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Preface

Graph embedding is a computational methodology aiming at representing data as
a graph, along with the attributes attached to its nodes and edges. Derived from
topological graph theory and algebra, the subject of graph embedding has become
important and prominent worldwide with a wide spectrum of applications in pattern
analysis, representation, visualization, and classification.

This book is composed of coherent chapters contributed by experts and re-
searchers from both academia and industry in the fields of machine learning,
applied statistics, artificial intelligence, computer vision, and pattern classification.
Fundamental theories are presented in each chapter to help readers quickly gain the
knowledge or review the essential topics. Case studies, experiments, and applica-
tions are also provided to further inspire the readers for insightful understanding.

This book may be used as an excellent reference book for researchers or
major textbook for graduate student courses requiring minimal undergraduate
prerequisites at academic institutions. Existing courses related or focused on graph
embedding include the CSE 704 manifold and subspace learning of SUNY-Buffalo,
EE364a convex optimization of Stanford University, and graph embedding for
pattern recognition hosted by the ICPR 2010 conference in Istanbul.

Chapter “Multilevel Analysis of Attributed Graphs for Explicit Graph Embed-
ding in Vector Spaces” provides the introduction of the graph embedding and
describes the multilevel analysis of attributed graphs for explicit graph embedding.
Chapter “Feature Grouping and Selection Over an Undirected Graph” presents a
method for simultaneous feature grouping and sparseness structures over a given
undirected graph and provides a convex and non-convex penalty function. Chapter
“Median Graph Computation by Means of Graph Embedding into Vector Spaces”
introduces the graph embedding from its solution on the graph representation for the
computational complexity and in particular presents one graph embedding method:
the median graph. Chapter “Patch Alignment for Graph Embedding” describes the
patch alignment framework, which unifies the existing manifold learning-based
dimension reduction algorithm and provides a general platform for specific algo-
rithm design. Chapter “Feature Subspace Transformations for Enhancing K-Means
Clustering” presents a feature subspace transformation method to transform the

v



vi Preface

database and use the k-means clustering method after that. Motivated by the
sparse representation for high-dimensional data analysis, chapter “Learning with
�1-Graph for High Dimensional Data Analysis” presents a method to construct
a robust �1 graph and uses the �1 graph for various machine learning tasks.
Chapter “Graph-Embedding Discriminant Analysis on Riemannian Manifolds for
Visual Recognition” presents a graph embedding method to embed Riemannian
manifolds into reproducing kernel Hilbert spaces and employs many kernel-based
learning algorithms. After introducing several linearization methods for subspace
learning, chapter “A Flexible and Effective Linearization Method for Subspace
Learning” presents a flexible manifold embedding method for semi-supervised and
unsupervised subspace learning. Among many applications for horizontal anomaly
detection, chapter “A Multi-graph Spectral Framework for Mining Multi-source
Anomalies” presents a method to detect objects with inconsistent behavior using
multiple information sources. Chapter “Graph Embedding for Speaker Recognition”
presents the application of graph embedding to the speaker recognition.

We would like to sincerely thank all the contributors of this book for presenting
their research in an easily accessible manner and for putting such discussion into a
historical context. We would like to thank Brett Kurzman from Springer for support
to this book project.

Boston, MA Yun Fu
Golden Valley, MN Yunqian Ma
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Multilevel Analysis of Attributed Graphs for
Explicit Graph Embedding in Vector Spaces

Muhammad Muzzamil Luqman, Jean-Yves Ramel, and Josep Lladós

1 Introduction

Ability to recognize patterns is among the most crucial capabilities of human beings
for their survival, which enables them to employ their sophisticated neural and
cognitive systems [1], for processing complex audio, visual, smell, touch, and taste
signals. Man is the most complex and the best existing system of pattern recognition.
Without any explicit thinking, we continuously compare, classify, and identify huge
amount of signal data everyday [2], starting from the time we get up in the morning
till the last second we fall asleep. This includes recognizing the face of a friend in a
crowd, a spoken word embedded in noise, the proper key to lock the door, smell of
coffee, the voice of a favorite singer, the recognition of alphabetic characters, and
millions of more tasks that we perform on regular basis.

The scientific domains of artificial intelligence (AI) and pattern recognition
(PR) can be seen as the transportation of the human capability of analyzing—to
compare, to classify, and to identify—the audio and visual signals to computers,
so that computers may assist humans for pattern recognition tasks and to replace
humans for some of them. Pattern recognition has emerged as an important research
domain and has supported the development of numerous applications in many
different areas of activity: robot assisted manufacture, medical diagnostic systems,
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2 M.M. Luqman et al.

forecast of economic variables, exploration of earth resources, analysis of satellite
data, face detection, verification and recognition, object detection and recognition,
handwritten digit and character recognition, speech and speaker verification and
recognition, information and image retrieval, text detection and categorization,
gender classification and prediction [3–5], being some of the important to mention.

The problems of pattern recognition are often very complex and it is nearly
impossible to write an explicitly programmed solution for them. For example, it
is impossible to write an analytic program for recognizing a face in a photo [6]. The
pattern recognition research community has overcome this problem by adapting a
learning methodology that is highly inspired by human ability to learn. A learning
methodology refers to the approach where instead of precisely defining a set of
specifications for solving a problem analytically, the machine is trained on data and
it learns the concept of a class by discriminating between groups of similar objects.
Based on the inferred rules and learning performed during training, the machine is
able to make predictions about new and unseen data. More formally, the machine
acquires generalization power through learning [7].

A pattern recognition task for computers can be looked upon as consisting
of two main steps: (1) the representation of the signal data by a data structure
and (2) the computation of desired operation (pattern recognition). Each of the
two important subdomains of pattern recognition—namely the structural pattern
recognition and the statistical pattern recognition—has its strength only in one of
the two aforementioned steps, respectively. The structural pattern recognition offers
the most powerful relational data structure of graph. For the last three decades,
graphs have been used for pattern recognition and image analysis, for extracting
and representing complex relations in underlying data. However, there is still a
lack of efficient computational tools and learning models that can process this
data structure. On the other side, the statistical pattern recognition offers highly
efficient computational models of machine learning, classification, and clustering,
by employing the well-established theory of statistics. But these computational
models can work only on simple numeric vectors and cannot process complex high-
dimensional relational data structures.

Over decades of parallel research in structural and statistical subdomains of
pattern recognition powerful representations and efficient computational models
(respectively) have been built. But little progress has been made towards the
long desired objective of pattern recognition research community, of joining the
advantages of the structural and statistical pattern recognition approaches for
building more powerful and efficient algorithms. Recently, an important step
forward has been achieved by the emerging field of graph embedding in pattern
recognition. Graph embedding joins the advantages of structural and statistical pat-
tern recognition approaches by acting as a bridge between powerful structural
pattern recognition representations and efficient computational models of statistical
pattern recognition. Graph embedding achieves this by embedding the graph-based
structural representations into numeric vector spaces, thus enabling them to employ
the computational efficient models of statistical pattern recognition.
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In this chapter, first we will briefly discuss the merits and limitations of structural
and statistical subdomains of pattern recognition in Sect. 2. Then we will present an
overview along with the literature review on the emerging field of graph embedding
in pattern recognition in Sect. 3. This will be followed by a detailed discussion on
the multilevel analysis of attributed graphs for explicit graph embedding in vector
spaces in Sect. 4.

2 Structural and Statistical Pattern Recognition

Structural pattern recognition is characterized by the utilization of symbolic data
structures. The widely used symbolic data structures are graphs, strings, and trees.
Overtime the use of graph representations has become very popular in structural
pattern recognition. This is because of the fact that both strings and trees are special
instances of graphs [8], and thus we can safely term graphs to be the representative
of symbolic data structures.

Graph-based representations have their application to a wide range of domains, as
graphs provide a convenient and powerful representation of relational information.
They are able to represent not only the values of both symbolic and numeric
properties of an object, but they can also explicitly model the spatial, temporal,
and conceptual relations that exist between its parts. Graphs do not suffer from the
constraint of fixed dimensionality. For example, the number of nodes and edges
in a graph is not limited a priori and depends on the size and the complexity of
the actual object to be modeled [9]. The most important advantage that graphs
have is that they have foundations in strong mathematical formulation and have a
mature theory at their basis. However, along with the various advantages of graphs,
they have a serious drawback. Graph-based representations are computational
expensive. The much needed operations of exact and inexact graph matching are
NP-complete. A second serious drawback of graphs is that they are sensitive
to noise. We recommend [8–12] for an in-depth reading on structural pattern
recognition.

Statistical pattern recognition is characterized by the utilization of numeric
feature vectors. The feature vectors are very basic representations. A very important
advantage of these representations is that because of their simple structure, the
basic operations that are needed in machine learning can easily be executed on
them. This makes a large number of mature algorithms for pattern analysis and
classification immediately available to statistical pattern recognition. And as a result
of this fact, the statistical pattern recognition offers state-of-the-art computational
efficient tools of learning, classification, and clustering. However, feature vector-
based representations have associated representational limitations. These limitations
arise from their simple structure and the fact that feature vectors have same
length and structure regardless of the complexity of object to be modeled [13].
We recommend [1] for a more detailed reading on statistical pattern recognition
and classification.
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Table 1 Structural vs statistical pattern recognition

Pattern recognition

Structural Statistical

Data structure Symbolic data structure Numeric feature vector
Representational strength +

Fixed dimensionality +

Sensitive to noise +

Efficient computational tools +

Table 1 summarizes the above-discussed properties of structural and statistical
pattern recognition methodologies.

3 Graph Embedding

Over decades of research in pattern recognition, the research community has
developed a range of expressive and powerful approaches for diverse problem
domains. Graph-based structural representations are usually employed for extract-
ing the structure, topology, and geometry, in addition to the statistical details of
underlying data. During the next step in the processing chain, generally these
representations could not be exploited to their full strength because of limited
availability of computational tools for them. On the other hand, the efficient and
mature computational models, offered by statistical approaches, work only on vector
data and cannot be directly applied to these high-dimensional representations.
Recently, this problem has been addressed by the emerging research domain of
graph embedding in pattern recognition.

Definition 1 (Graph embedding). Graph embedding is a methodology aimed at
representing a whole graph, along with the attributes attached to its nodes and edges,
as a point in a suitable vector space.

Graph embedding is a natural outcome of parallel advancements in structural
and statistical pattern recognition. It offers a straightforward solution, by employing
the representational power of symbolic data structures and the computational
superiority of feature vectors [11]. It acts as a bridge between structural and
statistical approaches [14, 15] and allows a pattern recognition method to benefit
from computational efficiency of state-of-the-art statistical models and tools [16]
along with the convenience and representational power of classical symbolic repre-
sentations. This permits the last three decades of research on graph-based structural
representations in various domains [10], to benefit from the state-of-the-art machine
learning models and tools. Graph embedding has its application to the whole variety
of domains that are entertained by pattern recognition and where the use of a
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Fig. 1 An illustration of the mapping of a graph into a point in a vector space

relational data structure is mandatory for performing high-level tasks. Apart from
reusing the computational efficient methods for vector spaces, another important
motivation behind graph embedding methods is to solve the computationally
hard problems geometrically [17]. The pattern recognition research community
acknowledges the emerging importance of graph embedding methods [18] for
realizing the classical idea of using the structural and statistical methods together.
We refer the interested reader to [19] for further reading on the applications of graph
embedding.

3.1 Implicit and Explicit Graph Embedding

The graph embedding methods are formally categorized as implicit graph embed-
ding or explicit graph embedding. The implicit graph embedding methods are based
on graph kernels. A graph kernel is a function that can be thought of as a dot
product in some implicitly existing vector spaces. Instead of mapping graphs from
graph space to vector space and then computing their dot product, the value of
the kernel function is evaluated in graph space. Such an embedding satisfies the
main mathematical properties of dot product. Since it does not explicitly map a
graph to a point in vector space, a strict limitation of implicit graph embedding is
that it does not permit all the operations that could be defined on vector spaces.
We refer the interested reader to [18, 20, 21] for further reading on graph kernels
and implicit graph embedding. On the other hand, the more useful, explicit graph
embedding methods explicitly embed an input graph into a feature vector and thus
enable the use of all the methodologies and techniques devised for vector spaces.
Figure 1 pictorially illustrates the mapping of a graph to a point in a suitable vector
space.
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Definition 2 (Attributed graph (AG)). Let AV and AE denote the domains of
possible values for attributed vertices and edges, respectively. These domains are
assumed to include a special value that represents a null value of a vertex or an
edge. An attributed graph AG over (AV, AE) is defined to be a four-tuple:

AG =
(
V,E,μV,μE)

where
V is a set of vertices.
E ⊆V ×V is a set of edges.
μV : V −→ Ak

V is function assigning k attributes to vertices.
μE : E −→ Al

E is a function assigning l attributes to edges.

Definition 3 (Explicit graph embedding). Explicit graph embedding maps a graph
to a point in suitable vector space. It encodes the graphs by equal size vectors
and produces one vector per graph. Mathematically, for a given graph AG =
(V,E,μV,μE), explicit graph embedding is a function φ , which maps graph AG
from graph space G to a point ( f1, f2, . . . , fn) in n-dimensional vector space Rn. It is
given as

φ : G−→ R
n

AG �−→ φ(AG) = ( f1, f2, . . . , fn)

The vectors obtained by an explicit graph embedding method can also be em-
ployed in a standard dot product for defining an implicit graph embedding function
between two graphs [8]. An interesting property of explicit graph embedding is that
the graphs are embedded in pattern spaces in a manner that similar structures come
close to each other and different structures go far away, i.e., an implicit clustering
is achieved [22]. Another important property of explicit graph embedding is that
the graphs of different size and order need to be embedded into a fixed size feature
vector. This means that for constructing the feature vector, an important step is to
mark the important details that are available in all the graphs and are applicable to a
broad range of graph types. We refer the interested reader to [18] for further reading
on explicit graph embedding.

3.2 A Quick Literature Review on Explicit Graph Embedding

Recent research surveys on graph embedding are presented by [8, 18, 19]. In the
literature the problem of explicit graph embedding has been approached by three
important families of algorithms.

• Graph probing based methods.
• Spectral based explicit graph embedding.
• Dissimilarity based explicit graph embedding.
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3.2.1 Graph Probing Based Methods

The first family of graph embedding methods is based on the frequencies of appear-
ance of specific knowledge-dependent substructures in graph. This embedding is
based on feature extraction on structural data. These numeric features capture both
topology information (number of nodes, arcs, degree of nodes) and the contents of
the graph (histogram of the labels for example). This embeds a graph into a feature
vector in Euclidean space.

One of the first methods of graph probing dates back to the 1940s [23]. In this
method, each graph is represented by an index called Wiener index. The index is a
topological descriptor defined by the sum of all shortest paths in the graph, such that
if G = (G(V ),G(E)) is a graph, then the Wiener index W(G) of G is

W(G) =∑vi∈G(V )∑v j∈G(V )
l(vi,v j)

where l(vi,v j) is a function that defines the length of the shortest path between the
node and the nodes vi and v j in the graph G.

Another approach is introduced in [24]. For undirected and unattributed graphs,
the authors calculate the degree of each node and form a sorted histogram of degrees.
So they get the vector φ(G) ∈ R

n such that if G = (V (G),E(G)) is a graph then
φ(G) = (n0,n1,n2, . . .) where ni = {v ∈V |dG(v) = i}. The features of the resulting
vector are the number of nodes of degree 1, the number of nodes of degree 2, and
so on.

An extension of this technique is proposed in [25]. The authors also suggest a
representation based on local descriptors of nodes and generalize the method for all
types of graphs. This representation is based on the degree of vertices in the case of
undirected and unlabeled graphs. In the case of directed graphs, the representation
uses in-degree and out-degree of nodes. This representation can be adapted to take
into consideration labeled graphs, taking into account, in addition to the degree
of the nodes, the labels of the connected edges. On the other hand, the authors
present an interesting relationship between the graph edit distance and the distance
between the embedding of two graphs. They have shown that the distance between
the embedding of two graphs g1 and g2, given by dGEM(g1,g2), is less than 4 times
of the graph edit distance between them, given by dGED(g1,g2). Mathematically this
is given as dGEM(g1,g2)≤ 4× dGED(g1,g2).

Recently, Gibert et al. in [26] have proposed a graph embedding method by
counting the frequency of appearance of specific set of representatives of labels of
nodes and their corresponding edges. In [27] the authors propose an improvement
of their graph embedding technique by dimensionality reduction of the obtained
feature vector.

The algorithms presented in the cited works provide an embedding of graph into
feature vector, in linear time complexity. Their simplicity of implementation is an
important advantage of this family of methods. However, the features they use are
very localized to nodes and arcs. The graph embedding contains little information
on the topology, which can have a negative impact on the classification results.
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A subfamily of this category of graph embedding methods is based on the
frequencies of appearance of specific knowledge-dependent substructures in graph.
These works are mostly proposed for chemical compounds and molecular struc-
tures. Graph representations of molecules are assigned feature vectors whose
components are the frequencies of appearance of specific knowledge-dependent
substructures in graphs [28, 29, for example].

Recently, Sidere et al. in [30] have proposed a graph embedding method. The
method is based on the extraction of substructures of 2 nodes, 3 nodes , 4 nodes, and
so on, from a graph. The feature vector representation is then obtained by counting
the frequencies of these substructures in the graph. The method proposed by Sidere
is rich in topological information and is very interesting for pattern recognition.

The methods based on the frequencies of appearance of specific knowledge-
dependent substructures in graph are based on finding subgraphs in graph and
are capable of exploiting domain knowledge. However, they have a drawback that
finding substructures in graphs is computationally challenging.

3.2.2 Spectral Based Explicit Graph Embedding

The second family of graph embedding algorithms is spectral based embedding.
Spectral based embedding is a very prominent class of graph embedding methods
and is proposed by lots of works in literature. In order to embed graphs into
feature vectors, this family of methods extracts features from graphs by eigen
decomposition of adjacency and Laplacian matrices and then apply a dimensionality
reduction technique on the eigen features. Many works for graph embedding exploit
the spectral theory of graphs [31] and are interested in the properties of the spectrum
of a graph and the characterization of the topology graph using eigenvalues and
eigenvectors of the adjacency matrix or Laplacian matrix.

In [32], graph embedding using the spectral approach is proposed. The authors
use the leading eigenvectors of the adjacency matrix to define the eigenspaces of
adjacency matrices. Spectral properties are then calculated for each eigenmode.
In [33], the authors also use the adjacency matrices of graphs as a support
and then compute their eigenvectors and thus obtain modes to define the vector
space (perimeter, volume, Cheeger number, etc.). Construction of the vector is
completed by applying the dimensionality reduction using principal component
analysis (PCA), independent component analysis, or multidimensional scaling.

Graph embedding has also been approached by using Laplacian matrix. For
example, in [34], a spectral approach is proposed using the Laplace–Beltrami
operator to embed the graphs in a Riemannian manifold or a metric where one can
define the length of a path (called a geodesic) between two points of the manifold.
This length of the path is then used to calculate similarity between graphs. In [35],
the embedding of the nodes of a graph is performed on an eigenspace defined by
the first Eigenvectors. In [22], the authors propose to use a spectral decomposition
of Laplacian matrix and construct the symmetric polynomials. The coefficients of
these polynomials are then used for graph embedding.
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As for graph matching techniques, the spectral theory of graphs shows inter-
esting properties that can be used for graph embedding. Its main benefit is the
linear complexity associated with operations on matrices. The spectral family of
graph embedding methods provides solid theoretical insight into the meaning and
significance of extracted features. However, these approaches have some limitations.
Spectral methods are sensitive to noise, removing a node, for example, changes the
matrices (adjacency or Laplacian) and these errors affect the embedding functions.
In addition, their use is restricted to unlabeled graphs making it difficult to use these
approaches in most applications of pattern recognition.

3.2.3 Dissimilarity Based Explicit Graph Embedding

Finally, the third family of graph embedding algorithms is based on dissimilarity
of a graph from a set of prototypes. The dissimilarity based graph embedding can
handle arbitrary graphs. The dissimilarity based graph embedding methods usually
use graph edit distance and exploit domain knowledge.

Definition 4 (Graph edit distance (GED)). Let g1 = (V (g1),E(g1)) and g2 =
(V (g2),E(g2)) be two graphs. The graph edit distance between g1 and g2 is
defined as

d(g1,g2) = min
(e1,...,ek)∈γ(g1,g2)

k

∑
i=1

c(ei)

where
γ(g1,g2) denotes the set of edit paths transforming g1 into g2.
c denotes the cost function measuring the strength c(ei) of edit operation ei.
The edit operations include, for example, addition and deletion of node/edge.

But since graph edit distance is computationally expensive, the dissimilarity
based graph embedding methods may become computationally challenging. Unlike
the aforementioned approaches of graph embedding, the dissimilarity based graph
embedding techniques do not focus on the extraction of a vector from the graph.
Rather, the idea is to construct a vector by comparing a graph with a selection of
graphs called prototypes.

In [36], the authors present dissimilarity based representation as an alternative
to the feature vectors. Starting from the postulate that the dissimilarity is used to
separate a class of objects from another, the authors offer to characterize objects not
by absolute attributes but as a vector of dissimilarity from objects of other classes.
An object is defined by its embedding in a dissimilarity space.

Bunke et al. [9,37–39] propose to adapt this dissimilarity space for the construc-
tion of a graph embedding function. The main idea of this work is to construct
a vector of graph edit distances from the graph to be embedded and a set of k
prototypes selected in the graph database. The embedding of the graph is thus
a vector of k distances. Formally, let Γ = g1, . . . ,gn be a set of graphs and p =
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Graph level information

[macro details]

Structural level information
[intermediate details]

Elementary level
information

[micro details]

Fig. 2 Multi-facet view of
discriminatory information
in graph

p1, . . . , pk ⊂ Γ be a subset of selected prototypes from Γ . The graph embedding
is defined as the function Φ : Γ �−→ (R)k, such that Φ(g) = [d(g, p1), . . . ,d(g, pk)]
where d(g, pi) is the graph edit distance between graph g and the ith prototype graph
in p. In [8,40], the authors propose an improvement of the graph embedding method
by using feature selection method.

This type of projection is very interesting. However, the limitation of setting
the edit distance is found in this method. In addition, the choice of prototype
graphs is also a significant parameter as it determines the size of the vector and
its capacity to effectively represent the graph in the vector space. Also, it remains
highly dependent on the application and its learning set. In [7, 9], the authors have
given some indications on the choice of the prototype graphs.

4 Multilevel Analysis of Attributed Graphs for Explicit
Graph Embedding

The vector representation of graphs by an explicit graph embedding algorithm
seems to be the track to meet the technical obstacles for pattern recognition. This
is because of the fact that explicit graph embedding can effectively combine the
power and flexibility of graph representation, with the diversity, learning abilities,
and computational efficiency of statistical tools. However, no efficient and simple
method to adapt to the data is yet available. Most of the existing works on graph
embedding can handle only the graphs that are comprised of edges with a single
attribute and vertices with either no or only symbolic attributes. These methods
are only useful for specific application domains for which they are designed. In
this section we will outline our method of explicit graph embedding for attributed
graphs with many symbolic as well as numeric attributes on both nodes and edges
[41–43]. The method is named fuzzy multilevel graph embedding and is abbreviated
as FMGE. It preserves multi-facet information from global, topological, and local
point of views and is based on multilevel analysis of a graph for embedding it
into a feature vector. FMGE employs fuzzy overlapping trapezoidal intervals for
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Fig. 3 Feature vector of fuzzy-interval based approach for explicit graph embedding

minimizing the information loss while mapping from continuous graph space to
discrete feature vector space. FMGE has build-in unsupervised learning abilities
and thus is inexpensively deployable to a wide range of application domains.

4.1 Multilevel Information in Graph

FMGE performs multilevel analysis of graph to extract discriminatory information
of three different levels from a graph. These include the graph level information,
structural level information, and the elementary level information. The three levels
of information represent three different views of graph for extracting global details,
details on topology of graph, and details on elementary building units of graph.

FMGE encodes the numeric part of each of the different levels of the multilevel
information by fuzzy histograms and symbolic part by crisp histograms. Once
the histograms are constructed, FMGE employs the histogram representation of
the multilevel information of a graph for embedding it into a numeric feature
vector. The feature vector of FMGE is named fuzzy structural multilevel feature
vector and abbreviated as FSMFV. Figure 3 present details on the features in
FSMFV. It contains features extracted from three levels of information in graph (viz.
graph level information, structural level information, elementary level information).
The features for graph level information represent a coarse view of graph and give
a general information about the graph. These features include the graph order and
graph size. The features for structural level information represent a deeper view of
graph and are extracted from the node degrees and subgraph homogeneity in graph.
The third level of information is extracted by penetrating into further depth and more
granular view of graph and employing details of the elementary building blocks of
graph. These features represent the information extracted from the node and edge
attributes.

4.1.1 Graph Level Information

The graph level information in FSMFV is embedded by two numeric features,
encoding the order and the size of graph.

Graph order: A graph vertex is an abstract representation of the primitive
components of underlying content. The order of a graph provides very important
discriminatory topological information on the graph.
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Fig. 4 Embedding of structural level information

Graph size: An edge is an abstract representation of the relationship between the
primitive components of underlying content. Graph size also provides important
discriminatory information on the topological details of graph. It enables to
differentiate between two equal ordered graphs and define similarity between two
equal sized graphs.

4.1.2 Structural Level Information

The embedding of structural level information is a novelty and the most critical part
of FMGE. Very few existing works on graph embedding clearly use this information.
We use node degree’s information and subgraph homogeneity measure embedded
by histograms of node attribute’s resemblance and edge attribute’s resemblance, for
embedding structural level information. Figure 4 outlines this part of FSMFV.

Node degrees: The degrees of nodes represent the distribution of edges in graph
and provide complementary discriminatory information on the structure and topol-
ogy of graph. It permits to discriminate between densely connected graphs and
sparsely connected graphs. Node degree’s information is encoded by a histogram
of si fuzzy intervals. The fuzzy intervals are learned during a prior learning phase,
which employs degrees of all the nodes of all graphs in dataset. Node degree’s
features (hd in Fig. 4), for an attributed graph, embed the histogram of its nodes
for the si fuzzy intervals. In Fig. 4, the histogram hd is a fuzzy histogram as node
degrees is a numeric information.

For directed graphs this feature is represented by two sub-features of in-degree
and out-degree, i.e., a fuzzy histogram for encoding the distribution of in-degree and
another fuzzy histogram for encoding the distribution of out-degree of nodes.

Node attribute’s resemblance for edges: The resemblance between two primitive
components that have a relationship between them, in a graph, is a supplementary
information available in the graph. The node attribute’s resemblance for an edge
encodes structural information for the respective node-couple. To compute resem-
blance information for an edge, the node degrees of its two nodes and the list of
node attributes as given by μV are employed for extracting additional information.
This additional information is represented as new edge attributes and is processed
like other edge attributes.

Given an edge between two nodes, say node1 and node2 in a graph, the
resemblance between a numeric node attribute a is computed by (1) and the
resemblance between a symbolic node attribute b is computed by (2).
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For each numeric node attribute, the resemblance attribute nr is represented by snr

features in FSMFV. This resemblance information is encoded by a fuzzy histogram
of snr fuzzy intervals. The fuzzy intervals are learned during a prior learning phase,
which employs resemblance attribute nr of all the edges of all graphs in dataset:

resemblance(a1,a2) =
min(|a1|, |a2|)
max(|a1|, |a2|) (1)

where
a ∈ {node degree, μV}
a1 is the value of the attribute a for node1

a2 is the value of the same attribute a for node2

resemblance(b1,b2) =

∣
∣
∣
∣
1 b1 = b2

0 otherwise

∣
∣
∣
∣ (2)

where
b ∈ μV.
b1 is the value of the attribute b for node1.
b2 is the value of the same attribute b for node2.

For each symbolic node attribute, we represent the resemblance attribute nr by
exactly two possible numeric features. The resemblance for symbolic attributes can
either be 0 or 1 (2). The cardinalities of the two resemblance values in input graph
are encoded by a crisp histogram which is used as features in FSMFV.

In Fig. 4 the histogram hnr
d represents the features for encoding resemblance

attribute for node degrees. Whereas, the histograms hnr
1 ,h

nr
2 , . . . ,h

nr
k represent the

features for encoding resemblance attributes for k node attributes μV. The histogram
hnr

d is a fuzzy histogram since node degree is a numeric information. Each of
the histograms hnr

1 ,h
nr
2 , . . . ,h

nr
k is a crisp histogram if its corresponding attribute is

symbolic and is a fuzzy histogram if the attribute that it is encoding is a numeric
attribute.

Edge attribute’s resemblance for nodes: The resemblance among the relation-
ships associated to a primitive component is a supplementary information available
in the graph. The edge attribute’s resemblance for a node encodes the structural
information for the respective edges of node and brings more topological informa-
tion to FSMFV. To compute resemblance information for a node, each attribute of
its edges (as given by μE) is employed for extracting additional information. This
additional information is represented as new node attributes and is processed like
other node attributes.

Given a node, say node in a graph, the resemblance for the edges connected to
node is computed as the mean of the resemblances between all the pair of edges
connected to node. For a pair of edges, say edge1 and edge2 connected to node,
the resemblance for a numeric attribute c is computed by (3) and the resemblance
between a symbolic edge attribute d is computed by (4):
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resemblance(c1,c2) =
min(|c1|, |c2|)
max(|c1|, |c2|) (3)

where
c ∈ μE.
c1 is the value of the attribute c for edge1.
c2 is the value of the same attribute c for edge2.

resemblance(d1,d2) =

∣
∣∣
∣
1 d1 = d2

0 otherwise

∣
∣∣
∣ (4)

where
d ∈ μE.
d1 is the value of the attribute d for edge1.
d2 is the value of the same attribute d for edge2.

For each symbolic edge attribute, the resulting resemblance attribute er is treated
as a numeric attribute and is embedded by a fuzzy histogram. The resemblance
for symbolic edge attributes is computed as mean of the resemblances between
all the pair of edges connected to a node. Although the resemblance for a pair of
edges is always either 0 or 1 but mean resemblance for all the pair of edges of a
node can be any numeric value (this is different from the symbolic node attribute’s
resemblance which is always either 0 or 1). Therefore, for each symbolic and
numeric edge attribute, the resemblance attribute er is represented by ser features
in FSMFV. This resemblance information is encoded by a fuzzy histogram of ser

fuzzy intervals. The fuzzy intervals are learned during a prior learning phase, which
employs resemblance attribute er of all the nodes of all graphs in dataset.

In Fig. 4 the histograms her
1 ,h

er
2 , . . . ,h

er
l represent the features for encoding resem-

blance attributes for l edge attributes μE. Each of the histograms her
1 ,h

er
2 , . . . ,h

er
l is a

fuzzy histogram.

4.1.3 Elementary Level Information

Embedding of elementary level information allows FMGE to extract discriminatory
information from individual nodes and edges of the graph. The symbolic attributes
are encoded by crisp histograms and the numeric attributes by fuzzy histograms.
FMGE can embed attributed graphs with many symbolic and numeric attributes on
both nodes and edges.

For every symbolic node attribute, each modality that can be taken by this
attribute is represented by exactly one numeric feature in FSMFV. This feature
encodes the cardinality of this modality in an input graph.

Each numeric node attribute is encoded by a fuzzy histogram of its si fuzzy
intervals. The fuzzy intervals are learned for each of the numeric node attributes
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in the input graph dataset during a prior learning phase. The features for a numeric
attribute of an input graph embed the histogram for these si fuzzy intervals. Figure 5
outlines this part of FSMFV.

Node attributes: The node attributes provide additional details on primitive com-
ponents of underlying content and aid FSMFV to discriminate between two similar
structured graphs. In Fig. 5 the histograms hn

1,h
n
2, . . . ,h

n
k represent the features for

encoding k node attributes μV. Each of the histograms hn
1,h

n
2, . . . ,h

n
k is a crisp

histogram if its corresponding attribute is symbolic and is a fuzzy histogram if the
attribute that it is encoding is a numeric attribute.

The node attributes are very important information for discriminating between
two equal ordered and equal sized graphs, which are representing quite similar
structure as well (for example the graph of a small square can be differentiated
from that of a big square by using a length attribute on the nodes).

Edge attributes: The edge attributes provide supplementary details on the relation-
ships between the primitive components of the underlying content and aid FSMFV
to discriminate between two similar structured graphs. In Fig. 5 the histograms
he

1,h
e
2, . . . ,h

e
l represent the features for encoding l edge attributes μE. Each of

the histograms he
1,h

e
2, . . . ,h

e
l is a crisp histogram if its corresponding attribute is

symbolic and is a fuzzy histogram if the attribute that it is encoding is a numeric
attribute.

The edge attributes are very important information for discriminating between
two equal ordered and equal sized graphs, which are representing quite similar
structure as well (for example the graph of a square can be differentiated from that
of a rhombus by using angle attribute on the edges).

4.2 Embedding Multilevel Information of Graphs
into Vector Spaces

In FMGE framework, the mapping of input collection of graphs to appropriate
points in a suitable vector space R

n is achieved in two phases, i.e., the off-line un-
supervised learning phase and the online graph embedding phase. We would like to
again highlight the important fact that in FMGE the structural level information
is represented by new resemblance attributes on the nodes and edges of the graphs.
This section will detail the procedure of encoding the attribute information in graphs
(including original attributes and the new resemblance attributes) for embedding
them into feature vector spaces.
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Fig. 6 Learning fuzzy intervals for a numeric attribute i

4.2.1 Unsupervised Learning

The unsupervised learning phase learns a set of fuzzy intervals for features linked to
distribution analysis of the input graphs, i.e., features for node degree, numeric node,
and edge attributes and the corresponding resemblance attributes. We refer each of
them as an attribute i. For symbolic node and edge attributes and the corresponding
resemblance attributes, the unsupervised learning phase employs the modalities
taken by this attribute and treats them as crisp intervals. The graph embedding phase
then employs these intervals for computing different bins of the respective fuzzy or
crisp histograms.

Input and output: The input to unsupervised learning phase of FMGE is the
collection of m attributed graphs, given by

{AG1,AG2, . . . ,AGe, . . . ,AGm}
where the eth graph is denoted by

AGe =
(
Ve,Ee,μVe ,μEe

)

A second input to this phase could be if necessary for each feature the desired
number of fuzzy intervals. This is referred by si for an attribute i. Some methods of
discretization are able to find the “optimal” number of intervals by themselves (for
example, equal frequency bins).

As output the unsupervised learning phase of FMGE produces si fuzzy overlap-
ping trapezoidal intervals for an attribute i in input graphs (example in Fig. 7).

Description: The main steps for learning of fuzzy intervals for an attribute i are
outlined in Fig. 6 and are explained in subsequent paragraphs.

The first step is the computation of crisp intervals from the list of values of
attribute i for all the graphs in input collection of graphs. This is straightforward
and is achieved by any standard data discretization technique. A survey of popular
discretization techniques is presented by Liu et al. [44]. We propose to use equally
spaced bins for obtaining an initial set of crisp intervals, as they avoid over-fitting
and offers FMGE a better generalization capability to unseen graphs during graph
embedding phase. Algorithm 4.1 outlines the pseudo-code for computing an initial
set of crisp intervals for an attribute i. It uses a pseudo-call “GetEqualSpacBin”
for getting an initial set of equally spaced bins. This pseudo-call refers to an
appropriate data discretization function (available in underlying implementation
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Fig. 7 Five fuzzy overlapping trapezoidal intervals (si) defined over nine equally spaced crisp
intervals (ni)

platform). Another possibility is to use the equal frequency bins. An example of
this type of discretization is the technique proposed by [45] for discretization of
continuous data. It is based on use of Akaike Information Criterion (AIC). It starts
with an initial histogram of data and finds optimal number of bins for underlying
data. The adjacent bins are iteratively merged using an AIC-based cost function until
the difference between AIC-beforemerge and AIC-aftermerge becomes negative.
Thus, we get an optimal set of crisp intervals for the underlying data. This set of
intervals is representative of the distribution of underlying data.

The initial set of equally spaced bins (or equal frequency bins) is used to construct
a data structure, which stores the crisp intervals. This data structure is employed for
computing si fuzzy intervals for attribute i.

After computing the initial set of crisp intervals, in the next step, these crisp
intervals are arranged in an overlapping fashion to get fuzzy overlapping intervals.
Normally trapezoidal, triangular, and Gaussian arrangements are popular choices for
fuzzy membership functions [46]. We propose to use the trapezoidal membership
function, which is the generally used fuzzy membership function. It allows a
range of instances to lie under full membership and assigns partial membership to
the boundary instances. Figure 7 outlines a trapezoidal interval defined over crisp
intervals. A trapezoidal interval is defined by four points, as is given by points
a,b,c,d in Fig. 7.

It is very important to highlight here that the first fuzzy overlapping trapezoidal
interval covers all values till −∞ and the last fuzzy overlapping trapezoidal interval
is limited by ∞. This makes sure that during the graph embedding phase every
attribute instance falls under the range of fuzzy overlapping trapezoidal intervals
and furthermore it strengthens the generalization abilities of the method to unseen
graphs.

A fuzzy interval defined in trapezoidal fashion assigns a membership weight of
1 (full membership) between points b and c. The membership weight gradually
approaches 0 as we move from b to a and from c to d. This trapezoidal behavior
allows to assign full membership, partial membership, and no membership to
attribute instances. This is important to highlight here that the total membership
assigned to an instance is always exactly equal to 1, i.e., either one full membership
or two partial memberships are assigned to each attribute instance.
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Algorithm 4.1: GETINITCRISPINTERVAL(listvaluesAttributei,ni)

comment: Computes equally spaced crisp intervals.

comment: Requires: List of values of an attribute i

comment: Requires: Number of crisp intervals for attribute i (ni≥2)

comment: Returns: ‘ni’ crisp intervals for attribute i

equallySpacedBins← GETEQUALSPACBIN(listvaluesAttributei,ni)

crispIntervals← empty
st ←−∞
en← equallySpacedBins[1]

j← 1
repeat⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

crispIntervals[ j].start← st
crispIntervals[ j].end← en
st ← en
en← equallySpacedBins[ j+ 1]
j← j+ 1

until j>ni

return (crispIntervals)

Algorithm 4.2 outlines the pseudo-code for computing fuzzy overlapping
trapezoidal intervals from an initial set of crisp intervals for an attribute i in
input collection of graphs. It first computes the initial set of crisp intervals using
Algorithm 4.1 and then arranges them in an overlapping trapezoidal fashion for ob-
taining a set of fuzzy overlapping trapezoidal intervals for attribute i. The number
of fuzzy intervals for attribute i depends upon the number of features desired for
attribute i in FSMFV and is controlled by parameter si which can either be manually
specified, automatically learned by using an equal frequency based discretization or
empirically learned and optimized on validation set.

The number of crisp intervals ni for desired number of fuzzy intervals si is
computed by (5):

ni = 2× si− 1 (5)

For the sake of continuity and readability, we have used the terms fuzzy
intervals, fuzzy overlapping intervals, and fuzzy overlapping trapezoidal intervals
interchangeably.



Multilevel Analysis of Graphs for GEM 19

Algorithm 4.2: GETFUZZYOVLAPTRAPZINTERVAL(listvaluesAttributei,si)

comment: Computes fuzzy intervals for an attribute i.

comment: Requires: List of values of an attribute i

comment: Requires: Number of fuzzy intervals for attribute i (si≥2)

comment: Returns: ‘si’ fuzzy intervals for attribute i

ni← 2∗ si−1
crispIntervals← GETINITCRISPINTERVAL(listvaluesAttributei,ni)

f uzzyIntervals← empty

f uzzyIntervals[1].a←−∞
f uzzyIntervals[1].b←−∞
f uzzyIntervals[1].c← crispIntervals[1].end
f uzzyIntervals[1].d← crispIntervals[2].end

j← 1
jcrisp← 0
repeat⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j← j+1
jcrisp← jcrisp+2
f uzzyIntervals[ j].a← f uzzyIntervals[ j−1].c
f uzzyIntervals[ j].b← f uzzyIntervals[ j−1].d

if ( jcrisp+1≥ ni)

then

⎧
⎨

⎩

f uzzyIntervals[ j].c← ∞
f uzzyIntervals[ j].d← ∞
break

f uzzyIntervals[ j].c← crispIntervals[ jcrisp+1].end
f uzzyIntervals[ j].d← crispIntervals[ jcrisp+2].end

until j ≥ si

return ( f uzzyIntervals)

4.2.2 Graph Embedding

The graph embedding phase of FMGE employs the learned crisp intervals and fuzzy
intervals to compute respective histograms for embedding an input attributed graph
into a feature vector. This achieves the mapping of the input graphs to appropriate
points in a suitable vector space Rn. The graph embedding phase of FMGE produces
a feature vector FSMFVe for input graph AGe. The length of the feature vector is
strictly dependent on the size of histograms used for encoding the three levels of
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information. The length of this feature vector is uniform for all graphs in an input
collection and is given by (6):

Length of FSMFV = 2+∑si +∑ci (6)

where
– 2 refers to the features for graph order and graph size.
– ∑si refers to the sum of number of bins in fuzzy interval encoded.

histograms for numeric information in graph (i.e., attribute i).
– ∑ci refers to the sum of number of bins in crisp interval encoded.

histograms for symbolic information in graph.

Numeric attributes: The values of each numeric attribute i in input graph AGe are
fuzzified by employing its si fuzzy intervals and trapezoidal membership function.
Mathematically, the membership function α defined over a trapezoidal interval x is
given by (7):

α(x) =

∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣

(x− a)/(b− a) a≤ x<b
1 b≤ x≤ c

(x− d)/(c− d) c<x≤ d
0 x<a
0 x>d

∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣

(7)

In (7), x refer to an instance of attribute i to be fuzzified and a,b,c,d refers to
the limits of a trapezoidal fuzzy interval for attribute i. Function α(x) computes
the degree of membership of an instance x with the trapezoidal interval defined by
a,b,c,d. The possible memberships can be a full membership if x is between b and
c, a partial membership if x is between a and b or is between c and d, or it can be a
no membership if x is outside the interval a,b,c,d.

We represent the fuzzy histogram of attribute i as hnum
i , which actually refers to

the fuzzy histogram for node degrees (hd in Fig. 4), the fuzzy histograms for numeric
node attribute’s resemblance (hnr

d and hnr
1 ,h

nr
2 , . . . ,h

nr
k in Fig. 4), the fuzzy histograms

for numeric and symbolic edge attribute’s resemblance (her
1 ,h

er
2 , . . . ,h

er
l in Fig. 4),

the fuzzy histograms for numeric node attributes (hn
1,h

n
2, . . . ,h

n
k in Fig. 5), and the

fuzzy histograms for numeric edge attributes (he
1,h

e
2, . . . ,h

e
l in Fig. 5). The fuzzy

histogram of an attribute i represents the embedding of attribute i for input graph
AGe. For an input graph AGe, the fuzzy histogram hnum

i for attribute i is constructed
by first computing the degree-of-memberships of all instances of attribute i in AGe

for the si fuzzy intervals, and then summing the memberships for each of the si

fuzzy intervals.

Symbolic attributes: Each symbolic attribute j in input graph AGk is encoded
by a histogram of all its possible modalities (or labels). This histogram encodes
the number of instances for each possible label of the symbolic attribute. We
call this histogram as a crisp histogram (in contrary to fuzzy histogram for
numeric attributes). We call a crisp histogram for a symbolic attribute j as hsym

j ,
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which actually refers to the crisp histograms for symbolic node attribute’s resem-
blance (hnr

1 ,h
nr
2 , . . . ,h

nr
k in Fig. 4), the crisp histograms for symbolic node attributes

(hn
1,h

n
2, . . . ,h

n
k in Fig. 5), and the crisp histograms for symbolic edge attributes

(he
1,h

e
2, . . . ,h

e
l in Fig. 5).

After constructing the fuzzy interval encoded histograms for each numeric
attribute i and crisp histogram for each symbolic attribute j, the FSMFVe for input
graph AGe is constructed from the value of graph order, the value of graph size
and fuzzy interval encoded histograms hnum

i of its node degree, numeric node and
edge attributes appended by the crisp histograms hsym

j for symbolic node and edge
attributes. This gives an embedding of the input graph AGe into a feature vector
FSMFVe.

4.3 Application to Graph Classification

As an application of FMGE, we report some experimental results on three datasets
from “IAM Graph Database Repository for Graph Based Pattern Recognition and
Machine Learning.” The IAM graph database repository is publicly available from
the web site of IAPR technical committee on graph-based representations (TC-15)1

and contains graph datasets from the field of document image analysis and graphics
recognition, describing both synthetic and real data [39].

Datasets: The summary of the letter, GREC and fingerprint datasets, together
with some characteristic properties, is given in Table 2. The letter graph dataset
is comprised of graphs extracted from drawings of 15 capital letters of Roman
alphabet that consists of straight lines only. The prototype drawing of letters are
converted into prototype graphs by representing lines by undirected edges and
ending points of lines by nodes. Each node is labeled with a two-dimensional
attribute giving its position relative to a reference coordinate system. The GREC
graph dataset is comprised of graphs representing 22 symbols from architectural and
electronic drawings. Graphs are extracted from the denoised images by representing
ending points, corners, intersections, and circles by nodes and labeled with a two-
dimensional attribute giving their position. The nodes are connected by undirected
edges which are labeled as line or arc and have the angle with respect to the
horizontal direction as attribute. Fingerprint images are converted into graphs by
representing the ending points and bifurcation points of the skeletonized regions as
nodes. Each node is labeled with a two-dimensional attribute giving its position. The
edges are attributed with an angle denoting the orientation of the edge with respect
to the horizontal direction.

Experimental setup and results: The datasets consist of training, validation, and
test sets. The experiments are performed by tuning the parameters on the validation

1http://www.greyc.ensicaen.fr/iapr-tc15/index.php.

http://www.greyc.ensicaen.fr/iapr-tc15/index.php
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Table 2 IAM graph database

Letter LOW GREC Fingerprint

Size Train 750 836 500
Valid 750 836 300
Test 750 1,628 2,000

Classes 15 22 4
Average |V | 4.7 11.5 5.4

|E| 3.1 12.2 4.4
Maximum |V | 8 25 26

|E| 6 30 25
Numeric attribute |V | 2 2 2

|E| 0 1 1
Symbolic attribute |V | 0 1 0

|E| 0 1 0

set and then testing with the best found configuration of the parameters on the test
set. The considered parameters are the number of fuzzy intervals for embedding
numeric information in graph, i.e., the node degree, numeric node attributes, and
numeric edge attributes. Starting from 2 intervals, the number of fuzzy intervals for
embedding the numeric information is increased until 25 (in steps of 1). Out of these
different configurations, we selected the one which gave highest recognition rate on
validation set. The selected parameter configuration is employed for embedding the
graphs in test set.

After embedding the training and test sets into feature vectors, we performed
PCA in vector space, for reducing the dimensionality of feature vectors. PCA
requires to adopt a criterion for selecting the number of dimensions to keep. We have
used eigenvalue-based intrinsic dimensionality estimation on training set for finding
the number of interesting dimensions to keep for our experiments. The eigenvalue-
based intrinsic dimensionality estimation performs PCA with two dimensions and
evaluates the eigenvalues corresponding to the principal components (of the high-
dimensional feature vectors in training set). The eigenvalues provide insight into
the amount of variance that is described by their corresponding eigenvectors. The
estimation of the intrinsic dimensionality is performed by counting the number of
normalized (and ordered) eigenvalues that is higher than a very small threshold
value. In our experimentation we kept all the eigenvalues greater than 0.025. The
number of dimensions obtained from intrinsic dimensionality reduction is used for
reducing the dimensionality of the feature vectors in training and test sets. The
dimensions of original and PCA reduced feature vectors are given in Table 3.
The reference system [39] employs a graph edit distance based nearest-neighbor
classifier, because of the fact that there is a lack of general classification algorithms
that can be applied to graphs. One of the few classifiers directly applicable to
arbitrary graphs is the k-nearest-neighbor classifier (k-NN). Given a labeled set
of training graphs, an unknown graph is assigned to the class that occurs most
frequently among the k nearest graphs (in terms of edit distance) from the training
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Table 3 Results on test sets for original vectors and PCA reduced vectors. Recognition rate (%)
obtained by 1-NN classifier and DIM is the dimensionality of feature vector

Letter LOW GREC Fingerprint

Recognition
rate DIM

Recognition
rate DIM

Recognition
rate DIM

Classification in graph
space

99.6 95.5 76.6

Original FSMFV 96.5 58 97.2 79 76.6 127
PCA reduced FSMFV 96.3 10 96.8 14 77.2 16

set. The decision boundary of this classifier is a piecewise linear function which
makes it very flexible.

Table 3 presents the recognition rates on test set, before and after the dimension-
ality reduction. The application of PCA successfully reduces the dimensionality
of the feature vector without degrading the performance of the original graph
embedding technique. The new low-dimensional feature vectors are very interesting
for being efficiently processed by complex machine learning algorithms (sophis-
ticated classification and clustering tools). In case of letter and GREC datasets
the recognition rate on PCA reduced vectors is a little less than that of original
vectors but the drastic decrease in dimensionality is very interesting achievement.
For fingerprint dataset, as it was desired, the PCA reduced vector has very low
dimensionality and it manages to achieve a little more recognition rate than original
vectors.

The results clearly demonstrate that graph embedding followed by classification
in vector space permits to employ the best of structural and statistical pattern
recognition. The low dimensionality of FSMFV feature space gives a big gain
in computational efficiency as compared to original graph space. The recognition
rates are not true representative of FMGE’s capabilities, since the datasets do
not have many node and edge attributes. We have reported these results only to
show the applicability of the explicit graph embedding approaches to the problem
of graph classification. By embedding the graphs into feature vector spaces, the
graph embedding methods open new horizons of computational tools (including
learning, classification and clustering), for various application domains where the
use of graph-based relational data structures is mandatory for performing high-level
semantic operations.

5 Summary

In this chapter we first presented the new emerging research domain of graph
embedding along with recent developments in explicit graph embedding methods.
The discussion on the multilevel analysis of attributed graphs for explicit graph
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embedding in vector spaces outlined our explicit graph embedding method FMGE
(the fuzzy multilevel graph embedding).

FMGE is a straightforward, simple, and computational efficient solution for
facilitating the use of graph-based powerful representations together with learning
and computational strengths of state-of-the-art machine learning, classification, and
clustering. The method exploits multilevel analysis of graphs for extracting three
levels of information from graphs (i.e. graph level, structural level, and elementary
level) and embedding them into numeric feature vectors. It represents the graph
topology information by new node and edge attributes and uses an unsupervised
learning based algorithm to embed it into feature vector spaces. The method offers
the embedding of attributed graphs with numeric as well as symbolic attributes on
both nodes and edges. It has built-in learning abilities for adapting its parameters to
underlying graph repositories. Computational time complexity of FMGE is linear
to size of graphs and the number of attributes in graphs. However, the method is
strongly dependent on the attributes of the nodes and edges in the graph. Apart from
the elementary level details, the structural level details which are extracted by the
homogeneity of subgraphs in the graph are also defined in terms of the node and
edge attributes. The proposed feature vector lacks in information on the topology of
the graph. This makes this method very useful for the application domains which
extract attribute rich graphs from data, i.e., there are lots of meaningful attributes.
The method is less useful for application domains where graphs have less number
of attributes and topological details are required to be extracted (without using
attributes) for graph embedding.

We conclude this chapter with a remark that graph embedding is an interesting
approximate solution for addressing the problem of in-exact graph matching which
belongs to the class of NP-complete problems. By mapping a high-dimensional
graph into a point in suitable vector space, graph embedding permits to perform the
basic mathematical computations which are required by various statistical pattern
recognition techniques and offers interesting solutions to the problems of graph
clustering and classification. However, in our opinion because of the strict limitation
of the resulting feature vector not being capable of preserving the matching between
nodes of graphs, graph embedding always lacks the capabilities to address the
problem of graph isomorphism (i.e., exact graph matching).
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Feature Grouping and Selection Over
an Undirected Graph

Sen Yang, Lei Yuan, Ying-Cheng Lai, Xiaotong Shen, Peter Wonka,
and Jieping Ye

1 Introduction

High-dimensional regression/classification is challenging due to the curse of
dimensionality. Lasso [18] and its various extensions [10], which can simul-
taneously perform feature selection and regression/classification, have received
increasing attention in this situation. However, in the presence of highly correlated
features lasso tends to only select one of those features resulting in suboptimal
performance [25]. Several methods have been proposed to address this issue in
the literature. Shen and Ye [15] introduce an adaptive model selection procedure
that corrects the estimation bias through a data-driven penalty based on generalized
degrees of freedom. The Elastic Net [25] uses an additional l2 regularizer to
encourage highly correlated features to stay together. However, these methods do
not incorporate prior knowledge into the regression/classification process, which
is critical in many applications. As an example, many biological studies have
suggested that genes tend to work in groups according to their biological functions,
and there are some regulatory relationships between genes [9]. This biological
knowledge can be represented as a graph, where the nodes represent the genes,
and the edges imply the regulatory relationships between genes. Therefore, we want
to study how estimation accuracy can be improved using dependency information
encoded as a graph.

Given feature grouping information, the group lasso [1, 6, 11, 21] yields a
solution with grouped sparsity using l1/l2 penalty. The original group lasso does
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not consider the overlaps between groups. Zhao et al. [22] extend the group lasso to
the case of overlapping groups. Jacob et al. [6] introduce a new penalty function
leading to a grouped sparse solution with overlapping groups. Yuan et al. [20]
propose an efficient method to solve the overlapping group lasso. Other extensions
of group lasso with tree structured regularization include [7, 11]. Prior works
have demonstrated the benefit of using feature grouping information for high-
dimensional regression/classification. However, these methods need the feature
groups to be pre-specified. In other words, they only utilize the grouping information
to obtain solutions with grouped sparsity, but lack the capability of identifying
groups.

There are also a number of existing methods for feature grouping. Fused
lasso [19] introduces an l1 regularization method for estimating subgroups in a
certain serial order, but pre-ordering features is required before using fused lasso.
A study about parameter estimation of the fused lasso can be found in [12];
Shen et al. [13] propose a non-convex method to select all possible homogenous
subgroups, but it fails to obtain sparse solutions. OSCAR [2] employs an l1
regularizer and a pairwise l∞ regularizer to perform feature selection and automatic
feature grouping. Li and Li [9] suggest a grouping penalty using a Laplacian matrix
to force the coefficients to be similar, which can be considered as a graph version
of the Elastic Net. When the Laplacian matrix is an identity matrix, Laplacian
lasso [5,9] is identical to the Elastic Net. GFlasso employs an l1 regularization over a
graph, which penalizes the difference |βi−sign(ri j)β j|, to encourage the coefficients
βi,β j for features i, j connected by an edge in the graph to be similar when ri j > 0,
but dissimilar when ri j < 0, where ri j is the sample correlation between two
features [8]. Although these grouping penalties can improve the performance, they
would introduce additional estimation bias due to strict convexity of the penalties
or due to possible graph misspecification. For example, additional bias may occur
when the signs of coefficients for two features connected by an edge in the graph are
different in Laplacian lasso [5,9], or when the sign of ri j is inaccurate in GFlasso [8].

In this chapter, we focus on simultaneous estimation of grouping and sparseness
structures over a given undirected graph. Features tend to be grouped when they
are connected by an edge in a graph. When features are connected by an edge
in a graph, the absolute values of the model coefficients for these two features
should be similar or identical. We propose a convex and non-convex penalty
to encourage both sparsity and equality of absolute values of coefficients for
connected features. The convex penalty includes a pairwise l∞ regularizer over
a graph. The non-convex penalty improves the convex penalty by penalizing the
difference of absolute values of coefficients for connected features. These penalties
are designed to resolve the aforementioned issues of Laplacian lasso and GFlasso.
Several recent works analyze their theoretical properties [14, 24]. Through ADMM
and DC programming, we develop computational methods to solve the proposed
formulations. The proposed methods can combine the benefit of feature selection
and that of feature grouping to improve regression/classification performance.
Due to the equality of absolute values of coefficients, the model complexity of
the learned model can be reduced. We have performed experiments on synthetic
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data and a real dataset. The results demonstrate the effectiveness of the proposed
methods.

The rest of the chapter is organized as follows. We introduce the proposed convex
method in Sect. 2 and the proposed non-convex method in Sect. 3. Experimental
results are given in Sect. 4. We conclude the chapter in Sect. 5.

2 A Convex Formulation

Consider a linear model in which response yi depends on a vector of p features:

y = Xβ + ε, (1)

where β ∈ Rp is a vector of coefficients, X ∈ Rn×p is the data matrix, and
ε is random noise. Given an undirected graph, we try to build a prediction
model (regression or classification) incorporating the graph structure information to
estimate the nonzero coefficients of β and to identify the feature groups when the
number of features p is larger than the sample size n. Let (N,E) be the given
undirected graph, where N = {1,2, . . . , p} is a set of nodes, and E is the set of
edges. Node i corresponds to feature xi. If nodes i and j are connected by an edge
in E , then features xi and x j tend to be grouped. The formulation of graph OSCAR
(GOSCAR) is given by

min
β

1
2
‖y−Xβ‖2 +λ1‖β‖1 +λ2 ∑

(i, j)∈E

max{|βi|, |β j|}, (2)

where λ1, λ2 are regularization parameters. We use a pairwise l∞ regularizer to
encourage the coefficients to be equal [2], but we only put grouping constraints over
the nodes connected over the given graph. The l1 regularizer encourages sparseness.
The pairwise l∞ regularizer puts more penalty on the larger coefficients. Note that
max{|βi|, |β j|} can be decomposed as

max{|βi|, |β j|}= 1
2
(|βi +β j|+ |βi−β j|).

1
2(|βi +β j|+ |βi−β j|) can be represented by

|uTβ |+ |vTβ |,
where u,v are sparse vectors, each with only two nonzero entries ui = u j =

1
2 , vi =

−v j =
1
2 . Thus (2) can be rewritten in a matrix form as

min
β

1
2
‖y−Xβ‖2 +λ1‖β‖1 +λ2‖Tβ‖1, (3)

where T is a sparse matrix constructed from the edge set E .
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The proposed formulation is closely related to OSCAR [2]. The penalty of
OSCAR is λ1‖β‖1 + λ2∑i< j max{|βi|, |β j|}. The l1 regularizer leads to a sparse
solution, and the l∞ regularizer encourages the coefficients to be equal. OSCAR
can be efficiently solved by accelerated gradient methods, whose key projection can
be solved by a simple iterative group merging algorithm [23]. However, OSCAR
assumes each node is connected to all the other nodes, which is not sufficient for
many applications. Note that OSCAR is a special case of GOSCAR when the graph
is complete. GOSCAR, incorporating an arbitrary undirected graph, is much more
challenging to solve.

2.1 Algorithm

We propose to solve GOSCAR using the alternating direction method of multipliers
(ADMM) [3]. ADMM decomposes a large global problem into a series of smaller
local subproblems and coordinates the local solutions to identify the globally
optimal solution. ADMM attempts to combine the benefits of dual decomposition
and augmented Lagrangian methods for constrained optimization [3]. The problem
solved by ADMM takes the form of

minx,z f (x)+ g(z)

s.t. Ax+Bz = c.

ADMM uses a variant of the augmented Lagrangian method and reformulates
the problem as follows:

Lρ(x,z,μ) = f (x)+ g(z)+ μT(Ax+Bz− c)+
ρ
2
‖Ax+Bz− c‖2,

with μ being the augmented Lagrangian multiplier and ρ being the nonnegative
dual update step length. ADMM solves this problem by iteratively minimizing
Lρ(x,z,μ) over x, z, and μ . The update rule for ADMM is given by

xk+1 := argmin
x

Lρ(x,zk,μk),

zk+1 := argmin
z

Lρ(xk+1,z,μk),

μk+1 := μk +ρ(Axk+1 +Bzk+1− c).

Consider the unconstrained optimization problem in (3), which is equivalent to
the following constrained optimization problem:
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min
β ,q,p

1
2
‖y−Xβ‖2 +λ1‖q‖1 +λ2‖p‖1

s.t. β −q = 0,

Tβ −p = 0, (4)

where q,p are slack variables. Equation (4) can then be solved by ADMM. The
augmented Lagrangian is

Lρ(β ,q,p,μ ,υ) =
1
2
‖y−Xβ‖2 +λ1‖q‖1 +λ2‖p‖1 + μT(β −q)

+υT(Tβ −p)+
ρ
2
‖β −q‖2 +

ρ
2
‖Tβ −p‖2,

where μ ,υ are augmented Lagrangian multipliers.

Update β : In the (k + 1)-th iteration, β k+1 can be updated by minimizing Lρ
with q,p,μ ,υ fixed:

β k+1 = argmin
β

1
2
‖y−Xβ‖2 +(μk +TTυk)Tβ +

ρ
2
‖β −qk‖2 +

ρ
2
‖Tβ −pk‖2. (5)

The above optimization problem is quadratic. The optimal solution is given by
β k+1 = F−1bk, where

F = XTX+ρ(I+TTT),

bk = XTy− μk−TTυk +ρTTpk +ρqk.

The computation of β k+1 involves solving a linear system, which is the most time-
consuming part in the whole algorithm. To compute β k+1 efficiently, we compute
the Cholesky factorization of F at the beginning of the algorithm:

F = RTR.

Note that F is a constant and positive definite matrix. Using the Cholesky factoriza-
tion we only need to solve the following two linear systems at each iteration:

RTβ̂ = bk, Rβ = β̂ . (6)

Since R is an upper triangular matrix, solving these two linear systems is very
efficient.

Update q: qk+1 can be obtained by solving

qk+1 = argmin
q

ρ
2
‖q−β k+1‖2 +λ1‖q‖1− (μk)Tq,

which is equivalent to the following problem:
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qk+1 = argmin
q

1
2
‖q−β k+1− 1

ρ
μk‖2 +

λ1

ρ
‖q‖1. (7)

Equation (7) has a closed-form solution, known as soft-thresholding

qk+1 = Sλ1/ρ

(
β k+1 +

1
ρ
μk
)
, (8)

where the soft-thresholding operator is defined as:

Sλ (x) = sign(x)max(|x|−λ ,0).

Update p: Similar to updating q, pk+1 can also be obtained by soft-thresholding:

pk+1
i = Sλ2/ρ

(
Tβ k+1 +

1
ρ
υk
)
. (9)

Update μ ,υ :

μk+1 = μk +ρ(β k+1−qk+1),

υk+1 = υk +ρ(Tβ k+1−pk+1).
(10)

A summary of GOSCAR is shown in Algorithm 1.

Algorithm 1: The GOSCAR algorithm
Input: X,y,E,λ1,λ2,ρ
Output: β
Initialization: p0← 0,q0← 0,μ0← 0,υ0← 0;
Compute the Cholesky factorization of F;
do

Compute β k+1 according to Eq. (6).
Compute qk+1 according to Eq. (8).
Compute pk+1 according to Eq. (9).
Compute μk+1,υk+1 according to Eq. (10).

Until Convergence;
return β ;

In Algorithm 1, the Cholesky factorization only needs to be computed once,
and each iteration involves solving one linear system and two soft-thresholding
operations. The time complexity of the soft-thresholding operation in (8) is O(p).
The other one in (9) involves a matrix–vector multiplication. Due to the sparsity
of T, its time complexity is O(ne), where ne is the number of edges. Solving the
linear system involves computing bk and solving (6), whose total time complexity
is O(p(p+n)+ne). Thus the time complexity of each iteration is O(p(p+n)+ne).
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3 A Non-convex Formulation

The grouping penalty of GOSCAR overcomes the limitation of Laplacian lasso
that the different signs of coefficients can introduce additional penalty. However,
under the l∞ regularizer, even if |βi| and |β j| are close to each other, the penalty
on this pair may still be large due to the property of the max operator, resulting in
the coefficient βi or β j being over penalized. The additional penalty would result
in biased estimation, especially for large coefficient, as in the Lasso case [18].
Another related grouping penalty is GFlasso, |βi − sign(ri j)β j|, where ri j is the
pairwise sample correlation. GFlasso relies on the pairwise sample correlation to
decide whether βi and β j are enforced to be close or not. When the pairwise sample
correlation wrongly estimates the sign between βi and β j, an additional penalty on
βi and β j would occur, introducing estimation bias. This motivates our non-convex
grouping penalty, ||βi| − |β j||, which shrinks only small differences in absolutes
values. As a result, estimation bias is reduced as compared to these convex grouping
penalties. The proposed non-convex method performs well even when the graph is
wrongly specified, unlike GFlasso. Note that the proposed non-convex grouping
penalty does not assume that the sign of an edge is given; it only relies on the graph
structure.

The proposed non-convex formulation (ncFGS) solves the following
optimization problem:

min
β

f (β ) :=
1
2
‖y−Xβ‖2 +λ1‖β‖1 +λ2 ∑

(i, j)∈E

∣
∣|βi|− |β j|

∣
∣, (11)

where the grouping penalty ∑(i, j)∈E

∣
∣|βi|− |β j|

∣
∣ controls only magnitudes of differ-

ences of coefficients ignoring their signs over the graph. Through the l1 regularizer
and grouping penalty, simultaneous feature grouping and selection are performed,
where only large coefficients as well as pairwise differences are shrunk.

A computational method for the non-convex optimization in (11) is through DC
programming. We will first give a brief review of DC programming.

A particular DC program on Rp takes the form of

f (β ) = f1(β )− f2(β )

with f1(β ) and f2(β ) being convex on Rp. Algorithms to solve DC programming
based on the duality and local optimality conditions have been introduced in [17].
Due to their local characteristic and the non-convexity of DC programming, these
algorithms cannot guarantee the computed solution to be globally optimal. In
general, these DC algorithms converge to a local solution, but some researchers
observed that they converge quite often to a global one [16].

To apply DC programming to our problem we need to decompose the objective
function into the difference of two convex functions. We propose to use:
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f1(β ) =
1
2
‖y−Xβ‖2 +λ1‖β‖1 +λ2 ∑

(i, j)∈E

(|βi +β j|+ |βi−β j|),

f2(β ) = λ2 ∑
(i, j)∈E

(|βi|+ |β j|).

The above DC decomposition is based on the following identity: ||βi| −|β j||= |βi+
β j|+ |βi−β j|− (|βi|+ |β j|). Note that both f1(β ) and f2(β ) are convex functions.

Denote f k
2 (β ) = f2(β k)+ 〈β −β k,∂ f2(β k)〉 as the affine minorization of f2(β ),

where 〈·, ·〉 is the inner product. Then DC programming solves (11) by iteratively
solving a subproblem as follows:

min
β

f1(β )− f k
2 (β ). (12)

Since 〈β k,∂ f2(β k)〉 is constant, (12) can be rewritten as

min
β

f1(β )−〈β ,∂ f2(β k)〉. (13)

Let ck = ∂ f2(β k). Note that

ck
i = λ2disign(β k

i )I(β
k
i �= 0), (14)

where di is the degree of node i and I(·) is the indicator function. Hence, the
formulation in (13) is

min
β

1
2
‖y−Xβ‖2 +λ1‖β‖1− (ck)Tβ +λ2 ∑

(i, j)∈E

(|βi +β j|+ |βi−β j|), (15)

which is convex. Note that the only differences between the problems in Eq. (2) and
Eq. (15) are the linear term (ck)Tβ and the second regularization parameter. Similar
to GOSCAR, we can solve (15) using ADMM, which is equivalent to the following
optimization problem:

min
β ,q,p

1
2
‖y−Xβ‖2− (ck)Tβ +λ1‖q‖1 + 2λ2‖p‖1

s.t β −q = 0,

Tβ −p = 0. (16)

There is an additional linear term (ck)Tβ in updating β compared to Algorithm 1.
Hence, we can use Algorithm 1 to solve Eq. (15) with a small change in updating β :

Fβ −bs− ck = 0,

where s represents the iteration number in Algorithm 1.
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Table 1 The algorithms and
their associated penalties

Algorithm Penalty

Lasso λ1‖β‖1

OSCAR λ1‖β‖1 +λ2∑i< j max{|βi|, |β j|}
GFlasso λ1‖β‖1 +λ2∑(i, j)∈E |βi− sign(ri j)β j|
GOSCAR λ1‖β‖1 +λ2∑(i, j)∈E max{|βi|, |β j|}
ncFGS λ1‖β‖1 +λ2∑(i, j)∈E ||βi|− |β j||

The key steps of ncFGS are shown in Algorithm 2.

Algorithm 2: The ncFGS algorithm
Input: X,y,E,λ1,λ2,ε
Output: β
Initialization: β 0← 0;
while f (β k)− f (β k+1)> ε do

Compute ck according to Eq. (14).
Compute β k+1 using Algorithm 1 with ck and λ1,2λ2 as regularization parameters.

end
return β ;

4 Numerical Results

We compare GOSCAR and ncFGS against lasso, GFlasso, and OSCAR on synthetic
datasets and a real dataset: Breast Cancer.1 The experiments are performed on a
PC with dual-core Intel 3.0GHz CPU and 4GB memory. The code is written in
MATLAB. The algorithms and their associated penalties are summarized in Table 1:

4.1 Efficiency

To evaluate the efficiency of the proposed methods, we conduct experiments on
a synthetic dataset with a sample size of 100 and dimensions varying from 100
to 3,000. The regression model is y = Xβ + ε , where X ∼ N (0,Ip×p), βi ∼
N (0,1), and εi ∼ N (0,0.012). The graph is randomly generated. The number
of edges ne varies from 100 to 3,000. The regularization parameters are set as
λ1 = λ2 = 0.8max{|βi|} with ne fixed. Since the graph size affects the penalty,
λ1 and λ2 are scaled by 1

ne
to avoid trivial solutions with dimension p fixed.

The average computational time based on 30 repetitions is reported in Fig. 1. As can
be seen in Fig. 1, GOSCAR can achieve 1e-4 precision in less than 10 s when the
dimension and the number of edges are 1,000. The computational time of ncFGS

1http://cbio.ensmp.fr/∼jvert/publi/

http://cbio.ensmp.fr/~jvert/publi/
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Fig. 1 Comparison of GOSCAR and ncFGS in terms of computation time with different
dimensions, precisions, and the numbers of edges (in seconds and in logarithmic scale)

is about seven times higher than that of GOSCAR in this experiment. We can
also observe that the proposed methods scale very well to the number of edges.
The computational time of the proposed method increases less than 4 times when
the number of edges increases from 100 to 3,000. It is not surprising because the
complexity of each iteration in Algorithm 1 is linear with respect to ne, and the
sparsity of T makes the algorithm much more efficient. The increase of dimension
is more costly than that of the number of edges, as the complexity is quadratic with
respect to p.
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4.2 Simulations

We use five synthetic problems that have been commonly used in the sparse learning
literature [2, 9] to compare the performance of different methods. The data is
generated from the regression model y = Xβ+ε, εi∼N (0,σ2). The five problems
are given by:

1. n = 100, p = 40, and σ = 2,5,10. The true parameter is given by

β = (0, . . . ,0
︸ ︷︷ ︸

10

,2, . . . ,2
︸ ︷︷ ︸

10

,0, . . . ,0
︸ ︷︷ ︸

10

,2, . . . ,2
︸ ︷︷ ︸

10

)T.

X∼N (0,Sp×p) with sii = 1,∀i and si j = 0.5 for i �= j.
2. n = 50, p = 40, β = (3, . . . ,3

︸ ︷︷ ︸
15

,0, . . . ,0
︸ ︷︷ ︸

25

)T, and σ = 2,5,10. The features are

generated as

xi = Z1 + εx
i , Z1 ∼N (0,1), i = 1, . . . ,5

xi = Z2 + εx
i , Z2 ∼N (0,1), i = 6, . . . ,10

xi = Z3 + εx
i , Z3 ∼N (0,1), i = 11, . . . ,15

xi ∼N (0,1) i = 16, . . . ,40

with εx
i ∼N (0,0.16), and X = [x1, . . . ,x40].

3. Consider a regulatory gene network [9], where an entire network consists of nTF

subnetworks, each with one transcription factor (TF) and its 10 regulatory target
genes. The data for each subnetwork can be generated as XTF

i ∼ N (0,S11×11)
with sii = 1,s1i = si1 = 0.7,∀i, i �= 1 and si j = 0 for i �= j, j �= 1, i �= 1. Then
X = [XTF

1 , . . . ,XTF
nTF

], n = 100, p = 110, and σ = 5. The true parameters are

β =

⎛

⎜
⎜⎜
⎝

5√
11

, . . . ,
5√
11︸ ︷︷ ︸

11

,
−3√

11
, . . . ,

−3√
11︸ ︷︷ ︸

11

,0, . . . ,0
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p−22

⎞

⎟
⎟⎟
⎠

T

.

4. Same as Problem 3 except that

β =
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5. Same as Problem 3 except that
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β =
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We assume that the features in the same group are connected in a graph, and those
in different groups are not connected. We use MSE to measure the performance of
estimation of β , which is defined as

MSE(β ) = (β −β ∗)TXTX(β −β ∗).

For feature grouping and selection, we introduce two separate metrics to measure
the accuracy of feature grouping and selection. Denote Ii, i = 0,1,2, . . . ,K as the
index of different groups, where I0 is the index of zero coefficients. Then the metric
for feature selection is defined as

s0 =
∑i∈I0 I(βi = 0)+∑i/∈I0 I(βi �= 0)

p
,

and the metric for feature grouping is defined as

s =
∑K

i=1 si + s0

K + 1
,

where

si =
∑i�= j,i, j∈Ii I(|βi|= |β j|)+∑i�= j,i∈Ii, j/∈Ii I(|βi| �= |β j|)

|Ii|(p− 1)
.

si measures the grouping accuracy of group i under the assumption that the absolute
values of entries in the same group should be the same, but different from those
in different groups. s0 measures the accuracy of feature selection. It is clear that
0≤ s0,si,s≤ 1.

For each dataset, we generate n samples for training, as well as n samples for
testing. To make the synthetic datasets more challenging, we first randomly select
�n/2� coefficients, and change their signs, as well as those of the corresponding
features. Denote β̃ and X̃ as the coefficients and features after changing signs. Then
β̃i =−βi, x̃i =−xi, if the i-th coefficient is selected; otherwise, β̃i = βi, x̃i = xi, so
that X̃β̃ = Xβ . We apply different approaches on X̃. The covariance matrix of X is
used in GFlasso to simulate the graph misspecification. The results of β converted
from β̃ are reported.
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a b

d e

c

Fig. 2 The average nonzero coefficients obtained on dataset 1 with σ = 2: (a) Lasso; (b) GFlasso;
(c) OSCAR; (d) GOSCAR; (e) ncFGS

Table 2 Comparison of performance in terms of MSEs and estimated standard deviations
(in parentheses) for different methods based on 30 simulations on different synthetic datasets

Datasets Lasso OSCAR GFlasso GOSCAR ncFGS

Data1 (σ = 2) 1.807 (0.331) 1.441 (0.318) 1.080 (0.276) 0.315 (0.157) 0.123 (0.075)
Data1 (σ = 5) 5.294 (0.983) 5.328 (1.080) 3.480 (1.072) 1.262 (0.764) 0.356 (0.395)
Data1 (σ = 10) 12.628 (3.931) 13.880 (4.031) 13.411 (4.540) 6.061 (4.022) 1.963 (1.600)
Data2 (σ = 2) 1.308 (0.435) 1.084 (0.439 ) 0.623 (0.250) 0.291 (0.208) 0.226 (0.175)
Data2 (σ = 5) 4.907 (1.496) 4.868 (1.625) 2.538 (0.656) 0.781 (0.598) 0.721 (0.532)
Data2 (σ = 10) 18.175 (6.611) 18.353 (6.611) 6.930 (2.858) 4.601 (2.623) 4.232 (2.561)
Data3 (σ = 5) 5.163 (1.708) 4.503 (1.677) 4.236 (1.476) 3.336 (1.725) 0.349 (0.282)
Data4 (σ = 5) 7.664 (2.502) 7.167 (2.492) 7.516 (2.441) 7.527 (2.434) 5.097 (0.780)
Data5 (σ = 5) 9.893 (1.965) 7.907 (2.194) 9.622 (2.025) 9.810 (2.068) 7.684 (1.1191)

Figure 2 shows the average nonzero coefficients obtained on dataset 1 with
σ = 2. As can be seen in Fig. 2, GOSCAR and ncFGS are able to utilize the graph
information and achieve good parameter estimation. Although GFlasso can use the
graph information, it performs worse than GOSCAR and ncFGS due to the graph
misspecification.

The performance in terms of MSEs averaged over 30 simulations is shown
in Table 2. As indicated in Table 2, among existing methods (Lasso, GFlasso,
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Table 3 Accuracy of feature grouping and selection based on 30 simulations for five
feature grouping methods: the first row for each dataset corresponds to the accuracy
of feature selection; the second row corresponds to the accuracy of feature grouping.
The numbers in parentheses are the standard deviations

Datasets OSCAR GFlasso GOSCAR ncFGS

Data1 (σ = 2) 0.675 (0.098) 0.553 (0.064) 0.513 (0.036) 0.983 (0.063)
0.708 (0.021) 0.709 (0.017) 0.702 (0.009) 0.994 (0.022)

Data1 (σ = 5) 0.565 (0.084) 0.502 (0.009) 0.585 (0.085) 1.000 (0.000)
0.691 (0.011) 0.709 (0.016) 0.708 (0.017) 1.000 (0.000)

Data1 (σ = 10) 0.532 (0.069) 0.568 (0.088) 0.577 (0.061) 0.983 (0.063)
0.675 (0.031) 0.725 (0.022) 0.708 (0.020) 0.994 (0.022)

Data2 (σ = 2) 0.739 (0.108) 0.544 (0.272) 1.000 (0.000) 0.958 (0.159)
0.625 (0.052) 0.823 (0.029) 0.837 (0.014) 0.831 (0.052)

Data2 (σ = 5) 0.763 (0.114) 0.717 (0.275) 0.999 (0.005) 0.979 (0.114)
0.650 (0.066) 0.741 (0.062) 0.833 (0.011) 0.845 (0.030)

Data2 (σ = 10) 0.726 (0.101) 0.818 (0.149) 0.993 (0.024) 1.000 (0.000)
0.597 (0.058) 0.680 (0.049) 0.829 ( 0.025) 0.851 (0.015)

Data3 (σ = 5) 0.886 (0.135) 0.736 (0.103) 0.382 (0.084) 0.992 (0.026)
0.841 (0.056) 0.739 (0.041) 0.689 (0.013) 0.995 (0.017)

Data4 (σ = 5) 0.875 (0.033) 0.881 (0.026) 0.882 (0.037) 0.796 (0.245)
0.834 (0.030) 0.805 (0.035) 0.805 (0.036) 0.895 (0.114)

Data5 (σ = 5) 0.760 (0.203) 0.802 (0.153) 0.861 (0.051) 0.881 (0.174)
0.858 (0.031) 0.821 (0.037) 0.805 (0.037) 0.920 (0.056)

OSCAR), GFlasso is the best, except in the two cases where OSCAR is better.
GOSCAR is better than the best existing method in all cases except for two, and
ncFGS outperforms all the other methods.

Table 3 shows the results in terms of accuracy of feature grouping and selection.
Since Lasso does not perform feature grouping, we only report the results of the
other four methods: OSCAR, GFlasso, GOSCAR, and ncFGS. Table 3 shows that
ncFGS achieves higher accuracy than other methods in most cases.

4.3 Real Data

We conduct experiments on the breast cancer dataset. The metrics to measure
the performance of different algorithms include accuracy (acc.), sensitivity (sen.),
specificity (spe.), degrees of freedom (dof.), and the number of nonzero coefficients
(nonzero coeff.). The dof. of lasso is the number of nonzero coefficients [18].
For the algorithms capable of feature grouping, we use the same definition of dof.
in [2], which is the number of estimated groups.

The breast cancer dataset consists of gene expression data for 8,141 genes in 295
breast cancer tumors (78 metastatic and 217 non-metastatic). The network described
in [4] is used as the input graph in this experiment. Figure 3 shows a subgraph
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Fig. 3 A subgraph of the network in breast cancer dataset [4]. The subgraph consists of 80 nodes

Table 4 Comparison of classification accuracy, sensitivity, specificity, degrees of freedom, and
the number of nonzero coefficients averaged over 30 replications for various methods on breast
cancer dataset

Metrics Lasso OSCAR GFlasso GOSCAR ncFGS

acc. 0.739 (0.054) 0.755 (0.055) 0.771 (0.050) 0.783 (0.042) 0.779 (0.041)
sen. 0.707 (0.056) 0.720 (0.060) 0.749 (0.060) 0.755 (0.050) 0.755 (0.055)
pec. 0.794 (0.071) 0.810 (0.068) 0.805 (0.056) 0.827 (0.061) 0.819 (0.058)
dof. 239.267 165.633 108.633 70.267 57.233
nonzero coeff. 239.267 243.867 144.867 140.667 79.833

The numbers in parentheses are the standard deviations

consisting of 80 nodes of the used graph. We restrict our analysis to the 566 genes
most correlated to the output, but also connected in the graph. About 2/3 data is
randomly chosen as training data, and the remaining 1/3 data is used as testing data.
The tuning parameter is estimated by fivefold cross validation. Table 4 shows the
results averaged over 30 replications. As indicated in Table 4, GOSCAR and ncFGS
outperform the other three methods.
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5 Summary

In this chapter, we consider simultaneous feature grouping and selection over a
given undirected graph. We propose a convex and non-convex penalty to encourage
both sparsity and equality of absolute values of coefficients for features connected
in the graph. We employ ADMM and DC programming to solve the proposed
formulations. Numerical experiments on synthetic and real data demonstrate the
effectiveness of the proposed methods. Our results also demonstrate the benefit
of simultaneous feature grouping and feature selection through the proposed non-
convex method. In this chapter, we focus on undirected graphs. A possible future
direction is to extend the formulations to directed graphs.
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Median Graph Computation by Means of Graph
Embedding into Vector Spaces

Miquel Ferrer, Itziar Bardajı́, Ernest Valveny, Dimosthenis Karatzas,
and Horst Bunke

1 Introduction

In pattern recognition [8, 14], a key issue to be addressed when designing a system
is how to represent input patterns. Feature vectors is a common option. That is, a
set of numerical features describing relevant properties of the pattern are computed
and arranged in a vector form. The main advantages of this kind of representation
are computational simplicity and a well sound mathematical foundation. Thus, a
large number of operations are available to work with vectors and a large repository
of algorithms for pattern analysis and classification exist. However, the simple
structure of feature vectors might not be the best option for complex patterns where
nonnumerical features or relations between different parts of the pattern become
relevant.

In this context, graphs comprise an attractive alternative to represent complex
and structured objects. One of the main advantages of graphs over feature vectors
is that they can explicitly model the relations between the different parts of the
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object, whereas feature vectors are only able to describe an object as an aggregation
of numerical properties. In addition, graphs permit to associate any kind of label
(not only numbers) to both edges and nodes. Furthermore, the dimensionality of
graphs, i.e., the number of nodes and edges, can be different for every object. Thus,
the more complex an object is, the larger the number of nodes and edges used to
represent it can be. However, the main drawback of using graphs arises from the
difficulty and complexity of computational manipulation. Even the simple task of
comparing two graphs, which is commonly referred to as graph matching, turns
out to be very complex under some conditions [5]. In addition, most mathematical
operations required in many learning and classification algorithms are not possible
in the graph domain.

In order to overcome these limitations graph embedding techniques have gained
popularity recently. They can combine the strengths of both domains, that is the high
representational power of graphs together with all the mathematical foundation and
algorithms available for the feature vectors. Graph embedding [20] aims to convert
graphs into real vectors and then operate in the associated vector space. Thus, it
emerges as a powerful way to provide graph-based representations with access to the
rich repository of algorithmic tools available in statistical pattern analysis [7,16]. To
this end, different graph embedding procedures have been proposed in the literature
so far. Some of them [4, 25, 33, 39, 42, 46] are based on the spectral graph theory.
Graphs are converted into a vector representation using some spectral features
extracted from the adjacency or the Laplacian matrix of a graph. Another family
of graph embedding approaches is based on the similarity between graphs. For
instance, in [22] graph features are extracted out of the dissimilarity matrix among
a set of graphs. Alternatively, another embedding inspired in the work proposed in
[31] is presented in [38]. Given a set of some a priori selected graph prototypes
each point is embedded into a vector space by taking the distance (in this case the
graph edit distance is used) to all these prototypes. The basic intuition of this work
is that the description of the regularities in observations of classes and objects is
the basis to perform pattern classification. Thus, assuming that the prototypes have
been chosen appropriately, each class will form a compact zone in the vector space.
Finally, there is a family of embedding approaches based on computing frequencies
of certain substructures of the graphs [15, 24].

Graph embedding permits to go from the graph domain to the vector domain.
The reverse problem, going from the vector space back to the graph space, is not so
easy since it implies recovering the structural information that is usually lost with
the embedding. The ability to translate a vectorial result calculated in the embedding
space back to a graph is a condition sine qua non for linking statistical and structural
pattern recognition through graph embedding.

Formally, the median graph [21] is defined as the graph that has the minimum
sum of distances (SOD) to all graphs in a given set. Thus, it can be taken as the rep-
resentative of the set and, therefore, it has a large number of potential applications
including classical algorithms for learning, clustering, and classification that are
normally used in the vector domain. As a matter of fact, it can be potentially applied
to any graph-based algorithm where a representative of a set of graphs is needed.
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However, the computation of the median graph is exponential both in the number
of input graphs and their size [21]. The only exact algorithm proposed up to now
[27] is based on an A∗ algorithm using a data structure called multimatch. As the
computational cost of this algorithm is very high, a set of approximate algorithms
have also been presented in the past based on different approaches such as genetic
search [21,27], greedy algorithms [19], and spectral graph theory [11,45]. However,
all these algorithms can only be applied to restricted sets of graphs, regarding either
the type or the size of the graphs.

Graph embedding can help in finding more efficient methods to compute the
median graph and has already been explored in the past [12, 13]. The hypothesis
underlying these works is that embedding the graphs into vectors and computing
the median in the vector space can lead to a corresponding graph in the graph
space is a good approximation of the median graph. Therefore, this procedure relies
on some method to reconstruct the graph corresponding to the median vector. In
these previous works [12,13] an approximate reconstruction is obtained using some
heuristics that permit to recover a graph based on the concept of the weighted mean
of a pair of graphs using the median vector and the graphs corresponding to the 2 or
3 closest points to it.

In this chapter we present a generic procedure to convert a point in a vector
space into a graph, given that we have a set of n graphs that have been previously
embedded in the vector space (with n being the dimension of the vector space) and
that the point we want to convert lies inside the convex hull of such embedded
vectors, which is for example the case with the median and barycenter of the set
of points. The basic idea of this approach is as follows. Given n graphs mapped to
their corresponding points in the n-dimensional real space and a point inside the
convex hull of such set a of points, we iteratively project the point into subspaces
of lower dimensionality until a projected point is obtained lying on a line that
connects the maps of two graphs of the given set. The graph corresponding to this
point can be approximately reconstructed by means of the weighted mean. Next, we
recursively consider all other projected points obtained before in higher dimensional
spaces and apply the same reconstruction principle until the graph corresponding to
the desired point is obtained. Ideally, this procedure would permit to recover the
graph that corresponds exactly to the input point. However, due to the complexity of
graph matching problems, we are forced to use approximate algorithms at different
steps and therefore we will only be able to obtain partial approximations of the
input point.

We show the application of this procedure to the computation of the median
graph. As in the previous works, the median graph is obtained after embedding a set
of graphs into a vector space, computing the median of such a set in the vector
domain and then recovering the graph corresponding to median vector. For this
last step, the proposed generic procedure is used. The application of this procedure
raises some considerations about the order in which graphs have to be taken along
the procedure. In this sense, we analyze four additional variations of the method
which take into account different sorting schemes of the original set of graphs.
These variations can help to understand the influence of the approximations assumed
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across the procedure. It is also important to remark that this generic framework
could be potentially used in conjunction with any embedding technique and with
any method to compute the representative of the set in the vector space.

In order to test the feasibility of applying this procedure to the computation
of the median graph, we evaluate the final SOD of the median graph obtained to
all the graphs of the set as a measure of the quality of median graph. We have
also made clustering experiments on three different graph databases, one semi-
artificial and two containing real-world data. In these clustering experiments, the
proposed algorithms for the median graph computation are used to obtain the
centers of the clusters. The underlying graphs have no constraints regarding the
number of nodes and edges. The results are evaluated, according to four different
clustering measures, namely, the Rand index, the Dunn index, the bipartite index,
and the mutual information index. We will show that the clusters obtained using
the proposed method are better than those using the set median graph or previous
approaches also based on graph embedding.

The rest of this chapter is organized as follows. In the next section we define the
basic concepts and we introduce the notation we will use later in the chapter. Then,
in Sect. 3 the proposed generic method for recovering a graph from a point in the
vector space is described. After that, Sect. 4 presents the practical implementation of
the proposed generic framework for the computation of the median graph. Section 5
reports a number of experiments and presents the results achieved with our method.
Also a comparison with several reference systems is provided. Finally, in Sect. 6 we
draw some conclusions and we point out to possible future work.

2 Basic Concepts

This section introduces the basic terminology and notation we will use throughout
the chapter.

2.1 Graph

Given L, a finite alphabet of labels for nodes and edges, a graph g is defined by the
four-tuple g = (V,E,μ ,ν) where V is a finite set of nodes, E ⊆ V ×V is the set of
edges, μ : V −→ L is the node labeling function, and ν : V ×V −→ L is the edge
labeling function. The alphabet of labels is not constrained in any way. For example,
L can be defined as a vector space (i.e., L = R

n) or simply as a set of discrete labels
(i.e., L = {Δ ,Σ ,Ψ , . . .}). Edges are defined as ordered pairs of nodes, i.e.,, an edge
is defined by (u,v) where u,v ∈ V . The edges are directed in the sense that if the
edge is defined as (u,v) then u ∈V is the source node and v ∈V is the target node.
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g1 g2

Fig. 1 A possible edit path between two graphs g1 and g2. Note that node labels are indicated by
different colors

2.2 Graph Edit Distance

The process of evaluating the structural similarity of two graphs is commonly
referred to as graph matching. This issue has been addressed by a large number
of works. For an extensive review of different graph matching methods and
applications, the reader is referred to [5]. In this work, we will use the graph edit
distance [2, 40], one of the most widely used methods to compute the dissimilarity
between two graphs.

The basic idea behind the graph edit distance [2,40] is to define the dissimilarity
of two graphs as the minimum amount of change required to transform one graph
into the other. To this end, a number of edit operations e, consisting of the
insertion, deletion, and substitution of both nodes and edges, are defined. Given
these edit operations, for every pair of graphs, g1 and g2, there exists a sequence of
edit operations, or edit path p(g1,g2) = (e1, . . . ,ek) (where each ei denotes an edit
operation) that transforms g1 into g2 (see Fig. 1 for example). In general, several
edit paths may exist between two given graphs. This set of edit paths is denoted
by℘(g1,g2). To evaluate which edit path is the best one, edit costs are introduced
through a cost function. The basic idea is to assign a cost c(e) to each edit operation
according to the amount of distortion it introduces in the transformation. Then, the
edit distance between two graphs g1 and g2, denoted by d(g1,g2), is the minimum
cost edit path over all edit paths that transform g1 into g2:

d(g1,g2) = min
(e1,...,ek)∈℘(g1,g2)

k

∑
i=1

c(ei) (1)

Different optimal and approximate algorithms for the computation of the graph
edit distance have been proposed so far. Optimal algorithms are usually based on
combinatorial search procedures that explore all the possible mappings of nodes
and edges of one graph to the nodes and edges of the second graph [40]. The major
drawback of such an approach is its computational complexity, which is exponential
in the number of nodes of the involved graphs. As a result, the application of these
methods is restricted to graphs of rather small size in practice. As an alternative, a
number of suboptimal methods have been proposed to make the graph edit distance
less computationally demanding and therefore usable in real applications. Some of
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these methods are based on local optimization [28]. A linear programming method
to compute the graph edit distance with unlabeled edges is presented in [23]. Such
a method can be used to obtain lower and upper edit distance bounds in polynomial
time. In [29] simple variants of the standard method are proposed to derive two
fast suboptimal algorithms for graph edit distance, which make the computation
substantially faster. Finally, a new efficient algorithm is presented based on a
fast suboptimal bipartite optimization procedure [36]. We will use these two last
approximate methods for the graph-edit distance computation.

In [2] it was shown that d(g1,g2) is a metric if the underlying cost function
is a metric. Under the approximation algorithms of [29, 36] used in this work,
however, the metric property is no longer guaranteed. But this does not have
any negative impact on the approach proposed in this work because, firstly, the
embedding procedure that maps each graph onto an n-dimensional vector can be
applied regardless if the underlying distance function is a metric or not [30] and,
secondly, after embedding all points, which represent the graph, are located in a
Euclidean (and in particular a metric) space.

2.3 Weighted Mean of a Pair of Graphs

For the purpose of median graph computation, the weighted mean of a pair of graphs
[3] is a crucial tool. For this reason we include its definition in the following.

Let g and g′ be two graphs. The weighted mean of g and g′ is a graph g′′ such that

d(g,g′′) = a

d(g,g′) = a+ d(g′′,g′)

That is, the graph g′′ is a graph in between the graphs g and g′ along the edit path
between them. Furthermore, if the distance between g and g′′ is a and the distance
between g′′ and g′ is b, then the distance between g and g′ is a+b. Figure 2 illustrates
this idea.

Observe that g′′ is not necessarily unique. Consider, for example, a graph g
consisting of only a single node with label A and a graph g′ consisting of three
isolated nodes labeled with A, B, and C, respectively. Assume that the insertion and
deletion of a node has a cost equal to 1, regardless of the label of the affected node.
Then we have d(g,g′) = 2. Obviously, for a = 1 there exist two 1-mean graphs: g1,
which consists of two isolated nodes, one with label A and the other with label B,
and g2, which also consists of two isolated nodes, one with label A and the other with
label C. In this work, we will assume that two graphs that are at the same distance
from the original graphs are equivalent.
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g

a b

g≤

g¢Fig. 2 Weighted mean of a
pair of graphs

2.4 Median Graph

Given L, a finite alphabet of labels for nodes and edges, let U be the set of all graphs
that can be constructed using labels from L. Given S = {g1,g2, . . . ,gn} ⊆ U , the
generalized median graph ḡ of S is defined as

ḡ = arg min
g∈U

∑
gi∈S

d(g,gi) (2)

That is, the generalized median graph ḡ of S is a graph g ∈U that minimizes the
SOD (SOD) to all the graphs in S. Notice that ḡ is usually not a member of S, and in
general more than one generalized median graph may exist for a given set S. It can
be seen as the representative of the set. Consequently, it can be potentially used by
any graph-based algorithm where a representative of a set of graphs is needed.

Despite its simple mathematical definition (2), the computation of the median
graph is extremely complex. As shown in (2) some distance measure d(g,gi)
between the candidate median g and every graph gi ∈ S must be computed. However,
since the computation of the graph edit distance is a well-known NP-complete
problem, the computation of the generalized median graph can only be done in
exponential time, both in the number of graphs in S and their size (even in the
special case of strings, the time required is exponential in the number of input
strings [18]). As a consequence, in real applications we are forced to use suboptimal
methods in order to obtain approximate solutions for the generalized median graph
in reasonable time. Such approximate methods [11, 19, 21, 27, 45] apply some
heuristics in order to reduce the complexity of the graph edit distance computation
and the size of the search space. Two different approaches that use graph embedding
have already been explored in the past [12, 13]. The basic idea underlying these
works is that embedding the graphs into vectors and computing the median in the
vector space can lead to a median vector whose corresponding graph in the graph
space can be a good approximation of the median graph. In these previous works
[12, 13] an approximate reconstruction is obtained using, respectively, the 2 or 3



52 M. Ferrer et al.

closest points to the median vector. We will use these methods (referred as E2P and
E3P) as reference embedding methods for comparison later in the experiments.

Another alternative to reduce the computation time is to use the set median graph
instead of the generalized median graph. The difference between the two concepts is
only the search space where the median is looked for. As it is shown in (2), the search
space for the generalized median graph is U , i.e., the whole universe of graphs. In
contrast, the search space for the set median graph is simply S, i.e., the set of graphs
in the given set. It makes the computation of set median graph exponential in the
size of the graphs, due to the complexity of graph edit distance, but polynomial with
respect to the number of graphs in S, since it is only necessary to compute pairwise
distances between the graphs in the set. The set median graph is usually not the
best representative of a set of graphs, but it is often a good starting point towards
the search of the generalized median graph. As a matter of fact, we will use the set
median graph as a baseline for the experiments presented later.

3 From Vectors to Graphs

In this section we will propose a generic procedure to compute the graph corre-
sponding to a point in the vector space associated to a particular graph embedding.
For this procedure to be applied we require to know the points corresponding to the
embedding of a set S = {g1,g2, . . . ,gn} of n graphs, where n is the dimension of the
vector space. Theoretically, any embedding could be used, as long as the distance
relationships in the graph space are maintained in the vector space. In reality, this
depends on the embedding method used, and it is only approximately true.

Once we have the set of n points corresponding to the embedding of S, the
procedure can be applied to recover any point M lying inside the convex hull
defined by these n points. It is based on recursively projecting the point M into
hyperplanes of decreasing dimensionality and recovering the graph corresponding
to the projected points by means of the weighted mean of a pair of graphs. It is
important to note that all geometric operations needed in the reconstruction are
carried out in the n-dimensional real space using the Euclidean distance. Hence,
all the operations take place in a metric space. Thus, if we were able to compute the
exact edit distance and the optimal edit path between two graphs, we would be able
to obtain the graph that corresponds to the original point M. However, we are forced
to use several approximations in practice. As a result we will only be able to obtain
approximations of the corresponding graph.

Let us introduce some important aspects before explaining the method.

1. Given a set of n linearly independent points in R
n we can define a hyperplane

Hn−1 of dimensionality n-1 (e.g. in the case of n=2, two points define a unique
1D line, in the case of n=3, three points define a unique 2D plane, etc.). See Fig. 3
for example.
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Fig. 3 (a) The 2D-hyperplane H2 is defined by the 3 points Pi = {P1,P2,P3}. The Euclidean
median M3 falls in the 2D space defined by the 3 points and specifically within the triangle
(2D simplex) with vertices Pi (i = 1, . . . ,3). (b) The 3D-hyperplane H3 is defined by the 4 points
Pi = {P1,P2,P3,P4}. The Euclidean median M4 falls in the 3D space defined by the 4 points and
specifically within the pyramid (3D simplex) with vertices Pi (i = 1, . . . ,4)

2. Assume that we can define a line segment in the vector space that connects two
points P1 and P2 corresponding to known graphs g1 and g2, such that the point M
in a 2D space M2 lies on this line segment. We can then calculate the graph gM2

corresponding to the point M2 as the weighted mean of g1 and g2.1

From the second point we can observe that, given n embedded points
{P1,P2, . . . ,Pn} and the original point Mn, in order to obtain the graph corresponding
to Mn, the problem is to find two points in the vector space, whose corresponding
graphs are known, such that the median Mn lies on the line defined by these two
points. In this way, we can then apply the weighted mean of these two points in order
to find the graph corresponding to Mn. In the following we will describe how we
can obtain such two points and, thus, such a graph. We will illustrate this procedure
with the example shown in Fig. 4 with four points. Figure 4a shows the four points
{P1,P2,P3,P4} and the original point M4.

Given P1,P2, . . . ,Pn, we can choose without loss of generality, any one of them,
say Pn, and create the vector (Pn−Mn) (vector (P4−M4) in Fig. 4b). This vector
will lie fully on the hyperplane Hn−1 defined by these n points. Then, if we call Hn−2

the hyperplane of dimensionality n− 2 defined by the set of the remaining n− 1
points {P1,P2, . . . ,Pn−1}, i.e., all the original points except Pn, then the intersection
of the line defined by the vector (Pn−Mn) and the new hyperplane Hn−2 will be
a single point. We will call this new point Mn−1 (M3 in Fig. 4b which lies on the
hyperplane H2 (plane) defined by P1, P2, and P3).

1For clarity, in the remainder, we will refer to the projection of M into n-dimensional space as Mn.
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Fig. 4 Complete example of the median recovering with four points {P1,P2,P3,P4}

As mentioned before, in order to use the weighted mean of a pair of graphs
to calculate the graph corresponding to Mn, we need to first find a point (whose
corresponding graph is known) that lies on the line defined by the vector (Pn−Mn)
and specifically on the ray extending Mn (so that Mn lies between Pn and the
new point). Now we have two points (Pn and Mn−1) and the original point Mn
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falling on the line defined by them. However, although we already know the graph
corresponding to the point Pn (Pn comes from the graph gn), we do not know
yet the graph corresponding to the point Mn−1. Therefore, we cannot apply the
weighted mean to find the graph corresponding to Mn. However, we can follow
exactly the same procedure as before and consider a new line defined by the vector
(Pn−1−Mn−1) ((P3−M3) in Fig. 4c). Again, as we did for Mn−1, we can define the
point of intersection of the above line with the n− 3 dimensional hyperplane Hn−3

which is defined by the n−2 remaining points {P1,P2, . . . ,Pn−2}. Then, we will get
a new point Mn−2 (M2 in Fig. 4c which lies on the line defined by points P1 and P2).

This process is recursively repeated until M2 is obtained. The case of M2 is
solvable using the weighted mean of a pair of graphs, as M2 will lie on the line
segment defined by P1 and P2 which correspond to the known graphs g1 and g2 (we
obtain gM2 corresponding to M2 in Fig. 4d).

Having calculated the graph gM2 corresponding to the point M2, the inverse
process can be followed all the way up to Mn. Once gM2 is found, in the next step, the
graph gM3 corresponding to M3 can be calculated as the weighted mean of the graphs
corresponding to M2 and P3 (Fig. 4e). Generally the graph gMk corresponding to the
point Mk will be given as the weighted mean of the graphs corresponding to Mk−1

and Pk. The weighted mean algorithm can be applied repeatedly until the graph gMn

corresponding to Mn is obtained (gM4 in Fig. 4f).
In this procedure we claim that the method to recover the graph from a vector

should permit to obtain the exact graph in case that:

• The embedding preserves the distance structure.
• We were able to perform exact computations of the graph edit distance.

In general, these two conditions are not easy to satisfy. Concerning the first
condition, the procedure simply requires that the edit path between two graphs
follows a path along the straight line joining the two corresponding vectors in the
vector space. Although there are some cases where using the selected embedding
procedure this can be shown to be true, in general, it is not always satisfied.
Regarding the second condition, the exact computation of the edit distance is a
well-known NP-problem. So, we are forced to use some approximation. For these
reasons, we are only able to get approximations of the graph corresponding to the
point.

4 Median Graph Computation

In this section we will make use of the procedure to recover a graph from an
embedded vector to propose a generic procedure to compute the median graph via
embedding. In our case, the embedding of graphs into points in a suitable vector
space will permit us to carry the median computation in the vector domain instead
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Fig. 5 Overview of the approximate procedure for median graph computation

of performing this operation in the graph domain, which is considerably more
complex. This generic procedure we present is composed by three main steps (see
Fig. 5).

• Given a set S = {g1,g2, . . . ,gn} of n graphs, the first step is to embed every
graph in S into the real n-dimensional space. That is, each graph in S becomes a
point in R

n. Theoretically, any embedding which fulfils this condition, i.e., each
graph becomes an n-dimensional point, could be used in this step. However, it is
expected to obtain better results if the distance relationships resemble as much as
possible both in the original graph space and the vector space.

• The second step consists of computing a representative of the set in the vector
space. As in the case of the first step, several solutions could be applied here.
However, the median vector M arises as a natural solution [13], since it is the
vectorial counterpart of the median graph but in the vector domain: given a set
℘= {P1,P2, . . . ,Pm} of m points with Pi ∈R

n for i = 1, . . . ,m, the median vector
is a point Mn ∈R

n that minimizes the sum of the distances to all the points in℘.
Thus, if the embedding preserves the distance structure of the graph domain, the
median vector should be a good representation of the median graph in the vector
space.

• Finally, the resulting median vector has to be mapped back to a corresponding
graph. For this, we will use the procedure described in the previous section.
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It is important to notice that the three above mentioned steps are generic and
independent of each other. That means that different approaches and solutions
can be used in each of them and combined. In the following section we will
propose a particular implementation of each step in order to compute the median
graph. We explain the choices we have made for the first two steps, which are
basically the same as in [13], and we discuss some practical considerations about
the application of the recursive procedure to recovering the median graph from
the median vector in the last step.

4.1 Step I: Graph Embedding

In our proposal, we will use a class of graph embedding procedures based on the
selection of some prototypes and graph edit distance computation. This approach
was first presented in [37], and it is based on the work proposed in [31]. The basic
intuition of this work is that the description of the regularities in observations of
classes and objects is the basis to perform pattern classification. Thus, based on
the selection of concrete prototypes, each point is embedded into a vector space
by taking its distance to all these prototypes. Assuming these prototypes have been
chosen appropriately, each class will form a compact zone in the vector space. For
the sake of completeness, we briefly describe this approach in the following.

Assume we have a set of training graphs T = {g1,g2, . . . ,gn} and a graph dissim-
ilarity measure d(gi,g j) (i, j = 1, . . . ,n; gi,g j ∈ T ). Then, a set P= {p1, . . . , pm}⊆ T
of m prototypes is selected from T (with m≤ n). After that, the dissimilarity between
a given graph g ∈ T and every prototype p ∈ P is computed. This leads to m
dissimilarity values, d1, . . . ,dm where dk = d(g, pk). These dissimilarities can be
arranged in a vector (d1, . . . ,dm). In this way, we can transform any graph of the
training set T into an m-dimensional vector using the prototype set P.

For our purposes, given a set of graphs S = {g1,g2, . . . ,gn}, we use the graph
embedding method described above to obtain the corresponding n-dimensional
points {P1,P2, . . . ,Pn} in R

n. However, in our case, we set P = S, i.e., we avoid
the problem of selecting a proper subset P⊆ S of prototypes and use the whole set
of graphs.

It is important to mention that, as long as there are no identical graphs in the
set S, the vectors vi = (Pi−O), where O is the origin of the n-dimensional space
defined, can be assumed to be linearly independent. This arises from the way the
coordinates of the points were defined during graph embedding (Fig. 6).
An important relation that has been shown in [37] is

‖ φ(g)−φ(g′) ‖≤ √n ·d(g,g′) (3)

where φ(g) and φ(g′) denote the mappings in the vector space of graphs g and g′,
respectively, after embedding. That is, the upper bound of the Euclidean distance of
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Fig. 6 Step 1. Graph embedding

a pair of graph maps φ(g) and φ(g′) is given by
√

n · d(g,g′). In other words, if g
and g′ have a small distance in the graph domain, they will have a small distance
after embedding in the Euclidean space as well.

Therefore, at the end of this first step we will have a collection of points in an
n-dimensional space, each of them corresponding to one of the original graphs.

4.2 Step II: Median Vector Computation

To obtain the representative of the set in the vector domain, we will use the concept
of median vector as we already commented at the beginning of Sect. 3.

The median vector cannot be calculated in a straightforward way. The exact
location of the median vector can not be found when the number of elements in
℘ is greater than 5 [1]. No algorithm in polynomial time is known, nor has the
problem been shown to be NP-hard [17]. In this work we will use the most common
approximate algorithm for the computation of the median vector, i.e., Weiszfeld’s
algorithm [44]. It is a form of iteratively re-weighted least squares that converge to
the median vector. To this end, the algorithm first selects an initial estimate solution
M′n0

(this initial solution is often chosen randomly). Then, the algorithm defines a set
of weights that are inversely proportional to the distances from the current estimate
M′ni

to the samples x and creates a new estimate M′ni+1 that is the weighted average
of the samples according to these weights.

M′ni+1
=

∑m
j=1

x j
‖x j−M′ni

‖

∑m
j=1

1
‖x j−M′ni

‖
(4)
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The algorithm may finish when a predefined number of iterations are reached, or
under some other criteria, such as that the difference between the current estimate
and the previous one is less than a predefined threshold.

Note that the median vector will always fall within the volume of the n− 1
dimensional simplex whose vertices are the set of points used to compute the
median. Thus, it fulfills the required constraint to use the recursive procedure to
compute the graph associated to that point. Figure 3 shows an example for n = 4
and n = 3.

4.3 Step III: Median Graph Recovering

We propose to obtain the graph corresponding to the median vector by means of the
recursive application of the weighted mean of a pair of graphs. As it has already
been remarked in the previous section, this recursive procedure relies on a set of
approximations concerning the metric space and the computation of the graph edit
distance, which will result in the calculation of an approximation of the median
graph.

In order to analyze the effect of all these approximations in the final result,
we can examine the order in which points Pi in the vector space are considered
in the recursive procedure. This is an issue not defined in the original procedure
as, if computations were exact, the order would not matter. However, in case of
approximate computations, the order can be important for the final solution. For
instance, if we start the process of recovering the median graph using the points
that are further from the optimal solution to define the connecting line in the vector
space, we will probably start introducing some approximation errors in the first steps
as the quality of the weighed mean is better the shortest the edit path is. However,
in the final steps we will consider the points that are closer to the optimal solution
and thus, we will probably balance this effect as we will give more weight to these
points in the final solution. If we take the reverse order the expected effect would be
the contrary. The final result of these opposite effects is not clear.

Therefore, we have defined different sorting schemes to consider the points in
the recursive procedure according to the SOD of every point, calculated either in
the graph or the vector domain, to the rest of points. Points with a low SOD will
correspond to points close to the optimal solution.Thus, we present four variants
of the basic recursive scheme presented in Sect. 3 (BRS in short), which include a
preprocessing to sort the graphs. Note that to be consistent with the notation and the
explanations performed in Sect. 3, the words ascending or descending used in the
following refer to graphs from gn to g1. These sorted schemes will be referred as
SRS (sorted recursive schemes).

• Graph-domain-based Sorted Recursive Scheme in descending order (GSRSD):
In this approach, the graphs are ordered in descending order, taking into account
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the SOD to the rest of the graphs in S of each of them. Consequently, gn is the
graph with maximum SOD and g1 is the set median graph. Under this sorting,
the graph corresponding to the point M2 is calculated as the weighted mean of
g1 and g2, the two graphs with lowest SOD, i.e., the set median (g1) and the next
one in terms of the minimum SOD to S (g2).

• Graph-domain-based Sorted Recursive Scheme in ascending order (GSRSA):
This sorting is the inverse to the previous one. The graphs are ordered upwards,
based on the SOD. This way, the graph corresponding to M2 is obtained from the
two graphs with maximum SOD, and the graph corresponding to Mn is obtained
from the weighted mean between the graphs corresponding to Mn−1 and gn (the
set median).

• Vector-domain-based Sorted Recursive Scheme in descending order (VSRSD):
Here the criterion for the ordering is still the SOD, but it is evaluated in the
Euclidean space. That is, the SOD of each of the points {Pn, . . . ,P1} to the other
points of the set. In this case, gn is the graph, the corresponding point of which
has the maximum SOD,

Pmax = arg max
P∈{Pn,...,P1}

n

∑
i=1

‖Pi−P‖.

• Vector-domain-based Sorted Recursive Scheme in ascending order (VSRSA):
As before, in this last sorting, the SOD in the Euclidean space is used to sort
the points. The points are ordered upwards with respect to the SOD, such that
the first two points used to compute the weighted mean are those with maximum
SOD.

In addition note that, given n graphs, in the procedure to recover the median
graph we obtain n− 1 intermediate graphs (from M2 to Mn). As we go through the
process we get closer to the graph corresponding to the median vector. But, at the
same time, at every step we are also introducing more approximation in the final
solution. As a result, it could happen that some of the intermediate graphs has an
SOD better than the final median graph. Given this situation, we have also analyzed
the SOD of these intermediate graphs.

In order to see the differences along these five recursive schemes (BRS and the
four variations) we computed several medians using the letter dataset [34]. In this
dataset, we consider the 15 capital letters of the Roman alphabet that consist of
straight lines only (A, E, F, H, I, K, L, M, N, T, V, W, X, Y, Z). For each class,
a prototype line drawing is manually constructed. These prototype drawings are
then converted into prototype graphs by representing lines by undirected edges
and ending points of lines by nodes. Each node is labeled with a two-dimensional
attribute giving its position relative to a reference coordinate system. Edges are
unlabeled (see [34] for more characteristics of this dataset). More concretely, we
took sets of 50 and 100 elements randomly from the dataset and we computed the
median with each of the methods. Figure 7 shows the evolution of the SOD of the
intermediate median graphs for each recursive method. The x-axis represents the
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Fig. 7 SOD evolution for the letter dataset using (a) sets of 50 elements and (b) sets of 100
elements

recursive level, being 1 for the first graph we obtain (i.e., M2), and the last point
representing the last final median (i.e., Mn). The y-axis represents the SOD of each
corresponding intermediate graph. Results are the mean over ten repetitions for each
size of the set.

First of all, as expected, it is important to note that the results are different for
each of the five recursive schemes. As it can be seen in Fig. 7, the evolution of
the SOD shows different behavior depending on the initial sorting. However, while
the BRS approach shows a random-like behavior (there is no clear tendency in the



62 M. Ferrer et al.

evolution of the SOD), the sorted schemes show a general tendency in the SOD
evolution. Note also that this tendency is independent of the size of the set used to
compute the median. One of the most striking facts is that the domain on which
the sorting is based is unimportant. That is, in the descending methods (GSRSD
and VSRSD), there is a clear tendency in starting with graphs or vectors with lower
SODs and terminate with higher SODs. This fact can be explained because in the
descending methods, the first intermediate graph (i.e., M2) is computed using graphs
having lower SOD (in the case of GSRSD method, M2 is computed with the set
median and the next graph in terms of the lower SOD). Consequently, M2 has a
low SOD. Then, as we compute more intermediate graphs, they are computed using
graphs with higher SODs. This translates into a degradation in terms of the SOD
in the intermediate graph. On the contrary, in the ascending schemes (GSRSA and
VSRSA) the tendency in the evolution is exactly complementary. Here, we start
with graphs having high SODs (and consequently M2 has a high SOD) and then we
use better graphs in terms of their SOD. This translates to a decreasing curve. As a
conclusion, we can state that we get better solutions as we consider points that are
closer to the optimal solution. However, the behavior of the two sorting schemes
is not completely complementary in the sense that the loss in terms of SOD in the
descending methods is not the same as the gain obtained in the ascending methods.
For this reason, the minimum (or maximum) values of SOD in these evolutions
differ. However, the fact that the tendency is kept regardless of the domain of the
sorting supports the idea that relative distances are well conserved after mapping
graphs into points in the particular embedding considered here.

Another important observation is that if we analyze the SOD of the intermediate
graphs we can find intermediate solutions along the recursive path with a lower
SOD than the final solution. This fact validates our previous hypothesis that there
is a compromise between the amount of approximation and how close we are to the
final solution. For this reason, when we compare these methods to other existing
approaches for the median graph computation in the next section, we will take into
account not only the final solution but also the best solution along the recursive path.

Recursive methods sorted in descending order (specially GSRSD) obtain, in
general, the best intermediate graphs. This fact seems to lead to the conclusion that
it is better to start the approximation with a graph as closer as possible to the optimal
solution. In addition, in these methods, the best median is usually obtained in a very
interior call, when few intermediate graphs have been computed. Table 1 shows for
each dataset and for each of the five recursive schemes the mean position of the best
intermediate median (for 50/100 elements) along all the repetitions. Note that the
values obtained by the BRS method are very close to the mid position (i.e., 25 in
the case of 50 elements and 50 in the case of 100 elements), while the descending
methods have in general lower values than the mid value and the ascending methods
have in general higher values than the mid value. This could be used in a future work
to improve the method in order to obtain good approximations of the median without
need of computing all the intermediate graphs.
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Table 1 Average position of
the median with minimum
SOD

Method Letter Molecule Mutagenicity

BRS 21/50 18/48 23/48
GSRSD 11/18 21/39 15/25
GSRSA 36/56 25/58 31/63
VSRSD 20/50 15/33 14/20
VSRSA 28/48 33/60 33/76

5 Experimental Evaluation

In this section we provide the results of an experimental evaluation of the three
proposed methods. To this end, and since the objective of the methods is to find
a representative of a set of graphs, we will perform cluster analysis. The median
is typically used as a representative of a class, hence it is natural to think that
if clustering results are better, then the corresponding theoretical representative
is a better prototype of the cluster and the corresponding method to obtain the
representatives is better. To this end, different clustering indices will be employed
as evaluation measures. The main goal is not only to compare the different methods
we propose to compute the representative but also to give an idea of which of them
could be a better choice to compute the representative of a given set. Therefore, our
reference system in all the experiments will be the set median.

With this objective in mind, we first proceed to provide the basic notions about
clustering. In Sect. 5.1 we briefly explain graph clustering with focus on explaining
the k-means graph-based clustering method that will be used in the subsequent
experiments. In Sect. 5.1.1 we present the four standard clustering quality measures
we will use to perform the evaluation of the methods. Finally, we present the results
in Sect. 5.2.

5.1 Graph Clustering

Cluster analysis or clustering is the task of assigning a set of objects into groups
(called clusters) so that the objects in the same cluster are more similar (in some
sense or another) to each other than to those in other clusters. In our case, we
use a clustering strategy, the well known k-means algorithm, in which at each
iteration of the algorithm a representative for each cluster is needed. For the sake
of completeness, the k-means clustering algorithm applied to graphs is presented in
Algorithm 3.

The k-means clustering algorithm is one of the most simple and straightforward
methods for clustering data [26]. Given k, the desired number of clusters, the k
centers of the clusters are randomly initialized picking up k graphs from the original
set of n graphs. Then, the remaining graphs are assigned to the cluster corresponding
to the closest center. The centers of the clusters are recomputed and the graphs are
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Algorithm 3: Graph k-means algorithm
input : A set S = {g1,g2, . . . ,gn} of n data items (represented as graphs) and the number of

clusters k to create
output: The centers of the clusters and for each data item an integer [1, k] indicating the

cluster the item belongs to
begin

1 Assign randomly each graph gi to a cluster
2 Using this initial assignment, compute the median graph of each cluster.
3 Assign each data item to be in the cluster of its closest center using the graph edit

distance.
4 Recompute the centers as in Step 2.
5 Repeat Steps 3 and 4 until the centers do not change.

end

assigned again to the cluster with the closest center until the clusters remain stable
or a maximum number of iterations are reached. Note that clustering of data items
represented by graphs is then possible by letting the median graph or the barycenter
be the center and using graph edit distance whenever a distance is needed.

5.1.1 Clustering Performance Measures

In this work, graph clustering is used as a tool for the evaluation of the different
median graph approaches. It is natural to think that if clustering results are better,
then the corresponding theoretical representative is a better prototype of the cluster
and the corresponding method is better.

Thus let X = {g1, . . . ,gn} be a set of n graphs belonging to classes {C1, . . . ,Ck},
which represents he ground truth, and let D = {D1, . . . ,Dl} be a clustering of X . Let
us denote n j

i = Di∩Cj the number of elements of class Cj clustered in Di.
Before presenting the results obtained for the different datasets, we introduce the

clustering performance measures in which we base our evaluation of the clusterings,
which have already been used in previous graph-based clustering experiments [10,
35, 41].

We use four standard performance measures. Three of them, the Rand index, the
mutual information, and the bipartite index, base their scoring in the comparison
between the ground truth and the clustering. In the case of this study, we are aware
of the real classification of the data we work with. But it is important to remark that
these measures of quality cannot be used when unclassified data are clustered. We
compute one more quality measure, which is independent of the ground truth. The
Dunn index is based on the assumption that items clustered together must be near
each other while being far from items belonging to other clusters. Let us define all
of them.

Rand Index: To compute this index, a pairwise comparison between all pairs of
items in the dataset is computed. If two elements fall in the same class and belong
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to the same cluster, it counts as an agreement. Similarly, if the two elements belong
to different classes and fall into different clusters it counts as an agreement too.
Otherwise, it counts as a disagreement. Let A be the number of agreements and D
the number of disagreements. The Rand index [32]

R =
A

A+D
(5)

measures the matching of the obtained clusters to the ground truth classes. The
Rand index produces measures in the interval [0, 1], with 1 meaning a perfect match
between the result of the algorithm and the ground truth.

Mutual Information: The mutual information[6, 43]

M =
1
n

l

∑
j=1

k

∑
h=1

nh
j loglk

(
nh

jn

∑l
i=1 nh

i ∑
k
i=1 ni

j

)

(6)

represents the overall degree of agreement between the clustering and the ground
truth with a preference for clusters that have high purity. Higher values indicate
better performance.

Bipartite Index: Let ℘k denote the symmetric group, i.e., the set of all the
permutations, of the set 1, . . . ,k. We use permutations to evaluate all the possible
assignments of clusters to classes and then compute the bipartite index over the
optimal such assignment, as follows [35]:

BI = max
σ∈℘

1
n

k

∑
i=1

nσ(i)i (7)

This index is also normalized in the [0,1] range, with higher values denoting
better performance .

Dunn Index: Let dmin be the minimum distance between any two objects in
different clusters and dmax the maximum distance between any two objects in the
same cluster. The Dunn index [9]

DI =
dmin

dmax
(8)

is a measure of the compactness and separation of the clusters. Higher values of the
Dunn index indicate better clustering.

5.2 Experimental Results

In this section, the application of the median graph and the barycenter graph for data
clustering purposes will be presented.
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Table 2 Clustering quality measures for the letter database

RI DI MI BI

SM 0.805627 0.031315 0.116952 0.222400
E2P 0.885333 • 0.026163 0.197808 • 0.395333 •
E3P 0.895852 • 0.027030 0.214651 • 0.424000 •
BRS 0.854425 • 0.026506 � 0.157418 • 0.288750 •
GSRSD 0.836309 • 0.021861 0.148605 • 0.287500 •
GSRSA 0.901697 •,◦ 0.025869 0.234569 •,◦ 0.454000 •, �
VSRSD 0.840083 • 0.024761 0.148055 • 0.289412 •
VSRSA 0.891671 •, � 0.030308 ◦ 0.203391 •, � 0.406889 •
BRS/Best 0.899922 •,◦ 0.028445 ◦ 0.292317 •,◦ 0.448000 •,◦
GSRSD/Best 0.903065 •,◦ 0.030218 ◦ 0.245440 •,◦ 0.465333 •,◦
GSRSA/Best 0.905512 •,◦ 0.030634 ◦ 0.238033 •,◦ 0.476833 •,◦
VSRSD/Best 0.901601 •,◦ 0.037744 •,◦ 0.236525 •,◦ 0.457810 •,◦
VSRSA/Best 0.897984 •,◦ 0.031610 •,◦ 0.230356 •,◦ 0.444667 •,◦

5.2.1 Experimental Setup

The clustering experiments have been applied to the letter, the molecule, and the
mutagenicity datasets [34]. Notice that the total number of methods being compared
grows up to 11 (set median, E2P, E3P and the five recursive methods), which implies
a large number of total instances of the clustering process for each database. For
each of these methods, and ten times for each database, 50 elements of each class
are randomly picked up and the clustering is carried out. In each instance of the
experiments, i.e., for each clustering performed, we compute the value of the four
quality measures that are explained in Sect. 5.1.1, and the mean value over the ten
repetitions is reported.

5.2.2 Results

The results of these experiments are displayed in three tables, one for each database.
Each table contains, for each of the methods, the mean value over the ten repetitions,
for each of the four quality indices. Table 2 shows the values of the indices for
the experiments made with graphs from the letter database, Table 3 corresponds
to Molecules and Table 4 refers to the experiments with mutagen datasets. Results
marked with a (•) are those medians performing better as class representatives than
the set median. Results marked with a (◦) are the medians performing better than
the E2P and E3P methods. Medians marked with the (�) are those performing better
than E2P or E3P methods. The best median for each index is marked with bold face.
Recall that the Rand index (RI), the mutual information (MI), and the bipartite index
(BI) are groundtruth-based indices, while the Dunn index (DI) is not. For the sake
of simplicity, we will sometimes refer to groundtruth-based indices as GT indices.
Recall also that all four indices give higher values to better clusterings.
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Table 3 Clustering quality measures for the molecule database

RI DI MI BI

SM 0.533500 0.367934 0.063922 0.617000

E2P 0.562738 • 0.130584 0.102330 • 0.676923 •
E3P 0.697138 • 0.168914 0.210778 • 0.813846 •
BRS 0.548760 • 0.263230 0.088487 • 0.656000 •
GSRSD 0.534226 • 0.455628 • 0.052444 0.588710
GSRSA 0.676083 •, � 0.144330 0.188662 •, � 0.785833 •, �
VSRSD 0.517486 0.459920 • 0.034428 0.560952
VSRSA 0.617291 •, � 0.158076 0.147863 •, � 0.737273 •, �
BRS/Best 0.705227 •,◦ 0.126002 0.214477 •,◦ 0.809333 •, �
GSRSD/Best 0.781244 •,◦ 0.126477 0.277252 •,◦ 0.870000 •,◦
GSRSA/Best 0.651940 • 0.115464 0.176478 •,◦ 0.775000 •
VSRSD/Best 0.701178 •,◦ 0.135930 0.214217 •,◦ 0.813333 •, �
VSRSA/Best 0.770160 •,◦ 0.093471 0.266716 •,◦ 0.864000 •,◦

Table 4 Clustering quality measures for the mutagenicity database

RI DI MI BI

SM 0.512620 0.230830 0.012476 0.571000
E2P 0.531980 • 0.055990 0.027048 • 0.621000 •
E3P 0.532200 • 0.051731 0.026672 • 0.624000 •
BRS 0.519187 • 0.070817 0.015229 • 0.586875 •
GSRSD 0.500000 • 0.314786 0.022740 • 0.500000
GSRSA 0.527580 • 0.047640 0.022250 • 0.613000 •
VSRSD 0.500000 • 0.314786 0.021190 • 0.500000
VSRSA 0.512053 • 0.051021 0.009267 • 0.573333 •
BRS/Best 0.534200 •,◦ 0.048426 0.027776 •,◦ 0.630000 •
GSRSD/Best 0.540818 •,◦ 0.050847 0.034978 •,◦ 0.642727 •
GSRSA/Best 0.517640 • 0.077794 0.014892 • 0.570000
GSRSD/Best 0.527674 • 0.081238 0.023582 • 0.607895 •
VSRSA/Best 0.527778 • 0.057365 0.023378 • 0.611111 •

Letter: In general, except for the Dunn index, the recursive give better results than
the set median graph. Which means that the graph embedding approach turns out to
be a useful tool for median graph computation. In addition, the recursive methods
give almost always better results than at least one of the non-recursive embedding
methods, which means that using the whole set of graphs to obtain the median gives
a significant improvement. In all the indices, the best results are given by one of
the recursive methods (taking the best intermediate median). In addition to that,
regarding the type of ordering used in the recursive methods, the ascending order
gives the better results in the general case. However, if we take the best intermediate
median along the recursive path, such a difference is less evident and the best results
are spread among both ascending and descending schemes.
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Molecule: Similar results can be drawn for the molecule dataset. In general, the
embedding methods are able to obtain better representatives than the set median.
However, only the best intermediate medians give better results than the two of
the non-recursive embedding methods, although most of the recursive embedding
methods give better results than at least one of the non-recursive embedding
methods. Here, the best intermediate medians of the GSRSD methods give the
best results in general. In relation to the sorting type, the ascending schemes are
those giving the best results in general in the recursive methods when the full
recursive path is taken into account. This tendency is not followed when the best
intermediate median is taken along the recursive path. In this case, better results are
given in three out of the four indices by the GSRSD method.

Mutagenicity: In this case, the differences between all the embedding methods
seem to be less than before. Although in general, the embedding methods give better
results than the set median, the recursive embedding methods perform only slightly
better than the non-recursive embedding methods, although three out of the four best
results are given by the SRSGD method using the best intermediate median. Again,
the ascending order gives the best results in general when the final graph along
the recursive path is taken as the median. But, descending order and especially the
GSRSD method give the best results (three out of the four indices) when the best
intermediate median is taken as the final median.

These clustering experiments confirm that in general the embedding methods
give better results than the set median in terms of their quality as representative
points of a class. In addition, the recursive embedding methods give in most cases
better results than the non-recursive embedding methods. This may suggest that
using the whole set of original graphs to compute the median is important to the
final result. It is important to remark that some differences can be seen between
the ascending and descending sorting schemes. This suggests that a deep study
of the implications of each sorting scheme should be performed in order to try to
improve the median computation, for instance stopping the computation before the
whole recursive path is computed.

6 Summary

Graph embedding methods have become very popular in the last few years since
they permit to use the whole repository of machine learning algorithms with graphs.
However an unsolved problem yet is the reverse step, i.e., how to recover the graph
that corresponds to a point in the vector space. In this chapter we have described a
generic recursive procedure that permits to recover such a graph given that the point
lies inside the convex hull of n previously embedded graphs. This procedure is based
on recursively projecting the point into hyperplanes of decreasing dimensionality
and recovering the graph from these projections using the concept of the weighted
mean of a pair of graphs.
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One problem where this procedure can be successfully applied is the computation
of the median graph. The median graph has been shown to be a good choice to
obtain a representative of a set of graphs. However, its computation is extremely
complex. As a consequence, in real applications we are forced to use suboptimal
methods in order to obtain approximate solutions for the generalized median graph
in reasonable time. The procedure proposed in this chapter comprises a new
algorithm for the computation of the median graph based on graph embedding.
First, the graphs are mapped to points in an n-dimensional vector space using an
embedding based on the graph edit distance. Then, the crucial point of obtaining
the median of the set is carried out in the vector space, not in the graph domain,
which dramatically simplifies this operation. Finally, the new procedure to recover
a graph from the vector space permits to obtain the graph corresponding to the
median vector. This last step is the main difference with previous methods that also
compute the median graph using graph embedding. We analyze four variations of
the base algorithm taking into account the order in which the graphs are considered
in the recursive path.

In order to evaluate the proposed method (and all its variations), we have
made experiments on three different graph databases, one semi-artificial and two
containing real-world data. The underlying graphs have no constraints regarding
the number of nodes and edges. We compared this approach with state-of-the-
art embedding-based methods for median graph computation and also with the
set median approach. Results show that with the proposed recursive approach we
can obtain, in general, better medians, in terms of their SOD and their clustering
performance, than existing embedding-based methods or the set median.

The proposed novel method for median graph computation is approximate
in a double sense, namely through the graph embedding and graph recovery
step. Nevertheless, as experiments on a number of databases with quite different
characteristics have shown, it is able to discover median graphs of better quality
than previous approximate methods that use the set median or the closest two or
three points as the basis for approximation.

A number of important questions remain open regarding the nature of the
proposed procedure. For instance, a deep analysis of the influence of the different
approximations in the final graph that is obtained, should be carefully investigated.
It would also be interesting to establish some relation between the degree of the
exactness of the recovered graph and the characteristics of several embeddings
that exist in the literature and, particularly, regarding how well these embeddings
preserve the graph distances in the vector space. Finally, applications of this
procedure to problems other than the median graph computation should also be
investigated.
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Patch Alignment for Graph Embedding

Yong Luo, Dacheng Tao, and Chao Xu

1 Introduction

Dozens of manifold learning-based dimensionality reduction algorithms have been
proposed in the literature. The most representative ones are locally linear embedding
(LLE) [65], ISOMAP [76], Laplacian eigenmaps (LE) [4], Hessian eigenmaps
(HLLE) [20], and local tangent space alignment (LTSA) [102]. LLE uses linear
coefficients, which reconstruct a given example by its neighbors, to represent the
local geometry, and then seeks a low-dimensional embedding, in which these
coefficients are still suitable for reconstruction. ISOMAP preserves global geodesic
distances of all the pairs of examples. LE preserves proximity relationships by ma-
nipulations on an undirected weighted graph, which indicates neighbor relations of
pairwise examples. LTSA exploits the local tangent information as a representation
of the local geometry and this local tangent information is then aligned to provide
a global coordinate. HLLE obtains the final low-dimensional representations by
applying eigenanalysis to a matrix, which is built by estimating the Hessian over
neighborhood. All of these algorithms suffer from the out of sample problem [6].
One common response to this problem is to apply a linearization procedure to
construct explicit maps over new examples. Examples of this approach include
locality preserving projections (LPP) [41], a linearization of LE; neighborhood
preserving embedding (NPE) [39], a linearization of LLE; orthogonal neighborhood
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preserving projections (ONPP) [47], a linearization of LLE with the orthogonal
constraint over the projection matrix; and linear local tangent space alignment
(LLTSA) [99], a linearization of LTSA.

All the aforementioned algorithms are designed according to specific intuitions,
and solutions are given by optimizing intuitive and pragmatic objectives. That is,
these algorithms have been developed based on the experience and knowledge of
field experts for their own purposes. As a result, common properties and intrinsic
differences of these algorithms are not completely clear. This problem is solved by
the “patch alignment” framework [98], which can unify different spectral analysis-
based dimensionality reduction algorithms. This framework consists of two stages:
part optimization and whole alignment. For part optimization, different algorithms
have different optimization criteria over patches, each of which is built by one
example associated with its related ones. The part optimization procedure can
preserve local information of data distribution, i.e., the near neighbors in the original
space are still close to each other in the low-dimensional subspace. For whole
alignment, all part optimizations are integrated to form the final global coordinate
for all independent patches based on the alignment trick which is also used in
developing LTSA [102].

Patch alignment framework not only unifies existing manifold learning based
dimension reduction algorithms but also provides a general platform for specific al-
gorithm design. In recent years, a series of related frameworks have been developed.
Nonnegative patch alignment framework (NPAF) was proposed in [35] by incorpo-
rating the nonnegativity constraint in the patch alignment formulation. NPAF unified
popular nonnegative matrix factorization (NMF) related dimensionality reduction
algorithms and offered a new viewpoint to better understand the common property
of different NMF algorithms. Considering that features from multiple views are
usually necessary to well characterize an object, a multiview extension of the patch
alignment framework was presented in [91] to learn a low-dimensional embedding
of the multiview data. In this embedding, distribution of each view is sufficiently
smooth and the complementary property of different views is explored. Si et al.
[68] introduced an innovative Bregman divergence-based regularization to the patch
alignment framework for learning a subspace, in which the knowledge gained from
the training examples can be transferred to the test examples. This regularization
boosts the performance when training and test examples are not independent and
identically distributed. The patch alignment framework was utilized in [77] to learn
a submanifold by transferring the local geometry and the discriminative information
from the labeled images to the whole (global) image database in active reranking.
By the use of the learned submanifold, we can localize the user’s intention in
the visual feature space. Zhou et al. [103] proposed manifold elastic net (MEN)
to find the optimal sparse solution of the patch alignment framework. MEN is
equivalent to the lasso penalized least square problem, and thus the popular least
angle regression (LARS) algorithm can be directly applied to obtain the optimal
sparse solution. Besides, the patch alignment framework can be applied to the
understanding of parametric dimensionality reduction learning algorithms [8, 75]
and combined with tensor learning methods for developing innovative multilinear
dimensionality reduction tools [73, 74].
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In this chapter, we first present some related work and then introduce the patch
alignment framework. Subsequently, we study several extensions of this framework
for nonnegative matrix factorization (NMF), multiview learning, transfer learning,
active learning, and sparse learning.
Notations: We present some notations that will be used throughout this chapter if
there are no special illustrations. We use X = [x1, . . . ,xN ] to denote a dataset with N
examples. Each column vector xi ∈ R

m, i = 1, . . . ,N is in the original feature space.
The corresponding low-dimensional representations of X are Y = [y1, . . . ,yN ] with
each yi ∈ R

r, i = 1, . . . ,N and r < m is the reduced dimensionality. For the linear
dimensionality reduction, we use U ∈ R

m×r to denote a projection matrix such that
Y =UTX .

2 Related Work

This section reviews some recent related work on dimensionality reduction and
manifold learning.

2.1 Dimensionality Reduction

The high-dimensionality problem often occurs in data analysis tasks [23, 24, 45].
The variable (or feature) selection [25,40,63,100] and subspace learning [14,28,43–
46,72,75,86] techniques can be utilized to tackle this problem. For example, a new
feature selection algorithm was presented in [100] by constructing localized graphs
and considering label information. An unsupervised feature selection approach was
proposed in [40] based on parameter covariance matrix minimization, in which
the Laplacian regularization was utilized. In [14], the popular linear discriminative
analysis (LDA) algorithm was reformulated as a regression problem, which needs
no eigenvector computation and thus can be applied to large-scale datasets. By the
use of correlation metric, a general formulation was proposed in [28] for feature
extraction. Jiang [45] gave an in-depth understanding of the linear dimensionality
reduction approaches and suggested to remove the relatively harmful dimensions
for robust classification. To reduce the “class separation” problem in LDA, a
subspace selection method was proposed in [75] by maximizing the geometric
mean of the Kullback–Leibler (KL) divergences between different classes. In [86],
a large margin based discriminative dimensionality reduction method was proposed
to separate different clusters. Sun et al. [72] presented a two-stage approach for
dimensionality reduction, and it can be applied to large-size problem. This approach
is proved to be equivalent to solving the generalized eigenvalue problem, which
is formulated in many dimensionality reduction algorithms, without the linear
independent assumption of the data. In addition, the traditional subspace learning
algorithms can be extended to handle multidimensional data by incorporating tensor
analysis [27, 60, 61, 74, 84]. We refer to [62] for a literature survey of this kind of
work, i.e., multilinear subspace learning.
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2.2 Manifold Learning

Manifold learning is one of the most important subspace learning techniques.
It usually assumes that data are intrinsically low-dimensional and are artificially
embedded in a high-dimensional ambient space [22,26,56,69] and much efforts have
been made to find such a low-dimensional embedding [89, 90]. Manifold learning
has numerous applications, e.g., text categorization [11], data clustering [38, 85],
feature analysis [69, 101], image retrieval [7, 88], image processing [29, 70, 71],
image registration [50,51], cartoon animation [94,95], etc. The manifold structure of
the data was explored in [11] to help selecting data points for labeling in active learn-
ing. The graph Laplacian was introduced in [38] to regularize the Gaussian mixture
model (GMM) for clustering. Considering that biologically inspired features (BIFs)
are sampled from a low-dimensional manifold and embedded in a high-dimensional
space, a new dimensionality reduction algorithm was formed in [69] to find a low-
dimensional embedding of the BIF. In [7], an Euclidean embedding method was
presented to explore the manifold structure of the image low-level visual features.
A sparse neighbor selection scheme was proposed in [29] for super-resolution
construction based on neighbor embedding. In [50], 3-D images are represented
by 4-D manifolds for registration and a diffusion process is utilized to match
the embedded maps. Yu et al. [94] introduced a semi-supervised patch alignment
framework for complex object correspondence construction by constructing local
patches for each point on an object and aligning these patches in a new feature
space.

3 The Patch Alignment Framework

In the patch alignment framework, N patches are built in the dataset. Each patch
consists of an example and its related ones, which depend on both the characteristics
of the dataset and the objective of an algorithm. As shown in Fig. 1, examples are on
the S-curve manifold embedded in a three-dimensional space. Local patches should
be built based on a given example and its nearest neighbors to capture the local
geometry (locality). With these built patches, optimization can be imposed on them
based on an objective function, and then alignment trick [102] can be utilized to
form a global coordinate.

3.1 A Summarization of the Patch Alignment Framework

Part optimization Given example xi and its k nearest neighbors [xi1 ,xi2 , . . . ,xik ],
the part optimization at xi is defined by

argmin
Yi

tr
(
YiLiY

T
i

)
, (1)
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Fig. 1 Patch alignment framework illustration

where tr(·) is the trace operator, Yi = [yi,yi1 ,yi2 , . . . ,yik ] is the projection of the local
patch Xi = [xi,xi1 ,xi2 , . . . ,xik ] onto the low-dimensional subspace, and Li encodes
the local geometric information at example xi and is chosen algorithm-specifically.

Whole alignment By summarizing part optimizations over all examples, we get

arg min
Y1,Y2,...,YN

N

∑
i=1

tr
(
YiLiY

T
i

)
. (2)

Let Y = [y1,y2, . . . ,yN ] be the projection of all examples X = [x1,x2, . . . ,xN ]. As for
each local patch Yi should be a subset of the whole alignment Y , the relationship
between them can be expressed by

Yi = YSi, (3)

where Si is a proper 0-1 matrix called the selection matrix. Thus

argmin
Y

N

∑
i=1

tr
(
YiLiY

T
i

)
= argmin

Y

N

∑
i=1

tr
(
Y SiLiS

T
i Y T)

= argmin
Y

tr
(
YLY T) , (4)

with L = (∑N
i=1 SiLiST

i ) called the alignment matrix. By letting Y = UTX for
linearization, (4) can be rewritten as

argmin
U

tr
(
UTXLXTU

)
. (5)

Further, we can impose the orthogonal constraint UTU = I on the projection matrix
U , or the constraint Y TY = I on the Y , which leads to UTXXTU = I. In both cases,
(5) is solved by eigen- or generalized eigen-decomposition.
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Table 1 Manifold learning algorithms filled in the patch alignment framework

Representation of part
Algorithms Patch: Xi optimization: Li Objective function

LLE/NPE/ONPP Given example and its
neighbors

[
1 −cT

i

−ci cicT
i

]
Nonlinear/ linear/

orthogonal linear

ISOMAP Given example and the
rest ones

1
N · τ
(
Di

G

)
Nonlinear

LE/LPP Given example and its
connected ones in
the undirected
graph

[
∑l

j=1(wi) j −wT
i

−wi diag(wi)

]
Nonlinear/ linear

LTSA/LLTSA Given example and its
neighbors

Rk+1−ViV T
i Nonlinear/ linear

HLLE Given example and its
neighbors

HiHT
i

Nonlinear

ci is the reconstruction coefficient in LLE; τ(Di
G) is the inner product matrix, where Di

G =
[dG(Fi{m},Fi{n})] and dG(Fi{m},Fi{n}) are the approximated geodestic distance between the
Fi{m}th example and the Fi{n}th example, both of which are on the ith patch; wi is weighting
vector in LE; Rk+1 is the centralization matrix and Vi denotes d largest right singular vectors of
XiRk+1; Hi is the Hessian matrix. One can refer to [98] for more detailed descriptions

Different spectral analysis-based dimensionality reduction algorithms can be
unified in the patch alignment framework. Only the way to build the patch Xi and
the part optimization Li varies across different algorithms. Table 1 summarizes these
algorithms in the patch alignment framework.

3.2 Discriminative Locality Alignment

One representative subspace selection method based on the patch alignment frame-
work above is the discriminative locality alignment (DLA) [98]. In DLA, the
discriminative information, i.e., labels of examples, is imposed on the part opti-
mization stage and then the whole alignment stage constructs the global coordinate
in the projected low-dimensional subspace.

Given example xi and its k nearest neighbors {xi1 ,xi2 , . . . ,xik}, we divide the k
neighbors into two groups according to the label information, i.e., belonging to
the same class with xi or not. Without losing generality, we can assume the first
k1 neighbors {xi j}k1

j=1 having the same class label with xi and the rest k2=k−k1

neighbors {xi j}k1+k2
j=k1+1 having different class labels (otherwise, we just have to

resort the indexes properly). And their low-dimensional representations are yi,
{yi j}k1

j=1 and {yi j}k1+k2
j=k1+1, respectively. The key idea of DLA is enforcing yi close

to {yi j}k1
j=1 while pushing it apart from {yi j}k1+k2

j=k1+1. Figure 2 illustrates such
motivation.
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Fig. 2 The motivation of DLA. The examples with the same shape and color come from the same
class

For xi and its same class neighbors, we expect the summation of squared distance
in the low-dimensional subspace to be as small as possible, i.e.,

argmin
yi

k1

∑
j=1

∥
∥yi− yi j

∥
∥2
. (6)

However, for xi and its different class neighbors, we want the corresponding result
to be large, i.e.,

argmax
yi

k1+k2

∑
j=k1+1

∥
∥yi− yi j

∥
∥2
. (7)

A convenient trade-off between (6) and (7) is

argmin
Yi

(
k1

∑
j=1

∥
∥yi− yi j

∥
∥2− γ

k1+k2

∑
j=k1+1

∥
∥yi− yi j

∥
∥2

)

, (8)

where γ is a scaling factor between 0 and 1 to balance the importance between
measures of the within-class distance and the between-class distance. Define the
coefficients vector

ωi =

⎡

⎢
⎣

k1︷ ︸︸ ︷
1,1, . . . ,1,

k2︷ ︸︸ ︷
−γ,−γ, . . . ,−γ

⎤

⎥
⎦

T

, (9)

then (8) is readily rewritten as

argmin
Yi

tr
(
YiLiY

T
i

)
, (10)
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a b

dc

Fig. 3 Recognition rate vs. subspace dimension on Yale dataset. (a) Three images per subject for
training; (b) five images per subject for training; (c) seven images per subject for training; (d) nine
images per subject for training

where

Li =

⎡

⎣
k
∑
j=1

ωi −ωT
i

−ωi diag(ωi)

⎤

⎦ . (11)

The low-dimensional embedding y =UTx can be obtained by just substituting (11)
into the whole alignment formula (4) and solving the eigen-decomposition problem
with constraint UTU = I. It is worth emphasizing some merits of DLA here: (1)
it exploits local geometric information of data distribution; (2) it is ready to deal
with the case of nonlinear boundaries for class separation; (3) it avoids the matrix
singularity problem.

Finally, we present some performance comparisons of DLA with six repre-
sentative algorithms, i.e., principal component analysis (PCA) [82], generative
topographic mapping (GTM) [9], probabilistic kernel principal components anal-
ysis (PKPCA) [81], linear discriminative analysis (LDA) [3], SLPP (LPP1 in
[12]), and marginal fisher analysis (MFA) [93], on YALE face image dataset [3].
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All face images from the dataset were cropped with reference to the eyes and
cropped images were normalized to the 40×40 pixel arrays with 256 gray levels
per pixel. Each image was reshaped to one long vector by arranging its pixel
values in a fixed order. The YALE dataset contains face images collected from 15
individuals, 11 images for each individual and showing varying facial expressions
and configurations. The experimental results are shown in Fig. 3. It can be seen that
DLA outperforms the other algorithms.

4 Nonnegative Patch Alignment

In this section, we present the nonnegative extension of the patch alignment
framework, i.e., NPAF proposed in [35]. It builds patches for each example, forms
one local coordinate for such patch, and aligns all the local coordinates to form
the global coordinate of all the examples in the nonnegative subspace. Nonnega-
tive matrix factorization (NMF) was a newly proposed dimensionality reduction
technique [36, 37, 48] and NPAF can unify various NMF-related dimensionality
reduction algorithms.

4.1 A Summarization of the Nonnegative Patch Alignment
Framework

Given N nonnegative examples in R
m that are arranged in matrix X ∈R

m×N , NPAF
projects them to R

r, wherein r is the reduced dimensionality. Figure 4 gives an
example of NPAF. The three-dimensional nonnegative examples (see Fig. 4a) are
projected onto the two-dimensional space (see Fig. 4b). The local coordinates are

a b

Fig. 4 An example of NPAF: (a) nonnegative examples in the three-dimensional space and
(b) embedded two-dimensional representation
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aligned with the global coordinate that is spanned by Base 1 and Base 2. By
incorporating the nonnegativity constraint, we obtain the objective of NPAF

arg min
W≥0,H≥0

λ
2

tr(HLHT)+D(X ,WH), (12)

where λ is a trade-off parameter, W ∈ R
m×r signifies the bases vectors, H ∈ R

r×N

refers to the coordinate, and D(X ,WH) is the error between examples X and its
approximation WH. The error can be measured by the Kullback–Leibler divergence
(KLD), i.e.,

KL(X ,WH) =∑
i j

(
xi j log

xi j

(W H)i j
− xi j +(WH)i j

)
.

It can be replaced by the Frobenius matrix norm [33].
A multiplicate update rule (MUR) is developed in [35] to solve NPAF. However,

the MUR converges slowly and thus it is difficult to apply the algorithm in practice.
Therefore, based on a previous work of using fast gradient descent (FGD) method
[34] to accelerate MUR, a new efficient FGD method is then proposed to optimize
NPAF. The new FGD method assigns a step size for each column of the matrix
factor and searches the optimal step size vector in each iteration round. Since
the objective of FGD is convex, the multivariate Newton method can be applied
to optimize its objective function. Although the inverse of Hessian matrix in the
multivariate Newton method is time-consuming, the special structure of the Hessian
matrix can be utilized to efficiently approximate its inverse, and thus FGD efficiently
searches the optimal step size vector without increasing the time cost compared
with the “old FGD” [34]. Therefore, FGD rapidly reduce the objective function at
each iteration round. Various NMF-related dimensionality reduction algorithms, i.e.,
original NMF [48], local NMF (LNMF) [49], graph regularized NMF (GNMF) [15],
and discriminant NMF (DNMF) [96], can be unified in NPAF and we summarize
them in Table 2.

4.2 Nonnegative Discriminative Locality Alignment

A new NMF-related dimensionality reduction algorithm, termed “nonnegative
discriminative locality alignment” (NDLA), can be obtained by introducing the
underlying strategy used in DLA [98] to NPAF. Given an example xi and its k
nearest neighbors, we assume the first k1 neighbors of a given example xi having
the same class label as xi and the rest k2 = k− k1 neighbors having different class
labels. To preserve the data local geometric structure, we expect the examples in the
same class to be as close as possible in the low-dimensional space and thus obtain
the part optimization on the within-class patch minHw

i
tr(Hw

i Lw
i Hw

i
T), where
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Table 2 NMF-related dimensionality reduction algorithms filled in NPAF

Algorithms How to derive from NPAF (12) MUR update rule

NMF Setting λ = 0 H← H� W TX
W TWH

,

W ←W � XHT

W HHT

LNMF Replace L by −I with fixed W Replace L
by Es with fixed H

H← H�
√

βH+(WTX)/(W H)
W TE

W ←W �
√

(XHT)/(WH)
αWEs+EHT

GNMF Construct alignment matrix Lg using the
part optimization representation Li,
then Lg is equivalent to the graph
Laplacian L in GNMF

The same as in NPAF

DNMF Construct alignment matrices LW and LB

for minH SW = minH tr(HLW HT) and
maxH SB = maxH tr(HLBHT)

The same as in NPAF

E ∈ R
m×n is a matrix whose entries are all 1, Es is an all 1 square matrix, and 1k = [1, . . . ,1]T ∈

R
k denotes a k-dimensional vector whose entries are all 1; � is the elementwise product

operator; α and β are the trade-off parameters used in LNMF; Li =

[
k −1T

k
−1k diag(1k)

]
; the part

optimization representation to construct LW is LW
i = 1

N2
i

[
(Ni−1)2 −(Ni−1)1T

Ni−1

−(Ni−1)1Ni−1 1Ni−11T
Ni−1

]

, the

part optimization representation to construct LB is LB
i = Ni

C2

[
(C−1)2 −(C−1)1T

C−1
−(C−1)1C−1 1C−11T

C−1

]
,

where Ni is the number of examples that have the same class label as xi and C is the number
of classes. One can refer to [35] for detailed descriptions

Lw
i =

[
∑k1

j=1(1k1) j −(1k1)
T

−1k1 diag(1k1)

]

.

The set of indices, for xi, on the within-class patch is Fw
i = {i, i1, . . . , ik1}. To make

examples in different classes separable, we obtain the part optimization on the

between-class patch minHb
i

tr(Hb
i Lb

i Hb
i

T
), where

Lb
i =

[
∑k1+k2

j=k1
(1k2) j −(1k2)

T

−1k2 diag(1k2)

]

.

The set of indices, for xi, on the between-class patch is Fb
i = {i, ik1+1, . . . , ik}.

By using the whole alignment, we come up with the following two objective
functions:

min
H

n

∑
i=1

tr(HiL
w
i HT

i ) = min
H

tr(HLwHT), (13)

max
H

n

∑
i=1

tr(HiL
b
i HT

i ) = max
H

tr(HLbHT), (14)
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where Lw = ∑N
i=1 Sw

i Lw
i Sw

i
T and Lb = ∑N

i=1 Sb
i Lb

i Sb
i

T
are the alignment matrices of

within-class patch and between-class patch, respectively, and Sw
i ∈ R

N×(k1+1) and
Sb

i ∈ R
N×(k2+1) are selection matrices for the within-class patch and the between-

class patch of the example xi.
By combining (13) and (14), we arrive at

min
H

tr

(
H
(
(Lb)−1/2

)T
Lw(Lb)−1/2HT

)
.

Then the optimization problem for NDLA is given by

min
W≥0,H≥0

λ
2

tr(HLHT)+KL(X ,WH), (15)

where L =
(
(Lb)−1/2

)T
Lw(Lb)−1/2.

4.3 Experimental Evaluation of NDLA

The effectiveness and robustness of NDLA is evaluated by comparing it with six
representative algorithms, which are PCA [82], FLDA [3], DLA [98], NMF [48],
LNMF [49], and DNMF [96], under different partial occlusions on the popular ORL
[66] face image dataset.

In order to make statistical comparisons between classification performances
of different algorithms, Dietterich [19] proposed an empirical method which uses
five twofold cross-validations followed by a t-test. Alpaydm [2] subsequently
proposed to modify Dietterich’s method by removing the unsatisfactory aspect
of the result depending on the ordering of the folds, which was called 5× 2 cv
F-test by the author. In particular, five replications of twofold cross-validation
were performed. Assuming p j

i is the difference between the classification error
rates of two algorithms on fold j = 1,2 of replication i = 1, . . . ,5, the average on
replication i was denoted by p̄i = (p1

i + p2
i )/2, and the estimated variance was s2

i =

(p1
i − p̄i)

2+(p2
i − p̄i)

2. According to [2], the statistic F =∑5
i=1∑

2
j=1(p j

i )
2/2∑5

i=1 s2
i

was approximately F-distributed with 10 and 5 degrees of freedom. Throughout this
chapter, we rejected the hypothesis that the algorithms have statistically identical
error rate with 95% confidence if the F-statistic is greater than 4.74.

The F-statistic defined above is used to statistically compare classification
performances of NDLA and the other algorithms on the dataset. All face images
were aligned according to the eye position. Each pixel of images was linearly
rescaled to the gray level of 256, and each image was rearranged to a long vector.

According to [2], we randomly selected equal number of images from each
individual to constitute twofolds, signified as training set and test set, and the rest
images make up the validation set. The training set was used to learn bases for
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Fig. 5 Image examples of the ORL dataset under different occlusions

a b

dc

Fig. 6 Average error rate on test set when the partial occlusions size are (a) 20×20, (b) 25×25,
(c) 30×30, and (d) 35×35 on ORL dataset

the low-dimensional space and the validation set was used to select the best model
parameters, then the error rate was calculated as the percentage of examples in
the test set which were improperly classified using the nearest neighbor (NN) rule.
To evaluate NDLA’s robustness to image occlusion, a randomly positioned square
partial occlusion of different size x× x, wherein x is the side length, was added
to each image in the test set during the classification phase. Figure 5 shows the
examples of image and the occluded images of the ORL dataset.

The Cambridge ORL [66] dataset consists of 400 images collected from 40
individuals. There are 10 images for each individual with varying lighting, facial
expressions and facial details (with-glasses or no-glasses). All images were taken
in the same dark background, and each image was normalized to 112× 92 pixel
array and reshaped to a long vector. We randomly selected eight images from
each individual to constitute the twofolds (training set and test set) and the
rest makes up the validation set. Figure 6 shows the average error rate vs. the
dimension of the subspace on test set when the side length of partial occlusion
x = 20,25,30,35. Table 3 gives the average error rates on the twofolds and the
dimension corresponding to the best performance for all the algorithms under
different partial occlusions.
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Table 3 Average error rate (%) followed by F-statistic value of NDLA vs. representative
algorithms on ORL dataset under different partial occlusions

Occlusion 20×20 25×25 30×30 35×35

PCA [82] 12.8(119) 2.29 20.4(117) 11.23∗ 33.7(111) 14.93∗ 45.8(113) 22.28∗
FLDA [3] 16.6(39) 48.00∗ 24.8(39) 6.60∗ 33.4(39) 24.14∗ 39.9(39) 2.48
DLA [98] 11.7(43) 2.16 18.1(68) 4.24 31.3(120) 5.59∗ 45.6(106) 19.66∗
NMF [48] 22.1(49) 10.83∗ 28.3(73) 39.22∗ 36.1(82) 14.10∗ 42.9(75) 6.08∗
LNMF [49] 25.3(116) 31.32∗ 37.1(111) 33.56∗ 26.3(120) 3.50 57.3(90) 40.63∗
DNMF [96] 20.0(120) 35.51∗ 28.2(120) 27.49∗ 38.8(120) 28.90∗ 50.2(118) 18.92∗
NDLA 10.8(120) – 14.1(119) – 23.3(120) – 33.3(120) –

Tick ∗ indicates that NDLA is statistically superior to the comparator algorithms

Figure 6 shows that NDLA outperforms all the representative NMF-related
algorithms on the test set under different partial occlusions. Table 3 shows that the
average error rates of NDLA are superior to all the comparator algorithms on the
training set and test set. It also shows that NDLA is statistically superior to all the
comparator algorithms.

5 Multiview Spectral Embedding

We present a multiview extension of the patch alignment framework in this section.
Multimedia data generally have multiple modalities [92, 97], and each modality
is usually represented in a high-dimensional feature space which frequently leads
to the “curse of dimensionality” problem. In this case, multiview dimensionality
reduction provides an effective solution to solve or at least reduce this problem.
Existing spectral embedding algorithms assume that examples are drawn from a
vector space and thus cannot deal with multiview data directly. A possible solution
is to concatenate vectors from different views together as a new vector and then
apply spectral embedding algorithms directly on the concatenated vector. However,
this concatenation is not physically meaningful because each view has a specific
statistical property. Besides, the concatenation ignores the diversity of multiple
views and thus cannot efficiently explore the complementary nature of different
views. Another solution is the distributed spectral embedding (DSE) proposed in
[59]. DSE performs a spectral embedding algorithm on each view independently,
and then based on the learned low-dimensional representations, it learns a common
low-dimensional embedding which is “close” to each representation as much as
possible. Although DSE allows selecting different spectral embedding algorithms
for different views, respectively, the original multiple view data are invisible to the
final learning process, and thus it cannot well explore the complementary nature of
different views.

To effectively and efficiently learn the complementary nature of different views,
multiview spectral embedding (MSE) [91] is proposed to learn a low-dimensional
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Fig. 7 The working flow of MSE: MSE first builds a patch for an example on a view. Based
on patches from different views, the part optimization can be performed to get the optimal
low-dimensional embedding for each view. Then all low-dimensional embeddings from different
patches are unified together as a whole one by the global coordinate alignment. Finally, the solution
of MSE is derived by using the alternating optimization

and sufficiently smooth embedding over all views of a dataset. Figure 7 shows the
working principle of MSE. MSE first builds a patch for an example on a view.
Based on patches from different views, the part optimization can be performed
to get the optimal low-dimensional embedding for each view. Afterward, all low-
dimensional embeddings from different patches are unified as a whole one by
global coordinate alignment. Finally, the solution of MSE is derived by using the
alternating optimization.

5.1 A Summarization of the MSE Formulation

Given a multiple view datum with N objects having V views, i.e., a set of matrices
X = {Xv ∈ R

mv×N}Vv=1, each representation Xv = [xv
1, . . . ,x

v
N ] is a feature matrix

from view v. Consider an arbitrary point xv
i and its k related ones in the same

view (e.g., nearest neighbors) xv
i1
, . . . ,xv

ik
, the patch of xv

i is defined as Xv
i =

[xv
i ,x

v
i1
, . . . ,xv

ik
] ∈ R

mv×(k+1). For Xv
i , there is a part mapping f v

i : Xv
i → Y v

i , wherein

Y v
i = [yv

i ,y
v
i1
, . . . ,yv

ik
] ∈ R

r×(k+1). To preserve the locality in the projected low-
dimensional space, the part optimization for the ith patch on the vth view is

argmin
Y v

i

k

∑
j=1
‖yv

i − yv
i j
‖2 (ωv

i )p , (16)
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where ωv
i is a k-dimensional column vector weighted by (ωv

i ) j = exp(−‖xv
i −

xv
i j
‖2/σ) and σ is a scaling factor. Therefore, (16) can be reformulated as

argmin
Y v

i

tr
(

Y v
i Lv

i (Y
v
i )

T
)
, (17)

where Lv
i ∈ R

(k+1)×(k+1) encodes the objective function for the ith patch on the vth
view and is given by

Lv
i =

[
∑k

j=1 (ωv
i ) j −(ωv

i )
T

−ωv
i diag(ωv

i )

]

. (18)

Based on the locality information encoded in Lv
i , (17) finds a sufficiently smooth

low-dimensional embedding Y v
i by preserving the intrinsic structure of the ith patch

on the vth view.
Because of the complementary property of multiple views to each other, different

views definitely have different contributions to the final low-dimensional embed-
ding. In order to well explore the complementary property of different views, a
set of nonnegative weights α = [α1, . . . ,αV ] are imposed on part optimizations of
different views independently. The larger αv is, the more important role the view Xv

i
plays in learning to obtain the low-dimensional embedding Y v

i . By summing over
all views, the multiview part optimization for the ith patch is

arg min
Y={Yv

i }Vv=1,α

V

∑
v=1

αvtr
(

Y v
i Lv

i (Y
v
i )

T
)
. (19)

Following (3), we have Y v
i = YSv

i , wherein Y = [y1, . . . ,yN ] is the global coordinate
and Sv

i ∈ R
N×(k+1) is the selection matrix to encode the spatial relationship of

examples in a patch in the original high-dimensional space of the vth view. That
is, low-dimensional embeddings in different views are consistent with each other
globally. Therefore, (19) can be equivalently rewritten as

argmin
Y,α

V

∑
v=1

αvtr
(

Y Sv
i Lv

i (S
v
i )

T Y T
)
. (20)

By summing over all part optimizations defined by (20), the global coordinate
alignment is given by

argmin
Y,α

V

∑
v=1

αvtr
(
Y LvY T) , (21)

where Lv is the alignment matrix for the vth view, and it is defined as

Lv =
N

∑
i=1

Sv
i Lv

i (S
v
i )

T . (22)
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Putting (18) into (22), we have

Lv = Dv−Wv, (23)

where W v ∈ R
N×N and [W v]pq = exp(−‖xv

p− xv
q‖2/σ) if xv

p is among the k-nearest
neighbors of xv

q or vice versa; [W v]pq = 0 otherwise. In addition, Dv is diagonal and
[Dv]ii = ∑ j[W

v]i j. Therefore, Lv is an unnormalized graph Laplacian matrix [83].
The normalized graph Laplacian matrix L̃v is adopted in MSE,

L̃v = I− (Dv)−1/2 W v (Dv)−1/2 . (24)

The constraint YY T = I is imposed on (21) to uniquely determine the low-
dimensional embedding Y , i.e.,

argmin
Y,α

V

∑
v=1

αvtr
(
YL̃vY T) ,

s.t. YY T = I;
V

∑
v=1

αv = 1,αv ≥ 0. (25)

The solution to α in (25) is αv = 1 corresponding to the minimum tr(Y L̃vY T) over
different views and αv = 0 otherwise. This solution means that only one view is
finally selected by this method. Then the performance of this method is equivalent
to the one from the best view. This solution does not meet the objective on exploring
the complementary property of multiple views to get a better embedding than based
on a single view. A trick utilized in [87] is adopted to avoid this phenomena, i.e.,
αv is replaced by αs

v with s > 1. In this condition, ∑V
v=1αs

v achieves its minimum
when αv = 1/V with respect to ∑V

v=1 = 1, αv > 0. Similar αv for different views will
be obtained by setting s > 1, so each view has a particular contribution to the final
low-dimensional embedding Y . Therefore, the new objective function is defined as

argmin
Y,α

V

∑
v=1

αs
v tr
(
YL̃vY T)

s.t. YY T = I,
V

∑
v=1

αv = 1,αv ≥ 0, (26)

where s > 1. According to (26) and related discussions, MSE finds a low-
dimensional sufficiently smooth embedding Y by preserving the locality of each
view simultaneously.

An alternating optimization procedure is utilized in [91] to solve (26) by
iteratively updating α with fixed Y L̃vY T and computing Y with fixed L =∑V

v=1αs
v L̃v

until convergence.
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Fig. 8 Example images in the toy dataset

5.2 Experimental Evaluation of MSE

We compare the effectiveness of the proposed MSE with the conventional feature
concatenation based spectral embedding (CSE), the distributed spectral
embedding (DSE) [59], the average performance of single view based spectral em-
bedding (ASE), and the best performance of single view based spectral embedding
(BSE) in both image retrieval and video annotation. In ASE, BSE, CSE, and DSE,
the Laplacian eigenmaps (LE) are adopted. The CSE is performed based on the
Gaussian normalized concatenated vector from different views. For all experiments,
the value of k for patch construction in MSE and that of k-nearest neighbor
construction in LE are fixed at 30. In LE and MSE, unweighted graph as defined
in [4] is adopted.

Firstly, a toy dataset is used to illustrate the effectiveness of MSE in comparing
with CSE-LE and DSE-LE. The toy dataset, a subset of COREL image gallery,
consists of three semantic categories, i.e., bus, ship, and train. Each category
includes 100 images. Figure 8 shows some example images. For each image, two
kinds of low-level visual features are extracted, i.e., 64-dimensional HSV color
histogram (HSVCH) and 75-dimensional edge directional histogram (EDH) to
represent two different views. Because the two views for an image are generally
complementary to each other, s in MSE is empirically set to be five.
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a b c d e

Fig. 9 Low-dimensional embeddings of different spectral embedding algorithms

Figure 9a, b shows the low-dimensional embeddings obtained by LE performed
on HSVCH and EDH independently, and (c), (d) and (e) show embeddings obtained
by CSE, DSE, and MSE, respectively. The results shown in (a)–(d) demonstrate
that existing algorithms merge different categories in the low-dimensional space.
On the contrary, the proposed MSE can well separate different categories, because
MSE takes the complementary property of different views into consideration for
embedding.

In image retrieval, the procedure for performance evaluation is as following:
(1) the low-dimensional embedding of an image retrieval dataset is learned by an
embedding algorithm, e.g., MSE; and (2) based on a low-dimensional embedding,
a standard image retrieval procedure is conducted for all images in the dataset. In
detail, for each category, one image is selected as a query, and then all the other
images in the dataset (including other categories) are ranked according to the
Euclidean distance to the query computed in the low-dimensional embedding. The
retrieval performance is evaluated through the average precision (AP) based on
the top n images. Mean average precision (MAP) is computed by averaging all APs
for different categories. Corel-2000 and Caltech256-2045 are utilized independently
for image retrieval test. Corel-2000 is a subset of the COREL photo gallery.
Caltech256-2045 is a subset of the Caltech256 dataset [32]. In video annotation,
the TRECVID 2008 training set [1] is adopted. The video dataset contains 39,674
shots from 20 concepts. A key frame is extracted from each shot for representation
and ten concepts are selected for performance evaluation.

For each image or key frame, five kinds of low-level visual features are extracted
to represent five different views. These five features are color moment, color
correlogram, HSV color histogram, edge directional histogram, and wavelet texture.
Because different views for an image are generally complementary to each other,
s in MSE is empirically set as five. The dimensionality of the low-dimensional
embedding r is set as 30. The results for the performance comparison on the three
datasets are shown in Fig. 10. MSE achieves the best performance on all the three
datasets.
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Fig. 10 Performance comparison on the three datasets measured by MAP of top 100 examples

6 Transfer Subspace Learning

In this section, we introduce a new regularization to the patch alignment frame-
work for transfer subspace learning. Conventional algorithms including subspace
selection methods are built under the assumption that training and test examples are
independent and identically distributed (i.i.d.). For practical applications, however,
this assumption is always violated. Particular, in face recognition, faces of the
test subjects may not appear in the training set, and thus the distributions of the
training set and test set are different. Transfer learning is an effective tool to address
this problem and has many practical applications with the cross-domain setting
[30, 67]. However, there is little effort of transfer learning made for the subspace
learning. To this end, a transfer subspace learning (TSL) framework is proposed
[68]. TSL extends conventional subspace learning methods by using a Bregman
divergence [10, 57, 58] based regularization. Compared with the popular Tikhonov
regularization [80] and manifold regularization [5, 31], the new regularization
encourages the difference between the training and test examples in the selected
subspace to be minimized. Thus, we can approximately assume the examples of
training and test are almost i.i.d. in the learnt subspace.

6.1 A Summarization of the Transfer Subspace Learning
Framework

The TSL framework [68] is presented by the following unified form:

argmin
U

F (U)+λDU (Pl||Pu) , (27)

where F(U) is the objective function of a subspace selection method, e.g., FLDA or
PCA, etc., and DU (Pl||Pu) is the Bregman divergence between the training data
distribution Pl and the test data distribution Pu in the low-dimension subspace
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Fig. 11 Two classes of training examples are marked as 1 and 2, while three classes of test
examples are marked as A, B, and C. Blue circles A and C are merged together in the FLDA
subspace, where discrimination of the training examples can be well preserved. Blue circles A and
B are mixed in the regularization subspace, where exists the smallest divergence between training
domain (1, 2) and test domain (A, B, and C). Blue circles A, B, and C can be well separated
in the discriminative subspace, which is obtained by optimizing the combination of the proposed
regularization (the divergence between training sets 1, 2 and test sets A, B, C) and FLDA

induced by U , and parameter λ controls the balance between the objective function
and the regularization. It should be noted that generally the objective function F(U)
only depends on the training data.

For example, when F(U) is chosen to be FLDA’s objective, (27) will give a
subspace in which the training and test data distributions are close to each other
and the discriminative information in the training data is partially preserved. In
particular, suppose we have two classes of training examples, represented by two
red circles (1 and 2, e.g., face images in the FERET dataset) and three classes of test
examples, represented by three blue circles (A, B, and C, e.g., face images in the
YALE dataset), as shown in Fig. 11. FLDA finds a subspace that fails to separate the
test circle A from the test circle C, but the subspace is helpful to to distinct different
subjects in the training set. The minimization of the Bregman divergence would give
a subspace that makes the training and test examples almost i.i.d but merges A and
B. Apparently, neither of them individually can find a best discriminative subspace
for test. However, as shown in the figure, a combination of FLDA and the Bregman
regularization does find the optimal subspace for discrimination, wherein A, B and
C can be well separated and examples in them can be correctly classified with given
references. It is worth emphasizing that the combination works well because the
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Fig. 12 The Bregman divergence-based regularization

training and test examples are coming from different domains but both domains
share some common properties.

In (27), F(U) is usually known and DU (Pl ||Pu) is defined as follows.

Definition 1 (Bregman Divergence Regularization). Let f : S→ R be a convex
function defined on a closed convex set S ⊆ R

+. We denote the first-order
derivative of f as f ′, whose inverse function as ξ = ( f ′)−1. The probability density
for the training and test examples in the projected subspace U are pl(y) and
pu(y), respectively, wherein y = UTx is the low-dimensional representation of the
example x. The difference at ξ (pl(y)) between the function f and the tangent line
to f at (ξ (pl(y)), f (ξ (pl(y)))) is given by (Fig. 12):

d (ξ (pl(y)) ,ξ (pu(y)))

= { f (ξ (pu(y)))− f (ξ (pl (y)))}− pl (y){ξ (pu (y))− ξ (pl (y))} . (28)

Based on (28), the Bregman divergence regularization, which measures the distance
between pl(y) and pu(y), is a convex function given by

DU (Pl||Pu) =

∫
d (ξ (pl (y)) ,ξ (pu (y)))dμ, (29)

where dμ is the Lebesgue measure.

By taking a special form f (y) = y2, DU (Pl ||Pu) can be expressed as
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DU (Pl||Pu)

=

∫
(pl (y)− pu (y))

2 dy

=

∫ (
pl (y)

2− 2pl (y) pu (y)+ pu (y)
2
)

dy. (30)

Further, the kernel density estimation (KDE) technique is used to estimate pl(y) and
pu(y). Suppose there are Nl training examples {x1,x2, . . . ,xNl} and Nu test examples
{x1,x2, . . . ,xNu}, then through projection yi =UTxi, we have the estimates [68]

pl (y) = (1/Nl)
Nl

∑
i=1

GΣ1 (y− yi)

and

pu (y) = (1/Nu)
Nl+Nu

∑
i=Nl+1

GΣ2 (y− yi),

where GΣ1 (y) is a Gaussian kernel with covariance Σ1, so is GΣ2 (y). With these
estimates, the quadratic divergence (30) is rewritten as

DU (Pl||Pu) =
1

N2
l

Nl

∑
s=1

Nl

∑
t=1

GΣ11 (yt − ys)+
1

N2
u

Nl+Nu

∑
s=Nl+1

Nl+Nu

∑
t=Nl+1

GΣ22 (yt − ys)

− 2
NlNu

Nl

∑
s=1

Nl+Nu

∑
t=Nl+1

GΣ12 (yt − ys), (31)

where Σ11 = Σ1 +Σ1, Σ12 = Σ1 +Σ2 and Σ22 = Σ2 +Σ2. Further, by basis matrix
calculus, we obtain the derivative of DU (Pl ||Pu) with respect to U as follows:

∂DU(Pl ||Pu)

∂U
=

2

N2
l

Nl

∑
i=1

Nl

∑
t=1

GΣ11(yi− yt)(Σ11)
−1(yt − yi)x

T
i

− 2
NlNu

Nl

∑
i=1

Nl+Nu

∑
t=Nl+1

GΣ12(yt − yi)(Σ12)
−1(yt − yi)x

T
i

+
2

N2
u

Nl+Nu

∑
i=Nl+1

Nl+Nu

∑
t=Nl+1

GΣ22(yi− yt)(Σ22)
−1(yt − yi)x

T
i

− 2
NlNu

Nl+Nu

∑
i=Nl+1

Nl

∑
t=1

GΣ12(yt − yi)(Σ12)
−1(yt − yi)x

T
i . (32)
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We now give an example of TSL, the transferred DLA (TDLA). As presented in
Sect. 3, the DLA subspace is obtained by minimizing the function

F(U) = tr(UTXLXTU)

s.t. UTU = I.
(33)

The derivative of F(U) with respect to W is

∂F(U)

∂U
=
(
XLXT +(XLXT)T)U. (34)

Based on (32) and (34), we can solve TDLA iteratively subject to UTU = I.
We refer to [68] for detailed descriptions of some other examples of TSL,

which are the transferred principal component analysis (TPCA), the transferred
Fisher’s linear discriminant analysis (TFLDA), the transferred locality preserving
projections (TLPP) with supervised setting and the transferred marginal Fisher’s
analysis (TMFA).

6.2 Experimental Evaluation of TSL

Based on the YALE, UMIST, and a subset of FERET datasets, cross-domain face
recognition is performed by applying the TSL framework. In detail, we have
(1) Y2F: the training set is on YALE and the test set is on FERET; (2) F2Y: the
training set is on FERET and the test set is on YALE; and (3) YU2F: the training
set is on the combination of YALE and UMIST and the test set is on FERET. In
the training stage, the labeling information of test images is blind to all subspace
learning algorithms. However, one reference image for each test class is preserved
so that the classification can be done in the test stage. The nearest neighbor classifier
is adopted for classification, i.e., we calculate the distance between a test image and
every reference image and predict the label of the test image as that of the nearest
reference image.

To evaluate the effectiveness of the TSL framework, the TSL algorithms,
e.g., TPCA, TFLDA, TLPP, TMFA, and TDLA, are compared with conventional
subspace learning algorithms, e.g., PCA [82], FLDA [3], LPP [41], MFA [93], DLA
[98], and the semi-supervised discriminant analysis (SDA) [13]. In addition, an
unsupervised transfer learning algorithm MMDE [64] is introduced for comparison.
Table 4 shows the recognition rate of each algorithm with the corresponding optimal
subspace dimension. In detail, conventional subspace learning algorithms, e.g.,
FLDA, LPP, and MFA, perform poorly because they assume training and test
examples are i.i.d. variables and this assumption is unsuitable for cross-domain
tasks. Although SDA learns a subspace by taking test examples into account, it
assumes examples in a same class are drawn from an identical underlying manifold.
Therefore, SDA is not designed for the cross-domain tasks. Although MMDE
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Table 4 Recognition rates of
different algorithms under
three experimental settings

Y2F F2Y YU2F

LDA 39.71(70) 36.36(30) 29.57(30)
LPP 44.57(65) 44.24(15) 45.00(35)
MFA 40.57(65) 34.54(60) 27.85(70)
DLA 50.43(80) 50.73(15) 50.86(65)
SDA 44.42(65) 41.81(40) 32.00(35)
MMDE 45.60(60) 42.00(75) 49.75(80)
TLDA 57.28(15) 50.51(20) 55.57(45)
TLPP 58.28(30) 53.93(25) 58.42(30)
TMFA 63.14(70) 56.96(35) 65.42(70)
TDLA 63.12(60) 61.82(30) 65.57(70)

The number in the parenthesis is the corresponding
subspace dimensionality

considers the distribution bias between the training and the test examples, it ignores
the discriminative information contained in the training examples. We have given
an example in the synthetic data test to show that the training discriminative
information is helpful to separate test classes. Example TSL algorithms perform
consistently and significantly better than others, because the training discriminative
information can be transferred to test examples by minimizing the distribution
distance between the training and the test examples. In particular, TDLA performs
best among all TSL examples because it inherits the merits of DLA in preserving
both the discriminative information of different classes and the local geometry of
examples in an identical class.

7 Active Reranking

The patch alignment framework is also utilized in an active learning based reranking
algorithm to learn a submanifold, which can encode the user’s intention. The textual
information is usually insufficient for semantic image retrieval, a natural solution
is to exploit the usage of the visual information for refining the text-based search
result. However, image search reranking usually fails to capture the user’s intention
when the query term is ambiguous. Therefore, reranking with user interactions,
or active reranking [77], is highly demanded to effectively improve the search
performance.

7.1 A Summarization of Active Reranking

In active reranking, the essential problem is how to capture the user’s intention,
i.e., to distinguish query relevant images from irrelevant ones. An image may
be relevant for one user but irrelevant for another. In other words, the semantic
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Fig. 13 Framework for active reranking illustrated with the query “panda.” When the query is
submitted, the text-based image search engine returns a coarse result (a). Then the active reranking
process is adopted to obtain a more satisfactory result (b), by learning the user’s intention

space is user-driven, according to their different intentions but with identical query
keywords. Therefore, two aspects are proposed in [77] to target the user-driven
intention: (1) collecting labeling information from users to obtain the specified
semantic space, and (2) localizing the visual characteristics of the user’s intention
in this specific semantic space.

To collect the labeling information from users efficiently, a new structural infor-
mation (SInfo) based strategy is proposed to actively select the most informative
query images. Then a novel local–global discriminative (LGD) dimensionality
reduction algorithm is developed to localize the visual characteristics of the user’s
intention. It is assumed in [77] that the query relevant images, which represent
the user’s intention, are lying on a low-dimensional submanifold of the original
ambient (visual feature) space. LGD learns the submanifold by transferring both
the local geometry and the discriminative information from labeled images to
unlabeled ones. The learned submanifold preserves both the local geometry of
labeled relevant images and the discriminative information to separate relevant from
irrelevant images. As a consequence, the well-known semantic gap between low-
level visual features and high-level semantics is narrowed to further enhance the
reranking performance on this submanifold.

Figure 13 shows the general framework for active reranking in web image search.
Take the query term “panda” as an example. When “panda” is submitted to the web
image search engine, an initial text-based search result is returned to the user, as
shown in Fig. 13a (only the top nine images are given for illustration). This result is
unsatisfactory because both person and animal images are retrieved as top results.
This is caused by the ambiguity of the query term. To solve this problem, active
reranking, i.e., reranking with user interactions, is proposed. As shown in Fig. 13,
four images are first selected according to an active example selection strategy,
and then the user is required to label them. If the user labels the animal pandas as
query relevant (indicated by “�” in Fig. 13) and other two images (person, car) as
query irrelevant, then we can learn that the animal panda is the user’s intention.
To represent this intention, i.e., the animal panda, a discriminative submanifold
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should be exploited to separate query relevant images from irrelevant ones. A
dimensionality reduction step is thus introduced to localize the visual characteristics
of the user’s intention. With the knowledge of the user’s intention, including both
the labeling information and the learned discriminative submanifold, the reranking
process is conducted and different kinds of animal pandas are returned, as shown
in Fig. 13b. Sometimes, several interaction rounds are preferred to achieve a more
satisfactory performance.

7.2 SInfo Active Example Selection

In active reranking, it is direct and reasonable to measure the ambiguity with the
ranking scores obtained in the reranking process. For an image Ii, 0 ≤ si ≤ 1 is its
ranking score, where si = 1 means Ii is definitely query relevant, while si = 0 means
Ii is totally irrelevant. si and (1− si) can be regarded as the probability of Ii to be
relevant and irrelevant, respectively. Then the ambiguity can be measured via the
information entropy, which is a widely used example in the information theory. The
ambiguity of Ii is

Hr(Ii) =−si logsi− (1− si) log(1− si). (35)

Because the reranking is conducted based on the initial text-based search result
[78], the ambiguity in the initial text-based search result should also be taken into
account, i.e.,

Hs̄(Ii) =−s̄i log s̄i− (1− s̄i) log(1− s̄i), (36)

where 0≤ s̄i ≤ 1 is the initial text-based search ranking score for Ii.
By combining (35) and (36), the total ambiguity for Ii is

H(Ii) = αHs(Ii)+ (1−α)Hs̄(Ii), (37)

whereα ∈ [0,1] is a trade-off parameter to control the influence of the two ambiguity
terms.

To avoid the small sample size problem in active example selection, the repre-
sentativeness can be estimated in an unsupervised manner. Intuitively, labeling an
image in a dense area will be more helpful than labeling an isolated one because the
labeling information of the image can be shared with other surrounding images. As
a consequence, we can measure the representativeness of image Ii via the probability
density p(Ii), which can be estimated by using the kernel density estimation (KDE),

p(Ii) =
1
|Ni| ∑Ij∈Ni

k(xi− x j), (38)
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where Ni is the set of neighbors of Ii. xi is the visual feature for image Ii. k(x) is a
kernel function that satisfies both k(x)> 0 and

∫
k(x)dx = 1. The Gaussian kernel is

adopted in [77].
Since the most informative images should meet both ambiguity and represen-

tativeness simultaneously, the structural information of image Ii, SI(Ii), can be
measured by the product of the two terms, i.e.,

SI(Ii) = p(Ii)H(Ii).

Then the most informative image I∗ is selected from the unlabeled image set U
according to

I∗ = argmax
Ii∈U

SI(Ii). (39)

In practical applications, to provide a good user experience, it would be better to
ask users to label a small number of images than only one image in each round. This
is because users will lose their patience after a few rounds. Thus, the batch mode is
utilized to select several images in each round. A simple method is to select the top-
n most informative images. The disadvantage of this method is that the selected n
images may be redundant and cluster in a small area in the high-dimensional feature
space. Thus, we seek to select a batch of most informative images and maintain their
diversity at the same time.

The angle-diversity criterion [16] is a good choice to achieve this purpose. This
criterion iteratively selects images which are most informative and also be diverse
to the already selected image set S. For an unlabeled image Ii, the diversity between
Ii and S is measured by the minimal angle between Ii and each image I j ∈ S. Then,
the images are selected iteratively according to

argmax
Ii∈U

(
ηSI(Ii)+ (1−η)min

Ij∈S
−xi · x j

‖xi‖‖x j‖
)
, (40)

where η ∈ [0,1] is a trade-off parameter which is introduced to balance the effects
of the two components: the structural information and the angle-diversity.

7.3 LGD Dimensionality Reduction

By mining user’s labeling information, we can learn a submanifold to encode
the user’s intention. In [77], a linear subspace U is used to approximate this
submanifold. Recall that X = [x1, . . . ,xN ] ∈ R

m×N is the feature matrix of of an
image set I = {I1, . . . , IN}, then the images in the subspace can be represented as
Y =UTX = [y1, . . . ,yN ] ∈ R

r×N (r < m) with yi ∈R
r for image Ii.

The LGD dimensionality reduction algorithm considers both the local informa-
tion contained in the labeled images and the global information of the whole image
database simultaneously. In detail, LGD transfers the local information, including
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both the local geometry of the labeled relevant images and the discriminative
information in the labeled images, to the global domain (the whole image database).
This cross-domain transfer process is completed by building different local and
global patches for each image and then aligning those patches together to learn
a consistent coordinate. One patch is a local area formed by a set of neighboring
images. We have three types of images: labeled relevant, labeled irrelevant, and
unlabeled. Therefore, we build three types of patches, which are: (1) local patches
for labeled relevant images to represent the local geometry of them and the discrimi-
native information to separate relevant images from irrelevant ones, (2) local patches
for labeled irrelevant images to represent the discriminative information to separate
irrelevant images from relevant ones, and (3) global patches for both labeled and
unlabeled images for transferring both the local geometry and the discriminative
information from all labeled images to the unlabeled ones.

For convenience, we use superscript “+” to denote the labeled relevant images
and “−” to denote the labeled irrelevant ones. If there is no superscript, it refers to
an arbitrary image which may be labeled relevant, labeled irrelevant or unlabeled.

The query relevant examples may vary in appearance and corresponding visual
features. For this reason, instead of requiring relevant images to be close to each
other in the projected subspace, it is more proper to remain the local geometry
of the relevant images while separating relevant images from all irrelevant ones.
Therefore, the local patch for a labeled relevant image I+i should preserve both the
local geometry of relevant images and the discriminative information between the
relevant images and all irrelevant images. We model the local patch for the low-
dimensional representation y+i of the labeled relevant image I+i as

min‖y+i −
k1

∑
j=1

(ci) jyi j‖2− γ
k1+k2

∑
j=k1+1

‖y+i − yi j‖2. (41)

The {Ii1 , . . . , Iik1
} are I+i ’s k1 nearest neighbors in the labeled relevant image set “+”

and {Ii(k1+1)
, · · · , Ii(k1+k2)

} are its k2 nearest neighbors in the labeled irrelevant image
set “−.” The combination coefficient γ is a trade-off factor between the two parts.

The first part in (41) is used to preserve the local geometry of labeled relevant
images before and after projection, thus the linear combination coefficient vector
ci is required to reconstruct I+i from its neighboring relevant images with minimal
error,

argmin
ci
‖x+i −

k1

∑
j=1

(ci) jxi j‖2

s.t.
k1

∑
j=1

(ci) j = 1. (42)

Solving problem (42), we can get (ci) j =
k1

∑
t=1

G−1
jt /(

k1

∑
p=1

k1

∑
q=1

G−1
pq ) with the local gram

matrix G jt = (x+i − xi j)
T(x+i − xit ).
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We can rewrite (41) in a more compact form. For the first part, which models the
local geometry of relevant images,

‖y+i −
k1

∑
j=1

(ci) jyi j‖2 = tr
(
Y+

i LA
i (Y

+
i )T) , (43)

where Y+
i = [y+i ,yi1 , . . . ,yik1

,yik1+1 , . . . ,yi(k1+k2)
] and LA

i =

[
1 −c̄T

i

c̄i c̄ic̄T
i

]
with c̄i =

[cT
i ,0, · · · ,0︸ ︷︷ ︸

k2

]T.

The second part models the discriminative information for separating relevant
image I+i from all irrelevant ones, i.e.,

− γ
k1+k2

∑
j=k1+1

‖y+i − yi j‖2 = tr
(
Y+

i LB
i (Y

+
i )T) , (44)

where LB
i =

[
∑k1+k2

j=1 (ωi) j −ωT
i

−ωi diag(ωi)

]

and ωi = [0, . . . ,0
︸ ︷︷ ︸

k1

,−γ, . . . ,−γ
︸ ︷︷ ︸

k2

]T. By combin-

ing (43) and (44) together into (41), we have

min‖y+i −
k1

∑
j=1

(ci) jyi j‖2− γ
k1+k2

∑
j=k1+1

‖y+i − yi j‖2 = mintr
(
Y+

i L+
i (Y

+
i )T) ,

where L+
i = LA

i +LB
i .

Discriminative information is also partially encoded in all irrelevant images, so
we construct local patches for labeled irrelevant images by separating each irrelevant
image from all relevant images. Because each irrelevant image is irrelevant in its
own way, it could be unreasonable to keep the local geometry of the irrelevant
images. In [77], the local patch for the low-dimensional representation y−i of labeled
irrelevant image I−i is modeled as

min−
k

∑
j=1
‖y−i − yi j‖2 = mintr

(
Y−i L−i (Y

−
i )T) . (45)

The {Ii1 , · · · , Iik} is I−i ’s k nearest neighbors in the labeled relevant image set “+.”
The matrix L−i can be calculated in the way similar to that of computing LB

i in (44)
by setting k1 = 0 and k2 = k.

In active reranking, users would like to label only a small number of images.
With only the labeled images, the learned subspace will bias to that spanned by
these labeled images and cannot generalize well to the large amount of unlabeled
data. Therefore some semi-supervised methods have been proposed which also
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Fig. 14 A 3D synthetic dataset for dimension reduction illustration. In this dataset, big red “*”
and big blue “o” denote labeled relevant and irrelevant examples, respectively. Small black “*”
and small green “o” are unlabeled relevant and irrelevant examples, respectively. As given in (b),
LGD reveals the submanifold of the relevant examples and separates the relevant examples from
the irrelevant ones in the projected 2D subspace. When other dimension reduction algorithms are
adopted, the relevant and irrelevant examples are overlapped in the projected subspace, as shown
in (c)–(k)

take the unlabeled images into utilization. However, because only relevant images
are lying on an unknown manifold and the distribution of irrelevant images is
nearly flat, conventional manifold regularizations which assume both relevant
and irrelevant examples are drawn from unknown manifolds prone to over-fit to
unlabeled examples. As a consequence, another method is considered in [77] to
model unlabeled images in active reranking.

Global patches are introduced in [77] to make use of both the labeled and unla-
beled images. The global patches transfer the local geometry and the discriminative
information, which is exploited in the domain of labeled images, to the domain
of unlabeled images. With the global patches, we aim to preserve the principal
subspace to keep the submanifold of relevant images. The noise information
contained in the ambient space should be eliminated. The principal component
analysis (PCA) is a suitable choice, which maximizes the mutual information
between the ambient space and the corresponding projected subspace.

A synthetic example is shown in Fig. 14 to illustrate the advantage of global
patches for dimensionality reduction. From the results of different conventional
dimensionality reduction algorithms presented in Fig. 4c–k, we can see that
the relevant and irrelevant examples are overlapped in the projected subspace and
the submanifold of the relevant examples is not well preserved. This is caused by the
problems existing in these algorithms as aforementioned.
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To avoid these problems, LGD learns the submanifold by transferring both
the local geometry and the discriminative information from labeled examples to
all unlabeled examples. Global patches are built for each example (including
both labeled and unlabeled) to complete the cross-domain knowledge transferring
process. According to the alignment scheme in [102], the global patch for the low-
dimensional representation yi of the image Ii is modeled in a similar way to local
patches,

maxtr
(
(yi− ym)(yi− ym)T) , (46)

where ym is the centroid of the projected low-dimensional feature. A variant version
of the original definition of PCA is used here to achieve a formula-level consistency
for both local and global patches. Equation (46) can be rewritten as

maxtr
(
(yi− ym)(yi− ym)T)= maxtr(YiL

PCA
i Y T

i ),

where Yi = [yi,yi1 , . . . ,yiN−1 ] with {Ii1 , . . . , IiN−1} are the rest N− 1 images beyond
Ii, and

LPCA
i =

1
N2

[
(N− 1)2 −(N− 1)1T

N−1
−(N− 1)1N−1 1N−11T

N−1

]
.

Here, the vector 1N−1 = [1, . . . ,1]T ∈ R
N−1.

By combining both local and global patches, LGD approximates the intrinsic
submanifold of relevant examples, as shown in Fig. 14b. Relevant examples can
be separated from irrelevant ones in the projected 2D subspace. Besides, we show
results of only local patches and only global patches for dimension reduction in
Fig. 14c, d, respectively. Neither of them can perform well.

The effectiveness of the PCA-based global patches is investigated by replacing
them with LPP-based patches, which are built in a similar way for each example.
This LPP-based LGD is named as LGD-LPP and its performance is shown in
Fig. 14e. This result is unsatisfactory because LPP assumes there is a manifold
for both labeled and unlabeled examples which violates the true distribution of
irrelevant examples. On the other hand, by using PCA-based global patches, the
subspace with maximum variance is preserved, so manifold structure of relevant
examples can also be preserved. By integrating global patches and local patches, we
can discover the intrinsic submanifold of relevant examples and separate relevant
examples from irrelevant examples.

Finally, we can align the calculated local and global patches together into a
consistent coordinate. For each image Ii, Yi = [yi,yi1 , . . . ,yik ] can be rewritten as
Yi =Y Si, where Y = [y1, . . . ,yN ] and still Si ∈RN×(k+1) is the selection matrix. Then,
we can combine all the patches defined in (41), (45) and (46) together

∑
I+i

mintr
(
Y+

i L+
i (Y

+
i )T)+∑

I−i

mintr
(
Y−i L−i (Y

−
i )T)

+λ
N

∑
i=1

maxtr
(
YiL

PCA
i Y T

i

)
= maxtr

(
UTXLXTU

)
, (47)
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where L = λ
N
∑

i=1
SiLPCA

i ST
i −∑

I+i

S+i L+
i (S

+
i )

T−∑
I−i

S−i L−i (S
−
i )

T and λ ≥ 0 is a control

parameter. By imposing UTU = I, the projection matrix U = [u1, . . . ,ur] can be
obtained by solving the standard eigen-decomposition problem XLXTu= λu, where
U is consisting of the eigenvectors corresponding to the r largest eigenvalues.

7.4 Experimental Evaluation of Active Reranking
on Web Image Search Dataset

Experiments are conducted on a real web image search dataset. In this dataset, there
are 105 queries selected seriously from a commercial image search engine query
log as well as popular tags of Flickr. These queries cover a large range of topics,
including named person, named object, general object, and scene. For each query,
a maximum of 1,000 images returned by commercial image search engines, i.e.,
Google, Live, and Yahoo, were collected as the initial text-based search results.
This dataset contains 94,341 images in total. For each query, three participants were
asked to judge whether the returned images are query relevant or irrelevant. An
image is labeled as query relevant if at least two of the three participants judged it
as relevant and vice versa.

Images are represented by 428-dimensional low-level visual features, including
225-dimensional color moment in LAB color space, 128-dimensional wavelet
texture as well as 75-dimensional edge distribution histogram. For the initial text
search score list s̄, because images are all downloaded from web search engines
(e.g., Google, Live, and Yahoo), we only know ranks of images in the text-based
search and their scores are not available. According to [42], the normalized rank is
adopted as the pseudo score, s̄i = 1− i

N for the ith ranked image, where i = 1, . . . ,N
and N is the number of images returned by the web search engine for a query term.

For active example selection, five images were selected to interact with the user in
each interaction round and four rounds were considered. Therefore, for each query,
there were 20 images labeled by the user totally. The performance is also measured
by average precision (AP). We calculated the APs at different positions from top-1
to top-100 to obtain the AP curve. We averaged the APs over all the 105 queries to
get the mean average precision (MAP) for overall performance evaluation.

The effectiveness of SInfo is investigated by comparing it with other three
methods: “Error Reduction” [105], “Most Uncertain” [16], and “Random.” To be
noted, here both the reranking and the active example selection were conducted in
the original feature space.

Figure 15 summarizes the comparison results. The “Baseline” curve gives the
performance of the text-based search results and the “RerankInitial” curve is the
performance of the unsupervised reranking without user interactions. The “SInfo,”
“Error Reduction,” “Most Uncertain,” and “Random” curves denote the perfor-
mances of the reranked results with query images selected according to these four
strategies, respectively.
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Fig. 15 MAP over all queries with different example selection strategies

Figure 15 shows the effectiveness of the active reranking framework as well
as the superiority of the SInfo example selection strategy. Curves in this figure
show that user’s labeling information helps enhance the reranking performance.
User interactions can improve the average performance, no matter which example
selection strategy is adopted. Moreover, among these four strategies, SInfo performs
best and achieves a significant performance improvement. This is because SInfo
considers both the ambiguity and the representativeness while the “Most Uncertain”
and “Random” only take one side of them into account. For “Error Reduction” and
“Most Uncertain,” they both suffer from the small example size problem while SInfo
alleviates this influence by taking representativeness into account in an unsupervised
manner.

To test the effectiveness of LGD, the active reranking is conducted in the
projected subspace by using different dimension reduction algorithms. The SInfo
example selection strategy was adopted in this experiment.

LGD is compared with several representative algorithms, including unsupervised
algorithm, i.e., PCA, supervised ones, i.e., BDA [104], LDE [17], and SLPP [12],
as well as semi-supervised ones, i.e., SML [52], SDA [13], and LGD-LPP. The
subspace dimension was set to 100 for all algorithms empirically. Figure 16 shows
the results. The “SInfo” curve denotes the reranked results of active reranking which
is conducted in the original feature space without dimension reduction with the
examples selected via SInfo. This curve is identical to the “SInfo” curve in Fig. 15.
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Fig. 16 MAP over all queries with different dimension reduction algorithms

The performance of reranking via different dimension reduction algorithms is
denoted as SInfo+DR algorithm name, e.g., “SInfo+LGD” for performance of LGD.

Figure 16 shows that LGD performs best among these algorithms and achieves
a more satisfactory performance than “SInfo.” It reflects the effectiveness of
LGD in localizing the visual characteristics of the user intention. For the other
dimension reduction algorithms, reranked performances are either slightly improved
or dramatically decreased. PCA fails to capture the user-driven intention since it
ignores the labeling information. BDA, LDE, and SLPP, which are all supervised
dimension reduction algorithms, only utilize a few labeled images. Thus, the
subspace learned by them is biased to that spanned by several labeled images and
cannot generalize well to the large amount of unlabeled ones.

For semi-supervised algorithms, SDA is unsuitable for the reranking task because
it assumes that images in an identical class are sampled from a Gaussian. However,
in web image search, each irrelevant image is irrelevant in its own way and thus
images in the irrelevant class are not similar to each other, i.e., it is inconvenient
to assume that irrelevant images are from an identical Gaussian. Therefore, SDA
performed poorly. SML assumes that all images are sampled from a nonlinear
manifold. In image search, irrelevant images usually scatter in the whole space, i.e.,
they may be distributed uniformly. SML is prone to over-fit to unlabeled images
because of the improper manifold regularization assumption.
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8 Manifold Elastic Net

Finally, we present manifold elastic net (MEN) [103], which is a sparse learning
[53–55] method built upon the patch alignment framework. The key feature of
MEN is that it is able to achieve sparse basis (projection matrix) by imposing
the popular elastic net penalty (i.e., the combination of the lasso penalty and
the L2 norm penalty). As sparse basis is more interpretable both psychologically
and physiologically, MEN is expected to give more meaningful results on face
recognition, which will be shown in experiments later.

For derivation convenience, we use the transpose of the original defined X , Y ,
which means that X ∈R

N×m, Y ∈R
N×r, and thus Y = XU .

8.1 A Summarization of MEN

First, MEN uses the same part optimization and whole alignment as in DLA, i.e.,
the following minimization is considered:

argmin
Y

tr
(
Y TLY

)
. (48)

However, rather than substitute Y = XU directly, (48) is reformed equivalent
as below

argmin
Y,U

tr
(
Y TLY

)
+β ‖Y −XU‖2 . (49)

Note that (49) indeed will lead to Y = XU . Given the equivalence between the
two formulations, the latter is more convenient to incorporate the minimization of
classification error. To enhance the performance of MEN for classification problems,
the classification error minimization is considered, i.e.,

argmin
U
‖Z−XU‖2 , (50)

where Z ∈ R
N×C is an indicator matrix carefully designed in [103] and C is the

number of classes. By combing (49) and (50), we get the main objective of MEN

argmin
Y,U
‖Z−XU‖2 +αtr

(
Y TLY

)
+β ‖Y −XU‖2 , (51)

where α and β are trade-off parameters to control the impacts of different terms.
To obtain a sparse projection matrix U , an ideal approach is to restrict the number

of nonzeros entries in it, i.e., using the L0 norm as a penalty over (51). However,
the L0 norm penalized (51) is an NP-hard problem and thus intractable practically.
One attractive way of approximating the L0 norm is the L1 norm, i.e., the Lasso
penalty [79], which is convex and actually the closet convex relaxation of the L0

norm. Various efficient algorithms exit for solving Lasso penalized least square
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regression lasso problem, including the LARS [21]. However, the lasso penalty has
the following two disadvantages: (1) the number of selected variables is limited by
the number of observations and (2) the lasso penalized model can only select one
variable from a group of correlated ones and does not care which one is selected.
These limitations of Lasso are well addressed by the so-called elastic net penalty,
which combines the L2 and L1 norm together. MEN adopts the elastic net penalty
[106]. In detail, the L2 of the projection matrix is helpful to increase the dimension
(and the rank) of the combination of the data matrix and the response. In addition,
the combination of the L1 and L2 of the projection matrix is convex with respect to
the projection matrix and thus the obtained projection matrix has the grouping effect
property. The final form of MEN is given by

argmin
Y,U
‖Z−XU‖2 +αtr

(
Y TLY

)
+β ‖Y −XU‖2 +λ1‖U‖1 +λ2‖U‖2

2 . (52)

In the following, we show that (52) is equivalent to the lasso penalized least
square problem and thus LARS can be directly applied to solve it.

By setting the differentiate of the objective function (52) with respect to Y as 0,
we have

Y = β (αL+β I)−1XU. (53)

We can eliminate Y in the objective function defined in (52) according to (53) and
obtain

argmin
U

UTXTAXU− 2UTXTZ +λ1‖U‖1 +λ2‖U‖2
2. (54)

where A is an asymmetric matrix computed form L:

A = α
(
β (αL+β I)−1)T L(β (αL+ I))

+β
(
β (αL+β I)−1− I

)T
(β (αL+β I)− I)+ I. (55)

Because 2XTAX = XT(A+AT)X and the eigenvalue decomposition of (A+AT)/2
can be written as WDW T, the objective function defined in (54) without the elastic
net penalty can be rewritten as

UTXTAXU− 2UTXTZ =

∥
∥
∥
∥
(
(D1/2W T)T

)−1
Z− (D1/2W T)XU

∥
∥
∥
∥

2

2
. (56)

By further setting

X∗ = (1+λ2)
−1/2

[
(D1/2WT

)X√
λ2Im×m

]

∈ R
(N+m)×m and

Y ∗ =

[(
(D1/2W T)T

)−1
Z

0m×1

]

∈R
(N+m)×1
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in (54), we get

argmin
U∗

= ‖Z∗ −X∗U∗‖2
2 +λ‖U∗‖1 (57)

where λ = λ1/(1+λ2) and U∗ =
√
(1+λ2)U .

According to (57), the LARS algorithm can be applied to obtain the optimal
solution of MEN. Though some other L1 least square algorithms, e.g., block
coordinate descent and fixed-point algorithms, may have advantages in speed,
LARS is chosen in MEN because it satisfies KKT conditions at each step and thus
it can obtain the global solutions on different sparse levels in one run.

The LARS for MEN begins with a coefficient vector U∗ (a column in the
projection matrix with the ith entry (U∗)i) with all zero entries. A variable (a column
vector in X , i.e., a particular feature) in R

N , which is most correlated with the
objective function, is added to the active set A. Then the corresponding coefficient in
U∗ increases as large as possible until a second variable (another column vector in
X , i.e., another feature) in R

N has the same correlation as the first variable. Instead
of continuously increasing the coefficient vector in the direction of the first variable,
LARS proceeds on a direction equiangular over all variables in the active set A until
a new variable earns its way into A. To make the coefficient U∗ become n-sparse
(at most n nonzero entries), the above procedure is conducted for n loops. We refer
to [103] for a detailed description of this algorithm.

8.2 Experimental Evaluation of MEN

We report an empirical evaluation of MEN on the FERET dataset. From the
total 13,539 face images of 1,565 individuals, 100 individuals with 7 images
per subject are randomly selected in the experiment. Four or five images per
individual are selected as training set, and the remaining is used for test. We
run the experiment five times, the average recognition rates are calculated. Six
representative dimension reduction algorithms, i.e., principal component analysis
(PCA) [82], Fisher’s linear discriminant analysis (FLDA) [3], discriminative locality
alignment (DLA) [98], supervised locality preserving projection (SLPP) [12], NPE
[39], and sparse principal component analysis (SPCA) [18], are also performed for
performance comparison.

The recognition performance is summarized in Fig. 17. Apparently, the seven
algorithms are divided into three groups according to their performance. The
baseline level methods are PCA and SPCA, which is because they are both unsu-
pervised methods and thus may not give satisfying performance due to the missing
of label information. LPP, NPE, and LDA only show moderate performance. In
contrast, DLA and MEN give rise to significant improvements. Further, the sparsity
of MEN makes it outperform DLA. The best performance of MEN is actually
not supervising, since it considers the most aspects on data representation and
distribution, including the sparse property, the local geometry information, and
classification error minimization.
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Fig. 17 Performance evaluation on the FERET dataset

Fig. 18 Plots of first 10 bases obtained from 7 dimensionality reduction algorithms on FERET.
For each column, from top to bottom: MEN, DLA, LPP, NPE, FLDA, PCA, and SPCA

Figure 18 shows the first ten bases selected by different subspace selection meth-
ods. One can see that the bases selected by LPP, NPE, and FLDA are contaminated
by considerable noises, which explains why they only give moderate recognition
performance. The bases from PCA, i.e., eigenfaces, are smooth but present relatively
few discriminative information. In terms of sparsity, SPCA gives the desired bases;
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Fig. 19 Entries of one column of projection matrix vs. its L1 norm in one LARS loop of MEN

however the problem is that the patterns presented in these bases are not grouped
so they cannot provide meaningful interpretation. The bases from MEN, which we
call “MEN’s faces,” have a low level of noise and are also reasonably sparse. And
more importantly, thanks to the elastic net penalty, the sparse pattern of MEN’s
bases are satisfyingly grouped, which gives meaningful interpretations, e.g., most
discriminative facial features are obtained, including eyebrows, eyes, nose, mouth,
ears, and facial contours.

The optimization algorithm of MEN is built upon LARS. In each LARS loop
of the MEN algorithm, all entries of one column in the projection matrix are
zeros initially. They are sequentially added into the active set according to their
importance. The values of active ones are increased with equal altering correlation.
In this process, the L1 norm of the column vector is augmented gradually. Figure 19
shows the altering tracks of some entries of the column vector in one LARS loop.
These tracks are called “coefficient paths” in LARS. As shown by these plots, one
can observe that every coefficient path starts from zero when the corresponding
variable becomes active and then changes its direction when another variable is
added into the active set. All the paths keep in the directions which make the
correlations of their corresponding variables equally altering. The L1 norm is
increasing along the greedy augment of entries. The coefficient paths proceed along
the gradient decent direction of objective function on the subspace, which is spanned
by the active variables.

In addition, Fig. 20 shows 10 of the 1,600 coefficient paths from LAPS loop. It
can be seen that MEN selects ten important features sequentially. For each feature,
its corresponding coefficient path and the “MEN face” when the feature is added into
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active set are assigned the same color which is different with the other 9 features.
In each “MEN face,” the new added active feature is marked by a small circle, and
all the active features are marked by white crosses. The features selected by MEN
can produce explicit interpretation of the relationship between facial features and
face recognition: feature 1 is the left ear, feature 2 is the top of nose, feature 3
is on the head contour, feature 4 is the mouth, feature 5 and feature 6 are on the
left eye, feature 7 is the right ear, and feature 8 is the left corner of mouth. These
features are already verified of great importance in face recognition by many other
famous face recognition methods. Moreover, Fig. 20 also shows MEN can group
correlated features, e.g., feature 5 and feature 6 are selected sequentially because
they are both on the left eye. In addition, features which are not very important,
such as feature 9 and feature 10 in Fig. 20, are selected after the selection of the
other more significant features and assigned smaller value than those more important
ones. Therefore, MEN is a powerful algorithm in feature selection.

9 Summary

In this chapter, we present the patch alignment framework and its several exten-
sions. The patch alignment framework unified various manifold learning based
dimensionality reduction algorithm. By introducing the nonnegative constraint,
we obtain the nonnegative patch alignment framework. To deal with multimedia
data, which usually contain features from different views, a multiview extension
of the patch alignment framework is developed. Considering that training and test
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examples may be not independent and identically distributed, a new regularization
is added to the patch alignment to learn a transfer subspace. The patch alignment
framework is also utilized in active reranking to learn a submanifold for encoding
the user’s intention by transferring information from the images labeled by users
to the whole image dataset. Finally, the patch alignment framework is extended for
sparse dimensionality reduction.
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Improving Classifications Through Graph
Embeddings

Anirban Chatterjee, Sanjukta Bhowmick, and Padma Raghavan

1 Introduction

Unsupervised classification is used to identify similar entities in a dataset and
is extensively used in many application domains such as spam filtering [5],
medical diagnosis [15], demographic research [13], etc. Unsupervised classification
using K-Means generally clusters data based on (1) distance-based attributes of
the dataset [4, 16, 17, 23] or (2) combinatorial properties of a weighted graph
representation of the dataset [8].

Classification schemes, such as K-Means [11], that use distance-based attributes
view entities of the dataset as existing in an n-dimensional feature space. The value
of the i-th feature of an entity determines its coordinate in the i-th dimension of the
feature space. The distance between the entities is used as a classification metric.
The entities that lie close to each other are assigned to the same cluster.

Combinatorial techniques for clustering, such as Multilevel K-Means (GraClus)
[8], represent the dataset as a weighted graph, where the entities are represented by
vertices. The edge weights of the graph indicate the degree of similarity between
the entities. A highly weighted subgraph forms a class and its vertices (entities) are
given the same label.
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In this chapter, we present a feature subspace transformation (FST) scheme to
transform the dataset before the application of K-Means (or other distance-based
clustering schemes). A unique attribute of our FST-K-Means method is that it
utilizes both distance-based and combinatorial attributes of the original dataset to
seek improvements in the internal and external quality metrics of unsupervised
classification. FST-K-Means starts by forming a weighted graph with the entities
as vertices that are connected by weighted edges indicating a measure of shared
features. The vertices of the graph are initially viewed as being embedded in the
high-dimensional feature subspace, i.e., the coordinates of each vertex (entity) are
given by the values of its feature vector in the original dataset. This initial layout
of the weighted graph is transformed by a special form of a force-directed graph
embedding algorithm that attracts similar entities. The nodal coordinates of the
embedded graph provide a feature subspace transformation of the original dataset;
K-Means is then applied to the transformed dataset.

The remainder of this chapter is organized as follows. In Sect. 2, we provide a
brief review of related classification schemes and a graph layout algorithm that we
adapt for use in our FST-K-Means. In Sect. 3, we develop FST-K-Means including
its feature subspace transformation scheme and efficient implementation. In Sect. 4,
we provide an empirical evaluation of the effectiveness of FST-K-Means using a test
suite of datasets from a variety of domains. In Sect. 5, we attempt to quantitatively
characterize the performance of FST-K-Means by demonstrating that the clustering
obtained from our method satisfies optimality constraints for the internal quality.
We present brief concluding remarks in Sect. 6. We would like to note that a shorter
version of this research appears in [6].

2 Related Work

We now provide a brief overview of unsupervised classification using K-Means [11]
and GraClus [8] with a focus on aspects that are relevant for our empirical evaluation
in Sect. 4. We also review the Fruchterman-Reingold (FR) [10] graph layout method
that we later adapt in Sect. 3 for use as a component in our FST-K-Means.

The most common implementations of the K-Means algorithm are by Steinhaus
[23], Lloyd [16], Ball and Hall [4], and MacQueen [17]. The four independent
implementations of K-Means in their first step initialize the positions of the
centroids (the number of centroids is equal to the number of predetermined classes).
Then the entities are assigned to their closest centroid to form the initial clusters. The
centroids are then recalculated based on the center of mass of these clusters, and
the entities are reassigned to clusters according to the new centroids. These steps
are repeated until convergence is achieved.

Graph approaches to classification have also become popular, especially, Mul-
tilevel K-Means (GraClus) [8] that performs unsupervised classification through
graph clustering. The dataset is represented as a weighted graph, where each
entity is a vertex and vertices are connected by weighted edges. High edge
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weights denote greater similarity between corresponding entities. Similar entities
are identified by clustering of vertices with heavy edge weights. GraClus uses
multilevel graph coarsening algorithms. The initial partition of the graph is done
using a spectral algorithm [20] and the subsequent coarsening stages use a weighted
kernel K-Means.

Chatterjee et al. [7] developed a similarity graph neighborhood (SGN) based
training data transformation scheme, aimed at enhancing the accuracy of a super-
vised classifier. The SGN transform is primarily based on resultant displacement
calculations to update entity positions. This transform uses class information of
the entities to decide the direction of the displacement when unified with the
learning phase of a supervised classifier. Alternatively, FST calculates attractive
forces between neighboring entities to update entity positions. The underlying
assumption in FST is that entities connected by an edge in the similarity graph
should move closer in the feature space. This is fundamentally different from SGN
where connected entities in the similarity graph could potentially displace away
from each other if they belong to different classes. Another important difference
between FST and SGN is that FST updates the position of the entities iteratively
unlike SGN which applies displacements only once to update entity positions.

2.1 Graph Layouts with the Fruchterman and Reingold
Scheme

Graph layout methods are designed to produce aesthetically pleasing graphs embed-
ded in a two- (or three)-dimensional space. A popular technique is the Fruchterman
and Reingold (FR) [10] algorithm that considers a graph as a collection of objects
(vertices) connected together by springs (edges). Initially, the vertices in the graph
are placed at randomly assigned coordinates. The FR model assumes that there are
two kinds of forces acting on the vertices, (1) attraction due to the springs (only
between connected vertices) and (2) repulsion due to mutually charged objects
(between all vertices). If the Euclidean distance between two vertices u and v is
duv and k is a constant proportional to the square root of the ratio of the embedding
area by the number of vertices, then the attractive force FFR

A and the repulsive force
FFR

R are calculated as:

FFR
A (u,v) =−k2/duv and FFR

R (u,v) = d2
uv/k. (1)

At each iteration of FR, the vertices are moved in proportion to the calculated
attractive or repulsive forces until the desired layout is achieved.

In Sect. 3, we adapt the FR algorithm as a component in our feature subspace
transformation in high dimensions. Through this transformation, we essentially seek
embeddings that enhance cluster cohesiveness while improving the accuracy of
classification.
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3 FST-K-Means: Feature Subspace Transformations
for Enhanced Classification

We now develop our feature subspace transformation scheme which seeks to
produce a transformed dataset to which K-Means can be applied to yield high-
quality classifications. Our FST-K-Means seeks to utilize both distance-based and
combinatorial measures through a geometric interpretation of the entities of the
dataset in its high-dimensional feature space.

Consider a dataset of N entities and R features represented by an N×R sparse
matrix A. The i-th row, ai,∗ of the matrix A, represents the feature vector of the
i-th entity in the dataset. Thus, we can view entity i as being embedded in the high
dimensional feature space (dimension ≤ R) with coordinates given by the feature
vector ai,∗.

The N×N matrix B ≈ AAT represents the entity-to-entity relationship. B forms
the adjacency matrix of the undirected graph G(B,A), where bi, j is the edge weight
between vertices i and j in the graph, and ai,k is the coordinate of vertex i in the k-th
dimension.

FST is then applied to G(B,A) to transform the coordinates of the vertices
producing the graph G(B, Ã). It should be noted that the structure of the adjacency
matrix, i.e., the set of edges in the graph, remains unchanged. The transformed
coordinates of the vertices are now represented by the N × R sparse matrix Ã.
The transformed dataset or, equivalently, its matrix representation Ã has exactly
the same sparsity structure as the original, i.e., ãi, j �= 0 if and only if ai, j �= 0.
However, typically ãi, j �= ai, j as a result of the feature subspace transformation
(FST), thus changing the embedding of entity i. Now the i-th entity is represented in
a transformed feature subspace (dimension≤ R) by the feature vector ãi,∗. K-Means
is applied to this transformed dataset represented by Ã to yield FST-K-Means.

FST-K-Means comprises three mains steps: (1) forming an entity-to-entity
sparse, weighted, embedded graph G(B,A), (2) feature subspace transformation
(FST) of G(B,A) to yield transformed embedded graph G(B, Ã), and (3) applying
K-Means to Ã for classification.

Figure 1 illustrates these steps using a simple example.

3.1 Forming an Entity-to-Entity Weighted, Embedded
Graph G(B,A)

Consider the dataset represented by the N × R sparse matrix A. Form B ≈ AAT.
Although B could be computed exactly as AAT, approximations that compute only a
subset of representative values may also be used. Observe that bi, j, which represents
the relationship between entities i and j, is given by ai,∗ · a j,∗, the dot product of
the feature vectors of the i-th and j-th entities; thus bi, j is proportional to their
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Fig. 1 Illustration of the main steps of FST-K-Means. A is a sparse matrix representing a dataset
with 6 entities and 3 features. B ≈ AAT is the adjacency matrix of the weighted graph G(B,A)
with 6 vertices and 7 edges. FST is applied on G(B,A) to transform the coordinates of the vertices.
Observe that the final embedded graph G(B, Ã) has the same sparsity structure as G(B,A). The
sparse matrix Ã represents the dataset with the transformed feature space. K-Means is applied to
the dataset Ã to produce high-quality clustering

cosine distance in the feature space. Next, view the matrix B as representing the
adjacency matrix of the undirected weighted graph G(B), where vertices (entities)
v and u are connected by edge (u,v) if bu,v is nonzero; the weight of the edge
(u,v) is set to bu,v. Finally, consider the weighted graph G(B) of entities as being
located in the high-dimensional feature space of A, i.e., vertex v has coordinates
av,∗. Thus, G(B,A) represents the combinatorial information of the entity to entity
relationship similar to graph clustering methods like GraClus. However, G(B,A)
uses the distance attributes in A to add geometric information in the form of the
coordinates of vertices (entities).

3.2 Feature Subspace Transformation of G(B,A) to G(B, Ã)

We develop FST as a variant of the FR-graph layout algorithm [10], which is
described in Sect. 2, to obtain G(B, Ã) from G(B,A).
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Algorithm 4: procedure FST(A)
n← entities
B← AAT

for i = 1 to MAX ITER do
Initialize displacement Δ ← (0T

1 , . . . ,0
T
n )

{Compute displacement}
for all edges(u,v) in G(B) do

FA
uv← −k2×wuv

duv×i
dist = ||(Av−Au)||
Δu = Δu +

(Av−Au)
dist ×FA

uv

Δv = Δv− (Av−Au)
dist ×FA

uv
end for

{Update entity positions}
for j = 1 to n do

A j ← A j +Δ j

end for
end for

Although FST is motivated from the FR-graph layout algorithm, it is significantly
different in the following aspects.

1. FST operates in the high-dimensional feature subspace unlike the FR scheme
which seeks layouts in 2 or 3 dimensions. Thus, unlike FR which begins
by randomly assigning coordinates in two- or three-dimensional space to the
vertices of a graph, we begin with an embedding of the graph in the feature
subspace.

2. The original FR scheme assumes that the vertices can be moved freely in any
dimension of the embedding space. However, for our purposes, it is important to
restrict this to prevent entities from developing spurious relationships to features,
i.e., relationships that were not present in the original A. We therefore allow
vertices to move only in the dimensions where their original feature values were
nonzero.

3. The goal in FST is to bring highly connected vertices closer in the feature space,
in contrast to FR objectives that aim to obtain a visually pleasing layout. There-
fore, at each iteration of FST, we move the vertices based only on the attractive
force (between connected vertices) and eliminate the balancing effect of the
repulsive force. Furthermore, we scale the attractive force by the edge weights
to reflect higher attraction from greater similarity between the corresponding
entities. Together, these modifications can cause heavily connected vertices to
converge to the nearly the same position. While this effect might be desirable
for classification, it hampers the computation of attractive force for the next
iteration of FST. In particular, very small distances between vertices cause an
overflow error due to division by zero. We mitigate this problem by scaling the
force by the number of iterations to ensure that at higher iterations, the effect of
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the displacement is less pronounced. In summary, at FST iteration i, the attractive
force between two vertices u and v with edge weight wu,v and Euclidean distance
du,v is given by:

FFST
i =−k2 ∗wu,v

du,v ∗ i
(2)

In the expression above, k is a constant proportional to the square root of the ratio
of the embedding area by the number of vertices as in the original FR scheme.

3.3 Applying K-Means to Ã for Classification

Ã forms the matrix representation of the dataset in the transformed feature space,
where ãi,∗ represents the new coordinates of vertex (entity) i. The sparsity structure
of Ã is identical to that of A, the original dataset. K-Means is now applied to Ã, the
transformed dataset.

3.4 Computational Costs and Stopping Criteria of FST

In FST-K-Means, the cost per iteration of K-Means stays unaffected because it
operates on Ã which has exactly the same nonzero pattern as the original A,
i.e., ãi, j �= 0 if and only if ai, j �= 0. Additionally, although FST may change the
number of K-Means iterations, it should not affect the worst-case complexity which

is superpolynomial with a lower bound of 2Ω
√

(N) iterations for a dataset of N
entries [1]. Thus the main overheads in FST-K-Means are those for FST.

The first step, that of forming G(B,A), is similar to the graph setup step in
GraClus and other graph clustering methods. Even if B is computed exactly, its
costs are no more than Σi=1:n(nnz2

i ) where nnzi is the number of nonzero feature
values of the i-th entity. The cost of FST is given by the number of iterations × the
cost per iteration, which is proportional to the number of edges in the graph of B.

Depending on the degree of similarity between the entities, this graph can be
more dense, thereby increasing the cost per iteration of FST. Consequently, an
implementation of FST could benefit from using sparse approximations to the graph
through sampling, though this could adversely affect the classification results.

3.5 Stopping Criteria for FST

The number of iterations for an ideal embedding using FST varies according to
the feature values in the dataset. In this section we describe how we identify
convergence criteria that promote improved classification.
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An ideal embedding would simultaneously satisfy the two following properties:
(1) similar entities are close together and (2) dissimilar entities are far apart. The first
property is incorporated into the design of FST. We, therefore, seek to identify
a near-ideal embedding based on the second property, inter-cluster distance [22],
which is estimated by the distance of the entities from their global mean.

We next show in Lemma 1, how the distance of the entities from their global
mean is related to feature variance. We use this relation to determine our conver-
gence test for terminating FST iterations.

Lemma 1. Consider a dataset of N entities and R features represented as a sparse
matrix A; the entity i can be viewed as embedded in the feature space at the
coordinates given by the i-th feature vector, ai,∗= [ai,1, . . . ,ai,R]. Let fq be the feature
variance vector and let dq be the vector of the distance of each entity from the global
mean (centroid of all entities) at iteration q of FST. Now the following relation is
satisfied by the f and d vectors:

‖ fq‖1 =
1
N
‖dq‖2

Proof. Let ai, j denote the feature j of entity i. Now ai, j is also the j-th coordinate of
entity i. Let the mean of the feature vector a∗, j be τ j =

1
NΣ

N
k=1(ak, j) and the variance

of feature vector a∗, j be φ j =
1
NΣ

N
k=1(ak, j− τ j)

2.
Let fq = [φ1,φ2, . . . ,φR] be the vector of feature variances. Now ‖ fq‖1 =

ΣR
j=1|φ j |= ΣR

j=1φ j, because φ j ≥ 0.
Let the global mean of the entities be represented by μ . The i-th coordinate of μ

is calculated as μi =
1
NΣ

N
k=1(ak,i) = τi.

Let di be the distance of entity i from μ . Therefore δi =
√
ΣR

k=1(ai,k− μk)2 =
√
ΣR

k=1(ai,k− τk)2. Let dq = [δ1,δ2, . . . ,δN ] be the vector representing the distance

of the entities from the global mean μ . The 2-norm of dq is given by:

‖dq‖2 = ΣN
i=1(δi)

2

= ΣN
i=1(Σ

R
k=1(ai,k− τk)

2)

= ΣR
k=1(Σ

N
i=1(ai,k− τk)

2)

= ΣR
k=1(Nφk)

= N‖ fq‖1

A high value of ‖ fq‖1 implies that there is a high variance among the features of
the entities relative to the transformed space. High variance among features indicates
easily distinguishable entities. Lemma 1 shows that ‖ fq‖1 = 1

N ‖dq‖2, i.e., high
feature variance is proportional to the average distance of entities from their global
mean. The value of dq can be easily computed and we base our stopping criteria on
this value.
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Fig. 2 Plots of classification accuracy and the 1-norm of feature variance vector across FST
iterations. FST iterations are continued until feature variance decreases relative to the previous
iteration

Our heuristic for determining the termination of FST is as follows: continue
layout iterations until ‖di+1‖2 ≤ ‖di‖2. That is, we terminate FST when successive
iterations fail to increase the global mean of the distance of the entities. As illustrated
in Fig. 2, this heuristic produces an embedding that can be classified with high
accuracy for a sample dataset.

3.6 Impact of FST on Clustering

We now consider the impact of FST on a sample dataset, namely splice [19], with
two clusters. Figure 3 shows the layout of the entities of splice in the original and
the transformed feature space. For ease of viewing, the entities are projected to the
first three principal components. Observe that the clusters are not apparent in the
original dataset. However, FST repositions the entities in the feature space into two
distinct clusters, thereby potentially facilitating classification.



128 A. Chatterjee et al.

Fig. 3 Layout of entities in splice in the original (top) and transformed (bottom) feature space,
projected onto the first three principal components. Observe that two clusters are more distinct
after FST

4 Evaluation and Discussion

We now provide an empirical evaluation of the quality of classification using FST-K-
Means. We define external and internal quality metrics for evaluating classification
results. We use these metrics for a comparative evaluation of the performance of
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FST-K-Means, K-Means, and GraClus on a test suite of eight datasets from a variety
of applications.

4.1 Metrics of Classification Quality

The quality of classification is typically evaluated using external and internal
metrics.

The external metric evaluates the accuracy of classification (the higher the value,
the better) as the ratio of correctly classified entities to the total number of entities.
This metric is dependent on a subjective predetermined labeling. This measure,
though an indicator of correctness, cannot be incorporated into the design of
classification algorithms. We henceforth refer to this metric as “accuracy” denoted
by P defined as:

P =
Number of correctly classified entities

Total number of entities
. (3)

The internal metric measures the cohesiveness of the clusters, i.e., the sum of the
square of the distance of the clustered points from their centroids. We henceforth
refer to this metric as “cohesiveness” denoted by J. If M1, . . . ,Mk are the k clusters
and μi represents the centroid of cluster Mi, the cohesiveness J is defined as:

J = Σ k
h=1Σx∈Mh‖x− μh‖2. (4)

If similar entities are clustered closely, then they are generally easier to classify and
so a lower value of J is preferred. The cohesiveness, J, is an internal metric because
it can be incorporated into the design of the classification algorithm and several
classification methods seek to minimize the objective function given by J.

4.2 Experimental Setup

Our experiments compare the accuracy of our feature subspace transformation
method coupled with K-Means clustering versus a commercial implementation of
K-Means. We first apply K-Means clustering to the unmodified collection of feature
values as obtained from the dataset. We refer to experiments based on this dataset as
K-Means. We then apply K-Means clustering to the dataset transformed using FST
as described in Sect. 3. We refer to this scheme as FST-K-Means in our experimental
evaluation.

In both set of experiments, we use K-Means based on Llyod’s algorithm (as
implemented in the MATLAB [12] Statistical Toolbox), where the centroids are
initialized randomly and K-Means is limited to a maximum of 25 iterations.
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The quality of clustering using K-Means varies depending on the initial choice of
centroids. To mitigate this effect, we execute 100 runs of K-Means, each time with
a different set of initial centroids. To ensure fair comparison, the initial centroids for
each execution of FST-K-Means are selected to be exactly the same as those for the
corresponding K-Means execution.

The value of the cohesiveness metric is dependent on the feature vector of
the entities. Therefore, for the set FST-K-Means where the values of the features
have been modified, we compute cohesiveness by first identifying the elements
in the cluster and then transforming them back to the original space. We thereby
ensure that the modified datasets are used exclusively for cluster identification and
the values of cohesiveness (J) are not affected by the transformed subspace.

The GraClus scheme is executed on the weighted graph representation. The
results of GraClus do not significantly change across runs. Consequently, one
execution of this scheme is sufficient for our empirical evaluation.

The computational cost of FST is only the number of nonzeros in matrix B, which
is less than O(N2), per iteration where N is the number of entities.

4.2.1 Evaluation of FST-K-Means on a Synthetic Dataset

We first evaluate our model using artificially generated data. Our goal is to easily
demonstrate and explain the steps of our FST-K-Means algorithm using this data,
before we test our method on benchmark datasets from different repositories.

Figure 4 represents our test case, in which three gaussian clusters are formed in
2 dimensions using three different cluster means and covariance matrices. Figure 4a
represents the original synthetic data. Figure 4b represents the same data points
but after the FST transformation has been applied to it. Even before we proceed to
formally clustering the two datasets (original and transformed), a visual inspection
of the layout suggests that clusters obtained using the transformed dataset are likely
to be distinct. Finally, on clustering the two datasets using K-Means, we observe
that K-Means on the transformed dataset is 3% more accurate than K-Means on
the original data. Matrices ZK-Means and ZFST-K-Means in (5) and (6), respectively,
indicate the confusion matrices obtained using the two datasets. In our example, the
cluster label of each entity is known a priori; therefore, after clustering the original
or transformed data we compare it to the true cluster label. The diagonal element

Z(ii)
K-Means of matrix ZK-Means indicates the number of entities that were assigned

correctly to cluster i, and the off-diagonal element Z(i j)
K-Means where i �= j indicates

the number of elements of cluster i that were mapped to cluster j (ZFST-K-Means

is formed in the same way as ZK-Means). We observe that our FST transformation
scheme clearly obtains higher precision and accuracy:

ZK-Means =

⎛

⎝
59 16 25

6 78 16
6 3 91

⎞

⎠ (5)
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Fig. 4 Layout of entities in two dimensional synthetic dataset in the original (top) and transformed
(bottom) feature space

ZFST-K-Means =

⎛

⎝
68 11 21
10 82 8

7 8 85

⎞

⎠ (6)



132 A. Chatterjee et al.

Table 1 Test suite of
datasets

Name Samples Features Source (Type)

adult a2a 2,265 123 UCI (Census)
australian 690 14 UCI (Credit Card)
breast-cancer 683 10 UCI (Census)
dna 2,000 180 Statlog (Medical)
splice 1,000 60 Delve (Medical)

180txt 180 19,698 SMART(Text)
300txt 300 53,914 SMART (Text)
20news 1,061 16,127 Yahoo

Newsgroup (Text)

4.2.2 Evaluation of FST-K-Means on Benchmark Datasets

We test K-Means and FST-K-Means classification algorithms on datasets from the
UCI [2], Delve [19], Statlog [18] , SMART [21], and Yahoo 20Newsgroup [14]
repositories. The parameters of each dataset along with their application domain
are shown in Table 1. Datasets dna, 180txt, and 300txt have three classes. The
rest of the datasets represent binary classification problems. We select two classes,
comp.graphics and alt.atheism, from the Yahoo 20Newsgroup dataset and form the
20news binary classification set.

4.3 Comparative Evaluation of K-Means, GraClus,
and FST-K-Means

We now compare the quality of classification using the accuracy and cohesiveness
metrics for the datasets in Table 1 using K-Means, GraClus, and FST-K-Means.

4.4 Accuracy

Table 2 reports the accuracy (P) of classification of the three schemes. The values
for K-Means and FST-K-Means are the mode (most frequently occurring value)
over 100 executions. These results indicate that with the exception of the breast-
cancer dataset, the accuracy of FST-K-Means is either the highest value (5 out of
8 datasets) or is comparable to the highest value. In general, GraClus has lower
accuracy than either FST-K-Means or K-Means with comparable values for only
two of the datasets, namely, dna and 180txt.

Table 4 shows the improvement in accuracy of FST-K-Means relative to K-Means
and GraClus. The improvement in accuracy as a percentage of method A relative to
method B is defined as (P(A)−P(B))×100

P(B) , where P(A) and P(B) denote accuracies
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Table 2 Accuracy of
classification of K-Means,
GraClus, and FST-K-Means

Classification accuracy (P)

Datasets K-Means GraClus FST-K-Means

adult a2a 70.60 52.49 74.17
australian 85.51 74.20 85.36
breast-cancer 93.70 69.69 83.16
dna 72.68 70.75 70.75
splice 55.80 53.20 69.90
180txt 73.33 91.67 91.67
300txt 78.67 64.33 95.00
20news 46.74 54.85 73.70

Table 3 Accuracy of
classification for PCA (top
three principal components)
and FST-K-Means

Classification Accuracy (P)

Datasets PCA FST-K-Means
Relative
Improvement

adult a2a 65.81 74.17 +12.70
australian 71.17 85.36 +19.93
breast-cancer 96.05 83.16 −13.42
dna 60.41 70.75 +17.12
splice 65.10 69.90 +7.37
180txt 61.78 91.67 +48.38
300txt 62.00 95.00 +53.22
20news 49.50 73.70 +48.49

of methods A and B, respectively; positive values represent improvements while
negative values indicate degradation. We see that the improvement in accuracy for
FST-K-Means can be as high as 57.6% relative to K-Means (for 20news) and as
high as 47.7% relative to GraClus (for 300txt). On average, the accuracy metric
obtained from FST-K-Means shows an improvement of 14.9% relative to K-Means
and 23.6% relative to GraClus.

4.4.1 Comparison of FST-K-Means with K-Means After PCA Dimension
Reduction

Table 3 compares the accuracy obtained by K-Means using top three principal
components (PCA-K-Means) of the dataset with FST-K-Means. We observe that
in 7 out of 8 datasets FST-K-Means performs better than PCA-K-Means and on
average achieves 24.27% better accuracy relative to PCA-K-Means. This is an
empirical proof that K-Means benefits from the high-dimensional embedding of
FST. We also observe that the relative improvement in accuracy between PCA-
K-Means and FST-K-Means is particularly high for text datasets (180txt, 300txt,
and 20news). Typically, feature selection in noisy text data is a difficult problem
and the right set of principal components that can provide high accuracy is often
unknown [3]. Our feature subspace transformation brings related entities closer, in
effect, common features gain more importance than unrelated features.
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Fig. 5 Sensitivity of classification accuracy (P) of K-Means to number of principal components

Table 4 Improvement or
degradation (negative values)
percentage of accuracy of
FST-K-Means relative to
K-Means and GraClus

Relative improvement
(accuracy)
K-Means

Datasets (percentage) GraClus

adult a2a 5 41.3
australian −1 15
breast-cancer −11 19
dna −2 0
splice 25.2 31.4
180txt 25.0 0
300txt 20.75 47.7
20news 57.6 34.3
Average 14.9 23.6

Additionally, in Fig. 5 we present a sensitivity study of using up to 50
principal components on K-Means accuracy. Table 3 reports results for top 3
principal components, while Fig. 5 presents the accuracy of PCA-K-Means upto
50 principal components. It is clear that FST-K-Means performs better than PCA-
K-Means.

4.5 Cohesiveness

Table 5 compares cluster cohesiveness (J), the internal quality metric across all
three schemes. Once again, the values for K-Means and FST-K-Means are the mode
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Table 5 Cluster cohesiveness of K-Means, GraClus, PCA(top three prin-
cipal components), and FST

Cluster cohesiveness (J)

Datasets K-Means GraClus PCA FST

Adult a2a 24,013 16,665 15,522 16,721
australian 4,266 3,034 2,791 2,638
breast-cancer 2,475 2,203 980 1,366
dna 84,063 65,035 65,029 65,545
splice 31,883 31,618 30,830 31,205
180txt 25,681 23,776 23,806 24,131
300txt 47,235 44,667 44,539 45,052
20news 3,851,900 3,483,591 3,029,614 3,341,400

Table 6 Improvement or
degradation (negative values)
percentage of cohesiveness of
FST-K-Means relative to
K-Means and GraClus

Relative improvement
(cohesiveness)
K-Means

Datasets (percentage) GraClus

adult a2a 30.3 −0.33
australian 38.1 13.0
breast-cancer 44.8 37.9
dna 22.0 −0.78
splice 2.1 1.3
180txt 6.0 −1.4
300txt 4.6 −0.86
20news 13.2 4.0
Average 20.2 6.6

(most frequently occurring value) over 100 executions. Recall that a lower value
of cohesiveness is better than a higher value. The cohesiveness measure of FST-K-
Means is the lowest in 4 out of 8 datasets, and it is comparable to the lowest values
(obtained by GraClus) for the remaining 4 datasets.

Table 6 shows the improvement of the cohesiveness metric of FST-K-Means
relative to K-Means and GraClus. The improvement in cohesiveness as a percentage
of method A relative to method B is defined as (J(B)−J(A))×100

J(B) , where J(A)

and J(B) denote cohesiveness of methods A and B, respectively; positive values
represent improvements while negative values indicate degradation. FST-K-Means
achieves as high as 44.8% improvement in cohesiveness relative to K-Means and
37.9% improvement relative to GraClus. On average FST-K-Means realizes an
improvement in cohesiveness of 20.2% relative to K-Means and 6.6% relative to
(GraClus).

In summary, the results in Tables 2–6 clearly demonstrate that FST-K-Means is
successful in improving accuracy beyond K-Means at cohesiveness measures that
are significantly better than K-Means and comparable to GraClus. The superior
accuracy of K-Means is related to the effectiveness of the distance-based measure
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for clustering. Likewise, the superior cohesiveness of GraClus derives from using
the combinatorial connectivity measure. We conjecture that FST-K-Means shows
superior accuracy and cohesiveness from a successful combination of both distance
and combinatorial measures through FST.

5 Toward Optimal Classification

Unsupervised classification ideally seeks 100% accuracy in labeling entities. How-
ever, as discussed in Sect. 4, accuracy is a subjective measure based on external user
specifications. It is therefore difficult to analyze algorithms based on this metric.
On the other hand, the internal metric, i.e., the cluster cohesiveness J, provides
an objective function dependent only on the coordinates (features) of the entities
and centroids. Thus, this metric is more amenable for use in analysis of clustering
algorithms.

Let the dataset be represented by the N×R sparse matrix A with N entities and
R features. Let the i-th row vector be denoted by ai,∗ = [ai,1,ai,2, . . . ,ai,R]. Now the
global mean of the entities (i.e., the centroid over all entities) is given by the R-
dimensional vector ā = 1

NΣ
N
i=1ai, where the j-th component of ā is denoted by ā j =

1
NΣ

N
i=1ai, j for j = 1, . . . ,R. Let Y be the centered data matrix, where each column

yi,∗ = (ai,∗ − ā)T or equivalently yi, j = ai, j− ā j for i = 1, . . . ,N and j = 1, . . . ,R.
It has been shown in [9] that for a classification with k clusters, the optimal value

of the cohesiveness J can be bounded as shown below, where N× ȳ2 is the trace of
Y TY and λi is the i-th principal eigenvalue of Y rmTY :

Nȳ2−Σ k−1
i=1 (λi)≤ J ≤ Nȳ2.

Table 7 shows the lower and upper bounds for the cohesiveness measure
in the original feature space along with the range observed for this measure
(minimum and maximum values) over 100 trials of FST-K-Means and K-Means.
The bounds of the 20news group were excluded due to computational complexity
in calculating eigenvalues, posed by the size of the data. These results indicate that
unlike K-Means, FST-K-Means always achieves near-optimal values for J and it
consistently satisfies the bounds for the optimal cohesiveness. Thus FST-K-Means
moves K-Means toward cohesiveness optimality and consequently toward enhanced
classification accuracy.

6 Summary

We have developed and evaluated a feature subspace transformation scheme to
combine the advantages of distance-based and graph-based clustering methods to
enhance K-Means clustering. However, our transformation is general and as part of
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Table 7 The lower bound, range, and upper bound of cohesiveness across
100 runs of FST-K-Means (top half) and K-Means in the original feature
space

Cluster cohesiveness: FST-K-Means

Datasets Lower Upper
bound Min Max bound

Adult a2a 15,250 15,866 17,208 17,380
australian 2,442 2,638 3,008 3,493
breast-cancer 747 1,366 1,366 5,169
dna 63,890 65,525 65,865 67,190
splice 30,389 31,205 31,205 31,942
180txt 23,188 23,765 24,178 25,290
300txt 43,708 44,800 45,194 46,512
Cluster cohesiveness: K-Means
Datasets Lower Upper

bound Min Max bound
Adult a2a 15,250 24,013 24,409 17,380
australian 2,442 4,266 4,458 3,493
breast-cancer 747 2,475 2,475 5,169
dna 63,890 84,062 84,123 67,190
splice 30,389 31,882 31,884 31,942
180txt 23,188 25,651 25,730 25,290
300txt 43,708 47,220 47,288 46,512

Observe that FST-K-Means consistently satisfies the optimality bounds
while K-Means fails to do so for most datasets. The highlighted numbers
in the lower table indicate datasets for which the minimum value of
cohesiveness exceeds the upper bound on optimality

our plans for future work we propose to adapt FST to improve other unsupervised
clustering methods.

We empirically demonstrate that our method, FST-K-Means, improves both the
accuracy and cohesiveness relative to popular classification methods like K-Means
and GraClus.

We also show that the values of the cohesiveness metric of FST-K-Means
consistently satisfy the optimality criterion (i.e., lie within the theoretical bounds
for the optimal value) for datasets in our test suite. Thus, FST-K-Means can be
viewed as moving K-Means toward cohesiveness optimality to achieve improved
classification.
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Learning with �1-Graph for High Dimensional
Data Analysis

Jianchao Yang, Bin Cheng, Shuicheng Yan, Yun Fu, and Thomas Huang

1 Introduction

An informative graph, directed or undirected, is critical for those graph-orientated
algorithms designed for data analysis, such as clustering, subspace learning, and
semi-supervised learning. Data clustering often starts with a pairwise similarity
graph and then translates into a graph partition problem [19], and thus the quality
of the graph essentially determines the clustering quality. The pioneering works
on manifold learning, e.g., ISOMAP [20], locally linear embedding (LLE) [17],
and Laplacian eigenmaps [3], all rely on different graphs reflecting the data
similarities. Most popular subspace learning algorithms, e.g., principal component
analysis (PCA) [13], linear discriminant analysis (LDA) [1], and locality preserving
projections (LPP) [11], can all be explained within the graph embedding framework
in [22]. Also, most semi-supervised learning algorithms are driven by certain graphs
constructed over both labeled and unlabeled data. Zhu et al. [25] explored the
harmonic property of Gaussian random field over the graph for semi-supervised
learning. Belkin and Niyogi [2] instead learned a regression function that fits the
labels on the labeled data while preserving the smoothness of data manifold modeled
by a graph.
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There exist two popular ways for graph construction: the k-nearest-neighbor
(k-nn) method and the ε-ball method. In k-nn graph construction, for each datum, its
k-nearest-neighbor samples are connected with it, while in ε-ball graph construction,
data samples falling into its ε-ball neighborhood are connected with it. Then various
approaches, e.g, binary, Gaussian kernel [3], or �2-reconstruction [17], are used to
determine the graph edge weights. Since the ultimate goals of the constructed graphs
are for data analysis, the following graph characteristics are desired:

1. Similarity fidelity. The desired graph should reflect the underlying relationships
between data samples, i.e., data samples from the same class or cluster should be
connected and not be connected otherwise.

2. Robustness to noise. Noise and outliers are inevitable in practical applications,
especially for visual data, and therefore, the graph construction procedure should
be robust to such corruptions. The graph constructed based on k-nn or ε-ball
method is founded on the pair-wise Euclidean distance, which is very sensitive
to noise, especially in high-dimensional spaces. That is, the graph structure is not
stable with the presence of noise.

3. Adaptive sparsity. Studies on manifold learning [3] show that sparse graph can
convey valuable information for classification purposes. Also for large-scale
applications, sparse graphs are required due to the storage limitation. In real-
world scenarios, it is likely that data samples are not evenly sampled from the
space. Therefore, we want to adaptively select the most likely kindred neighbors
for each datum.

In this work, we are particularly interested in building an informative graph
for data analysis in high-dimensional spaces, where the data samples are sparsely
distributed in the space and the local neighborhood becomes less and less useful for
k-nn and ε-ball methods [9]. Empirically, many types of high-dimensional data tend
to lie in a union of low-dimensional linear subspaces [21], where our �1-graph is
of particular interest. In Sect. 2, we present the procedure to construct our robust
�1-graph by taking advantage of the overall contextual information instead of only
pairwise Euclidean distance as conventionally. The neighboring samples of a datum
and their corresponding edges weights are simultaneously derived by solving an �1-
norm minimization problem, where each datum is reconstructed by a sparse linear
combination of the remaining samples and a noise term. Compared with graphs
constructed by k-nn and ε-ball methods, the �1-graph can better recover the subspace
structures in high-dimensional spaces, is robust to noise, and can adaptively and
sparsely choose the kindred neighbors. Figure 1 demonstrates the graph robustness
comparison between our �1-graph and the k-nn graph. The first row illustrates some
data samples from the USPS dataset [12]. The left column shows the edges weights
in �1-graph; the middle row shows the current datum (noise added from the third
row on); and the right column shows the edges wights in the k-nn graph. Here,
the horizontal axes indicate the index number of the remaining data samples. The
number in parenthesis of each row and column shows the number of neighbors
changed compared with the noiseless results in the second row. As shown, our
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Fig. 1 Robustness comparison for neighbors selected by �1-graph and k-nn graph, where different
levels of noise are added to the middle testing sample

�1-graph shows much greater robustness to noise, compared with k-nn graph.1 On
the same dataset, Fig. 2 shows the kindred neighbor selection comparison between
the �1-graph and k-nn graph on 19 testing samples. As shown, the �1-graph can
adaptively and sparsely select the neighboring samples. The red bars indicate the
numbers of the neighbors selected by �1-graph (weights are not considered here).
The green bars indicates the numbers of kindred samples selected by �1-graph, while
the blue bars indicate those selected by k-nn graph. Note that for the k-nn graph we
adjust k based on the red bar number for each testing sample. Clearly, the �1-graph
selects more kindred data samples than the k-nn graph, implying that our �1-graph
better recovers the underlying data relationships.

This �1-graph is then utilized in Sect. 3 to instantiate a series of graph-oriented
algorithms for various machine learning tasks, e.g., data clustering, subspace learn-
ing, and semi-supervised learning. Owing to the above advantages over classical
graphs, the �1-graph brings consistent performance gain in all these tasks as detailed
in Sect. 4.

1We compare with k-nn graph only because ε-ball graph is generally inferior to k-nn graph in
practice.
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Fig. 2 The numbers of kindred neighbors selected by �1-graph and k-nn graph on 19 testing
samples

2 Rationales on �1-graph

We denote the training samples by a matrix X = [x1,x2, . . . ,xN ],xi ∈ R
m, where

N is the sample number and m is the feature dimension. For each xi, we want to
find its connections and weights with the remaining samples X/xi, which will be
represented as a graph. In this section, we discuss the motivation and construction
procedure for our �1-graph. The graph construction includes both neighbor selection
and graph edge weight assignment, which are assumed to be unsupervised in this
work, without harnessing any data label information.

2.1 Motivation

The k-nn and ε-ball [3, 17] approaches are the two most popular ones for graph
construction in the literature. Both of them determine the neighboring samples based
on the pairwise Euclidean distance, which is, however, very sensitive to data noises,
especially in high-dimensional spaces, i.e., the graph structure may dramatically
change with the presence of noise. Also, both methods are based on the local
neighborhood on the data manifold, which becomes less and less useful in high-
dimensional feature spaces due to the curse of dimensionality [9]. Moreover, both
k-nn and ε-ball methods are prone to overfitting or underfitting when data samples
are not evenly distributed, i.e., the global parameter k and ε may be too large for
some data samples while too small for other samples. To avoid the above limitations
of the conventional graph construction methods, we propose a novel way of graph
construction based on seeking the sparse representations of the data samples by �1-
norm minimization, and thus the new graph is termed �1-graph.

Our �1-graph is motivated by the recent advances in sparse representation [7,
15, 21] for high-dimensional data analysis. The quest for sparse representation
has a long history in signal processing [18]. Recent studies show that sparse
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representation [16] appears to be biologically plausible as well as essential for
high-dimensional signal recovery [5, 8] and effective for pattern recognition [21].
In particular, Wright et al. [21] proposed to perform face recognition by seeking
a robust sparse representation of the test sample with respect to the training
samples from all classes. Inspecting which classes those nonzero coefficients fall
into reveals the identity of the test sample. The rationale behind this work is to
assume that human faces lie in a union of low-dimensional linear subspaces for
different subjects, and the sparse representation through �1-norm minimization can
correctly identify which linear subspace a testing sample belongs to. In this work, we
generalize this observation from faces [21] to more general high-dimensional data
types, where the data approximately distributes as a union of low-dimensional linear
subspaces, and we show that building a graph based on such sparse representations
is very effective for many graph-orientated machine learning algorithms.

2.2 Robust Sparse Representation

Much interest has been shown in seeking sparse representations with respect to
an overcomplete dictionary of the basis elements in signal processing [5, 8, 18]
and pattern recognition [21]. Suppose we have an underdetermined system of
linear equations: x = Dα , where x ∈ R

m is the vector to be represented, α ∈
R

n is the unknown reconstruction coefficients, and D ∈ R
m×n(m < n) is the

overcomplete dictionary with n bases. Among the infinite many solutions to the
above underdetermined linear system, we are interested in the sparsest solution, i.e.,
the one with the fewest non-zero coefficients.

min
α
‖α‖0, s.t. x = Dα. (1)

where the �0-norm ‖ · ‖0 counts the number of nonzero entries in a vector. It is
well known that the above optimization is NP-hard in general case. However, recent
results [7] show that if the solution is sparse enough, the sparse representation can
be approximated by the following convex �1-norm relaxation,

min
α
‖α‖1, s.t. x = Dα, (2)

which can be solved efficiently by linear programming [6]. In practice, there may
exist noise on certain elements of x. In order to recover these elements and provide
a robust estimation of α , we can reformulate

x = Dα+ ζ + ξ =
[
D I
]
[
α
ζ

]
+ ξ , (3)

where ζ ∈ R
m is a sparse error term and ξ ∈ R

m denotes a Gaussian noise term.

Then by setting B =
[
D I
] ∈ R

m×(m+n) and α ′ =
[
α
ζ

]
, we can solve the following



144 J. Yang et al.

Fig. 3 Visualization comparison of (a) the �1-graph and (b) the k-nn graph. The thickness of the
edge lines indicates the edge weights. Gaussian kernel is used for the k-nn graph. For ease of
display, we only show the graph edges related to the samples from two classes, where in total 30
classes from the YALE-B database are used for graph construction

�1-norm minimization to recover the sparse representation,

min
α ′
‖α ′‖1, s.t. ‖x−Bα ′‖2

2 ≤ ε, (4)

This optimization problem is convex and can be readily solved by many optimiza-
tion toolboxes (http://sparselab.stanford.edu). It has been shown that even with the
presence of noise on x, (4) can correctly recover the underlying sparse representation
(and thus can denoise x).

2.3 �1-Graph Construction

The �1-graph characterizes the overall behavior of the entire sample set by their
sparse representations. The construction procedure is formally summarized in
Algorithm 1. Figure 3 illustrates the �1-graph constructed on the data samples from
YALE-B face database [14]. As shown, the �1-graph indeed better connects those
kindred samples for faces, and thus it conveys more discriminative information later
processing, which aligns well with [21]. Figure 4 depicts another example of �1-
graph on the USPS digit database [12]. Top ten neighbors selected by �1-graph and
k-nn graph are shown, respectively, for the same testing sample. It is clearly that
the �1-graph can select many more kindred examples than the k-nn graph, again
demonstrating that the �1-graph better discovers the underlying data relationships.

http://sparselab.stanford.edu
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Algorithm 1: �1-graph construction
Inputs: A sample data set denoted by the matrix X = [x1,x2, . . .,xN ], where xi ∈ R

m, and
parameter ε based on the noise level.
for i = 1→ N do

compute the sparse representation for xi by

αi = argmin
α
‖α‖1, s.t. ‖x−Bα‖2

2 ≤ ε,

where B = [x1, . . .,xi−1,0,xi+1, . . .,xN , I].
end for
Construct an affinity matrix for X by setting Wi j =Wji = αi( j).
Outputs: �1-graph G = {X ,W} with the samples set X as graph vertices and W the graph
weight matrix.

Fig. 4 Illustration on the
positions of a testing sample
(red), its kindred neighbors
(yellow), and its
inhomogeneous neighbors
(blue) selected by (i) �1-graph
and (ii) k-nn graph on
samples from the USPS digit
database [12]

2.3.1 Discussions

1. Our �1-graph constructed in (4) is based on the assumption that the feature
dimension, m, is high and the data distribution can be well approximated as a
union of low-dimensional linear subspaces. Therefore, our �1-graph would not
be applicable for low dimensional, say 2 or 3 dimensions, feature spaces.

2. In our implementation, we found that data normalization, i.e., ‖xi‖2 = 1, is
needed for obtaining semantically reasonable coefficients.

3. The k-nn graph is flexible in terms of the selection metric, whose optimality is
heavily data dependent. In this work, we simply use the most common Euclidean
distance for searching the k nearest neighbors.

4. In many practical applications, it may happen that some data samples in X are
highly correlated, which may cause unstable solution for (4). In such cases, we
could add a small �2 norm regularization on the solution as in elastic net [26],

min
α ′
‖α ′‖1 +β‖α ′‖2

2, s.t. ‖x−Bα ′‖2
2 ≤ ε. (5)
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3 Learning with �1-Graph

An informative graph is critical for those graph-oriented learning algorithms. Simi-
lar to classical graphs constructed by k-nn or ε-ball method, �1-graph can be applied
with different learning algorithms for various tasks, e.g., data clustering, subspace
learning, and semi-supervised learning. In this section, we briefly introduce how to
use �1-graph for these tasks.

3.1 Spectral Clustering

Data clustering is the unsupervised classification of samples into different groups, or
more precisely, the partition of samples into subsets, such that the data within each
subset are similar to each other. Spectral clustering [19] is among the most popular
algorithms for this task, which is summarized as follows.

1. Find the symmetrical similarity matrix by W = (|W |+ |WT|)/2.
2. Compute the graph Laplacian matrix L = D−1/2WD−1/2, where D is a diagonal

matrix with Dii = ∑ j wi j .
3. Find eigenvectors c1,c2, . . . ,cK of L corresponding to the K largest eigenvalues,

and form the matrix C = [c1,c2, . . . ,cK ] by stacking the eigenvectors in columns.
4. Treat each row of C as a point in R

K , and cluster them into K clusters via
K-means.

5. Assign xi to the cluster j if the i-th row of the matrix C is assigned to the cluster j.

3.2 Subspace Learning

In many computer vision and pattern recognition problems, the signal or feature
involved is often in a very high-dimensional space, and thus, it is necessary and
beneficial to transform the data from the original high-dimensional space to a
low-dimensional one for alleviating the curse of dimensionality. A popular dimen-
sionality reduction and feature extraction technique is subspace learning, which
has been successfully applied in various recognition applications. Representative
subspace learning methods include principal component analysis (PCA) [13], fisher
linear discriminant analysis (LDA) [1], locality preserving projection (LPP) [11],
and neighborhood preserving embedding (NPE) [10]. As shown by Yan et al. [22],
all these works can be formulated into a unified graph embedding framework based
on an adjacency graph.

Similar to the graph construction process in locally linear embedding (LLE),
our �1-graph characterizes the neighborhood reconstruction relationships. In LLE,
the graph is constructed by reconstructing each datum with its k-nearest neighbors
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or samples within the ε-ball neighborhood. However, both LLE and its linear
extension, neighborhood preserving embedding (NPE) [10], rely on a global graph
parameter (k or ε), which may lead to over-fitting or under-fitting for different data
samples due to their uneven distribution in the signal space. In comparison, our �1-
graph can adaptively select the the most relevant neighbors based on the trade-off
between reconstruction quality and representation sparsity. Following the same idea
of the NPE algorithm, we apply our �1-graph for subspace learning.

The purpose of subspace learning is to search for a transformation matrix
P ∈ R

m×d (usually d � m), where m is the dimension of the original high-
dimensional space and d is the dimension of the projected low dimensional space.
The transformation matrix P is used to project the original high-dimensional data
in into a low-dimensional space while preserving the original data relationships.
The �1-graph discovers the underlying sparse reconstruction relationships among
the data samples, and it is desirable to preserve these reconstruction relationships
in the low-dimensional feature space. The pursue of such a transformation matrix
can be formulated as the following optimization problem

min
PTXXTP=I

N

∑
i=1
‖PTxi−

N

∑
j=1

Wi jP
Tx j‖2, (6)

where Wi j is determined by our �1-graph, and the constraints PTXXTP = I is to
remove the arbitrary scaling factor in the projection. After several easy mathematical
manipulations, the above optimization reduces to finding

min
PTXXTP=I

trace(PTXMXTP), (7)

where M = (I −W )T(I−W ). This minimization problem is readily to be solved
with the generalized eigenvalue decomposition as

XMXT pm+1− j = λ jXXT pm+1− j, (8)

where pm+1− j is the (m + 1 − j)-th column vector of the matrix P as well
as the eigenvector corresponding to the j-th largest eigenvalue λ j. The derived
transformation matrix is then used for dimensionality reduction, yi = PTxi, where yi

is the corresponding low dimensional representation of the sample xi.

3.3 Semi-supervised Learning

As shown in Figs. 1 and 2, our �1-graph is robust to data noise and better discovers
the underlying data relationships compared with conventional graphs based on k-
nearest neighbors. These properties recommend �1-graph as a good candidate for
label propagation over the graph. Semi-supervised learning has attracted much



148 J. Yang et al.

attention recently and has been widely used for both regression and classification
tasks. The main idea of semi-supervised learning is to utilize unlabeled data for
improving the classification and generalization capability on the testing data. Com-
monly, the unlabeled data is used as an extract regularization term in the traditional
supervised learning objective function. In this work, we build our unsupervised �1-
graph over both labeled and unlabeled data to better explore the data relationships
in the entire data sampling space. Then this �1-graph can serve as a regularization
for many supervised learning algorithms. In this work, we take Marginal Fisher
Analysis (MFA) [22] as an example for the supervised learning part. Similar to the
philosophy in [4, 23], the objective for �1-graph-based semi-supervised learning is
defined as

min
P

γSc(P)+ (1− γ)∑N
i=1 ‖PTxi−∑N

j=1 Wi jPTx j‖2

Sp(P)
,

where γ ∈ (0,1) is a threshold for balancing the supervised term and �1-graph
regularization term, and the supervised part is defined as

Sc(P) =∑
i

∑
j∈N+

k1
(i)

||PTxi−PTx j||2, (9)

Sp(P) =∑
i

∑
(i, j)∈Pk2

(li)

||PTxi−PTx j||2, (10)

where Sc indicates the intra-class compactness, which is represented as the sum
of distances between each point and its neighbors of the same class and N+

k1
(i) is

the index set of the k1 nearest neighbors of the sample xi in the same class, Sp

indicates the separability of different classes, which is characterized as the sum
of distances between the marginal points and their neighboring points of different
classes and Pk2(l) is a set of data pairs that are the k2 nearest pairs among the set
{(i, j), li = l, l j �= l}, and W is the weight matrix of the �1-graph. Similar to (6),
the optimum can be obtained via the generalized eigenvalue decomposition method,
and the derived projection matrix P is then used for dimensionality reduction and
consequent classification.

4 Experiments

In this section, we extensively evaluate the effectiveness of our �1-graph on three
learning tasks, including data clustering, subspace learning, and semi-supervised
learning. For comparison purpose, the classical k-nn graph and ε-ball graph with
different edge weight assignment approaches are implemented as the baselines. For
all algorithms based on k-nn and ε-ball graphs, the reported results are based on the
best tuned parameters k and ε.
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4.1 Data Sets

For all the experiments, we evaluate on three databases. The USPS handwritten digit
database [12] includes 10 classes (0–9 digit characters) and 11,000 samples in total.
We randomly select 200 samples for each digit for the experiments, and all of these
images are normalized to the size of 32× 32 pixels. The forest covertype database
(http://kdd.ics.uci.edu/databases/covertype/covertype.data.html/) was collected for
predicting forest cover type from cartographic variables. It includes seven classes
and 5,81,012 samples in total. We randomly select 100 samples for each type
in the following experiments for computational efficiency. The Extended YALE-
B database [14] contains 38 individuals and around 64 near frontal images under
different illuminations per individual, where the face images are manually cropped
and normalized to the size of 32× 32 pixels. All the images were taken against a
dark homogeneous background with the subjects in an upright and frontal position.

4.2 Spectral Clustering

For spectral clustering, we compare our �1-graph with Gaussian kernel graph [19],
LE-graphs (used in Laplacian Eigenmaps [3] algorithm), LLE-graphs (used in
LLE [17]), and also with the K-means clustering based on the low-dimensional
representations from principal component analysis (PCA) [13]. Two evaluation
metrics, accuracy (AC) and normalized mutual information (NMI) [24], are used
for performance evaluations. Suppose L is the ground truth sample label vector and
L̂ is the label vector predicted from the clustering algorithms, AC is defined as

AC =
1
N

N

∑
i=1

δ (L(i),M(L,L̂)(i)) (11)

where N denotes the total number of samples, δ (a,b) is the Kronecker delta function
(δ (a,b) equals to 1 if a = b, and 0 otherwise), M(L,L̂) is the resulting vector by

permuting L̂ in order to best match L.2 The Kuhn–Munkres algorithm can be used
to obtain the best mapping [6]. To avoid the clustering label permutation problem,
we use normalized mutual information (NMI) as a second metric,

NMI(L, L̂) =
MI(L, L̂)

max(H(L),H(L̂))
, (12)

where MI(L, L̂) is the mutual information between L and L̂,

2After clustering, the cluster i.d. assignment for the predicted clusters are arbitrary. In order to
compare with the ground truth, we need to find the assignment vector that best matches the ground
truth labels.

http://kdd.ics.uci.edu/databases/covertype/covertype.data.html/
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Fig. 5 Visualization of the clustering results with (a) �1-graph, (b) LE-graph, and (c) PCA for
three clusters (handwritten digits 1, 2 and 3 in the USPS database)

MI(L, L̂) =∑
l∈L
∑̂
l∈L̂

p(l, l̂) log

(
p(l, l̂)

p(l)p(l̂)

)

, (13)

and H(L) and h(L̂) denote the entropies of L and L̂, respectively. It is obvious that
NMI takes values in [0,1]. Unlike AC, NMI is invariant with the permutation of
labels and, therefore, is more efficient to compute.

The visualization of the clustering results (digit characters 1–3 from the USPS
database) for spectral clustering based on �1-graph and LE-graph and K-means
are plotted in Fig. 5, where different digits are denoted by different colors.
The coordinates of the points in (a) and (b) are obtained from the eigenvalue
decomposition in the third step of spectral clustering 3.1. It is clear that our �1-graph
can better separate different classes. Quantitative comparison results on clustering
are list in Tables 1–3 for the three databases, respectively. The cluster number K
indicates the number of classes used from the database as the data samples for
clustering. From the listed results, three observations can be made: (1) the clustering
results from �1-graph-based spectral clustering algorithm are consistently much
better than those baselines in terms of both metrics; (2) Spectral clustering based
on k-nn-based LLE-graph is relatively more stable compared with other baselines;
and (3) ε-ball-based algorithms show to be generally inferior, in both accuracy and
robustness, than the corresponding k-nn-based graphs, and thus for the subsequent
experiments, we only report the results from k-nn-based graphs. All the results listed
in the tables are from the best tuned algorithmic parameters, e.g., kernel parameter
for G-graph, the number of neighbors k and neighborhood diameter ε for LE-graphs
and LLE-graphs, and the retained PCA feature dimension for K-means.
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Table 1 Clustering accuracies, measured by normalized mutual information (NMI) and accuracy
(AC), for spectral clustering algorithms based on �1-graph, Gaussian kernel graph (G-graph), LE-
graphs, and LLE-graphs, as well as PCA + K-means on the USPS digit database

USPS LE-graph LLE-graph

Cluster # Metric �1-graph G-graph k-nn ε-ball k-nn ε-ball PCA+K-means

K = 2 NMI 1.000 0.672(110) 0.858(7) 0.627(3) 0.636(5) 0.717(4) 0.608(10)
AC 1.000 0.922 0.943 0.918 0.917 0.932 0.905

K = 4 NMI 0.977 0.498(155) 0.693(16) 0.540(6) 0.606(5) 0.465(7) 0.621(20)
AC 0.994 0.663 0.853 0.735 0.777 0.668 0.825

K = 6 NMI 0.972 0.370(120) 0.682(5) 0.456(6) 0.587(5) 0.427(9) 0.507(4)
AC 0.991 0.471 0.739 0.594 0.670 0.556 0.626

K = 8 NMI 0.945 0.358(150) 0.568(7) 0.371(4) 0.544(12) 0.404(7) 0.462(17)
AC 0.981 0.423 0.673 0.453 0.598 0.499 0.552

K = 10 NMI 0.898 0.346(80) 0.564(6) 0.424(5) 0.552(16) 0.391(4) 0.421(10)
AC 0.873 0.386 0.578 0.478 0.537 0.439 0.433

Table 2 Spectral clustering results on the forest covertype database

COV LE-graph LLE-graph

Cluster # Metric �1-graph G-graph k-nn ε-ball k-nn ε-ball PCA+K-means

K = 3 NMI 0.792 0.651(220) 0.554(16) 0.419(6) 0.642(20) 0.475(6) 0.555(5)
AC 0.903 0.767 0.697 0.611 0.813 0.650 0.707

K = 4 NMI 0.706 0.585(145) 0.533(13) 0.534(6) 0.622(20) 0.403(5) 0.522(13)
AC 0.813 0.680 0.608 0.613 0.782 0.519 0.553

K = 5 NMI 0.623 0.561(240) 0.515(12) 0.451(5) 0.556(10) 0.393(7) 0.454(15)
AC 0.662 0.584 0.541 0.506 0.604 0.448 0.486

K = 6 NMI 0.664 0.562(200) 0.545(6) 0.482(6) 0.602(20) 0.465(7) 0.528(8)
AC 0.693 0.585 0.564 0.523 0.632 0.509 0.547

K = 7 NMI 0.763 0.621(130) 0.593(9) 0.452(6) 0.603(11) 0.319(6) 0.602(17)
AC 0.795 0.642 0.629 0.498 0.634 0.394 0.631

Table 3 Spectral clustering results on the Extended YALE-B database

YALE-B LE-graph LLE-graph

Cluster # Metric �1-graph G-graph k-nn ε-ball k-nn ε-ball PCA+K-means

K = 10 NMI 0.738 0.07(220) 0.420(4) 0.354(16) 0.404(3) 0.302(3) 0.255(180)
AC 0.758 0.175 0.453 0.413 0.450 0.383 0.302

K = 15 NMI 0.759 0.08(380) 0.494(4) 0.475(20) 0.438(5) 0.261(5) 0.205(110)
AC 0.762 0.132 0.464 0.494 0.440 0.257 0.226

K = 20 NMI 0.786 0.08(290) 0.492(2) 0.450(18) 0.454(4) 0.269(3) 0.243(110)
AC 0.793 0.113 0.478 0.445 0.418 0.241 0.238

K = 30 NMI 0.803 0.09(50) 0.507(2) 0.417(24) 0.459(7) 0.283(4) 0.194(170)
AC 0.821 0.088 0.459 0.383 0.410 0.236 0.169

K = 38 NMI 0.776 0.11(50) 0.497(2) 0.485(21) 0.473(8) 0.319(4) 0.165(190)
AC 0.785 0.081 0.443 0.445 0.408 0.248 0.138

Note that the G-graph performs extremely bad in this case, possibly due to dramatic illumination
changes on this database
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4.3 Subspace Learning

In this section, classification experiments based on subspace learning are conducted
on the above three databases. To make the comparison fair, for all the evaluated
algorithms we first apply PCA as a preprocessing step for denoising by retaining
98% of the energy. To extensively evaluate the classification performances, on the
USPS database, we randomly sampled 10, 20, 30, and 40 images from each digit
for training. Similarly, on the forest covertype database, we randomly sampled 5,
10, 15, and 20 samples from each class for training, and on the Extended YALE-
B database, we randomly sampled 10, 20, 30, 40, and 50 training images for each
individual for training. All the remaining data samples are used for testing. We use
the classification error rate to measure the performance,

err = 1− ∑Nt
i=1 δ (ŷi,yi)

Nt
(14)

where ŷi is the predicted data label and yi is the ground truth label, Nt is the
total number of testing samples, and δ (ŷi,yi) is the Kronecker delta function.
The best performances of each algorithm over the tuned graph parameters and
feature dimensions are reported. The popular unsupervised subspace learning
algorithms PCA, NPE and LPP,3 and the supervised algorithm Fisherfaces [1]
are evaluated for comparison with our unsupervised subspace learning based
on our �1-graph. For LPP, we use the cosine metric in graph construction for
better performance. The detailed comparison results on classification are listed in
Tables 4–6 for the three databases. From these results, we observe that our �1-
graph based subspace learning algorithm is much better than all the other evaluated
unsupervised learning algorithms. On the forest covertype and Extended YALE-
B databases, our unsupervised �1-graph even performs better than the supervised
algorithm Fisherfaces. For all the classification experiments, we simply use the
classical nearest neighbor classifier [1,10,11] for fair comparisons with the literature
algorithms. The visualization of learned subspaces based on �1-graph and those
based on PCA, LPP, and NPE are shown in Fig. 6, from which we see that the PCA
bases are most similar to real faces as PCA is motivated for data reconstruction.

4.4 Semi-supervised Learning

We again use the above three databases for evaluating the effectiveness of the
semi-supervised algorithm based on �1-graph by comparing with algorithms based
on Gaussian-kernel graph, LE-graph, and LLE-graph. For all the semi-supervised

3Here we use the unsupervised version of NPE and LPP for fair comparison.
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Fig. 6 Visualization of the learned subspaces. They are the first ten basis vectors of (a) PCA,
(b) NPE, (c) LPP, and (d) �1-graph calculated from the face images in YALE-B database

Table 4 USPS digit recognition error rates (%) for different subspace
learning algorithms

USPS Unsupervised Supervised

Train # PCA NPE LPP �1-graph Fisherfaces

10 37.21(17) 33.21(33) 30.54(19) 21.91(13) 15.82(9)
20 30.59(26) 27.97(22) 26.12(19) 18.11(13) 13.60(9)
30 26.67(29) 23.46(42) 23.19(26) 16.81(15) 13.59(7)
40 23.25(25) 20.86(18) 19.92(32) 14.35(19) 12.29(7)

The numbers in the parentheses are the feature dimensions retained with the
best accuracies

Table 5 Forest cover recognition error rates (%) for different subspace
learning algorithms

COV Unsupervised Supervised

Train # PCA NPE LPP �1-graph Fisherfaces

5 33.23(17) 28.80(6) 35.09(12) 23.36(6) 23.81(6)
10 27.29(18) 25.56(11) 27.30(16) 19.76(15) 21.17(4)
15 23.75(14) 22.69(16) 23.26(34) 17.85(7) 19.57(6)
20 21.03(29) 20.10(10) 20.75(34) 16.44(6) 18.09(6)

learning algorithms, the supervised part is based on the Marginal Fisher Analysis
(MFA) [22] algorithm. For fair comparisons, the parameters k1 and k2 in MFA,
and γ are tuned for best performance. The detailed comparisons for different semi-
supervised leaning algorithms, the original supervised MFA algorithm and the
baseline PCA, are shown in Tables 7–9. The semi-supervised learning based on our
�1-graph generally achieves the highest classification accuracy compared with semi-
supervised learning based on other graphs and outperforms the supervised learning
counterparts without considering the unlabeled data.
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Table 6 Face recognition error rates (%) for different subspace learning
algorithms on the Extended YALE-B database

YALE-B Unsupervised Supervised

Train # PCA NPE LPP �1-graph Fisherfaces

10 44.41(268) 23.41(419) 24.61(234) 14.26(112) 13.92(37)
20 27.17(263) 14.62(317) 14.76(281) 5.30(118) 9.46(37)
30 20.11(254) 9.40(485) 8.65(246) 3.36(254) 12.45(34)
40 16.98(200) 5.84(506) 5.30(263) 1.93(143) 3.79(37)
50 12.68(366) 3.78(488) 3.02(296) 0.75(275) 1.64(37)

Table 7 USPS digit recognition error rates (%) for different semi-
supervised, supervised, and unsupervised learning algorithms

USPS Semi-supervised Supervised Unsupervised

Train # �1-graph LLE-graph LE-graph MFA [22] PCA

10 25.11(33) 34.63(9) 30.74(33) 34.63(9) 37.21(17)
20 26.94(41) 41.38(39) 30.39(41) 41.38(39) 30.59(26)
30 23.25(49) 36.55(49) 27.50(49) 44.34(47) 26.67(29)
40 19.17(83) 30.28(83) 23.55(83) 35.95(83) 23.35(25)

The numbers in the parentheses are the feature dimensions that give the best
accuracies

Table 8 Forest cover recognition error rates (%) for different semi-
supervised, supervised, and unsupervised learning algorithms

COV Semi-supervised Supervised Unsupervised

Train # �1-graph LLE-graph LE-graph MFA [22] PCA

5 22.50(9) 29.89(5) 25.81(7) 29.89(5) 33.23(17)
10 17.45(10) 24.93(10) 22.74(8) 24.93(10) 27.29(18)
20 15.00(8) 19.17(10) 17.38(9) 19.17(10) 23.75(14)
30 12.26(8) 15.32(8) 13.81(10) 16.40(8) 21.03(29)

Table 9 Face recognition error rates (%) for different semi-supervised,
supervised, and unsupervised learning algorithms on the Extended YALE-
B database

YALE-B Semi-supervised Supervised Unsupervised

Train # �1-graph LLE-graph LE-graph MFA [22] PCA

5 21.63(51) 33.47(51) 33.47(51) 33.47(51) 61.34(176)
10 9.56(61) 18.39(33) 18.39(33) 18.39(33) 44.41(268)
20 5.05(57) 14.30(29) 11.26(53) 14.30(29) 27.17(263)
30 2.92(73) 9.15(70) 7.37(71) 11.06(70) 20.11(254)
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5 Summary

In this chapter, we propose a new graph construction procedure based on the sparse
representation of each individual datum with respect to the remaining data samples
by �1-norm minimization, and thus the new graph is called �1-graph. The �1-graph is
robust to noise, does not have the local neighborhood assumption, and is especially
good at modeling high-dimensional feature spaces, where, empirically, many data
distributions can be well approximated by a union of much lower dimensional
linear subspaces. By seeking a sparse representation of each datum in terms of the
remaining data samples, we can select the low-dimensional linear subspace it lies
in. Therefore, the �1-graph conveys greater discriminating power compared with
the conventional graphs based on k-nearest neighbors and ε-ball. We apply this �1-
graph to three graph-oriented machine learning tasks, including spectral clustering,
subspace learning, and semi-supervised learning. In all cases, our new �1-graph
significantly outperforms the corresponding baselines on three different databases.
As a generic graph, the new �1-graph can be applied in many other tasks as well, e.g.,
transfer learning and label propagation, which will be left for future explorations.
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W911NF-09-1-0383.
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Graph-Embedding Discriminant Analysis
on Riemannian Manifolds for Visual Recognition

Sareh Shirazi, Azadeh Alavi, Mehrtash T. Harandi, and Brian C. Lovell

1 Introduction

Recently, several studies have utilised non-Euclidean geometry to address several
computer vision problems including object tracking [17], characterising the diffu-
sion of water molecules as in diffusion tensor imaging [24], face recognition [23,31],
human re-identification [4], texture classification [16], pedestrian detection [39] and
action recognition [22, 43].

Among various Riemannian manifolds, structures induced from subspaces and
symmetric positive definite matrices have been shown to be quite useful in computer
vision. Subspaces form a non-Euclidean and curved Riemannian manifold known
as a Grassmann manifold and are able to accommodate the effects of various
image variations. For example, a widely used approximation for photometric
invariance, under conditions of no shadowing and Lambertian reflectance, is a
linear subspace [1]. Moreover, subspaces can capture the dynamic properties of
videos [36].

In computer vision and machine learning disciplines, trace of covariance and
kernel matrices can be seen in many ways. One notable example is the covariance
descriptor introduced by Tuzel et al. [38]. Covariance descriptor is a structured
representation and comes with several advantages over traditional descriptors. A
single covariance matrix extracted from a region (2D regions in images or 3D
in videos) is usually enough to match the region in different views and poses.
Furthermore, the covariance matrix proposes a natural way of fusing multiple
features which might be correlated. The diagonal entries of the covariance matrix
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represent the variance of each feature and the non-diagonal entries represent
the correlations. The noise corrupting individual samples are largely filtered out
with an average filter during covariance computation. Nevertheless, the space of
covariance/correlation/kernel matrices (more generally symmetric positive definite
matrices) is not Euclidean; it is a Riemannian manifold of negative curvature.

Several studies show that better performance can be achieved when the geometry
of the Riemannian spaces is considered to its uttermost level [14, 15, 21, 34, 36, 39].
Exploiting the geometry of space is especially important in the computer vision
discipline since the notion of Euclidean space is not well supported for high-
dimensional vision data (c.f., think how inaccurate distances could be on a sphere
when the geometry is not considered). Inference on manifold spaces can be achieved
by embedding the manifolds in higher dimensional Euclidean spaces, which can be
considered as flattening the manifolds. In the literature, the most popular choice
for embedding manifolds is through considering tangent spaces [36, 39]. Two bold
examples are the pedestrian detection system by Tuzel et al. [39] and non-linear
mean shift [10] by Subbarao et al. [34]. Nevertheless, flattening the manifold
through tangent spaces is not without drawbacks. For example, only distances
between points to the tangent pole are equal to true geodesic distances. This is
restrictive and may lead to inaccurate modelling.

Instead of using tangent spaces to do inference on manifolds, we propose to
embed Riemannian manifolds into Reproducing Kernel Hilbert Spaces (RKHS).
This in turn opens the door for employing many kernel-based machine learning
algorithms [29]. As such, we tackle the problem of Discriminant Analysis (DA) on
Riemannian manifolds through RKHS space and propose a graph-based local DA
that utilises both within-class and between-class similarity graphs to characterise
intra-class compactness and inter-class separability, respectively. See Fig. 1 for a
conceptual example. Our graph-based DA is inspired by findings in the Euclidean
space that explain why the conventional formalism of DA is not optimal when data
comprises outliers and multi-modal classes and contains outliers. Our experiments
for several recognition problems show that considerable gains in discrimination ac-
curacy can be obtained by exploiting the geometrical structure and local information
on Riemannian manifolds.

2 Riemannian Geometry

In this study we are interested in two types of Riemannian manifolds, namely the
Grassmann manifolds and the manifolds of Symmetric, Positive Definite matrices
(SPD). Manifolds are smooth, curved surfaces embedded in higher dimensional
Euclidean spaces and formally defined as follows:

Definition 1. A topological spaceM is called a manifold if:
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Fig. 1 A conceptual illustration of the proposed approach. (a) Actions can be modelled as points
on the manifold M by linear subspaces. In this figure, two types of actions (“kicking” and
“swinging”) are shown. Having a proper geodesic distance between the points on the manifold, it
is possible to convert the action recognition problem into a point-to-point classification problem.
(b) By having a kernel in hand, points on the manifold can be mapped into an optimised RKHS
where not only certain local properties have been retained but also the discriminatory power
between classes has been increased

• M is Hausdorff,2 i.e. every pair X , Y can be separated by two disjoint open sets.
• M is locally Euclidean, that is, for every X ∈M there exists an open set U ⊂M

with X ∈ U and an open set V ⊂ R
n with a homeomorphism ϕ : U →V .

Riemannian manifolds are analytical manifolds endowed with a distance measure
which allows the measurement of similarity or dissimilarity (close or distant) of
points. The geodesic distance between two points X ,Y ∈M, denoted by dg (X ,Y ),
is defined as the minimum length over all possible smooth curves between X and Y .
A geodesic curve is a curve that locally minimises the distance between points.

Symmetric positive definite matrices of size D×D, e.g. non-singular covariance
matrices, form a connected Riemannian manifold (Sym+

D). The geodesic distance
between two points X and Y on Sym+

D can be computed as

dG (X ,Y ) = trace
{

log2
(

X−
1
2 Y X−

1
2

)}
(1)

In (1), log(·) is matrix logarithm operator and can be computed through singular
value decomposition (SVD). More specifically, let X = UΣUT be the SVD of the
symmetric matrix X , then

log(X) =U log(Σ)UT (2)

2 In a Hausdorff space, distinct points have disjoint neighbourhoods. This property is important to
establish the notion of a differential manifold, as it guarantees that convergent sequences have a
single limit point.
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where log(Σ) is a diagonal matrices where the diagonal elements are equivalent to
the logarithms of the diagonal elements of matrix Σ .

To formally define a Grassmann manifold and its geometry, we need to define the
quotient space of a manifold. A quotient space of a manifold, intuitively speaking,
is the result of “gluing together” certain points of the manifold. Formally, given∼ψ
as an equivalence relation onM, the quotient space ϒ =M/ ∼ψ is defined to be
the set of equivalence classes of elements ofM, i.e. ϒ = {[X ] : X ∈M} = {[Y ∈
M : Y ∼ψ X ] : X ∈M}.
Definition 2. A Grassmann manifold is a quotient space of the special orthogonal
group3 SO(n) and is defined as a set of p-dimensional linear subspaces of Rn.

In practice an element X of Gn, p is represented by an orthonormal basis as a n× p
matrix, i.e. XTX = I p. The geodesic distance between two points on the Grassmann
manifold can be computed as:

dG (X ,Y ) = ‖Θ‖2 (3)

whereΘ = [θ1,θ2, . . . ,θp] is the principal angle vector, i.e.:

cos(θi) = max
xi∈X , y j∈Y

xT
i y j (4)

subject to xT
i xi = yT

i yi = 1, xT
i x j = yT

i y j = 0, i �= j. The principal angles have the
property of θi ∈ [0,π/2] and can be computed through SVD of XTY [11].

3 Kernel Analysis on Riemannian Manifolds

In this section, we first overview the essentials of kernel analysis on Riemannian
manifolds, followed by elucidating graph embedding DA in Sect. 3.2 and how to
accomplish classification in Sect. 3.3.

3.1 Background

Given a set of input/output data {(X1, l1),(X2, l2), . . . ,(XN , lN)}, where Xi ∈M is
a Riemannian point and li ∈ {1,2, . . . ,C} is the corresponding class label, we are
interested in optimisation problems in the form of Tikhonov regularisation [35]:

max{J(〈W,Φ(X 1)〉, . . . ,〈W,Φ(X N)〉, l1, . . . , lN)+λΩ(W) : W ∈H} (5)

3 Special orthogonal group SO(n) is the space of all n×n orthogonal matrices with the determinant
+1. It is not a vector space but a differentiable manifold, i.e. it can be locally approximated by
subsets of a Euclidean space.
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Here, H is a prescribed Hilbert space of dimension h (h could be infinity)
equipped with an inner product 〈·, ·〉, Ω :H→R is a regulariser, J :

(
R

h
)N×YN →

R is a cost function. For certain choices of the regulariser, solving (5) reduces
to identifying N parameters and not the dimension of H. This is more formally
explained by the representer theorem [29] which states that the solution Ŵ of (5) is
a linear combination of the inputs when the regulariser is the square of the Hilbert
space norm. For vector Hilbert spaces, this result is simple to prove and dates back
to 1970s [18]. Argyriou et al. [2] showed that the representer theorem holds for
matrix Hilbert spaces as well.

Implicitly embedding Riemannian manifolds into RKHS is achieved through a
Riemannian kernel. A function k :M×M→ R

+ is a Riemannian kernel provided
that it is positive definite and well defined for all X ∈M.

For the Grassmann manifold Xi ∈ GD,m, the latter criterion means that the kernel
should be invariant to various representations of the subspaces, i.e. k(X ,Y ) =
k(XQ1,YQ2), ∀ Q1,Q2 ∈ O(m), where O(m) indicates orthonormal matrices of
order m [14]. The repertoire of Grassmann kernels includes Binet-Cauchy [41]
and projection kernels [14]. Furthermore, the first canonical correlation of two
subspaces forms a pseudo kernel4 on Grassmann manifolds [15]. The three kernels
are, respectively, shown below:

kBC(XX ,Y ) = det
(
XTYY TX

)
(6)

kproj(X ,Y ) = Tr
(
XTYY TX

)
(7)

kCCs(X ,Y ) = max
x∈X , y∈Y

xTy (8)

For the Sym+
D , in [16] a pseudo kernel based on geodesic distances was devised

as followed:
kR (X ,Y ) = exp{−σ−1dG (X ,Y )} (9)

where dG (X ,Y ) is obtained using (1). Very recently, Sra et al. introduced the Stein
kernel using Bregman matrix divergence as follows [33]:

k(X ,Y ) = e−σS(X ,Y ) = 2dσ
√

det(X)σ det(Y )σ

det(X +Y)σ
(10)

In (10), S(X ,Y ) is the symmetric Stein divergence and defined as:

S(X ,Y )� log

(
det

(
X +Y

2

))
− 1

2
log(det(XY )) , for X ,Y � 0 (11)

4 A pseudo kernel is a function where the positive definiteness is not guaranteed to be satisfied for
whole range of the function’s parameters. Nevertheless, it is possible to convert a pseudo kernel
into sa true kernel, as discussed, for example, in [9].
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3.2 Graph Embedding Discriminant Analysis on Riemannian
Manifolds

A graph (V ,G) in our context refers to a collection of vertices or nodes, V , and
a collection of edges that connect pairs of vertices. We note that G is a symmetric
matrix with elements describing the similarity between pairs of vertices. Moreover,
the diagonal matrix D and the Laplacian matrix L of a graph are defined as L =
D−G, with the diagonal elements of D obtained as D(i, i) = ∑ j G(i, j).

Given N labelled points X = {(Xi, li)}N
i=1 from the underlying Riemannian

manifold M, where Xi ∈RD×m and li ∈ {1,2, . . . ,C}, with C denoting the number
of classes, the local geometrical structure of M can be modelled by building a
within-class similarity graph Gw and a between-class similarity graph Gb. The
simplest forms of Gw and Gb are based on the nearest neighbour graphs defined
below:

Gw(i, j) =

{
1, if Xi ∈ Nw(X j) or X j ∈ Nw(Xi)

0, otherwise
(12)

Gb(i, j) =

{
1, if Xi ∈ Nb(X j) or X j ∈ Nb(Xi)

0, otherwise
(13)

In (12), Nw(Xi) is the set of νw neighbours
{

X1
i ,X

2
i , . . . ,X

v
i

}
, sharing the same

label as li. Similarly in (13), Nb(Xi) contains νb neighbours having different labels.
We note that more complex similarity graphs, like heat kernel graphs, can also be
used to encode distances between points on Riemannian manifolds [27].

Our aim is to simultaneously maximise a measure of discriminatory power and
preserve the geometry of points. This can be formalised by finding W :Φ (Xi)→Y i

such that the connected points of Gw are placed as close as possible, while the
connected points of Gb are moved as far as possible. As such, a mapping must be
sought by optimising the following two objective functions:

f1 = min
1
2∑i, j ‖Y i−Y j‖2Gw(i, j) (14)

f2 = max
1
2∑i, j

‖Y i−Y j‖2Gb(i, j) (15)

Equation (14) punishes neighbours in the same class if they are mapped far away,
while (15) punishes points of different classes if they are mapped close together.

According to the representer theorem [29], the solution W = [Γ 1|Γ 2| · · · |Γ r],
can be expressed as a linear combination of data points, i.e. Γ i = ∑N

j=1 wi, jφ (X j).
More specifically:

Y i = (〈Γ 1,φ (Xi)〉 ,〈Γ 2,φ (Xi)〉 , . . . ,〈Γ r,φ (Xi)〉)T (16)
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Since 〈Γ l ,φ (Xi)〉 = ∑N
j=1 wl, j Tr

(
φ (X j)

T φ (Xi)
)
= ∑N

j=1 wl, jk (X j,Xi), Y i =

W TKi, with Ki = (k(Xi,X1),k(X i,X2), . . . ,k(Xi,XN))
T and

W =

⎛

⎜
⎜
⎜
⎝

w1,1 w1,2 · · · w1,r

w2,1 w2,2 · · · w2,r
...

...
...

...
wN,1 wN,2 · · · wN,r

⎞

⎟
⎟
⎟
⎠

Plugging this back into (14) results in:

1
2∑i, j
‖Y i−Y j‖2Gw(i, j)

=
1
2∑i, j
‖W TKi−WTK j‖2Gw(i, j)

=∑
i

Tr
(
W TKiK

T
i W
)
Gw(i, i)−∑

i, j
Tr
(
W TK jK

T
i W
)
Gw(i, j)

= Tr
(
W T

KDwK
TW
)− Tr

(
W T

KGwK
TW
)

(17)

where K= [K1|K2| · · · |KN ]. Considering that Lb = Db−W b, in a similar manner it
can be shown that (15) can be simplified to:

1
2∑i, j ‖Y i−Y j‖2Gb(i, j)

= Tr
(
W T

KDbK
TW
)− Tr

(
W T

KGbK
TW
)

= Tr
(
W T

KLbK
TW
)

(18)

To solve (14) and (15) simultaneously, we need to add the following normalising
constraint to the problem:

Tr
(
W T

KDwK
TW
)
= 1 (19)

This constraint enables us to convert the minimisation problem (14) into a
maximisation one. Consequently, both equations can be combined into one max-
imisation problem. Moreover, as we will see later, the imposed constraint acts as a
norm regulariser in the original Tikhonov problem (5), thus satisfying the necessary
condition of the representer theorem.

Plugging (19) into (14) results in:

min
{

Tr
(
W T

KDwK
TW
)− Tr

(
W T

KGwK
TW
)}

= min
{

1− Tr
(
W T

KGwK
TW
)}

= max
{

Tr
(
W T

KGwK
TW
)}

(20)
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subject to the constraint shown in (19). As a result, the max versions of (14) and
(15) can be merged by the Lagrangian method as follows:

max
{

Tr
(
W T

K(Lb +βGw)K
TW
)}

subject to Tr
(
W T

KDwK
TW
)
= 1 (21)

where β is a Lagrangian multiplier. The solution to the optimisation in (21) can be
sought as the r largest eigenvectors of the following generalised eigenvalue problem:

K{Lb +βGw}KTW = λKDwK
TW (22)

We note that in (22), the imposed constraint (19) serves as a norm regulariser and
satisfies the representer theorem condition. Algorithm 1 assembles all the above
details into pseudo-code for Riemannian Graph Embedding Discriminant Analysis
(RGDA) training algorithm.

3.3 Classification

Upon acquiring the mapping W , the matching problem over Riemannian manifolds
is reduced to classification in vector spaces. More precisely, for any query image
set Xq, a vector representation using the kernel function and the mapping W is
acquired, i.e. Vq = W TKq, where Kq =

(〈
φ(X1),φ(Xq)

〉
,
〈
φ(X 2),φ(Xq)

〉
, . . . ,

〈
φ(XN),φ(X q)

〉)T
. Similarly, gallery points Xi are represented by r dimensional

vectors Vi = W TKi and classification methods such as Nearest-Neighbour or
Support Vector Machines [7] can be employed to label Xq.

4 Experiments

In this section we investigate the performance of the proposed RGDA method on
several classification tasks, including face and object recognition, action recog-
nition, texture classification and person re-identification. In the sequel, we first
study RGDA using Grassmann geometry followed by evaluating RGDA over SPD
manifolds.

4.1 Experiments on Grassmann Manifolds

Yamaguchi et al. [42] addressed the problem of face recognition from sets of face
images and proposed to model set samples through a linear subspace. Image-sets can
be seen as extension of videos since the sequential information is not considered.
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Algorithm 1: Pseudocode for training Riemannian graph-embedding
discriminant analysis (RGDA).

Input:

• Training set X= {(X i, li)}N
i=1 from the underlying Riemannian manifold where

li ∈ {1,2, · · · ,C}, and C denoting the number of classes. For the Grassmann manifold
GD,m, Xi ∈ R

D×m is a subspace. For the SPD manifold Sym+
D , Xi ∈R

D×D is a
SPD matrix.

• A kernel function ki j , for measuring the similarity between two points on the Riemannian
manifold

Output: The projection matrix W = [ϒ 1|ϒ 2| · · · |ϒ r],
1: Compute the Gram matrix [K]i j for all Xi, X j

2: for i = 1→ N−1 do
3: for j = i+1→ N do
4: Compute the geodesic distances dg(i, j) between Xi and X j .
5: dg( j, i) = dg(i, j)
6: end for

7: end for
8: Gw← 0N×N

9: Gb← 0N×N {% Use the obtained dg(i, j) to determine neighbourhoods in the following loop.}
10: for i = 1→ N do
11: if (X j is in the first kw nearest neighbours of Xi) and (l j == li) then
12: Gw(i, j)← 1
13: Gw( j, i)← 1
14: end if
15: if (X j is in the first kb nearest neighbours of Xi) and (l j �= li) then
16: Gb(i, j)← 1
17: Gb( j, i)← 1
18: end if
19: end for
20: Dw← 0N×N

21: Db← 0N×N

22: Dw(i, i)← ∑ j Gw(i, j)
23: Db(i, i)← ∑ j Gb(i, j)
24: Lb← Db−Gb
25: {ϒi, λ̃i}r

i=1← generalised eigenvectors and eigenvalues of K{Lb +βGw}KTW = λKDwK
TW

{( λ̃1 ≥ λ̃2 ≥ ·· · λ̃r)} {In Matlab and Octave, The generalised eigenvalue problem
Av = λBv can be solved by the command eig(A,B)}

Modelling image-sets by linear subspaces has been shown to deliver improved
performance in the presence of practical issues such as misalignment as well as
variations in pose and illumination [14, 15, 41]. An image-set F= {f(t)}τt=1 ; f(t) ∈
R

n, where fi is the vectorised representation of image i, can be represented on
the Grassmann manifold through any orthogonalisation procedure like SVD. More
specifically, let F = UDV T be the SVD of F. The first p columns of U represents
an optimised subspace of order p (in the mean square sense) for F and can be seen
as point on manifold Gn, p.
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Fig. 2 Examples of appearance variations in (a) BANCA, and (b) CMU-PIE. The variations
include image quality, pose, illumination and expression

Here we consider three image-set classification problems on Grassmann mani-
fold: face, object and action recognition.

4.1.1 Face and Object Recognition

For the face recognition task we used the CMU-PIE [30] and BANCA [3] datasets.
CMU-PIE contains images of 68 people captured under 13 poses, 43 illuminations
conditions, and with 4 expressions. In our experiments, near frontal poses (c05, c07,
c09, c27, c29) were used. See Fig. 2 for examples of the variations. We generated
204 image sets as training data and 204 image sets as test data. Images were
cropped to the internal part of the face (i.e. closely cropped, no background) and
downsampled to 64× 64 pixels.

BANCA contains image sets for 52 people (26 males and 26 female). For each
person video recordings were made under various conditions (illumination, pose and
camera variations), while the person was talking. In each condition two recordings
were made per person and 5 images were extracted from each video. We generated
150 image sets as training data and 150 sets as test data. All faces were closely
cropped and resized to 64× 64.

For the object recognition task, we used the ETH-80 dataset [20] which contains
images of eight object categories: apples, cows, cups, dogs, horses, pears, tomatoes
and cars. Each category includes ten object subcategories (e.g. various dogs) in 41
orientations, resulting in 410 images per category. Examples are shown in Fig. 3.
We resized the images to 64× 64. Unlike the face images mentioned above, the
background was kept. We generated 24 image sets as gallery data and 56 sets as
probe data. Following [8, 14, 41], normalised pixel intensities were used as image
features.

The proposed RGDA algorithm was compared against: (1) the kernel version
of Affine Hull Method (KAHM) [8] and (2) Grassmann Discriminant Analysis
(GDA) [14].

In KAHM images are considered as points in a linear or affine feature space,
while image sets are characterised by a convex geometric region (affine or convex
hull) spanned by their feature points. GDA can be considered as an extension of
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Fig. 3 (a) Examples from the eight object categories in the ETH-80 dataset; (b) examples of
various classes within an object category

Table 1 Average correct
recognition rate for image set
matching using KAHM [8],
GDA [14], and the RGDA
approach

Method CMU-PIE BANCA ETH-80

KAHM [8] 46.60 (6.6) 19.87 (1.2) 69.11 (5.1)
GDA [14] 24.07 (9.8) 46.60 (2.9) 83.21 (5.7)
RGDA 68.47 (6.8) 63.00 (2.5) 91.96 (3.1)

The standard deviation is shown in brackets

kernel discriminant analysis over Grassmann manifolds [14]. In GDA, a transform
over the Grassmann manifold is learned to simultaneously maximise a measure of
inter-class distances and minimise intra-class distances. RGDA can be considered as
an extension of GDA, where a local discriminant transform over Grassmann man-
ifolds is learned. This is achieved by incorporating local similarities/dissimilarities
through within-class and between-class similarity graphs.

The results are presented in Table 1. For each dataset (CMU-PIE, BANCA and
ETH-80), we created ten random splits of training and testing sets and reported the
mean and standard deviation. Bar one case, the results indicate that the proposed
GSR approach obtains the highest performance. The improvement over KAHM and
GDA is especially remarkable on the BANCA and CMU-PIE datasets.

4.1.2 Action Recognition

The ballet dataset contains 44 real video sequences of 8 actions collected from an
instructional ballet DVD [40].5 The dataset consists of 8 complex motion patterns
performed by 3 subjects. The actions include: ‘hand opening’, ‘leg swinging’,
‘jumping’, ‘turning’, ‘hopping’ and ‘standing still’. Figure 4 shows samples. This
dataset is very challenging due to the significant intra-class variations in terms of
speed, spatial and temporal scale, clothing and movement variations.

Available samples of each action were randomly split into training and testing
set (the number of actions in both training and testing sets were fairly even). The
process of random splitting was repeated ten times and the average classification

5The study in [40] addresses the problem of recognising actions in still images, which is different
from the work presented here.
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Fig. 4 Examples of the Ballet dataset

Table 2 Recognition accuracy (in %) along its standard deviation for the Ballet dataset
using Grassmann geodesic distance [36], Kernel Affine Hull method (KAHM) [8], Grassmann
Discriminant Analysis (GDA) [14] and the proposed RGDA approach

Method Geodesic distance KAHM [8] GDA [14] RGDA

Recognition accuracy 77.34%±1.8 79.71%±2.3 78.05%±2.9 83.08%±1.8

accuracy is reported in Table 2. For comparison, the RGDA algorithm is contrasted
with geodesic distance on Grassmann manifolds (3), KAHM [8] and GDA [14]. In
this experiment, for Grassmann-based analysis, actions were modelled by image-
sets of order 10. Studying Table 2 reveals that the RGDA algorithm obtains
the highest accuracy and outperforms state-of-the-art methods KAHM and GDA
significantly.

4.2 Experiments on SPD Manifolds

Mathematically, a covariance descriptor can be defined as follows: Let {fi}N
i=1 ; fi ∈

R
n be the feature vectors from the region of interest of an image or video, then the

covariance descriptor of this region C ∈ Sym+
D is defined as:

C =
1
N

N

∑
i=1

(fi−m) (fi−m)T (23)

where m is the mean feature vector. In the following text, we study how covariance
descriptors and the induced geometry can be exploited for face recognition, texture
classification and people re-identification.



Graph-Embedding Discriminant Analysis on Riemannian Manifolds for Visual . . . 169

Fig. 5 Examples of closely cropped faces from the FERET ‘b’ subset

4.2.1 Face Recognition

For the face recognition task, we considered the subset ‘b’ of the FERET dataset [25].
This subset includes 1,400 images from 198 subjects. Each image is closely cropped
to merely include the face and then downsampled to 64× 64. Figure 5 shows
examples of the FERET dataset.

To evaluate the performance, we created three tests with various pose angles.
In all the tests, training data consisted of the images labeled as ‘bj’, ‘bk’ and ‘bf’
(i.e. frontal image with illumination, expression and small pose variations). Images
marked as ‘bd’, ‘be’ and ‘bg’(i.e. non-frontal images) were used as three separate
test sets. In our method, each face image is represented by a 43× 43 covariance
matrix as a point on the Riemannian manifold. To this end, for every pixel I(x,y),
we then computed Gu,v(x,y) as the response of a 2D Gabor wavelet [19], centered
at x,y with orientation u and scale v. To be specific, we considered the number of
scales and orientations to be 5 and 8, respectively.

Gu,v(x,y) =
k2

v

4π2 ∑t,s
e−

k2
v

8π2 ((x−s)2+(y−t)2)
(

eikv((x−t)cos(θu)+(y−s)sin(θu))− e−2π2
)

with kv =
1√

2v−1
and θu =

πu
8 . Then the feature vector is defined as following:

Fx,y= [ I(x,y), x, y, |G0,0(x,y)|, . . ., |G0,7(x,y)|, |G1,0(x,y)|, . . ., |G4,7(x,y)| ]

Table 3 shows a comparison of RGDA against three Euclidean space approaches,
PCA [7], KPCA [7], and LDA [7], applied on Gabor features. The results show
that the proposed approach outperforms PCA with considerably better results.
Furthermore, the results illustrate that the overall performance of RGDA is better
by a notable margin. In addition, although images labelled with ‘bg’ and ‘bd’
represent the same pose variation (in different directions), results indicate a better
performance for all the algorithms on ‘bg’. Training data in ‘bf’ includes face
images with −15 degree pose angle which is closer to the pose angle of test data
in ‘bg’ comparing with the ones in ‘bd’. This explains the superior performance of
‘bg’.
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Table 3 Recognition accuracy (in %) for the face recognition task using
PCA [37], LDA [6], and the proposed RGDA approach

Gabor + PCA Gabor + KPCA Gabor + LDA
RGDA
(proposed)

bd 24.50 42.00 61.50 78.00
be 52.00 73.50 92.00 98.50
bg 74.00 94.00 99.00 98.50
average 50.16 69.80 84.16 91.67

Fig. 6 Samples of Brodatz texture dataset [26]

4.2.2 Texture Classification

To examine RGDA’s performance on classification using the Brodatz texture dataset
[26] (Examples are shown in Fig. 7, we have Followed the test protocol advised
in [32]. Nine test scenarios with various number of classes were generated. The test
scenarios included 5-texture (‘5c’, ‘5m’, ‘5v’, ‘5v2’, ‘5v3’), 10-texture (‘10’, ‘10v’)
and 16-texture (‘16c’, ‘16v’) mosaics. To create a Riemannian manifold, first step
was downsampeling each image to 256× 256, followed by splitting them into 64
regions of size 32× 32.

The feature vector for each pixel I (x,y) is defined as:

F(x,y)=

[
I (x,y) ,

∣∣
∣
∣
∂ I
∂x

∣∣
∣
∣ ,
∣∣
∣
∣
∂ I
∂y

∣∣
∣
∣ ,
∣∣
∣
∣
∂ 2I
∂x2

∣∣
∣
∣ ,
∣∣
∣
∣
∂ 2I
∂y2

∣∣
∣
∣

]

Each region is described by a 5× 5 covariance descriptor computed based
on these features. For each test scenario, 25 covariance matrices per class were
randomly selected to construct training data and the rest was used for testing.
The random selection of training/testing data was repeated 20 times. Finally, for
any covariance descriptor we find the nearest neighbour from the training set and,
respectively, assign the corresponding image class to it.

Figure 7 compares the proposed RGDA method against and TSC [31]. The results
indicate that the proposed RGDA achieves better performance on all the tests except
for the ‘5c’ test.
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Fig. 7 Performance on the Brodatz texture dataset [26] for Tensor Sparse Coding (TSC) [32] and
the proposed REDA approach. The black bars indicate standard deviation

Fig. 8 Examples of pedestrians in the ETHZ dataset

4.2.3 Person Re-identification

In this section we test the performance of RGDA method for person reidentification
task on the modified ETHZ dataset [28]. The original version of this dataset was
captured from a moving camera [12], and it has been used for human detection.
The main challenging aspects of ETHZ dataset are variations in pedestrian?s
appearances and occlusions. Some sample images of the ETHZ dataset are shown
in Fig. 9.

This dataset contains three video sequences. Table 4 summarises the information
about this dataset.

We downsampled all the images to 64× 32. For each subject, training set
consisted of ten randomly selected images and the rest used for the test set. To
generalise the practical assessment of the algorithm, random selection of the training
and testing data was repeated 20 times.
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Fig. 9 Performance on Sequences 1, 2, and 3 of the ETHZ dataset (top, middle and bottom
panels, respectively), in terms of Cumulative Matching Characteristic curves. The proposed RGDA
method is compared with Histogram Plus Epitome (HPE) [5], Symmetry-Driven Accumulation of
Local Features (SDALF) [13]
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Table 4 The ETHZ dataset SEQ 1 SEQ 2 SEQ 3

Num of people 83 35 28
Total Num of images 4,857 1,936 1,762

To create points on the Riemannian manifold, a feature vector was formed for
each pixel using the position of the pixel (x and y), the corresponding colour
information (Rx,y, Gx,y and Bx,y) and the gradient and Laplacian for colour C,
defined as C′x,y=

[|∂C
/
∂x| , |∂C

/
∂y|] and C′′x,y=

[∣∣∂ 2C
/
∂x2
∣∣ ,
∣∣∂ 2C

/
∂y2
∣∣], respectively. Then

the representative of each image is the covariance matrix using the following feature:

Fx,y=
[

x, y, Rx,y, Gx,y, Bx,y, R′x,y, G′x,y, B′x,y, R′′x,y, G′′x,y, B′′x,y
]

We compared the proposed RGDA with Histogram Plus Epitome (HPE) [5] and
Symmetry-Driven Accumulation of Local Features (SDALF) [13]. The evaluation
is done in terms of cumulative matching characteristic (CMC) curves. The CMC
curve plots the percentage of the test queries whose correct match is within the top
n closest matches. Based on the results shown in Fig. 9, the proposed approach
achieves the highest accuracy on sequences 1 and 2. For sequence 3, RGDA obtains
a very similar performance to SDALF while HPE scores the lowest.

5 Summary

In this work, we showed how discriminant analysis can be reformulated on two
non-Euclidean spaces, namely the Grassmann and SPD manifolds. Inference on
manifold spaces can be achieved by embedding the manifolds in higher dimensional
Euclidean spaces, which can be considered as flattening the manifolds. In this
work we propose to embed Riemannian manifolds into Reproducing Kernel Hilbert
Spaces (RKHS). This in turn opens the door for employing many kernel-based
machine learning algorithms [29]. As such, we tackle the problem of Discriminant
Analysis (DA) on Riemannian manifolds through RKHS space and propose a graph-
based local DA that utilises both within-class and between-class similarity graphs
to characterise intra-class compactness and inter-class separability, respectively.

Thorough experiments on face and object recognition, action recognition, texture
classification and person re-identification showed that notable improvements in
discrimination accuracy can be obtained through graph-embedding analysis.
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A Flexible and Effective Linearization Method
for Subspace Learning

Feiping Nie, Dong Xu, Ivor W. Tsang, and Changshui Zhang

1 Introduction

In the past decades, a large number of subspace learning or dimension reduction
methods [2,16,20,32,34,37,44] have been proposed. Principal component analysis
(PCA) [32] pursues the directions of maximum variance for optimal reconstruction.
Linear discriminant analysis (LDA) [2], as a supervised algorithm, aims to maxi-
mize the inter-class scatter and at the same time minimize the intra-class scatter. Due
to utilization of label information, LDA is experimentally reported to outperform
PCA for face recognition, when sufficient labeled face images are provided [2].

To discover the intrinsic manifold structure of the data, nonlinear dimension
reduction algorithms such as ISOMAP [31], Locally linear embedding (LLE) [25],
Laplacian eigenmap (LE) [3], and local spline embedding (LSE) [35] were recently
developed. Yan et al. [37] recently demonstrated that several dimension reduction
algorithms (e.g., PCA, LDA, ISOMAP, LLE, LE) can be unified within a proposed
graph-embedding framework, in which the desired statistical or geometric data
properties are encoded as graph relationships. Recently, Zhang et al. [42–44] further
reformulated many dimension reduction algorithms into a unified patch alignment
framework with the same trick in [46]. Based on their patch alignment framework, a
new subspace learning method called discriminative locality alignment (DLA) was
also proposed [42, 44].
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While supervised learning algorithms generally outperform unsupervised learning
algorithms, the collection of labeled training data in supervised learning requires
expensive human labor [9, 48]. Meanwhile, it is much easier to obtain unlabeled
data. To utilize a large amount of unlabeled data as well as a relatively limited
amount of labeled data for better classification, semi-supervised learning methods
such as Transductive SVM [33], Co-Training [5], and graph-based techniques
[1,4,7,28,29,38,41,47,49] were developed and demonstrated promising results for
different tasks. However, most semi-supervised learning methods such as described
in [5, 12, 33, 47, 49] were developed for the problem of classification. The Manifold
Regularization (MR) method [4, 28, 29] can be also used for various learning
problems. In practice, MR extended Regression and SVM, respectively, to the
semi-supervised learning methods Laplacian regularized least squares (LapRLS)
and Laplacian Support Vector Machines (LapSVM) by adding a geometrically
based Laplacian regularization term. Recently, Cai et al. [7] and Song et al. [30]
independently extended LDA to semi-supervised discriminant analysis (SDA).

For the transductive learning method such as ISOMAP, LLE, LE, LSE, GFHF
and LGC, we only obtain the low-dimensional coordinates or the predicted labels
F ∈ R

m×c for the m training data. One of the major problems in transductive
learning is the out-of-sample problem, i.e., they do not yield a method for mapping
new data points that are not included in the training set. An effective method to
solve this problem is the linearization technique, which leads to subspace learning
(or dimensionality reduction) methods. For example, He et al. [13] developed
the Locality Preserving Projections (LPP) method, in which the linear projection
function is used for mapping new data. A strict and improved LPP can be found
in [22].

In this chapter, we introduce three linearization methods for subspace learning,
including rigid constrained method, two-step method with regression and a flexible
method. The rigid constrained method is overstrict since it imposes a constraint
that F = XTW + 1bT, i.e., the nonlinear F must be the same as the linear model
XTW + 1bT. The two-step linearization method relies heavily on the result F of the
first step. The flexible linearization method overcome these drawbacks. Specifically,
we set the prediction labels as F = h(X) + F0, where h(X) = XTW + 1bT is a
regression function for mapping new data points and F0 is the regression residue
modeling the mismatch between F and h(X). The flexible linearization method
aims to optimize the prediction labels F , the linear regression function h(X) and
the flexible regression residue F0 simultaneously. It is interesting to see that the first
two linearization methods are the two extreme cases of the flexible linearization
method.

Based on the flexible linearization method, we introduce a new framework
for semi-supervised and unsupervised subspace learning, referred to as Flexible
Manifold Embedding (FME), and FME/U, respectively [23]. FME can effectively
utilize label information from labeled data as well as the manifold structure from
both labeled and unlabeled data, and can better deal with the samples which reside
on a nonlinear manifold. We show the FME(FME/U) is a general framework, many
prior works, including the general graph embedding framework [37] are special
cases of this framework.



A Flexible and Effective Linearization Method for Subspace Learning 179

2 Brief Review of the Prior Work

We briefly review the prior semi-supervised learning work: Local and Global
Consistency (LGC) [47], Gaussian Fields and Harmonic Functions (GFHF) [49],
Manifold Regularization (MR) [4,28,29], and Semi-Supervised Discriminant Anal-
ysis (SDA) [7, 30]. We denote the sample set as X = [x1,x2, . . . ,xn,xn+1, . . . ,xm] ∈
R

f×m, where xi|ni=1 and xi|mi=n+1 are labeled and unlabeled data, respectively. For
labeled data xi|ni=1, the labels are denoted as yi ∈ {1,2, . . . ,c}, where c is the total
number of classes. We also define a binary label matrix Y ∈ B

m×c with Yi j = 1 if
xi has label yi = j; Yi j = 0, otherwise. Let us denote G = {X ,S} as an undirected
weighted graph with vertex set X and similarity matrix S ∈ R

m×m, in which each
element Si j of the real symmetric matrix S represents the similarity of a pair of
vertices. The graph Laplacian matrix L ∈ R

m×m is denoted as L = D− S, where D
is a diagonal matrix with the diagonal elements as Dii = ∑ j Si j,∀ i. The normalized

graph Laplacian matrix is represented as L̃ = D−
1
2 LD−

1
2 = I−D−

1
2 SD−

1
2 , where I

is an identity matrix. We also denote 0,1 ∈ R
m×1 as a vector with all elements as 0

and a vector with all elements as 1, respectively.

2.1 Local and Global Consistency and Gaussian Fields
and Harmonic Functions

LGC [47] and GFHF [49] estimate a prediction label matrix F ∈R
m×c on the graph

with respect to the label fitness (i.e., F should be close to the given labels for the
labeled nodes) and the manifold smoothness (i.e., F should be smooth on the whole
graph of both labeled and unlabeled nodes). Let us denote Fi. and Yi. as the i-th row
of F and Y . As shown in [47–49], LGC and GFHF minimize the objective function
gL(F) and gG(F), respectively:

gL(F) =
1
2

m

∑
i, j=1

∥
∥
∥
∥
∥

Fi.√
Dii
− Fj.√

D j j

∥
∥
∥
∥
∥

2

Si j+λ
m

∑
i=1
‖Fi.−Yi.‖2,

gG(F) =
1
2

m

∑
i, j=1

‖Fi.−Fj.‖2Si j +λ∞
n

∑
i=1

‖Fi.−Yi.‖2, (1)

where ‖A‖2 = trace(ATA), the coefficient λ balances the label fitness and the
manifold smoothness, and λ∞ is a very large number such that ∑n

i=1 ‖Fi.−Yi.‖2 = 0,
or Fi. =Yi. ∀i = 1,2, . . . ,n [48]. Notice that the objective functions gL(F) and gG(F)
in (1) share the same formulation:

Tr(FTMF)+Tr(F−Y )TU(F−Y), (2)

where M ∈ R
m×m is a graph Laplacian matrix and U ∈ R

m×m is a diagonal matrix.
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In LGC [47], M is the normalized graph Laplacian matrix L̃ and U is a diagonal
matrix with all elements as λ . In GFHF [49], M = L and U is also a diagonal matrix
with the first n and the rest m− n diagonal elements as λ∞ and 0, respectively.

2.2 Manifold Regularization

The manifold regularization [4, 28, 29] extends many existing algorithms, such as
ridge regression and SVM to their semi-supervised learning methods by adding
a geometrically based regularization term. We take LapRLS/L as an example to
briefly review MR methods. Let us define a linear regression function h(xi) =
W Txi + b, where W ∈ R

f×c is the projection matrix and b ∈ R
c×1 is the bias term.

LapRLS/L [29] minimizes the ridge regression errors and simultaneously preserves
the manifold smoothness, namely:

gM(W,b) = λA‖W‖2 +λITr(W TXLXTW )

+
1
n

n

∑
i=1

‖W Txi + b−YT
i. ‖2, (3)

where the two coefficients λA and λI balance the norm of W , the manifold
smoothness and the regression error.

2.3 Semi-supervised Discriminant Analysis

The core assumption in semi-supervised discriminant analysis (SDA) [7, 30] is
still the manifold smoothness assumption, namely, nearby points will have similar
representations in the lower-dimensional space. We define Xl = [x1,x2, . . . ,xn] as
the data matrix of labeled data, and denote the number of the labeled samples in
the i-th class as ni. Let us denote two graph similarity matrices S̃w, S̃b ∈ R

n×n,
where S̃w

i j = δyi,y j/nyi , S̃b
i j =

1
n − S̃w

i j. The corresponding Laplacian matrices of

S̃w, S̃b are represented as L̃w and L̃b, respectively. According to [37], the intra-
class scatter Sw and the inter-class scatter Sb of LDA can be rewritten as Sw =

∑n
i=1(xi− xyi)(xi − xyi)

T = XlL̃wXT
l , and Sb = ∑c

l=1 nc(xl − x)(xl − x)T = XlL̃bXT
l ,

where xl is the mean of the labeled samples in the l-th class and x is the mean of all
the labeled samples. The objective function in SDA is then formulated as:

gS(W ) =
|W TXlL̃bXT

l W |
|W T(Xl(L̃w + L̃b)XT

l +αXLXT +β I)W | , (4)

where L ∈R
m×m is the graph Laplacian matrix for both labeled and unlabeled data,

and α and β are two parameters to balance three terms. A new improved version of
the SDA with the trace ratio criterion [15] can be found in [14].



A Flexible and Effective Linearization Method for Subspace Learning 181

3 Linearization Methods for Subspace Learning

In the transductive learning setting such as the clustering, manifold learning
(nonlinear dimensionality reduction) and label propagation (GFHF and LGC),
we only obtain the F ∈ R

m×c for the m training data, where Fi. ∈ R
1×c is the

predicted label (clustering and label propagation) or the low-dimensional coordinate
(manifold learning) of the i-th training data point. Usually, we solve an optimization
problem to obtain the F :

min
F∈C

f (F) (5)

where C is a certain constraint on F and f (F) is a certain objective function on F .
One of the major problems in transductive learning is the out-of-sample problem,
i.e., it cannot handle new data points that are not included in the training set, which
limits its applications in practice. An effective method to solve this problem is
the linearization technique, which leads to subspace learning (or dimensionality
reduction) methods.

3.1 Linearization Method with Rigid Constraint

Assuming the solution F lies on a subspace spanned by the training data points
xi|mi=1, i.e. there is a linear mapping (projection) matrix W ∈ R

f×c and a bias b ∈
R

c×1 such that F = XTW + 1bT. Under this assumption, the problem (5) becomes

min
W,b,XTW+1bT∈C

f (XTW + 1bT). (6)

In subspace learning, a Tikhonov regularization term ‖W‖2 is usually added to avoid
overfitting. Thus, the problem (6) becomes

min
W,b,XTW+1bT∈C

f (XTW + 1bT)+ γ‖W‖2. (7)

We can obtain a projection matrix W by solving (7). For any data points x ∈ R
f×1,

we can obtain its predicted label or low-dimensional coordinate by the linear
mapping W Tx+ b.

Recall that manifold regularization extends a supervised subspace learning
method solving minW,b g(XT

l W + 1bT) (Xl denotes the labeled training data) to
its semi-supervised counterpart by minW,b g(XT

l W + 1bT) + γTr(W TXMXTW ) (X
denotes the labeled and unlabeled training data). It is interesting to note that one
of manifold regularization, LapRLS/L, can be viewed as a linearization of the
transductive learning problem (2) by the linearization method in (7). That is to
say, based on the linearization method in (7), LapRLS/L [29] is the out-of-sample
extension to the label propagation method in (2), parallel to that LPP [13] is the
out-of-sample extension to the manifold learning method, Laplacian eigenmap [3].
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3.2 Linearization Method with Two-Step Regression

Another linearization method is a two-step method based on linear regression [6,24].
After the F ∈ R

m×c is obtained by solving the transductive learning problem (5),
the linear mapping (projection) matrix W ∈ R

f×c and a bias b ∈ R
c×1 is learned

to best approximate the F by solving the following regularized least squares linear
regression problem:

min
W,b
‖XTW + 1bT−F‖2 + γ‖W‖2. (8)

One of the advantages of this linearization method is that it is efficient since there is
fast algorithm to solve the regularized least squares linear regression problem using
conjugate gradient method.

3.3 A New and Flexible Linearization Method

Linearization method with rigid constraint is overstrict since it assumes the nonlin-
ear F is exactly equal to the linear model XTW +1bT, while the linearization method
with two-step regression relies heavily on the first step result F . To overcome these
drawbacks, we propose a new and flexible linearization method. Specifically, as
shown in Fig. 1, we set the prediction labels as F = h(X) + F0, where h(X) =
XTW +1bT is a linear regression function for mapping new data points and F0 is the
regression residue modeling the mismatch between F and h(X), then simultaneously
optimize the F ∈C,F0,W,b by solving the following problem:

min
F∈C,F0,W,b

f (F)+ μ(‖W‖2 + γ‖F0‖2), (9)

The problem can be equivalently written as:

min
F∈C,W,b

f (F)+ μ(‖W‖2 + γ‖XTW + 1bT−F‖2), (10)

It is easily to see that when μ → 0 and μγ → ∞, the flexible linearization
method is reduced to the linearization method with rigid constraint, and when μ→ 0
and 0 < γ < ∞, the flexible linearization method is reduced to the linearization
method with two-step regression. The linearization method with rigid constraint
and the linearization method with two-step regression seems unrelated from their
formulations, it is interesting that these two linearization methods are the two
extreme cases of the flexible linearization method (μγ→ ∞ and μγ→ 0).
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F0

h(X) = XTW + 1bT

F = h(X) + F0

Fig. 1 Illustration of the flexible linearization method. This method aims to optimize the predic-
tion labels F , the linear regression function h(X), and the regression residue F0 simultaneously.
The regression residue F0 measures the mismatch between F and h(X)

4 Flexible Manifold Embedding with the Flexible
Linearization Method

In this section, based on the flexible linearization method, we introduce a new
framework for semi-supervised and unsupervised subspace learning, referred to as
Flexible Manifold Embedding (FME), and FME/U, respectively [23].

It is worth mentioning that FME and FME/U are linear methods, which are fast
and suitable for practical applications such as face, object, and text classification
problems. Note that as in most linear subspace learning methods, FME and FME/U
can be conducted in the Reproducing Kernel Hilbert Space (RKHS), which give rise
to Kernel FME (KFME) and Kernel FME/U (KFME/U) [40], and can also be easily
extended to two-dimensional or high-order tensor FME and FME/U.

4.1 Semi-supervised Flexible Manifold Embedding

As in (9), we assume that F = h(X)+F0 = XTW + 1bT +F0, where F0 ∈ R
m×c is

the regression residue modeling the mismatch between F and h(X). FME aims to
optimize the prediction labels F , the regression residue F0, and the linear regression
function h(X) simultaneously:

(F∗,F∗0 ,W
∗,b∗) = arg min

F,F0,W,b
Tr(F−Y )TU(F−Y)

+Tr(FTMF)+ μ(‖W‖2 + γ‖F0‖2), (11)
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where the two coefficients μ and γ are parameters to balance different terms, and
M ∈ R

m×m is the Laplacian matrix and U ∈ R
m×m is the diagonal matrix. Note that

similar idea was also discussed in the prior work [1, 27, 41] for binary classification
problems. Here, we extend this idea for dimension reduction in multi-class setting,
in which the class dependency can be captured by the extracted features.

Similarly as in LGC, GFHF, and LapRLS/L, the first two terms in (11) represent
the label fitness and the manifold smoothness, respectively. Considering that it is
meaningless to enforce the prediction labels Fi. and the given labels Yj. of different
samples (i.e., j �= i) to be close, we set the matrix U as the diagonal matrix with the
first n and the rest m− n diagonal elements as 1 and 0, respectively, similarly as in
LapRLS/L. In addition, the matrix M should be set as the graph Laplacian matrix
in order to utilize the manifold structure (i.e., F should be as smooth as possible
on the whole graph) in semi-supervised learning. While it is possible to construct
the Laplacian matrix M according to different manifold learning criterions [25, 35–
37, 39, 45], similarly as in GFHF and LapRLS/L, we choose the Gaussian function
to calculate M, namely, M = D− S, where D is a diagonal matrix with the diagonal
elements as Dii = ∑ j Si j,∀ i, and Si j = exp(−‖xi− x j‖2/t), if xi (or x j) is among k
nearest neighbors of x j (or xi); Si j = 0, otherwise.

The last two terms in (11) control the norm of projection matrix W and the
regression residue F0. In the current formulation of F , the regression function h(X)
and the regression residue F0 are combined. In practice, our work can naturally
map the new data points for dimension reduction by using the function h(X). The
regression residue F0 can model the mismatch between the linear regression function
XTW +1bT and the prediction labels F . Compared with LapRLS/L, we do not force
the prediction labels F to lie in the space spanned by all the samples X . Therefore,
our framework is more flexible and it can better cope with the samples which reside
on the nonlinear manifold. Moreover, the prior work [17] on face hallucination has
demonstrated that the introduction of a local residue can lead to better reconstruction
of face images.

Replacing F0 with F−XTW − 1bT, we have:

(F∗,W ∗,b∗) = arg min
F,W,b

Tr(F−Y)TU(F−Y )

+Tr(FTMF)+ μ(‖W‖2 + γ‖XTW + 1bT−F‖2), (12)

From then on, we refer to the objective function in (12) as g(F,W,b). First, we prove
that the optimization problem in (12) is jointly convex with respect to F , W and b.

Theorem 1. Denote U,M ∈ R
m×m, F,Y ∈ R

m×c, W ∈ R
f×c, b ∈ R

c×1. If matrices
U and M are positive semi-definite, μ ≥ 0 and γ ≥ 0, then g(F,W,b) = Tr(F −
Y )TU(F−Y )+Tr(FTMF)+μ(‖W‖2+γ‖XTW +1bT−F‖2) is jointly convex with
respect to F, W and b.

Proof. In function g(F,W,b), we remove the constant term Tr(Y TUY ), then
g(F,W,b) can be rewritten in matrix form as:
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g(F,W,b) =

Tr

⎡

⎣
F
W
bT

⎤

⎦

T

P

⎡

⎣
F
W
bT

⎤

⎦−Tr

⎡

⎣
F
W
bT

⎤

⎦

T⎡

⎣
2UY

0
0

⎤

⎦ ,

where

P =

⎡

⎣
μγI+M+U −μγXT −μγ1
−μγX μI+ μγXXT μγX1
−μγ1T μγ1TXT μγm

⎤

⎦ .

Thus in order to prove that g(F,W,b) is jointly convex with respect to F , W and
b, we only need to prove that the matrix P is positive semi-definite.

For any vector z = [zT
1 ,z

T
2 ,z3]

T ∈ R
(m+ f+1)×1, where z1 ∈ R

m×1 z2 ∈ R
f×1, and

z3 is a scalar, we have

zTPz

= zT
1 (μγI+M+U)z1− 2μγzT

1 XTz2− 2μγzT
1 1z3

+zT
2 (μI + μγXXT)z2 + 2μγzT

2 X1z3 + μγmzT
3 z3

= zT
1 (M+U)z1 + μzT

2 z2 + μγ(zT
1 z1− 2zT

1 XTz2

−2zT
1 1z3 + zT

2 XXTz2 + 2zT
2 X1z3 +mzT

3 z3)

= zT
1 (M+U)z1 + μzT

2 z2 + μγ(z1−XTz2− 1z3)
T

(z1−XTz2− 1z3).

So if U and M are positive semi-definite, μ ≥ 0 and γ ≥ 0, then zTPz ≥ 0 for any
z, and thus P is positive semi-definite. Therefore, g(F,W,b) is jointly convex with
respect to F , W and b.

A much more simple proof can be found from the fact that g(F,W,b) is a sum of
several convex functions, thus g(F,W,b) is jointly convex. �

To obtain the optimal solution, we set the derivatives of the objective function in
(12) with respect to b and W equal to zero. We have:

b =
1
m
(FT1−WTX1)

W = γ(γXHcXT + I)−1XHcF = AF, (13)

where A = γ(γXHcXT + I)−1XHc and Hc = I − 1
m 11T is used for centering the

data by subtracting the mean of the data. With W and b, we rewrite the regression
function XTW + 1bT in (12) as:

XTW + 1bT = XTAF +
1
m

11TF− 1
m

11TXTAF

= HcXTAF +
1
m

11TF = BF, (14)
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Algorithm 1: Procedure of FME

Given a binary label matrix Y ∈ B
m×c and a sample set X = [x1,x2, . . .,xm] ∈ R

f×m , where
xi|ni=1 and xi|mi=n+1 are labeled and unlabeled data respectively.
1: Set M as the graph Laplacian matrix L ∈ R

m×m, and U ∈ R
m×m as the diagonal matrix with

the first n and the rest m−n diagonal entries as 1 and 0 respectively.
2: Compute the optimal F with (17).
3: Compute the optimal projection matrix W with (13).

where B = HcXTA+ 1
m 11T. Replacing W and b to g(F,W,b) in (12), we arrive at:

F∗ = argmin
F

Tr(F−Y)TU(F−Y )+Tr(FTMF)

+μ(Tr(FTATAF)+ γTr(BF−F)T(BF−F)).

By setting the derivative of this objective function with respect to F as 0, the
prediction labels F are obtained by:

F = (U +M+ μγ(B− I)T(B− I)+ μATA)−1UY. (15)

Using HcHc = Hc = HT
c and μγATXHcXTA+ μATA = μγATXHc = μγHcXTA, the

term μγ(B− I)T(B− I)+ μATA in (15) can be rewritten as μγ(ATX − I)Hc(XTA−
I)+ μATA or μγATXHcXTA− 2μγHcXTA+ μγHc+ μATA. Then, we have:

μγ(B− I)T(B− I)+ μATA

= μγHc− μγ2HcXT(γXHcXT + I)−1XHc. (16)

By defining Xc = XHc, we can also calculate the prediction labels F by

F = (U +M+ μγHc− μγ2N)−1UY, (17)

where N = XT
c (γXcXT

c + I)−1Xc = XT
c Xc(γXT

c Xc + I)−1 = 1
γ I− 1

γ (γXT
c Xc + I)−1.

4.2 Unsupervised Flexible Manifold Embedding

We introduce a simplified version for unsupervised learning by setting the diagonal
elements of matrix U in (12) equal to 0. We also pursue the projection matrix W ,
the bias term b and the latent variable F simultaneously1:

1An alternative method is to solve minF,W,b,WTW=I Tr(FTMF)+ γ‖XTW + 1bT−F‖2), which is
equivalent to minF,W,WTW=I Tr(FTMF)+ γ‖XTW −F‖2).
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Algorithm 2: Procedure of FME/U

Given the unlabeled sample set as X = [x1,x2, . . .,xm] ∈R f×m.
1: Set M as the graph Laplacian matrix L ∈ R

m×m.
2: Compute the optimal F with (20) by generalized eigenvalue decomposition.
3: Compute the optimal projection matrix W with (13).

(F∗,W ∗,b∗) = arg min
F,W,b, FTVF=I

Tr(FTMF)

+μ(‖W‖2 + γ‖XTW + 1bT−F‖2), (18)

where V can be set as Hc, I is an identity matrix, and the coefficients μ and γ are
two parameters to balance different terms.

In unsupervised learning, the variable F can be treated as the latent variable,
denoting the lower dimensional representation. Similar to prior work (e.g., LE
[3] and LPP [13]), we constrain that F after centering operation lies in a sphere
(i.e., FTV F = I) to avoid the trivial solution F = 0, where we set V = Hc. Beside
unsupervised learning, the formulation in (18) is a general formulation, which can
be also used for supervised learning by using different matrices M and V . Again,
FME/U naturally provides a method for mapping new data points through the
regression function h(X) = XTW + 1bT. Compared with the prior linear dimension
reduction algorithms (such as PCA, LDA, LPP), the rigid mapping function F =
XTW in these methods is relaxed by introducing a flexible penalty term (i.e.,
regression residue ‖h(X)−F‖2) in (18).

Similarly, by setting the derivatives of the objective function in (18) with respect
to W and b to zero, W and b can be calculated by (13). Substituting W and b back
in (18), then we have:

F∗ = arg min
F,FTHcF=I

Tr(FTMF)+ μ(Tr(FTATAF)

+γTr(BF−F)T(BF−F)). (19)

According to (16), we rewrite (19) as:

F∗ = arg min
F,FTHcF=I

TrFT(M + μγHc− μγ2N)F

= arg min
F,FTHcF=I

TrFT(M− μγ2N)F, (20)

where N = XT
c (γXcXT

c + I)−1Xc = XT
c Xc(γXT

c Xc + I)−1. This objective function can
be optimized by generalized eigenvalue decomposition [37].
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4.3 Discussions with the Prior Work

In this section, we discuss the connection between FME and semi-supervised
algorithms LGC [47], GFHF [49], and LapRLS/L [29]. We also discuss the
connection between FME/U with graph embedding framework [37] and spectral
regression [8].

4.3.1 Connection Between FME and Semi-supervised Learning
Algorithms

Example 1. LGC and GFHF are two special cases of FME.

Proof. If we set μ = 0, then the objective function of FME in (12) reduces to (2),
which is a general formulation for both LGC and GFHF. Therefore, LGC and GFHF
are special cases of FME. �
Example 2. LapRLS/L is also a special case of FME.

Proof. If we set μ = λA
λI

and γ→∞ (i.e., μγ→∞) in (12), we have F = XTW +1bT.
Replacing F to (12), then we have a new formulation for FME:

g(W,b) = Tr(XTW + 1bT)TM(XTW + 1bT)+ μ‖W‖2

+Tr(XTW + 1bT−Y)TU(XTW + 1bT−Y ). (21)

If we further set M = L and the first n and the rest m− n diagonal elements of
the diagonal matrix U in (21) as 1

nλI
and 0, respectively, then g(W,b) is equal to

1
λI

gM(W,b) in (3). That is LapRLS/L is also a special case of FME. �

4.3.2 Connection Between FME/U and Graph Embedding Framework

Recently, Yan et al. [37] proposed a general graph-embedding framework to unify
a large family of dimension reduction algorithms (such as PCA, LDA, ISOMAP,
LLE, and LE). As shown in [37], the statistical or geometric properties of a
given algorithm are encoded as graph relationships, and each algorithm can be
considered as direct graph embedding, linear graph embedding, or other extensions.
The objective function in direct graph embedding is:

F∗ = arg min
F, FTV F=I

Tr(FTMF), (22)

where V is another graph Laplacian matrix (e.g., the centering matrix Hc) such that
V1 = 0 and 1TV = 0T.

While direct graph embedding computes a low-dimensional representation F
for the training samples, it does not provide a method to map new data points.
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For mapping out-of-sample data points, linearization and other extensions (e.g.,
kernelization and tensorization) are also proposed in [37]. Assuming a rigid linear
mapping function F =XTW +1bT, the objective function in linear graph embedding
is formulated as:

W ∗ = arg min
W, (XTW+1bT)TV (XTW+1bT)=I

Tr(XTW + 1bT)TM(XTW + 1bT),

= arg min
W, WTXVXTW=I

Tr(W TXMXTW ). (23)

Example 3. Direct graph embedding and its linearization are special cases of
FME/U.

Proof. If we set μ in (18) as 0, then the objective function of FME/U reduces to the
formulation of direct graph embedding in (22).

When μ → 0 and μγ → ∞ in (18), then we have F = XTW + 1bT. Replacing F
to (18) then the objective function of FME/U reduces to the formulation of linear
graph embedding in (23).

Therefore, direct graph embedding and its linearization are special cases of
FME/U. �

Note that one recently published semi-supervised dimension reduction method,
transductive component analysis (TCA) [18], is closely related to the FME/U.
However, TCA is a special case of Graph Embedding Framework [37], in which the
matrix M is a weighted sum of two matrices M1 and M2, i.e. M = M1 +βM2, where
β > 0 is a trade-off parameter to control the importance between the two matrices.
The first matrix M1 = (I +αL)−1(αL) models two terms related to the manifold
regularization and the embedding (similarly as in (18)), where α > 0 is a parameter
to balance two terms. The second matrix M2 models the average margin criterion
of the distance constraints for labeled data. Moreover, the prediction label matrix is
constrained as F = XTW . In comparison, the FME and FME/U do not constrain
F = XTW on the prediction labels or the lower-dimensional representation. For
semi-supervised setting, the (17) in FME can be solved by a linear system, which is
much more efficient than solving the eigenvalue decomposition problem as in TCA
and many other dimension reduction methods [2, 7, 13].

4.3.3 Connection Between FME/U and Spectral Regression

Cai et al. [8] recently proposed a two-step method, referred to as spectral regression
(SR), to solve the projection matrix W for mapping new data points. Firstly, the
optimal solution F of (22) is solved. And then, the optimal projection matrix W is
computed by solving a regression problem:
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FME
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FME

FME/U

μ = λA

λI
, γ → ∞

μ = 0

LapRLS/L
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Out-of-sample Extension

μ → 0, γ = 1/λ

μ = 0

μ → 0, μγ → ∞

Spectral
Regression

Direct
GraphEmbedding

Linear
GraphEmbedding

μγ → ∞
μγ → 0

Out-of-sample Extension

Fig. 2 The relationship of FME framework and other related methods

W ∗ = argmin
W
‖XTW + 1bT−F‖2 +λ‖W‖2. (24)

Example 4. Spectral Regression is also a special case of FME/U.

Proof. When μ → 0 and γ = 1
λ (i.e., μγ → 0) in (18), then (18) reduces to (22),

namely, we need to solve F at first. Then the objective function in (18) is converted
to (24) to solve W . Note that the optimal W ∗ of the objective function of SR (i.e.,
(24)) is W ∗=(XHcXT+λ I)−1XHcF , which is equal to W ∗ from FME/U (See (13)).
Therefore, spectral regression is also a special case of FME/U. �

4.3.4 Discussion

The relationships of FME framework with other related methods are shown in Fig. 2.
Direct graph embedding [37] has unified a large family of dimension reduction
algorithms (e.g., ISOMAP, LLE, and LE), and LGC [47] and GFHF [49] are two
classical graph-based semi-supervised learning methods. However, direct graph
embedding and LGC/GFHF do not yield a method for mapping new data points
that are not included in the training set. To cope with the out-of-sample problem
for Direct Graph Embedding and LGC/GFHF, a linear mapping function is used
in Linear Graph Embedding [37] and LapRLS/L [29], respectively. In spectral
regression [8], a two-step approach is proposed to obtain the projection matrix for
mapping new data points.
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While the objective function of LapRLS/L (resp. Linear Graph Embedding) is not
in the objective function of FME (resp. FME/U), they are still special cases of the
FME framework by using different paraments μ and γ (or μγ). Moreover, the FME
framework also reveals that the previously unrelated methods are in fact related. For
example, linear graph embedding and spectral regression seem to be unrelated from
their objective functions; however, they are both special cases of FME/U. Specially,
FME/U reduces to linear graph embedding, when μ → 0 and μγ → ∞. FME/U
reduces to Spectral Regression, when μ → 0 and γ = 1

λ (i.e., μγ → 0). Finally, the
FME framework can be also used to develop new dimension reduction algorithms.
For example, similar as in spectral regression [8], it is also possible to use the FME
framework to develop a two-step approach for semi-supervised learning by setting
μ → 0 and μγ → 0.

5 Experimental Results

In the experiments, we use three face databases UMIST [11], CMU PIE [26] and
YALE-B [10], one object database COIL-20 database [19], and one text database
20-NEWS.

Face Databases: The UMIST database [11] consists of 575 multi-view images
of 20 people, covering a wide range of poses from profile to frontal views. The
images are cropped and then resized to 28×23 pixels. The CMU PIE database [26]
contains more than 40,000 facial images of 68 people. The images were acquired
over different poses, under variable illumination conditions, and with different
facial expressions. In this experiment, we choose the images from the frontal pose
(C27) and each subject has around 49 images from varying illuminations and facial
expressions. The images are cropped and then resized to 32× 32 pixels. For the
YALE-B database [10], 38 subjects are used in this work, with each person having
around 64 near frontal images under different illuminations. The images are cropped
and then resized to 32×32 pixels. In this work, gray-level features are used for face
recognition. For each face database, ten images are shown in Fig. 3.

Object Database: The COIL-20 database [19] consists of images of 20 objects,
and each object has 72 images captured from varying angles at intervals of
five degrees. We resize each image to 32× 32 pixels, and then extract a 1,024
dimensional gray-level feature for each image. Ten images are also shown in Fig. 3.

Text Database: The 20-NEWS database2 is used for text categorization. The topic
rec which contains autos, motorcycles, baseball, and hockey was chosen from the
version 20-news-18828. The articles were preprocessed with the same procedure as
in [47]. In total, we have 3,970 documents. We extract a 8014-dimensional tf-idf
(token frequency-inverse document frequency) feature for each document.

2Available at http://people.csail.mit.edu/jrennie/20Newsgroups/.

http://people.csail.mit.edu/jrennie/20Newsgroups/
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Fig. 3 Ten randomly selected image samples in each image database (From top to bottom:
UMIST, YALE-B, CMU PIE and COIL-20)
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LapRLS/L
SDA
FME

Fig. 4 The results of TCA
[18], LapRLS/L [29], SDA
Semi-supervised
Discriminant Analysis (SDA)
[7, 30] and the FME on a toy
problem

5.1 Semi-supervised Learning

We firstly compare FME with other dimension reduction algorithms TCA [18], SDA
Semi-supervised Discriminant Analysis (SDA) [7, 30] and LapRLS/L [29] on a toy
problem. The data are sampled from two Gaussian distributions of two classes,
represented by red circles and blue triangles, respectively, in Fig. 4. For each class,
we label only sample (denoted by green color) and treat other samples as unlabeled
data. The projection direction of TCA, SDA, LapRLS/L, and FME are shown in
Fig. 4. From it, we observe that TCA, SDA, and LapRLS/L fail to find the optimal
direction for all the samples. LapRLS/L does work for this toy problem, possibly
because the assumption that the prediction label matrix lies in the space spanned
by the training samples is not satisfied. However, FME successfully derives the
discriminative direction by modeling the regression residue.

We also compare FME with LGC [47], GFHF [49], TCA [18], SDA Semi-
supervised Discriminant Analysis (SDA) [7, 30], LapRLS/L [29] and MFA [37] for
real recognition tasks. For dimension reduction algorithms TCA, SDA, LapRLS/L,
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MFA, and FME, the nearest neighbor classifier is performed for classification after
dimension reduction. For LGC and GFHF, we directly use the classification methods
proposed in [47,49] for classification. For GFHF, LapRLS/L, TCA, SDA and FME,
we need to determine the Laplacian matrix M (or L) beforehand. We choose the
Gaussian function to calculate M or L, in which the graph similarity matrix is set
as Si j = exp(−‖xi− x j‖2/t), if xi (or x j), if xi (or x j) is among k nearest neighbors
of x j (or xi); Si j = 0, otherwise. For LGC, we used the normalized graph Laplacian

matrix L̃ = I−D−
1
2 SD−

1
2 , as suggested in [47]. For fair comparison, we fix k = 10

and t is set as the method in [21]. For LGC, GFHF and LapRLS/L, the diagonal
matrix U is determined according to [29, 47, 49], respectively. For FME, we set the
the first n and the rest m−n diagonal elements of the diagonal matrix U as 1 and 0,
respectively, similarly as in LapRLS/L.

In all the experiments, PCA is used as a preprocessing step to preserve 95%
energy of the data, similarly as in [13, 37]. In order to fairly compare FME with
TCA, SDA, LapRLS/L and MFA, the final dimensions after dimension reduction
are fixed as c. For SDA, LapRLS/L, TCA and FME, two regularization parameters
(i.e., μ and γ in FME, λI and λA in LapRLS/L, α and β in SDA and TCA) need
to be set beforehand to balance different terms. For fair comparison, we set each
parameter to {10−9,10−6,10−3,100,103,106,109}, and then we report the top-1
recognition accuracy from the best parameter configuration. In Fig. 5, we plot the
recognition accuracy variation with different parameter μ for FME, in which three
labeled samples per class are used in UMIST, YALE-B, CMU PIE, and COIL-20
databases, and 30 labeled samples per class are used in 20-NEWS database. We
observe that FME is relatively robust to the parameter μ when μ is small (i.e.,
μ ≤ 10−3). It is still an open problem to determine the optimal parameters, which
will be investigated in the future.

We randomly select 50% data as the training dataset and use the remaining 50%
data as the test dataset. Among the training data, we randomly label p samples
per class and treat the other training samples as unlabeled data. The above setting
(referred to as semi-supervised setting) has been used in [7], and it is also a more
natural setting to compare different dimension reduction algorithms. For UMIST,
CMU PIE, YALE-B and COIL-20 databases, we set p as 1, 2, and 3, respectively.
For the 20-NEWS text database, we set p as 10, 20, and 30, respectively, because
each class has much more training samples in this database. All the training data
are used to learn a subspace (i.e., a projection matrix) or a classifier, except that
we only use the labeled data for subspace learning in MFA [37]. We report the
mean recognition accuracy and standard deviation over 20 random splits on the
unlabeled dataset and the unseen test dataset, which are referred to as Unlabel and
Test, respectively, in Table 1. In table, the results shown in boldface are significantly
better than the others, judged by t-test with a significance level of 0.05. We have the
following observations:

1. Semi-supervised dimension reduction algorithms TCA, SDA, and LapRLS/L
outperform supervised MFA in terms of mean recognition accuracy, which
demonstrates that unlabeled data can be used to improve the recognition per-
formance.
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Fig. 5 Recognition accuracy variation with different parameter μ for FME. The first two rows
show the results on the unlabeled dataset and the second two rows show the results on the unseen
test dataset. Three labeled samples per class are used in UMIST, YALE-B, CMU PIE, and COIL-20
databases, and 30 labeled samples per class are used in 20-NEWS database
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2. When comparing TCA, SDA, and LapRLS/L, we observe that there is no
consistent winner on all the databases. Among the three algorithms, TCA
achieves the best results on UMIST and COIL-20 databases, LapRLS/L is the
best on YALE-B and 20-NEWS databases, and SDA is generally better on CMU
PIE database, in terms of mean recognition accuracy.

3. The mean recognition accuracies of LGC and GFHF are generally better than
TCA, SDA, and LapRLS/L on the unlabeled dataset of UMIST, COIL-20 and 20-
NEWS databases, which demonstrate the effectiveness of label propagation. But
we also observe that the recognition accuracies from LGC and GFHF are much
worse than TCA, SDA, and LapRLS/L on the unlabeled dataset of CMU PIE and
Yale-B databases, possibly because of the strong light variations of images in the
two databases. The labels may not be correctly propagated in this case, which
significantly degrades the performances of LGC and GFHF.

4. The FME method outperforms MFA and semi-supervised dimension reduction
methods TCA, SDA and LapRLS/L in all the cases in terms of mean recognition
accuracy. Judged by t-test (with a significance level of 0.05), FME is significantly
better than MFA, TCA, SDA, and LapRLS/L in 20 out of 30 cases. On unlabeled
dataset, FME significantly outperforms GFHF and LGC in 9 out of 15 cases.
While GFHF/LGC is significantly better than FME in one case on COIL-20
database, LGC and GFHF cannot cope with the unseen data.

5.2 Unsupervised Learning

We also compare FME/U with the unsupervised learning algorithms LPP [13] on
three face databases UMIST, CMU PIE, and YALE-B. We also report the results
from LPP-SR, in which the Spectral Regression method [8] is used to optimize the
projection matrix in the objective function of LPP. The nearest neighbor classifier
is used again for classification after dimension reduction. Five images per class are
randomly chosen as the training dataset and remaining images are used as the test
dataset. Again, PCA is used as a preprocessing step to preserve 95% energy of
the data in all the experiments. The optimal parameters μ and γ in FME/U are
also search from the set {10−9,10−6,10−3,100,103,106,109}, and we report the
best results from the optimal parameters. For LPP-SR, we use a more dense set
{10−9,10−8, . . . ,108,109} for the parameter λ and report the best results. For PCA,
LPP, LPP-SR, and FME/U, we run all the possible lower dimensions and choose the
optimal one. We also report the mean recognition accuracy and standard deviation
over 20 random splits in Table 2. Figure 6 plots the recognition accuracy with respect
to the number of features and Fig. 7 plot the recognition accuracy variation with
different parameter μ for FME/U.

We have the following observations: (1) LPP outperforms PCA on CMU PIE and
YALE-B databases, which is consistent with the prior work [13]. We also observe
that LPP is slightly worse than PCA on UMIST database, possibly because the
limited training data cannot correctly characterize the nonlinear manifold structure
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Table 2 Top-1 recognition performance (mean recognition accuracy ± standard deviation %) of
PCA [32], LPP [13], LPP-SR [8] and FME/U over 20 random splits on three face databases

method UMIST YALE-B CMU PIE

PCA 82.6 ± 3.2 (43) 43.1 ± 1.2 (60) 53.4 ± 1.5 (55)
LPP 80.4 ± 3.5 (31) 53.3 ± 3.1 (60) 85.0 ± 1.2 (55)
LPP-SR 81.5 ± 3.2 (106,35) 60.5 ± 3.0 (10−3,60) 81.7 ± 2.1 (10−5,55)
FME/U 86.3 ± 2.8 (103,100,35) 68.2 ± 2.5 (10−9,109,60) 89.1 ± 1.0 (10−9,109,55)

For each dataset, the results shown in boldface are significantly better than the others, judged by
t-test (with a significance level of 0.05). Note the last numbers in parentheses are the optimal
dimensions after dimension reduction. The first number in LPP-SR is the optimal λ and the first
two numbers in FME/U are the optimal parameters μ and γ
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Fig. 6 Top-1 recognition rates (%) with different feature dimensions on the UMIST, YALE-B and
CMU PIE databases

in this database; (2) When compared LPP and LPP-SR, there is no consistent winner
on all three databases; (3) The FME/U achieves the best results in all the cases,
which demonstrates that FME/U is an effective unsupervised dimension reduction
method.
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Fig. 7 Performance vs. parameter μ for FME/U

6 Summary

Linearazation technique is an important method for subspace learning and out-
of-sample extension to the transductive learning method. In this chapter, we
introduce three linearization methods, rigid constrained method, two-step method
with regression and a flexible method. The rigid constrained method imposes F =
XTW +1bT, which is overstrict in practice. The two-step method first computes the
F and then fits F with a linear model by regularized linear regression, which relies
heavily on the F of the first step. The flexible linearization method overcome these
drawbacks by optimizing the prediction labels F , the linear regression function h(X)
and the flexible regression residue F0 simultaneously, where h(X) = XTW +1bT is a
regression function for mapping new data points and F0 = F−h(X) is the regression
residue modeling the mismatch between F and h(X). We show that the first two
linearization methods are the two extreme cases of the flexible linearization method.

Based on the flexible linearization method, we introduce a new framework for
semi-supervised and unsupervised subspace learning, referred to as Flexible Mani-



A Flexible and Effective Linearization Method for Subspace Learning 201

fold Embedding (FME), and FME/U, respectively. FME can effectively utilize label
information from labeled data as well as the manifold structure from both labeled
and unlabeled data, and can better deal with the data which reside on a nonlinear
manifold. FME(FME/U) is a general framework, many prior works, including the
general graph embedding framework are special cases of this framework.
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A Multi-graph Spectral Framework for Mining
Multi-source Anomalies

Jing Gao, Nan Du, Wei Fan, Deepak Turaga, Srinivasan Parthasarathy,
and Jiawei Han

1 Introduction

Anomaly detection refers to the task of detecting objects whose characteristics
deviate significantly from the majority of the data [5]. It is widely used in a variety
of domains, such as intrusion detection, fraud detection, and health monitoring.
Today’s information explosion generates significant challenges for anomaly de-
tection when there exist many large, distributed data repositories consisting of a
variety of data sources and formats. While traditional anomaly detection approaches
focus on identifying objects that are dissimilar to most of the other objects from
a single source [4, 8, 9, 15, 16, 18, 21], we aim at detecting objects that have
“inconsistent behavior” among multiple information sources, which we refer to as
“horizontal anomaly detection.” Distinction between traditional anomaly detection
and horizontal anomaly detection is shown in Fig. 1 where traditional anomaly
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Fig. 1 Horizontal anomaly detection

Fig. 2 A toy example illustrating multi-source inconsistency detection

detection explores the single information source vertically and horizontal anomaly
detection explores horizontally the inconsistencies among multiple information
sources instead. In the following discussions, we will give a few practical examples.

Nowadays, there are usually several sources of information that describe different
properties or characteristics of individual objects. For example, we can learn about
a movie from its basic information including genre, cast, plots, etc., or the tags users
give to the movie, or the viewing histories of the users who watched the movie. On
each of the information source, a relationship graph can be derived to characterize
the pairwise similarities between objects where the edge weight indicates the degree
of similarity. As an example, Fig. 2 shows the similarity relationships among a
set of movies derived from two information sources: Movie genres and users.
The genre information may indicate that two movies that are both “animations”
are more similar than two other movies where one is an “animation” and the other is
a “romance” movie. Similarly, movies watched by the same set of users are likely to
be more similar than movies that are watched by completely different sets of users.

Clearly, objects form a variety of clusters or communities based on individual
similarity relationship. For example, two clusters can be found from both of the
similarity graphs in Fig. 2. One cluster represents the movies that are animations,
which are loved by kids; while the other cluster represents romance movies, which
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are liked by grown-ups. Most of the movies belong to the same cluster even though
different information sources are used. However, there are some objects that fall into
different clusters with respect to different sources. In this example, the animated
movie “Wall-E” by genre is expected to be liked by kids, but it is liked by grown-
ups based on user viewing history. Finding such “inconsistent” movies can help film
distributors better understand the expected audiences of different movies and make
smarter marketing plans.

Some other example scenarios of horizontal anomaly detection are listed as
follows. (1) In social networks, detecting people who fall into different social
communities with respect to different online social networks would be interesting
for user behavior analysis; (2) In bioinformatics, inconsistencies across different
gene–gene interaction similarity graphs derived from patients with and without
a certain disease represent the genes which are critical to the disease; (3) For
better business marketing, one wants to find out the person who bought quite
different items compared with his peers in the same social community based on
the two information sources drawn from user purchase history and friendship
networks; and (4) Inconsistencies across multiple module interaction graphs derived
from different versions of a software project can be used to assist programmers.
Besides the examples discussed above, identifying horizontal anomalies can find
applications in many other fields including smarter planet, Internet of things,
intelligent transportation systems, marketing, banking, etc.

In this chapter, we propose to detect objects that have “inconsistent behavior”
among multiple information sources, which we refer to as horizontal anomaly
detection. To the best of our knowledge, this is the first work on identifying
anomalies by exploring the inconsistencies among multiple sources. Traditional
anomaly detection [5] approaches focus on identifying objects that are dissimilar
to most of the other objects from a single source [4, 8, 9, 15, 16, 18, 21]. On the
other hand, most of the existing work on mining multiple information sources
concerns merging and synthesizing models, rules, patterns obtained from multiple
sources by reconciling their differences, such as multi-view learning [3], emerging
or contrast patterns [6], multi-view clustering [2, 30], and consensus clustering
[10,25]. As for multi-source anomaly detection, the studies focus on how to identify
anomalies within a specific context where the pre-defined contextual attributes
include spatial attributes [23], neighborhoods in graphs [26], social communities
[11], and contextual attributes [24, 28]. Although these studies take two types
of attributes (behavioral and contextual [5]) into consideration, they cannot be
easily generalized to horizontal anomaly detection spanning multiple sources. The
reason is that they simply detect anomalies from the behavioral attributes while the
contextual attributes only provide the context in which the anomalies are detected. In
some sense, these contextual anomalies are still extracted from one source, whereas
the proposed method can identify objects with inconsistent behavior across multiple
sources.

We assume that each individual information source captures some similarity
relationships between objects that may be represented in the form of a similarity
matrix (whose entries represent the pairwise quantitative similarity between ob-
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jects). Note that although in the example shown in Fig. 2, the horizontal anomalies
can be found by checking if its direct neighbors are different in the two graphs,
this simple solution cannot work in real practice. The reason is that the clustering
structures are much more complicated and noisy in real problems, and thus a
global method that can detect both the underlying clustering structure and horizontal
anomalies is needed. In this chapter, we propose a systematic approach to identify
horizontal anomalies from multiple similarity matrices. A summary of this chapter
is as follows:

• We combine the input matrices into one large similarity matrix that not only
captures the information from each source, but also ensures that individual object
relationships are preserved. We then adopt spectral techniques to identify the
key eigenvectors of the graph Laplacian of the combined matrix, and identify
horizontal anomalies by computing cosine distance between the components of
these eigenvectors.

• We give theoretical interpretations of the proposed method from both spectral
clustering and random walk perspectives. The method can be regarded as
conducting spectral clustering on multiple information sources simultaneously
with a joint constraint that the underlying clustering structures should be similar,
and objects that are clustered differently are categorized as horizontal anomalies.
The horizontal anomalies can also be regarded as those having long commute
time in the random walk defined over the graph.

• We validate the proposed algorithm on both synthetic and real datasets, and the
results demonstrate the advantages of the proposed approach in finding horizontal
anomalies. For example, we find “One Flew Over the Cuckoo’s Nest” and “Pulp
Fiction” as the most anomalous, while “Star Wars” as the least anomalous among
the top 20 most popular movies from the experimental results on a set of 7,595
movies.

In this chapter, we present the proposed spectral method that detects horizontal
anomalies in Sect. 2, and demonstrate the effectiveness of the method in Sect. 3,
and finally summarize the chapter in Sect. 4.

2 Multi-graph Spectral Framework

Suppose we have a set of N objects X = {x1,x2, . . . ,xN} and there are P information
sources that describe different aspects of these objects. Let W (t) denote the similarity

matrix derived from the t-th information source where the i j-th entry w(t)
i j represents

the similarity between objects xi and x j (i �= j) with respect to the t-th information

source. We let W (t)
ii = 0 for all t and i. The objective is to assign an anomalous score

si to each object xi, which represents how likely the object is anomalous when its
behavior differs among the P different information sources. In the simple example
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shown in Fig. 2, there are two matrices that describe pairwise similarities among the
7 objects, and we expect that x4 will have the highest anomalous score.

In this section, we present a HOrizontal Anomaly Detection (HOAD) algorithm to
solve the proposed problem. The basic idea is as follows: As discussed in Sect. 1, we
assume that the available information sources on the same set of objects have similar
clustering structures, and thus if an object is assigned to different clusters when
using various information sources, it can be regarded as a horizontal anomaly. This
suggests that we can first cluster the objects separately in each source and compare
the clustering results. However, because clustering is unsupervised learning, we do
not know the correspondence between clusters in different clustering solutions. We
solve this problem by adding the constraint that the same object should be put into
the same cluster by all the clustering solutions as often as possible. Another problem
is that in reality, an object never belongs to just one cluster for sure, usually it can
be assigned to several clusters with certain probabilities. Therefore, soft clustering
is more desirable. In the proposed approach, we calculate the anomalous degree
of an object based on how much its clustering solutions differ from each other.
To simplify the notations, we start with the cases having two distinct information
sources. We state the method in Sect. 2.1, give spectral clustering and random walk
interpretations in Sect. 2.2, and explain how it is generalized to multiple information
sources in Sect. 2.3.

2.1 HOAD Algorithm

Suppose we have two N×N similarity matrices on the N objects: A and W , where ai j

and wi j define the similarity between xi and x j from different aspects. The algorithm
consists of two major steps:

• Conduct soft clustering on A and W together with the constraint that an object
should be assigned to the same cluster.

• Quantify the difference between the two clustering solutions to derive anomalous
scores.

The details are as follows. We start from constructing two similarity graphs from
A and W . In each of them, each node denotes an object. If the similarity between
two objects xi and x j is greater than 0, we connect an edge between xi and x j and
the edge weight equals to the similarity between them. We construct a combined
graph by connecting the nodes which correspond to the same object in the two
graphs with an edge weighted m. m, a large positive number, is a penalty parameter.
An example of such a graph is illustrated in Fig. 3 for the toy example shown in
Fig. 2. The set of nodes in the combined graph consists of two copies of the objects:
{x1, . . . ,xN ,x′1, . . . ,x

′
N} (2N nodes in total). Let M be an N×N diagonal matrix with

m on the diagonal:
M = diag(m,m, . . . ,m).
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Fig. 3 Combined graph with penalty edges connecting two similarity graphs

Clearly, M =m ·I where I is an N×N identity matrix and m represents the constraint
put across the two information sources. Let Z be the adjacency matrix of the
combined graph, which is a 2N× 2N matrix:

Z =

[
A M
M W

]
. (1)

We cluster the nodes in the combined graph. As can be seen, there are two copies of
the objects in the combined graph and with the help of the edge between the copies
of the same object, we cluster the objects in the same way across different sources.
In Sect. 2.2, we give a theoretical justification of this claim. First, we compute the
graph Laplacian L as:

L = D−Z (2)

using degree matrix D (a 2N× 2N diagonal matrix):

D = diag

⎛

⎝
{

2N

∑
j=1

zi j

}2N

i=1

⎞

⎠ . (3)

Secondly, compute the k smallest eigenvectors of L (with smallest eigenvalues) and
let H ∈R2N×k be the matrix containing these eigenvectors as columns. We divide H
into two submatrices U and V each with size N×k so that H = [U V ]T. Therefore,
the i-th and (i+N)-th rows of H are represented as:

ui = hi, vi = hi+N , (4)

which correspond to two “soft clustering” representations of xi with respect to A and
W , respectively. Finally, we compute the anomalous score for object xi using cosine
distance between the two vectors:

si = 1− ui ·vi

||ui|| · ||vi|| . (5)
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Fig. 4 Algorithm flow of
HOAD algorithm

Algorithm 1: HOAD Algorithm
Input: Similarity matrices A and W , number of eigenvectors k, penalty parameter m;
Output: Anomalous score vector s;
1: Compute matrix Z according to (1)
2: Compute graph Laplacian L as in (2)
3: Conduct eigen-decomposition of L and Let H be the k smallest eigenvectors with smallest

eigenvalues
4: Compute anomalous score of each object si based on (4) and (5) for i = 1, . . . ,N
5: return s

The algorithm flow is summarized in both Fig. 4 and Algorithm 1. We start with
two N×N similarity matrices A and W and combine them together with the penalty
constraint matrix M to form a combined matrix Z. After that, we compute Z’s
graph Laplacian L and conduct eigen decomposition on L. H contains the k smallest
eigenvectors of L as column vectors, and it is divided into two N× k submatrices
U and V . For each i ∈ {1, . . . ,N}, ui and vi, i.e., the i-th rows of U and V can be
regarded as the two clustering results of xi. We compute the anomalous score of xi

as the cosine distance between ui and vi, which is 1− cos(θ ) with θ representing
the angle between the two vectors.

2.2 Interpretations

In this part, we explain the algorithm from the perspectives of spectral clustering
and random walk.

Clustering on Combined Graph. As can be seen, we first perform spectral
clustering on the combined graph in Fig. 3. We replace the clustering step by
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anomalous score computation because our goal is to detect anomalies. Now we
show that the algorithm can be interpreted as conducting constrained spectral
clustering on the two input similarity graphs simultaneously. The basic idea of
spectral clustering is to project the objects into a low-dimensional space (defined by
the k smallest eigenvectors of the graph Laplacian matrix) so that the objects in the
new space can be easily separated. We call the projections as spectral embeddings
of the objects. It has been shown that the matrix formed by the k eigenvectors (H)
of L is the solution to the following optimization problem [19]:

min
H∈RN×k

Tr(H ′LH) s.t. H ′H = I (6)

Since we define the graph Laplacian L as D−Z (2), the objective function is thus
equivalent to:

min
H∈R2N×k

Tr(H ′DH)−Tr(H ′ZH) s.t. H ′H = I (7)

Let f (H) = Tr(H ′ZH) and g(H) = Tr(H ′DH). H is a 2N× k matrix, and again we
divide it into two submatrices U and V : H = [U V ]T. Also, from the definition of
Z (1), we have:

f (H) = Tr

(
[U ′ V ′]

[
A M
M W

][
U
V

])

= Tr(U ′AU +V ′WV +V ′MU +U ′MV )

= Tr(U ′AU)+Tr(V ′WV )+ 2m
N

∑
i=1

k

∑
j=1

ui jvi j (8)

Suppose the degree matrices for A and W are Da and Dw, respectively:

Da = diag
({

N

∑
j=1

ai j}N
i=1

)
, Dw = diag

({
N

∑
j=1

wi j}N
i=1

)
.

The row sum of M is always m. Based on the definition of D (3), we have

g(H) = Tr

(
[U ′ V ′]

([
Da 0
0 Dw

]
+mI

)[
U
V

])

= Tr(U ′DaU +V ′DwV +mU ′U +mV ′V ) (9)

Also,

H ′H = I⇔ [U ′ V ′]
[

U
V

]
= I⇔U ′U +V ′V = I
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By putting f (H) and g(H) together and ignoring the constant term m ·Tr(U ′U +
V ′V ), we have an equivalent formulation of the problem in (6):

min
U,V∈RN×k

Tr(U ′(Da−A)U)+Tr(V ′(Dw−W)V )− 2m
n

∑
i=1

k

∑
j=1

ui jvi j

s.t. U ′U +V ′V = I (10)

Clearly, each of the first two terms in (10) corresponds to the spectral clustering
problem using A or W alone. The third term acts as the constraint that the two
clustering solutions should be similar (cosine similarity). Different from spectral
clustering, we didn’t actually perform the clustering procedure. Our method can be
regarded as embedding the objects into two eigenspaces with respect to the two
information sources while putting the constraint that the two projections should be
similar. The parameter m controls how much we impose the constraint.

Note that in Algorithm 1, the i-th row vector in U (the first N rows of H) and
V (the last N rows of H) contain the projections of object xi. Due to the principle
of spectral clustering, if the spectral embeddings ui and vi are close to each other,
the corresponding object xi is more likely to be assigned to the same cluster with
respect to the two different sources. Therefore, the cosine similarity between the two
vectors ui and vi quantifies how similar the clustering results of object xi on the two
sources are, and thus represents its “normal” degree. In turn, the cosine distance as
defined in (5) gives the “anomalous” degree of xi with respect to the two sources.
The higher the score si is, the more likely xi is a horizontal anomaly.

We show how the algorithm works using the example shown in Fig. 3. After
computing the graph Laplacian L of the combined graph’s adjacency matrix
according to (2), we extract the two smallest eigenvectors of L and put it into H, and
thus H is a 14×2 matrix. The first seven rows correspond to the spectral embeddings
of the seven objects with respect to the first source whereas the remaining ones
are those with respect to the second source. In Fig. 5, we plot these row vectors
in a two-dimensional space where blue circles indicate the projections on the first
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source and red squares are results on the second source. Clearly, no matter which
source we use, objects x1, x2, and x3 are always projected on the top region of the
space, whereas x5, x6 and x7 are located at the bottom part. The biggest difference
in the projections can be found in x4, and thus it has the highest anomalous
score among the seven objects. In fact, the output of the proposed algorithm is
a vector: s = (0.4626,0.7157,0.7736,0.8349,0.7013,0.6614,0.5587)T where each
entry denotes the degree of being “horizontally” anomalous. Clearly, x4 has the
highest anomalous score.

Random Walk. In this part, we give some intuitions of the proposed method
from the random walk perspective. Let zi j be the edge weight between two nodes xi

and x j in the graph, and vol(X) = ∑2N
i=1∑

2N
j=1 zi j be the sum of all the edge weights

in the graph. Suppose we define a random walk over the combined graph, where the
transition probability from node xi to node x j is proportional to the edge weight in
the graph: pi j = zi j/di. If the combined graph is connected and non-bipartite, then
the random walk always has a unique invariant distribution π = (π1, . . . ,π2N), where
πi = di/Vol(X). Now we look at the commute distance between xi and x′i, two copies
of the same object in the combined graph. Commute distance is the expected time
it takes for the random walk to travel from xi to x′i and back. Instead of looking for
one shortest path, the commute distance looks at all the possible paths. Therefore,
only when there are many short paths from xi to x′i, their commute distance is small.

It is proven that commute distance on a graph can be computed with the help
of the eigenvectors of the graph Laplacian L as defined in (2). Suppose L has
eigenvalues λ1, . . . ,λ2N , and U and V are two N ×N matrices containing all the
eigenvectors for the two copies of the objects respectively. Let ui and vi denote the
i-th row of U and V . We define γ as a length-2N vector with each entry γl equal
to (λl)

−0.5 if λl �= 0, and 0 otherwise. Now we divide γ into two length-N vectors:
γ = [γu γv]. Suppose we map xi and x′i into a new feature space where they are
represented as ui · γu and vi · γv respectively. It can be derived that the commute
distance ci between xi and x′i is:

ci = vol(X)||ui · γu− vi · γv||2, (11)

which is the Euclidean distance between the nodes in the new feature space scaled
by vol(X).

Recall that we compute the anomalous score of xi as 1− ui·vi
||ui||·||vi|| . We can see

that both the anomalous score and the commute distance can be represented as
a distance function applied on the spectral embeddings of the two copies of the
object. The difference is: (1) The embeddings are scaled by (λl)

−0.5 in the commute
distance; (2) All the eigenvectors are used in the commute distance whereas only
the k smallest are used in the anomalous score computation; and (3) Euclidean
distance is used instead of cosine distance in the commute distance function.

Although the connection is loose, commute distance can be a helpful intuition to
understand the anomalous scores. If it takes longer time to commute between the
two copies of object xi in the graph, xi is more likely to be a horizontal anomaly.
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By the definition of commute distance, it means that it is hard to find many paths to
travel between them. In fact, in the combined graph, the only way to travel from the
left side to the right side is through the constraint edge with weight m. Therefore,
a horizontal anomaly is the object that is categorized into different clusters with
respect to different information sources, which is consistent with our definition.
As an example, it is hard to travel between x4 and x′4 in the graph shown in Fig. 3
because they link to different sets of objects in the two sources, and thus x4 is a
horizontal anomaly. On the contrary, besides the constraint edge connecting x1 and
x′1, x1 can travel to x′1 through many other paths because its neighbors in the cluster
maintain the same in the two graphs. Therefore, its commute distance is small and
x1 is a normal object.

2.3 Multiple Sources

We can adapt Algorithm 1 to handle more than two information sources as follows.
Suppose we have similarity matrices {W (1),W (2), . . . ,W (P)} as the input.

Graph Construction. The combined graph is constructed in a similar fashion
as discussed before: Duplicate the objects for P copies, in each copy retain the
similarity information from each source, and connect each pair of the nodes
corresponding to the same object with an edge weighted m. The adjacency matrix
Z is thus an NP×NP matrix with {W (1),W (2), . . . ,W (P)} on the diagonal and the
diagonal matrix encoding constraints M = diag(m,m, . . . ,m) on all the off-diagonal
blocks. We can make the framework more flexible by allowing for different m
values for different pairs of information sources. m is a user-provided parameter,
which characterizes the similarity between information sources in their clustering
structures. Therefore, one principle to set m is to assign a larger value to it if the
two information sources are more likely to share the same clustering results. In
the experiments, to reduce the number of parameters, we use the simple version
where we set m a uniform value. However, how to set m is still a tricky problem
because m can take any value between 0 and infinity. In Sect. 3, we give some
discussions on how to transform the problem of setting m to an easier task.

Eigenvectors of Graph Laplacian. After Z is obtained, we calculate its graph
Laplacian and the k smallest eigenvectors following exactly the same procedure
as in Algorithm 1. One concern is that, when the number of information sources
increases, the size of the matrix L grows quadratically and this leads to higher
computation and storage cost. However, the graph Laplacian of Z is a matrix
with special structures where most entries are 0, and also, we only need the k
smallest eigenvectors instead of the full eigenspace. Therefore, this problem is
much easier than the general eigen-decomposition problem on any matrix. In fact,
efficient packages such as ARPACK [17], have been developed to compute a few
eigenvectors of large-scale sparse matrix. In Sect. 3, we show that the proposed
method implemented based on ARPACK can scale well even when there are more
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than two information sources. Furthermore, we can use some parallel computing
frameworks to process large matrices. For example, large scale top k eigensolver
is available [14] using highly scalable MapReduce framework.1 Another practical
issue is how to choose the appropriate k, i.e., the number of eigenvectors we extract
from the combined matrix. Choosing k is a general problem for all clustering
algorithms, and a variety of methods have been developed. In particular, eigengap
heuristic is proposed to choose k such that the first to the k-th eigenvalues are
very small, but the (k + 1)-th is relatively large. This heuristic works for spectral
clustering methods as justified by spectral theory and perturbation theory. A brief
discussion about these methods can be found in [19]. In Sect. 3, we show how the
performance of the proposed method varies with respect to the value of k.

Anomalous Score Computation. The anomalous score is defined based on the
distance between two vectors in (5). With P information sources (P > 2), we
should calculate the anomalous degree of an object xi based on the following
P vectors: {hi,hi+N ,hi+2N , . . . , hi+(P−1)N}. There are various ways to define a
distance measure among multiple vectors. In the experiment, we simply use the
average pairwise distance as the measure:

si =
1

P(P− 1)∑
P−1
a=0∑

P−1
b=01a �=b ·

[
1− hi+aN ·hi+bN

||hi+aN || · ||hi+bN ||
]

Similarity Computation. We need similarity matrices derived from multiple
sources as the input to the algorithm. The notion of “similarity” between objects
varies with the types of information sources. In real practice, the set of objects can be
represented in different incompatible formats by the available information sources.
For example, webpages on the Internet can be represented as bag of words feature
vectors (webpage contents), or a huge graph (hyperlink relationships). We discuss
how to compute the similarity matrix W for different data types as follows:

• Graph: wi j = 1 if there exists an edge connecting xi and x j and 0 otherwise.
• Continuous Data: If each xi is a feature vector of continuous values, we can use

a Gaussian kernel applied on Euclidean distance: wi j = exp(−||xi− x j||2/σ2)
where σ2 is the parameter used in the kernel.

• Binary Data: If each xi is a feature vector with each entry 0 or 1, we can use
Jaccard Index to compute the similarity: wi j = |xi∩ x j|/|xi∪ x j|.

• Documents: Each document xi is usually represented as a feature vector: {xi1,xi2,
. . . ,xiT} where xil denotes the number of times the l-th word is found in the
document. The cosine similarity between two documents xi and x j is defined as:
wi j = (xi · x j)/(||xi|| · ||x j||).

Note that these are simply some examples showing how the pairwise similarity can
be computed. More discussions on the similarity computation can be found in [12].

1http://mahout.apache.org/

http://mahout.apache.org/
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3 Experiments

We evaluate the HOAD algorithm on synthetic data to show its detection accuracy,
as well as real datasets including DBLP, MovieLens, and NCBI to validate its ability
of identifying meaningful horizontal anomalies.

3.1 Synthetic Data

The concept of “horizontal anomaly” is new, and thus there are no benchmark
datasets for it. Therefore, we propose a method to convert a classification problem
into a horizontal anomaly detection problem, and then apply this procedure on
several UCI machine learning datasets.

Data Generation. Recall that horizontal anomalies represent the objects that
have inconsistent behavior among multiple information sources. Therefore, the
basic idea of the transformation is to simulate the “inconsistencies” by swapping
the feature values of objects from different classes. Suppose we have a training set
from a classification problem where each object consists of feature values and a class
label. Suppose there are N objects in the training set: {x1, . . . ,xN}, and the features

X can be partitioned into two views X (1) and X (2). We use (x(1)i ,x(2)i ) to denote an
object xi’s feature values of the two views, and use yi to denote its class label. We
assume that each of the feature sets is correlated with the class label, and thus objects
within the same class share similar feature values in each feature set. Therefore, for
two objects xi and x j from different classes, if their feature values are swapped in one
view but remain unchanged in the other, they have “inconsistent” behavior among
these two views, and thus represent horizontal anomalies. In this way, we generate r
pairs of horizontal anomalies, as shown in Algorithm 2. We apply the above method
on four datasets obtained from UCI machine learning repository2: Zoo, Iris, Letter,
and Waveform. On each dataset, we randomly split the feature set into two subsets
with equal number of features. We repeat the transformation procedure 50 times
and at each time, we generate a dataset with around 10% anomalies. We evaluate
the HOAD algorithm on the 50 datasets and report the average accuracy.

Evaluation Measure and Baseline Methods. For anomaly detection problems,
one of the most widely used evaluation approaches is ROC analysis, which repre-
sents the trade-off between detection rate and false alarm rate. A good algorithm
would produce an ROC curve as close to the left-top corner as possible, and thus
the area under ROC curve (AUC), which is in the range [0,1], is a good evaluation
metric. The higher the AUC is, the better the algorithm performs. We show the
performance of the proposed HOAD algorithm with various parameter settings.

2http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml
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Algorithm 2: Horizontal Anomalies Generation

Input: A training set from a classification problem: {(x(1)i ,x(2)i ,yi)}N
i=1, the number of

horizontal anomalies 2r;
Output: Two similarity matrices: A and W , and the indices of horizontal anomalies: B;

1: for l = 1 to r do
2: Sample two objects xi, x j from two different classes (yi �= y j) without replacement;
3: Randomly select a view t (t = 1 or 2);

4: Swap the t-th view of xi and x j: Let z = x(t)i , x(t)i = x(t)j , and x(t)j = z;
5: Put i and j into B.
6: Compute the similarity matrix A based on X(1) and W from X(2)

7: return A, W and B

Note that the first step of the proposed algorithm is a constrained soft clustering
on multiple information sources. Instead of conducting a joint clustering, the
baseline method clusters multiple sources separately and calculates the anomalous
scores based on the difference among different clustering solutions. Specifically,
in two-source problems, we conduct eigen decomposition on the graph Laplacian
matrices of the two similarity matrices A and W separately. Suppose the top k eigen
representation of object xi are ui and vi, respectively, then we use (5) to compute
the anomalous score of xi for the baseline approach. Note that the major difference
between the HOAD algorithm and the baseline method is on how to compute ui

and vi. Besides evaluating the proposed HOAD algorithm shown in Algorithm 1,
we also evaluated an alternative version of the algorithm where the anomalous score
is computed based on the commute distance (11) as discussed in Sect. 2.2. We use
HOAD-c and HOAD-r to refer to the original version and the random walk version
of the proposed HOAD algorithm, respectively.

Performance. The experimental results on the four datasets are shown in Fig. 6
where we vary the values of the parameters m and k. m indicates the penalty
we enforce when the two clustering solutions do not agree, and k represents
the number of top eigenvectors. Neither m nor k is used in the baseline and
its performance remains mostly stable except slight fluctuation due to random
sampling in data generation. From the experimental results, we can see that HOAD
algorithm generally outperforms the baseline, especially when k is small (e.g.,
k = 3). However, when the value of m is higher, the difference in AUC between the
algorithms using different k is much smaller. Therefore, we focus on how to select
the appropriate m in the following discussion. It can also be observed that the two
versions of the HOAD algorithm achieve nearly the same AUC values. This supports
the fact that the proposed HOAD algorithm can be explained from the random walk
perspective. The anomalous scores computed in Algorithm 1 simulate the commute
distance between two copies of the same object in the combined graph.

On UCI datasets, it is clear that when m increases, the proposed algorithm
has a higher AUC. In the simulated study, the two feature sets are two disjoint
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Fig. 6 Anomaly detection performance comparison on UCI data

subsets of the original features, and usually using all of the features leads to a
better classification model. Hence the two views are correlated and using a large
m captures this correlation well. However, this does not mean that we should assign
a big number to m in all cases because this pattern may not always hold in real
horizontal anomaly detection tasks. In the following experiments on DBLP datasets,
we illustrate the relationship between m and the anomalous scores, and state some
principles in setting m.

In Fig. 7, we show the running time of HOAD algorithm with respect to 1,000–
6000 objects represented in two, three or four information sources. We conduct the
experiments on synthetic datasets where we randomly generate similarity matrices
for 50 trials, and report the average running time. The eigenvectors are computed
using Matlab eigs function, which is based on ARPACK package [17]. As can be
seen, the HOAD algorithm can scale well to large datasets when the number of
objects and the number of sources both increase.

3.2 Real World Data

We present a set of illustrative results to highlight the concept of horizontal anomaly
detection.
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DBLP. DBLP3 provides bibliographic information on major computer science
journals and proceedings. We define two horizontal anomaly detection tasks based
on the DBLP data where the objects are a set of conferences and authors, respec-
tively. Let N = 4,220, and the set of conferences is represented as {x1,x2, . . . ,xN}.
There are two views describing the conferences: the keywords in the conferences
and the authors who published in the conferences. Specifically, each xi has two
vectors, each of which has the form (xi1,xi2, . . . ,xiT ). In the first vector, T is the
total number of words, and xil is the number of times the l-th word appeared in
the i-th conference profile (we concatenate the titles of papers in the conference as
the conference profile). In the second vector, T is the total number of authors, and
xil denotes the number of times the l-th author published in the i-th conference.
The pairwise similarity between two conferences xi and x j is defined as the cosine
similarity between the corresponding vectors. Therefore, the conferences that share
lots of keywords, or share lots of authors are similar.

Similarly, we select a set of 3,116 authors from data mining-related areas and
extract two types of information from DBLP: the publications and the coauthor-
ships. Each author xi is also represented in vectors (xi1,xi2, . . . ,xiT ) where in the
first vector xil denotes the occurrence of the l-th word in the authors’ publications,
and xil corresponds to the number of times xi and xl collaborate in the second one.
Cosine similarity is used, and similar authors will share coauthors, or keywords in
their publications.

We first study the effect of m on the anomalous scores. For each m, we apply the
HOAD algorithm to the datasets, and compute the mean and standard deviation of
the objects’ anomalous scores. The results on conferences and authors are shown in
Fig. 8 where the points on the line are the average anomalous scores and the error bar
denotes the standard deviation. Obviously, the average anomalous score decreases
as m increases. Recall that the anomalous scores indicate the degree of differences
between the spectral embeddings derived from the two similarity matrices. When

3http://www.informatik.uni-trier.de/∼ley/db/

http://www.informatik.uni-trier.de/~ley/db/
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Fig. 8 Analysis of parameter m on DBLP data

Table 1 Case studies on
conferences

Conf Score Conf Score

IJCAI 0.3547 WWW 0.6103
AAAI 0.3748 PAKDD 0.4766
ICDE 0.7366 PODS 0.3696
VLDB 0.6299 ICDM 0.6411
SIGMOD 0.5794 ECML 0.3777
SIGIR 0.3404 PKDD 0.4205
ICML 0.5071 EDBT 0.5078
CVPR 0.1417 SDM 0.4755
CIKM 0.8211 ECIR 0.0739
KDD 0.7571 WSDM 0.0262

we give a heavy penalty on different embeddings by the two sources, we basically
bias the two projections towards the ones that agree the most. Therefore, when m is
larger, the spectral embeddings from the two sources are more likely to be the same,
and thus the difference between them is smaller. On the contrary, when m is small,
the constraint on the similarities between the two projections is often violated, so
most of the objects are projected differently.

Another observation is that the variance among the anomalous scores goes up
first and then goes down as m increases. When m is quite large or quite small, the
two projections of all the objects would be very similar or very different, and thus
the objects receive similar anomalous scores. There exists a large variability among
the anomalous scores only when m is in the middle of the spectrum. Although m can
be drawn from (0,∞), the average anomalous scores are within a fixed range: [0,1].
Therefore, we can choose m which leads to an average anomalous score around 0.5
because the variance of the anomalous scores usually reaches the highest point here
and this helps us identify the horizontal anomalies.

We show the anomalous scores for selected conferences and authors output by the
algorithm in Tables 1 and 2, respectively. As can be seen, the conferences that have
high anomalous scores (e.g., CIKM) are those attract people from certain fields but
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Table 2 Case studies on
authors

Author Score

Philip S. Yu 0.6751
Jiawei Han 0.6162
Christos Faloutsos 0.8516
Rakesh Agrawal 0.7631
H. V. Jagadish 0.8022
Divesh Srivastava 0.7808
Hans-Peter Kriegel 0.3308
Hector Garcia-Molina 0.7061
Surajit Chaudhuri 0.6905
Raghu Ramakrishnan 0.7898

the actual content can be categorized into a different area. Instead, if the authors and
publications of a conference are from a somewhat pure community, its anomalous
degree is low (e.g, WSDM). Similarly, the author who has different behavior in
terms of the publications and the coauthorships are likely to be a horizontal anomaly.

MovieLens. We use the Movielens dataset4 with movies as objects. There are
three sources of information to capture their relationships:

• Genre: Movies are classified as being of one or more of 18 genres, such as
Comedy and Thriller, which can be treated as binary vectors.

• User viewing history: Each movie has a list of users that watched the movie. This
may also be represented as a vector (per movie) across all users.

• User tagging history: Movies are tagged by different users. Looking across all
users, we can determine a vector per movie.

In all three cases, we compute the pairwise similarity using cosine similarity across
the vectors. The dataset contains 10 million ratings and 100,000 tags for 10,681
movies by 71,567 users. We choose a set of 7,595 movies, each of which has both
ratings and tags. We then have three similarity matrices, corresponding to these
three different sources. To evaluate the performance of the HOAD algorithm on
MovieLens dataset, we label some movies as “horizontal anomalies” based on the
list of weirdest movies.5 There are 572 movies listed as weirdest movies and among
them 127 are found in the MovieLens dataset. These 127 movies are labeled as
“anomalous” and the remaining 7,468 movies are “normal.” Based on these labels,
we calculate the area under ROC curve (AUC) of both HOAD and the baseline
method based on their computed anomalies scores for the 7,595 movies. HOAD
algorithm achieves a better AUC (0.4879) compared with that of the baseline
method (0.4423). This demonstrates the ability of the proposed HOAD algorithm
in detecting inconsistent movies across various information sources.

4http://www.grouplens.org/node/73
5http://366weirdmovies.com/the-weird-movie-list

http://www.grouplens.org/node/73
http://366weirdmovies.com/the-weird-movie-list
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Table 3 Anomalous scores of 20 popular movies from MovieLens

Movie Score Movie Score

One Flew Over the Cuckoo’s Nest 0.8079 Seven Samurai 0.6404
Pulp Fiction 0.7713 Fight Club 0.6364
Casablanca 0.7205 City of God 0.6278
The Shawshank Redemption 0.6949 The Lord of the Rings: The

Return of the King
0.3512

The Godfather: Part II 0.6822 The Lord of the Rings: The
Fellowship of the Ring

0.3478

The Godfather 0.6770 The Good, the Bad and the
Ugly

0.3194

Goodfellas 0.6768 Raiders of the Lost Ark 0.3181
Schindler’s List 0.6755 Rear Window 0.3095
12 Angry Men 0.6713 Star Wars 0.2982
The Dark Knight 0.6535 Star Wars: Episode V-The

Empire Strikes Back
0.2562

Moreover, we present the anomalous scores for the 20 most popular movies6 as
shown in Table 3. We focus on these well-known movies so that our results can be
easily interpreted. As may be seen, the movies “One Flew Over the Cuckoo’s Nest”
and “Pulp Fiction” are identified as horizontal anomalies, as they tend to show strong
disagreement between the genre classification and the sets of users that watched
and tagged them. Intuitively, this is expected as these two movies do not really fit
into one classification or user category. Borrowing reviews from Wikipedia,7 “Pulp
Fiction” is known for its rich, eclectic dialogue, ironic mix of humor and violence,
and nonlinear storyline, which make it different and anomalous among movies. For
“One Flew Over the Cuckoo’s Nest,” the review says “it is a comedy that can’t quite
support its tragic conclusion.” These tell us the reasons why these two movies are
detected as being inconsistent. On the other hand, “Star Wars” receives the lowest
anomalous score as it attracts a particular set of audiences.

NCBI. In this part, we use two NCBI databases8 with genes as objects. Selecting
informative genes that are the most predictive with respect to its corresponding class
label (disease or control) from microarray experiments is one of the most important
research problem in bioinformatics. One example of the benefits of such studies
is that global gene expression profiling of human tumors can reveal distinct tumor
subtypes not evident by traditional histopathological methods. By comparing the
gene expression levels of cancerous with normal tissues, we can select those genes
that might anticipate the clinical behavior of cancer. In the following experiments,
we demonstrate how to detect informative genes of two kinds of cancer, breast

6As listed on http://www.imdb.com/chart/top on November 2010.
7http://en.wikipedia.org
8http://www.ncbi.nlm.nih.gov/

http://www.imdb.com/chart/top
http://en.wikipedia.org
http://www.ncbi.nlm.nih.gov/
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Table 4 The top 10 informative genes for breast cancer from NCBI

Gene Description

SFN Stratifin
FAM203A Family with sequence similarity 203, member A
ANAPC13 Anaphase promoting complex subunit 13
RPL3 Ribosomal protein L3
RPS21 Ribosomal protein S21
HSP90AA2 Heat shock protein 90kDa alpha (cytosolic), class A member 2
E2F4 E2F transcription factor 4, p107/p130-binding
TUBBP2 Tubulin, beta pseudogene 2
SDCBP Syndecan binding protein (syntenin)
CGGBP1 CGG triplet repeat binding protein 1

and kidney cancer, by using the proposed horizontal anomaly detection method.
Specifically, the informative gene detection problem can be defined as finding the
most anomalous genes from two views: the gene profiling of the cancerous and the
normal samples, respectively. After two similarity matrices are constructed for genes
with respect to samples with or without cancer, we detect the genes with the most
obvious inconsistent behavior across the two views, and these are the informative
genes which best explain the effects of a particular kind of cancer.

We use the microarray gene expression data obtained from the GEO database
of NCBI [7] for both the breast and kidney cancer. The breast cancer dataset
consists of 43 breast cancer and 43 normal samples. We filter out genes that are
not differentially expressed and there are 4,739 genes used in our experiments.
We calculate the anomalous scores for each gene based on the inconsistency
degree between the cancer and the normal view. The top 10 genes with the largest
anomalous scores are presented in Table 4. Among these informative genes, SFN
has been reported to have significant association with breast cancer [22]. Levels
of mRNAs coding for HSP90 family is significantly higher in cancer tissues than
in non-cancer tissues [29], suggesting that HSP90 family is associated with the
proliferation of human breast cancer. Also, E2F4 has been reported to be related
to breast cancer [20].

The statistics of the kidney cancer datasets are as follows. It consists of 69 kidney
cancer and 23 normal samples, and we choose 8,710 genes in the experiment. We
show the top 10 genes with the largest anomalous scores in Table 5. Among these
informative genes, [1] suggested that IGFBP3 may contribute to renal diseases via
effects on podocytes and proximal tubule cells. The finding of [27] indicated that
ALDOA is a useful biomarker for monitoring the clinical course of patients with
renal cell carcinoma, which is a kidney cancer that originates in the lining of the
proximal convoluted tubule. In addition, UMOD has been proved that it is associated
with the kidney disease [13].

Note that in the presented results of these two experiments, the relationship
between the other presented genes and cancer has not been revealed by existing
studies yet. However, since some of the genes we identified has been verified to
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Table 5 The top 10
informative genes for kidney
cancer from NCBI

Gene Description

IGFBP-3 Insulin-like growth factor binding protein 3
HUWE1 HECT, UBA and WWE domain containing 1, E3
ANXA2P1 Annexin A2 pseudogene 1
RPL41 Ribosomal protein L41
ALDOA Aldolase A, fructose-bisphosphate
RPS10P7 Ribosomal protein S10 pseudogene 7
ACTG1 Actin, gamma 1
UMOD Uromodulin
HLA-C Major histocompatibility complex, class I,C
RPL8P2 Ribosomal protein L8 pseudogene 2

be informative, our study provides a promising direction to search for informative
genes related to a variety of diseases.

4 Summary

In many applications, there are usually multiple information sources that describe
some common set of objects. From each source, one can derive a similarity matrix
describing the relationship between pairs of objects. When the relationships among
multiple information sources are consistent, it is expected that similar objects form
a cluster and the underlying clustering structure ought to be shared by these multiple
sources. However, there exist some objects which perform inconsistently, and it
is important to detect such objects for decision support in many applications.
In this chapter, we introduced an effective horizontal anomaly detection approach
to identify the objects that have inconsistent behavior across multiple sources.
The proposed algorithm has two intrinsic steps. In the first step, we construct a
combined similarity graph based on the similarity matrices and compute the k
smallest eigenvectors of the graph Laplacian as spectral embeddings of the objects.
After that, we calculate the anomalous score of each object as the cosine distance
between different spectral embeddings. The physical meaning of the proposed
algorithm is explained from both constrained spectral clustering and random walk
points of view. Experimental results on several UCI as well as DBLP, MovieLens
and NCBI datasets demonstrate the effectiveness of the proposed approach.
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Graph Embedding for Speaker Recognition

Z.N. Karam and W.M. Campbell

1 Introduction

This chapter presents applications of graph embedding to the problem of text-
independent speaker recognition. Speaker recognition is a general term encompass-
ing multiple applications. At the core is the problem of speaker comparison—given
two speech recordings (utterances), produce a score which measures speaker
similarity. Using speaker comparison, other applications can be implemented—
speaker clustering (grouping similar speakers in a corpus), speaker verification
(verifying a claim of identity), speaker identification (identifying a speaker out of a
list of potential candidates), and speaker retrieval (finding matches to a query set).

Text-independent speaker recognition has advanced considerably over the last
ten years with dramatic performance and computational improvements. One of the
first successful text-independent models was the Gaussian mixture model (GMM)
universal background model (UBM) [1]. This technique used Bayesian maximum
a posteriori (MAP) adaptation and likelihood-ratio scoring to perform speaker
recognition.

A follow-on to this method was the introduction of the discriminative SVM into
speaker recognition using polynomial kernels [2]. The SVM technique introduced
the vector representation of an utterance into speaker recognition. The top-level
view of this technique is to map a time-variable length utterance to a fixed
dimensional vector and then perform channel compensation and classification with
this representation.
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The convenience and geometric intuition of vector-based techniques in speaker
recognition resulted in multiple vector representations. Maximum likelihood linear
regression (MLLR) adaptation parameters were used by Stolcke [3]. Also, high-
level phonetic and lexical features were used in an information-retrieval style
representation with SVMs for speaker recognition [4,5]. Methods for compensation
for channel variation were explored in this context [6].

Vector methods were then applied to the GMM UBM model. In [7], adapted
GMM model parameters were used as a vector representation with a distance
motivated by the KL divergence. Alternate GMM-model distance metrics can be
found in [8].

A set of methods which attempted to model the manifold structure of the
vectors as a linear subspace slowly emerged. Early techniques applying PCA
and KPCA to obtain subspaces to model speakers were examined in [9, 10] but
did not yield performance improvements. Applying subspaces to model the local
variation of a speaker due to nuisance effects was the first success of such methods
with techniques such as nuisance attribute projection (NAP) [7, 11] and factor
analysis [12]. The goal in this case was to remove or attenuate unwanted within-
class variation. Later methods in this area are within-class covariance normalization
(WCCN) [13].

Subsequent methods to model aspects of the vector representation of utterances
in subspaces and the associated coordinates (factors in statistical parlance) have
been quite successful. One advantage of these methods is they provide a compact
low-dimensional representation. Joint-factor analysis provided the first successful
modeling of both speaker and nuisance subspaces [14]. A reformulation of the joint
factor analysis into a total-variability subspace resulted in the iVector method [15].
Many of these methods can be viewed in a common framework known as inner
product discriminant functions (IPDF) [16].

Using graph embedding methods is a recent successful attempt to apply more
advanced methods to analyze the manifold of the vector set of speaker utterances.
In the paper by Karam [17], graph embedding is proposed as a method of visualizing
large data sets and also as a starting point for speaker comparison (1-1 comparison).
A subsequent paper [18] refines the speaker comparison method using relational
learning.

This chapter examines graph embedding of speech recordings for visualization,
manifold embedding, and for two speaker recognition classification problems—
speaker comparison and speaker retrieval. Basic methods of vector representation
of speech utterances are discussed. Graph embedding and visualization of speech
corpora using these vector representations are then presented. Multiple techniques
and features for speaker comparison, including geodesics, random walks, and
relational learning, are examined. Finally, speaker retrieval using random walks is
explored.
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2 Vector Representation and Compensation of Speech Data

As discussed in the introduction, the vector representation of speech data is a
critical part of the graph-embedding process. In this section, representing speech
data using Gaussian mixture models (GMMs) and GMM supervectors is reviewed.
Although this particular approach is used for concreteness in the graph-embedding
experiments, the proposed graph-based methods are general and can be applied to
any vector expansion such as iVectors [15, 19], the polynomial (GLDS) vector [9],
high-level term frequency vectors [4], etc. The vector representation can further be
refined to better capture speaker similarity through nuisance compensation. Though
many compensation techniques exist [7, 11–13], this section will briefly present
weighted nuisance attribute projection (WNAP) [20], the method used in the graph-
embedding experiments.

2.1 Vector Representation

The basic strategy for comparing speech utterances is shown in Fig. 1. Given two
speech utterances x and y to compare, the first step is to extract feature vectors,
{xi} and {y j}, respectively, representing the utterances. Feature vectors are typically
cepstral coefficients with associated smoothed first- and second-order derivatives.

A GMM universal background model (UBM) is adapted to each of the sets of
feature vectors separately. Intuitively, the UBM is the prior for distinct acoustic
sounds across a large population. The GMM UBM is given by

Fig. 1 Comparing speech utterances using GMM UBM MAP adaptation. The ovals in the
figure indicate different mixture components and their corresponding covariance matrix. The plus
indicates the mean of the mixture component. Colors indicate the results of MAP adaptation
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g(x) =
Nm

∑
i=1

λiN (x|mi,Σi). (1)

In (1), λi are the mixture weights, mi are the means of the individual Gaussians, Σi

are diagonal covariances, and Nm is the number of mixture components. Maximum a
posteriori (MAP) adaptation of the means and ML adaptation of the mixture weights
using the feature vectors {xi} and {y j} produces two GMMs, gx and gy. A method of
comparing the parameter vectors of stacked mixture weights and means, ax and ay,

ax =
[
λT

x mT
x

]T
(2)

=
[
λx,1 · · · λx,Nm mT

x,1 · · · mT
x,Nm

]T
. (3)

from the two GMMs will be used for speaker comparison.
From Fig. 1, if mixture components roughly correspond to different acoustic

sounds, the movement of the means away from the UBM by adaptation gives an
indicator of speaker differences in acoustic production. This difference in produc-
tion (e.g., from dialect and vocal tract shape) gives a method of discriminating
speakers.

The two distributions gx and gy can be compared using KL-divergence,

D(gx‖gy) =
∫

Rn
gx(x) log

(
gx(x)
gy(x)

)
dx, (4)

but the result is not computable in closed form. An approximate symmetrized KL
divergence is used as an alternative [7, 21],

d2(ax,ay) =
Nm

∑
i=1

[
λx,imT

x,iΣ
−1
i mx,i− 2λ

1
2

x,iλ
1
2

y,im
T
x,iΣ

−1
i my,i +λy,imT

y,iΣ
−1
i my,i

]
, (5)

where we have used the adapted means and mixture weights. Thus, the distance (5)
reflects the intuition shown in Fig. 1; i.e., the overall distance between utterances
is a sum of local distances between means of the adapted GMMs appropriately
weighted.

A corresponding inner product to this distance is

C(ax,ay) =
Nm

∑
i=1

λ
1
2

x,iλ
1
2

y,im
T
x,iΣ

−1
i my,i, (6)

An alternate expression of this inner product using Kronecker notation is (see [21]),

C(ax,ay) = mT
x (λ

1/2
x ⊗ In)Σ−1(λ 1/2

y ⊗ In)my = zT
x zy (7)



Graph Embedding for Speaker Recognition 233

where the corresponding vector representation is

zi = b(ai) =
[
λ

1
2

i,1Σ
−1
i mT

i,1 · · · λ
1
2

i,Nm
Σ−1

i mT
i,Nm

]T

= (λ 1/2
i ⊗ In)Σ−1/2mi.

(8)

The vector representation (8) and corresponding inner product and distance will be
used for constructing content graphs. Note the inner product has also been used
extensively in SVM-based speaker recognition [21].

The inner product and expansion shown belongs to a more general class of
comparisons called inner product discriminant functions (IPDF) [16]. In the more
general framework, a comparison function of the form

C(ax,ay) = (Lxmx)
TD2(Lymy) (9)

is used. In the equation, Lx, Ly are linear transforms which perform compensation
and dimension reduction. The matrix D is a positive definite matrix inducing a
distance metric. As shown in [16], approximate KL divergence (8) is of this form.
In addition, methods such as iVector and joint factor analysis can be written in this
form, since factor analysis can be written as a linear transform—see [16] for more
details.

2.2 Vector Compensation

As mentioned, Lx and Ly can also be used for channel mismatch. Channel mismatch
occurs in many forms between two recordings—different acoustic environments,
different microphone types, speaker session variation, etc. A common assumption
in speaker recognition is that a subspace in the vector space corresponds to nuisances
to the recognition.

A framework for eliminating nuisances (nuisance attribute project, NAP) in the
parameter vector based on projection was shown in [11, 20]. The basic idea is to
assume that nuisances are confined to a small subspace and can be removed via
an orthogonal projection, mx �→ QU,Dmx. One justification for using subspaces
comes from the perspective that channel classification can be performed with
inner products along one-dimensional subspaces. Therefore, the projection removes
channel-specific directions from the parameter space.

Alternate methods for compensation in the IPDF framework include within-
class covariance normalization (WCCN), variability-compensated support vector
machines (VCSVM), and Wiener filtering. WCCN [13] attenuates rather than
removes nuisance directions. VCSVM [22] also attenuates nuisance directions, but
does this in the context of SVM training. Finally, Wiener filtering [23] uses subspace
models of speaker and channel and performs matrix-vector Wiener filtering to
optimally attenuate noisy subspaces. All methods are closely related but provide
different perspectives on subspace-based compensation.
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3 Content Graphs

3.1 Constructing Content Graphs

Our approach to constructing graphs is based on the semi-supervised learning
literature [24, 25]. A set of vectors M = {zi}, zi = b(ai) obtained as a vector
mapping of a corresponding set of speech signals is given, as in (8). The set
of vectors occupies some manifold. A fundamental idea is to create a graph G
which reflects the local connectivity and distances of points on the manifold.
An approximate analogy is that the graph represents a sampling process (e.g., band-
limited sampling) on the manifold. After creating this graph, fundamental operations
such as finding nearest neighbors of points or computing global properties such as
geodesic distances using graph methods (Dijkstra’s shortest path algorithm [26])
can be performed.

The construction of a speaker content graph proceeds as follows. First, each
node n in the graph corresponds to a single vector z from a speech signal. Edges
in the graph represent speaker-similarity between a pair of recordings. Ideally if
two nodes are connected, the speakers from the two nodes should be the same.
When performing the graph embedding, a sparse version of the similarity matrix is
first computed with the only valid entries being those corresponding to the existing
edges. Note that the summarized matrix and the resultant graph are two ways to
represent the same information. Figure 2 sketches out the embedding process for
four utterances {RA,RB,RC,RD}.

In experiments, it has been found critical to sphere (normalize) the vector data (8)
as zx/‖zx‖2. Sphering the data partly corrects for variations in vector length due to
different signal durations [27]. Sphering simplifies computation since the distance
and inner product are related by the simple relation, ‖zx− zy‖2 = 2− 2zT

x zy.
As shown in Fig. 2, in order for the graph to reflect the local neighborhood of

a point z, only a limited number of neighbors are connected. One possible method
is to choose a fixed threshold ε and connect all points within an ε-ball using the
distance function d(z,zi) < ε . For our experiments, this method was found to yield
graphs which were too dense and had unusual degree distributions. Alternatively,
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Fig. 3 Histogram of node degree for various content graph construction methods

for each point, the top-K closest neighbors can be found; i.e., for a given node n
with corresponding vector z, connect n and ni only for the smallest K values of
‖z−zi‖ as zi ranges over the entire vector set M. Note that this construction implies
the minimum degree of each node is K, but because the edge construction is done
independently for each node, the degree could be substantially larger than K. Graphs
built based on an ε-ball are referred to as ε-graphs, and those based on nearest
neighbors as NN-graphs.

Figure 3 shows the degree distribution for multiple types of graph construction
on the NIST SRE 2004 speaker recognition corpora. The actual (true) degree
distribution is derived from the graph where two nodes are connected if and only
if they represent the same speaker. From the figure, it is clear to see that the ε-graph
is very sensitive to the parameter setting, with a very small change in ε yielding
significantly different degree distributions; furthermore, no choice of ε achieves a
degree distribution similar to that of the actual graph. The nearest neighbor graph,
however, is a better fit; therefore, this chapter will focus on NN-graphs.

Figure 4 shows an example of a content graph using the approximate KL distance
and a top-5 nearest neighbor construction. The graph is created from four speakers
and shows the corresponding clusters in the graph. The graph clearly illustrates that
not all nodes within a cluster are connected (i.e., not a complete subgraph).

The graph structure has a corresponding isomorphism to a matrix representation.
The weighted adjacency matrix W for the graph is defined as W = [Wi, j] where

Wi, j =

{
f (zi,z j) if an edge exists between i and j

0 otherwise.
(10)
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Fig. 4 Example of a content
graph using four speakers
from the NIST SRE 2008
male speaker set and a top-5
graph

Typical functions f (·, ·) are

f0(zi,z j) = zT
i z j

f1(zi,z j) =
√

2− 2zT
i z j

f2(zi,z j) = e− f 2
1 (zi,z j)/σ2

(11)

Note that f2(·) in (11) is a standard radial basis function (also commonly used as an
SVM kernel). The parameter σ controls the decay of the exponential function (i.e.,
the width of the basis function).

The matrix W is sparse and symmetric by construction. In fact, the process of
graph construction in the matrix domain can be viewed as a sparse approximation
to the dense matrix where none of the weights are zeroed out in (10).

3.2 Incremental Construction

Content graphs can be constructed in an incremental manner. That is, if speech
data is viewed as streaming in over time, then the content graph can be updated
dynamically to reflect the new data. The two steps to make this an efficient process
are briefly described.

As a setup, suppose a new piece of data z is obtained, and an existing data set M =
{zi}, content graph G, list of indices and closest K distances {Di}, and weight matrix
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W is given. Note the closest distances for vector zi in increasing order are Di,k,
k = 1, . . . ,K. The process of adding a new piece of data to the graph is equivalent to
appending a row and column to W . The steps to adding to the content graph are the
following:

• Compute and store ‖z− zi‖ for i = 1, . . . ,K. Store the list of indices and sorted
distances D with distances D1 ≤ D2 ≤ ·· · ≤ DK .

• For each i > K, compute d(z,zi) using an early out algorithm. First, retrieve
the furthest neighbor distance Di,K for zi. Then, loop over the dimensions in the
Euclidean norm in (5). The current “estimate” of the distance is monotonically
increasing; if this estimate goes over DK or Di,K , the computation can stop and
go to the next vector. Otherwise, insert the vector in the appropriate list.

• At the end, the K closest vectors to z in the list D are obtained. The vector z has
been potentially inserted into the distances and lists for each of the zi.

Several comments on size and computation are appropriate. First, since only the
top K distances and indices for each zi are stored, the memory for the graph is
approximately 2KNv scalars where Nv is the number of vectors. Storage increases
linearly with the number of vectors. Second, computation to insert an element
into the graph is approximately 2cNeNv flops where Ne is the dimension of the
expansion vector and c is the early-out probability (typically 0.5 in our experiments).
Essentially, this computation could be viewed as an extreme form of feature
reduction performed when the data is streamed into the system. Additionally, the
graph construction performs most of the necessary computation up-front to avoid
significant computation at query time.

4 Speaker Manifolds and Graph Visualization

This section shows how the content graphs can be used to explore the speaker
manifold and for the visualization of large corpora.

4.1 Exploring the Speaker Manifold

Content graphs can be used to explore the existence of an underlying manifold upon
which speech recordings lie as well as to obtain an embedding of the recordings
on the manifold. To this end a popular technique, isometric feature mapping
(ISOMAP) [28] can be employed. ISOMAP relies on approximate geodesic dis-
tances, distances along the manifold, computed using the content graphs. This
section presents geodesic distances and their approximate computation, followed by
the ISOMAP algorithm and the insights gained by applying it to speech recordings.
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Fig. 5 Geodesic and
Euclidean distances between
A and B

4.1.1 Geodesic Distance

Assuming that the recordings lie on a low-dimensional manifold in the speaker-
similarity space defined by the recording vector representation, then the Euclidean
distance between two recordings that are far apart may not be a faithful representa-
tion of speaker similarity. A better choice may be the geodesic distance, the length of
the shortest path connecting them along the manifold, between the two recordings.
Figure 5 sketches the difference between the two distances for a manifold with an
intrinsic dimension of two in a three-dimensional Euclidean space.

Though they differ over large distances, the Euclidean and geodesic distances
are approximately equivalent for arbitrarily short distances. This equivalence can
be used to approximate the geodesic distance [28] as follows. First assume that
enough recordings are available such that they densely sample the manifold in
the Euclidean space and create a content graph with the edge weights between
two nodes being the Euclidean distance between them. The graph only connects
nodes that are similar, and if the space is densely sampled one can assume the
weight of the edge between two recordings is a faithful representation of their
similarity. Thus, the geodesic distance between two recordings can be approximated
using the graph geodesic, which is computed by summing the weights of the edges
along the shortest path in the graph connecting their corresponding nodes. Figure 6
sketches this approximation for a manifold with an intrinsic dimension of two
in a three-dimensional Euclidean space. The Matlab implementation [29] of the
Dijkstra algorithm [26] is used to efficiently compute the shortest path between two
recordings.
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Fig. 6 Approximate geodesic distance between A and B

4.1.2 ISOMAP

ISOMAP [28] is a technique that is used to explore the existence and dimension
of the manifold, as well as embed points into it. The embedding begins with
approximate geodesic distances computed using the content graph and applies
multidimensional scaling (MDS), a technique used for dimensionality reduction and
data visualization [30], to obtain the low-dimensional embedding that best preserves
these distances. The distance in the embedding space will be referred to as the
ISOMAP distance. The optimal size of the lower-dimensional embedding space is,
in general, not known a priori and can be estimated by examining the decay of
the residual variance, the variance in the data unaccounted for by the embedding.
ISOMAP embedding can be performed using the Matlab software package [29].

ISOMAP Applied to Speech Recordings: The speaker-similarity vector expan-
sion described in Sect. 2.1 to which speech recordings are mapped has a high
dimension of 19,968; however, as shown in the iVector representation of speech [15]
good speaker separation can be done in a significantly smaller space of dimension
400. This smaller space is essentially the linear subspace of largest speaker
variability in the original space. A question that this section attempts to answer
is whether the data lies near a nonlinear manifold and if so what is its dimension. To
this end, ISOMAP with an NN content graph built using K = 6 nearest-neighbors is
applied to:

• 5213 recordings of the NIST SRE 2004 data set [31], which contain 212 speakers
from both genders.

• 5742 recordings, of both genders, from the 1 and 3 conversation enroll and 1
conversation test tasks of the NIST SRE 2006 [32].



240 Z.N. Karam and W.M. Campbell

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6
R

es
id

ua
l v

ar
ia

nc
e

Manifold Dimensionality

NIST SRE 04
NIST SRE 06 (1c/3c)
NIST SRE (04/06/08) & Fisher
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• 23000 recordings, of both genders, sub-selected from the NIST SRE 2004/06/08
[33] evaluations as well as the Fisher corpora.

Figure 7 examines the decay of the residual error as the embedding dimension is
increased. Note that most of the variability in the SRE 04 data set can be captured
by a 50-dimensional manifold, and similarly for the SRE 06 data set. However,
when speech recordings from multiple sources are pooled the intrinsic dimension is
closer to 100 with an overall higher residual error, which seems to indicate a lack of
consistency in the manifold across the data sets.
To further highlight the existence of an underlying manifold of speaker variability,

Fig. 8 shows the two-dimensional embedding of 5 recordings from 10 male and 10
female speakers randomly selected from the 212 speakers from the SRE 04 data
set; all recordings from the 212 speakers were used in the ISOMAP embedding.
Each set of similarly colored “o”s represents recordings from a male speaker, and
the set of similarly colored “x”s represents recordings from a female speaker. It is
interesting to note that both speaker and gender separation can be observed in this
two-dimensional embedding.

4.2 Graph Visualization of Speaker Recordings

Content graphs can also be used to visualize the efficacy of various vector
representations and nuisance compensation methods, which compensate the vector
representations such that they better capture speaker similarity. When visualizing
content graphs, the locations of the vertices are not important; however, the
existence and weights of the edges between them are. The graph can, therefore, be
“laid out” (the process of choosing vertex locations) in a manner that would result
in good visualization. The GUESS [34] software package can be used to perform
both the visualization and the layout using the GEM algorithm [35]. An example of
such a layout is presented in Fig. 9 which shows the layout of the content graph,



Graph Embedding for Speaker Recognition 241

−10 −8 −6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

10

1st Principal Dimension of Manifold

2n
d  

P
rin

ci
pa

l D
im

en
si

on
 o

f M
an

ifo
ld

Fig. 8 Five recordings each from 20 speakers embedded on the estimated two-dimensional
manifold—“o” for males and “x” for females

Fig. 9 NIST SRE 2004 NN-graph K = 6 male (red) and female (green) recordings

built using nearest-neighbors with a K = 6, of the SRE 04 telephony data [31]. Male
and female recordings are represented by red and green nodes, respectively, and the
visualization clearly shows the gender separation.
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Fig. 10 Graph visualization of all NIST SRE 2010 male recordings using the full channel-blind
system and with speaker metadata overlaid

Such visualizations can also be used to explore and uncover structure in a
given data set. To highlight this, a case study is presented. In [19] a channel-
blind system was proposed that could be used across the different tasks of
the 2010 NIST speaker recognition evaluation (SRE) [36]. These tasks include
recordings of telephony speech as well as various microphone recordings collected
from interviews conducted in two separate rooms. This system is based on the
iVector system [15], which employs with within-class covariance normalization
(WCCN) [13] and linear discriminant analysis (LDA) [37] to perform the crucial
role of removing the channel variability. Using the visualization of the content
graphs, one can highlight the effect of the channel compensation in the system as
well as explore the NIST SRE 2010 recordings. Only male recordings are presented
since similar results are observed with female recordings. The graph visualizations
show all male recordings in the 2010 extended NIST SRE, where the number of
nearest neighbors is set to K = 3.

First, the efficacy of the channel-blind system is shown by building the content
graph using the distance defined by the system, without using any channel or speaker
information. Figure 10 shows the resultant visualization with speaker metadata
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Fig. 11 Graph visualization of all NIST SRE 2010 male recordings using the channel-blind
system without WCCN/LDA channel compensation and with speaker metadata overlaid

overlaid such that recordings of the same speaker are colored alike. Clusters of
similar color, representing clusters of recordings of the same speaker, show that
the system does indeed perform well at capturing speaker similarity.

Next, the importance of the channel compensation performed by the combination
of WCCN/LDA is explored. To do this, a content graph is built using the channel-
blind system without the WCCN/LDA step, without the use of any speaker
or channel information. The corresponding visualization with speaker metadata
overlaid is shown in Fig. 11. Notice that the speaker clustering observed with the full
channel-blind system is no longer visible; however, interestingly there does seem to
be some structure to the graph. Further exploration, by overlaying channel metadata,
shows that the structure can be attributed to channel variability. Figure 12 shows
this layout with colors representing different telephone and interview microphone
channels, and the node shape representing the two different rooms the interview data
was collected in. Upon careful inspection of the graph, one notices that the room
accounted for more variability than the interview microphones, specifically for the
far-talking microphones: MIC CH 05/07/08/12/13. Another worthwhile observation
is that recordings from the two landline phones located in each of the two rooms
cluster near the interview data of the corresponding room, and more specifically
near the close-talking and desk microphones: MIC CH 02/04.

This ability to visualize and explore the dominant variability within a data set
may prove to be a useful tool when dealing with newly collected data sets. In this
particular case study, the greater effect of the room variability over that of the
microphones seems to suggest that future NIST SREs should include tasks that test
for robustness across varying recording rooms.
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Fig. 12 Graph visualization of all NIST SRE 2010 male recordings using the channel-blind
system without WCCN/LDA channel compensation and with channel metadata overlaid

Another useful aspect of visualization, which will only be mentioned here, is
to help identify errors in the metadata provided with a data set. For example, an
error in the speaker or gender label would manifest as a node or group of nodes not
clustering with their same speaker/gender labeled counterparts.

5 Speaker Comparison

5.1 Definition, Metrics, and Data sets

Speaker comparison is given by the following scenario. Given two speech signals,
produce a score of speaker similarity. More positive scores indicate a higher
likelihood of match; more negative scores indicate a lower likelihood of match. By
varying a threshold on the comparison score, different performance levels can be
achieved.

Speaker comparison performance is typically measured over a large number of
target and non-target trials: the former consists of two recordings from the same
speaker, while the latter from two different speakers. Performance can be measured
with a variety of different metrics calculated in terms of miss probability Pm and
false alarm probability Pfa. Standard metrics are equal error rate (EER) which is
the operating point where Pm = Pfa and minimum decision cost function (minDCF)
which is defined as the minimum of a cost function,
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Fig. 13 DET plot showing speaker comparison performance of the baseline system on NIST
SRE 2006

C(T ) =CmPm(T )Ptgt +CfaPfa(T )(1−Ptgt), (12)

where T is the threshold. Typical values are Cm = 10, Cfa = 1, and Ptgt = 0.01.
Additionally, performance can also be shown over a range of thresholds in the form
of detection error trade-off (DET) plots—a type of ROC curve [38]. Figure 13 shows
an example DET plot for our baseline system. To summarize overall performance,
the area under the ROC (AUC) curve is used; however for most speaker comparison
applications, the region above the EER operating point is of most interest.

Experiments for speaker comparison were performed on the NIST SRE 2006 [32]
and NIST SRE 2008 [33] speaker recognition evaluation (SRE) data sets. All
telephony data from both evaluations was used. For SRE 06, this resulted in 4,951
male utterances and 2,790 female utterances. For SRE 08, 4,951 male utterances
and 6,393 female utterances were used. The SRE 06 data will be used as a
training/validation set, and the SRE 08 will be reserved for testing.

5.2 Baseline System

The baseline system is used both for setting a performance baseline for speaker
comparison and to build the content graphs used in our proposed graph-based
systems.

The vector expansion used is given by (8). Standard feature extraction with 20
MFCCs (including c0) plus deltas was performed along with SAD and 0/1 feature
normalization. A GMM UBM with 512 mixtures was trained using a large set of
Switchboard 2 [39] and Fisher data. For MAP adaptation, a relevance factor of 0.01



246 Z.N. Karam and W.M. Campbell

was selected. To compensate the expansions, WNAP [20] was used and trained
using a combined NIST SRE 2004–2006 [31, 32, 40] list with the dimension of
the nuisance subspace fixed at 64. Finally the compensated expansions are sphere
normalized to obtain the resultant vector representation zx of recording x. The
Euclidean distance between two recordings x and y is:

E(x,y) = ||zx− zy||=
√

2− 2zT
x zy. (13)

This distance is used to build the content graphs using NN construction, as described
in Sect. 3.

In addition to graph construction, the negative of the Euclidean distance between
two recordings will serve as the baseline system. A DET plot is used to present
the performance of this system on the SRE 06 data, the ‘x’ and the ‘o’ represent
the minDCF and EER operating points, respectively. Throughout this chapter,
performance on male and female speakers are presented separately.

5.3 Exploiting Content Graphs for Speaker Comparison

Even though the content graph is built using the baseline Euclidean distance system,
it contains a wealth of additional information which can be used to improve speaker
comparison. This section derives three sets of features from the content graph, each
motivated by a different application of graphs in the literature. The properties and
performance of each set will be examined on the SRE 06 data set and a comparison,
between them, on the test set is presented in Sect. 5.3.4.

5.3.1 Speaker Comparison Using Geodesic Distance

Section 4 showed that speech recordings do indeed lie near a manifold, therefore
taking the manifold structure into consideration when computing speaker similarity
should improve over the Euclidean distance baseline. To this end, the negative
of the approximate geodesic distances computed via nearest neighbor content
graphs can be used to compare two recordings. These are computed by applying
Dijkstra’s [26] shortest path algorithm to NN graphs with edge weights f1(zi,z j)
(11). This geodesic measure is sensitive to the tuning parameter, the number of NNs
(K); this is highlighted in Fig. 14, which shows the variability of each of the three
metrics as a function of K. In the figure, the performance on the SRE 06 data is
presented using EER/2, 1−AUC and minDCF to match their respective dynamic
ranges. The figure shows that no one choice of K simultaneously minimizes each
of minDCF/EER/(1-AUC). This phenomenon is similarly observed for the other
choices of graph-based speaker comparisons presented in the following sections.
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Fig. 14 Performance, as measured by minDCF/EER/AUC, on the NIST SRE 2006 data set
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Fig. 15 DET plots using Geodesic distance for the choices of K that achieve the best minDCF,
EER, and AUC on NIST SRE 2006

Figure 15 visualizes this trade-off in system performance over the full range of
operating points for each optimal, as chosen by one of the three metrics, choice of K.
Overall, the Geodesic distance does improve over the Euclidean baseline. Low K =
2 achieves a dramatic improvement, specifically for male speakers, in the low false-
alarm regime of the DET curve, however at a significant reduction in performance
for the remaining operating points. For larger choices of K, the improvement over
the baseline is more consistent. An interesting property of DET curves using the
Geodesic distance is the step-like structure, most clearly observed on the female
speakers. The reason for this is that the dynamic range of scores between speakers
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that are one-hop away, directly connected, and two-hops away, not connected but
share a common neighbor, is large enough that the histograms of target and non-
target scores of such a system are multi-modal.

5.3.2 Speaker Comparison Using K-Step Markov

The Geodesic distance only considered the shortest path connecting two nodes,
however, one could consider all paths between them. K-step Markov (KSM) is
an asymmetric feature that achieves that goal and is typically used to quantify
the relative importance between two nodes in a graph [41]. KSM provides the
aggregate probability that a random walk started at node i will visit node j after
S steps are taken; the notation S was chosen so as not to be confused with K, the
number of NNs in the graph.

Computing KSM requires first transforming an NN graph with edge weights
given by f2(zi,z j) (11) into a probability graph with directed edges representing the
probability of transitioning from a node to each of its neighbors with each step taken.
This is done by dividing each outward edge from a node by the sum of all outward
edges from that node. The transformation is shown in Fig. 16; note that f2 represents
similarity rather than distances; therefore, higher similarity will be transformed into
a higher probability. The probability graph can be transformed into a probability-of-
transition matrix A where the A(i, j) represents the probability-of-transition from
node i to node j; for example in Fig. 16, A(2,4) = 2/6 and A(4,2) = 2/7. For the
experiments in this section, the decay parameter σ in f2 is set to 1.

Given the probability-of-transition matrix A, the KSM score for S-steps can be
computed as follows:

KSM(i, j) = {Aei +A2ei +A3ei + · · ·+ASei} j, (14)

where ei is a vector whose ith entry is 1 and all remaining entries are zero, and {v} j

represents taking the jth entry of the vector v. For the experiments in this section a
symmetric form of the KSM measure is used:

KSMsym(i, j) =
1
2
{KSM(i, j)+KSM( j, i)}. (15)
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Fig. 17 DET plots using KSM for the choices of K and S that achieve the best minDCF, EER, and
AUC on NIST SRE 2006

KSM is parametrized by K, the number of nearest neighbors used to build the
graph, and S the number of steps used to compute the score in (14). For each of the
metrics considered the best choice of K ∈ {1 : 25} and S ∈ {1 : 15} on SRE 06 is
selected, and the corresponding DET plots shown in Fig. 17; a maximum choice
of S = 15 is sufficient as the contributions from additional steps beyond that is
negligible. The figure shows that KSM significantly improves over the baseline and
is more consistent over the choice of the optimization metric than the Geodesic
distance. This is due to KSM taking into consideration the multiple paths connecting
two nodes rather than just the best.

5.3.3 Speaker Comparison Using Neighborhood Locality

Both the Geodesic distance and KSM were measures of flow through the graph,
this section will focus on local neighborhoods. The premise being that if two
recordings share a common neighborhood they are more likely to be of the same
speaker. This approach was motivated by the link prediction problem [42]; however,
unlike that work, a graph is not explicitly provided and must be built using the NN
approach. This section shows that the link prediction measures presented in [42]
can be used to quantify speaker similarity between two recordings. These measures
are typically computed using binary graphs, where the edge weights are either 1 or
0; however, this section also proposes counterparts that apply to weighted graphs,
whose edge weights are f0(zi,z j) (11). First, some useful notation is introduced,
followed by the link prediction measures on binary graphs, and their weighted graph
counterparts.

• The graph consists of T nodes (recordings).
• NNi is the set of neighbors of node i, i.e. the nodes connected to i by an edge.
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• |X | is the cardinality of the set X .
• ||zi|| is the 2-norm of the vector zi.
• The vectors vi are, typically sparse, vectors of size T × 1 that capture the

interaction of i with the remaining graph nodes:

– Zero valued entries in the vectors indicate the lack of an edge between the
recording i and the nodes corresponding to the zero locations.

– For weighted graphs, the value of the nonzero vector entries indicates the
weight of the edge between i and the corresponding graph nodes.

– For binary graphs, all nonzero entries have a value of one and indicate edges
between i and the corresponding graph nodes.

Binary graphs: For binary graphs the speaker similarity metrics are based on the
ones proposed in [42] for link prediction:

• Common neighbors=|NNj ∩ NNi| counts the number of common neighbors
between j and i.

• Jaccard’s coefficient=
|NNj∩NNi |
|NNj∪NNi | normalizes the common neighbor score by

the total number of nodes connected to both j and i. An example scenario where
the normalization would be useful is where a particular recording j shares the
same number of common neighbors with two separate recordings i1 and i2,
however |NNi2 | � |NNi1 | and thus the Jaccard coefficient would penalize i2.

• Adamic=Σz∈NNj∩NNi
1

log|NNz| a measure that combines the size of the intersection
set with how highly connected the nodes in the intersection are. This could be
thought of as another form of normalized common neighbors.

Weighted graphs: For weighted graphs, counterparts to the binary graph measures
are used:

• Inner product=vT
j vi is based on the common neighbors measure.

• Normalized inner product I=
vT

j vi

||v j ||.||vi|| which is inspired by Jaccard’s coefficient.

• Normalized inner product II=
vT

j vi

||v j ||+||vi|| also inspired by Jaccard’s coefficient.

• Adamic Weighted=Σz∈NNj∩NNi
1

log||vz|| , based on the binary Adamic feature.
• Landmark Euclidean distance=||v j− vi||, a measure that considers the record-

ings in the graph as landmarks and that the vectors v j and vi represent the
coordinates of j and i in the space defined by the landmarks.

The SRE 2006 is once again used to set the parameter K ∈ {1 : 25}, the number
of nearest neighbors, for each of the different metrics. Figure 18 shows the DET plot
of the best choice of K and the best performing binary-graph and weighted-graph
local-neighborhood similarity measure on SRE 06. Once again, these measures out-
perform the baseline, with the normalized inner product I performing consistently
better than the others over the different choices of optimization metric. The step-like
shape of the common neighbors measure is because this measure results in integer
similarity scores.
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Fig. 18 DET plots of the local-neighborhood similarity measures that achieve the best minDCF,
EER, and AUC on NIST SRE 2006

5.3.4 Generalization to the Test-Set

This section evaluates the best performing content-graph-based similarity measures
on the NIST SRE 2008 test set. Rather than examining each of the optimization
metrics (EER/minDCF/AUC) separately, this section will focus on the EER; this
is because, of the three, it provided the most consistent results on the evaluation set
over the region of the DET curve of most interest for speaker comparison, the region
above the EER operating point.

Figure 19 presents the results on the test set for the best choice of parameters for
each of the four measures: Geodesic, KSM, local-neighborhood (L-N) Binary, and
L-N Weighted. The best parameters are chosen to optimize EER performance on the
SRE 06 evaluation set. As seen in Fig. 19, all of the measures, except for the L-N
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Fig. 19 DET plots showing the generalization of the different measures to the NIST SRE 2008
test set

Binary common neighbors and L-N Binary Jaccard’s coefficient, generalized well
to the SRE 08 test set, and significantly outperformed the baseline; with the best
performing and most consistent measure being KSM.

5.4 Graph-Relational Features for SVM Speaker Comparison

Speaker comparison using SVMs has proven popular in the speaker verification
scenario [2–5]. There the goal of these approaches was to build an SVM classifier,
per speaker of interest, that separates the vector representation of the speaker of
interest from all others. This section presents an alternate approach to SVM speaker
comparison that learns a single classifier, per gender, that operates on pairs of
recordings and separates those pairs of recordings of the same speaker from those
of different speakers. The graph-based similarity measures presented in the previous
section along with the Euclidean distance serve as graph-relational features for this
SVM. An important question, however, is which subset of measures and parameter
values to include in the graph-relational features. This section explores two such
choices. The first, only includes the best performing subset (BEST) from each class
of measures, with the selection based on minDCF, EER, and AUC performance on
the validation set; these are listed in Table 1. The second uses all the features (ALL)
over a wide range of parameter choices.

When the best subset along with the Euclidean distance are used, the resultant
feature vectors are of length 13. Alternatively, the feature vectors for ALL are of
length 300 and include the Euclidean distance and all the different measures over
the range K ∈ {1 : 2 : 25} for NN graph construction and S ∈ {1 : 15} for the
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Table 1 The best performing choice of parameters from each type of measure for
each of the minDCF, EER, and AUC metrics

Measure Metric Male Female

Geodesic minDCF KNN=2 KNN=2
Geodesic EER KNN=10 KNN=12
Geodesic AUC KNN=14 KNN=17
KSM minDCF KNN=12 #S=3 KNN=15 #S=4
KSM EER KNN=10 #S=3 KNN=20 #S=2
KSM AUC KNN=18 #S=3 KNN=19 #S=4
L-N Binary minDCF Adamic; KNN=12 Adamic; KNN=10
L-N Binary EER Common N.; KNN=12 Jaccard Coeff.; KNN=18
L-N Binary AUC Jaccard Coeff.; KNN=25 Jaccard Coeff.; KNN=24
L-N Weighted minDCF Norm. IP I; KNN=14 Norm. IP I; KNN=8
L-N Weighted EER Norm. IP I; KNN=13 Norm. IP I; KNN=18
L-N Weighted AUC Norm. IP I; KNN=25 Norm. IP I; KNN=24
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Fig. 20 DET plots comparing SVM with BEST and ALL features to KSM and the baseline on the
NIST SRE 2008 test set

KSM measure. The feature vectors are mean and variance normalized based on
the training set. Covariance normalization based on the training set is also explored,
since the individual measures are similar across parameter choices and types; this
improved performance only when the BEST choice of features were used; therefore,
the results presented for the BEST features includes covariance normalization.
SRE 06 is used to train the classifier, with the SVM cost parameter selected to
optimize for the EER using threefold cross validation on SRE 06. Cross validation
also showed that it was crucial to use an AUC-maximizing SVM [43], this work
uses the SVMperf Matlab implementation [43].

Figure 20 compares the SVM classifier with the two feature vector choices,
BEST and ALL, to the baseline measure and KSM, the single best performing
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graph-based measure. The SVM with the ALL features consistently outperformed
the others, while the performance of the BEST features was on par with KSM.
This is an interesting observation, because even though the different graph-based
measures and the different parameter choices may not perform well individually,
they provide complimentary information that can be exploited by the SVM.

6 Speaker Retrieval

6.1 Definition and Metrics

Although no standard definition exists, we define speaker retrieval as follows.
A query set of utterances is given. The goal is to find a list of utterances in a
larger corpus that match the speakers in the query set. This problem is similar to the
standard multi-utterance enrollment multi-speaker detection task. Two differences
are that speaker retrieval does not require speaker labeling of the query set. Also,
since a result list is returned (e.g., top 10 matches), speaker retrieval does not require
scoring and ranking all utterances in the larger corpus. Typical applications for
speaker retrieval are recommender-systems based on a user’s browsing history or
query-by-example.

For speaker retrieval, a typical metric is average precision at a given result list
of length N. For a given query, find the top N scoring nodes and then find the
percentage of relevant speakers (true trials) on the list—the precision. The mean
of the precision across multiple queries is the average precision. For this work, the
assumption is made that recall will not be an issue; i.e., there are enough relevant
speakers to fill the results list.

6.2 Approaches to Speaker Retrieval

Suppose a set of query speech signals represented as vectors Q contained in a larger
set of vectors M with top-K NN-graph G and corresponding weighted adjacency
matrix W is given. The speaker retrieval problem is to find a list of N candidate
matches from M \Q (set difference) to the query set Q.

The baseline approach to speaker retrieval using standard speaker recognition
techniques is a stack detector [44]. First, assume that the query set has S labeled
speakers. Then, for each of the speakers construct an SVM model, w j. Next, apply
the models {w j} as a stack detector to the vectors M\Q. The stack detector score for
vector mi is si = max j wt

jmi. Typically, the stack detector score would be compared
to a threshold for verification. In speaker retrieval, the scores {si} are sorted, and
the largest N values and corresponding indices are found returned as the result of
the query.
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6.2.1 Speaker Retrieval with Random Walks

Speaker retrieval can also be performed with a random walk (Markov process) on
the content graph constructed in Sect. 3. Suppose again a set of query vectors, Q is
given. Our goal is to set up a random process on the content graph with walks from
the query nodes to good candidates with high probability.

The random walk method presented is inspired by approaches typically used for
text processing. Random walks are commonly used in semi-supervised learning for
inference, see [45,46]. Additionally, random walk methods can be viewed as related
to using homophily, relational autocorrelation, or label propagation techniques in
relational learning [47]. In both cases, the goal is to exploit the fact that nodes
“close” to the query nodes will have similar labels.

Speaker retrieval is accomplished by computing the probability of arriving at
the jth node after L steps from the query nodes. This calculation can be computed
iteratively using a matrix multiply. If the vector Pt is defined with entries Pt,i =
p(vt = i), then by the Markov property Pt+1 = T Pt . Thus, PL = T LP0 where P0 is
the starting (prior) distribution. For the query process, set P0,i = 1/|Q| if qi is in the
query set and zero otherwise (|Q| is the number of elements in Q).

In addition to the random walk on the graph, a restart is included that returns
to the query nodes. This is equivalent to adding edges from every node back to the
query node set. With this modification, our update equation becomes

Pt+1 = αP0 +(1−α)TPt , (16)

where 0≤ α ≤ 1. For α greater than 0, the restart term reinforces the query.
Note that since the random walk process is only performed for a limited number

of steps, it may be the case that not all of the nodes in the graph can be reached
(depending on the diameter of the graph). Thus, random walks essentially classify
unreachable nodes as “not similar” if used in speaker comparison mode. Another
way of viewing this is that a random walk is a speaker comparison detector operating
in the low probability of false alarm region.

6.3 Experiments

6.3.1 Baseline System

Experiments were performed on the NIST 2006 and NIST 2008 speaker recognition
evaluation (SRE) data sets as described in Sect. 5.1. SRE 06 was used as a parameter
tuning set, and SRE 08 was used as a final evaluation.

For both data sets, queries were taken from enrollment lists for speaker models
taken from the eight conversation training scenario from the SRE. That is, a typical
query would be formed by taking the utterances from S models, where S is the
stack size.
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The vector expansion used is given by (8). Standard feature extraction with 20
MFCCs (including c0) plus deltas was performed along with SAD and 0/1 feature
normalization. A GMM UBM with 512 mixtures was trained using a large set of
Switchboard 2 and Fisher data. For MAP adaptation, a relevance factor of 0.01 was
selected. WNAP [21] was trained using a combined NIST SRE 2004–2006 list with
the dimension of the nuisance subspace fixed at 64.

SVM speaker models were trained using the kernel in (6) and the methods in [7].
A subset of the Fisher corpus (approximately 4,000 utterances) was used as an SVM
background. The SVM models were applied using a stack detector with stack sizes
S of 10, 50, and 100. For each stack size, 500 combinations of models were selected
at random and scored against all of the NIST SRE test data.

6.3.2 Speaker Retrieval System Tuning on NIST SRE 2006

A random walk system was implemented using the methods described in Sect. 6.2.1
and applied it to the NIST data set using the same enroll/test protocol as the stack
models for the baseline system. Content graphs per gender were constructed with
all of the NIST data. Then, the probabilities of random walks from the utterances of
a query set to other nodes on the graph were computed with (16).

To facilitate understanding hyperparameters, the values of σ = 0.1,1,10 in (10),
α = 0,0.1,0.25,0.5,0.75 in (16), K = 2,5,10,25,50,100 for the top-K distances
described in Sect. 3, and L = 1, . . . ,5 as the number of steps taken in the random
walk in (16) are swept. The best average precision is tuned on the SRE 06 data set
and applied to the SRE 08 data set in the next section.

Initially the number of steps L in the random walk was considered. Table 2 shows
the optimal number of steps to achieve the best average precision broken out by
gender. The trend seen is that for a longer query result list length (N), more steps
are needed to obtain the best precision. In addition, if the stack size is large with
respect to the query result list length, then less steps are needed; i.e., we can choose
a few high scoring nearest neighbors.

Next, the top-K value for NN content graph construction was considered. For
the different experiments (18 total) in Table 2, the optimal value was K = 10 for
16 out of the 18 cases. A possible reason for the system preferring a smaller K is
that it reduces the number of false alarm connections. The random walk process can
recover from this by using more than one step to find a good candidate.

The values of α and σ were also tested for male speakers. For σ , the parameter
achieving the best average precision for multiple S and K was σ = 1; this value
was optimal for 17 out of the 18 possible cases. For alpha, values of 0 (5 times),
0.1 (11 times), 0.5 (1 time), 0.75 (1 time) were found to produce optimal precision.
This indicates that very little restarting is needed in the process.
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Table 2 Number of steps L with best average precision at N with the
random walk method on the NIST SRE 2006 telephone data

Query result Male Male Female Female
Stack size S length N best L AvgP (%) best L AvgP (%)

10 5 1 99.08 1 98.68
50 5 1 100 1 100
100 5 1 100 1 100
10 10 4 98.4 3 97.94
50 10 5 99.48 2 99.96
100 10 1 100 1 100
10 20 4 97.09 5 96.08
50 20 5 99.16 1 99.22
100 20 1 99.72 1 99.89

Table 3 Results on the NIST SRE 2008 data set; comparison with optimal
L and average precision in %

Query result Best Tune Best Stack
Stack Size S length N L AvgP (%) AvgP (%) AvgP (%)

10 5 1 98.4 99.24 96.46
50 5 2 98.4 100 95.5
100 5 1 92.92 100 95.72
10 10 3 93.72 95.34 92.82
50 10 5 98.98 100 95.71
100 10 2 94.54 100 95.21
10 20 2 72.63 72.77 72.66
50 20 5 98.5 99.91 96.66
100 20 3 95.32 100 95.53

6.3.3 Application to the NIST SRE 2008 Data Set

From the previous analysis, two possibilities were explored, a fixed parameter
setting and the optimal setting. For the fixed parameter setting, α = 0.1, σ = 1,
K = 5 were used based on consideration of the optimal choices for the NIST SRE
2006 data set; for L, a compromise value of 3 was chosen based on Table 2. Results
for the SRE 06 tuned system applied to the SRE 08 data, the optimal system (best
mean average precision across all hyperparameters), and the stack system with SVM
models are shown in Table 3.

Table 3 shows that the random walk is relatively robust to parameter settings.
The tuning parameters were applied in the algorithm to an unseen data set. Also,
the tuned and optimal average precision are close in many cases. Additional work
could be done on using alternate walk retrieval strategies—variable hyperparameters
based on query length or stack size, or alternate walk scores. Finally, the random
walk is performing well in comparison with a standard stack approach. This fact
is significant since the random walk approach uses much less computation at
query time.
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7 Summary

This chapter has explored the interaction between graph embedding and speaker
classification for multiple applications. Methods of vector-embedding of audio
based upon parameters of GMM statistical models were reviewed. Then, represent-
ing data sets of audio using graphs derived from the vector embedding was presented
in detail. The resulting graph structures visually showed significant clustering of
speakers. Applications of both speaker comparison (1-1 classification) and speaker
retrieval (finding speakers in a large data set) were presented.

For speaker comparison, individual methods such as random walks, geodesics,
neighborhood features, and landmark features were explored. Ultimately, this
exploration led to the combination of features with relational learning methods
via an SVM. Performance for speaker comparison was shown to considerably
outperform the baseline and generalized well. Our exploration of techniques
provides guidance for future applications.

For speaker retrieval, random walks were explored as a viable low-complexity
method. For different query set sizes, the precision of graph-based methods was
shown to be similar to SVM vector-based retrieval methods. Also, the graph
structure was shown to provide a natural structure for encoding information for
arbitrary data queries.

For future research, graph embedding of audio data has many potential areas of
application and exploration because of its natural representation of large data sets.
Possible areas of research are—optimal graph construction, clustering, advanced
classification methods on graphs, compensation, data set summarization, and
visualization. Overall, the interaction of graph embedding and speaker recognition
is a rich source of future research and applications.
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