hist,[]),
 {GeneralizedPattern,GeneralizedEvoHist,GeneralizedSensors,GeneralizedActuators}.
%create_fingerprint/1 calculates the fingerprint of the agent, where the fingerprint is just a tuple
of the various general features of the NN based system, a list of features that play some role in
distinguishing its genotype’s general properties from those of other NN systems. Here, the fin-
gerprint is composed of the generalized pattern (pattern minus the unique ids), generalized evo-
lutionary history (evolutionary history minus the unique ids of the elements), a generalized sen-
sor set, and a generalized actuator set of the agent in question.

generalize_EvoHist([{MO,{{ALI,_AUId},AType},{{BLI,_BUId},BType}, {{CLI,_CUId},
CType}}|EvoHist],Acc)->
 generalize_EvoHist(EvoHist,[{MO,{ALI,AType},{BLI,BType}, {CLI,CType}}|Acc]);
generalize_EvoHist([{MO,{{ALI,_AUId},AType},{{BLI,_BUId},BType}}|EvoHist],Acc)->
 generalize_EvoHist(EvoHist,[{MO,{ALI,AType},{BLI,BType}}|Acc]);
generalize_EvoHist([{MO,{{ALI,_AUId},AType}}|EvoHist],Acc)->
 generalize_EvoHist(EvoHist,[{MO,{ALI,AType}}|Acc]);
generalize_EvoHist([],Acc)->
 lists:reverse(Acc).
%generalize_EvoHist/2 generalizes the evolutionary history tuples by removing the unique el-
ement ids. Two neurons which are using exactly the same activation function, located in exactly
the same layer, and using exactly the same synaptic weights, will still have different unique ids.
Thus, these ids must be removed to produce a more general set of tuples. There are 3 types of
tuples in evo_hist list, with 3, 2 and 1 element ids. Once the evolutionary history list is general-
ized, it is returned to the caller.

read(TnK)->
 case mnesia:read(TnK) of
 [] ->
 undefined;
 [R] ->
 R
 end.
%read/1 accepts the tuple composed of a table name and a key: {TableName,Key}, which it
then uses to read from the mnesia database and return the record or the atom: undefined, to the
caller.

write(R)->
 mnesia:write(R).
% write/1 accepts a record and writes it to the database

delete(TnK)->
 mnesia:delete(TnK).

8.4 Updating the genotype Module 255

% delete/1 accepts the parameter tuple: {TableName,Key}, and deletes the associated record
from the table.

print(Agent_Id)->
 A = read({agent,Agent_Id}),
 Cx = read({cortex,A#agent.cx_id}),
 io:format(“~p~n”,[A]),
 io:format(“~p~n”,[Cx]),
 [io:format(“~p~n”,[read({sensor,Id})]) || Id <- Cx#cortex.sensor_ids],
 [io:format(“~p~n”,[read({neuron,Id})]) || Id <- Cx#cortex.neuron_ids],
 [io:format(“~p~n”,[read({actuator,Id})]) || Id <- Cx#cortex.actuator_ids].
%print/1 accepts an agent’s id, finds all the elements composing the agent in question, and
prints out the complete genotype of the agent.

delete_Agent(Agent_Id)->
 A = read({agent,Agent_Id}),
 Cx = read({cortex,A#agent.cx_id}),
 [delete({neuron,Id}) || Id <- Cx#cortex.neuron_ids],
 [delete({sensor,Id}) || Id <- Cx#cortex.sensor_ids],
 [delete({actuator,Id}) || Id <- Cx#cortex.actuator_ids],
 delete({cortex,A#agent.cx_id}),
 delete({agent,Agent_Id}).
%delete_Agent/1 accepts the id of an agent, and then deletes that agent’s genotype. This func-
tion assumes that the id of the agent will be removed from the specie’s agent_ids list, and any
other needed clean up procedure will be performed by the calling function.

delete_Agent(Agent_Id,safe)->
 F = fun()->
 A = genotype:read({agent,Agent_Id}),
 S = genotype:read({specie,A#agent.specie_id}),
 Agent_Ids = S#specie.agent_ids,
 write(S#specie{agent_ids = lists:delete(Agent_Id,Agent_Ids)}),
 delete_Agent(Agent_Id)
 end,
 Result=mnesia:transaction(F),
 io:format(“delete_agent(Agent_Id,safe):~p Result:~p~n”,[Agent_Id,Result]).
%delete_Agent/2 accepts the id of an agent, and then deletes that agent’s genotype, but ensures
that the species to which the agent belongs, has its agent_ids element updated. Unlike de-
lete_Agent/1, this function updates the species’ record.

clone_Agent(Agent_Id,CloneAgent_Id)->
 F = fun()->
 A = read({agent,Agent_Id}),
 Cx = read({cortex,A#agent.cx_id}),
 IdsNCloneIds = ets:new(idsNcloneids,[set,private]),

256 Chapter 8 Developing a Simple Neuroevolutionary Platform

 ets:insert(IdsNCloneIds,{threshold,threshold}),
 ets:insert(IdsNCloneIds,{Agent_Id,CloneAgent_Id}),
 [CloneCx_Id] = map_ids(IdsNCloneIds,[A#agent.cx_id],[]),
 CloneN_Ids = map_ids(IdsNCloneIds,Cx#cortex.neuron_ids,[]),
 CloneS_Ids = map_ids(IdsNCloneIds,Cx#cortex.sensor_ids,[]),
 CloneA_Ids = map_ids(IdsNCloneIds,Cx#cortex.actuator_ids,[]),
 clone_neurons(IdsNCloneIds,Cx#cortex.neuron_ids),
 clone_sensors(IdsNCloneIds,Cx#cortex.sensor_ids),
 clone_actuators(IdsNCloneIds,Cx#cortex.actuator_ids),

 write(Cx#cortex{
 id = CloneCx_Id,
 agent_id = CloneAgent_Id,
 sensor_ids = CloneS_Ids,
 actuator_ids = CloneA_Ids,
 neuron_ids = CloneN_Ids
 }),
 write(A#agent{
 id = CloneAgent_Id ,
 cx_id = CloneCx_Id
 }),
 ets:delete(IdsNCloneIds)
 end,
 mnesia:transaction(F).
%clone_Agent/2 accepts Agent_Id and CloneAgent_Id as parameters, and then clones the
agent, giving the clone the CloneAgent_Id. The function first creates an ETS table to which it
writes the ids of all the elements of the genotype and their correspondingly generated clone ids.
Once all ids and clone ids have been generated, the function begins to clone the actual ele-
ments. clone_Agent/2 first clones the neurons using clone_neurons/2, then the sensors using
clone_sensors/2, and finally the actuators using clone_actuators. Once these elements are
cloned, the function writes to database the clone versions of the cortex and the agent records, by
writing to database the original records with updated clone ids.

 map_ids(TableName,[Id|Ids],Acc)->
 CloneId=case Id of
 {{LayerIndex,_NumId},Type}->%maps neuron and cortex ids.
 {{LayerIndex,generate_UniqueId()},Type};
 {_NumId,Type}->%maps sensor and actuator ids.
 {generate_UniqueId(),Type}
 end,
 ets:insert(TableName,{Id,CloneId}),
 map_ids(TableName,Ids,[CloneId|Acc]);
 map_ids(_TableName,[],Acc)->
 Acc.

8.4 Updating the genotype Module 257

%map_ids/3 accepts the name of the ets table, and a list of ids as parameters. It then goes
through every id and creates a clone version of the id by generating a new unique id. The func-
tion is able to generate new id structures for neuron, cortex, sensor, and actuator id types.

 clone_sensors(TableName,[S_Id|S_Ids])->
 S = read({sensor,S_Id}),
 CloneS_Id = ets:lookup_element(TableName,S_Id,2),
 CloneCx_Id = ets:lookup_element(TableName,S#sensor.cx_id,2),
 CloneFanout_Ids =[ets:lookup_element(TableName,Fanout_Id,2)|| Fanout_Id <-
S#sensor.fanout_ids],
 write(S#sensor{
 id = CloneS_Id,
 cx_id = CloneCx_Id,
 fanout_ids = CloneFanout_Ids
 }),
 clone_sensors(TableName,S_Ids);
 clone_sensors(_TableName,[])->
 done.
%clone_sensors/2 accepts as input the name of the ets table and the list of sensor ids. It then
goes through every sensor id, reads the sensor from the database, and updates all its ids (id,
cx_id, and fanout_ids) from their original values to their clone version values stored in the ets
table. Afterwards, the new version of the sensor is written to database, effectively cloning the
original sensor.

 clone_actuators(TableName,[A_Id|A_Ids])->
 A = read({actuator,A_Id}),
 CloneA_Id = ets:lookup_element(TableName,A_Id,2),
 CloneCx_Id = ets:lookup_element(TableName,A#actuator.cx_id,2),
 CloneFanin_Ids =[ets:lookup_element(TableName,Fanin_Id,2)|| Fanin_Id <-
A#actuator.fanin_ids],
 write(A#actuator{
 id = CloneA_Id,
 cx_id = CloneCx_Id,
 fanin_ids = CloneFanin_Ids
 }),
 clone_actuators(TableName,A_Ids);
 clone_actuators(_TableName,[])->
 done.
%clone_actuators/2 accepts as input the name of the ets table and the list of actuator ids. It then
goes through every actuator id, reads the actuator from the database, and updates all its ids (id,
cx_id, and fanin_ids) from their original values to their clone version values stored in the ets ta-
ble. Afterwards, the new version of the actuator is written to database, effectively cloning the
original actuator.

 clone_neurons(TableName,[N_Id|N_Ids])->

258 Chapter 8 Developing a Simple Neuroevolutionary Platform

 N = read({neuron,N_Id}),
 CloneN_Id = ets:lookup_element(TableName,N_Id,2),
 CloneCx_Id = ets:lookup_element(TableName,N#neuron.cx_id,2),
 CloneInput_IdPs = [{ets:lookup_element(TableName,I_Id,2),Weights}||
{I_Id,Weights} <- N#neuron.input_idps],
 CloneOutput_Ids = [ets:lookup_element(TableName,O_Id,2)|| O_Id <-
N#neuron.output_ids],
 CloneRO_Ids =[ets:lookup_element(TableName,RO_Id,2)|| RO_Id <-
N#neuron.ro_ids],
 write(N#neuron{
 id = CloneN_Id,
 cx_id = CloneCx_Id,
 input_idps = CloneInput_IdPs,
 output_ids = CloneOutput_Ids,
 ro_ids = CloneRO_Ids
 }),
 clone_neurons(TableName,N_Ids);
 clone_neurons(_TableName,[])->
 done.
%clone_neuron/2 accepts as input the name of the ets table and the list of neuron ids. It then
goes through every neuron id, reads the neuron from the database, and updates all its ids (id,
cx_id, output_ids, ro_ids, and input_idps) from their original values to their clone version val-
ues stored in the ets table. Once everything is updated, the new (clone) version of the neuron is
written to database.

test()->
 Specie_Id = test,
 Agent_Id = test,
 CloneAgent_Id = test_clone,
 SpecCon = #constraint{},
 F = fun()->
 construct_Agent(Specie_Id,Agent_Id,SpecCon),
 clone_Agent(Specie_Id,CloneAgent_Id),
 print(Agent_Id),
 print(CloneAgent_Id),
 delete_Agent(Agent_Id) ,
 delete_Agent(CloneAgent_Id)
 end,
 mnesia:transaction(F).
%test/0 performs a test of the standard functions of the genotype module, by first creating a
new agent, then cloning that agent, then printing the genotype of the original agent and its
clone, and then finally deleting both of these agents.

create_test()->
 Specie_Id = test,

8.4 Updating the genotype Module 259

 Agent_Id = test,
 SpecCon = #constraint{},
 F = fun()->
 case genotype:read({agent,test}) of
 undefined ->
 construct_Agent(Specie_Id,Agent_Id,SpecCon),
 print(Agent_Id);
 _ ->
 delete_Agent(Agent_Id),
 construct_Agent(Specie_Id,Agent_Id,SpecCon),
 print(Agent_Id)
 end
 end,
 mnesia:transaction(F).
%create_test/0 creates a simple NN based agent using the default constraint record. The func-
tion first checks if an agent with the id ‘test’ already exists, if it does, the function deletes that
agent and creates a new one. Otherwise, the function just creates a brand new agent with the id
‘test’.

Having now updated the genotype, let us compile and test it using the test/0 and
create_test/0 functions. Since we already compiled and tested polis in the previous
section, at this point we already have a mnesia database (if you have not yet com-
piled polis and ran polis:create(), do so before testing the genotype module). To
test the genotype module, we first take the polis online, then run the geno-
type:test() function, and then take the polis offline, as is shown next:

1> polis:start().
Parameters:{[],[]}
******** Polis: ##MATHEMA## is now online.
{ok,<0.34.0>}
2> genotype:test().
{agent,test,0,undefined,test,
 {{origin,7.522621162363539e-10},cortex},
 {[{0,1}],
 [],
 [{sensor,undefined,xor_GetInput,undefined,
 {private,xor_sim},
 2,
 [{{0,7.522621162361355e-10},neuron}],
 undefined}],
 [{actuator,undefined,xor_SendOutput,undefined,
 {private,xor_sim},
 1,
 [{{0,7.522621162361355e-10},neuron}],
 undefined}]},

260 Chapter 8 Developing a Simple Neuroevolutionary Platform

 {constraint,xor_mimic,[tanh,cos,gauss,abs]},
 [],undefined,0,
 [{0,[{{0,7.522621162361355e-10},neuron}]}]}
{cortex,{{origin,7.522621162363539e-10},cortex},
 test,
 [{{0,7.522621162361355e-10},neuron}],
 [{{-1,7.522621162361434e-10},sensor}],
 [{{1,7.522621162361411e-10},actuator}]}
{sensor,{{-1,7.522621162361434e-10},sensor},
 xor_GetInput,
 {{origin,7.522621162363539e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.522621162361355e-10},neuron}],
 undefined}
{neuron,{{0,7.522621162361355e-10},neuron},
 0,
 {{origin,7.522621162363539e-10},cortex},
 tanh,
 [{{{-1,7.522621162361434e-10},sensor},
 [-0.20275596630526205,0.14421756025063392]}],
 [{{1,7.522621162361411e-10},actuator}],
 []}
{actuator,{{1,7.522621162361411e-10},actuator},
 xor_SendOutput,
 {{origin,7.522621162363539e-10},cortex},
 {private,xor_sim},
 1,
 [{{0,7.522621162361355e-10},neuron}],
 undefined}
{agent,test_clone,0,undefined,test,

 {{origin,7.522621162358474e-10},cortex},

 {[{0,1}],

 [],

 [{sensor,undefined,xor_GetInput,undefined,

 {private,xor_sim},

 2,

 [{{0,7.522621162361355e-10},neuron}],

 undefined}],

 [{actuator,undefined,xor_SendOutput,undefined,

 {private,xor_sim},

 1,

 [{{0,7.522621162361355e-10},neuron}],

 undefined}]},

 {constraint,xor_mimic,[tanh,cos,gauss,abs]},

8.4 Updating the genotype Module 261

 [],undefined,0,

 [{0,[{{0,7.522621162361355e-10},neuron}]}]}

...

{atomic,ok}
3> polis:stop().
ok
******** Polis: ##MATHEMA## is now offline, terminated with reason:normal

It works! Though for the sake of brevity, the above console printout does not
show the whole genotype of the test_clone agent (shown in boldface), we can still
see that there were no errors, and that this test function created, cloned, printed,
and then deleted both of the agents.

At some point in the future we might wish to test mutation operators on simple
NN system genotypes, for this reason our genotype module also includes the cre-
ate_test/0 function. This function, unlike the test/0 function, creates a default agent
genotype with an id: test, using the default constraint stored in the records.hrl file.
Furthermore, the function first checks whether such a test agent already exists, and
if it does, the function deletes the test agent, and creates a brand new one. This
function will become very handy when testing and experimenting with mutation
operators, since it will allow us to create a simple NN topology, apply mutation
operators to it as a test of some functionality, then print the mutated topology for
manual analysis, and then recreate the test agent and apply a different set of muta-
tion operators if needed... Being able to create individual NNs to test mutation op-
erators on, and being able to map the test genotype to a phenotype and test the
functionality of the same, is essential when developing and advancing a complex
system like this. We now test the create_test/0 function by starting the polis, exe-
cuting the create_test/0 function twice, and then stopping the polis:

1> polis:start().
Parameters:{[],[]}
******** Polis: ##MATHEMA## is now online.
{ok,<0.34.0>}
2> genotype:create_test().
{agent,test,0,undefined,test,
 {{origin,7.588472966671075e-10},cortex},
 undefined,
 {constraint,xor_mimic,[tanh,sin,abs]},
 [],undefined,undefined,
 [{0,[{{0,7.588472966664959e-10},neuron}]}]}
...
{atomic,{atomic,[ok]}}
3> genotype:create_test().
{agent,test,0,undefined,test,
 {{origin,7.588472880658339e-10},cortex},

262 Chapter 8 Developing a Simple Neuroevolutionary Platform

 undefined,
 {constraint,xor_mimic,[tanh,sin,abs]},
 [],undefined,undefined,
 [{0,[{{0,7.588472880658257e-10},neuron}]}]}
...
4> polis:stop().
******** Polis: ##MATHEMA## is now offline, terminated with reason:normal
ok

It works! The create_test/0 created a brand new test agent, and then when the
create_test/0 was executed again, it deleted the old test agent, and created a new
one. As before, for the sake of brevity, not the whole genotypes that were printed
to console are shown, as they are very similar to the one shown in the test/0 func-
tion earlier.

Having now developed a genotype module with all the necessary features to
support a neuroevolutionary platform, we can move forward and begin working on
the genotype mutator module.

8.5 Developing the genotype_mutator

We already have a mechanism used by the exoself to mutate/perturb the synap-
tic weights during the NN tuning phase. But for a NN to grow, become more
complex, and for a population to evolve, we need mutation operators that modify
the topologies and architectures of the NN systems belonging to a population. The
mutation operators should be able to add new neurons to the NN system, add new
sensors, new actuators, and be able to modify other features of the NN based sys-
tem. By having the ability to modify NN topologies, the evolutionary process can
take hold and generate new species (topologically different organisms) within the
population, and just as in the biological case, produce ever more complex NN
based agents, more adept to their environment, and more fit with regards to the
problem they are evolving to solve.

We need to have a set of mutation operators which are flexible enough so that
any NN topology A can be turned into a NN topology B, by applying the available
mutation operators to the NN system in some sequence. It is only then that our
neuroevolutionary system will have the necessary tools and flexibility to evolve
any type of NN based system given enough time and the appropriate fitness func-
tion.

In this section we will concentrate on developing such a flexible and general set
of mutation operators (MOs). The following set of MOs are required by evolution
such that it has the ability to do both, complexify and/or prune one NN topology
into any other by applying the below listed MOs in some order:

8.5 Developing the genotype_mutator 263

1. add_bias:
Choose a random neuron A, check if it has a bias in its weights list, if it does
not, add the bias value. If the neuron already has a bias value, do nothing.

2. remove_bias:
Choose a random neuron A, check if it has a bias in its weights list, if it does,
remove it. If the neuron does not have a bias value, do nothing.

3. mutate_weights:
Choose a random neuron A, and perturb each weight in its weight list with a
probability of 1/sqrt(length(weights)), with the perturbation intensity randomly
chosen between -Pi/2 and Pi/2.

4. reset_weights:
Choose a random neuron A, and reset all its synaptic weights to random values
ranging between -Pi/2 and Pi/2.

5. mutate_af:
Choose a random neuron A, and change its activation function to a new random
activation function chosen from the af_list in the constraint record belonging to
the NN.

6. add_inlink:
Choose a random neuron A, and an element B, and then add a connection from
element B (possibly an existing sensor) to neuron A.

7. add_outlink:
Choose a random neuron A, and an element B, and then add a connection from
neuron A to element B (possibly an existing actuator). The difference between
this mutation operator and the add_inlink mutation operator, is that in one we
choose a random neuron and then choose a random element from which we
make a connection to the chosen neuron. While in the other we choose a ran-
dom neuron, and then choose a random element to which the neuron makes a
connection. The first (add_inlink) is capable of making links to sensors, while
the second (add_outlink) is capable of potentially making links to actuators.

8. add_neuron:
Create a new neuron A, giving it a unique id and positioning it in a randomly
selected layer of the NN. Then give the neuron A a randomly chosen activation
function. Then choose a random neuron B in the NN and connect neuron A’s
inport to the neuron B’s outport. Then choose a random neuron C in the NN
and connect neuron A’s outport to the neuron C’s inport.

9. splice: There are 2 versions of this mutation operator, outsplice, and insplice:

– outsplice: Create a new neuron A with a random activation function. Then
choose a random neuron B in the NN. Randomly select neuron B’s outport
leading to some element C’s (neuron or actuator) inport. Then disconnect
neuron B from element C, and reconnect them through the newly created
neuron A.

– insplice: Create a new neuron A with a random activation function. Then
choose a random neuron B in the NN. Randomly select neuron B’s inport
from some element C’s (neuron or sensor) outport. Then disconnect neu-

264 Chapter 8 Developing a Simple Neuroevolutionary Platform

ron B from element C, and reconnect them through the newly created neu-
ron A. The reason for having an outsplice and an insplice, is that the
outsplice can insert a new neuron between some random element and an
actuator, while the insplice can insert a new neuron between an element
and a sensor.

10. add_sensorlink:
Compared to the number of neurons, there are very few sensors, and so the
probability of the add_inlink connecting a neuron to a sensor is very low. To
increase the probability that the NN connects to a sensor, we can create the
add_sensorlink mutation operator. This mutation operator first chooses a ran-
dom existing sensor A, it then chooses a random neuron B to which A is not yet
connected, and then connects A to B.

11. add_actuatorlink:
As in add_sensorlink, when compared to the number of neurons, there are very
few actuators, and so the probability of the add_outlink connecting a neuron to
an actuator is very low. Thus, we can implement the add_actuatorlink to in-
crease the probability of connecting a neuron to an actuator. In this mutation
operator, first a random actuator A is chosen which is connected to less neurons
than its vl element dictates (an incompletely connected actuator). Then a ran-
dom neuron B is chosen to which the actuator is not yet connected. Then A is
connected from B.

12. remove_sensorlink:
First a random sensor A is chosen. From the sensor’s fanout_ids list, a random
neuron id is chosen, and then the sensor is disconnected from the corresponding
neuron.

13. remove_actuatorlink:
First a random actuator A is chosen. From the actuator’s fanin_ids list, a ran-
dom neuron id is chosen, and then the actuator is disconnected from the corre-
sponding neuron.

14. add_sensor:
Choose a random sensor from the sensor list belonging to the NN’s morpholo-
gy, but which is not yet used. Then connect the sensor to a random neuron A in
the NN, thus adding a new sensory organ to the NN system.

15. add_actuator:
Choose a random actuator from the actuator list belonging to the NN’s mor-
phology, but which is not yet used. Then connect a random neuron A in the NN
to this actuator, thus adding a new morphological feature to the NN that can be
used to interact with the world.

16. remove_inlink:
Choose a random neuron A, and disconnect it from a randomly chosen element
in its input_idps list.

17. remove_outlink:
Choose a random neuron A, and disconnect it from a randomly chosen element
in its output_ids list.

8.5 Developing the genotype_mutator 265

18. remove_neuron:
Choose a random neuron A in the NN, and remove it from the topology. Then
fix the presynaptic neuron B’s and postsynaptic neuron C’s outports and inports
respectively to accommodate the removal of the connection with neuron A.

19. desplice: There are 2 versions of this operator, deoutspolice, and deinsplice:

– deoutsplice: Choose a random neuron B in the NN, such that B’s outport
is connected to an element (neuron or actuator) C through some neuron A.
Then delete neuron A and reconnect neuron B and element C directly.

– deintsplice: Choose a random neuron B in the NN, such that B’s inport is
connected to by an element (neuron or sensor) C through some neuron A.
Then delete neuron A and connect neuron B and element C directly.

20. remove_sensor:
If a NN has more than one sensor, choose a random sensor belonging to the
NN, and remove it by first disconnecting it from the neurons it is connected to,
and then removing the tuple representing it from the genotype altogether.

21. remove_actuator:
If a NN has more than one actuator, choose a random actuator belonging the
NN, and remove it by first disconnecting it from the neurons it is connected
from, and then removing the tuple representing it from the genotype altogether.

Note that when choosing random neurons to connect to, we do not specify
whether that neuron should be in the next layer, or whether that neuron should be
in the previous layer. These mutations allow for both, feedforward, and recurrent
connections to be formed.

Technically, we do not need every one of these mutation operators, the follow-
ing list will be enough for a highly versatile complexifying topology and weight
evolving artificial neural network (TWEANN) system: mutate_weights, add_bias,
remove_bias, mutate_af, add_neuron, splice (just one of them), add_inlink,
add_outlink, add_sensorlink, add_actuatorlink, add_sensor, and add_actuator.
Note that this combination of MOs can convert any NN topology A into a NN to-
pology B, given that A is contained (smaller, and simpler in a sense) within B. The
add_inlink, add_outlink, add_sensorlink, add_actuatorlink mutation operators al-
low for neurons to form new connections to neurons, sensors and actuators. The
add_sensor and add_actuator, can add/integrate the new sensor and actuator pro-
grams into the NN system. The add_neuron will add new neurons in parallel with
other neurons in a layer, while outsplice will create new layers, increasing the
depth of the NN system, and form new connections in series. The weight perturba-
tions will be performed by the exoself, in a separate phase from the topological
mutation phase, which will effectively make our system a memetic algorithm
based TWEANN. On the other hand, if we also add mutate_weights operator to
the mutation phase, and remove the exoself’s weight tuning/perturbing ability in
its separate phase, then our system will become a standard genetic algorithm based
TWEANN.

266 Chapter 8 Developing a Simple Neuroevolutionary Platform

In this section we will only create these 12 mutation operators. The deletory
(except for the remove_bias, which does not delete or simplify a NN, but modifies
the processing functionality of the neuron, by biasing and unbiasing its activation
function) operators can be added later, because they share very similar logic to
their complexifying mutator counterparts. Due to the exoself, we can easily switch
between genetic and memetic TWEANN approaches by simply turning the
exoself’s tuning ability on or off. We can easily implement both, the genetic and
the memetic approaches in our system. We will be able to turn the tuning on and
off, and see the difference in the TWEANN’s efficiency and robustness when us-
ing the two different methods.

In the following subsections we will discuss each mutation operator, and de-
velop that operator’s source code. Once all the operators have been discussed, and
their algorithms implemented, we will put it all together into a single geno-
type_mutator module.

8.5.1 The Precursor Connection Making and Breaking Functions

Almost every mutation operator that is discussed next, relies on elements being
connected and disconnected. For this purpose we create dedicated functions that
can link and unlink any two elements. When connecting two elements, there are
three possible connection types: a sensor-to-neuron, a neuron-to-neuron, and a
neuron-to-actuator. The same for when we are disconnecting one element from
another, we can disconnect: a sensor-from-neuron, a neuron-from-neuron, and a
neuron-from-actuator.

When we establish a connection from element A to element B, we first use the
ids of the connecting elements to deduce which type of connection is going to be
made, and then dependent on that, establish the link between the two elements. If
element A is a neuron and element B is a neuron, we perform the following set of
steps to create a link from the presynaptic Neuron A to the postsynaptic Neuron B:

1. Read neuron A from the database.
2. Add neuron B’s id to neuron A’s output_ids list, if a connection is recursive,

add neuron B’s id to the ro_ids list as well.
3. Write the updated neuron A to database.
4. Read neuron B from the database.
5. Append to neuron B’s input_idps list a new tuple with neuron A’s id, and a

new randomly generated weight: {NeuronA_Id,[Weight]}.
6. Write the updated neuron B to database.

If element A is a sensor, and the element B is a neuron, then to create a link
from the presynaptic Sensor A to postsynaptic Neuron B, we perform the follow-
ing set of steps:

8.5 Developing the genotype_mutator 267

1. Read sensor A from the database.
2. Add neuron B’s id to sensor A’s fanout_ids list.
3. Write the updated sensor A to database.
4. Read neuron B from the database.
5. Append to neuron B’s input_idps list a new tuple with sensor A’s id, and a

weights list of length vl, where vl is the output vector length of sensor A.
6. Write the updated neuron B to database.

Finally, if element A is a neuron, and element B is an actuator, then to create
the link From Neuron A to Actuator B, we perform the following steps:

1. Read neuron A from database.
2. Add actuator B’s id to neuron A’s output_ids list.
3. Write the updated neuron A to database.
4. Read actuator B from database.
5. If the number of neurons connected to the actuator is less than the actuator’s vl,

then add neuron A’s id to actuator B’s fanin_ids list. Otherwise exit with error
to stop the mutation. This is done to prevent unnecessary connections, since if
the actuator can only use a vl number of signals as parameters for executing its
action function, there is no need to add any more connections to the actuator
than that. The calling function can choose an actuator that still has space for
connections, or even create a completely new actuator.

6. Write the updated actuator B to database.

The source code for the function that establishes the connection from element
A to element B, is shown in the following listing.

Listing 8.4: The implementation of the link_FromElementToElement(Agent_Id,
FromElement_Id, ToElement_Id) function.

link_FromElementToElement(Agent_Id,From_ElementId,To_ElementId)->
 case {From_ElementId,To_ElementId} of
 {{_FromSId,neuron},{_ToSId,neuron}} ->
 link_FromNeuronToNeuron(Agent_Id,From_ElementId,To_ElementId);
 {{_FromSId,sensor},{_ToSId,neuron}} ->
 link_FromSensorToNeuron(Agent_Id,From_ElementId,To_ElementId);
 {{_FromNId,neuron},{_ToAId,actuator}} ->
 link_FromNeuronToActuator(Agent_Id,From_ElementId,To_ElementId)
 end.
%The function link_FromElementToElement/3 first calculates what type of link is going to be
established (neuron to neuron, sensor to neuron, or neuron to actuator), and then calls the spe-
cific linking function based on that.

link_FromNeuronToNeuron(Agent_Id,From_NeuronId,To_NeuronId)->
 A = genotype:read({agent,Agent_Id}),
 Generation = A#agent.generation,

268 Chapter 8 Developing a Simple Neuroevolutionary Platform

%From Part
 FromN = genotype:read({neuron,From_NeuronId}),
 U_FromN = link_FromNeuron(FromN,To_NeuronId,Generation),
 genotype:write(U_FromN),
%To Part
 ToN = genotype:read({neuron,To_NeuronId}),%We read it afterwards, in the case that it’s
the same Element. Thus we do not overwrite the earlier changes.
 FromOVL = 1,
 U_ToN = link_ToNeuron(From_NeuronId,FromOVL,ToN,Generation),
 genotype:write(U_ToN).
%link_FromNeuronToNeuron/3 establishes a link from neuron with id = From_NeuronId, to a
neuron with an id = To_NeuronId. The function then calls link_FromNeuron/4, which estab-
lishes the link on the From_NeuronId’s side. The updated neuron associated with the
From_NeuronId is then written to database. To decide how long the weight list that is going to
be added to the To_NeuronId’s input_idps should be, the function calculates From_NeuronId’s
output vector length. Since the connection is from a neuron, FromOVL is set to 1.
link_ToNeuron/4 is then called, and the link is established on the To_NeuronId’s side. Finally,
the updated neuron associated with the To_NeuronId is written to database. The order of read-
ing the FromN and ToN neuron records from the database is important. It is essential that ToN
is read after the U_FromN is written to database, in the case that From_NeuronId and
To_NeuronId refer to the same neuron (a recurrent connection from the neuron to itself). If both
neurons are read at the same time, for example before the links are established, then the link es-
tablished in the U_FromN will be overwritten when the U_ToN is written to file. Thus, order is
important in this function.

 link_FromNeuron(FromN,ToId,Generation)->
 {{FromLI,_},_} = FromN#neuron.id,
 {{ToLI,_},_} = To_NeuronId,
 FromOutput_Ids = FromN#neuron.output_ids,
 FromRO_Ids = FromN#neuron.ro_ids,
 case lists:member(ToId, FromOutput_Ids) of
 true ->
 exit(“******** ERROR:add_NeuronO[cannot add O_Id to Neuron]: ~p
already a member of ~p~n”,[ToId,FromN#neuron.id]);
 false ->
 {U_FromOutput_Ids,U_FromRO_Ids} = case FromLI >= ToLI of
 true ->
 {[ToId|FromOutput_Ids],[ToId|FromRO_Ids]};
 false ->
 {[ToId|FromOutput_Ids],FromRO_Ids}
 end,
 FromN#neuron{
 output_ids = U_FromOutput_Ids,
 ro_ids = U_FromRO_Ids,
 generation = Generation

8.5 Developing the genotype_mutator 269

 }
 end.
%link_FromNeuron/4 updates the record of the neuron from which the link is being created.
FromN is the record of the neuron from which the link/connection emanates, and ToId is the id
of the element to which the link is headed towards. The function extracts the layer index of the
neuron FromN, and the layer index of the element with the id ToId. Then the two layer indexes
are compared, and the ToId is either added only to the FromN’s output_ids list, or if the con-
nection is recursive, when ToLayerIndex =< FromLayerIndex, it is added to output_ids and
ro_ids lists. The FromN’s generation is updated to the value Generation, which is the current,
most recent generation, since this neuron has just been modified. Finally, the updated neuron
record is returned to the caller. If ToId, which is the id of the element to which the connection is
being established, is already a member of the FromN’s output_ids list, then the function exits
with error.

 link_ToNeuron(FromId,FromOVL,ToN,Generation)->
 ToInput_IdPs = ToN#neuron.input_idps,
 case lists:keymember(FromId, 1, ToInput_IdPs) of
 true ->
 exit(“ERROR:add_NeuronI::[cannot add I_Id]: ~p already a member of
~p~n”,[FromId,ToN#neuron.id]);
 false ->
 U_ToInput_IdPs = [{FromId, geno-
type:create_NeuralWeights(FromOVL,[])}|ToInput_IdPs],
 ToN#neuron{
 input_idps = U_ToInput_IdPs,
 generation = Generation
 }
 end.
%link_ToNeuron/4 updates the record of ToN, so that it is prepared to receive a connection
from the element FromId. The link emanates from element with the id FromId, whose output
vector length is FromOVL, and the connection is made to the neuron ToN, the record which is
updated in this function. The ToN’s input_idps is updated with the tuple {FromId, [W_1...
W_FromOVL]}, then the neuron’s generation is updated to Generation (the current, most recent
generation), and the updated ToN’s record is returned to the caller. If FromId is already part of
the ToN’s input_idps list, which means that the link already exists between the neuron ToN,
and element FromId, then the function exits with an error.

link_FromSensorToNeuron(Agent_Id,From_SensorId,To_NeuronId)->
 A = genotype:read({agent,Agent_Id}),
 Generation = A#agent.generation,
%From Part
 FromS = genotype:read({sensor,From_SensorId}),
 U_FromS = link_FromSensor(FromS,To_NeuronId),
 genotype:write(U_FromS),
%To Part

270 Chapter 8 Developing a Simple Neuroevolutionary Platform

 ToN = genotype:read({neuron,To_NeuronId}),
 FromOVL = FromS#sensor.vl,
 U_ToN = link_ToNeuron(From_SensorId,FromOVL,ToN,Generation),
 genotype:write(U_ToN).
%The function link_FromSensorToNeuron/3 establishes a connection from the sensor with id
From_SensorId, to the neuron with id To_NeuronId. First the sensor record is updated with the
connection details using the function link_FromSensor, and the updated sensor record is written
to database. Then the record of the neuron to which the link is being established is updated us-
ing the function link_ToNeuron/4, after which the updated neuron is written to database.

 link_FromSensor(FromS,ToId)->
 FromFanout_Ids = FromS#sensor.fanout_ids,
 case lists:member(ToId, FromFanout_Ids) of
 true ->
 exit(“******** ERROR:link_FromSensor[cannot add ToId to Sensor]:
~p already a member of ~p~n”,[ToId,FromS#sensor.id]);
 false ->
 FromS#sensor{fanout_ids = [ToId|FromFanout_Ids]}
 end.
%The function link_FromSensor/2 updates the record of the sensor FromS, from whom the link
emanates towards the element with id ToId. First the function ensures that there is no connec-
tion that is already established between FromS and ToId, if a connection between these two el-
ements already exists, then the function exits with error. If there is no connection between the
two elements, then ToId is added to the sensor’s fanout_ids list, and the updated record of the
sensor is returned to the caller.

link_FromNeuronToActuator(Agent_Id,From_NeuronId,To_ActuatorId)->
 A = genotype:read({agent,Agent_Id}),
 Generation = A#agent.generation,
%From Part
 FromN = genotype:read({neuron,From_NeuronId}),
 U_FromN = link_FromNeuron(FromN,To_ActuatorId,Generation),
 genotype:write(U_FromN),
%To Part
 ToA = genotype:read({actuator,To_ActuatorId}),
 Fanin_Ids = ToA#actuator.fanin_ids,
 case length(Fanin_Ids) >= ToA#actuator.vl of
 true ->
 exit(“******** ERROR:link_FromNeuronToActuator:: Actuator already fully
connected”);
 false ->
 U_Fanin_Ids = [From_NeuronId|Fanin_Ids],
 genotype:write(ToA#actuator{fanin_ids = U_Fanin_Ids})
 end.

8.5 Developing the genotype_mutator 271

%The function Link_FromNeuronToActuator/4 establishes a link emanating from the neuron
with an id From_NeuronId, to an actuator with the id To_ActuatorId. First the
From_NeuronId’s record is updated using the function link_FromNeuron/3, after which the up-
dated neuron record is written to database. Then the function checks whether the actuator to
which the neuron is establishing the link, still has space for that link (length(Fanin_Ids) is less
than the actuator’s vector length, vl). If there is no more room, then the function exits with er-
ror, if there is room, then the actuator’s fanin_ids list is updated by appending to it the id of the
neuron’s id. Finally, then the updated actuator is written to database.

Though at this point our neuroevolutionary system will only perform mutations
that add to the NN system’s topology, the splice mutation operator does require a
function that disconnects one element from another. For this reason, we also create
the functions needed to cut the links between two elements. As before, there are
three types of links that exist and can be cut: 1. From Element A and To Element
B, where A & B are both neurons, 2. From Element A is a sensor, and To Element
B is a neuron, and finally 3. From Element A is a neuron and To Element B is an
Actuator. The following listing shows the implementation of the functions that cut
the link between some “From Element A” and “To Element B”.

Listing 8.5: The cutlink_FromElementToElement(Agent_Id,FromElement_Id,ToElement_Id)
function.

cutlink_FromElementToElement(Agent_Id,From_ElementId,To_ElementId)->
 case {From_ElementId,To_ElementId} of
 {{_FromId,neuron},{_ToId,neuron}} ->
 cutlink_FromNeuronToNeuron(Agent_Id,From_ElementId,To_ElementId);
 {{_FromId,sensor},{_ToId,neuron}} ->
 cutlink_FromSensorToNeuron(Agent_Id,From_ElementId,To_ElementId);
 {{_FromId,neuron},{_ToId,actuator}} ->
 cutlink_FromNeuronToActuator(Agent_Id,From_ElementId,To_ElementId)
 end.
%cutlink_FromElementToElement/3 first checks which of the three types of connections exists
between From_ElementId and To_ElementId (neuron to neuron, sensor to neuron, or neuron to
actuator), and then disconnects the two elements using one of the three specialized cutlink_...
functions.

cutlink_FromNeuronToNeuron(Agent_Id,From_NeuronId,To_NeuronId)->
 A = genotype:read({agent,Agent_Id}),
 Generation = A#agent.generation,
%From Part
 FromN = genotype:read({neuron,From_NeuronId}),
 U_FromN = cutlink_FromNeuron(FromN,To_NeuronId,Generation),
 genotype:write(U_FromN),
%To Part
 ToN = genotype:read({neuron,To_NeuronId}),

272 Chapter 8 Developing a Simple Neuroevolutionary Platform

 U_ToN = cutlink_ToNeuron(From_NeuronId,ToN,Generation),
 genotype:write(U_ToN).
%The cutlink_FromNeuronToNeuron/3 function disconnects the connection from the
From_NeuronId to the To_NeuronId. The function first disconnects the neuron associated with
From_NeuronId by calling the cutlink_FromNeuron/3, and then writes to database the updated
neuron record. The function then disconnects the neuron associated with the To_NeuronId from
the connection using the cutlink_ToNeuron/3, and writes to database the updated ToN record. If
the From_NeuronId and the To_NeuronId are ids of the same neuron, then it is important to
first write U_FromN to database, before reading the ToN neuron from the database, so as not to
lose the update made by the cutlink_FromNeuron/3, before reading the updated neuron from
the database and calling the cutlink_ToNeuron. Thus, this order of reading and writing the neu-
rons from the database is essential to cover the corner cases.

 cutlink_FromNeuron(FromN,ToId,Generation)->
 FromOutput_Ids = FromN#neuron.output_ids,
 FromRO_Ids = FromN#neuron.ro_ids,
 case lists:member(ToId, FromOutput_Ids) of
 true ->
 U_FromOutput_Ids = FromOutput_Ids--[ToId],
 U_FromRO_Ids = FromRO_Ids--[ToId],%Does nothing if not recursive.
 FromN#neuron{
 output_ids = U_FromOutput_Ids,
 ro_ids = U_FromRO_Ids,
 generation = Generation};
 false ->
 exit(“ERROR::cutlink_FromNeuron [cannot remove O_Id]: ~p not a
member of ~p~n”,[ToId,FromN#neuron.id])
 end.
%cutlink_FromNeuron/3 cuts the connection on the FromNeuron (FromN) side. The function
first checks if the ToId is a member of the output_ids list. If it’s not, then the function exits with
an error. If the ToId is a member of the output_ids list, then the function removes the ToId from
the FromOutput_Ids list and from the FromRO_Ids list. Even if the ToId is not a recursive con-
nection, we still try to remove it from ro_ids list, in which case the result returns the original
FromRO_Ids, and no change is made to it. Once the lists are updated, the updated neuron rec-
ord of FromN is returned to the caller.

 cutlink_ToNeuron(FromId,ToN,Generation)->
 ToInput_IdPs = ToN#neuron.input_idps,
 case lists:keymember(FromId, 1, ToInput_IdPs) of
 true ->
 U_ToInput_IdPs = lists:keydelete(FromId,1,ToInput_IdPs),
 ToN#neuron{
 input_idps = U_ToInput_IdPs,
 generation = Generation};
 false ->

8.5 Developing the genotype_mutator 273

 exit(“ERROR[cannot remove I_Id]: ~p not a member of
~p~n”,[FromId,ToN#neuron.id])
 end.
%cutlink_ToNeuron/3 cuts the connection on the ToNeuron (ToN) side. The function first
checks if the FromId is a member of the ToN’s input_idps list, if it’s not, then the function exits
with error. If FromId is a member, then that tuple is removed from the ToInput_IdPs list, and
the updated ToN record is returned to the caller.

cutlink_FromSensorToNeuron(Agent_Id,From_SensorId,To_NeuronId)->
 A = genotype:read({agent,Agent_Id}),
 Generation = A#agent.generation,
%From Part
 FromS = genotype:read({sensor,From_SensorId}),
 U_FromS = cutlink_FromSensor(FromS,To_NeuronId,Generation),
 genotype:write(U_FromS),
%To Part
 ToN = genotype:read({neuron,To_NeuronId}),
 U_ToN = cutlink_ToNeuron(From_SensorId,ToN,Generation),
 genotype:write(U_ToN).
%The cutlink_FromSensorToNeuron/3 cuts the connection from the From_SensorId to
To_NeuronId. The function first cuts the connection on the From_SensorId side using the
cutlink_FromSensor/3 function, and writes the updated sensor to database. The function then
cuts the connection on the To_NeuronId side using the cutlink_ToNeuron/3 function, and
writes the updated neuron record to database.

 cutlink_FromSensor(FromS,ToId,Generation)->
 FromFanout_Ids = FromS#sensor.fanout_ids,
 case lists:member(ToId, FromFanout_Ids) of
 true ->
 U_FromFanout_Ids = FromFanout_Ids--[ToId],
 FromS#sensor{
 fanout_ids = U_FromFanout_Ids,
 generation=Generation};
 false ->
 exit(“ERROR::cutlink_FromSensor [cannot remove ToId]: ~p not a
member of ~p~n”,[ToId,FromS#sensor.id])
 end.
%The cutlink_FromSensor/3 function first checks whether ToId is a member of the sensor’s
FromS fanout_ids list. If it is not, then the function exits with an error. If ToId is a member of
FromS’s fanout_ids list, then it is removed from the list, and the updated sensor record of
FromS is returned to the caller.

cutlink_FromNeuronToActuator(Agent_Id,From_NeuronId,To_ActuatorId)->
 A = genotype:read({agent,Agent_Id}),
 Generation = A#agent.generation,

274 Chapter 8 Developing a Simple Neuroevolutionary Platform

%From Part
 FromN = genotype:read({neuron,From_NeuronId}),
 U_FromN = cutlink_FromNeuron(FromN,To_ActuatorId,Generation),
 genotype:write(U_FromN),
%To Part
 ToA = genotype:read({actuator,To_ActuatorId}),
 U_ToA = cutlink_ToActuator(From_NeuronId,ToA,Generation),
 genotype:write(U_ToA).
%cutlink_FromNeuronToActuator/3 cuts the connection from the From_NeuronId to
To_ActuatorId. The function first cuts the connection on the From_NeuronId side using the
cutlink_FromNeuron/3 function, and writes the updated U_FromN to database. Then the con-
nection on the To_ActuatorId is cut using the cutlink_ToActuator/3 function, after which the
updated actuator record is written to database.

 cutlink_ToActuator(FromId,ToA,Generation)->
 ToFanin_Ids = ToA#actuator.fanin_ids,
 case lists:member(FromId, ToFanin_Ids) of
 true ->
 U_ToFanin_Ids = ToFanin_Ids--[FromId],
 ToA#actuator{
 fanin_ids = U_ToFanin_Ids,
 generation=Generation};
 false ->
 exit(“ERROR::cutlink_ToActuator [cannot remove FromId]: ~p not a
member of ~p~n”,[FromId,ToA])
 end.
%The cutlink_ToActuator/3 function cuts the connection on the ToActuator’s side. The func-
tion first checks if the FromId is a member of the actuator ToA’s fanin_ids list. If it is not, the
function exits with an error. If FromId is a member of the actuator’s fanin_ids list, then the id is
removed from the list, and the updated actuator record is returned to the caller.

8.5.2 mutate_weights

This is one of the simplest mutation operators. We first access the cx_id from
the agent’s record. After reading the cortex tuple from the database, we then
choose a random id from the neuron_ids list, and using this id, read the neuron
record from the database. Once we have the record, we access the neuron’s in-
put_idps list. Then calculate the total number of weights belonging to the neuron
by adding the weight list lengths of each idp. We will have the probability of a
weight in the input_idps list being mutated, set to 1/sqrt(tot_weights). Once the
mutation probability has been calculated, we go through every weight in the in-
put_idps list, and mutate it with the probability of the calculated mutation proba-
bility. Thus on average, a total of (1/sqrt(tot_weights))*tot_weights number of

8.5 Developing the genotype_mutator 275

weights in the list will be perturbed/mutated, sometimes less, and sometimes
more. We will also set the weight perturbation intensity to be between -Pi and Pi.
Once the weights have been perturbed, we write the updated neuron record back to
mnesia with its updated (perturbed) input_idps. The code for this mutation opera-
tor is shown in the following listing.

Listing – 8.6: The implementation of the mutate_weights mutation operator.

mutate_weights(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,

 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 N = genotype:read({neuron,N_Id}),
 Input_IdPs = N#neuron.input_idps,
 U_Input_IdPs = perturb_IdPs(Input_IdPs),
 U_N = N#neuron{input_idps = U_Input_IdPs},
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{mutate_weights,N_Id}|EvoHist],
 U_A = A#agent{evo_hist = U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A).
%The mutate_weights/1 function accepts the Agent_Id parameter, extracts the NN’s cortex, and
then chooses a random neuron belonging to the NN with a uniform distribution probability.
Then the neuron’s input_idps list is extracted, and the function perturb_IdPs/1 is used to per-
turb/mutate the weights. Once the Input_IdPs have been perturbed, the agent’s evolutionary his-
tory: EvoHist, is updated to include the successfully applied mutate_weights mutation operator.
Then the updated Agent and the updated neuron are written back to database.

 perturb_IdPs(Input_IdPs)->
 Tot_Weights=lists:sum([length(Weights) || {_Input_Id,Weights}<-Input_IdPs]),
 MP = 1/math:sqrt(Tot_Weights),
 perturb_IdPs(MP,Input_IdPs,[]).
 perturb_IdPs(MP,[{Input_Id,Weights}|Input_IdPs],Acc)->
 U_Weights = perturb_weights(MP,Weights,[]),
 perturb_IdPs(MP,Input_IdPs,[{Input_Id,U_Weights}|Acc]);
 perturb_IdPs(_MP,[],Acc)->
 lists:reverse(Acc).
%perturb_IdPs/1 accepts the Input_IdPs list of format: [{Id,Weights}...], calculates the total
number of weights in the Input_IdPs, and then calculates the mutation probability MP, using
the equation: 1/sqrt(Tot_Weights). Once the mutation probability is calculated, each weight in
the Input_IdPs list has a chance of MP to be perturbed/mutated. Once all the weights in the In-
put_IdPs list had a chance of being perturbed, the updated Input_IdPs is returned to the caller.

276 Chapter 8 Developing a Simple Neuroevolutionary Platform

 perturb_weights(MP,[W|Weights],Acc)->
 U_W = case random:uniform() < MP of
 true->
 sat((random:uniform()-0.5)*?DELTA_MULTIPLIER+W,-
?SAT_LIMIT,?SAT_LIMIT);
 false ->
 W
 end,
 perturb_weights(MP,Weights,[U_W|Acc]);
 perturb_weights(_MP,[],Acc)->
 lists:reverse(Acc).
%perturb_weights/3 is called with the mutation probability MP, a weights list, and an empty list
[] to be used as an accumulator. The function goes through every weight, where every weight
has a chance of MP to be mutated/perturbed. The perturbations have a random intensity be-
tween -Pi and Pi. Once all the weights in the weights list had a chance of being perturbed, the
updated weights list is reversed back to its original order, and returned back to the caller.

 sat(Val,Min,Max)->
 if
 Val < Min -> Min;
 Val > Max -> Max;
 true -> Val
 end.
%The sat/3 function calculates whether Val is between Min and Max. If it is, then Val is re-
turned as is. If Val is less than Min, then Min is returned. If Val is greater than Max, then Max
is returned.

8.5.3 add_bias & remove_bias

These mutation operators are applied to a randomly chosen neuron in a NN.

If the input_idps list does not yet use a bias, we append the bias tuple to the list’s
end. The remove_bias mutation operator is very similar to the add_bias, but uses
the lists:keydelete/3 to remove the bias if one is present in the input_idps list of a

First we select a random neuron id from neuron_ids list, then read the neuron
bias value. If

input_idps has a bias, we exit the mutation with an error, and try another mutation.
record, and then search the input_idps to see if it already has a

randomly chosen neuron. The following listing shows the implementation for
these two mutation operators.

8.5 Developing the genotype_mutator 277

Listing – 8.7: The implementation of the add_bias & remove_bias mutation operators.

add_bias(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 Generation = A#agent.generation,

 N = genotype:read({neuron,N_Id}),
 Input_IdPs = N#neuron.input_idps,
 case lists:keymember(bias, 1, Input_IdPs) of
 true ->
 exit(“********ERROR:add_bias:: This Neuron already has a bias part.”);
 false ->
 U_Input_IdPs = lists:append(Input_IdPs,[{bias,[random:uniform()-0.5]}]),
 U_N = N#neuron{
 input_idps = U_Input_IdPs,
 generation = Generation},
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{add_bias,N_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A)
 end.
%The add_bias/1 function is called with the Agent_Id parameter. The function first extracts the
neuron_ids list from the cortex element and chooses a random neuron from the id list. The neu-
ron is then read from the database and its input_idps list is checked for the bias element. If the
neuron’s input_idps list already has a bias tuple, then the function is exited. If the input_idps
list does not have the bias tuple, then the bias is added and the agent’s evolutionary history
EvoHist is updated. Finally, the updated neuron and agent are written back to mnesia.

remove_bias(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 Generation = A#agent.generation,

 N = genotype:read({neuron,N_Id}),
 Input_IdPs = N#neuron.input_idps,
 case lists:keymember(bias, 1, Input_IdPs) of
 false ->

278 Chapter 8 Developing a Simple Neuroevolutionary Platform

 exit(“********ERROR:remove_bias:: This Neuron does not have a bias
part.”);
 true ->
 U_Input_IdPs = lists:keydelete(bias,1,Input_IdPs),
 U_N = N#neuron{
 input_idps = U_Input_IdPs,
 generation = Generation},
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{remove_bias,N_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A)
 end.
%The remove_bias/1 function is called with the Agent_Id parameter. The function first extracts
the neuron_ids list from the cortex element and chooses a random neuron id from it. The neuron
is then read from the database and its input_idps list checked for a bias element. If the neuron’s
input_idps list has a bias tuple, it is removed and the agent’s evolutionary history list is updated
with the tuple {remove_bias,N_Id}, and the updated neuron and agent records are then written
to database. If the input_idps list does not have the bias tuple, the function exits with an error
stating so.

8.5.4 mutate_af

To execute this mutation operator, we first choose a random neuron A in the
NN. This neuron keeps the tag/name of the activation function it uses in an atom
form, stored in its record’s af element. We retrieve this activation function tag, and
then randomly choose a new activation function tag from the list of available acti-
vation functions, which are specified within the specie’s constraint tuple. To en-
sure that the mutate_af chooses a new activation function, the currently used acti-
vation function tag is first subtracted from the available activations list, and the
new af tag is then chosen from the remaining tags. If the remaining activation
function list is empty, then the neuron is assigned the standard tanh activation
function. The implementation of the mutate_af function is shown in the following
listing.

Listing 8.8: The implementation of the mutate_af mutation operator.

mutate_af(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),

8.5 Developing the genotype_mutator 279

 N_Ids = Cx#cortex.neuron_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 Generation = A#agent.generation,

 N = genotype:read({neuron,N_Id}),
 AF = N#neuron.af,
 Activation_Functions = (A#agent.constraint)#constraint.neural_afs -- [AF],
 NewAF = genotype:generate_NeuronAF(Activation_Functions),
 U_N = N#neuron{af=NewAF,generation=Generation},
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{mutate_af,Agent_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A).
%The mutate_af/1 function chooses a random neuron, and then changes its currently used acti-
vation function into another one available from the neural_afs list of the agent’s constraint rec-
ord.

8.5.5 add_outlink

To apply the add_outlink mutation operator to a NN, we first choose a random
neuron A. This neuron keeps track of whom it sends its signals to using its out-
put_ids list. We then extract the NN’s neuron_ids and actuator_ids list from the
cortex record, and then subtract the neuron’s output_ids list from the neu-
ron_ids++actuator_ids, which gives us a list of element (neuron and actuator) ids
that this neuron is not yet connected to. If this list is empty, we exit the mutation
and try another one. If the list is not empty, we randomly select the id from this
list, and connect the neuron to this randomly selected element B. There are two
types of elements we could have randomly chosen, a neuron element, and an actu-
ator element. Let’s look at each possible outlink (an outgoing link) connection in
turn.

If this randomly chosen element B is a neuron, we perform the following steps
to form a connection from neuron A to neuron B:

1. Modify neuron A: We first add B’s id to the A’s output_ids list, then we check
if B’s layer is equal to or less than A’s layer, if so we add B’s id to A’s ro_ids
list as well. We then set A’s generation to that of the agent, the current genera-
tion, and write the updated neuron record to database.

2. Modify neuron B: We first add a new input_idp of the form: {NeuronA_Id,
Weights}, to the B’s input_idps list, where Weights is a list composed of a sin-
gle weight generated randomly between -Pi/2 and Pi/2. We then update B’s
generation, and write the updated neuron record to database.

280 Chapter 8 Developing a Simple Neuroevolutionary Platform

On the other hand, if this randomly chosen element B is an actuator, we per-
form the following steps to form a connection from neuron A to actuator B:

1. We first check if actuator B’s length(fanin_ids) is lower than its vl. If it is, then
this actuator can accept another connection. If it’s not, then we exit the muta-
tion operator and try another one. Let us assume that the actuator can still ac-
cept new connections.

2. Modify neuron A: We add B’s id to A’s output_ids list. B is an actuator, so we
do not need to check its layer, we know that it’s the last one, with index 1. We
then update A’s generation to that of the agent’s, and write the updated neuron
record to the database.

3. Modify actuator B: We add A’s id to B’s fanin_ids list. We then write the up-
dated actuator to the database.

Having updated the elements of both, record A and B, the connection between
them is formed. Having now performed a successful mutation operator, the
agent’s evo_hist list is updated. For this type of mutation, we form the tuple of the
form: {MutationOperator,FromId,ToId}, which in this case is: {add_outlink,
ElementA_Id,ElementB_Id}, and then append it the to evo_hist list. Then the up-
dated agent record is stored to database. Finally, the add_outlink function returns
control back to the caller. A few variations of how this mutation operator can
modify a NN’s topology is shown in Fig-8.5.

Fig. 8.5 Applying add_outlink mutation operator to a NN system.

8.5 Developing the genotype_mutator 281

The source code for the add_outlink, is reliant on the link_FromElementTo
Element/3 function, covered earlier. The implementation of the add_outlink func-
tion, is shown in the following listing.

Listing-8.9: The implementation of the add_outlink mutation operator.

add_outlink(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 A_Ids = Cx#cortex.actuator_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 N = genotype:read({neuron,N_Id}),
 Output_Ids = N#neuron.output_ids,
 case lists:append(A_Ids,N_Ids) -- Output_Ids of
 [] ->
 exit(“********ERROR:add_outlink:: Neuron already connected to all ids”);
 Available_Ids ->
 To_Id = lists:nth(random:uniform(length(Available_Ids)),Available_Ids),
 link_FromElementToElement(Agent_Id,N_Id,To_Id),
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{add_outlink,N_Id,To_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_A)
 end.
%The add_outlink/1 function reads the cortex record from the database based on the cortex id
extracted from the agent record. The function then selects a random neuron from the neuron_ids
stored in the cortex record. The function then subtracts the neuron’s output_ids from the com-
bined list of the actuator and neuron ids belonging to the neural network to get a list of ids be-
longing to the elements to which this neuron is not yet connected. If this list is empty, the func-
tion exits with error. If the list is not empty, it is given the name Available_Ids, from which a
random id is chosen, and the neuron is then connected to it. Finally, the agent’s evo_hist list
is updated, and the updated agent record is written to the database.

8.5.6 add_inlink

Similarly to the mutation operator: add_outlink, when performing the mutation
add_inlink, we first choose a random neuron A from the agent’s neuron_ids list.
After reading the neuron record, we extract the ids from neuron A’s input_idps
list. Once the input ids are extracted, we subtract that list from the agent’s neu-
ron_ids++sensor_ids, to acquire a list of elements that neuron A has not yet been
connected from. If this list is empty, we exit the mutation and try another one. If

282 Chapter 8 Developing a Simple Neuroevolutionary Platform

the list is not empty, we randomly select the id of B from this list, and connect
from it, to neuron A. There are two types of elements we could have randomly
chosen, a neuron element, and a sensor element. Let’s look at each possible inlink
connection in turn.

If this randomly chosen element B is a neuron, we perform the same set of
steps as we did in the add_outlink section, but with the two neuron ids reversed.
Thus, we perform the following steps to form a connection from neuron B to neu-
ron A:

1. Modify neuron B: We first add A’s id to the B’s output_ids list, then we check
if A’s layer is equal to or less than B’s layer, if so we add A’s id to B’s ro_ids
list as well. We then reset B’s generation to 0, and write the updated neuron
record to database.

2. Modify neuron A: We first add a new input_idp of the form: {NeuronB_Id,
Weights}, to the A’s input_idps list, where Weights is a list composed of a sin-
gle weight generated randomly between -Pi/2 and Pi/2. We then reset A’s gen-
eration to that of the agent, and write the updated neuron record to database.

If this randomly chosen element B is a sensor, we perform the following steps
to form a connection from sensor B to neuron A:

1. We first check if A’s id is already in sensor B’s fanout_ids list. If it is, then we
exit the mutation operator and try another one. Let us assume that sensor B is
not yet connected to neuron A.

2. Modify sensor B: We add A’s id to B’s fanout_ids list. We then write the up-
dated sensor to the database.

3. Modify neuron A: We first add a new input_idp of the form:
{SensorB_Id,Weights} to the A’s input_idps list, where the length of the
Weights list is dependent on the sensor B’s vl (output vector length). The
weights list is composed of values generated randomly to be between -Pi/2 and
Pi/2 each. We then reset A’s generation to that of the agent, and write the
updated neuron record to database.

As in the add_outlink function, having now updated the elements of both, rec-
ord A and B, the connection between them is formed. And having now performed
a successful mutation operator, the agent’s evo_hist list is updated. For this type of
mutation, we form the tuple of the form: {MutationOperator, FromId,
ToId}, which in this case is: {add_inlink, ElementB_Id, ElementA_Id}, and then
append it to the evo_hist list. Finally, the updated agent record is stored to data-
base and the add_inlink function returns control back to the caller. A few varia-
tions of how this mutator can modify a NN’s topology is shown in Fig-8.6.

8.5 Developing the genotype_mutator 283

Fig. 8.6 Applying add_inlink mutation operator to a NN system.

Listing-8.10: The implementation of the add_inlink mutation operator.

add_inlink(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 S_Ids = Cx#cortex.sensor_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 N = genotype:read({neuron,N_Id}),
 {I_Ids,_WeightLists} = lists:unzip(N#neuron.input_idps),
 case lists:append(S_Ids,N_Ids) -- I_Ids of
 [] ->
 exit(“********ERROR:add_INLink:: Neuron already connected from all
ids”);
 Available_Ids ->
 From_Id = lists:nth(random:uniform(length(Available_Ids)),Available_Ids),
 link_FromElementToElement(Agent_Id,From_Id,N_Id),
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{add_inlink,From_Id,N_Id}|EvoHist],
 genotype:write(A#agent{evo_hist=U_EvoHist})
 end.

284 Chapter 8 Developing a Simple Neuroevolutionary Platform

%The add_inlink/1 function extracts the list of neuron ids within the NN, and chooses a random
id from the list. We extract the ids from the input_Idps list, forming the “I_Ids” list. We then
subtract the I_Ids from the combined neuron and sensor ids belonging to the NN (neuron_ids
and sensor_ids lists extracted from the cortex’s record). The result is a list of presynaptic ele-
ment ids from which the neuron is not yet connected. If this list is empty, the function exits
with an error. Otherwise, the function chooses a random id from this list and establishes a con-
nection between the neuron and this randomly selected presynaptic element. Finally, the agent’s
evo_hist list is updated, and the updated agent is written to database.

8.5.7 add_sensorlink

To apply the add_sensorlink mutation operator to the NN, first a random sensor
id: S_Id, is chosen from the cortex’s sensor_ids list. Then the sensor associated
with S_Id is read from the database, and the sensor’s fanout_ids is subtracted from
the cortex’s neuron_ids. The resulting list is that of neurons which are not yet
connected from S_Id. A random neuron id: N_Id, is chosen from that list, and then
a connection from S_Id to N_Id is established. The source code for this mutation
operator is shown in the following listing.

Listing-8.11: The implementation of the add_sensorlink mutation operator.

add_sensorlink(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 S_Ids = Cx#cortex.sensor_ids,
 S_Id = lists:nth(random:uniform(length(S_Ids)),S_Ids),
 S = genotype:read({sensor,S_Id}),
 case N_Ids -- S#sensor.fanout_ids of
 [] ->
 exit(“********ERROR:add_sensorlink:: Sensor already connected to all
N_Ids”);
 Available_Ids ->
 N_Id = lists:nth(random:uniform(length(Available_Ids)),Available_Ids),
 link_FromElementToElement(Agent_Id,S_Id,N_Id),
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{add_sensorlink,S_Id,N_Id}|EvoHist],
 genotype:write(A#agent{evo_hist=U_EvoHist})
 end.

8.5 Developing the genotype_mutator 285

%The function add_sensorlink/1 randomly selects a sensor id: S_Id, from the cortex’s sen-
sor_ids list, and then establishes from that sensor a connection to a neuron still unlinked to this
sensor, randomly selected from the cortex’s neuron_ids list. To perform this, the function first
selects a random sensor id S_Id from the cortex’s sensor_ids list. Then a list of N_Ids to which
S_Id is not yet connected is calculated by subtracting from the N_Ids the S_Id’s fanout_ids list.
If the resulting list is empty, then the function exits with an error since there are no other neu-
rons to which the sensor can establish a new connection. If the list is not empty, then a random
neuron id, N_Id, is selected from this list, and a connection is established from S_Id to N_Id.
Finally, the agent’s evo_hist is then updated and written to database.

A possible topological mutation scenario when applying the add_sensorlink
mutation operator to a neural network, is shown in the following figure.

Fig. 8.7 Applying the add_sensorlink mutation operator to a neural network.

8.5.8 add_actuatorlink

To apply the add_actuatorlink mutation operator to a NN, first a random actua-
tor id A_Id is chosen from the cortex’s actuator_ids list. Then the actuator associ-
ated with the A_Id is read from database. Then we check whether the length of
A_Id’s fanin_ids list is less than that of its vl. If it is, it would imply that it has not
yet been fully connected, and that some of the parameters for controlling its action
function are still using some default values within the actuator functions, and that
the actuator should be connected from more neurons. If on the other hand the

286 Chapter 8 Developing a Simple Neuroevolutionary Platform

length of the fanin_ids is equal to vl, then the actuator does not need to be con-
nected from any more neurons, and the mutation operator function exits with er-
ror. If the actuator can still be connected from new neurons, then its fanin_ids list
is subtracted from the cortex’s neuron_ids. The resulting list is that of the neurons
which are not yet connected to A_Id. A random neuron id, N_Id, is selected from
the list, and a connection is then established from N_Id to A_Id. The source code
for this mutation operator is shown in the following listing.

Listing-8.12: The implementation of the add_actuatorlink mutation operator.

add_actuatorlink(Agent_Id)->
 Agent = genotype:read({agent,Agent_Id}),
 Cx_Id = Agent#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 A_Ids = Cx#cortex.actuator_ids,
 A_Id = lists:nth(random:uniform(length(A_Ids)),A_Ids),
 A = genotype:read({actuator,A_Id}),
 case N_Ids -- A#actuator.fanin_ids of
 [] ->
 exit(“********ERROR:add_actuatorlink:: Neuron already connected from all
ids”);
 Available_Ids ->
 N_Id = lists:nth(random:uniform(length(Available_Ids)),Available_Ids),
 link_FromElementToElement(Agent_Id,N_Id,A_Id),
 EvoHist = Agent#agent.evo_hist,
 U_EvoHist = [{add_actuatorlink,N_Id,A_Id}|EvoHist],
 genotype:write(Agent#agent{evo_hist=U_EvoHist})
 end.
%The add_actuatorlink/1 selects a random actuator id A_Id from the cortex’s actuator_ids list,
and then connects to A_Id a randomly selected neuron from which A_Id is not yet connected.
To accomplish this, the function first selects a random actuator id A_Id from the cortex’s actua-
tor_ids list. Then the function creates a list of neuron ids from which it is not yet connected,
done by subtracting the actuator’s fanin_ids list from the cortex’s neuron_ids list. If the result-
ing id pool is empty, then the function exits with error. If the resulting id pool is not empty, a
neuron id N_Id is randomly chosen from this id list, and the actuator is connected to this ran-
domly chosen neuron. Finally, the agent’s evo_hist is updated, and the updated agent is written
to database.

A possible topological mutation scenario when applying the add_actuatorlink
mutation operator to a neural network based system is shown in the following fig-
ure.

8.5 Developing the genotype_mutator 287

Fig. 8.8 Applying the add_actuatorlink mutation operator to a neural network.

8.5.9 add_neuron

To apply the add_neuron mutation operator to a NN, we first read selected
agent’s pattern list, which specifies the general topological pattern of its NN. The
topological pattern list has the following structure: [...{LayerIndex(n),
LayerNeuron_Ids(n)}...], where the LayerIndex variable specifies the index, and
the LayerNeuron_Ids is a list of the ids that belong to this layer. Next, we random-
ly (with uniform distribution) select a tuple from this list. This tuple specifies to
which layer we will add the new neuron.

Having now decided on the neural layer, we then create a new neuron Id, with
the layer index specified by the LayerIndex value. Next we construct a new neu-
ron K using the construct_Neuron/6 function from the genotype module, with the
following parameters: construct_Neuron(Cx_Id, Generation=CurrentGen, SpecCon,
N_Id, Input_Specs=[], Output_Ids=[]). The N_Id is the one just created. Cx_Id is
retrieved from the agent record, and the specie constraint (SpecCon) is acquired
by first getting the Specie_Id from the agent record, reading the specie record, and
then retrieving its constraint parameter.

288 Chapter 8 Developing a Simple Neuroevolutionary Platform

This new neuron is created completely disconnected, with an empty input_idps,
and output_ids lists. For the presynaptic element from which the new neuron K
will be connected, we combine the neuron_ids and sensor_ids lists to form the
FromId_Pool list, and then randomly choose an element A from it. We then ran-
domly choose an id from the ToId_Pool, composed from the union of neuron_ids
and actuator_ids, designating that element B, the one to which the new neuron K
will connect. Finally, we use the functions add_outlink and add_inlink to connect
A to K, and to connect K to B, respectively.

Having formed the connections, we then add N_Id to the agent’s neuron_ids
list, and update its evo_hist list by appending to it the tuple: {add_neuron,
ElementA_Id, N_Id, ElementB_Id}. We then write the updated agent, element A,
element B, and the newly created neuron’s (K) record, to the database. A few var-
iations of how this mutator can modify a NN’s topology is shown in Fig-8.9.

Fig. 8.9 Applying add_neuron mutation operator to a NN system.

Listing-8.13: The implementation of the add_neuron mutation operator.

add_neuron(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Generation = A#agent.generation,
 Pattern = A#agent.pattern,
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 S_Ids = Cx#cortex.sensor_ids,

8.5 Developing the genotype_mutator 289

 A_Ids = Cx#cortex.actuator_ids,
 {TargetLayer,TargetNeuron_Ids} = lists:nth(random:uniform(length(Pattern)),Pattern),
 NewN_Id = {{TargetLayer,genotype:generate_UniqueId()},neuron},
 U_N_Ids = [NewN_Id|N_Ids],
 U_Pattern = lists:keyreplace(TargetLayer, 1, Pattern, {TargetLayer, [NewN_Id|
TargetNeuron_Ids]}),
 SpecCon = A#agent.constraint,
 genotype:construct_Neuron(Cx_Id,Generation,SpecCon,NewN_Id,[],[]),
 FromId_Pool = N_Ids++S_Ids,
 ToId_Pool = N_Ids ++ A_Ids,
 From_ElementId = lists:nth(random:uniform(length(FromId_Pool)), FromId_Pool),
 To_ElementId = lists:nth(random:uniform(length(ToId_Pool)),ToId_Pool),
 link_FromElementToElement(Agent_Id,From_ElementId,NewN_Id),
 link_FromElementToElement(Agent_Id,NewN_Id,To_ElementId),
 U_EvoHist = [{add_neuron,From_ElementId,NewN_Id,To_ElementId}|A#agent.evo_hist],
 genotype:write(Cx#cortex{neuron_ids = U_N_Ids}),
 genotype:write(A#agent{pattern=U_Pattern,evo_hist=U_EvoHist}).
%The function add_neuron/1 creates a new neuron, and connects it to a randomly selected ele-
ment in the NN, and from a randomly selected element in the NN. The function first reads the
agent’s pattern list, selects a random layer from the pattern, and then creates a new neuron id
for that layer. Then a new unconnected neuron is created with that neuron id. The function then
extracts the neuron_ids and the sensor_ids lists from the cortex. A random id, From_ElementId,
is then chosen from the union of the sensor_ids and neuron_ids lists. Then a random id,
To_ElementId, is chosen from the union of neuron_ids and actuator_ids (can be the same id as
the From_ElementId). The function then establishes a connection from the neuron to
To_ElemenId, and a connection to the neuron from From_ElementId. Finally, the cortex’s neu-
ron_ids list is updated with the id of the newly created neuron, the agent’s evo_hist is updated,
and finally, the updated cortex and agent records are written to database.

8.5.10 outsplice

The splice mutation operator increases the depth of the NN system through the
side effect of adding a new neural layer when adding a new neuron to the NN.
This mutation operator chooses a random neuron A in the NN, then chooses a ran-
dom id in its output_ids list, which we designate as the id of element B. Finally,
the mutation operator creates a new neuron K, disconnects A from B, and then re-
connects them through K. If element B is in the layer directly after A’s layer, then
a new layer must be created, into which the new neuron K is inserted. It is through
this that the depth of the NN is increased. However, to create neuron K, we first
have to create K’s id, and to do so we perform the following steps:

290 Chapter 8 Developing a Simple Neuroevolutionary Platform

1. Retrieve the agent’s pattern list (the NN’s topology).
2. From pattern, extract the LayerIndex that is between A and B. If there is no

layer separating A and B (for example, B’s layer comes right after A’s), then
create a new layer whose layer index is LayerIndex_K = (LayerIdex_A +
LayerIndex_B)/2. If A is in the last neural layer, then the next layer is the one
that belongs to the actuators, LayerIndex 1, and so a new layer can still be in-
serted: LayerIndex_K = (LayerIdex_A + 1)/2.

3. K’s id is then: {{LayerIndex_K,Unique_Id},neuron}.

Once K’s id is created and neuron K is constructed, we insert tuple
{LayerIndex_K, [NeuronK_Id]} into the agent’s Pattern list, unless the pattern al-
ready has LayerIndex_K, in which case we add the NeuronK_Id to the list of ids
belonging to the existing LayerIndex_K. We then update the agent’s evo_hist list
by appending to it the tuple: {splice, ElementA_Id, NeuronK_Id, ElementB_Id},
and then finally write the updated agent to file. Having updated the agent record,
we update the A, B, and K elements.

The first step is to cut the connection from A to B using the cutlink_From
ElementToElement/3 function, and then depending on whether B is another neu-
ron or actuator, the following one of the two possible approaches is taken:

If element B is a neuron:

1. Delete B’s id from A’s output_ids list.
2. Use the function link_FromElementToElement/3 to create a connection from A

to K.
3. Delete A’s input_idp tuple from B’s input_idps list.
4. Use the function link_FromElementToElement/3 to create a connection from K

to B.
5. Reset A’s, B’s, and K’s generation values to that of the most current generation

(the one of agent’s).
6. Write to database the updated neurons A, B, and K.

If element B is an actuator:

1. Delete B’s id from A’s output_ids list.
2. Use the function link_FromElementToElement/3 to create a connection from A

to K.
3. Delete A’s id from B’s fanin_ids list.
4. Use the function link_FromElementToElement/3 to create a connection from K

to B.
5. Reset the generation parameter for neuron A, and K.
6. Write to database the updated elements A, B, and K.

We made a good choice in isolating the linking and link cutting functionality
within their own respective functions. We have used these two functions,
link_FromElementToElement/3 and cutlink_FromElementToElement/3, in almost

8.5 Developing the genotype_mutator 291

every mutation operator we’ve implemented thus far. Fig-8.10 demonstrates a few
variations of how the splice mutator can modify a NN’s topology.

Fig. 8.10 Applying the outsplice mutation operator to a NN system.

Listing-8.14: The implmenetnation of the outsplice mutation operator.

outsplice(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Generation = A#agent.generation,
 Pattern = A#agent.pattern,
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 N = genotype:read({neuron,N_Id}),
 {{LayerIndex,_UId},neuron} = N_Id,
%Compose a feedforward Id pool, to create the splice from.
 O_IdPool = case [{{TargetLayerIndex,TargetUId},TargetType} ||
{{TargetLayerIndex,TargetUId},TargetType} <- N#neuron.output_ids, TargetLayerIndex >
LayerIndex] of
 [] ->
 exit(“********ERROR:outsplice::
 Ids ->
 Ids
 end,
%Choose a random neuron in the output_ids for splicing.

O_IdPool== []”);

292 Chapter 8 Developing a Simple Neuroevolutionary Platform

 O_Id = lists:nth(random:uniform(length(O_IdPool)),O_IdPool),
 {{OutputLayerIndex,_Output_UId},_OutputType} = O_Id,
%Create a new Layer, or select an existing one between N_Id and the O_Id, and create the new
unlinked neuron.
 NewLI = get_NewLI(LayerIndex,OutputLayerIndex,next,Pattern),
 NewN_Id={{NewLI,genotype:generate_UniqueId()},neuron},
 SpecCon = A#agent.constraint,
 genotype:construct_Neuron(Cx_Id,Generation,SpecCon,NewN_Id,[],[]),
%Update pattern.
 U_Pattern=case lists:keymember(NewLI,1,Pattern) of
 true->
 {NewLI,InLayerIds}=lists:keyfind(NewLI, 1, Pattern),
 lists:keyreplace(NewLI, 1, Pattern, {NewLI,[NewN_Id|InLayerIds]});
 false ->
 lists:sort([{NewLI,[NewN_Id]}|Pattern])
 end,
%Disconnect N_Id from the O_Id, and then reconnect them through NewN_Id
 cutlink_FromElementToElement(Agent_Id,N_Id,O_Id),
 link_FromElementToElement(Agent_Id,N_Id,NewN_Id),
 link_FromElementToElement(Agent_Id,NewN_Id,O_Id),
%Updated agent
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{outsplice,N_Id,NewN_Id,O_Id}|EvoHist],
 U_Cx = Cx#cortex{neuron_ids = [NewN_Id|Cx#cortex.neuron_ids]},
 genotype:write(U_Cx),
 genotype:write(A#agent{pattern=U_Pattern,evo_hist=U_EvoHist}).
%The function outsplice/1 chooses a random neuron id from the cortex’s neuron_ids list, dis-
connects it from a randomly chosen id in its output_ids list, and then reconnects it to the same
element through a newly created neuron. The function first chooses a random neuron N with
the neuron id N_Id from the cortex’s neuron_ids list. Then the neuron N’s output_ids list is ex-
tracted, and a new id list O_IdPool is created from the ids in the output_ids list which are locat-
ed in the layers after the N_Id’s layer (the ids of elements to whom the N_Id forms a feed for-
ward connection). From this subset of the output_ids list, a random O_Id is chosen (if the
sublist is empty, then the function exits with an error). First, N_Id is disconnected from the
O_Id. The function then creates or extracts a new layer index, NewLI, located between N_Id
and O_Id. If there exists a layer between N_Id and O_Id, NewLI is simply that layer. If on the
other hand O_Id’s layer comes immediately after N_Id’s, then a new layer is created between
O_Id and N_Id, whose layer index is in the middle of the two elements. A new unconnected
neuron is then created in that layer, with a neuron id NewN_Id. The neuron NewN_Id is then
connected to the O_Id, and from the N_Id, thus establishing a path from N_Id to O_Id through
the NewN_Id. The cortex’s neuron_ids is updated with the NewN_Id, and the agent’s evo_hist
list is updated with the new mutation operator tuple {outsplice,N_Id,Newn_Id,O_Id}. Finally,
the updated cortex and agent are written to database.

get_NewLI(LI,LI,_Direction,_Pattern)->

8.5 Developing the genotype_mutator 293

 exit(“******** ERROR: get_NewLI FromLI == ToLI”);
get_NewLI(FromLI,ToLI,Direction,Pattern)->
 NewLI = case Direction of
 next ->
 get_NextLI(Pattern,FromLI,ToLI);
 prev ->
 get_PrevLI(lists:reverse(Pattern),FromLI,ToLI)
 end,
 NewLI.
%get_NewLI/4 calculates or creates a new layer index located between FromLI and ToLI. This
function calls get_NextLI/3 or get_PrevLI/3, depending on whether the direction of the connec-
tion is from sensors towards actuators (Direction = next), or from actuators towards sensors
(Direction = prev), which is the case when executing an insplice/1 function, which calculates or
creates a new layer between the N_Id and one of the ids in its input_idps list. If the FromLI ==
ToLI, the function exits with an error.

 get_NextLI([{FromLI,_LastLayerNIds}],FromLI,ToLI)->
 (FromLI+ToLI)/2;
 get_NextLI([{LI,_LayerNIds}|Pattern],FromLI,ToLI)->
 case LI == FromLI of
 true ->
 [{NextLI,_NextLayerNIds}|_] = Pattern,
 case NextLI == ToLI of
 true ->
 (FromLI + ToLI)/2;
 false ->
 NextLI
 end;
 false ->
 get_NextLI(Pattern,FromLI,ToLI)
 end.
%get_NextLI checks whether the ToLI comes directly after FromLI, or whether there is another
layer between them. If there is another layer between them, then that layer is returned, and the
splice neuron is put into it. If there is no layer between FromLI and ToLI, then a new layer is
created in the middle. Such a new layer index has the value of (FromLI+ToLI)/2.

 get_PrevLI([{FromLI,_FirstLayerNIds}],FromLI,ToLI)->
 (FromLI+ToLI)/2;
 get_PrevLI([{LI,_LayerNIds}|Pattern],FromLI,ToLI)->
 case LI == FromLI of
 true ->
 [{PrevLI,_PrevLayerNIds}|_] = Pattern,
 case PrevLI == ToLI of
 true ->
 (FromLI + ToLI)/2;

294 Chapter 8 Developing a Simple Neuroevolutionary Platform

 false ->
 PrevLI
 end;
 false ->
 get_PrevLI(Pattern,FromLI,ToLI)
 end.
%get_PrevLI checks whether the layer index ToLI, comes directly before FromLI, or whether
there is another layer in between them. If there is another layer, then the function returns that
layer, if no such layer is found, the function creates a new layer index with value:
(FromLI+ToLI)/2.

8.5.11 add_sensor

The add_sensor mutation operator (MO) modifies the agent’s architecture, its
morphology in a sense, by adding new sensory “organs” to the NN based system.
If the NN system was started with just a camera sensor, but its specie morphology
provides for a larger list of sensory organs, then it is through the add_sensor muta-
tion operator that the NN system can also acquire pressure and radiation sensors
(if available for that agent’s morphology), for example. By acquiring new sensory
organs slowly, through evolution, the NN based system has the chance to evolve
connections to only the most useful sensors in the environment the agent inhabits,
and work best with the agent’s morphology and NN topology.

An agent can have multiple sensors of the same type, as long as they differ in at
least some specification. For example, some sensors also specify parameters,
which can vary between sensors of the same name. Assume that the agent controls
a robot, there can be numerous sensors available to the robot that the NN based
system can make use of to improve its performance within the world. But the
same type of sensors, let’s say camera sensor, can also be installed at different lo-
cations on the same real, or simulated robot. This installation location can be spec-
ified within the parameters, thus there can be a large list of the same type of sen-
sors which simply differ in their coordinate parameters.

To apply this mutation to the NN based system, first the agent’s morphology
name is retrieved. Using the agent’s morphology name we then access the mor-
phology module to get the list of all the available sensors for that morphology.
The function morphology:get_sensors/1 returns the list of all such available sen-
sors. From this list we subtract the list of sensors that the agent is already using,
and thus create a Sensor_Pool. Finally, we select a random sensor from this list,
let us call that sensor, A.

Afterwards, Sensor A’s id is created and then added to the cortex’s sensor_ids
list. Then a random neuron B is chosen from the cortex’s neuron_ids list, and us-
ing the function link_FromElementToElement, the connection from A to B is

8.5 Developing the genotype_mutator 295

established. Agent’s evo_hist list is updated by adding to it a new tuple:
{add_sensor,SensorA_Id,NeuronB_Id}. Then the updated agent, cortex, sensor,
and neuron tuples are written to the database. Fig-8.11 demonstrates a few varia-
tions of how this MO can modify a NN’s topology.

Fig. 8.11 Applying the add_sensor mutation operator to a NN based system.

Listing-8.15: The implementation of the add_sensor mutation operator.

add_sensor(Agent_Id)->
 Agent = genotype:read({agent,Agent_Id}),
 Cx_Id = Agent#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 S_Ids = Cx#cortex.sensor_ids,
 SpeCon = Agent#agent.constraint,
 Morphology = SpeCon#constraint.morphology,
 case morphology:get_Sensors(Morphology)--[(genotype:read({sensor, S_Id}))#sensor{
id=undefined, cx_id=undefined,fanout_ids=[]} || S_Id<-S_Ids] of
 [] ->
 exit(“********ERROR:add_sensor(Agent_Id):: NN system is already using
all available sensors”);
 Available_Sensors ->io:format(“Available_Sensors”),
 NewS_Id = {{-1,genotype:generate_UniqueId()},sensor},
 NewSensor = (lists:nth(random:uniform(length(Available_Sensors)),
Available_Sensors))#sensor{id=NewS_Id,cx_id=Cx_Id},
 genotype:write(NewSensor),
 N_Ids = Cx#cortex.neuron_ids,

296 Chapter 8 Developing a Simple Neuroevolutionary Platform

 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 link_FromElementToElement(Agent_Id,NewS_Id,N_Id),
 EvoHist = Agent#agent.evo_hist,
 U_EvoHist = [{add_sensor,NewS_Id,N_Id}|EvoHist],
 U_Cx = Cx#cortex{sensor_ids=[NewS_Id|S_Ids]},
 genotype:write(U_Cx),
 genotype:write(Agent#agent{evo_hist=U_EvoHist})
 end.
%The add_sensor/1 function adds and connects a new sensor to the neural network, a sensor
from which the NN is not yet connected. After retrieving the morphology name from the con-
straint record retrieved from the agent, the complete set of available sensors is retrieved using
the morphology:get_Sensors/1 function. From this complete sensor list we subtract the sensor
tuples used by the NN based system. But before we can do so, we first revert the sensor id and
cx_id of each used sensor, back to undefined, since that is what their initial state within the sen-
sor tuples is. With the NN’s sensor ids and cx_ids reverted back to undefined, they can be sub-
tracted from the complete set of the sensors available to the given morphology. If the resulting
list is empty, then the function exits with an error. On the other hand, if the resulting list is not
empty, then there are still sensors which the NN is not yet using (though it does not mean that
using the new sensors would make the NN better, these sensors might be simply useless, and
hence not previously incorporated during evolution). From this resulting list we then select a
random sensor, and create for it a unique sensor id: NewS_Id. A random neuron id: N_Id, is
then selected from the cortex’s neuron_ids list, and a connection is established from NewS_Id
to N_Id. The cortex’s sensor_ids is updated with the new sensor’s id, and the agent’s evo_hist
is updated with the new tuple. Finally, the updated cortex and agent records are then written to
database.

8.5.12 add_actuator

Similarly to the add_sensor mutation operator, the add_actuator MO modifies
the agent’s architecture, by adding to it new morphological element which it can
then use to interact with the world. Just as with any other new addition to the
NN’s topology, or architecture (when adding sensors and actuators), some NN
based systems will not integrate well with the newly added element, while others
will. Some will not get an advantage in the environment, while others will. Those
that do successfully integrate a new element into their architecture, and those that
gain benefit from that new element, will have an advantage over those that do not
have such an element integrated.

The add_actuator mutator first accesses the agent’s morphology name and re-
trieves the list of all currently available actuators through the execution of the
morphology:get_Actuators/1 function. An Actuator_Pool is then formed by sub-
tracting from this actuator list the list of actuators already used by the NN based
agent. A random actuator A is then chosen from this Actuator_Pool. From the cor-

8.5 Developing the genotype_mutator 297

tex’s neuron_ids list, a random id of a neuron B is retrieved. Then, using the
link_FromElementToElement/3 function, a connection from B to A is established.
Finally, A’s id is added to the cortex’s actuator_ids list, agent’s evo_hist is updat-
ed by appending to it the tuple: {add_actuator, NeuronB_Id, ActuatorA_Id}, and
the updated neuron, actuator, agent, and cortex records are written to database.
Fig-8.12 demonstrates a few variations of how this mutation operator can modify
a NN’s topology.

Fig. 8.12 Applying the add_actuator mutation operator to a NN system.

Listing-8.14: The implementation of the add_actuator mutation operator.

add_actuator(Agent_Id)->
 Agent = genotype:read({agent,Agent_Id}),
 Cx_Id = Agent#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 A_Ids = Cx#cortex.actuator_ids,%TODO: Should we fill in all the fanin_ids locations, or
just 1? and let evolution fill the rest? We can go either way, or compare the performance of one
implementation against the other. In this implementation, we take the second approach.
 SpeCon = Agent#agent.constraint,
 Morphology = SpeCon#constraint.morphology,
 case morphology:get_Actuators(Morphology)--[(genotype:read({actuator,
A_Id}))#actuator{cx_id =undefined, id=undefined,fanin_ids=[]} || A_Id<-A_Ids] of
 [] ->
 exit(“********ERROR:add_actuator(Agent_Id):: NN system is already using
all available actuators”);

 Chapter 8 Developing a Simple Neuroevolutionary Platform

 Available_Actuators ->
 NewA_Id = {{1,genotype:generate_UniqueId()},actuator},
 NewActuator=(lists:nth(random:uniform(length(Available_Actuators)),
Available_Actuators))#actuator{id=NewA_Id,cx_id=Cx_Id},
 genotype:write(NewActuator),
 N_Ids = Cx#cortex.neuron_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 link_FromElementToElement(Agent_Id,N_Id,NewA_Id),
 EvoHist = Agent#agent.evo_hist,
 U_EvoHist = [{add_actuator,N_Id,NewA_Id}|EvoHist],
 U_Cx = Cx#cortex{actuator_ids=[NewA_Id|A_Ids]},
 genotype:write(U_Cx),
 genotype:write(Agent#agent{evo_hist=U_EvoHist})
 end.
%The add_actuator/1 function adds and connects a new actuator to the neural network, an actu-
ator type to which the NN is not yet connected to. After we extract the morphology name from
the agent’s constraint record, we execute the function: morphology:get_Actuators(Morphology)
to get the list of actuators available to the NN system. From that list the function then removes
the actuators the NN is already connected to, after the ids and cx_ids of those actuators are set
to undefined. The resulting list is the list of actuators to which the NN is not yet connected. A
random actuator is chosen from that list, and then a random neuron id N_Id from cortex’s neu-
ron_ids is chosen, and connected to the new actuator. Finally, the cortex’s actuator_ids list is
updated with the id of the newly created actuator, the agent’s evo_hist is updated with the new
tuple, and then both, the updated cortex and the agent are written to database.

8.5.13 Planning the Remaining Few Details of the Genotype
Mutator Module

Having now discussed the functionality of every mutation operator, we can
start creating the actual mutator module. There are three remaining issues that are
in need of a resolution:

1. When creating a mutant clone from some fit genotype, how many mutation op-
erators in sequence should be applied to this clone to produce the final mutant?
And what should that number depend on?

I have came to the conclusion that the total number of Mutation Operators
(MOs) that should be applied to a clone of a NN to create a mutant offspring, is a
value that should in some manner depend on the size of the parent NN system. To
see why, consider the following: Imagine you have a NN system composed of a
single neuron. We now apply a mutation to this NN system, any mutation operator
applied will result in this very simple single neuron NN to function very different-
ly. Now assume that we have a NN system composed of one million neurons,

298

8.5 Developing the genotype_mutator 299

interconnected to a great extent. If we apply a single mutation operator to this NN
system, then the effect on its functionality will not be as drastic. So then, when
compared to smaller NNs, the larger NN systems require a larger number of muta-
tions to function differently.

But, sometimes drastic changes are not needed, sometimes we only wish to
tune the NN system, just add a neuron here, or a single connection there... We do
not know ahead of time how many mutation operators need to be applied to a NN
system to produce a functional offspring that will be able to jump out of a local
optima, or reach a higher fitness level. Thus, not only should the number of muta-
tion operators applied be proportional to the size of the NN system, but it should
also be chosen randomly. Thus, offspring should be created by applying a random
number of mutation operators, within the range of 1 and some maximum number
which is dependent on the NN’s size. This will result in a system that creates off-
spring by at times applying a large number of mutation operators when creating an
offspring, and at times a small number of mutation operators. The larger the NN,
the greater the spread from which the number of MOs to be applied is chosen.

In our system, the number of mutation operators to be applied should be a ran-
dom number, chosen with uniform distribution, between 1 and sqrt(Tot_Neurons),
where Tot_Neurons is the variable containing the total number of neurons within
the NN system. Thus, by increasing the range of the possible number of MOs ap-
plied to a cloned NN in proportion to the size of the parent NN, allows us to make
the mutation intensity significant enough to allow the mutant offspring to continue
producing innovations in its behavior when compared to its parent, and thus ex-
plore the fitness landscape far and wide. At the same time, some offspring will on-
ly acquire a few MOs and differ topologically only slightly, and thus have a
chance to tune and explore the local topological areas on the topological fitness
landscape. Let us give this approach a name, let us call it a “Random Intensity
Mutation”, (RIM). We will call this method: Random Intensity Mutation, because
the intensity, which in this case is the range of the number of the MOs applied, is
randomly chosen. In the same way that we chose randomly the number of weight
perturbations to be applied to the NN by the exoself, which too can be considered
to have been an application of RIM.

I think, and we will benchmark this later to test the theory, that RIM provides
an advantage over those neuroevolutionary systems that only apply a static num-
ber of mutation operators when generating offspring. Also, note that the system
we are now creating does not use recombination (the crossover of two or more
genotypes to create an offspring), and so the use of RIM is an approach to getting
just as much of genetical change as would the use of recombination give. But RIM
allows us to do this in a controlled manner. Plus, when we are creating a new gen-
otype by combining two different genotypes in some manner, there is very little
chance that the two parts of two different genotypes whose phenotypes process in-
formation in completely different manner, or completely the same (when those
genotypes are very closely or completely related), will yield a fit or an improved

300 Chapter 8 Developing a Simple Neuroevolutionary Platform

********Note********
Sometimes, progress can only be made when multiple mutation operators are applied in se-
quence, in one go and before fitness evaluation, to create a new offspring. Evolution is such that
a fitness function, especially one that considers that the more concise genotypes are fitter, does
not allow for certain combination of mutations to take place over multiple generations. For ex-
ample consider the scenario shown in Fig-8.13. Assume that in this scenario, an agent inhabits a
flatland world, it has a camera sensor, a differential drive actuator [1], and a single neuron neu-
ral network, where the neuron uses a tanh activation function. In this flatland, the organism
would greatly benefit if it also had a radiation sensor that connects to a neuron that uses sin ac-
tivation function, which itself is connected to neuron which uses tanh activation function. While
at the same time, this world might not be a good place for agents that either have NN topologies
composed of a camera sensor connected to two neurons in layer 0, where one neuron uses a
tanh and the other uses a sin activation function. This world might also not be favorable to NN
systems that have two sensors, a camera and a radiation sensor, both connected to a neuron us-
ing a tanh activation function, which then connects to the differential drive actuator. If our
neuroevolutionary system only creates offspring by applying a single mutation operator to a
parent clone, then we would only generate NNs that are unfavorable in the flatland. These off-
spring would not get a chance to live on to the next generation and create their own offspring,
generated through the mutation resulting in a NN composed of the two neuron two sensor based
topology. It is only when our neuroevolutionary system is able to apply at least two mutation
operators in series, in a single go, that we have a chance of generating this favorable NN based
mutant system. It is this mutant offspring composed of two neurons and two sensors, that has a
chance to jump out of the local optima.

agent, respectively. The use of RIM allows us to slowly complexify the NN sys-
tems, to build on top of fit genotypes. Using the RIM approach, sometimes we

 can be made more effective. While at
other times, the genotypical space is explored far and wide, as we try to free the
NN system from some local optima that it is stuck in.

fine tune the genotype, to see if the genotype

8.5 Developing the genotype_mutator 301

Fig. 8.13 Climbing out of a local optima using RIM.

2. When adding a new actuator to a NN, and this new actuator has vl = X, should
we randomly connect to it X number of neurons, or just one?

When adding a new actuator, the simplest and best approach would be to con-
nect to it only a single neuron in the NN. We can let the mutation operators like
add_outlink, add_actuatorlink, and add_neuron, be the ones to establish the re-
maining connections between the NN and the new actuator, over multiple genera-
tions as the agent evolves. We can create the actuator functions such that they use
default values for all elements in their input vector that are not yet fed from real
neurons. After all, there might be some actuators whose vl is larger than the total
number of neurons in the NN at the time of being added. Yet it would still be a
good idea to connect it to the NN, letting evolution slowly link the right neurons
(the ones that lead to a fitter NN system) to the actuator, over multiple genera-
tions. Eventually, the NN would integrate such an actuator into itself fully, con-
necting to it vl number of neurons.

Having decided on these two remaining details of the mutator module, we can
now implement it.

8.5.14 Implementing the genotype_mutator Module

We now construct the genotype_mutator module using everything we’ve dis-
cussed in this section. The mutate function accepts the parameter Agent_Id, and

302 Chapter 8 Developing a Simple Neuroevolutionary Platform

mutates that agent’s NN by applying X number of successful mutation operators
in series, where X depends on the size of the NN. At this point, the specie the
agent belongs to will be the same that its parent belongs to. Thus, the species mak-
ing up the population will be based on the constraint specification. The constraints
are specified when creating the population, thus if one creates 3 different con-
straints, then the population will be composed of 3 different species. The agents
belonging to a particular specie will only have access to the features specified
within the constraint of that specie.

Though we wished to keep all but the genotype module blind to what genotype
storage method is used, we need to use the mnesia’s transaction function to benefit
from the atomic transactions offered by it. We execute the mutation operators
within a transaction, and in this manner ensure that if any part of the MO fails,
any modifications made to the topology within that failed MO, are reverted. Thus,
we will let the genotype_mutator module know that mnesia is being used, and let
it use the transactions to take full advantage of the mnesia database. The following
listing shows the source code for the entire genotype_mutator module, with the al-
ready presented mutation operator functions truncated with “...”.

Listing-8.17: The implementation of the genotype_mutator module.

-module(genome_mutator).
-compile(export_all).
-include(“records.hrl”).
-define(DELTA_MULTIPLIER,math:pi()*2).
-define(SAT_LIMIT,math:pi()*2).
-define(MUTATORS,[
 mutate_weights,
 add_bias,
 remove_bias,
 add_outlink,
% remove_outLink,
 add_inlink,
% remove_inlink,
 add_sensorlink,
 add_actuatorlink,
 add_neuron,
% remove_neuron,
 outsplice,
% insplice,
 add_sensor,
% remove_sensor,
 add_actuator
% remove_actuator
]).

8.5 Developing the genotype_mutator 303

-define(ACTUATORS,morphology:get_Actuators(A#agent.morphology)).
-define(SENSORS,morphology:get_Sensors(A#agent.morphology)).
%%
test()->
 Result = genotype:mutate(test),
 case Result of
 {atomic,_} ->
 io:format(“******** Mutation Succesful.~n”);
 _->
 io:format(“******** Mutation Failure:~p~n”,[Result])
 end.
%The test/1 function simply tests the mutate/1 function using a random mutation operator, on
an agent whose id is ‘test’.

test(Agent_Id,Mutator)->
 F = fun()->
 genome_mutator:Mutator(Agent_Id)
 end,
 mnesia:transaction(F).
%test/2 function tests the mutation operator “Mutator” on the agent with an id Agent_Id.

mutate(Agent_Id)->
 random:seed(now()),
 F = fun()->
 A = genotype:read({agent,Agent_Id}),
 OldGeneration = A#agent.generation,
 NewGeneration = OldGeneration+1,
 genotype:write(A#agent{generation = NewGeneration}),
 apply_Mutators(Agent_Id)
 end,
 mnesia:transaction(F).
%The mutate/1 function applies a random available mutation operator to an agent with an id:
Agent_Id.

 apply_Mutators(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx = genotype:read({cortex,A#agent.cx_id}),
 TotNeurons = length(Cx#cortex.neuron_ids),
 TotMutations = random:uniform(round(math:pow(TotNeurons,1/2))),
 io:format(“Tot neurons:~p Performing Tot mutations:~p
on:~p~n”,[TotNeurons,TotMutations,Agent_Id]),
 apply_Mutators(Agent_Id,TotMutations).
%apply_Mutators/1 chooses a random number X between 1 and math:sqrt(Tot_Neurons)),
where Tot_Neurons is the total number of neurons in the neural network, and then applies X
number of randomly chosen mutation operators to the NN. The function first calculates the

304 Chapter 8 Developing a Simple Neuroevolutionary Platform

length of the neuron_ids list, from which it then calculates the TotMutations value by choosing
the random number between 1 and sqrt of the length of neuron_ids list. Having now chosen
how many mutation operators to apply to the NN based system, the function apply_Mutators/1
calls apply_Mutators/2.

 apply_Mutators(_Agent_Id,0)->
 done;
 apply_Mutators(Agent_Id,MutationIndex)->
 Result = apply_NeuralMutator(Agent_Id),
 case Result of
 {atomic,_} ->
 apply_Mutators(Agent_Id,MutationIndex-1);
 Error ->
 io:format(“******** Error:~p~nRetrying with new Muta-
tion...~n”,[Error]),
 apply_Mutators(Agent_Id,MutationIndex)
 end.
%apply_Mutators/2 applies the set number of successful mutation operators to the Agent. If a
mutation operator exits with an error, the function tries another mutation operator. It is only af-
ter a successful mutation operator is applied that the MutationIndex is decremented.

 apply_NeuralMutator(Agent_Id)->
 F = fun()->
 Mutators = ?MUTATORS,
 Mutator = lists:nth(random:uniform(length(Mutators)),Mutators),
 io:format(“Mutation Operator:~p~n”,[Mutator]),
 genome_mutator:Mutator(Agent_Id)
 end,
 mnesia:transaction(F).
%apply_NeuralMutator/1 applies the actual mutation operator to the NN. Because the genotype
is stored in mnesia, if the mutation operator function exits with an error, the database made
changes are retracted, and a new mutation operator can then be applied to the agent, as if the
previous unsuccessful mutation operator was never applied. The mutation operator to be ap-
plied to the agent is chosen randomly from the mutation operator list: ?MUTATORS.

mutate_weights(Agent_Id)->
...

add_bias(Agent_Id)->
…

remove_bias(Agent_Id)->
…

mutate_af(Agent_Id)->

8.5 Developing the genotype_mutator 305

…

link_FromElementToElement(Agent_Id,From_ElementId,To_ElementId)->
...

cutlink_FromElementToElement(Agent_Id,From_ElementId,To_ElementId)->
...

add_outlink(Agent_Id)->
...

add_inlink(Agent_Id)->
...

add_sensorlink(Agent_Id)->
...

add_actuatorlink(Agent_Id)->
...

add_neuron(Agent_Id)->
...

outsplice(Agent_Id)->
…

insplice(Agent_Id)->
…

add_sensor(Agent_Id)->
...

add_actuator(Agent_Id)->
...

Having now created the polis, genotype, and the mutator module, we have all
the modules and functions necessary to perform a few simple mutation tests using
the genome_mutator’s test/2 function. The test/2 function will allow us to use the
genotype module to create a test agent, apply specific mutation operators to it, and
then check whether they executed correctly by analyzing the genotype printed to
screen using the print/1 function. Since we know that a seed NN with a single neu-
ron is created without a threshold element, we will first test the simplest mutator,
add_threshold, as shown below. For the sake of brevity, only the neuron record is
shown when print/1 is executed.

306 Chapter 8 Developing a Simple Neuroevolutionary Platform

1> polis:start().
Parameters:{[],[]}
******** Polis: ##MATHEMA## is now online.
{ok,<0.34.0>}
2> genotype:create_test().
...
{neuron,{{0,7.588454795555494e-10},neuron},
 0,
 {{origin,7.588454795561199e-10},cortex},
 abs,
 [{{{-1,7.588454795555557e-10},sensor},
 [0.03387578757696197,-0.35293313204412424]}],
 [{{1,7.588454795555509e-10},actuator}],
 []}
...
{atomic,{atomic,[ok]}}
3> genome_mutator:test(test,add_bias).
{atomic,ok}
4> genotype:print(test).
...
{neuron,{{0,7.588454795555494e-10},neuron},
 0,
 {{origin,7.588454795561199e-10},cortex},
 abs,
 [{{{-1,7.588454795555557e-10},sensor},
 [0.03387578757696197,-0.35293313204412424]},
 {bias,[0.28866429973097785]}],
 [{{1,7.588454795555509e-10},actuator}],
 []}
...
{atomic,[ok]}

It works! If we compare the neuron record before and after the add_bias muta-
tion operator was applied, we can see that a bias tuple was added to the neuron’s
input_idps (shown in bold face in the above console printout). Let’s test a muta-
tion operator that is a bit more complex, let’s test the outsplice MO. Before we ex-
ecute the function, let us think of what should happen, and then test that theory.
We know that the default agent is created with a single sensor, a neuron in layer 0,
and a single actuator. An outsplice adds a new neuron between the neuron and one
of the ids in its output_ids list. Since this test agent’s neuron is only connected to
the actuator, only the actuator’s id should be in the neurons output_ids list. Thus,
the outsplice function should add a new neuron in its own new layer: 0.5 =
(0+1)/2. Let us now test our prediction, and again for the sake of brevity, I will
not show the agent and cortex records, because this mutation operator only affects
the NN topology, the sensors, neurons, and actuators:

8.5 Developing the genotype_mutator 307

1> polis:start().
Parameters:{[],[]}
******** Polis: ##MATHEMA## is now online.
{ok,<0.34.0>}
2> genotype:create_test().
...
{sensor,{{-1,7.588451156728372e-10},sensor},
 xor_GetInput,
 {{origin,7.588451156734038e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.588451156728286e-10},neuron}],
 undefined}
{neuron,{{0,7.588451156728286e-10},neuron},
 0,
 {{origin,7.588451156734038e-10},cortex},
 abs,
 [{{{-1,7.588451156728372e-10},sensor},
 [-0.38419731227432274,0.2612339422607457]}],
 [{{1,7.588451156728309e-10},actuator}],
 []}
{actuator,{{1,7.588451156728309e-10},actuator},
 xor_SendOutput,
 {{origin,7.588451156734038e-10},cortex},
 {private,xor_sim},
 1,
 [{{0,7.588451156728286e-10},neuron}],
 undefined}
{atomic,{atomic,[ok]}}
3> genome_mutator:test(test,outsplice).
{atomic,ok}
4> genotype:print(test).
...
{sensor,{{-1,7.588451156728372e-10},sensor},
 xor_GetInput,
 {{origin,7.588451156734038e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.588451156728286e-10},neuron}],
 undefined}
{neuron,{{0.5,7.58845109269042e-10},neuron},
 0,
 {{origin,7.588451156734038e-10},cortex},
 sin,
 [{{{0,7.588451156728286e-10},neuron},[0.3623116220700018]}],

308 Chapter 8 Developing a Simple Neuroevolutionary Platform

 [{{1,7.588451156728309e-10},actuator}],
 []}
{neuron,{{0,7.588451156728286e-10},neuron},
 0,
 {{origin,7.588451156734038e-10},cortex},
 abs,
 [{{{-1,7.588451156728372e-10},sensor},
 [-0.38419731227432274,0.2612339422607457]}],
 [{{0.5,7.58845109269042e-10},neuron}],
 []}
{actuator,{{1,7.588451156728309e-10},actuator},
 xor_SendOutput,
 {{origin,7.588451156734038e-10},cortex},
 {private,xor_sim},
 1,
 [{{0.5,7.58845109269042e-10},neuron}],
 0}
{atomic,[ok]}

It works! No errors. And from the output to console we can compare the geno-
types of the NN systems before and after the mutation. As we predicted, when the
genotype printed at 4> is compared to one printed at 2>, we see a new neuron with
id: {{0.5,7.58845109269042e-10},neuron} added to the system, shown in bold-
face in the above console printout. The new neuron is inserted into its own layer
with index 0.5, connected from the first neuron, and to the actuator. The NN pat-
tern, which specifies the number of layers composing the NN, and the layer densi-
ty, was also changed. The initial, and the final patterns, stored in the agent record,
are as follows:

Initial topology: [{0,[{{0,7.588451156728286e-10},neuron}]}]
Final topology: [{0,[{{0,7.588451156728286e-10},neuron}]},
{0.5,[{{0.5,7.58845109269042e-10},neuron}]}]

In this way we can continue going through each mutation operator, applying it
to a test agent, and then confirming manually that the MO works as designed.
Catching errors in mutation operators can be difficult, and in general catching
small errors in evolutionary systems is even more so because if the error does not
crash the program and only slightly affects the system, the evolved organisms will
evolve around such problems. If for example the add_inlink operator constantly
produces damaged links, the agents will still adapt and solve the problem they are
applied to, by using the remaining MOs to compensate. It would require a manual
analysis of the topology and functionality of the NN based system to finally real-
ize that there is some minor problem with a mutation operator.

8.5 Developing the genotype_mutator 309

A long while back when experimenting with different ways a neuron can pro-
cess incoming data, I was testing a theory which required me to filter all neuron
incoming signals through a tanh function, before calculating a dot product of those
signals with their corresponding synaptic weights, and then sent through the acti-
vation function. By mistake, I forgot to remove that modification after the tests. I
continued applying the system to real world problems, and the system continued
to work. It was only a few months later, when I was going over the neuron module
implementation, that I realized I left it in. The system continued performing well,
evolution routed around this small problem. But the point is that errors can go un-
noticed because the system will continue functioning relatively well, even with a
few flaws or bugs. This is even more so when it comes in developing such systems
in Erlang, because it is even more difficult to crash an Erlang based system.

We have now covered all the genotype related issues of our neuroevolutionary
system. In the next section we discuss and develop the new population_monitor
module.

8.5.15 Developing the population_monitor

The population_monitor module is the only remaining large module we need to
create before we have a functional topology and weight evolving artificial neural
network system. The remaining modules (exoself, cortex, & neuron), need merely
be slightly updated. The population_monitor process will have to perform a num-
ber of complex functions, keeping track of an entire population of agents, select-
ing fit, removing the unfit, creating offspring from the fit agents through cloning
and mutation, and then finally reapplying the new generation of agents to the
problem or simulation set by the researcher.

After the polis is started and the public scapes are spawned, we can generate a
seed population from which a solution, or simply an ever more intelligent popula-
tion of agents, will evolve. Towards what the neuroevolution is applied depends
and is specified by the scape, which itself is a simulation of some physical or
mathematical space. The goal of neuroevolution is to generate and guide the popu-
lation towards higher fitness. Where, how, and when, the fitness points are distrib-
uted to the neural networks, and under what conditions, is determined by the scape
itself. Once all agents have finished interacting with the scapes, or scape, we are
left with a population of agents, each of whom has a fitness score. How and when
the agent finishes, or dies, or terminates, is once again dependent on the scape and
the problem. The agent “finishes” when for example it has gone through every el-
ement in the database, or dies of “old age” when the agent controls an avatar with-
in some simulated environment... At this point, the population_monitor uses a se-
lection function to select a certain percentage of the population as fit or valid,
while marking the rest as unfit, or invalid. We will not implement crossover ap-
proaches for offspring generation, since the topological RIM system will create

310 Chapter 8 Developing a Simple Neuroevolutionary Platform

enough variation, and do so much faster and safer than any crossover algorithm
can.

The offspring are created through cloning and mutation. Not all fit agents are
equal, some are more equal than others, some have a higher fitness level. Though
all the fit agents will survive to the next generation, the number of offspring each
agent creates will depend on that agent’s fitness. The population_monitor will de-
cide how many offspring to allocate to each agent. The offspring will be created
by first cloning the fit agent, and then by mutating the clone to produce a varia-
tion, a mutant, of it. The clone, with its own unique agent id, is assigned to the
same specie that its parent belongs to. Once all the offspring are created, where
“all” means the same number as was deleted during the selection process, the new
generation of agents is then released back into the scape, or applied again to the
problem. Then, the evolutionary cycle repeats.

The way we specify what to apply the neuroevolutionary system and the par-
ticular population to, is through the constraint record. The constraint records
specify the morphologies into which the population will be subdivided, where
each morphology has its own sensors and actuators from which the agent will
draw its sensors and actuators from during evolution. The scapes define the prob-
lem, and the sensors and actuators specify what scapes the agent can interact with,
and how it can interface with them. The constraints also specify activation func-
tions available to the evolving adaptive agents, and thus we can further specify
and try out the same morphologies but with different activation function sets.
Thus, the seed population of agents that the population_monitor tracks will, from
the very start, be subdivided into multiple species, where the number of species
depends on the number of constraint records in the list dropped as a parameter into
the population initialization function.

Based on this narrative, we can see that the population_monitor program has to
do quite a few things, let us break it down into steps, and then compose the algo-
rithm for each step:

1. Create a Seed_Species list, composed of constraint records as follows:
Seed_Species=[#constraint{morphology=A,neural_afs=[...]},#constraint{
morphology=B}...]

2. Specify seed population size, and max population size. The seed population
size specifies the number of seed agents to create, which will compose the seed
population. The max population size specifies the maximum number of agents
that the population can sustain.

3. Divide the total number of X seed agents by length(Seed_Species), letting the
resulting number Y specify the number each seed specie will start with. Thus,
each Seed_Specie will have Y number of agents, and the seed population will
have X = Y*length(Seed_Species) number of agents in total.

4. Spawn the agents belonging to the population by starting up their exoselfs.
Each exoself is started with the Agent_Id, and PopulationMonitor_PId as

8.5 Developing the genotype_mutator 311

parameters. The exoself of the agent bootstraps itself, converting its genotype
into its phenotype.

5. Each agent then interacts with the scape, until it dies, or finishes its session
with the scape, at which point the agent’s exoself notifies the popula-
tion_monitor of its fitness score, and that it is done. The agent then terminates
itself by terminating all the processes that it is composed of.

6. The population_monitor waits for the fitness score from every agent in the
population it is monitoring. Once all the agents have finished and terminated,
the population_monitor runs a selection algorithm on the agent list, to seperate
the fit from the unfit.

7. The population_monitor composes a list of tuples: [{TrueFitness, Agent_Id}...],
where: TrueFitness = Fitness/math:pow(TotN,?EFF,) and where TotN is the
total number of neurons, and ?EFF is a researcher specified efficiency index,
usually set to 0.1. What this does is make the agent’s fitness dependent on the
agent’s NN size. For example, if two agents have the same fitness, but one is
composed of 2 neurons, and the other of 20, then we should choose the 2 neu-
ron based agent because it is that much more efficient. How much weight is
given to the NN size is specified through the ?EFF parameter, the Efficiency
parameter.

8. At this point, we apply a selection algorithm, an algorithm that removes unfit
agents, and allows the fit ones to produce offspring. I have developed a selec-
tion algorithm which I dubbed competition, and which has yielded excellent re-
sults in the past. The steps of this algorithm are as follows, and which I will ex-
plain in more detail afterwards:

1. Calculate the average energy cost of a Neuron in the population using the
following steps:
TotEnergy = Agent(1)_Fitness + Agent(2)_Fitness...
TotNeurons = Agent(1)_TotNeurons + Agent(2)_TotNeurons...
NeuronEnergyCost = TotEnergy/TotNeurons

2. Sort the Agents in the population based on TrueFitness.
3. Remove the bottom 50% of the population.
4. Calculate the number of allotted offspring for each Agent(i):

AllotedNeurons = (AgentFitness/NeuronEnergyCost),
AllotedOffsprings(i) = round(AllotedNeurons(i)/Agent(i)_TotNeurons)

5. Calculate total number of offspring being produced for the next generation:
TotalNewOffsprings = AllotedOffsprings(1)+...AllotedOffsprings(n).

6. Calculate PopulationNormalizer, to keep the population within a certain
limit:
PopulationNormalizer = TotalNewOffsprings/PopulationLimit

7. Calculate the normalized number of offspring allotted to each NN based
system (Normalized Allotted Offsprin = NAO):
NAO(i)= round(AllotedOffsprings(i)/PopulationNormalizer(i))

8. If NAO == 1, then the agent is allowed to survive to the next generation
without offspring, if NAO > 1, then the agent is allowed to produce (NAO

312 Chapter 8 Developing a Simple Neuroevolutionary Platform

-1) number of mutated copies of itself, if NAO = 0, then the agent is re-
moved from the population and deleted.

9. Then the Topological Mutation Phase is initiated, and the mutator program
passes through the database creating the appropriate NAO number of mu-
tant clones of the surviving fit agents.

9. Go to 4, until stopping condition is reached, where the following stopping con-
ditions are available:

– The best fitness of the population is not increased some X number of
times, where X is set by the researcher.

– The goal fitness level is reached by one of the agents in the population.
– The preset maximum number of generations has passed.
– The preset maximum number of evaluations has passed.

From the fitness score modification (making it dependent on the NN size as
well) and the competition selection algorithm, it can be seen that it becomes very
difficult for bloated NNs to survive when smaller systems produce better or simi-
lar results. Yet when a large NN produces significantly better results justifying its
complexity and size, it can begin to compete and push out the smaller NN sys-
tems. This selection algorithm takes into account that a NN composed of 2 Neu-
rons is double the size of a 1 Neuron NN, and thus should also have an increased
fitness if it wants to produce just as many offspring. On the other hand, a NN of
size 101 is only slightly larger than a NN of size 100, and thus should pay only
slightly more per offspring. This selection algorithm has proven excellent when it
comes to keeping neural network bloating to a minimum. At the same time, this
does not mean that the system will be too greedy, after all, we allow for the top
50% to survive, as long as they show some level of competitiveness. Because of
the application of RIM during the mutation phase, we can expect that if there is a
path towards greater complexity and fitness, eventually one of the mutant off-
spring will find it.

Having now discussed all the steps and features the population_monitor needs
to make and have respectively, we can begin developing the source code. The fol-
lowing listing shows the population_monitor module.

Listing-8.18: The implementation of the population_monitor module.

-module(population_monitor).
-include(“records.hrl”).
%% API
-export([start_link/1,start_link/0,start/1,start/0,stop/0,init/2]).
%% gen_server callbacks
-export([init/1, handle_call/3, handle_cast/2, handle_info/2, terminate/2, code_change/3, cre-
ate_MutantAgentCopy/1,test/0, create_specie/3, continue/2, continue/3,init_population/1, ex-
tract_AgentIds/2,delete_population/1]).
-behaviour(gen_server).

8.5 Developing the genotype_mutator 313

%%%%%%%%%%% Population Monitor Options & Parameters
-define(SELECTION_ALGORITHM,competition).
-define(EFF,0.05).
-define(INIT_CONSTRAINTS,[#constraint{morphology=Morphology,neural_afs
=Neural_AFs} || Morphology<-[xor_mimic],Neural_AFs<-[[tanh]]]).
-define(SURVIVAL_PERCENTAGE,0.5).
-define(SPECIE_SIZE_LIMIT,10).
-define(INIT_SPECIE_SIZE,10).
-define(INIT_POPULATION_ID,test).
-define(OP_MODE,gt).
-define(INIT_POLIS,mathema).
-define(GENERATION_LIMIT,100).
-define(EVALUATIONS_LIMIT,100000).
-define(DIVERSITY_COUNT_STEP,500).
-define(GEN_UID,genotype:generate_UniqueId()).
-define(CHAMPION_COUNT_STEP,500).
-define(FITNESS_GOAL,inf).
-record(state,{op_mode,population_id,activeAgent_IdPs=[],agent_ids=[],tot_agents,agents_left,
op_tag,agent_summaries=[],pop_gen=0,eval_acc=0,cycle_acc=0,time_acc=0,step_size,
next_step,goal_status,selection_algorithm}).
%%===API
%%--
%% Function: start_link() -> {ok,Pid} | ignore | {error,Error}
%% Description: Starts the server
%%--
start_link(Start_Parameters) ->
 gen_server:start_link(?MODULE, Start_Parameters, []).

start(Start_Parameters) ->
 gen_server:start(?MODULE, Start_Parameters, []).

start_link() ->
 gen_server:start_link(?MODULE, [], []).

start() ->
 gen_server:start(?MODULE, [], []).

stop() ->
 gen_server:cast(monitor,{stop,normal}).

init(Pid,InitState)->
 gen_server:cast(Pid,{init,InitState}).

%%===gen_server callbacks
%%--

314 Chapter 8 Developing a Simple Neuroevolutionary Platform

%% Function: init(Args) -> {ok, State} |
%% {ok, State, Timeout} |
%% ignore |
%% {stop, Reason}
%% Description: Initiates the server
%%--
init(Parameters) ->
 process_flag(trap_exit,true),
 register(monitor,self()),
 io:format(“******** Population monitor started with parameters:~p~n”,[Parameters]),
 State = case Parameters of
 {OpMode,Population_Id,Selection_Algorithm}->
 Agent_Ids = extract_AgentIds(Population_Id,all),
 ActiveAgent_IdPs = summon_agents(OpMode,Agent_Ids),
 #state{op_mode=OpMode,
 population_id = Population_Id,
 activeAgent_IdPs = ActiveAgent_IdPs,
 tot_agents = length(Agent_Ids),
 agents_left = length(Agent_Ids),
 op_tag = continue,
 selection_algorithm = Selection_Algorithm}
 end,
 {ok, State}.
%In init/1 the population_monitor process registers itself with the node under the name moni-
tor, and sets all the needed parameters within its #state record. The function first extracts all the
Agent_Ids that belong to the population using the extract_AgentIds/2 function. Each agent is
then spawned/activated, and converted from genotype to phenotype in the summon_agents/2
function. The summon_agents/2 function summons the agents and returns to the caller a list of
tuples with the following format: [{Agent_Id,Agent_PId}...]. Finally, once the state record’s
parameters have been set, the function drops into the main gen_server loop.

%%--
%% Function: %% handle_call(Request, From, State) -> {reply, Reply, State} |
%% {reply, Reply, State, Timeout} |
%% {noreply, State} |
%% {noreply, State, Timeout} |
%% {stop, Reason, Reply, State} |
%% {stop, Reason, State}
%% Description: Handling call messages
%%--
handle_call({stop,normal},_From, S)->
 ActiveAgent_IdPs = S#state.activeAgent_IdPs,
 [Agent_PId ! {self(),terminate} || {_DAgent_Id,Agent_PId}<-ActiveAgent_IdPs],
 {stop, normal, S};
handle_call({stop,shutdown},_From,State)->

8.5 Developing the genotype_mutator 315

 {stop, shutdown, State}.
%If the population_monitor process receives a {stop,normal} call, it checks if there are any
agents that are still active. If there are any, it terminates them, and then itself terminates.

%%--
%% Function: handle_cast(Msg, State) -> {noreply, State} |
%% {noreply, State, Timeout} |
%% {stop, Reason, State}
%% Description: Handling cast messages
%%--
handle_cast({Agent_Id,terminated,Fitness,AgentEvalAcc,AgentCycleAcc,AgentTimeAcc},S)
when S#state.selection_algorithm == competition ->
 Population_Id = S#state.population_id,
 OpTag = S#state.op_tag,
 AgentsLeft = S#state.agents_left,
 OpMode = S#state.op_mode,
 U_EvalAcc = S#state.eval_acc+AgentEvalAcc,
 U_CycleAcc = S#state.cycle_acc+AgentCycleAcc,
 U_TimeAcc = S#state.time_acc+AgentTimeAcc,
 case (AgentsLeft-1) =< 0 of
 true ->
 mutate_population(Population_Id,?SPECIE_SIZE_LIMIT,
S#state.selection_algorithm),
 U_PopGen = S#state.pop_gen+1,
 io:format(“Population Generation:~p Ended.~n~n~n”,[U_PopGen]),
 case OpTag of
 continue ->
 Specie_Ids = (genotype:dirty_read({population,
Population_Id}))#population.specie_ids,
 SpecFitList=[(genotype:dirty_read({specie,
Specie_Id}))#specie.fitness || Specie_Id <- Specie_Ids],
 BestFitness=lists:nth(1,lists:reverse(lists:sort([MaxFitness ||
{_,_,MaxFitness,_} <- SpecFitList]))),
 case (U_PopGen >= ?GENERATION_LIMIT) or
(S#state.eval_acc >= ?EVALUATIONS_LIMIT) or (BestFitness > ?FITNESS_GOAL) of
 true ->%termination condition reached
 Agent_Ids = extract_AgentIds(Population_Id,all),
 TotAgents=length(Agent_Ids),
 U_S=S#state{agent_ids=Agent_Ids, tot_agents
=TotAgents,agents_left=TotAgents,pop_gen=U_PopGen,eval_acc=U_EvalAcc, cycle_acc
=U_CycleAcc,time_acc=U_TimeAcc},
 {stop,normal,U_S};
 false ->%in progress
 Agent_Ids = extract_AgentIds(Population_Id,all),

316 Chapter 8 Developing a Simple Neuroevolutionary Platform

 U_ActiveAgent_IdPs =summon_agents(OpMode,
Agent_Ids),
 TotAgents=length(Agent_Ids),
 U_S=S#state{activeAgent_IdPs
=U_ActiveAgent_IdPs, tot_agents=TotAgents,agents_left=TotAgents, pop_gen=U_PopGen,
eval_acc=U_EvalAcc,cycle_acc=U_CycleAcc, time_acc=U_TimeAcc},
 {noreply,U_S}
 end;
 done ->
 io:format(“Shutting down Population Monitor~n”),
 U_S = S#state{agents_left = 0,pop_gen=U_PopGen, eval_acc
=U_EvalAcc, cycle_acc=U_CycleAcc,time_acc=U_TimeAcc},
 {stop,normal,U_S};
 pause ->
 io:format(“Population Monitor has paused.~n”),
 U_S = S#state{agents_left=0,pop_gen=U_PopGen, eval_acc
=U_EvalAcc, cycle_acc=U_CycleAcc,time_acc=U_TimeAcc},
 {noreply,U_S}
 end;
 false ->
 ActiveAgent_IdPs = S#state.activeAgent_IdPs,
 U_ActiveAgent_Ids = lists:keydelete(Agent_Id,1,ActiveAgent_IdPs),
 U_S = S#state{activeAgent_IdPs = U_ActiveAgent_Ids,agents_left =
AgentsLeft-1,eval_acc=U_EvalAcc,cycle_acc=U_CycleAcc,time_acc=U_TimeAcc},
 {noreply,U_S}
 end;
%This clause accepts the cast signals sent by the agents which terminate after finishing with
their evaluations. The clause specializes in the “competition” selection algorithm, which is a
generational selection algorithm. As a generational selection algorithm, it waits until the entire
population has finished being evaluated, and only then selects the fit from the unfit, and com-
poses an updated population for the next generation. The OpTag can be set from the outside to
shutdown the population_monitor by setting it to done. Once a stopping condition is reached,
either through a generation limit, an evaluations limit, or fitness goal, the population_monitor
exits normally. If the stopping condition is not reached, the population_monitor spawns the new
generation of agents, and waits again for all the agents in the population to complete their eval-
uations. If the OpTag is set to pause, it does not generate a new population, and instead goes in-
to a waiting mode, during which it waits to be either restarted or terminated.

handle_cast({op_tag,pause},S) when S#state.op_tag == continue ->
 U_S = S#state{op_tag = pause},
 {noreply,U_S};
%The population_monitor process can accept a pause command cast. When it receives it, it
goes into pause mode after all the agents have completed with their evaluations. The process
can only go into a pause mode if it is currently in the continue mode (its op_tag is set to contin-
ue).

8.5 Developing the genotype_mutator 317

handle_cast({op_tag,continue},S) when S#state.op_tag == pause ->
 Population_Id = S#state.population_id,
 OpMode = S#state.op_mode,
 Agent_Ids = extract_AgentIds(Population_Id,all),
 U_ActiveAgent_IdPs=summon_agents(OpMode,Agent_Ids),
 TotAgents=length(Agent_Ids),
 U_S=S#state{activeAgent_IdPs=U_ActiveAgent_IdPs,tot_agents=TotAgents,agents_left
=TotAgents,op_tag=continue},
 {noreply,U_S};
%The population_monitor process can accept a continue command if its current op_tag is set to
pause. When it receives a continue command, it summons all the agents in the population, and
continues with its neuroevolution synchronization duties.

handle_cast({init,InitState},_State)->
 {noreply,InitState};
handle_cast({stop,normal},State)->
 {stop, normal,State};
handle_cast({stop,shutdown},State)->
 {stop, shutdown, State}.
%%--
%% Function: handle_info(Info, State) -> {noreply, State} |
%% {noreply, State, Timeout} |
%% {stop, Reason, State}
%% Description: Handling all non call/cast messages
%%--
handle_info(_Info, State) ->
 {noreply, State}.

terminate(Reason, S) ->
 case S of
 [] ->
 io:format(“******** Population_Monitor shut down with Reason:~p, with
State: []~n”,[Reason]);
 _ ->
 Population_Id = S#state.population_id,
 OpTag = S#state.op_tag,
 OpMode = S#state.op_mode,
 io:format(“******** Population_Monitor:~p shut down with Reason:~p
OpTag:~p, while in OpMode:~p~n”,[Population_Id,Reason,OpTag,OpMode]),
 io:format(“******** Tot Agents:~p Population Generation:~p Eval_Acc:~p
Cycle_Acc:~p Time_Acc:~p~n”,[S#state.tot_agents,S#state.pop_gen,S#state.eval_acc,
S#state.cycle_acc,S#state.time_acc])
 end.

318 Chapter 8 Developing a Simple Neuroevolutionary Platform

%When the population_monitor process terminates, it states so, notifies with what op_tag and
op_mode it terminated, all the stats gathered, and then shuts down.

%%--
%% Func: code_change(OldVsn, State, Extra) -> {ok, NewState}
%% Description: Convert process state when code is changed
%%--
code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

%%--
%% Internal functions
%%--
extract_AgentIds(Population_Id,AgentType)->
 P = genotype:dirty_read({population,Population_Id}),
 Specie_Ids = P#population.specie_ids,
 case AgentType of
 champions ->
 extract_ChampionAgentIds(Specie_Ids,[]);
 all ->
 extract_AllAgentIds(Specie_Ids,[])
 end.
%The extract_AgentIds/2 function accepts the Population_Id and a parameter which specifies
what type of agents (all agent, or just champions) to extract from the population, after which it
extracts the ids of those agents. Depending on the AgentType parameter, the function either
calls extract_ChampionAgentIds/2 or extract_AllAgentIds/2, which return the list of agent ids
to the caller.

 extract_ChampionAgentIds([Specie_Id|Specie_Ids],Acc)->
 S = genotype:dirty_read({specie,Specie_Id}),
 ChampionAgent_Ids = S#specie.champion_ids,
 extract_ChampionAgentIds(Specie_Ids,lists:append(ChampionAgent_Ids,Acc));
 extract_ChampionAgentIds([],Acc)->
 Acc.
%extract_ChampionAgentIds/2 accumulates the ids of champion agents from every specie in
the Specie_Ids list, and then returns that list to the caller.

 extract_AllAgentIds([Specie_Id|Specie_Ids],Acc)->
 extract_AllAgentIds(Specie_Ids,lists:append(extract_SpecieAgentIds(Specie_Id),
Acc));
 extract_AllAgentIds([],Acc)->
 Acc.
%extract_AllAgentIds/2 accumulates and returns to the caller an id list of all the agents belong-
ing to all the species in the Specie_Ids list.

8.5 Developing the genotype_mutator 319

extract_SpecieAgentIds(Specie_Id)->
 S = genotype:dirty_read({specie,Specie_Id}),
 S#specie.agent_ids.
%extract_SpecieAgentIds/1 returns a list of agent ids belonging to some particular specie, back
to the caller.

summon_agents(OpMode,Agent_Ids)->
 summon_agents(OpMode,Agent_Ids,[]).
summon_agents(OpMode,[Agent_Id|Agent_Ids],Acc)->
 Agent_PId = exoself:start(Agent_Id,self()),
 summon_agents(OpMode,Agent_Ids,[{Agent_Id,Agent_PId}|Acc]);
summon_agents(_OpMode,[],Acc)->
 Acc.
%The summon_agents/2 and summon_agents/3 functions spawns all the agents in the
Agent_ids list, and return to the caller a list of tuples of the following form:
[{Agent_Id,Agent_PId}...].

%%
test()->
 init_population({?INIT_POPULATION_ID,?INIT_CONSTRAINTS,?OP_MODE,
?SELECTION_ALGORITHM}).
%The test/0 function starts the population monitor through init_population/1 with a set of de-
fault parameters specified through the macros of this module.

init_population({Population_Id,Specie_Constraints,OpMode,Selection_Algorithm})->
 random:seed(now()),
 F = fun()->
 case genotype:read({population,Population_Id}) of
 undefined ->
 create_Population(Population_Id,Specie_Constraints);
 _ ->
 delete_population(Population_Id),
 create_Population(Population_Id,Specie_Constraints)
 end
 end,
 Result = mnesia:transaction(F),
 case Result of
 {atomic,_} ->
 population_monitor:start({OpMode,Population_Id,Selection_Algorithm});
 Error ->
 io:format(“******** ERROR in PopulationMonitor:~p~n”,[Error])
 end.
%The function init_population/1 creates a new population with the id Population_Id, composed
of length(Specie_Constraints) species, where each specie uses the particular specie constraint
specified within the Specie_Constraints list. The function first checks if a population with the

320 Chapter 8 Developing a Simple Neuroevolutionary Platform

noted Population_Id already exists. If a population with such an id does already exist, then the
function first deletes it, and then creates a new one. Since the ids are usually generated with the
genotype:create_UniqueId/0, the only way an already existing Population_Id is dropped into
the function as a parameter is if it is intended by the researcher. When performing benchmarks
or running other tests on the system, the Population_Id is set to test: Population_Id = test.

 create_Population(Population_Id,Specie_Constraints)->
 SpecieSize = ?INIT_SPECIE_SIZE,
 Specie_Ids = [create_specie(Population_Id,SpecCon,origin,SpecieSize) || SpecCon <-
Specie_Constraints],
 Population = #population{
 id = Population_Id,
 specie_ids = Specie_Ids
 },
 genotype:write(Population).

 create_specie(Population_Id,SpeCon,Fingerprint)->
 Specie_Id = genotype:generate_UniqueId(),
 create_specie(Population_Id,Specie_Id,0,[],SpeCon,Fingerprint).
 create_specie(Population_Id,SpeCon,Fingerprint,SpecieSize)->
 Specie_Id = genotype:generate_UniqueId(),
 create_specie(Population_Id,Specie_Id,SpecieSize,[],SpeCon,Fingerprint).
 create_specie(Population_Id,Specie_Id,0,IdAcc,SpeCon,Fingerprint)->
 io:format(“Specie_Id:~p Morphology:~p~n”,[Specie_Id,
SpeCon#constraint.morphology]),
 Specie = #specie{
 id = Specie_Id,
 population_id = Population_Id,
 fingerprint = Fingerprint,
 constraint = SpeCon,
 agent_ids = IdAcc
 },
 genotype:write(Specie),
 Specie_Id;
 create_specie(Population_Id,Specie_Id,Agent_Index,IdAcc,SpeCon,Fingerprint)->
 Agent_Id = {genotype:generate_UniqueId(),agent},
 genotype:construct_Agent(Specie_Id,Agent_Id,SpeCon),
 create_specie(Population_Id,Specie_Id,Agent_Index-1,[Agent_Id|IdAcc],
SpeCon,Fingerprint).
%The create_Population/3 generates length(Specie_Constraints) number of species, where each
specie is composed of ?INIT_SPECIE_SIZE number of agents. The function uses the cre-
ate_specie/4 to generate the species. The create_specie/3 and create_specie/4 functions are sim-
plified versions which use default parameters to call the create_specie/6 function. The cre-
ate_specie/6 function constructs the agents using the genotype:construct_Agent/3 function,
accumulating the Agent_Ids in the IdAcc list. Once all the agents have been created, the func-

8.5 Developing the genotype_mutator 321

tion creates the specie record, fills in the required elements, writes the specie record to data-
base, and then returns the Specie_Id to the caller.

continue(OpMode,Selection_Algorithm)->
 Population_Id = test,
 population_monitor:start({OpMode,Population_Id,Selection_Algorithm}).
continue(OpMode,Selection_Algorithm,Population_Id)->
 population_monitor:start({OpMode,Population_Id,Selection_Algorithm}).
%The function continue/2 and continue/3 are used to summon an already existing population
with Population_Id, and continue with the experiment using the chosen Selection_Algorithm.

mutate_population(Population_Id,KeepTot,Selection_Algorithm)->
 NeuralEnergyCost = calculate_EnergyCost(Population_Id),
 F = fun()->
 P = genotype:read({population,Population_Id}),
 Specie_Ids = P#population.specie_ids,
 [mutate_Specie(Specie_Id,KeepTot,NeuralEnergyCost,Selection_Algorithm) ||
Specie_Id <- Specie_Ids]
 end,
 {atomic,_} = mnesia:transaction(F).
%The function mutate_population/3 mutates the agents in every specie in its specie_ids list,
maintaining each specie within the size of KeepTot. The function first calculates the average
cost of each neuron, and then mutates each species separately using the calculated
NeuralEnergyCost and Selection_Algorithm as parameters.

 mutate_Specie(Specie_Id,PopulationLimit,NeuralEnergyCost,Selection_Algorithm)->
 S = genotype:dirty_read({specie,Specie_Id}),
 {AvgFitness,Std,MaxFitness,MinFitness} = calculate_SpecieFitness({specie,S}),
 Agent_Ids = S#specie.agent_ids,
 AgentSummaries = construct_AgentSummaries(Agent_Ids,[]),
 io:format(“Selection Algorirthm:~p~n”,[Selection_Algorithm]),
 case Selection_Algorithm of
 competition ->
 TotSurvivors =
round(length(AgentSummaries)*?SURVIVAL_PERCENTAGE),
 SDX=lists:reverse(lists:sort([{Fitness/math:pow(TotN,?EFF), {Fitness,
TotN,Agent_Id}}||{Fitness,TotN,Agent_Id}<-AgentSummaries])),
 ProperlySorted_AgentSummaries = [Val || {_,Val}<-SDX],
 Valid_AgentSummaries=lists:sublist(ProperlySorted_AgentSummaries,
TotSurvivors),
 Invalid_AgentSummaries=AgentSummaries--Valid_AgentSummaries,
 {_,_,Invalid_AgentIds} = lists:unzip3(Invalid_AgentSummaries),
 [genotype:delete_Agent(Agent_Id) || Agent_Id <- Invalid_AgentIds],
 io:format(“Valid_AgentSummaries:~p~n”,[Valid_AgentSummaries]),

322 Chapter 8 Developing a Simple Neuroevolutionary Platform

 io:format(“Invalid_AgentSummaries:~p~n”, [Inva-
lid_AgentSummaries]),
 TopAgentSummaries = lists:sublist(Valid_AgentSummaries,3),
 {_TopFitnessList,_TopTotNs,TopAgent_Ids} =
lists:unzip3(TopAgentSummaries),
 io:format(“NeuralEnergyCost:~p~n”,[NeuralEnergyCost]),
 NewGenAgent_Ids = competition(Valid_AgentSummaries,
PopulationLimit,NeuralEnergyCost);
 top3 ->
 TotSurvivors = 3,
 ProperlySorted_AgentSummaries =
lists:reverse(lists:sort(AgentSummaries)),
 Valid_AgentSummaries= lists:sublist(ProperlySorted_AgentSummaries,
TotSurvivors),
 Invalid_AgentSummaries=AgentSummaries--Valid_AgentSummaries,
 {_,_,Invalid_AgentIds} = lists:unzip3(Invalid_AgentSummaries),
 {_,_,Valid_AgentIds} = lists:unzip3(Valid_AgentSummaries),
 [genotype:delete_Agent(Agent_Id) || Agent_Id <- Invalid_AgentIds],
 io:format(“Valid_AgentSummaries:~p~n”,[Valid_AgentSummaries]),
 io:format(“Invalid_AgentSummaries:~p~n”, [Inva-
lid_AgentSummaries]),
 TopAgentSummaries = lists:sublist(Valid_AgentSummaries,3),
 {_TopFitnessList,_TopTotNs,TopAgent_Ids} =
lists:unzip3(TopAgentSummaries),
 io:format(“NeuralEnergyCost:~p~n”,[NeuralEnergyCost]),
 NewGenAgent_Ids = top3(Valid_AgentIds,PopulationLimit-
TotSurvivors,[])
 end,
 {FList,_TNList,_AgentIds}=lists:unzip3(ProperlySorted_AgentSummaries),
 [TopFitness|_] = FList,
 U_InnovationFactor = case TopFitness > S#specie.innovation_factor of
 true ->
 0;
 false ->
 S#specie.innovation_factor-1
 end,
 genotype:write(S#specie{
 agent_ids = NewGenAgent_Ids,
 champion_ids = TopAgent_Ids,
 fitness = {AvgFitness,Std,MaxFitness,MinFitness},
 innovation_factor = U_InnovationFactor}).
%The function mutate_Specie/4 uses the selection algorithm of type Selection_Algorithm to
separate the fit from the unfit agents within the same species, and then mutates the fit agents to
produce the final mutant offspring, maintaining the total specie size within PopulationLimit.
The function first creates a list of agent summaries, which is a list of the format: [{Fit-

8.5 Developing the genotype_mutator 323

ness,TotNeurons,Agent_Id}...]. The function then modifies the fitness scores to be proportional
to the agent’s efficiency, which is based on the number of neurons it took the agent to produce
this fitness (the NN’s size). The function then sorts the updated summaries, and then splits the
sorted summary list into a valid (fit) and invalid (unfit) lists of agents. The invalid agents are
deleted, and the valid agents are used to create offspring using the Selection_Algorithm with
which the function was called. The agent ids belonging to the next generation (the valid agents
and their offspring) are then produced by the selection function. Afterward, the innovation factor
(the last time the specie’s top fitness improved) is updated. Finally, the ids of the top 3 agents
within the specie are noted (these are the champion agents, best performing agents within the
specie), and the updated specie record is written to database. The above function shows two
types of selection algorithms, the ‘competition’ selection algorithm, and the ‘top3’ selection al-
gorithm.

 construct_AgentSummaries([Agent_Id|Agent_Ids],Acc)->
 A = genotype:dirty_read({agent,Agent_Id}),
 construct_AgentSummaries(Agent_Ids,[{A#agent.fitness,
length((genotype:dirty_read({cortex, A#agent.cx_id}))#cortex.neuron_ids),Agent_Id}|Acc]);
 construct_AgentSummaries([],Acc)->
 Acc.
%The construct_AgentSummaries/2 reads the agents in the Agent_Ids list, and composes a list
of tuples with the following format: [{AgentFitness,AgentTotNeurons,Agent_Id}...]. This list
of tuples is referred to as: AgentSummaries. Once the AgentSummaries list is created, it is re-
turned to the caller.

competition(Sorted_AgentSummaries,PopulationLimit,NeuralEnergyCost)->
 {AlotmentsP,NextGenSize_Estimate} = calculate_alotments(Sorted_AgentSummaries,
NeuralEnergyCost,[],0),
 Normalizer = NextGenSize_Estimate/PopulationLimit,
 io:format(“Population size normalizer:~p~n”,[Normalizer]),
 gather_survivors(AlotmentsP,Normalizer,[]).
%The competition/3 is part of the selection algorithm called ‘competition’. This function first
executes calculate_alotments/4 to calculate the number of offspring allotted to each agent in the
AgentSummaries list. The function then calculates the Normalizer value, which is used to nor-
malize the allotted number of offspring for each agent, to ensure that the final species size is
within PopulationLimit. The function then drops into the gather_survivors/3 function, which
uses the normalized offspring allotment values to create the actual mutant offspring for each
agent.

 calculate_alotments([{Fitness,TotNeurons,Agent_Id}|Sorted_AgentSummaries],
NeuralEnergyCost,Acc,NewPopAcc)->
 NeuralAlotment = Fitness/NeuralEnergyCost,
 MutantAlotment = NeuralAlotment/TotNeurons,
 U_NewPopAcc = NewPopAcc+MutantAlotment,
 calculate_alotments(Sorted_AgentSummaries,NeuralEnergyCost, [{MutantAlotment,
Fitness,TotNeurons,Agent_Id}|Acc],U_NewPopAcc);

324 Chapter 8 Developing a Simple Neuroevolutionary Platform

 calculate_alotments([],_NeuralEnergyCost,Acc,NewPopAcc)->
 io:format(“NewPopAcc:~p~n”,[NewPopAcc]),
 {Acc,NewPopAcc}.
%The calculate_alotments/4 function accepts the AgentSummaries list and for each agent, us-
ing the NeuralEnergyCost, calculates how many offspring that agent can produce by using the
agent’s Fitness, TotNeurons, and NeuralEnergyCost parameters. The function first calculates
how many neurons the agent is allotted, based on the agent’s fitness and the cost of each neuron
(which itself was calculated based on the average performance of the population). From the
number of neurons allotted to the agent, the function then calculates how many offspring the
agent should be allotted, by dividing the number of neurons it is allotted by the agent’s NN size.
The function also keeps track of how many offspring will be created from all these agents in
general, by adding up all the offspring allotments. The calculate_alotments/4 function does this
for each tuple in the AgentSummaries, and then returns the calculated allotment list and
NewPopAcc to the caller.

 gather_survivors([{MutantAlotment,Fitness,TotNeurons,Agent_Id}|AlotmentsP],
Normalizer, Acc)->
 Normalized_MutantAlotment = round(MutantAlotment/Normalizer),
 io:format(“Agent_Id:~p Normalized_MutantAlotment:~p~n”, [Agent_Id,
Normalized_MutantAlotment]),
 SurvivingAgent_Ids = case Normalized_MutantAlotment >= 1 of
 true ->
 MutantAgent_Ids = case Normalized_MutantAlotment >= 2 of
 true ->
 [create_MutantAgentCopy(Agent_Id)|| _ <-
lists:seq(1,Normalized_MutantAlotment-1)];
 false ->
 []
 end,
 [Agent_Id|MutantAgent_Ids];
 false ->
 io:format(“Deleting agent:~p~n”,[Agent_Id]),
 genotype:delete_Agent(Agent_Id),
 []
 end,
 gather_survivors(AlotmentsP,Normalizer,lists:append(SurvivingAgent_Ids,Acc));
 gather_survivors([],_Normalizer,Acc)->
 io:format(“New Population:~p PopSize:~p~n”,[Acc,length(Acc)]),
 Acc.
%The gather_survivors/3 function accepts the list composed of the allotment tuples and the
population normalizer value calculated by the competition/3 function. Using these values it cal-
culates the actual number of offspring that each agent should produce, creates the mutant off-
spring, and accumulates the new generation agent ids. For each Agent_Id the function first cal-
culates the normalized offspring allotment value, to ensure that the final number of agents in
the specie is within the population limit of that specie. If the offspring allotment value is less

8.5 Developing the genotype_mutator 325

than 0, the agent is killed. If the offspring allotment is 1, the agent is allowed to survive to the
next generation, but is not allowed to create any new offspring. If the offspring allotment is
greater than one, then the function creates Normalized_MutantAlotment-1 number of offspring
from this fit agent, by calling upon the create_MutantAgentCopy/1 function which returns the
id of the new mutant offspring. Once all the offspring have been created, the function returns to
the caller a list of ids, composed of the surviving parent agent ids, and their offspring.

 create_MutantAgentCopy(Agent_Id)->
 AgentClone_Id = genotype:clone_Agent(Agent_Id),
 io:format(“AgentClone_Id:~p~n”,[AgentClone_Id]),
 genome_mutator:mutate(AgentClone_Id),
 AgentClone_Id.
%The create_MutantAgentCopy/1 first creates a clone of the Agent_Id, and then uses the ge-
nome_mutator:mutate/1 function to mutate that clone, returning the id of the cloned agent to the
caller.

 create_MutantAgentCopy(Agent_Id,safe)->
 A = genotype:dirty_read({agent,Agent_Id}),
 S = genotype:dirty_read({specie,A#agent.specie_id}),
 AgentClone_Id = genotype:clone_Agent(Agent_Id),
 Agent_Ids = S#specie.agent_ids,
 genotype:write(S#specie{agent_ids = [AgentClone_Id|Agent_Ids]}),
 io:format(“AgentClone_Id:~p~n”,[AgentClone_Id]),
 genome_mutator:mutate(AgentClone_Id),
 AgentClone_Id.
%The create_MutantAgentCopy/2 function is similar to arity 1 function of the same name, but
it also adds the id of the cloned mutant agent to the specie record to which the parent genotype
belonged. The specie with its updated agent_ids is then written to database, and the id of the
mutant clone is returned to the caller.

top3(_Valid_AgentIds,0,Acc)->
 Acc;
top3(Valid_AgentIds,OffspringIndex,Acc)->
 Parent_AgentId = lists:nth(random:uniform(length(Valid_AgentIds)),Valid_AgentIds),
 MutantAgent_Id = create_MutantAgentCopy(Parent_AgentId),
 top3(Valid_AgentIds,OffspringIndex-1,[MutantAgent_Id|Acc]).
%The top3/3 function is a very simple selection algorithm, which just selects the top 3 most fit
agents, and then uses the create_MutantAgentCopy/1 function to create their offspring. Each
parent agent is allowed to create the same number of offspring.

delete_population(Population_Id)->
 P = genotype:dirty_read({population,Population_Id}),
 Specie_Ids = P#population.specie_ids,
 [delete_specie(Specie_Id) || Specie_Id <- Specie_Ids],
 mnesia:delete({population,Population_Id}).

326 Chapter 8 Developing a Simple Neuroevolutionary Platform

%The delete_population/1 function deletes the entire population, by deleting the specie records
belonging to the Population_Id, by deleting the agent records belonging to those species, and
then by deleting the population record itself.

 delete_specie(Specie_Id)->
 S = genotype:dirty_read({specie,Specie_Id}),
 Agent_Ids = S#specie.agent_ids,
 [genotype:delete_Agent(Agent_Id) || Agent_Id <- Agent_Ids],
 mnesia:delete({specie,Specie_Id}).
%The delete_specie/1 function deletes the agents associated with the Specie_Id, and then de-
letes the specie record itself.

calculate_EnergyCost(Population_Id)->
 Agent_Ids = extract_AgentIds(Population_Id,all),
 TotEnergy = lists:sum([extract_AgentFitness(Agent_Id) || Agent_Id<-Agent_Ids]),
 TotNeurons = lists:sum([extract_AgentTotNeurons(Agent_Id) || Agent_Id <- Agent_Ids]),
 EnergyCost = TotEnergy/TotNeurons,
 EnergyCost.
%The calculate_EnergyCost/1 function calculates the average cost of each neuron, based on the
fitness of each agent in the population, and the total number of neurons in the population. The
value is calculated by first adding up all the fitness scores of the agents belonging to the popula-
tion, then adding up the total number of neurons composing each agent in the population, and
then finally by producing the EnergyCost, where EnergyCost = TotEnergy/TotNeurons. After-
wards, the function returns this value to the caller.

 extract_AgentTotNeurons(Agent_Id)->
 A = genotype:dirty_read({agent,Agent_Id}),
 Cx = genotype:dirty_read({cortex,A#agent.cx_id}),
 Neuron_Ids = Cx#cortex.neuron_ids,
 length(Neuron_Ids).

 extract_AgentFitness(Agent_Id)->
 A = genotype:dirty_read({agent,Agent_Id}),
 A#agent.fitness.
%The function extract_AgentTotNeurons simply extracts the neuron_ids list, and returns the
length of that list to the caller. The length of the list is the total number of neurons belonging to
the NN based system.

calculate_SpecieFitness({specie,S})->
 Agent_Ids = S#specie.agent_ids,
 FitnessAcc = calculate_fitness(Agent_Ids),
 Sorted_FitnessAcc=lists:sort(FitnessAcc),
 [MinFitness|_] = Sorted_FitnessAcc,
 [MaxFitness|_] = lists:reverse(Sorted_FitnessAcc),
 AvgFitness = functions:avg(FitnessAcc),

8.5 Developing the genotype_mutator 327

 Std = functions:std(FitnessAcc),
 {AvgFitness,Std,MaxFitness,MinFitness};
calculate_SpecieFitness(Specie_Id)->
 S = genotype:dirty_read({specie,Specie_Id}),
 calculate_SpecieFitness({specie,S}).
%The calculate_SpecieFitness/1 function calculates the general fitness statistic of the specie:
the average, max, min, and standard deviation of the specie’s fitness. The function first com-
poses a fitness list by accessing the fitness scores of each agent belonging to it, and then calcu-
lates the above noted statistics from that list, returning the tuple with these three values, to the
caller.

 calculate_fitness(Agent_Ids)->
 calculate_fitness(Agent_Ids,[]).
 calculate_fitness([Agent_Id|Agent_Ids],FitnessAcc)->
 A = genotype:dirty_read({agent,Agent_Id}),
 case A#agent.fitness of
 undefined ->
 calculate_fitness(Agent_Ids,FitnessAcc);
 Fitness ->
 calculate_fitness(Agent_Ids,[Fitness|FitnessAcc])
 end;
 calculate_fitness([],FitnessAcc)->
 FitnessAcc.
%The calculate_fitness/1 function composes a fitness list using the fitness values belonging to
the agents in the Agent_Ids list. If the agent does not yet have a fitness score, if for example it
has just been created/mutated but not yet evaluated, it is skipped. The composed fitness list is
then returned to the caller.

Having now completed the population_monitor module, we move onwards and
update the exoself module in the next section.

8.5.16 Updating the exoself Module

The exoself is a process that has a global view of the NN, and can be used to
monitor the NN processes, to restore damaged neurons, to recover the NN based
system from crashes, and to offer the NN system other services. It is also the pro-
gram that in a sense is a phenotypical representation of the agent record. The
exoself is the process that is spawned first, and which then in turn converts its
NN’s genotype to phenotype. It is the exoself process that tunes the NN system’s
neural weights, and summons the private scapes with which the NN system inter-
faces.

Fig. 8.14 Deadlock occurring in recurrent NN based systems.

328 Chapter 8 Developing a Simple Neuroevolutionary Platform

Unlike in the previous chapter, there is no trainer in the neuroevolutionary system.
The population monitor will spawn exoselfs, which will then spawn the NN based sys-
tems. Previously, the exoself used an augmented stochastic hill climbing algorithm to
optimize the weights. In this chapter we are creating a memetic and genetic algorithm
based TWEANN system. If we evolve the agent’s topology during one phase, and let
the exoself optimize synaptic weights during another, the system will be a memetic al-
gorithm based TWEANN. If we make ?MAX_ATTEMPTS equal to 0, the exoself
does not optimize the weights outside the selection/mutation phase ran by the popula-
tion_monitor process, weight perturbation is done during the mutation phase using the
mutate_weights MO only, and thus this neuroevolutionary system begins to behave as
a standard genetic algorithm based TWEANN.

Beside the switch to the mnesia database read and write functions, and the
exoself’s connection to the population_monitor instead of the trainer process, the
main addition to the algorithm has to do with the fact that the new NN has recur-
sive connections. Note that when we have spawned the phenotype of a NN with
recurrent connections, the neurons which have these recursive output connections,
cannot output any signals because they await the input signals from their presyn-
aptic connections. Some of these presynaptic neurons cannot produce an output
signal either, not until they receive their signals from the recursively connected
neurons in the later layers... Thus there is a deadlock, as shown in Fig-8.14.

Let us go through the steps of the above figure:

1. The sensor acquires the sensory signal, from an interaction with the environ-
ment, or by generating it internally, for example.

2. The sensor forwards the sensory signal to the two neurons it is connected to,
A1 and A2.

3. Neuron A1 is only waiting for a single input signal, from S. As soon as it re-
ceives this signal, it processes it and forwards an output to B1. Neuron A2 on
the other hand waits for two input signals, a signal from S, and a signal from
B2. It receives the signal from S, but not from B2, because B2 is waiting for the
signal from A2 before it can send a signal to A2... thus there is a deadlock.

8.5 Developing the genotype_mutator 329

It is for this reason that we have created the ro_ids list for each neuron. Since
each neuron that has recursive connections knows about them through ro_ids. It
then can, as soon as it is spawned, send a default signal: [0], to the elements in its
ro_ids list. This effectively breaks the deadlock, if there was any, since any ele-
ment dependent on this input signal, can now continue with processing the input
signals and output a signal of its own.

out by the neurons when they have just been created, ensures that when the NN has
finished its evaluation and should be restarted (when for example we wish to reset or
revert the neural weights and perform weight perturbation), will result in some of the
neurons (those connected to from the recurrent neurons) have a populated inbox. The
neurons which are connected from the recurrent neurons, will have recursive signals in
their inbox. To deal with this situation and reset the neurons back to their initial, pris-
tine conditions after the NN’s evaluation has ended, we need to flush each neuron’s
inbox. To do this, we first ensure that all neurons are put on pause, then have their in-
boxes flushed, then reset all neurons (which might mean that some of the neurons will
send out fresh recursive signals [0]) in the NN, and then finally reactive the cortex pro-
cess, so that it can start its synchronization of sensors and actuators anew. This new
flush buffering function added to the neurons, and the ability to reset/clear neurons to
their initial state, is the main new functional addition to the exoself.

Fig. 8.15 To reset the NN based agent after its evaluation, first pause the neurons, then
flush the neurons, and then reactivate all neurons. At this point each neuron which has a
recurrent connection will send out a new [0] signal to all elements in its ro_ids list.

But this approach also leads to a problem when our system functions as a memetic
algorithm based TWEANN, and when it performs multiple evaluations of the NN sys-
tem. If you look at Fig-8.15, you will note that the default recursive signals, [0], sent

330 Chapter 8 Developing a Simple Neuroevolutionary Platform

Let us quickly go through the steps of the above figure before we update the
exoself module with this functionality:

1. Sensor S gathers sensory signals. While at the same time, neuron B2 sends out
a default [0] signal to elements in its ro_ids list, which in this case is the neu-
ron A2.

2. The sensor forwards the sensory signals to A1 and A2.
3. A1 and A2 process signals, and because A2 has received in step 1 the signal

from B2, it is able to process the two input signals.
4. A1 and A2 forward their output signals to B1 and B2 respectively.
5. B1 and B2 process their input signals, and produce output signals.
6. B1 forwards its signal to the actuator, while B2 forwards its signal to the actua-

tor, and to neuron A2.
7. The actuator element processes its input signals.
8. At this point the sensors could again gather the sensory signals and forward

them to the neurons, but we assume here that the evaluation just finished. At
this point, because in step 6 a signal was sent to A2 from B2, the neuron A2
currently has a signal from B2 in its inbox, even though the evaluation is now
over. If we at this point restart the NN system, B2 will again send the default
recurrent signal to A2, but A2 still has in its inbox the signal from the previous
evaluation... For this reason the exoself first sends a pause signal to all the neu-
rons, after which point they flush their buffers/inboxes to go back to their ini-
tial, clean states.

9. When a neuron receives a pause signal from the exoself, it first pauses, and
then flushes its buffer. Afterwards it awaits the reset signal, at which point it al-
so resets its input pids list to its initial state, to again await input signals from
all the elements it is connected from. If the neuron has any ids in its ro_ids list,
it outputs to those elements the default signal: [0].

Having now discussed in detail the importance of buffer flushing, and the man-
ner in which the exoself pauses and resets neurons after each evaluation, we now
update the exoself module, as shown in Listing-8.19.

Listing-8.19: The updated implementation of the exoself module.

-module(exoself).
-compile(export_all).
-include(“records.hrl”).
-record(state,{file_name,genotype,idsNpids,cx_pid,spids,npids,apids,highest_fitness,
tot_evaluations,tot_cycles}).
-define(MAX_ATTEMPTS,50).

start(Agent_Id,PM_PId)->
 spawn(exoself,prep,[Agent_Id,PM_PId]).
%The start/2 function spawns a new Agent_Id exoself process belonging to the popula-
tion_monitor process with the pid: PM_PId.

8.5 Developing the genotype_mutator 331

prep(Agent_Id,PM_PId)->
 random:seed(now()),
 IdsNPIds = ets:new(idsNpids,[set,private]),
 A = genotype:dirty_read({agent,Agent_Id}),
 Cx = genotype:dirty_read({cortex,A#agent.cx_id}),
 SIds = Cx#cortex.sensor_ids,
 AIds = Cx#cortex.actuator_ids,
 NIds = Cx#cortex.neuron_ids,
 ScapePIds = spawn_Scapes(IdsNPIds,SIds,AIds),
 spawn_CerebralUnits(IdsNPIds,cortex,[Cx#cortex.id]),
 spawn_CerebralUnits(IdsNPIds,sensor,SIds),
 spawn_CerebralUnits(IdsNPIds,actuator,AIds),
 spawn_CerebralUnits(IdsNPIds,neuron,NIds),
 link_Sensors(SIds,IdsNPIds),
 link_Actuators(AIds,IdsNPIds),
 link_Neurons(NIds,IdsNPIds),
 {SPIds,NPIds,APIds}=link_Cortex(Cx,IdsNPIds),
 Cx_PId = ets:lookup_element(IdsNPIds,Cx#cortex.id,2),
 loop(Agent_Id,PM_PId,IdsNPIds,Cx_PId,SPIds,NPIds,APIds,ScapePIds,0,0,0,0,1).
%The prep/2 function prepares and sets up the exoself’s state before dropping into the main
loop. The function first reads the agent and cortex records belonging to the Agent_Id NN based
system. The function then reads the sensor, actuator, and neuron ids, then spawns the private
scapes using the spawn_Scapes/3 function, then spawns the cortex, sensor, actuator, and neuron
processes, and then finally links up all these processes together using the link_.../2 functions.
Once the phenotype has been generated from the genotype, the exoself drops into its main loop.

loop(Agent_Id,PM_PId,IdsNPIds,Cx_PId,SPIds,NPIds,APIds,ScapePIds,HighestFitness,
EvalAcc,CycleAcc,TimeAcc,Attempt)->
 receive
 {Cx_PId,evaluation_completed,Fitness,Cycles,Time}->
 {U_HighestFitness,U_Attempt}=case Fitness > HighestFitness of
 true ->
 [NPId ! {self(),weight_backup} || NPId <- NPIds],
 {Fitness,0};
 false ->
 Perturbed_NPIds=get(perturbed),
 [NPId ! {self(),weight_restore} || NPId <- Perturbed_NPIds],
 {HighestFitness,Attempt+1}
 end,
 [PId ! {self(), reset_prep} || PId <- NPIds],
 gather_acks(length(NPIds)),
 [PId ! {self(), reset} || PId <- NPIds],
 case U_Attempt >= ?MAX_ATTEMPTS of
 true -> %End training

332 Chapter 8 Developing a Simple Neuroevolutionary Platform

 U_CycleAcc = CycleAcc+Cycles,
 U_TimeAcc = TimeAcc+Time,
 A=genotype:dirty_read({agent,Agent_Id}),
 genotype:write(A#agent{fitness=U_HighestFitness}),
 backup_genotype(IdsNPIds,NPIds),
 terminate_phenotype(Cx_PId,SPIds,NPIds,APIds,ScapePIds),
 io:format(“Agent:~p terminating. Genotype has been backed
up.~n Fitness:~p~n TotEvaluations:~p~n TotCycles:~p~n TimeAcc:~p~n”, [self(),
U_HighestFitness, EvalAcc,U_CycleAcc, U_TimeAcc]),
 gen_server:cast(PM_PId,{Agent_Id,terminated,
U_HighestFitness,EvalAcc,U_CycleAcc,U_TimeAcc});
 false -> %Continue training
 Tot_Neurons = length(NPIds),
 MP = 1/math:sqrt(Tot_Neurons),
 Perturb_NPIds=[NPId || NPId <- NPIds,random:uniform()<MP],
 put(perturbed,Perturb_NPIds),
 [NPId ! {self(),weight_perturb} || NPId <- Perturb_NPIds],
 Cx_PId ! {self(),reactivate},
 loop(Agent_Id,PM_PId,IdsNPIds,Cx_PId,SPIds, NPIds, APIds,
ScapePIds,U_HighestFitness, EvalAcc+1,CycleAcc+Cycles,TimeAcc+Time,U_Attempt)
 end
 end.
%The exoself process’ main loop awaits from its cortex process the evoluation_completed mes-
sage. Once the message is received, based on the fitness achieved, exoself decides whether to
continue tuning the weights or terminate the system. Exoself tries to improve the fitness by per-
turbing/tuning the weights of its neurons. After each tuning (synaptic weight perturbation) ses-
sion, the Neural Network based system performs another evaluation by interacting with the
scape until completion (the NN solves a problem, or dies within the scape or...). The order of
events is important: When evaluation_completed message is received, the function first checks
whether the newly achieved fitness is higher than the thus far highest achieved fitness. If it is
not, the exoself sends the neurons a message to restore their weights to previous state, during
which they achieved the highest fitness, instead of their current state which yielded the current
lower fitness score. If on the other hand the new fitness is higher than the previously highest
achieved fitness, then the function tells the neurons to backup their current weights, as these
weights represent the NN’s best, most fit form yet. Exoself then tells all the neurons to prepare
for a reset by sending each neuron the {self(),reset_prep} message. Since the NN can have re-
cursive connections, it is important for each neuron to flush its buffer/inbox to be reset into an
initial fresh state, which is achieved after the neurons receive the reset_prep message. The
exoself then sends the reset message to the neurons, which returns them to their main loop.

r it has already tried to improve the NN’s fitness a maximum
(?MAX_ATTEMPTS) number of times. If that is the case, the exoself process backs up the up-
dated NN (the updated, tuned weights) to database using the backup_genotype/2 function,
prints to screen that it is terminating, and sends to the population_monitor the accumulated sta-
tistics (highest fitness, evaluation count, cycle count...). On the other hand, if the exoself is not
yet done tuning the neural weights, if it has not yet reached its ending condition, it instead ran-

Finally, the exoself checks whethe

8.5 Developing the genotype_mutator 333

domly selects a set of neurons from its NPIds list, and requests that they perturb their synaptic
weights, then reactivates the cortex, and then finally drops back into its main loop. Each neuron
in the NPId list has a probability: 1/math(sqrt(Tot_Neurons)) of being selected for weight per-
turbation, a value that is proportional to the total number of neurons in the NN, and grows with
the NN size.

 spawn_CerebralUnits(IdsNPIds,CerebralUnitType,[Id|Ids])->
 PId = CerebralUnitType:gen(self(),node()),
 ets:insert(IdsNPIds,{Id,PId}),
 ets:insert(IdsNPIds,{PId,Id}),
 spawn_CerebralUnits(IdsNPIds,CerebralUnitType,Ids);
 spawn_CerebralUnits(_IdsNPIds,_CerebralUnitType,[])->
 true.
%We spawn the process for each element based on its type: CerebralUnitType, using the gen
function that belongs to the CerebralUnitType module. Then we enter the {Id,PId} tuple into
our ETS table for later use, thus establishing a mapping between Ids and their PIds.

 spawn_Scapes(IdsNPIds,Sensor_Ids,Actuator_Ids)->
 Sensor_Scapes = [(genotype:dirty_read({sensor,Id}))#sensor.scape || Id<-Sensor_Ids],
 Actuator_Scapes = [(genotype:dirty_read({actuator,Id}))#actuator.scape || Id<-
Actuator_Ids],
 Unique_Scapes = Sensor_Scapes++(Actuator_Scapes--Sensor_Scapes),
 SN_Tuples=[{scape:gen(self(),node()),ScapeName} || {private,ScapeName}<-
Unique_Scapes],
 [ets:insert(IdsNPIds,{ScapeName,PId}) || {PId,ScapeName} <- SN_Tuples],
 [ets:insert(IdsNPIds,{PId,ScapeName}) || {PId,ScapeName} <-SN_Tuples],
 [PId ! {self(),ScapeName} || {PId,ScapeName} <- SN_Tuples],
 [PId || {PId,_ScapeName} <-SN_Tuples].
%The spawn_Scapes/3 function first extracts all the scapes that the sensors and actuators inter-
face with. Then it creates a filtered scape list which only holds unique scape records. Finally,
from this list it selects the private scapes, and then spawns them.

 link_Sensors([SId|Sensor_Ids],IdsNPIds) ->
 S=genotype:dirty_read({sensor,SId}),
 SPId = ets:lookup_element(IdsNPIds,SId,2),
 Cx_PId = ets:lookup_element(IdsNPIds,S#sensor.cx_id,2),
 SName = S#sensor.name,
 Fanout_Ids = S#sensor.fanout_ids,
 Fanout_PIds = [ets:lookup_element(IdsNPIds,Id,2) || Id <- Fanout_Ids],
 Scape=case S#sensor.scape of
 {private,ScapeName}->
 ets:lookup_element(IdsNPIds,ScapeName,2)
 end,
 SPId ! {self(),{SId,Cx_PId,Scape,SName,S#sensor.vl,Fanout_PIds}},
 link_Sensors(Sensor_Ids,IdsNPIds);

334 Chapter 8 Developing a Simple Neuroevolutionary Platform

 link_Sensors([],_IdsNPIds)->
 ok.
%The link_Sensors/2 function sends to the already spawned and waiting sensors their states,
composed of the PId lists and other information which are needed by the sensors to link up and
interface with other elements in the distributed phenotype.

 link_Actuators([AId|Actuator_Ids],IdsNPIds) ->
 A=genotype:dirty_read({actuator,AId}),
 APId = ets:lookup_element(IdsNPIds,AId,2),
 Cx_PId = ets:lookup_element(IdsNPIds,A#actuator.cx_id,2),
 AName = A#actuator.name,
 Fanin_Ids = A#actuator.fanin_ids,
 Fanin_PIds = [ets:lookup_element(IdsNPIds,Id,2) || Id <- Fanin_Ids],
 Scape=case A#actuator.scape of
 {private,ScapeName}->
 ets:lookup_element(IdsNPIds,ScapeName,2)
 end,
 APId ! {self(),{AId,Cx_PId,Scape,AName,Fanin_PIds}},
 link_Actuators(Actuator_Ids,IdsNPIds);
 link_Actuators([],_IdsNPIds)->
 ok.
%The link_Actuators/2 function sends to the already spawned and waiting actuators their states,
composed of the PId lists and other information which are needed by the actuators to link up
and interface with other elements in the distributed phenotype.

 link_Neurons([NId|Neuron_Ids],IdsNPIds) ->
 N=genotype:dirty_read({neuron,NId}),
 NPId = ets:lookup_element(IdsNPIds,NId,2),
 Cx_PId = ets:lookup_element(IdsNPIds,N#neuron.cx_id,2),
 AFName = N#neuron.af,
 Input_IdPs = N#neuron.input_idps,
 Output_Ids = N#neuron.output_ids,
 RO_Ids = N#neuron.ro_ids,
 Input_PIdPs = convert_IdPs2PIdPs(IdsNPIds,Input_IdPs,[]),
 Output_PIds = [ets:lookup_element(IdsNPIds,Id,2) || Id <- Output_Ids],
 RO_PIds = [ets:lookup_element(IdsNPIds,Id,2) || Id <- RO_Ids],
 NPId ! {self(),{NId,Cx_PId,AFName,Input_PIdPs,Output_PIds,RO_PIds}},
 link_Neurons(Neuron_Ids,IdsNPIds);
 link_Neurons([],_IdsNPIds)->
 ok.
%The link_Neurons/2 function sends to the already spawned and waiting neurons their states,
composed of the PId lists and other information needed by the neurons to link up and interface
with other elements in the distributed phenotype.

 convert_IdPs2PIdPs(_IdsNPIds,[{bias,[Bias]}],Acc)->

8.5 Developing the genotype_mutator 335

 lists:reverse([Bias|Acc]);
 convert_IdPs2PIdPs(IdsNPIds,[{Id,Weights}|Fanin_IdPs],Acc)->
 convert_IdPs2PIdPs(IdsNPIds,Fanin_IdPs, [{ets:lookup_element(IdsNPIds, Id,
2),Weights}|Acc]);
 convert_IdPs2PIdPs(_IdsNPIds,[],Acc)->
 lists:reverse(Acc).
%The convert_IdPs2PIdPs/3 converts the IdP tuples: {Id, Weights}, into tuples that use PIds
instead of Ids: {PId, Weights}, such that the Neuron will know which weights are to be associ-
ated with which incoming vector signals. The last element is the bias, which is added to the list
in a none-tuple form. Afterwards, the list is reversed to its proper order, and returned to the
caller.

 link_Cortex(Cx,IdsNPIds) ->
 Cx_Id = Cx#cortex.id,
 Cx_PId = ets:lookup_element(IdsNPIds,Cx_Id,2),
 SIds = Cx#cortex.sensor_ids,
 AIds = Cx#cortex.actuator_ids,
 NIds = Cx#cortex.neuron_ids,
 SPIds = [ets:lookup_element(IdsNPIds,SId,2) || SId <- SIds],
 NPIds = [ets:lookup_element(IdsNPIds,NId,2) || NId <- NIds],
 APIds = [ets:lookup_element(IdsNPIds,AId,2) || AId <- AIds],
 Cx_PId ! {self(),Cx_Id,SPIds,NPIds,APIds},
 {SPIds,NPIds,APIds}.
%The link_Cortex/2 function sends to the already spawned and waiting cortex its state, com-
posed of the PId lists and other information which is needed by the cortex to link up and inter-
face with other elements in the distributed phenotype.

backup_genotype(IdsNPIds,NPIds)->
 Neuron_IdsNWeights = get_backup(NPIds,[]),
 update_genotype(IdsNPIds,Neuron_IdsNWeights),
 io:format(“Finished updating genotype~n”).

 get_backup([NPId|NPIds],Acc)->
 NPId ! {self(),get_backup},
 receive
 {NPId,NId,WeightTuples}->
 get_backup(NPIds,[{NId,WeightTuples}|Acc])
 end;
 get_backup([],Acc)->
 Acc.
%The backup_genotype/2 uses get_backup/2 to contact all the neurons in the NN and request
the neuron’s Ids and their Input_IdPs. Once the updated Input_IdPs from all the neurons have
been accumulated, they are passed through the update_genotype/2 function to produce updated
neuron tuples, and are then written to database. This effectively updates the NN genotype with
the now tuned neurons.

336 Chapter 8 Developing a Simple Neuroevolutionary Platform

 update_genotype(IdsNPIds,[{N_Id,PIdPs}|WeightPs])->
 N = genotype:dirty_read({neuron,N_Id}),
 Updated_InputIdPs = convert_PIdPs2IdPs(IdsNPIds,PIdPs,[]),
 U_N = N#neuron{input_idps = Updated_InputIdPs},
 genotype:write(U_N),
 update_genotype(IdsNPIds,WeightPs);
 update_genotype(_IdsNPIds,[])->
 ok.
%For every {N_Id,PIdPs} tuple, the update_genotype/3 function extracts the neuron with the
id: N_Id, updates the neuron’s input_IdPs, and writes the updated neuron to database.

 convert_PIdPs2IdPs(IdsNPIds,[{PId,Weights}|Input_PIdPs],Acc)->
 convert_PIdPs2IdPs(IdsNPIds,Input_PIdPs, [{ets:lookup_element(IdsNPIds,
PId,2),Weights}|Acc]);
 convert_PIdPs2IdPs(_IdsNPIds,[Bias],Acc)->
 lists:reverse([{bias,[Bias]}|Acc]);
 convert_PIdPs2IdPs(_IdsNPIds,[],Acc)->
 lists:reverse(Acc).
%The convert_PIdPs2IdPs/3 function performs the conversion from PIds to Ids for every
{PId,Weights} tuple in the Input_PIdPs list. The updated Input_IdPs list is then returned to the
caller.

terminate_phenotype(Cx_PId,SPIds,NPIds,APIds,ScapePIds)->
 [PId ! {self(),terminate} || PId <- SPIds],
 [PId ! {self(),terminate} || PId <- APIds],
 [PId ! {self(),terminate} || PId <- NPIds],
 [PId ! {self(),terminate} || PId <- ScapePIds],
 Cx_PId ! {self(),terminate}.
%The terminate_phenotype/5 function terminates sensors, actuators, neurons, all private scapes,
and the cortex, making up the phenotype of the NN based system.

gather_acks(0)->
 done;
gather_acks(PId_Index)->
 receive
 {_From,ready}->
 gather_acks(PId_Index-1)
 after 100000 ->
 io:format(“******** Not all acks received:~p~n”,[PId_Index])
 end.
%gather_acks/1 function ensures that it receives all X number of {From, ready} messages from
the neurons, before it returns the atom: done, to the caller. X is set by the caller of the function.

8.5 Developing the genotype_mutator 337

8.5.17 Updating the neuron Module

Though the next element in the hierarchy is the cortex element, it does not re-
quire any updates. The only remaining module that needs to be updated is the neu-
ron module. Unlike in the previous chapter, our current neurons need to be able to
support recursive connections, and all the synchronization detail that comes with
it. As discussed in the previous section, the neurons which have recursive connec-
tions need to produce and forward the signal: [0], to the ids in the ro_ids list, when
just being initiated. Furthermore, when the NN based system has completed inter-
acting with a scape, and the cortex has deactivated (but not shut down), if the
exoself wants to reactivate the cortex, the neurons need to flush their buff-
ers/inboxes so that they can return to their initial, pristine form (but with updated
synaptic weights). When flushing its buffer, the neuron gets rid of any recursive
signals remaining in its inbox, as was shown in the previous section.

Another addition in this chapter is that the NN based systems have access to
different kinds of neural activation functions. The activation function used by the
neuron is randomly selected during the neuron’s creation during evolution. Since
in the future we will continue adding new activation functions, and in general new
mathematical and geometric functions, we should create a new small module
called functions.erl, which will contain all these activation and other types of func-
tions. Thus, since the neuron record uses the element af which contains the name
of the actual activation function, these activation function names will be the names
of the actual implemented functions located in the functions.erl module. The neu-
ron will need only call [functions:ActivationFunction(Dot_Product)], to produce
its output value.

With these new additions, the neuron should be able to perform the following
tasks:

1. Start up in a new process, wait for the exoself to set its state, check if it has any
recursive output connections, and if so, send to those elements a default signal:
{self(),forward,[0]}, and then drop into its main loop.

2. The neuron should be able to gather all the incoming signals from the In-
put_PIds specified in its Input_PIdPs list, and calculate a dot product from the
input signals and the weights associated with those input signals.

3. Once all the input signals correlated with the Input_PIds in its Input_PIdPs list
have been received, the neuron adds the bias, if any, to the calculated dot prod-
uct, and then, based on the AF (Activation Function) tag, calculates the output
by executing: [functions:ActivationFunction(Dot_Product)]. The calculated
output signal is then propagated to all the PIds in its Output_PIds list.

4. The neuron should be able to receive the weight_backup signal. When receiv-
ing this signal, the neuron should store its current synaptic weights list to
memory.

5. The neuron should be able to receive the weight_restore signal. When receiv-
ing this signal, the neuron should restore the synaptic weights it stored in

338 Chapter 8 Developing a Simple Neuroevolutionary Platform

memory, and use them instead of the weights it currently uses in association
with the Input_PIds.

6. The neuron should be able to accept the weight_perturb message. When receiv-
ing this message, the neuron should go through all its weights, and select each
synaptic weight for perturbation with probability of 1/sqrt(TotWeights). The
perturbation intensity applied to each synaptic weight is chosen with uniform
distribution to be between -Pi and Pi.

7. The neuron should be able to accept the reset_prep message. When the neuron
receives this message, it should flush its inbox, and then wait for the reset mes-
sage, after which it should send out the default recursive signal (if any), and
drop back into its main loop. Since all the other neurons should have also
flushed their inboxes (the reset_prep and reset signaling is synchronized by the
exoself, to ensure that all neurons go back to initial state when needed), the
neurons are ready to receive these new recursive signals. At this point, their in-
boxes are empty, and not containing the recursive signals from their previous
cycles.

The modified neuron module updated with these features is shown in the fol-
lowing listing.

Listing 8.20: The updated neuron module.

-module(neuron).
-compile(export_all).
-include(“records.hrl”).
-define(DELTA_MULTIPLIER,math:pi()*2).
-define(SAT_LIMIT,math:pi()*2).
-define(RO_SIGNAL,0).

gen(ExoSelf_PId,Node)->
 spawn(Node,?MODULE,prep,[ExoSelf_PId]).

prep(ExoSelf_PId) ->
 {V1,V2,V3} = now(),
 random:seed(V1,V2,V3),
 receive
 {ExoSelf_PId,{Id,Cx_PId,AF,Input_PIdPs,Output_PIds,RO_PIds}} ->
 fanout(RO_PIds,{self(),forward,[?RO_SIGNAL]}),
 loop(Id,ExoSelf_PId,Cx_PId,AF,{Input_PIdPs,Input_PIdPs},Output_PIds,
RO_PIds,0)
 end.
%When gen/2 is executed, it spawns the neuron element and immediately begins to wait for its
initial state message from the exoself. Once the state message arrives, the neuron sends out the
default forward signals to all elements in its ro_ids list. Afterwards, prep drops into the neu-
ron’s main receive loop.

8.5 Developing the genotype_mutator 339

loop(Id,ExoSelf_PId,Cx_PId,AF,{[{Input_PId,Weights}|Input_PIdPs],MInput_PIdPs},
Output_PIds,RO_PIds,Acc)->
 receive
 {Input_PId,forward,Input}->
 Result = dot(Input,Weights,0),
 loop(Id,ExoSelf_PId,Cx_PId,AF,{Input_PIdPs,MInput_PIdPs},Output_PIds,
RO_PIds,Result+Acc);
 {ExoSelf_PId,weight_backup}->
 put(weights,MInput_PIdPs),
 loop(Id,ExoSelf_PId,Cx_PId,AF,{[{Input_PId,Weights}|Input_PIdPs],
MInput_PIdPs}, Output_PIds,RO_PIds,Acc);
 {ExoSelf_PId,weight_restore}->
 RInput_PIdPs = get(weights),
 loop(Id,ExoSelf_PId,Cx_PId,AF,{RInput_PIdPs,RInput_PIdPs},Output_PIds,
RO_PIds,Acc);
 {ExoSelf_PId,weight_perturb}->
 PInput_PIdPs=perturb_IPIdPs(MInput_PIdPs),
 loop(Id,ExoSelf_PId,Cx_PId,AF,{[{Input_PId,Weights}|Input_PIdPs],
PInput_PIdPs},Output_PIds,RO_PIds,Acc);
 {ExoSelf,reset_prep}->
 neuron:flush_buffer(),
 ExoSelf ! {self(),ready},
 receive
 {ExoSelf, reset}->
 fanout(RO_PIds,{self(),forward,[?RO_SIGNAL]})
 end,
 loop(Id,ExoSelf_PId,Cx_PId,AF,{MInput_PIdPs,MInput_PIdPs},Output_PIds,
RO_PIds,0);
 {ExoSelf_PId,get_backup}->
 ExoSelf_PId ! {self(),Id,MInput_PIdPs},
 loop(Id,ExoSelf_PId,Cx_PId,AF,{[{Input_PId,Weights}|Input_PIdPs],
MInput_PIdPs},Output_PIds,RO_PIds,Acc);
 {ExoSelf_PId,terminate}->
 ok
 end;
loop(Id,ExoSelf_PId,Cx_PId,AF,{[Bias],MInput_PIdPs},Output_PIds,RO_PIds,Acc)->
 Output = functions:AF(Acc+Bias),
 [Output_PId ! {self(),forward,[Output]} || Output_PId <- Output_PIds],
 loop(Id,ExoSelf_PId,Cx_PId,AF,{MInput_PIdPs,MInput_PIdPs},Output_PIds,RO_PIds,0);
loop(Id,ExoSelf_PId,Cx_PId,AF,{[],MInput_PIdPs},Output_PIds,RO_PIds,Acc)->
 Output = functions:AF(Acc),
 [Output_PId ! {self(),forward,[Output]} || Output_PId <- Output_PIds],
 loop(Id,ExoSelf_PId,Cx_PId,AF,{MInput_PIdPs,MInput_PIdPs},Output_PIds,RO_PIds,0).

340 Chapter 8 Developing a Simple Neuroevolutionary Platform

%The neuron process waits for vector signals from all the processes that it’s connected from,
taking the dot product of the input and weight vectors, and then adding it to the accumulator.
Once all the signals from Input_PIds are received, the accumulator contains the dot product to
which the neuron then adds the bias and executes the activation function. After fanning out the
output signal, the neuron again returns to waiting for incoming signals. When the neuron re-
ceives the {ExoSelf_PId,get_backup} message, it forwards to the exoself its full MInput_PIdPs
list, and its Id. The MInput_PIdPs contains the modified, tuned and most effective version of
the input_idps. The neuron process also accepts the weight_backup signal, when receiving it,
the neuron saves to process dictionary the current MInput_PIdPs. When the neuron receives the
weight_restore signal, it reads back from the process dictionary the stored Input_PIdPs, and
switches over to using it as its active Input_PIdPs list. When the neuron receives the
weight_perturb signal from the exoself, it perturbs the weights by executing the per-
turb_IPIdPs/1 function, which returns the updated/perturbed weight list. Finally, the neuron can
also accept a reset_prep signal, which makes the neuron flush its buffer in the off chance that it
has a recursively sent to it signal in its inbox. After flushing its buffer, the neuron waits for the
exoself to send it the reset signal, at which point the neuron, now fully refreshed after the
flush_buffer/0, outputs a default forward signal to its recursively connected elements (ro_ids),
if any, and then drops back into its main receive loop.

 dot([I|Input],[W|Weights],Acc) ->
 dot(Input,Weights,I*W+Acc);
 dot([],[],Acc)->
 Acc;
 dot([],[Bias],Acc)->
 Acc+Bias.
%The dot/3 function accepts an input vector and a weight list, and computes the dot product of
the two vectors.

 fanout([Pid|Pids],Msg)->
 Pid ! Msg,
 fanout(Pids,Msg);
 fanout([],_Msg)->
 true.
%The fanout/2 function fans out the Msg to all the PIds in its list.

 flush_buffer()->
 receive
 _ ->
 flush_buffer()
 after 0 ->
 done
 end.
%The flush_buffer/0 empties out the element’s inbox.

perturb_IPIdPs(Input_PIdPs)->

8.5 Developing the genotype_mutator 341

 Tot_Weights=lists:sum([length(Weights) || {_Input_PId,Weights}<-Input_PIdPs]),
 MP = 1/math:sqrt(Tot_Weights),
 perturb_IPIdPs(MP,Input_PIdPs,[]).

perturb_IPIdPs(MP,[{Input_PId,Weights}|Input_PIdPs],Acc)->
 U_Weights = perturb_weights(MP,Weights,[]),
 perturb_IPIdPs(MP,Input_PIdPs,[{Input_PId,U_Weights}|Acc]);
perturb_IPIdPs(MP,[Bias],Acc)->
 U_Bias = case random:uniform() < MP of
 true->
 sat((random:uniform()-0.5)*?DELTA_MULTIPLIER+Bias,-?SAT_LIMIT,
?SAT_LIMIT);
 false ->
 Bias
 end,
 lists:reverse([U_Bias|Acc]);
perturb_IPIdPs(_MP,[],Acc)->
 lists:reverse(Acc).
%The perturb_IPIdPs/1 function calculates the probability with which each neuron in the In-
put_PIdPs is chosen to be perturbed. The probability is based on the total number of weights in
the Input_PIdPs list, with the actual mutation probability equating to the inverse of square root
of the total number of weights. The perturb_IPIdPs/3 function goes through each weights block
and calls the perturb_weights/3 to perturb the weights.

 perturb_weights(MP,[W|Weights],Acc)->
 U_W = case random:uniform() < MP of
 true->
 sat((random:uniform()-0.5)*?DELTA_MULTIPLIER+W,-
?SAT_LIMIT, ?SAT_LIMIT);
 false ->
 W
 end,
 perturb_weights(MP,Weights,[U_W|Acc]);
 perturb_weights(_MP,[],Acc)->
 lists:reverse(Acc).
%The perturb_weights/3 function is one that actually goes through each weight block, and per-
turbs each weight with a probability of MP. If the weight is chosen to be perturbed, the pertur-
bation intensity is chosen uniformly between -Pi and Pi.

 sat(Val,Min,Max)->
 if
 Val < Min -> Min;
 Val > Max -> Max;
 true -> Val
 end.

342 Chapter 8 Developing a Simple Neuroevolutionary Platform

%The sat/3 function simply ensures that the Val is neither less than min or greater than max.
When used with synaptic weights (or other parameters), this function makes sure that the syn-
aptic weights get saturated at the Min and Max values, rather than growing in magnitude with-
out bound.

As you have noticed, the neuron executes functions:AF(DotProduct), since all
activation functions, and other useful mathematical functions, are specified in the
new functions module. For clarity and completeness, the functions module is
shown in the following listing.

Listing-8.21: The implementation of the functions module.

-module(functions).
-compile(export_all).

saturation(Val)->
 case Val > 1000 of
 true -> 1000;
 false ->
 case Val < -1000 of
 true -> -1000;
 false -> Val
 end
 end.
%The function saturation/1 accepts a value Val, and returns the same if its magnitude is below
1000. Otherwise it returns -1000 or 1000, if it’s less than or greater than -1000 or 1000 respec-
tively. Thus Val saturates at -1000 and 1000.

saturation(Val,Spread)->
 case Val > Spread of
 true -> Spread;
 false ->
 case Val < -Spread of
 true -> -Spread;
 false -> Val
 end
 end.
%The saturation/2 function is similar to saturation/1, but here the spread (symmetric Max and
Min values) is specified by the caller.

scale([H|T],Max,Min)->
 [scale(Val,Max,Min)||Val<-[H|T]];
scale(Val,Max,Min)-> %Nm = (Y*2 - (Max + Min))/(Max-Min)
 case Max == Min of
 true -> 0;

8.5 Developing the genotype_mutator 343

 false -> (Val*2 - (Max+Min))/(Max-Min)
 end.
%The scale/3 function accepts a list of values, and scales them to be between the specified Min
and Max values.

sat(Val,Max,Min)->
 case Val > Max of
 true -> Max;
 false ->
 case Val < Min of
 true -> Min;
 false -> Val
 end
 end.
%The sat/3 function is similar to saturation/2 function, but here the Max and Min can be differ-
ent, and are specified by the caller.

sat_dzone(Val,Max,Min,DZMax,DZMin)->
 case (Val < DZMax) and (Val > DZMin) of
 true -> 0;
 false -> sat(Val,Max,Min)
 end.
%The sat_DZone/5 function is similar to the sat/3 function, but here, if Val is between DZMin
and DZMax, it is zeroed.

%%%%%%%%%%%%%%%% Activation Functions %%%%%%%%%%%%%%%%%%%
tanh(Val)->
 math:tanh(Val).

cos(Val)->
 math:cos(Val).

sin(Val)->
 math:sin(Val).

sgn(0)->
 0;
sgn(Val)->
 case Val > 0 of
 true -> 1;
 false -> -1
 end.

bin(Val)->
 case Val > 0 of

344 Chapter 8 Developing a Simple Neuroevolutionary Platform

 true -> 1;
 false -> 0
 end.
% The bin/1 function converts Val into a binary value, 1 if Val > 0, and 0 if Val = < 0.

trinary(Val)->
 if
 (Val < 0.33) and (Val > -0.33) -> 0;
 Val >= 0.33 -> 1;
 Val =< -0.33 -> -1
 end.
%The trinary/1 function converts Val into a trinary value.

multiquadric(Val)->
 math:pow(Val*Val + 0.01,0.5).

absolute(Val)->
 abs(Val).

linear(Val)->
 Val.

quadratic(Val)->
 sgn(Val)*Val*Val.

gaussian(Val)->
 gaussian(2.71828183,Val).
gaussian(Const,Val)->
 V = case Val > 10 of
 true -> 10;
 false ->
 case Val < -10 of
 true -> -10;
 false -> Val
 end
 end,
 math:pow(Const,-V*V).

sqrt(Val)->
 sgn(Val)*math:sqrt(abs(Val)).

log(Val)->
 case Val == 0 of
 true -> 0;

 false -> sgn(Val)*math:log(abs(Val))
 end.

sigmoid(Val)->
 V = case Val > 10 of
 true -> 10;
 false ->
 case Val < -10 of
 true -> -10;
 false -> Val
 end
 end,
 2/(1+math:pow(2.71828183,-V)) - 1.

sigmoid1(Val)->
 Val/(1+abs(Val)).

avg(List)->
 lists:sum(List)/length(List).
%The avg/1 function accepts a List for a parameter, and then returns the average of the list to
the caller.
std(List)->
 Avg = avg(List),
 std(List,Avg,[]).
 std([Val|List],Avg,Acc)->
 std(List,Avg,[math:pow(Avg-Val,2)|Acc]);
 std([],_Avg,Acc)->
 Variance = lists:sum(Acc)/length(Acc),
 math:sqrt(Variance).
%The std/1 function accepts a List for a parameter, and then returns to the caller the standard
deviation of the list.

8.6 Summary 345

In this chapter we converted our single NN optimization system, into a fully
fledged topology and weight evolving artificial neural network system. We have
implemented an approach to present various problems to our NN systems, an ap-
proach utilizing the scapes and the morphology concepts. We created a popula-
tion_monitor, a system that can spawn and monitor a population of NN based
agents, select the fit, delete the unfit, and in general apply the evolutionary method
to the population of agents. We also implemented the constraint record, through
which we can specify all the various parameters which the evolving specie will be
constrained by. Finally, we developed the necessary complexifying topological
mutation operators, which can add/remove bias values to/from neurons, mutate

8.6 Summary

346 Chapter 8 Developing a Simple Neuroevolutionary Platform

their activation functions, add new neurons to the NNs, add new synaptic connec-
tions to the NNs, and add sensors and actuators to the NNs.

We have also created a new functions module, which will from now on contain
the activation functions used by the neuron, and other mathematical functions used
by our system. Through the functions module, we can fully decouple the activa-
tion functions from the neurons using them. A neuron can now use any activation
function, no matter its form, as long as it returns a properly formatted value. This
also means that our neuron can now function as anything, as an AND gate, as an
OR gate… depending on what activation functions we give it access to. This gives
our system a good starting point with regards to its flexibility, and areas in which
we can apply it to.

We have now covered and created all the necessary modules of our basic
neuroevolutionary system. The remaining logger and benchmark modules are non-
essentials, and we will build them when we begin expanding our neuroevolutionary
platform in later chapters. At this point, we are ready to move forward and perform a
detailed test of the mutation operators, and then the entire neuroevolutionary sys-
tem. We test our newly constructed system in the next chapter.

[1] Khepera robot: http://www.k-team.com/

8.7 Reference

http://www.k-team.com/

Chapter 9 Testing the Neuroevolutionary
System

Abstract In this chapter we test the newly created basic neuroevolutionary sys-
tem, by first testing each of its mutation operators, and then by applying the whole
system to the XOR mimicking problem. Though the XOR problem test will run to
completion and without errors, a more detailed, manual analysis of the evolved to-
pologies and genotypes of the fit agents will show a number of bugs to be present.
The origins of the bugs is then analyzed, and the errors are fixed. Afterwards, the
updated neuroevolutionary system is then successfully re-tested.

9.1 Testing the Mutation Operators

Having created the basic neuroevolutionary system, we need to test whether the
mutation operators work as we intended them to. We have set up all the
complexifying mutation operators to leave the system in a connected state. This
means that when we apply these mutation operators, the resulting NN topology is
such, that the signal can get from the sensors, all the way through the NN, and to
the actuators. The pruning mutation operators: remove_inlink, remove_outlink,
remove_neuron, remove_sensor, remove_actuator, may leave the NN in such a
state that it is no longer able to process information, by creating a break in the
connected graph, as shown in the example of Fig-9.1. We could start using the prun-
ing mutation operators later on, after we have first created a program inside the
genome_mutator module that ensures that all the resulting mutant NN systems are
not disconnected after such pruning mutation operators have been applied.

DOI 10.1007/978-1-4614- - , © Springer Science+Business Media New York 2013 4463 3_9
347 G.I. Sher, Handbook of Neuroevolution Through Erlang,

348

Fig. 9.1 Pruning mutation operators that leave a NN disconnected.

Let us now run a few mutation operator tests, to see if the resulting topologies
after we have applied some mutation operators to the NN, are as expected. When
you perform the same tests, the results may slightly differ from mine, since the el-
ements in your NN will have different Ids, and because the mutation operators are
applied randomly. The test of each mutation operator will have the following
steps:

1. Generate a test NN, which is composed of a single neuron, connected from the
sensor xor_GetInput, and connected to the actuator xor_SendOutput. This is
done by simply executing genotype:create_test(), which creates a xor_mimic
morphology based seed agent.

2. Apply an available mutation operator by executing: genome_mutator:test(test,
Mutator).

3. Execute genotype:print(test) to print the resulting genotype to console, and then
compare it to the original genotype to ensure that the resulting mutated geno-
type is as expected based on the mutation operator used.

4. Test the resulting NN on the simple XOR problem for which it has the sensor
and actuator, by executing exoself:start(test,void). There will not exist a popu-
lation_monitor process at this time, but that should not affect the results. The
goal here is to ensure that the NN does not stall, that the signals can go all the
way through it, from sensors to actuators, and that the NN system is functional.
In this case we do not expect the NN to solve the problem, because the topolo-
gy is not evolving towards any particular goal.

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 349

Let us now go through these steps for each mutation operator. For the sake of
being brief, I will show the entire console printout for the first mutation operator
test, but for all the other mutation operators I will only display the most significant
console printout parts.

mutate_weights: This mutation operator selects a random neuron in the NN
and perturbs/mutates its synaptic weights.

2> genotype:create_test().
{agent,test,0,undefined,test,
 {{origin,7.572689688224582e-10},cortex},
 {[{0,1}],
 [],
 [{sensor,undefined,xor_GetInput,undefined,
 {private,xor_sim},
 2,
 [{{0,7.572689688218573e-10},neuron}],
 undefined}],
 [{actuator,undefined,xor_SendOutput,undefined,
 {private,xor_sim},
 1,
 [{{0,7.572689688218573e-10},neuron}],
 undefined}]},
 {constraint,xor_mimic,[tanh,cos,gauss,abs]},
 [],undefined,0,
 [{0,[{{0,7.572689688218573e-10},neuron}]}]}
{cortex,{{origin,7.572689688224582e-10},cortex},
 test,
 [{{0,7.572689688218573e-10},neuron}],
 [{{-1,7.572689688218636e-10},sensor}],
 [{{1,7.572689688218589e-10},actuator}]}
{sensor,{{-1,7.572689688218636e-10},sensor},
 xor_GetInput,
 {{origin,7.572689688224582e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.572689688218573e-10},neuron}],
 undefined}
{neuron,{{0,7.572689688218573e-10},neuron},
 0,
 {{origin,7.572689688224582e-10},cortex},
 tanh,
 [{{{-1,7.572689688218636e-10},sensor},

 [{{1,7.572689688218589e-10},actuator}],
 [-0.08541081650616245,-0.028821611144310255]}],

350

 []}
{actuator,{{1,7.572689688218589e-10},actuator},
 xor_SendOutput,
 {{origin,7.572689688224582e-10},cortex},
 {private,xor_sim},
 1,
 [{{0,7.572689688218573e-10},neuron}],
 undefined}
{atomic,{atomic,[ok]}}
3> genome_mutator:test(test,mutate_weights).
{atomic,{atomic,ok}}
4> genotype:print(test).
{agent,test,0,undefined,test,
 {{origin,7.572689688224582e-10},cortex},
 {[{0,1}],
 [],
 [{sensor,undefined,xor_GetInput,undefined,
 {private,xor_sim},
 2,
 [{{0,7.572689688218573e-10},neuron}],
 undefined}],
 [{actuator,undefined,xor_SendOutput,undefined,
 {private,xor_sim},
 1,
 [{{0,7.572689688218573e-10},neuron}],
 undefined}]},
 {constraint,xor_mimic,[tanh,cos,gauss,abs]},
 [{mutate_weights,{{0,7.572689688218573e-10},neuron}}],
 undefined,0,
 [{0,[{{0,7.572689688218573e-10},neuron}]}]}
{cortex,{{origin,7.572689688224582e-10},cortex},
 test,
 [{{0,7.572689688218573e-10},neuron}],
 [{{-1,7.572689688218636e-10},sensor}],
 [{{1,7.572689688218589e-10},actuator}]}
{sensor,{{-1,7.572689688218636e-10},sensor},
 xor_GetInput,
 {{origin,7.572689688224582e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.572689688218573e-10},neuron}],
 undefined}
{neuron,{{0,7.572689688218573e-10},neuron},
 0,
 {{origin,7.572689688224582e-10},cortex},

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 351

 tanh,
 [{{{-1,7.572689688218636e-10},sensor},

 [{{1,7.572689688218589e-10},actuator}],
 []}
{actuator,{{1,7.572689688218589e-10},actuator},
 xor_SendOutput,
 {{origin,7.572689688224582e-10},cortex},
 {private,xor_sim},
 1,
 [{{0,7.572689688218573e-10},neuron}],
 undefined}
{atomic,[ok]}

As you can see from the printout, the mutate_weights operator chose a random
neuron in the NN, which in this case is just the single existing neuron, and then
mutated the synaptic weights associated with the sensor that it is connected from.
The synaptic weights were mutated from their original values of:

[-0.08541081650616245, -0.028821611144310255]

to:

[-1.81543903255671, 0.28220989176010963].

We now test the mutated NN system on the problem that its morphology de-
fines it for, the XOR mimicking problem.

5> exoself:start(test,void).
<0.128.0>
Finished updating genotype
Terminating the phenotype:
Cx_PId:<0.131.0>
SPIds:[<0.132.0>]
NPIds:[<0.134.0>]
APIds:[<0.133.0>]
ScapePids:[<0.130.0>]
Sensor:{{-1,7.572689688218636e-10},sensor} is terminating.
Agent:<0.128.0> terminating. Genotype has been backed up.
 Fitness:0.505631430344058
 TotEvaluations:52
 TotCycles:208
 TimeAcc:7226
Cortex:{{origin,7.572689688224582e-10},cortex} is terminating.

 [-1.81543903255671,0.28220989176010963]}],

352

It works! The exoself ran, and after having finished tuning the weights with our
augmented stochastic hill-climber algorithm, it updated the genotype, terminated
the phenotype by terminating all the processes associated with it (SPIds, NPIds,
APIds, and ScapePids), and then printed to screen the stats of the NN system’s
run: the total evaluations, total cycles, and the total time the NN system was run-
ning.

To see that the genotype was indeed updated, we can print it out again, to see
what the new synaptic weights are for the single neuron of this NN system:

7> genotype:print(test).
...
{neuron,{{0,7.572689688218573e-10},neuron},
 0,
 {{origin,7.572689688224582e-10},cortex},
 tanh,
 [{{{-1,7.572689688218636e-10},sensor},

 [{{1,7.572689688218589e-10},actuator}],
 []}
…

The original synaptic weights associated with the sensor were: [-
1.81543903255671, 0.28220989176010963] which have been tuned to the values:
[-1.81543903255671, -2.4665070928720794]. The synaptic weight vector is of
length two, and we can see that in this case only the second weight in the vector
was perturbed, where as when we applied the mutation operator, it mutated only
the first weight in the vector. The mutation and perturbation process is stochastic.

The system passed the test, the mutate_weights operator works, we have manu-
ally examined the resulting NN system, which has the right topology, which is the
same but with a mutated synaptic weight vector. We have tested the phenotype,
and have confirmed that it works. It ran for a total of 52 evaluations, so it made 52
attempts to tune the weights. We can guess that at least 50 did not work, because
we know that it takes, due to the MAX_ATTEMPTS = 50 in the exoself module,
50 failing attempts before exoself gives up tuning the weights. We also know that
1 of the evaluations was the very first one, when the NN system ran with the orig-
inal genotype. So we can even extrapolate that it was the second attempt, the se-
cond evaluation, during which the perturbed synaptic weights were improved in
this scenario. When you perform the test, your results will most likely be different.

add_bias: This mutation operator selects a random neuron in the NN and, if
the neuron’s input_idps list does not already have a bias, the mutation operator
adds one.

 [-1.81543903255671,-2.4665070928720794]}],

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 353

2> genotype:create_test().
...
{neuron,{{0,7.572678978164637e-10},neuron},
 0,
 {{origin,7.572678978164722e-10},cortex},
 gaussian,
 [{{{-1,7.572678978164681e-10},sensor},
 [0.41211176719508646,0.06709671037415732]}],
 [{{1,7.572678978164653e-10},actuator}],
 []}
...
3> genome_mutator:test(test,add_bias).
{atomic,{atomic,ok}}
4> genotype:print(test).
...
{neuron,{{0,7.572678978164637e-10},neuron},
 0,
 {{origin,7.572678978164722e-10},cortex},
 gaussian,
 [{{{-1,7.572678978164681e-10},sensor},
 [0.41211176719508646,0.06709671037415732]},
 {bias,[-0.1437300365267422]}],
 [{{1,7.572678978164653e-10},actuator}],
 []}
...
5> exoself:start(test,void).
…

It works! The original genotype had a neuron connected from the sensor, using
a gaussian activation function, with the synaptic weight vector associated with the
sensor: [0.41211176719508646, 0.06709671037415732]. After the add_bias mu-
tation operator was executed, the neuron acquired the bias weight: [-
0.1437300365267422]. Finally, we now test out the new NN system by converting
the genotype to its phenotype by executing the exoself:start(test,void) function. As
in the previous test, when I ran it with this mutated agent, there were no errors,
and the system terminated normally.

mutate_af: This mutation operator selects a random neuron in the NN and
changes its activation function to a new one, selected from the list available in the
constraint’s neural_afs list.

2> genotype:create_test().
...
{neuron,{{0,7.572652623199229e-10},neuron},
 0,

354

 {{origin,7.57265262319932e-10},cortex},
 absolute,
 [{{{-1,7.572652623199274e-10},sensor},
 [-0.16727779071660276,0.12410379914428638]}],
 [{{1,7.572652623199246e-10},actuator}],
 []}
...
3> genome_mutator:test(test,mutate_af).
{atomic,{atomic,ok}}
4> genotype:print(test).
...
{neuron,{{0,7.572652623199229e-10},neuron},
 0,
 {{origin,7.57265262319932e-10},cortex},
 cos,
 [{{{-1,7.572652623199274e-10},sensor},
 [-0.16727779071660276,0.12410379914428638]}],
 [{{1,7.572652623199246e-10},actuator}],
 []}
...
{atomic,[ok]}
25> exoself:start(test,void).
...

The original randomly selected activation function of the single neuron in the
test agent was the absolute activation function. After we have applied the mu-
tate_af operator to the NN system, the activation function was changed to cos. As
before, here too converting the genotype to phenotype worked, as there were no
errors when running exoself:start(test,void).

add_outlink & add_inlink: The add_outlink operator chooses a random neu-
ron and adds an output connection from it, to another randomly selected element
in the NN system. The add_inlink operator chooses a random neuron and adds an
input connection to it, from another randomly selected element in the NN. We will
only test one of them, the add_outlink, as they both function very similarly.

2> genotype:create_test().
...
{sensor,{{-1,7.572648155161364e-10},sensor},
 xor_GetInput,
 {{origin,7.572648155161404e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.572648155161313e-10},neuron}],
 undefined}

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 355

{neuron,{{0,7.572648155161313e-10},neuron},
 0,
 {{origin,7.572648155161404e-10},cortex},
 absolute,
 [{{{-1,7.572648155161364e-10},sensor},
 [-0.02132967923622686,-0.38581737041377817]}],
 [{{1,7.572648155161335e-10},actuator}],
 []}
{actuator,{{1,7.572648155161335e-10},actuator},
 xor_SendOutput,
 {{origin,7.572648155161404e-10},cortex},
 {private,xor_sim},
 1,
 [{{0,7.572648155161313e-10},neuron}],
 undefined}
{atomic,{atomic,[ok]}}
3> genome_mutator:test(test,add_outlink).
{atomic,{atomic,ok}}
4> genotype:print(test).
...
{sensor,{{-1,7.572648155161364e-10},sensor},
 xor_GetInput,
 {{origin,7.572648155161404e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.572648155161313e-10},neuron}],
 undefined}
{neuron,{{0,7.572648155161313e-10},neuron},
 0,
 {{origin,7.572648155161404e-10},cortex},
 absolute,
 [{{{0,7.572648155161313e-10},neuron},[-0.13154644819577532]},
 {{{-1,7.572648155161364e-10},sensor},
 [-0.02132967923622686,-0.38581737041377817]}],
 [{{0,7.572648155161313e-10},neuron},
 {{1,7.572648155161335e-10},actuator}],
 [{{0,7.572648155161313e-10},neuron}]}
{actuator,{{1,7.572648155161335e-10},actuator},
 xor_SendOutput,
 {{origin,7.572648155161404e-10},cortex},
 {private,xor_sim},
 1,
 [{{0,7.572648155161313e-10},neuron}],
 undefined}
{atomic,[ok]}

356

It works! The original neuron had the form:

{neuron,{{0,7.572648155161313e-10},neuron},
 0,
 {{origin,7.572648155161404e-10},cortex},
 absolute,
 [{{{-1,7.572648155161364e-10},sensor},
 [-0.02132967923622686,-0.38581737041377817]}],
 [{{1,7.572648155161335e-10},actuator}],
 []}

It only had a single input connection which was from the sensor, and a single
output connection to the actuator. After the add_outlink operator was executed,
the new NN system’s neuron had the following form:

{neuron,{{0,7.572648155161313e-10},neuron},
 0,
 {{origin,7.572648155161404e-10},cortex},
 absolute,
 [{{{0,7.572648155161313e-10},neuron},[-0.13154644819577532]},
 {{{-1,7.572648155161364e-10},sensor},
 [-0.02132967923622686,-0.38581737041377817]}],
 [{{0,7.572648155161313e-10},neuron},
 {{1,7.572648155161335e-10},actuator}],
 [{{0,7.572648155161313e-10},neuron}]}

In this case the neuron formed a new synaptic connection to another randomly
chosen element in the NN system, in this case that other element was itself. We
can see that this new connection is recursive, and we can tell this from the last el-
ement of the neuron defining tuple, which specifies ro_ids, a list of recurrent link
ids. There is also a new synaptic weight associated with this recurrent self connec-
tion: {{{0,7.572648155161313e-10},neuron},[-0.13154644819577532]}. The dia-
gram of this NN topology before and after the mutation operator was applied, is
shown in Fig-9.2.

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 357

Fig. 9.2 The NN system topology before and after add_outlink mutation operator was ap-
plied.

We now map the genotype to phenotype, to see if the new NN system is func-
tional:

5> exoself:start(test,void).
<0.101.0>
Finished updating genotype
Terminating the phenotype:
…

It works! Though I did not show the complete printout (which looked very sim-
ilar to the first fully shown console printout), the NN system worked and terminat-
ed successfully. With this test complete, we now move to a more complex muta-
tion operator, the addition of a new random neuron to the existing NN system.

add_neuron: This mutation operator chooses a random neural layer in the NN,
and then creates a new neuron and connects it from and to, two randomly selected
elements in the NN system respectively.

2> genotype:create_test().
...
{cortex,{{origin,7.572275935869961e-10},cortex},
 test,
 [{{0,7.572275935869875e-10},neuron}],

 [{{-1,7.57227593586992e-10},sensor}],

358

 [{{1,7.572275935869891e-10},actuator}]}
{sensor,{{-1,7.57227593586992e-10},sensor},
 xor_GetInput,
 {{origin,7.572275935869961e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.572275935869875e-10},neuron}],
 undefined}
{neuron,{{0,7.572275935869875e-10},neuron},
 0,
 {{origin,7.572275935869961e-10},cortex},
 cos,
 [{{{-1,7.57227593586992e-10},sensor},
 [0.43717109366382956,0.33904698258991184]}],
 [{{1,7.572275935869891e-10},actuator}],
 []}
{actuator,{{1,7.572275935869891e-10},actuator},
 xor_SendOutput,
 {{origin,7.572275935869961e-10},cortex},
 {private,xor_sim},
 1,
 [{{0,7.572275935869875e-10},neuron}],
 undefined}
{atomic,{atomic,[ok]}}
3> genome_mutator:test(test,add_neuron).
{aborted,”******** ERROR:link_FromNeuronToActuator:: Actuator already fully con-
nected”}
4> genome_mutator:test(test,add_neuron).
{atomic,{atomic,ok}}
5> genotype:print(test).
...
{cortex,{{origin,7.572275935869961e-10},cortex},
 test,
 [{{0,7.572275884968449e-10},neuron},
 {{0,7.572275935869875e-10},neuron}],
 [{{-1,7.57227593586992e-10},sensor}],
 [{{1,7.572275935869891e-10},actuator}]}
{sensor,{{-1,7.57227593586992e-10},sensor},
 xor_GetInput,
 {{origin,7.572275935869961e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.572275935869875e-10},neuron}],
 undefined}
{neuron,{{0,7.572275884968449e-10},neuron},

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 359

 0,
 {{origin,7.572275935869961e-10},cortex},
 gaussian,
 [{{{0,7.572275935869875e-10},neuron},[-0.17936473163045719]}],
 [{{0,7.572275935869875e-10},neuron}],
 [{{0,7.572275935869875e-10},neuron}]}
{neuron,{{0,7.572275935869875e-10},neuron},
 0,
 {{origin,7.572275935869961e-10},cortex},
 cos,
 [{{{0,7.572275884968449e-10},neuron},[0.2879930434277844]},
 {{{-1,7.57227593586992e-10},sensor},
 [0.43717109366382956,0.33904698258991184]}],
 [{{0,7.572275884968449e-10},neuron},
 {{1,7.572275935869891e-10},actuator}],
 [{{0,7.572275884968449e-10},neuron}]}
{actuator,{{1,7.572275935869891e-10},actuator},
 xor_SendOutput,
 {{origin,7.572275935869961e-10},cortex},
 {private,xor_sim},
 1,
 [{{0,7.572275935869875e-10},neuron}],
 undefined}
{atomic,[ok]}

Something very interesting happened in this test. In “2>“ we create a new test
NN system. A new NN system is fully connected to its sensors and actuators.
When we try to apply the add_neuron mutation operator in “3>“, the mutation op-
erator must have randomly chosen to connect the new neuron to the existing ac-
tuator. But the actuator already has all the connections it needs, the vector signal it
uses to execute its functionality, already has all the elements and is already con-
nected to all the neurons it requires to function, which in this case is just a single
neuron. So the mutation is rejected, as seen by the line: {aborted,”********
ERROR:link_FromNeuronToActuator:: Actuator already fully connected”}.
During the process of neuroevolution, at this point our topology and weight evolv-
ing artificial neural network (TWEANN) system would simply try another muta-
tion operator. Which is what I did manually in this test in “4>“.

The new mutation worked, it created a new neuron and connected it from and
to, the already existing neuron in the NN system. We can see the newly formed
connection in the genotype here:

{neuron,{{0,7.572275884968449e-10},neuron},
 0,
 {{origin,7.572275935869961e-10},cortex},

360

 gaussian,
 [{{{0,7.572275935869875e-10},neuron},[-0.17936473163045719]}],
 [{{0,7.572275935869875e-10},neuron}],
 [{{0,7.572275935869875e-10},neuron}]}
{neuron,{{0,7.572275935869875e-10},neuron},
 0,
 {{origin,7.572275935869961e-10},cortex},
 cos,
 [{{{0,7.572275884968449e-10},neuron},[0.2879930434277844]},
 {{{-1,7.57227593586992e-10},sensor},
 [0.43717109366382956,0.33904698258991184]}],
 [{{0,7.572275884968449e-10},neuron},
 {{1,7.572275935869891e-10},actuator}],
 [{{0,7.572275884968449e-10},neuron}]}

The initial test NN system had a single neuron with the id:
{{0,7.572275935869875e-10},neuron}, The newly added neuron has the id:
{{0,7.572275884968449e-10},neuron}. We can see that after the mutation, both
neurons have recurrent connections, which in our neuron record is represented by
the last list in the tuple. The original neuron’s recurrent connection list ro_ids is:
[{{0,7.572275884968449e-10},neuron}], containing the id of the new neuron. The
newly added neuron’s or_ids list is: [{{0,7.572275935869875e-10},neuron}], con-
taining in it the id of the original neuron.

Fig. 9.3 The NN system topology before and after the add_neuron mutation operator was
applied.

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 361

We can also see that the new neuron is using the gaussian activation function,
and that both of the neurons formed new weights for their new synaptic connec-
tions. The above figure shows the NN system’s topology before and after the
add_neuron mutation operator is applied.

We now test the new topology live, by mapping the genotype to its phenotype:

6> exoself:start(test,void).
<0.866.0>
Finished updating genotype
Terminating the phenotype:
Cx_PId:<0.868.0>
SPIds:[<0.869.0>]
NPIds:[<0.871.0>,<0.872.0>]

APIds:[<0.870.0>]
ScapePids:[<0.867.0>]
Sensor:{{-1,7.57227593586992e-10},sensor} is terminating.
Agent:<0.866.0> terminating. Genotype has been backed up.
 Fitness:1.3179457789331406
 TotEvaluations:163
 TotCycles:656
 TimeAcc:23321
Cortex:{{origin,7.572275935869961e-10},cortex} is terminating.

It works! And from the highlighted NPIds, we can see the two spawned neuron
PIds. The system terminated successfully, the topology we analyzed manually is
correct given the mutation operator, and the phenotype works perfectly. Thus this
mutation operator is functional, at least in this simple test, and we move on to the
next one.

outsplice: This mutation operator selects a random neuron A in the NN, then
selects the neuron’s random output connection to some element B, disconnects A
from B, creates a new neuron C in the layer between neuron A and element B
(creating the new layer if it does not already exist, or using an existing one if A
and B are one or more layers apart), and then reconnects A to B through C:

2> genotype:create_test().
...
{cortex,{{origin,7.57225527862836e-10},cortex},
 test,
 [{{0,7.572255278628331e-10},neuron}],
 [{{-1,7.572255278628343e-10},sensor}],
 [{{1,7.572255278628337e-10},actuator}]}
{sensor,{{-1,7.572255278628343e-10},sensor},
 xor_GetInput,
 {{origin,7.57225527862836e-10},cortex},

362

 {private,xor_sim},
 2,
 [{{0,7.572255278628331e-10},neuron}],
 undefined}
{neuron,{{0,7.572255278628331e-10},neuron},

 0,

 {{origin,7.57225527862836e-10},cortex},

 tanh,

 [{{{-1,7.572255278628343e-10},sensor},

 [0.4094174115111171,0.40477840576669655]}],

 [{{1,7.572255278628337e-10},actuator}],

 []}

{actuator,{{1,7.572255278628337e-10},actuator},
 xor_SendOutput,
 {{origin,7.57225527862836e-10},cortex},
 {private,xor_sim},
 1,
 [{{0,7.572255278628331e-10},neuron}],
 undefined}
{atomic,{atomic,[ok]}}
3> genome_mutator:test(test,outsplice).
{atomic,{atomic,ok}}
4> genotype:print(test).
...
{cortex,{{origin,7.57225527862836e-10},cortex},
 test,
 [{{0.5,7.572255205521553e-10},neuron},
 {{0,7.572255278628331e-10},neuron}],
 [{{-1,7.572255278628343e-10},sensor}],
 [{{1,7.572255278628337e-10},actuator}]}
{sensor,{{-1,7.572255278628343e-10},sensor},
 xor_GetInput,
 {{origin,7.57225527862836e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.572255278628331e-10},neuron}],
 undefined}
{neuron,{{0.5,7.572255205521553e-10},neuron},

 0,

 {{origin,7.57225527862836e-10},cortex},

 absolute,

 [{{{0,7.572255278628331e-10},neuron},[0.08385901270641671]}],

 [{{1,7.572255278628337e-10},actuator}],

 []}

{neuron,{{0,7.572255278628331e-10},neuron},

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 363

 0,

 {{origin,7.57225527862836e-10},cortex},

 tanh,

 [{{{-1,7.572255278628343e-10},sensor},

 [0.4094174115111171,0.40477840576669655]}],

 [{{0.5,7.572255205521553e-10},neuron}],

 []}

{actuator,{{1,7.572255278628337e-10},actuator},
 xor_SendOutput,
 {{origin,7.57225527862836e-10},cortex},
 {private,xor_sim},
 1,
 [{{0.5,7.572255205521553e-10},neuron}],
 0}
{atomic,[ok]}

It works! The genotype:create_test() function created the genotype of a simple
test NN system, with a single neuron:

{neuron,{{0,7.572255278628331e-10},neuron},
 0,
 {{origin,7.57225527862836e-10},cortex},
 tanh,
 [{{{-1,7.572255278628343e-10},sensor},
 [0.4094174115111171,0.40477840576669655]}],
 [{{1,7.572255278628337e-10},actuator}],
 []}

Which is connected from the sensor: {{-1,7.572255278628343e-10},sensor}
and is connected to the actuator: {{1,7.572255278628337e-10},actuator}. From
the neuron’s Id, we can see that it is in layer 0. After we executed the outsplice
mutation operator, our NN system acquired a new neuron, thus the NN now had
two neurons:

{neuron,{{0.5,7.572255205521553e-10},neuron},
 0,
 {{origin,7.57225527862836e-10},cortex},
 absolute,
 [{{{0,7.572255278628331e-10},neuron},[0.08385901270641671]}],
 [{{1,7.572255278628337e-10},actuator}],
 []}
{neuron,{{0,7.572255278628331e-10},neuron},
 0,
 {{origin,7.57225527862836e-10},cortex},
 tanh,

364

 [{{{-1,7.572255278628343e-10},sensor},
 [0.4094174115111171,0.40477840576669655]}],
 [{{0.5,7.572255205521553e-10},neuron}],
 []}

Note that where as in the initial genotype the NN was composed of a single
neuron: {{0,7.572255278628331e-10}, neuron}, which was connected from the
sensor: {{-1,7.572255278628343e-10}, sensor}, and connected to the actuator:
{{1,7.572255278628337e-10}, actuator}, after the mutation operator was applied,
the NN acquired a new neuron, which was inserted into a new layer 0.5 (we de-
termine that fact from its Id, which contains the layer index specification). Also
note that the original neuron is no longer connected to the actuator, but instead is
connected to the new neuron: {{0.5,7.572255205521553e-10},neuron}, which is
now the one connected to the actuator. The diagram of the before and after topol-
ogy of this NN system is shown in Fig-9.4.

Fig. 9.4 The NN System topology before and after the outsplice mutation operator is ap-
plied to it.

Let’s test this NN system by mapping its genotype to its phenotype, and apply-
ing it to the problem that its morphology defines (mimicking the XOR operator):

5> exoself:start(test,void).
<0.919.0>
Finished updating genotype
Terminating the phenotype:
Cx_PId:<0.921.0>
SPIds:[<0.922.0>]
NPIds:[<0.924.0>,<0.925.0>]

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 365

APIds:[<0.923.0>]
ScapePids:[<0.920.0>]
Agent:<0.919.0> terminating. Genotype has been backed up.
 Fitness:0.5311848171954074
 TotEvaluations:58
 TotCycles:236
 TimeAcc:7384
Cortex:{{origin,7.57225527862836e-10},cortex} is terminating.
Sensor:{{-1,7.572255278628343e-10},sensor} is terminating.

It works! And we can also see that there are two NPIds, since there are now
two neurons. We have visually inspected the NN system genotype before and after
the mutation operator was applied, and found the new genotype to be correct. We
have also tested the phenotype, to ensure that it is functional, and confirmed that it
is. We next test the two last remaining mutation operators: add_sensor and
add_actuator.

add_sensor & add_actuator: The add_sensor mutation operator adds a new
random sensor, still unused by the NN system. The sensor is chosen from the sen-
sor list available to the morphology of the NN based agent. A random neuron in
the NN is then chosen, and the sensor is connected to that neuron. The
add_actuator mutation operator adds a new random actuator, still unused by the
NN system. A random neuron in the NN is then chosen, and a link is established
between this neuron and the new actuator.

2> genome_mutator:test(test,add_sensor).
{aborted,”********ERROR:add_sensor(Agent_Id):: NN system is already using all available
sensors”}
3> genome_mutator:test(test,add_actuator).
{aborted,”********ERROR:add_actuator(Agent_Id):: NN system is already using all available
actuators”}

This is as expected. The test NN system uses the xor_mimic morphology, and
if we look in the morphology module, we see that it only has one sensor and one
actuator. Thus, when we run the mutation operators for this particular test, our
neuroevolutionary system does not add a new sensor, or a new actuator, because
there are no new ones available. When we begin expanding the neuroevolutionary
platform we’re designing here, we will see the affects of a system that can incor-
porate new sensors and actuators into itself as it evolves. We can similarly test the
mutation operators: add_sensorlink & add_actuatorlink, but just as the above two
mutation operators, they have no new elements to connect to and from, respective-
ly, when it comes to the seed NN.

We have now successfully tested most of the complexifying mutation operators
on the simple, seed NN based agent. But this does not necessarily mean that there
are no bugs in our system. Perhaps there are scenarios when it does fail, we just

366

haven’t come across them yet because we’ve only tested the operators on the most
simple type of topology, the single neuron NN system topology.

Before we proceed, let’s create a small program that applies X random muta-
tion operators to the test NN system, and then converts the mutated genotype to its
phenotype, to ensure that it still functions. The goal here is to ensure that the re-
sulting NN is simply connected, and does not crash, or stall during operation. Fur-
thermore, we can run this mutation operator test itself, a few thousand times. If at
any point it gets stuck, or there is an unexpected error, we can then try to figure
out what happened.

The following listing shows this simple, topological mutation testing function
that we add to the genome_mutator module:

Listing-9.1 The long_test/1 function, which creates a seed agent, and applies
TotMutateApplications number of mutation operators to it, and tests the resulting phenotype af-
terwards.

long_test(TotMutateApplications) when (TotMutateApplications > 0) ->
 genotype:create_test(),
 short_test(TotMutateApplications).

 short_test(0)->
 exoself:start(test,void);
 short_test(Index)->
 test(),
 short_test(Index-1).
%This is a simple function that executes the test() function the number of times with which the
long_test/1 function was initially called. The test/0 function executes mutate(test), which ap-
plies a random number of mutation operators to the genotype, where that number ranges from 1
to sqrt(Tot_neurons). After all the mutation operators have been applied successfully, the func-
tion executes exoself:start(test,void), mapping the genotype to phenotype, to test whether the
resulting NN system is functional.

The long_test/1 function will perform the following steps:

1. Create a test genotype.
2. Execute the mutate(test) function TotMutateApplications number of times.
3. Convert the genotype to phenotype to ensure that the resulting NN system is

functional.

Lets run the long_test function with TotMutateApplications = 300. For the sake
of being brief, I will only present the first and last few lines of the printout to con-
sole in the following Listing-9.2.

Chapter 9 Testing the Neuroevolutionary System

9.1 Testing the Mutation Operators 367

Listing-9.2 Running the long_test function, which applies a random number of mutation opera-
tors to the original seed agent, 300 times.

2>genome_mutator:long_test(300).
{agent,test,0,undefined,test,
 {{origin,7.571534416338085e-10},cortex},
 {[{0,1}],
 [],
 [{sensor,undefined,xor_GetInput,undefined,
 {private,xor_sim},
 2,
 [{{0,7.571534416338051e-10},neuron}],
 undefined}],
 [{actuator,undefined,xor_SendOutput,undefined,
 {private,xor_sim},
 1,
 [{{0,7.571534416338051e-10},neuron}],
 undefined}]},
 {constraint,xor_mimic,[tanh,cos,gaussian,absolute]},
 [],undefined,0,
 [{0,[{{0,7.571534416338051e-10},neuron}]}]}
…
Tot neurons:1 Performing Tot mutations:1 on:test
Mutation Operator:add_outlink
******** Mutation Succesful.
Tot neurons:1 Performing Tot mutations:1 on:test
Mutation Operator:add_actuator
******** Error:{aborted,”********ERROR:add_actuator(Agent_Id):: NN system is already
using all available actuators”}
Retrying with new Mutation...
Mutation Operator:outsplice
******** Mutation Succesful.
Tot neurons:2 Performing Tot mutations:1 on:test
Mutation Operator:mutate_af
******** Mutation Succesful.
...
Tot neurons:95 Performing Tot mutations:5 on:test
Mutation Operator:outsplice
Mutation Operator:add_bias
Mutation Operator:mutate_weights
Mutation Operator:add_outlink
Mutation Operator:mutate_af
******** Mutation Succesful.
<0.2460.0>
Finished updating genotype

368

Terminating the phenotype:
Cx_PId:<0.2463.0>
SPIds:[<0.2464.0>]
NPIds:[<0.2467.0>,<0.2468.0>,<0.2469.0>,<0.2470.0>,<0.2471.0>,<0.2472.0>,<0.2473.0>,
<0.2474.0>,<0.2475.0>,<0.2476.0>,<0.2477.0>,<0.2478.0>,<0.2479.0>,<0.2480.0>,
<0.2481.0>,<0.2482.0>,<0.2483.0>,<0.2484.0>,<0.2485.0>,<0.2486.0>,<0.2487.0>,
<0.2488.0>,<0.2489.0>,<0.2490.0>,<0.2491.0>,<0.2492.0>,<0.2493.0>,<0.2494.0>,
<0.2495.0>,<0.2496.0>,<0.2497.0>,<0.2498.0>,<0.2499.0>,<0.2500.0>,<0.2501.0>,
<0.2502.0>,<0.2503.0>,<0.2504.0>,<0.2505.0>,<0.2506.0>,<0.2507.0>,<0.2508.0>,
<0.2509.0>,<0.2510.0>,<0.2511.0>,<0.2512.0>,<0.2513.0>,<0.2514.0>,<0.2515.0>,
<0.2516.0>,<0.2517.0>,<0.2518.0>,<0.2519.0>,<0.2520.0>,<0.2521.0>,<0.2522.0>,
<0.2523.0>,<0.2524.0>,<0.2525.0>,<0.2526.0>,<0.2527.0>,<0.2528.0>,<0.2529.0>,
<0.2530.0>,<0.2531.0>,<0.2532.0>,<0.2533.0>,<0.2534.0>,<0.2535.0>,<0.2536.0>,
<0.2537.0>,<0.2538.0>,<0.2539.0>,<0.2540.0>,<0.2541.0>,<0.2542.0>,<0.2543.0>,
<0.2544.0>,<0.2545.0>,<0.2546.0>,<0.2547.0>,<0.2548.0>,<0.2549.0>,<0.2550.0>,
<0.2551.0>,<0.2553.0>,<0.2554.0>,<0.2555.0>,<0.2556.0>,<0.2557.0>,<0.2558.0>,
<0.2559.0>,<0.2560.0>,<0.2561.0>,<0.2562.0>,<0.2563.0>]
APIds:[<0.2465.0>,<0.2466.0>]
ScapePids:[<0.2461.0>,<0.2462.0>]
Sensor:{{-1,7.57153413903982e-10},sensor} is terminating.
Agent:<0.2460.0> terminating. Genotype has been backed up.
 Fitness:0.5162814284277237
 TotEvaluations:65
 TotCycles:132
 TimeAcc:21664
Cortex:{{origin,7.571534139039844e-10},cortex} is terminating.

From the above console printout, you can see that the first mutation operator
applied was the add_outlink, which was successful. The second was add_actuator,
which was not. At this stage, every time the mutate(test) gets executed, the func-
tion only applies a single mutation operator to the genotype, we know this from
the line: Tot neurons:1 Performing Tot mutations:1 on:test. We then skip to
the end, the last execution of the mutate(test). From the line: Tot neurons:95 Per-
forming Tot mutations:5 on:test, we can see that at this point the NN system has
95 neurons, and the randomly chosen number of mutation operators to be applied
is 5. This means that 5 mutation operators are applied in series to the NN system
to produce the mutant agent, and only after the 5 mutation operators are applied, is
the agent’s fitness evaluated.

Once all the mutation operators have been applied, the exoself converts the
genotype of the test NN system to its phenotype, applying it to the problem that its
morphology designated it for. From the console printout, we see that the NN sys-
tem successfully terminated, and so we can be assured that the NN topology does
not have any discontinuities, and that it does produce a functional, albeit not very

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 369

fit, phenotype. Also, none of the mutation operators produced any type of errors
that originate from actual crashes.

Having now tested the main mutation operators and the mapping from geno-
type to phenotype, we can move on and see if the population_monitor is function-
al, by running the small XOR based benchmark, as we did in Chapter-7.

9.2 Testing the Neuroevolutionary System on the Simple XOR
Benchmark

Having now tested some of the important independent functions and elements
of our topology and weight evolving artificial neural network (TWEANN) system,
we can move on to testing the system as a whole. Our morphology module con-
tains various morphologies at our disposal, where a morphology is a list of sensors
and actuators that a NN system can incorporate through evolution if it is of that
particular morphology. Furthermore, the sensors and actuators define what the NN
system can interface with, what the NN system does, and thus, what the problems
the NN system is applied to. For example, if the sensor available to our NN sys-
tem is one that reads values from a database, and the actuator is one that simply
outputs the NN’s output vector signal, and furthermore the database from which
the sensor reads its data is a XOR truth table, then we could train this NN system
to mimic a XOR logic operator. We could compare the NN based agent’s output
to what that output should be if the agent was a XOR logic operator, rewarding it
if it’s output is similar to the expected XOR operator output, and punishing it if
not.

If the sensors were to have been programs that interfaced with a simulated
world through sensors embedded in some simulated organism inhabiting a simu-
lated world, and if the actuators were to have been programs controlling the simu-
lated organism (avatar), then our NN system would be the evolving brain of an or-
ganism in an Artificial Life experiment. Thus, the sensors and actuators define
what the NN system does, and its morphology is a set of sensors and actuators, as
a package, available to the NN system during its evolution. Thus it is the mor-
phology that defines the problem to what the NN system is applied. We choose a
morphology to which the NN system belongs, and it evolves and learns how to use
the sensors and actuators belonging to that morphology.

Thus far we have only created one morphology, the xor_mimic. The xor_mimic
morphology contains a single sensor with the name xor_GetInput, and a single ac-
tuator with the name xor_SendOutput. Thus if we evolve agents of this particular
morphology, they will only be able to evolve into XOR logical operator mimics.
Agents cannot switch morphologies mid-evolution, but new sensors and actuators
can be added to the morphology by updating the morphology module, and after-
wards these new interfaces can then be incorporated into the NN system over time.

370

We created the population_monitor process which creates a seed population of
NN systems belonging to some specified morphologies, and then evolves those
NN based agents. Since the morphologies define the scapes the NN system inter-
faces with, and the scape computes the fitness score of the agent interfacing with
it, the population_monitor process has the ability to evolve the population by hav-
ing access to each agent’s fitness in the population, applying a selection function
to the population, and then mutating the selected agents, creating new and mutated
offspring from them. We now test this process by getting the population_monitor
process to spawn a seed population of agents with the xor_mimic morphology,
and see how quickly our current version of the neuroevolutionary system can
evolve a solution to this problem, how quickly it can evolve a XOR logic operator
using neurons as the basic elements of the evolving network.

We will run the population_monitor:test() function with the following parame-
ters:

%%%%%%%%%%%%%% Population Monitor Options & Parameters %%%%%%%%%%%
-define(SELECTION_ALGORITHM,competition).
-define(EFF,0.2).
-define(INIT_CONSTRAINTS,[#constraint{morphology=Morphology, neu-
ral_afs=Neural_AFs}|| Morphology<-[xor_mimic],Neural_AFs<-[[tanh]]]).
-define(SURVIVAL_PERCENTAGE,0.5).
-define(SPECIE_SIZE_LIMIT,10).
-define(INIT_SPECIE_SIZE,10).
-define(INIT_POPULATION_ID,test).
-define(OP_MODE,gt).
-define(INIT_POLIS,mathema).
-define(GENERATION_LIMIT,100).
-define(EVALUATIONS_LIMIT,100000).
-define(DIVERSITY_COUNT_STEP,500).
-define(GEN_UID,genotype:generate_UniqueId()).
-define(CHAMPION_COUNT_STEP,500).
-define(FITNESS_GOAL,inf).

The population will thus be composed of NN systems using the xor_mimic
morphology (and thus be applied to that particular problem), and whose neurons
will use only the tanh activation function. The population will maintain a size
close to 10. Finally, neuroevolution will continue for at most 100 generations, or
at most 100000 evaluations. The fitness goal is set to inf, which means that it is
not a stopping condition and the evolution will continue until one of the other ter-
minating conditions is reached. The fitness score for each agent is calculated by
the scape it is interfacing with. Having set up the parameters for our
neuroeovlutionary system, we compile the population_monitor module, and exe-
cute the population_monitor:test() function, as shown next:

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 371

2> population_monitor:test().
Specie_Id:7.570104741922324e-10 Morphology:xor_mimic
******** Population monitor started with parameters:{gt,test,competition}
…

...
******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:9 Population Generation:100 Eval_Acc:63960 Cycle_Acc:217798
Time_Acc:12912953

It works! Highlighted in green (2nd and 3rd line in the black & white printed

executed. It states that the population_monitor is started with selection algorithm
competition, a population with the id test
gt, whose operational importance we will set in a later chapter.

Based on how we designed our population_monitor system, every generation

is the 100th generation, and each agent with its fitness score. The most fit agent
with its fitness score in the last generation is: {91822.42396111514, 3,
{7.570065786458927e-10, agent}}. Based on how the xor_sim scape calculates
fitness, this fitness score amounts to the agent having a mean squared sum error of
1/91822, and it took a total of 63960 evaluations for our neuroevolutionary system
to reach it.

it prints out the fitness score of the population. Highlighted in red and italicized

Selection Algorirthm:competition
Valid_AgentSummaries:[{91822.42396111514,3,{7.570065786458927e-10,agent}},
 {82128.75594984594,3,{7.570065785419657e-10,agent}},
 {66717.38827549343,3,{7.570065785184491e-10,agent}},
 {66865.26402662563,4,{7.570065786995862e-10,agent}},
 {66859.35543290272,4,{7.570065785258691e-10,agent}},
 {60974.864233884604,4,{7.570065785388116e-10,agent}}]
Invalid_AgentSummaries:[{56725.927279906005,4,{7.570065787547878e-10,agent}},
 {46423.91939090131,4,{7.570065786090063e-10,agent}},
 {34681.35604691528,3,{7.570065790439459e-10,agent}},
 {67.37546054504678,4,{7.570065785110257e-10,agent}},
 {13.178830126581289,5,{7.570065785335377e-10,agent}}]
NeuralEnergyCost:13982.434363128335
NewPopAcc:9.218546902348272
Population size normalizer:0.9218546902348272
Agent_Id:{7.570065785388116e-10,agent} Normalized_MutantAlotment:1
Agent_Id:{7.570065785258691e-10,agent} Normalized_MutantAlotment:1
Agent_Id:{7.570065786995862e-10,agent} Normalized_MutantAlotment:1
Agent_Id:{7.570065785184491e-10,agent} Normalized_MutantAlotment:2

version) are the first two lines printed to screen after population monitor:test() is

, and op_mode (operational mode) being

372

This is quite a bit of computational time for such a simple problem, but it is not
usually the case to take the circuit to this level of accuracy. Let us change the fit-
ness goal to 1000, make MAX_ATTEMPTS = 10 in the exoself module, and then
try again.

In my experiment, I had the following results:

Valid_AgentSummaries:[{1000.4594763865106,2,{7.570051345044739e-10,agent}},
 {272.7339484226029,2,{7.570051345273578e-10,agent}},
 {249.64913390960575,2,{7.57005134500996e-10,agent}},
 {227.82980202627456,4,{7.570051345098297e-10,agent}},
 {193.32888692741093,2,{7.570051345440797e-10,agent}}]
Invalid_AgentSummaries:[{56.2580273824466,2,{7.570051346068126e-10,agent}},
 {18.43287953405122,2,{7.570051345575052e-10,agent}},
 {6.1532819188772505,2,{7.570051345123884e-10,agent}},
 {0.49999782678670823,3,{7.570051345394602e-10,agent}}]
…
…
…
******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:9 Population Generation:78 Eval_Acc:10701 Cycle_Acc:41178
Time_Acc:2259258

This time it took only 10701 evaluations. But there is something very interest-
ing that happened here. Take a look at the most fit agent in the population, with
the id: {1000.4594763865106,2,{7.570051345044739e-10,agent}}. It only has 2
neurons! That’s not possible, since this particular circuit requires at least 3 neu-
rons, if those neurons are using tanh activation function. We have the agent’s Id,
let’s check out its topology, as shown in the following listing:

Listing-9.3 The console printout of the topology of the fittest agent in the population.

3> genotype:print({7.570051345044739e-10,agent}).
{agent,{7.570051345044739e-10,agent},
 15,undefined,7.570051363681182e-10,
 {{origin,7.570051345042693e-10},cortex},
 {[{0,1},{0.5,1}],
 [{add_bias,{0.5,neuron}},
 {mutate_af,{0,neuron}},
 {mutate_weights,{0.5,neuron}},
 {add_actuator,{0,neuron},{1,actuator}},
 {outsplice,{0,neuron},{0.5,neuron},{1,actuator}},
 {mutate_weights,{0,neuron}},
 {mutate_af,{0,neuron}},

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 373

 {mutate_af,{0,neuron}},
 {mutate_weights,{0,neuron}},
 {mutate_af,{0,neuron}},
 {mutate_weights,{0,neuron}},
 {mutate_af,{0,neuron}},
 {mutate_weights,{0,neuron}},
 {add_bias,{0,neuron}},
 {add_inlink,{0,neuron},{0,neuron}}],
 [{sensor,undefined,xor_GetInput,undefined,

 {private,xor_sim},

 2,

 [{{0,7.570051345042682e-10},neuron}],

 undefined}],

 [{actuator,undefined,xor_SendOutput,undefined,

 {private,xor_sim},

 1,

 [{{0.5,7.570051345042677e-10},neuron}],

 11},

 {actuator,undefined,xor_SendOutput,undefined,

 {private,xor_sim},

 1,

 [{{0,7.570051345042682e-10},neuron}],
 undefined}]},

 {constraint,xor_mimic,[tanh]},
 [{add_bias,{{0.5,7.570051345042677e-10},neuron}},

 {mutate_af,{{0,7.570051345439552e-10},neuron}},

 {mutate_weights,{{0.5,7.570051346065783e-10},neuron}},
 {add_actuator,{{0,7.57005134638638e-10},neuron},

 {{1,7.57005134636634e-10},actuator}},

 {outsplice,{{0,7.57005134670089e-10},neuron},
 {{0.5,7.570051346689715e-10},neuron},
 {{1,7.570051346700879e-10},actuator}},
 {mutate_weights,{{0,7.570051347808065e-10},neuron}},
 {mutate_af,{{0,7.570051347949999e-10},neuron}},

 {mutate_af,{{0,7.570051348731883e-10},neuron}},

 {mutate_weights,{{0,7.57005134905699e-10},neuron}},
 {mutate_af,{{0,7.570051352005185e-10},neuron}},

 {mutate_weights,{{0,7.57005135384367e-10},neuron}},
 {mutate_af,{{0,7.570051357421974e-10},neuron}},

 {mutate_weights,{{0,7.570051357953169e-10},neuron}},
 {add_bias,{{0,7.570051361212367e-10},neuron}},

 {add_inlink,{{0,7.570051363350866e-10},neuron},
 {{0,7.570051363350866e-10},neuron}}],
 1000.4594763865106,0,
 [{0,[{{0,7.570051363631578e-10},neuron}]},

374

 {0.5,[{{0.5,7.570051346689715e-10},neuron}]}]}
{cortex,{{origin,7.570051345042693e-10},cortex},
 {7.570051345044739e-10,agent},
 [{{0.5,7.570051345042677e-10},neuron},
 {{0,7.570051345042682e-10},neuron}],
 [{{-1,7.570051345042671e-10},sensor}],
 [{{1,7.570051345042659e-10},actuator},
 {{1,7.570051345042664e-10},actuator}]}
{sensor,{{-1,7.570051345042671e-10},sensor},
 xor_GetInput,
 {{origin,7.570051345042693e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.570051345042682e-10},neuron}],
 undefined}
{neuron,{{0.5,7.570051345042677e-10},neuron},
 15,
 {{origin,7.570051345042693e-10},cortex},
 tanh,
 [{{{0,7.570051345042682e-10},neuron},[-4.9581978771372395]},
 {bias,[-2.444318048832683]}],
 [{{1,7.570051345042659e-10},actuator}],
 []}
{neuron,{{0,7.570051345042682e-10},neuron},
 14,
 {{origin,7.570051345042693e-10},cortex},
 tanh,
 [{{{0,7.570051345042682e-10},neuron},[6.283185307179586]},
 {{{-1,7.570051345042671e-10},sensor},
 [-4.3985975891263305,-2.3223009779757877]},
 {bias,[1.3462974501315348]}],
 [{{1,7.570051345042664e-10},actuator},
 {{0.5,7.570051345042677e-10},neuron},
 {{0,7.570051345042682e-10},neuron}],
 [{{0,7.570051345042682e-10},neuron}]}
{actuator,{{1,7.570051345042659e-10},actuator},

 xor_SendOutput,

 {{origin,7.570051345042693e-10},cortex},

 {private,xor_sim},

 1,

 [{{0.5,7.570051345042677e-10},neuron}],

 11}

{actuator,{{1,7.570051345042664e-10},actuator},

 xor_SendOutput,

 {{origin,7.570051345042693e-10},cortex},

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 375

 {private,xor_sim},

 1,

 [{{0,7.570051345042682e-10},neuron}],

 undefined}

{atomic,[ok,ok]}

Though we’ve decided to look at the NN system’s genotype to see how it was
possible for our neuroevolutionary system to evolve a solution with only two neu-
rons, instead, if you look through the genotype, you will see that we just uncov-
ered a large number of errors in the way our system functions. Let’s take a look at
each part in turn, before returning to the actual evolved topology of the NN sys-
tem.

Boldfaced in the console printout above are the following errors, discussed and
corrected in the following sections:

1. mutate_af operator is applied to the agent multiple times, but we have opted to
only use the tanh activation function, which means this mutation operator does
nothing to the network, and is a waste of a mutation attempt, and thus should
not be present.

2. When looking at the mutate_af, we also see that it is applied to neurons with
different Ids, 5 of them, even though there are only 2 neurons in the system.

3. This NN system evolved a connection to two actuators, but this morphology
supports only 1, what happened?

4. In the agent’s fingerprint, the sensors and actuators contain N_Ids. This is an
error, since the fingerprint must not contain any Id specific information, it must
only contain the general information about the NN system, so that we can have
an ability to roughly distinguish between different species of the NN systems
(those with different topologies, morphologies, sensors and actuators, or those
with significantly different sets of activation functions).

In the following sections, we deal with each of these errors one at a time.

9.2.1 The mutate_af Error

Looking at the agent’s evo_hist list, shown in Listing-9.4, we can see that mul-
tiple mutate_afs are applied. The goal of a mutation operator is to modify the NN
system, and if a mutation operator cannot be applied, due to for example the state
in which the NN system is, or because it leads to a non-functional NN, then we
should revert the mutation operator and try applying another one. Each NN sys-
tem, when being mutated, undergoes a specific number of mutations, ranging from
1 to sqrt(Tot_Neurons), chosen randomly. Thus, every time we apply a mutation
operator to the NN system, and it does nothing, that is one mutation attempt wast-
ed. This can result in a clone which was not mutated at all, or not mutated properly.

376

Listing-9.4 The agent’s evo_hist list.

 [{add_bias,{{0.5,7.570051345042677e-10},neuron}},
 {mutate_af,{{0,7.570051345439552e-10},neuron}},
 {mutate_weights,{{0.5,7.570051346065783e-10},neuron}},
 {add_actuator,{{0,7.57005134638638e-10},neuron},
 {{1,7.57005134636634e-10},actuator}},
 {outsplice,{{0,7.57005134670089e-10},neuron},
 {{0.5,7.570051346689715e-10},neuron},
 {{1,7.570051346700879e-10},actuator}},
 {mutate_weights,{{0,7.570051347808065e-10},neuron}},
 {mutate_af,{{0,7.570051347949999e-10},neuron}},
 {mutate_af,{{0,7.570051348731883e-10},neuron}},
 {mutate_weights,{{0,7.57005134905699e-10},neuron}},
 {mutate_af,{{0,7.570051352005185e-10},neuron}},
 {mutate_weights,{{0,7.57005135384367e-10},neuron}},
 {mutate_af,{{0,7.570051357421974e-10},neuron}},
 {mutate_weights,{{0,7.570051357953169e-10},neuron}},
 {add_bias,{{0,7.570051361212367e-10},neuron}},
 {add_inlink,{{0,7.570051363350866e-10},neuron},
 {{0,7.570051363350866e-10},neuron}}],

To solve this problem we need to check the genome_mutator:mutate_af/1 func-
tion, as shown in listing-9.5.

Listing-9.5 The mutate_af/1 function.

mutate_af(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 Generation = A#agent.generation,
 N = genotype:read({neuron,N_Id}),
 AF = N#neuron.af,

Afterwards, this clone is sent back into the environment to be evaluated. For
example assume a fit agent creates an offspring by first creating a clone of itself,
and then applying to it the mutate_af operator, if mutate_af is being applied to an
agent that only has tanh for its available activation functions list, the resulting off-
spring is exactly the same as its parent, since tanh was swapped for tanh. There is
no reason to test out a clone, since we already know how such a NN system func-
tions, because its parent has already been evaluated and tested for fitness. It is thus
essential that whatever is causing this error, is fixed.

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 377

 Activation_Functions = (A#agent.constraint)#constraint.neural_afs -- [AF],
 NewAF = genotype:generate_NeuronAF(Activation_Functions),
 U_N = N#neuron{af=NewAF,generation=Generation},
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{mutate_af,N_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A).

Though: Activation_Functions = (A#agent.constraint)#constraint.neural_afs –
[AF], does result in an empty list (since #constraint.neural_afs list is: [tanh]), it
does not matter because the genotype:generate_NeuronAF(Activation_Functions)
function itself chooses the default tanh activation function when executed with an
empty list parameter. This is the cause of this error. What we need to do is simply
exit the mutation operator as soon as we find that there is only one activation func-
tion, that it is already being used by the neuron, and that there is nothing to mu-
tate. We thus modify mutate_af/1 function to be as follows:

Listing-9.6 The mutate_af function after the fix is applied.

mutate_af(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 Generation = A#agent.generation,

 N = genotype:read({neuron,N_Id}),
 AF = N#neuron.af,
 case (A#agent.constraint)#constraint.neural_afs -- [AF] of

 [] ->

 exit(“********ERROR:mutate_af:: There are no other activation func-

tions to use.”);

 Activation_Functions ->
 NewAF = lists:nth(random:uniform(length(Activation_Functions)),
Activation_Functions),
 U_N = N#neuron{af=NewAF,generation=Generation},
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{mutate_af,N_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A)
 end.

378

The fix is shown in boldface. In this fixed function, as soon as the mutation op-
erator determines that there are no other activation functions that it can swap the
currently used one for, it simply exits with an error. The genome mutator then tries
out another mutation operator.

9.2.2 Same Neuron, But Different Ids in the evo_hist List

Looking at the Listing-9.3 again, we also see that even though the NN has only
2 neurons, as was shown in the original printout to console, there were 5 mu-
tate_af operators applied and each one was applied to a different neuron_id. But
how is that possible if there are only 2 neurons and thus only 2 different neuron
ids?

This error occurs because when we clone the NN, all neurons get a new id, but
we never update the evo_hist list, converting those old ids into new ones. This
means that the Ids within the evo_hist are not of the elements belonging to the
agent in its current state, but the element ids which belong to its ancestors. Though
it does not matter what the particular ids are, it is essential that they are consistent,
so that we can reconstruct the evolutionary path of the NN based system, which is
not possible if we don’t know which mutation operator was applied to which ele-
ment in the NN system being analyzed. To be able to see when, and to what par-
ticular elements of the topology the mutation operators were applied, we need a
consistent set of element ids in the evo_hist, so that the evolutionary path can be
reconstructed based on the actual ids used by the NN based agent.

To fix this, we need to modify the cloning process so that it does not only up-
date all the element ids in the NN system, but also the element ids in the evo_hist,
ensuring that the system is consistent. The cloning process is performed in the
genotype module, through the clone_Agent/2 function. Therefore, it is this func-
tion that we need to correct. The fix is simple, we need to create a new function
called map_EvoHist/2, and call it from the clone_Agent/2 function with the old
evo_hist list and an ETS table containing a map from old ids to new ones. The
map_EvoHist/2 function can then map the old ids to new ids in the evo_hist list.
The cloned agent will then use this updated evo_hist, with its updated new ids, in-
stead of the old ids which belonged to its parent. The updated map_EvoHist/2
function is shown in Listing-9.7.

Listing-9.7 A new function, map_EvoHist/2, which updates the element ids of the evo_hist list,
mapping the ids of the original agent to the ids of the elements used by its clone.

map_EvoHist(TableName,EvoHist)->
 map_EvoHist(TableName,EvoHist,[]).

map_EvoHist(TableName,[{MO,E1Id,E2Id,E3Id}|EvoHist],Acc)->

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 379

 Clone_E1Id = ets:lookup_element(TableName,E1Id,2),
 Clone_E2Id = ets:lookup_element(TableName,E2Id,2),
 Clone_E3Id = ets:lookup_element(TableName,E3Id,2),
 map_EvoHist(TableName,EvoHist,[{MO,Clone_E1Id,Clone_E2Id, Clone_E3Id}| Acc]);
map_EvoHist(TableName,[{MO,E1Id,E2Id}|EvoHist],Acc)->
 Clone_E1Id = ets:lookup_element(TableName,E1Id,2),
 Clone_E2Id = ets:lookup_element(TableName,E2Id,2),
 map_EvoHist(TableName,EvoHist,[{MO,Clone_E1Id,Clone_E2Id}|Acc]);
map_EvoHist(TableName,[{MO,E1Id}|EvoHist],Acc)->
 Clone_E1Id = ets:lookup_element(TableName,E1Id,2),
 map_EvoHist(TableName,EvoHist,[{MO,Clone_E1Id}|Acc]);
map_EvoHist(_TableName,[],Acc)->
 lists:reverse(Acc).
%map_EvoHist/2 is a wrapper for map_EvoHist/3, which in turn accepts the evo_hist list con-
taining the mutation operator tuples that have been applied to the NN system. The function is
used when a clone of a NN system is created. The function updates the original Ids of the ele-
ments the mutation operators have been applied to, to the ids used by the elements of the clone,
so that the updated evo_hist can reflect the clone’s topology, as if all the mutation operators
have been applied to it instead, and that it is not a clone. Once all the tuples in the evo_hist have
been updated with the clone’s element ids, the list is reversed to its proper order, and the updat-
ed list is returned to the caller.

Having fixed this bug, we move on to the next one.

9.2.3 Multiple Actuators of the Same Type

Looking again at the Listing-9.3, we see that one of the mutation operators was
add_actuator. Since only successful mutation operators are allowed to be in the
evo_hist list, it must be the case that only those mutation operators that actually
mutated the genotype are present in the evo_hist list, which is what allows us to
use it to trace back the evolutionary path of the evolved agent. But the presence of
add_actuator in evo_hist must be an error, because the xor_mimic morphology on-
ly gives the agent access to a single actuator, there are no variations of that actua-
tor, and the agent starts with that single actuator. It should not be possible to add a
new actuator to the NN system since there are no new ones available, and this tag
should not exist in the evo_hist list. This mutation operator was applied in error,
let’s find out why.

Looking at the add_actuator/1 in the genome_mutator module, we can see that
it does check whether all the actuators are already used. But if we look at the
agent’s fingerprint section of the console printout in Listing-9.3:

380

 [{actuator,undefined,xor_SendOutput,undefined,
 {private,xor_sim},
 1,
 [{{0.5,7.570051345042677e-10},neuron}],
 11},
 {actuator,undefined,xor_SendOutput,undefined,
 {private,xor_sim},
 1,
 [{{0,7.570051345042682e-10},neuron}],
 undefined}]

We notice the problem. The last element in the record defining the actuator in
the genotype is the generation element. One actuator has the generation set to 11,
the other has it set to undefined. In the add_actuator function, we do not reset the
generation value, as we do with the id and the cx_id. This must be it. When we
subtract the list of the actuators used by the agent from the morphology’s list of
available actuators, the resulting list is not empty. The reason why an actuator still
remains in the list, is because we did not set the generation parameter of the
agent’s actuator to undefined. Since the two actuators are not exactly the same
(with all their agent specific features been set to defaults), the actuator used by the
agent is not removed from the list of available actuators of the morphology’s actu-
ator list.

This also raises the issue of what should we do, in a consistent manner, with the
generation parameter of the actuator? Lets update the source code and treat the
generation of the actuator element as we treat it in the neuron elements: Initially
set it to the value of the generation when it was created, and update its value every
time it has been affected by a mutation. We make the same modification to the
sensor elements.

In the add_actuator/1 function we change the line:

...
case morphology:get_Actuators(Morphology)--[(genotype:read({actuator, A_Id}))#actuator{
cx_id=undefined, id=undefined, fanin_ids=[]} || A_Id<-A_Ids] of
...

To:

…
case morphology:get_Actuators(Morphology)--[(genotype:read({actuator, A_Id}))#actuator{
cx_id=undefined, id=undefined, fanin_ids=[],generation=undefined} || A_Id<-A_Ids] of
…

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 381

We do the same thing to the add_sensor/1 function. And then to ensure that the
actuator’s generation is updated every time a mutation operator affects it, we up-
date the function linkFromNeuronToActuator/3 from using the line:

 genotype:write(ToA#actuator{ fanin_ids=U_Fanin_Ids})

To one using:

 genotype:write(ToA#actuator{ fanin_ids = U_Fanin_Ids, generation=Generation})

To make sure that the sensor’s generation is also updated, we modify the func-
tion link_FromSensorTo/2 from:

link_FromSensor(FromS,ToId)->
 FromFanout_Ids = FromS#sensor.fanout_ids,
 case lists:member(ToId, FromFanout_Ids) of
 true ->
 exit(“******** ERROR:link_FromSensor[cannot add ToId to Sensor]: ~p al-
ready a member of ~p~n”,[ToId,FromS#sensor.id]);
 false ->
 FromS#sensor{
 fanout_ids = [ToId|FromFanout_Ids]
 }
 end.

To the function link_FromSensorTo/3:

link_FromSensor(FromS,ToId,Generation)->
 FromFanout_Ids = FromS#sensor.fanout_ids,
 case lists:member(ToId, FromFanout_Ids) of
 true ->
 exit(“******** ERROR:link_FromSensor[can not add ToId to Sensor]: ~p al-
ready a member of ~p~n”,[ToId,FromS#sensor.id]);
 false ->
 FromS#sensor{
 fanout_ids = [ToId|FromFanout_Ids],
 generation=Generation

 }
 end.

Finally, we also update the genotype module’s function construct_Cortex/3,
from using:

 Sensors = [S#sensor{id={{-1,generate_UniqueId()},sensor},cx_id=Cx_Id}|| S<-
morphology:get_InitSensors(Morphology)],

382

 Actuators = [A#actuator{id={{1,generate_UniqueId()},actuator},cx_id=Cx_Idn}||A<-
morphology:get_InitActuators(Morphology)],

To one using:

 Sensors = [S#sensor{id={{-1,generate_UniqueId()},sensor},cx_id=Cx_Id,
generation=Generation} || S<- morphology:get_InitSensors(Morphology)],
 Actuators = [A#actuator{id={{1,generate_UniqueId()},actuator},cx_id=Cx_Id,
generation=Generation} || A<-morphology:get_InitActuators(Morphology)],

Which ensures that we can keep track of the generation from the very start.

9.2.4 Making Fingerprint Store Generalized Sensors & Actuators

The fingerprint of the agent is used to vaguely represent the species that the
agent belongs to. For example, if we have two NN systems which are exactly the
same, except for the ids of their elements and the synaptic weights their neurons
use, then these two agents belong to the same species. We cannot compare them
directly to each other, because they will have those differences (the ids and the
synaptic weights), but we can create a more generalized fingerprint for each agent
which will be exactly the same for both. Some of the general features which we
might use to classify a species is the NN topology and the sensors and actuators
the NN system uses.

The 4th error we noticed was that we forgot to get rid of the N_Ids in the gener-
alized sensor and actuator tuples within the fingerprint. We got rid of all the Id
specific parts (the element’s own id, and the cx_id) of those tuples before entering
them into the fingerprint tuple, but forgot to do the same for the fanin_ids and the
fanout_ids in the actuator and sensor tuples respectively. The fix is very simple, in
the genotype module, we modify two lines in the update_fingerprint/1 function
from:

 GeneralizedSensors= [(read({sensor,S_Id}))#sensor{id=undefined,cx_id=undefined}
|| S_Id<-Cx#cortex.sensor_ids],
 GeneralizedActuators= [(read({actuator,A_Id}))#actuator{id=undefined, cx_id=undefined}
|| A_Id<-Cx#cortex.actuator_ids],

To:

 GeneralizedSensors= [(read({sensor,S_Id}))#sensor{id=undefined,cx_id=undefined,
fanout_ids =[]} || S_Id<-Cx#cortex.sensor_ids],

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 383

 GeneralizedActuators= [(read({actuator,A_Id}))#actuator{id=undefined,cx_id =undefined,
fanin_ids=[]} || A_Id<-Cx#cortex.actuator_ids],

This change fixes the 4th and final error we’ve noticed. With this done, we now
take our attention towards the remaining noticed anomaly, the 2 neuron NN solu-
tion. How is it possible?

9.2.5 The Quizzical Topology of the Fittest NN System

The first thing we noticed, and the reason for a closer analysis of the evolved
agent, was the NN’s topology, the fact that it had 2 neurons instead of 3+ neurons.
After our analysis though, and finding out that it also had 2 actuators, while inter-
facing with only a single private scape, which means that both actuators were
sending signals to it... there might be all kinds of different reasons for the 2 neuron
solution. Nevertheless, let us still build it to see what exactly has evolved. Fig-9.5
shows the diagram of the final evolved NN system, based on the genotype in List-
ing-9.3.

Fig. 9.5 The NN topology of the fittest agent in the population solving the XOR test, from
Listing-9.3.

If we ignore the strange part about this NN system having two actuators, the
reason behind which we have already solved in Section-9.2.3, we immediately
spot another interesting feature. We have evolved a recurrent NN!

384

A recurrent NN can use memory, which means that the evolved solution,
among other things, is most likely also sequence specific. This means that this so-
lution takes into account the order in which the input data is presented. Since in
the real world these types of signals would not be presented in any particular order
to the XOR logic operator in question, our evolved system would not simulate the
XOR operator properly anyway, even after having all the other errors fixed. A
proper XOR mimicking neural network must not be sequence specific. Thus it is
essential that for this problem we evolve a non recurrent NN system.

We need to be able to control and choose whether we want the evolving neural
network systems to have recurrent connections or not. In the same way that we
can choose what activation functions the NN system has access to (through the
constraint record), we can also specify whether recurrent connections are allowed
or not. To add this feature before we can retest our system, we need to: 1. Modify
the records.hrl file to add the new element to the constraint tuple. And 2. Modify
the genome_mutator module so that it checks whether recurrent or only
feedforward connections are allowed, before choosing which elements to link to-
gether.

Modifying the records.hrl file is easy, we simply change the constraint record
from:

-record(constraint,{
 morphology=xor_mimic, %xor_mimic
 neural_afs=[tanh,cos,gaussian,absolute] %[tanh,cos,gaussian,absolute,sin,sqrt,sigmoid]
 }).

To:

-record(constraint,{
 morphology=xor_mimic, %xor_mimic
 connection_architecture = recurrent, %recurrent|feedforward

 neural_afs=[tanh,cos,gaussian,absolute] %[tanh,cos,gaussian,absolute,sin,sqrt,sigmoid]
 }).

The new parameter: connection_architecture, can take on two values, either the
atom: recurrent, or the atom: feedforward. Though we’ve added the new element,
connection_architecture, to the constraint record, we still need to modify the ge-
nome_mutator module so that it actually knows how to use this new parameter. In
the genome_mutator module we need to modify all the mutation_operators that
add new connections, and ensure that before a new connection is created, the func-
tion takes the value of the connection_architecture parameter into consideration.
The mutation operators that we need to modify for this are: add_outlink/1,
add_inlink/1, and add_neuron/1.

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 385

The updated add_outlink/1 function first builds an output id pool, which is a
list of all available ids to which the selected neuron can choose to establish a link
to. The general id pool is composed by combining together the list of actuator and
neuron ids. We must remove from this id list the neuron’s own Output_Ids list,
which leaves a list of element Ids to which the neuron is not yet connected to. We
then check whether the agent allows for recurrent connections, or only
feedforward. If recurrent connections are allowed, then a random Id from this list
is chosen, and the neuron and the chosen element are linked together. If on the
other hand only the feedforward connections are allowed, the neuron’s own layer
index is checked, and then the composed id pool is filtered such that the remaining
id list contains only the element ids whose layer index is greater than that of the
neuron. This effectively creates a list of element ids which are 1 or more neural-
layers ahead of the chosen neuron, and to whom if a connection is established,
would be considered feedforward. To implement this new approach, we convert
the original add_outlinke/1 function from:

add_outlink(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,

 A_Ids = Cx#cortex.actuator_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 N = genotype:read({neuron,N_Id}),
 Output_Ids = N#neuron.output_ids,
 case lists:append(A_Ids,N_Ids) -- Output_Ids of
 [] ->
 exit(“********ERROR:add_outlink:: Neuron already connected to all ids”);
 Available_Ids ->
 To_Id = lists:nth(random:uniform(length(Available_Ids)),Available_Ids),
 link_FromElementToElement(Agent_Id,N_Id,To_Id),
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{add_outlink,N_Id,To_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_A)
 end.

To one that uses a filtered neuron id pool, Outlink_NIdPool, for the
feedforward connections, and the entire id pool for when recurrent connections are
allowed:

add_outlink(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),

386

 N_Ids = Cx#cortex.neuron_ids,
 A_Ids = Cx#cortex.actuator_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 N = genotype:read({neuron,N_Id}),
 Output_Ids = N#neuron.output_ids,
 Outlink_NIdPool = filter_OutlinkIdPool(A#agent.constraint,N_Id,N_Ids),

 case lists:append(A_Ids,Outlink_NIdPool) -- Output_Ids of
 [] ->
 exit(“********ERROR:add_outlink:: Neuron already connected to all ids”);
 Available_Ids ->
 To_Id = lists:nth(random:uniform(length(Available_Ids)),Available_Ids),
 link_FromElementToElement(Agent_Id,N_Id,To_Id),
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{add_outlink,N_Id,To_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_A)
 end.

The filter_OutlinkIdPool(Constraint,N_Id,N_Ids) function has to filter the neu-
ron ids (N_Ids) based on the specification in the constraint record. This new fil-
ter_OutlinkIdPool/3 function, is shown in the following listing:

Listing-9.8 The implementation of filter_OutlinkIdPool/3, a constraint based neuron id filtering
function.

filter_OutlinkIdPool(C,N_Id,N_Ids,Type)->
 case C#constraint.connection_architecture of
 recurrent ->
 N_Ids;
 feedforward ->
 {{LI,_},neuron} = N_Id,
 case Type of
 outlink ->
 [{{Outlink_LI,Outlink_UniqueId},neuron} || {{Outlink_LI,
Outlink_UniqueId}, neuron} <- N_Ids, Outlink_LI > LI];
 inlink ->
 [{{Inlink_LI,Inlink_UniqueId},neuron} || {{Inlink_LI,
Inlink_UniqueId},neuron} <- N_Ids, Inlink_LI < LI]
 end
 end.
%The function filter_OutlinkIdPool/3 uses the connection_architecture specification in the con-
straint record of the agent to return a filtered neuron id pool. For the feedforward connec-
tion_architecture, the function ensures that only the neurons in the forward facing layers are al-
lowed in the id pool.

Chapter 9 Testing the Neuroevolutionary System

9.2 Testing the Neuroevolutionary System on the Simple XOR Benchmark 387

We can modify the add_inlink/1 mutation operator in the same way. In this
function though, if we are to only have feedforward connections, then the filtered
neuron id pool needs to have neurons whose layer is less than that of the chosen
neuron which is trying to add an inlink. The add_inlink/1 function is modified in
the same manner as the add_outlink/1, only we create and use the fil-
ter_InlinkIdPool/3 function instead, which is shown in the following listing:

Listing-9.9 The implementation of filter_InlinkIdPool/3, a constraint based neuron ids filtering
function.

 filter_InlinkIdPool(C,N_Id,N_Ids)->
 case C#constraint.connection_architecture of
 recurrent ->
 N_Ids;
 feedforward ->
 {{LI,_},neuron} = N_Id,
 [{{Inlink_LI,Inlink_UniqueId},neuron} || {{Inlink_LI,
Inlink_UniqueId},neuron} <- N_Ids, Inlink_LI < LI]
 end.
%The function filter_InlinkIdPool/3 uses the connection_architecture specification in the con-
straint record of the agent to return a filtered neuron id pool. For the feedforward connec-
tion_architecture, the function ensures that only the neurons in the previous layers are allowed
in the filtered neuron id pool.

Finally, we modify the add_neuron/1 mutation operator. In this operator a new
neuron B is created, and is then connected from a randomly chosen neuron A, and
to a randomly chosen neuron C. As in the previous two mutation operators, we
compose an Id pool specified by the architecture_constraint parameter, from
which the Ids of A and C are then chosen. The modified version of the
add_neuron/1 function is shown in Listing-9.10.

Listing-9.10 The modified add_neuron/1 mutation operator, which now uses id pools that satis-
fy the connection_architecture constraint specification. The bold parts of the code are the added
and modified parts of the function.

add_neuron(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Generation = A#agent.generation,
 Pattern = A#agent.pattern,
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 S_Ids = Cx#cortex.sensor_ids,
 A_Ids = Cx#cortex.actuator_ids,
 {TargetLayer,TargetNeuron_Ids} = lists:nth(random:uniform(length(Pattern)),Pattern),

388

 NewN_Id = {{TargetLayer,genotype:generate_UniqueId()},neuron},
 U_N_Ids = [NewN_Id|N_Ids],
 U_Pattern = lists:keyreplace(TargetLayer, 1, Pattern,
{TargetLayer,[NewN_Id|TargetNeuron_Ids]}),
 SpecCon = A#agent.constraint,
 genotype:construct_Neuron(Cx_Id,Generation,SpecCon,NewN_Id,[],[]),
 Inlink_NIdPool = filter_InlinkIdPool(A#agent.constraint,NewN_Id,N_Ids),

 Outlink_NIdPool = filter_OutlinkIdPool(A#agent.constraint,NewN_Id,N_Ids),

 FromElementId_Pool = Inlink_NIdPool++S_Ids,
 ToElementId_Pool = Outlink_NIdPool,
 case (Inlink_NIdPool == []) or (Outlink_NIdPool == []) of

 true ->

 exit(“********ERROR::add_neuron(Agent_Id)::Can’t add new neuron

here, Inlink_NIdPool or Outlink_NIdPool is empty.”);

 false ->

 From_ElementId =
lists:nth(random:uniform(length(FromElementId_Pool)),FromElementId_Pool),
 To_ElementId =
lists:nth(random:uniform(length(ToElementId_Pool)),ToElementId_Pool),
 link_FromElementToElement(Agent_Id,From_ElementId,NewN_Id),
 link_FromElementToElement(Agent_Id,NewN_Id,To_ElementId),
 U_EvoHist = [{add_neuron,From_ElementId,NewN_Id, To_ElementId} |
A#agent.evo_hist],
 genotype:write(Cx#cortex{neuron_ids = U_N_Ids}),
 genotype:write(A#agent{pattern=U_Pattern,evo_hist=U_EvoHist})
 end.

We do not need to modify outsplice/1 mutation operator, even though it does
establish new connections. The reason for this is that if the connec-
tion_architecture allows recurrent connections, then there is nothing to modify,
and if it is feedforward, then all the connections are already made in the right di-
rection, since if we add a new neuron, we either create a new layer for it, or put it
in the layer located between the two spliced neurons, which allows the NN to re-
tain the feedforward structure.

9.3 Retesting Our Neuroevolutionary System

Having now modified all the broken mutation operators, and fixed all the er-
rors, we can compile all the modified modules, and retest our neuroevolutionary
system. First, we will once again apply multiple mutation operators to our NN sys-
tem, and then analyze the resulting NN architecture, manually checking if every-
thing looks as it supposed to. We will then run multiple xor_mimic tests, each test

Chapter 9 Testing the Neuroevolutionary System

9.3 Retesting Our Neuroevolutionary System 389

with a slightly different parameter set. This will give us a better understanding of
how our system performs.

During this test, we still let the NN evolve recurrent connections. In the follow-
ing listing we first compile and load the modules by executing polis:sync().We
then execute genome_mutator:long_test(10). And then finally, we print the result-
ing NN system’s genotype to console, so that we can visually inspect it:

Listing-9.11 The long_test function applied to our now fixed neuroevolutionary system.

3> genome_mutator:long_test(10).
...
4> genotype:print(test).
{agent,test,10,undefined,test, ...
 [{mutate_weights,{{0.5,7.565644036503407e-10},neuron}},
 {add_neuron,{{0.5,7.565644036503407e-10},neuron},
 {{0.5,7.565644036354212e-10},neuron},
 {{0.5,7.565644036503407e-10},neuron}},
 {add_bias,{{0,7.565644036525425e-10},neuron}},
 {add_outlink,{{0.5,7.565644036503407e-10},neuron},
 {{0,7.565644036562396e-10},neuron}},
 {add_outlink,{{0,7.565644036562396e-10},neuron},
 {{0,7.565644036525425e-10},neuron}},
 {mutate_af,{{0,7.565644036535494e-10},neuron}},
 {mutate_af,{{0,7.565644036562396e-10},neuron}},
 {add_bias,{{0,7.565644036535494e-10},neuron}},
 {outsplice,{{0,7.565644036562396e-10},neuron},
 {{0.5,7.565644036503407e-10},neuron},
 {{1,7.565644036562401e-10},actuator}},
 {mutate_af,{{0,7.565644036535494e-10},neuron}},
 {mutate_weights,{{0,7.565644036562396e-10},neuron}},
 {add_inlink,{{0,7.565644036525425e-10},neuron},
 {{0,7.565644036525425e-10},neuron}},
 {add_neuron,{{-1,7.565644036562414e-10},sensor},
 {{0,7.565644036525425e-10},neuron},
 {{0,7.565644036562396e-10},neuron}},
 {add_neuron,{{0,7.565644036562396e-10},neuron},
 {{0,7.565644036535494e-10},neuron},
 {{0,7.565644036562396e-10},neuron}},
 {add_outlink,{{0,7.565644036562396e-10},neuron},
 {{0,7.565644036562396e-10},neuron}}],
 0.13228659163157622,0,
 [{0,
 [{{0,7.565644036525425e-10},neuron},
 {{0,7.565644036535494e-10},neuron},

390

 {{0,7.565644036562396e-10},neuron}]},
 {0.5,
 [{{0.5,7.565644036354212e-10},neuron},
 {{0.5,7.565644036503407e-10},neuron}]}]}
{cortex,{{origin,7.56564403656243e-10},cortex},
 test,
 [{{0.5,7.565644036354212e-10},neuron},
 {{0.5,7.565644036503407e-10},neuron},
 {{0,7.565644036525425e-10},neuron},
 {{0,7.565644036535494e-10},neuron},
 {{0,7.565644036562396e-10},neuron}],
 [{{-1,7.565644036562414e-10},sensor}],
 [{{1,7.565644036562401e-10},actuator}]}
{sensor,{{-1,7.565644036562414e-10},sensor},
 xor_GetInput,
 {{origin,7.56564403656243e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.565644036525425e-10},neuron},
 {{0,7.565644036562396e-10},neuron}],
 3}
{neuron,{{0.5,7.565644036354212e-10},neuron},
 10,
 {{origin,7.56564403656243e-10},cortex},
 absolute,
 [{{{0.5,7.565644036503407e-10},neuron},[-0.07865790723708455]}],
 [{{0.5,7.565644036503407e-10},neuron}],
 [{{0.5,7.565644036503407e-10},neuron}]}
{neuron,{{0.5,7.565644036503407e-10},neuron},
 10,
 {{origin,7.56564403656243e-10},cortex},
 gaussian,
 [{{{0.5,7.565644036354212e-10},neuron},[0.028673644861684]},
 {{{0,7.565644036562396e-10},neuron},[0.344474633962796]}],
 [{{0.5,7.565644036354212e-10},neuron},
 {{0,7.565644036562396e-10},neuron},
 {{1,7.565644036562401e-10},actuator}],
 [{{0.5,7.565644036354212e-10},neuron},
 {{0,7.565644036562396e-10},neuron}]}
{neuron,{{0,7.565644036525425e-10},neuron},
 9,
 {{origin,7.56564403656243e-10},cortex},
 cos,
 [{{{0,7.565644036562396e-10},neuron},[0.22630117969617192]},
 {{{0,7.565644036525425e-10},neuron},[0.06839553053285097]},

Chapter 9 Testing the Neuroevolutionary System

9.3 Retesting Our Neuroevolutionary System 391

 {{{-1,7.565644036562414e-10},sensor},
 [0.4907662278024556,-0.3163769342514735]},
 {bias,[-0.4041650818621978]}],
 [{{0,7.565644036525425e-10},neuron},
 {{0,7.565644036562396e-10},neuron}],
 [{{0,7.565644036525425e-10},neuron},
 {{0,7.565644036562396e-10},neuron}]}
{neuron,{{0,7.565644036535494e-10},neuron},
 7,
 {{origin,7.56564403656243e-10},cortex},
 cos,
 [{{{0,7.565644036562396e-10},neuron},[0.30082326020002736]},
 {bias,[0.00990196169812485]}],
 [{{0,7.565644036562396e-10},neuron}],
 [{{0,7.565644036562396e-10},neuron}]}
{neuron,{{0,7.565644036562396e-10},neuron},
 9,
 {{origin,7.56564403656243e-10},cortex},
 tanh,
 [{{{0.5,7.565644036503407e-10},neuron},[0.29044390963714084]},
 {{{0,7.565644036525425e-10},neuron},[-0.11820697604732322]},
 {{{0,7.565644036535494e-10},neuron},[2.203261827127093]},
 {{{0,7.565644036562396e-10},neuron},[0.13355748834368064]},
 {{{-1,7.565644036562414e-10},sensor},
 [-2.786539611443157,3.0562965644493305]}],
 [{{0,7.565644036525425e-10},neuron},
 {{0.5,7.565644036503407e-10},neuron},
 {{0,7.565644036535494e-10},neuron},
 {{0,7.565644036562396e-10},neuron}],
 [{{0,7.565644036525425e-10},neuron},
 {{0,7.565644036535494e-10},neuron},
 {{0,7.565644036562396e-10},neuron}]}
{actuator,{{1,7.565644036562401e-10},actuator},
 xor_SendOutput,
 {{origin,7.56564403656243e-10},cortex},
 {private,xor_sim},
 1,
 [{{0.5,7.565644036503407e-10},neuron}],
 5}

It works! Figure-9.6 shows the visual representation of this NN system’s topol-
ogy. If we inspect the mutation operators, and the actual connections, everything
is in perfect order.

392

Fig. 9.6 The randomly evolved topology through the genome_mutator:long_test(10) execu-
tion.

We will now test our system on the xor_mimic problem with the following set
of parameters:

1. Constraint’s activation functions set to [tanh], and MAX_ATTEMPTS to 50,
10, and 1:
This is done by changing the MAX_ATTEMPTS in the exoself module, for
each separate test.

2. Activation functions are not constrained, connection_architecture is set to
feedforward, and MAX_ATTEMPTS is set to 50, 10, and 1:
This is done by changing the INIT_CONSTRAINTS in the population_monitor
module from one which previously constrained the activation functions, to one
that no longer does so:

-define(INIT_CONSTRAINTS,[#constraint{morphology=Morphology,neural_afs=
Neural_AFs, connection_architecture=CA} || Morphology<-[xor_mimic],Neural_AFs<-

[[tanh]], CA<-[feedforward]]).

To:

Chapter 9 Testing the Neuroevolutionary System

9.3 Retesting Our Neuroevolutionary System 393

-define(INIT_CONSTRAINTS, [#constraint{morphology=Morphology,
connection_architecture=CA} || Morphology<-[xor_mimic], CA<-[feedforward]]).

We have developed different kinds of activation functions, and created our
neuroevolutionary system to give NN systems the ability to incorporate these var-
ious functions based on their need. Also, the MAX_ATTEMPTS variable speci-
fies the duration of the tuning phases, how well each topology is tested before it is
given its final fitness score. A neuroevolutionary setup using MAX_ATTEMPTS
= 1 is equivalent to it using a standard genetic algorithm rather than a memetic al-
gorithm based approach, since the tuning phase then only acts as a way to assess
the NN system’s fitness, and all the mutation operators (including the weight per-
turbation) are applied in the topological mutation phase. When the
MAX_ATTEMPTS variable is set to 50, then each topology is tuned for a consid-
erable amount of time.

To acquire the test-results of the above specified setup, we first set the parame-
ters: INIT_CONSTRAINTS and the MAX_ATTEMPTS, to their new values, then
run polis:sync() to update and load the modified modules, and then run the popula-
tion_monitor:test() function to perform the actual test, the results of which are
shown next:

Activation function: tanh, MAX_ATTEMPTS=50:

******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:10 Population Generation:25 Eval_Acc:14806 Cycle_Acc:59224
Time_Acc:8038997

With the last generation’s NN systems having the number of neurons ranging
from: 6-9.

Activation function: tanh, MAX_ATTEMPTS=10:

******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:10 Population Generation:33 Eval_Acc:5396 Cycle_Acc:21584
Time_Acc:2456883

With the last generation’s NN systems having the number of neurons ranging
from: 7-9.

Activation function: tanh, MAX_ATTEMPTS=1:

******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:11 Population Generation:100 Eval_Acc:2281 Cycle_Acc:9124
Time_Acc:2630457

394

In this setup, the system failed to produce a solution, with the maximum fitness
reached being ~7. This is understandable, since in the standard genetic algorithm’s
97% of the mutations are weight perturbation based mutations, with the remainder
being topological mutation operators. In our setup though, because our system
does weight tuning in a different phase, the topological mutation phase uses the
weight_perturbation operator with the same probability as any other. We will
change this in the future.

Activation function: tanh, cos, gaussian, absolute MAX_ATTEMPTS=50:

******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:9 Population Generation:1 Eval_Acc:910 Cycle_Acc:3640
Time_Acc:234083

Activation function: tanh, cos, gaussian, absolute MAX_ATTEMPTS=10:

******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:10 Population Generation:4 Eval_Acc:694 Cycle_Acc:2776
Time_Acc:209243

Activation function: tanh, cos, gaussian, absolute MAX_ATTEMPTS=1:

******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:9 Population Generation:22 Eval_Acc:565 Cycle_Acc:2260
Time_Acc:266885

Fig. 9.7 The discovered solution for the XOR problem, using only a single neuron.

Chapter 9 Testing the Neuroevolutionary System

9.4 Summary 395

The benchmark results when we allow for all activation functions to be used,
are remarkably different. We’ve developed our neuroevolutionary system to allow
the evolving NN systems to efficiently incorporate any available activation func-
tions. In these last 3 scenarios, the evolved solutions all contained a single neuron,
as shown in Fig-9.7. In all 3 tests the solutions were reached within 1000 evalua-
tions, very rapidly. The discovered solution? It was a single neuron without a bias,
using a cos activation function.

We have now tested our neuroevolutionary system on the basic benchmark
problem. We have confirmed that it can evolve solutions, that it can evolve topol-
ogies and synaptic weights, that those solutions are correct, and that the evolved
topologies are as expected. Though we’ve only developed a basic neuroevolutionary
system thus far, it is decoupled and general enough that we can augment it, and
easily improve it further, which is exactly what we will do in later chapters.

9.4 Summary

In this chapter we have thoroughly tested every mutation operator that we’ve
added in the previous chapter. Though initially the mutation operator tests seemed
successful, when testing our system on the XOR problem, and applying numerous
mutation operators and then analyzing the evolved topology manually, we noticed
errors to be present. We explored the origin of these detected errors, and then cor-
rected them, re-testing our system on the XOR problem, successfully so.

The evolutionary algorithms built to evolve around problems, will also result in
being able to evolve around small errors present in the algorithm itself. Thus,
though it may seem that a test ran to completion, and did so successfully, as we’ve
found out in this chapter, sometimes it is worthwhile to analyze the results, and the
evolved agents, manually. It is during the thorough manual analysis that the more
difficult to find errors are discovered. We have done just that in this chapter, and
gained experience in the process of performing manual analysis of evolved NNs.
This will give us an advantage in the future, as we continue adding more advanced
features to our system, which will require debugging sooner or later.

Part III
 A Case Study

In this part I will provide a case study of an already existing general topology
and weight evolving artificial neural network (TWEANN) system created in Er-
lang. Though there are a number of neuroevolutionary systems out there, I am
most familiar with the following three which have shown to be the top performers
within the field: DXNN [1,2], NEAT/HyperNEAT [3,4], and EANT1/2 [5,6]. One
of these TWEANNs was written in Erlang, it is the system which I created and
which I called: Deus Ex Neural Network (DXNN). The case study presented in the
next chapter will be of this particular TWEANN platform.
[1] Sher GI (2010) DXNN Platform: The Shedding of Biological Inefficiencies. Neuron, 1-36.

Available at: http://arxiv.org/abs/1011.6022.
[2] Sher GI (2012) Evolving Chart Pattern Sensitive Neural Network Based Forex

TradingAgents. Available at: http://arxiv.org/abs/1111.5892.
[3] Stanley KO, and Miikkulainen R (2002) Evolving neural Networks Through Augmenting

Topologies. Evolutionary Computation 10, 99-127.
[4] Gauci J, Stanley K (2007) Generating Large-Scale Neural Networks Through Discovering

Geometric Regularities. Proceedings of the 9th annual conference on Genetic and evolution-
ary computation GECCO 07, 997.

[5] Kassahun Y, Sommer G (2005) Efficient Reinforcement Learning Through Evolutionary Ac-
quisition of Neural Topologies. In Proceedings of the 13th European Symposium on Artifi-
cial Neural Networks ESANN 2005 (ACM Press), pp. 259-266.

[6] Siebel NT, Sommer G (2007) Evolutionary Reinforcement Learning of Artificial Neural
Networks. International Journal of Hybrid Intelligent Systems 4, 171-183.

Chapter 10 DXNN: A Case Study

Abstract This chapter presents a case study of a memetic algorithm based
TWEANN system that I developed in Erlang, called DXNN. Here we will discuss
how DXNN functions, how it is implemented, and the various details and imple-
mentation choices I made while building it, and why. We also discuss the various
features that it has, the features which we will eventually need to add to the system
we’re building together. Our system has a much cleaner and decoupled implemen-
tation, and which by the time we’ve reached the last chapter will supersede DXNN
in every way.

Deus Ex Neural Network (DXNN) platform is the original topology and weight
evolving artificial neural network system that I developed in Erlang. What you
and I are creating here in this book is the next generation of it. We’re developing a
more decoupled version, a simpler to generalize and more refined version, and one
with cleaner architecture and implementation. In this chapter we’ll discuss the al-
ready existing system, how it differs from what we’ve created so far, and what
features it has that we will in later chapters need to add to the system we’ve devel-
oped thus far. By the time this book ends, we’ll have created not just a TWEANN
system, but a Topology and Parameter Evolving Universal Learning Network

DXNN is a memetic algorithm based TWEANN platform. As we discussed, the
most advanced approach to neuroevolution and universal learning networks in
general, is through a system that uses evolutionary algorithms to optimize both,
the topology and the synaptic weights/node-parameters of the graph system. The
weights and topology of a NN are evolved so as to increase the NN system’s fit-
ness, based on some fitness criteria/function.

In the following sections we will cover the algorithm and the various features
that make up the DXNN system.

10.1 The Reason for the Memetic Approach to Synaptic Weight
Optimization

As we have discussed in the first chapters, the standard genetic algorithm per-
forms global and local search in a single phase, while the memetic algorithm sepa-

DOI 10.1007/978-1-4614- - © Springer Science+Business Media New York 2013 4463 3_10,
399 G.I. Sher, Handbook of Neuroevolution Through Erlang,

framework, capable of evolving neural networks, circuits, be used as a parallel
distributed genetic programming framework, posses some of the most advanced
features currently known, and designed in such a way that new features can easily
be added to it by simply incorporating new modules (hence the importance of
developing a system where almost everything is decoupled from everything else).

400 Chapter 10 DXNN: A Case Study

rates these two searches into separate stages. When it comes to neural networks,
the global search is done through the exploration of NN topologies, and the local
search is done through the optimization of synaptic weights.

Based on the benchmarks, and ALife performance of DXNN, the memetic ap-
proach has shown to be highly efficient and agile. The primary benefit of separat-
ing the two search phases is due to the importance of finding the right synaptic
weights for a particular topology before deciding on the final fitness score of that
topology. Standard TWEANNs typically operate using the standard genetic algo-
rithm based mutation operator probabilities. In such systems, when creating an
offspring the parent is chosen and then a single mutation operator is applied to it,
with a probability of more than 97% that the mutation operator will be a synaptic
weight perturbation operator. This type of operator simply selects some number of

The other mutation operators are the standard topology augmenting operators.

In standard TWEANNs, a system might generate an optimal topology for the
problem, but because during that one innovation of the new topology the at-that-
point existing synaptic weights make that topology ineffective, the new NN topol-
ogy might be disregarded and removed. Also, in most TWEANNs, the synaptic
weight perturbations are applied indiscriminately to all neurons of the NN, and
thus if for example a NN is composed of 1 million neurons, and a new neuron is
added, the synaptic weight mutations might be applied to any of the 1000001 neu-
rons... making the probability of optimizing the new and the right neuron and its
synaptic weights, very low.

As in the system we’ve built so far, the DXNN platform evolves new NN to-
pologies during each generation, and then through the application of an augmented
stochastic hill climbing optimizes the synaptic weights for those topologies. Thus,
when the “tuning phase”, which is what the local search phase is called in DXNN,
has completed, the tuned NN has roughly the best set of synaptic weights for its
particular topology, and thus the fitness that is given to the NN is a more accurate
representation of its true performance fitness and potential.

Furthermore, the synaptic weight optimization through perturbation is not ap-
plied to all the neurons indiscriminately throughout the NN, but instead is concen-
trated on primarily the newly created neurons, or those neurons which have been
recently affected by a mutation applied to the NN. Thus, the tuning phase optimiz-
es the newly added neural elements so that they work and contribute positively to
the NN they have been added to.

With this approach, the DXNN system is able to slowly grow and optimize the
NN systems. Adding new features/elements and optimizing them to work with the
already existing structures. This I believe gives DXNN a much greater ability to
scale, for there is zero chance of being able to create vast neural networks when

neurons and perturbs some random number of synaptic weights belonging to them

10.1 The Reason for the Memetic Approach to Synaptic Weight Optimization 401

cohesive and functional. Building the NN slowly, complexifying it, adding new
features and ensuring that they work with the existing system in a positive way, al-
lows us to concentrate and optimize those few newly added elements, no matter
how large the already existing NN system is.

Thus, during the local search phase, during the tuning phase, we optimize the
synaptic weights of the newly added and modified elements. And during the glob-
al search, during the topological mutation phase, we apply enough topological
mutation operators when creating an offspring, such that we are able to create in-
novation in the newly resulting NN system, but few enough of them such that the
newly added elements to the NN can still be optimized to work with the existing
much larger, already proven system.

Having discussed the why behind the memetic algorithm approach taken by
DXNN, we now cover the two approaches this system uses when creating off-
spring, clarified to a much greater detail in the next two sections. These two ap-
proaches are the generational evolution, and the steady_state evolution.

The most common approach to offspring creation, and timing of selection and
mutation operator application, is generational. Generational evolution simply
means that we create a population of some size X of seed agents, apply them to
some problem, wait until all agents in the population have been evaluated and giv-
en a fitness score, then select the best of the population, allow them to create off-
spring, and then create the next generation composed of the best agents of the
previous generation plus their offspring, or some other appropriate combination of
fit parents and newly created offspring. That is the essence of the standard genera-
tional evolution.

The steady state evolution tries to emulate the biological world to a slightly
greater degree. In this approach there is no wait for the entire population to be
evaluated before a new agent is created. Instead, as soon as one agent has finished
working on a problem (has been evaluated), or has perished or gathered enough
resources (in the case of an ALife simulation), a new offspring is created. The new
offspring is either created by some already existing agent through the execution of
a create_offspring actuator, or is created by the neuroevolutionary system itself,
after it has calculated what genotype/s to use as the base for the offspring creation
process, and whether the environment can support another agent. In this manner,
the population size working on a problem, or existing in a simulated environment,
is kept relatively constant. There are always organisms in the environment, when
some die, new ones are created. There is a constant turnover of new agents and
new genotypes and phenotypes in the population.

after adding a single new neuron to a 1000000 neuron NN system, we try to then
perturb random synaptic weights in hopes of somehow making the whole system

402 Chapter 10 DXNN: A Case Study

10.2 The DXNN Encoding and Architecture

The genotype encoding used by DXNN is almost exactly the same as the one
used by the system we are building together. It is tuple encoded, with the tuples
stored in the mnesia database. The list of records composing the genotype of each
NN system in the DXNN platform is as follows:

-record(dx,{id,cx_id,n_ids,specie_id,constraint,morphology,generation,fitness,
profile,summary, evo_hist,mode, evo_strat}).
-record(cortex,{id,sensors,actuators,cf,ct,type,plasticity,pattern,cids,su_id,
link_form,dimensions,densities, generation}).
-record(neuron,{id,ivl,i,ovl,o,lt,ro,type,dwp,su_id,generation}).

The dx record plays the role that the agent record does in our TWEANN. The
other thing that immediately stands out is that there are no sensor or actuator ele-
ments. If you look in the DXNN’s records.hrl [1] though, you will see those rec-
ords, but they are not independent elements, the sensors and actuators are part of
the cortex element. Indeed in the original DXNN system, the cortex element is not
a synchronization element, but a gatekeeper element. The cortex element talks di-
rectly to the neurons. The connection from the cortex to the neurons is accom-
plished through the ct list (connected to), and the signals it gathers from the neu-
rons is done through the cf list (connected from). The cortex also has a sensor and
actuator list, which contain the names of the sensor and actuator functions, and the
lists of the neurons that they are connected to and from respectively, based on the
ct/cf lists. This DXNN’s NN based agent architecture is shown in Fig-10.1.

TWEANN’s architecture, differs slightly from what we’ve been developing in the
past few chapters.

Before we begin discussing the general algorithm of the generational
steady_state evolution, before we begin discussing the DXNN system and its vari-
ous features, it would be helpful for me to first explain the architectures of the NN
systems that are evolved by it. The DXNN’s genotype encoding, and the

and

10.2 The DXNN Encoding and Architecture 403

Fig. 10.1 The original DXNN based NN agent architecture.

The way a NN based system shown in Fig-10.1 functions, is as follows:

1. The genotype is first converted to the phenotype, composed of the cortex and
the neurons, with the above shown architecture.

2. The cortex goes through all the sensor function names in its sensors list
which has the following format: [{Sensor1,[{N_Id1,FilterTag1}, {N_Id2,
FilterTag2}...]}...]. The cortex executes the sensor function names, and aggre-

functions. Because in the sensor list each sensor function comes with a list of
neuron ids to which the resulting sensory signals are destined for, it is able to
fanout those sensory signals to the specified neurons. Furthermore, in the above
shown sensor list, the FilterTag has the following format: {single,Index}.
{block,VL}, and {all,VL}. These tuples specify whether the sensor with a sen-
sory signal of size vl, sends the entire sensory signal to the neuron, or just a
single value from that vector list, a value located in the vector list at some par-
ticular Index, respectively. The third FilterTag: {all, VL}, specifies that the
cortex will append the sensory signals of all the sensors, and forward that list to
the neuron in question.

3. The cortex then gets the neuron ids stored in the ct list, and forwards sensory
signals to them, by mapping from the ct neuron ids to the sensor list neuron ids

was originally building the system, primarily because it originally also support-
ed supervised learning, which required this design).

4. The neurons in the NN then process the sensory signals until the signals are
generated by the neurons in the output layer.

5. The output layer neurons send their results to the cortex.

gates and packages the sensory signals generated through execution of the sensor

and their corresponding sensory vector signals (this design made sense when I

404 Chapter 10 DXNN: A Case Study

6. The cortex, as soon as it sends all the sensory signals to the neurons, waits until
it receives the signals from the neurons whose PIds are the same as the PIds in
its cf list, which are the signals destined for the actuators. It gathers these sig-
nals into its accumulator, which is a list of lists, since the incoming signals are
vectors.

7. After having gathered all the signals from the neurons, the cortex uses the actuators
list and maps the composed output signal vectors to their respective actuators, and
then executes the actuator functions using the output vectors as parameters.

8. GOTO 2

The original DXNN uses this particular convoluted architecture because I have
developed it over a number of years, adding on new features, and modifying old fea-
tures. Rather than redesigning the system once I’ve found a better way to represent or
implement something, I simply modified it. DXNN has a modular version as well [2],
where the evolved NN system is composed of modules called cores, where each core
is a neural circuit, as shown in Fig-10.2. In the modular DXNN, the cores can be hop-
field networks, standard evolved neural networks, and even substrate encoded NNs. At
one point, long ago, DXNN even had a back-propagation learning mode, which I
eventually removed as I never used it, and it was inferior to the non supervised learn-
ing algorithms I created. It is this long history of development, trial and error, testing
and benchmarking, that left a lot of baggage in its architecture and implementation.
Yet it is functional, and performs excellently.

Fig. 10.2 Modular DXNN.

10.3 Generational Evolution 405

In some sense, the neural modules within the modular DXNN system, were
meant to be used in emulation of the various brain regions. In this manner I hoped
to evolve different regions independently, and then put them together into a com-
plete system, or evolve the different modules at the same time as a single NN sys-
tem, or even let the NN start of as monolithic, and then modularize through evolu-
tion. The performance though could not be established to be superior to standard
homogeneous NN version at the time of experimentation, due to not yet having
found a project benefiting from such an architecture. Nevertheless, the lessons
learned were invaluable. The architecture of the TWEANN system we are devel-
oping in this book, is made with future use of modules in mind. Indeed, the system
we are developing here will not only have more features, and will be more decou-
pled, but also its architecture will be cleaner, its implementation easier to under-
stand, read, and expand, than that of DXNN. In the following sections I will ex-
plain the functionality, algorithms, and features that DXNN possesses.

10.3 Generational Evolution

I will first provide a simple list based overview of the steps taken by DXNN’s
general neuroevolutionary algorithm, and then elaborate on each of the more com-
plicated sub-algorithms the DXNN system uses. When using the generational ap-
proach, DXNN uses the following set of steps:

1. Initialization Phase:
Create a seed population of size K of topologically minimalistic NN genotypes.

2. DO (Generational Neuroevolutionary loop):
3. Convert genotypes to phenotypes.
4. DO (Tuning Phase):

5. Test fitness of the NN system.
6. Perturb recently added or mutation operator affected synaptic

weights.
UNTIL: NN’s fitness has not increased for M times in a row.
7. Convert the NN systems back to their genotypes, with the now updat-

ed and tuned synaptic weights.
8. Selection Phase:

9. Calculate the average energy cost of each neuron using the
following method:
TotFitnessPoints = Agent_Fitness(1) + Agent_Fitness(2) +
...Agent_Fitness(K),
TotPopNeurons = Agent_TotNs(1) + Agent_TotNs(2) +
…Agent_TotNs(K),
AvgNeuronCost = TotFitnessPoints/TotPopNeurons.

406 Chapter 10 DXNN: A Case Study

10.With all the NNs having now been given their fitness score,
sort the genotypes based on their scores.

11.Mark the top 50% of the population as valid (fit), and the bot-
tom 50% of the population as invalid (unfit).

12.Remove the bottom 50% of the population.
13.Calculate # of offspring for each agent:

14.For every agent(i) in K, calculate:
Agent(i)_NeuronsAllotted=Agent_Fitness(i)/AvgNeuronCost,
Agent(i)_OffspringAlloted=
 Agent(i)_NeuronsAlloted/Agent(i)_TotNs

15.To keep the population size of the new generation the same
as the previous, calculate the population normalizer, and then
normalize each agent’s allotted offspring value:
TotNewOffspring = Agent(1)_OffspringAlloted +
...Agent(i)_OffspringAlloted
Normalizer = TotNewOffspring/(K/2)

16.Now calculate the normalized number of offspring alloted for
each agent:
Agent(i)_OffspringAllotedNorm =
 round(Agent(i)_OffspringAlloted/Normalizer)

17.Create Agent(i)_OffspringAllotedNorm number of clones for every
Agent(i) that belongs to the fit subset of the agents in the population.
And then send each clone through the topological mutation phase,
which converts that clone into an offspring.

18.Topological mutation phase:
19.Create the offspring by first cloning the parent, and then ap-

plying to the clone, T number of mutation operators. The val-
ue T is randomly chosen with uniform distribution to be be-
tween 1 and sqrt(Agent(i)_TotNeurons), where TotNeurons is
the number of neurons in the parent NN. Thus, larger NNs
will produce offspring which have a chance of being pro-
duced through a larger number of applied mutation operators.

20.Compose the population of the next generation by combining the gen-
otypes of the fit parents with their newly created offspring.

 UNTIL: Termination condition is reached (max # of evaluations, time,
or fitness goal)

A diagram of this algorithm is shown in Fig-10.3. The steps 1 (Initialization
phase), 4 (Parametric Tuning Phase), 8 & 13 (The Selection Phase & Offspring
Allocation), and 18 (Topological Mutation Phase), are further elaborated on in the
subsections that follow.

10.3 Generational Evolution 407

Fig. 10.3 The different stages in the DXNN’s learning algorithm: Initialization Stage, Tun-
ing Phase, Selection Stage, and Topological Mutation Phase.

10.3.1 Step-1: Initialization Phase

During the initialization, every element created has its Generation set to 0. Ini-
tially a seed population of size X is created. Each agent in the population starts
with a minimal network, where the minimal starting topology depends on the total
number of Sensors and Actuators the researcher decides to start the system with. If
the NN is set to start with only 1 Sensor and 1 Actuator with a vl = 1, then the
DXNN starts with a single Cortex containing a single Neuron. For example, if the
output is a vector of length 1 like in the Double Pole Balancing (DPB) control
problem, the NN is composed of a single Neuron. If on the other hand the agent is
initiated with N number of Sensors and K number of actuators, the seed NNs will
contain 2 layers of fully interconnected Neurons. The first layer contains S Neu-
rons, and the second contains A1+...Ak Neurons. In this topology, S is the total
number of Sensors, and Ai is the size of the vector that is destined for Actuator i. It
is customary for the NNs to be initialized with a single Sensor and a single Actua-
tor, letting the agents discover any other auxiliary Sensors and Actuators through
topological evolution.

Furthermore, the link from a Cortex to a Neuron can be of 3 types listed below:

408 Chapter 10 DXNN: A Case Study

1. Single-type link, in which the Cortex sends the Neuron a single value from one
of its Sensors.

2. Block-type link, in which the Cortex sends the Neuron an entire vector that is
output by one of the Sensors.

3. All-type link, in which the Cortex sends the Neuron a concatenated list of vec-
tors from all the Sensors in its SensorList.

All this information is kept in the Cortex, the Neuron neither knows what type
nor originally from which sensor the signal is coming. Each neuron only keeps
track of the list of nodes it is connected from and the vector lengths coming from
those nodes. Thus, to the Neuron all 3 of the previous link-types look exactly the
same in its InputList, represented by a simple tuple {From_Id, Vector_Length}.
The Vector_Length variable might of course be different for each of those connec-
tions.

The different link-types add to the flexibility of the system and allow the Neu-
rons to evolve a connection where they can concentrate on processing a single
value or an entire vector coming from a Sensor, depending on the problem’s need.
I think this improves the general diversity of the population, allows for greater
compactness to be evolved, and also improves the NN’s ability to move through
the fitness landscape. Since it is never known ahead of time what sensory values
are needed and how they need to be processed to produce a proper output, differ-
ent types of links should be allowed.

For example, a Cortex is routing to the Neurons a vector of length 100 from
one of its Sensors. Assume that a solution requires that a Neuron needs to concen-
trate on the 53rd value in the vector and pass it through a cosine activation func-
tion. To do this, the Neuron would need to evolve weights equaling to 0 for all
other 99 values in the vector. This is a difficult task since zeroing each weight will
take multiple attempts, and during random weight perturbations zeroing one
weight might un-zero another. On the other hand evolving a single link-type to
that Sensor has a 1/100 chance of being connected to the 53rd value, a much better
chance. Now assume that a solution requires for a neuron to have a connection to
all of the 100 values in the vector. That is almost impossible to achieve, and would
require at least 100 topological mutations if only a single link-type is used, but has
a 1/3 chance of occurrence if we have block, all, and single type links at our dis-
posal. Thus the use of Link-Types allows the system to more readily deal with the
different and wide ranging lengths of signal vectors coming from the Sensors, and
having a better chance of establishing a proper connection needed by the problem
in question.

In a population, the agents themselves can also be of different types: Type =
“neural”, and Type = “substrate”. The “neural” type agent is one that is a standard
recursive Neural Network system. The “substrate” type agents use an architecture
where the NNs drive a neural substrate, an encoding that was popularized by

the output vector that comes from the substrate is parsed and routed to the actua-
HyperNEAT [3]. In such agents the sensory vector is routed to the substrate and

10.3 Generational Evolution 409

tors. The supervised NN itself is polled to produce the weights for the embedded
neurodes in the substrate. The type of substrates can further differ in density, and
dimensionality. A diagram of the agent architecture that utilizes a substrate encod-
ing is shown in Fig-10.4. We will discuss the substrate encoded NN systems in
greater detail in section 10.5.

Fig. 10.4 A DXNN evolved agent that uses a substrate encoded based architecture. In this
figure the cortex goes through its sensors to produce the sensory signals, which it then
packages and passes to the Substrate, which produces output signals and passes those to
the Cortex which then postprocesses them and executes its actuators using these output
vectors as parameters. The Substrate uses the NN to set the weights of its embedded
neurodes.

10.3.2 Step-4: Parametric Tuning Phase

then applying topological mutation operators to it, we can tag any neuron in the
NN that has been affected by the mutation operator. What counts as been affected
by the mutation operator is as follows:

1. Having been just created, for example when a new neuron has just been added
to the NN.

2. Having just acquired new input or output connection, for example when a neu-
ron has just created a new link to another element, or when another element has
just created a link to the neuron in question, the neuron is counted as having
been affected by the mutation operator.

3. When during the topological mutation phase, the neuron’s activation function,
plasticity, or another parameter (other than weights) has been mutated.

Since the offspring is created by taking the fit parent, creating its clone, and

410 Chapter 10 DXNN: A Case Study

Instead of just giving to such neurons the “mutationally affected” tag, their
generation parameter is reset, the same as is the case in the system we’ve built
thus far. Thus, every element in the NN is given a generation during the initial
seed population creation, and then every time the element is affected by a muta-
tion, its generation is reset to the current generation, where the “current” genera-
tion is N where N increments every topological mutation phase, and is kept track
of by the agent element. In this manner we can track which parts of the NN have
been mutating, and which topological structures have stabilized and for a number
of generations have not been affected by mutation. This stabilization usually oc-
curs when the mutation of such structures produces a less fit offspring than its par-
ent. So we can then, using this approach pick out the stabilized structures and
crystallize them, making those structures a single unit (and be potentially repre-
sented by a single process) that in the future will no longer be disturbed by muta-
tion.

To choose whose synaptic weights to perturb during the tuning event, first the
exoself chooses a random generation limit value as follows: GenLimit =

value between 0 and 1 with a uniform distribution. Thus GenLimit will always be
greater than 1, and have 50% of being 2, 25% of being 4... DXNN then uses the
randomly generated GenLimit to compose a pool of neurons which have been af-
fected by mutations within the last GenLimit of generations. In this neuron pool
each neuron is chosen with a probability of 1/sqrt(NeuronPoolSize) to have its
synaptic weights perturbed. The list of these chosen neurons is called the New
Generation Neurons (NGN). The chosen neurons are then each sent a message by
the exoself to have their synaptic weights perturbed. When a neuron receives such
a message, it goes through its synaptic weight list and chooses each weight for
perturbation with a probability of 1/sqrt(TotSynapticWeights). The neuron then
perturbs the chosen synaptic weights with a value randomly generated with uni-
form distribution between -Pi and Pi.

This particular approach has the following benefits: 1. It concentrates on tuning
and optimizing neurons that have only recently been added to the NN, thus ensur-
ing that newly added neurons can contribute in a positive way to the NN. 2. There
is a high variability in the number of neurons and weights that are chosen at any
given time, thus there are times when a large number of neurons are all perturbed
at the same time, and there are times when, by chance alone, only a few neurons
and a few of their synaptic weights are chosen. Thus this approach allows the sys-
tem to have a chance of doing both, tune into local optima on the fitness land-
scape, and also at times choose a large number of neurons and weights to perturb,
and thus search far and wide in the parametric space.

After NGN is composed, a variable MaxMistakes is created and set to
abs(BaseMaxMistakes + sqrt(TotWeights from NGNs)) rounded to the nearest in-
teger. The BaseMaxMistakes variable is set by the researcher. Finally, a variable
by the name AttemptCounter is created and set to 1.

1/random:uniform() where the random:uniform() function generates a random

10.3 Generational Evolution 411

The reason for the creation of the NGN list is due to the weight perturbations
being applied only to the these new or recently modified Neurons, a method I refer
to as “Targeted Tuning”. The reason to only apply perturbations to the NGNs is
because evolution in the natural world works primarily through complexification
and elaboration, there is no time to re-perturb all the neurons in the network after
some minor topological or other type of addition to the system. As NNs grow in
size it becomes harder and harder to set all the weights and parameters of all the
Neurons at the same time to such values that produces a fit individual. A system
composed of thousands of neurons might have millions of parameters in it. The
odds of finding proper values for them all at the same time by randomly perturb-
ing synaptic weights throughout the entire system after some minor topological
mutation, is slim to none. The problem only becomes more intractable as the
number of Neurons continues to grow. By concentrating on tuning only the newly
created or newly topologically/structurally augmented Neurons and making them
work with an already existing, tuned, and functional Neural Network, makes the
problem much more tractable. Indeed in many respects it is how complexification
and elaboration works in the biological NNs. In our organic brains the relatively
recent evolutionary addition of the Neocortex was not done through some refur-
bishing of an older NN structure, but through a completely new addition of neural
tissue covering and working with the more primordial parts. The Neocortex works
concurrently with the older regions, contributing and when possible overwriting
the signals coming from our more ancient neural structures evolved earlier in our
evolutionary history.

During the Tuning Phase each NN based agent tries to solve the problem based
on its morphology. Afterwards, the agents receive fitness scores based on their
performance in that problem. After being scored, each NN temporarily backs
up its parameters. Every neuron in the NGN list has a probability of
1/sqrt(Tot_NGNs) of being chosen for weight perturbation. The Exoself sends the-
se randomly chosen neurons a request to perturb some of their weights. Each cho-
sen Neuron, after receiving such a message, chooses a set of its own synaptic
weights, and perturbs them. The total number of weights to be perturbed is chosen
randomly by every Neuron itself. The number of weights chosen for perturbation
by each neuron is a random value between 1 and square root of total number of
weights in that Neuron. The perturbation value is chosen with uniform distribution
to be between -(WeightLimit/2) and (WeightLimit/2), where the WeightLimit is
set to 2*Pi. By randomly selecting the total number of Neurons, the total number
of weights to perturb, and using such a wide range for the perturbation intensity,
we can achieve a very wide range of parametric perturbation. Sometimes the NN
might have only a single weight in a single Neuron perturbed slightly, while at
other times it might have multiple Neurons with multiple weights perturbed to a
great degree. This allows the DXNN platform to make small intensity perturba-
tions to fine tune the parameters, but also sometimes very large intensity (number
of Neurons and weights) perturbations to allow NN based agents to jump over or
out of local optima, an impossibility when using only small perturbations applied

412 Chapter 10 DXNN: A Case Study

to a small number of Neurons. This high mutation variability method is referred to
in the DXNN platform as the Random Intensity Mutation (RIM). The range of mu-
tation intensities grows as the square root of the total number of NGNs, as it logi-
cally should since the greater the number of new or recently augmented Neurons
in the NN, the greater the number of perturbations that needs to be applied to
make a significant effect on the information processing capabilities of the system.
At the same time, the number of neurons and weights affected during perturbation
is limited only to the newly/recently added or topologically augmented elements,
so that the system can try to adjust the newly added structures and those elements
that are directly affected by them through new connections, to work and positively
contribute to an already existing neural system.

After all the weight perturbations have been applied to the NN based agent, it
attempts to solve the problem again. If the new fitness achieved by the agent is
greater than the previous fitness it achieved, then the new weights overwrite the
old backed up weights, the AttemptCounter is reset to 1, and a new set of weight
perturbations is applied to the NN based agent. Alternatively, if the new fitness is
not greater than the previous fitness, then the old weights are restored, the
AttemptCounter is incremented, and another set of weight perturbations is applied
to the individual.

When the agent’s AttemptCounter == MaxMistakes, implying that a
MaxMistakes number of unsuccessful RIMs have been applied in sequence with-
out a single one producing an increase in fitness, the agent with its final best fit-
ness and the correlated weights is backed up to the database through its conversion
back to a list of tuples, its genotype, followed by the termination of the agent it-
self. Utilizing the AttemptCounter and MaxMistakes strategy allows us, to some
degree at least, test each topology with varying weights and thus let each NN after
the tuning phase to represent roughly the best fitness that its topology can achieve.
In this way there is no need to forcefully and artificially speciate and protect the
various topologies since each NN represents roughly the highest potential that its
topology can reach in a reasonable amount of time after the tuning phase com-
pletes. This allows us to judge each NN based purely on its fitness. If one increas-
es the BaseMaxMistakes parameter, then on average each NN will have more test-
ing done on it with regards to weight perturbations, thus testing the particular
topology more thoroughly before giving it its final fitness score. On the other hand
the MaxMistakes parameter itself grows in proportion to the square root of the to-
tal sum of NGN weights that should be tunned, since the greater the number of
new weights that need to be tuned, the more attempts it would take to properly test
the various permutations of neurons and their synaptic weights.

10.3 Generational Evolution 413

10.3.3 Step-8 & 13: The Selection & Offspring Allocation Phase

There are many TWEANNs that implement speciation during selection. Spe-
ciation is used to promote diversity and protect unfit individuals who in the cur-
rent generation do not possess enough fitness to get a chance of producing off-
spring or mutating and achieving better results in the future. Promoters of
speciation algorithms state that new ideas need time to develop and speciation pro-
tects such innovations. Though I agree with the sentiment of giving ideas time to
develop, I must point to [4] in which it was shown that such artificial and forced
speciation and protection of unfit organisms can easily lead to neural bloating.
DXNN platform does not implement forced speciation, instead it tests its individ-
uals during the Tuning Phase and utilizes natural selection that also takes into ac-
count the complexity of each NN during the Selection Stage. In my system, as in
the natural world, smaller organisms require less energy and material to reproduce
than their larger counterparts. As an example, for the same amount of material and
energy that is required for a human to produce and raise an offspring, millions of
ants can produce and raise offspring. When calculating who survives and how
many offspring to allocate to each survivor, the DXNN platform takes complexity
into account instead of blindly and artificially defending the unfit and insufficient-
ly tested Neural Networks. In a way, it can also be thought that every NN topolo-
gy represents a specie in its own right, and the tuning phase concisely tests out the
different parametric permutations of that particular specie, same topologies with
different weights. I believe that speciation and niching should be done not force-
fully from the outside by the researcher, but by the artificial organisms themselves
within the artificial environments they inhabit, if their environments/problems al-
low for such a feat. When the organisms find their niches, they will automatically
acquire higher fitness and secure their survival that way.

Due to the Tuning Phase, by the time Selection Stage starts, each individual
presents its topology in roughly the best light it can reach within reasonable time.
This is due to the consistent application of Parametric RIM to each NN during tar-
geted tuning, and that only after a substantial number of continues failures to im-
prove is the agent considered to be somewhere at the limits of its potential. Thus
each NN can be judged purely by its fitness rather than have a need for artificial
protection. When individuals are artificially protected within the population, more
and more Neurons are added to the NN unnecessarily, thus producing the dreaded
neural/topological bloating. This is especially the case when new neurons are add-
ed, yet the synaptic weight perturbation and mutation is applied indiscriminately
to all the synaptic weights in the NN. Topological bloating dramatically and cata-
strophically hinders any further improvements due to a greater number of Neurons
unnecessarily being in the NN and needing to have their parameters set concur-
rently to just the right values to get the whole system functional. An example of
such topological bloating was demonstrated in the robot arm control experiment
using NEAT and EANT2 [4]. In that experiment, NEAT continued to fail due to
significant neural bloating, whereas EANT2 was successful, which like DXNN is

414 Chapter 10 DXNN: A Case Study

a memetic algorithm based TWEANN. Once a NN passes some topological bloat-
ing point, it simply cannot generate enough of concurrent perturbations to fix the
faulty parameters of all the new neurons it acquired. At the same time, most
TWEANN algorithms allow for only a small number of perturbations to be ap-
plied at any one instance. In DXNN, through the use of Targeted Tuning and RIMs
applied during the Tuning and Topological Mutation phases, we can successfully
avoid bloating.

Finally, when all NNs have been given their fitness rating, we must use some
method to choose those NNs that will be used for offspring creation. DXNN plat-
form uses a selection algorithm I call “Competition”, which tries to take into ac-
count not just the fitness of each NN, but also the NN’s size. The competition se-
lection algorithm is composed of the following steps:

1. Calculate the average energy cost of the Neuron using the following steps:
TotEnergy = Agent(1)_Fitness + Agent(2)_Fitness...
TotNeurons = Agent(1)_TotNeurons + Agent(2)_TotNeurons...
AverageEnergyCost = TotEnergy/TotNeurons

2. Sort the NNs in the population based on their fitness. If 2 or more NNs have the
same fitness, they are then sorted further based on size, more compact solutions
are considered of higher fitness than less compact solutions.

3. Remove the bottom 50% of the population.
4. Calculate the number of alloted offspring for each Agent(i):

AllotedNeurons = (Fitness/AverageEnergyCost),
AllotedOffsprings(i) = round(AllotedNeurons(i)/Agent(i)_TotNeurons)

5. Calculate total number of offspring being produced for the next generation:
TotalNewOffsprings = AllotedOffsprings(1)+...AllotedOffsprings(n).

6. Calculate PopulationNormalizer, to keep the population within a certain limit:
PopulationNormalizer = TotalNewOffsprings/PopulationLimit

7. Calculate the normalized number of offspring alloted to each Agent:
NormalizedAllotedOffsprings(i) =
round(AllotedOffsprings(i)/PopulationNormalizer(i)).

8. If NormalizedAllotedOffsprings (NAO) == 1, then the Agent is allowed to sur-
vive to the next generation without offspring, if NAO > 1, then the Agent is al-
lowed to produce (NAO -1) number of mutated copies of itself, if NAO = 0 the
Agent is removed from the population and deleted.

9. The Topological Mutation Phase is initiated, and the mutator program then
passes through the database creating the appropriate NAO number of mutated
clones of the surviving agents.

From this algorithm it can be noted that it becomes very difficult for bloated
NNs to survive when smaller systems produce better or similar results. Yet when a
large NN produces significantly better results justifying its complexity, it can
begin to compete and push out the smaller NNs. This selection algorithm takes in-
to account that a NN composed of 2 Neurons is doubling the size of a 1 Neuron
NN, and thus should bring with it sizable fitness gains if it wants to produce just

10.3 Generational Evolution 415

10.3.4 Step-18: The Topological Mutation Phase

An offspring of an agent is produced by first creating a clone of the parent
agent, then giving it a new unique Id, and then finally applying Mutation Opera-
tors to it. The Mutation Operators (MOs) that operate on the individual’s topology
are randomly chosen with uniform distribution from the following list:

1. “Add Neuron” to the NN and link it randomly to and from randomly chosen
Neurons within the NN, or one of the Sensors/Actuators.

2. “Add Link” (can be recurrent) to or from a Neuron, Sensor, or Actuator.
3. “Splice Neuron” such that that two random Neurons which are connected to

each other are disconnected and reconnected through a newly created Neuron.
4. “Change Activation Function” of a random Neuron.
5. “Change Learning Method” of a random Neuron.
6. “Add Bias”, all neurons are initially created without bias.
7. “Remove Bias”, removes a bias value in the neurons which have one.
8. “Add Sensor Tag” which connects a currently unused Sensor present in the

SensorList to a random Neuron in the NN. This mutation operator is selected
with a researcher defined probability of X. In this manner new connections can
be made to the newly added or previously unused sensors, thus expanding the
sensory system of the NN.

9. “Add Actuator Tag” which connects a currently unused Actuator present in the
ActuatorList to a random Neuron in the NN. This mutation operator is selected
with a researcher defined probability of Y. In this manner new connections can
be made to the newly added or previously unused actuators, thus expanding the
types of tools or morphological properties that are available for control by the
NN.

The “Add Sensor Tag” and “Add Actuator Tag” can both allow for new links
from/to the Sensor and Actuator programs not previously used by the NN to be-
come available to it. In this manner the NN can expand its senses and control over
new actuators and body parts. This feature becomes especially important when the
DXNN platform is applied to the Artificial Life and Robotics experiments where
new tools, sensors, and actuators might become available over time. The different
sensors can also simply represent various features of a problem, and in this man-
ner the DXNN platform naturally incorporates feature selection capabilities.

The total number of Mutation Operators (MOs) applied to each offspring of the
DXNN is a value randomly chosen between 1 and square root of the total number
of Neurons in the parent NN. In this way, once again a type of random intensity

as many offspring. On the other hand, a NN of size 101 is only slightly larger than
a NN of size 100, and thus should pay only slightly more per offspring. This is
exactly the principle behind the “competition” selection algorithm we implemented
in the system we are developing together in this book.

416 Chapter 10 DXNN: A Case Study

from their NN parent, while others might have a very large number of MOs ap-
plied to them, and thus differ drastically. This gives the offspring a chance to jump
out of large local optima that would otherwise prove impassible if a constant
number of mutational operators were to have been applied every time, independ-
ent of the parent NN’s complexity and size. As the complexity and size of each
NN increases, each new topological mutation plays a smaller and smaller part in
changing the network’s behavior, thus a larger and larger number of mutations
needs to be applied to produce significant differences to the processing capabili-
ties of that individual. For example, when the size of the NN is a single neuron,
adding another one has a large impact on the processing capabilities of that NN.
On the other hand, when the original size is a million neurons, adding the same
single neuron to the network might not produce the same amount of change in the
computational capabilities of that system. Increasing the number of MOs applied
based on the size of the parent NN’s size, allows us to make the mutation intensity
significant enough to allow the mutant offspring to continue producing innova-
tions in its behavior when compared to its parent, and thus exploring the topologi-
cal fitness landscape far and wide. At the same time, due to RIM, some offspring
will only acquire a few mutations and differ topologically only slightly and thus
have a chance to tune and explore the local topological areas on the topological
fitness landscape.

Because the sensors and actuators are represented by simple lists of existing
sensor and actuator programs, just like in the system we’re developing together in
this book, the DXNN platform allows for the individuals within the population to
expand their affecting and sensing capabilities. Such abilities integrated naturally
into the NN lets individuals gather new abilities and control over functions as they
evolve. For example, originally a population of very simple individuals with only
distance sensors is created. At some point a fit NN will create a mutant offspring
to whom the “Add Sensor Tag” or “Add Actuator Tag” mutational operator is ap-
plied. When either of these mutational operators is randomly applied to one of the
offspring of the NN, that offspring then has a chance of randomly linking from or
to a new Sensor or Actuator respectively. In this manner the offspring can acquire
color, sonar or other types of sensors present in the sensor list, or acquire control
of a new body part/actuator, and thus further expand its own morphology. These
types of expansions and experiments can be undertaken in the artificial

Player/Stage/Gazebo in particular has a list of existing sensor and actuator types,
making such experiments accessible at a very low cost.

Once all the offspring are generated, they and their parents once more enter the
tuning phase to continue the cycle as was diagrammed in Fig-10.3.

life/robotics simulation environments like the Player/Stage/Gazebo Project [5].

mutation (RIM) approach is utilized. Some mutant clones will only slightly differ

10.4 Steady-State Evolution 417

10.4 Steady-State Evolution

Though the generational evolution algorithm is the most common approach, when
applying neuroevolutionary systems to ALife, or even non ALife simulations and
problems, steady-state evolution offered by DXNN can provide an advantage due
to its content drift tracking ability, and a sub population called “Dead Pool” which
can immediately be used to develop committee machines. In a steady-state evolu-
tion, the population solving the problem or existing within the simulated world (in
the case of ALife for example) always maintains a constant operational popula-
tion. When an organism/agent dies, or when there is more room in the environ-
ment (either due to the expansion of the food source in ALife environment, or be-
cause more computational power is added, or more exploration is wanted...) more
concurrently existing agents are added to the operational phenotypes. The system
does not wait for every agent in the population to finish being evaluated before
generating a new agent and entering it into the population. Instead, the system
computes the fitness of the just having perished agent, and then immediately gen-
erates a new genotype from a pool of previously evaluated fit genotypes. Thus the
system maintains a relatively constant population size by consistently generating
new offspring at the same pace that agents complete their evaluations and are re-
moved from the live population.

In DXNN, the steady-state evolutionary algorithm uses an “Augmented Com-
petition” (AC) selection algorithm. The AC selection algorithm keeps a list of size
“PopulationSize” of dead NN genotypes, this list is called the “dead pool”. The
variable PopulationSize is specified by the researcher. When an Agent dies, its
genotype and fitness is entered into this list. If after entering the new genotype in-
to the dead pool the list’s size becomes greater than PopulationSize, then the low-
est scoring DXNN genotype in the dead pool is removed. In this manner the dead
pool is always composed of the top performing PopulationSize number of ancestor
genotypes.

In this augmented version of the selection algorithm, the AllottedOffspring var-
iables are converted into normalized probabilities used to select a parent from the
dead pool to produce a mutated offspring. Finally, there is a 10% chance that in-
stead of creating an offspring, the parent itself will enter the environment/scape or
be re-applied to the problem. Using this “re-entry” system, if the environment or
the manner in which the fitness is allotted changes, the old strategies and their
high fitness scores can be re-evaluated in the changed environment to see if they
still deserve to stay in the dead pool, and if so, what their new fitness should be.
This selection algorithm also has the side effect of having the dead pool implicitly
track content drift of the problem to which the TWEANN is applied.

For example assume that the steady-state evolution with the dead_pool list is
applied to an ALife simulation. Every time an agent in the simulated environment
dies (has been evaluated), it is entered into the dead pool, and a new offspring is
generated from the best in this dead pool. Once the dead pool size reaches that of

418 Chapter 10 DXNN: A Case Study

PopulationSize specified by the researcher, the DXNN system also begins to get
rid of the poorly performing genotypes in the dead_pool. But what is important is
that when an organism in the environment dies, there is a chance that a genotype
in the dead pool has a chance of re-entering the simulated environment, instead of
a new mutant offspring being generated. If it were not for this, then as the envi-
ronment changes with the dynamics and fitness scoring and life expectancy all
changing with it... and some organism dies, the old organisms, the genotypes from
the “old world” would be used to create the offspring. If the environment is highly
dynamic and malleable, after a while the whole thing might change, the useful
survival instincts and capabilities that were present in the environment to which
the dead_pool organisms belonged, might no longer be present in the current,
evolved environment. Suddenly we would be faced with a dead_pool of agents all
with high scores, which though achievable in the previously simple environment,
are no longer possible in the now much more complex and unforgiving environ-
ment. Thus it is essential to re-evaluate the organisms in the dead_pool, are they
still fit in the new environment, in the environment that itself has evolved and be-
come more complex? Can the old agents compete in the new world?

The re-entry system allows us to change and update the dead_pool with the or-
ganisms that are not simply more fit, but are more fit in the current state of the en-
vironment. The environment can be either the simulated environment of the ALife
system, or the new signal block in the time series of currency-pairs or stock prices
for example. The patterns of the market that existed last year, might have changed
completely this year, and it is essential that the new agents are judged by how they
perform on this year’s patterns and styles of the time series. This is the benefit of
the content drift tracking dead pool. The dead pool represents the best of the popu-
lation, a composition of agent genotypes that perform well in the relatively new
environment, that perform well in the world of today, rather than the one of last
year.

Furthermore, because the genotypes belonging to the dead_pool represent the
best of the population, we can directly use the genotypes in it to compose a com-
mittee machine. The current state of the dead pool is the voting population of the
committee machine, the type of system we discussed in Section-1.2.2. This type of
setup is shown in Fig-10.5.

10.4 Steady-State Evolution 419

Fig. 10.5 A DXNN system using steady-state evolution used to evolve currency trading
agents, and whose dead pool is used as a committee machine applied to real Forex trading.

The steps of the steady-state evolution algorithm in the DXNN platform are as
follows:

1. Initialization Phase:
2. Create a seed population of size K of topologically minimalistic NN

genotypes.
3. Convert genotypes to phenotypes.

4. DO (Steady-State Neuroevolutionary loop):
5. For Each Agent, DO (Tuning Phase):

6. Test fitness of the NN system
7. Perturb the synaptic weights of recently added or mutation

operator affected neurons
UNTIL: NN’s fitness has not increased for X times in a series
8. Convert the NN system back to its genotype, with the now updated

and tuned synaptic weights.
9. Add the agent’s genotype to the dead_pool list of size K.
10.Steady-State Selection Phase (For genotypes in the dead_pool list):

11.Calculate the average energy cost of each neuron using the
following method:
TotFitnessPoints = Agent_Fitness(1) + Agent_Fitness(2) +
...Agent_Fitness(K),
TotPopNeurons = Agent_TotNs(1) + Agent_TotNs(2) +
...Agent_TotNs(K),
AvgNeuronCost = TotFitnessPoints/TotPopNeurons.

420 Chapter 10 DXNN: A Case Study

12.With all the NNs having now been given their fitness score,
sort the genotypes based on their scores.

13.Extract the top K agents in this sorted dead_pool list, delete
the others. This is done for the case when the addition of the
new agent to the dead_pool, makes the size of the dead_pool
larger than K. We only want to keep K agents in the
dead_pool.

14.Select a dead_pool champion agent:
15.Agent(i)_NeuronsAllotted =

Agent_Fitness(i)/AvgNeuronCost,
Agent(i)_OffspringAllotted =
Agent(i)_NeuronsAllotted/Agent(i)_TotNs

16.Convert Agent(i)_OffspringAllotted for each agent
into a normalized percentage, such that a random
agent from this list can be chosen with the uniform
distribution probability proportional to its
Agent(i)_OffspringAllotted value.

17.Choose the agent through step-16, and designate that
agent as dead_pool champion.

18.Randomly choose whether to use the dead_pool
champion as the parent of a new offspring agent, or
whether to extract the champion from the dead_pool,
convert it to its phenotype, and re-apply it to the
problem. The split is 90/10, with 90% chance of us-
ing the champion’s genotype to create a new off-
spring, and 10% chance of removing the agent from
the dead_pool and re-applying (aka re-entry, re-
evaluation...) the agent to the problem.

19.IF champion selected to create offspring:
20.Topological mutation phase:

21.Create the offspring by first cloning the
parent, and then applying to the clone T
number of mutation operators, T is random-
ly chosen to be between 1 and
sqrt(Agent(i)_TotNeurons). Where the
TotNeurons is the number of neurons in the
parent NN, and T is chosen with uniform
distribution. Thus larger NNs will produce
offspring which have a chance of being
produced through a larger number of ap-
plied mutation operators to them.

22.Designate the offspring agent as New_Agent.
ELSE champion is chosen for re-entry:

23.Extract agent from the dead_pool.
24.Designate the agent as New_Agent.

10.5 Direct (Neural) and Indirect (Substrate) Encoding 421

25.Convert the agent designated as New_Agent to its phenotype.

UNTIL: Termination condition is reached (max # of evaluations, time, or fit-
ness goal)

As can be noted from these steps, the algorithm is similar to the generational
evolutionary approach, but in this case as soon as an agent dies (if in ALife exper-
iment), or finishes its training or being applied to the problem, its fitness is imme-
diately evaluated against the dead_pool agents, and a new agent is created (either
through offspring creation or re-entry) and applied to the problem, or released into
the simulated environment.

The tuning phase and the topological mutation phase are the same as in the
generational evolutionary loop, discussed in the previous section. The steady-state
selection algorithm only differs in that the allotted_offspring value is converted to
a percentage of being selected for each agent in the dead_pool. The selected agent
has a 90% chance of creating an offspring and 10% chance of being sent back to
the problem, and being re-evaluated with regards to its fitness.

The following sections will cover a few finer points and features of DXNN. In
the next section we will discuss its two types of encoding, neural and substrate. In
section 10.6 we will briefly discuss the flatland simulator, a 2d ALife environ-
ment. In section 10.7 we will discuss the modular version of DXNN. Finally, in
section 10.8 and 10.9 we will discuss the ongoing projects and features being inte-
grated into the DXNN system, and the neural network research repository being
worked on by the DXNN Research Group.

10.5 Direct (Neural) and Indirect (Substrate) Encoding

The DXNN platform evolves both direct and indirect encoded NN agents. The
direct encoded NN systems are as discussed in the above sections, these are stand-
ard neural networks where every neuron is encoded as a tuple, and the mapping
from the genotype to phenotype is direct. We simply translate the tuple containing
the synaptic weights and link specifications into a process, linked to other pro-
cesses and possessing the properties and synaptic weights dictated by the tuple.

The indirect encoding that the DXNN can also use is a form of substrate encod-
ing, popularized by the HyperNEAT [3]. There are many variations of substrate
encoding, and new ones are turning up every year. In a substrate encoded NN, the
actual NN is not directly used to process input sensory signals and produce output
signals to control the actuators. Instead, in a substrate encoded NN system the NN
“paints” the synaptic weights and connectivity patterns on a multidimensional
substrate of interconnected neurodes. This substrate, based on the synaptic weights
determined by the NN, is then used to process the input sensory signals and pro-

422 Chapter 10 DXNN: A Case Study

duce output signals used by the actuators. The architecture of such a system is
shown in the following figure.

Fig. 10.6 Substrate encoded neural network system. This diagram is of a substrate encoded
agent. The substrate, sensors, and actuators, are all part of the same process called Cortex.
The NN is used to generate the synaptic weights between neurodes in the substrate, based
on the coordinates of the presynaptic and postsynaptic neurodes. The sample agent shown
is one that controls a simulated robot in an ALife experiment, a simulated robot that has a
Range Sensor, a Distance Sensor, and a Differential Drive Actuator.

The neurodes in the substrate all use the sigmoid or tanh activation function,
though this of course can be changed. Furthermore, the NN’s output can be used
for anything, and not only used as the synaptic weights for the coordinate speci-
fied neurodes. For example, the output of the NN can be used and considered as
the Delta Weight, the change in the synaptic weight between the pre- and post-
synaptic neurodes, based on the coordinates of the said neurodes fed to the NN, in
addition with the pre-synaptic neurode’s output, the post-synaptic neurode’s out-
put, and the current synaptic weight between the two. We will further discuss the
details of substrates and their functionality in the following section, followed by a
discussion of the genotype encoding DXNN uses for substrates, the phenotype
representation that it uses for such substrate encoded agents, and finally the differ-
ent types of “substrate_sensors” and “substrate_actuators”, which further modify

10.5 Direct (Neural) and Indirect (Substrate) Encoding 423

the substrate encoded NN systems, allowing the NN to not only use the coordi-
nates of the two connected neurodes when computing the synaptic weight between

coordinates, planner coordinates, centripetal distance...

10.5.1 Neural Substrates

A neural substrate is simply a hypercube structure whose axis run from -1 to 1
on every dimension. The substrate has neurodes embedded in it, where each
neurode has a coordinate based on its location within the hypercube. The neurodes
are connected to each other, either in the feed forward fashion, a fully connected
fashion, or random connection based fashion. An example of a 2d substrate is
shown in Fig-10.7a, and a 3d substrate in Fig-10.7b.

Fig. 10.7 An example of different substrates in which the neurodes are connected to each
other in the feed forward fashion.

them, but various other geometrically significant features, like distance, spherical

424 Chapter 10 DXNN: A Case Study

From these examples you can see that the processing, input, and output
hyperlayers, are one dimension lower than the entire substrate. The sensory sig-
nals travel from the negative side of the axis of the most external dimension (Y in
the case of 2d, and Z in the case of 3d in the above examples), from the input
hyperlayer, through the processing hyperlayers, and finally to the output
hyperlayer, whose neurodes’ output counts as the output of the substrate (but
again, we could designate any neurode in the substrate as an output neurode, and
wait until all such output neurodes produce a signal, and count that as the sub-
strate’s output). The manner in which we package the output signals of the
neurodes within the output hyperlayer, and the manner in which we feed those
packaged vectors to the actuators, determines what the substrate encoded NN
based agent does. Finally, because the very first hyperlayer is the input to the sub-
strate, and the very last hyperlayer is the output of the substrate, there must be at
least 2 hyperlayers making up the substrate structure.

For example, assume we’d like to feed an image coming from a camera into the
substrate encoded NN system. The image itself is a bitmap, let’s say of resolution
10x10. This is perfect, for this type of input signal we can create a 3d substrate
with a 10x10 input hyperlayer, 3x3 hidden processing hyperlayer, and a 1x5 out-
put hyperlayer. Each hyperlayer is a 2d plane, all positioned on the 3rd dimension,
thus making the substrate 3d, as shown in Fig-10.8. As can be seen, the input be-
ing the very first layer located at Z = -1, has its signals sent to the second layer,
located at Z = 0, which processes it, and whose neurode outputs are sent to the 3rd

final output of the substrate.
layer at Z = 1, processed by the last 5 neurodes whose output is considered the

The density of the substrate refers to the number of neurons on a particular ax-
is. For example, if the substrate is a 2d one, and the density of the substrate is 5 by
3, then this plane substrate has 5 neurons, uniformly distributed on the x axis, with
3 total of such layers, which too are uniformly distributed on the y axis, as shown
in Fig-10.7a. The Fig-10.7b shows a 3d substrate with the density distribution of
3x3x3. In this substrate, there are 3 planes on the Z axis, where each plane is com-
posed out of 3x3 neurode patterns. Each plane is connected to the plane ahead of
it, hence it is a feed forward based substrate, since the signals travel from the -Z
direction, towards the +Z direction. We could of course have a fully connected
substrate, where every neurode is connected to every other neurode. Also, the sub-
strate does not necessarily need to be symmetric, it can have any type of pattern,
any number of neurons per layer or hyperlayer, and positioned in any pattern with-
in that layer or hyperlayer.

10.5 Direct (Neural) and Indirect (Substrate) Encoding 425

Fig. 10.8 A [{10,10},{3,3},{5,1}] substrate being fed a 2d plane image with a 10x10 ({10,10})
resolution.

You might be asking at this point “What is the advantage of using substrate en-
coding?” The answer is in the way we produce their weights. The weights are de-
termined by the NN which calculates the synaptic weight between two connected
neurodes based on their coordinates. The coordinates of the connected neurodes
act as the input to the NN. Since the NN has the coordinates as input, it can do the
following:

1. Extract geometrical patterns in the input hyperlayer, and thus it can be applied
to highly complex problems where such geometrical information can be ex-
ploited.

2. Be used to generate weights for very large and very dense substrates, with the
connectivity and synaptic weight patterns based on the coordinates, and thus
being of almost any complexity and form.

3. Due to never seeing the actual input signals, it cannot evolve a single synaptic
weight for some particular element in the input vector during training, it cannot
evolve some specific set of synaptic weights to pick out a particular single
small pattern. In other words, a substrate encoded NN has a much lower chance

thus it should be able to generalize that much better.
4. Because the NN produces a smooth function, and because each neurode in the

substrate has presynaptic connections from a smooth spread of neurodes, with
regards to their coordinates in the previous hyperlayer, the synaptic weights
produced by the NN for any particular neurode, varies smoothly. This is the
reason why it is much more difficult for such synaptic weights to overtrain on

of overtraining. It paints the synaptic weights broadly on the substrate, and

426 Chapter 10 DXNN: A Case Study

some single particular points in the input stream of signals. Hence the superior
generalization. The NN paints the synaptic weights and connectivity patterns
on the substrate in “broad strokes”, so to speak.

Let us discuss some of the things mentioned in more detail.

Geometrical Feature Sensitivity:

As discussed, the input to the NN is a list of coordinates for the connected pre-
synaptic and post-synaptic neurodes. Not only are the coordinates used as input to
the NN, but also the coordinates can be first converted to spherical coordinates,
polar coordinates, distance between the connected neurodes, distance to the center
of the substrate... before they are fed to the NN. Because a NN is a universal func-
tion approximator, and the inputs are various geometrical elements, and because
the input hyperlayer itself has coordinates, the NN gains the ability to pick out and
deal with the geometrical features of the substrate, and the sensory signals.

Large Neural Network Structures:

Since the substrate neurode density is independent of the actual NN which we
evolve, through substrate encoding it is possible to create very large/dense sub-
strates, with thousands or millions of neurodes. Thinking again about the substrate
analyzing the data/images coming from a camera, we can also see that the denser
the substrate, the higher the resolution of images it can analyze. Also the resolu-
tion of the sensory inputs and the output of the substrate, are independent of the
NN painting the connectivity and synaptic weights on it. The “curse of dimension-
ality” does not plague this type of system as much, since we can concentrate on a
smaller number of evolving parameters and topologies (of the actual evolving
NN), while controlling a vast substrate embedded NN. Finally, it is also possible
to implement synaptic plasticity using iterative, abc, and other types of substrate
learning rules [6], which we will discuss in detail and implement in later chapters.

The “Broad Stroke” property:

Because the neural network that calculates the synaptic weights for the
neurodes in the substrate does not see the actual input vectors, and instead only
deals with the coordinates. And because the output of the NN is a smooth func-
tion, and the input coordinates to the NN are based on the connected neurodes, and
each neurode is connected from a whole spectrum of neurodes in the previous hy-
per-layer, with their coordinates changing smoothly from -1 to 1. The synaptic
weights are painted in “Broad Strokes”. Meaning, due to the inability of the NN to
pick out any particular points in the incoming data, the synaptic weights it gener-
ates are smooth over the whole substrate. A change in the NN system changes the
weights, the output function of the substrate, in general and smoothly, bringing
values smoothly up or down... This means that over-training is more difficult be-
cause the weights of the neurodes do not lock up on some single particular data
point in the input signals. Thus the generalization of the substrate encoded agent

papers: “Evolving a Single Scalable Controller foris superior, as was shown in

10.5 Direct (Neural) and Indirect (Substrate) Encoding 427

10.5.2 Genotype Representation

As we saw in Fig-10.7, the substrate is part of the cortex process. The
genotypical specification for the cortex element in DXNN is:

{id,sensors,actuators,cf,ct, type,plasticity, pattern,cids,su_id, link_form,dimensions, densities,
generation}

When I say “processing hyperlayer” I mean the substrate hyperlayer (2d, 3d…
substrate layer of neurodes) that actually has neurodes that process signals. As was
noted in the discussion on the substrate, the sensory inputs, which are sometimes
multidimensional like in the case of the signals coming from a camera, are part of
the substrate, located at the -1 side of the axis defining the depth of the substrate.
The output hyperlayers of the substrate are of the processing type. Because the in-
put hyperlayers and output hyperlayers need to be tailored for the particular set of
sensors and actuators used by the agent, the input hyperlayers, processing
hyperlayers, and the output hyperlayers of the substrate, are all specified separate-
ly from one another.

So, to create the initial substrate for the agent, the substrate’s topology is speci-

composed of. This is done by analyzing all the sensors and actuators available to
the agent. In DXNN, the sensors and actuators not only specify the vector lengths
of the signals, but also the geometrical properties (if any) that the signals will ex-
hibit. This means that they specify whether the input signals are best viewed or
analyzed as a plane with a resolution of X by Y, or a cube of a resolution X by Y
by Z, or if there is no geometrical data and that the vector length L of the input
signal can be viewed as just a list. If the NN based agent is substrate based, then
the DXNN platform will use this extra geometry specification information to cre-
ate the substrate topology most appropriate for it. Thus, if the morphology of the
seed population being created is composed of 2 sensors and 3 actuators as follows:

an Octopus Arm with a Variable Number of Segments” [7] and “Evolving Chart
Pattern Sensitive Neural Network Based Forex Trading Agents” [12].

fied in 3 parts. First DXNN figures out how many dimensions the substrate will be

This tuple specifies the substrate dimensionsionality and its general properties
through the dimensions and densities elements. Because the sensors and actuators
of the substrate are independent of the actual substrate itself, the neurode densities
of the substrate, the specification for the “processing hyperlayers”, the “input
hyperlayers”, and the “output hyperlayers”, are independent. Though this may at
first sound somewhat convoluted, after the explanation you will notice the ad-
vantages of this setup, especially for a neural network based system that is meant
to evolve and grow.

428 Chapter 10 DXNN: A Case Study

sensors:
[#sensor{name=distance_scanner,id=cell_id,format={symmetric,Dim}, tot_vl=pow(Res,Dim),
parameters=[Spread,Res,ROffset]} || Spread<-[Pi/2],Res<-[5], Roffset<-[Pi*0/2]] ++
[#sensor{name=color_scanner,id=cell_id,format={symmetric,Dim}, tot_vl=pow(Res,Dim),
parameters=[Spread,Res,ROffset]} || Spread <-[Pi/2], Res <-[4], Roffset<-[Pi*0/2], Dim=2],

actuators:
[#actuator{name=two_wheels,id=cell_id,format=no_geo,tot_vl=2,parameters=[]},
#actuator{name=create_offspring,id=cell_id,format=no_geo,tot_vl=1,parameters=[]},
#actuator{name=spear,id=cell_id,format=no_geo,tot_vl=1,parameters=[]}]

Where the parameters element specifies the extra information necessary for the
proper use of the sensor or actuator, and the format element specifies the geomet-
rical formatting of the signal. We can see that the actuators all have their formats
set to no_geo meaning, no geometric information, so the actuators expect from the
substrate single dimensional vector outputs. On the other hand, the sensors both
use format= {symmetric,2}, which specifies a two dimensional sensory signal
with a symmetric resolution in both dimensions: X by Y where X = Y. The pa-
rameters also specify, since these sensors are part of the simulated robot with dis-
tance and color sensors, the simulated sensor’s coverage area (Spread), camera
resolution (Res), and sensor’s radial offset from the robot’s central line (based on
the actual simulation of the robot which is specified during the ALife simulation).
Based on the format, the DXNN knows that the sensors will produce two symmet-
ric 2d input signals, with a resolution of 5 and 4 respectively. Thus the first senso-
ry input will be a 5x5 plane, and the second a 4x4 plane. The DXNN also knows
that the actuators expect single dimensional output vectors, the one called
two_wheels expects the signal sent to it be a vector of length 2, with the other two
actuators expecting the signals sent to them to also be single dimensional lists,
vectors, and in this case of length 1 (the length is specified by the tot_vl parame-
ter).

Having this information, DXNN knows to expect input signals that will be at
least 2d (new sensors might be added in the future, which might of course have
higher, or lower dimension), and that the output signals will be 1d. The DXNN
thus calculates that the input hyperlayer composed of multiple 2d inputs will be at
least 3d (2d planes stacked on a 3rd dimension), and the output hyperlayer will be
at least 2d (1d outputs stacked on the 2nd dimension), which means that the sub-
strate must be at least 4d. But why 4d?

Though certainly it is possible to devise substrates whose dimension is the
same as the highest dimension of the sensor or actuator used by it, I usually

+2. The
implement a layer to layer feedforward substrate topology which requires the
substrate’s dimension to be the maximum sensor or actuator dimension,
reasoning for this is best explained through an example.

10.5 Direct (Neural) and Indirect (Substrate) Encoding 429

Let’s say the substrate encoded NN based agent uses 2 sensors, each of which
is 2d, and 2 actuators, each of which is 1d. The 2d input planes do not perform any
type of processing because the processing is done in the hidden processing
hyperlayers, and the output hyperlayer. So both of the 2d input planes must for-
ward their signals to the processing hyperlayers. So we must first put these 2d
planes on another dimension. Thus, to form an input hyperlayer we first put the 2d
planes on the third dimension, forming a 3d input hyperlayer. But for the 3d input
hyperlayer to forward its signals to another 3d processing hyperlayer, we need to
put both on a 4th dimension. Thus, the final substrate is 4d. The input hyperlayer is
3d. The output hyperlayer, though really only needing to be 2d (due to the output
signals being both 1d layers stacked on a 2nd dimension to form an output
hyperlayer), is also 3d because all neurodes haves to have the same dimensionali-
ty.

Fig. 10.9 Input and output hyperlayers composed by stacking the sensor input planes into a
single multidimensional input hyperlayer, and stacking the output processing planes into a
single multidimensional output hyperlayer with signals destined for actuators.

430 Chapter 10 DXNN: A Case Study

So, now we know how to compute the dimensionality of the input and output
hyperlayers. The number of the processing hyperlayers, if any (in the case where
only the input and output hyperlayers exist) is determined by the depth value set
by the researcher. In DXNN, the hidden processing hyperlayers, their topology
and dimensionality, is set to the resolution equal to the square root of the highest
resolution between the sensors and actuators of the agent’s morphology.

Thus through this process, when creating the seed population of the substrate
encoded NN based agents, DXNN can calculate both the dimension of the sub-
strate to create, its topology, and the resolution of each dimension. The resolution
of each hidden processing hyperlayer is set to square root of the highest resolution
of the signals coming from the sensors or towards actuators. The dimensionality is
set, as noted earlier, to the highest dimension between the sensors and actuators,
+2. The depth, the number of total hidden processing hyperlayers, is set by the re-
searcher, usually to 0 or 1. If it is set to 0, then there is only the input and output

Why give an extra dimension to put the input or output planes on? Because in
the future we might want to add more sensors and actuators, and have the sensors
and actuators stacked on another dimension makes it easy to do so. For example
we would simply add the new sensor based input plane on the same 3rd dimension,
and scoot the others a bit. In this manner we can add new sensors and actuators
indefinitely, without changing the substrate topology too much. Also the coordi-
nates of the neurodes in the input planes would change only slightly due to scoot-
ing, and so the synaptic weights determined by the NN could be more easily and
smoothly adjusted through synaptic weight tuning phase.

This is the gist of the idea when forming substrates dynamically, based on sen-
sors and actuators used, and expecting to use multiple such sensors and actuators
in the future. We will discuss substrate encoding in much more detail in Chapter-
16.

(which is able to process the sensory signals) hyperlayers, and 0 hidden processing
hyperlayers. When set to 1, the full substrate is composed of the input hyperlayer,
the hidden processing hyperlayer whose resolution was computed earlier from the
resolution of the sensors and actuators, and the processing output hyperlayer
whose dimensionality and topology was formed by analyzing the list of available
actuators for the agent, and the list of the actuators currently used by the agent.

For example, the substrate created based on the morphology composed from
the following sensors and actuators:

10.5 Direct (Neural) and Indirect (Substrate) Encoding 431

sensors:
[#sensor{name=internals_sensor,id=cell_id,format=no_geo,tot_vl=3,parameters=[]},
#sensor{name=color_scanner,id=cell_id,format={symmetric,2}, tot_vl=Density,
parameters=[Spread,Res,ROffset]} || Spread <-[Pi/2], Res <-[4], ROffset<-[Pi*0/2]],

actuators:
[#actuator{name=two_wheels,id=cell_id,format=no_geo,tot_vl=2,parameters=[]},
#actuator{name=create_offspring,id=cell_id,format=no_geo,tot_vl=1,parameters=[]}]

Will have the hidden processing hyperlayer resolutions set to 2, the dimension-
ality set to 4 = 2+2, and the depth set by the researcher to 1. Since the input and
output hyperplanes are created when the genotype is converted to phenotype, and
based on the number and types of sensors involved, assuming that in this example
the agent is using all the sensors and actuators, the substrate will have the follow-
ing form:

Fig. 10.10 The substrate belonging to an agent with 2 sensors and 2 actuators, with the di-
mensions = 4, and densities = [1,2,2,2]

Once the substrate and its properties are determined, the actual NN is then cre-
ated in a fashion similar to one created when standard direct/neural encoding is
used. Only in a substrate encoded NN based system, the sensors and actuators

ing form:

432 Chapter 10 DXNN: A Case Study

used by the NN are the substrate_sensors and substrate_actuators, because it is the
substrate that is using the real sensors and actuators, while the NN gets its input
(coordinates and other neurode parameters) from the substrate, and uses its output
signals to execute the substrate_actuators, which set up the synaptic weights (and
other parameters) between the neurodes.

In the NNs that use substrate encoding, since it is the substrate that accepts in-
puts from the environment and outputs signals to the outside world, and the NN is
just used to set the weights for the neurodes in the substrate, the system not only
has a set of sensors and actuators as in the standard NN system, but also a set of
substrate_sensors and substrate_actuators. The substrate_sensors and sub-
strate_actuators are used by the NN in the same way the standard, neural encoded
NN uses sensors and actuators, and new substrate_sensors and substrate_actuators
are also in the same way integrated into the NN as it evolves.

In the standard substrate encoded NN system, the NN is given an input that is a
vector composed of the coordinates of the two neurodes that are connected. In
DXNN, the set of substrate_sensors are coordinate processors that process the co-
ordinate vectors before feeding the resulting vector signals to the NN. The sub-
strate_actuators on the other hand process the NN’s output, and then based on
their function interact with the substrate by either setting the neurode synaptic
weights, changes a neurode’s currently set synaptic weights (which effectively
adds plasticity to the substrate), or performs some other function.

The DXNN system currently has the following list of substrate_sensors availa-
ble for the substrate encoded NNs:

1. none: Passes the Cartesian coordinates of the connected neurodes directly to
the NN.

2. cartesian_distance: Calculates the Cartesian distance between the neurodes,
and passes the result to the NN.

3. polar_coordinates (if substrate is 2d): Transforms the Cartesian coordinate vec-
tor to the polar coordinate vector, and passes that to the NN.

4. spherical_coordinates (if substrate is 3d): Transforms the Cartesian coordinate
vector to the spherical coordinate vector, and passes that to the NN.

5. centripetal_distance: Transforms the Cartesian coordinate vector from the con-
nected neurodes into a vector of length 2, composed of the distances of the two
neurodes to the center of the substrate.

6. distance_between_neurodes: Calculates the distance between the two connect-
ed neurodes, and passes that to the NN.

This set of substrate_sensors further allows the substrate encoded NN to extract
the geometrical patterns and information from its inputs, whatever dimension
those input signals have. An example of an architecture of a substrate encoded NN
using multiple substrate_sensors and multiple substrate_actuators, with the sub-
strate itself using multiple sensors and actuators as well, is shown in Fig-10.11.

10.5 Direct (Neural) and Indirect (Substrate) Encoding 433

Fig. 10.11 A substrate encoded NN using different types of substrate_sensors and sub-
strate_actuators, and standard sensors and actuators.

As can be seen from the figure, it is also possible to have different types of sub-
strate_actuators, not just the standard synaptic_weight substrate_actuator which
uses the NN’s output to set the synaptic weight between the two neurodes based
on their coordinates which were passed to the NN’s substrate_sensors. The stand-
ard substrate_actuator, synaptic_weight setter, is one that simply uses the signal
coming from the NN and converts it into a synaptic weight value using the algo-
rithm shown in Listing-10.1. In this listing, the substrate_actuator simply takes the
NN’s output, and computes the synaptic weight to be 0 if the NN’s output is be-
tween -0.33 and 0.33, and to be between -1 and 1 otherwise, normalizing the syn-
aptic weight value such that there is no hole between -0.33 and 0.33 when using
this below shown function:

Listing-10.1 The simple synaptic weight setting “substrate_actuator”.

set_weight(Output)->
 [Weight] = Output,
 Threshold = 0.33,
 Processed_Weight = if
 Weight > Threshold ->

434 Chapter 10 DXNN: A Case Study

 (functions:scale(Weight,1,Threshold)+1)/2;
 Weight < -Threshold ->
 (functions:scale(Weight,-Threshold,-1)-1)/2;
 true ->
 0
 end.

Currently there are a number of other substrate_actuators implemented as well.
For example a secondary substrate_actuator called synaptic_expression, decides
on whether there is a connection between the two neurodes at all, if there isn’t
then the weight is set to 0. This is different from the weight being set to 0 by the
synaptic_weight actuator, since using this secondary actuator the whole substrate
can be made more complex, there can be two different neural circuits, one decid-
ing on the synaptic weight, and one deciding on the connectivity pattern of the
substrate. Or for example instead of using the synaptic_weight actuator, an itera-
tive_plasticity, abc_plasticity, or some other learning algorithm can be used. Us-
ing these plasticity substrate_actuators, the NN can change and modify the synap-
tic weights after every sensory input is processed. One substrate_actuator could be
mutated into another during the topological mutation phase, new ones could be
added or removed throughout evolution.

These substrate_actuators further allow one to experiment with different types
of learning, adding more agility and robustness to the population and individual
agents, providing a greater leverage to evolution to overcome various discontinui-
ties and abstractions on the fitness landscape. Combined all together, with the var-
ious substrate specific mutation operators which increase the resolution/density of
the substrate, add new sensors and actuators, add new substrate_sensors and sub-
strate_actuators... the substrate encoding provided by the DXNN system is one of
the most advanced substrate encoded neuroevolutionary approaches currently
available.

The resolution and dimensionality of the substrate can be further mutated dur-
ing the topological mutation stage. When the agent is substrate encoded, the plat-
form’s standard mutation operator list is further augmented to include the follow-
ing substrate specific mutation operators:

1. mutate_resolution
2. mutate_dimensionality

Yes the method and representation is convoluted and could be made simpler.
The problem with DXNN, as noted earlier, is that it was built up slowly, evolving
through many of my various experiments and tests. And as we know, evolution
does not take the cleanest path from genotype A to genotype Z, instead it is all
based on the easiest and most direct path, which is based on the agent’s environ-
ment, and most easily achievable niche based on the agent’s genotype/phenotype
at that time. Here too, the DXNN is the way it is because of the order in which I
got the ideas for its various parts, and the initial, though at times mistaken, repre-

10.5 Direct (Neural) and Indirect (Substrate) Encoding 435

sentations and implementations I used. Once a few hundred or thousand lines of
code are written, the amount of motivation to recreate the system in a cleaner
manner decreases. But now that we are creating a completely new TWEANN sys-
tem together, and have the knowledge of my earlier experience within the field
and systems like DXNN to guide us, we can create our new system with foresight,
without having to go down the same dark alleys and dead ends I wondered into
during my first time around.

10.5.3 Substrate Phenotype Representation

The conversion of genotype to phenotype is similar to one used by the standard
direct encoded NNs in DXNN, and thus is similar to what we use in the system
we’ve built so far. As we discussed, in DXNN the cortex process is not a synchro-
nizer but instead is the signal gatekeeper between the NN and the sensors and ac-
tuators it itself is composed of. In the substrate encoded NNs, the cortex also takes
on the role of the substrate itself. In DXNN, the entire [substrate, cortex, sensors,
actuators, substrate_sensors, substrate_actuators] system is represented as a sin-
gle element/process, because it is possible to encode the substrate in a list form
and very efficiently perform calculations even when that substrate is composed of
thousands of neurodes.

When the exoself generates and connects all the elements (neurons and the cor-
tex), it does so in the same way it does with the direct encoded NN system. Since

actuator, substrate_sensor, and substrate_actuator list specifications. The neurons
and the NN that they compose neither know nor need to know that the agent is
substrate encoded. In both versions, the direct encoded and the indirect encoded
NN system, the input and the output layer neurons are connected to the cortex, so
nothing changes for them. The cortex is the one that needs to keep track of when
to use the substrate sensors/actuators, and when to use the actual sensors/actuators.

The algorithm that the substrate encoded cortex follows is specified in the fol-
lowing steps, with a follow-up paragraphs elaborating on the more intricate parts.

1. The cortex process is spawned by the exoself, and immediately begins to wait
for its initial parameters from the same.

2. The cortex receives all its InitState in the form:

{ExoSelf_PId,Id,Sensors,Actuators,CF,CT,Max_Attempts,Smoothness,OpMode,Type,
Plasticity, Morphology,Specie_Id,TotNeurons,Dimensions,Densities}

3. The cortex checks the agent Type, whether it is neural or substrate. In the steps
that follow we assume that the Type is substrate.

the cortex knows, based on its parameters, that it is a substrate encoded system,
once it is created it builds a substrate based on dimension, densities, sensor,

436 Chapter 10 DXNN: A Case Study

4. Cortex constructs the substrate:
5. The cortex reads the number of dimensions, and the densities.
6. The input hyperlayer is built based on the sensors the agent uses, with the

neurode coordinates based on the number of dimensions (If the entire sub-
strate has 3 dimensions, then each coordinate is [X,Y,Z], if 4d then
[X,Y,Z,T]...).

7. If depth > 0, then hidden processing hyperlayers are constructed based on
the densities and dimension specified, and with each neurode in the first
hidden processing hyperlayer having the right number of synaptic weights
to deal with the input hyperlayer.

8. The output processing hyperlayer is constructed, and each neurode must
have the right number of synaptic weights to deal with the signals coming
from the hidden processing hyperlayers.

9. The cortex combines the input, processing, and output hyperlayers into a
single hypercube substrate.

10. DO Sense-Think-Act loop:
11. DO For each neurode in the substrate:

12. The cortex goes through the substrate_sensors, using the tuples like
in the standard sensors, to forward the neurode properties (coordi-
nates, and other parameters based on the substrate_sensor used) to
the connected neurons in the NN.

13. The output signals of the NN are then used to execute the sub-
strate_actuators to set the synaptic weights and other parameters be-
tween the neurodes in the substrate.

UNTIL: All neurodes have been assigned their synaptic weights and other
parameters.
14. The cortex goes through every sensor, and maps the sensory signals to

the input hyperlayer of the substrate.
15. The substrate processes the sensory signals.
16. The output hyperlayer produces the output signals destined for the actua-

tors. Since the output hyperlayer is created based on the actuators the
agent uses, the output signals are implicitly of the right dimensionality
and in the right order, such that the signals are packaged into vectors of
proper lengths, and are then used as parameters to execute the actuator
functions.

17. The cortex goes through every actuator, executing the actuator function
using the output signals produced by the substrate as the parameter of
their respective actuators.

UNTIL: Termination condition is reached, tuning has ended, or interrupt signal is
sent by the exoself.

During the tuning phase, after every evaluation of the NN, the exoself chooses
which neurons should perturb their synaptic weights. After the neurons in the NN
have perturbed their synaptic weights, the cortex takes the substrate through the

10.5 Direct (Neural) and Indirect (Substrate) Encoding 437

step 11 loop, updating all the synaptic weights of the neurodes in the substrate by
polling the NN for weights.

Thus the cortex first executes all the sensor functions to gather all the sensory
signals, then it goes through every neurode in the substrate, until the processing
output hyperlayer produces the output signals, which the cortex gathers, packages
into appropriate vectors, and executes all the actuators in its actuator list with the
appropriate output vector signals.

The phenotypic architecture of the substrate encoded NN based agent, com-
posed of the Exoself, Cortex, and Neuron elements, with the Sense-Think-Act
loop steps specified, is shown in Fig-10.12.

Fig. 10.12 The phenotypic architecture of the substrate encoded NN based agent, composed
of the concurrent Exoself, Cortex, and Neuron processes, with the processing steps listed.

Let’s quickly go over the shortened processing loop shown in the above figure.

1. The exoself creates the cortex.
2. The exoself sends the created cortex its InitState parameters.
3. The cortex creates the substrate based on sensors, actuators, and other specifi-

cations.
4. The cortex/substrate uses the substrate_sensors to forward to the NN the coor-

dinates and other parameters of the connected neurodes within the substrate.
5. The NN processes the signals passed to it by its substrate_sensors.

438 Chapter 10 DXNN: A Case Study

6. The substrate_actuators and the signals produced by the NN, used as parame-
ters for the substrate_actuators, are used to set the synaptic weights and other
parameters of the embedded neurodes.

7. The cortex gathers the sensory signals from its sensors.
8. The cortex maps the sensory signals to the substrate’s input hyperlayer.
9. The substrate processes the sensory signals coming from the input hyperlayer.
10.The cortex maps the output signals of the neurodes in the output hyperlayer to

their appropriate actuators.
11.The cortex executes the actuators with the substrate produced output signals as

their parameters.

The substrate, due to it being a single process, and capable of being composed
of millions of neurodes each with millions of connections, and because each
neurode simply does vector multiplication, is a perfect candidate for being accel-
erated with a GPU. Substrate encoding is an important field of neurocomputation,
it allows for very large NNs to be constructed, for neuroplasticity and geometrical
pattern sensitive systems to be composed, and in general substrate encoded NNs
are more effective, and perhaps with some new topological structure and with fur-
ther expansions, might be the path toward general computational intelligence.

Have you ever seen a PET scan? You know that activity pattern that it shows?
It is difficult not to look at the NN computing the synaptic weights and therefore
activity pattern on the substrate, as the tool which could carve out that high densi-
ty, and highly complex architecture. With a substrate having enough neurons (100
billion let’s say), and with the NN, the universal function approximator, having
the right function, it could possibly carve out the architecture and the activation
patterns similar to something one would see in a PET scan... But we are not at that
point just yet.

We will add substrate encoding capabilities to the TWEANN system we are
developing together, and thus we will discuss further the algorithms and a way to
represent the substrate in great detail. We will of course, having foresight, develop
our system to have a more concise and flexible representation. As we develop the
next generation TWEANN in this book, we will avoid making the mistakes I made
when I first developed the architecture of DXNN.

In the following sections we will discuss the current and ongoing projects that
DXNN is being used for, and thus what the system we’re developing here (which
will replace DXNN, by becoming the new DXNN) will be applied to once devel-
oped. The system we’re creating here is meant to supersede and replace DXNN, it
is the next generation of a fully concurrent, highly general and scalable, Topology
and Parameter Evolving Universal Learning Network (TPEULN).

10.6 DXNN Research Group & the NN Research Repository 439

10.6 DXNN Research Group & the NN Research Repository

DXNN Research group [8] is currently a small research group composed of a
few mathematicians, computer scientists, and me. We are working on further ex-
panding the DXNN platform, and finding new projects to apply it to. One of these
projects is the application of DXNN to Cyberwarfare. Another deals with ex-
changing the neuron elements with logic gates and transistors, so that the platform
can be applied towards the evolution and optimization of large scale digital cir-
cuits. The currently explored application of DXNN is towards the evolution and
optimization of OpenSPARC [9], some progress has been made, but not enough to
publish. The DXNN Research group is also currently working on interfacing the
DXNN with the Player/Stage/Gazebo [5] project, allowing it to be used in 3d

the same. The Player/Stage/Gazebo robot simulators provide 2d and 3d simulation
environments, and the drivers to interface the evolved NNs with actual hardware.
The use of Player gives us the ability to evolve systems in artificial environments,
and immediately have the ability to apply them to real hardware, and thus usable
and applicable in the real world. The current main project and interest in this area
is the evolution of neurocontrollers for the control of Unmanned Combat Ariel

warring, populations of Combat UAVs in the 3d simulated environment, through
Gazebo for example. Due to the use of the Player interface, we can then transfer
the evolved intelligence to real UCAV systems.

The main reasons why we are trying to create a highly decoupled
neuroevolutionary system is because it will allow us to easily augment it, and then
provide it to the public so that crowdsourcing is used to further expand the plat-
form, letting anyone with interest and skill to contribute various modules and
computational packages to the system, further expanding and augmenting it, mak-
ing it more general, and applicable to new projects, which benefits the entire
community using the TWEANN system. DXNN Neural Network Research Repos-
itory [10] provides the specifications on how to add new modules to the DXNN
TWEANN, where to submit them...

The goal of the Neural Network Research Repository (NNRR) is also to be-
come the repository of neural network systems evolved through the DXNN sys-
tem. NNs are by their very nature blackbox systems, different neural networks can
be evolved to solve the same problem, or inhabit same environments (when NN
based agents are used in ALife). NNRR provides a place where individuals can
submit the NN systems they have evolved, and specify the fitness functions and
other parameters they used to evolve these agents. Because everyone else on the
NNRR is also using DXNN, they can then try to see what types of NN topologies
they can evolve given the same fitness function and TWEANN parameters. Thus,
the NNRR should over time accumulate useful NN based agents. Those who wish
to simply start using these agents can do so, others can try to download the hun-

ALife experiments, and the evolution of robotic systems and neurocontrollers for

Vehicles (UCAVs). This is accomplished through the co-evolution of two, forever

440 Chapter 10 DXNN: A Case Study

dreds of the already evolved NN based systems for some problem, and try to data-
mine their topologies, try to see what are the essential parts of these NN based sys-
tems, what are the common threads? Through this approach we can try to start
building a path towards illuminating the blackbox. These types of databases also
provide the data needed to figure out where the DXNN system is perhaps having
difficulties when solving problems.

Finally, with the standardized interfaces between the various processes, and
with the specified genotypical encoding system, the community can contribute the
various activation functions, neural plasticity rules, neuron types, substrate topol-
ogies, fitness functions, selection functions... Every decoupled element is a self
contained module, and thus anyone can augment the DXNN system by simply
conforming to the proper interface specifications. The NNRR will propel us, and
allow for the capabilities and applicability of this neuroevolutionary system to ex-
pand dramatically, making the evolved systems available globally, providing al-
ready evolved solutions to those interested, and giving a place for researchers to
contribute, while at the same time giving them a place where they can gather tools
and data for their own further research.

10.7 Currently Active Projects

The DXNN research group is currently actively pursuing three projects:

1. Cyberwarfare.
2. Coevolution of Unmanned Ariel Vehicle Combat Maneuvers.
3. CPU Evolution and Optimization.

 When successful, the results of these 3 projects could potentially be game
changing for the industrial and military sector.

10.7.1 Cyberwarfare

One of the exciting applications the DXNN platform is currently being applied
toward is the evolution of offensive and defensive cyberwarfare agents. We are
currently trying to evolve agents capable of using parameterized metasploit (a
penetration testing program) and other tools to effectively penetrate and attack
other machines, and agents capable of defending their host network against such
attacks, by monitoring signals on its network for attacks being carried out against
it, and then using various available tools and methods to thwart and counterattack.
This is done by creating scapes, simulated network environments using network
simulators like NS3, with simulated host targets, and then interfacing the NN
based agents with programs like metasploit, letting them evolve the ability to

10.7 Currently Active Projects 441

combine the various attack commands to penetrate the simple hosts. With regards
to the evolution of defensive agents, the NN based agents are fed signals coming
from the ports, and they are required to make a decision of whether they are being
actively attacked or not. If they are, they must decide on what they should do, lock
the port, fully disconnect, counter-attack...

There are a number of difficulties in evolving cyberwarfare agents, because un-
like in the natural environments, there are no smooth evolutionary paths from
simply existing on a network, to being able to forge attack vectors using
metasploit. Neither is there a smooth evolutionary path leading from mere exist-
ence, to the ability to detect more and more complex attacks being carried out
against your own host. In standard ALife, there is an evolutionary path from simp-
ly running after a prey and then eating it, to trying different approaches, hiding,
baiting the prey... it’s all a smooth progression of intelligence. That is not the case
in cyberwarfare, things are more disconnected, more arcane, requiring beforehand
knowledge and experience. Nevertheless, through bootstrapping simple skills, and
forging fitness functions, our preliminary results have demonstrated that the goals
of this project are achievable.

10.7.2 Coevolving Unmanned Ariel Vehicle Combat Maneuvers

Another exciting application and field where evolved neurocognitive systems
can provide a significant advantage is of course robotics. As with cyberwarfare,
there is a significant amount of both industrial and military applications, with the
successful system and implementation being potentially game changing. Due to
the current increased use of unmanned aerial vehicles, particularly in combat,
there is a great opportunity in evolving neural network agents specifically for con-
trolling such systems. At the moment the UAVs are programmed to scout, or fly to
particular way-points. Once the UAV gets there, a real pilot takes over. The pilot
sits somewhere in the base and controls the UAV, looking at the screen which is
fed by the UAV’s camera. This of course provides a much lower level of situa-
tional awareness to the pilot when compared to that available when sitting in a
cockpit. Also, the maneuvers available to the drone are limited by the human op-
erator, and the time delay in the connection due to the distance of the UAV from
the human operator. All of this combined, puts the Unmanned Combat Ariel Vehi-
cle (UCAV) at a disadvantage in a standard dogfight against a piloted fighter jet.
Yet a UCAV can undertake g forces and perform maneuvers that are impossible
for a human piloted jet fighter. Furthermore, an evolved NN would be able to in-
tegrate the signals from many more sensors, and make the decisions faster, than
any biological pilot can. Thus, it is possible for the UCAVs to have performance
levels, precision levels, situational awareness, and general capabilities that far sur-
pass those of pilots and piloted jets.

442 Chapter 10 DXNN: A Case Study

This can be mitigated by evolving NN based agents specifically for controlling
UCAVs, allowing the NN systems to take full advantage of all the sensory data,
and use the UCAV to its full potential with regards to maneuverability. I think that
this would give the drone an advantage over standard manned aerial vehicles. To
evolve such NN based agents we once again do so through an ALife
coevolutionary approach. As discussed in the “Motivations and Applications”
chapter, by creating a detailed simulation through a simulator like Gazebo, and
creating the simulated UCAVs with high enough detail, and a set of prepro-
grammed or even evolving fighter jet simulations constrained to the physical lim-
its of the pilot, it is possible to coevolve UCAV controlling NN systems. To ac-
complish this, we can put two populations of forever warring UCAVs into a
simulated 3d environment, to coevolve the ever more intelligent digital minds
within. This, as in the Predator Vs. Prey [11] simulations, will yield ever more
creative NN based agents, evolving neurocontrollers with innovative combat ma-
neuvers, and having the ability to use the full potential of unmanned combat air-
craft, the full potential of metal that is not limited by flesh.

The preliminary testing in this project has started. At the time of this writing,
the interface between the DXNN platform and the Player/Gazebo has been devel-
oped, and the work is being concentrated on developing simulations of the
UCAVs which are modular enough to allow for morphological evolution. Based
on the performance of DXNN in ALife, there seems to be no reason why it would
not evolve highly adaptive, flexible, and potent UCAV piloting agents.

10.7.3 Evolving New CPU Architectures & Optimizing Existing
Ones

The third project currently being pursued by the DXNN research group, deals
with the DXNN platform being applied to the evolution and optimization of digital
circuits. Because the neurons in the evolving NN topologies can have any type of
connections and activation functions, the DXNN platform does not in reality
evolve NNs, but Universal Learning Networks, where the nodes can be anything.
In this particular application, the nodes use logic operators and transistor simula-
tions as activation functions, thus the evolved topologies are those of digital cir-
cuits.

The OpenSPARC project provides the whole architecture and topology of the
OpenSPARC T2 CPU, which our team is hoping to take advantage of. The goal of
our project is composed of two parts. 1. Create the tuple encoded genotype of a
system which recreates the OpenSPARC T2 architecture, and then through its mu-
tation operators (complexifying and pruning), optimize the CPU, by reducing the
number of gates used while retaining the functionality. 2. By specifying particular
goals through the fitness function, such as increased throughput, higher core count

10.9 References 443

coherency, and certain new features, evolve the existing architecture into a more
advanced one.

Because OpenSPARC T2 also provides a testing suit, it is possible to mutate
the existing architecture and immediately test its functionality and performance.
But due to the architecture’s high level of complexity, the project is still in the
process of having new mutation operators being developed, the fitness functions
being crafted for optimization and evolution of the CPU, and the creation of the
genotype representing the OpenSPARC-T2 architecture. DXNN has been used to
evolve and optimize much smaller digital circuits, which gives hope that it can
successfully be applied here as well. The potential payoffs could be immense, im-
proving and optimizing CPUs automatically, and adding new features, would rev-
olutionize the landscape of this field. At the moment, we are only beginning to
scratch the surface of this project.

10.8 Summary and Future Work

In this chapter we have discussed the DXNN Platform, a general Topology and
Weight Evolving Artificial Neural Network system and framework. I briefly ex-
plored its various features, its ability to evolve complex NN topologies and its par-
ticular approach to the optimization of synaptic weights in the evolved NN topol-
ogies. We discussed how DXNN uses the size of the NN in the determination of
how long to tune the new synaptic weights, which synaptic weights to tune, and
which NNs should be allowed to create offspring and be considered fit. We have
also discussed the substrate encoding used by the DXNN, which allows it to very
effectively build substrates composed of a very large number of neurodes.

Finally, we have went into some detail discussing the DXNN Research group’s
current projects. The Neural Network Research Repository, the Cyberwarfare pro-
ject, the Combat UAV project, and the CPU Evolution project. DXNN is the first
neuroevolutionary system built purely through Erlang, and which was designed
from the very beginning to be implemented only in Erlang. Without Erlang, some-
thing as complex, dynamic, and general as this neuroevolutionary platform, could
not be created by a single individual so easily. There is an enormous room for
growth and further improvement in this system. And it is this that you and I are
working on in this book, we are building the next phase of DXNN.

10.9 References

[1] DXNN’s records.hrl is available at: https://github.com/CorticalComputer/DXNN

TWEANN. Available at: http://arxiv.org/abs/1008.2412
[2] Sher GI (2010) Discover & eXplore Neural Network (DXNN) Platform, a Modular

https://github.com/CorticalComputer/DXNN
http://arxiv.org/abs/1008.2412

444 Chapter 10 DXNN: A Case Study

[3] Gauci J, Stanley KO (2007) Generating Large-Scale Neural Networks Through Discovering
Geometric Regularities. Proceedings of the 9th annual conference on Genetic and evolution-
ary computation GECCO 07, 997.

[4] Siebel NT, Sommer G (2007) Evolutionary Reinforcement Learning of Artificial Neural
Networks. International Journal of Hybrid Intelligent Systems 4, 171-183.

[5] Player/Stage/Gazebo: http://playerstage.sourceforge.net/
[6] Risi S, Stanley KO (2010) Indirectly Encoding Neural Plasticity as a Pattern of Local Rules.

Neural Plasticity 6226, 1-11.
[7] Woolley BG, Stanley KO (2010) Evolving a Single Scalable Controller for an Octopus Arm

with a Variable Number of Segments. Parallel Problem Solving from Nature PPSN XI, 270-
279.

[8] DXNN Research Group: www.DXNNResearch.com
[9] OpenSPARC: http://www.opensparc.net/
[10] DXNN Neural Network Research Repository: www.DXNNResearch.com/NNRR

[12] Sher GI (2012) Evolving Chart Pattern Sensitive Neural Network Based Forex
TradingAgents. Available at: http://http://arxiv.org/abs/1111.5892.

[11] Prdator Vs. Prey Simulation recording:
http://www.youtube.com/watch?v=HzsDZt8EO70& feature=related

http://playerstage.sourceforge.net/
http://www.DXNNResearch.com
http://www.opensparc.net/
http://www.DXNNResearch.com/NNRR
http://www.youtube.com/watch?v=HzsDZt8EO70&feature=related
http://arxiv.org/abs/1111.5892

Part IV
 Advanced Neuroevolution: Creating the

Cutting Edge

The TWEANN system that we’ve built so far is a good start, it is clean, direct,

with great potential. We have tested it on the simple XOR problem, and it does
work. We have discussed that what we are building here is the new DXNN, one
that is better than the original version in every way. In this part we will begin add-
ing new advanced features to the TWEANN we’ve created thus far, chapter by
chapter, increasing its capabilities. We will develop a TWEANN that will be the
contender of the bleeding edge in this field.

In the following chapters we will first decouple our TWEANN system, in the
sense that we will allow for the different features and functionalities of our plat-
form to be held and specified through their own functions and modules. In this
manner we can then put our TWEANN system online, as open source, and allow
others to concentrate and add various new features and functions (selection func-
tions, activation functions, plasticity functions, mutation operators...), without
having to worry about modifying, integrating, and in general dealing with the rest
of the code. In this way, contributors can just concentrate on particular aspects of
the TWEANN, without digging through the rest of the source code.

Then we will modify the population_monitor module so that it can keep track
of the evolutionary statistics of the population it is evolving. Afterwards we add
the benchmarker module, a new process that can be used to perform experiments
by performing multiple evolutionary runs of some particular problem, and then
computing averages, standard deviations, max & min values of the various popu-
lation parameters, and building graphable files. To actually test the performance of
our system after adding these new features, we will require problems more com-
plex than the simple XOR mimicking one, thus in Chapter-14 we add two stand-
ard, more complex problems. In Chapter-14 we implement the T-Maze navigation
problem, and a few variations of the Pole Balancing problem.

Having built all the necessary tools to move forward and be able to keep track
of our system and test the new features, we advance and add plasticity to the
evolved neural networks. We implement everything from the standard Hebbian
plasticity of various forms, to Oja’s rule, and neuromodulation. Afterwards, we
make a significant leap and add indirect encoding to the type of NN based agents
our TWEAN can evolve. The particular indirect encoding we add is that of sub-
strate encoding. Afterwards, we add substrate plasticity, all the while testing the
performance and capabilities of our TWEANN on the new problems we’ve added
earlier. By the time we add substrate plasticity, we have developed a highly ad-
vanced TWEANN platform, capable of evolving advanced NN based agents with
plastic and static networks, different learning algorithms and rules, numerous acti-
vation functions, highly dynamic mutation operators, and different types of encoding.

Chapter 11 Decoupling & Modularizing Our
Neuroevolutionary Platform

Abstract In this chapter we modify the implementation of our TWEANN sys-
tem, making all its parts decoupled from one another. By doing so, the plasticity
functions, the activation functions, the evolutionary loops, the mutation opera-
tors... become independent, each called and referenced through its own modules
and function names, and thus allowing for our system to be crowd-sourced, letting
anyone have the ability to modify and add new activation functions, mutation op-
erators, and other features, without having to modify or augment any other part of
the TWEANN. This effectively makes our system more scalable, and easier to
augment, advance, and improve in the future.

In Chapter-10 we discussed DXNN, and the Neural Network Research Reposi-
tory. I mentioned that it becomes extremely useful and necessary to decouple the
TWEANN platform, because it makes it that much easier to later on expand and
improve it. Our system already has a number of interesting features that make it
somewhat decoupled. For example the activation functions (AFs) that the neurons
use, are independent of the neurons themselves. We need only provide the name
of the activation function, and if such function exists, the neuron accesses it
through functions:ActivationFunctionName(...). We could take this same approach
with regards to other features of our TWEANN. As long as we specify a standard
interfacing format with those functions, new modules and functions can then be
added. Not only would it make the system more modular and upgradeable, but al-
so make those features, where a choice in the use of a particular function is pre-
sent, mutatable and evolvable. Anything that can be specified in the manner in
which we specify activation functions, which provides us with a list of available

switch between the functionalities, between the function names available in that
list.

For example neural plasticity, which we will discuss later on, is the ability of
the neuron to adapt and change/learn based on the signals it is processing. This is
not training or tuning, this is true learning, in the same manner that biological neu-
rons change and develop additional receptors at a particular place on the dendrite

new plasticity approaches are developed and added to the plasticity module, the
tag/name of the said plasticity function can be added to the plasticity_functions
list. They then would become immediately available as mutatable and thus evolv-
able features for future and existing neurons. Then, when adding new neurons dur-

DOI 10.1007/978-1-4614- - © Springer Science+Business Media New York 2013

4463 3_11,

447 G.I. Sher, Handbook of Neuroevolution Through Erlang,

activation functions, can be used in evolution because it gives us the ability to

(which is somewhat similar to increasing/decreasing the synaptic weight for some
 have a place for plasticity functions.

can then become available. As soon as
connection)... We can change the neuron to also
A list like we have for activation functions,

448 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

ing evolution to the already existing NN, this approach could give those newly

as the species’ constraints allows for it. By adding mutate_plasticity mutation op-
erator, we can also allow the already existing neurons to have a chance of mutat-
ing, and using the newly added plasticity functions from the available list of said
functions.

Another thing that becomes possible when we completely decouple the various
features of our TWEANN system, is allowing species to use a different selection
function and a different evolutionary loop approach. In this manner the TWEANN
can then be easily customizable, and use steady-state evolution, or generational
evolution... on different species, depending on just the selection of that particular
tag/name of the selection and evolutionary loop function. And it allows us to
change between these various evolutionary strategies and approaches mid-
evolution.

In the following sections we are first going to analyze which parts and which
elements can have their various parameters and functionalities modularized and
decoupled. Then, we will modify our existing system to use this new decoupled
approach, and develop a modified genotype encoding to incorporate the new fea-
tures we will implement.

11.1 What Can be Decoupled?

For the sake of convenience, Fig-11.1 shows again the visualization of our
neuroevolutionary platform’s architecture from Fig-8.1. The functional elements
in the system we’ve developed so far are as follows: [polis, scape/sim, popula-
tion_monitor, agent/exoself, cortex, neuron, sensor, actuator, genome_mutator].
The functional elements and the processes that have features which can & should
be changed are numerous, and we need to figure out what they are. Let’s analyze
every one of these processes and parts of our neuroevolutionary system, and see
what types of features it contains, and whether those features can and should be
changed in some way, similar to the activation function example I keep mention-
ing. I will put an asterisk in front of those parts for which things could be further
decoupled.

Polis: This program and system is simply the general monitoring program, in
charge of the different scapes, there is nothing yet that we can modify or add to it.

Scape: Each scape, each simulation, is independent in its own right, so there is
nothing to decouple here at the moment.

*population_monitor: There are numerous features that can be decoupled in
the population_monitor system. Selection_Algorithm for example, currently we
have two, competition and top3. These are chosen through the case statement, but

added neurons a chance to use Hebbian [1], or Oja’s [2] plasticity functions, as long

11.1 What Can be Decoupled? 449

instead we could create a new selection_algorithm module, put all the different
types of selection algorithms there, specify the particulars and the format that the
selection algorithms created in the future must abide to work with the system, and
then call these selection algorithms through the use of Mod:Fun(...). Another ele-
ment is the max_attempts number, which basically specifies if the population
should be evolved through a genetic algorithm, by setting the max_attempts = 1,
or memetic algorithm, in which case we set max_attempts > 1. The popula-
tion_monitor process is also the one that decides on whether to evolve the popula-
tion through steady-state, or through the generational evolutionary loop.

*genome_mutator: The mutation operators are already in the list form, and
new mutation operators can be added to the module to let the genome_mutator use
them during the topological mutation phase. But there is another element that can
be, but is not yet, decoupled: the manner in which the mutation operators are cho-
sen and the percentage with which they are chosen. There can be different func-
tions, different ways of choosing the mutation operators, and with different proba-
bilities. We can have an approach that uses only complexifying mutation
operators, another that uses all available mutation operators, and each of those can
either choose the mutation operators with the same probability, or each mutation
operator with its own probability. These parameters specify our system’s evolu-
tionary strategy, and these parameters too can be mutated, and evolved.

*Exoself: Exoself has a number of jobs that can be decoupled. For example,
how do we decide what the MAX_ATTEMPTS value should be? This is the num-
ber of times we allow the exoself to fail to improve the fitness of the NN during
tuning. This value should perhaps be proportional to the number of the weights in
the neurons to be tuned, or perhaps it should be a static value... There are many
ways that this value can be calculated, and because there are numerous ways and
we do not know which is most effective, it is a good feature to decouple. This will
allow people to create new tuning_duration functions, and test and compare them
against each other. Another thing that exoself needs to derive is which neurons to
choose, how to choose them, and how many of them to choose for synaptic weight
perturbation. How to choose those neurons? Again, numerous approaches and
functions can be viable, and so it should be made as simple as possible to create
and try out different tuning_selection_strategy functions. Another thing that can
be decoupled is the actual synaptic weight perturbation intensity. Currently this
value is a constant, specified through: -define(DELTA_MULTIPLIER,
math:pi()*2, in the neuron module. This means that the perturbation values are
chosen to be between -Pi and Pi, but perhaps that is not the best way to go about
it. Perhaps simulated annealing would provide a benefit. The neuron’s “age”, the

consider them. In other words, if a NN performs better when some set of neurons
is not mutated or perturbed, then it means that this set of neurons has stabilized,
works well the way it is, and should continue being left alone in the future. Per-
haps the perturbation_intensity, the range of the perturbation possible, should be
dependent on the stability and age of the neuron to which it is applied. The more

longer neurons are untouched by mutation operators the more “stable” that we can

450 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

stable the neuron, the lower the perturbation intensity applied to it. In this manner,
the new neurons will have a chance of having their synaptic weights perturbed
with full strength, giving those synaptic weights a chance to jump all the way from
-Pi to Pi. While at the same time, the already existing and more stable neural cir-
cuits, those that have shown to produce a stable cognitive system, or a module of a
cognitive system, will have the perturbation intensity that is lower. The synaptic
weight perturbations should perhaps be inversely proportional to the age of the
neuron they are applied to. Finally, what about the actual local search function,
should it be the augmented stochastic hill climber that we’re using? Or perhaps
some variant of ant colony optimization, or simulated immune system?... Again, if
we decouple this feature, then others can easily form new local optimization func-
tions, which the system can then use, and flip/mutate between.

*neuron: The neuron too has a few things that can be decoupled. The activa-
tion functions are already decoupled, the neuron uses the name of the activation
function to produce an output. But perhaps the manner in which the inputs are
analyzed should be decoupled. Should we use a dot product? Or something else,
perhaps a diff function which calculates the difference between the previous input
and the current input. Should there be plasticity? Which too can be specified by a
name of the function stored in the plasticity_function module. What about prepro-
cessing of the input vectors, should normalization be used? Would it add any-
thing? What about weight saturation, should it be constant as is currently in our
system, specified in the neuron module by: -define(SAT_LIMIT,math:pi()*2). Or
perhaps saturation limit should be dependent on the activation function? Finally,
what about output and input saturation? Should that also be present and be based
on some researcher specified function? All of these things could be decoupled.

cortex: Cortex is a synchronization element, and so at the moment there is
nothing that can be decoupled with regards to its functionality.

*sensor: Sensors and actuators are already represented by their very own func-
tions, belonging to their very own modules. Each sensor, based on its name, does
the preprocessing. Every actuator does postprocessing of the signals sent to it.

ther specify the type of pre-processing that should be done. In this manner we
could have the same sensors whose functionality differs only in the way in which
the data is produced, their vector lengths, the type of pre-processing that is con-
ducted, or the format in which the data comes. Is the data simply a vector? Or is
the data coming from a camera, and is arranged in a 10 by 10 grid, and is thus in
possession of geometrical information. In this way, if for example the NN based
agent is substrate encoded, it could then, when evolving or being seeded, use the
sensor that also provides geometrical information. While a neural encoded NN
based agent would request from the sensor of the same name, the data to be pack-
aged in a simple vector form.

*actuator: As is the case with the sensor elements, the actuators too can have
the parameter element in their records. The parameter could then differentiate the

Though we could add to the sensor records a parameter element, which could fur-

same actuators by the different types of post-processing they conduct, for example.

11.2 Updating the Genotype Representation 451

Fig. 11.1 The general architecture of our neuroevolutionary platform.

Certainly other things that should further be decoupled will turn up, as we con-
tinue developing and advancing our TWEANN. But for now, the modifications
based on these observations will make our system more general, more modular,
and more future proof. Though of course there is a downside to it as well, these
modifications will also make our system a tiny bit slower, and a bit more complex
if we are not careful in the way in which we implement them.

11.2 Updating the Genotype Representation

The elements that make up the genotype of our NN based agents are all in the
records.hrl file, shown bellow for convenience:

-record(sensor,{id,name,cx_id,scape,vl,fanout_ids=[],generation}).
-record(actuator,{id,name,cx_id,scape,vl,fanin_ids=[],generation}).

452 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

-record(neuron, {id, generation, cx_id, af, input_idps=[], output_ids=[], ro_ids=[]}).
-record(cortex, {id, agent_id, neuron_ids=[], sensor_ids=[], actuator_ids=[]}).
-record(agent,{id, generation, population_id, specie_id, cx_id, fingerprint, constraint,
evo_hist=[], fitness, innovation_factor=0, pattern=[]}).
-record(specie,{id, population_id, fingerprint, constraint, agent_ids=[], dead_pool=[],
champion_ids=[], fitness, innovation_factor=0}).
-record(population,{id,polis_id,specie_ids=[],morphologies=[],innovation_factor}).
-record(constraint,{
 morphology=xor_mimic, %xor_mimic
 connection_architecture = recurrent, %recurrent|feedforward
 neural_afs=[tanh,cos,gaussian,absolute] %[tanh,cos,gaussian,absolute,sin,sqrt,sigmoid]
 }).

We need to modify the records for each of these elements such that we can then
begin updating the source code to incorporate the decoupled form discussed in the
previous section.

11.2.1 The sensor & actuator Records

We modify the sensor and actuator elements first. To do so, we need to modify
the records that encode them, making the records also include the parameters el-
ement that will further augment their processing ability. Also, we add the format
element to the record, which specifies in what format the signals are to be fed to
the NN or in what format the NN should feed its output signals to the element (ac-
tuator for example). This will allow us to specify whether the input is a standard
vector, or whether it is a 2d or 3d data structure, for example an image coming
from a camera. This will allow the substrate encoded NN systems to take ad-
vantage of this extra information and appropriately set up the input hyperplanes (a
structure used in the substrate encoded NN systems, discussed in a later chapter).
Keeping an eye on the future expansions and modifications of our system, and the
fact that we will at some point apply the NN based agents to ALife or robotics
simulations and problems, we should also perhaps add elements that specify the
representation-particulars of the sensor and actuator systems, the manner in which
they are to be represented in the simulated environment. This will allow the sen-
sors and actuators to be integrated and evolved by the artificial organisms and
simulated robots, allowing the simulator to simulate the visual and physical repre-
sentation of the sensors through their own physical and visual representation pa-
rameters. Thus we also add the elements: phys_rep and vis_rep, for which the
specification format we can create later on, once we begin delving into that area.
Finally, we add to the record the elements that the sensors and actuators can use to
specify what pre and post processing functions should be used, if any. Thus the
updated sensor and actuator records are as follows:

11.2 Updating the Genotype Representation 453

-record(sensor,{id,name,cx_id,scape,vl,fanout_ids=[], generation,format,parameters, phys_rep,
vis_rep, pre_f, post_f}).

-record(actuator,{id,name,cx_id,scape,vl,fanin_ids=[],generation,format, parameters, phys_rep,
vis_rep, pre_f, post_f}).

The following are detailed descriptions of the just added elements, and the for-
mat they should possess:

 format: Is a tuple, and specifies the geometrical format of the signal being
generated (if in a sensor record), or expected (if in an actuator record). The
format can be set to: no_geo, which would specify that there is no geometrical
information, it is simply a vector. The specification format of this element will
be: {geo_tag,[Resolution1,Resolution2...]}.

 parameters: Is a list, and can be used to specify various parameters that the
sensor or actuator can use to further augment the manner in which they process
the input signals, or produce output signals.

 phys_rep: Is a list. Specifies the physical representation, if any, of the sensor
or actuator. This could be represented as a list of molecules, or hardware ele-
ments, each specifying how it is connected to the others. If for example the
agent is used in Alife or robotics experiments, this element would specify the
physical properties like mass, volume... of the particular sensor or actuator.

 vis_rep: Is a list. Specifies the visual representation, if any, of the sensor or ac-
tuator. If for example the agent is used in ALife or robotics experiments, this
would specify what the sensor or actuator looks like in the simulated world.

 pre_f: Is an atom, a name of a function. It is the preprocessing function to be
used, if any is listed. This could further separate the different types of sensors
of the same type, allowing, through evolution, for our TWEANN to explore the
different manners in which signal preprocessing is done for the sensor or actua-
tor used.

 post_f: Is an atom, a name of a function. The postprocessing function to be
used, if any. This, as the pre_f, can be used to explore the different ways to
postprocess the signals for the same sensor or actuator, and thus eventually
landing on a perfect combination.

11.2.2 The neuron Record

We have decided that the neuron element must also specify the plasticity func-
tion it uses, not just the activation function. We do this by adding to the record the
plasticity function designating, pf element. Finally, we also add the element which
will specify which aggregation function to use, should it be a simple dot product?
Or perhaps the vector difference between the current input vector and the previous

454 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

-record(neuron, {id, generation, cx_id, af, pf, aggr_f, input_idps=[], output_ids=[], ro_ids=[]}).

The added elements and their format and detailed definitions are listed next:

 pf: Is an atom, the name of a plasticity function. The plasticity function accepts
as input the synaptic weight list, input vector, and output vector. The output of
this function is the updated version of the synaptic weights.

 aggr_f: Is an atom, the name of the aggregation function. Thus far we have on-
ly used the dot function, which simply aggregates the input signals, dots them
with the synaptic weights, adds the bias if present, and returns the result, which
is to be sent through the activation function. An alternative to the dot product
might be as follows: Aggregate the input signals, save the input signals to pro-
cess registry, subtract the previous input signals from the current input signals
(element by element, the previous vector from the current vector), then calcu-
late a dot product of the result and the synaptic weights.

11.2.3 The agent Record

Perhaps it would at some point be a good idea to also allow the agents to
choose, or evolve whether to use simulated annealing during the tuning phase or
not, and which of the numerous and varied tuning selection functions to use. Final-
ly, we also add the element which will specify what function to use for the tuning
duration. The modified agent record is shown below:

-record(agent,{id, generation, population_id, specie_id, cx_id, fingerprint, constraint,
evo_hist=[], fitness, innovation_factor=0, pattern=[], tuning_selection_f, annealing_f,
tuning_duration_f, perturbation_range, mutation_operators, mutation_selection_f}).

The added elements and their format and detailed definitions are as follows:

 tuning_selection_f: Is an atom specifying the function name. This function ac-
cepts the list of NIds as input, and then chooses which neurons should be se-
lected for synaptic weight perturbation. There can be any number of ways to do
this. We can simply select all NIds, or only those which were created or muta-
tion effected within the last 3 generations, or we could select randomly.

 tuning_annealing_f: Is an atom specifying the function name. There are nu-
merous ways to implement simulated annealing based on the various properties
of the NN system, for example the neuronal or general agent age. This function
should accept as input the list of the selected neuron Ids for perturbation, and
then based on it and the perturbation_range parameter, calculate the new and

input vector? Or should all the input signals be multiplied? The modified neuron
record is as follows:

11.2 Updating the Genotype Representation 455

updated perturbation intensity range for each neuron, sending each neuron a
signal that it should perturb its weights and the intensity range it should use.

 tuning_duration_f: Is a tuple composed of an atom specifying the function
name, and a parameter: {FunctionName,Parameter}. The Max_Attempts value
could also be computed in numerous ways. It could be a constant, independent
of the NN’s size, which is what we’re using now. On the other hand, it could be
proportional to the size of the NN, the number of neurons selected for perturba-
tion. After all, the greater the number of neurons recently added to the NN, the
longer it would take to get the right combination, the longer it would take to
tune their synaptic weights. The input to this function should be the NN size.
Though it must be ensured that all the agents which belong to the same species
or population, use the same tuning_duration_f, otherwise we could end up with
certain agents achieving a higher fitness merely due to having the tun-
ing_duration_f that gives them a larger Max_Attempts. It is for this reason that
this value should be set up by the population_monitor, such that all the agents
are evaluated against each other based on fair grounds. We want the NN based
agents that learn the fastest, that are the most dynamic and most general, given
all other things are equal, including the amount of time they are given to tune
in. Using different tuning_duration_f for each different agent in the same popu-
lation would be the same as letting different sprint runners being given differ-
ent amounts of time to run the track, and then calculating their fitness based on
the proportion of time of the total allotted time that they used to run the track.
Certainly the one who was given the greatest amount, even if he was a bit
slower than the others, would end up wining due to having taken a smaller pro-
portion of the allotted time. This does not make winning runner the fastest...
For this reason, this element is set up by the population record, and copied to
the agent records, ensuring that all agents in the same population use the same
tuning duration function.

 perturbation_range: Is a float(), a multiplier of math:pi(), which specifies the
actual perturbation range. So for example if perturbation_range is set to 2, then
the actual (before annealing, if any) perturbation range is 2*math:pi(), thus the
random perturbation value is chosen by running: math:random(2*math:pi()). In
this manner, by allowing the constraint record provide a list of perturba-
tion_ranges, as it does with activation functions for example, we can have dif-
ferent agents using different perturbation_range parameters, which will help in
experimentation and also make it easier to test this element and its affect on
evolution and performance in different problems and applications.

 mutation_operators: Is a list of tuples: [{MO,Probability}…] composed of at-
oms representing the names of mutation operator functions that are available to
the agent during its topological mutation phase, and floating point numbers that
specify the proportional probability of that mutation operator being chosen
verses another operator in the list. It might be advantageous for different
agents, different species, or simply different populations, to have different sets
of mutation operators. We could also, through this list, specify a particular set
of mutation operators for an agent based on its encoding approach. Or we could

456 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

algorithm.
 tot_topological_mutations_f: Is a tuple which specifies the name of the func-

tion that produces the total number of topological mutations to be applied to the
NN, and a parameter for that function. Currently, our system does this through
the function: random:uniform(round(math:pow(TotNeurons,1/2))). It is a clean
approach and works very well, but perhaps we will later wish to try a different
method, or allow different agents to use different functions, to see which work
better in a single population. We could achieve this through this parameter, by
letting different agents use such different functions.

11.2.4 The population Record

There are numerous things that can be decoupled in the population_monitor
process, and there are a number of elements we can add to the population record,
which will then independently specify some particular feature of the population.
By doing this, others can then create new modules, new functions, and easily
augment the general manner in which the population of agents is optimized, or
controlled and evolved. We need to have an element which specifies whether the
evolutionary loop is generational or steady-state, same as in DXNN. ALife would
certainly work best when a variation of the steady-state evolutionary loop is used.
Another element can be used to specify what function to use with regards to selec-
tion of fit against unfit agents. Should it be random? Simply top3, or the competi-
tion algorithm we’ve created? What factors should go into the computation of fit-
ness? Just the fitness of the agent, or also its size? Should a NN based agent with
1000 neurons which has a fitness of 100 be considered more or less fit than a NN
composed of 10 neurons with a fitness of 99? Thus the selection algorithm and the
fitness computation algorithm can be decoupled as well. The updated record
should thus be as follows:

-record(population,{id, polis_id, specie_ids=[], morphologies=[], innovation_factor, evo_alg_f,
fitness_f, selection_f}).

The added elements, their format, and detailed definitions, are discussed next:

 evo_alg_f: Is an atom, which specifies the name of the evolutionary loop. This
could be steady_state or generational. The population_monitor process should,
based on this element, choose the evolutionary loop function which will then,
using the fitness_f and selection_f, deal with the population of agents, select
them, mutate them, keep track of the population’s progress...

 fitness_f: Is an atom, which specifies the name of the fitness function used to
calculate the true fitness of the agent based on its fitness score and various

even perturb the mutation probabilities, thus making our system have the
functionality of an evolutionary strategies based evolutionary computation

11.2 Updating the Genotype Representation 457

tion_monitor accepts the fitness score of the agent as its true fitness. If on the
other hand we create a function size_proportional, then the population monitor
takes the fitness score achieved by the agent, and then scales it down propor-
tional to the size of the NN system. The input to the fitness_f is the agent id,
since by this time the agent will have its fitness score stored in its record within
the database. The output of the function is the agent’s true fitness.

 selection_f: Is an atom, which specifies the name of the selection function.
This function accepts the list of agent Ids and their true fitness, and produces a
list of fit agents, and the number of offspring each is allotted. When executed
within the steady-state evolutionary loop, this value (allotted number of off-
spring) is converted into a percentage of the agent being selected for the crea-
tion of a single offspring to replace it, and a percentage that the agent itself will
be released back into the simulated world for reevaluation (If ALife application
is in question), instead of producing an offspring.

11.2.5 The constraint Record

This particular record is used to initialize the population record, it specifies the
constraint of the species to which it belongs, and the choices and functions that
the population can use. It is this record that contains the initial list of the available
functions for each category: activation functions, plasticity functions, selection
functions... We now modify it to accommodate the new decoupled additions, as
shown next, in which I also added, in comment form, the possible values from
which the parameters for each constraint element can be chosen:

-record(constraint,{
 morphology=xor_mimic, %xor_mimic
 connection_architecture = recurrent, %recurrent|feedforward
 neural_afs=[tanh,cos,gaussian,absolute] %[tanh,cos,gaussian,absolute,sin,sqrt,sigmoid],
 neural_pfs=[none], %[none,hebbian,neuro_modulated]
 neural_agr_fs=[dot_product], %[dot_product, mult_product, diff]
 tuning_selection_fs=[all], %[all,all_random, recent,recent_random, lastgen,lastgen_random]
 tuning_duration_f={const,20}, %[{const,20},{nsize_proportional,0.5}]
 tuning_annealing_fs=[none], %[none,gen_proportional]
 perturbation_ranges= [1], %[0.5,1,2,3...]
 agent_encoding_types= [neural], %[neural,substrate]
 mutation_operators= [{mutate_weights,1},{ add_bias,1},{ mutate_af,1}, {add_outlink,1},
{add_inlink,1}, {add_neuron,1}, {outsplice,1}, {add_sensor,1}, {add_actuator,1}], %[{mu-
tate_weights,1}, {add_bias,1}, {remove_bias,1}, {mutate_af,1}, {add_outlink,1}, {re-
move_outLink,1}, {add_inlink,1}, {remove_inlink,1}, {add_sensorlink,1},
{add_actuatorlink,1}, {add_neuron,1}, {remove_neuron,1}, {outsplice,1}, {insplice,1},
{add_sensor,1}, {remove_sensor,1}, {add_actuator,1}, {remove_actuator,1}]

none fitness function, the popula-other properties. When for example using the

458 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

 tot_topological_mutations_fs=[{size_power_propotional,0.5}], %[{size_power_propotional,
0.5}, {size_linear_proportional,1}]
 population_evo_alg_f=generational, %[generational, steady_state]
 population_fitness_postprocessor_f=none, %[none,size_proportional]
 population_selection_f=competition %[competition,top3]
}).

As can be noted, the population based parameters are not specified as lists, the
way that the neural activation functions are specified for example. Instead, they
are specified as single atoms. This is done for consistency. Though it is fine to
give entire lists of available functions with regards to activation functions, plastici-
ty, tuning... That is not the case when it comes to the population based functions,
since when we run simulations and tests, we want those values to be specified, not
chosen randomly during every different run. I’ve also added, as comments, lists of
available functions for selection for the particular decoupled feature, some of
which are not yet created, like the tuning_duration_fs function by the name
size_proportional for example. We will eventually create them, as we continue to
advance our neuroevolutionary system.

The added elements and their format and detailed definitions are as follows:

 neural_pfs: Is a list composed of plasticity function names, such as hebbian,
ojas, and others that get added over time. When a neuron is created, it randomly
chooses a plasticity function to use, similar to the way it chooses an activation
function. In the population_monitor the researcher can choose to use a list
composed of a single plasticity type, for example the none function, which
means that the neurons of this NN will not have plasticity.

 neural_aggr_fs: Is a list composed of aggregation function names. The func-
tions can be dot_product, which is the default, or some other later added func-
tion like the diff, or mult function.

 tuning_selection_fs: Is a list composed of tuning selection function names.
The different agents can start off using different tuning selection functions
(neurons chosen for tuning during evaluation), allowing the researcher to de-
termine which of the selection functions is more advantages in a particular
simulation. This is also simply a good way to specify in the population monitor,
when creating a seed population using the SpeCon variable, the selection algo-
rithm that one wishes for the agents in the population to use.

 tuning_duration_f: Is a tuple composed of the tuning duration function name
and its parameter. All agents in the population must use the same tun-
ing_duration_f function so that their performance is judged on equal grounds.
Thus they are all given the same number of chances to improve during their
tuning phase. Also, if we set it to {const,1}, then we can effectively convert our
neuroevolutionary system to a genetic rather than memetic algorithm based
TWEANN, since every agent will have the exoself simply perform a single
evaluation to get its fitness, and then immediately terminate, waiting for the
topological mutation phase.

11.2 Updating the Genotype Representation 459

 tuning_annealing_fs: Is a list composed of annealing function names, which
could also be set to none. This is the default, and is the manner in which our
current neuroevolutionary system functions. Different agents can start off with
different annealing functions if the list is composed of more than one function.

 perturbation_ranges: This is a list of floats(), each of which specifies the mul-
tiplier of math:pi(). The actual perturbation range is: Multiplier*math:pi().
The perturbation_ranges can be composed of a single float, or a list of them if
one wishes to experiment with a population composed of agents using different
perturbation ranges.

 agent_encoding_types: This is a list of atoms, which specify the different
types of encodings. At the moment we only have the neural encoding imple-
mented. In later chapters we will implement a substrate encoding type, the two
types used in DXNN for example. Other researchers will add other encoding
approaches over time. This is what is used by the exoself when it is summoning
the NN system. Based on the encoding type, it will compose the NN system
differently, performing different steps for the different systems. The list can
contain multiple types, thus the population could be composed of different
types of agents, some neural encoded, some substrate encoded...

 mutation_operators: Is a list of tuples, composed of function names of the

the entire population, or have different populations each with a different set of
mutation operator lists available, if for example we wish to test whether a mu-
tation operator list containing both, pruning and complexifying operators, pro-
duces better results than one containing only complexifying operators.

 tot_topological_mutations_fs: Is a list of tuples, where each tuple is composed
of a function name, and a function parameter. This allows us to have a popula-
tion of agents where different agents can use different functions that determine
the amount of topological mutations that is used to produce the agent’s off-
spring.

 population_evo_alg_f: Is an atom specifying the evolutionary loop function,
generational or steady_state for example. A population should use only a single
evolutionary loop function for all its agents. A particular population_monitor
must be fair to all its agents, judging them all in the same way (otherwise we
cannot know whether the agent is superior due to its fitness, or due to its pref-
erential treatment) and so only a single type of evolutionary loop type should
be used for a single population. Of course one could run multiple populations,
each using a different type of evolutionary loop, existing in the same scape
(like in Alife simulation for example).

 population_fitness_postprocessor_f: Is an atom specifying the fitness post-
processor function. It could simply be none, which would imply that the fitness
score achieved by the agent is what its true fitness is, or it could scale its fitness
score proportional to the average complexity of the population, which would

mutation operators available to a particular agent, and the probability of being
We would usually have a single list for used, as proportional to other operators.

460 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

give advantage to smaller NNs which perform similarly to larger ones, for ex-
ample.

 population_selection_f: Is an atom specifying the name of the selection func-
tion. A single population uses a single particular selection function to separate
the fit agents from the unfit.

We would specify and specialize the INIT_CONSTRAINTS tuple for each ex-
periment we’d like to run, starting the population_monitor using the specified con-
straints record. We should allow our neuroevolutionary system to start with multi-
ple populations, or a single population but multiple species, each specie could then
use different constraints parameters. At this time though, we will assume that the
population treats all its agents the same, and does not segregate them into particu-
lar species, each with its own specie_monitor (something that can be implemented
later on).

To specify a population using some particular combination of evolutionary
loop algorithms, fitness postprocessor, and selection functions, we would do as
follows:

-define(INIT_CONSTRAINTS,
 [#constraint{morphology=Morphology, connection_architecture=CA, population_evo_alg_f
 =EvoAlg, population_fitness_postprocessor_f =FitPostProc, population_selection_f
 =Selection} || Morphology [xor_mimic],CA [feedforward], EvoAlg [steady_state],
 FitPostProc [none], Selection [top3]]
).

As you can see, the lists: [steady_state], [none], [top3], could be composed of
multiple function names, in which case multiple constraints would be generated,
which would then, after we implement this feature, allow our neuroevolutionary
system to start with multiple species, each with its own permutation of these pa-
rameters.

11.3 Updating the records.hrl

Because the specifications, formatting, the way in which the various elements,
ids, functions, parameters, of all these records are becoming more numerous and
complex, we need to create a document where all this information and specifica-
tions detail can be found. We will use the records.hrl file, adding a list of com-
ments to it which specifies the formatting, type and pattern, of every element in
the various records stored. In this manner, as we continue to expand our
neuroevolutionary system, we will know exactly what format and in what form,
each element of the record comes. Listing-11.1 shows the new updated rec-
ords.hrl.

11.3 Updating the records.hrl 461

Listing-11.1 The updated and commented records.hrl file

-record(sensor,{id,name,cx_id,scape,vl,fanout_ids=[],generation,format,parameters,
phys_rep,vis_rep,pre_f,post_f}).
-record(actuator,{id,name,cx_id,scape,vl,fanin_ids=[],generation,format,parameters,
phys_rep,vis_rep,pre_f,post_f}).
-record(neuron, {id, generation, cx_id, af, pf, agr_f, input_idps=[], output_ids=[], ro_ids=[]}).
-record(cortex, {id, agent_id, neuron_ids=[], sensor_ids=[], actuator_ids=[]}).
-record(agent,{id, generation, population_id, specie_id, cx_id, fingerprint, constraint,
evo_hist=[], fitness, innovation_factor=0, pattern=[], tuning_selection_f, annealing_parameter,
tuning_duration_f, perturbation_range}).
-record(specie,{id, population_id, fingerprint, constraint, agent_ids=[], dead_pool=[],
champion_ids=[], fitness, innovation_factor=0}).
-record(population,{id, polis_id, specie_ids=[], morphologies=[], innovation_factor, evo_alg_f,
fitness_f, selection_f}).
-record(constraint,{
 morphology=xor_mimic, %xor_mimic
 connection_architecture = recurrent, %recurrent|feedforward
 neural_afs=[tanh,cos,gaussian,absolute], %[tanh,cos,gaussian,absolute,sin,sqrt,sigmoid],
 neural_pfs=[none], %[none,hebbian,neuro_modulated]
 neural_agr_fs=[dot_product], %[dot_product, mult_product, diff]
 tuning_selection_fs=[all], %[all,all_random, recent,recent_random, lastgen,lastgen_random]
 tuning_duration_f={const,20}, %[{const,20},{nsize_proportional,0.5}]
 annealing_parameters=[1], %[1,0.5]
 perturbation_ranges=[1], %[1,0.5,2]
 mutation_operators= [{mutate_weights,1},{ add_bias,1},{ mutate_af,1}, {add_outlink,1},
{add_inlink,1}, {add_neuron,1}, {outsplice,1}, {add_sensor,1}, {add_actuator,1}], %[{mu-
tate_weights,1}, {add_bias,1}, {remove_bias,1}, {mutate_af,1}, {add_outlink,1}, {re-
move_outLink,1}, {add_inlink,1}, {remove_inlink,1}, {add_sensorlink,1},
{add_actuatorlink,1}, {add_neuron,1}, {remove_neuron,1}, {outsplice,1}, {insplice,1},
{add_sensor,1}, {remove_sensor,1}, {add_actuator,1}, {remove_actuator,1}]
 population_evo_alg_fs=generational_default, %[generational, steady_state]
 population_fitness_fs=size_proportional, %[none,size_proportional]
 population_selection_fs=competition %[competition,top3]
}).

%%% sensor:
%id= {{-1::LayerCoordinate, float()::Unique_Id()}, sensor}
%name= atom()
%cx_id= cortex.id
%scape= {private|public, atom()::ScapeName}
%vl= int()
%fanout_ids= [neuron.id...]
%generation=int()
%format= {no_geo|geo,[int()::Resolution...]}

462 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

%parameters= [any()...]
%phys_rep= [any()...]
%vis_rep= [any()...]
%pre_f= atom()::FunctionName
%post_f= atom()::FunctionName

%%%actuator:
%id= {{1::LayerCoordinate,generate_UniqueId()},actuator}
%name= atom()
%cx_id= cortex.id
%scape= {private|public, atom()::ScapeName}
%vl= int()
%fanout_ids= [neuron.id...]
%generation=int()
%format= {no_geo|geo,[int()::Resolution...]}
%parameters= [any()...]
%phys_rep= [any()...]
%vis_rep= [any()...]
%pre_f= atom()::FunctionName
%post_f= atom()::FunctionName

%%%neuron:
%id= {{float()::LayerCoordinate, float()::Unique_Id},neuron}
%generation= int()
%cx_id= cortex.id
%af= atom()::FunctionName
%pf= atom()::FunctionName
%aggr_f= atom()::FunctionName
%input_idps= [{Input_Id,Weights},{neuron.id|sensor.id,[float()...]}...]
%output_ids= [neuron.id|actuator.id...]
%ro_ids= [neuron.id...]

%%%cortex:
%id= {{origin, float()::Unique_Id()},cortex}
%agent_id= agent.id
%neuron_ids= [neuron.id...]
%sensor_ids= [sensor.id...]
%actuator_ids= [actuator.id...]

%%%agent:
%id= {float()::Unique_Id(),agent}
%generation= int()
%population_id= population.id
%specie_id= specie.id
%cx_id= cortex.id

11.3 Updating the records.hrl 463

%fingerprint= fingerprint()
%constraint= constraint()
%evo_hist= [OperatorAppllied...]
% {atom()::MO_Name, ElementA.id, ElementB.id, ElementC.id}
% {atom()::MO_Name, ElementA.id, ElementB.id}
% {atom()::MO_Name, ElementA.id}
%fitness= float()
%innovation_factor= int()
%pattern= [{float()::LayerCoordinate, N_Ids}...]
%tuning_selection_f= atom()::FunctionName
%annealing_parameter= float()::FunctionName
%tuning_duration_f= {atom()::FunctionName ,any()::Parameter}
%perturbation_range= float()
%mutation_operators= [{atom()::FunctionName,float()}...]
%tot_topological_mutations_f= {atom()::FunctionName,float()}

%%%specie:
%id= atom()|{float()::Unique_Id,specie}
%population_id= population.id
%fingerprint= fingerprint()
%constraint= constraint()
%agent_ids= [agent.id...]
%dead_pool= [agent.id...]
%champion_ids= [agent.id..]
%fitness= float()
%innovation_factor= int()

%%%population:
%id= atom()|{float()::Unique_Id,population}
%polis_id= polis.id
%specie_ids= [specie.id...]
%morphologies= [atom()::Morphology_Name...]
%innovation_factor= int()
%evo_alg_f= atom()::FunctionName
%fitness_f= atom()::FunctionName
%selection_f= atom()::FunctionName

%%%fingerprint:
%generalized_sensors= [sensor()::init...]
% sensor.id = undefined
% sensor.cx_id = undefined
% sensor.fanout_ids = []
%generlized_actuators= [actuator()::init...]
% actuator.id = undefined
% actuator.cx_id = undefined

464 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

% actuator.fanin_ids = []
%generalized_pattern= [{float()::LayerCoordinate,int()::TotNeurons}...]
%generalized_evohist= [GeneralizedOperatorApplied...]
% {atom()::MO_Name,{float()::ElementA_LayerCoordinate,atom()::ElementA_Type},
{ElementB_LayerCoordinate,ElementB_Type},{ElementC_LayerCoordinate,ElementC_Type}
},
% {atom()::MO_Name,{float()::ElementA_LayerCoordinate,atom()::ElementA_Type},
{ElementB_LayerCoordinate,ElementB_Type}},
% {atom()::MO_Name,{float()::ElementA_LayerCoordinate,atom()::ElementA_Type}},
% {atom()::MO_Name},

%%%constraint:
%morphology=xor_mimic, %xor_mimic
%connection_architecture = recurrent, %recurrent|feedforward
%neural_afs=[tanh,cos,gaussian,absolute] %[tanh,cos,gaussian,absolute,sin,sqrt,sigmoid],
%neural_pfs=[none], %[none,hebbian,neuro_modulated]
%neural_aggr_fs=[dot_product], %[dot_product, mult_product, diff]
%tuning_selection_fs=[all], %[all,all_random, recent,recent_random, lastgen,lastgen_random]
%tuning_duration_f={const,20}, %[{const,20},{size_proportional,0.5}]
%annealing_parameters=[1], %[1,0.5]
%perturbation_ranges=[1], %[0.5,1,2,3...]
%agent_encoding_types= [neural], %[neural,substrate]
%mutation_operators= [{atom()::FunctionName,float()}...]
%tot_topological_mutations_fs = [{size_power_propotional,0.5}],
%[{size_power_propotional,0.5},{size_linear_proportional,1}]
%population_evo_alg_fs=generational_default, %[generational, steady_state]
%population_fitness_fs=size_proportional, %[none,size_proportional]
%population_selection_fs=competition %[competition,top3]

%%%polis
%id= atom()|float()|{float()::Unique_Id,polis}|{atom()::PolisName,polis}

%%%scape
%id= atom()|float()|{float()::Unique_Id,scape}|{atom()::ScapeName,scape}

Some of the defined elements, like the polis id and the scape id, we are not yet
using. But we will eventually start using these elements, and so their format is de-
fined here for convenience. Having now discussed in detail the various features
and decoupled elements of our system, we will implement them in the following
section.

11.4 Updating the Modules 465

11.4 Updating the Modules

Having discussed the additions we wish to make, and elements of the system
we wish to decouple and put into their own respective modules, we are now ready
to develop these functions, and update our neuroevolutionary system such that it is
capable of using the modified records. We will first update the genotype module,
then genome_mutator, then population_monitor, then exoself, and then finally the
neuron module.

11.4.1 Updating the genotype Module

In the genotype module we need to modify the functions which set up the rec-
ords for the agent and neuron elements. Also, it is in the construct_Cortex/3 func-

into a topological structure, so it is in this function that we have to set up a case
that constructs the NN system based on the actual agent type (neural or substrate).

We first update the construct_Agent/3 function to randomly select a tuning, an-
nealing, and duration functions, and the tuning perturbation multiplier, as shown
next:

construct_Agent(Specie_Id,Agent_Id,SpecCon)->
 random:seed(now()),
 Generation = 0,
 {Cx_Id,Pattern} = construct_Cortex(Agent_Id,Generation,SpecCon),
 Agent = #agent{
 id = Agent_Id,
 cx_id = Cx_Id,
 specie_id = Specie_Id,
 constraint = SpecCon,
 generation = Generation,
 pattern = Pattern,
 tuning_selection_f = random_element(SpecCon#constraint.tuning_selection_fs),
 annealing_parameter = random_element(SpecCon#constraint.annealing_parameters),
 tuning_duration_f = SpecCon#constraint.tuning_duration_f,
 perturbation_range = random_element(SpecCon#constraint.perturbation_ranges),
 mutation_operators = SpecCon#constraint.mutation_operators,
 tot_topological_mutations_f = random_element(SpecCon#constraint.tot_topological_
mutations_fs),
 evo_hist = []
 },
 write(Agent),
 update_fingerprint(Agent_Id).

tion that the actual NN genotype is created in, and the elements are linked together

466 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

The random_element/1 function simply accepts a list, and returns a random el-
ement from the list, chosen with uniform distribution.

We then update the construct_Cortex/3 function, so that it uses a case to select
how it builds the seed NN topology and links the elements together, based on the
agent encoding type (neural or substrate):

construct_Cortex(Agent_Id,Generation,SpecCon)->
 Cx_Id = {{origin,generate_UniqueId()},cortex},
 Morphology = SpecCon#constraint.morphology,
 case random_element(SpecCon#constraint.agent_encoding_types) of
 neural ->
 Sensors = [S#sensor{id={{-1,generate_UniqueId()},sensor}, cx_id=Cx_Id,
generation=Generation}|| S<- morphology:get_InitSensors(Morphology)],
 Actuators = [A#actuator{id={{1,generate_UniqueId()},actuator},cx_id=Cx_Id,
generation=Generation}||A<-morphology:get_InitActuators(Morphology)],
 N_Ids=construct_InitialNeuroLayer(Cx_Id,Generation,SpecCon, Sensors,
Actuators,[],[]),
 S_Ids = [S#sensor.id || S<-Sensors],
 A_Ids = [A#actuator.id || A<-Actuators],
 Cortex = #cortex{
 id = Cx_Id,
 agent_id = Agent_Id,
 neuron_ids = N_Ids,
 sensor_ids = S_Ids,
 actuator_ids = A_Ids
 }
 end,
 write(Cortex),
 {Cx_Id,[{0,N_Ids}]}.

Next, a simple modification is made to the construct_Neuron/6 function, which

 construct_Neuron(Cx_Id,Generation,SpecCon,N_Id,Input_Specs,Output_Ids)->
 Input_IdPs = create_InputIdPs(Input_Specs,[]),
 Neuron=#neuron{
 id=N_Id,
 cx_id = Cx_Id,
 generation=Generation,
 af=generate_NeuronAF(SpecCon#constraint.neural_afs),
 pf=generate_NeuronPF(SpecCon#constraint.neural_pfs),
 aggr_f=generate_NeuronAggrF(SpecCon#constraint.neural_aggr_fs),
 input_idps=Input_IdPs,

makes the neuron also randomly select an annealing function and an aggregation
function, in addition to a randomly selected activation function:

11.4 Updating the Modules 467

 output_ids=Output_Ids,
 ro_ids = calculate_ROIds(N_Id,Output_Ids,[])
 },
 write(Neuron).

The generate_NeuronPF/1 and generate_NeuronAggrF/1 functions are analo-
gous to the generate_NeuronAF/1:

 generate_NeuronAF(Activation_Functions)->
 case Activation_Functions of
 [] ->
 tanh;
 Other ->
 lists:nth(random:uniform(length(Other)),Other)
 end.
%The generate_NeuronAF/1 accepts a list of activation function tags, and returns a randomly
chosen one. If an empty list was passed as the parameter, the function returns the default tanh
tag.

 generate_NeuronPF(Plasticity_Functions)->
 case Plasticity_Functions of
 [] ->
 none;
 Other ->
 lists:nth(random:uniform(length(Other)),Other)
 end.
%The generate_NeuronPF/1 accepts a list of plasticity function tags, and returns a randomly
chosen one. If an empty list was passed as the parameter, the function returns the default none
tag.

 generate_NeuronAggrF(Aggregation_Functions)->
 case Aggregation_Functions of
 [] ->
 dot_product;
 Other ->
 lists:nth(random:uniform(length(Other)),Other)
 end.
%The generate_NeuronAggrF/1 accepts a list of aggregation function tags, and returns a ran-
domly chosen one. If an empty list was passed as the parameter, the function returns the default
dot_product tag.

With these small simple additions, this module is now fully updated, and the
agents created through it in the future, will be able to include the newly added con-
straint parameters into their genotype.

468 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

11.4.2 Updating the genome_mutator Module

With the genotype module updated, we now have a way to create the new ver-
sion of genotypes which use the updated building blocks and the updated records.
We now need to update the genome_mutator module so that we can mutate such
genotypes, and take advantage of the new information available in them. For the
genome_mutator we want to add a method that allows different mutation operators
to have different probabilities of being selected, a separate module that contains
the functions that allow the genome_mutator to choose the neurons to be mutated
through different algorithms, a new module that contains the functions which pro-
vide different ways of calculating how many mutation operators should be applied
to the NN based agent, and finally, a new set of mutation operators that can mutate
the new genotypical features (plasticity and aggregation functions for example).

The very first thing that needs to be updated in this module is the ap-
ply_Mutators/1 function:

 apply_Mutators(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx = genotype:read({cortex,A#agent.cx_id}),
 TotNeurons = length(Cx#cortex.neuron_ids),
 TotMutations = random:uniform(round(math:pow(TotNeurons,1/2))),
 io:format(“Tot neurons:~p Performing Tot mutations:~p on:~p~n”,[
TotNeurons, TotMutations,Agent_Id]),
 apply_Mutators(Agent_Id,TotMutations).

Because we change the very way that TotMutations is calculated, by creating a
whole new function which calculates the total topological mutations value. And
because apply_Mutators/1, after this modification, does nothing but execute the
tot_topological_mutations function, we can delete it and move the remaining
functionality to the mutate/1 function, as shown next:

mutate(Agent_Id)->
 random:seed(now()),
 F = fun()->
 A = genotype:read({agent,Agent_Id}),
 {TTM_Name,Parameter} = A#agent.tot_topological_mutations_f,
 TotMutations = tot_topological_mutations:TTM_Name(Parameter,Agent_Id),
 OldGeneration = A#agent.generation,
 NewGeneration = OldGeneration+1,
 genotype:write(A#agent{generation = NewGeneration}),
 apply_Mutators(Agent_Id,TotMutations),
 genotype:update_fingerprint(Agent_Id)
 end,
 mnesia:transaction(F).

11.4 Updating the Modules 469

%The function mutate/1 first updates the generation of the agent to be mutated, then calculates
the number of mutation operators to be applied to it by executing the
tot_topological_mutations:TTM_Name/2 function, and then finally runs the apply_Mutators/2
function, which mutates the agent. Once the agent is mutated, the function updates its finger-
print by executing the genotype:update_finrgerprint/1 function.

As can be noted from the above implementation, we now let mutate/1 function
call the apply_Mutators/2 directly. Rather than first calling apply_Mutators/1,
which then called the apply_Mutators/2 function.

Since there are many ways to calculate TotMutations, we create the
tot_topological_mutations module, which can store the different functions which
can calculate this value. At this time, this new module will only contain 2 such
functions, as shown in Listing-11.2.

Listing-11.2 The implementation of the tot_topological_mutations module, with two available
functions.

-module(tot_topological_mutations).
-compile(export_all).
-include(“records.hrl”).

%ncount_exponential/2 calculates TotMutations by putting the size of the NN to some power:
Power
ncount_exponential(Power,Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx = genotype:read({cortex,A#agent.cx_id}),
 TotNeurons = length(Cx#cortex.neuron_ids),
 TotMutations = random:uniform(round(math:pow(TotNeurons,Power))),
 io:format(“Tot neurons:~p Performing Tot mutations:~p on:~p~n”,[TotNeurons,
TotMutations, Agent_Id]),
 TotMutations.

%ncount_linear/2 calculates TotMutations by multiplying the size of the NN by the value: Mul-
tiplier.
ncount_linear(Multiplier,Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx = genotype:read({cortex,A#agent.cx_id}),
 TotNeurons = length(Cx#cortex.neuron_ids),
 TotMutations = TotNeurons*Multiplier,
 io:format(“Tot neurons:~p Performing Tot mutations:~p on:~p~n”,[TotNeurons,
TotMutations, Agent_Id]),
 TotMutations.

470 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

The next thing we need to change is the way mutation operators are chosen. In-
stead of uniform distribution, we should, with every mutation operator, also pro-
vide a value that dictates its percentage of being chosen in comparison to other
mutation operators in the list. This can be done by specifying the mutation opera-
tors in tuple form: {MutationOperator,RelativeProbability} for example. The
probability can be a pie section, where the total is all the RelativeProbabilities
added together. So for example if we have the following list of 4 mutation opera-
tors:

[{add_neuron,2},{add_sensor,1},{add_outlink,5},{mutate_weights,10}]

Then the total is 2+1+5+10 = 18, and we could then use Choice = ran-
dom:uniform(18) to generate uniformly a random number between 1 and 18, and
then go in order, through the mutation operators from left to right, and see where
the generated value lands. It is like spinning a roulette wheel, where each mutation
operator gets a slice on the wheel proportional to its RelativeProbability. Thus, if
Choice = 4, then we go past the add_neuron, past the add_sensor, and land on
add_outlink, since it is located between 3 and 8 inclusive, and 4 lands between
those borders. This is visually demonstrated in Fig-11.2.

Fig. 11.2 The roulette wheel approach to mutation operator selection probability.

We can implement this approach by first modifying the way in which the muta-
tion_operators are specified, changing it from a list of atoms to a list of tuples as
discussed above. And then modify the function apply_NeuralMutator/1, which

11.4 Updating the Modules 471

randomly picks out a mutation operator from the available list, and applies it to the
NN system.

We originally stored the mutation operator function names in the MUTATORS
macro in the genome_mutator module. Having now updated the records, all the
names of the mutation operators are now listed in the constraint and the muta-
tion_operators element of the agent’s record. The mutation operators are specified
in the records.hrl as follows:

mutation_operators= [{mutate_weights,1},{ add_bias,1},{ mutate_af,1}, {add_outlink,1},
{add_inlink,1}, {add_neuron,1}, {outsplice,1}, {add_sensor,1}, {add_actuator,1}],

Thus we modify the apply_NeuralMutator/1 function from its original form of:

apply_NeuralMutator(Agent_Id)->
 F = fun()->
 Mutators = ?MUTATORS,
 Mutator = lists:nth(random:uniform(length(Mutators)),Mutators)
 io:format(“Mutation Operator:~p~n”,[Mutator]),
 genome_mutator:Mutator(Agent_Id)
 end,
 mnesia:transaction(F).

To one that uses a function capable of extracting the mutation operators with
the probability proportional to the values specified in the tuples of the muta-
tion_operators list:

apply_NeuralMutator(Agent_Id)->
 F = fun()->
 A = genotype:read({agent,Agent_Id}),
 MutatorsP = A#agent.mutation_operators,
 Mutator = select_random_MO(MutatorsP)
 io:format(“Mutation Operator:~p~n”,[Mutator]),
 genome_mutator:Mutator(Agent_Id)
 end,
 mnesia:transaction(F).
%The apply_NeuralMutator/1 function applies the available mutation operators to the NN. Be-
cause the genotype is stored in mnesia, if the mutation operator function exits with an error, the
database made changes are retracted, and a new mutation operator can then be applied to the
agent, as if the previous unsuccessful mutation operator was never applied. The mutation opera-
tor to be applied to the agent is chosen randomly from the agent’s mutation_operators list, with
the probability of each mutation chosen being proportional to its relative probability value.

select_random_MO(MutatorsP)->
 TotSize = lists:sum([SliceSize || {_MO,SliceSize} <- MutatorsP]),

472 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

 Choice=random:uniform(TotSize),
 select_random_MO(MutatorsP,Choice,0).

 select_random_MO([{MO,SliceSize}|MOs],Choice,Range_From)->
 Range_To = Range_From+SliceSize,
 case (Choice >= Range_From) and (Choice =< Range_To) of
 true ->
 MO;
 false ->
 select_random_MO(MOs,Choice,Range_To)
 end;
 select_random_MO([],_Choice,_Range_From)->
 exit(“********ERROR:select_random_MO:: reached [] without selecting a mutation
operator.”).
%select_random_MO/1, using the analogy of a roulette wheel, the function first calculates the
entire area of the wheel by summing together all the slice sizes. The function then chooses ran-
domly a spot on the wheel, and through select_random_MO/3 calculates where that spot is lo-
cated, with regards to the mutation operator that it falls on. Since some slices are larger than
others, they will have uniformly larger probabilities of being selected.

With this modification, the genome_mutator module can now function with our
updated system architecture. The way we currently have the mutation operators
setup and specified in the records.hrl in the constraint record, is that each one’s
“slice size” is 1, thus they are still all equally likely to be selected. But this new
approach gives us the ability to test mutation operator lists where each operator
has a different chance of being selected. In this way we can rapidly convert our
memetic algorithm based neuroevolutionary system, into a genetic algorithm
based one, by for example setting the max_attempts parameter to 1, and drastically
increasing the probability of selecting the mutate_weights mutation operator.

add the new mutation operators, ones that mutate plasticity functions, and other
parameters, similar to the manner in which the mutate_af (mutate activation func-
tion) works. To be able to evolve the new decoupled features of our system, we
should add the following new mutation operators:

 mutate_pf: Mutates the plasticity function. Checks the currently used plasticity
function, and if there are other plasticity functions available in the constraint of
the agent, then the current function is swapped for a random new one. If there
are no new plasticity functions available, the operator exits with an error, thus
not wasting a mutation on the non available mutation operator.

 mutate_aggrf: Mutates the neural aggregation function. As with plasticity and
activation functions, it checks if there are other aggregation functions available.
If there are, then the currently used function is mutated into another one. If
there aren’t, then the mutation operator exits with an error.

Having now updated the essential parts of our mutation algorithm, we need to

11.4 Updating the Modules 473

We add these mutate_pf and mutate_aggrf mutation operators to the ge-
nome_mutator module, as shown in Listing-11.3. Similar to the mutate_af opera-
tor, the mutate_pf mutation operator chooses a random neuron in the NN, and then
changes its currently used plasticity function to another one available in the plas-
ticity_fs list in the agent’s constraint record. The same way, the mutate_aggrf op-
erator chooses a random neuron, and then mutates its aggregation function
(dot_product, diff...). In both cases, if the only available such function is the one
already being used by the neuron, then it is left in place, and our
neuroevolutionary system tries to use another mutation operator on the agent.

Listing-11.3 The implementation of the new mutate_pf (mutate plasticity function) and mu-
tate_aggrf (mutate aggregation function) mutation operators.

mutate_pf(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 Generation = A#agent.generation,

 N = genotype:read({neuron,N_Id}),
 PF = N#neuron.pf,
 case (A#agent.constraint)#constraint.neural_pfs -- [PF] of
 [] ->
 exit(“********ERROR:mutate_pf:: There are no other plasticity functions to
use.”);
 Plasticity_Functions ->
 NewPF = lists:nth(random:uniform(length(Plasticity_Functions)),
Plasticity_Functions),
 U_N = N#neuron{pf=NewPF,generation=Generation},
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{mutate_pf,N_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A)
 end.
%The mutate_pf/1 function chooses a random neuron, and then changes its currently used plas-
ticity function into another one available from the neural_pfs list of the agent’s constraint rec-
ord.

mutate_aggrf(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),

474 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

 N_Ids = Cx#cortex.neuron_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 Generation = A#agent.generation,

 N = genotype:read({neuron,N_Id}),
 AggrF = N#neuron.aggr_f,
 case (A#agent.constraint)#constraint.neural_aggr_fs -- [AggrF] of
 [] ->
 exit(“********ERROR:mutate_aggrf:: There are no other aggregation func-
tions to use.”);
 Aggregation_Functions ->
 NewAggrF = lists:nth(random:uniform(length(Aggregation_Functions)),
Aggregation_Functions),
 U_N = N#neuron{aggr_f=NewAggrF,generation=Generation},
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{mutate_aggrf,N_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A)
 end.
%The mutate_aggrf/1 function chooses a random neuron, and then changes its currently used
aggregation function into another one available from the neural_aggr_fs list of the agent’s con-
straint record.

It is also worth adding the following mutation operators, that have nothing to
do with topological mutation, but instead mutate the evolutionary strategy, the
evolutionary search algorithm itself:

 mutate_tuning_selection: Mutates the tuning selection function used by the
agent to tune the NN during training.

 mutate_tuning_duration: Mutates the tuning duration function used by the
agent to tune the NN during training.

 mutate_tuning_annealing: Mutates the tuning annealing parameter used by
the agent to tune the NN during training.

 mutate_perturbation_range: Mutates the perturbation range used by the
exoself when tuning the synaptic weights of the NN.

 mutate_tot_topological_mutations: Mutates the function responsible for cal-
culating the total number of topological mutations to be applied to the NN.

The evolutionary strategy mutation operators and their parameters, are unrelat-
ed to the actual topological mutation. We should apply them separately from the
topological mutation operators. Not only should they be applied separately, but al-
so the number of these evolutionary strategy mutation operators, and the probabil-
ity of applying them, should be independent of the topological mutation operators.
For this reason we add and define the new macro (this one is going to be a de-
scriptive one): ?SEARCH_PARAMETERS_MUTATION_PROBABILITY, in the

11.4 Updating the Modules 475

genome_mutator module. We also further augment the mutate/1 function, adding the
mutate_SearchParameters/1 function to it. The mutate_SearchParameters/1 function
is executed every time the agent undergoes a topological mutation phase. The new mu-
tation probability value defines the chance that the mutate_SearchParameters/1 func-
tion performs any type of evolutionary strategy mutation.

In the case that the evolutionary strategy (ES) is mutated, the number of evolu-
tionary strategy mutation operators applied to the agent is uniformly and randomly
chosen to be between 1 and total number of ES mutation operators available. In a
similar way we used to define the standard topological mutation operators at the
top of the genome_mutator module, we now define the ES mutation operators,
while having moved the topological mutation operators to the constraint record.
The new ES mutation operators are defined as follows:

-define(ES_MUTATORS,[
 mutate_tuning_selection,
 mutate_tuning_duration,
 mutate_tuning_annealing,
 mutate_tot_topological_mutations
]).

Though a case could be made that we should define these ES mutation opera-
tors in the same way we are now defining the topological mutation operators, there
is at this point no need for it. Since the addition of ES mutation is done primarily
to allow our neuroevolutionary system to have a greater level of flexibility, and so
that it can be tweaked more easily in the future with different types of search algo-
rithms and parameters.

The updated version of the mutate/1 function, and the mutate_SearchParameters/1
function that it executes, is shown in Listing-11.4. As you will notice, the mu-
tate_SearchParameters/1 function operates very similarly to the way the original
function that applied topological mutation operators functioned.

Listing-11.4 The new version of the mutate/1 function, with the added mu-
tate_SearchParamters/1 function that applies, with a probability of
?SEARCH_PARAMETERS_MUTATION_PROBABILITY, a random number of ES mutation
operators to the agent.

mutate(Agent_Id)->
 random:seed(now()),
 F = fun()->
 mutate_SearchParameters(Agent_Id),
 A = genotype:read({agent,Agent_Id}),
 {TTM_Name,Parameter} = A#agent.tot_topological_mutations_f,
 TotMutations = tot_topological_mutations:TTM_Name(Parameter,Agent_Id),
 OldGeneration = A#agent.generation,

476 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

 NewGeneration = OldGeneration+1,
 genotype:write(A#agent{generation = NewGeneration}),
 apply_Mutators(Agent_Id,TotMutations),
 genotype:update_fingerprint(Agent_Id)
 end,
 mnesia:transaction(F).
%The function mutate/1 first updates the generation of the agent to be mutated, then calculates
the number of mutation operators to be applied to it by executing the
tot_topological_mutations:TTM_Name/2 function, and then finally runs the apply_Mutators/2
function, which mutates the agent. Once the agent is mutated, the function updates its finger-
print by executing genotype:update_finrgerprint/1.

mutate_SearchParameters(Agent_Id)->
 case random:uniform() < ?SEARCH_PARAMTERS_MUTATION_PROBABILITY of
 true ->
 TotMutations = random:uniform(length(?ES_MUTATORS)),
 apply_ESMutators(Agent_Id,TotMutations);
 false ->
 ok
 end.
%The mutate_SearchParameters/1 function, mutates the search parameters of the evolutionary
strategy with a probability of: ?SEARCH_PARAMETERS_MUTATION_PROBABILITY.
When it does mutate the evolutionary strategy, it chooses a random number between 1 and
length(?ES_MUTATORS) of evolutionary strategy mutation operators from the
?ES_MUTATORS list, and then executes them in series.

 apply_ESMutators(_Agent_Id,0)->
 done;
 apply_ESMutators(Agent_Id,MutationIndex)->
 ES_Mutators = ?ES_MUTATORS,
 ES_Mutator = lists:nth(random:uniform(length(ES_Mutators)),ES_Mutators),
 io:format(“Evolutionary Strategy Mutation Operator:~p~n”,[ES_Mutator]),
 F = fun()->
 genome_mutator:ES_Mutator(Agent_Id)

end,
Result = mnesia:transaction(F),

 case Result of
 {atomic,_} ->
 apply_ESMutators(Agent_Id,MutationIndex-1);
 Error ->
 io:format(“******** Error:~p~nRetrying with new Mutation...~n”, [Er-
ror]),
 apply_ESMutators(Agent_Id,MutationIndex-1)
 end.

11.4 Updating the Modules 477

%The apply_ESMutators/2 function chooses an evolutionary strategy mutation operator, with
uniform distribution, from the ?ES_MUTATORS list of such functions. It then applies it to the
agent. Whether the mutation is successful or not, the function counts down the total number of
mutation operators left to apply. This is to ensure that if the researcher set for each such evolu-
tionary strategy to be static, having only one available mutatable parameter for every agent, the
system will try to mutate the strategy TotMutations number of times, and then return to the
caller whether it was successful or not.

Unlike the case with the application of topological mutation operators, if the
application of the ES mutation operator is not successful, we still decrement the
MutationIndex value. This ensures that whether our system does or does not have
multiple annealing, selection, duration, and tot_topological_mutation parameters
and functions, the MutationIndex will still reach 0. Thus, even if every ES muta-
tion operator fails, the apply_ESMutators/2 function will be able to finish and re-
turn to the caller.

As with the topological mutation operators, the ES operators also need to be
implemented. For the time being we will implement these functions in the ge-
nome_mutator module, rather than their own module. These simple ES mutation
operator functions are shown in Listing-11.5.

Listing-11.5 The implementation of the three new evolutionary strategy mutation operators:
mutate_tuning_selection/1, mutate_tuning_duration/1, and mutate_tuning_annealing/1.

mutate_tuning_selection(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 case (A#agent.constraint)#constraint.tuning_selection_fs -- [A#agent.tuning_selection_f] of
 [] ->
 exit(“********ERROR:mutate_tuning_selection/1:: Nothing to mutate, only a
single function available.”);
 Tuning_Selection_Functions->
 New_TSF = lists:nth(random:uniform(length(Tuning_Selection_Functions)),
Tuning_Selection_Functions),
 U_A = A#agent{tuning_selection_f = New_TSF},
 genotype:write(U_A)
 end.
%The mutate_tuning_selection/1 function checks if there are any other than the currently used
tuning selection functions available in the agent’s constraint record. If there are, then it chooses
a random one from this list, and sets the agent’s tuning_selection_f to it. If there are no other
tuning selection functions, then it exits with an error.

mutate_tuning_annealing(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 case (A#agent.constraint)#constraint.annealing_parameters --
[A#agent.annealing_parameter] of

478 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

 [] ->
 exit(“********ERROR:mutate_tuning_annealing/1:: Nothing to mutate, only
a single function available.”);
 Tuning_Annealing_Parameters->
 New_TAP= lists:nth(random:uniform(length(Tuning_Annealing_Parameters)),
Tuning_Annealing_Parameters),
 U_A = A#agent{annealing_parameter = New_TAP},
 genotype:write(U_A)
 end.
%The mutate_annealing_parameter/1 function checks if there are any other than the currently
used tuning annealing parameters available in the agent’s constrain recordt. If there are, then it
chooses a random one from the list, and sets the agent’s annealing_parameter to it. If there are
no other tuning annealing parameters, then it exits with an error.

mutate_tot_topological_mutations(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 case (A#agent.constraint)#constraint.tuning_selection_fs -- [A#agent.tuning_selection_f] of
 [] ->
 exit(“********ERROR:mutate_tuning_selection/1:: Nothing to mutate, only a
single function available.”);
 Tuning_Selection_Functions->
 New_TSF = lists:nth(random:uniform(length(Tuning_Selection_Functions)),
Tuning_Selection_Functions),
 U_A = A#agent{tuning_selection_f = New_TSF},
 genotype:write(U_A)
 end.
%The mutate_tot_topological_mutations/1 function checks if there are any other than the cur-
rently used tuning tot topological mutation functions available in the agent’s constraint record.
If there are, then it chooses a random one from this list, and sets the agent’s
tot_topological_mutations_f to it. If there are no other functions that can calculate tot topologi-
cal mutations, then it exits with an error.

These new additions do of course make our source code slightly more complex,
but as you’ve noticed, it is still very simple, and the added flexibility will pay off
when we decide that we wish to test out different evolutionary strategies with dif-
ferent parameters. In the following sections we develop the code needed to con-
vert this new genotype to its phenotype.

11.4.3 Updating the population_monitor Module

The population_monitor module is the one responsible for mapping the geno-
types to their phenotypes. We have modified the genotype in a number of ways,
and thus we must now modify the population monitor process such that it can

11.4 Updating the Modules 479

erational. Currently, the various functions and information flow in the popula-
tion_monitor, has the form shown in Fig-11.3.

Fig. 11.3 The information flow, and function execution order, in the population_monitor
process.

What we need to do is change this architecture such that the popula-
tion_monitor behaves differently based on whether it is using steady-state evolu-
tion, or generational evolution. Finally, we also need to modify the init_population
function such that all these parameters are specified through the constraint record,
and so that the evolutionary loop function, fitness function, and the selection func-
tion is saved to the population’s record, and read from the same during the popula-
tion_monitor’s operation. The new population monitor should operate as follows:

1. Specify the constraints, and set the INIT_CONSTRAINTS to it, then call
init_population/2 with it.

2. init_population({Population_Id,Constraints,OpMode})
This is the function with which we create a new population, and start the popu-
lation_monitor process. We specify the id of the new population, the con-
straints which it should use to create species and agents within the species, and
the operational mode in which it should work. We have not yet used the

convert the agent’s elements into their corresponding process based representa-
tions. We must now also change the way population_monitor calculates the
agent’s true fitness, the way it uses the selection function, and the way it imple-
ments the evolutionary loop, so that it is based on whether it’s steady-state or gen-

480 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

when we get to Chapter-19, and hit a dilemma of having to perform generaliza-
tion tests.

3. IF population with Population_Id already exists then:
4. delete_population: Delete the existing population using the same id.
5. create_population: Create a new population of the specified id.

6. Else:
7. create_population(Population_Id,Constraints)

This function creates a new population, with the agents being creat-
ed based on the constraints specified.

8. Start population_monitor process.
At this point the population monitor needs to start waiting for the termination
signals that are sent out by the agents when they terminate/die. The popula-
tion_monitor can then act on those termination signals based on the evolution-
ary loop that it is using. For example, if it is using steady_state, then after re-
ceiving the termination signal, it should immediately generate a new agent
using the selection function it’s utilizing. If it is using a generational evolution-
ary loop, then it should simply count off the terminated agent, and wait for the
remainder of the population to terminate. Once all the agents have terminated,
the population_monitor should then use the selection algorithm to compose the
next generation of agents.

9. Create the dead_pool list (empty when first created), which is to contain
the genotypes of the best performing terminated agents.

10. Wait for termination signals.
11. If evo_alg_f == generational:

12. Wait for all agents to terminate.
13. Apply fitness_f to the agent’s fitness, to produce a list of agents

with their true fitness values.
14. Apply selection_f to choose the fit agents from which to compose

the offspring agents.
15. Produce the offspring agents by cloning the fit organisms, and

sending them through the topological mutation phase.
16. GOTO: Step-10

If evo_alg_f == steady_state:
17. After receiving the termination signal from an agent, enter it into

the dead_pool, with its fitness updated through the application of the
fitness_f function.

18. Using the selection function, choose an agent from the dead_pool to
either create an offspring, or return/apply it to the simulation/scape.

19. Ensure that the dead_pool is of the specified size, if the dead_pool
is overflowing with agents, then remove the worst performing agents
in the dead_pool, until it reaches the specified size. This ensures that
the dead_pool list contains the best performing agent genotypes.

20. GOTO: Step-10

OpMode parameter for anything specific, currently it is set by a constant macro
to gt, which is just a place holder. We will finally start using this parameter

11.4 Updating the Modules 481

We thus start by updating the init_population function. It originally accepted 4
parameters: Population_Id, Specie_Constraints, OpMode, and Selection_Function.
The Selection_Function is now specified in the constraint record, so we can re-
move it from the parameter list. The init_population checks if there already exists
a population with the Population_Id that it was executed with. If that is the case,
the function first deletes the already existing population, and then creates a new
population. If there is no such population already in existence, then it creates a
new population by executing the create_population function. The modification to
the init_population function is in boldface, shown in Listing-11.6.

Listing-11.6 The modified init_population function, where the selection function is specified
through the constraint tuple.

init_population({Population_Id,Specie_Constraints,OpMode})->
 random:seed(now()),
 F = fun()->
 case genotype:read({population,Population_Id}) of
 undefined ->
 create_Population(Population_Id,Specie_Constraints);
 _ ->
 delete_population(Population_Id),
 create_Population(Population_Id,Specie_Constraints)
 end
 end,
 Result = mnesia:transaction(F),
 case Result of
 {atomic,_} ->
 population_monitor:start({OpMode,Population_Id});
 Error ->
 io:format(“******** ERROR in PopulationMonitor:~p~n”,[Error])
 end.

Though the ?INIT_CONSTRAINTS contains a list of constraint records, one
for each species the researcher wants the population to possess, it is nevertheless
expected that the population_evo_alg_f, population_fitness_f, and popula-
tion_selection_f, are to be the same for all these constraints. These constraint pa-
rameters are expected by the system to be global, belonging to the population to
which the species belong. Thus, all the constraint tuples in the ?INIT_CONSTRAINTS
list will have these parameters equivalent. We modify the create_population func-
tion to accept 2 parameters, and use the parameters in the constraint record to set
the population’s evolutionary loop, fitness, and selection functions, as shown in
Listing-11.7.

Listing-11.7 The updated create_Population/2 function, with the new elements highlighted in
boldface.

482 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

 create_Population(Population_Id,Specie_Constraints)->
 SpecieSize = ?INIT_SPECIE_SIZE,
 Specie_Ids = [create_specie(Population_Id,SpecCon,origin,SpecieSize) || SpecCon <-
Specie_Constraints],
 [C|_]=Specie_Constraints,
 Population = #population{
 id = Population_Id,
 specie_ids = Specie_Ids,
 evo_alg_f = C#constraint.population_evo_alg_f,
 fitness_f = C#constraint.population_fitness_f,
 selection_f = C#constraint.population_selection_f
 },
 genotype:write(Population).

As you’ve noticed, the init_population function, due to the selection algorithm
now being stored in the population record, calls the start/1 with just the OpMode
and Population_Id parameters. Thus, we must also modify the continue/2 and con-
tinue/3 functions from:

continue(OpMode,Selection_Algorithm)->
 Population_Id = test,
 population_monitor:start({OpMode,Population_Id,Selection_Algorithm}).
continue(OpMode,Selection_Algorithm,Population_Id)->
 population_monitor:start({OpMode,Population_Id,Selection_Algorithm}).

To ones expecting the population record to carry all the needed information to
start the population_process:

continue(OpMode)->
 Population_Id = test,
 population_monitor:start({OpMode,Population_Id}).
continue(OpMode,Population_Id)->
 population_monitor:start({OpMode,Population_Id}).

With this done, we now modify the init/1 function, and then the actual pro-
cess’s functionality by updating the call and cast handling functions of this mod-
ule. The init/1 function requires that the population_monitor state record also keeps
track of the evolutionary_algorithm (generational or steady_state), fit-
ness_postprocessing, and selection_algorithm functions. The updated version of the
state record and the init/1 function are shown in the Listing-11.8.

Listing-11.8 The updated state record, and the init/1 function. Modifications are shown high-
lighted in boldface.

11.4 Updating the Modules 483

-record(state,{op_mode,population_id,activeAgent_IdPs=[],agent_ids=[],tot_agents,
agents_left,op_tag,agent_summaries=[],pop_gen=0,eval_acc=0,cycle_acc=0,time_acc=0,
step_size,next_step,goal_status,evolutionary_algorithm,fitness_postprocessor, selec-
tion_algorithm}).
…
…
...
init(Parameters) ->
 process_flag(trap_exit,true),
 register(monitor,self()),
 io:format(“******** Population monitor started with parameters:~p~n”,[Parameters]),
 State = case Parameters of
 {OpMode,Population_Id}->
 Agent_Ids = extract_AgentIds(Population_Id,all),
 ActiveAgent_IdPs = summon_agents(OpMode,Agent_Ids),
 P = genotype:dirty_read({population,Population_Id}),
 #state{op_mode=OpMode,
 population_id = Population_Id,
 activeAgent_IdPs = ActiveAgent_IdPs,
 tot_agents = length(Agent_Ids),
 agents_left = length(Agent_Ids),
 op_tag = continue,
 evolutionary_algorithm = P#population.evo_alg_f,
 fitness_postprocessor = P#population.fitness_f,
 selection_algorithm = P#population.selection_f}
 end,
 {ok, State}.

The first cast, one which handles the terminating agents, is easily modified by
updating the guard of the cast from one using a selection_function parameter to
one using the evolutionary_algorithm, and by modifying the mutate_population
function to allow it to be called with an extra parameter, the fitness_postprocessor
function name. These modifications are shown in the following snippet of source
code, showing just these modified two lines:

handle_cast({Agent_Id,terminated,Fitness,AgentEvalAcc,AgentCycleAcc,AgentTimeAcc},S)
when S#state.evolutionary_algorithm == generational ->
...
 mutate_population(Population_Id, ?SPECIE_SIZE_LIMIT, S#state.fitness_postprocessor,
S#state.selection_algorithm),

We will create the cast handling clause which implements the steady_state evo-
lutionary loop in a later section. For now, we update the mutate_population/4
function. The updated mutate_population function, which calls the mutate_specie
function for every species in the population, is shortened dramatically, because it

484 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

now offloads both, the fitness postprocessing, and the actual selection of fit
agents, to the specialized modules that we will create later. The updated mu-
tate_population and mutate_specie functions are shown in Listing-11.9.

Listing-11.9 The updated mutate_population and mutate_specie functions, which utilize the
specialized fitness_postprocessor and selection_algorithm modules.

mutate_population(Population_Id,KeepTot,Fitness_Postprocessor,Selection_Algorithm)->
 NeuralEnergyCost = calculate_EnergyCost(Population_Id),
 F = fun()->
 P = genotype:read({population,Population_Id}),
 Specie_Ids = P#population.specie_ids,
 [mutate_Specie(Specie_Id,KeepTot,NeuralEnergyCost,Fitness_Postprocessor,
Selection_Algorithm) || Specie_Id <- Specie_Ids]
 end,
 {atomic,_} = mnesia:transaction(F).
%The function mutate_population/3 mutates the agents within every specie in its specie_ids
list, maintaining each specie within the size of KeepTot. The function first calculates the aver-
age cost of each neuron, and then mutates each specie separately using the particular Fit-
ness_Postprocessor and Selection_Algorithm parameters for that specie.

mutate_Specie(Specie_Id,PopulationLimit,NeuralEnergyCost,Fitness_Postprocessor_Name,
Selection_Algorithm_Name)->
 S = genotype:dirty_read({specie,Specie_Id}),
 {AvgFitness,Std,MaxFitness,MinFitness} = calculate_SpecieFitness({specie,S}),
 Agent_Ids = S#specie.agent_ids,
 Sorted_AgentSummarie =lists:reverse(lists:sort(construct_AgentSummaries(
Agent_Ids, []))),
 io:format(“Using: Fitness Postprocessor:~p Selection Algorirthm:~p~n”, [
Fitness_Postprocessor_Name, Selection_Algorithm_Name]),
 ProperlySorted_AgentSummaries=
fitness_postprocessor:Fitness_Postprocessor_Name(Sorted_AgentSummaries),
 {NewGenAgent_Ids,TopAgent_Ids} =
selection_algorithm:Selection_Algorithm_Name(ProperlySorted_AgentSummaries,
NeuralEnergyCost,PopulationLimit),
 {FList,_TNList,_AgentIds}=lists:unzip3(Sorted_AgentSummaries),
 [TopFitness|_] = FList,
 {Factor,Fitness}=S#specie.innovation_factor,
 U_InnovationFactor = case TopFitness > Fitness of
 true ->
 {0,TopFitness};
 false ->
 {S#specie.innovation_factor-1,Fitness}
 end,
 genotype:write(S#specie{

11.4 Updating the Modules 485

 agent_ids = NewGenAgent_Ids,
 champion_ids = TopAgent_Ids,
 fitness = {AvgFitness,Std,MaxFitness,MinFitness},
 innovation_factor = U_InnovationFactor}).
%The function mutate_Specie/5 calls the selection algorithm function to separate the fit from
the unfit organisms in the specie, and then mutates the fit organisms to produce offspring, main-
taining the total species size within PopulationLimit. The function first calls the fit-
ness_postprocessor function which sorts the agent summaries. Then, the resorted updated sum-
maries are split into a valid (fit) and invalid (unfit) lists of agents by the selection algorithm.
The invalid agents are deleted, and the valid agents are used to create offspring using the par-
ticular Selection_Algorithm_Name function. The agent ids belonging to the next generation
(the valid agents and their offspring) are then produced by the selection function. Then, the in-
novation factor (the last time the specie’s top fitness improved) is updated. And finally, the ids
of the top 3 agents within the specie are noted, and the updated specie record is written to data-
base.

 construct_AgentSummaries([Agent_Id|Agent_Ids],Acc)->
 A = genotype:dirty_read({agent,Agent_Id}),
 construct_AgentSummaries(Agent_Ids,[{A#agent.fitness,
length((genotype:dirty_read({cortex,A#agent.cx_id}))#cortex.neuron_ids),Agent_Id}|Acc]);
 construct_AgentSummaries([],Acc)->
 Acc.
%The construct_AgentSummaries/2 function reads the agents in the Agent_Ids list, and com-
poses a list of tuples of the following format: [{AgentFitness,AgentTotNeurons,Agent_Id}...].
This list of tuples is referred to as AgentSummaries. Once the AgentSummaries list is com-
posed, it is returned to the caller.

The population_monitor module is simplified by offloading the selection and
fitness postprocessing functions to their own respective modules. The popula-
tion_monitor, after this modification, primarily holds population and specie opera-
tor functions. In the following sections we build the selection and the fitness
postprocessing modules.

11.4.4 Creating the selection_algorithm Module

The selection_algorithm module is a container for the selection_algorithm
functions. In the original population_monitor module we had two such functions
for the generational evolutionary algorithm loop. Those two functions were the
competition selection function, and the top3 selection function. We modified the
population_monitor system in the previous section by moving the fitness
postprocessing code and the selection code to their own respective modules. The
following listing shows the selection_algorithm module, after the competition and
top3 functions were modified to be self contained within the module.

486 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

Listing-11.10 The implementation of the selection_algorithm module.

-module(selection_algorithm).
-compile(export_all).
-include(“records.hrl”).
-define(SURVIVAL_PERCENTAGE,0.5).

competition(PropSorted_ASummaries,NeuralEnergyCost,PopulationLimit)->
 TotSurvivors=round(length(PropSorted_ASummaries)*?SURVIVAL_PERCENTAGE),
 Valid_AgentSummaries = lists:sublist(PropSorted_ASummaries,TotSurvivors),
 Invalid_AgentSummaries = PropSorted_ASummaries -- Valid_AgentSummaries,
 {_,_,Invalid_AgentIds} = lists:unzip3(Invalid_AgentSummaries),
 [genotype:delete_Agent(Agent_Id) || Agent_Id <- Invalid_AgentIds],
 io:format(“Valid_AgentSummaries:~p~n”,[Valid_AgentSummaries]),
 io:format(“Invalid_AgentSummaries:~p~n”,[Invalid_AgentSummaries]),
 TopAgentSummaries = lists:sublist(Valid_AgentSummaries,3),
 {_TopFitnessList,_TopTotNs,TopAgent_Ids} = lists:unzip3(TopAgentSummaries),
 io:format(“NeuralEnergyCost:~p~n”,[NeuralEnergyCost]),
 {AlotmentsP,NextGenSize_Estimate} = calculate_allotments(Valid_AgentSummaries,
NeuralEnergyCost,[],0),
 Normalizer = NextGenSize_Estimate/PopulationLimit,
 io:format(“Population size normalizer:~p~n”,[Normalizer]),
 NewGenAgent_Ids = gather_survivors(AlotmentsP,Normalizer,[]),
 {NewGenAgent_Ids,TopAgent_Ids}.
%The competition/3 function implements the “competition” selection algorithm. The function
first sorts the agent summaries. The function then executes calculate_allotments/4 to calculate
the number of offspring allotted for each agent in the Sorted_AgentSummaries list. The func-
tion then calculates the Normalizer value, which is used to normalize the allotted number of
offspring for each agent, to ensure that the final specie size is within the PopulationLimit. The
function then drops into the gather_survivors/3 function which, using the normalized offspring
allotment values, creates the actual mutant offspring. Finally, the function returns to the caller a
tuple composed of the new generation’s agent ids, and the top 3 agent ids of the current genera-
tion.

 calculate_allotments([{Fitness,TotNeurons,Agent_Id}|Sorted_AgentSummaries],
NeuralEnergyCost,Acc,NewPopAcc)->
 NeuralAlotment = Fitness/NeuralEnergyCost,
 MutantAlotment = NeuralAlotment/TotNeurons,
 U_NewPopAcc = NewPopAcc+MutantAlotment,
 calculate_allotments(Sorted_AgentSummaries,NeuralEnergyCost, [{MutantAlotment,
Fitness,TotNeurons,Agent_Id}|Acc],U_NewPopAcc);
 calculate_allotments([],_NeuralEnergyCost,Acc,NewPopAcc)->
 io:format(“NewPopAcc:~p~n”,[NewPopAcc]),
 {Acc,NewPopAcc}.

11.4 Updating the Modules 487

%The calculate_allotments/4 function accepts the AgentSummaries list as a parameter, and for
each agent, using the NeuralEnergyCost, calculates how many offspring that agent can produce
by using the agent’s Fitness, TotNeurons, and NeuralEnergyCost values. The function first cal-
culates how many neurons the agent is allotted, based on the agent’s fitness and the cost of each
neuron (which itself was calculated based on the average performance of the population). From
the number of neurons allotted to the agent, the function then calculates how many offspring
the agent should be allotted, by dividing the number of neurons it is allotted, by the agent’s NN
size. The function also keeps track of how many offspring will be created from all these agents
in general, by adding up all the offspring allotments. The calculate_allotments/4 function does
this for each tuple in the AgentSummaries, and then returns the calculated allotment list and
NewPopAcc to the caller.

 gather_survivors([{MutantAlotment,Fitness,TotNeurons,Agent_Id}|AlotmentsP],
Normalizer, Acc)->
 Normalized_MutantAlotment = round(MutantAlotment/Normalizer),
 io:format(“Agent_Id:~p Normalized_MutantAlotment:~p~n”, [Agent_Id,
Normalized_MutantAlotment]),
 SurvivingAgent_Ids = case Normalized_MutantAlotment >= 1 of
 true ->
 MutantAgent_Ids = case Normalized_MutantAlotment >= 2 of
 true ->
 [population_monitor:create_MutantAgentCopy(Agent_Id)
|| _ <-lists:seq(1,Normalized_MutantAlotment-1)];
 false ->
 []
 end,
 [Agent_Id|MutantAgent_Ids];
 false ->
 io:format(“Deleting agent:~p~n”,[Agent_Id]),
 genotype:delete_Agent(Agent_Id),
 []
 end,
 gather_survivors(AlotmentsP,Normalizer,lists:append(SurvivingAgent_Ids,Acc));
 gather_survivors([],_Normalizer,Acc)->
 io:format(“New Population:~p PopSize:~p~n”,[Acc,length(Acc)]),
 Acc.
%The gather_survivors/3 function accepts the list composed of the allotment tuples and a popu-
lation normalizer value calculated by the competition/3 function, and from those values calcu-
lates the actual number of offspring that each agent should produce, creating those mutant off-
spring and accumulating the new generation agent ids. For each Agent_Id the function first
calculates the normalized offspring allotment value, to ensure that the final number of agents in
the specie is within the population limit of that specie. If the offspring allotment value is less
than 0, the agent is killed. If the offspring allotment is 1, the parent agent is allowed to survive
to the next generation, but is not allowed to create any new offspring. If the offspring allotment
is greater than one, then the agent is allowed to create Normalized_MutantAlotment-1 number

488 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

of offspring, by calling upon the create_MutantAgentCopy/1 function. The function cre-
ate_MutantAgentCopy/1 function, creates an offspring and returns its id. Once all the offspring
have been created, the function returns to the caller a list of ids, composed of the surviving par-
ent agent ids, and their offspring, the next generation.

top3(ProperlySorted_AgentSummaries,NeuralEnergyCost,PopulationLimit)->
 TotSurvivors = 3,
 Valid_AgentSummaries = lists:sublist(ProperlySorted_AgentSummaries,TotSurvivors),
 Invalid_AgentSummaries = ProperlySorted_AgentSummaries -- Valid_AgentSummaries,
 {_,_,Invalid_AgentIds} = lists:unzip3(Invalid_AgentSummaries),
 {_,_,Valid_AgentIds} = lists:unzip3(Valid_AgentSummaries),
 [genotype:delete_Agent(Agent_Id) || Agent_Id <- Invalid_AgentIds],
 io:format(“Valid_AgentSummaries:~p~n”,[Valid_AgentSummaries]),
 io:format(“Invalid_AgentSummaries:~p~n”,[Invalid_AgentSummaries]),
 TopAgentSummaries = lists:sublist(Valid_AgentSummaries,3),
 {_TopFitnessList,_TopTotNs,TopAgent_Ids} = lists:unzip3(TopAgentSummaries),
 io:format(“NeuralEnergyCost:~p~n”,[NeuralEnergyCost]),
 NewGenAgent_Ids = random_offspring(Valid_AgentIds,PopulationLimit-TotSurvivors,[]),
 {NewGenAgent_Ids,TopAgent_Ids}.
%The top3/3 function is a simple selection algorithm. This function extracts the top 3 agents
from the ProperlySorted_AgentSummaries list, subtracts 3 from the PopulationLimit, and then
uses the function random_offspring/3 to create offspring based on these top 3 agents. Once the
offspring have been created, the function returns a list of the offspring ids, and the top agent
ids, back to the caller.

 random_offspring (_Valid_AgentIds,0,Acc)->
 Acc;
 random_offspring (Valid_AgentIds,OffspringIndex,Acc)->
 Parent_AgentId = lists:nth(random:uniform(length(Valid_AgentIds)),
Valid_AgentIds),
 MutantAgent_Id = population_monitor:create_MutantAgentCopy(Parent_AgentId),
 random_offspring (Valid_AgentIds,OffspringIndex-1,[MutantAgent_Id|Acc]).
%The random_offspring/3 function is part of a very simple selection algorithm, which just se-
lects the top 3 most fit agents, and then uses the create_MutantAgentCopy/1 function to create
their offspring. Each offspring is created from a randomly selected top agent.

competition(ProperlySorted_AgentSummaries)->
 TotEnergy = lists:sum([Fitness || {Fitness,_TotN,_Agent_Id}<-
ProperlySorted_AgentSummaries]),
 TotNeurons = lists:sum([TotN || {_Fitness,TotN,_Agent_Id} <-
ProperlySorted_AgentSummaries]),
 NeuralEnergyCost = TotEnergy/TotNeurons,
 {AlotmentsP,Normalizer} = calculate_alotments(ProperlySorted_AgentSummaries,
NeuralEnergyCost, [],0),
 Choice = random:uniform(),

11.4 Updating the Modules 489

 {WinnerFitness,WinnerTotN,WinnerAgent_Id}=choose_CompetitionWinner(AlotmentsP,
Normalizer,Choice,0),
 {WinnerFitness,WinnerTotN,WinnerAgent_Id}.
%competition/1 is the competition selection algorithm for the steady_state evolutionary loop
implementation. It functions similar to the competition/3 selection algorithm, but it converts the
allotments to probabilities of the agent being chosen as the winner of the selection algorithm.
The population monitor decides on what to do with the winner, either to create an offspring
from it, re-enter it into a simulated environment, or re-apply it to some problem again.

 choose_CompetitionWinner([{MutantAllotment,Fitness,TotN,Agent_Id}|AllotmentsP],
Normalizer,Choice,Range_From)->
 Range_To = Range_From+MutantAllotment/Normalizer,
 case (Choice >= Range_From) and (Choice =< Range_To) of
 true ->
 {Fitness,TotN,Agent_Id};
 false ->
 choose_CompetitionWinner(AllotmentsP,Normalizer,Choice,Range_To)
 end;
 choose_CompetitionWinner([],_Normalizer,_Choice,_Range_From)->
 exit(“********ERROR:choose_CompetitionWinner:: reached [] without selecting a
winner.”).
%The choose_CompetitionWinner/4 function, uses the Choice value to randomly choose an
agent from the AllotmentsP, with the probability of choosing the agent being proportional to the
agent’s MutantAllotment value.

By keeping all the selection functions in this module, it makes it easier for us to
later add new ones, and then simply reference them by their name.

11.4.5 Creating the fitness_postprocessor Module

The fitness_postprocessor gives us an added level of flexibility when sorting
and computing the fitness of the agents belonging to some species. In this manner,
we can allow the scapes and various problems to concentrate on providing fitness
scores to the agents based simply on their performance, rather than other proper-
ties of those agents, like size and complexity for example. The fit-
ness_postprocessor functions modify the fitness scores of the agents, such that the
updated fitness score reflects some particular property that the researcher finds
important, but which is general and separate from the particular simulation or
problem that the neuroevolutionary system is applied to. Listing-11.11 presents
the fitness_postprocessor module which contains two simple fitness postproces-
sors, the none and the size_proportional functions.

Listing-11.11 The implementation of the fitness_postprocessor module.

490 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

-module(fitness_postprocessor).
-compile(export_all).
-include(“records.hrl”).
-define(EFF,0.1). %Efficiency.

none(Sorted_AgentSummaries)->
 Sorted_AgentSummaries.
%The none/1 fitness postprocessor function does nothing to the agent summaries, returning the
original fitness scores to the caller.

size_proportional(Sorted_AgentSummaries)->
 SDX=lists:reverse(lists:sort([{Fitness/math:pow(TotN,?EFF),{Fitness,TotN,Agent_Id}}||{
Fitness,TotN,Agent_Id}<-Sorted_AgentSummaries])),
 ProperlySorted_AgentSummaries = [Val || {_,Val}<-SDX],
 ProperlySorted_AgentSummaries.
%The size_proportional/1 fitness postprocessor function modifies the fitness scores belonging
to the agent summaries such that they are decreased proportional to the NN size, and the ?EFF
parameter. Every fitness score is changed to: TrueFitness = Fitness/math:pow(TotN,?EFF).
Based on these true fitness scores, the agent summaries are resorted, and then returned to the
caller.

With this module completed, we now return back to the population_monitor
function, to add the cast clause which allows our neuroevolutionary system to em-
ploy the steady-state evolutionary loop.

11.4.6 Creating the steady_state Evolutionary Loop

We need to update the population_monitor process such that when the popula-
tion is set to use a steady_state evolutionary loop with its complementary selection
algorithm, the population_monitor process is able to maintain a proper population
size, creating a new agent for every one that terminated. The creation of new
agents must be done in such a way that the average fitness goes up, that there is
evolution. In Chapter-10 we discussed the manner in which the DXNN platform
solves this problem, and the implementation of the dead_pool list, which allows
for the neuroevolutionary system to track content drift, and allow for the selection
algorithm to have a list of Ids to choose from when selecting a parent agent. We
will take a similar approach with our system.

To update our population_monitor process such that it can deal with a
steady_state evolutionary loop, we need to construct a cast clause that allows the
population_monitor to perform the following set of steps:

11.4 Updating the Modules 491

1. The init_population function creates a new population of agents, with the seed
population being of size X.

2. The population monitor spawns the seed population, and enters its main func-
tional loop.

3. The population_monitor waits for termination signals from agents.
4. When the population_monitor receives the termination signal of the form:

{Agent_Id, terminated, Fitness, AgentEvalAcc, AgentCycleAcc, AgentTimeAcc}
with a the cast guard: S#state.evolutionary_algorithm == steady_state, it
should function as follows:

5. Update the eval_acc, cycle_acc, and time_acc parameters of the state rec-
ord.

6. If termination condition is reached (based on eval_acc, or achieved fit-
ness), go to Step-14. Else continue to step-7.

7. Compose and add the terminated agent’s summary tuple to its species’
dead_pool list.

8. Apply the fitness_postprocessor function of the population to the
dead_pool summary list.

9. Using the newly sorted dead_pool summary list, use the selection func-
tion to choose an agent from the dead_pool, an agent that will either be
used as a parent for the creation of an offspring, or be the agent that will
be released back into the environment (if the neuroevolutionary system is
applied to ALife), or reapplied to the problem. This is unlike the selection
algorithm function used in the generational evolutionary loop, which re-
turned a list of agent ids belonging to the new generation, and a list of
top/champion agent ids.

(in which case the agent remains in the dead pool), or apply it to the prob-
lem again (in which case the agent is extracted from the dead pool).

11.If creating an offspring, then clone the selected agent, send the clone
through the topological mutation phase, and then spawn the offspring and
apply it to the problem. If the agent is selected to be re-applied to the
problem, then extract it from the dead_pool, spawn it, and apply to the
problem.

12.Check if the size of the dead_pool is greater than X (population size). If
the dead_pool size is greater than X, then keep the top X agents, and de-
lete the remainder. The population size that is active is of size X, but we
will also make the dead_pool of size X, thus the total number of agents
stored in the population is X*2.

13.GOTO: Step-3
14.Termination Condition Reached: Terminate all currently running pheno-

types. This means that the population monitor must keep track of not just the
inactive agents (the ones in the dead_pool), but also of the active ones.

The implemented cast clause based on this algorithm is shown in Listing-11.12

10.Randomly choose, (90/10) to either use the agent to create an offspring

492 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

Listing-11.12 The implementation of the steady_state handle_cast clause of the population
monitor.

handle_cast({Agent_Id,terminated,Fitness,AgentEvalAcc,AgentCycleAcc,AgentTimeAcc},S)
when S#state.evolutionary_algorithm == steady_state ->
 Population_Id = S#state.population_id,
 Specie_Ids = (genotype:dirty_read({population,Population_Id}))#population.specie_ids,
 SpecFitList=[(genotype:dirty_read({specie,Specie_Id}))#specie.fitness || Specie_Id <-
Specie_Ids],
 BestFitness=lists:nth(1,lists:reverse(lists:sort([MaxFitness || {_,_,MaxFitness,_} <-
SpecFitList]))),
 U_EvalAcc = S#state.eval_acc+AgentEvalAcc,
 U_CycleAcc = S#state.cycle_acc+AgentCycleAcc,
 U_TimeAcc = S#state.time_acc+AgentTimeAcc,
 case (S#state.eval_acc >= ?EVALUATIONS_LIMIT) or (BestFitness > ?FITNESS_GOAL)
of
 true ->
 case lists:keydelete(Agent_Id,1,S#state.activeAgent_IdPs) of
 [] ->
 U_S=S#state{activeAgent_IdPs=[], eval_acc=U_EvalAcc, cy-
cle_acc =U_CycleAcc, time_acc=U_TimeAcc},
 {stop,normal,U_S};
 U_ActiveAgent_IdPs ->
 U_S=S#state{activeAgent_IdPs=U_ActiveAgent_IdPs, eval_acc
=U_EvalAcc, cycle_acc=U_CycleAcc, time_acc=U_TimeAcc},
 {noreply,U_S}
 end;
 false ->
 io:format(“Tot Evaluations:~p~n”,[S#state.eval_acc+AgentEvalAcc]),
 FitnessPostprocessorName = S#state.fitness_postprocessor,
 SelectionAlgorithmName = S#state.selection_algorithm,
 [A] = genotype:dirty_read({agent,Agent_Id}),
 Morphology= (A#agent.constraint)#constraint.morphology,
 io:format(“Agent_Id:~p of morphology:~p with fitness:~p terminated.~n”,
[Agent_Id, Morphology,Fitness]),
 Specie_Id = A#agent.specie_id,
 [S] = genotype:dirty_read({specie,Specie_Id}),
 Old_DeadPool_AgentSummaries = S#specie.dead_pool,
 Old_Agent_Ids = S#specie.agent_ids,
 io:format(“Old_DeadPool:~p~n Old_Agent_Ids:~p~n”,
[Old_DeadPool_AgentSummaries,Old_Agent_Ids]),
 [AgentSummary] = construct_AgentSummaries([Agent_Id],[]),
 DeadPool_AgentSummaries = [AgentSummary |
Old_DeadPool_AgentSummaries],

11.4 Updating the Modules 493

 ProperlySorted_AgentSummaries
=fitness_postprocessor:FitnessPostprocessorName(DeadPool_AgentSummaries),
 Top_AgentSummaries =lists:sublist(ProperlySorted_AgentSummaries,
round(?SPECIE_SIZE_LIMIT*?SURVIVAL_PERCENTAGE)),
 {WinnerFitness,WinnerProfile,WinnerAgent_Id}
=selection_algorithm:SelectionAlgorithmName(ProperlySorted_AgentSummaries),
 Valid_AgentSummaries = case length(ProperlySorted_AgentSummaries) >=
?SPECIE_SIZE_LIMIT of
 true ->

 [{InvalidFitness,InvalidTotN,InvalidAgent_Id}|Remaining_AgentSummaries]
=lists:reverse(ProperlySorted_AgentSummaries),
 io:format(“Informationtheoretic Death:~p::~p~n”, [
InvalidAgent_Id, {InvalidFitness,InvalidTotN,InvalidAgent_Id}]),
 genotype:delete_agent(InvalidAgent_Id,safe),
 Remaining_AgentSummaries;
 false ->
 ProperlySorted_AgentSummaries
 end,
 ActiveAgent_IdP = case random:uniform() < 0.1 of
 true ->
 U_DeadPool_AgentSummaries = lists:delete({WinnerFitness,
WinnerProfile,WinnerAgent_Id},Valid_AgentSummaries),
 {ok,WinnerAgent_PId} = exoself:start_link({S#state.op_mode,
WinnerAgent_Id,void_MaxTrials}),
 {WinnerAgent_Id,WinnerAgent_PId};
 false ->
 U_DeadPool_AgentSummaries = Valid_AgentSummaries,
 AgentClone_Id = create_MutantAgentCopy(WinnerAgent_Id,
safe),
 {ok,AgentClone_PId} = exoself:start_link({S#state.op_mode,
AgentClone_Id,void_MaxTrials}),
 {AgentClone_Id,AgentClone_PId}
 end,
 {_,_,TopAgent_Ids} = lists:unzip3(lists:sublist(Top_AgentSummaries,3)),
 io:format(“TopAgent_Ids:~p~n”,[TopAgent_Ids]),
 [USpecie]=genotype:dirty_read({specie,Specie_Id}),
 genotype:dirty_write(USpecie#specie{dead_pool
=U_DeadPool_AgentSummaries, champion_ids = TopAgent_Ids}),
 ActiveAgent_IdPs = S#state.activeAgent_IdPs,
 U_ActiveAgent_IdPs = [ActiveAgent_IdP|lists:keydelete(Agent_Id,1,
ActiveAgent_IdPs)],
 U_S=S#state{activeAgent_IdPs=U_ActiveAgent_IdPs, eval_acc=U_EvalAcc,
cycle_acc=U_CycleAcc, time_acc=U_TimeAcc},
 {noreply,U_S}

494 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

 end;
%This handle_cast clause accepts a termination message from an agent. The message contains
the Id of the agent, and its reached fitness. The clause finds the species to which the agent be-
longs, processes the agent’s fitness to produce the true fitness, and adds the agent to the
dead_pool. From the dead_pool the function then chooses an agent, the probability of choosing
the agent is proportional to its offspring allocation number, and thus there is a greater chance of
choosing the more fit agents. After an agent has been chosen from the dead_pool, there is 90%
that the agent will be used as a base to produce an offspring, and 10% that the agent itself will
be reapplied to the problem, for reevaluation, to ensure that it belongs in the dead_pool. This
makes sure that if the environment has changed, that if the world has advanced further than this
ancient agent can cope with, and that if it lived in an easy world compared to the current one
where fitness points are not so easily achieved… the agent is reevaluated, and its competitive-
ness is found. This allows the dead_pool to track the drift of the world, the environment… the
dead_pool is used for content drift tracking. If the offspring is produced, it is then released into
the environment or applied to the problem again. After this, because dead_pool size must stay
within a certain size X, the top X agents of the dead_pool are left in it, and the rest are deleted.
If the agent was itself chosen to be applied to the problem again, then its id is extracted from
the dead_pool, and it is applied to the problem again.

The population_monitor using the steady_state evolutionary loop terminates
when a fitness goal has been reached, or after reaching a particular number of
evaluations. When one of these termination conditions is reached, the popula-
tion_monitor process stops generating new agents, and waits for all the remaining
agents to terminate. Afterwards, the population_monitor itself terminates normal-
ly.

The population_monitor process utilizes the same fitness postprocessor func-
tions in its steady_state approach as it does in its generational one. The selection
algorithm though is different. In the steady_state evolutionary loop, the selection
algorithm, competition/1, is executed with the DeadPool_AgentSummaries pa-
rameter, and it must return some fit agent. This is unlike the generational version
of selection algorithms, which accept a list of summaries, neural energy cost, and
population size limit, and return a tuple composed of the next generation popula-
tion and a list of champion agents.

We create the necessary new selection algorithm for the steady_state evolu-
tionary loop by modifying the original competition algorithm. We will postfix stst
(steady-state) to the algorithm name that is used with the steady_state evolutionary
loop. The new selection algorithm, competition_stst/1, accepts the agent summar-
ies list as a parameter, and performs the computations similar to the original com-
petition selection algorithm. But this selection algorithm uses the offspring allot-
ments as probabilities, the higher the allotment the higher the chance that the agent
is chosen. Based on these allotments, the algorithm then chooses one of the agents,
and returns its summary back to the caller. The new competition_stst/1 selection
algorithm is shown in Listing-11.13.

11.4 Updating the Modules 495

Listing-11.13 A new selection algorithm for the steady_state evolutionary loop.

competition_stst(ProperlySorted_AgentSummaries)->
 TotEnergy = lists:sum([Fitness || {Fitness,_TotN,_Agent_Id}<-
ProperlySorted_AgentSummaries]),
 TotNeurons = lists:sum([TotN || {_Fitness,TotN,_Agent_Id} <-
ProperlySorted_AgentSummaries]),
 NeuralEnergyCost = TotEnergy/TotNeurons,
 {AlotmentsP,NextGenSize_Estimate}
=calculate_alotments(ProperlySorted_AgentSummaries,NeuralEnergyCost,[],0),
 {WinnerFitness,WinnerTotN,WinnerAgent_Id} =choose_CompetitionWinner(AlotmentsP,
random:uniform(round(100*NextGenSize_Estimate))/100,0),
 {WinnerFitness,WinnerTotN,WinnerAgent_Id}.

 choose_CompetitionWinner([{MutantAlotment,Fitness,TotN,Agent_Id}|AlotmentsP],
Choice,Range_From)->
 Range_To = Range_From+MutantAlotment,
 case (Choice >= Range_From) and (Choice =< Range_To) of
 true ->
 {Fitness,TotN,Agent_Id};
 false ->
 choose_CompetitionWinner(AlotmentsP,Choice,Range_To)
 end;
 choose_CompetitionWinner([],_Choice,_Range_From)->
 exit(“********ERROR:choose_CompetitionWinner:: reached [] without selecting a
winner.”).

With the modification of the population_monitor now complete, and with the
addition of the new selection algorithm, we can now move forward and update the
exoself module.

11.4.7 Updating the exoself Module

We now update the exoself module, primarily the prep and the loop functions
of the exoself. We first add the state record:

-record(state,{
 agent_id,
 generation,
 pm_pid,
 idsNpids,
 cx_pid,
 spids=[],

496 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

 npids=[],
 nids=[],
 apids=[], scape_pids=[],
 highest_fitness=0,
 eval_acc=0,
 cycle_acc=0,
 time_acc=0,
 max_attempts=10,
 attempt=1,
 tuning_duration_f,
 tuning_selection_f,
 annealing_parameter,
 perturbation_range
}).

Which will be used to keep track of all the parameters used by the exoself pro-
cess. The new prep/2 function will use this state record to store all the useful in-
formation, including the perturbation parameter value, tuning selection function
name, and the annealing parameter. Once the prep/2 function completes setting up
the NN system, the exoself drops into its main loop. We update the loop to take
advantage of the now decoupled tuning selection algorithms, and the annealing
and the perturbation parameters.

The updated version of the exoself’s functionality is as follows:

1. The updated exoself process’ main loop awaits from its cortex process the
evoluation_completed message.

2. Once the message is received, based on the fitness achieved, the exoself de-
cides on whether to continue tuning the weights or terminate the system.

3. Exoself tries to improve the fitness by perturbing/tuning the weights of its neu-
rons, after each tuning session, the Neural Network based system performs an-
other evaluation by interacting with the scape until completion (the NN solves
a problem, or dies within the scape, or...).

The order of events that the exoself performs is important: When evalua-
tion_completed message is received, the function first checks whether the newly
achieved fitness is higher than the highest fitness achieved thus far, which is set to
0 during the prep phase when the exoself just comes online. If the new fitness is
not higher than the currently recorded highest fitness the agent achieved, then the
exoself sends its neurons a message to restore their weights to their previous val-
ues, to the values which produced the highest fitness instead of their current values
which yielded the current lower fitness score. If on the other hand the new fitness
is higher than the previously highest achieved fitness, then the function tells the
neurons to backup their current synaptic weights, as these weights represent the
NN’s best, most fit form yet.

11.4 Updating the Modules 497

The exoself process then tells all the neurons to prepare for a “memory reset”
by sending each neuron the: {self(), reset_prep}, message. Since the NN can have
recursive connections, it is important for each neuron to flush its buffer/inbox and
be reset into its initial fresh state. Thus each neuron goes into standby mode when
it receives the reset_prep signal, and begins to wait for the reset signal from the
exoself. This ensures that none of the neurons are functioning or processing data
when they are reset, and that all of them are synchronized. Once all the neurons go
to this standby mode, by replying to the exoself that they received its reset_prep
message, the exoself sends them the actual reset message, which makes them flush
their buffers, and returns them into their main loop.

Finally, the exoself checks whether it has already tried to improve the NN’s fit-
ness a maximum of S#state.max_attempts number of times. If that is the case, the
exoself process backs up the updated NN (with the updated, tuned weights) to da-
tabase using the backup_genotype/2 function, prints to screen that it is terminat-
ing, and sends to the population_monitor its accumulated statistics (highest fitness,
evaluation count, cycle count...). On the other hand, if the exoself process is not
yet done tuning the neural weights, when it has not yet reached its termination
condition, it forms a list of neuron ids and their perturbation Spread values, and
asks them to perturb their synaptic weights.

This is the new feature that we have added, unlike before, the exoself uses the
tuning selection function, the perturbation value, and the annealing value, to com-
pose a list of tuples: [{Nid, Spread}...], which dictates which neuron ids should be
perturbed, and also the perturbation intensity range. The Spread value is the actual
range of possible perturbation values. The spread is calculated through the use of
perturbation range value and the annealing parameter. The NIds are chosen using
the exoself’s tuning selection algorithm function.

The tuning_selection_f is used to compose a list of tuples: [{Nid,Spread}...],
where each tuple is composed of a neuron id and the perturbation spread value.
The actual tuning selection function accepts the NIds (not NPIds as in the original
code), the generation value of the agent (its age), the perturbation range value, and
the annealing parameter. The selection function then composes the list, and returns
that list of tuples to the exoself. Once this list of tuples is composed, the exoself
sends each of the selected neurons a message to perturb its synaptic weights using
the Spread value. The message format is changed from {self(), weight_perturb} to

posing the NN, we now use NIds, because during the selection function, the way
we compute the Spread value a neuron should use, is by analyzing that neuron’s
age, and its generation. Thus, once the list of selected neurons is composed, we
use the IdsNPIds ets table which maps ids to pids and back, to convert the NIds to
NPIds, and send each of the selected NPIds the noted message. Finally, the exoself
then reactivates the cortex, and drops back into its main loop. The updated source

{self(), weight_perturb, Spread}. Unlike before where we directly dealt with
NPIds, since we simply chose the NPIds randomly from all the NPIds com-

of the prep/2 function, and the new main loop/1 function of the exoself, are shown
in Listing-11.14.

Listing-11.14 The updated prep and main loop functions of the exoself module.

prep(Agent_Id,PM_PId)->
 random:seed(now()),
 IdsNPIds = ets:new(idsNpids,[set,private]),
 A = genotype:dirty_read({agent,Agent_Id}),
 Cx = genotype:dirty_read({cortex,A#agent.cx_id}),
 SIds = Cx#cortex.sensor_ids,
 AIds = Cx#cortex.actuator_ids,
 NIds = Cx#cortex.neuron_ids,
 ScapePIds = spawn_Scapes(IdsNPIds,SIds,AIds),
 spawn_CerebralUnits(IdsNPIds,cortex,[Cx#cortex.id]),
 spawn_CerebralUnits(IdsNPIds,sensor,SIds),
 spawn_CerebralUnits(IdsNPIds,actuator,AIds),
 spawn_CerebralUnits(IdsNPIds,neuron,NIds),
 link_Sensors(SIds,IdsNPIds),
 link_Actuators(AIds,IdsNPIds),
 link_Neurons(NIds,IdsNPIds),
 {SPIds,NPIds,APIds}=link_Cortex(Cx,IdsNPIds),
 Cx_PId = ets:lookup_element(IdsNPIds,Cx#cortex.id,2),
 {TuningDurationFunction,Parameter} = A#agent.tuning_duration_f,
 S = #state{
 agent_id=Agent_Id,
 generation=A#agent.generation,
 pm_pid=PM_PId,
 idsNpids=IdsNPIds,
 cx_pid=Cx_PId,
 spids=SPIds,
 npids=NPIds,
 nids=NIds,
 apids=APIds,
 scape_pids=ScapePIds,
 max_attempts= tuning_duration:TuningDurationFunction(Parameter, NIds,
A#agent.generation),
 tuning_selection_f=A#agent.tuning_selection_f,
 annealing_parameter=A#agent.annealing_parameter,
 tuning_duration_f=A#agent.tuning_duration_f,
 perturbation_range=A#agent.perturbation_range
 },
 loop(S).
%The prep/2 function prepares and sets up the exoself’s state before dropping into the main
loop. The function first reads the agent and cortex records belonging to the Agent_Id of the NN

498 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

11.4 Updating the Modules 499

based system. The function then reads the sensor, actuator, and neuron ids, then spawns the pri-
vate scapes using the spawn_Scapes/3 function, spawns the cortex, sensor, actuator, and neuron
processes, and then finally links up all these processes together using the link_.../2 functions.
Once the phenotype has been generated from the genotype, the exoself drops into its main loop.

loop(S)->
 receive
 {Cx_PId,evaluation_completed,Fitness,Cycles,Time}->
 IdsNPIds = S#state.idsNpids,
 {U_HighestFitness,U_Attempt}=case Fitness > S#state.highest_fitness of
 true ->
 [NPId ! {self(),weight_backup} || NPId <- S#state.npids],
 {Fitness,0};
 false ->
 Perturbed_NIdPs=get(perturbed),
 [ets:lookup_element(IdsNPIds,NId,2) ! {self(),weight_restore} ||
{NId,_Spread} <- Perturbed_NIdPs],
 {S#state.highest_fitness,S#state.attempt+1}
 end,
 [PId ! {self(), reset_prep} || PId <- S#state.npids],
 gather_acks(length(S#state.npids)),
 [PId ! {self(), reset} || PId <- S#state.npids],
 U_CycleAcc = S#state.cycle_acc+Cycles,
 U_TimeAcc = S#state.time_acc+Time,
 U_EvalAcc = S#state.eval_acc+1,
 case U_Attempt >= S#state.max_attempts of
 true ->%End training
 A=genotype:dirty_read({agent,S#state.agent_id}),
 genotype:write(A#agent{fitness=U_HighestFitness}),
 backup_genotype(S#state.idsNpids,S#state.npids),
 terminate_phenotype(S#state.cx_pid,S#state.spids,S#state.npids,
S#state.apids,S#state.scape_pids),
 io:format(“Agent:~p terminating. Genotype has been backed
up.~n Fitness:~p~n TotEvaluations:~p~n TotCycles:~p~n TimeAcc:~p~n”,[self(),
U_HighestFitness, U_EvalAcc,U_CycleAcc,U_TimeAcc]),
 gen_server:cast(S#state.pm_pid,{S#state.agent_id, terminated,
U_HighestFitness,U_EvalAcc,U_CycleAcc,U_TimeAcc});
 false -> %Continue training
 TuningSelectionFunction=S#state.tuning_selection_f,
 PerturbationRange = S#state.perturbation_range,
 AnnealingParameter = S#state.annealing_parameter,
 ChosenNIdPs=tuning_selection:TuningSelectionFunction(
S#state.nids,S#state.generation,PerturbationRange,AnnealingParameter),
 [ets:lookup_element(IdsNPIds,NId,2) ! {self(),weight_perturb,
Spread} || {NId,Spread} <- ChosenNIdPs],

500 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

 put(perturbed,ChosenNIdPs),
 Cx_PId ! {self(),reactivate},
 U_S =S#state{
 cycle_acc=U_CycleAcc,
 time_acc=U_TimeAcc,
 eval_acc=U_EvalAcc,
 attempt=U_Attempt,
 highest_fitness=U_HighestFitness
 },
 loop(U_S)
 end
 end.
%When exoself receives the evaluation_complete message from the cortex, it first checks
whether the newly achieved fitness by its NN is greater than the currently highest fitness
achieved value. Before the NN based system terminates, it must fail to increase in fitness for
Max_Attempts number of times. Thus, if the new fitness is not higher than highest_fitness, and
the agent failed to increase in fitness more than Max_Attempts number of times, the exoself
terminates its NN’s phenotype, and forwards the highest achieved fitness and other statistics of
its performance to the population_monitor process. If the fitness is not higher than the high-
est_fitness on record, but the exoself has not attempted to increase the NN’s fitness more than
Max_Attempts number of times, it requests that the neurons restore their previous set of synap-
tic weights, representing the thus far best achieved combination of weights, then it requests that
they perturb their synaptic weights, and flush their inbox to get back into their initial pristine
form. Finally, the exoself sends the cortex a message to reactivate, triggering it to action and its
synchronization duties. The way the exoself chooses the neurons to perturb, is using the tun-
ing_selection function. If on the other hand the newly achieved fitness is higher than the previ-
ously achieved highest_fitness, then the exoself requests that the neurons backup their current
synaptic weights. The exoself then resets its attempt counter back to 0, so as to give the new
synaptic weight combination another Max_Attempts number of perturbations and attempts at
improvement, and then again requests that the neurons perturb their synaptic weights. Finally,
the exoself then drops back into its main receive loop.

The tuning_duration module contains all the tuning duration functions, func-
tions which calculate how long the tuning phase must run. The tuning duration
function sets the max_attempts value, with the function format being as follows:

 Input: Neuron_Ids, AgentGeneration
 Output: Max_Attempts

The tuning duration function can output a constant, which is what we used thus
far. It can output a value that is proportional to the number of neurons composing
the NN, or it can produce a value based on the number of all neurons in the popu-
lation. Listing-11.15 shows the implementation of the tuning_duration module.

Listing-11.15 The tuning_duration module which stores the various tuning duration functions.

11.4 Updating the Modules 501

const(Parameter,_N_Ids,_Generation)->
 ConstMaxAttempts = Parameter,
 ConstMaxAttempts.
%const/3 returns the preset const max_attempts value.

wsize_proportional(Parameter,N_Ids,Generation)->
 Power = Parameter,
 Active_NIds = extract_RecGenNIds(N_Ids,Generation,3,[]),
 Tot_ActiveNeuron_Weights = extract_NWeightCount(Active_NIds,0),
 20 + functions:sat(round(math:pow(Tot_ActiveNeuron_Weights,Power)),100,0).
%wsize_proportional/3 calculates the max_attempts value based on the agent’s features. In this
case the max_attempts is proportional to the agent’s number of weights belonging to the neu-
rons which were added or mutated within the last 3 generations.

 extract_RecGenNIds([N_Id|N_Ids],Generation,AgeLimit,Acc)->
 N = genotype:dirty_read({neuron,N_Id}),
 NeuronGen = N#neuron.generation,
 case NeuronGen >= (Generation-AgeLimit) of
 true ->
 extract_RecGenNIds(N_Ids,Generation,AgeLimit,[N_Id|Acc]);
 false ->
 extract_RecGenNIds(N_Ids,Generation,AgeLimit,Acc)
 end;
 extract_RecGenNIds([],_Generation,_AgeLimit,Acc)->
 Acc.
%extract_RecGenNIds/4 extracts the NIds of all neurons whose age is lower or equal to the
specified AgeLimit.

 extract_NWeightCount([N_Id|RecGenN_Ids],Acc)->
 N = genotype:dirty_read({neuron,N_Id}),
 Input_IdPs = N#neuron.input_idps,
 TotWeights = lists:sum([length(Weights) || {_IId,Weights} <- Input_IdPs]),
 extract_NWeightCount(RecGenN_Ids,TotWeights+Acc);
 extract_NWeightCount([],Acc)->
 Acc.
%extract_NWeightCount/2 counts the total number of weights which belong to the list of neu-
ron ids that the function was called with.

nsize_proportional(Parameter,N_Ids,Generation)->
 Power = Parameter,
 Tot_Neurons = length(extract_RecGenNIds(N_Ids,Generation,3,[])),
 20 + functions:sat(round(math:pow(Tot_Neurons,Power)),100,0).
%nsize_proportional/3 calculates the max_attempts to be proportional to the number of neurons
which were mutated or added to the NN within the last 3 generations.

502 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

There are many different ways in which you can calculate the max_attempts
value for the tuning phase. The main thing that must be kept in mind, is that the
same tuning duration function must be used by all competing agents in the popula-
tion, thus ensuring that the tuning process is fair, and that no agent gets an ad-
vantage because it uses some particular tuning duration function that is not used
by others. If that happens, then evolution and fitness of the competing agents be-
comes dependent not on true fitness of the agent but on the function it uses. The
agents competing with each other, must use the same tuning duration function.

Also, when creating tuning duration functions that take into account the NN’s
size, we must ensure that this factor skews the fitness towards producing smaller
NN systems, not larger. We do not want to reward neural bloating. For example, if
we create a tuning duration function which uses the following equation:
MaxAttempts = 100*TotNeurons, we will be giving an incentive for the NNs to
bloat. Since just by adding one extra neuron, the NN has 100 extra tries to im-
prove its fitness, and chances are that it will be a bit more fit than its better coun-
terparts which did not get as many attempts. To avoid this, we must analyze the
tuning duration functions, ensuring that they promote more concise NN systems,
or that they at least do not provide the incentives which overwrite the actual fit-
ness function. Another alternative is to use a constant MaxAttempts value. With a
constant MaxAttempts value, the larger NNs will evolve such structures that
leaves them general, and competitive with smaller NNs, since the larger NN sys-
tems will have the same MaxAttempts to optimize, and their architecture and to-
pology will have to be such that they can still compete and optimize easily with
the few synaptic weight permutation attempts that they are given.

The nsize_proportional and wsize_proportional functions have their exponen-
tial power parameters set to 0.5, and thus take the square root of the number of
neurons and weights respectively. Thus, the NN systems which have a larger
number of weights or neurons to optimize, will have a larger number of chances,
but just barely. Hopefully this approach will not overwrite and undermine the fit-
ness function, still push towards more concise topologies, while at the same time
provide for a few more optimization attempts to the larger NN based agents,
which need them due to having that many more synaptic weight permutations
which can be explored. There are many different ways to create tuning duration
functions, having decoupled them from the system will help us experiment with
them, and perhaps find one that has the best of all worlds.

Having completed the tuning_duration module, we move to the tun-
ing_selection module. The tuning_selection module contains all the tuning selec-
tion functions, which accept as input four parameters:

1. All NIds belonging to the NN.
2. The agent’s generation, which is the number of topological mutation phases

that it has undergone.
3. The perturbation range, the multiplier of math:pi(), which when used produces

the spread value.

11.4 Updating the Modules 503

4. The annealing parameter, which is used to indicate how the perturbation range
decays with the age of the neuron to which synaptic weight perturbation is ap-
plied. It makes less sense to perturb the more stable elements of the NN system,
less so than those elements which have just recently been added to the NN sys-
tem, and which still need to be tuned and modified to work well with the al-
ready existing larger system. The concept is that of simulated annealing [3].

We gather all these selection functions in their own module because there are
many ways to select neurons which should be perturbed in local search during the
tuning phase. This makes it easier for us to add new selection functions later on,
and see if a new function can improve the performance. Of course it would be
even better to decouple the system to such an extent that local and global searches
are completely swappable, letting us have the ability to apply to the NN system
anything during global search and local search phases. Being able to use particle
swarm optimization, ant colony optimization… and swap between all these ap-
proaches during the parameter and topology optimization would be something in-
teresting to explore. Eventually, that feature too shall be added. But for now, the
tuning_selection module will primarily concentrate on holding the different types
of local search, neuron selection algorithms.

Also, because we now wish to take advantage of the perturbation range value
and the annealing parameter, the tuning selection function must not only select the
neuron ids for synaptic perturbation, but also compute the perturbation intensity,
the available range of the perturbation intensity, from which the neuron will then
randomly generate a weight perturbation value. Thus, the selection function cre-
ates a list of tuples rather than simply a list of neuron ids. The selection function
outputs a list of the following form: [{NId,Spread}...], where NId is the neuron id,
and Spread is the spread above and below 0, the value within which the neuron
generates the actual perturbation. The Spread equals the peturbation_range value
if there is no annealing, if annealing is present (annealing_parameter =< 1), then
the Spread is further modified. The annealing factor must scale the Spread, pro-
portional to the age of the neuron whose synaptic weights are to be perturbed. In
our tuning selection algorithms, the spread value is calculated as follows:

Spread=PerturbationRange*math:pi()*math:pow(AnnealingParameter,NeuronAge).

When AnnealingParameter = 1, there is no annealing. But when the
AnnealingParameter is set to a number lower than 1, then annealing is exponen-
tially proportional to the neuron’s age.

We will create 8 such selection functions, their names and features are as fol-
lows:

1. dynamic: This function randomly generates a neuron age limit using
math:sqrt(1/random:uniform()). The distribution of neuron age limits is thus
skewed towards lower values. Once the neuron age limit is generated, all neu-
rons in the NN of that age and lower are chosen for synaptic weight perturba-

504 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

tion. If annealing parameter is less than 1, then the Spread is calculated for eve-
ry chosen neuron.

2. dynamic_random: This function does the same as the dynamic selection func-
tion, but after that pool of NIds is created, it then composes a new pool of tu-
ples by going through the list of tuples and selecting each with a probability of
1/math:sqrt(length(TupleList)). In this manner, during every tuning evaluation,
a random set of NIds is chosen for perturbation, at times a large number, and
sometimes just a few. This further randomizes the intensity of tuning.

3. active: The active selection function chooses all neurons which were affected
by mutation or created within the last 3 generations.

4. active_random: Performs the same function as active, but then creates a
sublist by randomly choosing tuples from the original active list, each tuple is
chosen with a probability of 1/math:sqrt(length(TupleList)).

5. current: The current selection function chooses all neurons affected during the
last generation, those that were just added or affected by topological mutation.

6. current_random: Again, uses the tuple list created in the current function, but
then generates a sublist with each tuple having a chance of being chosen with
the probability of 1/math:sqrt(length(TupleList)).

7. all: The tuple list is composed of all the neurons in the NN. This would become
ineffective once the NN grows in size, since it would be very difficult to find
the right neuron to perturb if the size of the NN is 1000000, and during the last
topological mutation phase only a single neuron has been added, for example.
This tuning selection algorithm is something to compare the other tuning selec-
tion functions with. Although this function can be made effective with a proper
annealing parameter. With an annealing parameter, it would then have the most
recent neurons in the NN use high perturbation Spreads, while those which
have stabilized, would have Spread values that were almost nonexistent. When
set up in this manner, this function becomes the true annealing based tuning se-
lection function.

8. all_random: The same as the all function, but uses the initial list to generate a
new sublist by randomly choosing tuples from the all list, each tuple with a
probability of 1/math:sqrt(length(TupleList)).

The implementation of these tuning selection functions is shown in Listing-
11.16.

Listing-11.16 The implementation of the tuning_selection module.

-module(tuning_selection).
-compile(export_all).
-include(“records.hrl”).

dynamic(N_Ids,AgentGeneration,PerturbationRange,AnnealingParameter)->
 AgeLimit = math:sqrt(1/random:uniform()),

11.4 Updating the Modules 505

 ChosenN_IdPs = case extract_CurGenNIdPs(N_Ids,AgentGeneration,AgeLimit,
 PerturbationRange, AnnealingParameter,[]) of
 [] ->
 [N_Id|_] = N_Ids,
 [{N_Id,PerturbationRange*math:pi()}];
 ExtractedN_IdPs->
 ExtractedN_IdPs
 end,
 ChosenN_IdPs.
%The dynamic/4 selection function randomly selects an age limit for its neuron id pool. The
age limit is chosen by executing math:sqrt(1/random:uniform()), which creates a value between
1 and infinity. Using this function there is 75% that the number will be =<2, then 25% that it
will be >=2, then 11% that it will be >=3... Every time this selection function is executed, the
AgeLimit is generated anew, thus different executions will produce different neuron id pools
for tuning.

 extract_CurGenNIdPs([N_Id|N_Ids],Generation,AgeLimit,PR,AP,Acc)->
 N = genotype:dirty_read({neuron,N_Id}),
 NeuronGen = N#neuron.generation,
 case NeuronGen >= (Generation-AgeLimit) of
 true ->
 Age = Generation-NeuronGen,
 Spread = PR*math:pi()*math:pow(AP,Age),
 extract_CurGenNIdPs(N_Ids,Generation,AgeLimit,PR,AP, [{N_Id,
Spread}|Acc]);
 false ->
 extract_CurGenNIdPs(N_Ids,Generation,AgeLimit,PR,AP,Acc)
 end;
 extract_CurGenNIdPs([],_Generation,_AgeLimit,_PR,_AP,Acc)->
 Acc.
%The extract_CurGenNIdPs/6 composes a neuron id pool from neurons who are younger than
the AgeLimit parameter. This is calculated by comparing the neuron generation, which notes
when it was created or affected by mutation, to the agent’s generation, which increments with
every topological mutation phase. Id pool accumulates not just the neurons but also the spread
which will be used for the synaptic weight perturbation. The spread is calculated by multiplying
the perturbation_range variable by math:pi(), and then multiplied by the annealing factor which
is: math:pow(AnnealingParameter,Age). If the Annealing parameter is less than 1, then the
greater the age of the neuron, the lower the Spread will be. If Annealing parameter is set to 1,
then no annealing occurs.

dynamic_random(N_Ids,AgentGeneration,PerturbationRange,AnnealingParameter) ->
 ChosenN_IdPs = case extract_CurGenNIdPs(N_Ids,AgentGeneration,
math:sqrt(1/random:uniform()),PerturbationRange,AnnealingParameter,[]) of
 [] ->
 [N_Id|_] = N_Ids,

506 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

 [{N_Id,PerturbationRange*math:pi()}];
 ExtractedN_IdPs->
 ExtractedN_IdPs
 end,
 Tot_Neurons = length(ChosenN_IdPs),
 MutationP = 1/math:sqrt(Tot_Neurons),
 choose_randomNIdPs(MutationP,ChosenN_IdPs).
%dynamic_random/4 selection function composes the neuron id pool the same way as the dy-
namic/4 selection function, but after the id pool is generated, this selection function extracts ids
from it randomly with a probability of 1/math:sqrt(Tot_Neurons). Thus the probability of a neu-
ron being selected from this pool is proportional to the number of ids in that pool. If through
chance no ids are selected, then the first element in the id pool is automatically selected, and
given the highest spread.

 choose_randomNIdPs(MutationP,N_IdPs)->
 case choose_randomNIdPs(N_IdPs,MutationP,[]) of
 [] ->
 {NId,Spread} = lists:nth(random:uniform(length(N_IdPs)),N_IdPs),
 [{NId,Spread}];
 Acc ->
 Acc
 end.
 choose_randomNIdPs([{NId,Spread}|N_IdPs],MutationP,Acc)->
 U_Acc = case random:uniform() < MutationP of
 true ->
 [{NId,Spread}|Acc];
 false ->
 Acc
 end,
 choose_randomNIdPs(N_IdPs,MutationP,U_Acc);
 choose_randomNIdPs([],_MutationP,Acc)->
 Acc.
% choose_randomNIdPs/2 calls choose_randomNIdPs/3 which accepts a mutation probability
parameter and a list of tuples composed of neuron ids and their spreads. The function then se-
lects randomly from this list with a probability MutationP, composes a new sublist, and returns
it to the caller (choose_randomNIdPs/2). If by chance the sublist ends up being empty, the func-
tion choose_randomNIdPs/2 chooses a random tuple from the list, and returns it to the caller.
Otherwise the composed sublist is returned to the caller as is.

active(N_Ids,AgentGeneration,PerturbationRange,AnnealingParameter)->
 extract_CurGenNIdPs(N_Ids,AgentGeneration,3,PerturbationRange,AnnealingParameter,[]).
%active/4 selection algorithm composes a neuron id pool from all neurons which are younger
than 3 generations. I refer to the neurons as Active, if they have been affected or created within
the last 3 generations, because they are still being integrated and tuned in to work with the rest
of the NN based system.

11.4 Updating the Modules 507

active_random(N_Ids,AgentGeneration,PerturbationRange,AnnealingParameter)->
 ChosenN_IdPs = case extract_CurGenNIdPs(N_Ids,AgentGeneration,3,PerturbationRange,
AnnealingParameter,[]) of
 [] ->
 [N_Id|_] = N_Ids,
 [{N_Id,PerturbationRange*math:pi()}];
 ExtractedN_IdPs->
 ExtractedN_IdPs
 end,
 Tot_Neurons = length(ChosenN_IdPs),
 MutationP = 1/math:sqrt(Tot_Neurons),
 choose_randomNIdPs(MutationP,ChosenN_IdPs).
%active_random/4 is a selection algorithm that composes an id pool by first creating a list of all
neurons who are younger than 3 generations, and then composing a sublist from it by randomly
choosing elements from this list with a probability of 1/math:sqrt(Tot_Neurons).

current(N_Ids,AgentGeneration,PerturbationRange,AnnealingParameter)->
 case extract_CurGenNIdPs(N_Ids,AgentGeneration,0,PerturbationRange,
AnnealingParameter,[]) of
 [] ->
 [N_Id|_] = N_Ids,
 [{N_Id,PerturbationRange*math:pi()}];
 IdPs ->
 IdPs
 end.
%current/4 is a tuning selection algorithm that returns a list of all neurons which have been
added to the NN, or affected by mutation, during the last generation.

current_random(N_Ids,AgentGeneration,PerturbationRange,AnnealingParameter)->
 ChosenN_IdPs = case extract_CurGenNIdPs(N_Ids,AgentGeneration,0,PerturbationRange,
AnnealingParameter,[]) of
 [] ->
 [N_Id|_] = N_Ids,
 [{N_Id,PerturbationRange*math:pi()}];
 IdPs ->
 IdPs
 end,
 Tot_Neurons = length(ChosenN_IdPs),
 MutationP = 1/math:sqrt(Tot_Neurons),
 choose_randomNIdPs(MutationP,ChosenN_IdPs).
%current_random/4 composes the list of tuples in the same way as current/4 does, but it then
composes a sublist by randomly selecting elements from that list with a probability of
1/math:sqrt(Tot_Neurons), and returning this resulting sublist, back to the caller.

5 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

all(N_Ids,AgentGeneration,PerturbationRange,AnnealingParameter)->
 extract_CurGenNIdPs(N_Ids,AgentGeneration,AgentGeneration,PerturbationRange,
AnnealingParameter,[]).
%all/4 returns a list of tuples composed of all neuron ids (and their spread values) belonging to
the NN, to the caller.

all_random(N_Ids,AgentGeneration,PerturbationRange,AnnealingParameter)->
 ChosenN_IdPs = extract_CurGenNIdPs(N_Ids,AgentGeneration,AgentGeneration,
PerturbationRange,AnnealingParameter,[]),
 Tot_Neurons = length(ChosenN_IdPs),
 MutationP = 1/math:sqrt(Tot_Neurons),
 choose_randomNIdPs(MutationP,ChosenN_IdPs).
%all_random/4 first composes a list of tuples from nids and their spreads, and then creates a
sublist by choosing each element with a probability of 1/math:sqrt(Tot_neurons), returning the
result to the caller.

With the updated exoself module, and the newly created tuning_duration and
selection_algorithm modules, the exoself decoupling is complete. We now need
only update the neuron module, create the necessary plasticity and sig-
nal_accumulator modules, and we are ready to test our new, future ready, and ag-
ile, topology and weight evolving artificial neural network platform.

11.4.8 Updating the neuron Module

The neuron is the basic processing element, the basic processing node in the
neural network system. The neurons in the system we’ve created are more general
than those used by others. We created them to easily use various activation func-
tions, and to accept and output vectors. Because we can use anything for the acti-
vation function, including logical operators, the neurons are really just processing
nodes. In some sense, we have developed a system that is not a Topology and
Weight Evolving Artificial Neural Network, but a Topology and Parameter Evolv-
ing Universal Learning Network (TPEULN). Nevertheless, we will continue refer-
ring to these processing elements as neurons.

At the moment, a neuron can accept vector signals from other elements. Since
the inputs and outputs are standardized in their format, lists of float() values, the
neuron does not need to know whether the input is from a neuron, a sensor, or
from some other module capable of producing a vector signal. The problem
though is that to use the aggregator functions to their full potential, to allow them

would be useful to let them see the whole input vector. At this time, a neuron ac-
cepts a vector input from an element with an Id for which it has readied the appro-
priate synaptic weights, and then it computes the dot product. This means our neu-

08

full control when it comes to figuring out what to do with input signals, it

11.4 Updating the Modules 509

rons are looking at each input signal, one at a time, and then move on to the next.
They do not see the entire input, which means they cannot look at all the input
signals, and then decide how to aggregate them, what to do with them, how to
process them... One of the many side effects of this, is that a neuron cannot nor-
malize the list of input vectors, together as one.

Another way a neuron can process the input vectors is as follows: Instead of
computing a dot product of every input vector with its synaptic weight list, we
could have the neuron first aggregate the input signals, in the same order as its
synaptic weights are, and then perform the information processing step. This is of
course a bit less efficient, since it means each neuron will have to store the entire
input, which might be a list of thousands of numbers. This is the way in which the
DXNN neurons gather and process signals.

It is difficult to say which approach is more effective, the one we’ve built thus
far, or the one used by DXNN, where the neuron first accumulates all the input
signals from all the elements it is connected from, and then decides on what to do
with them. Benchmarks show the one we have implemented here to work slightly
faster, and of course each neuron takes up less memory, since each neuron does
not have to store all the input signals first. At the same time, the DXNN neurons
make certain things much simpler, having the entire input at your disposal when
performing computations, when deciding on how plasticity affects the weights, is

bility and future readiness of the system.

To make the decision on which approach we should use, consider the imple-
mentation of the diff_aggregator: To implement the now numerously discussed
diff_aggregator function, which instead of calculating the dot product of the input
vector and the synaptic weights directly, calculates the dot product of the synaptic
weights and the difference between the current input vector and the input vector
the same element sent last time, the difference vector, we need to first store this
previously received vector in memory. We could of course store each received in-
put vector in process dictionary separately, but we could also aggregate the input
vectors, and then store it as an ordered list of input vectors, which can then imme-
diately be dotted with the synaptic weights list... and also be stored and then re-
covered if we use the diff aggregator. Also, if we wish to normalize the input vec-
tors, though again possible with both neuron implementations, if we use the
implementation where we store all input signals first, vector normalization be-
comes trivial.

Because the second implementation, the one used by DXNN, makes a number
of these things simpler, we will use it instead. If at a later time we need to change
things back, it will be easy to accomplish, and independent of the rest of the sys-
tem. Thus, the new neuron implementation should use the following algorithm:

1. Neuron is spawned, and awaits in a prep state, waiting for its initialization pa-
rameters from the exoself.

easy. Thus, in this second approach, what we lose in efficiency, we gain in extendi-

510 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

2. Neuron receives its Input_PIdPs, AF, PF, AggrF, and other parameters from the
exoself. Where the Input_PIdPs is a list of the form: [{Input_PId,Weights}...],
in which Input_PId is that of the element that sends it a signal, and Weights are
the synaptic weights associated with the vector input signal from the presynap-
tic element. After receiving the initialization parameters, the neuron sends out a
default output signal to all the elements to which it is connected recurrently,
and then drops into its main receive loop.

3. The neuron awaits signals in its main loop. It can accept signals of the follow-
ing format:

 {Input_PId,forward,Input}: The signal from other elements which send
vector signals to it.

 {ExoSelf_PId,weight_backup}: The signal from the exoself, which tells
the neuron that the NN system performs best when this particular neuron is
using its current synaptic weight combination, and thus it should save this
synaptic weight list as MInput_PidPs, and that it is the best weight combi-
nation achieved thus far. This message is sent if after the weight perturba-

of this NN used their previous synaptic weights.
 {ExoSelf_PId,weight_restore}: This message is sent from the exoself, and

it tells the neuron that it should restore its synaptic weight list to one previ-
ously used, saved as MInput_PIdPs. This message is usually sent if after
the weight perturbation, the NN based agent’s evaluation performs worse
than it did with its previous synaptic weight combinations.

 {ExoSelf_PId,weight_perturb,Spread}: This is a new message type, in
our original version the neuron received the {ExoSelf_PId,weight_perturb}
message, and used ?DELTA_MULTIPLIER macro to generate the pertur-
bation intensities. With the new message, it will use the Spread value for
the purpose of generating synaptic weight perturbations.

 {ExoSelf,reset_prep}: This message is sent after a single evaluation is
completed, and the exoself wishes to reset all the neurons to their original
states, with empty inboxes. Once a neuron receives this message, it goes
into a reset_prep state, flushes its buffer/inbox, and then awaits for the
{ExoSelf, reset} signal. When the neuron receives the {ExoSelf,reset}
message, it again sends out the default output messages to all its recurrent
connections (ids stored in its ro_ids list), and then finally drops back into
its main receive loop.

 {ExoSelf_PId,get_backup}: When receiving this message, the neuron
sends back to the exoself its last best synaptic weight combination, stored
as the MInput_PIdPs list.

 {ExoSelf_PId,terminate}: The neuron terminates after it receives this
message.

Except for the way the neuron processes the {Input_PId, forward, Input}
and {ExoSelf_PId, weight_perturb, Spread} messages, the rest function in
the same way they did in our original implementation.

tion, the NN’s evaluation achieves a higher fitness than when the neurons

11.4 Updating the Modules 511

4. The neuron accepts the {Input_PId,forward,Input} message only when the In-
put_PId in the message matches the Input_PId in its Input_PIdPs list. When the
neuron receives the {Input_PId,forward,Input} message, unlike in the original
implementation, our new neuron simply accumulates the {Input_PId,Input}
message into its IAcc list. Once the neuron has received the Input signals from
all the Input_PIds in its Input_PIdPs list, it then runs the aggregation function,
synaptic plasticity function, and the activation function, to produce its final
output signal. The accumulated {Input_PId, Input} messages are in the same
order as the {Input_PId,Weights} tuples are in the Input_PIdPs list, since the
neuron does a selective receive, forming the IAcc in the same order as the In-
put_PIds are in its Input_PIdPs. Because of this, once the IAcc list has been
formed, taking a dot product or some function of the list, is easy. To take the
dot product of the two lists, we simply dot the IAcc and the Input_PIdPs, since
each is a vector composed of tuples which contain vectors.

5. When the neuron receives the {ExoSelf_PId, weight_perturb, Spread} message,
it executes the same functions as in the original implementation, only in this
implementation the perturb_IPIdPs function is executed with the Spread pa-
rameter instead of the ?DELTA_MULTIPLIER macro.

That is essentially it. As you can see, the functionality is retained, we simply
stopped computing the dot product immediately after every input message is re-
ceived. Instead, we now first accumulate all the input vectors in the same order as
the neuron’s Input_IdPs, and then dot everything all at once. If we’re using anoth-
er aggregation function, we can then send the accumulated input vectors and the
Input_IdPs through that function first. The implementation of this new neuron ver-
sion is shown in Listing-11.17.

Listing-11.17 The updated neuron implementation. Only the updated parts are shown, high-
lighted in boldface.

gen(ExoSelf_PId,Node)->
 spawn(Node,?MODULE,prep,[ExoSelf_PId]).

prep(ExoSelf_PId) ->
 random:seed(now()),
 receive
 {ExoSelf_PId,{Id,Cx_PId,AF,PF,AggrF,Input_PIdPs,Output_PIds,RO_PIds}} ->
 fanout(RO_PIds,{self(),forward,[?RO_SIGNAL]}),
 IPIds = [IPId || {IPId,_W} <- Input_PIdPs],
 loop(Id,ExoSelf_PId,Cx_PId,AF,PF,AggrF,{IPIds,IPIds},[],{Input_PIdPs,
Input_PIdPs},Output_PIds,RO_PIds)
 end.
%When gen/2 is executed, it spawns the neuron element which immediately begins to wait for
its initial state message from the exoself. Once the state message arrives, the neuron sends out

512 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

the default forward signals to any elements in its ro_ids list, if any. Afterwards, prep/1 drops in-
to the neuron’s main receive loop.

loop(Id,ExoSelf_PId,Cx_PId,AF,PF,AggrF,{[Input_PId|IPIds],MIPIds},IAcc,{Input_PIdPs,
MInput_PIdPs},Output_PIds,RO_PIds)->
 receive
 {Input_PId,forward,Input}->
 loop(Id,ExoSelf_PId,Cx_PId,AF,PF,AggrF,{IPIds,MIPIds},
[{Input_PId,Input}| IAcc], {Input_PIdPs,MInput_PIdPs},Output_PIds,RO_PIds);
 {ExoSelf_PId,weight_backup}->
 loop(Id,ExoSelf_PId,Cx_PId,AF,PF,AggrF,{[Input_PId|IPIds],MIPIds},IAcc,
{Input_PIdPs,Input_PIdPs},Output_PIds,RO_PIds);
 {ExoSelf_PId,weight_restore}->
 loop(Id,ExoSelf_PId,Cx_PId,AF,PF,AggrF,{[Input_PId|IPIds],MIPIds},IAcc,
{MInput_PIdPs,MInput_PIdPs},Output_PIds,RO_PIds);
 {ExoSelf_PId,weight_perturb,Spread}->
 Perturbed_IPIdPs=perturb_IPIdPs(Spread,MInput_PIdPs),
 loop(Id,ExoSelf_PId,Cx_PId,AF,PF,AggrF,{[Input_PId|IPIds],MIPIds},IAcc,
{Perturbed_IPIdPs,MInput_PIdPs},Output_PIds,RO_PIds);
 {ExoSelf,reset_prep}->
 neuron:flush_buffer(),
 ExoSelf ! {self(),ready},
 receive
 {ExoSelf, reset}->
 fanout(RO_PIds,{self(),forward,[?RO_SIGNAL]})
 end,
 loop(Id,ExoSelf_PId,Cx_PId,AF,PF,AggrF,{MIPIds,MIPIds},[],{Input_PIdPs,
MInput_PIdPs}, Output_PIds,RO_PIds);
 {ExoSelf_PId,get_backup}->
 ExoSelf_PId ! {self(),Id,MInput_PIdPs},
 loop(Id,ExoSelf_PId,Cx_PId,AF,PF,AggrF,{[Input_PId|IPIds],MIPIds},IAcc,
{Input_PIdPs, MInput_PIdPs}, Output_PIds,RO_PIds);
 {ExoSelf_PId,terminate}->
 io:format(“Neuron:~p has termianted.~n”,[self()]),
 ok
 end;
loop(Id,ExoSelf_PId,Cx_PId,AF,PF,AggrF,{[],MIPIds},IAcc,{Input_PIdPs,MInput_PIdPs},
Output_PIds,RO_PIds)->
 Aggregation_Product = aggregation:AggrF(IAcc,Input_PIdPs),
 Output = functions:AF(Aggregation_Product),
 U_IPIdPs = plasticity:PF(IAcc,Input_PIdPs,Output),
 [Output_PId ! {self(),forward,[Output]} || Output_PId <- Output_PIds],
 loop(Id,ExoSelf_PId,Cx_PId,AF,PF,AggrF,
{MIPIds,MIPIds},[],{U_IPIdPs,MInput_PIdPs}, Output_PIds, RO_PIds).
…

11.4 Updating the Modules 513

…
…
perturb_IPIdPs(Spread,Input_PIdPs)->
 Tot_Weights=lists:sum([length(Weights) || {_Input_PId,Weights}<-Input_PIdPs]),
 MP = 1/math:sqrt(Tot_Weights),
 perturb_IPIdPs(Spread,MP,Input_PIdPs,[]).
perturb_IPIdPs(Spread,MP,[{Input_PId,Weights}|Input_PIdPs],Acc)->
 U_Weights = perturb_weights(Spread,MP,Weights,[]),
 perturb_IPIdPs(Spread,MP,Input_PIdPs,[{Input_PId,U_Weights}|Acc]);
perturb_IPIdPs(_Spread,_MP,[],Acc)->
 lists:reverse(Acc).
%The perturb_IPIdPs/1 function perturbs each synaptic weight in the Input_PIdPs list with a
probability of: 1/math:sqrt(Tot_Weights). The probability is based on the total number of
weights in the Input_PIdPs list, with the actual mutation probability equating to the inverse of
square root of the total number of synaptic weights belonging to the neuron. The per-
turb_IPIdPs/3 function goes through each weights block and calls the perturb_weights/3 to per-
turb the weights.

 perturb_weights(Spread,MP,[W|Weights],Acc)->
 U_W = case random:uniform() < MP of
 true->
 sat((random:uniform()-0.5)*2*Spread+W,-
?SAT_LIMIT,?SAT_LIMIT);
 false ->
 W
 end,
 perturb_weights(Spread,MP,Weights,[U_W|Acc]);
 perturb_weights(_Spread,_MP,[],Acc)->
 lists:reverse(Acc).
%The perturb_weights/3 is the function that actually goes through each weight block
(A weight block is a synaptic weight list associated with a particular input vector sent to the
neuron by another element), and perturbs each weight with a probability of MP. If the weight is
chosen to be perturbed, the perturbation intensity is chosen uniformly between -Spread and
Spread.

I have highlighted the parts of the implementation that have been changed,
added, or whose function is important for the new implementation. Once the IAcc
is formed, everything hinges on the execution of:

Aggregation_Product = signal_aggregator:AggrF(IAcc,Input_PIdPs),
Output = functions:AF(Aggregation_Product),
U_IPIdPs = plasticity:PF(IAcc,Input_PIdPs,Output),

These three functions compose the Aggregation_Product (which might simply
be a dot product of the input vectors and the associated synaptic weights), apply

514 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

the activation function to the Aggregation_Product value to produce the final out-
put, and then finally update the synaptic weights (Input_PIdPs) using the plasticity
function (if any), respectively. The aggregation, activation, and plasticity func-
tions are stored in their own respective modules. The activation functions are all
stored in the functions module, the aggregation and the plasticity functions are
stored in the signal_aggregator and plasticity modules respectively. In the follow-
ing sections we will build these two modules.

11.4.9 Creating the signal_aggregator Module

The signal_aggregator module contains the various aggregation functions. An
aggregation function is a function that in some manner gathers the input signal
vectors, does something with it and the synaptic weights, and then produces a sca-
lar value. For example, consider the dot product. The dot_product aggregation
function composes the scalar value by aggregating the input vectors, and then cal-
culating the dot product of the input vectors and the synaptic weights. Another
way to calculate a scalar value from the input and weight vectors is by multiplying
the corresponding input signals by their weights, but instead of adding the result-
ing multiplied values, we multiply them. For example consider the input vector to
be: [I1,I2,I3], and the corresponding weight vector to be: [W1,W2,W3], then this
“mult_product” is: I1*W1 * I2*W2 * I3*W3, compared to the dot product which
is: I1*W1 + I2*W2 + I3*W3. Another one is the diff_product, which we can cal-
culate if we assume that I(k-1) to be the input element one time step ago, and I(k) to
be the input element in the current time step. Thus, whereas the previous time step
input vector is: [I1(k-1),I2(k-2),I3(k-3)], the current input vector is: [I1(k),I2(k),I3(k)], and

tion function would only see the differences in the signals, rather than the signals
themselves. Thus if there is a rapid change in the signal, the neuron would see it,
but if the signal were to stay the same for a long period of time, the neuron’s input
would be a vector of the form: [0,…].

There are certainly many other types of aggregation functions that could be
created, and it is for this reason we have decoupled this functionality. Listing-
11.18 shows the implementation of the signal_aggregator module, with the source
code for dot_product, mult_product, and the diff_product, aggregator functions.

Listing-11.18 The signal_aggregator module containing the dot_product, mult_product, and
diff_product aggregation functions.

--module(signal_aggregator).
-compile(export_all).
-include(“records.hrl”).

I1(k))*W1 + (I2(k-1)-I2(k))*W2 + (I3(k-1)-I3(k))*W3. A neuron using this signal aggrega-
the synaptic weight vector is: (W1,W2,W3), then the diff_product is: (I1(k-1) -

11.4 Updating the Modules 515

dot_product(IAcc,IPIdPs)->
 dot_product(IAcc,IPIdPs,0).
dot_product([{IPId,Input}|IAcc],[{IPId,Weights}|IPIdPs],Acc)->
 Dot = dot(Input,Weights,0),
 dot_product(IAcc,IPIdPs,Dot+Acc);
dot_product([],[{bias,[Bias]}],Acc)->
 Acc + Bias;
dot_product([],[],Acc)->
 Acc.

 dot([I|Input],[W|Weights],Acc) ->
 dot(Input,Weights,I*W+Acc);
 dot([],[],Acc)->
 Acc.
%The dot/3 function accepts an input vector and a weight list, and computes the dot product of
the two vectors.

diff_product(IAcc,IPIdPs)->
 case get(diff_product) of
 undefined ->
 put(diff_product,IAcc),
 dot_product(IAcc,IPIdPs,0);
 Prev_IAcc ->
 put(diff_product,IAcc),
 Diff_IAcc = input_diff(IAcc,Prev_IAcc,[]),
 dot_product(Diff_IAcc,IPIdPs,0)
 end.

 input_diff([{IPId,Input}|IAcc],[{IPId,Prev_Input}|Prev_IAcc],Acc)->
 Vector_Diff = diff(Input,Prev_Input,[]),
 input_diff(IAcc,Prev_IAcc,[{IPId,Vector_Diff}|Acc]);
 input_diff([],[],Acc)->
 lists:reverse(Acc).

 diff([A|Input],[B|Prev_Input],Acc)->
 diff(Input,Prev_Input,[A-B|Acc]);
 diff([],[],Acc)->
 lists:reverse(Acc).
%The diff_product/2 function accepts the IAcc and the IPIdPs tuple lists as input, and checks if
it has the previous IAcc stored in memory. If it doesn’t, then the function calculates a dot prod-
uct of the IAcc and PIdPs, and returns the result to the caller. If it does, then it subtracts (value
by value in the vectors) the previous IAcc from the current IAcc, then calculates a dot product
of the resulting vector and the IPIdPs, and returns the result to caller.

516 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

mult_product(IAcc,IPIdPs)->
 mult_product(IAcc,IPIdPs,1).
mult_product([{IPId,Input}|IAcc],[{IPId,Weights}|IPIdPs],Acc)->
 Dot = mult(Input,Weights,1),
 mult_product(IAcc,IPIdPs,Dot*Acc);
mult_product([],[{bias,[Bias]}],Acc)->
 Acc * Bias;
mult_product([],[],Acc)->
 Acc.

 mult([I|Input],[W|Weights],Acc) ->
 mult(Input,Weights,I*W*Acc);
 mult([],[],Acc)->
 Acc.
%The mult_product/2 function first multiplies the elements of the IAcc vector by their corre-
sponding weight values in the IPIdPs vector. It then multiplies the resulting values together
(whereas the dot product adds them), and finally returns the result to the caller.

The dot product aggregation function has already proven itself, it is used in al-
most all artificial neural network implementations. The diff_product can be
thought of as a neuron that looks not at the actual signal amplitudes, but the tem-
poral difference in signal amplitudes. If the input signals have stabilized, then the
neuron’s input is calculated as a 0, if there is a sudden change in the signal, the
neuron will see it. The worth of the mult_product aggregation function is certainly
questionable, and should be further studied through benchmarking and testing. If
there is any worth to this type of signal aggregator, evolution will find it. We can
also add normalizer functions, which could normalize the input signals. The nor-
malizers could be implemented as part of the aggregator functions, although it
could be argued that even normalizing functions deserve their own module. Later

11.4.10 Creating the plasticity Module

The only remaining module left to implement is the plasticity module. True
learning is not achieved when a static NN is trained on some data set through de-
struction and recreation by the exoself based on its performance, but instead is the
self organization of the NN, the self adaptation and changing of the NN based on
the information it is processing. The learning rule, the way in which the neurons
adapt independently, the way in which their synaptic weights change based on the
neuron’s experience, that is true learning, and that is neuroplasticity.

on, we could make them a part of the aggregator functions, perhaps create two
versions of each aggregation function, one which does normalize, and one which
does not.

11.4 Updating the Modules 517

There are different algorithms which try to emulate biological neuroplasticity.

“neurons which fire together, wire together”. The rule states that if a neuron A re-
ceives a positive input signal from another neuron B, and in response, after using
its aggregation and activation function, neuron A produces a positive output, then

weight was positive, it becomes more positive, if it was negative, it becomes more
negative.

Listing-11.19 The plasticity module containing the none plasticity function.

-module(plasticity).
-compile(export_all).
-include(“records.hrl”).

none(_IAcc,Input_PIdPs,_Output)->
 Input_PIdPs.

The none/3 plasticity function accepts the 3 parameters, and returns the same
Input_PIdPs to the caller as the one it was called with. This module completes the

important functionalities decoupled. These various functions are now exchangea-
ble, evolvable, modifiable, making our neuroevolutionary system more dynamic,
generalizable, and flexible. In the following section we will test our updated sys-
tem to ensure that it works, and that all its new parts are functional.

One of such simple plasticity algorithms is the Hebbian Rule, which states that

A’s synaptic weight for B’s connection, increases in magnitude. If that synaptic

modification to our neuroevolutionary system. Our system has now most of its

There are numerous plasticity rules, some more faithful to their biological
counterparts than others, and some more efficient than their biological counter-
parts. We will discuss plasticity in a chapter dedicated to it. At this time, we will
simply create a module, and a standardized plasticity function format, a function
which accepts as input the accumulated input vector IAcc, Input_PIdPs, and Out-
put, where IAcc is the input vector, Input_PIdPs is the associated vector of syn-
aptic weights, and the Output value is the neuron’s calculated output. In response,
the plasticity function will produce an updated set of synaptic weights, the updated
Input_PIdPs vector. This will simulate the adaptation and the morphing of synap-
tic weights due to the neuron’s interaction with the world, the neuron’s processing
of input signals. Our neuroevolutionary system will be able to generate NN based
agents with and without plasticity. At this time, the plasticity module will only
contain one type of plasticity function, the none/3 function. The plasticity function
none/3 does not change the neuron’s synaptic weights, and thus represents the
static neuron. This initial plasticity module is shown in Listing-11.19

518 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

11.5 Compiling & Testing the New System

 polis.erl

o scape.erl

 genotype.erl
 genome_mutator.erl
 population_monitor.erl

o evo_alg_f
o fitness_postprocessor_f

fitness_postprocessor.erl
o selection_f

selection_algorithm.erl

 Agent:

o exoself.erl

 morphology
morphology.erl

 tuning_duration_f
tuning_duration.erl

 tuning_selection_f
tuning_selection.erl

 annealing_parameter
 perturbation_range
 encoding_type
 tot_topological_mutations_f

tot_topological_mutations.erl
 mutation_operators

o cortex.erl
o neuron.erl

 af
functions.erl

 aggr_f
signal_aggregator.erl

We have made numerous modifications to the source code. Though our system
is now more flexible, and we can modify the way it functions, and change its
activation functions, plasticity, selection, genetic vs memetic evolution, and
generational vs steady_state evolutionary loop, we have at the same time made
it more complex. Our updated system has the following relation amongst the
modules, processes, and functions (with regards to which are contained within
which, and which are used by which):

11.5 Compiling & Testing the New System 519

 pf
plasticity.erl

o sensor.erl
o actuator.erl

The leafs of this bulleted list represent the various elements which are change-
able, evolvable, and have been decoupled. For example, the population_monitor,
and thus the particular population in question, behaves differently depending on
the evo_alg_f (evolutionary algorithm function), the fitness_postprocessor_f (fit-
ness postprocessor function), and the selection_f (the selection algorithm).
These elements can all be set up differently for different populations, or even
possibly changed/mutated during evolution. Also, because of the way we de-
coupled the various elements and parameters of the evolving NN based agents,
each agent can have a different set of tuning_selection, tuning_duration, and
tot_topological_mutations_f functions. Each agent can also evolve and use differ-
ent annealing and perturbation range values. Furthermore, agents belonging to the
same population can now be encoded differently, some neural, and some could
employ the substrate encoding. Finally, the evolving topology can incorporate dif-
ferent types of neurons, each of which can have different plasticity functions, acti-
vation functions, and aggregation functions.

Because all of these now decoupled features can be identified by their
tags/names, and activated by the same due to belonging to their own modules, we
can evolve them. Each evolving agent can now also use the mutation operators
which change, modify, and mutate these tags and values. This adds further flexi-
bility to our neuroevolutionary system, and lets us modify its functionality by
simply setting up the INIT_CONSTRAINTS macro to the set of parameters we
wish to use for any particular experiment, or problem.

Though our system is now more flexible, and we can modify the way it func-
tions, we have also made it more complex, with more movable parts, and thus
more elements that can break, and hide bugs. We must now compile our new sys-
tem and test its functionality. The full source code of our system thus far can be
found at [4].

folder. Thus to first test for compilation errors, all we do is execute this function:

1> polis:sync().
Recompile: signal_aggregator
Recompile: tot_topological_mutations
Recompile: tuning_duration
Recompile: tuning_selection
…
up_to_date

We have created the polis:sync() function to compile everything in our project

520 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

It works! But before we can test our new system on the XOR benchmark, due
to our records having changed, we must first delete the existing mnesia database,
and then create a new one. If there is no mnesia database (if you are using the pro-
vided Ch_11 work folder from [4]), then we simply create a new mnesia database
by running polis:create(), and then start the polis function by running polist:start():

2> polis:create().
{atomic,ok}
3> polis:start().
Parameters:{[],[]}
******** Polis: ##MATHEMA## is now online.
{ok,<0.272.0>}

With the polis started, we will first create a test agent and test it on the xor
problem independently with a few varying parameters. Once that test is complete,
we will test the population_monitor, applying it to the XOR problem using the
generational and steady_state evolutionary loops.

To test the exoself we must first create a test agent by executing the geno-
type:create_test() function. The create_test/1 function creates the agent using the
default #constraint{} record we defined in the records.hrl file. The default con-
straint record uses the following parameters:

-record(constraint,{
 morphology=xor_mimic, %xor_mimic
 connection_architecture = recurrent, %recurrent|feedforward
 neural_afs=[tanh,cos,gaussian,absolute], %[tanh,cos,gaussian,absolute,sin,sqrt,sigmoid],
 neural_pfs=[none], %[none,hebbian,neuro_modulated]
 neural_aggr_fs=[dot_product], %[dot_product, mult_product, diff]
 tuning_selection_fs=[all], %[all,all_random, recent,recent_random, lastgen,lastgen_random]
 tuning_duration_f={const,20}, %[{const,20},{nsize_proportional,0.5},
{nweight_proportional, 0.5}...]
 annealing_parameters=[1], %[1,0.9]
 perturbation_ranges=[1], %[0.5,1,2,3...]
 agent_encoding_types= [neural], %[neural,substrate]
 mutation_operators= [{mutate_weights,1}, {add_bias,1}, {mutate_af,1}, {add_outlink,1},
{add_inlink,1}, {add_neuron,1}, {outsplice,1}, {add_sensor,1}, {add_actuator,1}], %[
{mutate_weights,1}, {add_bias,1}, {remove_bias,1}, {mutate_af,1}, {add_outlink,1},
{remove_outLink,1}, {add_inlink,1}, {remove_inlink,1}, {add_sensorlink,1},
{add_actuatorlink,1}, {add_neuron,1}, {remove_neuron,1}, {outsplice,1}, {insplice,1},
{add_sensor,1}, {remove_sensor,1}, {add_actuator,1}, {remove_actuator,1}]
 tot_topological_mutations_fs = [{ncount_exponential,0.5}], %[{ncount_exponential,0.5},
{ncount_linear,1}]
 population_evo_alg_f=generational, %[generational, steady_state]
 population_fitness_postprocessor_f=size_proportional, %[none,nsize_proportional]

11.5 Compiling & Testing the New System 521

 population_selection_f=competition %[competition,top3]
}).

With the new mnesia database created, and the polis process started, we now
test the creation of a new agent using our modified genotype module, and the up-
dated constraint record:

4> genotype:create_test().
{agent,test,neural,0,undefined,test,
 {{origin,7.551215163115267e-10},cortex},
 {[{0,1}],
 [],
 [{sensor,undefined,xor_GetInput,undefined,
 {private,xor_sim},
 2,[],0,undefined,undefined,undefined,undefined,undefined,
 undefined}],
 [{actuator,undefined,xor_SendOutput,undefined,
 {private,xor_sim},
 1,[],0,undefined,undefined,undefined,undefined,undefined,
 undefined}]},
 {constraint,xor_mimic,recurrent,
 [tanh,cos,gaussian,absolute],
 [none],
 [dot_product],
 [all],
 {const,20},
 [1],
 [1],
 [neural],
 [{mutate_weights,1},
 {add_bias,1},
 {mutate_af,1},
 {add_outlink,1},
 {add_inlink,1},
 {add_neuron,1},
 {outsplice,1},
 {add_sensor,1},
 {add_actuator,1}],
 [{ncount_exponential,0.5}],
 generational,size_proportional,competition},
 [],undefined,0,
 [{0,[{{0,7.551215163115199e-10},neuron}]}],
 all,1,
 {const,20},
 1,

522 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

 [{mutate_weights,1},
 {add_bias,1},
 {mutate_af,1},
 {add_outlink,1},
 {add_inlink,1},
 {add_neuron,1},
 {outsplice,1},
 {add_sensor,1},
 {add_actuator,1}],
 {ncount_exponential,0.5}}
{cortex,{{origin,7.551215163115267e-10},cortex},
 test,
 [{{0,7.551215163115199e-10},neuron}],
 [{{-1,7.551215163115238e-10},sensor}],
 [{{1,7.551215163115216e-10},actuator}]}
{sensor,{{-1,7.551215163115238e-10},sensor},
 xor_GetInput,
 {{origin,7.551215163115267e-10},cortex},
 {private,xor_sim},
 2,
 [{{0,7.551215163115199e-10},neuron}],
 0,undefined,undefined,undefined,undefined,undefined,undefined}
{neuron,{{0,7.551215163115199e-10},neuron},
 0,
 {{origin,7.551215163115267e-10},cortex},
 tanh,none,dot_product,
 [{{{-1,7.551215163115238e-10},sensor},
 [0.15548205860608455,0.17397940203921358]}],
 [{{1,7.551215163115216e-10},actuator}],
 []}
{actuator,{{1,7.551215163115216e-10},actuator},
 xor_SendOutput,
 {{origin,7.551215163115267e-10},cortex},
 {private,xor_sim},
 1,
 [{{0,7.551215163115199e-10},neuron}],
 0,undefined,undefined,undefined,undefined,undefined,undefined}
{atomic,{atomic,[ok]}}

It works! The genotype is printed to console, and it includes all the new fea-
tures and parameters we’ve added. The genotype was created without any errors,
and thus we can now test the agent by converting the genotype to phenotype, and
applying it to the XOR mimicking problem. We do this by executing the
exoself:start(Agent_Id,void) function, where void is just an atom in the place
where we’d usually use a PId of the population_monitor:

11.5 Compiling & Testing the New System 523

6> exoself:start(test,void).
<0.363.0>
IPIdPs:[{<0.366.0>,[0.15548205860608455,0.17397940203921358]}]
Finished updating genotype
Terminating the phenotype:
Cx_PId:<0.365.0>
SPIds:[<0.366.0>]
NPIds:[<0.368.0>]
APIds:[<0.367.0>]
ScapePids:[<0.364.0>]
Agent:<0.363.0> terminating. Genotype has been backed up.
 Fitness:0.23792642646665235
 TotEvaluations:21
 TotCycles:84
 TimeAcc:3270
Sensor:{{-1,7.551215163115238e-10},sensor} is terminating.
Actuator:<0.367.0> is terminating.
Neuron:<0.368.0> is terminating.
Cortex:{{origin,7.551215163115267e-10},cortex} is terminating.

It works! The exoself converted the test genotype to its phenotype, tried to tune
the NN for 21 evaluations (we know this due to the TotEvaluations: 21 printout),
and then terminated all the elements of the NN, and then itself terminated. With
this test completing successfully, we can now test the whole neuroevolutionary
system by creating a population of agents, applying them to the problem, evolving
the population using the population_monitor, and then terminating the system
once a termination condition has been reached. To do all of this, we need simply
equate #INIT_CONSTRAINTS macro to the list of constraint tuples with the pa-
rameters we wish to use, and then execute the population_monitor:test() function.

We first test our neuroevolutionary system with the generational evolutionary
algorithm, we do this by setting up the INIT_CONSTRAINT macro as follows:

-define(INIT_CONSTRAINTS,[#constraint{morphology=Morphology,connection_architecture
=CA,population_evo_alg_f=generational}|| Morphology<-[xor_mimic],CA<-[feedforward]]).

With the constraint record set, we compile the population_monitor module, and
then run it. For the sake of brevity, only a partial printout to console is shown:

13> c(population_monitor).
...
{ok,population_monitor}
14> population_monitor:test().
Specie_Id:7.551210273616779e-10 Morphology:xor_mimic
******** Population monitor started with parameters:{gt,test}

524 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

...
Using: Fitness Postprocessor:size_proportional Selection Algorirthm:competition
Valid_AgentSummaries:[{999529.2413070924,2,{7.551210272768589e-10,agent}},
 {1512.9118761841332,1,{7.551210272806172e-10,agent}},
 {1352.7815191404268,2,{7.551210272916421e-10,agent}},
 {302.13492581117015,1,{7.551210273600174e-10,agent}},
 {24.488124260342552,1,{7.551210273564292e-10,agent}}]
Invalid_AgentSummaries:[{10.146259718093239,2,{7.551210273018837e-10,agent}},
 {0.49999586555860426,1,{7.551210273039854e-10,agent}},
 {0.4999165758596308,1,{7.551210272834928e-10,agent}},
 {0.49062112602642133,2,{7.551210273073314e-10,agent}},
 {0.4193814651130151,1,{7.551210272863694e-10,agent}}]
...
******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:10 Population Generation:2 Eval_Acc:878 Cycle_Acc:3512
Time_Acc:476237

It works! We can execute population_monitor:test() a few more times to ensure
that this was not a fluke and that it does indeed work. We next test the system us-
ing the new steady_state evolutionary loop. To accomplish this, all we need to do
is modify the INIT_CONSTRAINTS, changing the population_evo_alg_f parame-
ter from generational to steady_state:

-define(INIT_CONSTRAINTS,[#constraint{morphology=Morphology,connection_architecture
=CA, population_evo_alg_f=steady_state} || Morphology<-[xor_mimic], CA<-[feedforward]]).

With this modification, we again compile the population_monitor module, and
execute population_monitor:test():

1> c(population_monitor).
...
{ok,population_monitor}
2> population_monitor:test().
Specie_Id:7.55120754326942e-10 Morphology:xor_mimic
******** Population monitor started with parameters:{gt,test}
...
Agent:<0.4146.0> terminating. Genotype has been backed up.
 Fitness:959252.9093456662
 TotEvaluations:45
 TotCycles:180
 TimeAcc:2621
Neuron:<0.4151.0> is terminating.
Sensor:{{-1,7.551207540548967e-10},sensor} is terminating.
Actuator:<0.4150.0> is terminating.

11.6 Summary & Discussion 525

Neuron:<0.4152.0> is terminating.
Cortex:{{origin,7.551207540549013e-10},cortex} is terminating.
******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:10 Population Generation:0 Eval_Acc:2338 Cycle_Acc:9352
Time_Acc:630207

It works! Note that the Population Generation is 0 in this case, because it never
gets incremented. While at the same time the evaluation accumulator (Eval_Acc),
is 2338. The fitness achieved is high, Fitness: 959252. Thus our system is func-
tioning well, and can easily and efficiently solve the simple XOR problem. We
should try the system with a few other parameters to ensure that it works. But with
these tests done, we are now in a possession of an advanced, modularly designed,
decoupled, scalable, and agile, neuroevolutionary platform.

11.6 Summary & Discussion

In this chapter we have modified the neuroevolutionary system we finished
building by Chapter-9. We have decoupled numerous features of our system, in-
cluding plasticity, signal aggregation, annealing parameters, various tuning pa-
rameters, and even the evolutionary algorithm loop type. All these decoupled ele-
ments of our neuroevolutionary system were given their own modules, and all
these features can be accessed through their own function names. Due to these
various elements now being specified by their names and parameters, rather than
built and embedded into the functionality of the system, we can evolve them, mu-
tate them, and change them during the evolutionary process. Thus, our system can
now mutate and evolve new plasticity rules, tuning parameters, signal aggregation
functions… in the same way that our original system allowed for the neurons to
change and swap their activation functions.

This decoupling and modularization of the neuroevolutionary system design al-
so makes it that much easier to add new elements, and to test out new features in
the future. The new architecture of our system allows us to build new functions,
new functionalities, without affecting the already tested and working elements of
our TWEANN platform.

After making these modifications, we have tested the creation of a new agent
using its newly modified genotypic and phenotypic elements. We have tested and
found the creation of the genotype, the conversion of the genotype to phenotype,
the processing ability of the exoself, and the functionality of the popula-
tion_monitor with a generational and steady_state evolutionary loop, all functional
and in perfect working condition. With this complete, we can now begin to add the
various advanced features to our neuroevolutionary platform.

526 Chapter 11 Decoupling & Modularizing Our Neuroevolutionary Platform

As we have found in this chapter, after adding new features, whether they

improve the evolutionary properties of the system, the resulting platform must be
tested, and it must be benchmarked. For this reason, in the following chapter we
will modify the population_monitor to keep track of the various evolutionary per-
formance statistics and properties that change over time. Statistics like the average
neural network size of the population, the maximum, minimum, average, and
standard deviation of the population’s fitness, and the numerous other evolution-
ary parameters that might further shine light on our system’s performance.

11.7 References

simply optimize or augment the architecture, or whether they add new features to

[1] Paulsen O, Sejnowski TJ (2000). Natural Patterns of Activity and Long-Term Synaptic Plas-
ticity. Current Opinion in Neurobiology 10, 172-179.

[2] Oja E (1982) A Simplified Neuron Model as a Principal Component Analyzer. Journal of
Mathematical Biology 15, 267-273.

[3] Bertsimas D, Tsitsiklis J (1993) Simulated Annealing. Statistical Science 8, 10-15.
[4] Source code for each chapter can be found here: https://github.com/CorticalComputer/

Book_NeuroevolutionThroughErlang

https://github.com/CorticalComputer/Book_NeuroevolutionThroughErlang
https://github.com/CorticalComputer/Book_NeuroevolutionThroughErlang

Chapter 12 Keeping Track of Important
Population and Evolutionary Stats

Abstract To be able to keep track of the performance of a neuroevolutionary
system, it is essential for that system to be able to accumulate the various statistics
with regards to its fitness, population dynamics, and other changing features,
throughout the evolutionary run. In this chapter we add to the population_monitor
of our TWEANN system the ability to compose a trace, which is a list of tuples,
where each tuple is calculated every 500 (by default) evaluations, containing the
various statistics about the population achieved during those evaluations, tracing
the population’s path through its evolutionary history.

As we discussed in Section-8.1, and as was presented in Fig-8.1, the architec-
ture we’re going after needs to contain, beside the polis, population_monitor, da-
tabase, and agent processes, also the stat_accumulator and the error_logger con-
current processes. In some sense, we do not really need to create the error_logger,
because we can use the already robust implementation offered by OTP. The
stat_accumulator on the other hand is something that needs to be built, and that is
the program we will develop in this chapter.

Because the goal is to continue improving and generalizing our
neuroevolutionary platform, the way to test whether our neuroevolutionary system
works or not is by benchmarking it. But to properly analyze the results of the
benchmarks we need to gather the resulting statistics produced by the popula-
tion_monitor and other processes, so that these statistics can then be graphed and
perused for signs of improvements based on the new additions to the platform. In
this chapter we further modify the population_monitor process, adding to it the
ability to keep track of the various important population and evolutionary accumu-
lated statistics.

The updated population_monitor should be able to compose useful population
information, build lists of this information, and later on be able to write to file and
produce data in a form that can be graphed. The population parameters that we
would like to keep track of are as follows:

1. How the average NN complexity/size is changing in the population, the aver-
age NN size, the maximum NN size, the minimum NN size, and the standard
deviation of the NN sizes.

2. How the fitness is changing over time with regards to evaluations. Again, we
want to keep track of the average population fitness over time, maximum fit-
ness over time, minimum fitness over time, and standard deviation of the same.

3. Population diversity is another element that is useful to keep track off, since we
want to know whether our system produces diverse populations, or not at all. It

DOI 10.1007/978-1-4614- - © Springer Science+Business Media New York 2013 4463 3_12,
527 G.I. Sher, Handbook of Neuroevolution Through Erlang,

528 Chapter 12 Keeping Track of Important Population and Evolutionary Stats

is essential that the TWEANN system is able to maintain a high diversity on its
own, only then does it have a chance to truly be general and innovative, and
have a chance of evolving solutions and NN based systems capable of solving
complex and varying problems.

12.1 The Necessary Additions to the System

Whereas before each agent sent to the population monitor the total number of
evaluations it had completed, the number of cycles, and the amount of time taken
for tuning, we need our new system to be more precise. Since an agent can take
anywhere from Max_Attempts number of evaluations per tuning attempt to hun-
dreds or even thousands of evaluations before reporting that number to the popula-
tion_monitor, we need to update the way each agent informs the population moni-
tor when it has completed an evaluation, so that the population monitor can keep
track of every evaluation. This will allow the population_monitor to not only stop
or terminate an agent at the exact number of evaluations that is set as a limit, but
also it will allow the population monitor to build statistics about its population of
agents, for example every 500 evaluations. If each agent would have contacted the
population monitor only at its termination, then the population_monitor would not
be able to calculate the various features of the population at the specific evaluation
index, and instead would be at the mercy of whenever each agent finishes all its
evaluations.

To accomplish this, we simply let each agent send a signal to the popula-
tion_monitor whenever it has finished an evaluation. And for its part, the popula-
tion_monitor will have a new cast clause, specifically dedicated to receiving eval-
uation_completed messages from the agents.

Because we are finally at the point where we also can track the population di-
versity, we now have a chance to use the fingerprint tuple that each agent con-
structs. The diversity of the population loosely defines the total number of differ-
ent species, or the total number of significantly different agents. This “significant”

Without a doubt there are other interesting features that should be kept track
off, and thus we should develop and implement this stat_accumulator program with

ion of its capabilities when the time
comes. In the following sections we will first discuss the new architecture and
how it will work with the system we’ve developed so far. Then we will develop a
format for how this information should be stored and accumulated. Afterwards,
we will implement the actual system, making it an extension and part of the popu-
lation_monitor itself, rather than an independent process. Finally, we will test our
updated population_monitor on the XOR problem, demonstrating its new ability
to gather data about the evolutionary path the population is taking, and the various
performance statistics of the population and its species.

an eye to the future, allowing for easy expans

12.1 The Necessary Additions to the System 529

difference can be reflected in the agents having different topologies, using a dif-
ferent number of neurons, using a different set of activation functions, having tak-
en a different evolutionary path (reflected by the different evo_hist lists of the
compared agents), and finally by having a different set of sensors and actuators.
At this point we define the specie by the particular morphology that the specie
supports. Thus at this time, each specie can have many topologically different
agents, but all using the same constraint and morphology, interfacing with the
same type of scapes, having access to the same set of sensors and actuators, and
competing with each other for fitness and offspring allotments using the same evo-
lutionary algorithm loops. Thus for now, we will calculate the diversity not based
on the number of species, but the number of significantly differing agents within
the entire population.

To calculate the population diversity, we must first decide on the defining char-
acteristics of an agent, the granularity of diversity. Though the fingerprint of the
agent is a good start, let us expand it to also include not only the evolutionary path
of the agent, and the sensors and actuators used, but also a few defining topologi-
cal features of a NN based agent. At this time, the agent’s fingerprint is defined by
the tuple: {GeneralizedPattern, GeneralizedEvoHist, GeneralizedSensors,
GeneralizedActuators}. We change this definition so that the fingerprint tuple also
includes a topological summary, which is itself defined by the tuple: {type,
tot_neurons, tot_n_ils, tot_n_ols, tot_n_ros, af_distribution} where:

 type: Is the NN encoding type: neural or substrate, for example.
 tot_neurons: Is the total number of neurons composing the NN based agent.
 tot_n_ils: Is the total number of neuronal input links, calculated by adding to-

gether the number of input links of every neuron in the NN based agent.
 tot_n_ols: Is the total number of neuronal output links, counted in the same

way as input links. Though somewhat redundant, the tot_n_ils and tot_n_ols
will differ from each other based on the number of sensors and actuators used
by the agent.

 tot_n_ros: Is the total number of recurrent connections within the NN system.
 af_distribution: Is the count of every type of activation function used by the

NN based agent. This has the format of: {TotTanh, TotSin, TotCos,
TotGaussian, TotAbsolute,TotSgn,TotLog,TotSqrt,TotLin}, and thus agents
which have the same topology, but whose neurons use different sets of activa-
tion functions, will be functionally very different, and this activation function
frequency distribution tuple will to some degree summarize these differences.
There could of course be numerous agents with the same topology and the
same activation function frequency distribution, but which differ in the neurons
which use those activation functions, and locations of those neurons within the
NN topology. Nevertheless, this gives us a short and easy way to calculate a
summary which could be used in addition to other fingerprint elements to dis-
tinguish between two functionally different agents. These summaries can be
further considered as representing how the different agents are exploring the
different areas on the topological landscape.

530 Chapter 12 Keeping Track of Important Population and Evolutionary Stats

Thus, based on these defining characteristics, two agents with different Finger-
prints (which will include their topological summaries), will warrant being con-
sidered as significantly different. The diversity is then the total number of differ-
ent fingerprints within the population.

To allow our system to keep track of progress and the changing properties and
statistics of the population, we first need to decide on the step_size during which
these statistics will be calculated. The step size is defined as X number of evalua-
tions, such that every X number of evaluations we measure the various evolution-
ary statistics and properties of the population at hand. For example, if X is defined
as 500 evaluations, then every 500 evaluations we would compute the average fit-
ness of the population, the max, min, and std of the fitness within the population,
the diversity of the population, the average size of the NN systems in the popula-
tion... And then create a format for adding the tuple with this information to a list
that traces out the evolutionary path of the population. Even better, we could cal-
culate these values for every specie composing the population, and then compose
the trace from the list of tuples where each tuple was created for a particular spe-
cie (defined by a different morphology) of the population. The trace would then be
a list of lists, where the inside list would be the list of Specie Stats: [SpeciesStats1,
SpeciesStats2... SpeciesStatsN], with the outer list then being the actual trace
which traces out the various general properties of the evolving population by cal-
culating the various decided-on properties of the species composing this popula-
tion. The SpeciesStats is a list of tuples, where each tuple contains the general sta-
tistics and various properties (Average fitness, average NN sizes...) of a particular
specie belonging to the population. Thus in the next section we will create the
format and manner in which we will store and gather this information.

12.2 The Trace Format

-record(stat,{morphology,specie_id,avg_neurons,std_neurons,avg_fitness,std_fitness,
max_fitness, min_fitness,avg_diversity,evaluations,time_stamp}).

Where the definition of each of the elements within this record is as follows:

 morphology: This is the specie’s morphology.
 specie_id: Is the id of the specie for whom the stat is calculated.
 avg_neurons: The size of the average NN based agent of the specie, calculated

by summing up all the neurons of the specie, and dividing the number by the
number of agents belonging to the specie at the time of calculation.

We want the population monitor to, every X number of evaluations, calculate
the general properties of each specie in the population that it is evolving. W
call the record that stores these various statistical properties of the specie: stat.
The specie stat will have the following format:

e will

12.2 The Trace Format 531

 std_neurons: The standard deviation of the avg_neurons value.
 avg_fitness: Is the average fitness of the agents within the population.
 std_fitness: Is the standard deviation of the avg_fitness value.
 max_fitness: The maximum fitness achieved by the agents within the specie at

the time of calculation.
 min_fitness: The minimum fitness achieved by the agents within the specie at

the time of calculation.
 avg_diversity: The average diversity of the specie.
 evaluations: The number of evaluations that the agents of this particular specie

used during the given X number of evaluations. So for example if the popula-
tion calculates the specie stats every 500 evaluations, and there are 2 species in
the population, then one specie might have taken 300 of the evaluations if its
organisms kept dying rapidly, and the other specie would then have taken the
other 200 during that 500 evaluations slot. This value represents the turnover of
the specie, and is dependent on numerous factors, amongst which is of course
the number of the species in the population (if only one, then it will take all 500
evaluations), the general fitness of the agents (how often they die or get re-
evaluated if applied to ALife for example), and the specie size.

 time_stamp: Finally, we also time stamp the stat record at the moment of cal-
culation.

Thus, every X (500 by default) number of evaluations, for every specie we cal-
culate all the properties of the stat, and thus form a list of stat elements:
SpeciesStats = [Specie_Stat1, Specie_Stat2,...Specie_StatN], where N is the num-
ber of species in the population at the time of calculating the SpeciesStats.

We then enter this list of specie stats into a list we will call the population stats.
The stats list will belong to the population’s element by the name trace. We call it
a trace because when we dump the population’s trace to console, we can see the
general progress of the population, the number of species, and the properties of
those species, as it is outlined by their stat tuples. It is a trace of the population’s
evolutionary history, it is the evolutionary path that the population has taken.

The trace element will be represented by the record: -record(trace,{stats=[],
tot_evaluations=0, step_size=500}), where stats is the list which will contain the
lists of SpeciesStats. The element tot_evaluations will keep track of the total num-
ber of evaluations, so that we can at any time pause the population_monitor, and
later on continue counting the evaluations when we resume, starting from the pre-
vious stop. Finally, we specify through the step_size element the value which de-
termines X, the number every how many evaluations that we will calculate the
population’s various general properties.

Thus the population’s stats list, being a list of lists, will have the following
format: [[SpecieStat1...SpecieStatN],...[SpecieStat1...SpecieStatN]] Allowing us
to easily extract any one particular list of specie stats, a list which belongs to some
particular 500 evaluations slot window.

532 Chapter 12 Keeping Track of Important Population and Evolutionary Stats

12.3 Implementation

12.3.1 Updating records.hrl

-record(topology_summary,{type,tot_neurons,tot_n_ils,tot_n_ols,tot_n_ros,af_distribution}).
-record(stat,{morphology,specie_id,avg_neurons,std_neurons,avg_fitness,std_fitness,
max_fitness, min_fitness, avg_diversity,evaluations,time_stamp}).
-record(trace,{stats=[],tot_evaluations=0,step_size=500}).

-record(population,{id, polis_id, specie_ids=[], morphologies=[], innovation_factor, evo_alg_f,
fitness_postprocessor_f, selection_f, trace=#trace{}}).
-record(specie,{id, population_id, fingerprint, constraint, agent_ids=[], dead_pool=[],
champion_ids=[], fitness, innovation_factor={0,0},stats=[]}).

Having decided on the format through which we will keep track of the specie
and population statistics, and the modifications that need to be added to the
exoself and population_monitor, lets implement these new features. We will first
modify the records.hrl file, adding the three new records: trace, stat, and topolo-
gy_summary, needed for the new extended fingerprint tuple. Then we will im-
plement the function that calculates the topological summary of an agent. We will
then implement the function that constructs the specie stat tuples, and updates the
population’s trace with the accumulated specie stat list. We will then modify the
population_monitor module, implementing the evaluation counting cast clause,
which takes it upon itself to build and add to the population’s trace every X num-
ber of evaluations, where X is specified by the step_size parameter in the trace
record. Finally, we will make the small modification to the exoself module, mak-
ing the agent’s exoself notify the population_monitor that it has completed an
evaluation after each such completion, rather than doing so at the very end when
the agent is ready to terminate.

This chapter’s new features require us to create the new topology_summary,
stat, and trace, records. We also have to update the population record, so that it
has a trace parameter, and we need to update the specie record so that it can keep a
list of its stat tuples. Though the population’s trace parameter will keep a list of
lists of the specie stat tuples (list of SpeciesStats, where SpeciesStats itself is a list),
each specie will also keep a list of its own stat tuples.

The following are the three new records: topology_summary, stat, and trace:

After adding these three records to the records.hrl, we now update the popula-
tion and specie records. The elements in boldface, are the ones newly added:

12.3 Implementation 533

With this done, we move on to building the function that constructs the topo-
logical summary.

12.3.2 Building the Topological Summary of a Neural Network

The topological summary will become part of the agent’s fingerprint, catalog-
ing the number of neurons, synaptic connections, and types of activation functions
used by it. We put this new function inside the genotype module, since it will be
called by the update_fingerprint/1 function. Listing 12.1 shows the modified up-
date_fingerprint/1 function, and the new get_NodeSummary/1 function which cal-
culates the activation function frequency distribution tuple (the number and types
of activation functions used by the NN system), and counts the total number of
links used by the NN system. The modified and added parts of the up-
date_fingerprint/1 function are highlighted with boldface.

Listing-12.1 The modified update_fingerprint/1 function.

update_fingerprint(Agent_Id)->
 A = read({agent,Agent_Id}),
 Cx = read({cortex,A#agent.cx_id}),
 GeneralizedSensors = [(read({sensor,S_Id}))#sensor{id=undefined,cx_id=undefined,
fanout_ids=[]} || S_Id<-Cx#cortex.sensor_ids],
 GeneralizedActuators = [(read({actuator,A_Id}))#actuator{id=undefined, cx_id=undefined,
fanin_ids=[]} || A_Id<-Cx#cortex.actuator_ids],
 GeneralizedPattern = [{LayerIndex,length(LNIds)}||{LayerIndex,LNIds}<-A#agent.pattern],
 GeneralizedEvoHist = generalize_EvoHist(A#agent.evo_hist,[]),
 N_Ids = Cx#cortex.neuron_ids,
 {Tot_Neuron_ILs,Tot_Neuron_OLs,Tot_Neuron_ROs,AF_Distribution} =
get_NodeSummary(N_Ids),
 Type = A#agent.encoding_type,
 TopologySummary = #topology_summary{
 type = Type,
 tot_neurons = length(N_Ids),
 tot_n_ils = Tot_Neuron_ILs,
 tot_n_ols = Tot_Neuron_OLs,
 tot_n_ros = Tot_Neuron_ROs,
 af_distribution = AF_Distribution},
 Fingerprint = {GeneralizedPattern,GeneralizedEvoHist,GeneralizedSensors,
GeneralizedActuators, TopologySummary},
 write(A#agent{fingerprint=Fingerprint}).
%update_fingerprint/1 calculates the fingerprint of the agent, where the fingerprint is just a tu-
ple of the various general features of the NN based system. The genotype’s fingerprint is a list
of features that play some role in distinguishing its genotype’s general properties from those of

534 Chapter 12 Keeping Track of Important Population and Evolutionary Stats

other NN systems. The fingerprint is composed of the generalized pattern (pattern minus the
unique ids), generalized evolutionary history (evolutionary history minus the unique ids of the
elements), a generalized sensor set, and a generalized actuator set.

update_NNTopologySummary(Agent_Id)->
 A = mnesia:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = mnesia:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 {Tot_Neuron_ILs,Tot_Neuron_OLs,Tot_Neuron_ROs,AF_Distribution} =
get_NodeSummary(N_Ids),
 Type = A#agent.encoding_type,
 Topology_Summary = #topology_summary{
 type = Type,
 tot_neurons = length(N_Ids),
 tot_n_ils = Tot_Neuron_ILs,
 tot_n_ols = Tot_Neuron_OLs,
 tot_n_ros = Tot_Neuron_ROs,
 af_distribution = AF_Distribution},
 Topology_Summary.
%The update_NNTopologySummary/1 function calculates the total number of input links, out-
put links, recurrent links, neurons, and uses the get_NodeSummary/5 function to compose the
activation function frequency distribution tuple. It then enters all the calculated values into the
topology_summary record, and returns it to the caller.

get_NodeSummary(N_Ids)->
 get_NodeSummary(N_Ids,0,0,0,{0,0,0,0,0,0,0,0,0}).
get_NodeSummary([N_Id|N_Ids],ILAcc,OLAcc,ROAcc,FunctionDistribution)->
 N = genotype:read({neuron,N_Id}),
 IL_Count = length(N#neuron.input_idps),
 OL_Count = length(N#neuron.output_ids),
 RO_Count = length(N#neuron.ro_ids),
 AF = N#neuron.af,
 {TotTanh,TotSin,TotCos,TotGaussian,TotAbsolute,TotSgn,TotLog,TotSqrt,TotLin} =
FunctionDistribution,
 U_FunctionDistribution= case AF of
 tanh ->{TotTanh+1,TotSin,TotCos,TotGaussian,TotAbsolute,TotSgn,
TotLog,TotSqrt,TotLin};
 sin ->{TotTanh,TotSin+1,TotCos,TotGaussian,TotAbsolute,TotSgn,
TotLog,TotSqrt,TotLin};
 cos ->{TotTanh,TotSin,TotCos+1,TotGaussian,TotAbsolute,TotSgn,
TotLog,TotSqrt,TotLin};
 gaussian->{TotTanh,TotSin,TotCos,TotGaussian+1,TotAbsolute,TotSgn,
TotLog,TotSqrt,TotLin};

12.3 Implementation 535

 absolute->{TotTanh,TotSin,TotCos,TotGaussian,TotAbsolute+1,TotSgn,
TotLog,TotSqrt,TotLin};
 sgn ->{TotTanh,TotSin,TotCos,TotGaussian,TotAbsolute,TotSgn+1,
TotLog,TotSqrt,TotLin};
 log ->{TotTanh,TotSin,TotCos,TotGaussian,TotAbsolute,TotSgn, TotLog+1,
TotSqrt,TotLin};
 sqrt ->{TotTanh,TotSin,TotCos,TotGaussian,TotAbsolute,TotSgn, TotLog,
TotSqrt+1,TotLin};
 linear ->{TotTanh,TotSin,TotCos,TotGaussian,TotAbsolute,TotSgn, TotLog,
TotSqrt,TotLin+1};
 Other -> io:format(“Unknown AF, please update AF_Distribution tuple with:~p~n.”,
[Other])
 end,
 U_ILAcc = IL_Count+ILAcc,
 U_OLAcc = OL_Count+OLAcc,
 U_ROAcc = RO_Count+ROAcc,
 get_NodeSummary(N_Ids,U_ILAcc,U_OLAcc,U_ROAcc,U_FunctionDistribution);
get_NodeSummary([],ILAcc,OLAcc,ROAcc,FunctionDistribution)->
 {ILAcc,OLAcc,ROAcc,FunctionDistribution}.

As shown in the get_NodeSummary function, we create the activation function
frequency distribution tuple by simply counting the different activation functions,
and forming a long tuple where every activation function (thus far used by our
system) has a position. Though simple, this is not the best implementation, be-
cause every time a new activation function is added, we will need to update the
AF distribution tuple such that it takes the new activation function into considera-
tion. Having now updated the update_fingerprint/1 function, we can implement in
the next section the population diversity calculating function needed by the stat
composing program.

12.3.3 Implementing the Trace Updating Cast Clause

Our new population_monitor no longer accepts the AgentEvalAcc, AgentCyc–
leAcc, and AgentTimeAcc containing message from the agent when it terminates.
The exoself no longer sends to the population_monitor the message {Agent_Id,
terminated, Fitness, AgentEvalAcc, AgentCycleAcc, AgentTimeAcc}. This message
was accepted by the cast clauses of the generational and steady_state evolutionary
loops. We modify both of these cast clauses to only accept the message:
{Agent_Id,terminated,Fitness}, because we now offload the evaluation, cycle, and
time accumulation, to its own dedicated cast clause. This new cast clause will ac-
cept the message of the form: {From,evaluations,Specie_Id,AgentEvalAcc,
AgentCycleAcc,AgentTimeAcc}, sent to it by the agent after it completes every
single evaluation.

536 Chapter 12 Keeping Track of Important Population and Evolutionary Stats

Because we want for the stat tuple to be constructed for each specie in the pop-
ulation, we need to keep a running evaluation counter for each specie, so that
when an agent sends the {From,evaluations...} message to the popula-
tion_monitor, this evaluation can be added to the evaluation counter belonging to
the proper specie. We modify the init/1 function with the parts shown in boldface
in the following listing.

Listing-12.2. The updated init/1 function.

init(Parameters) ->
 process_flag(trap_exit,true),
 register(monitor,self()),
 io:format(“******** Population monitor started with parameters:~p~n”,[Parameters]),
 State = case Parameters of
 {OpMode,Population_Id}->
 Agent_Ids = extract_AgentIds(Population_Id,all),
 ActiveAgent_IdPs = summon_agents(OpMode,Agent_Ids),
 P = genotype:dirty_read({population,Population_Id}),
 [put({evaluations,Specie_Id},0) || Specie_Id<-P#population.specie_ids],
 T = P#population.trace,
 TotEvaluations=T#trace.tot_evaluations,
 io:format(“Initial Tot Evaluations:~p~n”,[TotEvaluations]),
 #state{op_mode=OpMode,
 population_id = Population_Id,
 activeAgent_IdPs = ActiveAgent_IdPs,
 tot_agents = length(Agent_Ids),
 agents_left = length(Agent_Ids),
 op_tag = continue,
 evolutionary_algorithm = P#population.evo_alg_f,
 fitness_postprocessor = P#population.fitness_postprocessor_f,
 selection_algorithm = P#population.selection_f,
 best_fitness = 0,
 step_size = T#trace.step_size,
 tot_evaluations = TotEvaluations
 }
 end,
 {ok, State}.

It is the line:

[put({evaluations,Specie_Id},0) || Specie_Id <-P#population.specie_ids]

In the above code which is the one that initializes the evaluation counters for
each species in the population. This way, when an agent sends its evaluation mes-
sage, we can, using the Specie_Id within the agent’s message, execute the com-

12.3 Implementation 537

mand: get({evaluations,Specie_Id}), and retrieve the proper specie’s evaluations
accumulator from the process registry. Also, because the population’s evaluation
accumulator will be held by the #trace.tot_evaluations, we initialize the popula-
tion_monitor state’s initial tot_evaluations value from this trace parameter. We al-
so add to the population_monitor’s state record the step_size parameter, and set it
to the step_size specified by the population’s trace record. The rest of the init/1
function remains the same.

The new cast clause that will update the population’s trace, accepts messages
from the agents and keeps count of the total number of evaluations. If the number
of evaluations performed by the population_monitor in question exceeds the value
specified by the step_size parameter, the population_monitor updates the trace by
composing the specie stat tuples and entering them into the trace’s stats list. The
implementation of this new cast clause is shown in Listing-12.3.

Listing-12.3. The population_monitor’s new evaluation accumulating and trace updating cast
clause.

handle_cast({From,evaluations,Specie_Id,AgentEvalAcc,AgentCycleAcc,AgentTimeAcc},S)->
 Eval_Acc = S#state.eval_acc,
 U_EvalAcc = S#state.eval_acc+AgentEvalAcc,
 U_CycleAcc = S#state.cycle_acc+AgentCycleAcc,
 U_TimeAcc = S#state.time_acc+AgentTimeAcc,
 U_TotEvaluations = S#state.tot_evaluations + AgentEvalAcc,
 SEval_Acc=get({evaluations,Specie_Id}),
 put({evaluations,Specie_Id},SEval_Acc+AgentEvalAcc),
 case Eval_Acc rem 50 of
 0 ->
 io:format(“Evaluations/Step:~p~n”,[Eval_Acc]);
 _ ->
 done
 end,
 U_S=case U_EvalAcc >= S#state.step_size of
 true ->
 gather_STATS(S#state.population_id,U_EvalAcc),
 Population_Id = S#state.population_id,
 P = genotype:dirty_read({population,Population_Id}),
 T = P#population.trace,
 TotEvaluations=T#trace.tot_evaluations,
 io:format(“Tot Evaluations:~p~n”,[TotEvaluations]),
 S#state{eval_acc=0, cycle_acc=0, time_acc=0,
tot_evaluations=U_TotEvaluations};
 false ->
S#state{eval_acc=U_EvalAcc,cycle_acc=U_CycleAcc,time_acc=U_TimeAcc,tot_evaluations
=U_TotEvaluations}

538 Chapter 12 Keeping Track of Important Population and Evolutionary Stats

 end,
 {noreply,U_S};

handle_cast({_From,print_TRACE},S)->
 Population_Id = S#state.population_id,
 P = genotype:dirty_read({population,Population_Id}),
 io:format(“******** TRACE ********:~n~p~n”,[P#population.trace]),
 {noreply,S};

There is a second cast clause in the above listing: han-
dle_cast({_From,print_TRACE},S), which when receiving a print_TRACE re-
quest, prints to console the thus-far-composed trace. And of course the trace is al-
so automatically printed to console every 500 evaluations by the
population_monitor itself, to keep the researcher in the loop of the general evolu-
tionary progress of the population at hand.

By default, every 500 evaluations the population_monitor executes the gath-
er_STATS/2 function, which is the actual function that updates all the specie stat
lists and the population’s trace. This function is shown in Listing-12.4. When exe-
cuted, the gather_STATS/2 function executes the update_SpecieSTAT/2 function
for every specie belonging to the population. The update_SpecieSTAT/2 function
retrieves the evaluation accumulator from the process registry, so that the evalua-
tion accumulator value can be stored in the specie’s stat tuple. The function then
goes through every agent and adds up the number of neurons in each, and then di-
vides that number by the total number of agents and thus computes the average
NN size and its standard deviation. In the same manner, the function then calcu-
lates the average fitness, fitness standard deviation, and the max and min fitness
values reached by the agents belonging to the specie at the time of calculation. Fi-
nally, the diversity of the specie is calculated by executing the calcu-
late_SpecieDiversity/1 function. This function, using the agent fingerprints, calcu-
lates how many distinct fingerprints are present within the specie, which is the
diversity number of that specie. With all these values computed, the function then
enters this data into the stat record, and adds this new stat to the specie’s stats list.

Listing-12.4 The implementation of the gather_STATS/2 function, which updates the popula-
tion’s trace.

gather_STATS(Population_Id,EvaluationsAcc)->
 io:format(“Gathering Species STATS in progress~n”),
 TimeStamp = now(),
 F = fun() ->
 P = genotype:read({population,Population_Id}),
 T = P#population.trace,
 SpecieSTATS = [update_SpecieSTAT(Specie_Id,TimeStamp) || Specie_Id<-
P#population.specie_ids],

12.3 Implementation 539

 PopulationSTATS = T#trace.stats,
 U_PopulationSTATS = [SpecieSTATS|PopulationSTATS],
 U_TotEvaluations = T#trace.tot_evaluations+EvaluationsAcc,
 U_Trace = T#trace{
 stats = U_PopulationSTATS,
 tot_evaluations=U_TotEvaluations
 },
 io:format(“Population Trace:~p~n”,[U_Trace]),
 mnesia:write(P#population{trace=U_Trace})
 end,
 Result=mnesia:transaction(F),
 io:format(“Result:~p~n”,[Result]).

 update_SpecieSTAT(Specie_Id,TimeStamp)->
 Specie_Evaluations = get({evaluations,Specie_Id}),
 put({evaluations,Specie_Id},0),
 S = genotype:read({specie,Specie_Id}),
 {Avg_Neurons,Neurons_Std} = calculate_SpecieAvgNodes({specie,S}),
 {AvgFitness,Fitness_Std,MaxFitness,MinFitness} = calculate_SpecieFitness({
specie,S}),
 SpecieDiversity = calculate_SpecieDiversity({specie,S}),
 STAT = #stat{
 morphology = (S#specie.constraint)#constraint.morphology,
 specie_id = Specie_Id,
 avg_neurons=Avg_Neurons,
 std_neurons=Neurons_Std,
 avg_fitness=AvgFitness,
 std_fitness=Fitness_Std,
 max_fitness=MaxFitness,
 min_fitness=MinFitness,
 avg_diversity=SpecieDiversity,
 evaluations = Specie_Evaluations,
 time_stamp=TimeStamp
 },
 STATS = S#specie.stats,
 U_STATS = [STAT|STATS],
 mnesia:dirty_write(S#specie{stats=U_STATS}),
 STAT.

calculate_SpecieAvgNodes({specie,S})->
 Agent_Ids = S#specie.agent_ids,
 calculate_AvgNodes(Agent_Ids,[]);
calculate_SpecieAvgNodes(Specie_Id)->
 io:format(“calculate_SpecieAvgNodes(Specie_Id):~p~n”,[Specie_Id]),
 S = genotype:read({specie,Specie_Id}),

540 Chapter 12 Keeping Track of Important Population and Evolutionary Stats

 calculate_SpecieAvgNodes({specie,S}).

 calculate_AvgNodes([Agent_Id|Agent_Ids],NAcc)->
 io:format(“calculate_AvgNodes/2 Agent_Id:~p~n”,[Agent_Id]),
 A = genotype:read({agent,Agent_Id}),
 Cx = genotype:read({cortex,A#agent.cx_id}),
 Tot_Neurons = length(Cx#cortex.neuron_ids),
 calculate_AvgNodes(Agent_Ids,[Tot_Neurons|NAcc]);
 calculate_AvgNodes([],NAcc)->
 {functions:avg(NAcc),functions:std(NAcc)}.

calculate_SpecieDiversity({specie,S})->
 Agent_Ids = S#specie.agent_ids,
 Diversity = calculate_diversity(Agent_Ids);
calculate_SpecieDiversity(Specie_Id)->
 S = genotype:dirty_read({specie,Specie_Id}),
 calculate_SpecieDiversity({specie,S}).

 calculate_diversity(Agent_Ids)->
 calculate_diversity(Agent_Ids,[]).
 calculate_diversity([Agent_Id|Agent_Ids],DiversityAcc)->
 A = genotype:read({agent,Agent_Id}),
 Fingerprint = A#agent.fingerprint,
 U_DiversityAcc = (DiversityAcc -- [Fingerprint]) ++ [Fingerprint],
 calculate_diversity(Agent_Ids,U_DiversityAcc);
 calculate_diversity([],DiversityAcc)->
 length(DiversityAcc).

Listing-12.5 The updated terminate/2 function.

terminate(Reason, S) ->
 case S of
 [] ->
 io:format(“******** Population_Monitor shut down with Reason:~p, with
State: []~n”,[Reason]);
 _ ->
 OpMode = S#state.op_mode,
 Population_Id = S#state.population_id,
 P = genotype:dirty_read({population,Population_Id}),
 T = P#population.trace,

Finally, because we have changed from using eval_acc parameter in the state
record, and because we wish for the population_monitor to dump the trace tuple to
console when it has terminated, we must also update the terminate/2 function. The
updated terminate(Reason,S) function is show in the following listing.

12.3 Implementation 541

 TotEvaluations=T#trace.tot_evaluations,
 OpTag = S#state.op_tag,
 io:format(“******** TRACE START ********~n”),
 io:format(“~p~n”,[T]),
 io:format(“******** ^^^^ TRACE END ^^^^ ********~n”),
 io:format(“******** Population_Monitor:~p shut down with Reason:~p
OpTag:~p, while in OpMode:~p~n”,[Population_Id,Reason,OpTag,OpMode]),
 io:format(“******** Tot Agents:~p Population Generation:~p
Tot_Evals:~p~n”,[S#state.tot_agents,S#state.pop_gen,S#state.tot_evaluations])
 end.

With this function complete, the only remaining modification that we need to
add, is one to the exoself module. We have modified the types of messages the
population_monitor process can accept, and thus we have to update the exoself
process so that it can properly send such messages to the updated popula-
tion_monitor.

12.3.4 Updating the exoself Module

loop(S)->
 receive
 {Cx_PId,evaluation_completed,Fitness,Cycles,Time}->
...
 true ->%End training
 A=genotype:dirty_read({agent,S#state.agent_id}),
 genotype:write(A#agent{fitness=U_HighestFitness}),
 backup_genotype(S#state.idsNpids,S#state.npids),

In our current exoself implementation, when the agent exceeds the
max_attempts number of improvement attempts, it sends to the popula-
tion_monitor its thus-far-achieved fitness and the total number of evaluations, cy-
cles, and time taken to achieve it, by sending to the population monitor the mes-
sage: {S#state.agent_id,terminated, U_HighestFitness, U_EvalAcc, U_CycleAcc,
U_TimeAcc}. The population_monitor now accepts the evaluation, cycles, and
time accumulator values separately from the agent’s termination signals sent to it
when the agent terminates. We modify the termination message to use the format:
{Agent_Id,terminated,U_HighestFitness}, and make the agent execute:
gen_server:cast(S#state.pm_pid,{self(),evaluations,S#state.specie_id,1,Cycles,

after every completed evaluation. With this small modification, the exoself

loop/1 function, with the modified parts

Time})
can now send the properly formatted messages to the population_monitor. The
partial source code of the exoself’s main
of the source code highlighted in bold, is as follows:

542 Chapter 12 Keeping Track of Important Population and Evolutionary Stats

 terminate_phenotype(S#state.cx_pid, S#state.spids, S#state.npids,
S#state.apids, S#state.scape_pids),
 gen_server:cast(S#state.pm_pid,{S#state.agent_id,terminated,
U_HighestFitness});
 false -> %Continue training
...
 loop(U_S)
 end
 after 10000 ->
 io:format(“exoself:~p stuck.~n”,[S#state.agent_id])
 end.

12.4 Compiling & Testing

With the updates to the source code complete, we now test our neuroevolutio–
nary system using both, the generational and steady_state evolutionary loops, by
applying it to the XOR problem. To do this, we must first recreate the mnesia da-
tabase with the updated population record. Then compile the source, then set the
population_monitor parameters appropriately, and then finally run the test.

We first execute polis:sync(), polis:reset(), and then polis:start() to recompile
and load all the modules, create the mnesia database, and then start the polis pro-
cess:

1> polis:sync().
…
…
...
up_to_date
2> polis:reset().
{atomic,ok}
3> polis:start().
Parameters:{[],[]}
******** Polis: ##MATHEMA## is now online.
{ok,<0.181.0>}

With this done, we go into the population_monitor module and set the
INIT_CONSTRAINTS to:

-define(INIT_CONSTRAINTS,[#constraint{morphology=Morphology,
connection_architecture =CA, population_evo_alg_f=generational} || Morphology<-
[xor_mimic],CA<-[feedforward]]).

12.4 Compiling & Testing 543

And the terminating conditions to:

-define(GENERATION_LIMIT,100).
-define(EVALUATIONS_LIMIT,100000).
-define(FITNESS_GOAL,inf).

This will allow us to first test the new features with the population_monitor
running in the generational evolutionary loop, and the fitness goal set to inf, thus
letting the neuroevolutionary system to run for at least 100000 evaluations or 100
generations, giving itself plenty of time to compose a long trace. With these pa-
rameters set, we compile the population_monitor module, and execute popula-
tion_monitor:test(). Because the population_monitor automatically prints the trace
every 500 evaluations, if you run the test to completion, and then scroll upwards
on the console, you will see the trace printout. In the following listing, I run the
population_monitor:test() program, and for the sake of brevity only printout the
first and last stat tuples in the trace’s stats list:

Listing-12.5 Testing the trace construction using the generational evolutionary loop.

******** TRACE START ********
{trace,[[{stat,xor_mimic,7.545734705407886e-10,2.0,0.0,899806.2187523855,
 299935.2472592368,999803.9690288296,0.4871219879281525,7,500,
 {1325,252006,807398}}],
...
 [{stat,xor_mimic,7.545734705407886e-10,1.2,0.4,165.48172889712018,
 42.53153201193604,187.42531939466735,41.051077769669675,7,500,
 {1325,251998,861970}}]],
 28000,500}
******** ^^^^ TRACE END ^^^^ ********
******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:10 Population Generation:100 Tot_Evals:28332

It works! The test ran to completion, and the trace was composed and printed to
console. The trace produced by your run will differ of course, but the common
features will be that the trace will represent the gradual progress from unfit agents
to the more fit ones. In the above printout I’ve highlighted the max fitness reached
during the first 500 evaluations, and during the last 500 evaluations, after 28332
evaluations in total. We can now use this trace to create a graph of fitness vs. eval-
uations, or NN size vs. evaluations... Also, we could run the test multiple times,
gathering the traces, and then averaging them. Doing so would allow us to better
understand the average and general performance of our system, how rapidly the
fitness improves, and other temporally progressing features of the evolutionary
runs on the particular problem we applied the system to.

544 Chapter 12 Keeping Track of Important Population and Evolutionary Stats

In the same manner we can again modify the INIT_CONSTRAINTS, changing
the population_evo_alg_f from generational, to steady_state. We then recompile
the population_monitor module, and execute the population_monitor:test() func-
tion again, the results of which are shown in Listing-12.6.

Listing-12.6 Testing the trace construction using the steady_state evolutionary loop.

******** TRACE START ********
{trace,[[{stat,xor_mimic,7.545736660182336e-10,2.210526315789474,
 0.4076824574955175,684245.1500749566,464778.56244874984,
 999999.995222936,0.39673797258986543,9,500,
 {1325,251701,23562}}],
...
 [{stat,xor_mimic,7.545736660182336e-10,1.4210526315789473,
 0.4937279747182558,60098.723519683044,222254.0763078003,
 998548.771899295,0.20552720368183247,12,500,
 {1325,251655,536129}}]],
 100000,500}
******** ^^^^ TRACE END ^^^^ ********
******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:10 Population Generation:0 Tot_Evals:100321

Again only the first and last stat lists are shown, where each stat list only has a
single stat tuple since there is only one specie within the population. Notice that
unlike the last time, where the neuroevolutionary system stopped after 28332
evaluations, here our system continued evolving agents for 100000 evaluations,
after which it stopped creating new offspring, and then waited for the remaining
agents to terminate (hence the reason for Tot_Evals:100321, a number slightly
larger than 100000). This is because in the steady_state evolutionary loop, there
are no generations, hence it staying at 0. And because we set the fitness goal to inf,
the only remaining termination condition that could be satisfied was the evaluation
limit set to 100000.

We have now ran the test using both, generational and steady_state evolution-
ary loops, and it worked because we had modified the cast clauses for both of
them. We now can be assured that the evaluation counting and other statistic
counting features of the population_monitor are independent of which evolution-
ary loop we choose to use.

12.5 Summary & Discussion 545

12.5 Summary & Discussion

In this chapter we have extended our neuroevolutionary system, and gave the
population_monitor the ability to keep track of the population’s various statistics,
and an ability to generally monitor how the agents evolve and change over time.
Some of those statistics are with regards to the average fitness of the species, other
statistics deal with the size of the NN systems, and still other deal with the popula-
tion’s diversity. All of these are important to keep track of when one attempts to
determine whether the system is functioning properly and is able to improve and
evolve the population towards the right direction.

Every time a neuroevolutionary system is applied to a problem, or used in a
simulation, we need to be able to see how the population is evolving. The tem-
poral factors, the diversity, and everything else about the population, needs to be
somehow gaged. In this chapter we created a simple extension to the popula-
tion_monitor, that allows it to calculate the various statistics every X number of
evaluations. The population acquired a new parameter, the trace tuple. The trace
not only counts the number of evaluations performed by the population as a
whole, but also keeps a list called stats which is a list of lists, where each list is
composed of specie stat tuples. The stat tuple holds the statistical features of a par-
ticular specie for which it was calculated. In this manner we can keep track of spe-
cie turnover values, average neural network sizes, fitness, diversity, efficiency...

The trace constructing program and evaluation counting implementation we
created in this chapter is decoupled enough from our general evolutionary system,
that we can extend it in the future without worrying of also having to modify the
rest of our TWEANN platform. Though at this time the stat tuple keeps track of
simply the size, fitness, and diversity of a specie, the record can be easily modified
to keep track of other statistics, such as connectedness, level of recurrence, effi-
ciency with regards to the use of neurons, evolvability... Using the stats list, we
can graph this data easily, and thus determine how our system behaves, where it
lacks, what should be improved... But this only allows us to compose a trace of a
single population, of a single evolutionary run. When benchmarking, an experi-
ment is usually composed of multiple evolutionary runs and applications to a par-
ticular problem, and the resulting graphs and statistics are the averages of said
evolutionary runs. In the next chapter we create another program that will assist in
performing just that task.

Chapter 13 The Benchmarker

Abstract In this chapter we add the benchmarker process which can sequentially
spawn population_monitors and apply them to some specified problem/simulation.
We also extend the database to include the experiment record, which the
benchmarker uses to deposit the traces of the population’s evolutionary statistics,
and to recover from crashes to continue with the specified experiment. The
benchmarker can compose experiments by performing multiple evolutionary runs,
and then produce statistical data and GNUplot ready files of the various evolution-
ary dynamics and averages calculated within the experiment.

Though in the previous chapter we have completed the development of the
most important part of keeping track of the population’s statistics and progress, we
can still go a step further and add one more program, the benchmarker. When run-
ning a simulation or experiment, the progress of the population, the trace, repre-
sents a single evolutionary path of the population. When analyzing the functionali-
ty of our system, when we want to benchmark a new added element, we might
wish to run the simulation multiple times, we might want to create multiple traces
for the same problem, and then average them before starting to analyze the func-
tionality of our TWEANN, or the results of applying it to some simulation or
problem.

The benchmarker process we want to create here is in some sense similar to the
one we implemented in Section-7.7. This program will offer us a concise and ro-
bust way in which to apply the population_monitor to some problem multiple
times, and thus build a dataset by averaging the performance of our neuroevolu–
tionary system from multiple applications to the problem, from multiple evolu-
tionary runs. The benchmarker will be called with the following parameters:

1. The INIT_CONSTRAINTS parameter, which will specify the type of problem
the benchmarker will create the populations for.

2. The parameter N, which will specify the number of times the benchmarker
should apply the neuroevolutionary system to the problem.

3. The termination condition parameters (evaluations limit, generation limit, and
fitness goal).

The benchmarker’s operational scenario would be as follows: The benchmarker
process would first spawn the population_monitor. Then wait for the popula-
tion_monitor to reach its termination condition, send benchmarker the accumulat-
ed trace record, and then terminate. Afterwards, the benchmarker would store the
trace into its trace accumulator, and spawn a new population_monitor which
would try to solve the problem again. This would continue for N number of times,
at which point the benchmarker would have accumulated N traces. It could then

DOI 10.1007/978-1-4614- - © Springer Science+Business Media New York 2013 4463 3_13,
547

average the trace results and form a single trace average (the various averages

 G.I. Sher, Handbook of Neuroevolution Through Erlang,

548 Chapter 13 The Benchmarker

written to file in the format which can be graphed and visualized, by perhaps a
program like gnuplot [1].

13.1 The benchmarker Architecture

The purpose of the benchmarker process is simple, to spawn a popula-
tion_monitor, wait for it to finish solving the problem or reach a termination con-
dition and send its composed trace to the benchmarker process (if the
benchmarker was the one that spawned the population_monitor), and then
respawn another population_monitor, repeating the procedure N times. Once the
benchmarker has done this N number of times, and thus has accumulated N traces,
the benchmarker is to analyze the traces, build the averages of those traces, and
write this data to a file, and optionally print it to console.

Because gnuplot is so prevalent in plotting data in the scientific community, we
want the benchmarker to write to file the resulting benchmark data in a format that
can be directly used by gnuplot. Some of the information that can be plotted is:
Fitness Vs. Evaluations, NN Size Vs. Evaluations, and Specie Diversity Vs. Evalu-
ations.

Furthermore, assume that we are running our benchmark on a single machine.
We planned on applying our neuroevolutionary system to some problem 100
times, each for 100000 evaluations. And on the 90th evolutionary run there is a
power outage, and we lose all 90 evolutionary run traces when we only had 10
more to go before completing the full experiment composed of 100 evolutionary
runs. To prevent such situations, we must of course save the trace results which
belong to the same experiment, after every evolutionary run. Thus if there is a
power outage, or we wish to stop the experiment at some point, we need to ensure
that whichever evolutionary runs have already been done, will have their traces
backed up, and thus give us a chance to continue with the experiment when we are
ready again.

between all the traces composing the experiment). This trace average can then be

In the following sections we will implement this benchmarker process. The
ability to determine and graph the performance statistics of a neuroevolutionary
system allows one to advance it, to see where it might have flaws and what new
features should be added, and the affect of those new features on its performance.
The benchmarker program also assists in conducting research, for the results and
applications of the neuroevolutionary system must be presented at one point or
another, and thus a benchmark of the neuroevolutionary system’s general and av-
erage performance on some task must be composed. The experiment must be run
multiple times, such that the accuracy and the standard deviation of the results can
be calculated. And that is exactly what the benchmarker program will assist in
doing.

13.2 Adding New Records 549

To add such functionality, we will create a new mnesia table called experiment,
which will allow for every experiment to have its own id or name, and a trace_acc
list where it will accumulate the traces which belong to that particular experiment.
It will be the benchmarker process that will backup the traces to their appropriate
experiment entry, after every completed simulation or problem run.

To accomplish all of this, the benchmarker process needs to be able to do the
following tasks:

4. Know how many evolutionary runs to perform for the experiment.
5. Know the name of the experiment, so that it can store the traces to their appro-

priate locations in the mnesia table.
6. Be able to specify the initial state parameters with which to start the popula-

tion_monitor process, and restart it after a crash.

This means that other than adding the experiment record to the records.hrl file
and creating a mnesia table of the same name, we must also modify how the popu-
lation_monitor is started. Currently, it uses the macros defined within the module.
These macros define how large the initial population size should be, the termina-
tion conditions... This makes it difficult to start the population_monitor from an-
other module, and control the population_monitor’s parameters from the same.

In the following sections we create the new records and add the new table to
the mnesia database. We then make a small modification to the popula-
tion_monitor module, move the previously macro defined parameters into the state
record, and add a new function with which the population_monitor can be started
and have its state record initialized. Finally, we then create the actual benchmarker
module.

13.2 Adding New Records

We need to modify the population_monitor’s state record, and then add two
new records to the records.hrl file. The population_monitor’s new state record will
include all the elements that were previously defined through the macros of that
module. With regards to the two new records to be added to the records.hrl, one of
them will be the new mnesia table, experiment, and the other record, pmp (popula-
tion monitor parameters) will be used specifically by the benchmarker to call and
start the population_monitor process with a certain set of parameters, thus setting
the population_monitor’s initial state tuple to the proper values.

Thus we will need to expand its state record to include the previously macro
tion with which to start the popula-

tion_monitor, a function which can be executed with a list of parameters, the

population_monitor is started.

defined parameters, and add a new func

parameters that are then entered into the state tuple with which the

550 Chapter 13 The Benchmarker

The population_monitor originally specified its state and other parameters for
its operation using the macros and records at the top of the module, as shown in
Listing-13.1.

Listing-13.1 The macros and records originally used by the population_monitor process.

-define(INIT_CONSTRAINTS,[#constraint{morphology=Morphology, connec-
tion_architecture=CA, population_evo_alg_f=steady_state} || Morphology<-[xor_mimic],CA<-
[feedforward]]).
-define(SURVIVAL_PERCENTAGE,0.5).
-define(SPECIE_SIZE_LIMIT,10).
-define(INIT_SPECIE_SIZE,10).
-define(INIT_POPULATION_ID,test).
-define(OP_MODE,gt).
-define(INIT_POLIS,mathema).
-define(GENERATION_LIMIT,100).
-define(EVALUATIONS_LIMIT,100000).
-define(GEN_UID,genotype:generate_UniqueId()).
-define(FITNESS_GOAL,1000).
-record(state,{ op_mode, population_id, activeAgent_IdPs=[], agent_ids=[], tot_agents,
agents_left, op_tag,agent_summaries=[], pop_gen=0, eval_acc=0, cycle_acc=0, time_acc=0,
step_size, next_step, goal_status,evolutionary_algorithm, fitness_postprocessor,
selection_algorithm, best_fitness }).

Because the population_monitor’s macros are module specific, and we would
like to be able to specify in which manner to start the population_monitor, what its
fitness goal should be, evaluation and generation limits, and what polis it should
use... we need to move all the macro defined elements into the popula-
tion_monitor’s state record. This way the benchmarker process can call the popu-
lation_monitor and specify all these previously macro defined parameters. We al-
so add one extra parameter to the state record, the benchmarker_pid element,
which can be set to the PId of the benchmarker process, and then used by the pop-
ulation_monitor to send its trace to the benchmarker process that spawned it. The
population_monitor’s new state record is shown in Listing-13.2, where the newly
added elements are shown in boldface.

Listing-13.2 The updated state record of the population_monitor module.

-record(state,{
 op_mode = gt,
 population_id = test,
 activeAgent_IdPs = [],
 agent_ids = [],
 tot_agents,
 agents_left,

13.2 Adding New Records 551

 op_tag,
 agent_summaries = [],
 pop_gen = 0,
 eval_acc = 0,
 cycle_acc = 0,
 time_acc = 0,
 tot_evaluations = 0,
 step_size,
 goal_status,
 evolutionary_algorithm,
 fitness_postprocessor,
 selection_algorithm,
 best_fitness,
 survival_percentage = 0.5,
 specie_size_limit = 10,
 init_specie_size = 10,
 polis_id = mathema,
 generation_limit = 100,
 evaluations_limit = 100000,
 fitness_goal = inf ,
 benchmarker_pid
}).

When we start the population_monitor, we want to be able to define these ele-
ments. Their default values are shown in the state record, but every-time we run an
experiment, we want to be able to set these parameters to whatever we want. Thus,
we add the pmp (population monitor parameters) record to the records.hrl, so that
it can be set by the benchmarker, and read by the population_monitor. This new
record is shown in Listing-13.3, and its elements are defined as follows:

1. op_mode: Allows the benchmarker to define the mode in which the popula-
tion_monitor operates. Thus far we only used the gt, which we have not yet used
to specify any particular mode of operation, but we will in a much later chapter. In
the future we can define new modes, for example the throughput mode during
which the agents are not tuned or evaluated, but simply tested for whether they are
functional, whether they can gather signals through sensors and output actions
through their actuators. The throughput op_mode could also then be used to
benchmark the speed of the cycle of the NN based agent, and thus used to test
which topologies can process signals faster, and which designs and architectures
and implementations of neurons, sensors, actuators, and cortexes are more effi-
cient. Or we could specify the op_mode as standard, which would make the pop-
ulation monitor function in some standard default manner. With regards to gt, it
stands for genetic tuning, but due to our not yet having specified other operational
modes, or taken advantage of this parameter, it is effectively the standard mode
of operation until we add a new one in Chapter-19.

552 Chapter 13 The Benchmarker

Listing-13.3 The new pmp (population monitor parameters) record added to the records.hrl

-record(pmp,{
 op_mode=gt,
 population_id=test,
 survival_percentage=0.5,
 specie_size_limit=10,
 init_specie_size=10,
 polis_id = mathema,
 generation_limit = 100,
 evaluations_limit = 100000,
 fitness_goal = inf ,
 benchmarker_pid
}).

2. population_id: Allows the benchmarker to set the population’s id.
3. survival_percentage: Allows the benchmarker to set which percentage of the

population survives during the selection phase.
4. specie_size_limit: Allows the benchmarker to set the size limit of every spe-

cie within the population. This is an important parameter to define when start-
ing an experiment.

5. init_specie_size: Allows the benchmarker to define the initial size of the spe-
cie. For example the experiment can be started where the initial specie size is
set to 1000, but the specie size limit is set to 100. In this way, there would be
a great amount of diversity (given the constraint is defined in such a manner
that NN based agents have access to a variety of plasticity functions, activa-
tion functions...), but after a while only 100 are allowed to exist at any one
time. Or things could be done in the opposite way, the initial specie size can be
small, and the limit specie size large. Allowing the specie to rapidly expand in
numbers and diversity, from some small initial bottleneck in the population.

6. polis_id: Allows the benchmarker to define in which polis the popula-
tion_monitor will create the new agent population.

7. generation_limit: Every experiment needs a termination condition, and the
benchmarker specifies the generation limit based termination condition for the
population_monitor, using this parameter.

8. evaluations_limit: Lets the benchmarker specify the evaluations limit based
termination condition.

9. fitness_goal: Lets the benchmarker specify the fitness based termination con-
dition.

10. benchmarker_pid: This parameter is set to undefined by default. If the popu-
lation_monitor has been spawned for a particular experiment by the
benchmarker, then the benchmarker sets this parameter to its own PId. Using
this PId, the population_monitor can, when the neuroevolutionary run has
reached its termination condition, send its trace to the benchmarker process.

13.2 Adding New Records 553

The pmp record does not necessarily need to be used only by the benchmarker.
The researcher can of course, rather than specifying these parameters in the popu-
lation_monitor module and then recompiling it, simply start the popula-
tion_monitor using the pmp record and the new prep_PopState/2 function we will
build in the next subsection, and in this way define all the necessary experiment
parameters.

The new experiment table we will add to the mnesia database will hold all the
general, experiment specific data, particularly the traces. This is the record that the
benchmarker populates as it runs the problem or experiment multiple times to
generate multiple traces. The experiment record is shown in Listing-13.4, and its
elements are defined as follows:

1. id: Is the unique id or name of the experiment being conducted. Because we
wish for this new mnesia table to hold numerous experiments, we need to be
able to give each experiment its own particular id or name.

2. backup_flag: This element is present for the use by the benchmarker. When
we start the benchmarker program with the experiment tuple whose back-
up_flag is set to false, it does not backup that particular experiment to mnesia.
This might be useful when we wish to quickly run an experiment but not write
the results to the database.

3. pm_parameters: This element will store the pmp record with which the pop-
ulation_monitor was started for this particular experiment. This will allow us to
later on know what the experiment was for, and how the population_monitor
was started (all the initial parameters) to produce the results and traces in the
experiment entry. This way the experiment can be replicated later on.

4. init_constraints: Similarly to the pm_parameters which defines how the pop-
ulation_monitor runs, we also need to remember the parameters of the popula-
tion itself, and the experiment to which the traces belong. This information is
uniquely identified by the init_constraints list with which the population is
created. Having the init_constraints will allow us to later on replicate the ex-
periment if needed.

5. progress_flag: This element can be set to two values: in_progress and com-
pleted. The experiment is in progress until it has been run for tot_runs number
of times, and thus the experiment has accumulated tot_runs number of traces
in its trace_acc list. If for example during the experiment run there is a power
outage, when we later go through all the experiments in the experiment table,
we will be able to determine which of the experiments were interrupted, based
on their progress_flag. Any experiment whose progress_flag is set to
in_progress, but which is not currently running, must have been interrupted,
and still needs to be completed. Once it is completed, the progress_flag is set
to: completed.

6. trace_acc: This is a list where we store the trace tuples. If we apply our
TWEANN to some particular problem 10 times, and thus perform 10 evolu-
tionary runs, we keep pushing new trace tuples into this list until it contains

554 Chapter 13 The Benchmarker

Listing-13.4 The experiment record.

-record(experiment,{
 id,
 backup_flag = true,
 pm_parameters,
 init_constraints,
 progress_flag=in_progress,
 trace_acc=[],
 run_index=1,
 tot_runs=10,
 notes,
 started={date(),time()},
 completed,
 interruptions=[]

all 10 traces, which we can later use at our leisure to build graphs and/or de-
duce performance statistics.

7. run_index: We plan on running the experiment some tot_runs number of
times. The run_index keeps track of what the current run index is. If the ex-
periment is interrupted, using this and other parameters we can restart and
continue with the experiment where we left off.

8. tot_runs: This element defines the total number of times that we wish to per-
form the evolutionary run, the total number of traces to build this particular
experiment from.

9. notes: This can contain a data of any form; string, lists, tuple... This element
simply adds an extra open element where some other data can be noted, data
which does not belong to any other element in this record.

10. started: This element is the tuple: {date(), time()}, which specifies when the
experiment was started.

11. completed: Complementary to the started element, this one stores the date()
and time() of when the experiment was finally completed.

12. interruptions: This element is a list of tuples, whose form is: {date(), time()}.
These tuples are generated every time the experiment has been restarted after
an interruption. For example assume we are running an experiment, and on
the 4th run, at which point the trace_acc already contains 3 trace tuples, the
experiment was interrupted. Later on when we wish to continue with the ex-
periment, we look through the mnesia database, in the experiment table, for
an experiment whose progress_flag is set to in_progress. When we find this
experiment, we know it has been interrupted, we take its pm_parameters and
init_constraints and continue with the experiment, but also, we push to the in-
terruptions list the tuple {date(),time()}, which ensures that this experiment
notes that there was an interruption to the experiment, it was not a single con-
tinues run, and that though we do not know when that interruption occurred,
we did continue with the experiment on the date: date(), and time: time().

13.3 Updating the population_monitor Module 555

}).

With all the new records defined, we can now move forward and make the
small modification to the population_monitor module, creating its new
prep_PopState/2 function, which will allow the benchmarker, and the researcher,
to start the population_monitor process with its state parameters defined by the
pmp record that the prep_PopState/2 is executed with.

13.3 Updating the population_monitor Module

Listing-13.5 The prep_PopState/2 function used to initialize the state parameters of the popula-
tion_monitor.

prep_PopState(PMP,Specie_Constraints)->
 S=#state{
 op_mode=PMP#pmp.op_mode,
 population_id = PMP#pmp.population_id,
 survival_percentage=PMP#pmp.survival_percentage,
 specie_size_limit=PMP#pmp.specie_size_limit,
 init_specie_size=PMP#pmp.init_specie_size,
 polis_id=PMP#pmp.polis_id,
 generation_limit=PMP#pmp.generation_limit,
 evaluations_limit=PMP#pmp.evaluations_limit,
 fitness_goal=PMP#pmp.fitness_goal ,
 benchmarker_pid=PMP#pmp.benchmarker_pid
 },
 init_population(S,Specie_Constraints).

As can be seen, we now execute the init_population/2 function with the state
tuple rather than the original population_id and the opmode parameters. This
means that all the other functions which originally used the macros of this module,
need to be slightly modified to now simply use the parameters which are now
specified within the population_monitor’s state record. The modifications are very

Instead of using the macros, we now store all the parameters in the popula-
tion_monitor’s state record. To start the population_monitor with a particular set
of parameters, we now need to create a new function in which we define and set
the state to the particular parameters we want the population_monitor to operate
under. To set everything up for a population_monitor, we only need the parame-
ters defined in the pmp and the constraint record. Thus we create the
prep_PopState/2 function which is executed with the pmp record, and a list of
constraint records, as its parameters. The new prep_PopState/2 function is shown
in Listing-13.5.

556 Chapter 13 The Benchmarker

small and few in number, and are thus not shown. The updated popula-
tion_monitor module can be found in the 13th chapter of the available supplemen-
tary material [2].

Finally, we modify the termination clause of the population_monitor, since
now at the moment of termination, the population_monitor needs to check whether
it was a benchmarker that had spawned it. The population_monitor accomplishes
this by checking the benchmarker_pid parameter. If this parameter is set to unde-
fined, then the population_monitor does not need to send its trace anywhere. If the
benchmarker_pid is defined, then the process forwards its trace to the specified
PId. The updated terminate/2 callback is shown in Listing-13.6.

Listing-13.6 The updated terminate/2 function, capable of sending the benchmarker the popula-
tion_monitor’s trace record, if the benchmarker was the one which spawned it.

terminate(Reason, S) ->
 case S of
 [] ->
 io:format(“******** Population_Monitor shut down with Reason:~p, with
State: []~n”,[Reason]);
 _ ->
 OpMode = S#state.op_mode,
 OpTag = S#state.op_tag,
 TotEvaluations=S#state.tot_evaluations,
 Population_Id = S#state.population_id,
 case TotEvaluations < 500 of
 true ->%So that there is at least one stat in the stats list.
 gather_STATS(Population_Id,0);
 false ->
 ok
 end,
 P = genotype:dirty_read({population,Population_Id}),
 T = P#population.trace,
 U_T = T#trace{tot_evaluations=TotEvaluations},
 U_P = P#population{trace=U_T},
 genotype:write(U_P),
 io:format(“******** TRACE START ********~n”),
 io:format(“~p~n”,[U_T]),
 io:format(“******** ^^^^ TRACE END ^^^^ ********~n”),
 io:format(“******** Population_Monitor:~p shut down with Reason:~p
OpTag:~p, while in OpMode:~p~n”,[Population_Id,Reason,OpTag,OpMode]),
 io:format(“******** Tot Agents:~p Population Generation:~p
Tot_Evals:~p~n”,[S#state.tot_agents,S#state.pop_gen,S#state.tot_evaluations]),
 case S#state.benchmarker_pid of
 undefined ->

13.4 Implementing the benchmarker 557

 ok;
 PId ->
 PId ! {S#state.population_id,completed,U_T}
 end
 end.

With this done, and everything set up for the benchmarker to be able to spawn
the population_monitor and store the experiment data if it wishes to do so, we now
move forward to the next subsection and create this new benchmarker module.

13.4 Implementing the benchmarker

The benchmarker process will have three main functionalities:

1. To run the population_monitor N number of times, waiting for the popula-
tion_monitor’s trace after every run.

2. Create the experiment entry in the mnesia database, and keep updating its
trace_acc as it itself accumulates the traces from the spawned popula-
tion_monitors. The benchmarker should only do this if the backup_flag is set to
true in the experiment record with which the benchmarker was started.

3. When the benchmarker has finished performing N number of evolutionary
runs, and has accumulated N number of traces, it must print all the traces to
console, calculate averages of the parameters between all the traces, and then
finally write that data to file in the format which can be immediately graphed
by GNUPlot.

In addition, because the benchmarker might be interrupted as it accumulates the
traces, we want to build a function which can continue with the experiment when
executed. Because each experiment will have its own unique Id, and because each
experiment is stored to mnesia, this continue function should be executed with the
experiment id parameter. When executed, it should read from the mnesia database
all the needed information about the experiment, and then run the popula-
tion_monitor the remaining number of times to complete the whole experiment.

In Listing-13.7 we implement the new benchmarker module. The comments af-
ter each function describe its functionality and purpose.

Listing-13.7 The implementation of the benchmarker module.

-module(benchmarker).
-compile(export_all).
-include(“records.hrl”).
%%% Benchmark Options %%%
-define(DIR,”benchmarks/”).

558 Chapter 13 The Benchmarker

-define(INIT_CONSTRAINTS,[#constraint{morphology=Morphology,
connection_architecture =CA, population_evo_alg_f=generational} || Morphology<-
[xor_mimic], CA<-[feedforward]]).
%%
start(Id)->
 PMP = #pmp{
 op_mode=gt,
 population_id=Id,
 survival_percentage=0.5,
 specie_size_limit=10,
 init_specie_size=10,
 polis_id = mathema,
 generation_limit = 100,
 evaluations_limit = 10000,
 fitness_goal = inf
 },
 E=#experiment{
 id = Id,
 backup_flag = true,
 pm_parameters=PMP,
 init_constraints = ?INIT_CONSTRAINTS,
 progress_flag=in_progress,
 run_index=1,
 tot_runs=10,
 started={date(),time()},
 interruptions=[]
 },
 genotype:write(E),
 register(benchmarker,spawn(benchmarker,prep,[E])).
%start/1 is called with the experiment id or name. It first assigns all the parameters to the pmp
and experiment records, and then writes the record to database (overwriting an existing one of
the same name, if present), and then finally spawns and registers the actual benchmarker pro-
cess.

continue(Id)->
 case genotype:dirty_read({experiment,Id}) of
 undefined ->
 io:format(“Can’t continue experiment:~p, not present in the database.~n”,[Id]);
 E ->
 case E#experiment.progress_flag of
 completed ->
 Trace_Acc = E#experiment.trace_acc,
 io:format(“Experiment:~p already completed:~p~n”, [Id,
Trace_Acc]);
 in_progress ->

13.4 Implementing the benchmarker 559

 Interruptions = E#experiment.interruptions,
 U_Interruptions = [now()|Interruptions],
 U_E = E#experiment{
 interruptions = U_Interruptions
 },
 genotype:write(U_E),
 register(benchmarker,spawn(benchmarker,prep,[U_E]))
 end
 end.
%The continue/1 function spawns a benchmarker to continue a previously stopped experiment.
If the experiment with the name/id of the Id parameter is already present in the database, and its
progress_flag is set to in_progress, which means that the experiment has not yet completed and
should continue running and accumulating new traces into its trace_acc list, then this function
updates the experiment’s interruptions list, and then spawns the benchmarker process using the
experiment tuple as its parameter. The experiment record holds all the needed information to
start the population_monitor, it contains a copy of the population monitor parameters, and the
initial constraints used.

prep(E)->
 PMP = E#experiment.pm_parameters,
 U_PMP = PMP#pmp{benchmarker_pid=self()},
 Constraints = E#experiment.init_constraints,
 Population_Id = PMP#pmp.population_id,
 population_monitor:prep_PopState(U_PMP,Constraints),
 loop(E#experiment{pm_parameters=U_PMP},Population_Id).
%prep/1 function is run before the benchmarker process enters its main loop. This function ex-
tracts from the experiment all the needed information to run the popula-
tion_monitor:prep_PopState/2 function and to start the population_monitor process with the
right set of population monitor parameters and specie constraints.

loop(E,P_Id)->
 receive
 {P_Id,completed,Trace}->
 U_TraceAcc = [Trace|E#experiment.trace_acc],
 U_RunIndex = E#experiment.run_index+1,
 case U_RunIndex >= E#experiment.tot_runs of
 true ->
 U_E = E#experiment{
 trace_acc = U_TraceAcc,
 run_index = U_RunIndex,
 completed = {date(),time()},
 progress_flag = completed
 },
 genotype:write(U_E),
 report(U_E#experiment.id,”report”);

560 Chapter 13 The Benchmarker

 false ->
 U_E = E#experiment{
 trace_acc = U_TraceAcc,
 run_index = U_RunIndex
 },
 genotype:write(U_E),
 PMP = E#experiment.pm_parameters,
 Constraints = E#experiment.init_constraints,
 population_monitor:prep_PopState(PMP,Constraints),
 loop(U_E,P_Id)
 end;
 terminate ->
 ok
 end.
%loop/2 is the main benchmarker loop, which can only receive two types of messages, a trace
from the population_monitor process, and a terminate signal. The benchmarker is set to run the
experiment, and thus spawn the population_monitor process tot_runs number of times. After
receiving the trace tuple from the population_monitor, it checks whether this was the last run or
not. If it is not the last run, the benchmarker updates the experiment tuple, writes it to the data-
base, and then spawns a new population_monitor by executing the popula-
tion_monitor:prep_PopState/2 function. If it is the last run, then the function updates the exper-
iment tuple, sets the progress_flag to completed, writes the updated experiment tuple to
database, and runs the report function which calculates the averages and other statistical data,
and produces the data for graphing, a file which can be used by the gnuplot program.

report(Experiment_Id,FileName)->
 E = genotype:dirty_read({experiment,Experiment_Id}),
 Traces = E#experiment.trace_acc,
 {ok, File} = file:open(?DIR++FileName++”_Trace_Acc”, write),
 lists:foreach(fun(X) -> io:format(File, “~p.~n”,[X]) end, Traces),
 file:close(File),
 io:format(“******** Traces_Acc written to
file:~p~n”,[?DIR++FileName++”_Trace_Acc”]),
 Graphs = prepare_Graphs(Traces),
 write_Graphs(Graphs,FileName++”_Graphs”),
 Eval_List = [T#trace.tot_evaluations||T<-Traces],
 io:format(“Avg Evaluations:~p~n”,[functions:avg(Eval_List),functions:std(Eval_List)]).
%report/2 is called with the id of the experiment to report upon, and the FileName to which to
write the gnuplot formatted graphable data calculated from the given experiment. The function
first extracts the experiment record from the database, then opens a file in the ?DIR directory to
deposit the traces there, then calls the prepare_Graphs/1 function with the trace list from the
experiment, and finally, with the data having now been prepared by the prepare_Graphs/1 func-
tion, the report function executes write_Graphs/2 to write the produced graphable data to the
file FileName.

13.4 Implementing the benchmarker 561

-record(graph,{morphology,avg_neurons=[],neurons_std=[],avg_fitness=[],fitness_std=[],
max_fitness=[], min_fitness=[],avg_diversity=[],diversity_std=[],evaluations=[],
evaluation_Index=[]}).
-record(avg,{avg_neurons=[],neurons_std=[],avg_fitness=[],fitness_std=[],max_fitness=[],
min_fitness=[], avg_diversity=[],diversity_std=[],evaluations=[]}).
%These two records contain the parameters specifically for the prepare_Graphs function. These
records are used to accumulate data needed to calculate averages and other statistical data from
the traces.

prepare_Graphs(Traces)->
 [T|_] = Traces,
 [Stats_List|_] = T#trace.stats,
 Morphologies = [S#stat.morphology || S<-Stats_List],
 Morphology_Graphs = [prep_Traces(Traces,Morphology,[])|| Morphology <-
Morphologies],
 [io:format(“Graph:~p~n”,[Graph])|| Graph<-Morphology_Graphs],
 Morphology_Graphs.
%prepare_Graphs/1 first checks a single trace in the Traces list to build a list of the morpholo-
gies present in the population (the number and types of which stays stable in our current im-
plementation throughout the evolutionary run), since the statistical data is built for each mor-
phology as its own specie. The function then prepares the graphable lists of data for each of the
morphologies in the trace. Finally, the function prints to screen the lists of values built from av-
eraging the traces. The data within the lists, like in the traces, is temporally sorted, composed
every 500 evaluations by default.

prep_Traces([T|Traces],Morphology,Acc)->
 Morphology_Trace=lists:flatten([[S||S<-Stats,S#stat.morphology==Morphology]||Stats<-
T#trace.stats]),
 prep_Traces(Traces,Morphology,[Morphology_Trace|Acc]);
prep_Traces([],Morphology,Acc)->
 Graph = avg_MorphologicalTraces(lists:reverse(Acc),[],[],[]),
 Graph#graph{morphology=Morphology}.
%prep_Traces/3 goes through every trace, and extracts from the stats list of those traces only
the stats associated with the morphology with which the function was called. Once the function
goes through every trace in the Traces list, and the morphologically specific trace data has been
extracted, the function calls avg_MorphologicalTraces/4 to construct a tuple similar to the
trace, but whose lists are composed of the average based values of all the morphology specific

 avg_MorphologicalTraces([S_List|S_Lists],Acc1,Acc2,Acc3)->
 case S_List of
 [S|STail] ->
 avg_MorphologicalTraces(S_Lists,[STail|Acc1],[S|Acc2],Acc3);
 [] ->
 Graph = avg_statslists(Acc3,#graph{}),

traces, the average, std, max, min... of all the evolutionary runs in the experiment.

562 Chapter 13 The Benchmarker

 Graph
 end;
 avg_MorphologicalTraces([],Acc1,Acc2,Acc3)->
 avg_MorphologicalTraces(lists:reverse(Acc1),[],[],[lists:reverse(Acc2)|Acc3]).
%avg_MorphologicalTraces/4 changes the dropped in S_lists from [Specie1_stats::[stat500,
stat1000,...statN], Specie2_stats::[stat500,stat1000,...statN]...] to [[Spec1_Stat500,
Spec2_Stat500... SpecN_Stat500], [Spec1_Stat1000, Spec2_Stat1000,... SpecN_Stat1000]...].
The trace accumulator contains a list of traces. A trace has a stats list, which is a list of lists of
stat tuples. The stats list is a temporal list, since each stat list is taken every 500 evaluations, so
the stats list traces-out the evolution of the population. Averages and other calculations need to
be made for all experiments at the same temporal point, for example computing the average fit-
ness between all experiments at the end of the first 500 evaluations, or at the end of the first
20000 evaluations... To do this, the function rebuilds the list from a list of separate temporal
traces, to a list of lists where every such sublist contains the state of the specie (the stat) at that
particular evaluation slot (at the end of 500, or 1000,...). Once this new list is built, the function
calls avg_statslists/2, which calculates the various statistics of the list of lists.

 avg_statslists([S_List|S_Lists],Graph)->
 Avg = avg_stats(S_List,#avg{}),
 U_Graph = Graph#graph{
 avg_neurons = [Avg#avg.avg_neurons|Graph#graph.avg_neurons],
 neurons_std = [Avg#avg.neurons_std|Graph#graph.neurons_std],
 avg_fitness = [Avg#avg.avg_fitness|Graph#graph.avg_fitness],
 fitness_std = [Avg#avg.fitness_std|Graph#graph.fitness_std],
 max_fitness = [Avg#avg.max_fitness|Graph#graph.max_fitness],
 min_fitness = [Avg#avg.min_fitness|Graph#graph.min_fitness],
 evaluations = [Avg#avg.evaluations|Graph#graph.evaluations],
 avg_diversity = [Avg#avg.avg_diversity|Graph#graph.avg_diversity],
 diversity_std = [Avg#avg.diversity_std|Graph#graph.diversity_std]
 },
 avg_statslists(S_Lists,U_Graph);
 avg_statslists([],Graph)->
 Graph#graph{
 avg_neurons = lists:reverse(Graph#graph.avg_neurons),
 neurons_std = lists:reverse(Graph#graph.neurons_std),
 avg_fitness = lists:reverse(Graph#graph.avg_fitness),
 fitness_std = lists:reverse(Graph#graph.fitness_std),
 max_fitness = lists:reverse(Graph#graph.max_fitness),
 min_fitness = lists:reverse(Graph#graph.min_fitness),
 evaluations = lists:reverse(Graph#graph.evaluations),
 avg_diversity = lists:reverse(Graph#graph.avg_diversity),
 diversity_std = lists:reverse(Graph#graph.diversity_std)
 }.
%avg_statslists/2 calculates the averages and other statistics for every list in the S_lists, where
each sublist is a list of stat tuples on which it executes the avg_stats/2 function, which returns

13.4 Implementing the benchmarker 563

back a tuple with all the various parameters calculated from that list of stat tuples of that partic-
ular evaluations time slot.

 avg_stats([S|STail],Avg)->
 U_Avg = Avg#avg{
 avg_neurons = [S#stat.avg_neurons|Avg#avg.avg_neurons],
 avg_fitness = [S#stat.avg_fitness|Avg#avg.avg_fitness],
 max_fitness = [S#stat.max_fitness|Avg#avg.max_fitness],
 min_fitness = [S#stat.min_fitness|Avg#avg.min_fitness],
 evaluations = [S#stat.evaluations|Avg#avg.evaluations],
 avg_diversity = [S#stat.avg_diversity|Avg#avg.avg_diversity]
 },
 avg_stats(STail,U_Avg);
 avg_stats([],Avg)->
 Avg#avg{
 avg_neurons=functions:avg(Avg#avg.avg_neurons),
 neurons_std=functions:std(Avg#avg.avg_neurons),
 avg_fitness=functions:avg(Avg#avg.avg_fitness),
 fitness_std=functions:std(Avg#avg.avg_fitness),
 max_fitness=lists:max(Avg#avg.max_fitness),
 min_fitness=lists:min(Avg#avg.min_fitness),
 evaluations=functions:avg(Avg#avg.evaluations),
 avg_diversity=functions:avg(Avg#avg.avg_diversity),
 diversity_std=functions:std(Avg#avg.avg_diversity)
 }.
%avg_stats/2 function accepts a list of stat tuples as a parameter. First it extracts the various el-
ements of that tuple. For every tuple in the list (each of the tuples belongs to a different evolu-
tionary run) it puts the particular value of that tuple into its own list. Once all the values have
been put into their own lists, the function uses the functions:avg/1 and functions:std/1 to calcu-
late the averages and standard deviations as needed, to finally build the actual single tuple of
said values (avg_neurons, neurons_std...). The case is slightly different for the max and min fit-
ness values amongst all evolutionary runs, for which the function extracts the max amongst the
maxs and the min amongst the mins, calculating the highest max and the lowest min achieved
amongst all evolutionary runs. This can be further augmented to also simply calculate the avg
of the max and min lists by changing the lists:min/1 and lists:max/1 to the function func-
tions:avg/1.

write_Graphs([G|Graphs],Graph_Postfix)->
 Morphology = G#graph.morphology,
 U_G = G#graph{evaluation_Index=[500*Index || Index <-lists:seq(1,
length(G#graph.avg_fitness))]},
 {ok, File} = file:open(?DIR++”graph_”++atom_to_list(Morphology)++”_”
++Graph_Postfix, write),
 io:format(File,”#Avg Fitness Vs Evaluations, Morphology:~p~n”,[Morphology]),

564 Chapter 13 The Benchmarker

 lists:foreach(fun({X,Y,Std}) -> io:format(File, “~p ~p ~p~n”,[X,Y,Std]) end,
lists:zip3(U_G#graph.evaluation_Index,U_G#graph.avg_fitness,U_G#graph.fitness_std)),
 io:format(File,”~n~n#Avg Neurons Vs Evaluations, Morphology:~p~n”,[Morphology]),
 lists:foreach(fun({X,Y,Std}) -> io:format(File, “~p ~p ~p~n”,[X,Y,Std]) end,
lists:zip3(U_G#graph.evaluation_Index,U_G#graph.avg_neurons,U_G#graph.neurons_std)),
 io:format(File,”~n~n#Avg Diversity Vs Evaluations, Morphology:~p~n”,[Morphology]),
 lists:foreach(fun({X,Y,Std}) -> io:format(File, “~p ~p ~p~n”,[X,Y,Std]) end,
lists:zip3(U_G#graph.evaluation_Index,U_G#graph.avg_diversity,U_G#graph.diversity_std)),
 io:format(File,”~n~n#Avg. Max Fitness Vs Evaluations, Morphology:~p~n”,[Morphology]),
 lists:foreach(fun({X,Y}) -> io:format(File, “~p ~p~n”,[X,Y]) end,
lists:zip(U_G#graph.evaluation_Index,U_G#graph.max_fitness)),
 io:format(File,”~n~n#Avg. Min Fitness Vs Evaluations, Morphology:~p~n”,[Morphology]),
 lists:foreach(fun({X,Y}) -> io:format(File, “~p ~p~n”,[X,Y]) end,
lists:zip(U_G#graph.evaluation_Index,U_G#graph.min_fitness)),
 io:format(File,”~n~n#Specie-Population Turnover Vs Evaluations, Morphology:~p~n”,
[Morphology]),
 lists:foreach(fun({X,Y}) -> io:format(File, “~p ~p~n”,[X,Y]) end,
lists:zip(U_G#graph.evaluation_Index,U_G#graph.evaluations)),
 file:close(File),
 write_Graphs(Graphs,Graph_Postfix);
write_Graphs([],_Graph_Postfix)->
 ok.
%write_Graphs/2 accepts a list of graph tuples, each of which was created for a particular spe-
cie/morphology within the experiment. Then for every graph, the function writes to file the var-
ious statistic results in the form readable by the gnuplot software. With the final result being a
file which can be immediately used by the gnuplot to produce graphs of the various properties
of the experiment.

With the benchmarker now implemented, we test it in the next subsection to
ensure that all of its features are functional.

13.5 Compiling and Testing

Because we have created a new record, we now need to either add it to the
mnesia database independently, or simply reset the whole thing (database), by ex-
ecuting the polis:reset() function. We now also need to test our new benchmarker
system, and see whether it functions properly and does indeed save the data to the
database, is able to continue the experiment after an interruption, and is able to
produce a file which can be used by the gnuplot. Also, due to the following line in
the benchmarker module: -define(DIR,”benchmarks/”), our benchmarker will be
expecting for this folder to exist. Thus this folder must first be added, before we
perform the following tests.

13.5 Compiling and Testing 565

To test all these new features we will first recompile the code, and then reset
the database. Afterwards, we will test our system in the following manner and or-
der:

1. Set the benchmarker’s pmp record to its current default, running the XOR mim-
icking experiment 10 times, to completion, using the generational evolutionary
loop.

2. Examine the resulting console printout, to ensure basic structural validity, and
that no crashes occurred.

3. Examine the two resulting files, the file that should have a list of traces, and the
file which has data formatted in a gnuplot graphable format.

4. Plot the data in the graph based file, performing a basic sanity check on the re-
sulting graph.

5. Again run the benchmarker, only this time, in the middle of the experiment ex-
ecute: Ctrl-C to stop the interpreter midway, and then execute ‘a’ to abort. This
simulates the crashing of the machine in the middle of the experiment. We then
re-enter the interpreter, and start up the polis to check whether the half finished
experiment is present in the database. Once its presence is confirmed, we test
benchmarker:continue(Id) by executing: benchmarker:continue(test).

6. Finally, we examine the resulting console printout and the final experiment en-
try in the database, to ensure that the progress_flag is now set to: completed.

Because our implemented evolutionary loops (steady_state and generational)
are independent of the evaluations accumulation, and thus the termination and the
triggering of the benchmarker, we can simply perform these tests with the genera-
tional evolutionary loop, and not need to redo them with the steady_state evolu-
tionary loop.

The default pmp and experiment records, and the ?INIT_CONSTRAINTS mac-
ro, are all set as follows:

-define(INIT_CONSTRAINTS,[#constraint{morphology=Morphology,connection_architecture
=CA, population_evo_alg_f=generational} || Morphology<-[xor_mimic],CA<-[feedforward]]).

#pmp{ op_mode=gt, population_id=test, survival_percentage=0.5, specie_size_limit=10,
init_specie_size=10, polis_id = mathema, generation_limit = 100, evaluations_limit = 10000,
fitness_goal = inf }

#experiment{ id = Id, backup_flag = true, pm_parameters=PMP, init_constraints
=?INIT_CONSTRAINTS, progress_flag=in_progress, run_index=1, tot_runs=10, start-

Having set everything to the intended values, we now (assuming that the new
source has been compiled, and the new mnesia database has been created with all
the appropriate tables by executing polis:reset()) run the benchmarker:start(test)
function, as shown in Listing-13.8.

ed ={date(),time()}, interruptions=[] }

566 Chapter 13 The Benchmarker

Listing-13.8 Running the benchmarker:start(test) function to test the benchmarker functionality.

2> benchmarker:start(test).
...
 [{stat,xor_mimic,7.544823116774118e-10,1.0,0.0,278.5367828868784,
 235.4058314015377,979.1905253086005,112.76113310465351,4,500,
 {1325,412119,825873}}]],
 10000,500}
******** ^^^^ TRACE END ^^^^ ********
******** Population_Monitor:test shut down with Reason:normal OpTag:continue, while in
OpMode:gt
******** Tot Agents:10 Population Generation:36 Tot_Evals:10076
******** Traces_Acc written to file:”benchmarks/report_Trace_Acc”
Graph:{graph,xor_mimic,
[1.1345679012345677,1.3708193041526373,1.4792929292929293,...1.9777777777777774],
 [0.11516606301253175,0.3429379936199053,0.472713243338398,
...0.28588178511708023],
 [6376.044863498539,171964.06677104777,405553.7010466698,
...948483.9530134387],
 [13996.969949682387,305943.44537378295,421839.1376054512,
...46957.98926294873],
 [7595.914268861698,242099.32776384687,566599.7452288255,
...999402.6491394333],
[1736.703111779903,1157.4193567602842,227914.43647811364,...497519.90979294974],
 [5.111111111111111,6.444444444444445,...7.0],
 [0.7370277311900889,1.257078722109418,…2.1081851067789197],
 [500.0,500.0,500.0,500.0,500.0,500.0,444.44444444444446,...500.0],
 []}

It works! The console printout looks proper, a graph record, where each list is
the average between all the experiments, with the averages calculated within the
same evaluation frames. When we look into the benchmark folder, we see the
presence of two files within: the graph_xor_mimic_report_Graphs file, and the
report_Trace_Acc file. The report_Trace_Acc file contains a list of traces as ex-
pected, and shown in Listing-13.9.

Listing-13.9 The shortened contents of the report_Trace_Acc file.

{trace,[[{stat,xor_mimic,7.544235757558436e-10,2.0,0.0,999793.8069900939,
 20.85034690621442,999805.1547609345,999739.967822178,9,500,
 {1325,515312,752712}}],...
10000,500}.
{trace,[[{stat,xor_mimic,7.544235772700672e-10,2.0,0.0,999796.4301657086,

13.5 Compiling and Testing 567

 3.35162014431123,999799.6097959183,999792.3483220651,8,500,
 {1325,515310,43590}}],...
10000,500}.
…

Listing-13.10 The format of the graph_xor_mimic_report_Graphs file.

#Avg Fitness Vs Evaluations, Morphology:xor_mimic
500 6376.044863498539 13996.969949682387
1000 171964.06677104777 305943.44537378295
…
#Avg Neurons Vs Evaluations, Morphology:xor_mimic
500 1.1345679012345677 0.11516606301253175
1000 1.3708193041526373 0.3429379936199053
…

So far so good, the report_Trace_Acc contains all 10 traces. Another file, with
the name graph_xor_mimic_report_Graphs, is also present in the benchmark
folder. This file contains rows of values in the format we specifically created so
that we can then use gnuplot to plot the resulting data. A sample of the formatted
data within the file is shown in Listing-13.10.

Again, after analyzing the graph, all the data seems to be in proper order. If we
wish, we can use this file to create a plot using the gnuplot program. An example
of such a plot is shown in Fig-13.1. Fig-13.1a and Fig-13.1b show the plots of Fit-
ness (Avg, Max, and Min) vs. Evaluations, and Population Diversity vs. Evalua-
tions, respectively. In Fig-13.1a we see that the average and max fitness quickly
increases, and within the first 1000 evaluations they have already reached a very
good score. The Min fitness within the graph is shown to always go up and down,
as is expected, since every offspring might have a mutation which might make it
ineffective. But even in that plot, we see that the minimum fitness also reaches
high values, primarily because the mutations that break the system in some way,
are mitigated by the tuning of the synaptic weights. In Fig-13.2b we see the diver-
sity plotted against evaluations, with vertical error bars.

568 Chapter 13 The Benchmarker

Fig. 13.1 The graphs produced with the data created by the benchmarker process, and
plotted by the gnuplot program. Graph ‘a’ shows Fitness (Avg, Max, and Min) vs. Evalua-
tions, and graph ‘b’ shows Diversity vs. Evaluations.

In the above figure we see that diversity never goes below 5 in a population of
10. A diversity of 4 is only present during the seed population, and primarily be-
cause there are only so many ways to create the minimalistic 1 neuron NN topolo-
gy for this problem (through the use of different activation functions). The diversi-
ty in fact is increasing over time, not decreasing. The diversity reaches a stable
value of 6-7, which means that 60%-70% of the population is different from one
another, and the other 3-4 have similar topologies to those belonging to the 6-7 di-
verse topologies.

High population diversity is one of the important features of a memetic algo-
rithm based TWEANN. In a system that we designed, it is simply not possible for
diversity to shrink, because no matter which NN systems are fit or unfit, their off-
spring will have to be topologically different from them because they will pass
through a topological mutation phase when created. As the size of the NN increas-
es, so does the possible number of mutation operators applied to the clone during
offspring creation, and thus the number of possible topological permutations, fur-
ther increasing the number of mutants in the population, which results in an even
higher diversity. As we increase the population size, again the result is greater di-
versity because now more agents can create offspring, and every one of those
agents will produce a topological mutant, which will have a chance to be different
from every other agent in the population and not just its parent.

Thus, a memetic algorithm based topology and weight evolving artificial neural
network has a naturally emerging high diversity within its population, unlike the
standard TWEANNs which usually converge very rapidly, and thus have a lower
chance of solving the more complex problems. At the same time, the memetic
TWEANN is also able to very rapidly solve problems it is applied to, and in my
experience almost always faster than the standard TWEANN no matter the prob-
lem or simulation it is being used for. We will have a chance to test this bold claim
when we benchmark our system against other TWEANNs in the following chap-
ters.

13.5 Compiling and Testing 569

With this done, we can now test the benchmarker’s ability to continue a
crashed or stopped experiment. You will most likely get a different result when
testing on your machine, depending on when you stop the interpreter. On my ma-
chine, after having started the benchmarker, and then almost immediately stopping
it by executing Ctrl-C a, and then re-entering the interpreter, my results were as
follows when performing steps 5 and 6:

Listing-13.11 Crashing the benchmarker, and then attempting to continue by executing the
benchmarker:continue(Id) function.

2> polis:start().
Parameters:{[],[]}
******** Polis: ##MATHEMA## is now online.
{ok,<0.35.0>}
2> benchmarker:start(test).
…
Ctrl-C
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
 (v)ersion (k)ill (D)b-tables (d)istribution
a
…
******** Polis: ##MATHEMA## is now online.
{ok,<0.34.0>}
2> mnesia:dirty_read({experiment,test}).
[{experiment,test,true,
 {pmp,gt,test,0.5,10,10,mathema,100,10000,inf,<0.143.0>},
 [{constraint,xor_mimic,feedforward, [tanh,cos,gaussian,absolute], [none],
[dot_product], [all],...],
 in_progress,
 [{trace,[[{stat,xor_mimic,7.544226409998199e-10,
 2.0833333333333335,0.2763853991962833,833118.8760231837,
 372581.937787711,999804.3485638215,0.34056136711788676,8,
 500,
 {1325,516955,41224}}],
...
 10000,500}],
 2,10,undefined,
 {{2012,1,2},{7,9,12}},
 undefined,[]}]
3>benchmarker:continue(test).
…
Graph:{graph,xor_mimic,...}
4>mnesia:dirty_read({experiment,test}).
…
 completed,

570 Chapter 13 The Benchmarker

 …(TRACES)
 10,10,undefined,
start {{2012,1,2},{7,9,12}},
end {{2012,1,2},{7,14,51}},
 [{1325,517268,871875}]}]

It works! The benchmarker was first run and then abruptly stopped. After re-
starting the polis and checking the mnesia database, the experiment with the id test
was present. Printing it to console showed, color coded in the above listing, that it

13.6 Summary

Every time an addition or extension is made to the neuroevolutionary system, it
is important to see how it affects it as a whole. Is the neuroevolutionary system
able to more effectively evolve agents? Is there high or low diversity? Does the
neuroevolutionary approach taken converges too quickly, and is thus unable to in-
ject enough diversity to overcome fitness walls present on the fitness landscape?
Using a benchmarker helps us answer these questions.

We also created a new module called benchmarker, and a new table called ex-
periment, within the database. The experiment table holds multiple complete ex-
periment entries, each of which is composed of multiple traces, which are evolu-
tionary runs applied to some problem. This allows for the experiment entry to be
used to calculate the average performance of multiple runs of the same simula-
tion/problem, thus giving us a general idea of how the system performs. We have
created the benchmarker in such a way that it can run an experiment and save the
traces to database after every successful run, such that in the case of a crash it can
recover and continue with the experiment.

contained the pmp record (green, and if you’re reading the black & white printed
version, it’s the one starting with: “{pmp”), the constraints (blue, and starting
with: “[{constraint”), and had a list of traces (red, and starting with: “[{trace”),
2 of which were present, out of the 10 the full experiment must contain. Finally,
we also see the in_progress tag, which confirms that this experiment was stopped
abruptly and is not yet finished. The function benchmarker:continue(test) was
then executed, and the benchmarker ran to completion, printing the Graph tuple to
console at the end. Finally, when rechecking the experiment entry in the database
by executing mnesia:dirty_read({experiment,test}), we see that it contains 10 out of
10 evolutionary runs (traces), parameter completed is present, and we also see the
start: {{2012,1,2},{7,9,12}} and end: {{2012,1,2},{7,9,12}} times respectively
(which I marked with italicized “start” and “end” tags), are also present. The bench-
marker works as expected, and we have completed testing it.

13.7 References 571

13.7 References

[1] gnuplot: http://www.gnuplot.info/
[2] https://github.com/CorticalComputer/NeuroevolutionThroughErlang
[3] Gomez F, Miikkulainen R (1998). 2-D Pole Balancing with Recurrent Evolutionary Net-

works. In Proceedings of the International Conference on Artificial Neural Networks (Else-
vier), pp. 2-7.

[4] Durr P, Mattiussi C, Floreano D (2006) Neuroevolution With Analog Genetic Encoding. Par-
allel Problem Solving from NaturePPSN iX, 671-680.

[5] Soltoggio A, Bullinaria JA, Mattiussi C, Durr P, Floreano D (2008) Evolutionary Advantages of
Neuromodulated Plasticity in Dynamic, Reward-based Scenarios. Artificial Life 2, 569-576.

[6] Blynel J, Floreano D (2003) Exploring the T-maze: Evolving learning-like robot behaviors
using CTRNNs. Applications of evolutionary computing 2611, 173-176.

features on. Thus we first need to create this new set of more complex benchmarks
and problems.

We need to create two types of new benchmarks. One standard neurocontroller
benchmark, for which a recurrent and non recurrent solutions need to be evolved
to solve it. This standard benchmark is called the pole balancing problem [3,4].
Another standard benchmark requires the NN based agent to learn as it interacts
with the environment. We need such a benchmark to be able to tell whether the
addition of neural plasticity to our evolved NN based systems improves them, and
whether the added plasticity features work at all. The standard benchmark in this
particular area is called the T-Maze navigation problem [5,6]. In the next chapter
we will create both of these new problems, representing them as private scapes
with which the evolving NN based agents can interact with.

We are almost at the point where we can start adding new, much more ad-
vanced features. Features like plasticity, indirect encoding, crystallization... And
though we can now perform benchmarks after adding such advanced features, we
do not at this point have problems and simulations complex enough to test the new

http://www.gnuplot.info/
https://github.com/CorticalComputer/NeuroevolutionThroughErlang

Chapter 14 Creating the Two Slightly More
Complex Benchmarks

Abstract To test the performance of a neuroevolutionary system after adding a
new feature, or in general when trying to assess its abilities, it is important to have
some standardized benchmarking problems. In this chapter we create two such
benchmarking problems, the Pole Balancing Benchmarks (Single, Double, and
With and Without dampening), and the T-Maze navigation benchmark, which is
one of the problems used to assess the performance of recurrent and plasticity en-
abled neural network based systems.

Though we have created an extendible and already rather advanced TWEANN
platform, how can we prove it to be so when we only have the basic XOR bench-
mark to test it on? As we continue to improve and advance our system, we will
need to test it on more advanced benchmarks. In this chapter we develop and add
two such benchmarking problems, the pole balancing benchmark, and the T-Maze
navigation benchmark. Both of these benchmarks are standard within the compu-
tational intelligence field, and our neuroevolutionary system’s ability to solve
them is the minimum requirement to be considered functional.

To allow our TWEANN to use these benchmarks, we need to create a simula-
tion/scape of the said problems, and create the agent morphology that contains the
sensors/actuators that the NN based agents can use to interface with these new
scapes. In the following sections we will first build the pole balancing simulation.
Afterwards, we will develop the T-Maze simulation, a problem which can be
much better solved by a NN system which can learn and adapt as it interacts with
the environment, by a NN which has plasticity (a feature we will add to our
neuroevolutionary system in Chapter-15).

Once these two types of new simulations are created, we will briefly test them,
and then move on to the next chapter, where we will begin advancing and expand-
ing our neuroevolutionary system.

14.1 Pole Balancing Simulation

The pole balancing benchmark consists of the NN based agent having to push a
cart on a track, such that the pole standing on the cart is balanced and does not tip
over and fall. Defined more specifically, the pole balancing problem is posed as
follows: Given a two dimensional simulation of a cart on a 4.8 meter track, with a
pole of length L on the top of a cart, attached to the cart by a hinge, and thus free
to swing, the NN based controller must apply a force to the cart, pushing it back

DOI 10.1007/978-1-4614- - © Springer Science+Business Media New York 2013 4463 3_14,
573 G.I. Sher, Handbook of Neuroevolution Through Erlang,

574 Chapter 14 Creating the Two Slightly More Complex Benchmarks

The temporal granularity of the simulation is 0.01 seconds, which means that
every 0.01 seconds we perform all the physics based calculations, to determine the
position of the cart and the pole. The Agent requests sensory signals and acts eve-
ry 0.02 seconds. The simulation termination conditions are as follows: the cart
must stay on the 4.8 meter track or the simulation ends, the simulation also ends if
the pole falls outside the 36 degrees of the vertical.

There are multiple versions of this problem, each one differs in its difficulty:

1. The simple single pole balancing problem, as shown in Fig-14.1a. In this simu-
lation the NN based agent pushes the cart to balance the single 1 meter pole on
it. This problem is further broken down into two different versions.

 The NN receives as a sensory signal the cart’s position on the track (CPos),
the cart’s velocity (CVel), the pole’s angular position (PAngle), and the pole’s
angular velocity (PVel). Sensory_Signal = [CPos, CVel, PAngle, PVel].

 The NN receives as a sensory signal only the CPos and PAngle values. To
figure out how to solve the problem, how to push the cart and in which di-
rection, the NN will need to figure out how to calculate the CVel and PVel
values on its own, which requires recurrent connections. Sensory_Signal =
[Cpos,PAngle].

It is possible to very rapidly move the cart back and forth, which keeps the pole
balanced. To prevent this type of a solution, the problem is sometimes further
modified with the fitness of the NN based agent not only being dependent on the
amount of time it has balanced the pole, but on how smoothly it has pushed the
cart. One type of fitness function simply rewards the NN based on the length of
time it has balanced the pole, while the other rewards the NN based on the length
of time it has balanced the pole, and penalizes it for very high velocities and rapid
velocity changes. The first is the standard fitness function, while the other is called
the damping fitness function.

2. A more difficult version of the pole balancing problem is the double pole bal-
ancing version, as shown in Fig-14.1b. In this problem we try to balance two
poles of differing lengths at the same time. The closer the lengths of the two
poles are, the more difficult the problem becomes. Usually, the length of one
pole is set to 0.1 meters, and the length of the second is set to 1 meter. As with
the single pole balancing problem, there are two versions of this, and again for
each version we can use either of the two types of fitness functions:

and forth on the track, such that the pole stays balanced on the cart and within 36
degrees of the cart’s vertical. For sensory inputs, the NN based agent is provided
with the cart’s position and velocity, and the pole’s angular position (from the ver-
tical) and angular velocity. The output of the NN based agent is the force value F
in newtons (N), saturated at 10N of magnitude. Positive F pushes the cart to the
left, and negative pushes it to the right. Given these conditions, the problem is to
balance the pole on the cart for 30 simulated minutes, or as long as possible,
where the fitness is the amount of time the NN can keep the pole balanced by
pushing the cart back and forth.

14.1 Pole Balancing Simulation 575

 The sensory signal gathered by the NN is composed of the cart’s position
and velocity (CPos,CVel), the first pole’s angle and velocity (P1_Angle,
P1_Vel), and the second pole’s angle and velocity (P2_Angle, P2_Vel).
Sensory_Signal = [CPos,CVel,P1_Angle,P1_Vel,P2_Angle,P2_Vel].

 The second more complex version of the problem, just as with the single
pole balancing problem, only provides the NN with partial state infor-
mation, the cart’s position, and the first and second pole’s angular position.
Sensory_Signal = [CPos,P1_Angle,P2_Angle]. This requires the NN based
agent to derive the velocities on its own, which can be done by evolving a
recurrent NN topology.

As with the single pole balancing problem, the fitness can be based on simply
the amount of time the poles have been balanced, or also on the manner in which
the agent pushes the cart, using the damping fitness function.

Fig. 14.1 The architecture of single (A.) and double (B.) pole balancing simulations, repre-
sented as private scapes with which the agents can interface with, to push the cart and bal-
ance the pole/s.

As with the XOR simulator, we will set the pole balancing simulation to be self
contained in a private scape process, which will accept sense and push messages
from the agent to whom it belongs. Since the simulation of the track/cart/pole is
independent of the types of sense signals the agent wishes to use, we will only
need to implement a single version of such private scape. We will implement the
system using a realistic physical model of the system, and fourth order Runge-
Kutta integration, as is specified and done in [1].

Because the two-pole balancing problem is simply an extension of the single
pole balancing problem, and because the two poles are independent of each other,
we can create a single double pole balancing simulator, which can then be used for
either benchmark. It will be the sense and force messages that determine what in-

576 Chapter 14 Creating the Two Slightly More Complex Benchmarks

formation is sent to the sensors of the NN based agent. Furthermore, depending on
the parameters sent by the actuator of the agent, the scape will calculate the fitness
and decide on whether to use both poles or only a single pole with regards to the
termination conditions.

Thus, the scape will always be simulating two poles. But if the agent is being
applied to the single pole balancing problem, and this fact will be specified by the
actuator and sensor pair used by the agent, the scape which receives the messages
from the sensor and actuator of that agent, will simply not take into account the
second pole. In this manner, if the second pole falls, deviates more than 36 de-
grees from the vertical... it will not trigger the termination condition or affect the
fitness in any way. The parameter sent by the actuator will notify the scape that
the agent is only concerned with the single pole being balanced.

We will set up the functionality of each such pole balancing simulation, con-
tained and wrapped in a private scape, represented as a single process, to use the
following steps:

1. PB (pole balancing) private scape is spawned.
2. The PB scape initializes the physical simulation, with the first pole’s initial an-

gle from the vertical randomly selected to be between -3.6 and 3.6 degrees, and
the second pole’s angle set to 0 degrees. Furthermore, the first pole’s length
will be set to 1 meter, and 0.1 meter for the second one.

3. The PB process drops into its main loop, and awaits for sense and push mes-
sages.

4. DO:
5. If {From_PId, sense, Parameters} message is received: The Parameters

value specifies what type of sensory information should be returned to
the caller. If Parameters is set to 2, then the scape will return the cart po-
sition and the pole position information. If the Parameters value is set to
3, then the scape will return the cart, pole_1, and pole_2 positions. If 4,
then cart position and velocity, plus pole_1 angular position and velocity,
will be returned. Finally, if Parameters is set to 6, then the scape will re-
turn the cart position and velocity, and the pole_1 and pole_2 angular po-
sitions and velocities.

6. If {From_PId, push, Force, Parameters} message is received: The PB
scape applies the force specified in the message to the cart, and calculates
the results of the physical simulation. The response to the push are calcu-
lated for two 0.01s time steps, taking the simulation 0.02 seconds for-
ward, and then returning the scape back to waiting for the sense/push
messages again. Furthermore, the Parameters value will have the form:
{Damping_Flag, PB_Type}, where the Damping_Flag parameter speci-
fies whether the fitness function will be calculated with damping features
to prevent the rapid shaking of the cart, and where the PB_Type parame-
ter specifies whether the private scape should be used as a single pole or
double pole balancing simulator. If it is used as a single pole balancing

14.1 Pole Balancing Simulation 577

simulator, then the condition of the second pole will not affect the fitness
value, and its reaching the termination condition (falling beyond 36 de-
grees from the vertical) will not end the simulation.

UNTIL: Termination condition is reached (goal number of time steps, or one of
the boundary condition breaches).

The termination condition is considered to be any one of the following:

 The simulation has run for 30 simulated minutes, which is composed of 90000
0.02 second time steps.

 The pole has deviated 36 or more degrees from the cart’s vertical.
 The cart has left the track. The track itself is 4.8 meters long, and the cart will

start at the center, and thus be 2.4 meters away from either side. If it goes be-
yond -2.4 or 2.4 point on the axis of the track, the termination condition is
reached.

Based on this architecture, we will in the following subsection create the pri-
vate scape process, and its main loop which after receiving the push message calls
the function which does the physical simulation of the track/cart/pole system. Af-
terwards, we will create the sensors/actuators and the new morphology specifica-
tion entry in the morphology module. These will be the sensors and actuators used
by the agents to interface with this type of private scape. Finally, we will then
compile and run a quick test of this new problem, to see how well our system per-
forms.

14.1.1 Implementing the Pole Balancing Scape

For the pole balancing simulation, the process will need to keep track of the po-
sition of the cart on the track, its velocity, the angular position and velocity of both
poles, the time step the simulation is currently in, the goal time steps, and finally
the fitness accumulated by the interfacing agent. To keep track of all these values,
we will use a state record. Listing-14.1 shows the implementation of the pb_sim/2,
the pole balancing simulation scape. We will add the source code of this listing to
the scape module. The comments after every function in Listing-14.1 elaborate on
the details of its implementation.

Listing-14.1 The complete implementation of the pole balancing simulation scape.

-record(pb_state,{cpos=0,cvel=0,p1_angle=3.6*(2*math:pi()/360),p1_vel=0, p2_angle=0,
p2_vel=0, time_step=0, goal_steps=90000,fitness_acc=0}).

pb_sim(ExoSelf_PId)->
 random:seed(now()),
 pb_sim(ExoSelf_PId,#pb_state{}).

578 Chapter 14 Creating the Two Slightly More Complex Benchmarks

%pb_sim/1 is executed to initialize and startup the pole balancing simulation scape. Once exe-
cuted it creates initial #pb_state{}, and drops into the main simulation loop.

pb_sim(ExoSelf_PId,S)->
 receive
 {From_PId,sense, [Parameter]}->
 SenseSignal=case Parameter of
 cpos -> [S#pb_state.cpos];
 cvel -> [S#pb_state.cvel];
 p1_angle -> [S#pb_state.p1_angle];
 p1_vel -> [S#pb_state.p1_vel];
 p2_angle -> [S#pb_state.p2_angle];
 p2_vel -> [S#pb_state.p2_vel];
 2 -> [S#pb_state.cpos,S#pb_state.p1_angle];
 3 -> [S#pb_state.cpos,S#pb_state.p1_angle,S#pb_state.p2_angle];
 4 -> [S#pb_state.cpos, S#pb_state.cvel, S#pb_state.p1_angle,
S#pb_state.p1_vel];
 6 -> [S#pb_state.cpos, S#pb_state.cvel, S#pb_state.p1_angle,
S#pb_state.p1_vel, S#pb_state.p2_angle, S#pb_state.p2_vel]
 end,
 From_PId ! {self(),SenseSignal},
 pb_sim(ExoSelf_PId,S);
 {From_PId,push,[Damping_Flag,DPB_Flag], [F]}->
 AL = 2*math:pi()*(36/360),
 U_S=sm_DoublePole(F,S,2),
 TimeStep=U_S#pb_state.time_step,
 CPos=U_S#pb_state.cpos,
 CVel=U_S#pb_state.cvel,
 PAngle1=U_S#pb_state.p1_angle,
 PVel1=U_S#pb_state.p1_vel,
 case (abs(PAngle1) > AL) or (abs(U_S#pb_state.p2_angle)*DPB_Flag > AL)
or (abs(CPos) > 2.4) or (TimeStep >= U_S#pb_state.goal_steps) of
 true ->
 From_PId ! {self(),0,1},
 pb_sim(ExoSelf_PId,#pb_state{});
 false ->
 Fitness = case Damping_Flag of
 without_damping ->
 1;
 with_damping ->
 Fitness1 = TimeStep/1000,
 Fitness2 = case TimeStep < 100 of
 true ->
 0;
 false ->

14.1 Pole Balancing Simulation 579

 0.75/(abs(CPos) +abs(CVel) +
abs(PAngle1) + abs(PVel1))
 end,
 Fitness1*0.1 + Fitness2*0.9
 end,
 From_PId ! {self(),Fitness,0},
 pb_sim(ExoSelf_PId, U_S#pb_state{fitness_acc
=U_S#pb_state.fitness_acc+Fitness})
 end;
 {ExoSelf_PId,terminate} ->
 ok
 end.
%The pole balancing simulation scape can accept 3 types of messages, push, sense, and termi-
nate. When a sense message is received, the scape checks the Parameter value, and based on
whether the Parameters == 2, 3,4, or 6, it returns a sensory list with an appropriate number of
elements. 2 and 4 specify that the NN based agent wants a sensory signal associated with the
single pole balancing problem, with partial or full system information, respectively. 4 and 6 im-
plies that the NN wants the scape to send it sensory information associated with double pole
balancing, with partial or full system information respectively. When the scape receives the
push message, based on the message it decides on what fitness function is used (with or without
damping), the actual force to be applied to the cart, and whether the termination condition
should be based on the single pole balancing problem (DPB_Flag=0) or double pole balancing
problem (DPB_Flag=1). When the angle of the second pole is multiplied by DPB_Flag which is
set to 0, the value will always be 0, and thus it cannot trigger the termination condition of being
over 36 degrees from the vertical. When it is multiplied by DPB_Flag=1, then its actual angle is
used in the calculation of whether the termination condition is triggered or not. Once the mes-
sage is received, the scape calculates the new position of the poles and the cart after force F is
applied to it. The state of the poles/cart/track system is updated by executing the
sm_DoublePole/3 function, which performs the physical simulation calculations.

sm_DoublePole(_F,S,0)->
 S#pb_state{time_step=S#pb_state.time_step+1};
sm_DoublePole(F,S,SimStepIndex)->
 CPos=S#pb_state.cpos,
 CVel=S#pb_state.cvel,
 PAngle1=S#pb_state.p1_angle,
 PAngle2=S#pb_state.p2_angle,
 PVel1=S#pb_state.p1_vel,
 PVel2=S#pb_state.p2_vel,
 X = CPos, %EdgePositions = [-2.4,2.4],
 PHalfLength1 = 0.5, %Half-length of pole 1
 PHalfLength2 = 0.05, %Half-length of pole 2
 M = 1, %CartMass
 PMass1 = 0.1, %Pole1 mass
 PMass2 = 0.01, %Pole2 mass

580 Chapter 14 Creating the Two Slightly More Complex Benchmarks

 MUc = 0.0005, %Cart-Track Friction Coefficient
 MUp = 0.000002, %Pole-Hinge Friction Coefficient
 G = -9.81, %Gravity
 Delta = 0.01, %Timestep
 EM1 = PMass1*(1-(3/4)*math:pow(math:cos(PAngle1),2)),
 EM2 = PMass2*(1-(3/4)*math:pow(math:cos(PAngle2),2)),
 EF1 = Pmass1*PHalfLength1*math:pow(PVel1,2)*math:sin(PAngle1)+(3/4)*PMass1
math:cos(PAngle1)(((MUp*PVel1)/(PMass1*PHalfLength1))+G*math:sin(PAngle1)),
 EF2 = Pmass2*PHalfLength2*math:pow(PVel2,2)*math:sin(PAngle2)+(3/4)*PMass2
math:cos(PAngle2)(((MUp*PVel2)/(PMass1*PHalfLength2))+G*math:sin(PAngle2)),
 NextCAccel = (F - MUc*functions:sgn(CVel)+EF1+EF2)/(M+EM1+EM2),
 NextPAccel1 = -(3/(4*PHalfLength1))*((NextCAccel*math:cos(PAngle1))
+(G*math:sin(PAngle1))+((MUp *PVel1)/(PMass1*PHalfLength1))),
 NextPAccel2 = -(3/(4*PHalfLength2))*((NextCAccel*math:cos(PAngle2))
+(G*math:sin(PAngle2))+((MUp *PVel2)/(PMass2*PHalfLength2))),
 NextCVel = CVel+(Delta*NextCAccel),
 NextCPos = CPos+(Delta*CVel),
 NextPVel1 = PVel1+(Delta*NextPAccel1),
 NextPAngle1 = PAngle1+(Delta*NextPVel1),
 NextPVel2 = PVel2+(Delta*NextPAccel2),
 NextPAngle2 = PAngle2+(Delta*NextPVel2),
 U_S=S#pb_state{
 cpos=NextCPos,
 cvel=NextCVel,
 p1_angle=NextPAngle1,
 p1_vel=NextPVel1,
 p2_angle=NextPAngle2,
 p2_vel=NextPVel2
 },
 sm_DoublePole(0,U_S,SimStepIndex-1).
%sm_DoublePole/3 performs the calculations needed to keep track of the two poles and the
cart, it simulates the physical properties of the track/cart/pole system. The granularity of the
physical simulation is 0.1s, and so to get a state at the end of 0.2s, the calculation of the state is
performed twice at the 0.1s granularity. During the first execution of the physical simulation we
have the force set to the appropriate force sent by the neurocontroller. But during the second,
F=0. Thus the agent actually only applies the force F for 0.1 seconds. This can be changed to
have the agent apply the force F for the entire 0.2 seconds.

With the simulation completed, we now need a way for our agents to spawn
and interface with it. This will be done through the agent’s morphology, its sen-
sors and actuators, which we will create next.

14.1 Pole Balancing Simulation 581

14.1.2 Implementing the Pole Balancing morphology

For both sensors and actuators we will again specify the scape element to be of
type private: scape = {private, pb_sim}. For the sensor, we will set the parameters
to: [2], this parameter can then be modified to 3, 4, or 6, dependent on what test
we wish to apply the population of agents to. After every such parameters value
change, the morphology module would then have to be recompiled before use. We
could simply create multiple morphologies, for example: pole_balancing2,
pole_balancing3, pole_balancing4, and pole_balancing6, but that would not add
an advantage over changing the parameters and recompiling, since it would still
require us to use our neuroevolutionary system on different problems and thus to
change the constraints in either population_monitor or benchmarker modules, and
then recompile them still...

Listing-14.2 The pole_balancing morphology; adding the new pb_GetInput sensor and pb_Push
actuator to the morphology module.

pole_balancing(sensors)->
 [
 #sensor{name=pb_GetInput,scape={private,pb_sim},vl=2,parameters=[2]}
];
pole_balancing(actuators)->
 [
 #actuator{name=pb_SendOutput,scape={private,pb_sim},vl=1, parameters
=[no_damping,0]}
].
%Both, the pole balancing sensor and actuator, interface with the pole balancing simulation.
The type of benchmark the pole balancing simulation is used as (whether it is used as a double

Like the case with the xor_mimic morphology function, which when called re-
turns the available sensors or actuators for that particular morphology, we will in
this subsection develop the pole_balancing/1 morphology function which does the
same. Unlike the xor_mimic though, here we will also populate the parameters el-
ement of the sensor and actuator records.

Similarly, the actuator record’s parameters element is set to: [no_damping,0].
The no_damping tag specifies that the fitness function used should be the simple
one that does not take damping into account. The 0 element of the list specifies,
based on our implementation of the pb_sim, that the second pole should not be
taken into account when calculating the fitness and whether the termination condi-
tion is reached. This is achieved in: (abs(U_S#pb_state.p2_angle)*DPB_Flag >
AL) , where DPB_Flag is either 0 or 1. When set to 1, the second pole’s condi-
tion/angle is taken into account, and when 0, it is not. This is so because 0 =
0*P2_Angle, and 0 is never greater than AL which is set to 36 degrees. Listing-
14.2 shows the implementation of this new addition to the morphology module.

582 Chapter 14 Creating the Two Slightly More Complex Benchmarks

pole or a single pole balancing benchmark) depends on the sensor and actuator parameters. The
sensor’s vl and parameters specify that the sensor will request the private scape for the cart’s
position and pole’s angular position. The actuator’s parameters specify that the scape should
use no_damping type of fitness, and that since only a single pole is being used, that the termina-
tion condition associated with the second pole is zeroed out, by being multiplied by 0. When in-
stead of using 0 we use 1, the private scape will use the angular position of the second pole as
an element in calculating whether the termination condition has been reached or not.

Having specified the sensor and the actuator used by the pole_balancing mor-
phology, we now need to implement them both. The pb_GetInput sensor will be
similar to the xor_GetInput, only it will use its Parameters value in its message to
the private scape it is associated with, as shown in Listing-14.3. We add this new
sensor function to the sensor module, placing it after the xor_GetInput/3 function.

Listing-14.3 The implementation of the pb_GetInput sensor.

pb_GetInput(VL,Parameters,Scape)->
 Scape ! {self(),sense,Parameters},
 receive
 {Scape,percept,SensoryVector}->
 case length(SensoryVector)==VL of
 true ->
 SensoryVector;
 false ->
 io:format(“Error in sensor:pb_GetInput/2, VL:~p
SensoryVector:~p~n”, [VL,SensoryVector]),
 lists:duplicate(VL,0)
 end
 end.

Similarly, Listing-14.4 shows the implementation of the actuator
pb_SendOutput/3 function, added to the actuator module. It too is similar to the
xor_SendOutput/3 function, but unlike its neighbor, it sends its Parameters value
as an element of the message that it forwards to the scape. Because we usually im-
plement the morphologies and the scapes together, we can set up any type of inter-
facing, and thus be able to implement complex scapes and messaging schemes
with ease.

Listing-14.4 The implementation of the pb_SendOutput actuator.

pb_SendOutput([Output],Parameters,Scape)->
 Scape ! {self(),push,Parameters,[10*functions:sat(Output,1,-1)]},
 receive
 {Scape,Fitness,HaltFlag}->
 {Fitness,HaltFlag}

14.1 Pole Balancing Simulation 583

 end.

Though simple to implement, this new problem allows us to test the ability of
our neuroevolutionary system to evolve neurocontrollers on problems which re-
quire a greater level of complexity than the simple XOR mimicry problem. The
benchmarking of our system on this problem also allows us to compare its results
to those of other neuroevolutionary systems. Having implemented this new simu-
lation, we now move forward in running a quick test on it in the next subsection.

14.1.3 Benchmark Results

In the previous chapter we have developed the benchmarking and reporting
tools specifically to improve our ability to test new additions to the system. Thus
all we must do now is to decide which variation of the pole balancing test to apply
our system to, and then execute the benchmarker:start/1 function with the appro-
priate constraint, pmp, and experiment parameters.

Our benchmarker, on top of generating graphable data, also calculates the sim-
ple average number of evaluations from all the evolutionary runs within the exper-
iment, which is exactly the number we seek because the benchmark here is how
quickly a solution can be evolved on average using our system. Let us run 3 exper-
iments, which will only entail us to execute the benchmarker:start/1 function 3
times, each time with a different sensor and actuator specification. Thus we next
run three experiments, each with its own morphological setup:

1. The single pole, partial information, standard fitness function (without damp-
ing) benchmark:

pole_balancing(sensors)->
 [#sensor{name=pb_GetInput,scape={private,pb_sim},vl=2,parameters=[2]}];
pole_balancing(actuators)->
 [#actuator{name=pb_SendOutput,scape={private,pb_sim},vl=1, parameters
=[without_damping,0]}].

2. The double pole, partial information, standard fitness function (without damp-
ing) benchmark:

pole_balancing(sensors)->
 [#sensor{name=pb_GetInput,scape={private,pb_sim},vl=3,parameters=[3]}];
pole_balancing(actuators)->
 [#actuator{name=pb_SendOutput,scape={private,pb_sim},vl=1, parameters
=[without_damping,1]}].

3. The double pole, partial information, with damping fitness function benchmark:

584 Chapter 14 Creating the Two Slightly More Complex Benchmarks

pole_balancing(sensors)->
 [#sensor{name=pb_GetInput,scape={private,pb_sim},vl=3,parameters=[3]}];
pole_balancing(actuators)->
 [#actuator{name=pb_SendOutput,scape={private,pb_sim},vl=1, parameters
=[with_damping,1]}].

Furthermore, sometimes we wish to see just how quickly on average the
neuroevolutionary system can generate a result for a problem, at those times we
only care about the minimum number of evaluations needed to reach the solution.
In our system no matter when the termination condition is reached, it is not until
all the agents of the current generation, or all the currently active agents, have
terminated, that the evolutionary run is complete. This means that the total number
of evaluations keeps incrementing even after the goal has already been reached,
simply because the currently-still-running agents are continuing being tuned.

To solve both problems, we can allow each scape to inform the agent that it has
reached the particular goal of the problem/scape when it has done so. At this point
the agent would forward that message to the population_monitor, which could
then stop counting the evaluations by freezing the tot_evaluations value. In this
one move we allow each scape to use the extra feature of goal_reached notifica-
tion ability to be able to, on its own terms, use any fitness function, and at the
same time be able to stop and notify the agent that it has reached the particular fit-
ness goal, or solved the problem, and thus stop the evaluations accumulator from
incrementing. This will allow us to no longer need to calculate fitness goals for
every problem by pre-calculating various values (fitness goals) and setting them in
the population_monitor. This method will also allow us to deal with problems
where the fitness score is not directly related to the completion of the problem or
to the reaching of the goal, and thus cannot be used as the termination condition in
the first place. Thus, before we run the benchmarks, let’s make this small program
modification.

We must also set the pmp’s fitness goal to 90000, since with the standard,
without_damping fitness function, the 90000 fitness score represents the NN
based agent’s ability to balance a pole for 30 minutes. But what about the
with_damping simulation? In that event a neurocontroller will have different fit-
ness scores for the same number of time steps that it has balanced the pole/s, since
the fitness will be based on its effectiveness of balancing the poles as well. In the
same manner, different number of time steps of balancing the pole/s might map to
the same fitness score... This situation arises due to the fact that the more compli-
cated problems will not have a one-to-one mapping with regards to fitness scores
reached, and progress towards solving a given problem or achieving some goal.
Different such simulations and problems will have different types of fitness
scores, and using a termination condition based on a fitness goal value set in the
population_monitor, will not work. On the other hand, each simulation/problem it-
self, will have all the necessary information about the agent’s performance to de-
cide whether a goal has been reached or not.

14.1 Pole Balancing Simulation 585

Currently when the agent has triggered the scape’s stopping condition, the
scape sends back to the agent the message: {Scape_PId,0,1}, where 0 means that
it has received 0 fitness points for this last event, and 1 means that this particular
scape has reached its termination condition. The actuator does nothing with this
value but pass it to the cortex, thus if we retain the same message structure, we can
piggyback it with new functionality. We will allow each scape to also have, on top
of the standard termination conditions, the ability to check for its own goal reach-
ing condition. When that goal condition is reached, instead of sending to the ac-
tuator the original message, the scape will send it: {Scape_PId,goal_reached,1}.
The actuator does not have to be changed, its job is simply to forward this mes-
sage to the cortex.

In the cortex we modify its receive clause to check whether the Fitness score
sent to it is actually an atom goal_reached. The new receive clause is implement-
ed as follows:

{APId,sync,Fitness,EndFlag} ->
 case Fitness == goal_reached of
 true ->
 put(goal_reached,true),
 loop(Id,ExoSelf_PId,SPIds,{APIds,MAPIds},NPIds,CycleAcc,FitnessAcc,
EFAcc +EndFlag, active);
 false ->
 loop(Id,ExoSelf_PId,SPIds,{APIds,MAPIds},NPIds,CycleAcc,FitnessAcc
+Fitness, EFAcc +EndFlag, active)
 end;

We also modify the cortex’s message to the exoself when its evaluation termi-
nation condition has been triggered by the EndFlag, when the actuator sends it the
message of the form: {APId, sync, Fitness, EndFlag}. The new message the cortex
sends to the exoself is extended to include the note on whether goal_reached is set
to true or not. The new message format will be: {self(), evaluation_completed,
FitnessAcc, CycleAcc, TimeDif, get(goal_reached)}.

Reflectively, the exoself’s receive pattern is extended to receive the
GoalReachedFlag message, and to then forward it to the population_monitor, as
shown by the boldfaced source code in the following listing:

Listing-14.5 The updated exoself’s receive pattern.

loop(S)->
 receive
 {Cx_PId,evaluation_completed,Fitness,Cycles,Time,GoalReachedFlag}->
 case (U_Attempt >= S#state.max_attempts) or (GoalReachedFlag==true) of
 true ->%End training
 A=genotype:dirty_read({agent,S#state.agent_id}),

586 Chapter 14 Creating the Two Slightly More Complex Benchmarks

 genotype:write(A#agent{fitness=U_HighestFitness}),
 backup_genotype(S#state.idsNpids,S#state.npids),
 terminate_phenotype(S#state.cx_pid,S#state.spids,S#state.npids,
S#state.apids, S#state.scape_pids),
 io:format(“Agent:~p terminating. Genotype has been backed
up.~n Fitness:~p~n TotEvaluations:~p~n TotCycles:~p~n TimeAcc:~p~n”, [self(),
U_HighestFitness, U_EvalAcc,U_CycleAcc, U_TimeAcc]),
 case GoalReachedFlag of
 true ->
 gen_server:cast(S#state.pm_pid,
{S#state.agent_id, goal_reached);
 _ ->
 ok
 end,
 gen_server:cast(S#state.pm_pid,{S#state.agent_id,terminated,
U_HighestFitness});
…

handle_cast({_From,goal_reached},S)->
 U_S=S#state{goal_reached=true},
 {noreply,U_S};

handle_cast({From,evaluations,Specie_Id,AEA,AgentCycleAcc,AgentTimeAcc},S)->
 AgentEvalAcc=case S#state.goal_reached of
 true ->
 0;
 _ ->
 AEA
 end,

population_monitor by first adding to its state record the
goal_reached element, which is set to false by default, and then by adding to it a
new handle_cast clause:

Next, we update the

This cast clause sets the goal_reached parameter to true when triggered. Final-
ly, we add to all population_monitor’s termination condition recognition cases the
additional operator: “or S#state.goal_reached”, and modify the evaluations mes-
sage receiving handle_cast clause to:

This ensures that the population_monitor stops counting evaluations when the
goal_reached flag is set to true. These changes effectively modify our system, giv-
ing it the ability to use the goal_reached parameter. This entire modification is
succinctly shown in Fig-14.2.

14.1 Pole Balancing Simulation 587

Fig. 14.2 The updated goal_reached message processing capable scape, and the
goal_reached signal’s travel path: scape to actuator to cortex to exoself to popula-
tion_monitor.

This small change allows us to continue with our pole_balancing benchmarking
test. And thus we finally set the experiment’s tot_runs parameter to 50, which
makes the benchmarker run 50 evolutionary runs in total, which means that the
calculated average is based on 50 runs, which is a standard for this type of prob-
lem.

To run the first benchmark, we simply use the morphology setup listed earlier,
set the fitness_goal parameter of the pmp record to 90000, the tot_runs to 50, and
leave everything else as default. We then compile and reload everything by run-
ning polis:sync(), and execute the benchmarker:start(spb_without_damping) func-
tion, where spb_without_damping is the Id we give to this experiment, which
stands for Single Pole Balancing Without Damping.

With this setup, the benchmarker will spawn the population_monitor process,
wait for the evolutionary run to complete, add the resulting trace to the experi-
ment’s stats list, and then perform another evolutionary run. In total 50 evolution-
ary runs will comprise the benchmark. The result we are after is not the graphable
data, but the report’s average evaluations value (the average number of evalua-
tions taken to reach the goal), and its standard deviation. The results of the first
benchmark are shown in the following listing.

588 Chapter 14 Creating the Two Slightly More Complex Benchmarks

Listing-14.6 The results of the single pole balancing, partial information, without_damping,
benchmark.

3> benchmarker:start(spb_without_damping).
...
******** Traces_Acc written to file:”benchmarks/report_Trace_Acc”
Graph:{graph,pole_balancing,
 [1.1782424242424248],
 [0.16452932686308724],
 [60910.254989899],
 [24190.827695700948],
 [75696.42],
 [32275.24],
 [6.04],
 [1.232233744059949],
 [457.72],
 []}
Tot Evaluations Avg:646.78 Std:325.8772339394086

When using the non topology and weight evolving neuroevolutionary systems
(ESP, CMA-ES, and CoSyNE), the researcher must first create a topology he
knows works (or have the neuroevolutionary system generate random topologies,
rather than evolving one from another), and then the neuroevolutionary system
simply optimizes the synaptic weights to a working combination of values. But
such systems cannot be applied to previously unknown problems, or problems for
which we do not know the topology, nor its complexity and size, beforehand. For
complex problems, topology cannot be predicted, in fact this is why we use a to-
pology and weight evolving artificial neural network system, because we cannot
predict and create the topology for non-toy problems on our own, we require the
help of evolution.

It works! The results are also rather excellent, on average taking only 646 eval-
uations (though as can be seen from the standard deviation, there were times when
it was much faster). We achieved this high performance (as compared to the re-
sults of other neuroevolutionary systems) without even having taken the time to
optimize or tune our neuroevolutionary system yet. If we compare the resulting
evaluations average that we received from our benchmark (your results might dif-
fer slightly), to those done by others, for example compared to the list put together
in paper [1], we see that our system is the most efficient of the topology and
weight evolving artificial neural network systems on this benchmark. The two
faster neuroevolutionary systems ESP [2], and CoSyNE [3], do not evolve topolo-
gy. The ESP and CoSyNE systems solved the problem in 589 and 127 evaluations
respectively, while the CNE [4] and SANE [5] and NEAT [6] solved it in 724,
1212, and 1523 evaluations on average, respectively.

14.1 Pole Balancing Simulation 589

Next we benchmark our system on the second problem, the more complex dou-
ble pole balancing problem which uses a standard fitness function without damp-
ing. Listing-14.7 shows the results of the experiment.

Listing-14.7 The double pole balancing benchmark, using the without_damping fitness func-
tion.

3> benchmarker:start(spb_without_damping).
...
Graph:{graph,pole_balancing,
 [2.4315606060606063],
 [0.8808311444164436],
 [22194.480560606058],
 [15614.417335306674],
 [34476.74],
 [6285.78],
 [7.34],
 [1.4779715829473847],
 [500.0],
 []}
Tot Evaluations Avg:5184.0 Std:3595.622677645695

Finally, we run the third benchmark, the double pole balancing with partial
state information and with damping. Because we have added the goal_reached
messaging by the scapes, we can deal with the non one-to-one mapping between
the number of time steps the agent can balance the cart, and the fitness calculated
for this balancing act. Thus, we modify the pmp’s fitness_goal back to inf, letting
the scape terminate when the goal has been reached, and thus when the evaluation
run should stop (we could have done the same thing during the previous experi-
ment, rather than using the fitness goal of 90000, which was possible due to the
goal and fitness having a one-to-one mapping). The results of this experiment are
shown in Listing-14.8.

Listing-14.8 The results of running the double pole balancing with damping benchmark.

Graph:{graph,pole_balancing,
 [3.056909090909092],
 [1.3611906067001034],

Our system was able to solve the given problem in 5184 evaluations, whereas
again based on the table provided in [1], the next closest TWEANN in that table is
ESP [2], which solved it in 7374 evaluations on average. But, the DXNN system
we discussed earlier was able to solve the same problem in 2359 evaluations on
average. As we continue advancing and improving the system we’re developing
together, it too will improve to such numbers.

590 Chapter 14 Creating the Two Slightly More Complex Benchmarks

 [67318.29389102172],
 [84335.29879824212],
 [102347.17542007213],
 [11861.325171196118],
 [7.32],
 [1.5157836257197137],
 [500.0],
 []}
Tot Evaluations Avg:4792.38 Std:3834.866761127432

It works! The goal_reached feature has worked, and the average number of
evaluations our neuroevolutionary system needed to produce a result is highly
competitive to other state of the art systems as shown in Table-14.1 which quotes
the benchmark results from [1]. The DXNN system’s benchmark results are also
added to the table for comparison, with the results of our system added at the bot-
tom. Note that neither CMA-ES nor CoSyNE evolves neural topologies. These
two systems only optimize the synaptic weights of the already provided NN.

Table 14.1 Benchmark results for the pole balancing problem.

* These do not evolve topologies, but only optimize the synaptic weights

Having completed developing these two benchmarks, and having finished test-
ing our TWEANN system on the pole and double pole balancing benchmark, we
move forward and begin developing the more complex T-Maze problem.

14.2 T-Maze Simulation

The T-Maze problem is another standard problem that is used to test the ability
of a NN based system to learn and change its strategy while existing in, and inter-
acting with, a maze environment. In this problem an agent navigates a T shaped
maze as shown in Fig-14.3. At one horizontal end of the maze is a low reward,

Method Single-Pole/Incomplete state
Information

Double-Pole/Partial Information
W/O Damping

Double-Pole W/
Damping

RWG 8557 415209 1232296
SANE 1212 262700 451612
CNE* 724 76906* 87623*
ESP 589 7374 26342
NEAT - - 6929
CMA-ES* - 3521* 6061*
CoSyNE* 127* 1249* 3416*
DXNN Not Performed 2359 2313
OurSystem 647 5184 4792

14.2 T-Maze Simulation 591

and at another a high reward. The agent is a simulated robot which navigates the
maze. Every time the robot crashes into a wall or reaches one of the maze’s ends,
its position is reset to the start of the maze. The whole simulation run (agent is al-
lowed to navigate the maze until it either finds the reward and its position resets to
base, or crashes into a wall and its position is reset to base) lasts X number of
maze runs, which is usually set to 100. At some random time during those 100
maze runs, the high and low reward positions are swapped. The goal is for the
agent to gather as many reward points as possible. Thus, if the agent has been
reaching the high reward end of the maze, and suddenly there was a switch, the
best strategy is for the agent when it has reached the location of where previously
there was a high reward, is to realize that it now needs to change its strategy and
always go to the other side of the maze, for the remainder of the simulation. To do
this, the agent must remember what reward it has picked up and on what side, and
change its traveling path after noticing that the rewards have been switched, which
is most easily done when some of the agent’s neurons are plastic.

Fig. 14.3 The T-Maze setup.

We will create a simplified version of the T-Maze problem. It is used widely
[6,7], and it does not require us to develop an entire 2d environment and robot
simulation (which we will do in Chapter-18, when we create an Artificial Life
simulation). Our T-Maze will have all the important features of the problem, but
will not require true navigation in 2d space. We will create a discrete version of
the T-Maze, as shown in Fig-14.4.

592 Chapter 14 Creating the Two Slightly More Complex Benchmarks

Fig. 14.4 A discrete version of the T-Maze simulation.

The T-Maze will be contained in a private scape, and the movement and senses
will, as in the previous simulation, be done through the sending and receiving of
messages. Because we will create a discrete version of the maze, we can simulate
the whole maze by simply deciding on the discrete length of each section of the
corridor, and what the agent will receive as its sensory signals when in a particular
section of the maze. The agent will use a combination of the following two sen-
sors:

1. distance_sensor: A laser distance sensor pointing forward, to the left side, and
to the right side, with respect to the simulated robot’s direction. Since the maze
is self contained and closed, the sensors will always return a distance. When
traveling down the single dimensional corridor, the forward sensor will return
the distance to the wall ahead, and the side distance sensors will return 0, since
there is no place to move sideways. When the agent reaches an intersection, the
side range sensors will return the distances to the walls on the side, thus the

The agents traveling through the maze will be able to move forward, and turn
left or right, but there will be no width to the corridors. The corridors will have a
certain discrete length, and the agent will see forward in a sense that its range sen-
sor will measure the distance to the wall ahead, and its side sensors will measure a
distance to the sides of the “corridor” it is in, which when traveling down a single
dimensional corridor will be 0, yet when reaching the T intersection, will show
that it can turn left or right. The turns themselves will be discrete 90 degree turns,
thus allowing the agent to turn left or right, and continue forward to gather the re-
ward at the end of the corridor. This version of the T-Maze though simple, still re-
quires the agent to solve the same problem as the non discrete Maze. In the dis-
crete version, the agent must still remember where the reward is, evolve an ability
to move down the corridors and turn and move in the turned direction where there
is space to move forward, and finally, remember on which side of the maze it last
found the highest reward.

14.2 T-Maze Simulation 593

agent can decide which way to turn. If the agent has reached a dead end, then
both the forward facing, and the side facing range sensors will return 0, which
will require the agent to turn, at which point it can start traveling in the other
direction.

2. reward_consumed: The agent needs to know not only where the reward is, but
how large it is, since the agent must explore the two rewards, and then for the
remainder of the evaluation go towards the larger reward. To do this, the agent
must have a sensory signal which tells it how large the reward it just consumed
is. This sensor forwards to the NN a vector of length one: [RewardMagnitude],
where RewardMagnitude is the magnitude of the actual reward.

The agent must also be able to move around this simplified, discrete labyrinth.
There are different ways that we could allow the NN based agent to control the
simulated robot within the maze. We could create an actuator that uses a vector of
length one, where this single value is then used to decide whether the agent is to
turn left (if the value is < -0.33), or turn right (if the value is > 0.33) or continue
moving forward (if the value is between -0.33 and 0.33). Another type of actuator
could be based on the differential drive, similar to one used by the Khepera [5] ro-
bot (a small puck shaped robot). The differential_drive actuator would have as in-
put a vector of length 2: [Val1,Val2], where Val1 would control the rotation speed
of the left wheel, and Val2 would control the rotation speed of the right wheel. In
this manner if both wheels are spinning backwards (Val1 < 0, and Val2 < 0), the
simulated robot moves backwards, if both spin forward with the same speed, then
the robot moves forward. If they spin at different speeds, the robot either turns
left or right depending on the angular velocities of the two wheels. Finally, we
could create an actuator that accepts an input vector of length 2: [Val1,Val2],
where Val1 maps directly to the simulated robot’s velocity on the Y axis, and
Val2 maps to the robot’s velocity on the X axis. This would be a simple transla-
tion_drive actuator, and the simulated robot in this scenario would not be able to
rotate. The inability to rotate could be alleviated if we add a third element to the
vector, which we could than map to the angular velocity value, which would dic-
tate the robot’s rotation clockwise or counterclockwise, dependent on that value’s
sign. Or Val1 could dictate the robot’s movement forward/backward, and Val2
could dictate whether the robot should turn left, right, or not at all. There are many
ways in which we could let the NN control the movement of the simulated robot.
For our discrete version of the T-Maze problem, we will use the same movement
control method that was used in paper [7] which tested another NN system on the
discrete T-Maze problem. This actuator accepts an input from a single neuron, and
uses this accumulated vector: [Val], to then calculate whether to move forward,
turn counterclockwise and move forward in that direction, or turn clockwise and
then move forward in that direction. If Val is between -0.33 and 0.33, the agent
moves one step forward, if it is less than -0.33, the agent turns counterclockwise
and then moves one step forward, and if Val is greater than 0.33, the agent turns
clockwise and moves one step forward in the new direction.

594 Chapter 14 Creating the Two Slightly More Complex Benchmarks

Due to this being a discrete version of the maze, it can easily be represented as
a state machine, or simply as a list of discrete sections. Looking back at Fig-14.4,
we can use a list to keep track of all the sensor responses for every position and
orientation within the maze. In the standard discrete T-Maze implementation used
in [7], there are in total 4 sectors. The agent starts at the bottom of the T-Maze lo-
cated at {X=0,Y=0}, it can then move up to {0,1}, which is an intersection. At this
point the agent can turn left and move a step forward to {-1,1}, or turn right and
move a step forward to {1,1}.

If we are to draw the maze on a Cartesian plane, the agent can be turned to face
towards the positive X axis, at 0 degrees, the positive Y axis at 90 degrees, the
negative X axis at 180 degrees, and finally the negative Y axis, at 270 degrees.
And if the maze is drawn on the Cartesian plane, then each sector’s Id can be its
coordinate on that plane. With the simulated robot in this maze being in one of the
sectors (on one of the coordinates {0,0},{0,1},{1,1},or {-1,1}), and looking in one
particular direction (at 0, 90, 180, or 270 degrees), we can then perfectly define
what the sensory signals returned to the simulated robot should be. But before we
can do that, we need a format for how to store the simulated robot’s location,
viewing direction, and how it should perceive whether it is looking at a wall, or at
a reward located at one of the maze’s ends. The superposition of the T-Maze on a
Cartesian plane, with a few examples of

Fig. 14.5 Discrete T-Maze, and the sensory signals the simulated robot receives at various
locations and orientations. The agent is shown as a gray circle, with the arrow pointing in
the direction the simulated robot is looking, its orientation.

We will let each discrete sector keep track of the following:

 id: It’s own id, its Cartesian coordinate.

the agent’s position/orientation, and what
sensory signals it receives there, is shown in Fig-14.5.

14.2 T-Maze Simulation 595

 r: The reward the agent gets for being in that sector. There will be only two
sectors that give reward, the two horizontal endings of the “T”. This reward
will be sensed by the reward_sensor.

We will call the record containing all the sector information of a single sector:
dtm_sector, which stands for Discrete T-Maze Sector. An example of the sector
located at coordinate [0,0], and part of the maze shown in the above figure, is as
follows:

#dtm_sector{id=[0,0],description=[{0,[],[1,0,0]},{90,[0,1],[0,1,0]},{180,[],[0,0,1]},{270,[],[0,0,
0]}],r=0}

Let’s take a closer look at this sector, located at [0,0], and on which the
agent is for example turned at 90 degrees, and thus looking towards the positive Y
axis. For this particular orientation when the agent requests sensory signals, they
will come from the following tuple: {90,[0,1],[0,1,0]}, also highlighted in the
above record. The first value, 90, is the orientation for which the follow-up senso-
ry information is listed. The [0,1] is the coordinate of the sector to which the agent
will move if it decides to move forward at this orientation. The vector [0,1,0] is
the range sensory signal, and is fed to the agent’s range sensor when requested. It
states that on both sides, the agent’s left and right, there are walls right next to it,
and the distance to them is 0, and that straight ahead the wall does not come up for
1 sector. The value r=0 states that the current sector has no reward, and this is the
value fed to the agent’s reward sensor.

Thus this allows the agent to move around the discrete maze, travel from one
sector to another, where each sector has all the information needed when the
agent’s sensors send a request for percepts. These sectors will all be contained in a
single record’s list, used by the private scape which represents the entire maze.

description: This will be the list that contains all the sensory information
available when the agent is in that particular sector. In this simulation it will
contain the range sensory signals. This means that each section will contain 4
sets of range sensory signals, one each for when the simulated robot is turned
and is looking at 0, at 90, at 180, and at 270 degrees in that sector. Each of the
range signals appropriate for the agent’s particular orientation can then be ex-
tracted through a key, where the key is the agent’s orientation in degrees (one
of the four: 0, 90, 180, or 270). The complete form of the description list is as
follows: [{0, NextSector, RangeSense}, {90, NextSector, RangeSense}, {180,
NextSector, RangeSense}, {270, NextSector, RangeSense}]. The NextSector pa-
rameter specifies what is the coordinate of the next sector that is reachable from
the current sector, given that the agent will move forward while in the current
orientation. Thus, if for example the agent’s forward is at 90 degrees, looking
toward the positive Y axis on the Cartesian coordinate, and its actuator speci-
fies that it should move forward, then we look at the 90 degree based tuple, and
move the agent to the NextSector of that tuple.

596 Chapter 14 Creating the Two Slightly More Complex Benchmarks

We will call the record for this private scape: dtm_state, and it will have the fol-
lowing default format:

-record(dtm_state,{agent_position=[0,0],agent_direction=90,sectors=[],tot_runs=60,
run_index=0, switch_event, fitness_acc=0}).

Let’s go through each of this record’s elements and discuss its meaning:

 agent_position: Keeps track of the agent’s current position, the default is [0,0],
the agent’s starting position in the maze.

 agent_direction: Keeps track of the agent’s current orientation, the default is
90 degrees, where the agent is looking down the maze, towards the positive Y
axis.

 sectors: This is a list of all the sectors: [SectorRecord1...SectorRecordN], each
of which is represented by the dtm_sector record, and a list of which will repre-
sent the entire T-Maze.

 tot_runs: Sets the total number of maze runs (trials) the agent performs per
evaluation.

 run_index: This parameter keeps track of the current maze run index.
 switch_event: Is the run index during which the large and small reward loca-

tions are switched. This will require the agent, if it wants to continue collecting
the larger reward, to first go to the large reward’s original position, at which it
will now find the smaller reward, figure out that the location of the large re-
ward has changed, and during the following maze run go to the other side of
the maze to collect the larger reward.

 switched: Since the switch of the reward locations needs to take place only
once during the entire tot_runs of maze runs, we will set this parameter to false
by default, and then to true once the switch is made, so that this parameter can
then be used as a flag to ensure that no other switch is performed for the re-
mainder of the maze runs.

 step_index: If we let the agents travel through the maze for as long as they
want, there might be certain phenotypes that simply spin around in one place,
although not possible with our current type of actuator, which requires the
agent to take a step every time, either forward, to the right, or to the left. To
prevent such infinite spins when we decide to use another type of actuator, we
will give each agent only a limited number of steps. It takes a minimum of 2
steps to get from the base of the maze to one of the rewards, 1 step up the main
vertical hall, and 1 turn/move step to the left or right. With an eye to the future,
we will give the agents a maximum of 50 steps, after which the maze run ends
as if the agent crashed into a wall. Though not useful in this implementation, it
might become useful when you extend this maze and start exploring other actu-
ators, sensors...

As with the pole balancing, this private scape will allow the agent to send it
messages requesting sensory signals, either all signals (range sense, and the just

14.2 T-Maze Simulation 597

acquired reward size sense) merged into a single vector, or one sensory signal vec-
tor at a time. And it will allow the agent to send it signals from its actuators, dic-
tating whether it should move or rotate/move the simulated robot.

and orientation, and be able to act on the messages sent from its sensor and actua-
tor, and based on them control the agent’s avatar. The T-Maze will start with the
large and small rewards at the two opposite sides of the T-Maze, and then at some
random maze run to which the switch_event is set (different for each evaluation),
the large and small reward locations will flip, and require for the agent to figure
this out and go to the new location if it wants to continue collecting the larger of
the two rewards. As per the standard T-Maze implementation, the large reward is
worth 1 point, and the small reward is worth 0.2 points. If at any time the agent
hits a wall, by for example turn/moving when located at the base of the maze, and
thus hitting the wall, the maze run ends and the agent is penalized with -0.4 fitness
points, is then re-spawned at the base of the maze, and the run_index is increment-
ed. If the agent collects the reward, the maze run ends and the agent is re-spawned
at the base of the maze, with the run_index incremented. Finally, once the agent
has finished tot_runs number of maze runs, the evaluation of the agent’s fitness
ends, at which point the exoself might perturb the NN’s synaptic weights, or end
the tuning run... To ensure that the agents do not end up with negative fitness
scores when setting the tot_runs to 100, we will start the agents off with 50 fitness
points. Thus an agent that always crashes will have a minimum fitness score of 50
– 100*0.4 = 10.

Finally, though we will implement the T-Maze scenario where the agent gets to
the reward at one of the maze’s ends, and is then teleported back to the base of the
maze for another maze-run, there are other possible implementations and scenari-
os. For example, as is demonstrated in Fig-14.6, we could also extend the maze to
have teleportation portals located at {-2,1} and {2,1}, through which the agent has
to go after gathering the food, so that it is teleported back to the base to reset the
rewards. Or we could require it to have to travel all the way back to the base man-
ually, though we would need to change the simple actuator so that it can rotate in
place without crashing into walls. Finally, we could also create the T-Maze which
allows for both options, teleportation and manual travel. All, the 3 extended T-
Mazes, and 1 default T-Maze which we will implement, are shown in the follow-
ing figure.

Thus, putting all of this together: The scape will keep track of the agent’s position

Fig. 14.6 The various possible scenarios for the T-Maze after the agent has acquired the
reward.

Having decided on the architecture, and having created Fig-14.5 and Fig-14.6d
to guide us in the designing and setting the T-Maze system and each of its sectors,
we can now move forward to the next subsection and implement this private T-
Maze scape, and the needed sensors and actuators to interface with it.

14.2.1 T-Maze Implementation

Through Fig-14.5 we can immediately map the maze’s architecture to its im-
plementation shown in Listing-14.9. For the implementation we first define the
two new records needed by this new scape: the dtm_sector and dtm_state records.
The function dtm_sim/1 prepares and starts up the maze, dropping into the pro-
cess’s main loop. In this main loop the scape process can accept requests for sen-
sory signals, and accept signals from the actuators and return to them a message
containing the fitness points acquired. The sensors we will use will poll the private
scape for an extended range sensor, which is a vector of length 4, and contains the
signals from the agent’s range sensor, appended with the reward value in the cur-
rent maze sector: [Reward,L,F,R], where Reward is the value of the actual reward,
L is the range to the left wall, F is the range to the wall in front, and R is the range
to the wall on the right.

598 Chapter 14 Creating the Two Slightly More Complex Benchmarks

14.2 T-Maze Simulation 599

Listing-14.9 The implementation of the Discrete T-Maze scape.

-record(dtm_sector,{
 id,
 description=[],
 r
}).

-record(dtm_state,{
 agent_position=[0,0],
 agent_direction=90,
 sectors=set_tmaze_sectors(),
 tot_runs=100,
 run_index=0,
 switch_event=35+random:uniform(30),
 switched=false,
 step_index=0,
 fitness_acc=50
}).

dtm_sim(ExoSelf_PId)->
 io:format(“Starting dtm_sim~n”),
 random:seed(now()),
 dtm_sim(ExoSelf_PId,#dtm_state{}).

dtm_sim(ExoSelf_PId,S) when (S#dtm_state.run_index == S#dtm_state.switch_event) and
(S#dtm_state.switched==false)->
 Sectors=S#dtm_state.sectors,
 SectorA=lists:keyfind([1,1],2,Sectors),
 SectorB=lists:keyfind([-1,1],2,Sectors),
 U_SectorA=SectorA#dtm_sector{r=SectorB#dtm_sector.r},
 U_SectorB=SectorB#dtm_sector{r=SectorA#dtm_sector.r},
 U_Sectors=lists:keyreplace([-1,1],2,lists:keyreplace([1,1],2,Sectors, U_SectorA),
U_SectorB),
 scape:dtm_sim(ExoSelf_PId,S#dtm_state{sectors=U_Sectors, switched=true});
dtm_sim(ExoSelf_PId,S)->
 receive
 {From_PId,sense,Parameters}->
 APos = S#dtm_state.agent_position,
 ADir = S#dtm_state.agent_direction,
 Sector=lists:keyfind(APos,2,S#dtm_state.sectors),
 {ADir,NextSec,RangeSense} = lists:keyfind(ADir,1, Sec-
tor#dtm_sector.description),
 SenseSignal=case Parameters of
 [all] ->

600 Chapter 14 Creating the Two Slightly More Complex Benchmarks

 RangeSense++[Sector#dtm_sector.r];
 [range_sense]->
 RangeSense;
 [reward] ->
 [Sector#dtm_sector.r]
 end,
 From_PId ! {self(),percept,SenseSignal},
 scape:dtm_sim(ExoSelf_PId,S);
 {From_PId,move,_Parameters,[Move]}->
 APos = S#dtm_state.agent_position,
 ADir = S#dtm_state.agent_direction,
 Sector=lists:keyfind(APos,2,S#dtm_state.sectors),
 U_StepIndex = S#dtm_state.step_index+1,
 {ADir,NextSec,RangeSense} = lists:keyfind(ADir,1,
Sector#dtm_sector.description),
 if
 (APos == [1,1]) or (APos == [-1,1]) ->
 Updated_RunIndex=S#dtm_state.run_index+1,
 case Updated_RunIndex >= S#dtm_state.tot_runs of
 true ->
 From_PId ! {self(), S#dtm_state.fitness_acc
+Sector#dtm_sector.r, 1},
 dtm_sim(ExoSelf_PId,#dtm_state{});
 false ->
 From_PId ! {self(),0,0},
 U_S = S#dtm_state{
 agent_position=[0,0],
 agent_direction=90,
 run_index=Updated_RunIndex,
 step_index = 0,
 fitness_acc = S#dtm_state.fitness_acc
+Sector#dtm_sector.r
 },
 dtm_sim(ExoSelf_PId,U_S)
 end;
 Move > 0.33 -> %clockwise
 NewDir=(S#dtm_state.agent_direction + 270) rem 360,
 {NewDir,NewNextSec,NewRangeSense} =
lists:keyfind(NewDir, 1, Sector#dtm_sector.description),
 U_S = move(ExoSelf_PId,From_PId,S#dtm_state{
agent_direction =NewDir},NewNextSec,U_StepIndex),
 dtm_sim(ExoSelf_PId,U_S);
 Move < -0.33 -> %counterclockwise
 NewDir=(S#dtm_state.agent_direction + 90) rem 360,

14.2 T-Maze Simulation 601

 {NewDir,NewNextSec,NewRangeSense} =
lists:keyfind(NewDir, 1, Sector#dtm_sector.description),
 U_S = move(ExoSelf_PId,From_PId,S#dtm_state{
agent_direction=NewDir},NewNextSec,U_StepIndex),
 dtm_sim(ExoSelf_PId,U_S);
 true -> %forward
 move(ExoSelf_PId,From_PId,S,NextSec,U_StepIndex)
 end;
 {ExoSelf_PId,terminate} ->
 ok
 end.
% The dtm_sim/2 function generates a simulated discrete T-Maze scape, with all the sensory
information and the maze architecture specified through a list of sector records. The scape can
receive signals from the agent’s sensor, to which it then replies with the sensory information,
and it can receive the messages from the agent’s actuator, which it uses to move the agent’s av-
atar around the maze.

 move(ExoSelf_PId,From_PId,S,NextSec,U_StepIndex)->
 case NextSec of
 [] -> %wall crash/restart_state
 Updated_RunIndex = S#dtm_state.run_index+1,
 case Updated_RunIndex >= S#dtm_state.tot_runs of
 true ->
 From_PId ! {self(),S#dtm_state.fitness_acc-0.4,1},
 dtm_sim(ExoSelf_PId,#dtm_state{});
 false ->
 From_PId ! {self(),0,0},
 U_S = S#dtm_state{
 agent_position=[0,0],
 agent_direction=90,
 run_index=Updated_RunIndex,
 step_index = 0,
 fitness_acc = S#dtm_state.fitness_acc-0.4
 },
 dtm_sim(ExoSelf_PId,U_S)
 end;
 _ -> %move
 From_PId ! {self(),0,0},
 U_S = S#dtm_state{
 agent_position=NextSec,
 step_index = U_StepIndex
 },
 dtm_sim(ExoSelf_PId,U_S)
 end.
%The move/5 function accepts as input the State S of the scape, and the specification of where

602 Chapter 14 Creating the Two Slightly More Complex Benchmarks

the agent wants to move its avatar next, NextSec. The function then determines whether that
next sector exists, or whether the agent will hit a wall if it moves in its currently chosen direc-
tion.

set_tmaze_sectors()->
 Sectors = [
 #dtm_sector{id=[0,0],description=[{0,[],[1,0,0]},{90,[0,1],[0,1,0]},{180,[],[0,0,1]},
{270,[], [0,0,0]}],r=0},
 #dtm_sector{id=[0,1],description=[{0,[1,1],[0,1,1]},{90,[],[1,0,1]},{180,[-1,1],
[1,1,0]}, {270, [0,0], [1,1,1]}],r=0},
 #dtm_sector{id=[1,1],description=[{0,[],[0,0,0]},{90,[],[2,0,0]},{180,[0,1],[0,2,0]},
{270,[], [0,0,2]}],r=0.2},
 #dtm_sector{id=[-1,1],description=[{0,[0,1],[0,2,0]},{90,[],[0,0,2]},{180,[],[0,0,0]},
{270,[],[2,0,0]}],r=1}
].

With the T-Maze implemented, we now need to develop the complementary
sensor and the actuator. For the sensor, since the agent needs all the information
appended: sensory vectors from the range_sensor, and the reward sensor, com-
bined into a single vector, we will create a single sensor which will contain the in-
formation from both of these sensors. What sensory signal the scape sends back to
the agent’s sensor will be defined by the sensor’s parameter message. The actuator
will simply forward the NN based agent’s output to the discrete T-Maze process,
which will then interpret the signal as turning left and moving forward 1 step,
turning right and moving forward 1 step, or just moving forward 1 step. We first
create the morphology, which follows the same format as the one we created for
the pole_balancing morphology. This morphology we will call discrete_tmaze,
with its implementation shown in Listing-14.10, and which we add to the mor-
phology module.

Listing-14.10 The discrete_tmaze morphology specification.

discrete_tmaze(sensors)->
 [
 #sensor{name=dtm_GetInput,scape={private,dtm_sim},vl=4,parameters=[all]}
];
discrete_tmaze(actuators)->
 [
 #actuator{name=dtm_SendOutput,scape={private,dtm_sim},vl=1,parameters=[]}
].

% The set_tmaze_sectors/0 function returns to the caller a list of sectors representing the T-
Maze. In this case, there are 4 such sectors, the vertical sector, the two horizontal sectors,
and the cross section sector.

14.2 T-Maze Simulation 603

Similarly, the sensor’s implementation is shown in Listing-14.11, which we
add to the sensor module.

Listing-14.11 The dtm_GetInput sensor implementation.

dtm_GetInput(VL,Parameters,Scape)->
 Scape ! {self(),sense,Parameters},
 receive
 {Scape,percept,SensoryVector}->
 case length(SensoryVector)==VL of
 true ->
 SensoryVector;
 false ->
 io:format(“Error in sensor:dtm_GetInput/3, VL:~p
SensoryVector:~p~n”, [VL,SensoryVector]),
 lists:duplicate(VL,0)
 end
 end.

Finally, the actuator implementation is shown in Listing-14.12, which we add it
to the actuator module.

Listing 14.12 The dtm_SendOutput actuator implementation.

dtm_SendOutput(Output,Parameters,Scape)->
 Scape ! {self(),move,Parameters,Output},
 receive
 {Scape,Fitness,HaltFlag}->
 {Fitness,HaltFlag}
 end.

And with that we’ve completely developed all the parts of the discrete T-Maze
benchmark. We’ve created the actual private scape that represents the maze and in
which an agent can travel. And we created the complementary morphology, with
its own sensor and actuator set, used to interface with the T-Maze scape. With this
particular problem/benchmark, we will now be able to test whether our topology
and weight evolving artificial neural network system is able to evolve NN based
agents which can perform complex navigational tasks, evolve agents which have
memory and can make choices based on it, and even learn when the neurons with-
in the tested NN have plasticity.

604 Chapter 14 Creating the Two Slightly More Complex Benchmarks

14.2.2 Benchmark Results

Let’s run a quick test of our system by applying it to our newly developed
problem. Though I do not expect our neuroevolutionary system to evolve an agent
capable of effectively solving the problem at this stage, we still need to test
whether the new scape, morphology, sensor, and actuator, are functional. Before
we run the benchmark, let us figure out what fitness score value represents that the
problem has been solved.

An evaluation is composed of 100 total maze runs, and sometime during the
midpoint, between run 35 and 65, the high and low rewards are flipped. In this
implementation, we set the switch_event to occur on the run number:
35+random:uniform(30). It will take at least one wrong trip to the reward to fig-
ure out that its position has been changed. Also, we should expect that eventually,
evolution will create NNs that always first go to the maze corner located at [1,1],
which holds the high reward before it is flipped.

With this out of the way, we now set the Morphology element in the
benchmarker module within the ?INIT_CONSTRAINTS macro, to discrete_tmaze.
We then set generation limit to inf, and evaluations_limit to 5000, in the pmp rec-
ord. Finally, we run polis:sync() to recompile and load everything, then start the
polis, and then finally execute benchmarker:start(dtm_test), as shown in Listing-
14.3.

Listing-14.3 The results of running the T-Maze benchmark.

Graph:{graph,discrete_tmaze,

So then, the maximum possible score achievable in this problem, a score repre-
senting that the problem has been solved, is: 99*1 + 1*0.2 + 50 = 149.2, which
represents an agent that first always goes to the right corner, at some point it goes
there and notices that the reward is now small (0.2 instead of 1), and thus starts
going to the [-1,1] corner. This allows the agent to achieve 99 high rewards, and 1
low reward. A score which represents that the agent evolved to always go to
{1,1}, is at most: 65*1 + 35*0.2 + 50 = 122, which is achieved during the best
case scenario, when the reward is flipped on the 65th count, thus allowing the
agent to gather high reward for 65 maze runs, and low reward for the remaining 35
maze runs. The agent will perform multiple evaluations, during some evaluations
the reward switch event will occur early, and every once in a while it will occur on
the 65th maze run, which is the latest time possible. During that lucky evaluation,
the agent can reach 122 fitness points by simply not crashing and always going to
the {1,1} side. The agent can accomplish this by first having: 0.33> Output >-
0.33, which will make the avatar move forward, and during the second step have
Output > 0.33, which will make the avatar turn right and move forward to get the
reward. Finally, the smallest possible fitness is achieved when the agent always
crashes into the wall: 50 – 100*0.4 = 10.

14.2 T-Maze Simulation 605

 [1.1300000000000001,1.12,1.195,1.1816666666666666,
 1.1633333333333333,1.156111111111111,1.2322222222222223,
 1.1400000000000001,1.1766666666666665,1.1800000000000002],
 [0.10535653752852737,0.11661903789690603,0.10234744745229357,
 0.10026354161796684,0.10214368964029706,0.08123088569087163,
 0.13765675688483067,0.11575836902790224,0.1238726945070803,
 0.092736184954957],
 [111.38000000000011,115.31900000000012,112.4590000000001,
 114.4511111111112,112.8790000000001,112.6335555555556,
 112.13066666666677,111.12500000000009,110.68722222222232,
 114.57700000000014],
 [9.305813236896594,6.245812917467183,6.864250796700242,
 8.069048898318606,8.136815662374111,9.383282426018074,
 7.888934134455533,9.98991266228088,9.41834002503416,
 8.867148978110151],
 [122.0000000000001,122.0000000000001,122.0000000000001,
 122.0000000000001,122.0000000000001,122.0000000000001,
 122.0000000000001,122.0000000000001,122.0000000000001,
 122.0000000000001],
 [10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115],
 [8.1,8.8,9.1,8.9,8.0,7.75,8.1,7.65,7.9,7.8],
 [0.8888194417315588,1.2884098726725124,0.8306623862918073,
 0.7681145747868607,0.8366600265340756,0.8874119674649424,
 0.9433981132056604,0.7262919523166975,1.57797338380595,
 1.3638181696985856],
 [500.0,500.0,500.0,500.0,500.0,500.0,500.0,475.0,500.0,500.0],
 []}
Tot Evaluations Avg:5083.75 Std:53.78835840588556

We are not interested in the “Tot Evaluations Avg” value, since the benchmark
was not set up to use the goal_reached feature. But from the graph printout we do
see the score 122.00, boldfaced. I’ve boldfaced the list showing the highest fit-
ness scores achieved amongst all the evolutionary runs. Though as we guessed, the
system did not produce a solution (which requires plasticity as we will see in the
next chapter), it has rapidly (within the first 500 evaluations), produced the score
of 122, which means that agents learned to always navigate to the right corner.

It is always a good idea to at least once double check and printout all the in-
formation produced within the scape, following it in the console, and manually
analyzing it to check for bugs. We will do that just this once, following a single
extracted agent, and the signals its sensors acquire and its actuators produce. First,
we run the function population_monitor:test() with the same parameters we started
the benchmarker until a fit agent is evolved. We then add the line:

606 Chapter 14 Creating the Two Slightly More Complex Benchmarks

io:format(“Position:~p SenseSignal:~p “,[Apos,SenseSignal]),

And lines:

timer:sleep(1000),
io:format(“Move:~p StepIndex:~p RunIndex:~p~n”, [Move,U_StepIndex,
S#dtm_state.run_index]),

To the receive sense and move pattern matchers, respectively. We then extract
the evolved fit agent, and execute the function: exoself:start(AgentId,void) to ob-
serve the path the agent takes. A short console printout I saw when performing
these steps is shown in Listing-14.4. The console printout shows the agent’s start-
ing moves, up to the point when the position of the rewards was switched, and a
few steps afterwards.

Listing-14.4 Console printout of a champion agent’s maze navigation.

Starting dtm_sim
Position:[0,0] SenseSignal:[0,1,0,0] <0.5846.1>
Move:4.18876787545547e-15 StepIndex:1 RunIndex:0
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:0
Position:[1,1] SenseSignal:[0,0,0,1] Move:0.011886120521166272 StepIndex:3 RunIndex:0
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.18876787545547e-15 StepIndex:1 RunIndex:1
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:1
Position:[1,1] SenseSignal:[0,0,0,1] Move:0.011886120521166272 StepIndex:3 RunIndex:1
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.18876787545547e-15 StepIndex:1 RunIndex:2
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:2
Position:[1,1] SenseSignal:[0,0,0,1] Move:0.011886120521166272 StepIndex:3 RunIndex:2
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.18876787545547e-15 StepIndex:1 RunIndex:3
...
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.18876787545547e-15 StepIndex:1 RunIndex:38
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:38
Position:[1,1] SenseSignal:[0,0,0,1] Move:0.011886120521166272 StepIndex:3 RunIndex:38
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.1887678754555e-15 StepIndex:1 RunIndex:39
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:39
Position:[1,1] SenseSignal:[0,0,0,0.2] Move:0.837532377697202 StepIndex:3 RunIndex:39
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.1887678754555e-15 StepIndex:1 RunIndex:40
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:40
Position:[1,1] SenseSignal:[0,0,0,0.2] Move:0.837532377697202 StepIndex:3 RunIndex:40
Position:[0,0] SenseSignal:[0,1,0,0] Move:4.18876787545547e-15 StepIndex:1 RunIndex:41
Position:[0,1] SenseSignal:[1,0,1,0] Move:0.7692260090076106 StepIndex:2 RunIndex:41
Position:[1,1] SenseSignal:[0,0,0,0.2] Move:0.837532377697202 StepIndex:3 RunIndex:41
...

exoself:start({7.513656492058022e-10,agent},void).

14.3 Summary & Discussion 607

14.3 Summary & Discussion

In this chapter we built two new problems to benchmark and test our
neuroevolutionary system on. We built the Double Pole Balancing (DPB) simula-
tion, and the Discrete T-Maze (DTM) simulation. We created different versions of
the pole balancing problem, the single pole balancing with and without damping,
and with and without full system state information, and the double pole balancing
with and without damping, and with and without full system state information.
The complexity of solving the pole balancing problem grows when we increase
the number of poles to balance simultaneously, when we remove the velocity in-
formation and thus require the NN based agent to derive it on its own, and when
we use the damping based fitness function instead of the standard one. We also
created a discrete version of the T-Maze navigation problem, where an agent must
navigate a T shaped maze to collect a reward located at one of the horizontal maze
ends. In this maze there are two rewards, located at the opposite ends of the maze,
one large and one small, and their location is switched at a random point during
the 100 maze runs in total. This requires the agent to remember where the large
reward was last time, explore that position, find that the reward is now small, and
during the remaining maze runs navigate to the other side of the maze to continue
collecting the large reward. This problem can be further expanded by changing the
fitness function used, and by requiring the agent to collect the reward and then re-
turn to the base of the maze, rather than being automatically teleported back as is
the case with our current implementation. Furthermore, we could expand the T-
Maze into a Double T-Maze, with 4 corners where the reward can be collected,
and thus requiring the agent to remember more navigational patterns and reward
locations.

Based on our benchmark, the system we’ve built thus far has performed very
well on the DPB problem, with its results being higher than those of other Topol-
ogy and Weight Evolving Artificial Neural Networks (TWEANN), as was seen
when the results we achieved were compared to the results of such systems refer-
enced from paper [1]. Yet still the performance was not higher than that of
DXNN, because we have yet to tune our system. When we applied our TWEANN
to the T-Maze Navigation problem, it evolved NNs that were not yet able to
change their strategy based on their experience. Adding plasticity in the next chap-
ter will further expand the capabilities of the evolved NNs, giving us a chance to

I’ve boldfaced the very first maze run, where we see the agent taking the steps
from [0,0] to [0,1] to [1,1], and receiving the reward 1. Then we fast-forward and
see that during the RunIndex:39, the reward has been switched. We know this
because when the agent gets to [1,1] on that run, the reward is a mere 0.2 now. On
the RunIndex: 40, the agent still goes to this same location, indicating it has not
learned, and it has not evolved the ability to change its strategy.

608 Chapter 14 Creating the Two Slightly More Complex Benchmarks

again apply our system to this problem, and see that the performance improves,
and allows the agents to achieve perfect scores.

Having a good set of problems in our benchmark suit will allow us to add and
create features that we can demonstrate to improve the system’s generalization
abilities and general performance. The two new problems we added in this chapter
will allow us to better test our system, and the performance of new features we
add to it in the future. Finally, the T-Maze problem will allow us to test the im-
portant feature that we will add in the next chapter: neural plasticity.

14.4 References

[1] Gomez F, Schmidhuber J, Miikkulainen R (2008) Accelerated Neural Evolution through Co-
operatively Coevolved Synapses. Journal of Machine Learning Research 9, 937-965.

[2] Sher GI (2010) DXNN Platform: The Shedding of Biological Inefficiencies. Neuron, 1-36.
Available at: http://arxiv.org/abs/1011.6022.

[3] Durr P, Mattiussi C, Soltoggio A, Floreano D (2008) Evolvability of Neuromodulated Learn-
ing for Robots. 2008 ECSIS Symposium on Learning and Adaptive Behaviors for Robotic
Systems LABRS, 41-46.

[4] Blynel J, Floreano D (2003) Exploring the T-maze: Evolving Learning-Like Robot Behaviors
using CTRNNs. Applications of evolutionary computing 2611, 173-176.

[5] Khepera robots: www.k-team.com
[6] Risi S, Stanley KO (2010) Indirectly Encoding Neural Plasticity as a Pattern of Local Rules.

Neural Plasticity 6226, 1-11.
[7] Soltoggio A, Bullinaria JA, Mattiussi C, Durr P, Floreano D (2008) Evolutionary Advantages

of Neuromodulated Plasticity in Dynamic, Reward-based Scenarios. Artificial Life 2, 569-
576.

http://arxiv.org/abs/1011.6022
http://www.k-team.com

Chapter 15 Neural Plasticity

Abstract In this chapter we add plasticity to our direct encoded NN system. We
implement numerous plasticity encoding approaches, and develop numerous plas-
ticity learning rules, amongst which are variations of the Hebbian Learning Rule,
Oja’s Rule, and Neural Modulation. Once plasticity has been added, we again test
our TWEANN system on the T-Maze navigation benchmark.

We have now built a truly advanced topology and weight evolving artificial
neural network (TWEANN) platform. Our system allows for its various features to
evolve, the NNs can evolve not only the topology and synaptic weights, but also
evolutionary strategies, local and global search parameters, and the very way in
which the neurons/processing-elements interact with input signals. We have im-
plemented our system in such a way that it can easily be further expanded and ex-
tended with new activation functions (such as logical operators, or activation func-
tions which simulate a transistor for example), mutation operators, mutation
strategies, and almost every other feature of our TWEANN. We have also created
two benchmarks, the double pole balancing benchmark and the T-Maze navigation
benchmark, which allows us to test our system’s performance.

There is something lacking at this point though, our evolved agents are but stat-
ic systems. Our NN based agents do not learn during their lifetimes, they are
trained by the exoself, which applies the NN based system to the problem time af-
ter time, with different parameters, until one of the parameter/synaptic-weight
combinations produces a more fit agent. This is not learning. Learning is the pro-
cess during which the NN changes due to its experience, due to its interaction with
the environment. In biological organisms, evolution produces the combination of
neural topology, plasticity parameters, and the starting synaptic weight values,
which allows the NN, based on this plasticity and initial NN topology and setup,
to learn how to interact with the environment, to learn and change and adapt dur-
ing its lifetime. The plasticity parameters allow the NN to change as it interacts
with the environment. While the initial synaptic weight values send this newborn
agent in the right direction, in hope that the plasticity will change the topology and
synaptic weights in the direction that will drive the agent, the organism, further in
its exploration, learning, adaptation, and thus towards a higher fitness.

Of course with plasticity comes a new set of questions: What new mutation op-
erators need to be added? How do we make the mutation operators specific to that
particular set of parameters used by the plasticity learning rule? What about the
tuning phase when it comes to neurons with plasticity, what is the difference be-
tween plasticity enabled NNs which are evolved through genetic algorithm ap-
proaches, and those evolved through memetic algorithm approaches? During the

DOI 10.1007/978-1-4614- - © Springer Science+Business Media New York 2013 4463 3_15,
609 G.I. Sher, Handbook of Neuroevolution Through Erlang,

610 Chapter 15 Neural Plasticity

tuning phase, what do we perturb, the synaptic weights or the plasticity parame-
ters?...

Plasticity is that feature which allows the neuron and its parameters to change
due to its interaction with input signals. In this book’s neural network foundations
chapters we discussed this in detail. In this chapter we will implement the various
learning rules that add neural plasticity to our system. In this chapter we will cre-
ate 3 types of plasticity functions, the standard Hebbian plasticity, the more ad-
vanced Oja’s rule, and finally the most dynamic and flexible approach, neural
plasticity through neuromodulation. We will first discuss and implement these
learning rules, and then add the perturbation and mutation operators necessary to
take advantage of the newly added learning mechanism.

15.1 Hebbian Rule

We discussed the Hebbian learning rule in Section-2.6.1. The principle behind
the Hebbian learning rule is summarized by the quote “Neurons that fire together,
wire together.” If a presynaptic neuron A which is connected to a neuron B, sends
it an excitatory (SignalVal > 0) signal, and in return B produces an excitatory out-
put, then the synaptic weight between the two neurons increases in magnitude. If
on the other hand neuron A sends an excitatory signal to B, and B’s resulting out-
put signal is inhibitory (SignalVal < 0), then B’s synaptic weight for A’s connec-
tion, decreases. In a symmetric fashion, an inhibitory signal from A that results in
an inhibitory signal from B, increases the synaptic weight strength between the
two, but an inhibitory signal from A resulting in an excitatory signal from B, de-
creases the strength of the connection.

The simplest Hebbian rule used to modify the synaptic weight after the neuron
has processed some signal at time t is:

Delta_Weight = h * I_Val * Output,

Thus:

W(t+1) = W(t) + Delta_Weight.

Where Delta_Weight is the change in the synaptic weight, and where the speci-
fied synaptic weight belongs to B, associated with the incoming input signal
I_Val, coming from neuron A. The value h is the learning parameter, set by the re-
searcher. The algorithm and architecture of a neuron using a simple Hebbian
learning rule, repeated from Section-2.6.1 for clarity, is shown in Fig-15.1.

15.1 Hebbian Rule 611

Fig. 15.1 An architecture of a neuron using the Hebbian learning rule based plasticity.

There is though a problem with the current architecture of our neuron, which
prevents it from having plasticity. That problem is that the neuron’s input_idps list
specifies only the Input_Id of the node that sends it an input signal, and the ac-
companying synaptic weight list Weights: [{Input_Id,Weights}...]. With the addi-
tion of plasticity, we must have the ability to also specify the various new parame-
ters (like the learning parameter for example) of the learning rule. There are
multiple ways in which we can solve this dilemma, the following are four of them:

1. Extend the input_idps from: [{Input_Id,Weights}...] to: [{Input_Id, Weights,
LearningParameters}...]

2. Extend the neuron record to also include input_lpps, a list with the format:
[{Input_Id,LPs}...], where input_lpps stands for input learning parameters

This is the simplest Hebbian rule, but though computationally light, it is also
unstable. Because the synaptic weight does not decay, if left unchecked, the
Hebbian rule will keep increasing the magnitude of the synaptic weight, indefi-
nitely, and thus eventually drown out all other synaptic weights belonging to the

less with regards to processing since the signal weighted by 1000 will most likely
overpower other signals. No matter what the other 4 synaptic weights are, no mat-
ter what pattern they have evolved to pick up, the fifth weight with magnitude
1000 will drown out everything, saturating the output. We will implement it for
the sake of completeness, and also because it is so easy to implement. To deal
with unchecked synaptic weight magnitudes, we will use our previously created
functions:sat/1 and functions:sat/2 functions to ensure that the synaptic weights do
not increase in magnitude unchecked, that they do not increase to infinity, and in-
stead get saturated at some level specified by the sat function and the
?SAT_LIMIT parameter specified within the neuron module.

neuron. For example, if a neuron has 5 synaptic weights, 4 of which are between
to 1000, this neuron is effectively use--Pi and P, and the fifth weight has climbed

612 Chapter 15 Neural Plasticity

plus, and the LPs list in the tuple stands for Learning Parameters, mirroring the
input_idps list’s format.

3. Extend the Weights list in the input_idps tuple list from: [W1,W2,W3...] To:
[{W1,P1},{W2,P2},{W3,P3}...]

4. Extend pf (Plasticity Function) specification from: atom()::FunctionName to:
{atom()::FunctionName, ParameterList}

All of these solutions would require us to modify the genotype, ge-
nome_mutator, exoself, neuron, signal_aggregator, and plasticity modules, so that
these modules can properly create, mutate, map genotype to phenotype, and in
general properly function when the NN system is active. DXNN uses the 3rd solu-
tion, but only because at one point I also allowed the evolved NN systems to use a
modified back propagation learning algorithm, and Pi contained the learning pa-
rameter. There were also Di and Mi parameters, making the input_idps list of the
neurons evolved by the DXNN platform have the following format:
[{W1,P1,D1,M1},{W2,P2,D2,M2}...], where the value D contained the previous time
step’s change in synaptic weight, and M contained the momentum parameter used
by the backprop algorithm.

Options 1-3 are appropriate for when there is a separate plasticity function, a
separate synaptic weight modification and learning rule, for every synaptic weight.
But in a lot of cases, the neuron has a single learning rule which is applied to all
synaptic weights equally. This is the case with the Hebbian Learning Rule, where
the neuron needs only a single learning parameter specifying the rate of change of
the synaptic weights. For the learning rules that use a single parameter or a list of
global learning parameters, rather than a separate list of learning parameters for
every synaptic weight, option 4 is the most appropriate, in which we extend the
plasticity function name with a parameter list used by that plasticity function.

But what if at some point in the future we decide that every weight should be
accompanied not by one extra parameter, but by 2, or 3, or 4... To solve this, we
could use solution-3, but have each Pi be a list. If there is only one parameter, then
it is a list of length 1: [A1], if two parameters are needed by some specific learning
rule, then each P is a list of length 2: [A1,A2], and so on. If there is no plasticity,
the list is empty.

Are there such learning rules that require so many parameters? Yes, for exam-
ple some versions of neuromodulation can be set such that a single neuron simu-
lates having 5 other modulating neurons within, each of whom analyzes the input
vectors to the neuron in question, and each of whom outputs a value which speci-
fies a particular parameter in the generalized Hebbian learning rule. This type of
plasticity function could use anywhere from 2 to 5 parameters (in the version we
will implement) for each synaptic weight (those 2-5 parameters are themselves
synaptic weights of the embedded modulating neurons), and we will discuss that
particular approach and neuromodulation in general in section 15.3. Whatever rule
we choose, there is a price. Luckily though, due to the way we’ve constructed our

15.1 Hebbian Rule 613

system, it is easy to fix and modify it, no matter which of the listed approaches we
decide to go with.

Let us choose the 3rd option where each Pi is a list of parameters for each
weight Wi, and where that list length is dependent on the plasticity function the
neuron uses. In addition, we will also implement the 4th option, which requires us
to modify the pf parameter format. The pf parameter for every neuron will be
specified as a tuple, composed of the plasticity function name and a global learn-
ing parameter list. This will, though making the implementation a bit more diffi-
cult, allow for a much greater level of flexibility in the types of plasticity rules we
can implement. Using both methods, we will have access to plasticity functions
which need to specify a parameter for every synaptic weight, and those which only
need to specify a single or a few global parameters of the learning rule for the en-
tire neuron.

15.1.1 Implementing the New input_idps & pf Formats

We first update the specification format for the neuron’s pf parameter. This re-
quires only a slight modification in the neuron module, changing the line:

 U_IPIdPs =plasticity:PF(Ordered_IAcc,Input_PIdPs,Output)

To:

 {PFName,PFParameters} = PF,
 U_IPIdPs = plasticity:PFName(PFParameters,Ordered_IAcc,Input_PIdPs,Output),

And a change in the genotype module, to allow us to use the plasticity function
name to generate the PF tuple. The way we do this is by creating a special func-
tion in the plasticity module with arity 1 and of the form: plastici-
ty:PFName(neural_parameters), which returns the necessary plasticity function
specifying tuple: {PFName, PL}, where PL is the Parameter List. In this manner,
when we develop the plasticity functions, we can at the same time create the func-
tion of arity 1 which returns the appropriate tuple defining the actual plasticity
function name and its parameters. The change in the genotype module is done to
the generate_NeuronPF/1 function, changing it from:

generate_NeuronPF(Plasticity_Functions)->
 case Plasticity_Functions of
 [] ->
 none;
 Other ->
 lists:nth(random:uniform(length(Other)),Other)

614 Chapter 15 Neural Plasticity

 end.

To:

generate_NeuronPF(Plasticity_Functions)->
 case Plasticity_Functions of
 [] ->
 {none,[]};
 Other ->
 PFName = lists:nth(random:uniform(length(Other)),Other),
 plasticity:PFName(neural_parameters)
 end.

The most interesting modification occurs in the create_NeuralWeights func-
tion. We modify it from:

create_NeuralWeights(0,Acc) ->
 Acc;
create_NeuralWeights(Index,Acc) ->
 W = random:uniform()-0.5,
 create_NeuralWeights(Index-1,[W|Acc]).

To:

create_NeuralWeightsP(_PFName,0,Acc) ->
 Acc;
create_NeuralWeightsP(PFName,Index,Acc) ->
 W = random:uniform()-0.5,
 create_NeuralWeightsP(PFName,Index-1,[{W,plasticity:PFName(weight_parameters)} |
Acc]).

With this modification completed, we can specify the global, neural level learn-
ing parameters. But to be able to specify synaptic weight level parameters, we
have to augment the neuron’s input_idps list specification format. Because our
new format for input_idps stays very similar to the original, we need only convert
the original list’s form from: [{Input_Id, Weights}...] to: [{Input_Id,WeightsP}...].
Any function that does not directly operate on Weights, does not get affected by
us changing Weights: [W1,W2...] to WeightsP: [{W1,PL1},{W2,PL2}...], where PL is
the plasticity function’s Parameter List. The only function that does get affected
by this change is the one in the genotype module which creates the input_idps
list, create_NeuralWeights/2. In genome_mutator module, again the only affected
function is the mutate_weights function which uses the perturb_weights function
and thus needs to choose the weights rather than the learning parameters to mu-
tate. Finally, the neuron process also perturbs its synaptic weights, and so we will
need to use a modified version of the perturb_weights function.

15.1 Hebbian Rule 615

We also add to the plasticity module a secondary none function: none/1. This
none/1 function can be executed with the neural_parameters or the
weight_parameters atom, and in both cases it returns an empty list, since a neuron
which does not have plasticity and thus uses the none/1 plasticity function, does
not need learning parameters of any type. Thus, our plasticity module now holds
two functions by the name none: one with arity 4, and one with arity 1:

none(neural_parameters)->
 [];
none(weight_parameters)->
 [].
%none/0 returns a set of learning parameters needed by the none/0 plasticity function. Since
this function specifies that the neuron has no plasticity, the parameter lists are empty.

none(_NeuralParameters,_IAcc,Input_PIdPs,_Output)->
 Input_PIdPs.
%none/3 returns the original Input_PIdPs to the caller.

The modification to the perturb_weights function (present in the neuron mod-
ule, and present in the genome_mutator module in a slightly modified form) is
much simpler. The updated function has the form, where the changes have been
highlighted in boldface:

perturb_weightsP(Spread,MP,[{W,LPs}|WeightsP],Acc)->
 U_W = case random:uniform() < MP of
 true->
 sat((random:uniform()-0.5)*2*Spread+W,-?SAT_LIMIT,?SAT_LIMIT);
 false ->
 W
 end,
 perturb_weightsP(Spread,MP,WeightsP,[{U_W,LPs}|Acc]);
perturb_weightsP(_Spread,_MP,[],Acc)->
 lists:reverse(Acc).

The second version creates a list of tuples rather than a simple list of synaptic
weights. Since each learning rule, each plasticity function, will have its own set of

ter list to its own plasticity function. To
have the plasticity function create an initial synaptic level parameter list, we will
call it with the atom parameter: weight_parameters. Thus for every plasticity func-
tion, we will create a secondary clause, which takes as input a single parameter,
and through the use of this parameter it will specify whether the plasticity function
will return neural level learning rule parameters, or synaptic weight level learning
rule parameters. The weight_parameters specification will make the plasticity
function return a randomized list of parameters required by that learning rule at
the synaptic weight level.

parameters, we defer the creation of a parame

616 Chapter 15 Neural Plasticity

All that has changed is the function name, and that instead of using:
[W|Weights], we now use: [{W,LPs}|WeightsP], where the list LPs stands for
Learning Parameters.

Finally, we must also update the synaptic weight and plasticity function specif-
ic mutation operators. These functions are located in the genome_mutator module.
These are the add_bias/1, mutate_pf/1, and the link_ToNeuron/4 functions. The
add_bias/1 and link_ToNeuron/4 functions add new synaptic weights, and thus
must utilize the new plasticity:PFName(weight_parameters) function, based on
the particular plasticity function used by the neuron. The mutate_pf/1 is a muta-
tion operator function. Due to the extra parameter added to the input_idps list,
when we mutate the plasticity function, we must also update the synaptic weight
parameters so that they are appropriate for the format of the new learning rule.
Only the mutate_pf/1 function requires a more involved modification to the source
code, with the other two only needing for the plasticity function name to be ex-
tracted and used to generate the weight parameters from the plasticity module. The
updated mutate_pf/1 function is shown in Listing-15.1, with the modified parts in
boldface.

Listing-15.1 The updated implementation of the mutate_pf/1 function.

mutate_pf(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 Generation = A#agent.generation,
 N = genotype:read({neuron,N_Id}),
 {PFName,_NLParameters} = N#neuron.pf,
 case (A#agent.constraint)#constraint.neural_pfns -- [PFName] of
 [] ->
 exit(“********ERROR:mutate_pf:: There are no other plasticity functions to
use.”);
 Other_PFNames ->

New_PFName=lists:nth(random:uniform(length(Other_PFNames)),Other_PFNames),
 New_NLParameters = plasticity:New_PFName(neural_parameters),
 NewPF = {New_PFName,New_NLParameters},
 InputIdPs = N#neuron.input_idps,
 U_InputIdPs = [{Input_IdP,plasticity:New_PFName(weight_parameters)}
|| {Input_IdP,_OldPL} <- InputIdPs],
 U_N = N#neuron{pf=NewPF,input_idps = U_InputIdPs, generation
=Generation},
 EvoHist = A#agent.evo_hist,

15.1 Hebbian Rule 617

 U_EvoHist = [{mutate_pf,N_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A)
 end.

After making these modifications, we ensure that everything is functioning as it
should, by executing:

polis:sync().
polis:start().
population_monitor:test().

With this update completed, we can now create plasticity functions. Using our
plasticity module implementation, we allow the plasticity functions to completely
isolate and decouple their functionality and setup from the rest of the system,
which will allow others to add and test new plasticity functions as they please,
without disturbing or having to dig through the rest of the code.

15.1.2 Implementing the Simple Hebbian Learning Rule

From the above equation, it can be seen from the common h for all Ii and Wi,
that the standard Hebbian learning rule is one where the neuron has a single, glob-
al, neural level learning parameter h, which is used to update all the synaptic
weights belonging to that neuron. Because our neuron also has the ability to have
a learning parameter per weight, we can also create a Hebbian learning rule where
every synaptic weight uses its very own h. Though note that this approach will
double the number of mutatable parameters for the neuron: a list of synaptic

Which compiles the updated modules ensuring that there are no errors, then
starts the polis process, and then finally runs a quick neuroevolutionary test. The
function population_monitor:test/0 can be executed a few times (each execution
done after the previous one runs to completion), to ensure that everything still works.
Because neuroevolutionary systems function stochastically, the genotypes and to-
pologies evolved during one evolutionary run will be different from another, and
so it is always a good idea to run it a few times, to test out the various combina-
tions and permutations of the evolving agents.

We need to implement a rule where every synaptic weight Wi is updated every
time the neuron processes an input vector and produces an output vector. The
weight Wi must be updated using the rule: Updated_Wi= Wi + h*Ii*Output, where
Ii is the float() input value associated with the synaptic weight Wi. The Updat-
ed_Wi must be, in the same way as done during weight perturbation, saturated at
the value: , so that its magnitude does not increase indefinitely. ?SAT_LIMIT

618 Chapter 15 Neural Plasticity

weights, and a list of the same size of Hebbian learning parameters. For the sake
of completeness, we will implement both versions. We will call the standard
Hebbian learning function which uses a single learning parameter h for all synap-
tic weights, hebbian/4, and one which uses a separate learning parameter hi for
every synaptic weight, hebbian_w/4 (where _w stands for weights). Let us first
implement the hebbian_w function, which uses the following weight update rule:
Updated_Wi= Wi + hi*Ii*Output, where Wi is the synaptic weight, hi is the learn-
ing parameter for neuron Wi, and Ii is the input signal associated with synaptic
weight Wi.

In the previous section we have updated our neuron to apply a learning rule to
its weights through: U_IPIdPs = plasticity:PFName(Neural_Parameters, Or-
dered_IAcc,Input_PIdPs,Output), which gives the plasticity function access to the
neural parameters list, the output signal, the synaptic weights and their associated
learning parameters, and the accumulated input vector. To set up the plasticity
function by the name hebbian_w, we first implement the function hebbian_w/1
which returns a weight parameters list composed of a single element [H] when
hebbian_w/1 is executed with the weights_parameters parameter, and an empty
list when it is executed with the neural_parameters parameter. We then create the
function hebbian_w/4 which implements this actual learning rule. The implemen-
tation of these two hebbian_w functions is shown in Listing-15.2.

Listing 15.2 The implementation of hebbian_w/1 and hebbian_w/4 functions.

hebbian_w(neural_parameters)->
 [];
hebbian_w(weight_parameters)->
 [(lists:random()-0.5)].
%hebbian_w/1 function produces the necessary parameter list for the hebbian_w learning rule
to operate. The weights parameter list generated by hebbian_w learning rule is a list composed
of a single parameter H: [H], for every synaptic weight of the neuron. When hebbian_w/1 is
called with the parameter neural_parameters, it returns [].

hebbian_w(_NeuralParameters,IAcc,Input_PIdPs,Output)->
 hebbian_w1(IAcc,Input_PIdPs,Output,[]).

 hebbian_w1([{IPId,Is}|IAcc],[{IPId,WPs}|Input_PIdPs],Output,Acc)->
 Updated_WPs = hebbrule_w(Is,WPs,Output,[]),
 hebbian_w1(IAcc,Input_PIdPs,Output,[{IPId,Updated_WPs}|Acc]);
 hebbian_w1([],[],_Output,Acc)->
 lists:reverse(Acc);
 hebbian_w1([],[{bias,WPs}],Output,Acc)->
 lists:reverse([{bias,WPs}|Acc]).

15.1 Hebbian Rule 619

%hebbian_w/4 function operates on each Input_PIdP, calling the hebbian_w1/4 function which
processes each of the complementary Is and WPs lists, producing the Updated_WPs lists in re-
turn, with the now updated/adapted weights, based on the hebbian_w learning rule.

 hebbrule_w([I|Is],[{W,[H]}|WPs],Output,Acc)->
 Updated_W = functions:saturation(W + H*I*Output,?SAT_LIMIT),
 hebbrule_w(Is,WPs,Output,[{Updated_W,[H]}|Acc]);
 hebbrule_w([],[],_Output,Acc)->
 lists:reverse(Acc).
%hebbrule_w/4 applies the Hebbian learning rule to each synaptic weight by using the input
value I, the neuron’s calculated Output, and each W’s own distinct learning parameter H.

With the modified Hebbian rule now implemented, let us implement the stand-
ard one. In the standard Hebbian rule, the hebbian/1 function generates an empty
list when called with weight_parameters, and the list [H] when called with neu-
ral_parameters. Also, the hebbian/4 function that implements the actual learning
rule will use a single common H learning parameter to update all the synaptic
weights in the input_idps. Listing-15.3 shows the implementation of such standard
Hebbian learning rule.

Listing-15.3 The implementation of the standard Hebbian learning rule.

hebbian(neural_parameters)->
 [(lists:random()-0.5)];
hebbian(weight_parameters)->

Note that hebbian_w/1 generates a parameter list composed of a single value with
a range between -0.5 and 0.5 (This range was chosen to ensure that from the very
start the learning parameter will not be too large). The Hebbian rule which uses a
negative learning parameter embodies Anti-Hebbian learning. The Anti-Hebbian
learning rule decreases the postsynaptic weight between neurons outputting signals
of the same sign, and increases magnitude of the postsynaptic weight between those
neurons that are connected and output signals of differing signs. Thus, if a neuron A
sends a signal to neuron B, and the presynaptic signal is positive, while the postsyn-
aptic neuron B’s output signal is negative, and it has H < 0, and is thus using the Anti-
Hebbian learning rule, then the B’s synaptic weight for the link from neuron A will
increase in magnitude. This means that in the hebbian_w/4 learning rule implemen-
tation, some of the synaptic weights will be using Hebbian learning, and some Anti-
Hebbian. This will add some extra agility to our system that might prove useful, and
allow the system to evolve more general learning networks.

The function hebbian_w/4 calls hebbian_w1/4 with a list accumulator, which
separately operates on the input vectors from each Input_PId by calling the
hebbrule_w/4 function. It is the hebbrule_w/4 function that actually executes the

?SAT_LIMIT), and updates the WeightsP list.
modified Hebbian learning rule: Updated_W = functions:saturation(W+H*I*Output,

620 Chapter 15 Neural Plasticity

 [].
%The hebbian/1 function produces the necessary parameter list for the Hebbian learning rule to
operate. The parameter list for the standard Hebbian learning rule is a list composed of a single
parameter H: [H], used by the neuron for all its synaptic weights. When hebbian/1 is called with
the parameter weight_parameters, it returns [].

hebbian([H],IAcc,Input_PIdPs,Output)->
 hebbian(H,IAcc,Input_PIdPs,Output,[]).

 hebbian(H,[{IPId,Is}|IAcc],[{IPId,WPs}|Input_PIdPs],Output,Acc)->
 Updated_WPs = hebbrule(H,Is,WPs,Output,[]),
 hebbian(H,IAcc,Input_PIdPs,Output,[{IPId,Updated_WPs}|Acc]);
 hebbian(_H,[],[],_Output,Acc)->
 lists:reverse(Acc);
 hebbian(_H,[],[{bias,WPs}],Output,Acc)->
 lists:reverse([{bias,WPs}|Acc]).
%hebbian/4 function operates on each Input_PIdP, calling the hebbian/5 function which pro-
cesses each of the complementary Is and WPs lists, producing the Updated_WPs list in return,
with the updated/adapted weights based on the standard Hebbian learning rule, using the neu-
ron’s single learning parameter H.

 hebbrule(H,[I|Is],[{W,[]}|WPs],Output,Acc)->
 Updated_W = functions:saturation(W + H*I*Output,?SAT_LIMIT),
 hebbrule(H,Is,WPs,Output,[{Updated_W,[]}|Acc]);
 hebbrule(H,[],[],_Output,Acc)->
 lists:reverse(Acc).
%hebbrule/5 applies the Hebbian learning rule to each weight, using the input value I, the neu-
ron’s calculated output Output, and the neuron’s single learning parameter H.

The standard Hebbian learning rule has a number of flaws. One of these flaws
is that without the saturation/2 function that we’re using, the synaptic weight
would grow in magnitude to infinity. A more biologically faithful implementation
of this auto-associative learning, is the Oja’s learning rule, which we discuss and
implement next.

15.2 Oja’s Rule

The Oja’s learning rule is a modification of the standard Hebbian learning rule
that solves its stability problems through the use of multiplicative normalization,
derived in [1]. This learning rule is also closer to what occurs in biological neu-
rons. The synaptic weight update algorithm embodied by the Oja’s learning rule is
as follows: Updated_Wi = Wi + h*O*(Ii – O*Wi)
ter, O is the output of the neuron based on its processing of the input vectors using

, where h is the learning parame-

15.2 Oja’s Rule 621

its synaptic weights, Ii is the ith input signal, and Wi is the ith synaptic weight asso-
ciated with the Ii input signal.

We can compare the instability of the Hebbian rule to the stability of the Oja’s
rule by running this learning rule through a few iterations with a positive input
signal I. Assuming our neuron only has a single synaptic weight for an input vec-
tor of length one, we test the stability of the synaptic weight updated through the
Oja’s rule as follows:

Initial setup: W = 0.5, h = 0.2, activation function is tanh, using a constant in-
put I = 1:

1. O=math:tanh(W*I)=math:tanh(0.5*1)=0.46
Updated_W = W + h*O*(I – O*W) = 0.5 + 0.2*0.46*(1 – 0.46*0.5) = 0.57

2. O=math:tanh(W*I)=math:tanh(0.57*1)=0.52
Updated_W = W + h*O*(I – O*W) = 0.57 + 0.2*0.52(1 – 0.52*0.57) = 0.64

3. O=math:tanh(W*I)=math:tanh(0.64*1)=0.56
Updated_W = W + h*O*(I - O*W) = 0.64 + 0.2*0.56*(1 - 0.56*0.64) = 0.71

4. …

This continues to increase, but once the synaptic weight achieves a value higher
than the input, for example when W = 1.5, the learning rule takes the weight up-
date in the other direction:

5. O=math:tanh(W*I)=math:tanh(1.5*1)=0.90
Updated_W = W + h*O*(I - O*W) = 1.5 + 0.2*0.90*(1 - 0.90*1.5) = 1.43

Thus this learning rule is indeed self stabilizing, the synaptic weights will not
continue to increase in magnitude towards infinity, as was the case with the
Hebbian learning rule. Let us now implement the two functions, one which returns
the needed learning parameters for this learning rule, and the other implementing
the actual Oja’s synaptic weight update rule.

15.2.1 Implementing the Oja’s Learning Rule

Like the Hebbian learning rule, the standard Oja’s rule too only uses a single
parameter h to pace the learning rate of the synaptic weights. We implement
ojas_w/1 in the same fashion we did the hebbian_w/1, it will be a variation of the
Oja’s learning rule that uses a single learning parameter per synaptic weight, ra-
ther than a single learning parameter for the entire neuron. This synaptic weight
update rule is as follows:

Updated_Wi = Wi + hi*O*(Ii – O*Wi)

We set the initial learning parameter to be randomly chosen between -0.5 and
0.5. The implementation of ojas_w/1 and ojas_w/4 is shown in Listing-15.4.

622 Chapter 15 Neural Plasticity

Listing-15.4 The implementation of a modified Oja’s learning rule, and its initial learning pa-
rameter generating function.

ojas_w(neural_parameters)->
 [];
ojas_w(synaptic_parameters)->
 [(lists:random()-0.5)].
%oja/1 function produces the necessary parameter list for the Oja’s learning rule to operate.
The parameter list for Oja’s learning rule is a list composed of a single parameter H: [H] per
synaptic weight. If the learning parameter is positive, then the postsynaptic neuron’s synaptic
weight increases if the two connected neurons produce output signals of the same sign. If the
learning parameter is negative, and the two connected neurons produce output signals of the
same sign, then the synaptic weight of the postsynaptic neuron, decreases in magnitude.

ojas_w(_Neural_Parameters,IAcc,Input_PIdPs,Output)->
 ojas_w1(IAcc,Input_PIdPs,Output,[]).
ojas_w1([{IPId,Is}|IAcc],[{IPId,WPs}|Input_PIdPs],Output,Acc)->
 Updated_WPs = ojas_rule_w(Is,WPs,Output,[]),
 ojas_w1(IAcc,Input_PIdPs,Output,[{IPId,Updated_WPs}|Acc]);
ojas_w1([],[],_Output,Acc)->
 lists:reverse(Acc);
ojas_w1([],[{bias,WPs}],Output,Acc)->
 lists:reverse([{bias,WPs}|Acc]).
%ojas_w/4 function operates on each Input_PIdP, calling the ojas_rule_w/4 function which
processes each of the complementary Is and WPs lists, producing the Updated_WPs list in re-
turn. In the returned Updated_WPs, the updated/adapted weights are based on the oja’s learning
rule, using each synaptic weight’s distinct learning parameter.

 ojas_rule_w([I|Is],[{W,[H]}|WPs],Output,Acc)->
 Updated_W = functions:saturation(W + H*Output*(I - Output*W),?SAT_LIMIT),
 ojas_rule_w(Is,WPs,Output,[{Updated_W,[H]}|Acc]);
 ojas_rule_w([],[],_Output,Acc)->
 lists:reverse(Acc).
%ojas_weights/4 applies the oja’s learning rule to each weight, using the input value I, the neu-
ron’s calculated output Output, and each weight’s distinct learning parameter H.

The standard implementation of Oja’s learning rule, which uses a single learn-
ing parameter H for all synaptic weights, is shown in Listing-15.5. The standard
Oja’s rule uses the following weight update algorithm: Updated_Wi = Wi +
h*O*(Ii – O*Wi).

Listing-15.5 The implementation of the standard Oja’s learning rule.

ojas(neural_parameters)->
 [(lists:random()-0.5)];

15.3 Neuromodulation 623

ojas(synaptic_parameters)->
 [].
%oja/1 function produces the necessary parameter list for the oja’s learning rule to operate. The
parameter list for oja’s learning rule is a list composed of a single parameter H: [H], used by the
neuron for all its synaptic weights. If the learning parameter is positive, and the two connected
neurons produce output signals of the same sign, then the postsynaptic neuron’s synaptic
weight increases. Otherwise it decreases.

ojas([H],IAcc,Input_PIdPs,Output)->
 ojas(H,IAcc,Input_PIdPs,Output,[]).
ojas(H,[{IPId,Is}|IAcc],[{IPId,WPs}|Input_PIdPs],Output,Acc)->
 Updated_WPs = ojas_rule(H,Is,WPs,Output,[]),
 ojas(H,IAcc,Input_PIdPs,Output,[{IPId,Updated_WPs}|Acc]);
ojas(_H,[],[],_Output,Acc)->
 lists:reverse(Acc);
ojas(_H,[],[{bias,WPs}],Output,Acc)->
 lists:reverse([{bias,WPs}|Acc]).
%ojas/5 function operates on each Input_PIdP, calling the ojas_rule/5 function which processes
each of the complementary Is and WPs lists, producing the Updated_WPs list in return, with the
updated/adapted weights.

 ojas_rule(H,[I|Is],[{W,[]}|WPs],Output,Acc)->
 Updated_W = functions:saturation(W + H*Output*(I - Output*W),?SAT_LIMIT),
 ojas_rule(H,Is,WPs,Output,[{Updated_W,[H]}|Acc]);
 ojas_rule(_H,[],[],_Output,Acc)->
 lists:reverse(Acc).
%ojas_rule/5 updates every synaptic weight using the Oja’s learning rule.

With the implementation of this learning rule complete, we now move forward
and discuss neural plasticity through neuromodulation.

15.3 Neuromodulation

Thus far we have discussed and implemented the Hebbian learning, which is a
homosynaptic plasticity (also known as homotropic modulation) method, where
the synaptic strength changes based on its history of activation. It is a synaptic
weight update rule which is a function of its post- and pre- synaptic activity, as
shown in Fig-15.2. But research shows that there is another approach to synaptic
plasticity which nature has discovered, a highly dynamic and effective one, plas-
ticity through neuromodulation.

624 Chapter 15 Neural Plasticity

Fig. 15.2 Homosynaptic mechanism for Neuron A’s synaptic weight updating, based on the
pre- and post- synaptic activity of neuron A.

Neuromodulation is a form of heterosynaptic plasticity. In heterosynaptic plas-
ticity the synaptic weights are changed due to the synaptic activity of other neu-
rons, due to the modulating signals other neurons can produce to affect the given
neuron’s synaptic weights. For example, assume we have a neural circuit com-
posed of two neurons, a presynaptic neuron N1, and a postsynaptic neuron N2.
There can be other neurons N3, N4... which also connect to N2, but their neuro-
transmitters affect N2’s plasticity, rather than being used as signals on which the
N2’s output signal is based on. The accumulated signals, neurotransmitters, from
N3, N4..., could then dictate how rapidly and in what manner N2’s connection
strengths change. This type of architecture is shown in Fig-15.3.

Fig. 15.3 Heterosynaptic mechanism for plasticity, where the Hebbian plasticity is modu-
lated by a modulatory signal from neurons N3 and N4.

15.3 Neuromodulation 625

The modulating neurons could be standard neurons, and whether their output
signals are used as modulatory signals, or standard input signals, could be deter-
mined fully by the postsynaptic neuron to which they connect, as shown in Fig-
15.4.

Fig. 15.4 Input signals used as standard signals, and as modulatory signals, dependent on
how the postsynaptic neuron decides to treat the presynaptic signals.

Another possible approach is to set-up secondary neurons to the postsynaptic
neuron N2 which we want modulated, where the secondary neurons receive exact-
ly the same input signals as the postsynaptic neuron N2, but the output signals of
these secondary neurons are used as modulatory signals of N2. This type of topo-
logical and architectural setup is shown in Fig-15.5.

If we assume the use of the Generalized Hebbian learning rule for the synaptic
weight update rule: Updated_Wi= Wi + h*(A*Ii*Output + B*Ii + C*Output + D),
then the accumulated neuromodulatory signals from the other neurons could be
used to calculate the learning parameter h, with the parameters A, B, C, and D
evolved and specified within the postsynaptic neuron N2. In addition, the
neuromodulatory signals from neurons N3, N4... could also be used to modulate
and specify the parameters A, B, C, and D, as well.

626 Chapter 15 Neural Plasticity

Fig. 15.5 Secondary neurons, created and used specifically for neuromodulation.

Through the use of dedicated modulatory neurons, it is possible to evolve
whole modulatory networks. Complex systems whose main role is to modulate
another neural network’s plasticity and learning, its long-term potentiation, its
ability to form memory. In this method, the generated learning parameter is signal
specific, and itself changes; the learning ability and form evolves with everything
else. Unlike the simple Hebbian or Oja’s learning rule, these plasticity systems
would depend on the actual input signals, on the sensory signals, and other regula-
tory and processing parts of the neural network system, which is a much more bio-
logically faithful neural network architecture, and would allow our system to
evolve even more complex behaviors.

Nature uses a combination of the architectures shown in figures 15.1 through
15.5. We have already discussed the Hebbian learning rule, and implemented the
architecture of Fig-15.2. We now add the functionality to give our
neuroevolutionary system the ability to evolve NN systems with architectures
shown in Fig-15.4 and Fig-15.5. This will give our systems the ability to evolve
self adaptation, and learning.

15.3.1 The Neuromodulatory Architecture

The architecture in Fig-15.5 could be easily developed using our already exist-
ing architecture, and it would even increase the ratio of neural computations per-
formed by the neuron to the number of signals sent to the neuron. This is im-
portant because Erlang becomes more effective with big computations and small
messages. The way we can represent this architecture is through the
weight_parameters based approach. The weight_parameters could be thought of

15.3 Neuromodulation 627

as synaptic weights themselves, but for the secondary neurons. These secondary
neurons share the process of the neuron they are to modulate, and because the sec-
ondary neurons need to process the same input vectors that the neuron they are
modulating is processing, it makes this design highly efficient. This architectural
implementation is shown in Fig-15.6.

Fig. 15.6 The architectural implementation of neuromodulation through dedicat-
ed/embedded modulating neurons.

In the above figure we see three neurons: N1, N2, and N3, connected to another
neuron, which is expanded in the figure and whose architecture is shown. This
neuron has a standard activation function, and a learning rule, but its input_idps
list is extended. What we called parameters in the other learning rules, are here
used as synaptic weights belonging to this neuron’s embedded/dedicated modulat-
ing neurons: D1, D2, and D3. Furthermore, each dedicated/embedded modulating
neuron (D1,D2,D3) can have its own activation function, but usually just uses the
tanh function.

If each weight parameter list is of length 1, then there is only a single dedicated
modulating neuron, and the dedicated neuron’s output can be designated as the
learning parameter: h. The learning parameters A, B, C, and D, can be specified by
the neural_parameters list. Or we can have the weight parameters list be of size 2,
and thus specify 2 dedicated modulating neurons, whose outputs would dictate the
learning parameters h and A, with the other parameters specified in the neu-
ral_parameters list. Finally, we can have the weight parameters list be of length 5,
thus representing the synaptic weights of 5 dedicated modulating neurons, whose
outputs specify all the parameters (h, A, B, C, D) of the General Hebbian learning
rule.

628 Chapter 15 Neural Plasticity

Having 5 separate dedicated modulating neurons does have its problems
though, because it magnifies the number of synaptic weights/parameters our
neuroevolutionary system has to tune, mutate, and set up. If our original neuron,
without plasticity, had a synaptic weight list of size 10, this new modulated neuron
would have 60 synaptic weight parameters for the same 10 inputs. All of these pa-
rameters would somehow have to be specified, tuned, and made to work perfectly
with each other, and this would all only be a single neuron. Nevertheless, it is an
efficient implementation of the idea, and would be easy to add due to the way our
neuroevolutionary system’s architecture is set up.

To allow for general neuromodulation (Fig-15.3), so that the postsynaptic neu-
ron can designate some of the presynaptic signals as holding standard information,
and others as holding modulatory information, could be done in a number of ways.
Let us consider two of such approaches next:

1. This approach would require us adding a new element to the neuron record,
akin to input_idps. We could add a secondary such element and designate it in-
put_idps_modulation. It too would be represented as a list of tuples: [{In-
put_Id,Weight}...], but the resulting computed dot product, sent through its own
activation function, would be used as a learning parameter. But which of the
learning parameters? H, A, B, C, or D? The standard approach is to use the fol-
lowing equation: Updated_W = M_Output*H*(A*I*Output + B*Output +
C*Output + D), where M_Output is the output signal produced by processing
the input signals using the synaptic weights specified in the in-
put_idps_modulation list, and where the parameters H, A, B, C, and D are
simply neural_parameters, and as other parameters can be perturbed and
evolved during the tuning phase and/or during the topological mutation phase.

How would the post synaptic neuron decide whether the new connection (add-
ed during the topological mutation phase) should be used as a standard signal, and
thus be added to the input_idps list, or as modulatory input signal, and thus added
to input_idps_modulation list? We could set up a rule so that if the neuron is des-
ignated to have general modulation based plasticity, the very first connection to
the neuron is designated as standard input, and then any new connections are ran-
domly sorted into either the input_idps or input_idps_modulation lists. To add this
approach would only require adding a new list, and we would already have all the
necessary functions to mutate its parameters, to clone it during neuronal cloning
process, and to process input signals, because this new list would be exactly like
the input_idps list. The overhead of simply adding this extra parameter, in-
put_idps_modulation, to the neuron record, would be minuscule, and this architec-
ture is what was represented in Fig-15.4.

2. Another way a neuron could decide on whether the presynaptic signal sent to it
is standard or modulatory, is by us having neuronal types, where some neurons
are type: standard, and others are type: modulatory. The signals sent by modu-
latory neurons are always used by all postsynaptic neurons for modulating the
generalized Hebbian plasticity rule. The architecture of this type of system is

15.3 Neuromodulation 629

shown in Fig-15.7. In this figure I show a NN topology composed of standard
neurons (std), and modulatory neurons (mod). They are all interconnected, each
can receive signals from any other. The difference in how those signals are
processed is dependent on the presynaptic neuron’s type. If it is of type mod,
then it is used as modulatory, if it is type std, then it is used as a standard input
signal. Modulatory neurons can even modulate other modulatory neurons,
while the outputs of the standard neurons can be used by both standard and
modulatory neurons.

Fig. 15.7 A topology of a heterosynaptic, general, neural network system with neurons of
type standard (std) and modulatory (mod).

3. But the first and second implementation does not solve the problem that the
Hebbian learning rule uses multiple parameters, and we want to have the flexi-
bility to specify 1 or more of them, based on the incoming modulatory signals.
Another solution that does solve this is by tagging input signals with tags i, h,
a, b, c, d, where i tags the standard inputs, and h, a, b, c, and d, tag the modula-
tory input signals associated with the tag named modulating learning parame-
ter. Though this may at first glance seem like a more complex solution, we ac-
tually already have solved it, and it would require us only changing a few
functions.

We are already generating weight based parameters. Thus far they have been
lists, but they can also be atomic tags as follows: [{Input_PId, [{Weight1,Tag1},
{Weight2,Tag2}...]}...]. This is a clean solution that would allow us to designate
different incoming signals to be used for different things. Mutation operators
would not need to be modified significantly either, we would simply add a clause
stating that if the neuron uses the general_modulation plasticity function, then the
Tag is generated randomly from the following list: [i, h, a, b, c, d]. The most sig-
nificant modification would have to be done to the signal_aggregation function,

630 Chapter 15 Neural Plasticity

since we would need to sort the incoming signals based on their tags, and then cal-
culate the different output signals based on their tags, with the i output signal be-
ing the standard one produced by the postsynaptic neuron, and the h, a, b, c, and d,
output signals being used as modulatory learning parameters. But even that could
be isolated to just the plasticity function, which has access to the IAcc, In-
put_PIdPs, and everything else necessary to compute output signals. The architec-
ture of a neuron using this approach to general neuromodulation is shown in Fig-
15.8.

Fig. 15.8 Tag based architecture of a general neuromodulation capable neural network.

What is the computational difference between all of these neuromodulation ap-
proaches? How would the neural networks act differently when evolved with one
approach rather than another? Would it even be possible to see the difference?
Should we implement them all, provide all of these options to the
neuroevolutionary system in hopes that it can sort things out on its own, and use
the best one (throwing everything at the wall, and see what sticks)? How do we
test which of these plasticity type architectures is better? How do we define “bet-
ter”? Do we define it as the NN evolving faster (the neuroevolutionary system tak-
ing less number of evaluations to evolve a solution for some given problem)? Or
do we define better as having the evolved NNs more dynamic, more adaptive,
more general, but evolved slower due to so many different parameters for the evo-
lutionary process to having to deal with? These are all open research questions.

We cannot test the effectiveness of plasticity enabled neural network systems
on the standard double pole balancing, xor, or clustering type of benchmarks and
tests. To test how well a plasticity enabled NN system functions, we need to apply
our neuroevolutionary system to a problem where environment changes, where
adaptation and learning over time gives an advantage. We could test plasticity by
using it in the ALife simulation, T-Maze and double T-Maze navigation [2,3], or
by applying it to some other robotics & complex navigation project. Though the
small differences between these various modulatory approaches might require a
lot of work to see, since evolution will tend to go around any small problems

15.3 Neuromodulation 631

posed by any one implementation or architecture over another. Nevertheless, the
fact that it is so easy for us to implement, test, and research these advanced learn-
ing rules and plasticity approaches, means that we can find out, we can determine
what works better, and what approach will yield a more general, more intelligent,
neural network based agent. If our system were not have been written in Erlang,
adding neuroplasticity would have posed a much greater problem.

We will implement the dedicated neuromodulators (where the weight parame-
ters represent the synaptic weights of embedded secondary neurons, whose output
dictates the parameters of the general Hebbian learning rule), and the general
neuromodulation plasticity through the use of the input_idps_modulation element.
Our plasticity function using the first of these two approaches will be called:
self_modulation, and the second: general_modulation. In the next section we will
further define and implement these neuromodulatory based learning rules.

15.3.2 Implementing the self_modulation Learning Rules

We will first implement the self_modulation plasticity function. Given the gen-
eral Hebbian learning rule for synaptic weight updating: Updated_Wi = Wi +
H*(A*Ii*Output + B*Ii + C*Output + D), we can have multiple versions of this
function. Version-1: where the secondary embedded neuron only outputs the H
learning parameter, with the parameter A set to some predetermined constant val-
ue within the neural_parameters list, and B=C=D=0. Version-2: where A is gener-
ated randomly when generating the neural_parameters list, and B=C=D=0. Ver-
sion-3: where B, C, and D are also generated randomly in the neural_parameters
list. Version-4: where the weight_parameters generates a list of length 2, thus al-
lowing the neuron to have 2 embedded modulatory neurons, one outputting a pa-
rameter we use for H, and another outputting the value we can use as A, with
B=C=D=0. Version-5: Where B, C, and D are generated randomly by the
PlasticityFunctionName(neural_parameters) function. And finally Version-6:
Where the weight_parameters produces a list of length 5, allowing the neuron to
have 5 embedded modulatory neurons, whose outputs are used for H, A, B, C, and
D. All of these variations will have most of their functionality shared, and thus
will be quick and easy to implement.

The self_modulationV1, self_modulationV2, and self_modulationV3 are all very
similar, mainly differing in the parameter lists returned by the
PlasticityFunctionName(neural_parameters) function, as shown in Listing 15.6.
All three of these plasticity functions use the neuromodulation/5 function which
accepts the H, A, B, C, and D learning parameters, and updates the synaptic
weights of the neuron using the general Hebbian rule: Updated_Wi = Wi +
H*(A*Ii*Output + B*Ii + C*Output + D).

632 Chapter 15 Neural Plasticity

Listing-15.6 The self_modulationV1-3 functions of arity 1, generating the neural and weight
parameters.

self_modulationV1(neural_parameters)->
 A=0.1,
 B=0,
 C=0,
 D=0,
 [A,B,C,D];
self_modulationV1(weight_parameters)->
 [(lists:random()-0.5)].

self_modulationV1([A,B,C,D],IAcc,Input_PIdPs,Output)->
 H = math:tanh(dot_productV1(IAcc,Input_PIdPs)),
 neuromodulation([H,A,B,C,D],IAcc,Input_PIdPs,Output,[]).

 dot_productV1(IAcc,IPIdPs)->
 dot_productV1(IAcc,IPIdPs,0).
 dot_productV1([{IPId,Input}|IAcc],[{IPId,WeightsP}|IPIdPs],Acc)->
 Dot = dotV1(Input,WeightsP,0),
 dot_productV1(IAcc,IPIdPs,Dot+Acc);
 dot_productV1([],[{bias,[{_Bias,[H_Bias]}]}],Acc)->
 Acc + H_Bias;
 dot_productV1([],[],Acc)->
 Acc.

 dotV1([I|Input],[{_W,[H_W]}|Weights],Acc) ->
 dotV1(Input,Weights,I*H_W+Acc);
 dotV1([],[],Acc)->
 Acc.

neuromodulation([H,A,B,C,D],[{IPId,Is}|IAcc],[{IPId,WPs}|Input_PIdPs],Output,Acc)->
 Updated_WPs = genheb_rule([H,A,B,C,D],Is,WPs,Output,[]),
 neuromodulation([H,A,B,C,D],IAcc,Input_PIdPs,Output,[{IPId,Updated_WPs}|Acc]);
neuromodulation(_NeuralParameters,[],[],_Output,Acc)->
 lists:reverse(Acc);
neuromodulation([H,A,B,C,D],[],[{bias,WPs}],Output,Acc)->
 Updated_WPs = genheb_rule([H,A,B,C,D],[1],WPs,Output,[]),
 lists:reverse([{bias,Updated_WPs}|Acc]).

 genheb_rule([H,A,B,C,D],[I|Is],[{W,Ps}|WPs],Output,Acc)->
 Updated_W = functions:saturation(W + H*(A*I*Output + B*I + C*Output + D),
?SAT_LIMIT),
 genheb_rule(H,Is,WPs,Output,[{Updated_W,Ps}|Acc]);
 genheb_rule(_H,[],[],_Output,Acc)->

15.3 Neuromodulation 633

 lists:reverse(Acc).

self_modulationV2(neural_parameters)->
 A=(lists:random()-0.5),
 B=0,
 C=0,
 D=0,
 [A,B,C,D];
self_modulationV2(weight_parameters)->
 [(lists:random()-0.5)].

self_modulationV2([A,B,C,D],IAcc,Input_PIdPs,Output)->
 H = math:tanh(dot_productV1(IAcc,Input_PIdPs)),
 neuromodulation([H,A,B,C,D],IAcc,Input_PIdPs,Output,[]).

self_modulationV3(neural_parameters)->
 A=(lists:random()-0.5),
 B=(lists:random()-0.5),
 C=(lists:random()-0.5),
 D=(lists:random()-0.5),
 [A,B,C,D];
self_modulationV3(weight_parameters)->
 [(lists:random()-0.5)].

self_modulationV3([A,B,C,D],IAcc,Input_PIdPs,Output)->
 H = math:tanh(dot_productV1(IAcc,Input_PIdPs)),
 neuromodulation([H,A,B,C,D],IAcc,Input_PIdPs,Output,[]).

The self_modulationV4 – V5 differ only in that the weight_parameters is a list
of length 2, and the A parameter is no longer specified in the neural_parameters
list, and is instead calculated by the second dedicated modulatory neuron. The
self_modulationV6 function on the other hand specifies the neural_Parameters as
an empty list, and the weight_parameters list is of length 5, a single weight for
every embedded modulatory neuron. The implementation of self_modulationV6 is
shown in Listing-15.7.

Listing-15.7 The implementation of the self_modulationV6 plasticity function, composed of 5
embedded modulatory neurons.

self_modulationV6(neural_parameters)->
 [];
self_modulationV6(weight_parameters)->
 [(lists:random()-0.5),(lists:random()-0.5),(lists:random()-0.5), (lists:random()-0.5),
(lists:random()-0.5)].

634 Chapter 15 Neural Plasticity

self_modulationV6(_Neural_Parameters,IAcc,Input_PIdPs,Output)->
 {AccH,AccA,AccB,AccC,AccD} = dot_productV6(IAcc,Input_PIdPs),
 H = math:tanh(AccH),
 A = math:tanh(AccA),
 B = math:tanh(AccB),
 C = math:tanh(AccC),
 D = math:tanh(AccD),
 neuromodulation([H,A,B,C,D],IAcc,Input_PIdPs,Output,[]).

 dot_productV6(IAcc,IPIdPs)->
 dot_productV6(IAcc,IPIdPs,0,0,0,0,0).
 dot_productV6([{IPId,Input}|IAcc],[{IPId,WeightsP}|IPIdPs],AccH,AccA,AccB,AccC,
AccD)->
 {DotH,DotA,DotB,DotC,DotD} = dotV6(Input,WeightsP,0,0,0,0,0),
 dot_productV6(IAcc,IPIdPs,DotH+AccH,DotA+AccA,DotB+AccB,DotC+AccC,DotD
+AccD);
 dot_productV6([],[{bias,[{_Bias,[H_Bias,A_Bias,B_Bias,C_Bias,D_Bias]}]}],AccH,AccA,
AccB,AccC,AccD)->
 {AccH + H_Bias,AccA+A_Bias,AccB+B_Bias,AccC+C_Bias,AccD+D_Bias};
 dot_productV6([],[],AccH,AccA,AccB,AccC,AccD)->
 {AccH,AccA,AccB,AccC,AccD}.

 dotV6([I|Input],[{_W,[H_W,A_W,B_W,C_W,D_W]}|Weights],AccH,AccA,AccB,AccC,
AccD) ->
 dotV6(Input,Weights,I*H_W+AccH,I*A_W+AccA,I*B_W+AccB,I*C_W+AccC,I*D_W+
AccD);
 dotV6([],[],AccH,AccA,AccB,AccC,AccD)->
 {AccH,AccA,AccB,AccC,AccD}.

The architecture of the neuron using this particular plasticity function is shown
in Fig-15.9. Since every synaptic weight of this neuron has a complementary pa-
rameter list of length 5, with an extra synaptic weight for every secondary, embedded
modulatory neuron that analyzes the same signals as the actual neuron, but whose
output signals modulate the plasticity of the neuron, each neuron thus has x5 number

 be tuned. This might be a price too high
to pay by amplifying the curse of dimensionality. The more parameters that one
needs to tune and set up concurrently, the more difficult it is to find a good com-
bination of such parameters. Nevertheless, the generality it provides, and the abil-
ity to use a single process to represent multiple embedded modulatory neurons,
has its benefits in computational efficiency. Plus, our system does after all try to
alleviate the curse of dimensionality through Targeted Tuning, by concentrating
on the newly added and affected neurons of the NN system. And thus we might
just be on the edge of this one.

of parameters (synaptic weights) that need to

15.3 Neuromodulation 635

Fig. 15.9 The architecture of the neuron using self_modulationV6 plasticity function.

We noted earlier that there is another approach to neuromodulation, one that is
more biologically faithful, in which a postsynaptic neuron uses some of the signals
coming from the presynaptic neurons as modulatory signals, and others as stand-
ard signals. In the next section we will see what needs to be done to implement
such a learning rule.

15.3.3 Implementing the input_idps_modulation Based
Neuromodulated Plasticity

To implement neuromodulation using this method, we first modify the neuron’s
record by adding the input_idps_modulation element to it. The input_idps_modulation
element will have the same purpose and formating as the input_idps element, to hold
a list of tuples of the form: {Input_PId, WeightP}. The Input_PIds will be associ-
ated with the elements that send the postsynaptic neuron its modulatory signals,
with the WeightP being of the same format as in the input_Idps list.

This particular implementation of neuromodulation will not require a lot of
work, due to the input_idps_modulation list having a format which we already can
process with the developed functions. The neuron cloning function in the genotype
can be used to clone this list, the Id to PId conversion performed by the exoself to
compose the Input_PIdPs list is also viable here. Even the synaptic weight pertur-
bation can be applied to this list, due to it having such a similar format. The main
changes we have to perform are to the neuron’s main loop.

We must convert the neuron’s main loop such that it can support 2 Input_PId
lists, the SI_PIds (standard input PId list), and the MI_PIds (modulatory input PId

636 Chapter 15 Neural Plasticity

list), in the same way that the original neuron implementation supported the single
Input_PIds list created from the Input_PIdPs. With these two lists we can then ag-
gregate the input signals, and sort them either in to the standard input signal ac-
cumulator, or the modulatory signal accumulator, dependent on whether the in-
coming signal was coming from an element with an SI_PId or an MI_PId.

To make the implementation and the source code cleaner, we will create a state
record for the neuron, which will contain all the necessary elements it requires for
operation:

-record(state,{
 id,
 cx_pid,
 af,
 pf,
 aggrf,
 si_pids=[],
 si_pidps_current=[],
 si_pidps_backup=[],
 mi_pids=[],
 mi_pidps_current=[],
 mi_pidps_backup=[],
 output_pids=[],
 ro_pids=[]
}).

With this state record, we update the prep/1 function to use it, and clean the
original loop function to hide all the non-immediately used lists and data in the
state record. As in the original neuron process implementation, we have to create
the Input_PId list so that the incoming signals can be sorted in the same order that
the Input_PIdPs are sorted. This time though, we have two such lists, designated
as the SI_PIdPs (the standard one), and the MI_PIdPs (the modulatory one). Thus
we create two PId lists for the loop.

The main problem here is that as the neuron accumulates its input signals, one
of these PId lists will empty out first, which would require a new clause to deal
with it, since our main loop uses: [SI_PId|SI_PIds],[MI_PId|MI_PIds]. We did not
have such a problem when we only used a single list, because when that list emp-
tied out, the signal accumulation was finished. To avoid having to create a new
clause, we add the atom ok
loop(S,ExoSelf_PId,[ok],[ok],SIAcc,MIAcc) above the main loop. Because of the

with the final state for both lists being [ok], which is achieved after the neuron has
accumulated all the incoming standard and modulatory signals. The only problem
with this setup is that the first clause is always pattern matched before the main
loop, making the neuron process slower and less efficient. There are other ways to

to the end of both PId lists, and put the clause:

ok atom at the end of both lists, neither goes empty, letting us keep a single clause

15.3 Neuromodulation 637

implement this, and we could even set up two different main process loops, one
for when the neuron uses neuromodulation, and one for when it does not (and thus
needing only a single PId list). But this implementation is the most concise, and
cleanest. The neuron process can always be optimized later on. The modified
prep/1 function, and the neuron’s new main loop, are shown in Listing-15.8.

Listing-15.8 The updated implementation of the neuron process.

prep(ExoSelf_PId) ->
 random:seed(now()),
 receive
 {ExoSelf_PId,{Id,Cx_PId,AF,PF,AggrF,SI_PIdPs,MI_PIdPs,Output_PIds,
RO_PIds}} ->
 fanout(RO_PIds,{self(),forward,[?RO_SIGNAL]}),
 SI_PIds = lists:append([IPId || {IPId,_W} <- SI_PIdPs, IPId =/= bias],[ok]),
 MI_PIds = lists:append([IPId || {IPId,_W} <- MI_PIdPs, IPId =/= bias],[ok]),
 io:format(“SI_PIdPs:~p ~nMI_PIdPs:~p~n”,[SI_PIdPs,MI_PIdPs]),
 S=#state{
 id=Id,
 cx_pid=Cx_PId,
 af=AF,
 pf=PF,
 aggrf=AggrF,
 si_pids=SI_PIds,
 si_pidps_current=SI_PIdPs,
 si_pidps_backup=SI_PIdPs,
 mi_pids=MI_PIds,
 mi_pidps_current=MI_PIdPs,
 mi_pidps_backup=MI_PIdPs,
 output_pids=Output_PIds,
 ro_pids=RO_PIds
 },
 loop(S,ExoSelf_PId,SI_PIds,MI_PIds,[],[])
 end.
%When gen/1 is executed, it spawns the neuron element and immediately begins to wait for its
initial state message from the exoself. Once the state message arrives, the neuron sends out the
default forward signals to any elements in its ro_ids list, if any. Afterwards, the prep function
drops into the neuron’s main loop.

loop(S,ExoSelf_PId,[ok],[ok],SIAcc,MIAcc)->
 PF = S#state.pf,
 AF = S#state.af,
 AggrF = S#state.aggrf,
 {PFName,PFParameters} = PF,
 Ordered_SIAcc = lists:reverse(SIAcc),

638 Chapter 15 Neural Plasticity

 SI_PIdPs = S#state.si_pidps_current,
 SAggregation_Product = signal_aggregator:AggrF(Ordered_SIAcc,SI_PIdPs),
 SOutput = functions:AF(SAggregation_Product),
 Output_PIds = S#state.output_pids,
 [Output_PId ! {self(),forward,[SOutput]} || Output_PId <- Output_PIds],

 Ordered_MIAcc = lists:reverse(MIAcc),
 MI_PIdPs = S#state.mi_pidps_current,
 MAggregation_Product = signal_aggregator:dot_product(Ordered_MIAcc,MI_PIdPs),
 MOutput = functions:tanh(MAggregation_Product),
 U_SI_PIdPs = plasticity:PFName([MOutput|PFParameters],Ordered_SIAcc,SI_PIdPs,
SOutput),
 U_S=S#state{
 si_pidps_current = U_SI_PIdPs
 },
 SI_PIds = S#state.si_pids,
 MI_PIds = S#state.mi_pids,
 loop(U_S,ExoSelf_PId,SI_PIds,MI_PIds,[],[]);
loop(S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc)->
 receive
 {SI_PId,forward,Input}->
 loop(S,ExoSelf_PId,SI_PIds,[MI_PId|MI_PIds],[{SI_PId,Input}|SIAcc],
MIAcc);
 {MI_PId,forward,Input}->
 loop(S,ExoSelf_PId,[SI_PId|SI_PIds],MI_PIds,SIAcc,[{MI_PId,Input}|
MIAcc]);
 {ExoSelf_PId,weight_backup}->
 U_S = S#state{
 si_pidps_backup=S#state.si_pidps_current,
 mi_pidps_backup=S#state.mi_pidps_current
 },
 loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
 {ExoSelf_PId,weight_restore}->
 U_S = S#state{
 si_pidps_current=S#state.si_pidps_backup,
 mi_pidps_current=S#state.mi_pidps_backup
 },
 loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
 {ExoSelf_PId,weight_perturb,Spread}->
 Perturbed_SIPIdPs=perturb_IPIdPs(Spread,S#state.si_pidps_backup),
 Perturbed_MIPIdPs=perturb_IPIdPs(Spread,S#state.mi_pidps_backup),
 U_S = S#state{
 si_pidps_current=Perturbed_SIPIdPs,
 mi_pidps_current=Perturbed_MIPIdPs
 },

15.3 Neuromodulation 639

 loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
 {ExoSelf_PId,reset_prep}->
 neuron:flush_buffer(),
 ExoSelf_PId ! {self(),ready},
 RO_PIds = S#state.ro_pids,
 receive
 {ExoSelf_PId, reset}->
 fanout(RO_PIds,{self(),forward,[?RO_SIGNAL]})
 end,
 loop(S,ExoSelf_PId,S#state.si_pids,S#state.mi_pids,[],[]);
 {ExoSelf_PId,get_backup}->
 NId = S#state.id,
 ExoSelf_PId ! {self(),NId,S#state.si_pidps_backup,S#state.mi_pidps_backup},
 loop(S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
 {ExoSelf_PId,terminate}->
 io:format(“Neuron:~p is terminating.~n”,[self()])
 end.

With the implementation of the updated neuron now complete, we need to cre-
ate the neuromodulation function in the plasticity module. Since the modulatory
signals will be used to compute a nonlinear value used to modulate the standard
general Hebbian rule, we will not need any weight_parameters and so our plasticity
function will produce an empty weight_parameters list. But we will need the general
neural_parameters for the hebbian function, thus the neuromodulation/1 function exe-
cuted with the neuronal_parameters atom will return a list with 5 randomly generated
(and later tuned and evolved) parameters: [H,A,B,C,D]. The neuromodulation/4 func-
tion is very simple, since it is executed with a list of all the necessary parameters to call
the neurmodulation/5 function that applies the general hebbian rule to all the synaptic
weights. These two added functions are shown in Listing-15.9.

Listing-15.9 The implementation of the neuromodulation/1 and neuromodulation/4 functions.

neuromodulation(neural_parameters)->
 H = (lists:random()-0.5),
 A = (lists:random()-0.5),
 B = (lists:random()-0.5),
 C = (lists:random()-0.5),
 D = (lists:random()-0.5),
 [H,A,B,C,D];
neuromodulation(weight_parameters)->
 [].

neuromodulation([M,H,A,B,C,D],IAcc,Input_PIdPs,Output)->
 Modulator = scale_dzone(M,0.33,?SAT_LIMIT),
 neuromodulation([Modulator*H,A,B,C,D],IAcc,Input_PIdPs,Output,[]).

640 Chapter 15 Neural Plasticity

The value M is the one computed by using the synaptic weights of the in-
put_idps_modulation, using the dot_product signal aggregator, and the hyperbolic
tangent (tanh) activation function. Since H scales the plasticity in general, multi-
plying the Modulator value by H allows for the modulation signal to truly modu-
late synaptic plasticity based on the parameters evolved by the neuron.

The Modulator value is computed by executing the scale_dzone/3 function,
which performs 2 tasks:

1. Zero out M if it is between -0.33 and 0.33.
2. If M is greater than 0.33 or less than -0.33, normalize and scale it to be between

0 and ?SAT_LIMIT, or 0 and -?SAT_LIMIT, respectively.

This means that M has to reach a particular magnitude for the Hebbian rule to
be executed, since when the Modulator value is 0 and is multiplied by H, the
weights are not updated. The scale_dzone/3 function, and its supporting function,
are shown in Listing-15.10.

Listing-15.10 The implementation of scale_dzone and scale function.

scale_dzone(Val,Threshold,MaxMagnitude)->
 if
 Val > Threshold ->
 (functions:scale(Val,MaxMagnitude,Threshold)+1)*MaxMagnitude/2;
 Val < -Threshold ->
 (functions:scale(Val,-Threshold,-MaxMagnitude)-1)*MaxMagnitude/2;
 true ->
 0
 end.

 scale(Val,Max,Min)->
 case Max == Min of
 true ->
 0;
 false ->
 (Val*2 - (Max+Min))/(Max-Min)
 end.
%The scale/3 function scales Val to be between -1 and 1, with the scaling dependent on the
Max and Min value, using the equation: Scaled_Val = (Val*2 - (Max + Min))/(Max-Min). The
function scale_dzone/3 zeroes the Val parameter if it is below the threshold, and scales it to be
between Threshold and MaxMagnitude if it is above the threshold.

Though we have now successfully implemented the autoassociative learning
rules, and neuromodulation, we cannot use those features until we create the nec-
essary tuning and mutation operators, such that our neuroevolutionary system can
actually tune in the various learning parameters, and add the synaptic weights

15.4 Plasticity Parameter Mutation Operators 641

needed by the neuromodulation functionality. We discuss and implement these
necessary features in the next section.

15.4 Plasticity Parameter Mutation Operators

For the plasticity based learning rules to be useful, our neuroevolutionary sys-
tem must be able to optimize them. For this we need to create new mutation opera-
tors. Though we could add the new mutation operators to the genome_mutator
module, we will do something different instead. Since each plasticity function has
its own restrictions (which learning parameters can/should be modified, and which
can/should not be), and because there are so many of the different variants, and
many more to be added as time goes on, it would not be effective to create these
mutation operators inside the genome_mutator module. The genome_mutator
should concentrate on the standard topology oriented mutation operators.

To more effectively handle this, we can offload these specialized mutation op-
erators in the same way we offloaded the generation of the initial plasticity param-
eters, to the plasticity module itself. We can add a single mutation operator mu-
tate_plasticity, which when executed, executes the plasticity:PFName(Agent_Id,
mutate) function. Then the researcher which created the various plasticity function
variants and types, can also create the mutation operator functions for it, whether
they simply perturb neural level learning parameters, synaptic weight level param-
eters, or perform a more complex mutation. And of course if the plasticity func-
tion is set to none, we will have the function plasticity:none(Agent_Id,mutate) ex-
ecute: exit(“Neuron does not support plasticity.”), which will allow our
neuroevolutionary system to attempt another mutation operator, without wasting
the topological mutation try.

The plasticity specializing mutation operators should perform the following
general operations:

 If the neuron uses neural_parameters, randomly choose between 1 and
math:sqrt(TotParameters) number of parameters, and perturb them with a value
selected randomly between -Pi and Pi.

 If the neuron uses weight_parameters, randomly choose between 1 and
math:sqrt(TotWeightParameters) number of parameters, and perturb them with
a value selected randomly between -Pi and Pi.

 If the neuron uses both, neural_parameters and weight_parameters, randomly
choose one or the other, and perturb that parameter list using one of the above
approaches, depending which of the two apply.

The neuromodulation is a special case, since it does not only have the global
neural_level parameters which can be mutated/perturbed using the standard meth-
od listed above, but also allows for the establishment of new modulatory connec-
tions. Because the input_idps_modulation list has the same format as the standard

642 Chapter 15 Neural Plasticity

input_idps list, we can use the already existing synaptic connection establishing
mutation operators and functions. The only modification we need to make so that
some of the connections are standard, and others are modulatory, is set a case such
that if the neuron to which the connection is being established has
neuromodulation enabled, then the choice of whether the new connection will be
standard or modulatory is 50/50, and if there is no neuromodulation enabled, then
only the standard connection is allowed.

15.4.1 Implementing the Weight Parameter Mutation Operator

We first create the mutation operators which are applied to the
weight_parameters. This mutation operator, executed when the plasticity function
is run with the parameter: {N_Id,mutate}, performs similarly to the standard per-
turb_IPIdPs/2 function, but instead of mutating the synaptic weights, it operates
on, and mutates the, parameter values. The probability for any weight parameter to
be perturbed is 1/math:sqrt(TotParameters). The plasticity functions that only use
weight_parameters are the hebbian_w and ojas_w. Because in both of these plas-
ticity functions the same implementation for the mutator is used, only the
hebbian_w/1 version is shown (the difference for the ojas_w version is that instead
of hebbian_w({N_Id,mutate}), we have ojas_w({N_Id,mutate})). This implemen-
tation is shown in Listing-15.11.

Listing-15.11 Implementation of the plasticity function based weight_parameter mutation oper-
ators.

hebbian_w({N_Id,mutate})->
 random:seed(now()),
 N = genotype:read({neuron,N_Id}),
 InputIdPs = N#neuron.input_idps,
 U_InputIdPs=perturb_parameters(InputIdPs,?SAT_LIMIT),
 N#neuron{input_idps = U_InputIdPs};
hebbian_w(neural_parameters)->
 [];
hebbian_w(weight_parameters)->
 [(lists:random()-0.5)].
%hebbian_w/1 function produces the necessary parameter list for the hebbian_w learning rule
to operate. The parameter list for the simple hebbian_w learning rule is a parameter list com-
posed of a single parameter H: [H], for every synaptic weight of the neuron. When hebbian_w/1
is called with the parameter neural_parameters, it returns []. When hebbian_w/1 is executed
with the {N_Id,mutate} tuple, the function goes through every parameter in the neuron’s in-
put_idps, and perturbs the parameter value using the specified spread (?SAT_LIMIT).

 perturb_parameters(InputIdPs,Spread)->

15.4 Plasticity Parameter Mutation Operators 643

 TotParameters = lists:sum([lists:sum([length(Ps) || {_W,Ps} <- WPs]) || {_Input_Id,
WPs} <- InputIdPs]),
 MutationProb = 1/math:sqrt(TotParameters),
 [{Input_Id,[{W,perturb(Ps,MutationProb,Spread,[])}|| {W,Ps} <- WPs]} || {Input_Id,
WPs} <- InputIdPs].

 perturb([Val|Vals],MutationProb,Spread,Acc)->
 case random:uniform() < MutationProb of
 true ->
 U_Val = sat((random:uniform()-0.5)*2*Spread+Val,Spread,
Spread),
 perturb(Vals,MutationProb,Spread,[U_Val|Acc]);
 false ->
 perturb(Vals,MutationProb,Spread,[Val|Acc])
 end;
 perturb([],_MutationProb,_Spread,Acc)->
 lists:reverse(Acc).
%The perturb/5 function is executed with a list of values and a probability with which each
value has the chance of being perturbed. The function then goes through every value and per-
turbs it with the given probability.

15.4.2 Implementing the Neural Parameter Mutation Operator

We next create the mutation operators which are applied to the neu-
ral_parameters, which are lists of values. To accomplish this, we just make that
list pass through a function which with some probability, 1/sqrt(ListLength), per-
turbs the values within it. We add such mutation operators to the plasticity func-
tions which only use the neural_parameters. The following plasticity functions on-
ly use the neural_parameters: hebbian, ojas, and the neuromodulation. Since all
3 would use exactly the same implementation, only the neuromodulation/1 im-
plementation is shown in Listing-15.12.

Listing-15.12 Implementation of the neural_parameters mutation operator.

neuromodulation({N_Id,mutate})->
 random:seed(now()),
 N = genotype:read({neuron,N_Id}),
 {PFName,ParameterList} = N#neuron.pf,
 MSpread = ?SAT_LIMIT*10,

%The perturb_parameters/2 function goes through every tuple in the InputIdPs list, extracts the
WeightPlus blocks for each input connection, calculates the total number of weight parameters
the neuron has, and from it the probability with which those parameters will be perturbed.
The function then executes perturb/4 to perturb the said parameters.

644 Chapter 15 Neural Plasticity

 MutationProb = 1/math:sqrt(length(ParameterList)),
 U_ParameterList = perturb(ParameterList,MutationProb,MSpread,[]),
 U_PF = {PFName,U_ParameterList},
 N#neuron{pf=U_PF};
neuromodulation(neural_parameters)->
 H = (lists:random()-0.5),
 A = (lists:random()-0.5),
 B = (lists:random()-0.5),
 C = (lists:random()-0.5),
 D = (lists:random()-0.5),
 [H,A,B,C,D];
neuromodulation(weight_parameters)->
 [].
%neuromodulation/1 function produces the necessary parameter list for the neuromodulation
learning rule to operate. The parameter list for this learning rule is a list composed of parame-
ters H,A,B,C,D: [H,A,B,C,D]. When the function is executed with the {NId,mutate} parameter,
it calculates the perturbation probability of every parameter through the equation:
1/math:sqrt(length(ParameterList)), and then executes the perturb/5 function to perturb the ac-
tual parameters.

The above shown mutation operator, called by executing neuromodulation/1
with the parameter {N_Id,mutate}, uses the perturb/4 function from the
weight_parameters based mutation operator which was shown in the previous list-
ing, Listing-15.11.

15.4.3 Implementing the Hybrid, Weight & Neural Parameters
Mutation Operator

Finally, we also have plasticity functions which have both, neural_parameters
and weight_parameters. This is the case for example for the self_modulationV5,
V3, and V2 learning rules. For these type of plasticity functions, we create a com-
bination of the neural_parameters and weight_parameters mutation operators, as
shown in Listing-15.13.

Listing-15.13 A hybrid of the neural_parameters and weight_parameters mutation operator, im-
plemented here for the self_modulationV5 plasticity function.

self_modulationV5({N_Id,mutate})->
 random:seed(now()),
 N = genotype:read({neuron,N_Id}),
 {PFName,ParameterList} = N#neuron.pf,
 MSpread = ?SAT_LIMIT*10,

15.4 Plasticity Parameter Mutation Operators 645

 MutationProb = 1/math:sqrt(length(ParameterList)),
 U_ParameterList = perturb(ParameterList,MutationProb,MSpread,[]),
 U_PF = {PFName,U_ParameterList},
 InputIdPs = N#neuron.input_idps,
 U_InputIdPs=perturb_parameters(InputIdPs,?SAT_LIMIT),
 N#neuron{pf=U_PF,input_idps=U_InputIdPs};
self_modulationV5(neural_parameters)->
 B=(lists:random()-0.5),
 C=(lists:random()-0.5),
 D=(lists:random()-0.5),
 [B,C,D];
self_modulationV5(weight_parameters)->
 [(lists:random()-0.5),(lists:random()-0.5)].

For this plasticity module, this is all that is needed, there are only these 3 vari-
ants. We now modify the genome_mutator module to include the mu-
tate_plasticity_parameters mutation operator, and modify the functions which
deal with linking neurons together, so that we can add the modulatory connection
establishment functionality.

15.4.4 Updating the genome_mutator Module

Since our neuroevolutionary system can only apply to a population the muta-
tion operators available in its constraint record, we first add the {mu-
tate_plasticity_parameters,1} tag to the constraint’s mutation_operators list. This
means that the mutate_plasticity_parameter mutation operator has the same
chance of being executed as any other mutation operator within the muta-
tion_operators list. After having modified the constraint record, we add the mu-
tate_plasticity_parameters/1 function to the genome_mutator module. It is a sim-
ple mutation operator that chooses a random neuron from the NN, and through the
execution of plasticity:PFName({N_Id,mutate}) function, mutates the plasticity
parameters of that neuron, if that neuron has plasticity. If the neuron does not have
plasticity enabled, then the plasticity:none/1 function is executed, which exits the
mutation operator, letting our neuroevolutionary system try another mutation. The
implemented mutate_plasticity_parameters/1 function is shown in Listing-15.14.

Listing-15.14 The implementation of the mutate_plasticity_parameters mutation operator.

mutate_plasticity_parameters(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,

646 Chapter 15 Neural Plasticity

 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 N = genotype:read({neuron,N_Id}),
 {PFName,_Parameters} = N#neuron.pf,
 U_N = plasticity:PFName({N_Id,mutate}),
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{mutate_plasticity_parameters,N_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A).
%The mutate_plasticity_parameters/1 chooses a random neuron from the NN, and mutates the
parameters of its plasticity function, if present.

Having implemented the mutation operator, we now look for the connec-
tion/synaptic-link establishing functions. We need to modify these functions be-
cause we want to ensure that if the neuron uses the neuromodulation plasticity
function, then some of the new connections that are added to it through evolution,
are randomly chosen to be modulatory connections rather than standard ones.

The functions that need to be updated are the following four:

 add_bias/1: Because the input_idps_modulation can also use a bias weight.
 remove_bias/1: Because the input_idps_modulation should also be able to rid

itself of its bias.
 link_ToNeuron/4: Which is the function that actually establishes new links, and

adds the necessary tuples to the input_idps list. We should be able to randomly
choose whether to add the new tuple to the standard input_idps list, or the
modulatory input_idps_modulation list.

 cutlink_ToNeuron/3: Which is the function which cuts the links to the neuron,
and removes the synaptic weight containing tuple from the input_idps list. We
should be able to randomly choose whether to remove such a tuple from the in-
put_idps or input_idps_modulation list.

Again, because of the way we developed, and modularized the code in the ge-
nome_mutator module, almost everything with regards to linking is contained in
the link_ToNeuron and cutlink_ToNeuron, so by just modifying those, and the
add_bias/remove_bias functions, we will be done with the update.

Originally the add_bias/1 function checks whether the input_idps list already
has a bias, and then adds a bias if it does not, and exits if it does. We now have to
check whether input_idps and input_idps_modulation lists already have biases. To
do this, we randomly generate a value by executing random:uniform(2), which
generates either 1 or 2. If value 2 is generated, and the input_idps_modulation
does not have a bias, we add one to it. Otherwise, if the input_idps list does not
have a bias, we add one to it, and thus in the absence of neuromodulation based
plasticity, probability of adding the bias to input_idps does not change. The modi-
fied add_bias mutation operator is shown in Listing-15.15.

15.4 Plasticity Parameter Mutation Operators 647

Listing-15.15 The updated add_bias mutation operator.

add_bias(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 Generation = A#agent.generation,
 N = genotype:read({neuron,N_Id}),
 SI_IdPs = N#neuron.input_idps,
 MI_IdPs = N#neuron.input_idps_modulation,
 {PFName,_NLParameters} = N#neuron.pf,
 case {lists:keymember(bias,1,SI_IdPs), lists:keymember(bias,1,MI_IdPs), PFName ==
neuromodulation, random:uniform(2)} of
 {_,true,true,2} ->
 exit(“********ERROR:add_bias:: This Neuron already has a modulatory bias
part.”);
 {_,false,true,2} ->
 U_MI_IdPs = lists:append(MI_IdPs,[{bias,[{random:uniform()-0.5,
plasticity:PFName(weight_parameters)}]}]),
 U_N = N#neuron{
 input_idps_modulation = U_MI_IdPs,
 generation = Generation},
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{{add_bias,m},N_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A);
 {true,_,_,1} ->
 exit(“********ERROR:add_bias:: This Neuron already has a bias in in-
put_idps.”);
 {false,_,_,_} ->
 U_SI_IdPs = lists:append(SI_IdPs,[{bias,[{random:uniform()-0.5,
plasticity:PFName(weight_parameters)}]}]),
 U_N = N#neuron{
 input_idps = U_SI_IdPs,
 generation = Generation},
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{{add_bias,s},N_Id}|EvoHist],
 U_A = A#agent{evo_hist=U_EvoHist},
 genotype:write(U_N),
 genotype:write(U_A)
 end.

648 Chapter 15 Neural Plasticity

The remove_bias is modified in the same manner, and only a few elements of
the source code are changed. Like the add_bias, we update the link_ToNeuron/4
function to randomly choose whether to make the new link modulatory or stand-
ard, and only if the chosen list (either input_idps or input_idps_modulation), does
not already have a link from the specified presynaptic element. The updated func-
tion is shown in Listing-15.16.

Listing-15.16 The updated link_ToNeuron/4 function.

link_ToNeuron(FromId,FromOVL,ToN,Generation)->
 ToSI_IdPs = ToN#neuron.input_idps,
 ToMI_IdPs = ToN#neuron.input_idps_modulation,
 {PFName,_NLParameters}=ToN#neuron.pf,
 case {lists:keymember(FromId,1,ToSI_IdPs),lists:keymember(FromId,1,ToMI_IdPs)} of
 {false,false} ->
 case {PFName == neuromodulation, random:uniform(2)} of
 {true,2} ->
 U_ToMI_IdPs = [{FromId,
genotype:create_NeuralWeightsP(PFName,FromOVL,[])}|ToMI_IdPs],
 ToN#neuron{
 input_idps = U_ToMI_IdPs,
 generation = Generation
 };
 _ ->
 U_ToSI_IdPs = [{FromId,
genotype:create_NeuralWeightsP(PFName,FromOVL,[])}|ToSI_IdPs],
 ToN#neuron{
 input_idps = U_ToSI_IdPs,
 generation = Generation
 }
 end;
 _ ->
 exit(“ERROR:add_NeuronI::[cannot add I_Id]: ~p already connected to ~p~n”,
[FromId,ToN#neuron.id])
 end.
%link_ToNeuron/4 updates the record of ToN, so that it’s updated to receive a connection from
the element FromId. The link emanates from element with the id FromId, whose output vector
length is FromOVL, and the connection is made to the neuron ToN. In this function, either the
ToN’s input_idps_modulation or input_idps list is updated with the tuple {FromId, [{W_1,
WPs} ...{W_FromOVL,WPs}]}. Whether input_idps or input_idps_modulation is updated, is
chosen randomly. Then the neuron’s generation is updated to Generation (the current, most re-
cent generation). After this, the updated ToN’s record is returned to the caller. On the other
hand, if the FromId is already part of the ToN’s input_idps or input_idps_modulation list (de-
pendent on which was randomly chosen), which means that the standard or modulatory link al-
ready exists between the neuron ToN and element FromId, this function exits with an error.

15.4 Plasticity Parameter Mutation Operators 649

Finally, we update the cutlink_ToNeuron/3 function. In this case, since there
can only be one link between two elements, we simply first check if the specified
input link is specified in the input_idps, and cut it if it does. If it does not, we
check the input_idps_modulation next, and cut it if this link is modulatory. If such
a link does not exist in either of the two lists, we exit the mutation operator with
an error, printing to console that the specified link does not exist, neither in the
synaptic weights list, nor in the synaptic parameters list. The implementation of
the cutlink_ToNeuron/3, is shown in Listing-15.17.

Listing-15.17 The cutlink_ToNeuron/3 implementation.

 cutlink_ToNeuron(FromId,ToN,Generation)->
 ToSI_IdPs = ToN#neuron.input_idps,
 ToMI_IdPs = ToN#neuron.input_idps_modulation,
 Guard1 = lists:keymember(FromId, 1, ToSI_IdPs),
 Guard2 = lists:keymember(FromId, 1, ToMI_IdPs),
 if
 Guard1->
 U_ToSI_IdPs = lists:keydelete(FromId,1,ToSI_IdPs),
 ToN#neuron{
 input_idps = U_ToSI_IdPs,
 generation = Generation};
 Guard2 ->
 U_ToMI_IdPs = lists:keydelete(FromId,1,ToMI_IdPs),
 ToN#neuron{
 input_idps = U_ToMI_IdPs,
 generation = Generation};
 true ->
 exit(“ERROR[can not remove I_Id]: ~p not a member of
~p~n”,[FromId,ToN#neuron.id])
 end.
%cutlink_ToNeuron/3 cuts the connection on the ToNeuron (ToN) side. The function first
checks if the FromId is a member of the ToN’s input_idps list, if it’s not, then the function
checks if it is a member of the input_idps_modulation list. If it is not a member of either, the
function exits with error. If FromId is a member of one of these lists, then that tuple is removed
from that list, and the updated ToN record is returned to the caller.

With these updates completed, the genome_mutator module is up to date. In the
case that a plasticity is enabled in any neuron, the topological mutation phase will
be able to mutate the plasticity function learning parameters, and add modulatory
connections in the case the plasticity function is neuromodulation. The only re-
maining update we have to make is one to the tuning phase related functions.

650 Chapter 15 Neural Plasticity

15.5 Tuning of a NN which has Plastic Neurons

It can be argued whether both standard synaptic weights and modulatory synap-
tic weights should be perturbed at the same time when the neuron has plasticity
enabled, or just one or the other separately during the tuning phase. For example,
should we allow for the neural_parameters to be perturbed during the tuning
phase, rather than only during the topological mutation phase? What percentage of
tuning should be dedicated to learning parameters and what percentage to synaptic
weights? This of course can be tested, and benchmarked, and in general deduced
through experimentation. After it has been decided on what and when to tune
with regards to learning rules, there is still a problem with regards to the parameter
and synaptic weight backup during the tuning phase. The main problem of this
section is with regards to this dilemma, the dilemma of the backup process of the
tuned weights.

Consider a neuron that has plasticity enabled, no matter what plasticity function
it’s using. The following scenario occurs when the neuron is perturbed:

1. The neuron receives a perturbation request.
2. Neuron selects random synaptic weights, weight_parameters, or even neu-

ral_parameters (though we do not allow for neural_parameters perturbation
during the tuning phase, yet).

3. Then the agent gets re-evaluated, and IF:
4. Perturbed agent has a higher fitness: the neuron backups its current

5. Perturbed agent has a lower fitness: the neuron restores its previous
backed up weights/parameters.

There is a problem with step 4. Because by the time it’s time to backup the
synaptic weights, they have already changed from what they original started with
during the evaluation, since they have adapted and learned due to their plasticity
function. So we would not be backing up the synaptic weights of the agent that
achieved the higher fitness score, but instead we would be backing up the learned
and adapted agent with its adapted synaptic weights.

The fact that the perturbed agent, or topologically mutated agent, is not simply
a perturbed genotype on which its parent is based, but instead is based on the gen-
otype which has resulted from its parent’s experience (due to the parent having
changed based on its learning rule, before its genotype was backed up), means that
the process is now based on Lamarckian evolution, rather than the biologically

rckian Evolution is based on the idea
that an organism can pass on to its offspring the characteristics that it has acquired
and learned during its lifetime (evaluation), all its knowledge and learned skills.
Since plasticity affects the agent’s neural patterns, synaptic weights... all of which
are defined and written back to the agent’s genotype, and the offspring is a mutat-
ed version of that genotype, the offspring thus in effect will to some extent inherit

weights/parameters.

correct Darwinian. The definition of Lama

15.5 Tuning of a NN which has Plastic Neurons 651

the agent’s adapted genotype, and not the original genotype with which the parent
started when it was being evaluated.

When the agent backs up its synaptic weights after it has been evaluated for fit-
ness, the agent uses Lamarckian evolution, because its experience, what it has
learned during its evaluation (and what it has learned is reflected in how the syn-
aptic weights changed due to the used plasticity learning rule), is written to its ge-
nome, and it is this learned agent that gets perturbed. The cleanest way to solve
this problem, and have control of whether we use Lamarckian or the biologically
correct Darwinian evolution, is to add a new parameter to the agent, the darwini-
an/lamarckian flag.

To implement the proper synaptic weight updating method to reflect the decid-
ed on hereditary approach during the tuning phase, we will need to add minor up-
dates to the records.hrl file, the exoself, the neuron, and the genotype modules. In
the records.hrl, we have to update the agent record by adding the heredity_type
flag to it, and modifying the constraint record by adding the heredity_types ele-
ment to it. The agent’s heredity_type element will simply store a tag, an atom
which can either be : darwinian or lamarckian. The constraint’s heredity_types el-
ement will be a list of heredity_type tags. This list can either contain just a single
tag, ‘darwinian’ or ‘lamarckian’ for example, or it could contain both. If both at-
oms are present in the heredity_types list, then during the creation of the seed
population, some agents will use the darwinian method of passing on their heredi-

Darwinian vs. Lamarckian evolution, particularly in ALife simulations, could
lead to interesting possibilities. When using Lamarckian evolution, and for exam-
ple applying our neuroevolutionary system to an ALife problem, the agent’s expe-
rience gained from interacting with the simulated environment, would be passed
on to its offspring, and perturbed during the tuning phase. The perturbed organism
(during the tuning phase, belonging to the same evaluation) would re-experience
the interaction with the environment, and if it was even more successful, it would
be backed up with its new experience (which means that the organism has now
experienced and learned in the environment twice, since through plasticity the en-
vironment has affected its synaptic weights twice...). If the perturbed agent is less
fit, then the previous agent, with its memories and synaptic weight combination, is
reverted to, and re-perturbed. If we set the max_attempts counter to 1, then it will
be genetic rather than a memetic based neuroevolutionary system. But again,
when Lamarckian evolution is allowed, the memories of the parent are passed on
to its offspring... A number of papers have researched the usefulness and efficien-
cy of Darwinian Vs. Lamarkian evolution [4,5,6,7]. The results vary, and so add-
ing a heredity flag to the agent will allow us to experiment and use both if we
want to. We could then switch between the two heredity approaches (Darwinian or
Lamarckian) easily, or perhaps even allow the hereditary flag to flip between the
two during the topological mutation phase through some new topological mutation
operator, letting the evolutionary process decide what suits the assigned problem
best.

652 Chapter 15 Neural Plasticity

tary information, and others will use a lamarckian approach. It would be interest-
ing to see which of the two would have an advantage, or be able to evolve faster,
and during what stages of evolution and in which problems...

After updating the 2 records in records.hrl, we have to make a small update to
the genotype module. In the genotype module we update the construct_Agent/3
function, and set the agent’s heredity_type to one of the available heredity types in
the constraint’s heredity_types list. We do this by adding the following line when
setting the agent’s record: heredity_type = random_element
(SpecCon#constraint.heredity_types). We then update the exoself module, by
modifying the link_Neurons/2 function to link_Neurons/3 function, and pass to it
the agent’s heredity_type parameter, the parameter which is then forwarded to
each spawned neuron.

With this done, we make the final and main source modification, which is all
contained within the neuron module. To allow for Darwinian based heredity in the
presence of learning and plastic neurons, we need to keep track of two states of

We can call this new list the input_pidps_bl, where bl stands for Before Learn-
ing.

When a neuron is requested to perturb its synaptic weights, right after the
weights are perturbed, we want to save this new input_pidps list, before plasticity
gets a chance to modify the synaptic weights. Thus, whereas before we stored the
Perturbed_PIdPs in input_pidps_current, we now also save it to input_pidps_bl.
Afterwards, the neuron can process the input signals using its input_pidps_current,
and its learning rule can affect the input_pidps_current list. But input_pidps_bl
will remain unchanged.

When a neuron is sent the weight_backup message, it is here that heredity_type
plays its role. When it’s darwinian, the neuron saves the input_pidps_bl to in-
put_pidps_backup, instead of the input_pidps_current which could have been
modified by some learning rule by this point. On the other hand, when the heredi-
ty_type is lamarckian, the neuron saves the input_pidps_current to in-
put_pidps_backup. The input_pidps_current represents the synaptic weights that
could have been updated if the neuron allows for plasticity, and thus the in-
put_pidps_backup will then contain not the initial states of the synaptic weight list
with which the neuron started, but the state of the synaptic weights after the neu-
ron has experienced, processed, and had its synaptic weights modified by its learn-
ing rule. Using this logic we add to the neuron’s state the element input_pidps_bl,
and update the loop/6 function, as shown in Listing-15.18.

the input_pidps:

1. The input_pidps that are currently effective and represent the neuron’s pro-
cessing dynamics, which is the input_pidps_current.

2. A second input_pidps list, which represents the state of input_pidps right after
perturbation, before the synaptic weights are affected by the neuron’s plasticity
function.

15.5 Tuning of a NN which has Plastic Neurons 653

Listing-15.18 The neuron’s loop/6 function which can use both, Darwinian and Lamarckian in-
heritance.

loop(S,ExoSelf_PId,[ok],[ok],SIAcc,MIAcc)->
 PF = S#state.pf,
 AF = S#state.af,
 AggrF = S#state.aggrf,
 {PFName,PFParameters} = PF,
 Ordered_SIAcc = lists:reverse(SIAcc),
 SI_PIdPs = S#state.si_pidps_current,
 SAggregation_Product = signal_aggregator:AggrF(Ordered_SIAcc,SI_PIdPs),
 SOutput = functions:AF(SAggregation_Product),
 Output_PIds = S#state.output_pids,
 [Output_PId ! {self(),forward,[SOutput]} || Output_PId <- Output_PIds],
 Ordered_MIAcc = lists:reverse(MIAcc),
 MI_PIdPs = S#state.mi_pidps_current,
 MAggregation_Product = signal_aggregator:dot_product(Ordered_MIAcc,MI_PIdPs),
 MOutput = functions:tanh(MAggregation_Product),
 U_SI_PIdPs = plasticity:PFName([MOutput|PFParameters],Ordered_SIAcc,SI_PIdPs,
SOutput),
 U_S=S#state{
 si_pidps_current = U_SI_PIdPs
 },
 SI_PIds = S#state.si_pids,
 MI_PIds = S#state.mi_pids,
 loop(U_S,ExoSelf_PId,SI_PIds,MI_PIds,[],[]);
loop(S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc)->
 receive
 {SI_PId,forward,Input}->
 loop(S,ExoSelf_PId,SI_PIds,[MI_PId|MI_PIds],[{SI_PId,Input}|SIAcc],
MIAcc);
 {MI_PId,forward,Input}->

 loop(S,ExoSelf_PId,[SI_PId|SI_PIds],MI_PIds,SIAcc,[{MI_PId,Input}|MIAcc]);
 {ExoSelf_PId,weight_backup}->
 U_S=case S#state.heredity_type of
 darwinian ->
 S#state{
 si_pidps_backup=S#state.si_pidps_bl,
 mi_pidps_backup=S#state.mi_pidps_current
 };
 lamarckian ->
 S#state{
 si_pidps_backup=S#state.si_pidps_current,
 mi_pidps_backup=S#state.mi_pidps_current

654 Chapter 15 Neural Plasticity

 }
 end,
 loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
 {ExoSelf_PId,weight_restore}->
 U_S = S#state{
 si_pidps_bl=S#state.si_pidps_backup,
 si_pidps_current=S#state.si_pidps_backup,
 mi_pidps_current=S#state.mi_pidps_backup
 },
 loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
 {ExoSelf_PId,weight_perturb,Spread}->
 Perturbed_SIPIdPs=perturb_IPIdPs(Spread,S#state.si_pidps_backup),
 Perturbed_MIPIdPs=perturb_IPIdPs(Spread,S#state.mi_pidps_backup),
 U_S=S#state{
 si_pidps_bl=Perturbed_SIPIdPs,
 si_pidps_current=Perturbed_SIPIdPs,
 mi_pidps_current=Perturbed_MIPIdPs
 },
 loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
 {ExoSelf_PId,reset_prep}->
 neuron:flush_buffer(),
 ExoSelf_PId ! {self(),ready},
 RO_PIds = S#state.ro_pids,
 receive
 {ExoSelf_PId, reset}->
 fanout(RO_PIds,{self(),forward,[?RO_SIGNAL]})
 end,
 loop(S,ExoSelf_PId,S#state.si_pids,S#state.mi_pids,[],[]);
 {ExoSelf_PId,get_backup}->
 NId = S#state.id,
 ExoSelf_PId ! {self(),NId,S#state.si_pidps_backup,S#state.mi_pidps_backup},
 loop(S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
 {ExoSelf_PId,terminate}->
 io:format(“Neuron:~p is terminating.~n”,[self()])
 after 10000 ->
 io:format(“neuron:~p stuck.~n”,[S#state.id])
 end.

With this modification, our neuroevolutionary system can be used with Dar-
winian and Lamarckian based heredity. If we start the population_monitor process
with a constraint where the agents are allowed to have neurons with plasticity, and
set the heredity_types to either [lamarckian] or [darwinian,lamarckian], then some
of the agents will have plasticity and be able to use the Lamarckian inheritance.

15.5 Tuning of a NN which has Plastic Neurons 655

We can next add a simple mutation operator which works similarly to the way
the mutation operators of other evolutionary strategy parameters work. We simply
check whether there are any other heredity types in the constraint’s heredity_types
list, if there are, we change the currently used one to a new one, randomly chosen
from the list. If there are no others, then the mutation operator exits with an error,
without wasting the topological mutation attempt. This simple mu-
tate_heredity_type mutation operator implementation is shown in Listing-15.19.

Listing-15.19 The implementation of the genome_mutator:mutate_heredity_type/1 mutation
operator.

mutate_heredity_type(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 case (A#agent.constraint)#constraint.heredity_types -- [A#agent.heredity_type] of
 [] ->
 exit(“********ERROR:mutate_heredity_type/1:: Nothing to mutate, only a
single function available.”);
 Heredity_Type_Pool->
 New_HT = lists:nth(random:uniform(length(Heredity_Type_Pool)),
Heredity_Type_Pool),
 U_A = A#agent{heredity_type = New_HT},
 genotype:write(U_A)
 end.
%mutate_heredity_type/1 function checks if there are any other heredity types in the agent’s
constraint record. If any other than the one currently used by the agent is present, the agent ex-
changes the heredity type it currently uses for a random one from the remaining list. If no other
heredity types are available, the mutation operator exits with an error, and the
neuroevolutionary system tries another mutation operator.

Since this particular neuroevolutionary feature is part of the evolutionary strat-
egies, we add it to the evolutionary strategy mutator list, which we created earlier:

-define(ES_MUTATORS,[
 mutate_tuning_selection,
 mutate_tuning_duration,
 mutate_tuning_annealing,
 mutate_tot_topological_mutations,
 mutate_heredity_type
]).

With this final modification, our neuroevolutionary system can now fully em-
ploy plasticity, and two types of heredity inheritance methods. We now finally
compile, and test our updated system on the T-Maze Navigation problem we de-
veloped in the previous chapter.

656 Chapter 15 Neural Plasticity

15.6 Compiling & Testing

Our TWEANN system can now evolve NNs with plasticity, which means the
evolved agents do not simply have an evolved response/reflex to sensory signals,
but can also change, adapt, learn, modify their strategies as they interact with the
ever changing and dynamic world. Having added this feature, and having created
the T-Maze Navigation problem which requires the NN to change its strategy as it
interacts with the environment, we can now test the various plasticity rules to see
whether the agents will be able to achieve a fitness of 149.2, a fitness score
achieved when the agent can gather the highest reward located in the right corner,
and then when sensing that the reward is now not 1 but 0.2 in the right corner,
start moving to the left corner to continue gathering the highest reward.

Having so significantly modified the records and the various modules, we reset
the mnesia database after recompiling the modules. To do this, we first execute
polis:sync(), then polis:reset(), and then finally polis:start() to startup the polis
process. We have created numerous plasticity learning rules: [hebbian_w, hebbian,
ojas_w, ojas, self_modulationV1, self_modulationV2, self_modulationV3,
self_modulationV4, self_modulationV5, self_modulationV6, neuromodulation],
too many to show the console printouts of. Here I will show you the results I
achieved while benchmarking the hebbian_w and the hebbian learning rules, and I
highly recommend testing the other learning rules by using the provided source
code in the supplementary material.

To run the benchmarks, we first modify the ?INIT_CONSTRAINTS in the
benchmarker module, setting the constraint’s parameter: neural_pfns, to one of
these plasticity rules for every benchmark. We can leave the evaluations_limit in
the pmp record as 5000, but in the experiments I’ve performed, I set the popula-
tion limit to 20 rather than 10, to allow for a greater diversity. The following are
the results I achieved when running the experiments for the hebbian_w and the
hebbian plasticity based benchmarks:

T-Maze Navigation with neural_pfns=[hebbian_w]:

Graph:{graph,discrete_tmaze,
 [1.1185328852434115,1.1619749686158354,1.1524569668377718,
 1.125571504518873,1.1289114832535887,1.1493175172780439,
 1.136998936735779,1.151456292245766,1.1340011357153639,
 1.1299993522129745],
 [0.0726690757747553,0.08603433346506212,0.07855604082593783,
 0.10142838037124464,0.07396159578145513,0.10671412852082847,
 0.07508707481514428,0.09451139923220694,0.10140517337683815,
 0.07774940615923569],
 [91.76556804891021,101.28562704890575,111.38602998360439,
 110.65857974481669,110.16398032961199,111.09056977671462,
 110.92899944938112,110.89051253132838,115.36595268212,

15.6 Compiling & Testing 657

 111.07567142455073],
 [14.533256849468248,13.058657299854085,10.728855341054617,
 10.993110357580642,10.14374645989871,8.753610288273324,
 8.392536182954592,7.795296190771122,5.718415463002469,
 8.367092075873826],
 [122.0000000000001,122.0000000000001,148.4,149.2,149.2,149.2,
 149.2,149.2,149.2,149.2],
 [10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115],
 [11.45,14.3,15.3,15.8,15.3,16.15,16.15,15.55,15.95,15.7],
 [1.5321553446044565,2.451530134426253,2.1702534414210706,
 2.541653005427767,2.2825424421026654,2.7253440149823285,
 2.127792283095321,2.0118399538730714,2.246664193866097,
 2.0273134932713295],
 [500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0],
 []}
Tot Evaluations Avg:5172.95 Std:103.65301491032471

The boldfaced list shows the maximum achieved scores from all the evolution-
ary runs, and this time through plasticity, the score of 149.2 was achieved, imply-
ing our TWEANN’s ability to solve the T-Maze navigation problem in under 2000
evaluationss (by the 4th of the 500th evaluations set).

T-Maze Navigation with neural_pfns=[hebbian]:

Graph:{graph,discrete_tmaze,
 [1.1349113313586998,1.1720830155097892,1.1280659983291563,
 1.1155462519936203,1.1394258373205741,1.1293439592742998,
 1.1421323920317727,1.1734812130593864,1.1750255550524766,
 1.2243932469319467],
 [0.07930932911768754,0.07243567080038446,0.0632406890972406,
 0.05913247338612391,0.07903341129827642,0.07030745338352402,
 0.09215871275247499,0.09666623776054033,0.1597898002580627,
 0.2447504142533042],
 [90.66616594516601,97.25899378881999,104.36751796157071,
 105.0985582137162,106.70360792131855,108.09892415530814,
 108.23839098414494,109.28814527629243,108.0643063975331,
 111.0103593241125],
 [15.044059269853784,13.919179099169385,10.613477213673535,
 13.557400867791436,13.380234103652047,12.413686820724935,
 11.936102929326337,11.580780191261242,12.636714964991167,
 12.816711475442705],
 [122.0000000000001,147.8,145.60000000000002,149.2,149.2,149.2,

658 Chapter 15 Neural Plasticity

 149.2,149.2,149.2,149.2],
 [10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115],
 [11.05,12.2,12.3,12.85,13.35,14.25,14.35,15.3,15.4,14.9],
 [1.6271140095272978,2.6381811916545836,2.215851980616034,
 1.7399712641305316,1.7399712641305318,2.2332711434127295,
 1.9817921182606415,2.0760539492026697,1.9078784028338913,
 2.046948949045872],
 [500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0],
 []}
Tot Evaluations Avg:5145.65 Std:91.87234349900953

In this case, our TWEANN again was able to solve the T-Maze problem. Plas-
tic NN based agents do indeed have the ability to solve the T-Maze problem which
requires the agents to change their strategy as they interact with the maze which
changes midway. Our TWEANN is now able to evolve such plastic NN based
agents, our TWEANN can now evolve agents that can learn new things as they in-
teract with the environment, that can change their behavioral strategies based on
their experience within the environment.

15.7 Summary & Discussion

Though we have tested only two of the numerous plasticity learning rules
we’ve implemented, they both produced success. In both cases our TWEANN
platform has been able to evolve NN based agents capable of solving the T-Maze
problem, which was not solvable by our TWEANN in the previous chapter with-
out plasticity. Thus we have successfully tested our plasticity rule implementa-
tions, and the new performance capabilities of our TWEANN. Outside this text I
have tested the learning rules which were not tested above, and they are also capa-
ble of solving this problem, with varying performance levels. All of this without
us having even optimized our algorithms yet.

With this benchmark complete, we have now finished developing numerous
plasticity learning rules, implementing the said algorithms, and then benchmark-
ing their performance. Our TWEANN system has finally been able to solve the T-
Maze problem which requires the agents to change their strategy. Our TWEANN
platform can now evolve not only complex topologies, but NN systems which
can learn and adapt. Our system can now evolve thinking neural network based
agents. There is nothing stopping us from producing more complex and more bio-
logically faithful plasticity based learning rules, which would further improve the

15.8 References 659

15.8 References

[1] Oja E (1982) A Simplified Neuron model as a Principal Component Analyzer. Journal of
Mathematical Biology 15, 267-273.

[2] Soltoggio A, Bullinaria JA, Mattiussi C, Durr P, Floreano D (2008) Evolutionary Advantages
of Neuromodulated Plasticity in Dynamic, Reward-based Scenarios. Artificial Life 2, 569-
576.

[3] Blynel J, Floreano D (2003) Exploring the T-maze: Evolving Learning-Like Robot Behaviors
using CTRNNs. Applications of evolutionary computing 2611, 173-176.

[4] Whitley LD, Gordon VS, Mathias KE (1994) Lamarckian Evolution, The Baldwin Effect and
Function Optimization. In Parallel Problem Solving From Nature - PPSN III, Y. Davidor and
H. P. Schwefel, eds. (Springer), pp. 6-15.

[5] Julstrom BA (1999) Comparing Darwinian, Baldwinian, and Lamarckian Search in a Genetic
Algorithm For The 4-Cycle Problem. In Late Breaking Papers at the 1999 Genetic and Evolu-
tionary Computation Conference, S. Brave and A. S. Wu, eds., pp. 134-138.

[6] Castillo PA, Arenas MG, Castellano JG, Merelo JJ, Prieto A, Rivas V, Romero G (2006)
Lamarckian Evolution and the Baldwin Effect in Evolutionary Neural Networks. CoRR
abs/cs/060, 5.

[7] Esparcia-Alcazar A, Sharman K (1999) Phenotype Plasticity in Genetic Programming: A
Comparison of Darwinian and Lamarckian Inheritance Schemes. In Genetic Programming
Proceedings of EuroGP99, R. Poli, P. Nordin, W. B. Langdon, and T. C. Fogarty, eds.
(Springer-Verlag), pp. 49-64.

capabilities and potential of the types of neural networks our TWEANN system
can evolve.

With the plasticity now added, our next step is to add a completely different
NN encoding, and thus further advance our TWEANN system. In the next chapter
we will allow our TWEANN platform to evolve not only the standard encoded
NN based agents we’ve been using up to this point, but also the new indirect en-
coded type of NN systems, the substrate encoded NN based systems.

Chapter 16 Substrate Encoding

Abstract In this chapter we augment our TWEANN to also evolve indirect en-
coded NN based systems. We discuss, architect, and implement substrate encod-
ing. Substrate encoding allows for the evolved NN based systems to become geo-
metrical-regularity sensitive with regards to sensory signals. We extend our
existing genotype encoding method and give it the ability to encode both, neural
and substrate based NNs. We then extend the exoself to map the extended geno-
type to the extended phenotype capable of supporting substrate encoded NN sys-
tems. Finally, we modify the genome mutator module to support new, substrate
NN specific mutation operators, and then test the system on our previously devel-
oped benchmarking problems.

With all the main features of a neuroevolutionary system complete, and with
our TWEANN system now able to evolve learning networks, we can now move
forward and add some of the more elaborate features to our platform. In this chap-
ter we will modify our TWEANN platform to evolve substrate encoded NN sys-
tems, which we briefly discussed in Section-4.1.3, and again in Chapter-10.

In indirect encoded NN systems, the genotype and phenotype do not have a 1-
to-1 mapping. Substrate Encoding is one of such indirect encoding methods. As
we discussed in Chapter-10, and as was shown in a number of relatively recently
published papers [2,3,4], it has numerous advantages, particularly when it comes
to generalization, image analysis based problems, and problems with geometrical
regularities. Substrate encoding allows us to build substrate modules whose em-
bedded interconnected neurodes and their very connections and synaptic weights
are defined by a directly encoded NN system. Thus by evolving a NN, we are
evolving a system which accepts as input the coordinates of the substrate embed-
ded neurodes and outputs/paints the topology, synaptic weights, connection ex-
pression patterns, and other connectivity parameters on the multidimensional sub-
strate. In this chapter we implement the extension to our system so that it can
evolve such substrate encoded NN based agents.

Though having already discussed the manner in which substrate encoding
works in Chapter-10, in the next section we will cover it in a greater detail. After-
wards, we will implement this indirect encoding system, and then test it on the T-
Maze problem.

DOI 10.1007/978-1-4614- - © Springer Science+Business Media New York 2013 4463 3_16,
661 G.I. Sher, Handbook of Neuroevolution Through Erlang,

662 Chapter 16 Substrate Encoding

16.1 A Brief Overview of Substrate Encoding

Substrate encoding was popularized by the HyperNEAT [2] neuroevolutionary
system. Though simple, it is a new approach in the effort of trying to reduce the
curse of dimensionality problem (number of variables to evolve and deal with, as
the size of the NN system increases). In this encoding method, it is not the directly
evolved neural network that processes the incoming signals from the sensors, and
outputs signals to the actuators to interact with the world, but instead it is the
neurode impregnated multidimensional substrate that interacts with the environ-
ment. A substrate is simply a hypercube with every axis ranging from -1 to 1.
Within the hypercube are neurodes, as shown in Fig-16.1. The neurodes are em-
bedded in this multidimensional space, and thus each has its own coordinate. Fur-
thermore, the neurodes are connected to each other in some particular pattern, and
thus the substrate represents a neural network. The trick here is that we do not
have to evolve the neurode connectivity patterns or the synaptic weights between
them, instead it is the evolved NN that sets up the synaptic weights and connectiv-
ity expression for the neurodes within the substrate. Thus, even if we have a 3d
substrate containing millions of neurodes, heavily interconnected with each other,
we might still only have a few dozen neurons in the NN that sets up the synaptic
weights between the neurodes within the substrate. This is accomplished by feed-
ing the NN the coordinates of the connected neurodes within the substrate, and
with this NN’s resulting output being used to set the synaptic weights between
those connected neurodes. Thus, no matter how many millions of interconnected
neurodes are within the substrate, we’re still only evolving a few interconnected
neurons within the direct encoded NN. Of course the greater the number of the
neurons within the NN, the more complex a connection and synaptic weight pat-
tern that it can paint on this multidimensional substrate.

 Fig. 16.1 A multidimensional substrate with embedded neurodes, connected in a feedforward,
hyperlayer-to-hyperlayer fashion.

16.1 A Brief Overview of Substrate Encoding 663

****Note****
In HyperNEAT the NN is referred to as a CPNN (Compositional Pattern Producing Network),
due to the fact that the NEAT [5] neuroevolutionary system only evolves NNs which use the
tanh activation function, while the CPNN evolved in HyperNEAT uses other activation func-
tions as well. This terminology need not apply to other Neuroevolutionary systems whose neu-
rons use various types of activation functions as a standard, and also when used with substrate
encoding. Since our evolved NNs use different types of activation functions in general, we need
not distinguish between the evolved NNs during direct encoding, and the evolved NNs during
indirect encoding used for the purpose of painting the connectivity patterns on the substrate.
This terminology would in particular be difficult to use if we were to evolve modular neural
network systems, with interconnected substrate encoded modules, direct encoded modules, and
other programs. Thus, because there is really no difference between the NNs used on their own
and those used with substrates, we will simply refer to them as NNs. The NNs are simply being
used for different purposes. In the direct encoded approach the NN is being applied to the prob-
lem directly. In the substrate encoded approach, the NN is being applied to set up the synaptic
weights of the neurodes embedded in the substrate, which is applied to the problem. I will refer
to the neurons embedded in the substrate, as neurodes.

As was shown in the above figure, we can thus feed to the NN an appended list
of the coordinates of any two connected neurodes, and use the NN’s output as the
synaptic weight between those neurodes. In this manner we can calculate the syn-
aptic weights between all connected neurodes in the substrate, whether there are
ten or ten million neurodes, as long as we have the coordinates of those neurodes.
Because the NN is now dealing with the coordinates, the length of the input vector
to the NN is thus at most 2*SubstrateDimensionality, which alleviates problems
associated with extremely large NN input vectors. It is the substrate that processes
the input vectors, and produces the output. Another important feature is that due to
the NN dealing with coordinates, the system becomes sensitive to the geometrical
regularities within the input, and allows us to set up the substrate’s geometry
which can further emulate the geometrical features of the problem we wish to
solve. If the input to the substrate is such that there is geometrical data in it (For
example an image from a camera), and it can be exploited, this type of encoding is
much more suited to this data’s analysis than a directly encoded NN.

The next question is of course: In what manner are the neurodes within the sub-
strate connected; what is the substrate’s topology? And how do we forward data
from the sensors to the substrate, and use the output produced by the substrate to
control the actuators? These two questions are related because both, the input to
the substrate and the output from the substrate, are parts of the substrate’s topolo-
gy, as will be explained next.

664 Chapter 16 Substrate Encoding

The most common substrates are standard hypercubes where each hyperplane
is connected to the one ahead of it. Consider a 3d substrate, a cube, as was shown
in Fig-16.1. A hyperplane to hyperplane feedforward topology, where the
hyperplane’s dimension is one less than the dimensionality of the entire substrate,
is such that all the neurodes in the hyperplane are connected in a feedforward fash-
ion to all the neurodes in the next hyperplane, with the synaptic weights between
the connected neurodes decided by the NN. Another substrate topology is where
all the neurodes in the substrate are interconnected, and again the NN decides the
synaptic weights between the neurodes. But we can also allow the NN to output
not just the synaptic weight for the coordinates used as input to the NN, but also
whether or not the neurons are at all connected. In this manner the topology is no
longer set ahead of time, and instead it is the NN that decides which neurodes are
connected, and with what synaptic weights (rather than just deciding on the synap-
tic weights between the feedforward connected neurodes). Fig-16.2a shows a
hyperplane-to-hyperplane Jordan recurrent (The last plane outputs signals back to
the first plane) substrate where the NN uses the coordinates between any two
neurodes to output the synaptic weights between them. On the other hand, Fig-
16.2b shows a substrate full of neurodes, where the NN decides both on the con-
nectivity expression between all the neurodes, and the synaptic weights between
those that are indeed connected.

Though usually the neurodes are equidistantly spaced within the substrate (in
case of freeform), it need not be the case. For example, we can just as easily ran-
domly pepper the hypercube with neurodes, and then use the NN to decide whether

Fig. 16.2 A hyperlayer-to-hyperlayer fully connected substrate topology, and a “freeform”
substrate topology. In A, the NN uses as input the coordinates of every two connected
neurodes of different planes, while in B the NN outputs a vector length of 2, a synaptic
weight and whether the synaptic connection is expressed, for every two neurode combina-
tion in the whole substrate.

16.1 A Brief Overview of Substrate Encoding 665

****Note****
A hyperlayer is a group of neurodes all belonging to the same, most external coordinate, and
thus forming a structure which is one dimension lower than the full substrate itself. If the sub-
strate is 5d (x,y,z,a,b), then the hyperlayer is 4d, with each separate hyperlayer on its own b co-
ordinate. If the substrate is 3d (x,y,z), then the hyperlayer is 2d, with each hyperlayer on its own
z coordinate. Furthermore, I will use the term hyperplane to designate the planes composing the
hyperlayer, forming structures one dimension lower than the hyperlayers. This will make more
sense as new substrate topologies are shown. For example, multiple hyperplanes, where each
designates a separate sensor, can then form a single input hyperlayer of a substrate. Similarly,
multiple hyperplanes of the output hyperlayer, would each be associated with a particular actua-
tor. This terminology will allow us to discuss the substrates, evolving substrates, and connectiv-
ity between the substrate and the sensors and actuators, much more easily.

nected neurodes is. Indeed at times it might be better to even use a mutation opera-
tor which randomly adds and subtracts neurodes to and from the substrate respec-
tively, and thus overtime evolves a substrate with different neurode density zones,
and thus different signal sensitivity and specialization zones.

Given all these substrate topologies, how do we present the sensory data to
them? Since for the neurodes to have a synaptic weight for an incoming signal, the
origin of that signal too must have a coordinate, the sensory signal output zone
must somehow be located within the substrate. For example assume that the input
is an image, and the substrate is 3d, with a standard feedforward topology, with 3
hyperlayers in total, with the hyperlayers located at Z = -1, Z = 0, and Z = 1, and
with the hyperlayer-to-hyperlayer feedforward connections going from Z = -1 to-
wards Z = 1. One way we can allow for the sensory image to also have coordi-
nates, is by positioning it as the input hyperlayer at Z = -1. The pixels then would
have coordinates, and the pixel’s color can then be mapped to floating point val-
ues. In this manner the image can be used as an input to the substrate encoded NN.
The NN can then produce the synaptic weights for the neurodes in the hyperlayer
located at Z = 0 because the NN would now have the coordinates of both, the
neurodes in the hyperlayer at Z = 0, and the sensory signal producers (the image
pixels) of the hyperlayer at Z = -1, which
type of setup is shown in Fig-16.3.

and which neurodes are connected, and what the synaptic weights between the con-

is connected to the neurodes at Z = 0. This

666 Chapter 16 Substrate Encoding

Fig. 16.3 The image being used as the input hyperlayer of the substrate.

We can also designate the neurodes in the last hyperlayer, or neurodes located
at Z = -1, as the output neurodes. We would then use the output of the neurodes in
the output hyperlayer, as the output signals to control the actuators. It is complete-
ly up to the researcher what combination of output neurodes is designated to con-
trol which actuators. For example in the above figure, the input hyperlayer is the
image, which in this case is a financial instrument price chart, and the output
hyperlayer is composed of a single neurode. And this neurode’s output is then
used to control some actuator. In comparison to the above figure, in Fig-16.1 the
output hyperlayer had 9 neurodes. It is up to us when creating the substrate and
tagging the output hyperlayer, whether all 9 neurodes are used as signals for a sin-
gle actuator, or whether there are 3 actuators and each 3 neurode hyperplane with-
in the output hyperlayer is associated with its own actuator. Fig-16.4 shows two
3d substrates, both using the same topology, but one has designated all the
neurodes in the output hyperlayer to be used for a single actuator whose input vec-
tor length is 9, while in the second substrate the output hyperlayer is broken up in-
to 3 layers, and each 3 neurode hyperplane is designated for a different actuator.

16.1 A Brief Overview of Substrate Encoding 667

Fig. 16.4 Two 3d substrates of the same topology, using different number of actuators
through some output-neurode/actuator designation method. Substrate A has designated all
the neurodes in its output hyperlayer to be associated with a single actuator, while sub-
strate B has separated the 9 neurodes into 3 groups, each group associated with its own ac-
tuator.

In the same fashion, a substrate can have multiple sensors associated with its
input hyperlayer. For example we could use a four dimensional substrate, where
the input hyperlayer is 3 dimensional, and is composed of 2 or more 2d
hyperplanes, where each hyperplane is an image fed from a camera. Fig-16.5
shows just such an arrangement, where the 3d input hyperlayer uses sensors which
produce chart images of possibly differing resolutions, and using different tech-
nical indicators.

Fig. 16.5 Four dimensional substrate with multiple sensors and actuators.

668 Chapter 16 Substrate Encoding

Finally, the dimensionality and the topology of the substrate itself can vary. It
is dependent on the problem and on the goal of the researcher whether to use 1, 5,
or 20 dimensional substrate hypercube, and whether that substrate is cuboid, or
spherical. If for example the data being analyzed has spherical geometrical regu-
larities, perhaps it would be best to paint the input hyperlayer on the spherically
shaped substrate, and use spherical coordinates rather than Cartesian. Fig-16.6a
shows a 2d substrate of polar topology and using polar coordinates, where the sen-
sory signals are mapped to the circumference of the circle, and the output is pro-
duced by the inner circle of the substrate. For comparison, Fig-16.6b shows a
standard 2d substrate, with a layer to layer feedforward topology.

Fig. 16.6 A two dimensional circular substrate using polar coordinates (A), and a two di-
mensional standard feedforward substrate using Cartesian coordinates (B).

With the sensory signals mapped to one of the surfaces of the substrate, or in-
ternal structures, or geometries of the substrate, and the output signals produced
by any of the neurodes within the substrate tagged for such a job, there is an

16.2 The Updated Architecture of Our NN Based Systems 669

enormous amount of flexibility in such an encoded system. Because NNs are uni-
versal function approximators, it is theoretically feasible to evolve any type of
synaptic weight and connectivity pattern within the substrate. Indeed, consider a
3d PET (Positron Emission Tomography) scan of the brain, which outlines the
metabolic activity of the same. Would it be possible for a complex enough NN to
paint such an activity pattern within a 3d substrate? The sensory signals for such a
substrate could be mapped to a few internal structures within it (perhaps the 3d
structures similar to optical nerves...), and its output extracted from the neurodes
along a 3d structure which outputs signals to be forwarded down a simulated spi-
nal cord... But why be limited to simulating the activity patterns at the resolution
of a PET scan, how about the activity patterns at an even greater detailed? Indeed,
we will eventually, with a substrate dense enough and a NN complex enough,
should be able to achieve producing activity patterns of the same granularity as the
biological brain.

Furthermore, why be limited to 3d topologies, why not 4d, or 10d? There is
certainly an enormous amount of things left to explore in direct and indirect en-
coded NN based systems. There is an enormous amount exploration and experi-
mentation, still beyond the horizon, which will yield new and certainly incredible
results. We start off in this direction in the next section, in which we will discuss
methods of how to represent such a substrate in our TWEANN system.

16.2 The Updated Architecture of Our NN Based Systems

To implement substrate encoding we need to figure out a way to represent it
within the genotype in such a way that we can then map it to phenotype in a man-
ner that will meld well with our TWEANN system. We would also prefer that the
genotype has at least the following features:

 The representation must allow us to specify any number of sensors and actua-
tors, allow us to use mutation operators to add new sensors and actuators
through evolution, and for the substrate to have any number of dimensions.

 The phenotype should be representable as a single process. Thus this entire
substrate, no matter how many dimensions and how many neurodes belong to it,
should have the genotype that can easily be mapped to this single process
based phenotype.

 The genotype should allow us to easily represent at least the standard set of
substrate topologies: hyperlayer-to-hyperlayer (HtH) feedforward, fully con-
nected, and Jordan recurrent (HtH topology where the output hyperlayer of the
substrate is used as part of its input hyperlayer).

 Finally, the encoding must be simple enough so that we can easily work with it,
and extend it in the future.

670 Chapter 16 Substrate Encoding

Fig. 16.7 The architecture of a substrate encoded NN based agent.

What’s important to notice in this architecture is that now the sensors and actu-
ators are used by the substrate. Whereas the NN is used for the substrate synaptic
weight and connectivity pattern generation and setup. In the standard encoding,
neural encoding, the NN is the one that polls the environment using its sensors,

These requirements were not chosen arbitrarily, they represent what is neces-
sary for our substrate encoded system to provide all the features of the bleeding
edge and beyond, of today’s substrate encoded systems. What other systems do
not provide, and ours will, is for our substrate to have the ability to integrate new
sensors and actuators into itself through evolution. The architecture of a substrate
encoded agent is diagrammed in Fig-16.7.

16.2 The Updated Architecture of Our NN Based Systems 671

and then acts upon the environment using its actuators. But now that it is being
used by the substrate, and the substrate only needs to use the NN to set or update
its synaptic weights, the NN is no longer the driver behind the use of sensors and
actuators. Instead, the NN is now being simply used by the substrate, being fed
neurode coordinates, and producing synaptic weights and other parameters that the
substrate uses.

In Chapter-10 we discussed how DXNN uses various coordinate preprocessors
before they are fed to the NN, which allows the NN to use not just the Cartesian
coordinates, but also evolve other preprocessors such as the: polar coordinates,
spherical coordinates, neurode distance to substrate center, synaptic connection
length... These coordinate preprocessors preprocess the standard Cartesian coordi-
nates before feeding the resulting vector to the NN. Thus the NN can use combi-
nations of these, and therefore have the ability to extract and be aware of more ge-
ometrical regularities, and produce more complex synaptic weight and
connectivity patterns. But should we represent these preprocessors and postpro-
cessors which the NN will use to feed the resulting synaptic weights and connec-
tivity expression to the substrate, using some new set of elements like the sensors
and actuators? Or should the substrate keep track of which neurons in the NN will
get what signals, and which neurons should produce which outputs?

For example, we could allow the substrate to simply keep track which neurons
should be fed which types of signals and through the use of which types of coor-
dinate processors, and also from which neurons it, the substrate, should await the
synaptic weight signals and connectivity expression signals. This is the way
DXNN is implemented, where the substrate deals directly with the NN. Because it
is the substrate that is in the driving seat, using and polling the NN, rather than the
other way around, it is an effective implementation. But the system we are devel-
oping here is different enough that it would be easier for us to create a new set of
elements, similar to sensors and actuators but dedicated to substrate based coordi-
nate preprocessing and connectivity expression setting. These elements will be
similar enough to sensors and actuators, such that we will be able to reuse their
mutation operators for adding and integrating new such elements into a substrate
encoded NN. Thus our design will follow the architecture shown in the above fig-
ure, where the substrate will poll the substrate_cpp/s (Substrate Coordinate Pre-
Processor), and then wait for the signals from the substrate_cep/s (Substrate Con-
nectivity Expression Producer) process, which will tell it what the synaptic weight
is between the two neurodes with which the substrate_cpps were called with, and
whether the connection between these neurodes is expressed or not. This approach
should give our system an excellent amount of flexibility and scalability in the fu-
ture.

So then, we will create two new process types: substrate_cpp and sub-
strate_cep. These will be analogous to the sensors and actuators respectively, but
driven and polled by the substrate when it wishes to calculate the synaptic weights
and connectivity expression between its various neurodes. The substrate will for-

672 Chapter 16 Substrate Encoding

ward to its one or more substrate_cpps the coordinates of the two connected
neurodes in question, the called substrate_cpp will process those coordinates
based on its type (If cartesian type for example, then simply leaving it as Carte-
sian coordinates and simply fanning out the vector to the neurons in the NN. If an-
other type, then converting the coordinates to polar, spherical, or some other vec-
tor form first...), and forward the processed vector to the NN. The substrate will
then wait for the signals from its one or more substrate_ceps, which will provide it
with the various signals which the substrate will then use to set its synaptic
weights, connectivity expressions, or even plasticity based synaptic weight up-
dates (as will be discussed in the next chapter). The substrate will use its sub-
strate_cpps and substrate_ceps for every synaptic weight/expression it wishes to
set or update. Unlike the sensors and actuators, the substrate_cpps and sub-
strate_ceps will not need to sync up with the cortex because the substrate_cpps
will be triggered by the substrate, and because the signals from substrate_ceps will
be awaited by the substrate, and since the substrate itself only processes signals
once it has received all the sensory signals from the sensors which themselves are
triggered by the cortex, the whole system will be synchronized.

Having now decided on the architecture, and representation of the substrate and
its substrate_cpps and substrate_ceps as independent processes, it is time to come
up with the way we will represent all of this within the genotype. We now need to
create a genotype encoding.

16.3 The Genotype of the Substrate Encoded NN

We know how we want our substrate encoded NN system to function, but how
do we represent a NN’s genotype which is substrate encoded? If we were to give
the substrate_cpp and substrate_cep their own records within the record.hrl file,
they would have looked something like this:

-record(substrate_cpp,{id,name,substrate_id,vl,fanout_ids=[],generation,parameters, pre_f,
post_f}).
-record(substrate_cep,{id,name,substrate_id,vl,fanin_ids=[],generation,parameters, pre_f,
post_f}).

Let’s go through each of the elements from the above records:

 id: This is the id of the substrate_cpp or substrate_cep.
 name: Similar to sensors and actuators, there will be different kinds of sub-

strate_cpps and substrate_ceps, each with its own name.
 substrate_id: This element will hold the substrate’s id, so that the sub-

strate_cpp/subsrate_cep will know which process to wait for a signal from, or
send its signal to respectively. This is a bit analogous to the scape id used by
the sensors and actuators.

16.3 The Genotype of the Substrate Encoded NN 673

 vl: The vector length of the signal the process substrate_cpp/substrate_cep is
certified to deal with.

 fanout_ids: The same as for the sensors, the list of element ids to which this
substrate_cpp will forward vector signals.

 fanin_ids: The same as for the actuators, the list of element ids from which the
substrate_cep expects to receive the signals.

 generation: This element keeps track of the generation during which the ele-
ment was added to the NN, or last affected by a mutation.

 parameters: At some point it might be useful to also specify parameters to fur-
ther modify how the particular substrate_cpp/substrate_cep pre or post process-
es the signal vectors respectively.

 post_f: The signal postprocessing function name, if any, used by the sub-
strate_cpp/substrate_cep process.

Thus these two elements are basically shorter versions of the sensor and actua-
tor elements, specializing in substrate signal pre- and post- processing. There is a
large number of similarities between the sensors/actuators, and cpps/ceps respec-
tively... And so it might be worth further consideration of whether we should give
substrate_cpps and substrate_ceps their own records, or whether perhaps we
should somehow modify the sensor and actuator records to allow them to be dual
purpose... We will get back to this issue in just a short while; but now we finally
get to the main questions of how we will represent the substrate topology.

We do not need to make our substrates hyperspheres, toroids, or possess any
other type of exotic topology, because we can use substrate_cpps and sub-
strate_ceps which will be able to convert the standard coordinates to spherical, po-
lar, toroidal... which means we can use a standard Cartesian hypercube topology,
and if the researcher or the problem requires that the input hyperplanes and output
hyperplanes have spherical or toroidal or some other topology, we can position the
hyperplanes within the hypercube in the preferred coordinates, and use the appro-
priate substrate_cpps to emulate the chosen exotic topology. Since our substrates
will be hypercubes, and we will want to support at least the hyperlayer-to-
hyperlayer feedforward topologies and fully connected topologies, we could im-
plement the topology specification using a layer density list: Densities =
[H...,Y,X], where the first element in the list specifies the depth of the hidden (non
input or output) processing hyperlayers, shown in Fig-16.8. The rest of the ele-
ments within the Densities list specify the densities of the hidden processing
hyperlayers. We can think of H as specifying the number of hyperlayers between
the Input_Hyperlayer and the Output_Hyperlayer. The following figure shows 2d
and 3d examples, with multiple densities. What should be further noted from the
substrate diagrams is that the signals coming from the sensors are not sent to the
input hyperlayers, they are input hyperlayers. In substrate encoded systems, the
sensory signals acquire geometrical properties, positions, coordinates... so that the
processing hyperlayers can have the synaptic weights calculated for the signals
coming from those sensory coordinates. It is because we give the sensors their co-
ordinates, which can reflect real world coordinates, (for example the actual posi-

674 Chapter 16 Substrate Encoding

tion of the cameras on a cuboid robot, in which case the coordinates of the sensory
signals would reflect the actual coordinates of where the signals are coming from
on the robot’s body) that this approach offers the substrate encoded NN based
agent geometrical sensitivity, and allows for the system to take advantage of geo-
metrical regularities in the sensory signals. Similar is the case for the substrate’s
output hyperlayers. The neurodes of the output hyperlayers can have any coordi-
nates, and their coordinates may be geometrically significant to the way the sig-
nals are processed. For example the output hyperlayer neurodes might mimic the
coordinates of the legs or wheels on some robot.

Fig. 16.8 Two examples of the substrate specification and architecture.

Now notice that this specification is Input Hyperlayer and Output_Hyperlayer
blind. If for example the substrate is 3d: [Z,Y,X], then the input hyperlayer will
always be located at Z = -1, and the output hyperlayer will always be located at Z
= 1. The input hyperlayer represents the coordinate based plane where the sensory
signals are presented to the substrate (since for neurodes to have synaptic weights,
the substrate must give the sensors some kind of geometrical representation with
coordinates). The output hyperlayer contains the neurodes whose output signals
are gathered and used to control the actuators. The densities list specifies those in-
between processing hyperlayers, and says nothing about the input or output
hyperlayers.

So then, the Densities list represents the bulk of the substrate, the hidden pro-
cessing hyperlayers of the substrate (though note that the output hyperlayer also
processes signals, only the input hyperlayer does not, it only produces the signals).
Since different sets of sensors and actuators will require different input and output

16.3 The Genotype of the Substrate Encoded NN 675

hyperlayer structures, we calculate those geometrical structures and coordinates
from the sensors & actuators live. We calculate how to compose the input and
output hyperlayers based on the sensors/actuators, their types, their specified geo-
metrical properties, if any, and their signal vector lengths.

As you remember, both the sensors and actuators had the element format within
their records, we have finally reached the point where we can use it. It is this for-
mat element which will hold the geometrical information of that sensor or actua-
tor. If for example the sensory signal is coming from a camera of resolution
500x500, we would specify this fact in the format element. If the NN is of type
neural, then this has no meaning, it does not matter, and the vector fed to the NN,
which in this case will be of size 500*500 = 250000, is fed directly as a single list
of values. But if the NN is substrate encoded, then the input signal from this sen-
sor is a 2d hyperplane with dimensions: 500x500. In this manner the evolved NNs
can take advantage of any geometrical information, when specified.

There is a similar case when it comes to actuators. If a NN is of type neural,
then the neurons simply forward their signals to the actuator and that is the end of
that. But if the NN is of type substrate, and for example the output itself is an im-
age of resolution 10x10, then we would like to have the output hyperplane des-
tined for this actuator to be a 2d plane with dimensions 10x10, so that we can re-
tain the geometrical properties of the actuator signal. This output signal of the
output hyperplane would then be fed to the actuator. Using the format parameter
means that the substrate will be able to take advantage of the geometrical proper-
ties associated with processing and generating images, and other geometry sensi-
tive information, or anything that can better be handled when geometrical proper-
ties are taken into account.

So then, through the Densities list we can specify the general substrate proper-
ties, and the substrate specification is then completed based on the sensors and ac-
tuators used. If the sensors and actuators change, or more are added, or some are
removed, it will in no way affect our system since it will be able to generate the
new substrate by reading the Densities, and analyzing the new Sensor and Actua-
tor list during the genotype to phenotype mapping. Two examples of Densities
specified substrate, integrated with sensors and actuators which have their
hyperlayers specified by their format and vl parameters, are shown in Fig-16.9.

In the below figure, the format element is specified through the tuple:
{IHDTag, IHD}, where IHDTag stands for Input Hyperlayer Densities Tag, and
IHD is Input Hyperlayer Densities. In the below figure there are two formats, the
no_geo format (equivalent to an undefined format, which is simply a single di-
mensional vector), and the {symmetric,IHD} format. The symmetric tag specifies
that the IHD uses a standard Densities format, and that the neurodes should use
equidistant coordinates from each other in their respective dimensions.

676 Chapter 16 Substrate Encoding

Fig. 16.9 Substrates created based on the Densities list and the sensors and actuators used
by the substrate encoded NN system.

Having discussed all of this, consider now what happens when a researcher de-
cides to use a morphology by a hypothetical name: forex_trader, which is a mor-
phology of agents which trade currencies on the forex market. Some of the sensors
in this morphology have a format which specify that the sensor outputs 2d images.
All actuators on the other hand just accept simple unformatted signals from the
output hyperlayer. There are multiple sensors in this morphology, each for its own
technical indicator (a chart of closing prices, a chart for currency pair volume...).
An agent which is allowed to evolve and connect to new sensors, will eventually
have an input from at least two such 2d input planes (two charts). Combined, this
input will be 3d, since each chart is 2d, and if we now give each one of them their
own 3rd coordinate, the input hyperlayer is 3d. But if the researcher decided to
have his entire substrate be 3d, which only allows 2d input hyperplanes, how can
the substrate encoded NN acquire access to new sensors?

16.3 The Genotype of the Substrate Encoded NN 677

For this reason, though we will allow for the densities to be set by the research-
er, the actual dimension of the substrate will be computed by the genotype con-
structor function based on the morphology, and the formatting rules of its sensors
and actuators. It will calculate the dimensionality of the substrate as follows:

1. Find the largest dimensionality specified in the format parameter of the sensors
and actuators, and designate it as MaxDimIOH, which stands for Max Dimen-
sionality of the Input/Output Hyperplanes. If a sensor or actuator does not spec-
ify geometrical properties in its format variable, then we assume that it is single
dimensional, and that the signal has a list form.

2. Because we want to allow the substrate encoded NN based system to evolve
connections to multiple new sensors and actuators, it will be possible in the fu-
ture for the substrate to be connected to multiple such MaxDimIOH
hyperplanes. The way to put multiple such hyperplanes together, is to equidis-
tantly space them out on another dimension. Thus we designate the IOHDim as
MaxDimIOH+1, where IOHDim stands for Input/Output Hyperlayer Dimen-
sion.

3. Finally, because the substrate must have depth as well, and the IOHDim
hyperlayers should be able to connect to and be connected from the hidden pro-
cessing hyperlayers (which themselves will at most be of dimensionality
IOHDim), the final dimensionality of the substrate is: SubstrateDim =
IOHDim+1, because we create a new dimension and then position the input
hyperlayer at the -1, and the output hyperlayer at the 1 of this new dimension,
with the hidden processing hyperlayers, if any, spaced out equidistantly be-
tween -1 and 1.

The application of these 3 steps are shown in the creation of the substrate in
Fig-16.10. In the below figure our forex_trader morphology based substrate en-
coded NN has a single actuator which uses only a single dimension, since the
evolved agent need only be able to produce a vector of length 1, which specifies if
the agent wishes to go long, short, or hold its currently traded currency pair. The
available sensors for this morphology have at most 2 dimensions. These 2d based
sensors feed the substrate the image charts of various technical indicators. Thus, to
allow the substrate to use multiple sensors and actuators, we need for the input and
output hyperlayers to be of at least 3 dimensions. But because the substrate must
have at least 2 such hyperlayers, one input and one output hyperlayer, we thus
need to position these hyperlayers on another dimension. Thus the minimum di-
mensionality of the entire substrate is 4. We can make the substrate have more
than 4 dimensions if we believe the added dimensionality will increase the flexi-
bility of the substrate, but we cannot use a substrate of a dimension less than 4 for
this morphology, unless we will restrict the substrate encoded NN to use only a
single sensor and a single actuator, at which point the minimum dimension would
be 3, or unless we use a non hyperlayer-to-hyperlayer connection topology.

678 Chapter 16 Substrate Encoding

Fig. 16.10 A four dimensional substrate composed by analyzing the morphology based sen-
sor and actuator dimensionalities.

Certainly, we could of course encode everything on a two dimensional sub-
strate if we wanted to. We could always try to simply aggregate all the signals to-
gether into a single vector, which would then represent a single dimensional input
or output hyperplane. But then we would lose the geometrical information within
those sensors and actuators. Thus the above approach is the most effective way to
automatically set up hypercube substrates which will allow for the substrate en-
coded NNs to evolve, and have the ability to incorporate multiple sensors and ac-
tuators if needed.

So then, during the genotype creation we need only specify the Densities list
for the hidden hyperlayer. The dimension of the substrate will depend on the anal-
ysis of the sensors and actuators of the NN system’s morphology. We do not need
to specify the weights or anything else within the genotype of the substrate encod-
ed NN (SENN). During the mapping from genotype to phenotype, the connected
sensors and actuators used by the NN system will be analyzed and the hyperlayers
based on their properties will be composed, sandwiching any other hidden pro-
cessing hyperlayers of the substrate, and thus producing the final substrate. Thus
the way the substrate can be represented, is simply through the use of the Densi-
ties parameter and the Sensors and Actuators list.

But just having a way to represent the substrate is not enough. There is some-
thing beside the location of the neurodes within the substrate that we must specify.
We must specify how the neurodes are interconnected. For example, we should be
able to specify with a tag whether the substrate uses a hyperlayer-to-hyperlayer
feedforward topology, or whether it uses a feedforward topology but where every
neurode is also self recurrent, or perhaps where every hyperlayer is self recurrent...
Since all of this will only matter in the phenotype, which we will discuss in the

16.4 The SENN Phenotype 679

next section, in the genotype we can specify the substrate connectivity architecture
using a single extra element: linkform. The element linkform should be able to take
the values of: l2l_feedforward, fully_connected, jordan_recurrent, freeform... or
any other type of architecture we decide on implementing.

To sum it all up, the new substrate encoded NN based genotype will need to
keep track of the densities parameter, the list of substrate_cpps and substrate_ceps
that the substrate has to communicate with, the plasticity of the substrate, the to-
pology of the substrate (layer-to-layer, fully connected, jordan_recurrent,
freeform...), with the sensors and actuators still being tracked by the cortex ele-
ment. That is a lot of new parameters and lists to keep track of, which will be best
done if we give the substrate its own element. Thus we add a new substrate record
to the records.hrl. The new substrate element will have the following form:

-record(substrate, {
 id,
 agent_id,
 densities,
 linkform,
 plasticity=none,
 cpp_ids=[],
 cep_ids=[]
}).

Finally, because the substrate element will have its own id, we will need to add
the element substrate_id to the agent record, so that it can keep track of this new
element/process as well.

Having now discussed all the needed features to implement a substrate encoded
NN based system: the new architecture, the representation of the substrate in the
genotype, and the new coordinate processors and connectivity expression produc-
ers... The only thing left to decide on before we can move forward and begin the
implementation of the said system, is what the substrate will look like in its phe-
notypic form, how will it process the signals from the input hyperlayer, and gener-
ate signals by its output hyperlayer. Thus the topic of our next section is the
SENN’s phenotypic representation.

16.4 The SENN Phenotype

We have the architecture, and we know how to specify the substrate topology,
and even the type of substrate linkforms (l2l_feedforward, fully_connected, jor-
dan_recurrent...), but how exactly do we represent it in its phenotypic form? How
do we represent it as a single process so that it can actually process the sensory
signals and produce outputs to control its actuators? How do we use the sensors,

680 Chapter 16 Substrate Encoding

actuators, substrate_cpps, and substrate_ceps? In this section we will discuss the
phenotype of our Substrate Encoded Neural Network (SENN) based system.

In the previous section we let the format element of the sensors and actuators
have the following style: format={Tag,HpD}, where Tag is an atom which can
further specify the formatting, and where HpD stands for Hyperplane Densities,
which has a list form similar to the Densities, with the length of this list being the
dimensionality of the signal.

Now let’s assume that our genome constructor is creating a new SENN geno-
type, and is building a substrate that will from the start use 2 sensors and 2 actua-
tors. What they do is not important and so they are simply named sensor1, sen-
sor2, actuator1, and actuator2. These two sensors and actuators are as follows:

Sensors = [
 #sensor{name=sensor1,format=no_geo,tot_vl=3},
 #sensor{name=sensor2,format={symmetric,lists:reverse([2,3])},tot_vl=6}
]
Actuators = [
 #actuator{name=actuator1,format=no_geo,tot_vl=2},
 #actuator{name=actuator2,format={symmetric,lists:reverse([3,2])},tot_vl=6}
]

We see that the maximum dimensionality in the list of sensors and actuators is
2, and thus the substrate that will be created will be 4 dimensional. Let us also fur-
ther suppose that we have specified the following substrate Densities: [1,3,2,2].
The dimensionality of the substrate is 4 as it should be. Depth is 1, so there will be
one hidden processing hyperlayer, and it will be composed of three 2x2 layers.
The input hyperlayer will be composed of 2 planes, the first is 1x3 associated with
sensor1, and the second is 2x3, associated with sensor2. The 3d output hyperlayer
will also be composed of 2 planes, the 1x2 plane of actuator1, and the 3x2 plane of
actuator2. This is shown in the following figure.

16.4 The SENN Phenotype 681

Fig. 16.11 Creating the phenotype based on sensors and actuators.

Note that no matter the densities, the neurodes should automatically be posi-
tioned equidistantly from each other, preferably as far from each other as possible.
We do this because the further the neurodes are from each other, the more differ-
ent their coordinates are from each other, and thus the NN which calculates the
synaptic weights for each neurode pair will see a greater difference between every
coordinate pair fed to it, allowing for a higher level of discernability between the
various coordinate pairs.

Had our Densities specification had 0 for the depth, then there would only be
the input and output hyperlayers present. So we now know what the phenotypes
look like, for this, or for any other specified genotype. But how do we represent all
these neurodes in phenotype form? And as noted, how do we effectively get them
to process signals coming from the input hyperlayers?

So then, the phenotypic representation of a substrate using:

Densities=[1,3,2,2]
Sensors = [

Since all neurodes use the tanh activation function, we do not need to specify
the AF for every neurode. Because in the standard l2l_feedforward substrate, eve-
ry neurode in the substrate processes the signals coming from all the neurodes in
the previous hyperlayer, we can represent the phenotype as a list of lists, using the
following format: [Hyperlayer1,Hyperlayer2...HyperlayerN], where N is the total
number of hyperlayers, which is Depth+2 (total number of hidden processing
hyperlayers, plus input and output hyperlayers). Each Hyperlayer in this list, is a
list of tuples, where each tuple represents a neurode: [{Coordinate, OutputSignal,
SynapticWeights}...].

682 Chapter 16 Substrate Encoding

 #sensor{format=no_geo,tot_vl=3},
 #sensor{format={symmetric,lists:reverse([2,3])},tot_vl=6}
]
Actuators = [
 #actuator{format=no_geo,tot_vl=2},
 #actuator{format={symmetric,lists:reverse([3,2])},tot_vl=6}
]

Will have the architecture shown in the above figure, and a phenotypic list
based representation, before the synaptic weights are set to some values (by de-
fault they will be set to 0 before the substrate uses the NN to set them to their ap-
propriate values) is as follows:

[[{[-1,-1,0,-1],0,void},
 {[-1,-1,0,0.0],0,void},
 {[-1,-1,0,1],0,void},
 {[-1,1,-1,-1],0,void},
 {[-1,1,-1,0.0],0,void},
 {[-1,1,-1,1],0,void},
 {[-1,1,1,-1],0,void},
 {[-1,1,1,0.0],0,void},
 {[-1,1,1,1],0,void}],
 [{[0,-1,-1,-1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,-1,-1,1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,-1,1,-1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,-1,1,1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,0.0,-1,-1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,0.0,-1,1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,0.0,1,-1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,0.0,1,1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,1,-1,-1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,1,-1,1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,1,1,-1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,1,1,1],0,[0,0,0,0,0,0,0,0,0]}],
 [{[1,-1,0,-1],0,[0,0,0,0,0,0,0,0,0,0,0,0]},
 {[1,-1,0,1],0,[0,0,0,0,0,0,0,0,0,0,0,0]},
 {[1,1,-1,-1],0,[0,0,0,0,0,0,0,0,0,0,0,0]},
 {[1,1,-1,1],0,[0,0,0,0,0,0,0,0,0,0,0,0]},
 {[1,1,0.0,-1],0,[0,0,0,0,0,0,0,0,0,0,0,0]},
 {[1,1,0.0,1],0,[0,0,0,0,0,0,0,0,0,0,0,0]},
 {[1,1,1,-1],0,[0,0,0,0,0,0,0,0,0,0,0,0]},
 {[1,1,1,1],0,[0,0,0,0,0,0,0,0,0,0,0,0]}]]

I highlighted each hyperlayer with a different color. The hyperlayer at K = -1,
the input hyperlayer, is highlighted green (if you’re reading the black & white

16.4 The SENN Phenotype 683

Before we discuss how layer to layer feedforward processing can be efficiently
implemented using this encoding once the synaptic weights are set, let’s first take
a closer look at each list represented hyperlayer. Starting with the input hyperlayer
which was created by analyzing the sensors:

Sensors = [
 #sensor{format=no_geo,tot_vl=3},
 #sensor{format={symmetric,lists:reverse([2,3])},tot_vl=6}
]:

[{[-1,-1,0,-1],0,void},
 {[-1,-1,0,0.0],0,void},
 {[-1,-1,0,1],0,void},
 {[-1,1,-1,-1],0,void},
 {[-1,1,-1,0.0],0,void},
 {[-1,1,-1,1],0,void},
 {[-1,1,1,-1],0,void},
 {[-1,1,1,0.0],0,void},
 {[-1,1,1,1],0,void}]

printed version, it’s the first block). The hyperlayer at K = 0, the hidden pro-
cessing hyperlayer, is highlighted blue (the second block). And the processing
output hyperlayer at K = 1, is highlighted red (the third block). Note that the input
hyperlayer has the atom void for its synaptic weights list, this is because there are
no synaptic weights, since this hyperlayer represents the sensors, it only produces
signals. The coordinates are inverted, rather than having the format: [X,Y,Z,K],
they have the form: [K,Z,Y,X], which makes it easier to see the the separate hyper-
layers. This list of lists is composed of tuples, the tuples have the following
format:{NeurodeCoordinate, OutputSignal, SynapticWeights}. The Neurode-
Coordinate is the actual coordinate of the neurode that this tuple represents. Every
tuple represents a neurode, and the OutputSignal is what that neurode’s output
signal is. Thus, if you are looking at a l2l_feedforward substrate at any given time,
the neurode’s OutputSignal is actually the neurode’s previous OutputSignal,
because this value is calculated for it on the fly and is then immediately used as an
input signal by the neurodes in the next hyperlayer. The calculation of each
neurode’s output is performed by our algorithm, which processes the input signals
(the OutputSignals of the neurodes in the previous hyperlayer) for this neurode,
and calculates this neurode’s output signal by the application of the activation
function tanh to the accumulated signal sum, without bias. The element: Synaptic-
Weights, is a list of synaptic weights, set by querying the NN with the coordinates
of this neurode, and the coordinates of all its presynaptic neurodes. Since the
synaptic weights have an order in the list, and the neurode representing tuples also
have a static order in the substrate, there is an implicit correlation between the
synaptic weights within the SynapticWeights list, and the neurodes in the previous
hyperlayer, as long as one does not change the order of either list, they will match.

684 Chapter 16 Substrate Encoding

The first coordinate, K, is -1 as it should be, since the input hyperlayer is al-
ways positioned at the most negative end of the substrate. There are two sensors of
max dimensionality of 2, thus there should be 2 planes on the Z axis. The next co-
ordinate in the list is Z, and there are 3 tuples which have Z = -1, and the other 6
tuples have Z = 1, as expected. The first 3 tuples represent the values originating
from the first sensor, and the second 6 tuples represent the values originating from
the second sensor. Also because the first sensor has no geometrical information, it
is a single one dimensional vector, and so for the first 3 tuples Y = 0, with only the
X taking the coordinates of -1, 0, and 1. The second sensor is 2 dimensional, and
so Y takes the coordinates of -1 and 1, each Y coordinate further comes with 3 X
coordinates, which take the values -1, 0, and 1. Thus indeed this tuple list does
represent the input hyperlayer.

The next hyperlayer was specified using the Densities list:[1,3,2,2]:

 [{[0,-1,-1,-1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,-1,-1,1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,-1,1,-1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,-1,1,1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,0.0,-1,-1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,0.0,-1,1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,0.0,1,-1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,0.0,1,1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,1,-1,-1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,1,-1,1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,1,1,-1],0,[0,0,0,0,0,0,0,0,0]},
 {[0,1,1,1],0,[0,0,0,0,0,0,0,0,0]}]

Next comes the output hyperlayer, whose phenotypic representation was com-
posed through the analysis of the actuator list that the SENN in question uses:

Actuators = [
 #actuator{format=no_geo,tot_vl=2},
 #actuator{format={symmetric,lists:reverse([3,2])},tot_vl=6}

There is only one hidden processing hyperlayer, so it is positioned equidistantly
between the input and the output hyperlayers, at K = 0. There are 3 planes in this
hyperlayer, each has a 2x2 topology. Thus the next coordinate takes 3 values, Z =
-1, 0, and 1. For every Z coordinate there are 4 tuples, representing the 4 neurodes,
and we see that for every Z coordinate, Y takes on the values of -1 and 1, and for
every Y coordinate, X takes a value of -1 and 1. Furthermore, notice that each tu-
ple has the default Output = 0, and the synaptic weight list: [0,0,0,0,0,0,0,0,0].
The weight list is of length 9, which is the number of neurodes in the input
hyperlayer. Thus every neurode in the hidden hyperlayer is ready to process the
signals coming from every neurode of the previous hyperlayer, the input
hyperlayer in this case.

16.4 The SENN Phenotype 685

]:

 [{[1,-1,0,-1],0,[0,0,0,0,0,0,0,0,0,0,0,0]},
 {[1,-1,0,1],0,[0,0,0,0,0,0,0,0,0,0,0,0]},
 {[1,1,-1,-1],0,[0,0,0,0,0,0,0,0,0,0,0,0]},
 {[1,1,-1,1],0,[0,0,0,0,0,0,0,0,0,0,0,0]},
 {[1,1,0.0,-1],0,[0,0,0,0,0,0,0,0,0,0,0,0]},
 {[1,1,0.0,1],0,[0,0,0,0,0,0,0,0,0,0,0,0]},
 {[1,1,1,-1],0,[0,0,0,0,0,0,0,0,0,0,0,0]},
 {[1,1,1,1],0,[0,0,0,0,0,0,0,0,0,0,0,0]}]

We discussed before and wondered how we would decide which neurodes
should receive signals from which sensors, and which neurodes should forward
their signals to which actuators. Using this representation this question can now be
answered. The neurodes come in a particular pattern within their hyperlayer, and
in the same order as they are listed in the sensor and actuator lists. There are vl
number of neurodes associated with each sensor and actuator. Thus we can simply
take the vl number of neurodes from the corresponding input or output hyperlayer
and map them to their appropriate, and in the same order based, sensors and actua-
tors respectively.

What is excellent about this substrate representation is the ease with which we
can use it for signal processing. In fact it only takes a few lines in Erlang. Using
the above substrate representation, the l2l_feedforward processing of signals from
the input hyperlayer to the output hyperlayer, can be done using the source code
shown in Listing-16.1.

Listing-16.1 Processing signals from the input hyperlayer to the output hyperlayer, in a
hyperlayer-to-hyperlayer feedforward substrate.

calculate_output_std(Prev_Hyperlayer,[Cur_Hyperlayer|Substrate],Plasticity,Acc)->
 Updated_CurHyperlayer = [{Coord,calculate_neurode_output_noplast(Prev_Hyperlayer,
{Coord,Prev_O, Weights}, Plasticity), Weights} || {Coord,Prev_O,Weights} <-
Cur_Hyperlayer],
 calculate_output_std(Updated_CurHyperlayer,Substrate,Plasticity, [Updated_CurHyperlayer
|Acc]);
calculate_output_std(Output_Hyperlayer,[],_Plasticity,Acc)->

The output hyperlayer is always located at the most positive end of the sub-
strate. In this 4d substrate this means that it is located at K = 1. The output
hyperlayer is 3d, and there are 2 planes composing it, thus Z takes on two values,

r1 are positioned at Z = -1. The signals
destined for actuator2 are positioned at Z = 1. The output hyperlayer is a signal
processing hyperlayer, and so each tuple comes with a synaptic weight list (which
in this default form has not yet been set to its appropriate values through the use of
the synaptic weight producing NN).

-1, and 1. The signals destined for actuato

686 Chapter 16 Substrate Encoding

 {[Output || {_Coord,Output,_Weights} <- Output_Hyperlayer],lists:reverse(Acc)}.

 calculate_neurode_output_noplast([{_I_Coord,O,_I_Weights}|I_Neurodes],
{Coord,Prev_O,[Weight|Weights]},Acc)->
 calculate_neurode_output_noplast(I_Neurodes,{Coord,Prev_O,Weights}, O*Weight
+Acc);
 calculate_neurode_output_noplast([],{Coord,Prev_O,[]},Acc)->
 functions:tanh(Acc).

It would even be easy to add some level of recurrence to the substrate using this
encoding, which we will do within the implementation section. In this manner the
substrate can contain millions of neurons, and they would be processed rather effi-
ciently by a single process. Optimizations could be made to separate the substrate
into multiple parallel hypercubes, or feed this vector based representation to a
GPU, which could then process it in parallel if implemented accordingly.

The more difficult part is implementing the functions to compose these sub-
strates from their Densities list, and their sensor and actuator lists. We will discuss
just that in the substrate implementation section, but first let us finally implement
the substrate_cpps and substrate_ceps.

16.5 Implementing the substrate_cpps & substrate_ceps

We have discussed how the substrate_cpps and substrate_ceps have a very sim-
ilar functionality to the sensors and actuators respectively. In fact, so much so that

And that is effectively it, 2 functions with 9 lines (if one does not count the
lines introduced through the line breaks due to the page width of this book) of
code total. Since every hyperlayer is contained in its own list, and since every
neurode in the hyperlayer must process the signals from all the neurodes in the
previous hyperlayer, we simply execute the calculate_output_std/2 function with
the substrate whose input hyperlayer was used as the first parameter to the func-
tion, with the remaining substrate as the second parameter. Then each neurode in
the current hyperlayer is fed the signals from the neurodes in the previous
hyperlayer. We calculate the output of the neurodes in the current hyperlayer,
updating it in the process with the said neurodal outputs. The next iteration of the
calculate_output_std recurrent function is then executed with the updated current
hyperlayer as the first parameter (now it’s a Prev_Hyperlayer), with the remainder
of the substrate as the second parameter. Thus the current hyperlayer during the
next iteration becomes the previous hyperlayer. In this manner all the hyperlayers
are processed, with the end result being the updated last hyperlayer, the output
hyperlayer. At this point the output hyperlayer is the only remaining updated
hyperlayer, so we simply extract its Output values using list comprehension. We
can then use the list of actuators and their vl values to extract the output lists from
the output value list of the output hyperlayer.

16.5 Implementing the substrate_cpps & substrate_ceps 687

to recreate these two functions would require copy-pasting most of the mutation
operators, sensor and actuator modules, the genotype construction functions which
create the seed NNs, and the sensor/actuator cloning and deleting functions. It is
true that the substrate_cpps and substrate_ceps are not sensors and actuators, re-
spectively. They are part of the NN system itself, part of the Think element in the
Sense-Think-Act loop. But it also would not be effective for us to have to re-
implement the same functionality we’ve already developed. There is an alternative
though.

Since we now know what the substrate_cpps and substrate_ceps are, and that
they are not sensors and actuators, we can be comfortable enough to reuse and
piggyback the sensor and actuator records by extending them to include the type
element, which will specify whether the sensor/actuator is of the standard type, or
whether it is of type substrate_cpp/substrate_cep. It is a better approach at this
time, because either way we will have to modify the genotype_mutator and other
modules to discern between sensors/actuators and substrate_cpps/substrate_ceps.
For example, if the agent is of type substrate rather than neural, the mutation op-
erators add_sensor, add_actuator, add_sensorlink, add_actuatorlink, and the func-
tions which perform sensor to neuron, and neuron to actuator linking, all must be
modified to accommodate the fact that the addition of new sensors and actuators,
and linking to them, is done very differently in a substrate encoded system. Thus,
since we already have to modify these functions, we might as well use the existing
sensor and actuator based functionality.

Before we continue and begin modifying the sensor and actuator records and
modules, here are the similarities between the sensors & actuators, and their sub-
strate based counterparts:

 sensors: The NN evolves and is able to integrate and connect to new sensors
during the evolutionary process. Furthermore, the sensors are used to interface
with the environment through message passing, potentially processing the data
before forwarding the sensory signals to the NN.
substrate_cpps: The NN evolves and is able to integrate and connect to new
coordinate processors during the evolutionary process. Starting off with a sin-
gle standard coordinate type of substrate_cpp, which simply passes the coordi-
nates of the 2 connected neurodes to the NN, and over time integrating new
substrate_cpps which convert Cartesian coordinates to polar or spherical coor-
dinates, calculate distances between the connected neurodes, distances between
the neurode and the center of the substrate... Furthermore, the substrate_cpps
interact with the substrate through message passing, potentially processing the
data before forwarding it to the NN.

 actuators: The NN evolves and is able to integrate and connect to new actua-
tors during the evolutionary process. Furthermore, the actuator interfaces with
the environment through message passing, and direct execution of its functions.
substrate_ceps: The NN evolves and is able to integrate and connect to new
substrate_ceps, which it controls and sends signals to. There can be different

688 Chapter 16 Substrate Encoding

types of substrate_ceps. The most basic type is one which has a vl=1, and based
on the signals from the NN, it sets the synaptic weights between the two
neurodes for which the substrate_cpps have acquired coordinate based data.
Other types which can be integrated over time are those which deal with con-
nectivity expression (whether there even should be a synaptic weight between
the noted neurodes), synaptic weight update (a substrate_cep which is used to
update synaptic weights, when one implements synaptic plasticity for exam-
ple), and others which might reveal themselves and become useful in the fu-
ture. Furthermore, the actuator interfaces with the substrate through message
passing, and potentially by executing functions directly.

Not only is their functionality similar, where the only difference is that the sen-
sors and actuators interface with the scape, whereas the substrate_cpps and sub-
strate_ceps interface with the substrate, but also the mutation operators are exactly
the same between the two. The NN neither knows, nor cares, whether it is getting
connected to the sensors/actuators or substrate_cpps/substrate_ceps. Of course if
we allow the sensors and actuators to come in two types, standard and substrate,
the substrate encoded NN will need to use both types. The standard sen-
sors/actuators will be used by the substrate itself to interface with the
world/environment/scape, while the substrate sensors/actuators will be used by the
substrate to drive the NN, sending it coordinate based signals and acquiring from
it synaptic weight and other parameter settings. Through the use of the type ele-
ment in the sensors and actuators, we can also ensure that the cortex does not sync
them as it does with the standard sensors and actuators.

Having now decided that the sensors and actuators can be modified to be effi-
ciently used in our substrate encoding implementation, let us first modify their
records. The updated sensor and actuator records will have the following form:

-record(sensor,{id,name,type,cx_id,scape,vl,fanout_ids=[],generation,format,parameters,
phys_rep,vis_rep, pre_f, post_f}).
-record(actuator,{id,name,type,cx_id,scape,vl,fanin_ids=[],generation,format,parameters,
phys_rep,vis_rep, pre_f, post_f}).

Listing-16.2 The implementation of the new get_InitSubstrateCPPs/get_InitSubstrateCEPs and
get_SubstrateCPPs/get_SubstrateCEPs functions.

get_InitSubstrateCPPs(Dimensions,Plasticity)->
 Substrate_CPPs = get_SubstrateCPPs(Dimensions,Plasticity),

Next we have to modify the morphology module, adding to it a new set of sub-
strate type sensors and actuators, used specifically by the substrate encoded NN.
We also have to modify the original sensors and actuators specified in the mor-
phology module, setting their type to standard. We mirror the functions:
get_InitSensors/get_InitActuators and get_Sensors/get_Actuators, to create get_

as shown in Listing-16.2.
InitSubstrateCPPs/get_InitSubstrateCEPs and get_SubstrateCPPs/get_SubstrateCEPs,

16.5 Implementing the substrate_cpps & substrate_ceps 689

 [lists:nth(1,Substrate_CPPs)].

get_InitSubstrateCEPs(Dimensions,Plasticity)->
 Substrate_CEPs = get_SubstrateCEPs(Dimensions,Plasticity),
 [lists:nth(1,Substrate_CEPs)].

get_SubstrateCPPs(Dimensions,Plasticity)->
 io:format(“Dimensions:~p, Plasticity:~p~n”,[Dimensions,Plasticity]),
 if
 (Plasticity == none) ->
 Std=[
 #sensor{name=cartesian,type=substrate,vl=Dimensions*2},
 #sensor{name=centripetal_distances,type=substrate,vl=2},
 #sensor{name=cartesian_distance,type=substrate,vl=1},
 #sensor{name=cartesian_CoordDiffs,type=substrate,vl=Dimensions},
 #sensor{name=cartesian_GaussedCoordDiffs,type=substrate, vl
=Dimensions}
],
 Adt=case Dimensions of
 2 ->
 [#sensor{name=polar,type=substrate,vl=Dimensions*2}];
 3 ->
 [#sensor{name=spherical,type=substrate,vl=Dimensions*2}];
 _ ->
 []
 end,
 lists:append(Std,Adt)
 end.

get_SubstrateCEPs(Dimensions,Plasticity)->
 case Plasticity of
 none ->
 [#actuator{name=set_weight,type=substrate,vl=1}]
 end.

based sensors, simply as cpp sensors or cpps, and similarly our reference to sub-

various cpp functions which are substrate dimension independent. While the cpps
in the Adt list are dimension specific. For example the conversion of cartesian to
polar coordinate requires for the substrate to be 2d, while the cpp that feeds the
NN the spherical coordinates can operate only on a 3d substrate. Let us discuss
each of the listed cpps next, which we will implement afterwards:

In the function get_SubstrateCPP, there are two lists, the Std (standard), and the
Adt (additional), of cpp (from this point on we will refer to the substrate cpp type

strate ceps will be using the word: ceps) functions. The standard list contains the

690 Chapter 16 Substrate Encoding

 cartesian: The cartesian cpp simply forwards to the NN the appended coordi-
nates of the two connected neurodes. Because each neurode has a coordinate
specified by a list of length: Dimension, the vector specifying the two appended
coordinates will have vl = Dimensions*2. For example: [X1,Y1,Z1,X2,Y2,Z2]
will have a vector length of dimension: vl = 3*2 = 6.

 centripetal_distances: This cpp uses the Cartesian coordinates of the two
neurodes to calculate the Cartesian distance of neurode_1 to the center of the
substrate located at the origin, and the Cartesian distance of neurode_2 to the
center of the substrate. It then fans out to the NN the vector of length 2, com-
posed of the two distances.

 cartesian_distance: This cpp calculates the Cartesian distance between the two
neurodes, forwarding the resulting vector of length 1 to the NN.

 cartesian_CoordDiffs: This cpp calculates the difference between each coor-
dinate element of the two neurodes, and thus for this cpp, the vl = Dimensions.

 cartesian_GaussedCoordDiffs: Exactly the same as the above cpp, but each of
the values is first sent through the Gaussian function before it is entered into
the vector.

 polar: This cpp converts the Cartesian coordinates to polar coordinates. This
can only be done if the substrate is 2d.

 spherical: This cpp converts the Cartesian coordinates to the spherical coordi-
nates. This can only be done if the substrate is 3d.

Threshold = 0.33,
Processed_Weight = if
 Weight > Threshold ->
 (functions:scale(Weight,1,Threshold)+1)/2;
 Weight < -Threshold ->
 (functions:scale(Weight,-Threshold,-1)-1)/2;
 true ->
 0
end

This function allows for the synaptic weight to either be expressed or zeroed,
depending on whether the NN’s output magnitude is greater than 0.33 or not.
When the synaptic weight is expressed, it is then scaled to be between -1 and 1.

We could certainly add any number of other cpps and ceps, limited only by our
imagination. And we could add new ones at any time, and then use our
benchmarker to see if it improves the agility and performance of our TWEANN

In the case of the available CEPs, there is only one, by the name weight. This
CEP is connected from a single neuron in the NN, and it sets the synaptic weight

the synaptic weight based on the following function:
between two neurodes in the substrate. will allow it to computeFurthermore, we

16.5 Implementing the substrate_cpps & substrate_ceps 691

system on some difficult problem. But at this point, the listed cpps and ceps will
be enough.

16.5.1 Implementing the substrate_cpp Module

We’ve established the record format for the substrate_cpp type sensors, and de-
cided which cpp functions we will implement. Also in the previous section we
have created the substrate architecture, in which the substrate triggers the cpp sen-
sors to fanout the coordinate based information to all the neurons the cpps are
connected to. To realize this architecture, we need to set up the cpps, and create
their processes with the ability to receive messages from the substrate’s PId. We
will have the exoself create the substrate before it links the cpps and ceps, and so
by the time the exoself initializes the cpps and ceps, it will already know the sub-
strate’s Pid. We can then have the exoself tell the cpps and ceps the substrate’s PId
when it initializes them. Based on this information, we can now create the cpps in
their own substrate_cpp module. In Listing-16.3, we implement the cpp function
in its own substrate_cpp module.

Listing-16.3 Implementation of the substrate_cpp module.

-module(substrate_cpp).
-compile(export_all).
-include(“records.hrl”).

gen(ExoSelf_PId,Node)->
 spawn(Node,?MODULE,prep,[ExoSelf_PId]).

prep(ExoSelf_PId) ->
 receive
 {ExoSelf_PId,{Id,Cx_PId,Substrate_PId,CPPName,VL,Parameters,Fanout_PIds}} ->
 loop(Id,ExoSelf_PId,Cx_PId,Substrate_PId,CPPName,VL,Parameters,
Fanout_PIds)
 end.
%When gen/2 is executed, it spawns the substrate_cpp process which immediately begins to
wait for its initial state message.

loop(Id,ExoSelf_PId,Cx_PId,Substrate_PId,CPPName,VL,Parameters,Fanout_PIds)->
 receive
 {Substrate_PId,Presynaptic_Coords,Postsynaptic_Coords}->
 SensoryVector = functions:CPPName(Presynaptic_Coords,
Postsynaptic_Coords),
 [Pid ! {self(),forward,SensoryVector} || Pid <- Fanout_PIds],

692 Chapter 16 Substrate Encoding

 loop(Id,ExoSelf_PId,Cx_PId,Substrate_PId,CPPName,VL,Parameters,Fanout_PIds);
 {ExoSelf_PId,terminate} ->
 %io:format(“substrate_cpp:~p is terminating.~n”,[Id]),
 ok
 end.

Since the conversion of Cartesian coordinates to other types belongs in the
mathematical function module, we implement all the coordinate operators in the
functions module, with the substrate_cpps calling them when needed, depending
on their name. The coordinate operator functions added to the functions module
are shown in Listing-16.4

Listing-16.4 The implemented coordinate operators added to the functions module.

cartesian(I_Coord,Coord)->
 lists:append(I_Coord,Coord).

polar(I_Coord,Coord)->
 lists:append(cart2pol(I_Coord),cart2pol(Coord)).

spherical(I_Coord,Coord)->
 lists:append(cart2spher(I_Coord),cart2spher(Coord)).

centripital_distances(I_Coord,Coord)->
 [centripital_distance(I_Coord,0),centripital_distance(Coord,0)].

cartesian_distance(I_Coord,Coord)->
 [calculate_distance(I_Coord,Coord,0)].

cartesian_CoordDiffs(I_Coord,Coord)->%I:[X1,Y1,Z1] [X2,Y2,Z2] O:[X2-X1,Y2-Y1,Z2-Z1]
 cartesian_CoordDiffs1(I_Coord,Coord,[]).

 cartesian_CoordDiffs1([FromCoord|FromCoords],[ToCoord|ToCoords],Acc)->
 cartesian_CoordDiffs1(FromCoords,ToCoords,[ToCoord-FromCoord|Acc]);
 cartesian_CoordDiffs1([],[],Acc)->
 lists:reverse(Acc).

cartesian_GaussedCoordDiffs(FromCoords,ToCoords)->
 cartesian_GaussedCoordDiffs1(FromCoords,ToCoords,[]).

 cartesian_GaussedCoordDiffs1([FromCoord|FromCoords], [ToCoord|ToCoords],Acc)->
 cartesian_GaussedCoordDiffs1(FromCoords,ToCoords,[functions:gaussian(
ToCoord-FromCoord)|Acc]);
 cartesian_GaussedCoordDiffs1([],[],Acc)->

16.5 Implementing the substrate_cpps & substrate_ceps 693

 lists:reverse(Acc).

 cart2pol([Y,X])->
 R = math:sqrt(X*X + Y*Y),
 Theta = case R == 0 of
 true ->
 0;
 false ->
 if
 (X>0) and (Y>=0) -> math:atan(Y/X);
 (X>0) and (Y<0) -> math:atan(Y/X) + 2*math:pi();
 (X<0) -> math:atan(Y/X) + math:pi();
 (X==0) and (Y>0) -> math:pi()/2;
 (X==0) and (Y<0) -> 3*math:pi()/2
 end
 end,
 [R,Theta].

 cart2spher([Z,Y,X])->
 PreR = X*X + Y*Y,
 R = math:sqrt(PreR),
 P = math:sqrt(PreR + Z*Z),
 Theta = case R == 0 of
 true ->
 0;
 false ->
 if
 (X>0) and (Y>=0) -> math:atan(Y/X);
 (X>0) and (Y<0) -> math:atan(Y/X) + 2*math:pi();
 (X<0) -> math:atan(Y/X) + math:pi();
 (X==0) and (Y>0) -> math:pi()/2;
 (X==0) and (Y<0) -> 3*math:pi()/2
 end
 end,
 Phi = case P == 0 of
 false ->
 math:acos(Z/P);
 true ->
 0
 end,
 [P,Theta,Phi].

 centripetal_distance([Val|Coord],Acc)->
 centripetal_distance(Coord,Val*Val+Acc);
 centripetal_distance([],Acc)->

694 Chapter 16 Substrate Encoding

 math:sqrt(Acc).

 calculate_distance([Val1|Coord1],[Val2|Coord2],Acc)->
 Distance = Val2 - Val1,
 calculate_distance(Coord1,Coord2,Distance*Distance+Acc);
 calculate_distance([],[],Acc)->
 math:sqrt(Acc).

The implementation of the new functions in the functions module is straight-
forward. These algorithms are standard implementations of coordinate operators.

With this new substrate_cpp module, and the updated functions module, the
cpps can now be called by the substrate process. When called, the cpps calculate
the “sensory” vectors for the NN, and then fanout those composed vectors to the
neurons that they are connected to. In the next subsection, we implement the sub-
strate_ceps.

16.5.2 Implementing the substrate_cep Module

Similarly to the implementation of substrate_cpp module, we now implement
the substrate_cep module based on the way the actuator module is setup. Similarly
to the way the actuator works, the substrate_cep receives the signals from the neu-
rons in the NN that are connected to it. The substrate_cep then processes the sig-
nals, and sends the processed message to the substrate. We only have one sub-
strate_cep at this time, the weight substrate_cep, which has a single presynaptic
connection to a neuron, whose signal it then processes, scales, and sends to the
substrate as the synaptic weight associated with the coordinate information for-
warded to the NN by its substrate_cpps. Listing-16.5 shows the implemented sub-
strate_cep module.

Listing-16.5 The implementation of the substrate_cep module.

-module(substrate_cep).
-compile(export_all).
-include(“records.hrl”).

gen(ExoSelf_PId,Node)->
 spawn(Node,?MODULE,prep,[ExoSelf_PId]).

prep(ExoSelf_PId) ->
 receive
 {ExoSelf_PId,{Id,Cx_PId,Substrate_PId,CEPName,Parameters,Fanin_PIds}} ->

16.5 Implementing the substrate_cpps & substrate_ceps 695

 loop(Id,ExoSelf_PId,Cx_PId,Substrate_PId,CEPName,Parameters,
{Fanin_PIds, Fanin_PIds},[])
 end.

loop(Id,ExoSelf_PId,Cx_PId,Substrate_PId,CEPName,Parameters,{[From_PId|Fanin_PIds],
MFanin_PIds},Acc) ->
 receive
 {From_PId,forward,Input} ->
 loop(Id,ExoSelf_PId,Cx_PId,Substrate_PId,CEPName,Parameters,
{Fanin_PIds, MFanin_PIds},lists:append(Input,Acc));
 {ExoSelf_PId,terminate} ->
 ok
 end;
loop(Id,ExoSelf_PId,Cx_PId,Substrate_PId,CEPName,Parameters,{[],MFanin_PIds},Acc)->
 ProperlyOrdered_Input=lists:reverse(Acc),
 substrate_cep:CEPName(ProperlyOrdered_Input,Parameters,Substrate_PId),
 loop(Id,ExoSelf_PId,Cx_PId,Substrate_PId,CEPName,Parameters,{MFanin_PIds,
MFanin_PIds},[]).
%The substrate_cep process gathers the control signals from the neurons, appending them to
the accumulator. The order in which the signals are accumulated into a vector is in the same or-
der that the neuron ids are stored within NIds. Once all the signals have been gathered, the sub-
strate_cep executes its function, forwards the processed signal to the substrate, and then again
begins to wait for the neural signals from the output layer by resetting the Fanin_PIds from the
second copy of the list stored in the MFanin_PIds.

%%%%%%%% Substrate_CEPs %%%%%%%%
set_weight(Output,_Parameters,Substrate_PId)->
 [Val] = Output,
 Threshold = 0.33,
 Weight = if
 Val > Threshold ->
 (functions:scale(Val,1,Threshold)+1)/2;
 Val < -Threshold ->
 (functions:scale(Val,-Threshold,-1)-1)/2;
 true ->
 0
 end,
 Substrate_PId ! {self(),set_weight,[Weight]}.
%The set_weight/2 function first checks whether the neural output signal has a greater magni-
tude than the Threshold value, which is set to 0.33 in this implementation. If it does not, then
the synaptic weight is zeroed out, and sent to the substrate. If the magnitude of the output is
higher, then the value is scaled between -1 and 1, and the resulting synaptic weight value is sent
to the substrate.

%When gen/2 is executed, it spawns the substrate_cep process which immediately begins to wait
for its initial state message.

696 Chapter 16 Substrate Encoding

Mirroring the actuator, the substrate_cep gathers the signals, processes them,
then sends the substrate process a message, and returns to its main process loop.
Unlike the actuator, it does not need to sync up with the cortex, or receive any in-
formation from the substrate after sending it the action message.

16.6 Updating the genotype Module

Having now developed the actual substrate_cpp and substrate_cep modules, we
can return to the genotype module and update it so that it is capable of creating
seed SENNs. This is a very simple module update, because cpps and ceps both
behave just like the sensors and actuators of the standard NN system do. In the
case of the substrate encoding, we simply generate both the sensor/actuator lists
and the substrate_cpp/substrate_cep lists. Afterwards, we create the seed NN to-
pology by forwarding to it the cpps and ceps, and because there is no difference
between the structure of the sensors/actuators and cpps/ceps, the seed NN topolo-
gy is created.

When the encoding type is set to substrate, we create not just the sub-
strate_cpps and substrate_ceps, but also the substrate record. It is the substrate
record in which we store the cpp_ids, cep_ids, the densities, the linkform, and the
plasticity of the substrate (which at this time is set to none). The updated version
of the construct_Cortex/4 function within the genotype module is shown in List-
ing-16.6. The newly added source code is in bold text, note the significant reuse of
the code when Encoding_Type = substrate.

Listing-16.6 The updated construct_Cortex/4 function, now capable of creating seed SENN
genotypes.

construct_Cortex(Agent_Id,Generation,SpecCon,Encoding_Type,SPlasticity,SLinkform)->
 Cx_Id = {{origin,generate_UniqueId()},cortex},
 Morphology = SpecCon#constraint.morphology,
 case Encoding_Type of
 neural ->
 Sensors = [S#sensor{id={{-1,generate_UniqueId()},sensor},cx_id=Cx_Id,
generation =Generation}|| S<- morphology:get_InitSensors(Morphology)],
 Actuators = [A#actuator{id={{1,generate_UniqueId()},actuator},cx_id
=Cx_Id, generation=Generation}||A<-morphology:get_InitActuators(Morphology)],
 N_Ids=construct_InitialNeuroLayer(Cx_Id,Generation,SpecCon,Sensors,
Actuators,[],[]),
 S_Ids = [S#sensor.id || S<-Sensors],
 A_Ids = [A#actuator.id || A<-Actuators],
 Cortex = #cortex{
 id = Cx_Id,

16.6 Updating the genotype Module 697

 agent_id = Agent_Id,
 neuron_ids = N_Ids,
 sensor_ids = S_Ids,
 actuator_ids = A_Ids
 },
 Substrate_Id = undefined;
 substrate ->
 Substrate_Id={{void,generate_UniqueId()},substrate},
 Sensors = [S#sensor{id={{-1,generate_UniqueId()},sensor},cx_id=Cx_Id,
generation =Generation, fanout_ids=[Substrate_Id]}|| S<- morpholo-
gy:get_InitSensors(Morphology)],
 Actuators = [A#actuator{id={{1,generate_UniqueId()},actuator},cx_id
=Cx_Id,generation=Generation,fanin_ids=[Substrate_Id]}||A<-
morphology:get_InitActuators(Morphology)],
 [write(S) || S <- Sensors],
 [write(A) || A <- Actuators],
 Dimensions=calculate_OptimalSubstrateDimension(Sensors,Actuators),
 Density = 5,
 Depth = 1,
 Densities = [Depth,1|lists:duplicate(Dimensions-2,Density)], %[X,Y,Z,T...]
 Substrate_CPPs = [CPP#sensor{id={{-1,generate_UniqueId()},sensor},
cx_id =Cx_Id,generation=Generation}|| CPP<-
morphology:get_InitSubstrateCPPs(Dimensions, SPlasticity)],
 Substrate_CEPs =
[CEP#actuator{id={{1,generate_UniqueId()},actuator},cx_id=Cx_Id,generation
=Generation}||CEP<-morphology:get_InitSubstrateCEPs(Dimensions,SPlasticity)],
 N_Ids=construct_InitialNeuroLayer(Cx_Id, Generation, SpecCon,
Substrate_CPPs,Substrate_CEPs,[],[]),
 S_Ids = [S#sensor.id || S<-Sensors],
 A_Ids = [A#actuator.id || A<-Actuators],
 CPP_Ids = [CPP#sensor.id || CPP<-Substrate_CPPs],
 CEP_Ids = [CEP#actuator.id || CEP<-Substrate_CEPs],
 Substrate = #substrate{
 id = Substrate_Id,
 agent_id = Agent_Id,
 cpp_ids = CPP_Ids,
 cep_ids = CEP_Ids,
 densities = Densities,
 plasticity=SPlasticity ,
 linkform=SLinkform
 },
 write(Substrate),
 Cortex = #cortex{
 id = Cx_Id,
 agent_id = Agent_Id,

 neuron_ids = N_Ids,
 sensor_ids = S_Ids,
 actuator_ids = A_Ids
 }
 end,
 write(Cortex),
 {Cx_Id,[{0,N_Ids}],Substrate_Id}.
…
calculate_OptimalSubstrateDimension(Sensors,Actuators)->
 S_Formats = [S#sensor.format || S<-Sensors],
 A_Formats = [A#actuator.format || A<-Actuators],
 extract_maxdim(S_Formats++A_Formats,[]) + 2.
%The calculate_OptimalSubstrateDimension/2 function calculates the largest dimension be-
tween the sensors and actuators, and then returns that value + 2.

 extract_maxdim([F|Formats],Acc)->
 DS=case F of
 {symmetric,Dims}->
 length(Dims);
 no_geo ->
 1;
 undefined ->
 1
 end,
 extract_maxdim(Formats,[DS|Acc]);
 extract_maxdim([],Acc)->
 lists:max(Acc).
%The extract_maxdim/2 function goes through a list of formats, and returns to the caller the
largest value found, counting no_geo and undefined atoms as representing 1.

But this only takes care of creating the genotype of the substrate encoded NN,
we also need to update the agent cloning, agent deleting, and agent genotype print-
ing functions. Listing-16.7 shows the implementation of the noted functions, with
the new source code shown in boldface.

Listing-16.7 The implementation of the updated genotype:print/1, genotype:delete_Agent/1,
and genotype:clone_Agent/1 functions.

print(Agent_Id)->
 F = fun()->
 A = read({agent,Agent_Id}),
 Cx = read({cortex,A#agent.cx_id}),
 io:format(“~p~n”,[A]),
 io:format(“~p~n”,[Cx]),
 [io:format(“~p~n”,[read({sensor,Id})]) || Id <- Cx#cortex.sensor_ids],

698 Chapter 16 Substrate Encoding

16.6 Updating the genotype Module 699

 [io:format(“~p~n”,[read({neuron,Id})]) || Id <- Cx#cortex.neuron_ids],
 [io:format(“~p~n”,[read({actuator,Id})]) || Id <- Cx#cortex.actuator_ids],
 case A#agent.substrate_id of
 undefined ->
 ok;
 Substrate_Id->
 Substrate = read({substrate,Substrate_Id}),
 io:format(“~p~n”,[Substrate]),
 [io:format(“~p~n”,[read({sensor,Id})]) || Id <-
Substrate#substrate.cpp_ids],
 [io:format(“~p~n”,[read({actuator,Id})]) || Id <-
Substrate#substrate.cep_ids]
 end
 end,
 mnesia:transaction(F).
%print/1 accepts an agent’s id, and prints out the complete genotype of that agent.

delete_Agent(Agent_Id)->
 A = read({agent,Agent_Id}),
 Cx = read({cortex,A#agent.cx_id}),
 [delete({neuron,Id}) || Id <- Cx#cortex.neuron_ids],
 [delete({sensor,Id}) || Id <- Cx#cortex.sensor_ids],
 [delete({actuator,Id}) || Id <- Cx#cortex.actuator_ids],
 delete({cortex,A#agent.cx_id}),
 delete({agent,Agent_Id}),
 case A#agent.substrate_id of
 undefined ->
 ok;
 Substrate_Id ->
 Substrate = read({substrate,Substrate_Id}),
 [delete({sensor,Id}) || Id <- Substrate#substrate.cpp_ids],
 [delete({actuator,Id})|| Id <- Substrate#substrate.cep_ids],
 delete({substrate,Substrate_Id})
 end.
%delete_Agent/1 accepts the id of an agent, and then deletes that agent’s genotype. This func-
tion assumes that the id of the agent will be removed from the specie’s agent_ids list, and that
any other clean up procedures, will all be done by the calling function.

clone_Agent(Agent_Id)->
 CloneAgent_Id = {generate_UniqueId(),agent},
 clone_Agent(Agent_Id,CloneAgent_Id).
clone_Agent(Agent_Id,CloneAgent_Id)->
 F = fun()->
 A = read({agent,Agent_Id}),
 Cx = read({cortex,A#agent.cx_id}),

700 Chapter 16 Substrate Encoding

 IdsNCloneIds = ets:new(idsNcloneids,[set,private]),
 ets:insert(IdsNCloneIds,{bias,bias}),
 ets:insert(IdsNCloneIds,{Agent_Id,CloneAgent_Id}),
 [CloneCx_Id] = map_ids(IdsNCloneIds,[A#agent.cx_id],[]),
 CloneN_Ids = map_ids(IdsNCloneIds,Cx#cortex.neuron_ids,[]),
 CloneS_Ids = map_ids(IdsNCloneIds,Cx#cortex.sensor_ids,[]),
 CloneA_Ids = map_ids(IdsNCloneIds,Cx#cortex.actuator_ids,[]),
 case A#agent.substrate_id of
 undefined ->
 clone_neurons(IdsNCloneIds,Cx#cortex.neuron_ids),
 clone_sensors(IdsNCloneIds,Cx#cortex.sensor_ids),
 clone_actuators(IdsNCloneIds,Cx#cortex.actuator_ids),
 U_EvoHist=map_EvoHist(IdsNCloneIds,A#agent.evo_hist),
 write(Cx#cortex{
 id = CloneCx_Id,
 agent_id = CloneAgent_Id,
 sensor_ids = CloneS_Ids,
 actuator_ids = CloneA_Ids,
 neuron_ids = CloneN_Ids
 }),
 write(A#agent{
 id = CloneAgent_Id,
 cx_id = CloneCx_Id,
 evo_hist = U_EvoHist
 });
 Substrate_Id ->
 Substrate = read({substrate,A#agent.substrate_id}),
 [CloneSubstrate_Id] = map_ids(IdsNCloneIds,
[A#agent.substrate_id], []),
 CloneCPP_Ids = map_ids(IdsNCloneIds,
Substrate#substrate.cpp_ids, []),
 CloneCEP_Ids = map_ids(IdsNCloneIds,
Substrate#substrate.cep_ids,[]),
 clone_neurons(IdsNCloneIds,Cx#cortex.neuron_ids),
 clone_sensors(IdsNCloneIds,Cx#cortex.sensor_ids),
 clone_actuators(IdsNCloneIds,Cx#cortex.actuator_ids),
 Substrate = read({substrate,A#agent.substrate_id}),
 clone_sensors(IdsNCloneIds,Substrate#substrate.cpp_ids),
 clone_actuators(IdsNCloneIds,Substrate#substrate.cep_ids),
 U_EvoHist=map_EvoHist(IdsNCloneIds,A#agent.evo_hist),
 write(Substrate#substrate{
 id = CloneSubstrate_Id,
 agent_id = CloneAgent_Id,
 cpp_ids = CloneCPP_Ids,
 cep_ids = CloneCEP_Ids

16.7 Updating the exoself Module 701

 }),
 write(Cx#cortex{
 id = CloneCx_Id,
 agent_id = CloneAgent_Id,
 sensor_ids = CloneS_Ids,
 actuator_ids = CloneA_Ids,
 neuron_ids = CloneN_Ids
 }),
 write(A#agent{
 id = CloneAgent_Id,
 cx_id = CloneCx_Id,
 substrate_id = CloneSubstrate_Id,
 evo_hist = U_EvoHist
 })
 end,
 ets:delete(IdsNCloneIds)
 end,
 mnesia:transaction(F),
 CloneAgent_Id.

Now that we have the ability to create the substrate encoded NN genotypes, we
need to update the exoself module, so that the exoself process can properly spawn
and link all the elements together when the NN is of type: substrate.

16.7 Updating the exoself Module

Exoself reads the genotype and produces the phenotype. When a NN based
agent is substrate encoded, the exoself must behave slightly differently when
spawning and linking the elements of the genotype. The exoself process must now
keep track of the substrate_pid, cpp_pids and cep_pids, so that it can terminate
them when the evaluation is done. Thus we update its state record by appending to
it the following elements: substrate_pid, cpp_pids=[], cep_pids=[].

The spawning of the substrate encoded NN and the neural encoded NN, re-
quires us to add the new spawn and link substrate_cpps and substrate_ceps func-
tions. We must also update the exoself:prep/2 function so that when the agent is of
type substrate, it can spawn and link the substrate, cpp, and the cep processes to-
gether. The updated exoself:prep/2 function is shown in Listing-16.8, with the
modified and added source code shown in boldface.

Listing-16.8 The implementation of the updated exoself:prep/2 function.

prep(Agent_Id,PM_PId)->

702 Chapter 16 Substrate Encoding

 random:seed(now()),
 IdsNPIds = ets:new(idsNpids,[set,private]),
 A = genotype:dirty_read({agent,Agent_Id}),
 HeredityType = A#agent.heredity_type,
 Cx = genotype:dirty_read({cortex,A#agent.cx_id}),
 SIds = Cx#cortex.sensor_ids,
 AIds = Cx#cortex.actuator_ids,
 NIds = Cx#cortex.neuron_ids,
 ScapePIds = spawn_Scapes(IdsNPIds,SIds,AIds),
 spawn_CerebralUnits(IdsNPIds,cortex,[Cx#cortex.id]),
 spawn_CerebralUnits(IdsNPIds,sensor,SIds),
 spawn_CerebralUnits(IdsNPIds,actuator,AIds),
 spawn_CerebralUnits(IdsNPIds,neuron,NIds),
 case A#agent.encoding_type of
 substrate ->
 Substrate_Id=A#agent.substrate_id,
 Substrate = genotype:dirty_read({substrate,Substrate_Id}),
 CPP_Ids = Substrate#substrate.cpp_ids,
 CEP_Ids = Substrate#substrate.cep_ids,
 spawn_CerebralUnits(IdsNPIds,substrate_cpp,CPP_Ids),
 spawn_CerebralUnits(IdsNPIds,substrate_cep,CEP_Ids),
 spawn_CerebralUnits(IdsNPIds,substrate,[Substrate_Id]),
 Substrate_PId=ets:lookup_element(IdsNPIds,Substrate_Id,2),
 link_SubstrateCPPs(CPP_Ids,IdsNPIds,Substrate_PId),
 link_SubstrateCEPs(CEP_Ids,IdsNPIds,Substrate_PId),
 SDensities = Substrate#substrate.densities,
 SPlasticity = Substrate#substrate.plasticity,
 SLinkform = Substrate#substrate.linkform,
 Sensors=[genotype:dirty_read({sensor,SId})||SId <- SIds],
 Actuators=[genotype:dirty_read({actuator,AId})||AId <- AIds],
 CPP_PIds=[ets:lookup_element(IdsNPIds,Id,2)||Id<-CPP_Ids],
 CEP_PIds=[ets:lookup_element(IdsNPIds,Id,2)||Id<-CEP_Ids],
 Substrate_PId ! {self(),init,{Sensors,Actuators,
[ets:lookup_element(IdsNPIds, Id,2)||Id<-SIds], [ets:lookup_element(IdsNPIds,Id,2)||Id<-
AIds],CPP_PIds, CEP_PIds, SDensities, SPlasticity,SLinkform}};
 _ ->
 CPP_PIds=[],
 CEP_PIds=[],
 Substrate_PId = undefined
 end,
 link_Sensors(SIds,IdsNPIds),
 link_Actuators(AIds,IdsNPIds),
 link_Neurons(NIds,IdsNPIds,HeredityType),
 {SPIds,NPIds,APIds}=link_Cortex(Cx,IdsNPIds),
 Cx_PId = ets:lookup_element(IdsNPIds,Cx#cortex.id,2),

16.7 Updating the exoself Module 703

 {TuningDurationFunction,Parameter} = A#agent.tuning_duration_f,
 S = #state{
 agent_id=Agent_Id,
 generation=A#agent.generation,
 pm_pid=PM_PId,
 idsNpids=IdsNPIds,
 cx_pid=Cx_PId,
 specie_id=A#agent.specie_id,
 spids=SPIds,
 npids=NPIds,
 nids=NIds,
 apids=APIds,
 substrate_pid=Substrate_PId,
 cpp_pids = CPP_PIds,
 cep_pids = CEP_PIds,
 scape_pids=ScapePIds,
 max_attempts= tuning_duration:TuningDurationFunction(Parameter,NIds,
A#agent.generation),
 tuning_selection_f=A#agent.tuning_selection_f,
 annealing_parameter=A#agent.annealing_parameter,
 tuning_duration_f=A#agent.tuning_duration_f,
 perturbation_range=A#agent.perturbation_range
 },
 loop(S).
…
…
…
 link_SubstrateCPPs([CPP_Id|CPP_Ids],IdsNPIds,Substrate_PId) ->
 CPP=genotype:dirty_read({sensor,CPP_Id}),
 CPP_PId = ets:lookup_element(IdsNPIds,CPP_Id,2),
 Cx_PId = ets:lookup_element(IdsNPIds,CPP#sensor.cx_id,2),
 CPPName = CPP#sensor.name,
 Fanout_Ids = CPP#sensor.fanout_ids,
 Fanout_PIds = [ets:lookup_element(IdsNPIds,Id,2) || Id <- Fanout_Ids],
 CPP_PId ! {self(),{CPP_Id,Cx_PId,Substrate_PId,CPPName,CPP#sensor.vl,
CPP#sensor.parameters,Fanout_PIds}},
 link_SubstrateCPPs(CPP_Ids,IdsNPIds,Substrate_PId);
 link_SubstrateCPPs([],_IdsNPIds,_Substrate_PId)->
 ok.
%The link_Sensors/2 function sends to the already spawned and waiting sensors their states,
composed of the PId lists and other information which is needed by the sensors to link up and
interface with other elements in the distributed phenotype.

 link_SubstrateCEPs([CEP_Id|CEP_Ids],IdsNPIds,Substrate_PId) ->
 CEP=genotype:dirty_read({actuator,CEP_Id}),

704 Chapter 16 Substrate Encoding

 CEP_PId = ets:lookup_element(IdsNPIds,CEP_Id,2),
 Cx_PId = ets:lookup_element(IdsNPIds,CEP#actuator.cx_id,2),
 CEPName = CEP#actuator.name,
 Fanin_Ids = CEP#actuator.fanin_ids,
 Fanin_PIds = [ets:lookup_element(IdsNPIds,Id,2) || Id <- Fanin_Ids],
 CEP_PId ! {self(),{CEP_Id,Cx_PId,Substrate_PId,CEPName,
CEP#actuator.parameters, Fanin_PIds}},
 link_SubstrateCEPs(CEP_Ids,IdsNPIds,Substrate_PId);
 link_SubstrateCEPs([],_IdsNPIds,_Substrate_PId)->
 ok.
%The link_SubstrateCEPs/2 function sends to the already spawned and waiting substrate_ceps
their states, composed of the PId lists and other information which is needed by the sub-
strate_ceps to link up and interface with other elements in the distributed phenotype.

The exoself’s main loop must also be updated, but not as extensively. We have
to be able to tell the substrate process to reset itself when the neurons have been
perturbed, or reverted. Thus after every evaluation, we let the exoself send the
substrate process a message to reset itself, which makes the substrate process call
all the perturbed or reverted neurons and set the synaptic weights and connectivity
expression of its neurodes anew. The added code is shown in the following listing:

Listing-16.9 The extra algorithm needed to tell the substrate process to reset itself.

case S#state.substrate_pid of
 undefined ->
 ok;
 Substrate_PId ->
 Substrate_PId ! {self(),reset_substrate},
 receive
 {Substrate_PId,ready}->
 ok
 end
end,

Finally, the exoself must now also be able to terminate the substrate process,
and its cpps and ceps. Thus we make a slight modification to the termi-
nate_phenotype function, as shown in Listing-16.10.

Listing-16.10 The updated exoself:terminate_phenotype function.

terminate_phenotype(Cx_PId,SPIds,NPIds,APIds,ScapePIds,CPP_PIds, CEP_PIds,
Substrate_PId)->
 [PId ! {self(),terminate} || PId <- SPIds],
 [PId ! {self(),terminate} || PId <- APIds],
 [PId ! {self(),terminate} || PId <- NPIds],

16.8 Implementing the substrate Module 705

 [PId ! {self(),terminate} || PId <- ScapePIds],
 case Substrate_PId == undefined of
 true ->
 ok;
 false ->
 [PId ! {self(),terminate} || PId <- CPP_PIds],
 [PId ! {self(),terminate} || PId <- CEP_PIds],
 Substrate_PId ! {self(),terminate}
 end,
 Cx_PId ! {self(),terminate}.

No other modifications are needed. With this, the exoself is ready to work with
both, the direct encoded NNs, and the substrate encoded NNs. Next, we imple-
ment the most important thing, the actual substrate module.

16.8 Implementing the substrate Module

While developing the substrate_cpp and substrate_cep modules, we have also
created the message format that will be used to exchange messages between the
substrate process and the interfacing cpps and ceps. Now that we know the archi-
tecture of the substrate encoded NN, the manner in which cpps and ceps will pro-
cess signals, and interface with the substrate, and the way we will encode the sub-
strate, through the use of the densities list, and dynamic input and output
hyperlayer creation through the analysis of sensor and actuator lists, we are ready
to create the phenotypic representation of the substrate.

We now continue where we left of in section 16.4 with regards to the substrate
representation and signal processing. This is going to be a bit more complex than
the other things we’ve created. Knowing everything else about our system, the
way cortex synchronizes the sensors and actuators, the way sensors then acquire,
process, and fanout their sensory signals to the NN, or in this case a substrate, and
the way the actuators wait for the signals from every id in their fanin_ids list, in
this case just the substrate, how do we make it all work?

For the substrate to function as we planned for it in our architectural design, it
must perform the following steps:

1. The substrate process is created using the gen/2 function.
2. The process then receives from the exoself a list of sensors & actuators with

their pids, a list of pids for the substrate_cpps and substrate_ceps, and finally it
also receives the Densities list, and the linkform. From this, it must create a
proper substrate using the information from Sensors, Actuators, Densities lists,
and the Linkform parameter. The substrate process must do so while keeping in

706 Chapter 16 Substrate Encoding

mind that every time exoself perturbs or reverts the neurons, the substrate’s
synaptic connection weights and expressions in general must too be updated.

3. The process must use some kind of flag, a substrate_state_flag, which will keep
track of whether the substrate must be updated (as in the case when the NN has
been perturbed) or can be kept for use again. The substrate process then drops
into its main loop.

4. Just like other processes that accumulate incoming signals, the substrate pro-
cess waits and accumulates (in the same order as the sensors are within the sen-
sors list) the sensory signals. Once all the sensory signals have been accumulat-
ed, the substrate process drops into its processing clause.

5. The substrate process checks what the substrate_state_flag is set to. If the flag
is set to reset, then the substrate should be recreated or reset (due to a perturba-
tion of the NN), before being able to process the sensory signals and produce
the output signals destined for the actuators. If the substrate_state_flag is set to
hold the current substrate, then it does not need to be recreated/updated.

6. This step is executed if the substrate_state_flag was set to reset. The substrate
process analyzes the sensors, densities, and actuators, and based on the format
within the sensors and actuators, and the dimensionality and form of the Densi-
ties list, it creates a substrate in the form we have discussed in Section-16.4. At
this point all the synaptic weights between this feedforward substrate (for now,
we will only use the hyperlayer-to-hyperlayer feedforward substrate linkform)
are set to 0. Thus they must now be set to their proper synaptic weight values.

7. For every connected set of neurodes, the substrate process forwards the coordi-
nates of the two neurodes to the PIds of the substrate_cpps in its CPP_PIds list.
And for every sent out tuple of coordinates, it waits for the signals from the
PIds of the substrate_ceps in its CEP_PIds list. The signals will have some val-
ue, and the name of the function which will dictate what function to execute on
the currently used synaptic weight. The function will either simply set the syn-
aptic weight to this new value forwarded to the substrate process by the sub-
strate_cep, or perhaps modify the existing synaptic weight in the case plasticity
is implemented within the substrate... Once this is done for every connection
between the neurodes, given the hyperlayer-to-hyperlayer feedforward archi-
tecture, the substrate is now considered functional and ready for use, and the
substrate_state_flag is set to the value hold.

8. Because the input hyperlayer was created specifically based on the list of sen-
sors that SENN uses, it will have the architecture needed for the accumulated
list of sensory signals to be mapped to this input hyperlayer perfectly. The ac-
cumulated list of sensory signals is a list of vectors. Each vector has the same
length as every multidimensional hyperplane within the input hyperlayer, thus
we can now replace the Output part within the tuples [{NeurodeCoordinate,
Output, void}...] of the input hyperplanes, by the values of the sensory signals,
as shown in Fig-16.12, making these tuples into: [{NeurodeCoordinate,
RealOutput, void}...], where RealOutput is the value taken from the accumu-
lated sensory signals list, associated with that particular neurode coordinate.

16.8 Implementing the substrate Module 707

9. Now that the Input Hyperlayer has its output values set to real output values
from the sensors, the substrate can be used to process the signals. We now use
the algorithm discussed in Section-16.4 to perform processing in the
hyperlayer-to-hyperlayer feedforward fashion. Since the neurodes in the pro-
cessing hyperlayers now have their synaptic weights, they can process all the
input signals from the presynaptic neurodes of the presynaptic hyperlayer. In
this manner, the substrate processes the sensory signals until the output
hyperlayer’s Output values are calculated.

10.The Output values in the tuples representing the neurodes within the output
hyperlayer now contain the actual output signals of the substrate. The layers
within the output hyperlayer are in the same order as the actuators within the
Actuators list for which they are destined. Thus the substrate can now extract
from the layers associated with each actuator the corresponding output vectors,
and forward them to the PIds of their respective actuators.

11.At this point the actuators are now interacting with the environment, and the
substrate drops back into its main loop, awaiting again for the signals from its
sensors or the exoself.

At any point the exoself can send the substrate process a signal to reset itself.
When the substrate process receives this signal, it simply sets its sub-
strate_state_flag to reset, and thus after the next time it accumulates the sensory
signals, it resets. To reset, it re-queries the NN to set the synaptic weights and
connectivity between its neurodes anew, before processing the new sensory sig-
nals. The diagram of the step-by-step functionality of the substrate process is
shown in Fig-16.13.

Fig. 16.12 The initial input hyperlayer with default output values, and the mapping
e sensors, to the input hyperlayer. between sensory signals produced by th

708 Chapter 16 Substrate Encoding

Fig. 16.13 The step-by-step functionality of the substrate process.

Lets quickly go over the steps shown in the above figure:

1. Exoself spawns neurons, sensors, actuators, substrate_cpps, substrate_ceps,
substrate, and the cortex process.

2. Cortex sends the sync message to all the sensors, calling them to action.
3. Sensors poll the environment for sensory signals.
4. Sensors do postprocessing of the signals.
5. Sensors forward the processed sensory signals to the substrate.
6. Substrate process gathers all the signals from the sensors, and based on those

signals, its densities, and the actuators, constructs a substrate if its sub-
strate_state_flag is set to reset. If substrate_state_flag is set to hold, go to next
step.

16.8 Implementing the substrate Module 709

7. Substrate sends the coordinates of the connected neurodes to the substrate_cpps
it is connected to.

8. The cpps process the coordinates
9. The cpps forward the processed coordinate vectors to the neurons they are con-

nected to in the NN.
10.NN processes the coordinate signals.
11.The neurons in the output layer of the NN produce output signals, which are

then sent to the ceps they are connected to.
12.The ceps wait and gather the signals from all the neurons with whom they have

presynaptic links. The ceps process the accumulated signals.
13.The ceps forward the vector signals to the substrate.
14.The substrate process calls the cpps for every connected neurode in the sub-

strate. Once all the neurodes have their synaptic weights, the substrate maps the
signals from the sensors to the input hyperlayer. It then processes the sensory
signals, until at some later point the output hyperlayer contains the output sig-
nals.

which the output vector is then forwarded to.
16.Actuators gather the signals sent to them from their fanin_ids list (in this case

the id of the substrate process).
17.Actuators use the signals to take action and interact with the environment they

are interfacing with.
18.Actuators send the sync message back to the cortex.
19.The cortex gathers all the sync messages from all its actuators.
20.The cortex calls sensors to action, for another Sense-Think-Act loop. Go to

step 3.

Using all of this information, we can now create the substrate module. The im-
plementation of the substrate module will follow the 11 step approach we dis-
cussed before the above 20 step sequence.

1. The process is created using the gen/2 function.

This is a simple function, similar to the one we use for every other element, as
shown in the following listing.

Listing-16.11 The substrate process’ state record, and the gen/2 function.

-module(substrate).
-compile(export_all).
-include(“records.hrl”).
-define(SAT_LIMIT,math:pi()).
-record(state,{
 type,
 plasticity=none,

, producing a new output vector.

15.Each hyperplane in the output hyperlayer is associated with its own actuator, to

710 Chapter 16 Substrate Encoding

 morphology,
 specie_id,
 sensors,
 actuators,
 spids=[],
 apids=[],
 cpp_pids=[],
 cep_pids=[],
 densities,
 substrate_state_flag,
 old_substrate,
 cur_substrate,
 link_form
}).

gen(ExoSelf_PId,Node)->
 spawn(Node,?MODULE,prep,[ExoSelf_PId]).

2. The process then receives from the exoself a list of sensors & actuators with
their pids, a list of pids for the substrate_cpps and substrate_ceps, and finally it
also receives the Densities list, and the linkform. From this, it must create a
proper substrate using the information from Sensors, Actuators, Densities lists,
and the Linkform parameter. The substrate process must do so while keeping in
mind that every time exoself perturbs or reverts the neurons, the substrate’s
synaptic connection weights and expressions in general must too be updated.

3. The process must use some kind of flag, a substrate_state_flag, which will keep
track of whether the substrate must be updated (as in the case when the NN has
been perturbed) or can be kept for use again. The substrate process then drops
into its main loop.

During this step the substrate process begins to wait for its state information
from the exoself. Its implementation is shown in Listing-16.12. Because the sub-
strate is created during the processing step based on its substrate_state_flag, the
initial Substrate is set to the init atom. The substrate_state_flag is set to the atom
reset. We use the atom reset because the substrate’s synaptic expression and
weight values have to be reset when the NN is perturbed, hence the atom reset is
appropriate.

Listing-16.12 The implementation of the prep/1 function.

prep(ExoSelf)->
 random:seed(now()),
 receive
 {ExoSelf,init,InitState}->

16.8 Implementing the substrate Module 711

 {Sensors,Actuators,SPIds,APIds,CPP_PIds,CEP_PIds,Densities,Plasticity, LinkForm}
=InitState,
 S = #state{
 sensors=Sensors,
 actuators=Actuators,
 spids=SPIds,
 apids=APIds,
 cpp_pids=CPP_PIds,
 cep_pids=CEP_PIds,
 densities = Densities,
 substrate_state_flag=reset,
 old_substrate=void,
 cur_substrate=init,
 plasticity=Plasticity,
 link_form = LinkForm
 },
 substrate:loop(ExoSelf,S,SPIds,[])
 end.

4. Just like other processes that accumulate incoming signals, the substrate pro-
cess waits and accumulates (in the same order as the sensors are within the
sensors list) the sensory signals. Once all the sensory signals have been accu-
mulated, the substrate process drops into its processing clause.

Next we implement the main process loop, during which the substrate process
gathers the sensory signals from the sensors, and receives the signal from the
exoself to reset the substrate when the exoself perturbs the NN. The implementa-
tion of the main loop is shown in the next listing.

Listing-16.13 The implementation of the substrate process’s main loop.

loop(ExoSelf,S,[SPId|SPIds],SAcc)->
 receive
 {SPId,forward,Sensory_Signal}->
 loop(ExoSelf,S,SPIds,[Sensory_Signal|SAcc]);
 {ExoSelf,reset_substrate}->
 U_S = S#state{
 old_substrate=S#state.cur_substrate,
 substrate_state_flag=reset
 },
 ExoSelf ! {self(),ready},
 loop(ExoSelf,U_S,[SPId|SPIds],SAcc);
 {ExoSelf,terminate}->
 ok;
 end;

712 Chapter 16 Substrate Encoding

loop(ExoSelf,S,[],SAcc)->%All sensory signals received
 {U_Substrate,U_SMode,OAcc} = reason(SAcc,S),
 advanced_fanout(OAcc,S#state.actuators,S#state.apids),
 U_S = S#state{
 cur_substrate=U_Substrate,
 substrate_state_flag=U_SMode
 },
 loop(ExoSelf,U_S,S#state.spids,[]).

As seen from the above implementation, once the sensory signals have been
accumulated from all the sensors, we drop into the step where the substrate loop
calls the necessary functions to create the substrate if needed, and process the sen-
sory signals. The function which does all that is called reason/2, which is called
once we drop out of the main receive loop. The function reason/2 returns the up-
dated substrate: U_Substrate, the updated substrate_state_flag: U_SMode, and the
accumulated output signal: OAcc. The function advanced_fanout/3 uses the OAcc
list, breaks it up, and forwards the output signals to their respective actuators.

5. The substrate process checks what the substrate_state_flag is set to. If the flag
is set to reset, then the substrate should be recreated or reset (due to a pertur-
bation of the NN), before being able to process the sensory signals and produce
the output signals destined for the actuators. If the substrate_state_flag is set to
hold the current substrate, then it does not need to be recreated/updated.

This whole step is performed within the reason/2 function, as shown in Listing-
16.14.

Listing-16.14 The implementation of the reason/2 function.

reason(Input,S)->
 Densities = S#state.densities,
 Substrate = S#state.cur_substrate,
 SMode = S#state.substrate_state_flag,
 case SMode of
 reset ->
 Sensors=S#state.sensors,
 Actuators=S#state.actuators,
 CPP_PIds = S#state.cpp_pids,
 CEP_PIds = S#state.cep_pids,
 Plasticity = S#state.plasticity,
 New_Substrate = create_substrate(Sensors,Densities,Actuators,
S#state.link_form),
 {Output,Populated_Substrate} = calculate_ResetOutput(Densities,
New_Substrate, Input, CPP_PIds, CEP_PIds, Plasticity, S#state.link_form),
 U_SMode=case Plasticity of
 none ->

16.8 Implementing the substrate Module 713

 hold
 end,
 {Populated_Substrate,U_SMode,Output};
 hold ->
 {Output,U_Substrate} = calculate_HoldOutput(Densities,Substrate, Input,
S#state.link_form, S#state.plasticity),
 {U_Substrate,SMode,Output}
 end.

As can be seen from the above function, we are already in some sense prepar-
ing for the case where the substrate_state_flag is updated differently, when sub-
strate plasticity is used for example. If the substrate_state_flag stored in SMode is
set to reset, the function create_substrate/4 is executed to create the new substrate,
and then the function calculate_ResetOutput/6 is used to perform substrate based
processing. If SMode is set to hold, then the function processes the signals but by
executing the function calculate_HoldOutput/4. The difference here is that during
the reset state, we still need to create the substrate, where’s during the hold state,
we expect that the substrate is already created, and so we need only map the input
sensory signals to the input hyperlayer.

6. This step is executed if the substrate_state_flag was set to reset. The substrate
process analyzes the sensors, densities, and actuators, and based on the format
within the sensors and actuators, and the dimensionality and form of the Densi-
ties list, it creates a substrate in the form we have discussed in Section-16.4. At
this point all the synaptic weights between this feedforward substrate (for now,
we will only use the hyperlayer-to-hyperlayer feedforward substrate linkform)
are set to 0. Thus they must now be set to their proper synaptic weight values.

The substrate is constructed by executing the create_substrate/4 function,
shown in the following listing.

Listing-16.15 The implementation of the create_substrate/4 function.

create_substrate(Sensors,Densities,Actuators,LinkForm)->
 [Depth|SubDensities] = Densities,
 Substrate_I = compose_ISubstrate(Sensors,length(Densities)),
 I_VL = length(Substrate_I),
 case LinkForm of
 l2l_feedforward ->
 Weight = 0,
 H = mult(SubDensities),
 IWeights = lists:duplicate(I_VL,Weight),
 HWeights = lists:duplicate(H,Weight);
 fully_interconnected ->
 Output_Neurodes = tot_ONeurodes(Actuators,0),
 Weight = 0,

714 Chapter 16 Substrate Encoding

 Tot_HiddenNeurodes = mult([Depth-1|SubDensities]),
 Tot_Weights = Tot_HiddenNeurodes + I_VL + Output_Neurodes,
 IWeights = lists:duplicate(Tot_Weights,Weight),
 HWeights = lists:duplicate(Tot_Weights,Weight);
 jordan_recurrent ->
 Output_Neurodes = tot_ONeurodes(Actuators,0),
 Weight = 0,
 H = mult(SubDensities),
 IWeights = lists:duplicate(I_VL+Output_Neurodes,Weight),
 HWeights = lists:duplicate(H,Weight)
 end,
 case Depth of
 0 ->
 Substrate_O=compose_OSubstrate(Actuators,length(Densities),IWeights),
 [Substrate_I,Substrate_O];
 1 ->
 Substrate_R = cs(SubDensities,IWeights),
 Substrate_O=compose_OSubstrate(Actuators,length(Densities),HWeights),
 [Substrate_I,extrude(0,Substrate_R),Substrate_O];
 _ ->
 Substrate_R = cs(SubDensities,IWeights),
 Substrate_H = cs(SubDensities,HWeights),
 Substrate_O=compose_OSubstrate(Actuators,length(Densities),HWeights),
 [_,RCoord|C1] = build_CoordList(Depth+1),
 [_|C2] = lists:reverse(C1),
 HCoords = lists:reverse(C2),
 ESubstrate_R = extrude(RCoord,Substrate_R),
 ESubstrates_H = [extrude(HCoord,Substrate_H) || HCoord<-HCoords],
 lists:append([[Substrate_I,ESubstrate_R],ESubstrates_H,[Substrate_O]])
 end.

 compose_ISubstrate(Sensors,SubstrateDimension)->
 compose_ISubstrate(Sensors,[],1,SubstrateDimension-2).
 compose_ISubstrate([S|Sensors],Acc,Max_Dim,Required_Dim)->
 case S#sensor.format of
 undefined ->
 Dim=1,
 CoordLists = create_CoordLists([S#sensor.vl]),
 ISubstrate_Part=[{Coord,0,void}|| Coord<-CoordLists],
 {Dim,ISubstrate_Part};
 no_geo ->
 Dim=1,
 CoordLists = create_CoordLists([S#sensor.vl]),
 ISubstrate_Part=[{Coord,0,void}|| Coord<-CoordLists],
 {Dim,ISubstrate_Part};

16.8 Implementing the substrate Module 715

 {symmetric,Resolutions}->
 Dim = length(Resolutions),
 Signal_Length = mult(Resolutions),
 CoordLists = create_CoordLists(Resolutions),
 ISubstrate_Part=[{Coord,0,void}|| Coord<-CoordLists],
 {Dim,ISubstrate_Part}
 end,
 U_Dim = case Max_Dim > Dim of
 true ->
 Max_Dim;
 false ->
 Dim
 end,
 compose_ISubstrate(Sensors,[ISubstrate_Part|Acc],U_Dim,Required_Dim);
 compose_ISubstrate([],Acc,ISubstratePart_MaxDim,Required_Dim)->
 case Required_Dim >= ISubstratePart_MaxDim of
 true ->
 ISubstrate_Depth = length(Acc),
 ISubstrate_DepthCoords = build_CoordList(ISubstrate_Depth),
 adv_extrude(Acc,Required_Dim, lists:reverse(ISubstrate_DepthCoords),
-1,[]);
 false ->
 exit(“Error in adv_extrude, Required_Depth <
ISubstratePart_MaxDepth ~n”)
 end.

 adv_extrude([ISubstrate_Part|ISubstrate],Required_Dim, [IDepthCoord
|ISubstrate_DepthCoords], LeadCoord,Acc)->
 Extruded_ISP =
[{[LeadCoord,IDepthCoord|lists:append(lists:duplicate(Required_Dim - length(Coord),
0),Coord)], O, W} || {Coord,O,W}<-ISubstrate_Part],
 extrude(ISubstrate_Part,Required_Dim,IDepthCoord,[]),

adv_extrude(ISubstrate,Required_Dim,ISubstrate_DepthCoords,LeadCoord,
lists:append(Extruded_ISP,Acc));
 adv_extrude([],_Required_Dim,[],_LeadCoord,Acc)->
 Acc.

 extrude([{Coord,O,W}|ISubstrate_Part],Required_Dim,DepthCoord,Acc)->
 Dim_Dif = Required_Dim - length(Coord),
 U_Coord= [1,DepthCoord|lists:append(lists:duplicate(Dim_Dif,0),
Coord)],
 extrude(ISubstrate_Part,Required_Dim,DepthCoord, [{U_Coord,O,W}
|Acc]);
 extrude([],_Required_Dim,_DepthCoord,Acc)->

716 Chapter 16 Substrate Encoding

 Acc.

 compose_OSubstrate(Actuators,SubstrateDimension,Weights)->
 compose_OSubstrate(Actuators,[],1,SubstrateDimension-2,Weights).
 compose_OSubstrate([A|Actuators],Acc,Max_Dim,Required_Dim,Weights)->
 case A#actuator.format of
 undefined ->%Dim=void,OSubstrate_Part=void,
 Dim=1,
 CoordLists = create_CoordLists([A#actuator.vl]),
 OSubstrate_Part=[{Coord,0,Weights}|| Coord<-CoordLists],
 {Dim,OSubstrate_Part};
 no_geo ->%Dim=void,OSubstrate_Part=void,
 Dim=1,
 CoordLists = create_CoordLists([A#actuator.vl]),
 OSubstrate_Part=[{Coord,0,Weights}|| Coord<-CoordLists],
 {Dim,OSubstrate_Part};
 {symmetric,Resolutions}->%Dim=void,OSubstrate_Part=void,
 Dim = length(Resolutions),
 Signal_Length = mult(Resolutions),
 CoordLists = create_CoordLists(Resolutions),
 OSubstrate_Part=[{Coord,0,Weights}|| Coord<-CoordLists],
 {Dim,OSubstrate_Part}
 end,
 U_Dim = case Max_Dim > Dim of
 true ->
 Max_Dim;
 false ->
 Dim
 end,
 com-
pose_OSubstrate(Actuators,[OSubstrate_Part|Acc],U_Dim,Required_Dim,Weights);
 compose_OSubstrate([],Acc,OSubstratePart_MaxDim,Required_Dim,_Weights)->
 case Required_Dim >= OSubstratePart_MaxDim of
 true ->%done;
 ISubstrate_Depth = length(Acc),
 ISubstrate_DepthCoords = build_CoordList(ISubstrate_Depth),
 adv_extrude(Acc,Required_Dim,lists:reverse(ISubstrate_DepthCoords),
1,[]);
 false ->
 exit(“Error in adv_extrude, Required_Depth <
OSubstratePart_MaxDepth~n”)
 end.

 find_depth(Resolutions)->find_depth(Resolutions,0).
 find_depth(Resolutions,Acc)->

16.8 Implementing the substrate Module 717

 case is_list(Resolutions) of
 true ->
 [_Head|Tail] = Resolutions,
 find_depth(Tail,Acc+1);
 false ->
 Acc
 end.

 build_CoordList(Density)->
 case Density == 1 of
 true ->
 [0.0];
 false ->
 DensityDividers = Density - 1,
 Resolution = 2/DensityDividers,
 build_CoordList(Resolution,DensityDividers,1,[])
 end.

 extend(I,DI,D,Substrate)->
 void.

 mult(List)->
 mult(List,1).
 mult([Val|List],Acc)->
 mult(List,Val*Acc);
 mult([],Acc)->
 Acc.

tot_ONeurodes([A|Actuators],Acc)->
 Tot_ANeurodes=case A#actuator.format of
 undefined ->
 A#actuator.vl;
 no_geo ->
 A#actuator.vl;
 {symmetric,Resolutions}->
 mult(Resolutions)
 end,
 tot_ONeurodes(Actuators,Tot_ANeurodes+Acc);
tot_ONeurodes([],Acc)->
 Acc.

 cs(Densities,Weights)->
 RDensities = lists:reverse(Densities),
 Substrate = create_CoordLists(RDensities,[]),
 attach(Substrate,0,Weights).

718 Chapter 16 Substrate Encoding

 create_CoordLists(Densities)->
 create_CoordLists(Densities,[]).
 create_CoordLists([Density|RDensities],[])->
 CoordList = build_CoordList(Density),
 XtendedCoordList = [[Coord]||Coord <- CoordList],
 create_CoordLists(RDensities,XtendedCoordList);
 create_CoordLists([Density|RDensities],Acc)->
 CoordList = build_CoordList(Density),
 XtendedCoordList = [[Coord|Sub_Coord]||Coord <- CoordList,Sub_Coord <-
Acc],
 create_CoordLists(RDensities,XtendedCoordList);
 create_CoordLists([],Acc)->
 Acc.

 build_CoordList(Resolution,0,Coord,Acc)->
 [-1|Acc];
 build_CoordList(Resolution,DensityDividers,Coord,Acc)->
 build_CoordList(Resolution,DensityDividers-1,Coord-Resolution,
[Coord|Acc]).

attach(List,E1,E2)->
 attach(List,E1,E2,[]).
attach([Val|List],E1,E2,Acc)->
 attach(List,E1,E2,[{Val,E1,E2}|Acc]);
attach([],_E1,_E2,Acc)->
 lists:reverse(Acc).

extrude(NewDimension_Coord,Substrate)->
 extrude(NewDimension_Coord,Substrate,[]).
extrude(NewDimension_Coord,[{Coord,O,W}|Substrate],Acc)->
 extrude(NewDimension_Coord,Substrate,[{[NewDimension_Coord|Coord],O,W}|Acc]);
extrude(_Coord,[],Acc)->
 lists:reverse(Acc).

The implementation shown above can create not only the layer-to-layer
feedforward substrate (l2l_feedforward), but also a jordan_recurrent, and the ful-
ly_connected substrate topology.

7. For every connected set of neurodes, the substrate process forwards the coor-
dinates of the two neurodes to the PIds of the substrate_cpps in its CPP_PIds
list. And for every sent out tuple of coordinates, it waits for the signals from the
PIds of the substrate_ceps in its CEP_PIds list. The signals will have some val-
ue, and the name of the function which will dictate what function to execute on
the currently used synaptic weight. The function will either simply set the syn-

16.8 Implementing the substrate Module 719

aptic weight to this new value forwarded to the substrate process by the sub-
strate_cep, or perhaps modify the existing synaptic weight in the case plasticity
is implemented within the substrate... Once this is done for every connection
between the neurodes, given the hyperlayer-to-hyperlayer feedforward archi-
tecture, the substrate is now considered functional and ready for use, and the
substrate_state_flag is set to the value hold.

The function which populates all the neurodes of the processing hyperlayers
with their specific synaptic weights, is called the populate_PHyperlayers/4. The
implementation of this function is shown in the following listing.

Listing-16.16 The implementation of the populate_PHyperlayers/4 function.

populate_PHyperlayers_l2l(PrevHyperlayer,[{Coord,PrevO,PrevWeights}|CurHyperlayer],
Substrate,CPP_PIds, CEP_PIds, Acc1,Acc2)->
 NewWeights = get_weights(PrevHyperlayer,Coord,CPP_PIds,CEP_PIds,[]),
 populate_PHyperlayers_l2l(PrevHyperlayer,CurHyperlayer,Substrate, CPP_PIds, CEP_PIds,
[{Coord,PrevO,NewWeights}|Acc1],Acc2);
populate_PHyperlayers_l2l(_PrevHyperlayer,[],[CurHyperlayer|Substrate], CPP_PIds,
CEP_PIds, Acc1,Acc2)->
 PrevHyperlayer = lists:reverse(Acc1),
 populate_PHyperlayers_l2l(PrevHyperlayer,CurHyperlayer,Substrate, CPP_PIds,CEP_PIds,
[],[PrevHyperlayer|Acc2]);
populate_PHyperlayers_l2l(_PrevHyperlayer,[],[],CPP_PIds,CEP_PIds,Acc1,Acc2)->
 lists:reverse([lists:reverse(Acc1)|Acc2]).

populate_PHyperlayers_fi(FlatSubstrate, [{Coord,PrevO,_PrevWeights}|CurHyperlayer],
Substrate, CPP_PIds, CEP_PIds,Acc1,Acc2)->
 NewWeights = get_weights(FlatSubstrate,Coord,CPP_PIds,CEP_PIds,[]),
 populate_PHyperlayers_fi(FlatSubstrate,CurHyperlayer,Substrate,CPP_PIds,CEP_PIds,
[{Coord,PrevO,NewWeights}|Acc1],Acc2);
populate_PHyperlayers_fi(FlatSubstrate,[],[CurHyperlayer|Substrate], CPP_PIds, CEP_PIds,
Acc1,Acc2)->
 populate_PHyperlayers_fi(FlatSubstrate,CurHyperlayer,Substrate,CPP_PIds, CEP_PIds, [],
[lists:reverse(Acc1)|Acc2]);
populate_PHyperlayers_fi(_FlatSubstrate,[],[],CPP_PIds,CEP_PIds,Acc1,Acc2)->
 lists:reverse([lists:reverse(Acc1)|Acc2]).

 get_weights([{I_Coord,I,_I_Weights}|PrevHypercube],Coord,CPP_PIds,CEP_PIds,Acc)->
 static_fanout(CPP_PIds,I_Coord,Coord),
 U_W=fanin(CEP_PIds,[]),
 get_weights(PrevHypercube,Coord,CPP_PIds,CEP_PIds,
[functions:sat(U_W,3.1415,-3.1415)|Acc]);
 get_weights([],_Coord,_CPP_PIds,_CEP_PIds,Acc)->

720 Chapter 16 Substrate Encoding

 lists:reverse(Acc).

 static_fanout([CPP_PId|CPP_PIds],I_Coord,Coord)->
 CPP_PId ! {self(),I_Coord,Coord},
 static_fanout(CPP_PIds,I_Coord,Coord);
 static_fanout([],_I_Coord,_Coord)->
 done.

Substrates of different linkforms must have their neurode synaptic weights
populated in slightly different ways. Also, substrates with different linkforms will
have slightly different ways by which their processing hyperlayers are populated
with the appropriate synaptic weights, and the order in which the substrate_cpps
are called to action by the substrate. For this reason, for the link forms:
l2l_feedforward and jordan_recurrent, we use the populate_PHyperlayers_l2l
function, and for the linkform: fully_interconnected we use the popu-
late_PHyperlayers_fi function.

8. Because the input hyperlayer was created specifically based on the list of sen-
sors SENN uses, it will have the architecture needed for the accumulated list of
sensory signals to be mapped to this input hyperlayer perfectly. The accumu-
lated list of sensory signals is a list of vectors. Each vector has the same length
as every multidimensional layer within the input hyperlayer, thus we can now
replace the Output part within the tuples [{NeurodeCoordinate, Output,
void}...] of the input hyperlayers, by the values of the sensory signals, as shown
in Fig-16.13, making these tuples into: [{NeurodeCoordiante, RealOutput,
void}...], where RealOutput is the value taken from the accumulated sensory
signals, associated with that particular neurode coordinate.

There is an implicit 1:1 order of the signals accumulated from the sensors, and
the order in which the neurodes are stacked in the input hyperlayer. For this reason
the mapping of the accumulated sensory signals to the neurodes in the input
hyperlayer is done using a very simple function shown in Listing-16.17.

Listing-16.17 The implementation of the populate_InputHyperlayer/3 function.

populate_InputHyperlayer([{Coord,PrevO,void}|Substrate],[I|Input],Acc)->
 populate_InputHyperlayer(Substrate,Input,[{Coord,I,void}|Acc]);
populate_InputHyperlayer([],[],Acc)->
 lists:reverse(Acc).

9. Now that the Input Hyperlayer has its output values set to real output values
from the sensors, the substrate can be used to process the signals. We now use
the algorithm discussed in Section-16.4 to perform processing in the
hyperlayer-to-hyperlayer feedforward fashion. Since the neurodes in the pro-
cessing hyperlayers now have their synaptic weights, they can process all the
input signals from the presynaptic neurodes of the presynaptic hyperlayer. In

16.8 Implementing the substrate Module 721

this manner, the substrate processes the sensory signals until the output
hyperlayer’s Output values are calculated.

As noted, we can either reset the substrate and then use it to calculate output
signals, or we can hold the substrate that was composed during one of the previous
cycles, and simply update the input hyperlayer neurodes with the sensory signals.
We can then use the resulting substrate with the updated input hyperlayer to pro-
duce output signals. I created different functions for these two scenarios. The
function dealing with the first scenario is called calculate_ResetOutput/7, and the
function for the second scenario is called calculate_HoldOutput/4. Both are shown
in the following listing.

Listing-16.18 The implementation of the calculate_ResetOutput/7 and calcualte_HoldOutput/4
functions.

calculate_HoldOutput(Densities,Substrate,Input,LinkForm,Plasticity)->
 [IHyperlayer|Populated_PHyperlayers] = Substrate,
 Populated_IHyperlayer = populate_InputHyperlayer(IHyperlayer,lists:flatten(Input),[]),
 {Output,U_PHyperlayers}=calculate_substrate_output(Populated_IHyperlayer,
Populated_PHyperlayers, LinkForm,Plasticity),
 {Output,[IHyperlayer|U_PHyperlayers]}.

calculate_ResetOutput(Densities,Substrate,Input,CPP_PIds,CEP_PIds,Plasticity,LinkForm)->
 [IHyperlayer|PHyperlayers] = Substrate,
 Populated_IHyperlayer = populate_InputHyperlayer(IHyperlayer,lists:flatten(Input),[]),
 case Plasticity of
 none ->
 Populated_PHyperlayers = populate_PHyperlayers(Substrate,CPP_PIds,
CEP_PIds, LinkForm),
 {Output,U_PHyperlayers}=calculate_substrate_output(Populated_IHyperlayer,
Populated_PHyperlayers,LinkForm,Plasticity),
 {Output,[IHyperlayer|U_PHyperlayers]}
 end.
...
calculate_substrate_output(ISubstrate,Substrate,LinkForm,Plasticity)->
 case LinkForm of
 l2l_feedforward ->
 calculate_output_std(ISubstrate,Substrate,Plasticity,[]);
 fully_interconnected ->
 calculate_output_fi(ISubstrate,Substrate,Plasticity,[]);
 jordan_recurrent ->
 [OSubstrate|_] = lists:reverse(Substrate,Plasticity),
 calculate_output_std(lists:flatten([ISubstrate|OSubstrate]),Substrate, Plasticity,
[])
 end.

722 Chapter 16 Substrate Encoding

 calculate_output_std(Prev_Hyperlayer,[Cur_Hyperlayer|Substrate],Plasticity,Acc)->
 Updated_CurHyperlayer = [{Coord,calculate_output(Prev_Hyperlayer,{Coord,
Prev_O, Weights}, Plasticity),Weights} || {Coord,Prev_O,Weights} <- Cur_Hyperlayer],
 calculate_output_std(Updated_CurHyperlayer,Substrate,Plasticity,
[Updated_CurHyperlayer |Acc]);
 calculate_output_std(Output_Hyperlayer,[],_Plasticity,Acc)->
 {[Output || {_Coord,Output,_Weights} <- Output_Hyperlayer],lists:reverse(Acc)}.

 calculate_output(I_Neurodes,Neurode,Plasticity)->
 case Plasticity of
 none ->
 calculate_neurode_output_noplast(I_Neurodes,Neurode,0)
 end.

 calculate_neurode_output_noplast([{_I_Coord,O,_I_Weights}|
I_Neurodes], {Coord,Prev_O,[Weight|Weights]},Acc)->
 calculate_neurode_output_noplast(I_Neurodes,{Coord,Prev_O,
Weights},O*Weight+Acc);
 calculate_neurode_output_noplast([],{Coord,Prev_O,[]},Acc)->
 functions:tanh(Acc).

 calculate_neurode_output_plast([{_I_Coord,O,_I_Weights}|
I_Neurodes], {Coord,Prev_O,[{W,_LF,_Parameters}|WPs]},Acc)->
 calculate_neurode_output_plast(I_Neurodes,{Coord,Prev_O,
WPs}, O*W+Acc);
 calculate_neurode_output_plast([],{Coord,Prev_O,[]},Acc)->
 functions:tanh(Acc).

 calculate_output_fi(Input_Substrate,[Cur_Hypercube|Substrate],Plasticity,Acc)->
 Updated_CurHypercube = [{Coord,calculate_output(lists:flatten([Input_Substrate,
Cur_Hypercube |Substrate]),{Coord,Prev_O,Weights},Plasticity),Weights} || {Coord, Prev_O,
Weights} <- Cur_Hypercube],
 calculate_output_fi([Input_Substrate|Updated_CurHypercube], Substrate, Plasticity,
Acc);
 calculate_output_fi(Output_Hyperlayer,[],_Plasticity,Acc)->
 {[Output || {_Coord,Output,_Weights} <- Output_Hyperlayer],lists:reverse(Acc)}.

It can be seen from the calculate_output_std/2 function and the calcu-
late_output_fi/2 function, the substrate processing ends with the output hyperlayer
having the updated Output signals in the tuple encoded neurodes. Thus, all that is
left to do is extract the signals from the output hyperlayer, and send them on their
way to their respective actuators.

16.8 Implementing the substrate Module 723

10.The Output values in the tuples representing the neurodes within the output
hyperlayer now contain the actual output signals of the substrate. The layers
within the output hyperlayer are in the same order as the actuators within the
Actuators list for which they are destined. Thus the substrate can now extract
from the layers associated with each actuator the corresponding output vec-
tors, and forward them to the PIds of their respective actuators.

At this point the reason/2 function has returned the updated substrate and the
output vector back to the loop function, which now calls the advanced_fanout/3
function which uses the vl values of the actuators to extract the appropriate length
vectors from the substrate’s output list, and forward those vectors to their respec-
tive actuators. The implementation of this function is shown in Listing-16.18.

Listing-16.18 The implementation of the advanced_fanout/3 function.

advanced_fanout(OAcc,[Actuator|Actuators],[APId|APIds])->
 {Output,OAccRem}=lists:split(Actuator#actuator.vl,OAcc),
 APId ! {self(),forward,Output},
 advanced_fanout(OAccRem,Actuators,APIds);
advanced_fanout([],[],[])->
 ok.

11.At this point the actuators are now interacting with the environment, and the
substrate drops back into its main loop, awaiting again for the signals from the
sensors or the exoself.

At this point the substrate process updates its state, and drops back into its main
receive loop.

Listing-16.19 The implementation of the test_cs/0 function.

test_cs()->
 Sensors = [
 #sensor{format=no_geo,vl=3},
 #sensor{format={symmetric,lists:reverse([2,3])},vl=6}
],
 Actuators = [
 #actuator{format=no_geo,vl=2},

This substrate module is available with all the other source code, in the sup-
plementary materials section [1]. It is a lengthy, and at points complicated piece of
code, and definitely warrants multiple readings, and go-throughs. To play around
with the create_substrate/4 function, let us also create the test_cs/0 function,
which will create a test substrate and print it to console. It’s a short function, but
useful for debugging and testing. It is part of the substrate module, and is shown in
the following listing.

724 Chapter 16 Substrate Encoding

 #actuator{format={symmetric,lists:reverse([3,2])},vl=6}
],
 create_substrate(Sensors,[3,2,3,2],Actuators,l2l_feedforward).

At this point the only thing preventing us from using the new encoding, is that
genome_mutator module does not yet recognize the difference between the two
encodings. We fix that in the next section.

16.9 Updating the genome_mutator Module

Listing-16.20 The updated add_inlink/1 implementation.

add_inlink(Agent_Id)->
 A = genotype:read({agent,Agent_Id}),
 Cx_Id = A#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 N_Ids = Cx#cortex.neuron_ids,
 S_Ids = case A#agent.encoding_type of
 neural ->
 Cx#cortex.sensor_ids;
 substrate ->
 Substrate_Id=A#agent.substrate_id,
 Substrate=genotype:read({substrate,Substrate_Id}),
 Substrate#substrate.cpp_ids
 end,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 N = genotype:read({neuron,N_Id}),

Before the evolutionary process can be applied to evolve the NN system used
in a substrate encoded NN based agent, we need to update the genome_mutator
module to be aware of the two different encodings. If it is not aware of the differ-
ences between the neural and substrate encoding, then when using the mutation
operators like: add_sensor, add_actuator, add_sensorlink, and add_actuatorlink,
the system will try to connect the NN to sensors and actuators instead of sub-
strate_cpps and substrate_ceps, and try to connect the new sensors and actuators to
the neurons of the NN, rather than connecting them to the substrate. Thus, we now
update the noted functions, ensuring that they behave as expected.

We update the add_inlink/1 function so that when it is forming the inlink id
pool, it appends either the sensor_ids or the cpp_ids to the neuron_ids, depending
on whether the NN agent is neural or substrate encoded, respectively. The follow-
ing listing shows the updated function, with the added and modified code in bold-
face.

16.9 Updating the genome_mutator Module 725

 {I_Ids,_WeightPLists} = lists:unzip(N#neuron.input_idps),
 Inlink_NIdPool = filter_InlinkIdPool(A#agent.constraint,N_Id,N_Ids),
 case lists:append(S_Ids,Inlink_NIdPool) -- I_Ids of
 [] ->
 exit(“********ERROR:add_INLink:: Neuron already connected from all
ids”);
 Available_Ids ->
 From_Id = lists:nth(random:uniform(length(Available_Ids)),Available_Ids),
 link_FromElementToElement(Agent_Id,From_Id,N_Id),
 EvoHist = A#agent.evo_hist,
 U_EvoHist = [{add_inlink,From_Id,N_Id}|EvoHist],
 genotype:write(A#agent{evo_hist=U_EvoHist})
 end.

A similar piece of code is added to the add_neuron/1 mutation operator:

S_Ids = case A#agent.encoding_type of
 neural ->
 Cx#cortex.sensor_ids;
 substrate ->
 Substrate_Id=A#agent.substrate_id,
 Substrate=genotype:read({substrate,Substrate_Id}),
 Substrate#substrate.cpp_ids
end,

Similarly this modification is added to the add_actuatorlink/1 and
add_sensorlink/1, and so their updated implementations are not shown. We next
modify the add_sensor/1 and add_actuator/1 mutation operators. When adding
new sensors and actuators, the functions need to know whether they are operating
on the neural or substrate encoded NN. If it is a substrate encoded NN, then the
sensors must be added with: fainin_ids=[Substrate_Id], and the actuators must be
added with: fanout_ids=[Substrate_id]. We make these modifications to the two
mutation operators, with the add_sensor/1 function shown in Listing-16.21. The
add_actuator/1 function mirrors it.

Listing-16.21 The updated implementation of the add_sensor/1 function.

add_sensor(Agent_Id)->
 Agent = genotype:read({agent,Agent_Id}),
 Cx_Id = Agent#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 S_Ids = Cx#cortex.sensor_ids,
 SpeCon = Agent#agent.constraint,
 Morphology = SpeCon#constraint.morphology,

726 Chapter 16 Substrate Encoding

 case morphology:get_Sensors(Morphology)--
[(genotype:read({sensor,S_Id}))#sensor{id=undefined,cx_id=undefined,fanout_ids=[],
generation=undefined} || S_Id<-S_Ids] of
 [] ->
 exit(“********ERROR:add_sensor(Agent_Id):: NN system is already using
all available sensors”);
 Available_Sensors ->
 NewS_Id = {{-1,genotype:generate_UniqueId()},sensor},
 NewSensor=(lists:nth(random:uniform(length(Available_Sensors)),
Available_Sensors))#sensor{id=NewS_Id,cx_id=Cx_Id},
 EvoHist = Agent#agent.evo_hist,
 case Agent#agent.encoding_type of
 neural->
 genotype:write(NewSensor),
 N_Ids = Cx#cortex.neuron_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 link_FromElementToElement(Agent_Id,NewS_Id,N_Id),
 U_EvoHist = [{add_sensor,NewS_Id,N_Id}|EvoHist];
 substrate ->
 Substrate_Id = Agent#agent.substrate_id,
 genotype:write(NewSensor#sensor{fanout_ids
=[Substrate_Id]}),
 U_EvoHist = [{add_sensor,NewS_Id,Substrate_Id}|EvoHist]
 end,
 U_Cx = Cx#cortex{sensor_ids=[NewS_Id|S_Ids]},
 genotype:write(U_Cx),
 genotype:write(Agent#agent{evo_hist=U_EvoHist})
 end.

These modifications still leave us with one problem though. There are still no
mutation operators that connect the NN to the new substrate_cpps and sub-
strate_ceps. This issue is solved in the next section.

16.10 Implementing the add_cpp and add_cep Mutation
Operators

The implementation of the add_cpp and add_cep mutation operators is very
similar to that of add_sensor and add_actuator operators. The largest difference
here is that we first check if the NN is neural or substrate encoded. If it is neural
encoded, we exit the mutation operator and try another one. If it is substrate en-
coded, we mimic the add_sensor/add_actuator operators, and similarly connect a
new substrate_cpp and substrate_cep to the NN. The implementation of the

16.10 Implementing the add_cpp and add_cep Mutation Operators 727

add_cpp mutation operator is shown in Listing-16.22. The mutation operator
add_cep is almost identical to add_cpp, we simply change the references from
sensor to actuator, and thus its implementation is not shown.

Listing-16.22 The implementation of the add_cpp mutation operator.

add_cpp(Agent_Id)->
 Agent = genotype:read({agent,Agent_Id}),
 case Agent#agent.encoding_type of
 neural->
 exit(“********ERROR:add_cpp(Agent_Id):: NN is neural encoded, can not
apply mutation operator.”);
 substrate->
 Cx_Id = Agent#agent.cx_id,
 Cx = genotype:read({cortex,Cx_Id}),
 Substrate_Id = Agent#agent.substrate_id,
 Substrate=genotype:read({substrate,Substrate_Id}),
 Dimensions = length(Substrate#substrate.densities),
 Plasticity = Substrate#substrate.plasticity,
 CPP_Ids = Substrate#substrate.cpp_ids,
 case morphology:get_SubstrateCPPs(Dimensions,Plasticity)--
[(genotype:read({sensor,CPP_Id}))#sensor{id=undefined,cx_id=undefined,fanout_ids=[],
generation=undefined} || CPP_Id<-CPP_Ids] of
 [] ->
 exit(“********ERROR:add_cpp(Agent_Id):: NN system is al-
ready using all available substrate_cpps”);
 Available_CPPs ->
 NewCPP_Id = {{-1,genotype:generate_UniqueId()},sensor},
 NewCPP=(lists:nth(random:uniform(length(Available_CPPs)),
Available_CPPs))#sensor{id=NewCPP_Id, cx_id=Cx_Id},
 EvoHist = Agent#agent.evo_hist,
 genotype:write(NewCPP),
 N_Ids = Cx#cortex.neuron_ids,
 N_Id = lists:nth(random:uniform(length(N_Ids)),N_Ids),
 link_FromElementToElement(Agent_Id,NewCPP_Id,N_Id),
 U_EvoHist = [{add_cpp,NewCPP_Id,N_Id}|EvoHist],
 U_Substrate = Substrate#substrate{cpp_ids=[NewCPP_Id
|CPP_Ids]},
 genotype:write(U_Substrate),
 genotype:write(Agent#agent{evo_hist=U_EvoHist})
 end
 end.
%The add_cpp/1 function first checks the encoding of the NN based agent. If the encoding is
neural, it exits the function since the neural encoded NN based system does not use sub-
strate_cpps. If the agent is substrate encoded, then the function chooses randomly a still unused

728 Chapter 16 Substrate Encoding

and available substrate_cpp from the Available_CPPs list, and then links it to a randomly cho-
sen neuron in the NN. The function then updates evo_hist list, writes the updated substrate and
agent to database, and returns to the caller.

The last remaining modification needed to make it all work, is with regards to
the constraint record. We modify the constraint record by adding to it the two new
elements:

substrate_plasticities=[none],
substrate_linkforms = [l2l_feedforward],%[l2l_feedforward,jordan_recurrent,fully_connected]

And by modifying the mutation_operators list, by appending to it the following
two tuples: [{add_cpp,1}, {add_cep,1}].

16.11 Testing the New Encoding Method

Our two benchmarking problems provide an excellent example of the differ-
ences with regards to the amount of geometrical regularities present in problems,
and how to map the said regularities to systems capable of taking advantage of
them. For example the double pole balancing problem (DPB) does not really have
any of such regularities that we can readily expose to a substrate encoded NN
based system. Whereas the T-Maze problem has more potential, but requires us to
manually expose such regularities through an appropriate set of new sensors, actu-
ators, and the mapping of the sensory signals and the produced output signals to
the substrate from sensors and from the substrate to actuators, respectively.

We first test the new encoding on the DPB problem. To do so, we first compile
the new modules, then reset our mnesia database, and then start the polis by exe-
cuting the functions: polis:sync(), polis:reset(), and polis:start(). Then we modify
the INIT_CONSTRAINTS macro in the population_monitor module to:

-define(INIT_CONSTRAINTS,[#constraint{morphology=Morphology,connection_architecture
=CA,population_evo_alg_f=generational,agent_encoding_types=[substrate],
substrate_plasticities =[none]}||Morphology<-[pole_balancing],CA<-[feedforward]]).

And finally recompile the population_monitor module, and execute the func-
tion benchmarker:start(dpb), as shown in the following listing:

Listing-16.23 The double pole balancing benchmark, performed with the substrate encoded
NNs.

With these modifications, all that’s left to do is to compile the updated source
code, and to recreate the mnesia database with the newly added substrate table. We
test our updated system in the next section.

16.11 Testing the New Encoding Method 729

Graph:{graph,pole_balancing,

 [1.106212121212121,1.1408585858585858,1.1193686868686867,
 1.161489898989899,1.143080808080808,1.0764141414141413,
 1.1325252525252525,1.1934343434343437,1.1413383838383837,
 1.1829797979797978],
 [0.05902592904791409,0.09147103257884823,0.0803810171785662,
 0.07401185164044073,0.08683375207803117,0.08533785941757911,
 0.08215891142076008,0.24593906122148776,0.20476041049617125,
 0.2504944656040026],
 [0.0855150202020202,0.6052218588038502,1.5313114901359988,
 2.599710070705357,3.797623517536588,44.833702130336846,
 50.523672653857076,51.832271099817774,180.47316244780285,
 158.35976811529105],
 [0.010608461667327089,2.1795158240432704,6.130303687259124,
 8.258297144062041,8.028234616671885,121.66517882421797,
 111.40580585983162,72.48290852966396,424.3416641012721,
 343.9761405284347],
 [0.1431,10.105238893248718,40.68352829762942,40.68352829762942,
 77.07757425714148,887.0261903586879,887.0261903586879,
 887.0261903586879,2588.3673781672096,2588.3673781672096],
 [0.0253,0.0406,0.0253,0.0253,0.0253,0.0253,0.0253,0.0171,0.0253,
 0.0253],
 [7.45,7.55,7.65,7.4,6.65,6.05,6.3,6.9,6.15,6.3],
 [1.1608186766243898,1.116915395184434,1.5256146302392357,
 1.562049935181331,1.3518505834595773,1.5321553446044565,
 1.452583904633395,1.6703293088490065,1.3883443376914824,
 1.4177446878757827],
 [500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0],
 []}
Tot Evaluations Avg:5079.95 Std:44.72189061298728

It did not solve the problem, but that is to be expected. The most important part
is that our SENN system is functional, there are no bugs, and our
neuroevolutionary system did evolve more and more fit substrate encoded NN
systems over time. The fact that this type of NN system does not solve the double
pole balancing problem is to be expected, because the solution requires recurrent
connections and topologies not available to our SENN yet. Substrate encoding of
type l2l_feedforward, or jordan_recurrent, simply don’t provide the right topolo-
gies. It would require us to implement the freeform version of the substrate, before
it is able to solve this problem.

On the other hand the T-Maze problem does have geometrical regularities. For
example the maze has directions, and the sensors come from the left, straight
ahead, and right, and the movements based on the signals are similarly made to the

730 Chapter 16 Substrate Encoding

We first create two new sensors and a new actuator. The problem with our cur-
rent sensor is that it mingles the reward data with the range data. The range senso-
ry signals do have geometrical properties, the signals coming from the left, for-
ward, and the right range sensors, hold that directional geometrical information.
But the reward signal has no geometrical information, and should be in its own
sensor and thus on a different input layer. Thus, we need to create two new sen-
sors, a single dimensional range sensor that just gathers the range sensory data
from the private scape, and a single dimensional reward size sensor, which for-
wards to the substrate a vector of length 1, containing the reward size of the re-
ward acquired at that particular sector. But because the signals that the private
scape returns to a querying sensor is based on that sensor’s parameter, we have ac-
tually already implemented these two sensors. We can allow our existing
dtm_GetInput sensor to act as the two sensors we are after by simply having one
dtm_GetInput use the parameter reward, and the other use range_sense, with the
vl set to 1 and 3 respectively. Thus, with regards to the sensors, we need only
modify the morphology module, so that two sensors are produced through two dif-
ferent parameters, as show in Listing-16.24.

Listing-16.24 Modifying the morphology module to specify two sensors using the parameters:
reward, and range_sense, rather than: all.

discrete_tmaze(sensors)->
 [#sensor{name=dtm_GetInput,type=standard,scape={private,dtm_sim},vl=VL, parameters
=[Parameter]} || {VL,Parameter} <- [{1,reward},{3,range_sense}]];
discrete_tmaze(actuators)->
 [
 %#actuator{name=dtm_SendOutput,type=standard,scape={private,dtm_sim},vl=1,
parameters=[]}
 #actuator{name=dtm_SubstrateSendOutput,type=standard,scape={private,dtm_sim},vl=3,
parameters=[]}
].

left, straight ahead, or to the right. Thus the sensors and movements are geometri-
cally correlated. But the T-Maze sensors and actuators we’ve created for our NN
based agents do not encode the sensory information, and do not accept the output
signals in the ways that take advantage of the geometrical regularities of this
problem. Thus we build the new sensor and actuator which was shown to perform
well in [2], which discussed the use of substrate encoded NN based systems in the
T-Maze navigation based problems.

From the above listing, you will also notice that a new actuator has already
been specified, the dtm_SubstrateSendOutput actuator, with vl=3.
used in the previous two chapters was a simple program which accepted a vector
of length one, and based on it decided whether to send to the private scape an ac-
tion that would turn the agent’s avatar to the left, to the right, or move straight

The actuator we

16.11 Testing the New Encoding Method 731

ahead. But now we have access to the geometry of the sensor, and thus we can use
an actuator that takes advantage of that geometry. And so we make an actuator
that is executed with an output vector of length 3: [L,F,R], calculates which of the
elements within the vector has the highest magnitude, and based on that value per-
forms the action. If L is the highest, then the agent turns left and moves one sector
forward, if F is the highest, the agent moves forward one sector, and if R is the
highest, the agent turns right and moves one sector forward. The implementation
of the new actuator is shown in Listing-16.25.

Listing-16.25 The implementation of the substrate based actuator added to the actuator module.

dtm_SubstrateSendOutput(Output,Parameters,Scape)->
 [L,F,R] = Output,
 Action =if
 ((L > F) and (L > R)) -> [-1];
 ((R > F) and (R > L)) -> [1];
 true -> [0]
 end,
 Scape ! {self(),move,Parameters,Action},
 receive
 {Scape,Fitness,HaltFlag}->
 {Fitness,HaltFlag}
 end.

Though certainly these new sensors and actuators can also be used by our
standard neural encoded NNs, it is the substrate encoded NN based agent that can
better take advantage of their properties. With these new sensors and actuators, we
now perform the benchmark of our system on the T-Maze problem. We leave the
pmp parameters as in the previous chapter, but we slightly change the genotype, so
that the agent starts off with both of the sensors rather than just one. In this man-
ner the agent from the very start will have access to the reward and range sensors,
and access to the movement actuator (just as did our neural encoded agent). This
is accomplished by us simply using the function morphology:get_Sensors/1 in-
stead of morphology:get_InitSensors/1 in the genotype module under the encoding
case type: substrate. We do this only for this problem, and can change it back after
we’re done.

To perform the benchmark, we set the benchmarker’s ?INIT_CONSTRAINTS
to:

-define(INIT_CONSTRAINTS,[#constraint{morphology=Morphology,connection_architecture
=CA, population_evo_alg_f=generational, agent_encoding_types=[substrate],
substrate_plasticities=[none]} || Morphology<-[discrete_tmaze], CA<-[feedforward]]),

732 Chapter 16 Substrate Encoding

Then execute polis:sync(), and then finally run the benchmark by executing:
benchmarker:start(substrate_dtm). The result of this benchmark is shown in the
following listing.

Listing-16.26 The benchmark results of performing the T-Maze benchmark with a substrate en-
coded NN based agent.

Graph:{graph,discrete_tmaze,
 [1.0941666666666665,1.0963888888888889,1.1025,1.1183333333333334,
 1.0733333333333335,1.0944444444444446,1.0950000000000002,
 1.0899999999999999,1.0900000000000003,1.107222222222222],
 [0.08648619029134716,0.09606895350299437,0.1077903056865505,
 0.09157571245210767,0.07423685817106697,0.08624541497922236,
 0.09733961166965892,0.099498743710662,0.06999999999999999,
 0.1057177117038637],
 [113.04933333333342,107.690888888889,109.23533333333341,
 110.34133333333344,112.18933333333344,117.18266666666673,
 110.90533333333342,113.21533333333343,110.77066666666674,
 111.924888888889],
 [10.895515978807254,12.527729754034578,9.791443225819389,
 9.502769093503451,9.827619673371789,6.41172966783014,
 12.66381855699315,8.934695692138094,10.400047521258944,
 8.231449225116977],
 [122.0000000000001,122.0000000000001,122.0000000000001,
 122.0000000000001,122.0000000000001,122.0000000000001,
 122.0000000000001,122.0000000000001,122.0000000000001,
 122.0000000000001],
 [10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115],
 [8.4,8.3,9.15,9.25,8.85,8.9,9.0,8.65,8.9,9.0],
 [1.1135528725660042,1.004987562112089,0.7262919523166976,
 0.7664854858377946,1.3883443376914821,0.8306623862918074,
 1.140175425099138,1.3518505834595775,1.1789826122551597,
 0.9486832980505138],
 [500.0,500.0,500.0,475.0,500.0,500.0,500.0,500.0,500.0,500.0],
 []}
Tot Evaluations Avg:5091.5 Std:37.78160928282436

As expected, and similarly to the results of the T-Maze navigation of chapter-
14, our TWEANN was able to evolve agents which always go to the right corner
containing the large reward before the position of the large and the small rewards
are switched. And as before, we will be able to evolve agents which learn from

16.13 References 733

experience after we’ve added plasticity in the next chapter, which will result in
agents able to solve this problem and achieve the score of 149.2.

Nevertheless, the test shows that our system works, and the new actuator and
sensors work. Our TWEANN system evolved a relatively competent T-Maze nav-
igator, but the substrate still lacks plasticity, and so we cannot expect our
TWEANN to evolve a perfect solution just yet. Both of these examples, double
pole balancing and T-Maze navigation, demonstrate that our substrate encoded
NN based systems are functional, without errors, and capable of evolving and im-
proving, and that our TWEANN can successfully evolve such agents. We need
now only to apply our substrate encoded NN based agents to a problem which of-
fers an advantage to systems capable of extracting the problem’s geometrical
regularities. An example of such a problem is the analysis of financial charts. And
it is this problem that we will explore in Chapter-19.

16.12 Summary and Discussion

16.13 References

[1] Supplementary material: www.DXNNResearch.com/NeuroevolutionThroughErlang
[2] Risi S, Stanley KO (2010) Indirectly Encoding Neural Plasticity as a Pattern of Local Rules.

Neural Plasticity 6226, 1-11.

In this chapter we have developed a substrate encoded architecture for our
memetic algorithm based topology and weight evolving artificial neural network
platform. We modified the implementation of our TWEANN to allow the evolution
of both, neural and substrate encoded NNs. Our substrate encoded NN is able to
evolve and integrate new substrate_cpps and substrate_ceps, and to also use vari-
ous substrate topologies through the use of the linkform element in the substrate
record. We have implemented and tested our new system. The tests demonstrate
that our TWEANN system is able to evolve substrate encoded NNs effectively,
but that the problems we have created for testing purposes are not well suited for
this type of encoding.

This was not an easy chapter, the code was long, and it will require some time
to analyze. Even more, our evolved SENN agents are not yet fully implemented;
the substrate encoded NN based agents are still missing an important feature:
plasticity. In the next chapter we add that feature, allowing for the substrates to
not only have the evolved NNs simply set the neurode synaptic weights, but allow
those same NNs to act as evolving learning rules, which update the synaptic
weights of the substrate embedded neurodes, based on their location, and their pre-
and post- synaptic signals.

http://www.DXNNResearch.com/NeuroevolutionThroughErlang

734 Chapter 16 Substrate Encoding

[3] Haasdijk E, Rusu AA, Eiben AE (2010) HyperNEAT for Locomotion Control in Modular
Robots. Control 6274, 169-180.

[4] Coleman OJ (2010) Evolving Neural Networks for Visual Processing. Undergraduate Hon-
ours Thesis (Bachelor of Computer Science), University of New South Wales

[5] Stanley KO, Miikkulainen R (2002) Evolving Neural Networks Through Augmenting Topol-
ogies. Evolutionary Computation 10, 99-127.

Chapter 17 Substrate Plasticity

Abstract In this chapter we develop a method for the substrate to possess plastic-
ity, and thus have the synaptic weights of its neurodes change through experience.
We first discuss the ABC and the Iterative substrate learning rules popularized
within the HyperNEAT neuroevolutionary system. Then we implement the said
learning rules within our own system, through only just a few minor modifications
to our existing architecture.

Our system now has a highly advanced direct encoded NN implementation
with plasticity. It includes various other performance improving features. Our
TWEANN platform can even evolve substrate encoded NN based agents. Yet still
our TWEANN does not have all the essential elements of a bleeding edge system,
one thing is missing... substrate plasticity.

At this time the NN produces synaptic weights between the neurodes. But what
if we feed the NN not just the coordinates of the connected neurodes, but also the
neurode’s presynaptic signal, its postsynaptic signal, its current weight for the
connection, and then designate and use the NN’s output not as a new synaptic
weight, but as a change in that weight? And let the NN produce these changes not
only at the very start of the evaluation, but continually, every cycle, every time the
substrate processes its set of sensory vectors. This approach will effectively make
the entire NN into a learning rule producing system. So how do we do it?

For example, if we change the substrate_cpp from feeding the NN the vector:
[X1,Y1...X2,Y2...] to: [X1,Y1...X2,Y2...PreSynaptic,PostSynaptic,CurWeight],
and change the standard substrate_cep currently used from outputting:
[SynapticWeight] to: [Delta_SynapticWeight], and instead of setting the sub-
strate_state_flag to hold, we set it to iterative, letting the NN produce the Del-
ta_SynapticWeight signals after every time the substrate processes a signal, the
substrate will gain a highly dynamic learning rule. After processing the sensory
signals, the substrate has all its neurode weights updated from CurWeight to
CurWeight+Delta_SynapticWeight. And so the substrate is changing, learning

DOI 10.1007/978-1-4614- - © Springer Science+Business Media New York 2013 4463 3_17,
735 G.I. Sher, Handbook of Neuroevolution Through Erlang,

The implementation of substrate plasticity is not as simple as turning the plas-
ticity on in the NN itself. If we allow for the NN to have plasticity, it will not
translate into a substrate encoded NN with plasticity because the NN will simply be
changing, but simply based on the sequence of the coordinates that it is processing
from the substrate embedded neurodes, as opposed to the actual sensory signals.
Also, as it changes, it will have no affect on the substrate which is the one pro-
cessing the sensory signals, because the NN sets the substrate’s synaptic weights
only at the very start of an evaluation. Thus, what we need is a method that will
allow for the synaptic weights between the neurodes to update using some kind of
advanced learning rule, not necessarily Hebbian. Surprisingly, this is an easy task
to accomplish.

736 Chapter 17 Substrate Plasticity

through sensory experience. Of course this does mean that we have to execute the
NN X number of times, every time the substrate processes the signals from its
sensors, where X is the number of neurode connections. So if SENN lives for
1000 cycles, it must execute and poll the NN 1000*X number of times.

earlier chapter. The first method is called iterative, while the second method is
called the abc update rule (aka abcn update rule). As you can see, we can use the
NN to really produce any kind of signal, and use that NN output signal it any way
we want, as a synaptic weight, as a synaptic weight update rule, as both, as none...
In this chapter we implement the above two rules, and then test our new learning
system on the Discrete T-Maze problem.

17.1 The Updated Architecture

We have actually already performed the brunt of the work in the previous chap-
ter. The way we designed our substrate encoded NN system, allows us to easily
use the NN on the substrate in any way we want, and it allows us to similarly re-
purpose the substrate to any task. To implement the abcn learning rule, we will
need to slightly change the tuple representation of the neurodes within the sub-
strate, such that each tuple can also keep track of the learning parameters for every
synaptic weight. The case will be even simpler with regards to the Iterative learn-
ing rule, in which the NN can directly output a signal which simply acts as the
change in the synaptic weight. The only major update to our implementation with
regards to the iterative learning rule, is that the neurodes need to be updated after
every time they process a signal, and that update has to be done by calling the NN
for every synaptic weight.

The other significant update to our system will deal with creating new sub-
strate_cpps within the morphology. As you recall, a general Hebbian learning rule
requires the postsynaptic neurode’s input from presynaptic neurode X, postsynaptic
neurode’s synaptic weight for the connection with X, and the postsynaptic

The two of the above rules were originally introduced in the HyperNEAT sys-
tem, and tested on a discrete T-Maze problem similar to the one we built in an

On the other hand, if we for example use a substrate_cep which outputs:
[W,A,B,C,N] similarly to the substrate_cep that outputs: [W], just once during the
evaluation at the beginning, then the substrate_cep outputs not just the synaptic
weights between the neurodes, but the parameters the neurodes can use for the exe-
cution of a Hebbian learning rule. This too will effectively add plasticity to the
substrate, since now it not only has the initial synaptic weights, but also the para-
meters needed to calculate the update of the synaptic weights of every neurode
after it processes some signal. Not to mention, the NN is a highly complex,
advanced, evolving system, and thus the learning rules, the parameters, will be
coordinate and connection specific, and the learning rule itself will evolve and
optimize over the generations due to the NN itself growing and evolving over time.

17.2 Implementing the abcn Learning Rule 737

****Note****
Although granted, we could choose to simply feed the NN just the coordinates… but that would
make for a much less effective learning rule, since the NN will have that much less information
about the synaptic links.

In the next two sections we will add the necessary functions to our substrate
implementation such that it can support these two types of learning rules. The best
part is that these two rules encompass a whole class of other related rules, which
after the implementation can easily be expanded. For example, after the abcn rule
is implemented, we can easily change it to Oja’s, or any other type of parameter
based learning rule. On the other hand, after we implement the iterative rule, we

parameters have to be updated after every single signal processing step (during
every sense-think-act cycle).

17.2 Implementing the abcn Learning Rule

When using the abcn rule, the NN needs to be called only once every evalua-
tion, per connection between two neurodes. The only difference between it and the
standard none plasticity version we have implemented, is that the NN does not on-
ly set up the synaptic weight W, but also generates the parameters: A, B, C, N, for
each such synaptic weight. The implementation of this learning rule will primarily
concentrate on the change of the tuple representing the neurode within the sub-
strate.

17.2.1 Updating the substrate Module

While updating the substrate module, we want to disrupt as little of it as possi-
ble. The standard neurode representing tuple has the following format: {Coordi-
nate,Output,Weights}. The Weights list is only used for its values within the func-
tion calculate_neurode_output_std/3, which itself is executed from the function
calculate_output/3, which is called for every neurode to calculate that neurode’s
output. This function is shown in the following listing.

will be able to implement any type of rule where synaptic weight or other types of

neurode’s output. Since our NN will now act as a learning rule by producing the
change in the synaptic weight (in the case of the iterative implementation), or pro-
duce a set of parameters for each neurode to utilize a form of a Hebbian learning
rule (in the case of the abcn implementation), we need to feed the NN not just the
coordinates of the connected neurodes, but also these three essential values: Input,
Weight, Output.

738 Chapter 17 Substrate Plasticity

Listing-17.1 The calculate_output/3 function.

calculate_output(I_Neurodes,Neurode,Plasticity,CPP_PIds,CEP_PIds)->
 {Coord,_Prev_O,Weights} = Neurode,
 case Plasticity of
 none ->
 Output=calculate_neurode_output_std(I_Neurodes,Neurode,0),
 {Coord,Output,Weights}
 end.

This is the function executed during the times when the substrate_state_flag is
set to reset and hold, and it’s already almost perfectly set up for use with different
types of plasticities. Thus, since this is the only function that really sees the format
of the Weights list, which is itself set by the set_weight/2 function executed when
the substrate_cep sends the substrate the set_weight message, we need only add a
new function triggered by a substrate_cep (similar to set_weight, but which sets
all the other Hebbian learning rule parameters as well), and a new calcu-
late_neurode_output_plast/3 function, which can handle the new type of tuple rep-
resenting a plastic neurode.

To allow for Oja’s and Hebbian types of plasticity, we need for the neurode to
store not just weights, but also the learning parameters for each weight. When the
substrate uses a Hebbian type of plasticity, we need to allow for the neurodes to be
represented as: {Coordinates,Output,WeightsP}, where WeightsP has the format:
[{W, LearningRuleName, Parameters}...].

As we noted before, because the structure of the list representing the neurode’s
synaptic weights is accessed and used when those weights are being set by the
set_weight function, and when being read to calculate the output by the calcu-
late_substrate_output_std function, we need only modify those two functions to
set the weights list to the new format, and create a new calcu-
late_substrate_output_plast function which can read that list. Finally, we also cre-
ate a new function which updates the neurode after it has calculated an output, at
which point the Hebbian learning rule has the Input, Output, and the Synaptic
Weights needed to calculate the weight changes.

Since we must send the substrate_cpps not just the coordinates of the two neu-
rons, but also the neurode’s Input, Output, and current synaptic Weight values, we
first update the populate_PHyperlayers_l2l, populate_PHyperlayers_fi, and popu-
late_PHyperlayers_nsr functions, from which the get_weights is called. The up-
dated version simply checks the plasticity, and if it is of type abcn, it then calls the
get_weights function, which calls the cpps with the three new values, as shown in
the following listing.

Listing-17.2 The updated implementation of the populate_PHyperlayers_l2l function, and the
new get_weights function.

17.2 Implementing the abcn Learning Rule 739

populate_PHyperlayers_l2l(PrevHyperlayer,[{Coord,PrevO,PrevWeights}|CurHyperlayer],
Substrate, CPP_PIds, CEP_PIds, Plasticity,Acc1,Acc2)->
 NewWeights = case Plasticity of
 none ->
 get_weights(PrevHyperlayer,Coord,CPP_PIds,CEP_PIds,[]);
 _ ->
 get_weights(PrevHyperlayer,Coord,CPP_PIds,CEP_PIds,[],PrevWeights,
PrevO)
 end,
populate_PHyperlayers_l2l(PrevHyperlayer,CurHyperlayer,Substrate,CPP_PIds,CEP_PIds,
Plasticity,[{Coord,PrevO, NewWeights}|Acc1],Acc2);
 populate_PHyperlayers_l2l(_PrevHyperlayer,[],[CurHyperlayer|Substrate],CPP_PIds,
CEP_PIds, Plasticity, Acc1,Acc2)->
 PrevHyperlayer = lists:reverse(Acc1),
populate_PHyperlayers_l2l(PrevHyperlayer, CurHyperlayer,Substrate,CPP_PIds,CEP_PIds,
Plasticity,[],[PrevHyperlayer|Acc2]);
populate_PHyperlayers_l2l(_PrvHyperlayer,[],[],CPP_PIds,CEP_PIds,Plasticity,Acc1,Acc2)->
 lists:reverse([lists:reverse(Acc1)|Acc2]).
…
 get_weights([{I_Coord,I,_I_Weights}|I_Neurodes],Coord,CPP_PIds,CEP_PIds,Acc,
[W|Weights],O)->
 plasticity_fanout(CPP_PIds,I_Coord,Coord,[I,O,W]),
 U_W=fanin(CEP_PIds,W),
 get_weights(I_Neurodes,Coord,CPP_PIds,CEP_PIds,[U_W|Acc],Weights,O);
 get_weights([],_Coord,CPP_PIds,CEP_PIds,Acc,[],_O)->
 lists:reverse(Acc).

 plasticity_fanout([CPP_PId|CPP_PIds],I_Coord,Coord,IOW)->
 CPP_PId ! {self(),I_Coord,Coord,IOW},
 plasticity_fanout(CPP_PIds,I_Coord,Coord,IOW);
 plasticity_fanout([],_I_Coord,_Coord,_IOW)->
 done.

The above listing only shows the populate_PHyperlayers_l2l function, with the
updated source in boldface. The other two populate_PHyperlayers_ functions are
similarly updated with the new case clause. When Plasticity is not set to none, the
new get_weights/7 function is executed, which in return calls the plastici-
ty_fanout/4 function, which forwards the vector [I,O,W], along with the coordi-
nates, to the NN’s substrate_cpps. We will update the morphology and create the
new substrate_cpps a bit later. When the NN has finished processing these signals,
the NN’s new abcn substrate_cep, sends the substrate the vector: [W,A,B,C,N],
and the message to execute the set_abcn/2 function, whose implementation is
shown next.

740 Chapter 17 Substrate Plasticity

Listing-17.3 The implementation of the set_abcn function.

set_abcn(Signal,_WP)->
 [U_W,A,B,C,N] = Signal,
 {functions:sat(U_W,3.1415,-3.1415),abcn,[A,B,C,N]}.

When this function is called, it returns the tuple: {functions:sat(U_W,3.1415,-
3.1415),abcn,[A,B,C,N]}, which now takes the place of the simple synaptic
weight value. This is done for every synaptic weight in the weights list of every
neurode.

Once all neurodes have been updated in this manner, the substrate can now
start processing the sensory signals. Everything is left the same as before, the only
thing that needs to be changed is the actual function which calculates the output of
the neurode by processing its input and the neurode’s synaptic weights. This is
done in the calculate_output function. We thus update it to check for the plasticity
type of the substrate, and based on it, either execute the standard calcu-
late_neurode_output_std, or in the case of the abcn rule, the new calcu-
late_neurode_output_plast function. Listing-17.4 shows the updated calcu-
late_output/5 function, and the new functions which it calls.

Listing-17.4 The implementation of the updated calculate_output/5 function.

calculate_output(I_Neurodes,Neurode,Plasticity,CPP_PIds,CEP_PIds)->
 {Coord,_Prev_O,Weights} = Neurode,
 case Plasticity of
 none ->
 Output=calculate_neurode_output_std(I_Neurodes,Neurode,0),
 {Coord,Output,Weights};
 abcn ->
 Output=calculate_neurode_output_plast(I_Neurodes,Neurode,0),
 update_neurode(I_Neurodes,{Coord,Output,Weights},[])
 end.
…
 calculate_neurode_output_plast([{_I_Coord,O,_I_Weights}|I_Neurodes],{Coord,Prev_O,
[{W,_LF,_Parameters}|WPs]}, Acc)->
 calculate_neurode_output_plast(I_Neurodes,{Coord,Prev_O,WPs},O*W+Acc);
 calculate_neurode_output_plast([],{Coord,Prev_O,[]},Acc)->
 functions:tanh(Acc).

 update_neurode([{_I_Coord,I_O,_I_Weights}|I_Neurodes],{Coord,O, [{W,LF,Parameters}
|WPs]},Acc)->
 U_W = substrate:LF(I_O,O,W,Parameters),
 update_neurode(I_Neurodes,{Coord,O,WPs},[{U_W,LF,Parameters}|Acc]);
 update_neurode([],{Coord,O,[]},Acc)->

17.2 Implementing the abcn Learning Rule 741

 {Coord,O,lists:reverse(Acc)}.

 abcn(Input,Output,W,[A,B,C,N])->
 Delta_Weight = N*(A*Input*Output + B*Input + C*Output),
 W+Delta_Weight.

When plasticity is set to abcn, the calculate_output function first executes the
calculate_substrate_output_plast function which calculates the neurode’s output,
and then the function update_neurode/3, which updates the neurode’s synaptic
weights based on the parameters stored in the tuple representing the given
neurode.

What is interesting here is that the update_neurode executes the update func-
tion based on the atom within the tuple representing neurode. So if we change the
learning rule specifying atom from: abcn, to for example: ojas, and implement the
ojas/4 function, then we can easily and without any further changes, start using the
Oja’s learning rule.

That is effectively it with regards to updating the substrate module. We next
update the morphology, and add to it the new substrate cpps and ceps needed for
this learning rule.

17.2.2 Updating the Morphology Module

Our substrate can now deal with the new type of substrate_cpp and sub-
strate_cep, yet we have neither specified nor created them yet. We do just that in
this section.

When creating substrate_cpps and substrate_ceps, we have to specify the Plas-
ticity type that the substrate will use. Thus we can modify the cpps and ceps to use
different input and output vector lengths dependent on the type of plasticity. For

strate_cpps to pass to the NN an extended vector with the extra three values for
Input, Output, and Wieght: [I,O,W], we set the morphology in such a way that
when plasticity is set to abcn or iterative, a different set of substrate_cpps is creat-
ed, as shown in the following listing.

Listing-17.5 The implementation of the updated get_SubstrateCPPs/2 function.

get_SubstrateCPPs(Dimensions,Plasticity)->
 io:format(“Dimensions:~p, Plasticity:~p~n”,[Dimensions,Plasticity]),
 if
 (Plasticity == iterative) or (Plasticity == abcn) ->
 Std=[

example, since both the iterative and the abcn learning rules both require sub-

742 Chapter 17 Substrate Plasticity

 #sensor{name=cartesian,type=substrate,vl=Dimensions*2+3}
 #sensor{name=centripital_distances,type=substrate,vl=2+3},
 #sensor{name=cartesian_distance,type=substrate,vl=1+3},
 #sensor{name=cartesian_CoordDiffs,type=substrate,vl
=Dimensions+3},
 #sensor{name=cartesian_GaussedCoordDiffs,type=substrate,vl
=Dimensions+3},
 #sensor{name=iow,type=substrate,vl=3}
],
 Adt=case Dimensions of
 2 ->
 [#sensor{name=polar,type=substrate,vl=Dimensions*2+3}];
 3 ->
 [#sensor{name=spherical,type=substrate,vl
=Dimensions*2+3}];
 _ ->
 []
 end,
 lists:append(Std,Adt);
 (Plasticity == none) ->
 Std=[
 #sensor{name=cartesian,type=substrate,vl=Dimensions*2},
 #sensor{name=centripital_distances,type=substrate,vl=2},
 #sensor{name=cartesian_distance,type=substrate,vl=1},
 #sensor{name=cartesian_CoordDiffs,type=substrate,vl=Dimensions},
 #sensor{name=cartesian_GaussedCoordDiffs,type=substrate, vl
=Dimensions}
],
 Adt=case Dimensions of
 2 ->
 [#sensor{name=polar,type=substrate,vl=Dimensions*2}];
 3 ->
 [#sensor{name=spherical,type=substrate,vl=Dimensions*2}];
 _ ->
 []
 end,
 lists:append(Std,Adt)
 end.

In the above updated function, we simply add to the vl parameter the extra: 3,
that is required to deal with the extended vector when the plasticity is set to abcn
or iterative. Listing-17.6 shows the updated get_SubstrateCEPs/2 function, with its
new cep that the abcn learning rule uses.

Listing-17.6 The implementation of the updated get_SubstrateCEPs/2 function.

17.2 Implementing the abcn Learning Rule 743

get_SubstrateCEPs(Dimensions,Plasticity)->
 case Plasticity of
 abcn ->
 [#actuator{name=set_abcn,type=substrate,vl=5}];
 none ->
 [#actuator{name=set_weight,type=substrate,vl=1}];
 end.

With this done, we need now only modify the substrate_cpp and substrate_cep
modules.

17.2.3 Updating the substrate_cpp & substrate_cep Modules

The only remaining modification left, is one done to the substrate_cpp and sub-
strate_cep modules. For the first, we simply extend the receive loop so that it can
accept a message tuple of the form: {Substrate_PId, Presynaptic_Coords, Postsyn-

vector [I,O,W] of length 3. The updated loop/8 function is shown in Listing-17.7,
with the added functionality in boldface.

Listing-17.7 The implementation of the updated substrate_cpp:loop/6 function.

loop(Id,ExoSelf_PId,Cx_PId,Substrate_PId,CPPName,VL,Parameters,Fanout_PIds)->
 receive
 {Substrate_PId,Presynaptic_Coords,Postsynaptic_Coords}->
 SensoryVector = functions:CPPName(Presynaptic_Coords,
Postsynaptic_Coords),
 [Pid ! {self(),forward,SensoryVector} || Pid <- Fanout_PIds],
 loop(Id,ExoSelf_PId,Cx_PId,Substrate_PId,CPPName,VL,Parameters,
Fanout_PIds);
 {Substrate_PId,Presynaptic_Coords,Postsynaptic_Coords,IOW}->
 SensoryVector = functions:CPPName(Presynaptic_Coords,
Postsynaptic_Coords, IOW),
 [Pid ! {self(),forward,SensoryVector} || Pid <- Fanout_PIds],
 loop(Id,ExoSelf_PId,Cx_PId,Substrate_PId,CPPName,VL,Parameters,
Fanout_PIds);
 {ExoSelf_PId,terminate} ->
 ok
 end.

Since to produce the actual SensoryVector the cpp uses the CPPName func-
tion found in the functions module, we also add the new necessary functions to

aptic_Coords, IOW}. Which is an extended message to also accommodate the new

744 Chapter 17 Substrate Plasticity

allow the substrate_cpp to process the extended vector, and produce the sensory
vectors of appropriate lengths, which now will include the IOW values.

Listing-17.8 The new sensory signal processing functions in the functions module.

cartesian(I_Coord,Coord,[I,O,W])->
 [I,O,W|lists:append(I_Coord,Coord)].

polar(I_Coord,Coord,[I,O,W])->
 [I,O,W|lists:append(cart2pol(I_Coord),cart2pol(Coord))].

spherical(I_Coord,Coord,[I,O,W])->
 [I,O,W|lists:append(cart2spher(I_Coord),cart2spher(Coord))].

centripetal_distances(I_Coord,Coord,[I,O,W])->
 [I,O,W,centripetal_distance(I_Coord,0),centripetal_distance(Coord,0)].

cartesian_distance(I_Coord,Coord,[I,O,W])->
 [I,O,W,calculate_distance(I_Coord,Coord,0)].

cartesian_CoordDiffs(FromCoords,ToCoords,[I,O,W])->
 [I,O,W|cartesian_CoordDiffs(FromCoords,ToCoords)].

cartesian_GaussedCoordDiffs(FromCoords,ToCoords,[I,O,W])->
 [I,O,W|cartesian_GaussedCoordDiffs(FromCoords,ToCoords)].

iow(_I_Coord,_Coord,IOW)->
 IOW.

These are basically the same functions as used by the substrate plasticity of
type none, except that they append to the resulting processed coordinates the vec-
tor IOW, as is shown above in boldface. Finally, we now add the new set_abcn/3
function to the substrate_cep module, as shown next.

Listing-17.9 A new set_abcn/3 function added to the substrate_cep module.

set_abcn(Output,_Parameters,Substrate_PId)->
 Substrate_PId ! {self(),set_abcn,Output}.

After the standard substrate_cep receive loop gathers all the signals from the
presynaptic neurons, it executes the morphologically specified substrate_cep func-
tion, which is set_abcn/3 in the case when plasticity = abcn. This function sends
to the substrate the output vector: [W,A,B,C,N], and the message set_abcn, which

 module. The following listing shows the newly added functions which the functions

17.2 Implementing the abcn Learning Rule 745

the substrate then uses to execute the set_abcn function which we added to the
substrate module earlier in this chapter.

17.2.4 Benchmarking the New Substrate Plasticity

Undramatically, these are all the modifications that were needed to allow our
substrate encoded system to let the neurodes utilize the Hebbian learning rule.
Now that our substrate encoded NN based system has the ability to learn, we again
test it on the discrete T-Maze problem, with the results shown in Listing-17.10.

Listing-17.10 The benchmark results of the application of the substrate encoded NN based sys-
tem with abcn plasticity, to the discrete T-Maze problem.

Graph:{graph,discrete_tmaze,
 [5.117069757727654,5.2276148705096075,5.256698564593302,
 5.323939393939395,5.367008430166325,5.383246753246754,
 5.340942697653223,5.335703463203464,5.310778651173387,
 5.318170426065162],
 [0.09262706161715503,0.13307346652534205,0.15643200235420435,
 0.19103627317236116,0.24840028484238094,0.3074955828617828,
 0.22050190155526622,0.2687961935948596,0.27809920403845456,
 0.2890597857666472],
 [102.30049832915634,115.57537176274028,115.82996172248811,
 119.80377705627716,117.495043745728,122.40998917748922,
 126.54832308042839,127.85407575757583,131.0029333561176,
 129.20257552973348],
 [19.387895647932833,6.436782140204616,7.641824017959771,
 9.509692909802402,11.439728974016472,8.54974974710698,
 10.520194897286766,10.492965582165443,10.152832110453105,
 10.20904378137977],
 [145.20000000000002,149.2,145.60000000000002,149.2,148.6,149.2,
 149.2,149.2,149.2,149.2],
 [0,10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115,10.000000000000115,10.000000000000115,
 10.000000000000115,10.000000000000115,10.000000000000115],
 [16.95,18.05,18.15,18.35,18.05,18.4,18.15,18.0,18.5,18.0],
 [1.5960889699512364,1.8834808201837359,1.3518505834595775,
 1.2757350822173077,1.8020821290940099,1.5297058540778357,
 1.3883443376914821,1.224744871391589,1.466287829861518,
 1.2649110640673518],
 [500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0],
 []}
Tot Evaluations Avg:5172.3 Std:110.92885107130606

746 Chapter 17 Substrate Plasticity

As in Chapter-15, once plasticity is enabled, our TWEANN is able to evolve
substrate encoded NN based agents which can effectively solve the T-Maze prob-
lem, achieving full score. As we’ve done once before, I will select one of the
champions, and print out it’s sensory and action based signals to demonstrate that

Position:[0,0] SenseSignal:[0,1,0] RewardSignal:[0] Move:0 StepIndex:1 RunIndex:0
Position:[0,1] SenseSignal: [1,0,1] RewardSignal:[0] Move:1 StepIndex:2 RunIndex:0
Position:[1,1] SenseSignal:[0,0,0] RewardSignal:[1] Move:0 StepIndex:3 RunIndex:0
Position:[0,0] SenseSignal:[0,1,0] RewardSignal:[0] Move:0 StepIndex:1 RunIndex:1
Position:[0,1] SenseSignal: [1,0,1] RewardSignal:[0] Move:1 StepIndex:2 RunIndex:1
Position:[1,1] SenseSignal:[0,0,0] RewardSignal:[1] Move:0 StepIndex:3 RunIndex:1
...
Position:[0,0] SenseSignal:[0,1,0] RewardSignal:[0] Move:0 StepIndex:1 RunIndex:55
Position:[0,1] SenseSignal:[1,0,1] RewardSignal:[0] Move:1 StepIndex:2 RunIndex:55
Position:[1,1] SenseSignal:[0,0,0] RewardSignal:[0.2] Move:0 StepIndex:3 RunIndex:55
Position:[0,0] SenseSignal:[0,1,0] RewardSignal:[0] Move:0 StepIndex:1 RunIndex:56
Position:[0,1] SenseSignal:[1,0,1] RewardSignal:[0] Move:-1 StepIndex:2 RunIndex:56
Position:[-1,1] SenseSignal:[0,0,0] RewardSignal:[1] Move:0 StepIndex:3 RunIndex:56
Position:[0,0] SenseSignal:[0,1,0] RewardSignal:[0] Move:0 StepIndex:1 RunIndex:57
Position:[0,1] SenseSignal:[1,0,1] RewardSignal:[0] Move:-1 StepIndex:2 RunIndex:57
Position:[-1,1] SenseSignal:[0,0,0] RewardSignal:[1] Move:0 StepIndex:3 RunIndex:57

In the above console printout, the switch event occurred on the 55th maze run,
and on the 56th the agent began going to the [-1,1] corner to collect the switched,
large reward. We next add the iterative learning rule, and see how it fares in this

17.3 Implementing the iterative Learning Rule

The iterative plasticity works in a different way than the just added abcn learn-
ing rule. For the substrate to utilize the iterative plasticity function, it must pole
the NN for every weight of every neurode after every time that neurode produces

the NN to set all the synaptic weights and parameters once per evaluation, it now
must call the NN for every synaptic weight every sense-think-act cycle. This re-
quires significantly more computational power. Yet at the same time it does allow
for the entire NN to act as a learning rule, and because a NN is a universal func-
tion approximator, and because it produces its output based on the coordinates, the

indeed the agent, once it comes across the small reward occurring at [1,1] after
and begins to move towards [-1,1], as

shown next:
the switch, does change its strategy

problem. Although based on the Listing-17.10, we can readily see that the substrate
 rule, can already solve the encoded NN based system, using the abcn learning

problem within the first 1000 evaluations. There is little margin for improvement.

an output by processing its input signals. Whereas before the substrate used

17.3 Implementing the iterative Learning Rule 747

input, the output, and the current synaptic weight between the connected neurodes,
it could potentially be incredibly versatile, and allow for virtually any type of
learning rule to evolve.

The implementation of this learning rule also encompasses all the learning
rules in which the substrate needs to update the synaptic weights every cycle, as
opposed to every evaluation as is the case with the abcn rule. Thus by implement-
ing it here and now, we open our SENN system to all future learning rules which
use this type of updating approach.

Again, surprisingly the implementation of this learning rule will require only a
few minor modifications to our existing substrate module, and a small addition to
the substrate_cep, and the morphology module. The first change is within the rea-
son function. Though we set up and compose the new substrate as usual when the
substrate_state_flag is set to reset, after the initial substrate with the default synap-
tic weights equaling to zero have been set, we set the substrate_state_flag to itera-
tive. We do not set it to hold because we will need to call get_weights function
during every cycle. Thus by setting the substrate_state_flag to iterative, and by
creating a new case in the reason function, as shown in Listing-17.11, we can re-
use the calculate_ResetOutput/7 function during every cycle to update the synaptic
weights of the neurodes by calling the get_weights function.

Listing-17.11 The implementation of the updated reason/7 function.

reason(Input,S)->
 Densities = S#state.densities,
 Substrate = S#state.cur_substrate,
 SMode = S#state.substrate_state_flag,
 CPP_PIds = S#state.cpp_pids,
 CEP_PIds = S#state.cep_pids,
 Plasticity = S#state.plasticity,
 case SMode of
 reset ->
 Sensors=S#state.sensors,
 Actuators=S#state.actuators,
 New_Substrate=create_substrate(Sensors,Densities,Actuators,
S#state.link_form),
 U_SMode=case Plasticity of
 iterative ->
 {Output,Populated_Substrate} = calculate_ResetOutput(
Densities, New_Substrate, Input, CPP_PIds, CEP_PIds, Plasticity,S#state.link_form),
 iterative;
 _ ->
 {Output,Populated_Substrate}=calculate_ResetOutput(Densities,
New_Substrate, Input,CPP_PIds,CEP_PIds,Plasticity, S#state.link_form),
 hold

748 Chapter 17 Substrate Plasticity

 end,
 {Populated_Substrate,U_SMode,Output};
 iterative ->
 {Output,U_Substrate} = calculate_ResetOutput(Densities,Substrate, Input,
CPP_PIds,CEP_PIds,Plasticity,S#state.link_form),
 {U_Substrate,SMode,Output};
 hold ->
 {Output,U_Substrate} = calculate_HoldOutput(Densities,Substrate, Input,
S#state.link_form, Plasticity,CPP_PIds,CEP_PIds),
 {U_Substrate,SMode,Output}
 end.

Since this update, shown in boldface in the above listing, ensures that the func-
tion calculate_ResetOutput is going to be called during every cycle, we need to
update that function as shown in Listing-17.12.

Listing-17.12 The implementation of the updated calculate_ResetOutput/7 function.

calculate_ResetOutput(Densities,Substrate,Input,CPP_PIds,CEP_PIds,Plasticity,LinkForm)->
 [IHyperlayer|PHyperlayers] = Substrate,
 Populated_IHyperlayer = populate_InputHyperlayer(IHyperlayer,lists:flatten(Input),[]),
 case Plasticity of
 iterative ->
 {Output,U_PHyperlayers}=calculate_substrate_output(
Populated_IHyperlayer, PHyperlayers,LinkForm, Plasticity, CPP_PIds,CEP_PIds),
 {Output,[IHyperlayer|U_PHyperlayers]};
 _->
 Populated_PHyperlayers = populate_PHyperlayers(Substrate,CPP_PIds,
CEP_PIds, LinkForm, Plasticity),
 {Output,U_PHyperlayers}=calculate_substrate_output(Populated_IHyperlayer,
Populated_PHyperlayers, LinkForm,Plasticity, CPP_PIds,CEP_PIds),
 {Output,[IHyperlayer|U_PHyperlayers]}
 end.

As can be seen from the above listing, the difference in the functions executed
when Plasticity == iterative, is in the fact that we no longer need to execute the
populate_PHyperlayers/5, and instead we slightly modify the calculate_output/5
function called deep within the calculate_substrate_output/7 function, such that it
calls the get_weights function after calculating the output of every node, and thus
updating that node’s synaptic weights. This updated function is shown in the fol-
lowing listing.

Listing-17.13 The implementation of the updated calculate_output/5 function.

calculate_output(I_Neurodes,Neurode,Plasticity,CPP_PIds,CEP_PIds)->

17.3 Implementing the iterative Learning Rule 749

 {Coord,_Prev_O,Weights} = Neurode,
 case Plasticity of
 none ->
 Output=calculate_neurode_output_std(I_Neurodes,Neurode,0),
 {Coord,Output,Weights};
 iterative ->
 Output=calculate_neurode_output_std(I_Neurodes,Neurode,0),
 U_Weights = get_weights(I_Neurodes,Coord,CPP_PIds, CEP_PIds,
[], Weights, Output),
 {Coord,Output,U_Weights};
 abcn ->
 Output=calculate_neurode_output_plast(I_Neurodes,Neurode,0),
 update_neurode(I_Neurodes,{Coord,Output,Weights},[])
 end.

Unlike the case when Plasticity==none, or abcn, when Plasticity==iterative,
we call get_weights after calculating the Output value for every neurode. And it is
this that allows us to update ever synaptic weight for every neurode during every
cycle. This is effectively it. We now need only add, mirroring the set_abcn/2 func-
tion, the new set_iterative/2 function, as shown in Listing-17.14, and the substrate
is now able to function without plasticity, with plasticity which is only set once
during evaluation, and with plasticity that requires the polling of the NN during
every cycle.

Listing-17.14 The implementation of the new set_iterative/2 function.

set_iterative(Signal,W)->
 [Delta_Weight] = Signal,
 functions:sat(W + Delta_Weight,3.1415,-3.1415).

We next modify the morphology module by updating the get_SubstrateCEPs/2
function, as shown in Listing-17.15. We update it by simply adding the new sub-
strate_cep specification, which has an output vector length of 1, the value of the
delta weight.

Listing-17.15 The updated get_SubstrateCEPs/2 function.

get_SubstrateCEPs(Dimensions,Plasticity)->
 case Plasticity of
 iterative ->
 [#actuator{name=delta_weight,type=substrate,vl=1}];
 abcn ->
 [#actuator{name=set_abcn,type=substrate,vl=5}];
 none ->
 [#actuator{name=set_weight,type=substrate,vl=1}]

750 Chapter 17 Substrate Plasticity

 end.

And finally we implement this new substrate_cep, updating the substrate_cep
module as shown in the following listing.

Listing-17.16 The new delta_weight/3 function added to the substrate_cep module.

delta_weight(Output,_Parameters,Substrate_PId)->
 [Val] = Output,
 Threshold = 0.33,
 DW = if
 Val > Threshold ->
 (functions:scale(Val,1,Threshold)+1)/2;
 Val < -Threshold ->
 (functions:scale(Val,-Threshold,-1)-1)/2;
 true ->
 0
 end,
 Substrate_PId ! {self(),set_iterative,[DW]}.

The new delta_weight/3 function is very similar to set_weight/3 function, the
only difference is in the way it is used by the substrate. As we saw in Listing-
17.11, the set_iterative/2 function updates the synaptic weight rather than over-
writing it, which is the case with the original set_weight/2 function.

And that concludes the implementation of this learning rule. Again, completely
undramatic, and accomplished very easily. In the next subsection we test this new-
ly added plasticity learning rule on the now very familiar to use discrete T-Maze
benchmark.

17.3.1 Benchmarking the New iterative Substrate Plasticity

Having now implemented the iterative plasticity learning rule, we test and see
how it compares to the abcn learning rule, and the substrate which does not pos-
sess plasticity at all. The results of running the benchmark with the iterative learn-
ing rule is shown in Listing-17.17

Listing-17.17 The results of running the T-Maze benchmark with the iterative learning rule.

 Graph:{graph,discrete_tmaze,
 [1.080697304856344,1.105477329687856,1.082608984582669,
 1.10173644338118,1.1018239026419805,1.1040638651965884,

17.3 Implementing the iterative Learning Rule 751

 1.1067042854170999,1.1083983426946815,1.0720152902017892,
 1.1131932598294159],
 [0.06523721492122392,0.05737539536993592,0.061080859604004445,
 0.05539953173437482,0.04951815451574514,0.06096095772186648,
 0.06779249262624067,0.055316036698257,0.0459640769682992,
 0.0655751724549261],
 [106.75590608768309,108.585491949571,114.94932017543867,
 117.83561297182356,121.16001164967763,118.65738256708975,
 121.01826794258375,122.92790528858384,122.86203973372172,
 126.88959090909096],
 [9.162803145363911,9.325149636485971,9.817899227379831,
 9.10148250224565,9.783690310057073,9.788726424047805,
 11.122540054241757,11.654351487379284,10.826960884668908,
 10.50203798322592],
 [148.4,148.4,149.2,149.2,149.2,149.2,149.2,149.2,149.2,149.2],
 [11.40000000000012,10.600000000000119,10.600000000000119,
 10.000000000000115,10.000000000000115,10.000000000000115,
 10.600000000000119,10.600000000000119,10.000000000000115,
 10.000000000000115],
 [10.05,12.7,14.2,15.0,15.35,15.65,16.25,16.65,16.7,17.05],
 [1.116915395184434,1.7349351572897473,1.5999999999999999,
 2.32379000772445,2.1041625412500817,2.2197972880423116,
 2.2107690969434146,1.7684739183827396,1.9261360284258222,
 2.4181604578687494],
 [500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0,500.0],
 []}
Tot Evaluations Avg:5188.85 Std:110.24122414051831

As expected, with this plasticity type, our TWEANN was again able to rapidly
evolve SENNs capable of solving the T-Maze problem. Indeed, some near perfect
solutions were evolved within the first 500 evaluations during a number of evolu-
tionary runs. Unfortunately though, the iterative learning rule requires us to poll
the NN for every synaptic weight of every neurode, during every sense-think-act
cycle, which makes it slower than other rules, but also incredibly more versatile
and powerful. Though it is possible to accelerate and optimize this system by for
example transforming the evolved feedforward NNs into single functions, then
embedding those functions within each neurode, and thus allowing each neurode
to simply call on it as if it were a simple plasticity function… Nevertheless, the
benchmark result in this subsection was a success, and we now have a fully func-
tional, highly advanced TWEANN platform capable of effectively evolving neural
and substrate encoded, static and plastic, neural network based agents.

752 Chapter 17 Substrate Plasticity

17.4 Discussion

We have come a long way. At this point we’ve implemented a fully concurrent,
and cutting edge, TWEANN platform. The benchmarks of both, the abcn and the
iterative learning rules we’ve developed for our substrate encoded NNs have been
a success. Both versions were rapidly (even more so than NNs with neural plas-
ticity enabled) utilized by our TWEANN, which successfully evolved agents ca-
pable of solving the T-Maze problem. During many of the evolutionary runs com-
posing the experiment, the solutions were evolved within the first 1000
evaluations. Yet still the iterative rule, though much more flexible, and allowing
us to evolve any learning rule due to the NNs being universal function
approximators, is computationally heavy. But it is possible to significantly accel-
erate this encoding by for example converting the feedforward NNs into single
functions, which can then be utilized independently by each neurode. A
feedforward NN is after all just a function of functions, which can be represented
in the form of: FF = f1(f2(f3(...)...)...), with the FF function then used directly by
the substrate embedded neurodes. This would effectively make the entire SENN,
excluding the sensors and actuators, be represented by a single process. But im-
plementing this computational option is outside the scope of this volume, and will
be covered with other advancements in the next book volume. Having now created
an advanced TWEANN system, we apply it to some real world applications in the
following chapters.

Part V
 Applications

Our system is ready, it has direct and indirect encoding, plasticity of varying

kinds, numerous activation functions, with new ones easily added, and even the
ability to evolve evolutionary strategies. I noted that we will apply our system to
complex, real world problems, not just benchmarks. We will do that in the next
two chapters. The following two application areas are exciting, interesting, and lu-
crative. We will apply our system to an Artificial Life simulation, evolving the
brains of 2d simulated robots, inhabiting a flatland, a 2d environment. And then
we will use our system to evolve currency trading agents, an agent that reads the
historical exchange rates of Euro vs. USD, and either buys or sells one against an-
other on the Forex market, to make a profit. In fact, we will not only evolve NNs
which use as sensory signals simply the lists of historical prices, but also NNs
which use actual candle stick plot charts of historical prices.

Chapter 18 Artificial Life

Abstract In this chapter we apply our neuroevolutionary system to an ALife
simulation. We create new sensors and actuators for the NN based agents interfac-
ing with their simulated environment avatars. Discuss the construction and im-
plementation of the 2d ALife environment called Flatland. Interface our system to
the said system, and then observe the resulting evolving behaviors of the simulat-
ed organisms.

intelligent organisms, inhabiting a simulated (or real) world. In this chapter we
convert that discussion into reality. We will create a flatland, a 2d world inhabited
by 2d organisms, artificial life. Our neuroevolutionary system will evolve the
brains of these 2d organisms, the avatars within the simulated environment con-
trolled by our NN based agents, and through their avatars our NN based agents

the 2d world.

18.1 Simulated Environment and Artificial Organisms: Flatland

The goal of Alife [1,2,3] is to use evolution to evolve intelligent agents in an
open ended simulated environment, using a fitness function that is at least to some
degree similar to the animal world, in which the accumulation of resources and
survival is correlated with achievement and therefore higher fitness and the crea-
tion of more offspring than those with a lower fitness.

Our simulation will be composed of a two dimensional environment, with food
scattered throughout some region, where that food will be represented as green
circles. The environment will be populated by simulated 2d herbivore robots, sim-
ulated as blue circles, and 2d predator type simulated robots, represented by red
circles with small spears at one end.

Note that the circles will truly represent the morphologies of those simulated
robots. The collision detection will be based on the circle’s radius, and the robot’s
mass. The simulated environment will look something like Fig-18.1. In it you can
see the world, the scattered through it food elements (small green circles), the prey
(large blue circles), and the predators (smaller red circles). In honor of the book
[4] “Flatland: A Romance of Many Dimensions”, we will call this 2d environment
simulation: flatland, and the evolving agents: flatlanders.

DOI 10.1007/978-1-4614- - © Springer Science+Business Media New York 2013 4463 3_18,
755 G.I. Sher, Handbook of Neuroevolution Through Erlang,

We now come full circle. We started this book with a discussion o evolution of n

will explore the barren flatland, compete with other flatlanders for food, and pre-
date on each other while trying to survive and consume the simulated food within

756 Chapter 18 Artificial Life

Fig. 18.1 Flatland, prey, predators, and plants.

Unlike other scapes we have developed before, flatland is a public scape. The
agents when created will not spawn this scape, but join/enter it. The public scape
itself must be created before any population monitor is even spawned. As we dis-
cussed in the first few chapters, it is these types of public scapes that should be
spawned by the polis process, and it is these public scapes which will allow for the

18.2 The Scape and the Fitness Function

Most of the concepts we have developed when creating the XOR_Mimic, Dou-
ble Pole Balancing, and particularly the T-Maze private scapes, can be reused here

NN based agents to interact not just with the environment of the scape, but also

physical representations of the
ators, dictate the physical
 being the core of those

with each other. The simulated robots are, in essence, avatars controlled by the NNs.
We can also think of the simulated robots as the
NN based agents, whose morphology, sensors, and actu
representation of their avatars, with the NN truly then
organisms, the brains within.

18.2 The Scape and the Fitness Function 757

sends the flatland a message that it wishes to enter the scape. At this point the
scape checks the NNs morphology (specified by the message the exoself sent it),
and based on that morphology creates an avatar for it. The scape also registers the
NN as currently possessing an avatar within the scape, such that when the NN
starts sending it action messages to control the avatar, and polls it for sensory
messages based on the sensors of its avatar, the scape can move its avatar, and

1. We create all the necessary databases to support the polis infrastructure by exe-
cuting polis:create().

2. Then the polis is started by executing polis:start().
3. The polis spawns all public scapes at its disposal, which in this case is a list

containing a single scape called flatland.
4. Once the flatland scape is created and its PId is registered with the polis, the

scape creates all the basic elements within itself (all the simulated plants).
5. The researcher decides to start an ALife simulation, specifies within the con-

straint to use the prey morphology, which is a flatlander specie which the flat-
land scape recognizes as a type which can move around and eat plants when
moving over them.

6. The researcher then compiles and executes population_monitor:test().
7. The population_monitor begins spawning agents.
8. When an agent is spawned, its exoself first determines what scapes the agent

should either spawn (if private), or enter (if public).
9. The exoself thus forms a list of scape names. If private, they are spawned, and

if public, the exoself sends the polis a message to request the PId of the public
scape of that particular name.

10.The polis sends back to the exoself the PId of the particular scape. At which
point the exoself sends this scape a message with its PId and morphology.

11.The scape, depending on what type of scape it is (flatland in this case), creates
an avatar based on the exoself’s provided morphology name, and associates the
exoself’s PId with that avatar.

12.The exoself spawns all the elements composing the NN based system.
13.Since sensors and actuators have the exoself’s PId, when they are triggered to

action they send a request for sensory signals, and action signals, to the scape.
The signals contain the PId of the exoself, so that the scape can associate these
messages with the right avatar.

14.When the flatland scape receives a message, it uses the PId in the message to
figure out which avatar the message is associated with. And then based on the
message, replies back to the caller.

forward to it the sensory signals from its avatar, respectively. Thus, our system in
this scenario should function as follows:

representation, an avatar, for the NN that enters it. When a NN is spawned, it first
in the creation of the Flatland scape. The flatland will have to create a simulated

758 Chapter 18 Artificial Life

avatar dies from losing all its energy, or from being eaten. As soon as an avatar
dies, the scape performs the cleanup associated with that avatar’s physical rep-
resentation. Whether that be simply removing the avatar from the physical sim-
ulation, or leaving it there to be devoured or decay.

17.When the NN receives a message from the scape that it has just died, that is the
end of that agent’s evaluation, similarly to when in the T-Maze simulation the
simulated robot crashes into a wall. At this point the exoself can perturb the
weights, revert them to previous values, or perform other computations.

18.Afterwards, the exoself can send the scape a message requesting a new avatar...
And the cycle continues.

For the simulation to be consistent, and for the world to have a constant or
growing population, we will of course have to use the steady_state based evolu-
tion, rather than generational. The steady_state evolution reflects the continuous
birth and death of agents within an environment, unlike generational evolution in
which the entire generation must die before new agents are created, and a new
generation is spawned.

The plan of attack for this application would be to first develop the actual flat-
land scape. This would require us to first create the Cartesian world simulation.
Create the functions for collision detection between two circles, between a circle
and a line, and between a line and a line. We would then have to decide on wheth-
er we want to use some kind of quad-tree to optimize the support of large number
of avatars within one scape, or whether to just be content in using 20-30 avatars at
any time, and allow a single process to represent the entire flatland, and thus act as
a bottleneck of computing collision detections between avatars, and simulating vi-
sion and other sensors of each avatar. With regards to the scape, we would also
have to decide on the schedule of when to perform collision detection, for exam-
ple:

1. Do we first wait for every single agent to send an action based message to the
scape, a batch form of signals from all the currently alive agents, then in one go
apply the requested actions to their avatars, and then calculate the collision de-
tections and other resulting properties of the scape after that single action step
has been taken. Then, afterwards, allow the scape to again go into its receive
loop, waiting for another batch of messages from all the active agents?

16.Because flatland keeps track of the amount of energy every avatar has, and
because it knows when two avatars collide, or interact, it will know when an

15.The flatland scape keeps track of the environment, the avatars, their interac-
tions... Performing all the physical simulation calculations, and thus having ac-
cess to all the information to keep track of the fitness of every avatar.

18.2 The Scape and the Fitness Function 759

I believe that option-2 has an interesting advantage in that the smaller NNs will
have faster “reflexes”, because the smaller NNs will have lower NN topology
depth, and thus go through more sense-think-act cycles for any given time than
those NNs which are much deeper. For example, a 10 neuron NN with depth 1,
will be able to send most likely at least 10 messages in the time frame that a
100000 neuron NN of depth 1000 can send... and thus its reflexes, and the number
of actions performed per given time, will be higher than that of a more complex
intelligence. This is somewhat similar to the real world, and the response times
between various organisms, based on their brain structure and its complexity.

I have implemented Flatland in [5], and it uses option 2. Because the imple-
mentation of the 2d world simulation is outside the scope of this book, and be-
cause there can be so many different ways to implement it, or even use the scape
as a simple wrapper for an already existing 2d robot simulator like Stage [6], we
will concentrate on the discussion and implementation of features needed by our
TWEANN system to interact with the provided flatland simulation (rather than
building it), given that we know the interface format for it.

18.2.1 Public Scape Architectures, Polis Interface, and Scape
Sectors

The general architecture of a polis, and its relation to the scapes it spawns, and
the sectors into which some scapes are divided, is shown in Fig-18.2. Ideally, the
polis process as we discussed, is the infrastructure, it is basically everything, it is
all the things that are needed to run the actual TWEANN algorithm, and the soft-
ware that synchronizes, and manages public scapes. The public scapes are the al-
ways-present environment simulations, not necessarily 3d. The scapes are a way
for us to present the simulations, environments, and problems, to the agent.

3. Or do we run the physical simulation nonstop, updating the world’s physical
properties every simulated 0.01 seconds, and somehow synchronize all the
agents with it...?

or decay and turn into poison and decrease the avatar’s energy reserves when
eaten, or change in color over time...) after receiving every single action
message from an agent?

2. Or do we let the scape perform collision detection and other types of environ-
ment calculations (let the simulated plants grow, or spread, or create offspring,
or mature and increase in the amount of energy the plant provides when eaten,

760 Chapter 18 Artificial Life

Fig. 18.2 The architecture of polis, scapes, and sectors.

Each scape can be interfaced with through messages. Each scape has a particu-
lar list of messages that it can accept, and that it expects to receive and reply to,
this is the interface format for that scape. When a scape simulates an environment,
that environment can be further broken up into sectors, represented by processes
and running in parallel. The sectors would simply represent the small sections of
the physical simulation of the environment, and thus allow for a parallelization of
the collision detection, and sensory computations. Sectors allow for scapes to im-
plement quad-trees [7], and thus improve their performance when interfacing with
a lot of agents. If the scape uses sectors, it assigns the agent to a particular sector
based on that agent’s location within the scape. This is done by forwarding to the
agent the PId of the sector, which the agent then uses as if it were a PId of the
scape. Thus this is all seamless to the agent.

Finally, there is also a spawnable Visor process, which allows the researcher to
poll the scape for visualizable data. The visor is independent and separate from the
scape, and thus when developing a scape it is not necessary to consider how to
visually represent the system. The visualization is an afterthought, and is only
necessary for us to be able to actually tap into the scape and see what is occurring.
It is the visor that deals with constructing a representation of the scape, based on
the type of scape it was requested to poll for data.

18.2 The Scape and the Fitness Function 761

18.2.2 The Flatland Interface

The way the scapes deal with the messages, whether there are physical repre-
sentations of the agents interfacing with it or not, and whether it keeps track of
particular agents or not, all depend on the scape and its purpose. The flatland
scape keeps track of the agents, it requires that agents first register with it, before
they are allocated their avatars. Once an agent is registered with the flatland scape,
the scape gives it an avatar, gives that avatar physical parameters, some default
amount of energy, starting coordinates within the flatland, and then allows for per-
cept polling and action signals to be sent from the registered agent.

The flatland scape is implemented as a gen_server process. It can accept the
following messages from the interfacing agents:

 {enter,Morphology,Agent_Id,Sensors,Actuators,TotNeurons}: This mes-
sage is used to register and enter the flatland scape. The flatland scape uses the
Sensors, Actuators, and Morphology, to generate an avatar for the agent. If the
agent has the morphology of a predator, the avatar would be very different
from one given to a prey type morphology. Finally, the reason for sending the
scape the TotNeurons value, is because the scape might make the energy con-
sumption and the designated size of the avatar proportional to the size of the
NN itself, and for this it needs the total number of neurons composing the
agent.

 {leave,Agent_Id}: The atom leave is sent by the agent that wishes to unregis-
ter, and leave the scape.

 {get_all,avatars}: Each sensor needs to perform a different set of computations
to produce the sensory signal. Each sensor knows which types of computations
need to be performed, thus the sensor simply requests the scape to send it the
avatar list, where the avatar list is composed of the avatar records, each having
all the information about the avatar’s location. The avatar list includes all the
avatars/objects within the scape (agent controlled avatars, static objects...).

 {actuator,Agent_Id,Command,Output,Parameters}: The actuator sends to
the scape a Command to execute with the parameter Output. The scape takes
the Command and Output, and applies it to the avatar with which Agent_Id is
associated.

Now that we know how to interface with the flatland scape, we can create the
sensors and actuators to allow our agents to interface with it. But this will also re-
quire us to modify the exoself so that it can now deal with public scapes, given
that all public scapes will use the request for entry and request for leaving the
scape, and the messaging format specified in the above list.

performs its function, generates a sensory vector, and forwards it to the neurons
in the agent’s NN.

Once the needed data to calculate a sensory signal is received, the sensor

762 Chapter 18 Artificial Life

18.3 Flatland’s Avatar Encoding

The flatland scape keeps track of every avatar’s position, pointing direction,
energy reserves, morphology, set of sensors and actuators... by entering all these
features into an avatar representing record when the correlated agent registers with
the scape. The avatar record has the following form:

-record(avatar,{id,sector,morphology,energy=0,health=0,food=0, age=0, kills=0, loc, direction,
r, mass, objects=[], state,actuators,sensors}).

The objects list is composed of object records, where each record has the form:

-record(object,{id,sector,type,color,loc,pivot,parameters=[]}).

In which the type can be either circle or line. It is the avatar’s objects list that
define what the avatar looks like, for he is composed from the objects. The colli-
sion detection too is based on the collision of the object lists of every avatar. Hav-
ing all avatars being circular though, makes the collision detection calculations a
lot faster and simpler.

As noted in the previous section, it is a list of these avatars that is returned to
the sensor when requested, and it is the sensor which then calculates the various
percepts based on this list. The scape itself can be considered to be composed of
avatars, every object is an avatar. A plant is an avatar which has the morphology:
plant. A wall section is an avatar of morphology wall, a rock is an avatar of mor-
phology rock. The agent’s sensor does not need to know the morphology of the
avatar, nothing is needed by it except the objects list. Based on the objects: circles
and lines, the sensor can calculate whether its line of sight (if camera, or a range
sensor for example) intersects those objects. Since every object has a coordinate
(loc stands for location) and a color, the sensors can then extract both the color
and the range to the object.

and actuators. More precisely, the NN based agent’s morphology which defines
the avatar, must come with sensors and actuators, such that the agent can gather
sensory signals from the avatar, and control the avatar through its actuators. In our
ALife simulation we will create 2 sensors: Range Sensor and Color Sensor, and 1
actuator: Differential Drive. The range sensor works like a standard robot range

angle coverage of these rays. Thus for example if the resolution is 5 rays, and the
degree coverage is 90 degrees, than the avatar will cast 5 rays, each 22.5 degrees
from the other. The rays cast return the distance to anything they intersect. The
color sensor works similarly, but the returned values are colors encoded in some

For the agent to be able to control the avatar, the avatar must have sensors,

sensor in which we define the resolution and the coverage angle. The resolution
defines how many range rays will be cast, and the coverage area defines the

fashion. For example black = -1, green = -0.5, blue = 0, red = 0.5, and white = 1. It

18.4 Updating the Morphology, Sensor, and Actuator Modules 763

is simply spectrum encoding, and can be similar to frequencies of the colors of the
visible spectrum, scaled to be between -1 and 1 (though not in our implementa-
tion, where I simply chose a few colors and gave them their own numbers). Final-
ly, the actuator the avatar will be controlled through is a simulated differential
drive, where the NN outputs a vector of length 2, where the first element controls
the velocity of the left wheel, and the second element of the vector controls the ve-
locity of the right wheel. The graphical representation of the avatars, sensors, and
color encoding, is shown in Fig-18.3.

Fig. 18.3 The representation of the prey avatar, the predator avatar, the plant avatar, the
poison avatar, and the available sensors and actuators for the avatars, and the color sensor
encoding.

18.4 Updating the Morphology, Sensor, and Actuator Modules

Because our system is completely independent of the scapes with which the
evolved NN based agents interface, we need only add the new records to the rec-
ords.hrl file, then add the new sensors, one new actuator, and then finally modify
the exoself module. After that, we will be able to apply our TWEANN to an ALife
simulation. We add the two new records specified in the previous section to the
records.hrl file. Once that is accomplished, we add two new sensors:
range_scanner and color_scanner. These two new sensors are shown in the fol-
lowing listing.

Listing-18.1 The implementation of the range_scanner and the color_scanner sensors.

distance_scanner(Agent_Id,VL,[Spread,Density,RadialOffset],Scape)->
 case gen_server:call(Scape,{get_all,avatars}) of
 destroyed->
 lists:duplicate(VL,-1);
 Avatars ->
 Self = lists:keyfind(self(),2,Avatars),
 Loc = Self#avatar.loc,

764 Chapter 18 Artificial Life

 Direction = Self#avatar.direction,
 distance_scanner(silent,{1,0,0},Density,Spread,Loc, Direc-
tion,lists:keydelete(self(), 2, Avatars))
 end.
%The distance_scanner/4 function contacts the scape and requests for a list of all avatars within
it. If for some reason the scape cannot do so, it replies with the void atom, otherwise the avatar
list is returned. If the reply is void, the sensor simply composes a vector of the right length us-
ing the VL value, and returns the result. Otherwise, the function calls color_scanner/7, which
performs the actual calculation to compose the color sensory vector. This is primarily done
through ray casting, and seeing whether any of the cast rays intersect the objects from which the
avatars in the avatar list are composed of.

color_scanner(Agent_Id,VL,[Spread,Density,RadialOffset],Scape)->
 case gen_server:call(Scape,{get_all,avatars}) of
 void->
 lists:duplicate(VL,-1);
 Avatars ->
 Self = lists:keyfind(self(),2,Avatars),
 Loc = Self#avatar.loc,
 Direction = Self#avatar.direction,
 color_scanner(silent,{1,0,0},Density,Spread,Loc,Direction,
lists:keydelete(self(), 2, Avatars))
 end.
%Functions similar to the distance_scanner/4, but returns a list of encoded colors rather than
ranges. Whatever objects the cast rays intersect, their color is returned.

Listing-18.2 The implementation of the differential_drive actuator.

differential_drive(Agent_Id,Output,Parameters,Scape)->
 {Fitness,HaltFlag}=gen_server:call(Scape,{actuator,Agent_Id,differential_drive,Output,
Parameters}).
%The differential_drive/4 function calls the Scape with the command: differential_drive, its
output and parameters. The flatland scape will use the differential_drive to simulate the said ac-
tuator for the avatar, executing the function with the Output and Parameters.

What can be noted from the three above functions, is that the parameters with
which they are called, now have been extended to include the Agent_Id, which
uniquely identifies the NN based agent, and can thus be used in public scapes as

Due to most of the functions dealing with ray casting and collision detection,
only the wrappers are shown, with the comments explaining their functionality.
Because each agent keeps track of its position and the direction in which it is look-
ing, we can easily calculate what the range sensor and color sensor should return.
Besides the two sensors, the NN based agent also needs an actuator with which to
move its avatar, the implementation of which is shown in Listing-18.2.

18.4 Updating the Morphology, Sensor, and Actuator Modules 765

sor:prep/1 and actuator:prep/1 to accept the Agent_Id value in the initial state sent
to these processes by the exoself.

To be used by the agent, the sensors and the actuator must also be added to the
morphology module. Because we want to have two different spe-
cies/morphologies, one for prey and one for the predator, each of which will have
a different set of privileges and avatars within the flatland, yet both use the same
set of sensors and actuators, we must create two morphological specifications that
are identical to each other in everything but the morphology name. The two new
morphological types added to the morphology.erl are shown in Listing-18.3.

Listing-18.3 The new prey and predator morphological specifications.

predator(actuators)->
 prey(actuators);
% The predator morphology uses the same set of actuators as the prey, thus it simply calls the
prey function to get the list of actuators available.

predator(sensors)->
 prey(sensors).
% The predator morphology uses the same set of sensors as the prey, thus it simply calls the
prey function to get the list of sensors available.

prey(actuators)->
 Movement = [#actuator{name=differential_drive,type=standard,scape={public,flatland},
vl=2, parameters=[2]}],
 Movement;
prey(sensors)->
 Pi = math:pi(),
 Color_Scanners = [#sensor{name=color_scanner,type=standard,scape={public,flatland},
vl=Density, parameters=[Spread,Density,ROffset]} || Spread <-[Pi/2], Density <-[5], ROffset<-
[Pi*0/2]],
 Range_Scanners = [#sensor{name=range_scanner,type=standard,scape={public,flatland},
vl=Density, parameters=[Spread,Density,ROffset]} || Spread <-[Pi/2], Density <-[5], ROffset<-
[Pi*0/2]],
 Color_Scanners++Range_Scanners.
%The prey morphology has access to two types of sensors at this time, the color and the range
scanner. The density and the radial offset parameters (in which direction the mounted simulated
scanner is pointing) can be modified. Thus instead of simply 2 sensors, the Resolution list can
be set to: [5,10,20,50,10], and we would have 10 sensors in total, each one differing in the reso-
lution of the sensor. The radial offsets could further be modified in a similar fashion.

Due to the predator and prey morphologies using the same set of sensors and

the unique identifier of the avatar. This means that we also have to modify sen-

actuators, and differing only in their avatar representations and the privileges

766 Chapter 18 Artificial Life

allotted to their avatars, we can let the predator morphology simply call the prey

and actuators available. We can generate multiple sensors by changing the resolu-
tion list to contain more than a single value. In this manner we would allow evolu-
tion to decide what is the most optimal and efficient resolution for the sensors
within the environment.

With the sensors, actuators, and the morphology modules updated, we now
make a small update to the exoself module in the next section.

18.5 Updating the exoself Module

We’ve now constructed the necessary tools with which the agent can interface
with the public scape, but we still need a way for the agent to actually register
with the public scape in question. In the function spawn_Scapes/4 the exoself ex-
tracts unique scape names, and then from this list of unique scape names, the
exoself extracts a list of private scapes. The private scapes are then spawned for
the agent. We now also need to extract the public scapes from the unique list of
scape names, and then for each such public scape contact the polis process to re-
quest its PId, and then finally register with that public scape. To accomplish this,
we modify the spawn_Scapes/4 function, as shown in the following listing with
the new functionality highlighted in boldface.

Listing-18.4 The updated spawn_Scapes/4 function.

spawn_Scapes(IdsNPIds,Sensor_Ids,Actuator_Ids,Agent_Id)->
 Sensor_Scapes = [(genotype:dirty_read({sensor,Id}))#sensor.scape || Id<-Sensor_Ids],
 Actuator_Scapes = [(genotype:dirty_read({actuator,Id}))#actuator.scape || Id<-
Actuator_Ids],
 Unique_Scapes = Sensor_Scapes++(Actuator_Scapes--Sensor_Scapes),
 Private_SN_Tuples=[{scape:gen(self(),node()),ScapeName} || {private,ScapeName}<-
Unique_Scapes],
 [ets:insert(IdsNPIds,{ScapeName,PId}) || {PId,ScapeName} <- Private_SN_Tuples],
 [ets:insert(IdsNPIds,{PId,ScapeName}) || {PId,ScapeName} <-Private_SN_Tuples],
 [PId ! {self(),ScapeName} || {PId,ScapeName} <- Private_SN_Tuples],
 enter_PublicScape(IdsNPIds,Sensor_Ids,Actuator_Ids,Agent_Id),

 [PId || {PId,_ScapeName} <-Private_SN_Tuples].

 enter_PublicScape(IdsNPIds,Sensor_Ids,Actuator_Ids,Agent_Id)->

 A = genotype:dirty_read({agent,Agent_Id}),

 Sensors = [genotype:dirty_read({sensor,Id}) || Id<-Sensor_Ids],

 Actuators = [genotype:dirty_read({actuator,Id}) || Id<-Actuator_Ids],

function with the parameter sensor and actuator, to retrieve the provided sensors

18.5 Updating the exoself Module 767

 TotNeurons = length((genotype:dirty_read({cortex,

A#agent.cx_id}))#cortex.neuron_ids),

 Morphology = (A#agent.constraint)#constraint.morphology,

 Sensor_Scapes = [Sensor#sensor.scape || Sensor<-Sensors],

 Actuator_Scapes = [Actuator#actuator.scape || Actuator<-Actuators],

 Unique_Scapes = Sensor_Scapes++(Actuator_Scapes--Sensor_Scapes),

 Public_SN_Tuples=[{gen_server:call(polis,{get_scape,ScapeName}),ScapeName}

|| {public,ScapeName}<-Unique_Scapes],

 [gen_server:call(PId,{enter,Morphology,Agent_Id,Sensors,Actuators,TotNeurons}) ||

{PId,ScapeName} <- Public_SN_Tuples].

The modification in the above listing allows the exoself to extract not only the
private scapes but also the public scapes, and then enter them. Of course the agent
will get booted from the public scape every time its avatar perishes, and every
time the agent’s evaluation ends, the exoself receives the message:
{Cx_PId,evaluation_completed,Fitness,Cycles,Time,GoalReachedFlag}, after
which the exoself decides whether to continue or end training. If the exoself de-
cides to continue training, and thus perform another evaluation, we can choose to
re-enter the public scape by executing the function:

enter_PublicScape(S#state.idsNpids,[genotype:dirty_read({sensor,Id})||Id<-S#state.spids],
[genotype:dirty_read({actuator,Id})||Id<-S#state.apids], S#state.agent_id),

Though elaborate, it allows us to modify nothing else within the exoself at this
time. By executing this function, the exoself again finds the PId of the needed
public scapes, and re-requests an entry. There is no need to re-join the private
scapes, since those are spawned by the exoself, and the sensors and actuators al-
ways have access to them, until the agent terminates at which point the exoself
terminates all the processes, including the private scapes.

With this modification, our system is now ready to interface with the public
scapes, and be applied to the ALife simulations. We could further modify the
exoself module, and add to the exoself’s state record the elements: sensors, actua-
tors, morphology, and public_scapes, which would allow us to then create a spe-
cialized function for re-entering public scapes by executing a
reenter_PublicScape/4 function as follows:

reenter_PublicScape(S#state.public_scapes,S#state.sensors,S#state.actuators, S#state.agent_id,
S#state.morphology,length(S#state.nids)),

This function could then have a much more streamlined implementation, as
shown next:

reenter_PublicScape([PS_PId|PS_PIds],Sensors,Actuators,Agent_Id,Morphology,
TotNeurons)->

768 Chapter 18 Artificial Life

 gen_server:call(PS_PId,{enter,Morphology,Agent_Id,Sensors,Actuators,TotNeurons}),
 reenter_PublicScape(PS_PIds,Sensors,Actuators,Agent_Id,Morphology,TotNeurons);
reenter_PublicScape([],_Sensors,_Actuators,_Agent_Id,_Morphology,_TotNeurons)->
 ok.

18.6 The Simulation and Results

The updated implementation of our neuroevolutionary system with the flatland
integrated and implemented as discussed above, can be found in the supplemen-
tary material [8] for Chapter-18. Now that we are to run the ALife simulation, the
briefly discussed visor module which allows us to visualize the scape and the
moving avatars within, is finally of vital use. When running the simulation without
the visor, we would only see the fitness of the agents, and a few other printouts to
console as the agents consumed each other (predator consuming prey), and the
plants (prey consuming the plants). A sample of such a printout is shown in List-
ing-18.5.

Listing-18.5 A sample console printout of the Predator Vs. Prey simulation.

Tot_Evaluations:150
Avatar:<0.827.0> destroyed.
Avatar:<0.827.0> destroyed.
Avatar:<0.851.0> died at age:5082
Avatar:<0.835.0> died at age:3254
Avatar:<0.708.0> died at age:3058
Creating Flatlander
Avatar:<0.811.0> destroyed.
Avatar:<0.801.0> died at age:4511
Avatar:<0.819.0> destroyed.
Avatar:<0.859.0> died at age:3088
Avatar:<0.700.0> died at age:3819
Creating Flatlander
Avatar:<0.757.0> died at age:3000
Creating Flatlander
Avatar:<0.827.0> destroyed.
Avatar:<0.767.0> died at age:3903
Creating Flatlander
Avatar:<0.819.0> destroyed.
Avatar:<0.716.0> died at age:2779
Creating Flatlander
Avatar:<0.784.0> died at age:3079
Creating Flatlander
Avatar:<0.851.0> destroyed.
Avatar:<0.843.0> died at age:2468

18.6 The Simulation and Results 769

But when we execute the population_monitor:start() function to create the
population of prey or predators, or both, and then execute: visor:start(flatland), we
will be able to observe the 2d world from above, in the same way that the sphere
was able to observe the flatland from its third dimension in the book Flatland.

For the next part where we test our TWEANN system on the ALife simulation,
I will assume that you have downloaded the source code for Chapter-18, with the
new scape/flatland/world/visor libraries, with which you will be able to execute
the same commands I will use in the following subsections to test our TWEANN’s
performance in this advanced application.

18.6.1 Simple Food Gathering Simulation

There are different types of ALife simulations that we could run at this time.
We could run the simple Food Gathering Simulation, in which we set up the flat-
land scape to only spawn the plants, and then we set the population_monitor pro-
cess to only spawn the prey. This would result in a scape with renewable food
source, plants, populated by prey agents learning to navigate through it and eat the
plants as quickly as they can.

Assuming you have the newly added modules (flatland and world) present in
the supplementary material, and you have opened the world.erl module, we first
must ensure that only the plants are spawned in the flatland simulation. Thus in
the init/3 function, with the World_Type == flatland, we set the case clause as fol-
lows:

init(World_Type,Physics,Metabolics)->
 XMin = -5000,
 XMax = 5000,
 YMin = -5000,
 YMax = 5000,
 WorldPivot = {(XMin+XMax)/2,(YMin+YMax)/2},
 World_Border = [{XMin,XMax},{YMin,YMax}],
 case World_Type of
 flatland ->
 Plants=[scape:create_avatar(plant,plant,gen_id(),{undefined,
scape:return_valid(Rocks++FirePits)},respawn,Metabolics)||_<-lists:duplicate(10,1)],
 Poisons=[scape:create_avatar(poison,poison,gen_id(),{undefined,
scape:return_valid(Rocks++FirePits)},respawn,Metabolics)||_<-lists:duplicate(10,1)],
 Plants

 end.

770 Chapter 18 Artificial Life

Which ensures that polis spawns the flatland scape with only the plants present.
We next define INIT_CONSTRAINTS within the population_monitor module as
follows:

-define(INIT_CONSTRAINTS,[#constraint{morphology=Morphology,
connection_architecture =CA, population_evo_alg_f=steady_state,agent_encoding_types
=[neural]} || Morphology<-[flatland],CA<-[recurrent]]).

We also set in the flatland module to allow for the agents to live for a maxi-
mum age of 20000 cycles, retain at most 10000 energy, and for the fitness func-
tion to be: 0.001*CyclesAlive + PlantsEaten. This ensures that the fitness guides
the evolution towards longevity, but also for the agents to be able to navigate the
world as effectively as possible, and eat as many plants as they can. Furthermore,
we set the plants to provide the agent 500 energy points when eaten, and poison to
subtract 2000 energy points when eaten.

With this set, we execute polis:sync() to compile the two modified modules,
and then execute population_monitor:start() function to run the ALife simulation.
Finally, to observe the simulation, we also execute visor:start(). A video of one of
the evolutionary runs of this simulation is available at [9,10].

We can set the termination condition for 25000 evaluations in the population
monitor, and compose a trace that we could later graph to see how the fitness, NN
sizes of the evolving agents, and their diversity, change over time. In fact, using
our benchmarker module, we could even perform multiple evolutionary runs to
compose a graph of Fitness Vs. Evaluations, NN Size Vs. Evaluations, and Popu-
lation Diversity Vs. Evaluations. The following figures show the results of multi-
ple benchmarks, where the populations were started with different constraints. I
set up the constraints for the 4 performed benchmarks as follows:

1. A simulation where the population size was set to 10, and the seed agents were
started with 2 sensors from the very start, each agent started with the range and
the color sensors.

2. A simulation where the population size was set to 10, but the seed agents start-
ed with only the range sensor, and had to evolve the connection to the color
sensor over time.

3. A simulation where the population size was set to 20, and the seed agents were
started with both, color and range sensors.

4. A simulation where the population size was set to 20, but the seed agents start-
ed with only the range sensor.

18.6 The Simulation and Results 771

Fig. 18.4 Fitness Vs. Evaluations.

We can see from Fig-18.4 that in all scenarios the agents increased in fitness, it
did not matter whether the seed population was started with just the range sensor,
or both, the range and the color sensor. Our system was successfully able to

such a morphological feature. Also as expected, the two simulations where the

This occurred because the agents in the population of 10 had less competition for
food than those in a population of 20. And of course when the agents started with
both, range and color sensors, they achieved higher fitness faster than those which
just started with the range sensor, since those starting with just the range sensor
had to take time to evolve color vision.

evolve connections to the color sensor for the agents which did not already have

population limit was set to 10, were able to achieve a slightly higher fitness faster.

772 Chapter 18 Artificial Life

Fig. 18.5 NN Size Vs. Evaluations.

The above figure shows how the size of the NNs increased during the evolu-
tionary runs. More complex NNs were evolved over time, as the NNs evolved bet-
ter navigational capabilities. What is interesting to note is that the NNs evolved in
the populations where the population size was set to 20, were able to achieve the
same fitness but with smaller NNs. I think that this is the case because with a larg-
er population, more exploration of the various genotypes can be performed, and
thus more efficient NNs can be evolved.

18.6 The Simulation and Results 773

Fig. 18.6 Population Diversity Vs. Evaluations.

Finally, the above Fig-18.6 presents the diversity of the population plotted
against evaluations. It is remarkable just how diverse the populations were. Diver-
sity is calculated for the active population and the agents in the dead_pool, hence
the ranges being between 0-20 and 0-40, rather than 0-10 and 0-20 agents. On eve-
ry occasion, nearly 75% of the population was composed of agents which were all
different from one another. We can also see that the diversity never dropped, yet
as we saw from the fitness plot, the fitness did rapidly increase. This is just one of
the great features of using the memetic approach to neuroevolution.

18.6.2 Dangerous Food Gathering Simulation

We can also set up the flatland scape to have not only the plants, but also the
poison representing avatars. The poison avatars are just like plants, but when they
are consumed, they decrease the prey’s energy instead of increasing it, they de-
crease the agent’s energy by 2000 rather than increasing it by 500. When the ava-
tar’s energy reaches 0, it dies. This type of simulation, if we were to execute with
just the prey population, would result in the Dangerous Food Gathering Simula-
tion, because the agents must now move around the 2d world, gather the plants
and avoid the poison.

To perform the Dangerous Food Gathering Simulation, we can leave the
population_monitor module alone, or increase the termination condition to 50000
evaluations, as I’ve done during my experiments, and then modify the world.erl

774 Chapter 18 Artificial Life

case World_Type of
 flatland ->
 Plants=[scape:create_avatar(plant,plant,gen_id(),{undefined,
scape:return_valid(Rocks++FirePits)},respawn,Metabolics)||_<-lists:duplicate(10,1)],
 Poisons=[scape:create_avatar(poison,poison,gen_id(),{undefined,
scape:return_valid(Rocks++FirePits)},respawn,Metabolics)||_<-lists:duplicate(10,1)],
 Plants ++ Poisons

 end.

As in the Simple Food Gathering Simulation, 4 benchmarks were performed
with the previously specified constraints, and the resulting plots of Fitness Vs.
Evaluations, NN Size Vs. Evaluations, and Diversity Vs. Evaluations. The plots of
these benchmark scenarios, are shown in the following figures, and the recorded
videos of the simulation can be found at [11,12].

Fig. 18.7 Average Fitness Vs. Evaluations.

Similarly to the Simple Food Gathering Simulation (SFGS), the above figure
shows the plots of average fitness for the 4 constraints scenarios. In this simulation
color plays a much more important role, because inability to differentiate between
color results in one not being to tell the difference between plants and poison. On
top of this, because the agents can push each other in the 2d environment, when
we set the population limit to 20, there is enough of them that they will inadvert-

file, setting the flatland World_Type to use 10 Plants and 10 Poisons, all of which
respawn immediately after being consumed. The source code for this setup, looks
as follows:

18.6 The Simulation and Results 775

ently push each other on top of poison locations. Thus we can see that the bench-
mark in which we set the population size to 20 and started the seed agents with
just the range sensors, results in the lowest performance. While interestingly
enough the benchmark of the seed population which started with only the range
sensor, but whose population size limit was set to 10, performed the best. But in
general, in all benchmarks the agents learned how to navigate through the 2d
world, eat plants, and avoid poison. In all scenarios, though initially the agents
started off wondering aimlessly, over time the agents first learned to move to-
wards the plants and poisons, then mostly towards the plants only, and finally in
the case of the champions of the population, swiftly navigate through the poison
ridden landscape while eating plants.

Fig. 18.8 NN Size Vs. Evaluations.

Similarly to the SFGS, the NN size grows as the NNs evolve more complex
behaviors, and adapt to the environment. The environment in this simulation is
more complex, and thus unlike in the previous simulation, the agents themselves
are more complex, reaching the size of 19 neurons. Also as in the SFGS, bench-
marks conducted when the population size limit was set to 20, produce more con-
cise NN based agents, composed of fewer neurons.

776 Chapter 18 Artificial Life

Fig. 18.9 Population Diversity Vs. Evaluations.

18.6. Predator Vs. Prey Simulation

Finally, we can again start the polis with a flatland which initially spawns only
the plants within itself, but this time when starting the population monitor, we set
the constraints to start with two morphologies, prey and predator. Because the
prey can only consume plants for sustenance, and the predators can only consume
the prey for sustenance, absorbing the energy of the prey into themselves, this re-
sults in the Predator Vs. Prey Simulation (PPS). Furthermore, we set the simula-
tion such that the predators can push the plants around when their energy reserve
is above 1000.

In this simulation the prey agents learn how to navigate the 2d world, and eat
the plants while avoiding the predators. At the same time, the predators learn to
navigate the 2d world, and hunt the prey. Thus the two species co-evolve, learn
how to evade and hunt, improve their strategies over time, and learn some very

3

The diversity plot in Dangerous Food Gathering Simulation (DFGS) is similar
to the one in SFGS, in both cases nearly 75% of the population is composed of
agents different from one another. The diversity is maintained throughout the
benchmark, there is no decline, only a sharp increases in diversity at the very start,
followed by a stable maintenance of the high diversity profile.

18.6 The Simulation and Results 777

clever trapping and baiting methods (in the case of the predators), as will be dis-
cussed and shown next.

Because the evolutionary paths of the two species were so dependent on which
of the species learned to navigate, evade, and hunt first, the averages of the evolu-
tionary runs were meaningless. This is due to the fact that when the prey learned
to navigate through the flatland and eat the plants before the predators learned
how to hunt them efficiently, the prey were able to achieve high fitness scores,
while the predators did not do as well. On the other hand, during the evolutionary
runs in which the predator specie was able to evolve agents which could navigate
and hunt, before the prey evolved agents which could evade the predators, the
predators achieved high fitness, and the prey did not do as well. Thus, instead of
creating the averages, I chose to plot the results of a single such evolutionary run.

Because the flatland will now be populated by a population of size 10 of prey,
and a population of size 10 of predators, we will be able to see in the plots the in-
teraction and correlations between the two competing species. The next 4 plots are
of Fitness Vs. Evaluations, NN Size Vs. Evaluations, Diversity Vs. Evaluations,
and the agent Turnover (death rate) Vs. Evaluations. Because we calculate the
specie statistics every 500 evaluations, the Turnover Vs. Evaluations shows the
death rate of the particular specie with relation to another for those 500 evalua-
tions. Thus for example if both species survive for an equal amount of time, both
will have a turnover of 250. On the other hand if it’s an open hunting season on
prey, and the predators are just running around eating the prey, the prey will have
a very high turnover, while the predators will live for a much longer number of
cycles, and thus have a much lower turnover. The recorded videos of the evolu-
tionary run are shown in [13,14].

778 Chapter 18 Artificial Life

Fig. 18.10 Average Fitness Vs. Evaluations.

The average fitness for the prey drops dramatically with predators around. Al-
most during every simulation, eventually the predators learned to navigate effec-
tively, and attack the prey that passed nearby. Because the prey had a slightly
higher maximum speed than the predators, the predators eventually evolved to on-
ly briefly chase the prey. If the prey moved away too quickly, the predators would
move back, closer towards the plants. This was too a very interesting, and highly
organic adaptation. The predators would horde around the plants, because the prey
at some point or another would have to go towards the plants to survive. Finally,
the most interesting and complex behavior was trapping, as shown in [13]. In this

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

A
vg

. F
itn

es
s

Evaluations

P-10: Prey
P-10: Predator

evolved behavior, the agents push the plants around, and seem to be hiding behind
them. Because the ray casting based sensors used by the prey only see the plants,
the prey would go towards the plants, and as soon as they would consume the
plant, the predators behind that plant would eat the prey, and thus consume its
energy, and the energy it just gained from eating the plant. This was a very clever
ambushing behavior, and one of the most complex I’ve seen evolved in any ALife
simulation. I cannot see a more complex behavior that is possible to evolve in
such a simple and barren 2d environment.

18.6 The Simulation and Results 779

Fig. 18.11 NN Size Vs. Evaluations.

As seen in the Fig-18.11, the predators, though possessing complex behaviors,
ended up with much smaller neural networks than the prey. I suspect that this oc-
curred because of the high Turnover of the prey, and their need to deal with mov-
ing and dynamic predators. Then again, the behaviors evolved by the predators
would make one think that they would require more neurons to execute such ma-
neuvers. The evolution within this environment must have found an efficient way
to encode such a behavior. The prey most likely increased in their NN size be-
cause they were getting killed too quickly, and so evolution had difficult time op-
timizing their topologies, due to not having enough time to work with it. Thus the
selection pressure was most likely compromised, and so the prey specie’s NN size
increased at a higher rate than is optimal.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

A
vg

. #
 o

f N
eu

ro
ns

/O
rg

an
is

m

Evaluations

P-10: Prey
P-10: Predator

780 Chapter 18 Artificial Life

Fig. 18.12 Population Diversity Vs. Evaluations.

Figure-18.12 shows that as in the previous simulations, the population diversity
within the Predator Vs. Prey Simulation, is similarly high. Almost every agent was
different from every other agent in each species.

Fig. 18.13 Population Turnover Vs. Evaluations.

18.7 Discussion 781

As expected from a simulation where one specie completely dominates anoth-
er, and being able to hunt and kill it while surviving on the energy gained from
consuming it, the turnover of the predators is much lower than that of the prey. As
seen in Fig-18.13, though both species start off equally, the predators quickly
learn to hunt the prey, and thus the prey’s turnover increases while that of the
predator’s decreases. After 30000 evaluations the turnover for both species reach-
es an equilibrium. The predators maintain a turnover of about 150 evaluations per
500 evaluations. Complementary, the prey stay within a turnover average of 350
evaluations per every 500 evaluations.

18.7 Discussion

In all three simulations we have seen the agents evolve in complexity, their be-
havior, and fitness. In the Simple Food Gathering Simulation (SFGS), the agents
learned to navigate the 2d flatland and gather the plants. In the more complex ver-
sion, the Dangerous Food Gathering Simulation (DFGS), the agents learned to
navigate the flatland, eat the plants, and avoid poison. Finally, in the Predator Vs.
Prey Simulation (PPS), we evolved two species, that of prey and predator. The
prey evolved to navigate the 2d world, gather food, and avoid being eaten by the
predators. The predators evolved to navigate the 2d world and hunt the prey. All
the simulations were successful, and the videos of the simulations are available
online for viewing [9-14].

The most impressive results of our ALife experiment was with regards to the
evolved ambushing behavior of the predator species. This behavior, shown in [13],
has a very organic nature to it. It is difficult to come up with a more clever ap-
proach to hunting prey in the barren flatland. Amongst all the other ALife simula-
tions I’ve had come across, the behavior evolved in Flatland and by the TWEANN
system we developed here, seems as one of the more complex. Thus, we have
shown that our TWEANN can indeed produce advanced behavior, and evolve
complex NN structures.

But even the 9 (4 variations of SFGS, 4 variations of DFGS, and 1 type of PPS)
different ALife experiments performed in this chapter do not even begin to scratch
the surface within this field. The flatland could be further advanced, and we could
allow the plants to grow, increase in energy, decay, produce seeds... Make the en-
vironment more dynamic and natural for the inhabiting prey and predators. We
could allow for the prey and predators to evolve new and other sensors and actua-
tors, perhaps projectile weapon actuators, and new kind of sensors, for example a
simulation of a chemical sensor, a sense of smell, which could simply gage the
proximity of the prey or predator, but not the direction. Numerous other sensors
and actuators can be built, including those used for communication. It would be
interesting to see what other behaviors would evolve, given the environment is
complex enough to support them.

782 Chapter 18 Artificial Life

Even better, we could interface our TWEANN system to a 3d robot simulator
like Gazebo [15], and evolve agents in a much more complex and dynamic world.
The higher the granularity at which the simulated environment approximates the
natural world, the more complex the organisms that we can evolve in it, and the
more intelligent the agents evolved will be, due to the need to deal with the more
dynamic environment, which can be modified by the agents, and require them to
be modified in order to deal with the modified environment...

Though in this chapter we did not get the chance to perform the same experi-

tionary runs, and they were just as successful. The only interesting difference I’ve
noticed was that at the very beginning, the substrate encoded NN based agents
tended to go in straight lines and turn at sharp angles, unlike the standard, direct
encoded NNs, which from the very start wondered through flatland in a fluent
manner. Truly there are an infinite amount things to try and experiments to run,
when it comes to Artificial Life. And based on the types of behaviors evolved in
our simulations, perhaps the Artificial part can be removed, after all, intelligence
is intelligence is intelligence. It does not matter whether sentience and intelligence
is based on the computations performed within the chemical computer of the soft
and always decaying flesh, or within the analog and digital computer of the im-
maculate and perfect circuits of the non biological substrate.

18.8 Summary

In this chapter we extended our TWEANN system and constructed a public
scape by the name flatland. The flatland scape provides avatars and an artificial
environment to the interfacing NN based agents, and allows us to evolve 2d organ-
isms which learn to navigate and live in the simulated 2d environment. We per-
formed 3 ALife experiments, the Simple Food Gathering Simulation, the Danger-
ous Food Gathering Simulation, and the Predator Vs. Prey Simulation. In all three
experiments our NN based agents evolved to navigate the flatland, gather food,
avoid poison, and hunt and kill each other. The PPS simulation stood out in par-
ticular. In it, the predators evolved the behavior to ambush the prey, pushing the
plants in front of themselves until the prey came near to eat the plant, at which
point the predator ate the prey, consuming it and the energy it had gained from
eating the plant.

ments but with substrate encoded NNs, on my own I did perform such evolu-

Yet still there is much to explore when it comes to ALife. The flatland module
can be much further extended. Due to the amount of non Neuroevolutionary back-
ground that was used in the creation of the 2d simulation, we did not go over every
single line of code as we did in the previous chapters while developing our
bleeding edge TWEANN. But the source code for the presented system is availa-
ble as supplementary material in [8], and thus everything shown and presented can

18.9 References 783

be replicated by using the Chapter-18 source code. Finally, the recorded videos of
the simulations can be found in [9-14].

18.9 References

[1] Bedau, M. (2003). Artificial Life: Organization, Adaptation and Complexity From The Bot-
tom Up. Trends in Cognitive Sciences 7, 505-512.

[2] Danaher PJ, Conroy DM, McColl-Kennedy JR (2007) Artificial Life Models in Software .
Andrew Adamatzky and Maciej Komosinski (Eds.). (2005, Springer-Verlag.) Hardcover,
69.95, 344 pages, 189 illustrations. Journal of Service Research 13, 43-62, ISBN
9781848822849.

[3] Adamatzky (2009). Artificial Life Models in Hardware. Media, 280, ISBN 9781848825291.
[4] Abbott, E. A. (2008). Flatland: A Romance of Many Dimensions (Oxford University Press).
[5] Flatland 2d robot and environment simulator:

www.DXNNResearch.com/NeuroevolutionThroughErlang/Flatland
[6] Stage, a 2d environment and robot simulator:

http://playerstage.sourceforge.net/index.php?src=stage
[7] De BM, Van KM, Overmars M, Schwarzkopf O (2000) Computational Geometry. Springer-

Verlag. ISBN 3540656200. Chapter 14: Quadtrees: pp. 291 306.
[8] Chapter-18 Supplementary material:

www.DXNNResearch.com/NeuroevolutionThroughErlang/Chapter18
[9] Simple Food Gathering Simulation 1:

http://www.youtube.com/watch?v=i0nCHMd5Oc8&feature=related
[10] Simple Food Gathering Simulation 2:

http://www.youtube.com/watch?v=i0nCHMd5Oc8&feature=related
[11] Dangerous Food Gathering Simulation 1:

http://www.youtube.com/watch?v=mZPCXZUEog8&feature=related
[12] Dangerous Food Gathering Simulation 2:

http://www.youtube.com/watch?v=yOTEMhXbow&feature=related
[13] Predator Vs. Prey Simulation 1:

http://www.youtube.com/watch?v=HzsDZt8EO70&feature=related
[14] Predator Vs. Prey Simulation 2:

http://www.youtube.com/watch?v=s0_ghNq1hwQ&feature=related

-

http://www.DXNNResearch.com/NeuroevolutionThroughErlang/Flatland
http://playerstage.sourceforge.net/index.php?src=stage
http://www.DXNNResearch.com/NeuroevolutionThroughErlang/Chapter18
http://www.youtube.com/watch?v=i0nCHMd5Oc8&feature=related
http://www.youtube.com/watch?v=i0nCHMd5Oc8&feature=related
http://www.youtube.com/watch?v=mZPCXZUEog8&feature=related
http://www.youtube.com/watch?v=yOTEMhXbow&feature=related
http://www.youtube.com/watch?v=HzsDZt8EO70&feature=related
http://www.youtube.com/watch?v=s0_ghNq1hwQ&feature=related

Chapter 19 Evolving Currency Trading Agents

Abstract The application of Neural Networks to financial analysis in general,
and currency trading in particular, has been explored for a number of years. The

backpropagation. The application of TWEANN systems to the same field is only
now starting to emerge, and is showing a significant amount of potential. In this
chapter we create a Forex simulator, and then use our neuroevolutionary system to
evolve automated currency trading agents. For this application we will utilize not
only the standard sliding window approach when feeding the sensory signals to
the neural encoded agents, but also the sliding chart window, where we feed the
evolved substrate encoded agents the actual candle-stick price charts, and then
compare the performance of the two approaches. As of this writing, the use of ge-
ometrical pattern sensitive NN based agents in the analysis of financial instrument
charts has not yet been explored in any other paper, to this author’s knowledge.
Thus in this chapter we pioneer this approach, and explore its performance and
properties.

Because of this chapter’s similarity to the noted paper, quite a few sections will
be very similar to it, and some of the sections and paragraphs quoted from it. This
will be primarily the case with the results, encoding method, and the introduction
to the forex sections whose content is quoted to a significant extent from the pa-
per. But unlike the readers of the above mentioned paper, you have an intricate
understanding of how our system works, and why the results are the way they are,
and how exactly the simulation and interfacing are performed and the manner in
which the used agents were evolved, because you and I have built this new version
of DXNN together.

Foreign exchange (also known as Forex, or FX) is a global and decentralized
financial market for currency trading. It is the largest financial market, with a dai-
ly turnover of 4 trillion US dollars. The spot market, specializing in the immediate
exchange of currencies, comprises almost 40% of all FX transactions, 1.5 trillion
dollars daily. Because the foreign exchange market is open 24 hours a day, closing
only for the weekend, and because of the enormous daily volume, there are no

DOI 10.1007/978-1-4614- - © Springer Science+Business Media New York 2013 4463 3_19,
785 G.I. Sher, Handbook of Neuroevolution Through Erlang,

most commonly [2,3,4,5] used NN training algorithm in this application is the

This particular chapter is based on a paper which I have recently submitted for
publication, in which I present this new approach, and compare the interesting
results achieved. Thus, in this chapter we are indeed pioneering the approach of
performing geometrical analysis of the actual charts of the financial instruments
through substrate encoded NN based agents.

786 Chapter 19 Evolving Currency Trading Agents

sudden interday price changes, and there are no lags in the market, unlike in the
stock market. In this chapter we discuss and implement the first of its kind (to my

cussed and developed the said application, we will compare the SENN based
traders which use Price Chart Input (PCI), to the standard, direct encoded NN
based trading agents which use Price List Input (PLI), in which the time series of
closing prices is encoded as a list of said prices and/or other technical indicators.
Our goal in this chapter is to implement and test the utility of using graphical input
of the time series, the use of candle-stick style chart as direct input to the geometry
sensitive NN systems evolved using our TWEANN, and then to benchmark the
performance. To accomplish this, we will build the forex simulator, the new inter-
faces (sensors/actuators), and all the needed new features to make our TWEANN
work within this field, and in general be used in time series analysis problems not
related to finance (such as earthquake data analysis, or frequency analysis...).

One of the two ways to use machine learning in financial market is as follows:
we can use the agents to predict the future price of a financial instrument, and then
based on the prediction trade the said instrument ourselves, or we can have the
agent trade the financial instrument autonomously, without us in the loop. We will
implement and test the second approach. Neural networks have shown time and
time again [7,8,9,10,11,12,13,14] that due to their highly robust nature, and uni-
versal function approximation qualities, that they fit well in the application to fi-
nancial market analysis. In published literature though [15,17,18,19,20], the most
commonly used neural network learning algorithm is backpropagation.
Backpropagation, being a local optimization algorithm, can and does at times get
stuck in local optima. Furthermore, it is usually necessary for the researcher to set
up the NN topology beforehand, and since the knowledge of what type of NN to-
pology works best for which dataset and market is very difficult, or even impossi-
ble to deduce, one usually has to randomly create NN topologies and then try them
out before settling down on some particular system. TWEANN systems are rela-
tively new, and they have not yet been tested thoroughly in financial markets. But
because it is exactly these types of systems that can evolve not only synaptic
weights, but also the NN topologies, and thus perform a robust global search, the
use of such a TWEANN system in evolving NN based traders is exactly the con-
cern of this chapter.

19.1 Introduction to Forex

The foreign exchange market, or Forex, is a global, fully distributed, currency
trading financial market. Unlike the stock market where a single buyer or seller
with enough capital can dramatically change the price of the stock, the forex market

knowledge) of a topology and weight evolving artificial neural network (TWEANN)
sensitive trading agents that use the algorithm which evolves geometry-pattern

actual technical indicator charts (the actual graphs) as input. Once we have dis-

19.1 Introduction to Forex 787

is much too vast and distributed for any currency pair to be so easily affected by a
single trader. Furthermore, the fact that currencies can be traded nonstop, 24 hours
a day, 5 days a week, there are a lot fewer spaces in the data stream where news
might be aggregating but no technical data is available. Because of these factors,
there is a greater chance that the pricing data does indeed represent the incorpo-
rated news and fundamental factors, which might thus allow for prediction and
trend finding through the use of machine learning approaches to be made.

The question of predicting future market prices of a stock, or currency pairs as
is the case here, has been a controversial one in general, and especially so when
using machine learning to do so. There are two main market hypotheses which
state that such predictions should be impossible. These two market hypotheses are
the Efficient Market Hypothesis (EMH), and the Random Walk Theory (RWT).

The EMH states that the prices fully reflect all the available information, and
that all new information is instantly absorbed into the price, thus it is impossible to
make profits in the market since the prices already reflect the true price of the
traded financial instrument. The RWT on the other hand states that historical data
has no affect on pricing, and that the future price of a financial instrument is com-
pletely random, independent of the past, and thus it cannot be predicted from it.
Yet we know that profit is made by the financial institutions and independent trad-
ers in the existing markets, and that not every individual and institution participat-
ing in the trading of a financial instrument has all the available information imme-
diately at his disposal when making those trades. Thus it cannot be true that EMH
and RWT fully apply in a non ideal system representing the real world markets.
Therefore, with a smart enough system, some level of prediction above a mere
coin toss, is possible.

There are two general approaches to market speculation, the technical and the
fundamental. Technical analysis is based on the hypothesis that all reactions of the
market to all the news, is contained within the price of the financial instrument.
Thus past prices can be studied for trends, and used to make predictions of future
prices due to the price data containing all the needed information about the market
and the news that drive it. The fundamental analysis group on the other hand con-
centrates on news and events. The fundamental analyst peruses the news which
cause the prices, he analyzes supply & demand, and other factors, with the general
goal of acting on this information before others do, and before the news is incor-
porated into the price. In general of course, almost every trader uses a combination
of both, with the best results being achieved when both of these analysis ap-
proaches are combined. Nevertheless, in this paper our NN systems will primarily
concentrate on the raw closing price data. Though in the future, the use of
neuroevolution for news mining is a definite possibility, and research in this area
is already in the works.

788 Chapter 19 Evolving Currency Trading Agents

19.2 Trading and the Objective

If you were to decide on trading currency, you’d first need to find a financial
service provider. Just like with the stock market, the financial institution you’d
choose would provide you with the access to the financial data, where the delay
between the true current trading price and the one you see, would depend on the
account you have. More pricier accounts with pricier brokers could provide lower
lags and more accurate data. Whichever institution is chosen, and whatever ac-
count you may have decided to get with the broker, your broker would then pro-
vide you with different ways of trading currencies through them. They could
simply provide you with the IP address of their servers, your password, login, and
an API, the format with which to request the financial data and send to the server
commands to trade the currency pairs. Or they could provide you with a web
based interface, where you’d be able to see your balance, the plotted charts, have
the ability to close, open and hold long and short positions, and use various plot-
ting tools and technical indicators to try and extract or recognize various geomet-
rical and financial patterns within the data. But web based interfaces are usually a
bit slower than many like, and so many traders opt for a software they can install
on their desktop. Among such trading interface programs is one that is offered by
a lot of brokers, it is called MetaTrader4 (MT4), and more recently the
MetaTrader5 (MT5). Both are very similar, they differ mostly in the script lan-
guage offered. The MT5 offers a slightly more updated version of the embedded
scripting language which resembles C/C++. For our current conversation it does
not matter whether the broker offers MT4 or MT5, and so for the sake of argument
we simply assume it is MT5. Fig-19.1 shows an example of the MetaTrader inter-
face

Fig. 19.1 The MetaTrader Interface.

19.2 Trading and the Objective 789

The broker provides you with your login and password, and the IP of their
server. At this point you’d install their trading platform, and then immediately be
able to see the current currency pair exchange rates for various pairs. You would
also have access to historical financial data. Finally, the trading platform would al-
so usually offer even an incorporated news service from one of the news provid-
ers, it would provide plotting tools, various technical indicators, built in technical
analysis graphs, and different ways to represent the currency pair plots. One of the

19.2. This type of plot presents the current price, the highest price achieved, and
the lowest price achieved, during the chosen time intervals/steps/ticks, all in one
chart. In the below figure, the candlesticks style plot uses 15 minute ticks (the
change in pricing is calculated for 15 minute intervals)

Fig. 19.2 Candlesticks chart using 15min ticks.

Though at any given time you are given the exchange rate of the two currencies
you wish to exchange against each other, the broker must also make some profit.
To do this, unlike in the stock market where fee is charged, in the FX market the
price is given with a spread (the difference between the bidding price and the ask-
ing price) which incorporates the broker’s fee. When you open a long position,
buying USD against EUR, you do so at a slightly higher price than the true market
exchange rate. When you go short, by for example selling USD against EUR, you

after you make a trade, you try to trade back, you will sustain at least a loss asso-
ciated with the spread. Thus, the lower the spread that is offered by the financial
service provider, the greater profit you can reach, and the more precise currency
exchange price that you are observing.

Given this data, these tools, and financial instrument charts, the goal of a forex
trader is to opportunistically exchange two currencies, such that when he trades
them back to close the position, he is left with a profit. The technical analyst be-
lieves there are patterns and trends in the financial market and therefore in the

most popular charts is the candlesticks chart, an example of which is shown in Fig-

do so at a slightly lower price than is the true market value. So, if immediately

790 Chapter 19 Evolving Currency Trading Agents

charts observed, and that you can at least to some degree exploit these patterns and
trends to make a profit. On the other hand, the fundamental analyst does not care
about the patterns, he pays attention to the news, and tries to act on them before
everyone else does, he tries to figure out and project what the news might mean
with regards to the global economic situation and how it will affect the worth of
currencies.

At this point it might seem as if the fundamental analyst is on the right track,
and that there is a much lower level of predictive power that you can extract from
prices alone. But consider the situation where a significant amount of institutions
and individuals exist that believe in technical analysis, and therefore a lot of them
trade by the rules and techniques prescribed by the technical analysis. Thus, if
some particular chart pattern predicts that the price should rise, a lot of individuals
and organizations will buy... and the price will rise. If another pattern predicts the
price will fall, then those who believe in such patterns, will sell one currency
against another, and the price will fall. We have seen what such panic and group
think leads to, as we sustained a number of market crashes during the last decade.
Technical analysis might or might not provide a significant advantage. But the fact
that so many people believe in it, and trade based on its rules, means that they will
contribute to these self fulfilling prophecies. So, because they believe in these pat-
terns, because they trade based on these patterns, there will be, at least to some
degree, such patterns in the signal, and so we can exploit it if our system can see
the patterns and act on them faster and better than the other traders. If only our
system too could extract such geometrical regularities from the charts.

Neural Networks have seen a lot of use and success in the financial market.
One of the main strengths of NN systems, which makes them so popular as market
predictors, is that they are naturally non linear, and can learn non linear data corre-
lation and mapping. Artificial neural networks are also data driven, can be on-line-
trained, are adaptive and can be easily retrained when the markets shift, and final-
ly, they deal well with data that has some errors; neural networks are robust.

When traders look at the financial data plots, they do not usually look just at
raw price lists, when a trader performs a time series analysis he instead looks at
the chart patterns. This is especially the case when dealing with a trader prescrib-
ing to the technical analysis approach. The technical analyst uses the various tech-
nical indicators to look for patterns and emerging trends in these charts. There are
many recurring patterns within the charts, some of which have even been given
names due to their common appearance, like for example the “head and shoul-
ders” pattern in which the time series has 3 hills, resembling head and shoulders.
Other such patterns are the “cup and handle”, the “double tops and bottoms”, the
“triangles”... Each of these geometrical patterns has a meaning to a trader, and is
used by the trader to make predictions about the market. Whether these patterns
really do have a meaning or not, is under debate. It is possible that the fact that so
many traders do use these techniques, results in a self fulfilling prophecy, where a
large number of the traders act similarly when encountering similar geometrical

19.2 Trading and the Objective 791

chart patterns, thus making the patterns and their consequences a reality. This also
means that if we can evolve an agent which can respond to such patterns faster
than the other traders, then we will be able to exploit this type of market behavior.

The standard neural networks used for price prediction, trend prediction, or au-
tomated trading, primarily use the sliding window approach, as shown in Fig-19.3,
where the data is fed as a vector, a price list, to the NN. This vector, whether it
holds only the historical price data, or also various other technical indicators, does
not show these existing geometrical chart patterns which are used by the traders. If
the NN does not have a direct access to the geometrical patterns used by human
traders, it is at a disadvantage because it does not have all the information on
which the other traders base their decisions on.

Fig. 19.3 A standard price list input based currency trading agent.

But how do we allow the NN to have access to this geometrical pattern within
the data, and give it the ability to actually use it? We cannot simply convert these
charts to bitmaps and feed them to the NN, because the bitmap encoded chart will
still be just a long vector, and the NN will not only have to deal with an input with
high dimensionality (dependent on the resolution of the bitmap), but also there
would really be no connection between this input vector and the actual geomet-
rical properties of the chart that could be exploited.

The solution comes in the substrate encoding we implemented in the earlier
chapters. The substrate encoding approach has been actively used in computer vi-
sion, and as we discussed in the previous chapters, it has a natural property of tak-
ing geometrical properties of the sensory signals into consideration, and it can

792 Chapter 19 Evolving Currency Trading Agents

through its own geometrical topological structures, further extract and reveal the
geometrical regularities within the data, and it is these geometric regularities that
technical analysis tries to find and exploit.

With this type of indirect encoded neural network we can analyze the price
charts directly, making use of the geometrical patterns, and trends within. Because
each neurode in the substrate receives a connection from every neurode or input
element in the preceding hyperlayer, the chart that is fed to the substrate must first
be reconstructed to the resolution that still retains the important geometrical in-
formation, and yet is computationally viable as input. For example, if the sliding
chart that is fed to the substrate is 1000x1000, which represents 1000 historical
points (horizontal axis), with the resolution of the price data being (MaxPlotPrice
– MinPlotPrice)/1000 (the vertical axis), then each neurode in the first hidden pro-
cessing hyperlayer of the substrate will have 1000000 inputs. If the substrate has
three dimensions, and we set it up such that the input signals are plane encoded

Fig. 19.4 A hyperlayer-to-hyperlayer feedforward substrate processing a 2d chart input.

and located at Z = -1, with a 10X10 neurodes in the hidden hyperplane located at
Z = 0, and 1X1 neurodes in the third hyperplane located at Z=1 (a very similar
architecture is shown in Fig-19.4, only with the hidden hyperplane being a 3x3
one), then each of the 100 neurodes at Z = 0 receives 1000000 inputs, so each has
1000000 synaptic weights, and for this feedforward substrate to process a single
input signal would require 100*1000000 + 1*100 calculations, where the 1*100
calculations are performed by the neurode at Z = 1, which is the output neurode of
the substrate. This means that there would be roughly 100000000 calculations per
single input, per processing of a single frame of the price chart.

19.2 Trading and the Objective 793

Thus it is important to determine and test what resolution provides enough ge-
ometrical detail to allow for prediction to be made, yet not overwhelm the NN it-
self and the processing power available to the researcher. Once the number of the
historical prices (horizontal axis on the price chart) and the resolution of the prices
(vertical axis on the price chart) are agreed upon, the chart can then be generated
for the sliding window of the currency pair exchange rates, producing the sliding
chart. For example, Fig-19.5A shows a single frame of the chart whose horizontal
and vertical resolution is 100 and 20 respectively, for the EUR/USD closing prices
taken at 15 minute time-frames (pricing intervals). This means that the chart is
able to capture 100 historical prices, from N to N-99, where N is the current price,
and N-99 is the price (99*15) min ago. Thus, if for example this chart’s highest
price was $3.00 and the lowest price was $2.50, and we use a vertical resolution of
20, the minimum discernible price difference (the vertical of the pixel) is (3-
2.5)/20 = $0.025. For comparison, Fig-19.5B shows a 10x10 chart resolution of a
recreated candlesticks chart.

Fig. 19.5 A. and B. show a 100x20 and 10x10 resolution based charts respectively, using the
candlesticks charting style.

Similar to Fig-19.4, in Fig-19.5 the pixels of the background gray are given a
value of -1, the dark gray have a value of 0, and the black a value of 1. These can-

metrical regularities and high/low pricing info of the original higher resolution
plot, with the fidelity increasing with the recreated chart’s resolution. It is this type
of chart that we can use as input plane that is fed to the substrate.

agents, agents which instead of simply predicting the next tick’s currency ex-
change rate, can directly interface with the financial service provider, gather cur-
rency exchange pricing data, and make the actual trades. To do so we can connect
our TWEANN system through its sensors and actuators to an electronic trading
platform like the mentioned MT4 or MT5, and then use the demo account as the

dlestick charts, though of low resolution, can be seen to retain most of the geo-

To accomplish this objective we need to use our TWEANN to evolve such

794 Chapter 19 Evolving Currency Trading Agents

simulator as we evolve the trading agents, letting the MetaTrader itself keep track
of the agent’s balance and therefore its implicit fitness score. But that will take too
long, and we cannot very easily use thousands of MT instances, one private in-
stance for every agent being evaluated.

Instead, we can get historical financial data from one of the brokers, and build
our own Forex simulator in Erlang, simulated as a private scape. If we take that
route, we could then easily spawn such private scapes for every agent in the popu-
lation, allowing the agent to interface with it through its sensors and actuators. As
long as we build the FX simulator accurately enough, such that it emulates the
fees and the prices associated with one of the real broker offered services, and us-
es real world data, the historical data for example, we will be able to evolve cur-
rency trading agents which could be, after having been evolved and tested, applied
to real markets and used to autonomously interface with the financial service pro-
viders and make autonomous trades.

In the next chapter we will discuss the architecture of the Forex simulator, and
the sensors and actuators used to interface with it. We will discuss how to create
the sensors and actuators so that we can feed our evolved NN based agents the
Price Chart Input (PCI) signals (the actual graphical plots of the financial instru-

list). We will then implement the Forex simulator and the sensors and actuators
needed to interface with it. And then finally evolve the autonomous currency trad-
ing agents.

19.3 The Forex Simulator

Once we download the historical data for one of the currency pairs, let’s say
EUR/USD, which is the most popularly traded currency pair, we can enter it into a
list, an ets or dets table, or mnesia, which can then be used by the simulator. In our

not even better and faster in a scenario when the currency based properties have to
be fed in a series to an interfacing trading agent. Although the list representation
would not be as flexible as an ets one, and it is for that reason we are not using it.

We will then create a Forex market simulator where each interfacing NN will
be given a $300 starting balance. Each agent will interface with its own private
scape for which it will produce an output which will be converted by its actuator
to – 1 if it’s less than -0.5, 0 if between -0.5 and 0.5, and 1 if greater than 0.5.
When interacting with the Forex simulator, -1 means go short, 0 means close posi-

Like with previous simulations, we need to abstract the Forex simulator into its

particular currency pair based on real historical data that we can download from
own private scape. The private scape will simply simulate the forex market for a

one of the existing financial service providers.

case, we will use ets, although a simple list would have worked just as well, if

ments), and the Price List Input (PLI) signals (the standard sliding window price

19.3 The Forex Simulator 795

tion (or do nothing if no position is open), and 1 means go long (if you currently
have a short position opened, then first close the position, and then go long). The
Forex simulator will simulate the market using 1000 real EUR/USD currency pair
closing prices, stretching from 2009-11-5-22:15 to 2009-11-20-10:15, using 15
min ticks. The simulator will use a price spread of $0.00015, which is about aver-
age for a standard account from a financial service provider like OANDA or
Alpari.

Because we will want to test the generalization of our evolved agents, their
ability to be applied to previously unseen financial price data and successfully use
it to make trades, we take the mentioned 1000 point dataset and further split it into

800 time ticks, ranging from: 2009-11-5-22:15 to 2009:11-18-8:15, and the test-
ing/generalization data we will set to the immediately following 200 time steps
from 2009-11-18-8:15 to 2009-11-20-10:15. Finally, when the agent is opening a
position, it is always done with $100 leveraged by x50 to $5000. Thus the losses
and gains are based on the $5000 opened order. The leverage of x50 is a standard
one provided by most brokers, since the change in currency pair prices is very
low, profit is made by trading high volumes of the same.

The private scape simulation will interface with the agent through the agent’s
actuator and sensor interfacing messages. The Forex simulating private scape will
accept the following list of messages from the agent:

1. {From,sense,TableName,Feature,Parameters,Start,Finish}: Is a request to
the Forex simulator sent from the agent’s sensor to acquire a list or a chart of
historical financial data. The element TableName specifies from which ta-
ble/database to read the financial data, essentially it specifies the currency pair.
The element Parameters specifies which set of technical indicators, and the
vector length the simulator should compose and send to this sensor. It could for
example simply be [Hres,list_sensor], which would prompt the scape to send
the sensor a PLI based signal. On the other hand if the Parameters element was
set to [HRes,VRes,graph_sensor], the scape would first compose an input plane
with a horizontal and vertical resolution of HRes and VRes respectively, and
then forward that signal to the sensor. Finally, the Start and Finish parameters
are used by the private scape at the very start to dictate the starting and ending
indexes for this particular evaluation.

2. {From,sense,internals,Parameters}: This is another type of sensory signal re-
quest that a sensor could poll the scape with. This sensory signal requests in-
formation with regards to the agent’s account internals, the information pertain-
ing to the agent’s account with the financial service provider. Information of
things like the current balance, whether the agent is currently holding a long,
short, or no position. And the percentage change of the position the agent is
holding, if any.

3. {From,trade,TableName,TradeSignal}: This is the signal sent by the agent’s
actuator. It specifies the TableName parameter, which is effectively the currency

ill make the training set out of the first training and generalization subsets. We w

796 Chapter 19 Evolving Currency Trading Agents

rency pair, in future implementations we could evolve multiple sensors and ac-
tuators that trade multiple currency pairs all at the same time using these
TableName specifications). The TradeSignal parameter is a list of length 1,
with a value set to either -1, 0, or 1, which specifies whether to short, hold, or
go long on the currency pair. For example, if TradeSignal is set to -1, and the

agent holds no position, it opens a short position on the currency pair, and fi-
nally if the agent currently has a long position open, it first closes it, and then
opens a short position. It acts symmetrically if the signal is 1. If it sends the
signal of 0, then whatever the position is open, gets closed.

The scape will of course have to keep track of the agent’s positions, fitness
score (net worth), and other parameters to keep track what time it is currently sim-
ulating, and what signals it should feed the agent. To allow the scape to keep track
of it all, the technical information about the currency pair, the agent’s state, its po-
sition, its open and closed orders... we will need to create 4 new records, as shown
next:

-record(state,{table_name,feature,index_start,index_end,index,price_list=[]}).
-record(account,{leverage=50,lot=10000,spread=0.000150,margin=0,balance=300,
net_asset_value=300, realized_PL=0,unrealized_PL=0,order}).
-record(order,{pair,position,entry,current,units,change,percentage_change,profit}).
-record(technical,{
 id,%Format: {Year,Month,Day,Hour,Minute,Second,Sampling_Rate}
 open,
 high,
 low,
 close,
 volume
}).

The state record keeps track of the general state, the index_start and index_end
values, specified by the sensor. The current price list, which is particular to the
implementation, and which makes things a bit more efficient by keeping the most
recently sent signal in the list, so that the next time we need only poll the database

leverage, the currency pair lot size it trades in, the spread, margin if any, agent’s
current balance, its net_asset_value which is effectively the agent’s fitness, and fi-
nally the realized and unrealized profit/loss. The last element in the list is the or-
der, which is set to undefined when the agent has no order open with the simulated
broker, and is set to the record order, when an order is opened. The record order
specifies everything about the currently opened order. It specifies the current posi-
tion (long or short), the entry price, the number of units traded, the dollar change

pair which is to be traded (though in this scape we will only use a single cur-

agent is already shorting a position, then it maintains its short position, if the

for a single value, which is appended to the list, with the oldest value removed from
account record keeps track of the agent’s standard account information. Its it. The

19.4 Implementing the Forex Simulator 797

in the position, the percentage_change of the position, and the profit (or loss) in
dollars of the order. Finally, the record technical is used by the scape to store the
actual historical financial data in its ets table. This table can be populated by for
example first having MetaTrader5 dump a text file with historical data to the desk-
top, and then read the open, high, low, close, and volume parameters from the text
file to ets.

Now that we’ve decided on the Forex simulator interfacing format and the data
types this new private scape will use, we can implement it.

19.4 Implementing the Forex Simulator

We know what elements need to be implemented, and from having implement-
ed a number of private scapes, and one public scape, we know the general archi-
tecture and structure that we need to construct. But this time we will slightly devi-
ate from our standard approach, and instead of implementing the forex simulator
inside the scape module, we will implement it in its own module, and only use the
scape module to call it. As more and more scapes are added, using a single module
is simply not enough, especially when the more complex scapes will require hun-
dreds or thousands of lines of code. Thus we create the fx.erl module in which we
will implement the private scape of the forex simulator.

We first give the private scape acting as a forex simulator a name: fx_sim. With
that, we will be able to specify it in the sensors and actuators we will create in the
next section. We then add to the scape module the function fx_sim/1, which is ex-
ecuted by the scape:prep/2 function when a private scape is spawned. It is the
fx_sim/1 function that will be called to execute the actual private scape located in
the fx module. The following shows the simple implementation of the fx_sim/1
function added to the scape module.

fx_sim(Exoself_PId)->
 fx:sim(Exoself_PId).

It is the sim/1 program and the fx module that contains all the needed functions

functions that compose the PLI and PCI sensory vectors for the agent. The reading
of the text file generated by MT5, and the writing of the ets table with the said da-
ta is out of scope for this text. Thus we will concentrate only on the implementa-
tion of the actual forex simulator, whose architecture and operational steps are
shown in Fig-19.6, and whose implementation is shown and elaborated on, in List-
ing-19.1.

that read from the text file, populate the ets table with financial information, and the

Fig. 19.6 The fx:sim/1 architecture diagram.

Let’s go through the above shown steps before implementing the architecture:

1. The sensors of the agent poll the fx_sim for sensory data.

3. The scape looks inside its database for the currency exchange rates, and based
on the resolution/length of the historical currency exchange rate, builds a price
list of that resolution.

4. The calling function in the receive clause is returned the price list.
5. Based on the receive clause, whether it is PCI or PLI, it encodes the returned

price list accordingly, either as a simple price list, or as a price chart using
trinary (-1,0,1) encoding.

6. The sensory signal (PCI or PLI, and the Internals) are forwarded to the agent’s
sensors.

7. The agent processes the sensory signals.
8. Based on the sensory signals and the agent’s reasoning about them, the agent

produces an output, and with its actuator forwards it to the fx_sim to make a
trade.

9. The receive clause forwards the trading account made by the agent to the order
handling function of fx_sim.

10.The signal is forwarded to the account processing function.
11.The private scape accesses the agent’s account.
12.fx_sim queries the database for the current currency pair exchange rate.
13.The database checks the current currency pair exchange rate.

798 Chapter 19 Evolving Currency Trading Agents

2. The scape checks what type of sensory signals are being asked for: account
internals, PCI encoded signals, or PLI encoded signals.

19.4 Implementing the Forex Simulator 799

14.The database returns the current currency pair exchange rate, but at the same
time moves the index of the “current” timestep, to the next time step, advancing
one tick forward in the simulated market.

15.The private scape executes the agent’s order. But also, knowing the exchange
rate of the next tick, calculates the profit/loss/change within the agent’s net
worth.

16.Based on whether the simulation has ended, which occurs when the index used
in the exchange rate database has reached ‘$end_of_table’, or the agent’s net
worth has dipped below $100, the function returns to the calling receive clause
a response message to be sent back to the actuator.

17.The private scape returns back to the actuator the tuple: {Fitness,HaltFlag},
where the Fitness is set to 0 when the HaltFlag is set to 0, and it is set to the
agent’s net worth when the HaltFlag is set to 1 (when a termination condition
has been reached).

18.At this point the loop repeats and we go to step 1 if termination condition has
not been reached.

Now that we know the step by step actions and interactions with the private
scape, and its architecture, we can move forward and implement it. When reading
the following implementation, it is essential to go through the comments, as they
discuss and explain the functionality of every function they follow. Finally, the en-
tire implementation of the forex simulator that we create in this chapter is availa-
ble in the supplementary material at [1].

Listing-19.1 The implementation of the fx:sim/1 function.

sim(ExoSelf)->
 put(prev_PC,0),
 S = #state{},
 A = #account{},
 sim(ExoSelf,S,A).

sim(ExoSelf,S,A)->
 receive
 {From,sense,TableName,Feature,Parameters,Start,Finish}->
 {Result,U_S}=case S#state.table_name of
 undefined ->
 sense(init_state(S,TableName,Feature,Start,Finish),Parameters);
 TableName ->
 sense(S,Parameters)
 end,
 From ! {self(),Result},
 case ?SENSE_CA_TAG of
 true ->
 timer:sleep(10000),

800 Chapter 19 Evolving Currency Trading Agents

 IndexT = U_S#state.index,
 NextIndexT = fx:next(TableName,IndexT),
 RowT = fx:lookup(TableName,IndexT),
 NextRowT = fx:lookup(TableName,NextIndexT),
 QuoteT = RowT#technical.close,
 NextQuoteT = NextRowT#technical.close;
 false ->
 ok
 end,
 fx:sim(ExoSelf,U_S,A);
 {From,sense,internals,Parameters}->
 Result = case A#account.order of
 undefined ->
 [0,0,0];
 O ->
 Position = O#order.position,
 Entry = O#order.entry,
 Percentage_Change = O#order.percentage_change,
 [Position,Entry,get(prev_PC)]
 end,
 From ! {self(),Result},
 fx:sim(ExoSelf,S,A);
 {From,trade,TableName,TradeSignal}->
 U_A = make_trade(S,A,TradeSignal),
 Total_Profit = A#account.balance + A#account.unrealized_PL,
 case ?ACTUATOR_CA_TAG of
 true ->
 timer:sleep(10000),
 IndexT = S#state.index,
 NextIndexT = fx:next(TableName,IndexT),
 RowT = fx:lookup(TableName,IndexT),
 NextRowT = fx:lookup(TableName,NextIndexT),
 QuoteT = RowT#technical.close,
 NextQuoteT = NextRowT#technical.close;
 false ->
 ok
 end,
 case (U_A#account.balance + U_A#account.unrealized_PL) =< 100 of
 true ->
 Result = {1,0},
 From ! {self(),Result},
 io:format(“Lost all money~n”),
 put(prev_PC,0),
 fx:sim(ExoSelf,#state{},#account{});
 false ->

19.4 Implementing the Forex Simulator 801

 case update_state(S) of
 sim_over ->
 Total_Profit = A#account.balance +
A#account.unrealized_PL,
 Result = {1,Total_Profit},
 From ! {self(),Result},
 put(prev_PC,0),
 fx:sim(ExoSelf,#state{},#account{});
 U_S ->
 Result = {0,0},
 From ! {self(),Result},
 U_A2 = update_account(U_S,U_A),
 fx:sim(ExoSelf,U_S,U_A2)
 end
 end;
 restart ->
 fx:sim(ExoSelf,#state{},#account{});
 terminate ->
 ok
 after 10000 ->
 fx:sim(ExoSelf,S,A)
 end.
% The sim/1 function is the main receive loop of the forex simulator. It accepts messages from
the agent, messages which either request for sensory signals (internal account data, or currency
exchange rates), or messages from the agent requesting that the simulator opens a position for
the agent. The simulator also monitors if the market has reached the end, or if the agent’s
net-worth dipped below 100, in which case the evaluation ends.

init_state(S,TableName,Feature,StartBL,EndBL)->
 Index_End = case EndBL of
 last ->
 ets:last(TableName);
 _ ->
 prev(TableName,ets:last(TableName),prev,EndBL)
 end,
 Index_Start = prev(TableName,ets:last(TableName),prev,StartBL),
 S#state{
 table_name = TableName,
 feature = Feature,
 index_start = Index_Start,
 index_end = Index_End,
 index = Index_Start
 }.
%init_state/5 function generates a default state of the simulator, based on the parameters speci-
fied by the agent’s messages during the initial contact.

802 Chapter 19 Evolving Currency Trading Agents

update_state(S)->
 NextIndex = fx:next(S#state.table_name,S#state.index),
 case NextIndex == S#state.index_end of
 true ->
 sim_over;
 false ->
 S#state{index=NextIndex}
 end.
%The function update_state/1 accepts the state as the parameter, and updates it by moving the
historical pricing forward. During the move of the historical prices forward, the state is updated
by updating the agent’s account.

update_account(S,A)->
 case A#account.order of
 undefined ->
 nothing_to_update,
 A;
 O ->
 TableName = S#state.table_name,
 Index = S#state.index,
 Row = fx:lookup(TableName,Index),
 Close = Row#technical.close,
 Balance = A#account.balance,
 Position = O#order.position,
 Entry = O#order.entry,
 Units = O#order.units,
 Change = Close - Entry,
 Percentage_Change = (Change/Entry)*100,
 Profit = Position*Change*Units,
 Unrealized_PL = Profit,
 Net_Asset_Value = Balance + Unrealized_PL,
 U_O = O#order{current=Close,change=Change, percentage_change
=Percentage_Change, profit=Profit},
 U_A = A#account{unrealized_PL=Unrealized_PL, net_asset_value
=Net_Asset_Value, order=U_O},
 put(prev_PC,O#order.percentage_change),
 U_A
 end.
%The update_account/2 function accepts the state and the account as parameters, and updates
the account and the order, based on the state’s specified current temporal position within the
simulated market.

determine_profit(A)->

19.4 Implementing the Forex Simulator 803

 U_Realized_PL = A#account.realized_PL + A#account.unrealized_PL.
%The function determine_profit/1 calculates the agent’s realized profit by adding to the agent’s
current realized profit, the yet unrealized profit in the account.

make_trade(S,A,Action)->
 case A#account.order of
 undefined ->
 case Action == 0 of
 true ->%Do nothing
 A;
 false ->%Open new position
 open_order(S,A,Action)
 end;
 O ->
 case Action == 0 of
 true ->%Close Order
 close_order(S,A);
 false ->%Modify Order
 Current_Position = O#order.position,
 case Current_Position == Action of
 true ->
 A;
 false ->
 U_A=close_order(S,A),
 open_order(S,U_A,Action)
 end
 end
 end.
%The make_trade/3 function opens an order (or keeps one open) for the agent, based on the
Action the agent specifies. If the agent holds a long position and Action specifies a short posi-
tion, then the long position is closed, and a short is opened. Reflectively, other Actions are dealt
with in the same manner.

open_order(S,A,Action)->
 BuyMoney = 100,
 Spread=A#account.spread,
 Leverage = A#account.leverage,
 Balance = A#account.balance,
 TableName = S#state.table_name,
 Index = S#state.index,
 Row = fx:lookup(TableName,Index),
 Quote = Row#technical.close,
 Entry = Quote + Spread*Action,
 Units = round((BuyMoney*Leverage)/Entry),
 Change= Quote-Entry,

804 Chapter 19 Evolving Currency Trading Agents

 PChange = (Change/Entry)*100,
 Profit=Action*Change*Units,
 Unrealized_PL = Profit,
 New_Order = #order{pair=TableName,position=Action,entry=Entry,current=Quote,
units=Units,change=Change,percentage_change=PChange,profit=Profit},
 A#account{unrealized_PL = Unrealized_PL,order=New_Order}.
%The open_order/3 function opens a position using the default leverage and buy in value
(100$), making the order short or long dependent on the value of the Action parameter.

close_order(S,A)->
 U_Balance = A#account.balance + A#account.unrealized_PL,
 U_Realized_PL = A#account.realized_PL + A#account.unrealized_PL,
 A#account{

balance=U_Balance,
realized_PL=U_Realized_PL,
unrealized_PL = 0,
order=undefined

}.
%The close_order/2 function, closes any currently opened position, updating the agent’s

%%%% FX SENSORY SIGNAL FUNCTIONS %%%%
sense(S,Parameters)->
 case Parameters of
 [HRes,VRes,graph_sensor]->
 {Result,U_S}=plane_encoded(HRes,VRes,S);
 [HRes,list_sensor]->
 {Result,U_S}=list_encoded(HRes,S)
 end.

list_encoded(HRes,S)->
 Index = S#state.index,
 CurrencyPair = S#state.table_name,
 PriceListPs = S#state.price_list,
 case lists:keyfind(HRes, 2,PriceListPs) of
 false ->
 Trailing_Index = prev(CurrencyPair,Index,prev,HRes-1),
 U_PList = fx_GetPriceList(CurrencyPair,Trailing_Index,HRes,[]),
 U_PriceListPs = [{U_PList,HRes}|PriceListPs];
 {PList,HRes} ->
 R = fx:lookup(CurrencyPair,Index),
 U_PList = [{R#technical.open,R#technical.close,R#technical.high,
R#technical.low}|lists:sublist(PList,HRes-1)],
 U_PriceListPs = lists:keyreplace(HRes, 2, PriceListPs, {U_PList,HRes})
 end,

account in the process.

19.4 Implementing the Forex Simulator 805

 U_S=S#state{price_list=U_PriceListPs},
 {[Close||{_Open,Close,_High,_Low}<-U_PList],U_S}.
% The function list_encoded/2 returns to the caller a price list of length HRes.

plane_encoded(HRes,VRes,S)->
 Index = S#state.index,
 CurrencyPair = S#state.table_name,
 PriceListPs = S#state.price_list,
 case lists:keyfind(HRes, 2,PriceListPs) of
 false ->
 Trailing_Index = prev(CurrencyPair,Index,prev,HRes-1),
 U_PList = fx_GetPriceList(CurrencyPair,Trailing_Index,HRes,[]),
 U_PriceListPs = [{U_PList,HRes}|PriceListPs];
 {PList,HRes} ->
 R = fx:lookup(CurrencyPair,Index),
 U_PList = [{R#technical.open,R#technical.close,R#technical.high,
R#technical.low}|lists:sublist(PList,HRes-1)],
 U_PriceListPs = lists:keyreplace(HRes, 2, PriceListPs, {U_PList,HRes})
 end,
 LVMax1 = lists:max([High||{_Open,_Close,High,_Low}<-U_PList]),
 LVMin1 = lists:min([Low||{_Open,_Close,_High,Low}<-U_PList]),
 LVMax =LVMax1+abs(LVMax1-LVMin1)/20,
 LVMin =LVMin1-abs(LVMax1-LVMin1)/20,
 VStep = (LVMax-LVMin)/VRes,
 V_StartPos = LVMin + VStep/2,
 U_S=S#state{price_list=U_PriceListPs},
 {l2fx(HRes*VRes,{U_PList,U_PList},V_StartPos,VStep,[]),U_S}.
%The function plane_encoded/3, returns to the caller a chart with a resolution of HResXVRes.

l2fx(Index,{[{Open,Close,High,Low}|VList],MemList},VPos,VStep,Acc)->
 {BHigh,BLow} = case Open > Close of
 true ->
 {Open,Close};
 false ->
 {Close,Open}
 end,
 O = case (VPos+VStep/2 > BLow) and (VPos-VStep/2 =< BHigh) of
 true ->
 1;
 false ->
 case (VPos+VStep/2 > Low) and (VPos-VStep/2 =< High) of
 true ->
 0;
 false ->
 -1

806 Chapter 19 Evolving Currency Trading Agents

 end
 end,
 l2fx(Index-1,{VList,MemList},VPos,VStep,[O|Acc]);
 l2fx(0,{[],_MemList},_VPos,_VStep,Acc)->
 Acc;
 l2fx(Index,{[],MemList},VPos,VStep,Acc)->
 l2fx(Index,{MemList,MemList},VPos+VStep,VStep,Acc).
%The l2fx/5 function is the one that actually composes the candle stick chart, based on the
price list, and the HRes and VRes values.

 fx_GetPriceList(_Table,EndKey,0,Acc)->
 Acc;
 fx_GetPriceList(_Table,’end_of_table’,_Index,Acc)->
 exit(“fx_GetPriceList, reached end_of_table”);
 fx_GetPriceList(Table,Key,Index,Acc) ->
 R = fx:lookup(Table,Key),
 fx_GetPriceList(Table,fx:next(Table,Key),Index-1, [{R#technical.open,
R#technical.close, R#technical.high, R#technical.low}|Acc]).
%The fx_GetPriceList/4 function, accesses the table: Table, and returns to the caller a list of
tuples composed of the open, close, high, low exchange rate values, running from the initial
Key index, to the EndKey index within the table.

Having now implemented the actual simulator, we have to construct the sensors
and actuators which the agent will use to interface with it. We do so in the next
section.

19.5 Implementing the New Sensors and Actuators

With the private scape implemented, we now update the sensor and actuator
modules to include the two new sensors that poll the scape for PLI and PCI sig-

actuators, these are very simple due to the fact that the scape does most of the
heavy lifting. Listing-19.2 shows the implementation of the three new sensor func-
tions added to the sensor module. There are two sensors which request financial
signals from the private scape, one in the standard linear sliding window format,
and the other requests for that vector to be in the form appropriate for a substrate
encoded NN based agent, and for that vector to represent the sensory signal using
an appropriate and sensor specified resolution. The third sensor requests infor-
mation with regards to the agent’s account, encoded always in the linear form, as a
vector of length 3.

Listing-19.2 The implementation of fx_PCI/4, fx_PLI/4, and fx_Internals/4, sensor functions.

nals, and send to the scape messages to execute trades. As with the other sensors and

19.5 Implementing the New Sensors and Actuators 807

fx_PCI(Exoself_Id,VL,Parameters,Scape)->
 [HRes,VRes] = Parameters,
 case get(opmode) of
 standard ->
 Scape
!{self(),sense,’EURUSD15’,close,[HRes,VRes,graph_sensor],1000,200};
 gentest ->
 Scape ! {self(),sense,’EURUSD15’,close,[HRes,VRes,graph_sensor],200,last}
 end,
 receive
 {_From,Result}->
 Result
 end.

fx_PLI(Exoself_Id,VL,Parameters,Scape)->
 [HRes,Type] = Parameters,%Type=open|close|high|low
 case get(opmode) of
 standard ->
 Scape ! {self(),sense,’EURUSD15’,close,[HRes,list_sensor],1000,200};
 gentest ->
 Scape ! {self(),sense,’EURUSD15’,close,[HRes,list_sensor],200,last}
 end,
 receive
 {_From,Result}->
 normalize(Result)
 end.

 normalize(Vector)->
 Normalizer=math:sqrt(lists:sum([Val*Val||Val<-Vector])),
 [Val/Normalizer || Val <- Vector].

fx_Internals(Exoself_Id,VL,Parameters,Scape)->
 Scape ! {self(),sense,internals,Parameters},
 receive
 {PId,Result}->
 Result
 end.

The only thing that is different about these implementations is their use of the
get(opmode) function, because the generalization testing and training, are per-
formed on different subsets of the financial data. We will get back to that in the
next section.

Similarly to the new sensors, we now implement the new actuator, and add it to
the actuator module. The implementation of the fx_Trade/4 function is shown in

8 Chapter 19 Evolving Currency Trading Agents

the following listing. This actuator simply contacts the scape and requests to make
a trade for a specified currency pair.

Listing-19.3 The implementation of the fx_Trade actuator.

fx_Trade(ExoSelf,Output,Parameters,Scape)->
 [TradeSignal] = Output,
 Scape ! {self(),trade,’EURUSD15’,functions:trinary(TradeSignal)},
 receive
 {Scape,Fitness,HaltFlag}->
 {Fitness,HaltFlag}
 end.

And finally we add the new fx morphological specification to the morphology
module, as shown in the next listing.

Listing-19.4 The fx morphological specification.

 #actuator{name=fx_Trade,type=standard,scape={private,fx_sim},format=no_geo, vl =1,
parameters=[]}
];

forex_trader(sensors)->
 PLI_Sensors=[#sensor{name=fx_PLI,type=standard,scape={private,fx_sim}, format
=no_geo, vl=HRes, parameters=[HRes,close]} || HRes<-[10]],
 PCI_Sensors = [#sensor{name=fx_PCI,type=standard,scape={private_fx_sim}, format
={symmetric,[HRes,VRes]},vl=HRes*VRes,parameters=[HRes,VRes]} || HRes <-[50], VRes
<-[20]],
 Internal_Sensors = [#sensor{name=fx_Internals,type=standard,scape={private_fx_sim},
format=no_geo,vl=3,parameters=[3]}],
 PCI_Sensors++Internal_Sensors.

Within this morphological specification we can choose which of the sensors to
use, the one for substrate encoded NN based agents, or the one for neural encoded.
We can also choose to use different sensors at the same time, sensors which gather
data for different currency pairs, resolutions... It might be useful in the future to al-
low the agent to evolve connections and use different types of sensors which pro-
vide it with not only different signals, and different currency pair information, but
also with differently encoded signals, which might allow the agent to more effec-
tively extract and blend the information it acquires.

Having now implemented the sensors, actuators, and the new morphology, we
now return to the discussion of the training and generalization testing, and what
changes it entails for our TWEANN.

08

forex_trader(actuators)->[

19.6 Generalization Testing 809

19.6 Generalization Testing

When we evolve a neural network to solve some problem, there is always a
chance that instead of learning the concept behind the given problem, the neural
network will simply memorize the associations between some specific sensory
signals and actions that have to be taken, especially if the sensory signals come
from some static list of data. In applications and simulations of ALife, the sensory
signals and the environment itself is so dynamic, that simple memorization is not
feasible, and would lead to death of the organism. Ability to deal with dynamic
environments requires a greater amount of learning, and generalization is already
part of the environment and what it requires from an agent if it wishes to survive.
But when we deal with something like financial analysis, and the NN is trained on
a some particular static dataset, there is a chance that it will simply memorize how
to profitably trade that memorized section of the financial dataset, and when we
move it to new data in the real world, it will be unable to generalize or make prof-
itable trades with the new input signals.

The process of simple memorization rather than learning the concept, is re-
ferred to as overtraining/fitting. To prevent overtraining, stopping the evolutionary
process right before the population begins to memorize rather than learn, is cus-
tomarily done by dividing the given training dataset into two sections: Training
and Generalization Testing. We first apply the population to the training dataset,
evolving the solution. But after every generation, or every X number of evalua-
tions, we take the champion of the population and apply it to the Generalization
Testing dataset which it has not yet seen before. If at some point the agents begin
to do worse and worse on the generalization datasets while continuing to improve
on the training dataset, then the population is beginning to memorize, and is be-
coming overtrained. Thus at this point we would stop the training process, as it has
shown to not be able to generalize and improve on new data any further.

Our system does not yet support such a feature. In general, the DXNN system
and particularly the system we’ve built here, has in the problems I’ve applied it to,
proven itself to generalize rather well even without the use of data splitting. To ac-
tually demonstrate this, to demonstrate the fact that our TWEANN system does
not suffer significantly from over-training and poor generalization, we will slight-
ly modify the population monitor such that every time a stat of a specie is calcu-
lated, the population monitor also takes the champion of that specie and applies it
to a generalization test. This is done through a slight modification to the popula-
tion_monitor module, the exoself module, and the sensor/actuator modules.

The amount of modification we will need to make is very little. Let us first dis-
cuss what the new behavior of an agent should be when it has been spawned only
for the purpose of generalization testing. When we want to simply test a champion
agent on how well it generalizes, we do not want to mutate or tune it in any way.

connectivity pattern. Once the agent at-that-time topology and synaptic weight and
We merely want to spawn the exoself, and apply it to a problem once, with its

810 Chapter 19 Evolving Currency Trading Agents

monitor. The population monitor should perform (if at all), the generalization test
when it is building a stat record. Whether the agent is applied to a new problem or
set of sensory signals during its generalization test is dependent on the problem.
So then, we need only modify the exoself so that it can act in its standard way, but
also when being generalization tested, to work in a very simple manner of just
spawning and linking the NN system, waiting for the fitness score from the cortex
element, and then forwarding that to the population monitor. The population
monitor needs to be modified very little as well, it should simply, if set to do so,
perform a generalization test by summoning the champion agent with the general-
ization_test operational mode, wait for its reply, and enter that score into the mod-
ified stat record. We will need to add to the stat record the new gentest_fitness el-
ement. Finally, the sensors and actuators could be modified at their core, by us
changing their records to have two sets of parameters. One standard parameter el-
ement, and one gentest_parameter. This gentest_parameter could then specify a
set of parameters that would dictate how the sensor/actuator should behave when
generalization testing is performed... But we will take a simpler approach. We will
not modify anything so significant with regards to sensors and actuators, and
simply set the fx_PCI, fx_PLI, fx_Internals, and fx_Trade functions to check their

nals from the private scape differently. This way we will not have to change any-
thing. All that we would need to modify, is allow the exoself to specify the agent’s
operational mode when linking the sensors and actuators. The sensors and actua-
tors would store to the process registry this operation mode, and those sensors and
actuators that behave differently during standard evaluation and generalization
testing, would simply use the command get(opmode), to decide how to function.
Thus, the sensor and actuator based modified prep/1 functions are as follows, with
the small modification in boldface:

prep(ExoSelf_PId) ->
 receive
 {ExoSelf_PId,{Id,Cx_PId,Scape,SensorName,VL,Parameters,Fanout_PIds,
OpMode}} ->
 put(opmode,OpMode),
 loop(Id,ExoSelf_PId,Cx_PId,Scape,SensorName,VL,Parameters,Fanout_PIds)
 end.
prep(ExoSelf_PId) ->
 receive
 {ExoSelf_PId,{Id,Cx_PId,Scape,ActuatorName,Parameters,Fanin_PIds,OpMode}} ->
 put(opmode,OpMode),
 loop(Id,ExoSelf_ PId,Cx_PId,Scape,ActuatorName,Parameters, {Fanin_PIds,
Fanin_PIds}, [])
 end.

ould then be returned to the population finishes its single evaluation, that score sh

operational mode, sent to them by the exoself, and then based on that, request sig-

19.6 Generalization Testing 811

The first prep/1 belongs to the modified sensor module, while the second
prep/1 belongs to the modified actuator module. And it is this simple modification
that allows the sensor and actuator functions in Listing-19.2 to work.

Before we make the small changes to the benchmarker, population_monitor,
and the exoself modules, let’s go through the steps of our TWEANN when set to
perform generalization testing when evolving a population of agents:

1. Because we now use the pmp record to set all the parameters of the popula-
tion_monitor, we can use this record’s op_mode element, and either set it to
gentest_off, or gentest_on value. When set to gentest_off, it will function nor-
mally, without performing any kind of generalization tests every X number of

will perform a generalization test. So then, we do not need to modify the
benchmarker module in any way other than now having to also specify the
op_mode parameter. Let us then set it in this example to: gentest_on.

2. The benchmarker starts the population_monitor. The population_monitor mod-

tion that the benchmarker uses to spawn the population_monitor with the pa-
rameters specified by the pmp record, the pmp record’s op_mode is mapped to
that of the population_monitor’s state record’s op_mode. It is only when we
summon agents with the function summon_Agents/3 that we might wish to
specify the operational mode with which the exoself should operate. But even
here, we can simply create an extra exoself:start/3 function in which OpMode
is specified. Thus, if the agent is started with the exoself:start/2 function (which
is what we usually use), then it starts in standard mode. The only change in the
population_monitor occurs in the gather_STATS/2 function. We modify it to
gather_STATS/3 function, calling it with the OpMode parameter, so that when
it executes: update_SpecieSTAT(Specie_Id,TimeStamp,OpMode) for every spe-
cie, it does so with the OpMode value. It’s this function: update_SpecieSTAT/3,
that we need to update to add this new generalization_testing functionality to
our TWEANN.

3. We modify the stat record in the records.hrl file to also include the element
gentest_fitness. The function update_SpecieSTAT, when composing the stat
record, executes the following: gentest_fitness = run_GenTest(S,OpMode). The
run_GenTest/2 function, based on the OpMode, either simply returns 0, if the
OpMode is set to gentest_off, or spawns the Specie’s champion agent with the
operational mode gentest. Thus for the population_monitor module, we need
only update a few functions (gather_STATS/2 and update_SpecieSTAT/3) so
that they can be called with the OpMode parameter. And we also need to build
this new run_GenTest/2 function, which spawns the agent in the benchmark
mode, waits for it to return its generalization score, and then returns that score
to the caller, and thus setting the gentest_fitness parameter to that score.

4. The run_GenTest/2 function checks the Specie’s S#specie.champion_ids, to get
the agent id of the champion, and then spawn it in gentest mode by executing:
exoself:start(ChampionAgent_Id, self(), gentest).

evaluations. But when we set op_mode to gentest_on, the population_monitor

ule’s state record also has an op_mode element. And in the prep_PopState/2 func-

812 Chapter 19 Evolving Currency Trading Agents

two ways, the standard way, and the gentest way where it simply spawns the
NN, waits for the fitness score, and then sends that fitness score as a message to
the run_GenTest/2 function which spawned it, and then terminates the pheno-
type and itself. This can easily be done by modifying the loop/1 into loop/2:
exoself:loop(State,OpMode). In this way, we do not modify the standard code,
instead we simply add a secondary loop clause which performs the required
functionality and terminates. This will also require us to allow for the exoself to
send the sensors and actuators the OpMode when linking them, but that is a
simple modification, we just extend the InitState tuple that the exoself sends the
sensors and actuators, such that the extended tuple also includes the OpMode as
the last element.

Thus, to make it all work we now first modify the gather_STATS/3, as shown
in the following listing, with the new source code in boldface:

Listing-19.3 The implementation of the updated gather_STATS/3, update_SpecieSTAT/3, and
the new function run_GentTest/2. The modified and new code is shown in boldface.

gather_STATS(Population_Id,EvaluationsAcc,OpMode)->
 io:format(“Gathering Species STATS in progress~n”),
 TimeStamp = now(),
 F = fun() ->
 P = genotype:read({population,Population_Id}),
 T = P#population.trace,
 SpecieSTATS = [update_SpecieSTAT(Specie_Id,TimeStamp,OpMode) || Specie_Id
<-P#population.specie_ids],
 PopulationSTATS = T#trace.stats,
 U_PopulationSTATS = [SpecieSTATS|PopulationSTATS],
 U_TotEvaluations = T#trace.tot_evaluations+EvaluationsAcc,
 U_Trace = T#trace{
 stats = U_PopulationSTATS,
 tot_evaluations=U_TotEvaluations
 },
 io:format(“Population Trace:~p~n”,[U_Trace]),
 mnesia:write(P#population{trace=U_Trace})
 end,
 Result=mnesia:transaction(F),
 io:format(“Result:~p~n”,[Result]).

 update_SpecieSTAT(Specie_Id,TimeStamp,OpMode)->
 Specie_Evaluations = get({evaluations,Specie_Id}),
 put({evaluations,Specie_Id},0),

5. For step-4 to work, our exoself should be spawnable with the OpMode parameter,
and we need to further update its state record to include the opmode element in it.
Finally, we also need to allow the exoself to operate the loop/1 function in

19.6 Generalization Testing 813

 S = genotype:read({specie,Specie_Id}),
 {Avg_Neurons,Neurons_Std} = calculate_SpecieAvgNodes({specie,S}),
 {AvgFitness,Fitness_Std,MaxFitness,MinFitness} = calculate_SpecieFitness({
specie,S}),
 SpecieDiversity = calculate_SpecieDiversity({specie,S}),
 STAT = #stat{
 morphology = (S#specie.constraint)#constraint.morphology,
 specie_id = Specie_Id,
 avg_neurons=Avg_Neurons,
 std_neurons=Neurons_Std,
 avg_fitness=AvgFitness,
 std_fitness=Fitness_Std,
 max_fitness=MaxFitness,
 min_fitness=MinFitness,
 avg_diversity=SpecieDiversity,
 evaluations = Specie_Evaluations,
 time_stamp=TimeStamp,
 gentest_fitness = run_GenTest(S,OpMode)
 },
 STATS = S#specie.stats,
 U_STATS = [STAT|STATS],
 mnesia:dirty_write(S#specie{stats=U_STATS}),
 STAT.

 run_GenTest(S,gentest)->
 TopAgent_Id = case S#specie.champion_ids of
 [Id] ->
 Id;
 [Id|_] ->
 Id;
 []->
 void
 end,
 case TopAgent_Id of
 void ->
 0;
 _ ->
 Agent_PId=exoself:start(TopAgent_Id,self(),gentest),
 receive
 {Agent_PId,gentest_complete,Specie_Id,Fitness, Cycles,
Time}->
 genotype:print(TopAgent_Id),
 Fitness;
 Msg ->
 io:format(“Msg:~p~n”,[Msg])

814 Chapter 19 Evolving Currency Trading Agents

 end
 end;
 run_GenTest(_S,_)->
 0.

Now we modify the exoself module by allowing the exoself to be executed in 3
ways, so that it now also supports being executed with the OpMode parameter.
And we also add the new loop/2 clause. This is shown in the following listing.

Listing-19.4 The 3 new exoself:start/1/2/3 functions, and the new loop/2 clause.

start(Agent_Id)->
 case whereis(monitor) of
 undefined ->
 io:format(“start(Agent_Id):: ‘monitor’ is not registered~n”);
 PId ->
 start(Agent_Id,PId,standard)
 end.

start(Agent_Id,PM_PId)->
 start(Agent_Id,PM_PId,standard).

start(Agent_Id,PM_PId,OpMode)->
 spawn(exoself,prep,[Agent_Id,PM_PId,OpMode]).
…
…
…
loop(S,standard)->
 receive
 …
 …
 ...
 end;
loop(S,gentest)->
 receive
 {Cx_PId,evaluation_completed,Fitness,Cycles,Time,GoalReachedFlag}->
 terminate_phenotype(S#state.cx_pid,S#state.spids,S#state.npids, S#state.apids,
S#state.scape_pids,S#state.cpp_pids,S#state.cep_pids,S#state.substrate_pid),
 io:format(“GenTest complete, agent:~p terminating. Fitness:~p~n
TotCycles:~p~n TimeAcc:~p Goal:~p~n”,[self(),Fitness,Cycles,Time,GoalReachedFlag]),
 S#state.pm_pid !
{self(),benchmark_complete,S#state.specie_id,Fitness,Cycles,Time}
 end.

19.7 Benchmark & Results 815

From this we can see that when exoself is started with either exoself:start/1 or
exoself:start/2, it starts with an OpMode = standard, which is just normal opera-
tional mode in which it performs tuning. But we can also start it using
exoself:start/3, specifying the OpMode directly. If that OpMode is gentest, after
prepping and mapping the genotype to phenotype, the exoself will drop into the
loop(S,gentest) clause, wait for the fitness score, and then immediately forward
that fitness score to the population_monitor, and then terminate. With this, our
system can now be started either in the standard mode, or in the gentest mode, in
which it will perform generalization testing every X number of evaluations.

Finally, to actually build a graph of generalization test fitness scores, we also
have to modify the benchmarker module, particularly the prepare_Graphs/2 func-

19.7 Benchmark & Results

With our TWEANN now also being able to perform generalization tests when
specified to do so, and store the results in the database, we can now apply our
TWEANN system to the Forex simulator we’ve developed, and test the evolved
agent’s ability to generalize. Our goal now is to perform the benchmarks using
Price List Input for neural encoded agents, and Price Chart Input for substrate en-
coded agents capable of extracting the geometrical patterns within the charts.

In the following benchmarks a single evaluation of a NN is counted when the
NN based agent has went through all the 800 training data points, or if its balance
dips below $100. The fitness of the NN is its net worth at the end of its evaluation.
Each evolutionary run will last for 25000 evaluations, and each experiment is
composed of 10 such evolutionary runs. In each experiment the population size
was set to 10. Finally, in every experiment we will allow the NNs to use and inte-

sin, absolute, sgn, linear, log, sqrt].

In the experiments we will perform, we will set the NNs to use price sliding
window vectors for direct encoded NNs, and price charts for substrate encoded
NNs. We will also connect each agent not only to the sensors providing them with
closing prices, but also the fx_sensor which produces the vector composed of:
[Position, Entry, PercentageChange], where Position takes the value of either -1
(currently shorting the held order), 0 (no position), or 1 (currently going long on
the held order), Entry is the price at which the position was entered (or set to 0 if
no position is held), and PercentageChange is the percentage change in the posi-

grate through evolution the following set of activation functions: [tanh, gaussian,

tion, so that it also dumps the gentest_fitness values to the file. With that done,
composed of a few very simple modifications not shown here, we can now com-
pile the modified modules, and move forward to perform the benchmarks.

tion since entry, and finally the substrate’s own output, a vector of length 1, will
be fed back to the substrate’s input hyperlayer. This will, due to feeding the

816 Chapter 19 Evolving Currency Trading Agents

Fig. 19.7 The topology of the Jordan Recurrent substrate of the PCI using agent.

We will perform 14 benchmarks/experiments in total, each experiment is com-
posed of 10 evolutionary runs from which the experiment’s average/max/min is
calculated for both the training and the generalization testing. Through the exper-
iments we will compare the performance of PCI based NNs and the PLI based
NNs. Finally, the sliding window and chart resolution that we will implement, will
be comparable for both the neural and substrate encoded NN based agents. We
will perform the following experiments:

 5 PLI experiments:

experiments are:

substrate its own output, make the substrate Jordan Recurrent, an architecture
of which is shown in Fig-19.7. Because we have already implemented the
jordan_recurrent topology in Chapter-16, the use of this architecture will entail
nothing more than allowing the seed agents to start with two sensors, the
fx_internals and fx_PCI, and using: substrate_linkforms = [jordan_recurrent] in
the ?INIT_CONSTRAINTS of the population to which the agent belongs.

Experiments 1-5 will be performed using the PLI using NNs. Each experiment
will differ in the resolution of the sliding window input the NNs use. Each NN
will start with the sliding window sensor, and the fx_internals sensor. These 5

19.7 Benchmark & Results 817

1. [SlidingWindow5] 2. [SlidingWindow10] 3. [SlidingWindow20]
4. [SlidingWindow50] 5. [SlidingWindow100]

We will set the benchmarker to test generalization abilities of the evolved NN
based agents every 500 evaluations, applying the best NN in the population at that
time to the 200 data point generalization test. Performing the generalization tests
consistently throughout the evolution of the population will not only allow us to
test the generalization ability of the best NNs in the population, but it will also al-
low us to build a plot of the general generalization capabilities of that particular
encoding and sensor type, and the generalization abilities of our TWEANN in
general. Finally, doing this will allow us to get a better idea of whether generaliza-
tion drops off as the PCI and PLI NNs are trained, whether it improves, or whether
it stays the same throughout the training process.

19.7.1 Running the Benchmark

Having set everything up, we execute the benchmark for every noted exper-
imental setup, and run it to completion. To do this, we simply modify the con-
straints used in our benchmarker module, and then execute
benchmarker:start(Experiment_Name), for every of our experimental setups. Due
to the number of the experiments, and the amount of time that the PCI based ex-
periments take, particularly the ChartPlane100x10 and ChartPlane50x20 experi-
ments, the benchmarking process will take up to a week even on a rather powerful
quad core sandy bridge CPU. A problem which can be alleviated by interfacing
Erlang with a GPU, and leveraging the vector multiplication performed by the
substrate, but that is a story which will be covered in the next tome of this series...

Their names are based on the resolutions used by the agent’s sensors.
 9 PCI experiments:

We will perform experiments 6-14 with the PCI based NNs. In these experiments
each PCI based NN will use a 4 dimensional substrate. The input hyperlayer
to the substrate will be composed of the fx_PCI, fx_internals sensors, and the
Jordan recurrent connection. For the PCI based NNs, we will create a 4 dimen-
sional substrate with an input hyperlayer composed of the noted 3 hyperplanes
and located at K = -1, all of which will be connected to the 5X5 hyperlayer
positioned at K = 0, which then is further connected to the 1X1 output
hyperlayer (composed of a single neurode in this case) located at K = 1, which
outputs the short/hold/long signal, and which is also used for the recurrent
connection back to the input hyperlayer. Each of the 9 experiments will use a
sensor of a different resolution:
1. [ChartPlane5X10], 2. [ChartPlane5X20] 3. [ChartPlane10X10]
4. [ChartPlane10X20] 5. [ChartPlane20X10] 6. [ChartPlane20X20]
7. [ChartPlane50X10] 8. [ChartPlane50X20] 9. [ChartPlane100x10]

818 Chapter 19 Evolving Currency Trading Agents

A week later (which of course could be much less if using a much more power-
ful server, or running all the experiments in parallel on different machines), we fi-
nally have all the benchmarking results, similar to the results shown in Table-1.
The following table presents the training average, training best, testing worst, test-
ing average, testing standard deviation, and testing best fitness score results of
every experiment. At the very bottom of the table, I list the Buy & Hold strategy,
and the Maximum Possible profit results for comparison. The Buy & Hold profits
are calculated by trading the currencies at the very start of the training or testing
run respectively, and then trading back at the end. The best possible profit is cal-
culated by looking ahead and trading the currencies only if the profit gained be-
fore the trend changes will be greater than the spread covering cost.

Table 1 Benchmark/Experiment Results.

TrnAvg TrnBst TstWrst TstAvg TstStd TstBst Price Vector Sensor Type
540 550 225 298 13 356 [SlidWindow5]
523 548 245 293 16 331 [SlidWindow10]
537 538 235 293 15 353 [SlidWindow20]
525 526 266 300 9 353 [SlidWindow50]
548 558 284 304 14 367 [SlidWindow100]
462 481 214 284 32 346 [ChartPlane5X10]
454 466 232 297 38 355 [ChartPlane5X20]
517 527 180 238 32 300 [ChartPlane10X10]
505 514 180 230 26 292 [ChartPlane10X20]
546 559 189 254 29 315 [ChartPlane20X10]
545 557 212 272 36 328 [ChartPlane20X20]
532 541 235 279 23 323 [ChartPlane50X10]
558 567 231 270 20 354 [ChartPlane50X20]
538 545 256 310 37 388 [ChartPlane100x10]
311 N/A N/A 300 N/A N/A Buy & Hold
N/A 704 N/A N/A N/A 428 Max Possible

From the above results we can note that the generalization results for both, the
PCI based NNs and PLI based NNs, show profit. Indeed, the acquired profits seem
rather significant as well, for example the highest profit reached during generaliza-
tion, $88 (single occurrence ending with net worth of $388) out of the $128 possi-
ble when the agent started with 300$. This shows that the agent was able to extract
68% of the available profit, a considerable amount. This is substantial, but we
must keep in mind that even though the agents were used on real world data, they
were still only trading in a simulated market, and we have chosen the best per-
formers from the entire experiment..., thus it is only after we test these champions

certainty that these generalization abilities carry over, and for how many time-
steps before the agents require re-training (In our experiment the agents are trained
on 800 time steps, and tested on the immediately followed 200 time steps).

on another set of previously unseen data, would it be possible to say with some

19.7 Benchmark & Results 819

By only analyzing the information provided in the above table, the first thing
we notice is that the PCI NN generalization’s worst performers are significantly
worse than those of the PLI based NNs. The PCI based NNs either generalized
well during an evolutionary run, or lost significantly. The PLI based NNs mostly
kept close to 300 during generalization test phase when not making profit. Also,
on average the best of PCI are lower than those produced by the best of PLI dur-
ing generalization. On the other hand the training fitness scores are comparable for
both the PCI and PLI NNs. Another observation we can make is that on average
the higher price (vertical) resolution (X20 Vs. X10) correlates with higher
achieved profits by the PCI NNs during generalization testing. And finally, we al-
so see that for both PLI and PCI, generalization achieved by 5 and 100 based price
window resolutions is highest.

We have discussed time and again that substrate encoding could potentially of-
fer a greater level of generalization to NN based agents due to the NNs operating
on coordinates, never seeing the actual input sensory signals, and thus being una-
ble to pick out particular patterns for memorization. NNs paint the synaptic
weights and connectivity patterns on the substrate in broad strokes. But based on
Table-1, at the face of it, it would almost seem as if we are wrong. This changes if
we perform further analysis of the results of our experiments, and plot the
benchmarker produced GNUplot ready files. The plots produced are quiet interest-
ing, as shown in Fig-19.8.

Fig. 19.8 PLI & PCI based Training and Testing Fitness Vs. Evaluations.

820 Chapter 19 Evolving Currency Trading Agents

Though somewhat difficult to see, we can make out that though yes the PLI
NNs did achieve those generalization fitness scores, they were simply tiny and
very short lived blips during the experiment, occurring a few times, and then dis-
appearing, diving back under 300. On the other hand though, the PCI NNs pro-
duced lower profits on average when generalization was tested, but they produced
those profits consistently, they generalized more frequently. When a PCI NN

tion ability for most of the entire

and the PCI Generalization Fitness Vs.
Evaluations, shown in Fig-19.10.

system generalized, it maintained that generaliza
evolutionary run. This is easier to see if we analyze the graph of PLI Generalization
Fitness Vs. Evaluations, shown in Fig-19.9,

Fig. 19.9 PLI based Generalization Testing Fitness Vs. Evaluations.

If we look at SlidingWindow100, produced by plotting the best generalization
scores from the 10 evolutionary runs of that experiment, we see that the score of
367 was achieved briefly, between roughly the evaluation number 5000 and
10000. This means that there was most likely only a single agent out of all the
agents in the 10 evolutionary runs, that achieved this, and then only briefly so. On
the other hand, we also see that majority of the points are at 300, which implies
that most of the time, the agents did not generalize. And as expected, during the

19.7 Benchmark & Results 821

very beginning, evaluations 0 to about 3000, there is a lot more profit producing
activity amongst all sliding window resolutions, which is rather typical of over
trained NNs, whose generalization score decreases while training score increases
over time. The most stable generalization and thus profitability was shown by
SlidingWindow5 and SlidingWindow100, and we know this because in those ex-
periments, there were a lot more fitness scores above 300, consistently. From this,
we can extract the fact that when it comes to PLI based NNs, during all the exper-
iments, there are only a few agents that generalize well, and do so only briefly.

Fig. 19.10 PCI based Generalization Testing Fitness Vs. Evaluations.

Let us now analyze Fig-19.10, the generalization results for just the PCI based
NN systems. The story here is very different. Not only there are more consistently
higher than 300 generalization fitness scores in this graph, but they also last
throughout the entire 25000 evaluations. This means that there are more general-
izing agents which stayed within the population without being replaced due to
over-fitting, or simply those few that did generalize, performed superior to those
with poorer generalization, and thus stayed within the population for longer periods
of time. Which gives hope that the generalization ability of these PCI NN based
systems will carry over to real world trading.

822 Chapter 19 Evolving Currency Trading Agents

When going through raw data, it was usually the case that for every PLI NN
based experiment, only about 1-2 in 10 evolutionary runs had a few agents which
generalized for a brief while to scores above 320, before being replaced by over-
fitted, poorly generalizing agents. On the other hand when going through the PCI
NN based experiments, 3-6 out of 10 evolutionary runs had agents generalizing,
and remaining within the population for the entire evolutionary run, with scores
above 320.

the number of neurodes in one layer, the neurodes in the postsynaptic layer would
now have so many inputs that they become saturated, becoming unable to function
effectively, although scaling and normalizing the presynaptic vectors for every
neurode did not seem to improve this problem significantly, leaving this anomaly

Analyzing the generalization plots further, we can also note that the low resolu-
tion substrates produce at times better results, and do so more often, than their
high resolution counterparts... except for the SlidingWindow100, and
ChartPlane100x10 based experiments, which performed the best. I think that the
low resolution based experiments performed well due to the fact that by increasing

to future work. Contradictory to this assumption is of course the exceptionally
well performing SlidingWindow100, and ChartPlane100x10 based agents. So
then, it seems that the lowest resolution and highest resolution based experiments
performed the best, but the question of why is still under analysis.

With regards to the evolved high performing PLI NNs, it was clear that they all
had one feature in common, they all had a substantial number of recurrent connec-
tions. I think that the high performing PLI NNs which used the sliding window
vectors of size 5, did so due to having a large number of recurrent connections,
which made it difficult to evolve simple memorization, and thus forcing generali-
zation. But this is also just a hypothesis at the moment.

19.8 Discussion

We have seen that TWEANN systems can successfully be applied to financial
analysis. We have also been able to compare a geometrical pattern sensitive sub-
strate encoded NN based agent which uses price chart input, vs. standard neural
encoded agent using price list input. As we hoped, the geometrically sensitive
agents were able to produce profit when applied to this problem, and were the su-
perior of the two approaches when it came to generalization. This implies that PCI
agents were able to extract the geometrical patterns within the financial data just
as we hoped.

19.9 Summary 823

Though our systems have produced profits when applied to Forex trading in
simulations, we still need to apply the resulting evolved agents to the real market,
by connecting the evolved agent to a trading platform. Application of these types
of systems to voice analysis, is now also an area of interest with regards to future
applications.

19.9 Summary

In this chapter we applied our TWEANN system to evolve currency trading
agents. We extended our TWEANN by adding to it the generalization testing fea-
tures, allowing the benchmarker to extract the champions of the population and
separately apply them to the given problem, or a separate problem, to see if the

These results also imply that the geometrical pattern sensitive NNs have poten-
tial in time series analysis applications. This means, anything from earthquake data
analysis, to frequency and audio/voice analysis based applications, could poten-
tially be leveraged by these types of systems. The generalization is particularly
impressive, and the substrate encoded system’s ability to use and improve with the
resolution at which the time series analysis is sampled, implies enormous applica-
tion based potential.

evolved agents can generalize and perform effectively on a related problem, but
one not yet explored directly during evolution. We implemented the translation of
the pricing data into price chart based on the candle stick style, and evolved sub-
strate encoded geometrical pattern sensitive agents which could use these price
chart inputs, and based on the geometrical patterns within those charts, trade cur-
rency. We also evolved the standard sliding window, price list input based neural
networks. These types of agents simply read historical data, and then made cur-
rency pair trading decisions.

From the performed benchmarks and experiments, we have confirmed that sub-
strate encoding does indeed provide for excellent generalization capabilities. We
also confirmed that geometrical sensitivity with regards to technical analysis can
give the NN an ability to trade currency. Indeed the PCI based agents performed

TWEANNs can indeed evolve geometry sensitive agents that are successful in this
very complex and chaotic time series analysis application, thus there is hope for its
application to other time series analysis problems.

much better, with regards to generalization, than PLI based agents. But more
importantly, through experiments that we have performed, we determined that

824 Chapter 19 Evolving Currency Trading Agents

19.10 References

[2] Halliday R (2004) Equity Trend Prediction With Neural Networks. Res. Lett. Inf. Math. Sci.,
Vol. 6, pp 15-29.

[3] Mendelsohn L (1993) Using Neural Networks For Financial Forecasting. Stocks & Commod-
ities. Volume 11:12, October. p.518-521.

[4] Min Qi, Peter GZ (2008) Trend Time-Series Modeling and Forecasting With Neural Net-
works. IEEE Transactions on neural networks, Vol. 19, no. 5.

[5] Lowe David (1994) Novel Exploitation of Neural Network Methods in Financial Markets.
Proceedings of the 3rd IEE International Conference on Artificial Neural Networks, IEE Pub-
lications, Aston, United Kingdom.

[6] Jung H, Jia Y, et al (2010) Stock Market Trend Prediction Using ARIMA-Based Neural
Networks. 2008 Proceedings of 17th International Conference on Computer Communications
and Networks 4, 1-5.

[7] Versace M, Bhatt R, Hinds O, Shiffer M (2004) Predicting The Exchange Traded Fund DIA
With a Combination of Genetic Algorithms and Neural Networks. Expert Systems with Ap-
plications 27, 417-425.

[8] Yao J, Poh HL (1995) Forecasting the KLSE Index Using Neural Networks. IEEE Interna-
tional Conference on Artificial neural networks.

[9] Kimoto T, Asakawa K, Yoda M, Takeoka M (1990) Stock Market Prediction System With
Modular Neural Networks. International Joint Conference on Neural Networks 1, 1-6.

[10] Hutchinson JM, Lo AW, Poggio T (1994) A Nonparametric Approach to Pricing and Hedg-
ing Derivative Securities Via Learning Networks. Journal of Finance 49, 851-889.

[11] Refenes AN, Bentz Y, Bunn DW, Burgess AN, Zapranis AD (1997) Financial Time Series
Modelling With Discounted Least Squares Backpropagation. Science 14, 123- 138.

[1] Chapter-19 Supplementary material: www.DXNNResearch.com/NeuroevolutionThrough
Erlang/Chapter19

[12] Li Y, Ma W (2010) Applications of Artificial Neural Networks in Financial Economics: A
Survey. 2010 International Symposium on Computational Intelligence and Design, 211-214.

[13] Rong L, Zhi X (2005) Prediction Stock Market With Fuzzy Neural Networks. Proceedings
of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou,
18-21.

[14] Maridziuk J, Jaruszewicz M (2007) Neuro-Evolutionary Approach to Stock Market Predic-
tion. 2007 International Joint Conference on Neural Networks, 2515-2520.

[15] Soni S (2005) Applications of ANNs in Stock Market Prediction: A Survey. ijcsetcom 2,
71-83.

[16] White H, Diego S (1988) Economic Prediction Using Neural Networks: The Case of IBM
Daily Stock Returns. Neural Networks 1988 IEEE International Conference on, 451-458.

[17] Dogac S (2008) Prediction of stock price direction by artificial neural network approach.
Master thesis, Bogazici University.

[18] Yamashita T, Hirasawa K, Hu J (2005) Application of Multi-Branch Neural Networks to
Stock Market Prediction. English, 2544-2548.

[19] Quiyong Z, Xiaoyu Z, Fu D (2009) Prediction Model of Stock Prices Based on Correlative
Analysis and Neural Networks. Second International Conference on Information and Compu-
ting Science, pp: 189-192 , IEEE.

[20] Risi S, Stanley KO (2010) Indirectly Encoding Neural Plasticity as a Pattern of Local Rules.
Neural Plasticity 6226, 1-11.

http://www.DXNNResearch.com/NeuroevolutionThroughErlang/Chapter19
http://www.DXNNResearch.com/NeuroevolutionThroughErlang/Chapter19

Part VI
Promises Kept

Promises kept. We have created a decoupled, dynamic, flexible, memetic and
genetic algorithm based, topology and parameter evolving universal learning net-
work, where a node can act as any type of function. The neurons, if they can even
be called that at this point, since they are not limited to the use of tanh activation
function, can be anything. In some sense, we can instead use the term node rather
than neuron, and allow the nodes to be, amongst other things, NNs themselves,
and thus transforming our system into a modular NN. Each node could potentially
represent a standard neural encoded NN, or a substrate encoded NN. The encoding
of our system is flexible enough to scale further, to be further molded and expand-
ed. Our system supports both, direct encoding, and indirect encoding. It supports
static neural networks, and neural networks with plasticity, where the plasticity
functions can be changed and modified, and new ones added without much diffi-
culty, they are self contained and decoupled. This extends to indirect encoding,
which also supports plasticity. Furthermore, we have made even the evolutionary
parameters able to evolve:

-define(ES_MUTATORS,[
 mutate_tuning_selection,
 mutate_tuning_duration,
 mutate_tuning_annealing,
 mutate_tot_topological_mutations,
 mutate_heredity_type
]).

Our system supports the mutation of various evolutionary strategy parameters.
We also made the probabilities of any one mutation operator have itself a
mutatable percentage value, and hence the mutation operators use the format:
{MutationOperatorName,RelativeProbability}. Our system supports both, Dar-
winian and Lamarckian evolution. Our system is fully concurrent, with the pro-
cesses like Cortex and Exoself, ready to act as monitors, and allow for self-healing
networks to emerge, with further monitors in the hierarchy possibly being the new
specie process, the already existing population_monitor process, and finally the
polis itself. And yet there is so much more that can easily be added. And as you’ve
seen in the previous chapters, due to the way we constructed our
neuroevolutionary platform, adding new features has become trivial.

If our neurons use the activation function tanh, then what we have created is an
advanced Topology and Weight Evolving Artificial Neural Network. If we create
the activation functions AND, NOT, and OR, then our system becomes a digital
circuit evolutionary system, which we can apply to the optimization of already ex-
isting digital circuits, or to the creation of new ones. If we use any activation function,

826

then our system acts as a Topology and Parameter Evolving Universal Learning
Network (TPEULN) system. If we set some of the activation functions to act as
programs, our system is a genetic programming system. If we allow for the above
listed evolutionary strategy mutation operators to be active, by setting the
?SEARCH_PARAMTERS_MUTATION_PROBABILITY in the genome_mutator
module to anything above 0, our system becomes an evolutionary strategy system.
If we set the activation functions to be state machines, our system will act as an
evolutionary programming system. If we use indirect encoding, the substrate en-
coding we developed in Chapter-16 & 17, our system uses evolutionary embryol-
ogy. Why even call our “neurons” neurons? Why not just nodes, since our neurons
can be anything, including NNs themselves, or substrate encoded NNs, and thus
making our system into a modular universal learning network. But we do not need
to force our system to use just one particular approach, we can set it in the con-
straints to use all available functions, all the available features, and it will evolve it
all. We can increase the population size, allow our system to use everything, and it
will evolve and settle on the parameters and features that gives the evolving NN
based agents an advantage in the environment in which they evolve. Our system
truly is a Topology and Parameter Evolving Universal Learning Network. It en-
compass all the modern learning systems, and yet there is still infinite room to ex-
pand, explore, and advance.

In the Applications part of the book, I showed how easy it was to apply our
system to two completely different problems, the Artificial Life (and thus robotics,
and anything related) simulation, and the Financial Analysis (and thus any other
predictive, or classification problem). Because of the way we created our system
to use easily modifiable and changeable sensor and actuator modules, our system
is so flexible that its application to any problem needs only for the said problem
specific sensor and actuator functions to be created. The ALife experiment showed
that we can just as easily use our system with something like Player/Gazebo sen-
sor/actuator driver provider and 3d robot and environment simulator, respectively.
We can continue and evolve not just predators and prey, but evolve robot mor-
phologies, allow them to learn not to just hunt each other and find food in 2d
space, but to learn how to use physics to their advantage, to use their 3d bodies, to
evolve new sensors and actuators, to evolve new morphologies, to evolve... We
can similarly evolve NNs which control combat UAVs, in exactly the same man-
ner, and I hope after reading this book you see that such a feat is indeed simple to
accomplish, and not just words. For we have done it already, just in a 2d environ-
ment rather than 3d. The sensors and actuators would define from what systems
the UAV acquires its signals, cameras, range sensors, sonars... and through actua-
tors we can evolve and let the NN control the various morphological systems, pro-
pellers, fins, guns... Our system can also be applied to medicine, we can let the
NN learn correlations between genetics and pathology, or symptoms and diseases,
evolving a diagnostician. We can apply our system to bioinformatics, using the
substrate encoded NN system to explore and create new drugs... Truly, the appli-
cation areas in biology are enormous [1,2,3,4,5,6,7,8,9,10,11,12,13].

Part VI Promises Kept

827

I noted that there is still an infinite amount of things to explore, and more ad-
vancements to be included. There are thousands more pages to fill, and so further
extensions to the system will be explored in the next volume. In the last remaining
chapter I will discuss some of the more pertinent things we will explore in the next
book. A glimps of things to come. Though I have a feeling that by the time we get
to the next book, you will already have created many of those improvements on
your own, and those improvements and advancements that I have not even consid-
ered. You already have the knowledge of the system and the theory to continue
and explore what I have not, all on your own, pushing beyond the horizon.

[1] Moreira A (2003) Genetic Algorithms for the Imitation of Genomic Styles in Protein

Backtranslation. Theoretical Computer Science 322, 17.
[2] Terfloth L, Gasteiger J (2001) Neural Networks and Genetic Algorithms in Drug Design.

Drug Discovery Today 6, 102-108.
[3] Huesken D, Lange J, Mickanin C, Weiler J, Asselbergs F, Warner J, Meloon B, Engel S,

Rosenberg A, Cohen D, et al (2005) Design of a Genome-Wide siRNA Library Using an Ar-
tificial Neural Network. Nature Biotechnology 23, 995-1001.

[4] Vladimir BB, et al (2002) Artificial Neural Networks Based Systems for Recognition of Ge-
nomic Signals and Regions: A Review. Informatica 26 389-400 389

[5] Yoshihara I, Kamimai Y, Yasunaga M (2001) Feature Extraction from Genome Sequence
Using Multi-Modal Network. Genome Informatics 12, 420-422.

[6] Gutteridge A, Bartlett GJ, Thornton JM (2003) Using a Neural Network and Spatial Cluster-
ing to Predict the Location of Active Sites in Enzymes. Journal of Molecular Biology 330,
719-734.

[7] Emmanuel A, Frank AI (2011) Ensembling of EGFR Mutations - based Artificial Neural
Networks for Improved Diagnosis of Non-Small Cell Lung Cancer. International Journal of
Computer Applications (0975 - 8887) Volume 20 - No.7.

[8] Herrero J, Valencia A, Dopazo J (2001) A Hierarchical Unsupervised Growing Neural Net-
work for Clustering Gene Expression Patterns. Bioinformatics 17, 126-136.

[9] Wang DH, Lee NK, Dillon TS (2003) Extraction and Optimization of Fuzzy Protein Se-
quence Classification Rules Using GRBF Neural Networks. Neural Information Processing
Letters and Reviews, 1(1): 53-59.

[10] Chan CK, Hsu AL, Tang SL, Halgamuge SK (2008) Using Growing Self-Organising Maps
to Improve the Binning Process in Environmental Whole-Genome Shotgun Sequencing.
Journal of Biomedicine and Biotechnology 2008, 513701.

[11] Reinhardt A, Hubbard T (1998) Using Neural Networks for Prediction of the Subcellular
Location of Proteins. Nucleic Acids Research 26, 2230-2236.

[12] Oliveira M, Mendes DQ, Ferrari LI, Vasconcelos A (2004) Ribosome Binding Site Recog-
nition Using Neural Networks. Genetics and Molecular Biology 27, 644-650.

[13] Azuaje F (2002) Discovering Genome Expression Patterns With Self-Organizing Neural
Networks., in Understanding and Using Microarray Analysis Techniques: A Practical Guide.
London: Springer Verlag.

Part VI Promises Kept

Chapter 20 Conclusion

Abstract Last words, future work, and motivation for future research within this
field.

We have developed a state of the art topology and weight evolving artificial
neural network system. The system is developed to be scalable, concurrent, and
the architecture of our system is highly modular and flexible, allowing for future
extensions and modifications to the system. We have tested our system on a few
standard benchmarking problems, the XOR problem, the Single and Double Pole
Balancing problem, and the T-Maze navigation problem. Our system performed
superbly in all scenarios without us even having tuned it or optimized it yet.

You now have the information, the tools, and the experience to continue devel-
oping this system, or a completely new one on your own. The next advancements
in this field will be done by you. We’ve built this system together, so you are as

DOI 10.1007/978-1-4614- - © Springer Science+Business Media New York 2013 4463 3_20,
829 G.I. Sher, Handbook of Neuroevolution Through Erlang,

There is still an enormous amount of features we can add to our system, and
due to the way we have developed it and due to it being written in Erlang, it will
be easy to do so. We can make our NNs modular, add Kohonen Map, Competitive
NN, Hopfield Network, and other types of self organizing network based modules.
We can add and test out new mutation operators, for example the use of pruning,
the use of splitting in which we would take sections of the NN and make copies of
them, slightly perturb them, and reconnect the perturbed copies to the original NN.
Or allow for multiple substrates to work together, where one substrate could even
modulate the other. We can create committee machines using dead_pools. We can
add new forms of neuromodulation, plasticity... There are also new fitness func-
tions we can create, those that take into account the Cartesian distance of the con-

“crystallization” feature, where neural circuits which have been topologically sta-
ble during the NN’s evolution are crystallized into a single function, a single pro-
cess represented module. We could add new types of signal normalization prepro-
cessors... Even in applications, we can spend hundreds more pages on the
integration of Player/Stage/Gazebo with the TWEANN system we have created
here, allowing our neuroevolutionary system to evolve the brains in simulated ro-
bots inhabiting 3d environments. We can evolve neural networks to control simu-
lated Unmanned Combat Aerial Vehicles inside Gazebo, evolving new aerial dog
fighting tactics... There is so much more to explore and create, all of it possible
and simple due to the use of Erlang. These mentioned features we will develop
and design in the next book, advancing this already bleeding edge TWEANN (Or
is it Topology and Parameter Evolving Universal Learning Network, TPEULN?)
system to the next level.

nections between the neurodes within the substrate for example, which would
neural clusters. We could also add a allow us to push for closely connected

830 Chapter 20 Conclusion

familiar with it as I am. The source code is available on GitHub [1], join the group
and contribute to the source code, its modular enough that you can add hundreds
of features, and those that work well will get taken up by the community working
on this project [2]. Or fork the project, and create and advance a parallel version.
This field is open-ended, you get to decide where it goes next, how fast it gets
there, and what role you will play in it all.

******** Last Note ********
I almost forgot, we never really gave a name to the system we’ve developed here. If you’ve
looked over the published papers on DXNN, then you probably know that we’ve basically been
developing the next generation of the DXNN Platform. I do not wish to give the system we’ve
developed together a new name, let it take on the name DXNN, it is a good name, and appro-
priate for such grandiose goals. I began developing DXNN many years ago, and in a sense have
been growing it over time, retrofitting the system with new features. This also means that while
developing it, I did not take the best path possible, due to not knowing of what else would be
added and what problems I would face in the future. This is not the case with the system you
and I have developed here. The system we developed in this book was done with all the fore-
sight of having previously already developed a system of similar purpose and form. The system
we have developed here is cleaner, better, more agile, modular in its implementation, and in
general more flexible than DXNN. I hope you can apply it to useful problems, and that if you
use it in your research, it is of help.

I sincerely hope you enjoyed reading this book, and developing this system along with me. As I
mentioned at the beginning of this book, I believe that we have stumbled upon the perfect neu-
ral network programming language, and that Erlang is it. I cannot see myself using anything
else in the future, and I have experimented with dozens of different languages for this research.
I also think that it adds the flexibility, and the direct mapping from programming language ar-
chitecture to problem space in such a way that we can now think clearly when developing dis-
tributed computational intelligence systems, which will allow us to create systems with features
and capabilities previously not possible. Evolution will generate the complexity, we just need to
give our system enough tools, flexibility, and the space in which it can carve out the evolution-
ary path towards new heights.

-Gene I. Sher

20.1 References

[1] GitHub Account with the source code: https://github.com/CorticalComputer/DXNN2
[2] Research site: www.dxnnresearch.com
[3] Supplementary Material: www.DXNNResearch.com/NeuroevolutionThroughErlang

https://github.com/CorticalComputer/DXNN2
http://www.dxnnresearch.com
http://www.DXNNResearch.com/NeuroevolutionThroughErlang

Abbreviations

AF – Activation Function
ALife – Artificial Life
AC – Augmented Competition Selection Algorithm
BMU – Best Matching Unit
BP – Backpropagation
CI – Computational Intelligence
CL – Competitive Learning
CO – Concurrency Oriented
UCAV – Unmanned Combat Aerial Vehicle
DFGS – Dangerous Food Gathering Simulation
DXNN – Dues Ex Neural Network
EANT – Evolutionary Acquisition of Neural Topologies
EMH – Efficient Market Hypothesis
EPNet – Evolutionary Programming Network
ES – Evolutionary Strategy
FX – Foreign Exchange
GHA – Generalized Hebbian Algorithm
GSOM – Growing Self Organizing Map
GTM – General Topographic Map
HtH – Hyperlayer-to-Hyperlayer
IHD – Input Hyperlayer Densities
IHDTag – Input Hyperlayer Densities Tag
NAO – Normalized Allotted Offspring
NEAT – Neuroevolution of Augmenting Topologies
NN – Neural Network
MO – Mutation Operator
PCI – Price Chart Input
PLI – Price List Input
PPS – Predator vs. Prey Simulation
RIM – Random Intensity Mutation
RR-SHC – Random Restart Stochastic Hill Climber
RWT – Random Walk Theory
SENN – Substrate Encoded Neural Network
SHC – Stochastic Hill Climbing
SFGS – Simple Food Gathering Simulation
SOM – Self Organizing Map
TPEULN – Topology and Parameter Evolving Universal Learning Network
TWEANN – Topology and Weight Evolving Artificial Neural Network
UAV – Unmanned Aerial Vehicle

DOI 10.1007/978-1-4614- - © Springer Science+Business Media New York 2013

4463 3,

831 G.I. Sher, Handbook of Neuroevolution Through Erlang,

	Handbook of Neuroevolution Through Erlang
	Foreword
	Dedication
	Preface
	Acknowledgments
	Contents
	Chapter 1 Introduction: Applications & Motivations
	Part I FOUNDATIONS
	Part II NEUROEVOLUTION: TAKING THE FIRST STEP
	Part III A Case Study
	Part IV Advanced Neuroevolution: Creating the Cutting Edge
	Part V Applications
	Part VI Promises Kept
	Abbreviations

