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Numerical Methods for Control and
Optimization

9.1 Introduction

One of the main techniques presented in Chapters 7 and 8 is to reduce the
complexity of singularly perturbed systems by studying the correspond-
ing limit systems that are easier to handle than the original problems. The
optimal or nearly optimal controls of the limit problems can be used to con-
struct nearly optimal controls of the original systems. Although the limit
systems are substantially simpler than the original pre-limit ones, very
often closed-form solutions are still difficult to obtain, except in special
cases. For example, in the context of stochastic manufacturing systems,
a closed-form solution for optimal production planning is obtained for a
system with one-machine and one-part-type by Akella and Kumar [2] for
a discounted cost problem, and Zhang and Yin [251] for a finite horizon
counterpart. Such closed-form solutions do not seem possible for more gen-
eral manufacturing systems such as flowshops and jobshops (see Sethi and
Zhang [192]). For many applications, one has to resort to a viable alterna-
tive – numerical methods.
As a complement to our discussion of singularly perturbed control

problems for Markov chains, this chapter focuses on numerical methods for
solutions of the control problems. This is a necessary step for many control
and optimization problems and alleviates considerably the difficulties en-
countered. In fact, such a step often plays a crucial role in applications. To
take up this issue, we examine the underlying problems from two different
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320 9. Numerical Methods for Control and Optimization

angles, namely, numerical approximation of optimal control problems and
stochastic optimization formulation for finding optimal controls under
threshold policies.
Treating the optimal control problems, we use the finite difference

approximation method developed by Kushner (see Kushner [138], Kushner
and Dupuis [141], and the references therein), which has been proven to
be very useful for various stochastic systems. Having in our mind a wide
variety of applications, we formulate the problem as a nonlinear controlled
Markov chain. Our setup is general enough to include, for example, many
problems in manufacturing models as special cases. The results obtained
are applicable to various dynamical systems and controlled piecewise-
deterministic processes.
For various control and optimization problems with long-run average

costs, one is often content with a nearly optimal or suboptimal solution.
One of the most easily implementable and monitoring strategies in practice
is the class of threshold control policies, which provides an enticing alter-
native. Kimemia and Gershwin brought in the idea of the use of hedging
(threshold) policies. Further work along this line may be found in Carama-
nis and Liberopoulos [24] among others. Under the threshold policy, a con-
trol problem can conveniently be transferred to an optimization procedure.
The idea is to develop a systematic procedure for finding the optimal thresh-
old values. The essence is to utilize stochastic approximation/optimization
methods to resolve the problem. By focusing our attention to the class of
threshold controls and considering the expected cost as a function of the
threshold levels, we generate a sequence of noisy gradient estimates and
update the estimate of the optimal threshold values by use of stochastic
recursive algorithms.
The rest of the chapter is arranged as follows. In Section 9.2, we develop a

finite difference approximation procedure. Section 9.3 concentrates on the
stochastic optimization methods for long-run average cost under thresh-
old policies. Further discussions and citation of related references are in
Section 9.4.

9.2 Numerical Methods for Optimal Control

Consider numerical solutions for solving the following control problem:

P :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize: J(x, α, u(·)) = E

∫ ∞

0

e−ρtG(x(t), α(t), u(t))dt,

subject to:
dx(t)

dt
= f(x(t), α(t), u(t)),

x(0) = x, u(·) ∈ A, α(0) = α,

value function: v(x, α) = inf
u(·)∈A

J(x, α, u(·)),
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where α(·) is a finite-state Markov chain generated by Q, and A denotes the
set of all admissible controls (i.e., controls that are progressively measurable
with respect to F(t) = σ{α(s) : s ≤ t} and u(t) ∈ Γ, a compact subset
of Rn1).
The HJB equation of the control problem P is

ρv(x, α) = min
u∈Γ

{

f(x, α, u)
∂v(x, α)

∂x

+G(x, α, u)

}

+Qv(x, ·)(α),
(9.1)

where as noted in Remark 8.4, f(x, α, u)(∂v/∂x) means 〈f, (∂v/∂x)〉, the
usual inner product of f and (∂v/∂x).
In view of the verification theorem (Theorem A.31), to find an optimal

control for the problem, the dynamic programming approach requires a
solution to the associated HJB equation. However, more often than not, a
closed-form solution of the corresponding HJB equation is not obtainable.
Thus, it is necessary to develop numerical algorithms to resolve the prob-
lem. In this section, we adopt Kushner’s numerical methods for stochas-
tic controls. Our approach consists of using an approximation method for
the partial derivatives of the value function v(x, α) within a finite grid of the
state vector x and a finite grid for the control vector, which transforms the
original optimization problem to an auxiliary discounted Markov decision
process. This transformation allows us to apply the well-known techniques,
such as a successive approximation or the policy improvement, to solve the
HJB equations and then the underlying optimization problems.
Let Δxi > 0 denote the length of the finite difference interval of the

variables xi for i = 1, . . . , n. Using this finite difference interval, approx-
imate the value function v(x, α) by a sequence of functions vΔ(x, α) and
the partial derivatives (∂v(x, α)/∂xi) by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

Δxi
(vΔ(x(Δxi,+), α)− vΔ(x, α)), if fi(x, α, u) ≥ 0,

1

Δxi
(vΔ(x, α) − vΔ(x(Δxi,−), α)), if fi(x, α, u) < 0,

where f(x, α, u) = (f1(x, α, u), . . . , fn(x, α, u))
′ and

x(Δxi,+) = (x1, . . . , xj−1, xi +Δxi, xj+1, . . . , xn)
′,

x(Δxi,−) = (x1, . . . , xj−1, xi −Δxi, xj+1, . . . , xn)
′.
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This leads to

fi(x, α, u)
∂

∂xi
v(x, α)=̇

|fi(x, α, u)|
Δxi

vΔ(x(Δxi,+), α)I{fi(x,α,u)≥0}

+
|fi(x, α, u)|

Δxi
vΔ(x(Δxi,−), α)I{fi(x,α,u)<0}

−|fi(x, α, u)|
Δxi

vΔ(x, α).

With these approximations, we can “rewrite” the HJB equation (9.1) in
terms of vΔ(x, α) as

vΔ(x, α) = min
u∈Γ

(

ρ+ |qαα|+
n∑

i=1

|fi(x, α, u)|
Δxi

)−1

×
{

n∑

i=1

|fi(x, α, u)|
Δxi

(

vΔ(x(Δxi,+), α)I{fi(x,α,u)≥0}

+vΔ(x(Δxi,−), α)I{fi(x,α,u)<0}

)

+G(x, α, u) +
∑

β �=α

qαβv
Δ(x, β)

}

.

(9.2)

The theorem below shows that vΔ(x, α) converges to v(x, α) as the step
size Δxi goes to zero. For simplicity, we only consider the case that

Δx1 = Δx2 = · · · = Δxn = Δ > 0.

Theorem 9.1. Assume (A9.1) and (A9.2). Suppose that vΔ(x, α) is a
solution to (9.2) and

0 ≤ vΔ(x, α) ≤ K(1 + |x|κ),

for some constants K > 0 and κ > 0. Then

lim
Δ→0

vΔ(x, α) = v(x, α). (9.3)

Proof: We only give a brief sketch here; for a detailed account, see Kushner
and Dupuis [141]. Note that (9.2) can be written as

vΔ(x, α) = T vΔ(x, α), (9.4)

for an operator T . The problem becomes a fixed point iteration procedure.
It is not difficult to check that for each Δ > 0, the operator T is a contrac-
tion mapping. The contraction mapping principle then implies that (9.2)
has a unique solution vΔ(x, α).
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To proceed, define a sequence {vΔk (x, α)} as

vΔ0 (x, α) = 0, and vΔk+1(x, α) := T vΔk (x, α), k ≥ 0.

Using this sequence, we can show that the solution to (9.4) is continuous.
For any fixed positive Δ (= Δxi, for i = 1, . . . , n) and α ∈ M,

0 < ρ ≤ ρ+ |qαα|+
n∑

i=1

|fi(x, α, u)|
Δxi

≤ K1(1 + Δ−1),

for some constant K1. As a result, (9.2) is equivalent to

0 = min
u∈Γ

{
n∑

i=1

|fi(x, α, u)|
Δxi

(

[vΔ(x(Δxi,+), α)− vΔ(x, α)]I{fi(x,α,u)≥0}

+[vΔ(x(Δxi,−), α)− vΔ(x, α)]I{fi(x,α,u)<0}

)

+G(x, α, u) +
∑

β �=α

qαβ [v
Δ(x, β)− vΔ(x, α)] − ρvΔ(x, α)

}

.

For each x ∈ R
n and α ∈ M, let

v∗(x, α) := lim sup
δ→0

(

lim sup
Δ→0

[
sup{vΔ(x̃, α) : |x− x̃| ≤ δ}

]
)

and

v∗(x, α) := lim inf
δ→0

(

lim inf
Δ→0

[
inf{vΔ(x̃, α) : |x− x̃| ≤ δ}

]
)

.

It is clear that v∗(x, α) ≥ v∗(x, α). Moreover, it can be shown that v∗(x, α)
is upper semicontinuous and v∗(x, α) is lower semicontinuous.
To obtain the convergence result, it remains to derive the reverse

inequality, v∗(x, α) ≤ v∗(x, α). In fact, we need only show that v∗(x, α)
and v∗(x, α) are viscosity subsolution and viscosity supersolution to (9.1),
respectively. This can be done as in Kushner and Dupuis [141, Theorem
14.3.1]. Consequently, by virtue of the uniqueness of the viscosity solution
to the HJB equation (see Theorem A.24), v∗(x, α) ≤ v∗(x, α). Hence,

v∗(x, α) = v∗(x, α) = v(x, α)

as desired. �

Remark 9.2. To obtain an optimal control via the dynamic programming
approach, one needs to use the corresponding value function as in the
verification theorem (see Theorem A.31). Usually, the numerical scheme
produces only an approximate value function, which can be regarded as a
perturbation of the true value function. The rationale is that by using the
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approximate value function in the verification theorem, one can construct a
feedback control policy that is approximately optimal. In fact, under fairly
mild conditions and using a viscosity solution approach, Yan and Zhang
[221] have shown that the control policy obtained using an approximate
value function is indeed nearly optimal as the perturbations go to 0.

Remark 9.3. In view of the discussion above, there is nothing so special
about the problem P . The same approach can equally be applied to the
singularly perturbed problem Pε defined in Chapter 8. However, following
our previous consideration, for a large and complex system, one would
be better off to obtain a “reduced-order” system (limit system) first and
to apply the numerical method only to the limit problem. The proof of
Theorem 9.1 uses viscosity solution techniques. An alternative approach is
to apply the method of weak convergence via Markov chain approximation
techniques as in the setup of Kushner [138] or Kushner and Dupuis [141].

9.3 Optimization under Threshold Policy

This section consists of several subsections. First an optimal control
problem is reformulated as a stochastic optimization problem. The next
subsection gives the convergence proof of the recursive algorithm followed
by a couple of examples in production planning with unreliable machines.
The last subsection derives the estimation error for the approximation.

9.3.1 Stochastic Optimization Formulation

As in the previous section, suppose that α(·) is a finite-state Markov chain
with stationary transition probability or, equivalently, the generatorQ(·) =
Q, a constant matrix. Let x(t) ∈ R

n, u(t) ∈ Γ, a compact subset of Rn1 ,
f(·, ·, ·) : Rn ×Γ×M �→ R

n, and G(·, ·, ·) : Rn ×Γ×M �→ R. Consider the
following controlled dynamic system

dx(t)

dt
= f(x(t), α(t), u(t)), x(0) = x0, (9.5)

with a long-run average cost function

J(u) = lim
T1→∞

1

T1
E

∫ T1

0

G(x(t), α(t), u(t))dt. (9.6)

Instead of seeking optimal controls of the system given above, we
reformulate it as a stochastic optimization problem. The main idea lies
in concentrating on a class of controls of the threshold type. Under such
a setting, our effort is to develop an easily implementable algorithm to
approximate the optimal threshold levels. Here and hereafter, the terms
threshold values and threshold levels will be used interchangeably.
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Definition 9.4. A control policy u(t) ∈ Γ is of threshold type with
constant threshold levels if there are sets Ai ⊂ R

n and constants ci ∈ Γ ⊂
R

n1 for i = 1, . . . , n0 such that for some integer n0,

u(t) =

n0∑

i=1

ciI{x(t)∈Ai}.

Typically, the sets Ai depend on some parameter θ ∈ R
n. To illustrate,

consider the following example. This is an analytically solvable case, and
describes the salient features of the threshold type of control policies.

Example 9.5. Consider a failure-prone manufacturing system with
production capacity α(·), that is a Markov chain with finite-state space M.
For simplicity, assume M = {α1, α2}, where α1 means the machine is up
and α2 means that the machine is down. Suppose that the breakdown and
repair times are independent and exponentially distributed with parame-
ters λ and μ, respectively. Denote the inventory level and the production
rate of the system by x(t), u(t) ∈ R, respectively. For convenience, let
α1 = 1 and α2 = 0. Then, the production constraints are given as

0 ≤ u(t) ≤ umaxα(t), t ≥ 0,

where umax is the maximum production rate (since α(t) = 0 or 1, umax is
also the maximum capacity) of the machine. Our objective is to find the
optimal control u(·) to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize: J(u) = lim
T1→∞

1

T1
E

∫ T1

0

[c+x+(t) + c−x−(t)]dt,

subject to:
dx(t)

dt
= u(t)− z, x(0) = x0,

where z is a constant demand rate, x+ = max{0, x} and x− = max{0,−x},
and c+ and c− are nonnegative constants. By means of dynamical pro-
gramming equation approach, Bielecki and Kumar [12] derived the optimal
control explicitly, and showed that the optimal control is of threshold type
given by

u∗(t) =

⎧
⎨

⎩

umaxI{α(t)=1}, if x(t) < θ∗,
zI{α(t)=1}, if x(t) = θ∗,
0, if x(t) > θ∗,

where θ∗ is the optimal threshold value given by

θ∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if
umaxλ(c

+ + c−)
c+(umax − z)(λ+ μ)

≤ 1 and
umax − z

λ
>

z

μ
,

∞, if
umax − z

λ
≤ z

μ
,

z(umax − z)

μ(umax − z)− λz
log

(
umaxλ(c

+ + c−)
c+(umax − z)(λ+ μ)

)

, otherwise.
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Moreover, the optimal cost is

J(u∗) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c−λumax

(λ+ μ)(μumax − λz − μz)
, if θ∗ = 0,

c+z

λ+ μ
+

c+z(umax − z)

μ(umax − z)− λz
log

(
umaxλ(c

+ + c−)
c+(umax − z)(λ+ μ)

)

,

if θ∗ > 0.

Since the optimal control depends on the threshold parameter θ, the
expected cost can also be viewed as a function of the threshold. Intuitively,
the optimal policy can be described as follows. If the inventory level is
below the optimal threshold, one should produce at a full speed; if the
inventory level is above the threshold, one should produce nothing; if the
inventory level is at the threshold, one should produce exactly the same as
the demand.

In view of (9.6), focusing our attention to the class of controls of
threshold type, the cost J(·) becomes a function of the threshold levels
(i.e., J = J(θ)). Threshold types of control policies have drawn renewed
attention lately, since the idea is appealing and the principle is easy to
apply. First such policies are fairly simple in form and easily implementable
so that they are particularly attractive in applications. Once a threshold
value is determined, a controller or an operator can ignore detailed varia-
tions and concentrate only on adjusting controls according to the threshold
levels. The corresponding control procedure is simpler as compared with
the optimal control policies, since only a monitoring device/procedure is
needed to keep track of the performance of the underlying system. In lieu
of solving the HJB equations, only a few parameters need to be tuned.
Moreover, in various situations, one is often content with suboptimality
owing to the cost consideration and other limitations. Frequently, a sub-
optimal control is nearly or virtually as valuable as an optimal control.
Furthermore, in many cases, threshold control policies are indeed optimal
as in Example 9.5.
Upon transferring the problem to an optimization task, the foremost

important task is to locate the optimal threshold values. This dictates the
development of stochastic recursive algorithms. Our aim is to develop a
systematic approach to approximate the threshold values.
Throughout the rest of the chapter, θ ∈ R

n denotes a column vector.
Denote ξ(t, θ) = (x(t), α(t)), and use η > 0, a small parameter, to represent
the step size. The stochastic optimization algorithm takes the form

θk+1 = θk − η (gradient estimate of J(·) at θk)

= θk − η

T

∫ (k+1)T

kT

g(θk, ξ(t, θk))dt,

(9.7)
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for each integer k ≥ 0, where g(·) is an appropriate function. Example 9.11
and Example 9.12 in what follows, present two examples of such gradient
estimates.
For fixed T > 0, the gradient estimate of J(θ) at the kth iterate is of the

form

1

T

∫ (k+1)T

kT

g(θk, ξ(t, θk))dt.

In what follows, for notational convenience, we often suppress the θ depen-
dence and write ξ(t, θ) as ξ(t). Although the gradient estimate of J(·) in
(9.7) can be obtained via finite difference approximation in a straightfor-
ward way, various alternatives exist. The infinitesimal perturbation analysis
(IPA) approach (see Ho and Cao [87] and Glasserman [74]) provides a better
alternative, however. While it is more efficient, this approach is application
dependent. That is, one needs to figure out the gradient estimate for each
application; there are no general forms of the gradient estimates available.
We use a constant step size since an iterative algorithm with constant step
size has the ability to track slight variation of the parameter and is more
robust with respect to the random errors.
Using the IPA approach, for Example 9.5, the gradient estimate takes

the form

1

T

∫ T

0

g(θk, ξ(t, θk))dt =
1

T

∫ T

0

(
c+I{x(t)>0} − c−I{x(t)<0}

)
dt.

Example 9.12 gives an illustration for a two-machine system.

Remark 9.6. Equation (9.7) is not a standard stochastic approximation
algorithm since averaging is used in the scheme together with continu-
ous time random processes. In Yin, Yan, and Lou [228], with the goal of
obtaining an asymptotically unbiased gradient estimator, T is chosen so
that T = Tη → ∞ as η → 0. However, as noted in Kushner and Vázquez-
Abad [143], and Kushner and Yin [145], one need not choose T so large.
To guarantee the convergence of the algorithm, it is not necessary to use
unbiased (or asymptotically unbiased) estimators of the gradient. In fact,
large T may result in inefficient performance of the algorithms. A little bias
would not and should not concern us.

9.3.2 Convergence

This subsection is devoted to investigating the convergence of the proposed
algorithms. To proceed, the following assumptions are needed. For simplic-
ity, assume the initial approximation θ0 to be nonrandom.

(A9.1) For each θ and each k1,

1

kT

k+k1−1∑

j=k1

EFk1

∫ (j+1)T

jT

g(θ, ξ(t))dt → ∇J(θ)
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in probability, as k → ∞, where EFk1 denotes the conditional
expectation on Fk1T = {ξ(s), s ≤ k1T }, for an integer k1 ≥ 0.

(A9.2) For each T1 < ∞, t ∈ [0, T1],

lim
δ→0

E

(

sup
|θ−θ̃|<δ

|g(θ, ξ(t))− g(θ̃, ξ(t))|
)

= 0.

(A9.3) For each N < ∞, the set of functions

{

sup
|θ|≤N

|g(θ, ξ(t))|
}

is uniformly integrable.

Remark 9.7. These assumptions originate from particular applications of
manufacturing models. Dealing with specific applications, these conditions
can often be verified (see Yan, Yin, and Lou [220]). Condition (A9.1) is
an ergodicity condition in the sense of convergence in probability, and is a
basic averaging condition. If ξ(·) is a φ-mixing process with E|ξ(t)| < ∞,
then it is a strongly ergodic process and hence (A9.1) holds. In fact, in this
case, the convergence is in the sense of with probability one.
Condition (A9.2) indicates that the function g(·, ξ) may not be continu-

ous, but its expectation is continuous such as for the case that g(·, ξ) is an
indicator function or a combination of indicator functions.
In various applications, the function g(θ, ξ) is often bounded. In such

a case, (A9.3) is verified. Condition (A9.3) allows us to deal with more
complex situations. For example, if

|g(θ, ξ)| ≤ h0(θ)g̃1(ξ) + g̃2(ξ),

where h0(θ) is a continuous function, and E|g̃i(ξ)|1+γ < ∞, i = 1, 2, for
some γ > 0, then condition (A9.3) is also satisfied.

To proceed, we work with continuous time interpolated processes. Let
θη(·) be defined by θη(0) = θ0 and θη(t) = θk for t ∈ [kη, (k + 1)η). Under
the framework of weak convergence (see Kushner [139], and Kushner and
Yin [145]), it will be shown that the following limit theorem holds.

Theorem 9.8. Suppose that (A9.1)–(A9.3) are satisfied and the differen-
tial equation

dθ(t)

dt
= −∇J(θ) (9.8)

has a unique solution for each initial condition θ0. Assume, for simplicity,
that θη(0) = θ0 is independent of η. Then {θη(t)} is tight in D([0,∞);Rn).
Every weakly convergent subsequence has the same limit θ(·) that satisfies
the differential equation (9.8).
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Remark 9.9. Recall that D([0,∞);Rn) denotes the space of R
n-valued

functions that are right continuous and have left-hand limits, endowed with
the Skorohod topology; see Section A.2 in Appendix A. In lieu of choosing
θη(0) = θ0, independent of η, one may use θ0 = θη0 and hence θη(0) =
θη0 (depending on η). Under an additional condition θη0 ⇒ θ0, the result
still holds.

Proof of Theorem 9.8: To avoid possible unboundedness, a truncation
device will be used (see (A.8) in Appendix for a definition). For each
N < ∞, let θη,N (·) be the N -truncation of θη(·) such that θη,N (t) = θη(t)
up until the first exit from the N -sphere SN = {θ; |θ| ≤ N}. A pertinent
use of the truncation device requires the use of a truncation function qN (·),
which is a smooth function defined as

qN (θ) =

{
1 for |θ| ≤ N ,
0 for |θ| ≥ N + 1.

One then replace g(θ, ξ) below by gN (θ, ξ) = g(θ, ξ)qN (θ). For notational
simplicity, we shall omit the truncation function in what follows, however.
In view of the definition of the interpolation (without loss of generality,

assume that t/η and (t + s)/η are integers) and choosing a sequence of
integers {kη} such that kη → ∞ as η → 0 and ηkη = δη → 0, we have

θη,N (t) = θη,N (0)− η

T

t/η−1∑

j=0

∫ (j+1)T

jT

g(θη,Nj , ξ(υ))dυ

= θη,N (0)−
∑

0≤iδη≤t

δη
kηT

×
∑

ikη≤j≤(i+1)kη−1

∫ (j+1)T

jT

g(θη,Nj , ξ(υ))dυ

= θη,N (0)−
∫ t

0

Bη(τ)dτ,

(9.9)

where Bη(·) is a piecewise-constant function on [iδη, (i+ 1)δη), that is,

Bη(t) =
1

kηT

∑

ikη≤j≤(i+1)kη−1

∫ (j+1)T

jT

g(θη,Nj , ξ(υ))dυ (9.10)

for t ∈ [iδη, (i+ 1)δη). It follows from (9.9) that

dθη,N (t)

dt
= −Bη(t).

Condition (A9.3) implies that

{
1

T

∫ (j+1)T

jT

g(θNj , ξ(υ))dυ : j = 1, 2, . . .

}

is uniformly integrable.
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Then by virtue of Theorem A.15, {θη,N(·), Bη(·)} is tight and the limit of
any weakly convergent subsequence has continuous paths with probability
one.
Pick out an arbitrary convergent subsequence and denote the limit by

(θN (·), B(·)). By the Skorohod representation (without changing notation),
we may assume that

(θη,N (·), Bη(·)) → (θN (·), B(·)) w.p.1

and the convergence is uniform on any finite time interval.
Define

MN (t) = θN (t)− θN (0) +

∫ t

0

B(θN (υ))dυ. (9.11)

It will be seen in what follows that B(·) is equal to ∇J(·). If we can show
that MN(t) is a continuous martingale, the limit theorem will hold for the
truncated process. Note that MN (0) = 0 and MN(t) is Lipschitz continu-
ous. If it is a martingale, it must satisfy MN (t) ≡ 0 (see Theorem A.21).
Therefore, we need only verify the martingale property.
To verify the martingale property, let h(·) be any bounded and continuous

function, κ be any positive integer, and ti1 be such that ti1 < t < t+ s for
i1 ≤ κ. In view of the weak convergence and the Skorohod representation,
we have

lim
η→0

Eh(θη,N (ti1), i1 ≤ κ)
(
θη,N (t+ s)− θη,N (t)

)

= Eh(θN (ti1 ), i1 ≤ κ)
(
θN (t+ s)− θN (t)

)
.

(9.12)

Recall that EFj denotes the conditional expectation with respect to the
σ-algebra FjT = σ{ξ(t), t ≤ jT }. Using the recursion (9.9), we have

lim
η→0

Eh(θη,N (ti1), i1 ≤ κ)
(
θη,N (t+ s)− θη,N (t)

)

= lim
η→0

Eh(θη,N (ti1 ), i1 ≤ κ)

×
(

−
t+s∑

iδη=t

δη
kηT

∑

ikη≤j≤(i+1)kη−1

EFj

∫ (j+1)T

jT

g(θη,Nj , ξ(υ))dυ

)

= lim
η→0

Eh(θη,N (ti1 ), i1 ≤ κ)

×
(

−
t+s∑

iδη=t

δη
kηT

∑

ikη≤j≤(i+1)kη−1

EFj

∫ (j+1)T

jT

g(θη,N (τ), ξ(υ))dυ

)

.

(9.13)
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The last equality above follows from the weak convergence, the Skorohod
representation, (A9.2), and ηj → τ as η → 0 for j satisfying ikη ≤ j ≤
(i + 1)kη.
Now for any Δ > 0, there exists a function θN,Δ(·) that takes only finitely

many values (say θ1, . . ., θn0) such that

|θN (τ)− θN,Δ(τ)| < Δ.

Consequently, by applying (A9.2), the limit in (9.13) is the same as that of

lim
η→0

Eh(θη,N (ti1 ), i1 ≤ κ)

×
(

−
t+s∑

iδη=t

δη
kηT

∑

ikη≤j≤(i+1)kη−1

EFj

∫ (j+1)T

jT

g(θN,Δ(τ), ξ(υ))dυ

)

.

By virtue of (9.10), the limit of Bη(τ) is the same as that of

1

kηT

∑

ikη≤j≤(i+1)kη−1

EFj

∫ (j+1)T

jT

g(θN,Δ(τ), ξ(υ))dυ

=

n0∑

i2=1

1

kηT

∑

ikη≤j≤(i+1)kη−1

EFj

∫ (j+1)T

jT

g(θi2 , ξ(υ))dυ I{θN,Δ(τ)=θi2}

→
n0∑

i2=1

∇J(θi2 )I{θN,Δ(τ)=θi2} in probability

= ∇J(θN,Δ(τ)).

Since Δ > 0 is arbitrary,

1

kηT

∑

ikη≤j≤(i+1)kη−1

EFj

∫ (j+1)T

jT

g(θN,Δ(τ), ξ(υ))dυ → ∇J(θN (τ))

in probability as η → 0. Incorporating this with (9.12) and (9.13) yields

lim
η→0

Eh(θη,N (ti1), i1 ≤ κ)
(
θη,N (t+ s)− θη,N (t)

)

= Eh(θN (ti1), i1 ≤ κ)

(

θN (t+ s)− θN (t) +

∫ t+s

t

∇J(θN (τ))dτ

)

.

(9.14)
Combining (9.12) to (9.14), we arrive at

Eh(θN (ti), i ≤ κ)

(

θN (t+ s)− θN (t) +

∫ t+s

t

∇J(θN (τ))dτ

)

= 0.
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Hence MN (t) is a martingale.
Finally, use the idea of Kushner [139, Theorem 2.2 and the Corollary],

to finish the proof. The main idea is outlined below. Let Pθ(0)(·) (the sub-
script θ(0) signifies the dependence on the initial data) and PN (·) be the
measures induced by θ(·) and θN (·), respectively, on B, the σ-algebra of
Borel subsets of D([0,∞);Rn). Pθ(0)(·) is unique since there is a unique so-
lution to the ordinary differential equation for the initial value θ(0). Thus,
for each T1<∞,

Pθ(0)(θ(·) ∈ A) = PN (θN (·) ∈ A)

for each A ∈ B such that θ(t) takes values in SN (the N -sphere). As a
result,

lim
N→∞

Pθ(0)

(

sup
t≤T1

|θ(t)| ≤ N

)

= 1.

This, together with the weak convergence of θη,N (·), implies that θη(·) ⇒
θ(·). Since the limit is unique, it does not depend on the chosen subsequence.
The proof of the theorem is completed. �

Theorem 9.8 is similar to the law of large numbers. It gives information
on the location and/or distribution of θη(·) for small η and for large but
bounded t. There is a natural connection between the recursive procedure
and the corresponding ordinary differential equation. The optimal threshold
values sought are stable points of the differential equation (9.8).

Theorem 9.10. Assume that the conditions of Theorem 9.8 hold. Suppose
the differential equation in (9.8) has a unique asymptotically stable point
θ∗ (in the sense of Liapunov stability) and the set

{θk; k < ∞, η > 0} (9.15)

is bounded in probability in that for each Δ > 0, there is a κΔ > 0 such
that for all η > 0, and all k,

P (|θk| ≥ κΔ) ≤ Δ.

Let tη → ∞ as η → 0. Then θη(tη + ·) is tight in D([0,∞;Rn) and any
weak limit is equal to θ∗.

Equation (9.15) can be established by using a perturbed Liapunov
function method (see Kushner [139], and Kushner and Yin [145]). Theo-
rem 9.10 can be deduced analogously as in the aforementioned reference
(see also Kushner and Yin [144, Theorem 5.1]). We give the main idea
below. Let T1 > 0, and consider the pair {θη(tη + ·), θη(tη −T1+ ·)}, which
is tight. Choose a weakly convergent subsequence (still indexed by η) with
limit denoted by (θ(·), θT1 (·)). Then θ(0) = θT1(T1). The “initial value”
θT1(0) may not be known, but all possible values of θT1(0) belong to a set
that is bounded in probability for all T1 and all convergent subsequences.
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The asymptotic stability then implies that for each Δ > 0, there is a
TΔ > 0 such that for all T1 > TΔ,

P (|θT1(T1)− θ∗| > Δ) < Δ.

Hence the theorem follows.

9.3.3 Examples

To illustrate the idea of approximation of threshold control policies, we con-
sider two manufacturing models in this subsection. The reasons include: (a)
Demonstrate that for the example treated below, threshold control policies
are indeed optimal. (b) Illustrate the use of stochastic optimization proce-
dure for the long-run average cost criteria.
In the first example, our approximation results compare well with those

of Bielecki and Kumar [12]. The second example deals with a two-machine
system, in which no closed-form solution (analytic solution or explicit for-
mula) has been found up to date. To reformulate the problem using op-
timization formulation, we develop stochastic algorithms to estimate the
optimal threshold values.

Example 9.11. Return to Example 9.5. Choose λ = 0.1, μ = 0.125,
z = 1.0, c+ = 2.0, c− = 9.0, and umax = 2.0. Applying the result of
[12], the optimal threshold level and the optimal cost are θ∗ = 66.96 and
J(θ∗) = 142.89, respectively. Using our algorithm with step size η = 0.5
and initial value θ0 = 20, and taking averages of 100 replications, the
approximation method gives θ̃∗ = 67.23 (with a 95% confidence interval
[66.64, 67.80]), and J(θ̃∗) = 139.43. Different initial conditions yield equally
good approximation results. The already existing analytical result allows
us to compare the performance of the approximation algorithm with the
closed-form solution. We would like to note that even if the explicit solution
is available, various parameters (λ, μ, etc.) may not be known; these param-
eters are not required in our approach. Thus the stochastic optimization
approach provides a viable alternative and effective procedure.

Example 9.12. The example to be presented was considered by Yan, Yin,
and Lou [220], in which a combination of infinitesimal perturbation anal-
ysis initiated by Ho (see Ho and Cao [87]) and stochastic approximation
was suggested. Kushner and Vázquez-Abad [143] further examined this
model and relaxed the conditions for convergence. For i = 1, 2, use xi(t)
to denote the inventory levels of machine i, and ui(t) the production rate
of machine i. Since we are not solving the dynamic programming equa-
tions, the demand processes can be quite general. They do not have to
be constants although a constant demand rate is used here for simplicity.
In what follows, we formulate the surplus control model, and construct the
approximation procedure.
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M1 M2
u1

u2

x1 x2 z

FIGURE 9.1. A Two-Machine System

The two machines are in a cascade form and the inventory levels are
given by

dx1(t)

dt
= u1(t)− u2(t),

dx2(t)

dt
= u2(t)− z,

x1(t) ≥ 0, t ≥ 0.

(9.16)

For each i = 1, 2, let the machine capacity be αi(t) with

αi(t) =

{
1, machine i is working;
0, otherwise.

We then have

0 ≤ ui(t) ≤ uimaxαi(t), i = 1, 2,

where uimax is the maximum capacity of machine i for i = 1, 2. Assume
that

u1max > u2max > z.

This scenario is depicted in Figure 9.1.
Surplus at machine i is defined as the difference between accumulative

production and accumulated demand, i.e., it is the inventory level (or work
in progress) at machine i plus the inventory level of all downstream ma-
chines. Let si(t) be the surplus for machine i, for i = 1, 2:

s1(t) = x1(t) + x2(t) and s2(t) = x2(t).

Note that the surplus can be positive or negative. A negative surplus means
that there is a backlog. With these definitions, the system dynamics can
also be written as

ds1(t)

dt
= u1(t)− z,

ds2(t)

dt
= u2(t)− z,

s1(t) ≥ s2(t), t ≥ 0.

(9.17)
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Comparing (9.17) with the one-machine model in the work of Akella and
Kumar [2], and Bielecki and Kumar [12], the surplus control policy is more
or less like having two machines operating independently.

Let θi denote the surplus threshold levels of machine i. The control policy
is given by

u1(t) =

⎧
⎪⎨

⎪⎩

u1maxI{α1(t)=1}, if s1(t) < θ1,

zI{α1(t)=1}, if s1(t) = θ1,

0, if s1(t) > θ1;

u2(t) =

⎧
⎪⎨

⎪⎩

u2maxI{α2(t)=1}, if s2(t) < θ2, s1(t)− s2(t) > 0,

zI{α2(t)=1}, if s2(t) = θ2, s1(t)− s2(t) > 0,

0, if s2(t) > θ2, s1(t)− s2(t) > 0.

The interpretation of the control policies is similar to that of the one ma-
chine case. The problem to be investigated is to find the optimal threshold
value θ∗ = (θ∗1 , θ

∗
2) such that the cost functional

J(θ) = lim
T→∞

1

T
E

∫ T

0

(c1x1(t) + c+2 x
+
2 (t) + c−2 x

−
2 (t))dt (9.18)

is minimized.
Define

τ10 (θ) = 0, τ20 (θ) = inf{t > 0; s1(t, θ) = θ1},
and τ ik(θ) for i = 1, 2 and k > 0, recursively by

τ1k (θ) = min{t ≥ τ2k−1(θ); s1(t, θ) = s2(t, θ)} and

τ2k (θ) = min{t ≥ τ1k (θ); s2(t, θ) = θ2}.

Moreover, define γ2
0(θ) = 0 and

γ1
k(θ) = min{t ≥ γ2

k−1(θ); s2(t, θ) = θ2},

γ2
k(θ) = min{t ≥ γ1

k(θ); s1(t, θ) = s2(t, θ)}.

Furthermore, let

w1(t, θ) =
∞∑

k=1

I{τ1
k (θ)≤t≤τ2

k(θ)} and

w2(t, θ) =

∞∑

k=1

I{γ1
k(θ)≤t≤γ2

k(θ)}.
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FIGURE 9.2. Convergence of the Iterates

Note that at most one of the indicator functions in the sums above can be
positive at a given time t. The summation is thus well defined. Then the
integrand of the gradient estimates can be written as

g1(θ, ξ(t))=c1I{t≥τ2
0 (θ)}+c+2 w1(t, θ)I{s2(t,θ)≥0}−c−2 w1(t, θ)I{s2(t,θ)<0},

g2(θ, ξ(t))=c+2 w2(t, θ)I{s2(t,θ)≥0}−c−2 w2(t, θ)I{s2(t,θ)<0}

via perturbation analysis (see Ho and Cao [87] and Glasserman [74]).
The notation of the stopping times, suggested in Kushner and Vázquez-
Abad [143], allows us to write the gradient estimates in a compact form.
In the original paper of Yan, Yin, and Lou [220], some auxiliary processes
were used in lieu of the stopping times. The ideas are the same, however.
Figure 9.2 demonstrates the performance of the algorithm for two ma-

chine case. One may generate contour curves via simulation for each set
of threshold values, the approximation obtained in our algorithm can be
seen to belong to the region of optimality. Our numerical results demon-
strate that the initial conditions do not affect the algorithm much and the
algorithm is robust with respect to the initial data.

9.3.4 Error Bounds

This subsection continues our investigation of Algorithm (9.7). We derive
an error bound on the approximation sequence. The consideration of this
subsection falls into the category of rates of convergence.
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Theorem 9.13. Assume that the conditions of Theorem 9.8 are satisfied
and there is a twice continuously differentiable Liapunov function V (·) such
that

V (θ) ≥ 0, V (θ) → ∞ as |θ| → ∞,

(Vθ(θ))
′∇J(θ) ≥ κ0V (θ),

for some κ0 > 0, and Vθθ(·) is bounded, where Vθ(·) and Vθθ(·) denote the
first and the second derivatives of V (·), respectively, and ζ′ denotes the
transpose of a vector ζ ∈ R

n×1. Suppose that for each θ,

∣
∣
∣
∣
∣

∞∑

j=k

EFk
1

T

∫ (j+1)T

jT

(g(θ, ξ(t))−∇J(θ)) dt

∣
∣
∣
∣
∣
≤ K and

∣
∣
∣
∣
∣

∞∑

j=k

EFk
1

T

∫ (j+1)T

jT

(g(θ, ξ(t))−∇J(θ))θ dt

∣
∣
∣
∣
∣
≤ K

(9.19)

for some K > 0, where EFk denotes the conditional expectation with respect
to FkT = σ{ξ(s), s ≤ kT }. Assume that

|g(θ, ξ)|2 + |∇J(θ)|2 ≤ K(1 + V (θ)).

Then

lim sup
k→∞

V (θk) = O(η). (9.20)

Remark 9.14. An alternative form of the first inequality in (9.19) is

∣
∣
∣
∣

∫ ∞

kT

EFk (g(θ, ξ(t)) −∇J(θ)) dt

∣
∣
∣
∣ ≤ K, (9.21)

and similar analogue holds for the second inequality in (9.19). It is readily
seen that if ξ(·) is a φ-mixing process with mixing rate ρ(·) such that∫∞
0

ρ(t) < ∞, the mixing inequality (see Kushner [139, p. 82]) implies that

∣
∣
∣
∣

∫ ∞

kT

EFk (g(θ, ξ(t))−∇J(θ)) dt

∣
∣
∣
∣ ≤ 2

∫ ∞

kT

ρ(t− kT )dt ≤ K,

with similar estimates regarding the second inequality in (9.19).

Outline of Proof of Theorem 9.13: We use a technique known as perturbed
Liapunov function method (see Kushner and Yin [145] and the references
therein). Since the proof is similar to that of [145, Chapter 10], only an
outline of the idea is given.
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By virtue of a Taylor expansion, direct calculation leads to

EFkV (θk+1)− V (θk)

= −η(Vθ(θk))
′∇J(θk) +O(η2)(1 + V (θk))

−η(Vθ(θk))
′

T
EFk

∫ (k+1)T

kT

(g(θk, ξ(t)) −∇J(θk)) dt.

Define

V η
1 (k) = −ηEFk(Vθ(θk))

′

T

∞∑

j=k

∫ (j+1)T

jT

(g(θk, ξ(t)) −∇J(θk)) dt,

V η(k) = V (θk) + V η
1 (k).

It is easily seen that

|V η
1 (k)| ≤ ηK(1 + V (θk)). (9.22)

Detailed calculation leads to

EFkV η(k + 1)− V η(k) ≤ −ηκ0V (θk) +O(η2)(1 + V (θk)).

Equation (9.22) then yields that

EFkV η(k + 1) ≤ V η(k)− ηκ0V
η(k) +O(η2)(1 + V η(k)).

By choosing η small enough, we obtain

EFkV η(k + 1) ≤
(
1− ηκ0

2

)
V η(k) +O(η2).

Iterating on the above inequality, taking expectation and lim sup as k → ∞,
and using (9.22), the desired result follows. �

Remark 9.15. If the Liapunov function is locally (near θ∗) quadratic, it
can be shown that there is an Nη such that

{

Uk =
θk − θ∗
√
η

: k ≥ Nη

}

is tight. Define

Uη(t) = Uk for t ∈ [(k −Nη)η, (k −Nη + 1)η).

Under further conditions, one can obtain a local results in connection with
a stochastic differential equation.
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9.4 Notes

This chapter has been devoted to the numerical solutions of the control
problems. It consists of numerical methods for solving the HJB equa-
tions and approximation for threshold control policies. The main tech-
niques used are the finite difference approximation methods (see Kushner
[138], Kushner and Dupuis [141]) and the stochastic optimization methods
(see Kushner and Yin [145]).
The computational methods for the optimal control problem presented

here are equivalent to methods of computing the optimal controls for dis-
crete Markov chain models. For a general background and discussion on
the method and many references for controlled diffusion and jump diffu-
sion processes, we refer to Kushner [138] and Kushner and Dupuis [141].
For applications of such methods in manufacturing models, we refer the
reader to Yan and Zhang [221] among others. In the implementation of the
numerical method, one may use either “value iteration” that is essentially a
fixed point iteration, or “policy iteration,” and the variation and/or modi-
fication of the aforementioned procedures, such as Jacobi iteration, Gauss-
Seidel method, and accelerated Jacobi and Gauss-Seidel methods (see [141]
for a detailed discussion on this and related matters). In practice, one of-
ten wishes to use an accelerated procedure to speed up the computation.
The recent advances on multigrid and domain decomposition methods give
new hope for solving large-dimensional systems. As its deterministic coun-
terpart, by and large, this is still a current research topic for stochastic
systems.
Converting optimal control problems into optimization problems under

threshold type of control policies is in Yin, Yan, and Lou [228], and Yan,
Yin, and Lou [220]. Early work on developing hedging policies is in Kimemia
and Gershwin [121]; related work along this direction is in Caramanis and
Liberopoulos [24]. For systems arising in production planning see [220]
where a combined approach of the infinitesimal perturbation analysis with
stochastic optimization methods is utilized. The computation presented
here was done by Houmin Yan. We are very grateful for his help. For further
approaches on using stochastic approximation based algorithms for opti-
mization with long-run average costs, see Kushner and Yin [145, Chapter
9] and the references therein. In applications, one may use a projection or
truncation algorithm. Treatments of such algorithms and a comprehensive
study on stochastic approximation algorithms can be found in [145].
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