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Occupation Measures: Asymptotic
Properties and Ramification

5.1 Introduction

Chapter 4 deals with the probability distribution of αε(·) through the
corresponding forward equation and is mainly an analytical approach,
whereas the current chapter is largely probabilistic in nature. The cen-
tral theme of this chapter is limit results of unscaled as well as scaled
sequences of occupation measures, which include the law of large num-
bers for an unscaled sequence, exponential upper bounds, and asymptotic
distribution of a suitably scaled sequence of occupation times. It further
exploits the deviation of the functional occupation times from its quasi-
stationary distribution. We obtain estimates of centered deviations, prove
the convergence of a properly scaled and centered sequence of occupation
times, characterize the limit process by deriving the limit distribution and
providing explicit formulas for the mean and covariance functions, and
provide exponential bounds for the normalized process. It is worthwhile to
note that the limit covariance function depends on the initial-layer terms
in contrast with most of the existing results of central limit type.
The rest of the chapter is arranged as follows. We first study the asymp-

totic properties of irreducible Markov chains in Section 5.2. In view of the
developments in Remarks 4.34 and 4.39, the Markov chain with recurrent
states is the most illustrative and representative one. As a result, in the
remaining chapters, we mainly treat problems associated with this model.
Starting in Section 5.3.1, we consider Markov chains with weak and strong
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142 5. Occupation Measures: Asymptotic Properties and Ramification

interactions with generators consisting of multiple irreducible blocks. After
treating aggregation of the Markov states, we study the corresponding ex-
ponential bounds. We deal with asymptotic distributions. Then in Section
5.4, we treat Markov chains with generators that are merely measurable.
Next, remarks on inclusion of transient and absorbing states are provided
in Section 5.5. Applications of the weak convergence results and a related
stability problem are provided in Section 5.6. Finally, Section 5.7 concludes
the chapter with notes and further remarks.

5.2 The Irreducible Case

The notion of occupation measure is set forth first. We consider a sequence
of unscaled occupation measures and establish its convergence in prob-
ability to that of the accumulative quasi-stationary distribution. This is
followed by exponential bounds of the function occupation time and mo-
ment estimates. In addition, asymptotic normality is derived. Although the
prelimit process has nonzero mean and is nonstationary, using the results of
Section 4.2, the quasi-stationary regime is established after a short period
(of order O(ε)). We also calculate explicitly the covariance representation
of the limit process, and prove that the process αε(·) satisfies a mixing
condition. The tightness of the sequence and the w.p.1 continuity of the
sample paths of the limit process are proved by estimating the fourth mo-
ment. The limit of the finite-dimensional distributions is then calculated
and shown to be Gaussian. By proving a series of lemmas, we derive the
desired asymptotic normality.
As was mentioned in previous chapters, the process αε(·) arises from per-

vasive practical use that involves a rapidly fluctuating finite-state Markov
chain. In these applications, the asymptotic behavior of the Markov chain
αε(·) has a major influence. Further investigation and understanding of the
asymptotic properties of αε(·), in particular, the probabilistic structures,
play an important role in the in-depth study.
In Section 4.2, using singular perturbation techniques, we examined the

asymptotic properties of pεi (t) = P (αε(t) = i). It has been proved that
pε(t) = (pε1(t), . . . , p

ε
m(t)) converges to the quasi-stationary distribution

ν(t) as ε → 0 for each t > 0 and pε(t) admits an asymptotic expansion in
terms of ε. To gain further insight, we ask whether there is a limit result
for the occupation measure

∫ t

0
I{αε(s)=i}ds. If a convergence is expected to

take place, then what is the rate of convergence? Does one have a cen-
tral limit theorem associated with the αε(·)-process? The answers to these
questions are affirmative. We will prove a number of limit results related
to an unscaled sequence, and a suitably scaled and normalized sequence.
Owing to the asymptotic expansions, the scaling factor is

√
ε. The limit

process is Gaussian with zero mean, and the covariance of the limit process
depends on the asymptotic expansion in an essential way, which reflects
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one of the distinct features of the central limit theorem. It appears that it
is virtually impossible to calculate the asymptotic covariance of the Gaus-
sian process without the help of the asymptotic expansion, which reveals a
salient characteristic of the two-time-scale Markov chain.
A related problem is to examine the exponential bounds on the scaled oc-

cupation measure process. This is similar to the estimation of the moment
generating function. Such estimates have been found useful in studying
hierarchical controls of manufacturing systems. Using the asymptotic ex-
pansion and the martingale representation of finite-state Markov chains,
we are able to establish such exponential bounds for the scaled occupation
measures.

5.2.1 Occupation Measure

Let (Ω,F , P ) denote the underlying probability space. As in Section 4.2,
αε(·) is a nonstationary Markov chain on (Ω,F , P ) with finite-state space
M = {1, . . . ,m} and generator Qε(t) = Q(t)/ε.
For each i ∈ M, let βi(·) denote a bounded Borel measurable determinis-

tic function and define a sequence of centered (around the quasi-stationary
distribution) occupation measures Zε

i (t) as

Zε
i (t) =

∫ t

0

(
I{αε(s)=i} − νi(s)

)
βi(s)ds. (5.1)

Set Zε(t) = (Zε
1(t), . . . , Z

ε
m(t)). It is a measure of the functional occupancy

for the process αε(·). Our interest lies in the asymptotic properties of the
sequence defined in (5.1). To proceed, we first present some conditions and
preliminary results needed in the sequel.
Note that a special choice of βi(·) is βi(t) = 1, for t ∈ [0, T ]. To insert βi(·)

in sequence allows one to treat various situations in some applications. For
example, in the manufacturing problem, βi(t) is often given by a function
of a control process; see Chapter 8 for further details.

5.2.2 Conditions and Preliminary Results

To proceed, we make the following assumptions.

(A5.1) For each t ∈ [0, T ], Q(t) is weakly irreducible.

(A5.2) Q(·) is continuously differentiable on [0, T ], and its derivative is
Lipschitz.

Recall that pε(t) = (P (αε(t) = 1), . . . , P (αε(t) = m)) and let

pεij(t, t0) = P (αε(t) = j|αε(t0) = i) for all i, j ∈ M.

Use P ε(t, t0) to denote the transition matrix (pεij(t, t0)). The following
lemma is on the asymptotic expansion of P ε(t, t0).
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Lemma 5.1. Assume (A5.1) and (A5.2). Then there exists a positive
constant κ0 such that for each fixed 0 ≤ T <∞,

P ε(t, t0) = P0(t) +O

(

ε+ exp

(

−κ0(t− t0)

ε

))

(5.2)

uniformly in (t0, t) where 0 ≤ t0 ≤ t ≤ T and

P0(t) =

⎛

⎜
⎝

ν(t)
...

ν(t)

⎞

⎟
⎠ .

In addition, assume Q(·) to be twice continuously differentiable on [0, T ]
with the second derivative being Lipschitz. Then

P ε(t, t0) = P0(t) + εP1(t)

+Q0

(
t− t0
ε

, t0

)

+ εQ1

(
t− t0
ε

, t0

)

+O(ε2)

(5.3)

uniformly in (t0, t), where 0 ≤ t0 ≤ t ≤ T ,

P1(t) =

⎛

⎜
⎝

ϕ1(t)
...

ϕ1(t)

⎞

⎟
⎠ ,

dQ0(τ, t0)

dτ
= Q0(τ, t0)Q(t0), τ ≥ 0,

Q0(0, t0) = I − P0(t0),

and

dQ1(τ, t0)

dτ
= Q1(τ, t0)Q(t0) + τQ0(τ, t0)

dQ(t0)

dt
, τ ≥ 0

Q1(0, t0) = −P1(t0),

where ϕ1(t) is given in (4.13) (with τ := (t − t0)/ε). Furthermore, for
i = 0, 1, the Pi(·) are (2− i) times continuously differentiable on [0, T ] and
there exist constants K > 0 and κ0 > 0 such that

|Qi (τ, t0)| ≤ K exp(−κ0τ), (5.4)

uniformly for t0 ∈ [0, T ].
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Remark 5.2. Recall that ν(t) and ϕ1(t) are row vectors. As a result, P0(·)
and P1(·) have identical rows. This is a consequence of the convergence of
pε(t) to the quasi-stationary distribution and the asymptotic expansions.

Proof of Lemma 5.1: It suffices to verify (5.3) because (5.2) can be de-
rived similarly. The asymptotic expansion of P ε(t, t0) can be obtained as
in Section 4.2. Thus only the exponential bound (5.4) needs to be proved.
The main task is to verify the uniformity in t0. To this end, it suffices to
treat each row of Qi(τ, t0) separately. For a fixed i = 0, 1, let

η(τ, t0) = (η1(τ, t0), . . . , ηm(τ, t0))

denote any row of Qi(τ, t0) and η0(t0) the corresponding row in Qi(0, t0)
with

Q0(0, t0) = I − P0(t0) and

Q1(0, t0) = −P1(t0).

Then η(τ, t0) satisfies the differential equation

dη(τ, t0)

dτ
= η(τ, t0)Q(t0), τ ≥ 0,

η(0, t0) = η0(t0).

By virtue of the assumptions of Lemma 5.1 and the asymptotic expansion,
it follows that η0(t0) is uniformly bounded and η0(t0)1l = 0.
Define

κ̂ = −max
{
The real parts of eigenvalues of Q(t), t ∈ [0, T ]

}
.

Then Lemma A.6 implies that κ̂ > 0. In view of Theorem 4.5, it suffices to
show that for all τ ≥ 0 and for some constant K > 0 independent of t0,

|η(τ, t0)| ≤ K exp

(

− κ̂τ
2

)

. (5.5)

To verify (5.5), note that for any ς0 ∈ [0, T ],

dη(τ, t0)

dτ
= η(τ, t0)Q(ς0) + η(τ, t0)[Q(t0)−Q(ς0)].

Solving this differential equation by treating η(τ, t0)[Q(t0) −Q(ς0)] as the
driving term, we have

η(τ, t0) = η0(t0) exp (Q(ς0)τ)

+

∫ τ

0

η(ς, t0)[Q(t0)−Q(ς0)] exp (Q(ς0)(τ − ς)) dς.

(5.6)
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In view of (A5.2), for some K0 > 0,

∣
∣
∣Q(t0)−Q(ς0)

∣
∣
∣ ≤ K0|t0 − ς0|.

Noting that η0(t0)1l = 0 and that P0(t) has identical rows, we have

η0(t0)P0(t) = 0, for t ≥ 0.

Thus the equation in (5.6) is equivalent to

η(τ, t0) = η0(t0)(exp (Q(ς0)s)− P0(ς0))

+

∫ τ

0

η(ς, t0)[Q(t0)−Q(ς0)](exp (Q(ς0)(τ − ς))− P0(ς0))dς.

From Lemma A.2, we have

|η(τ, t0)| ≤ K1 exp (−κ̂τ) +K2|t0 − ς0|
∫ τ

0

|η(ς, t0)| exp (−κ̂(τ − ς)) dς,

for some constantsK1 andK2 which may depend on ς0 but are independent
of t0. By Gronwall’s inequality (see Hale [79, p. 36]),

|η(τ, t0)| ≤ K1 exp (−(κ̂−K2|t0 − ς0|)τ) , (5.7)

for all t0 ∈ [0, T ] and τ > 0.
If (5.5) does not hold uniformly, then there exist τn > 0 and tn ∈ [0, T ]

such that

|η(τn, tn)| ≥ n exp

(

− κ̂τn
2

)

.

Since T is finite, we may assume tn → ς0, as n→ ∞. This contradicts (5.7)
for n large enough satisfying |tn − ς0| < κ̂/(2K2) and K1 < n. Thus the
proof is complete. �
Unscaled Occupation Measure
To study the unscaled occupation measure Zε

i (t) in (5.1), we define a related

sequence {Ẑε(t)} of R
m-valued processes with its ith component Ẑε

i (t)
given by

Ẑε
i (t) =

∫ t

0

(
I{αε(s)=i} − P (αε(s) = i)

)
βi(s)ds.

Assume the conditions (A5.1) and (A5.2). We claim that for any δ > 0,

lim
ε→0

(

sup
0≤t≤T

P (|Ẑε(t)| ≥ δ)

)

= 0 and (5.8)

lim
ε→0

(

sup
0≤t≤T

E|Ẑε(t)|2
)

= 0. (5.9)
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Note that (5.8) follows from (5.9) using Tchebyshev’s inequality. The veri-
fication of (5.9), which mainly depends on a mixing property of the under-
lying sequence, is almost the same as the moment estimates in the proof
of asymptotic normality in Lemma 5.13. The details of the verifications of
(5.8) and (5.9) are omitted here.
With (5.9) in hand for any δ > 0, to study the asymptotic properties of

Zε(·), it remains to show that

lim
ε→0

(

sup
0≤t≤T

P (|Zε(t)| ≥ δ)

)

= 0 and

lim
ε→0

(

sup
0≤t≤T

E|Zε(t)|2
)

= 0.

In fact, it is enough to work with each component of Zε(t). Note that both

Zε(t) and Ẑε(t) are bounded. This together with the boundedness of β(t)
and Lemma 5.1 implies that for each i ∈ M,

sup
0≤t≤T

E|Zε
i (t)|2

≤ 2

(

sup
0≤t≤T

E|Ẑε
i (t)|2 + sup

0≤t≤T
E

∣
∣
∣
∣

∫ t

0

(P (αε(s) = i)− νi(s)) βi(s)ds

∣
∣
∣
∣

2)

≤ 2

(

sup
0≤t≤T

E|Ẑε
i (t)|2 +

∫ T

0

O(ε)ds

)

→ 0,

as ε→ 0, which yields the desired results.
The limit result above is of the law-of-large-numbers type. What has

been obtained is that as ε→ 0,

∫ t

0

I{αε(s)=i}ds→
∫ t

0

νi(s)ds in probability as ε→ 0,

for 0 < t ≤ T . In fact, a somewhat stronger result on uniform conver-
gence in terms of the second moment is established. To illustrate, suppose
that αε(t) = α(t/ε) such that α(·) is a stationary process with stationary
distribution ν = (ν1, . . . , νm). Then via a change of variable ς = s/ε, we
have

1

t

∫ t

0

I{αε(s)=i}ds =
ε

t

∫ t/ε

0

I{α(ς)=i}dς

=
ε

t

∫ t/ε

0

I{α(ς)=i}dς → νi in probability as ε→ 0,

for 0 < t ≤ T . This is exactly the continuous-time version of the law of
large numbers.
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Example 5.3. Let us return to the singularly perturbed Cox process of
Section 3.3. Recall that the compensator of the singularly perturbed Cox
process is given by

Gε(t) = G0 +

m∑

i=1

∫ t

0

aiI{αε(s)=i}ds,

where ai > 0 for i = 1, . . . ,m. Assume that all the conditions in Lemma 5.1
hold. Then Theorem 4.5 implies that P (αε(t) = i) → νi(t) as ε→ 0. What
we have discussed thus far implies that for each i ∈ M,

∫ t

0

aiI{αε(s)=i}ds→
∫ t

0

aiνi(s)ds in probability as ε→ 0 and

Gε(t) → G(t) = G0 +
m∑

i=1

∫ t

0

aiνi(s)ds in probability.

Moreover,

lim
ε→0

(

sup
0≤t≤T

E|Gε(t)−G(t)|2
)

= 0.

In the rest of this chapter, we treat suitably scaled occupation measures;
the corresponding results for the Cox process can also be derived.

With the limit results in hand, the next question is this: How fast does the
convergence take place? The rate of convergence issue together with more
detailed asymptotic properties is examined fully in the following sections.

5.2.3 Exponential Bounds

This section is devoted to the derivation of exponential bounds for the
normalized occupation measure (or occupation time) nε(·). Given a deter-
ministic process β(·), we consider the “centered” and “scaled” functional
occupation-time process nε(t, i) defined by

nε(t, i) =
1√
ε

∫ t

0

(
I{αε(s)=i} − νi(s)

)
βi(s)ds and

nε(t) = (nε(t, 1), . . . , nε(t,m)) ∈ R
1×m.

(5.10)

In view of Lemma 5.1, we have, for 0 ≤ s ≤ t ≤ T ,

P ε(t, s)− P0(t) = O

(

ε+ exp

(

−κ0(t− s)

ε

))

,

for some κ0 > 0. Note that the big O(·) usually depends on T . Let KT

denote an upper bound of

P ε(t, s)− P0(t)

ε+ exp(−κ0(t− s)/ε)
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for 0 ≤ s ≤ t ≤ T . For convenience, we use the notation O1(y) to denote a
function of y such that |O1(y)|/|y| ≤ 1. The rationale is that KT represents
the magnitude of the bounding constant and the rest of the bound is in
terms of a function with norm bounded by 1. Using this notation and KT ,
we write

P ε(t, s)− P0(t) = KTO1

(

ε+ exp

(

−κ0(t− s)

ε

))

. (5.11)

Let y(t) = (yij(t)) and z(t) = (zi(t)) denote a matrix-valued function and
a vector-valued function defined on [0, T ], respectively. Their norms are
defined by

|y|T = max
i,j

sup
0≤t≤T

|yij(t)|,

|z|T = max
i

sup
0≤t≤T

|zi(t)|.
(5.12)

For future use, define β(t) = diag(β1(t), . . . , βm(t)). The following theorem
is concerned with the exponential bound of nε(t) for ε sufficiently small.

Theorem 5.4. Assume that (A5.1) and (A5.2) are satisfied. Then there
exist ε0 > 0 and K > 0 such that for all 0 < ε ≤ ε0, T ≥ 0, and any bounded
and measurable deterministic function β(·) = diag(β1(·), . . . , βm(·)), the
following exponential bound holds:

E exp

{
θT

(T + 1)
3
2

sup
0≤t≤T

|nε(t)|
}

≤ K, (5.13)

where θT is a constant satisfying

0 ≤ θT ≤ min{1, κ0}
KT |β|T (5.14)

with κ0 being the exponential constant in Lemma 5.1.

Remark 5.5. Note that the constants ε0 and K are independent of T .
This is a convenient feature of the estimate in certain applications. The
result is in terms of a fixed but otherwise arbitrary T , which is particularly
useful for systems in an infinite horizon.

Proof: The proof is divided into several steps.
Step 1. In the first step, we show that (5.13) holds when the “sup” is absent.
Let χε(·) denote the indicator vector of αε(·), that is,

χε(t) =
(
I{αε(t)=1}, . . . , I{αε(t)=m}

)
and

wε(t) = χε(t)− χε(0)− 1

ε

∫ t

0

χε(s)Q(s)ds.
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It is well known (see Elliott [56]) that wε(t) = (wε
1(t), . . . , w

ε
m(t)), for t ≥ 0,

is a σ{αε(s) : s ≤ t}-martingale. In view of a result of Kunita andWatanabe
[134] (see also Ikeda and Watanabe [91, p. 55]), one can define a stochastic
integral with respect to wε(t). Moreover, the solution of the linear stochastic
differential equation

dχε(t) = χε(t)Qε(t)dt+ dwε(t)

is given by

χε(t) = χε(0)P ε(t, 0) +

∫ t

0

(dwε(s))P ε(t, s),

where P ε(t, s) is the principal matrix solution to the equation

dP ε(t, s)

dt
=

1

ε
P ε(t, s)Q(t), with P ε(s, s) = I

representing the transition probability matrix.
Note that for t ≥ s ≥ 0,

χε(s)P0(t) = (χε(s)1l)ν(t) = ν(t).

Using this and (5.11), we have

χε(t)− ν(t)

= χε(0)(P ε(t, 0)− P0(t)) +

∫ t

0

(dwε(s))[(P ε(t, s)− P0(t)) + P0(t)]

= KTO1

(

ε+ exp

(

−κ0t
ε

))

+KT

∫ t

0

(dwε(s))O1

(

ε+ exp

(

−κ0(t− s)

ε

))

+ wε(t)P0(t)

= KTO1

(

ε+ exp

(

−κ0t
ε

))

+KT

∫ t

0

(dwε(s))O1

(

ε+ exp

(

−κ0(t− s)

ε

))

.

The last equality above follows from the observation that

Q(s)P0(t) = 0 for all t ≥ s ≥ 0,

and

wε(t)P0(t) =

(

χε(t)− χε(0)− 1

ε

∫ t

0

χε(r)Q(r)dr

)

P0(t)

= ν(t)− ν(t)− 1

ε

∫ t

0

χε(r)Q(r)P0(t)dr = 0.
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Recall that β(t) = diag(β1(t), . . . , βm(t)). Then it follows that

∫ t

0

(χε(s)− ν(s))β(s)ds

= KTO1(ε(t+ 1))

+KT

∫ t

0

∫ s

0

(dwε(r))O1

(

ε+ exp

(

−κ0(s− r)

ε

))

β(s)ds

= KTO1(ε(t+ 1))

+KT

∫ t

0

(dwε(r))

(∫ t

r

O1

(

ε+ exp

(

−κ0(s− r)

ε

))

β(s)ds

)

= KTO1(ε(t+ 1))

+εKT

∫ t

0

(dwε(r))O1

(

(t− r) +
1

κ0

(

1− exp

(

−κ0(t− r)

ε

)))

|β|T

= KTO1(ε(t+ 1)) + εKT |β|T
(

T +
1

κ0

)∫ t

0

(dwε(r))b(r, t),

where b(s, t) is a measurable function and |b(s, t)| ≤ 1 for all s and t.
Dividing both sides by (T + 1), we obtain

1

T + 1

∣
∣
∣
∣

∫ t

0

(χε(s)− ν(s))β(s)ds

∣
∣
∣
∣

= εKTO1(1) + εKT |β|T
(
T + (1/κ0)

T + 1

) ∣
∣
∣
∣

∫ t

0

(dwε(s))b(s, t)

∣
∣
∣
∣ .

(5.15)

Therefore, we have

E exp

{
θT√

ε(T + 1)
3
2

∣
∣
∣
∣

∫ t

0

(χε(s)− ν(s))β(s)ds

∣
∣
∣
∣

}

≤ E exp

{
1√

ε
√
T + 1

[

εO1(1) + ε

∣
∣
∣
∣

∫ t

0

(dwε(s))b(s, t)

∣
∣
∣
∣

]}

.

In view of the choice of θT , it follows that

E exp

{
θT√

ε(T + 1)
3
2

∣
∣
∣
∣

∫ t

0

(χε(s)− ν(s))β(s)ds

∣
∣
∣
∣

}

≤ exp

( √
ε√

T + 1

)

E exp

{ √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

(dwε(s))b(s, t)

∣
∣
∣
∣

}

≤ eE exp

{ √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

(dwε(s))b(s, t)

∣
∣
∣
∣

}

.

(5.16)
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Recall that
wε(t) = (wε

1(t), . . . , w
ε
m(t)).

It suffices to work out the estimate for each component wε
i (t). That is, it

is enough to show that for each i = 1, . . . ,m,

E exp

{ √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b(s, t)dwε
i (s)

∣
∣
∣
∣

}

≤ K, (5.17)

for all measurable functions b(·, ·) with |b(s, t)| ≤ 1 and 0 ≤ t ≤ T . For
each t0 ≥ 0, let b0(s) = b(s, t0).
For any nonnegative random variable ξ,

Eeξ =

∞∑

j=0

∫

{j≤ξ<j+1}
eξdP

≤
∞∑

j=0

∫

{j≤ξ<j+1}
ej+1dP

=

∞∑

j=0

ej+1P (j ≤ ξ < j + 1)

=

∞∑

j=0

ej+1[P (ξ ≥ j)− P (ξ ≥ j + 1)]

≤ e+ (e − 1)

∞∑

j=1

ejP (ξ ≥ j).

By virtue of the inequality above, we have

E exp

{ √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b0(s)dw
ε
i (s)

∣
∣
∣
∣

}

≤ e+(e−1)
∞∑

j=1

ejP

( √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b0(s)dw
ε
i (s)

∣
∣
∣
∣ ≥j

)

.

(5.18)

To proceed, let us concentrate on the estimate of

P

( √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b0(s)dw
ε
i (s)

∣
∣
∣
∣ ≥ j

)

.

For each i = 1, . . . ,m, let

p̃i(t) =

∫ t

0

b0(s)dw
ε
i (s)

and let q̃i(·) denote the only solution to the following equation (see Elliott
[55, Chapter 13])

q̃i(t) = 1 + ζ

∫ t

0

q̃i(s
−)dp̃i(s),



5.2 The Irreducible Case 153

where q̃i(s
−) is the left-hand limit of q̃i at s and ζ is a positive constant

to be determined later. In what follows, we suppress the i-dependence and
write p̃i(·) and q̃i(·) as p̃(·) and q̃(·) whenever there is no confusion.
Note that p̃(t), for t ≥ 0, is a local martingale. Since

ζ

∫ t

0

q̃(s−)dp̃(s), t ≥ 0,

is a local martingale, we have Eq̃(t) ≤ 1 for all t ≥ 0. Moreover, q̃(t) can
be written as follows (see Elliott [55, Chapter 13]):

q̃(t) = exp (ζp̃(t))
∏

s≤t

(1 + ζΔp̃(s)) exp (−ζΔp̃(s)) , (5.19)

where Δp̃(s) := p̃(s)− p̃(s−), with |Δp̃(s)| ≤ 1.
Now observe that there exist positive constants ζ0 and κ1 such that for

0 < ζ ≤ ζ0 and for all s > 0,

(1 + ζΔp̃(s)) exp (−ζΔp̃(s)) ≥ exp
(−κ1ζ2

)
. (5.20)

Combining (5.19) and (5.20), we obtain

q̃(t) ≥ exp{ζp̃(t)− κ1ζ
2N(t)}, for 0 < ζ ≤ ζ0, t > 0,

where N(t) is the number of jumps of p̃(s) in s ∈ [0, t]. Since N(t) is a
monotonically increasing process, we have

q̃(t) ≥ exp
{
ζp̃(t)− κ1ζ

2N(T )
}
, for 0 < ζ ≤ ζ0.

Note also that for each i = 1, . . . ,m,

P

( √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b0(s)dw
ε
i (s)

∣
∣
∣
∣ ≥ j

)

= P

(

|p̃(t)| ≥ j
√
T + 1√
ε

)

≤ P

(

p̃(t) ≥ j
√
T + 1√
ε

)

+ P

(

−p̃(t) ≥ j
√
T + 1√
ε

)

.

Consider the first term on the right-hand side of the inequality above. Let
aj = j(T + 1)/(8κ1ε). Then
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P

(

p̃(t) ≥ j
√
T + 1√
ε

)

≤ P

(

q̃(t) ≥ exp

{
jζ
√
T + 1√
ε

− κ1ζ
2N(T )

})

≤ P

(

q̃(t) ≥ exp

{
jζ
√
T + 1√
ε

− κ1ζ
2N(T )

}

, N(T ) ≤ aj

)

+ P (N(T ) ≥ aj)

≤ P

(

q̃(t) ≥ exp

(
jζ
√
T + 1√
ε

− κ1ζ
2aj

))

+ P (N(T ) ≥ aj)

≤ 2 exp

(

− jζ
√
T + 1√
ε

+ κ1ζ
2aj

)

+ P (N(T ) ≥ aj).

The last inequality follows from the local martingale property (see Elliott
[55, Theorem 4.2]).
Now if we choose ζ = 4

√
ε/
√
T + 1, then

exp

(

− jζ
√
T + 1√
ε

+ κ1ζ
2aj

)

= e−2j .

In view of the construction of Markov chains in Section 2.4, there exists a
Poisson process N0(·) with parameter (i.e., mean) a/ε for some a > 0, such
that N(t) ≤ N0(t). Assume a = 1 without loss of generality (otherwise one
may replace ε by εa−1). Using the Poisson distribution of N0(t), we have

P (N0(T ) ≥ k) ≤ (T/ε)k

k!
for k ≥ 0.

In view of Stirling’s formula (see Chow and Teicher [30] or Feller [60]), for
ε small enough,

P (N(T ) ≥ aj) ≤ (T/ε)�aj�

�aj	! ≤ 2

(
8κ1
j

)aj−1

:= 2γ
aj−1
0 ,

where �aj	 is the integer part of aj and

γ0 =
8eκ1
j0

∈ (0, 1) for j0 > max{1, 8eκ1}.
Thus, for j ≥ j0,

P

( √
ε√

T + 1

∫ t

0

b0(s)dw
ε
i (s) ≥ j

)

≤ 2e−2j + 2γ
aj−1
0 .

Repeating the same argument for the martingale (−p̃(·)), we get for j ≥ j0,

P

(

−
√
ε√

T + 1

∫ t

0

b0(s)dw
ε
i (s) ≥ j

)

≤ 2e−2j + 2γ
aj−1
0 .
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Combining the above two inequalities yields that for j ≥ j0,

P

( √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b0(s)dw
ε
i (s)

∣
∣
∣
∣ ≥ j

)

≤ 4(e−2j + γ
aj−1
0 ).

Then by (5.18),

E exp

{ √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b0(s)dw
ε
i (s)

∣
∣
∣
∣

}

≤ K0 + 4(e− 1)
∞∑

j=1

ej(e−2j + γ
aj−1
0 ),

where K0 is the sum corresponding to those terms with j ≤ j0. Now choose

ε small enough that eγ
1/(8κ1ε)
0 ≤ 1/2. Then

E exp

{ √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b0(s)dw
ε
i (s)

∣
∣
∣
∣

}

≤ K0 + 4eγ−1
0 .

Since t0 is arbitrary, we may take t0 = t in the above inequality. Then

E exp

{ √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b(s, t)dwε
i (s)

∣
∣
∣
∣

}

≤ K0 + 4eγ−1
0 .

Combining this inequality with (5.16) leads to

E exp

{
θT√

ε(T + 1)
3
2

∣
∣
∣
∣

∫ t

0

(χε(s)− ν(s))β(s)ds

∣
∣
∣
∣

}

≤ e(K0 + 4eγ−1
0 ) := K.

Step 2. Recall that

nε(t, i) =
1√
ε

∫ t

0

(
I{α(ε,s)=i} − νi(s)

)
βi(s) ds.

Then, for each i ∈ M, nε(t, i) is nearly a martingale, i.e., for ε small enough,

|E[nε(t, i)|Fs]− nε(s, i)| ≤ O(
√
ε), for all ω ∈ Ω and 0 ≤ s ≤ t ≤ T.

(5.21)

Here O(
√
ε) is deterministic, i.e., it does not depend on the sample point ω.

The reason is that it is obtained from the asymptotic expansions. In fact,
for all i0 ∈ M,
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E

[∫ t

s

(I{α(ε,r)=i} − νi(r))βi(r) dr
∣
∣α(ε, s) = i0

]

=

∫ t

s

(E[I{α(ε,r)=i}|α(ε, s) = i0]− νi(r))βi(r) dr

=

∫ t

s

[P (α(ε, r) = i|α(ε, s) = i0)− νi(r)]βi(r) dr

=

∫ t

s

O(ε+ exp(−κ0(r − s)/ε) dr = O(ε).

So, (5.21) follows.
Step 3. We show that for each a > 0,

E[exp{a|nε(t, i)|}|Fs] ≥ exp{a|nε(s, i)|}(1 +O(
√
ε)).

First of all, note that φ(x) = |x| is a convex function. There exists a
vector function φ0(x) bounded by 1 such that

φ(x) ≥ φ(a) + φ0(a) · (x− a),

for all x and a. Noting that O(
√
ε) = −O(√ε), we have

E[|nε(t, i)| |Fs] ≥ |nε(s, i)|+ φ0(n
ε(s, i)) ·E[nε(t, i)− nε(s, i)|Fs]

≥ |nε(s, i)|+O(
√
ε).

Moreover, note that eax is also convex. It follows that

E[exp(a|nε(t, i)|)|Fs]

≥ exp(a|nε(s, i)|) + a exp{a|nε(s, i)|}E[|nε(t, i)| − |nε(s, i)| |Fs]

≥ exp(a|nε(s, i)|)(1 +O(
√
ε)).

Step 4. Let xε(t) = exp(a|nε(t, i)|) for a > 0. Then, for any Ft stopping
time τ ≤ T ,

E[xε(T )|Fτ ] ≥ xε(τ)(1 +O(
√
ε)). (5.22)

Note that xε(t) is continuous. Therefore, it suffices to show the above
inequality when τ takes values in a countable set {t1, t2, . . .}. To this end,
note that, for each ti,

E[xε(T )|Fti ] ≥ xε(ti)(1 +O(
√
ε)).

For all A ∈ Fτ , we have A ∩ {τ = ti} ∈ Fti . Therefore,

∫

A∩{τ=ti}
xε(T ) dP ≥

(∫

A∩{τ=ti}
xε(τ) dP

)

(1 +O(
√
ε)).
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Thus
∫

A

xε(T ) dP ≥
(∫

A

xε(τ) dP

)

(1 +O(
√
ε)),

and (5.22) follows.
Step 5. Let a = θ/

√
(T + 1)3 in Step 3. Then, for ε small enough, there

exists K such that

P

(

sup
t≤T

xε(t) ≥ x

)

≤ K

x
, (5.23)

for all x > 0.
In fact, let τ = inf{t > 0 : xε(t) ≥ x}. We adopt the convention that

τ = ∞ if {t > 0 : xε(t) ≥ x} = ∅. Then we have

E[xε(T )] ≥ (E[xε(T ∧ τ)])(1 +O(
√
ε)),

and write

E[xε(T ∧ τ)] = E[xε(τ)I{τ<T}] + E[xε(T )I{τ≥T}] ≥ E[xε(τ)I{τ<T}].

Moreover, in view of the definition of τ , we have

E
[
xε(τ)I{τ<T}

] ≥ xP (τ < T ) ≥ xP

(

sup
t≤T

xε(t) ≥ x

)

.

It follows that

P

(

sup
t≤T

xε(t) ≥ x

)

≤ E[xε(T )]

(1 +O(
√
ε))x

≤ K

x
.

Thus, (5.23) follows.
Finally, to complete the proof of (5.13), note that, for 0 < κ < 1,

E exp

(
κθ

√
(1 + T )3

sup
t≤T

|nε(t, i)|
)

= E

[

sup
t≤T

(xε(t))κ
]

.

It follows that

E

[

sup
t≤T

(xε(t))κ
]

=

∫ ∞

0

P

(

sup
t≤T

(xε(t))κ ≥ x

)

dx

≤ 1 +

∫ ∞

1

P

(

sup
t≤T

(xε(t))κ ≥ x

)

dx

≤ 1 +

∫ ∞

1

P

(

sup
t≤T

xε(t) ≥ x1/κ
)

dx

≤ 1 +

∫ ∞

1

Kx−1/κ dx <∞.

This completes the proof. �
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Next we give several corollaries to the theorem. Such estimates are use-
ful for establishing exponential bounds of asymptotic optimal hierarchical
controls in manufacturing models (see Sethi and Zhang [192]).

Corollary 5.6. In Theorem 5.4, if Q(t) = Q, a constant matrix, then the
following stronger estimate holds:

E exp

{
θT√
1 + T

sup
0≤t≤T

|nε(t)|
}

≤ K. (5.24)

Moreover, the constant θT = θ is independent of T for T > 0.

Proof: If Q(t) = Q, then ϕ1(t) in Lemma 5.1 is identically 0. Therefore,
the estimate (5.11) can be replaced by

P ε(t, s)− P0(t) = KTO1

(

exp

(

−κ0(t− s)

ε

))

.

As a result, the estimate in (5.15) can be replaced by

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

(χε(s)− ν(s))β(s)ds

∣
∣
∣
∣ = εKTO1(1)+εKT sup

0≤t≤T

∣
∣
∣
∣

∫ t

0

O1(1)dw
ε(s)

∣
∣
∣
∣ .

The proof of (5.24) follows in essentially the same way as that of Theo-
rem 5.4 (from equation (5.15) on).
To see that θT in (5.24) is independent of T , it suffices to note that in

(5.11) the constantKT is independent of T , which can be seen by examining
closely Example 4.16. �

Corollary 5.7. Under the conditions of Theorem 5.4, there exist constants
Kj, such that for j = 1, 2, . . .,

E sup
0≤t≤T

|nε(t)|2j ≤ Kj(1 + T )3j . (5.25)

Moreover, if Q(t) = Q, then for some Kj independent of T and

E sup
0≤t≤T

|nε(t)|2j ≤ Kj(1 + T )j. (5.26)

Proof: Since (5.26) follows from a similar argument to that of Corollary 5.6,
it suffices to verify (5.25) using Theorem 5.4. Note that for each j = 1, 2, . . .,
there exists K0

j such that for all x, we have x2j ≤ K0
j e

x. Thus,

(
θT

(T + 1)
3
2

sup
0≤t≤T

|nε(t)|
)2j

≤ K0
j exp

{
θT

(T + 1)
3
2

sup
0≤t≤T

|nε(t)|
}

.

Taking expectations on both sides of the above inequality yields the desired
estimate. �



5.2 The Irreducible Case 159

Corollary 5.8. Under the conditions of Theorem 5.4, for each 0 < δ <
1/2, we have

P

(

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

(I{αε(s)=i}− νi(s))βi(s)ds

∣
∣
∣
∣≥ε

1
2−δ

)

≤K exp

{

− θT

εδ(T + 1)
3
2

}

.

(5.27)

Moreover, if Q(t) = Q, then θT = θ is independent of T and

P

(

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

(I{αε(s)=i}− νi(s))βi(s)ds

∣
∣
∣
∣≥ε

1
2−δ

)

≤K exp

{

− θ

εδ
√
1 + T

}

.

(5.28)

Proof: Using Theorem 5.4, we obtain

P

(

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

(I{αε(s)=i}− νi(s))βi(s)ds

∣
∣
∣
∣ ≥ ε

1
2−δ

)

= P

(

exp

{
θT

(T + 1)
3
2

sup
0≤t≤T

|nε(t)|
}

≥exp

{
θT ε

1
2−δ

√
ε(T + 1)

3
2

})

≤ K exp

{

− θT

εδ(T + 1)
3
2

}

.

This proves (5.27). Similarly, (5.28) follows from Corollary 5.6. �

5.2.4 Asymptotic Normality

Recall that the ith component of nε(·) is given by

nε(t, i) =
1√
ε

∫ t

0

(
I{αε(s)=i} − νi(s)

)
βi(s)ds.

It is expected that the sequence of centered and scaled occupation measures
will display certain “central limit type” phenomena. The goal here is to
study the asymptotic properties of nε(·) as ε → 0. To be more specific,
we show that nε(·) converges to a Gaussian process as ε goes to 0. The
following theorem is the main result of this section.

Theorem 5.9. Suppose that (A5.1) is satisfied and Q(·) is twice continu-
ously differentiable in [0, T ] with the second derivative being Lipschitz. Then
for t ∈ [0, T ], the process nε(·) converges weakly to a Gaussian process n(·)
with independent increments such that

En(t) = 0 and E[n′(t)n(t)] =
∫ t

0

A(s)ds, (5.29)
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where A(t) = (Aij(t)) with

Aij(t)=βi(t)βj(t)

[

νi(t)

∫ ∞

0

q0,ij(r, t)dr+νj(t)

∫ ∞

0

q0,ji(r, t)dr

]

, (5.30)

and Q0(r, t) = (q0,ij(r, t)).

Remark 5.10. In view of (5.29) and the independent increment property
of n(t), it follows that

E[n′(t1)n(t2)] =
∫ min{t1,t2}

0

A(s)ds. (5.31)

The form of the covariance matrix (between t1 and t2) reveals the nonsta-
tionarity of the limit process n(·). Note that the limit covariance of n(t)
given in (5.31) is an integral of the function A(s) defined in (5.30). For
simplicity, with a slight abuse of notation, we shall also call A(t) as the
covariance. This convention will be used throughout the chapter.

Remark 5.11. The additional assumptions on the second derivative of
Q(·) in Theorem 5.9 are required for computing or characterizing the func-
tion A(·). It is not crucial for the convergence of nε(·); see Remark 5.44 in
Section 5.3.3 for details.

Proof of Theorem 5.9: We divide the proof into several steps, which are
presented by a number of lemmas.

Step 1. Show that the limit of the mean of nε(·) is 0.
Lemma 5.12. For each t ∈ [0, T ],

lim
ε→0

Enε(t) = 0.

Proof: Using Theorem 4.5 and the boundedness of βi(·), for t ∈ [0, T ],

Enε(t, i) =
1√
ε

∫ t

0

(EI{αε(s)=i} − νi(s))βi(s)ds

=
1√
ε

∫ t

0

(P (αε(s) = i)− νi(s))βi(s)ds

=
1√
ε

∫ t

0

[

O(ε) +O

(

exp

(

−κ0s
ε

))]

βi(s)ds

= O(
√
ε) +

1√
ε

∫ t

0

O

(

exp

(

−κ0s
ε

)

ds = O(
√
ε) → 0,

for each i ∈ M. �
Step 2. Calculate the limit covariance function.
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Lemma 5.13. For each t ∈ [0, T ],

lim
ε→0

E(nε,′(t)nε(t)) =

∫ t

0

A(s)ds, (5.32)

where A(t) is given by (5.30).

Proof: For each i, j ∈ M,

E [nε(t, i)nε(t, j)] =
1

ε
E

[(∫ t

0

(I{αε(ς)=i} − νi(ς))βi(ς)dς

)

×
(∫ t

0

(I{αε(r)=j} − νj(r))βj(r)dr

)]

=
1

ε
E

[∫ t

0

∫ t

0

(

I{αε(ς)=i,αε(r)=j} − νi(ς)I{αε(r)=j}

−νj(r)I{αε(ς)=i} + νi(ς)νj(r)

)

βi(ς)βj(r)dςdr

]

.

Let

D1 = {(ς, r) : 0 ≤ r ≤ ς ≤ t},

D2 = {(ς, r) : 0 ≤ ς ≤ r ≤ t},

and let

Φε(ς, r) = P (αε(ς) = i, αε(r) = j)− νi(ς)P (α
ε(r) = j)

−νj(r)P (αε(ς) = i) + νi(ς)νj(r).

Then it follows that

E [nε(t, i)nε(t, j)] =
1

ε

[∫ t

0

∫ t

0

Φε(ς, r)βi(ς)βj(r)dςdr

]

=
1

ε

(∫

D1

+

∫

D2

)

Φε(ς, r)βi(ς)βj(r)dςdr.

Note that if (ς, r) ∈ D1, then ς ≥ r and

P (αε(ς) = i, αε(r) = j)

= P (αε(ς) = i|αε(r) = j)P (αε(r) = j).
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Hence, for (ς, r) ∈ D1 we have

Φε(ς, r) = [P (αε(ς) = i|αε(r) = j)− νi(ς)]P (α
ε(r) = j)

+νj(r)[νi(ς)− P (αε(ς) = i)].

Using Theorem 4.5 and Lemma 5.1, for (ς, r) ∈ D1,

Φε(ς, r) =

(

εϕi
1(ς) + q0,ji

(
ς − r

ε
, r

)

+ εq1,ji

(
ς − r

ε
, r

)

+O(ε2)

)

×
(

νj(r) + εϕj
1(r) + ψj

0

(
r

ε

)

+ εψj
1

(
r

ε

)

+O(ε2)

)

−νj(r)
(

εϕi
1(ς) + ψi

0

(
ς

ε

)

+ εψi
1

(
ς

ε

)

+O(ε2)

)

= νj(r)q0,ji

(
ς − r

ε
, r

)

+

[

O

(

ε exp

(

−κ0r
ε

))

+O

(

ε exp

(

−κ0(ς − r)

ε

))

+O

(

exp

(

−κ0ς
ε

))

+O(ε2)

]

.

In the above, ϕi
	 and ψi

	 denote the ith components of the vectors ϕ	 and
ψ	, respectively. By elementary integration, we have

∫ t

0

(∫ ς

0

exp

(

−κ0ς
ε

)

dr

)

dς =

∫ t

0

ς exp

(

−κ0ς
ε

)

dς = O(ε2),

ε

∫ t

0

(∫ ς

0

exp

(

−κ0r
ε

)

dr

)

dς =
ε2

κ0

∫ t

0

(

1− exp

(

−κ0ς
ε

))

dς = O(ε2),

and

ε

∫ t

0

(∫ ς

0

exp

(

−κ0(ς − r)

ε

)

dr

)

dς = ε

∫ t

0

(∫ ς

0

exp

(

−κ0r
ε

)

dr

)

dς = O(ε2).

Thus, it follows that

∫

D1

Φε(ς, r)βi(ς)βj(r)dςdr

=

∫ t

0

(∫ ς

0

q0,ji

(
ς − r

ε
, r

)

νj(r)βi(ς)βj(r)dr

)

dς +O(ε2).
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Exchanging the order of integration leads to

∫ t

0

(∫ ς

0

q0,ji

(
ς − r

ε
, r

)

νj(r)βi(ς)βj(r)dr

)

dς

=

∫ t

0

(∫ t

r

q0,ji

(
ς − r

ε
, r

)

νj(r)βi(ς)βj(r)dς

)

dr

=

∫ t

0

βj(r)νj(r)

(∫ t

r

q0,ji

(
ς − r

ε
, r

)

βi(ς)dς

)

dr.

Making a change of variables (via ς − r = εs) yields

∫ t

r

q0,ji

(
ς − r

ε
, r

)

βi(ς)dς = ε

∫ (t−r)/ε

0

q0,ji(s, r)βi(r + εs)ds.

We note that βi(·) is bounded and βi(r + εs) → βi(r) in L1 for each r ∈
[0, T ], as ε → 0. Since q0,ji(·) decays exponentially fast, as in Lemma 5.1,
we have

∫ (t−r)/ε

0

q0,ji(s, r)βi(r + εs)ds→ βi(r)

∫ ∞

0

q0,ji(s, r)ds.

Therefore, we obtain

lim
ε→0

1

ε

∫

D1

Φε(ς, r)βi(ς)βj(r)dςdr

=

∫ t

0

βi(r)βj(r)νj(r)

(∫ ∞

0

q0,ji(s, r)ds

)

dr.

(5.33)

Similarly, we can show that

lim
ε→0

1

ε

∫

D2

Φε(ς, r)βi(ς)βj(r)dςdr

=

∫ t

0

βi(r)βj(r)νi(r)

(∫ ∞

0

q0,ij(s, r)ds

)

dr.

(5.34)

Combining (5.33) and (5.34), we obtain

lim
ε→0

E [nε(t, i)nε(t, j)] =

∫ t

0

Aij(s)ds,

with A(t) = (Aij(t)) given by (5.30). �

Step 3. Establish a mixing condition for the sequence {nε(·)}.
Lemma 5.14. For any ς ≥ 0 and σ{αε(s) : s ≥ t+ ς}-measurable η with
|η| ≤ 1,

∣
∣
∣E(η|αε(s) : s ≤ t)− Eη

∣
∣
∣ ≤ K exp

(

−κς
ε

)

w.p.1. (5.35)
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Remark 5.15. It follows from (5.35) that for any σ{αε(s) : 0 ≤ s ≤ t}-
measurable ξ with |ξ| ≤ 1 and η given in Lemma 5.14,

∣
∣
∣Eξη − EξEη

∣
∣
∣ ≤ K exp

(

−κς
ε

)

. (5.36)

We will make crucial use of (5.35) and (5.36) in what follows.

Proof of Lemma 5.14: For any

0 ≤ s1 ≤ s2 ≤ · · · ≤ sn = t ≤ t+ ς = t0 ≤ t1 ≤ · · · ≤ tl <∞,

let

E1 = {αε(t) = i, αε(sn−1) = in−1, . . . , α
ε(s1) = i1} and

E2 = {αε(t+ ς) = j, αε(t1) = j1, . . . , α
ε(tl) = jl}.

Then in view of the Markovian property of αε(·),

P (E2|E1) = P (E2|αε(t) = i)

= P (αε(t+ ς) = j|αε(t) = i)[pεj,j1(t1, t+ ς) · · · pεjl−1,jl(tl, tl−1)].

Similarly, we have

P (E2) = P (αε(t+ ς) = j)[pεj,j1 (t1, t+ ς) · · · pεjl−1,jl(tl, tl−1)].

We first show that

∣
∣
∣P (E2|E1)− P (E2)

∣
∣
∣ ≤ K exp

(

−κς
ε

)

, (5.37)

for some positive constants K and κ that are independent of i, j ∈ M and
t ∈ [0, T ].
To verify (5.37), it suffices to show that for any k ∈ M,

∣
∣
∣pεij(t+ ς, t)− pεkj(t+ ς, t)

∣
∣
∣ ≤ K exp

(

−2κς

ε

)

. (5.38)

Since P0(·) and P1(·) have identical rows, the asymptotic expansion in (5.3)
implies that pεij(t+ζ, t)−pεkj(t+ζ, t) is determined by Q0(ζ/ε, t). By virtue
of the asymptotic expansion (see Theorem 4.5 and Lemma 5.1), there exist
a K1 > 0 and a κ0 > 0 such that

∣
∣
∣
∣
∣
Q0

(
(t+ t̃)− t

ε
, t

)∣
∣
∣
∣
∣
≤ K1 exp

(

−κ0t̃
ε

)

, for all t̃ ≥ 0.
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Choose N > 0 sufficiently large that K1 exp(−κ0N) < 1. Then for ε > 0
sufficiently small, there is a 0 < ρ < 1 such that

∣
∣
∣pεij(t+Nε, t)− pεkj(t+Nε, t)

∣
∣
∣ ≤ ρ.

To proceed, subdivide [t+Nε, t+ ς ] into intervals of length Nε.
In view of the Chapman–Kolmogorov equation,

|pεij(t+ 2Nε, t)− pεkj(t+ 2Nε, t)|

=

∣
∣
∣
∣
∣

m∑

l0=1

[pεil0(t+Nε, t)− pεkl0(t+Nε, t)]pεl0j(t+ 2Nε, t+Nε)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

m∑

l0=1

[pεil0(t+Nε, t)− pεkl0(t+Nε, t)]

×[pεl0j(t+ 2Nε, t+Nε)− pεl1j(t+ 2Nε, t+Nε)]

∣
∣
∣
∣
∣
≤ Kρ2,

for any l1 ∈ M. Iterating on the inequality above, we arrive at
∣
∣
∣pεij(t+ k0Nε, t)− pεkj(t+ k0Nε, t)

∣
∣
∣ ≤ Kρk0 , for k0 ≥ 1.

Choose κ = −1/(2N) logρ, and note that κ > 0. Then for any ς satisfying
k0Nε ≤ ς < (k0 + 1)Nε,

∣
∣
∣pεij(t+ ς, t)− pεkj(t+ ς, t)

∣
∣
∣ ≤ K exp

(

−2κς

ε

)

.

Thus (5.37) holds. This implies that αε(·) is a mixing process with expo-
nential mixing rate. By virtue of Lemma A.16, (5.35) holds. �
Step 4. Prove that the sequence nε(·) is tight, and any weakly convergent
subsequence of {nε(·)} has continuous paths with probability 1.

Lemma 5.16. The following assertions hold:

(a) {nε(t); t ∈ [0, T ]} is tight in D([0, T ];Rm), where D([0, T ];Rm) de-
notes the space of functions that are defined on [0, T ] and that are
right continuous with left limits.

(b) The limit n(·) of any weakly convergent subsequence of nε(·) has con-
tinuous sample paths with probability 1.

Proof: For i ∈ M, define

ñε(t, i) =
1√
ε

∫ t

0

(
I{αε(s)=i} − P (αε(s) = i)

)
βi(s)ds.
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By virtue of Theorem 4.5,

1√
ε

∫ t

0

(P (αε(s) = i)− νi(s)) βi(s)ds = O(
√
ε).

Thus nε(t, i) = ñε(t, i)+O(
√
ε), and as a result the tightness of {nε(·)} will

follow from the tightness of {ñε(·)} (see Kushner [139, Lemma 5, p. 50]).
For the tightness of {ñε(·)}, in view of Kushner [139, Theorem 5, p. 32],

it suffices to show that

E|ñε(t+ ς)− ñε(t)|4 ≤ Kς2. (5.39)

To verify this assertion, it is enough to prove that for each i ∈ M, ñε(·, i)
satisfies the condition.
Fix i ∈ M and for any 0 ≤ t ≤ T , let

θ(t) =
(
I{αε(t)=i} − P (αε(t) = i)

)
βi(t).

We have suppressed the i and ε dependence in θ(t) for ease of presentation.
Let D = {(s1, s2, s3, s4) : t ≤ si ≤ t+ ς, i = 1, 2, 3, 4}. It follows that

E|ñε(t+ ς, i)− ñε(t, i)|4

≤ 1

ε2

∫

D

|Eθ(s1)θ(s2)θ(s3)θ(s4)|ds1ds2ds3ds4.
(5.40)

Let (i1, i2, i3, i4) denote a permutation of (1, 2, 3, 4) and

Di1i2i3i4 = {(s1, s2, s3, s4) : t ≤ si1 ≤ si2 ≤ si3 ≤ si4 ≤ t+ ς}.

Then it is easy to see that D = ∪Di1i2i3i4 . This and (5.40) leads to

E|ñε(t+ ς, i)− ñε(t, i)|4

≤ K

ε2

∫

D0

|Eθ(s1)θ(s2)θ(s3)θ(s4)|ds1ds2ds3ds4,

where D0 = D1234.
Note that

|Eθ(s1)θ(s2)θ(s3)θ(s4)|

≤ |Eθ(s1)θ(s2)θ(s3)θ(s4)− Eθ(s1)θ(s2)Eθ(s3)θ(s4)|

+|Eθ(s1)θ(s2)||Eθ(s3)θ(s4)|.

(5.41)
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By virtue of (5.36) and Eθ(t) = 0, t ≥ 0,

|Eθ(s1)θ(s2)| = |Eθ(s1)θ(s2)− Eθ(s1)Eθ(s2)|

≤ K exp

(

−κ(s2 − s1)

ε

)

.

Similarly, we have

|Eθ(s3)θ(s4)| = |Eθ(s3)θ(s4)− Eθ(s3)Eθ(s4)|

≤ K exp

(

−κ(s4 − s3)

ε

)

.

Therefore, it follows that

K

ε2

∫

D0

|Eθ(s1)θ(s2)| · |Eθ(s3)θ(s4)|ds1ds2ds3ds4 ≤ Kς2. (5.42)

The elementary inequality (a+b)1/2 ≤ a1/2+b1/2 for nonnegative numbers
a and b yields that

|Eθ(s1)θ(s2)θ(s3)θ(s4)− Eθ(s1)θ(s2)Eθ(s3)θ(s4)|

=
(
|Eθ(s1)θ(s2)θ(s3)θ(s4)− Eθ(s1)θ(s2)Eθ(s3)θ(s4)| 12

)2

≤ |Eθ(s1)θ(s2)θ(s3)θ(s4)− Eθ(s1)θ(s2)Eθ(s3)θ(s4))| 12

×
(
|Eθ(s1)θ(s2)θ(s3)θ(s4)| 12 + |Eθ(s1)θ(s2)Eθ(s3)θ(s4)| 12

)
.

In view of (5.36), we obtain

|Eθ(s1)θ(s2)θ(s3)θ(s4)− Eθ(s1)θ(s2)Eθ(s3)θ(s4))| 12

≤ K exp

(

−κ(s3 − s2)

2ε

)

.

Similarly, by virtue of (5.35) and the boundedness of θ(s),

|Eθ(s1)θ(s2)θ(s3)θ(s4)| 12

= |Eθ(s1)θ(s2)θ(s3)(E(θ(s4)|αε(s) : s ≤ s3)− Eθ(s4))| 12

≤ K exp

(

−κ(s4 − s3)

2ε

)

,
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and

|Eθ(s1)θ(s2)Eθ(s3)θ(s4)| 12

= |(Eθ(s1)θ(s2)− Eθ(s1)Eθ(s2))(Eθ(s3)θ(s4)− Eθ(s3)Eθ(s4))| 12

≤ K exp

(

−κ(s2 − s1)

2ε

)

exp

(

−κ(s4 − s3)

2ε

)

.

By virtue of the estimates above, we arrive at

K

ε2

∫

D0

|Eθ(s1)θ(s2)θ(s3)θ(s4)

−Eθ(s1)θ(s2)Eθ(s3)θ(s4)|ds1ds2ds3ds4 ≤ Kς2.

(5.43)

The estimate (5.39) then follows from (5.42) and (5.43), and so does the
desired tightness of {nε(·)}.
Since {nε(·)} is tight, by Prohorov’s theorem, we extract a convergent

subsequence, and for notational simplicity, we still denote the sequence by
{nε(·)} whose limit is n(·). By virtue of Kushner [139, Theorem 5, p. 32] or
Ethier and Kurtz [59, Proposition 10.3, p. 149], n(·) has continuous paths
with probability 1. �

Remark 5.17. Step 4 implies that both nε(·) and n(·) have continuous
sample paths with probability 1. It follows, in view of Prohorov’s theorem
(see Billingsley [13]), that nε(·) is tight in C([0, T ];Rm).

Step 5. Show that the finite-dimensional distributions of nε(·) converge to
that of a Gaussian process with independent increments.
This part of the proof is similar to Khasminskii [112] (see also Friedlin

and Wentzel [67, pp. 224]). Use ι to denote the imaginary number ι2 = −1.
To prove the convergence of the finite-dimensional distributions, we use the
characteristic function E exp(ι〈z, nε(t)〉), where z ∈ R

m and 〈·.·〉 denotes
the usual inner product in R

m. Owing to the mixing property and repeated
applications of Remark 5.15, for arbitrary positive real numbers sl and tl
satisfying

0 ≤ s0 ≤ t0 ≤ s1 ≤ t1 ≤ s2 ≤ · · · ≤ sn ≤ tn,

we have
∣
∣
∣
∣E exp

(

ι
n∑

l=0

〈
zl, (n

ε(tl)− nε(sl))
〉
)

−
n∏

l=0

E exp

(

ι
〈
zl, (n

ε(tl)− nε(sl))
〉
)∣∣
∣
∣→ 0
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as ε → 0, for zl ∈ R
m. This, in turn, implies that the limit process n(·)

has independent increments. Moreover, in view of Lemma 5.16, the limit
process has continuous path with probability 1. In accordance with a re-
sult in Skorohod [197, p. 7], if a process with independent increments has
continuous paths w.p.1, then it must necessarily be a Gaussian process.
This implies that the limits of the finite-dimensional distribution of n(·)
are Gaussian.
Consequently, n(·) is a process having Gaussian finite-dimensional dis-

tributions, with mean zero and covariance
∫ t

0
A(s)ds given by Lemma 5.13.

Moreover, the limit does not depend on the chosen subsequence. Thus nε(·)
converges weakly to the Gaussian process n(·). This completes the proof of
the theorem. �

To illustrate, we give an example in which the covariance function of the
limit process can be calculated explicitly.

Example 5.18. Let αε(t) ∈ M = {1, 2} be a two-state Markov chain with
a generator

Q(t) =

(−μ1(t) μ1(t)
μ2(t) −μ2(t)

)

where μ1(t) ≥ 0, μ2(t) ≥ 0, and μ1(t) +μ2(t) > 0 for each t ∈ [0, T ]. More-
over, μ1(·) and μ2(·) are twice continuously differentiable with Lipschitz
continuous second derivatives. It is easy to see that assumptions (A5.1)
and (A5.2) are satisfied. Therefore the desired asymptotic normality fol-
lows.
In this example,

ν(t) = (ν1(t), ν2(t)) =

(
μ2(t)

μ1(t) + μ2(t)
,

μ1(t)

μ1(t) + μ2(t)

)

.

Moreover,

Q0(s, t0) = −exp(−(μ1(t0) + μ2(t0))s)

μ1(t0) + μ2(t0)
Q(t0).

Thus,

A(t) =
2μ1(t)μ2(t)

(μ1(t) + μ2(t))3

(
(β1(t))

2 −β1(t)β2(t)
−β1(t)β2(t) (β2(t))

2

)

.

5.2.5 Extensions

In this section, we generalize our results in the previous sections including
asymptotic expansions, asymptotic normality, and exponential bounds, to
the Markov chain αε(·) with generator given by Qε(t) = Q(t)/ε+Q̂(t) with
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weakly irreducible generator Q(t). Recall that the vector of probabilities
pε(t) = (P (αε(t) = 1), . . . , P (αε(t) = m)) satisfies the differential equation

dpε(t)

dt
= pε(t)Qε(t), pε(t) ∈ R

m,

pε(0) = p0 with p0i ≥ 0 for i ∈ M and

m∑

i=1

p0i = 1,

To proceed, the following conditions are needed.

(A5.3) Both Q(t) and Q̂(t) are generators. For each t ∈ [0, T ], Q(t) is
weakly irreducible.

(A5.4) For some positive integer n0, Q(·) is (n0 + 1)-times continu-
ously differentiable on [0, T ] and (dn0+1/dtn0+1)Q(·) is Lipschitz.
Moreover, Q̂(·) is n0-times continuously differentiable on [0, T ]

and (dn0/dtn0)Q̂(·) is Lipschitz.

Similarly to Section 4.2 for k = 1, . . . , n0 + 1, the outer expansions lead
to equations

ε0 : ϕ0(t)Q(t) = 0,

ε1 : ϕ1(t)Q(t) + ϕ0(t)Q̂(t) =
dϕ0(t)

dt
,

· · ·

εk : ϕk(t)Q(t) + ϕk−1(t)Q̂(t) =
dϕk−1(t)

dt
,

(5.44)

with constraints

m∑

i=1

ϕ0,i(t) = 1

and

m∑

i=1

ϕk,i(t) = 0, for k ≥ 1.
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The initial-layer correction terms are

ε0 :
dψ0(τ)

dτ
= ψ0(τ)Q(0),

ε1 :
dψ1(τ)

dτ
= ψ1(τ)Q(0) + ψ0(τ)

(

τ
dQ(0)

dt
+ Q̂(0)

)

,

· · ·

εk :
dψk(τ)

dτ
= ψk(τ)Q(0) + rk(τ),

(5.45)

where

rk(τ) =

k∑

i=1

ψk−i(τ)

(
τ i

i!

diQ(0)

dti
+

τ i−1

(i− 1)!

di−1Q̂(0)

dti−1

)

,

with initial conditions

ψ0(0) = p0 − ϕ0(0), and

ψk(0) = −ϕk(0) for k ≥ 1.

Theorem 5.19. Suppose that (A5.3) and (A5.4) are satisfied. Then

(a) ϕi(·) is (n0 + 1− i)-times continuously differentiable on [0, T ],

(b) for each i, there is a κ̂ > 0 such that

∣
∣
∣
∣ψi

(
t

ε

)∣
∣
∣
∣ ≤ K exp

(

− κ̂t
ε

)

, and

(c) the approximation error satisfies

sup
t∈[0,T ]

∣
∣
∣
∣p

ε(t)−
n0∑

i=0

εiϕi(t)−
n0∑

i=0

εiψi

(
t

ε

)∣∣
∣
∣ ≤ Kεn0+1. (5.46)

The proof of this theorem is similar to those of Theorem 4.5, and is thus
omitted. We also omit the proofs of the following two theorems because
they are similar to that of Theorem 5.4 and Theorem 5.9, respectively.

Theorem 5.20. Suppose (A5.3) and (A5.4) are satisfied with n0 = 0. Then
there exist positive constants ε0 and K such that for 0 < ε ≤ ε0, i ∈ M,
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and for any deterministic process βi(·) satisfying |βi(t)| ≤ 1 for all t ≥ 0,
we have

E exp

{
θT

(T + 1)
3
2

sup
0≤t≤T

|nε(t)|
}

≤ K,

where θT and nε(·) are as defined previously.

Corollary 5.21. Consider Qε = Q/ε+ Q̂ with constant generators Q and

Q̂ such that Q is weakly irreducible. Then (5.25) and (5.27) hold with con-
stants K and Kj independent of T .

Theorem 5.22. Suppose (A5.3) and (A5.4) are satisfied with n0 = 1. Then
for t ∈ [0, T ], the process nε(·) converges weakly to a Gaussian process n(·)
such that

En(t) = 0 and E[n′(t)n(t)] =
∫ t

0

A(s)ds,

where A(t) = (Aij(t)) with

Aij(t) = βi(t)βj(t)

[

νi(t)

∫ ∞

0

q0,ij(r, t)dr + νj(t)

∫ ∞

0

q0,ji(r, t)dr

]

,

and Q0(r, t) = (q0,ij(r, t)) satisfying

dQ0(r, t)

dr
= Q0(r, t)Q(t), r ≥ 0,

Q0(0, t) = I − P0(t),

with P0(t) = (ν′(t), . . . , ν′(t))′.

Remark 5.23. In view of Theorem 5.22, the asymptotic covariance is de-
termined by the quasi-stationary distribution ν(t) and Q0(r, t). Both ν(t)
and Q0(r, t) are determined by Q(t), the dominating term in Qε(t). In the
asymptotic normality analysis, it is essential to have the irreducibility con-
dition of Q(t), whereas the role of Q̂(t) is not as important. If Q(t) is weakly

irreducible, then there exists an ε0 > 0 such that Qε(t) = Q(t)/ε + Q̂(t)
is weakly irreducible for 0 < ε ≤ ε0, as shown in Sethi and Zhang [192,
Lemma J.10].

By introducing another generator Q̂(t), we are dealing with a singularly
perturbed Markovian system with fast and slow motions. Nevertheless,
the entire system under consideration is still weakly irreducible. This irre-
ducibility allows us to extend our previous results with minor modifications.
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Although most of the results in this section can be extended to the
case with Qε(t) = Q(t)/ε+ Q̂(t), there are some exceptions. For example,
Corollary 5.6 would not go through because even with constant matrix
Q̂(t) = Q̂, ϕ1(t) in Lemma 5.1 does not equal 0 when Q̂ �= 0.
One may wonder what happens if Q(t) in Qε(t) is not weakly irreducible.

In particular, one can consider the case in which Q(t) consists of several
blocks of irreducible submatrices. Related results of asymptotic normality
and the exponential bounds are treated in subsequent sections.

5.3 Markov Chains with Weak and Strong
Interactions

For brevity, unless otherwise noted, in the rest of the book, whenever
the phrase “weak and strong interaction” is used, it refers to the case of
two-time-scale Markov chains with all states being recurrent. Similar ap-
proaches can be used for the other cases as well. The remainder of the chap-
ter concentrates on exploiting detailed structures of the weak and strong
interactions. In addition, it deals with convergence of the probability dis-
tribution with merely measurable generators.
We continue our investigation of asymptotic properties of the Markov

chain αε(·) generated by Qε(·), with

Qε(t) =
1

ε
Q̃(t) + Q̂(t), for t ≥ 0, (5.47)

where Q̃(t) = diag(Q̃1(t), . . . , Q̃l(t)) is a block-diagonal matrix such that

Q̂(t) and Q̃k(t), for k = 1, . . . , l, are themselves generators. The state space
of αε(·) is given by

M =
{
s11, . . . , s1m1 , . . . , sl1, . . . , slml

}
.

For each k = 1, . . . , l, let Mk = {sk1, . . . , skmk
}, representing the group of

states corresponding to Q̃k(t).
The results in Section 5.3.1 reveal the structures of the Markov chains

with weak and strong interactions based on the following observations. In-
tuitively, for small ε, the Markov chain αε(·) jumps more frequently within
the states in Mk and less frequently from Mk to Mj for j �= k. Therefore,
the states in Mk can be aggregated and represented by a single state k
(one may view the state k as a super state). That is, one can approximate
αε(·) by an aggregated process, say, αε(·). Furthermore, by examining the
tightness and finite-dimensional distribution of αε(·), it will be shown that
αε(·) converges weakly to a Markov chain α(·) generated by

Q(t) = diag(ν1(t), . . . , νl(t))Q̂(t)diag(1lm1 , . . . , 1lml
). (5.48)
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Section 5.3.2 continues the investigation along the line of estimating the
error bounds of the approximation. Our interest lies in finding how closely
one can approximate an unscaled sequence of occupation measures. The
study is through the examination of appropriate exponential-type bounds.
To take a suitable scaled sequence, one first centers the sequence around
the “mean,” and then compares the actual sequence of occupation mea-
sures with this “mean.” In contrast to the results of Section 5.2, in lieu
of taking the difference of the occupation measure with that of a deter-
ministic function, it is compared with a random process. One of the key
points here is the utilization of solutions of linear time-varying stochastic
differential equations, in which the stochastic integration is with respect to
a square-integrable martingale.
In comparison with the central limit theorem obtained in Section 5.2, it

is interesting to know whether these results still hold under the structure
of weak and strong interactions. The answer to this question is in Section
5.3.3, which also contains further study on related scaled sequences of oc-
cupation measures. The approach is quite different from that of Section
5.2. We use the martingale formulation and apply the techniques of per-
turbed test functions. It is interesting to note that the limit process is a
switching diffusion process, which does not have independent increments.
When the generator is weakly irreducible as in Section 5.2, the motion of
jumping around the grouped states disappears and the diffusion becomes
the dominant force.
We have considered only Markov chains with smooth generators up to

now. However, there are cases in certain applications in which the gener-
ators may be merely measurable. Section 5.4 takes care of the scenario in
which the Markov chains are governed by generators that are only mea-
surable. Formulation via weak derivatives is also discussed briefly. Finally
the chapter is concluded with a few more remarks. Among other things,
additional references are given.

5.3.1 Aggregation of Markov Chains

This section deals with an aggregation of αε(·). The following assumptions
will be needed:

(A5.5) For each k = 1, . . . , l and t ∈ [0, T ], Q̃k(t) is weakly irreducible.

(A5.6) Q̃(·) is differentiable on [0, T ] and its derivative is Lipschitz.

Moreover, Q̂(·) is also Lipschitz.

The assumptions above guarantee the existence of an asymptotic ex-
pansion up to zeroth order. To prepare for the subsequent study, we first
provide the following error estimate. Since only the zeroth-order expan-
sion is needed here, the estimate is confined to such an approximation.
Higher-order terms can be obtained in a similar way.
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Lemma 5.24. Assume (A5.5) and (A5.6). Let P ε(t, t0) denote the transi-
tion probability of αε(·). Then for some κ0 > 0,

P ε(t, t0) = P0(t, t0) +O

(

ε+ exp

(

−κ0(t− t0)

ε

))

,

where

P0(t, t0) = 1̃lΘ(t, t0)diag(ν
1(t), . . . , νl(t))

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1lm1ν
1(t)ϑ11(t, t0), . . . , 1lm1ν

l(t)ϑ1l(t, t0)

... · · · ...

1lml
ν1(t)ϑl1(t, t0), . . . , 1lml

νl(t)ϑll(t, t0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(5.49)

where νk(t) is the quasi-stationary distribution of Q̃k(t), and Θ(t, t0) =
(ϑij(t, t0)) ∈ R

l×l is the solution to the following initial value problem:

dΘ(t, t0)

dt
= Θ(t, t0)Q(t),

Θ(t0, t0) = I.

(5.50)

Proof: The proof is similar to those of Lemma 5.1 and Theorem 4.29, except
that the notation is more involved. �

Define an aggregated process of αε(·) on [0, T ] by

αε(t) = k if αε(t) ∈ Mk. (5.51)

The idea to follow is to treat a related Markov chain having only l states.
The transitions among its states correspond to the jumps from one group
Mk to another Mj, j �= k, in the original Markov chain.

Theorem 5.25. Assume (A5.5) and (A5.6). Then, for any i = 1, . . . , l,
j = 1, . . . ,mi, and bounded and measurable deterministic function βij(·),

E

(∫ T

0

(

I{αε(t)=sij} − νij(t)I{αε(t)=i}

)

βij(t)dt

)2

= O(ε).

Proof: For any i, j and 0 ≤ t ≤ T , let

ηε(t) = E

(∫ t

0

(
I{αε(r)=sij} − νij(r)I{αε(r)=i}

)
βij(r)dr

)2

. (5.52)
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We have suppressed the i, j dependence of ηε(·) for notational simplicity.
Loosely speaking, the argument used below is a Liapunov stability one,
and ηε(·) can be viewed as a Liapunov function. By differentiating ηε(·),
we have

dηε(t)

dt
= 2E

[(∫ t

0

(
I{αε(r)=sij} − νij(r)I{αε(r)=i}

)
βij(r)dr

)

× (I{αε(t)=sij} − νij(t)I{αε(t)=i}
)
βij(t)

]

.

The definition of αε(·) yields that {αε(t) = i} = {αε(t) ∈ Mi}. Thus,

dηε(t)

dt
= 2

∫ t

0

Φε(t, r)βij(t)βij(r)dr,

where Φε(t, r) = Φε
1(t, r) + Φε

2(t, r) with

Φε
1(t, r) = P (αε(t) = sij , α

ε(r) = sij)

−νij(t)P (αε(t) ∈ Mi, α
ε(r) = sij),

(5.53)

and

Φε
2(t, r) = −νij(r)P (αε(t) = sij , α

ε(r) ∈ Mi)

+νij(r)ν
i
j(t)P (α

ε(t) ∈ Mi, α
ε(r) ∈ Mi).

(5.54)

Note that the Markov property of αε(·) implies that for 0 ≤ r ≤ t,

P (αε(t) = sij , α
ε(r) = sij)

= P (αε(t) = sij |αε(r) = sij)P (α
ε(r) = sij).

In view of the asymptotic expansion, we have

P (αε(t) = sij |αε(r) = sij)

= νij(t)ϑii(t, r) +O

(

ε+ exp

(

−κ0(t− r)

ε

))

.

(5.55)
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It follows that

P (αε(t) ∈ Mi|αε(r) = sij)

=

mi∑

k=1

νik(t)ϑii(t, r) +O

(

ε+ exp

(

−κ0(t− r)

ε

))

= ϑii(t, r) +O

(

ε+ exp

(

−κ0(t− r)

ε

))

.

(5.56)

Combining (5.55) and (5.56) leads to

Φε
1(t, r) = O

(

ε+ exp

(

−κ0(t− r)

ε

))

.

Similarly, we can show that

Φε
2(t, r) = O

(

ε+ exp

(

−κ0(t− r)

ε

))

,

by noting that

Φε
2(t, r) = −νij(r)

mi∑

k=1

P (αε(t) = sij , α
ε(r) = sik)

+νij(r)

mi∑

k=1

νij(t)P (α
ε(t) ∈ Mi, α

ε(r) = sik)

and

P (αε(t) = sij |αε(r) = sik)

= νij(t)ϑii(t, r) +O

(

ε+ exp

(

−κ0(t− r)

ε

))

,

for any k = 1, . . . ,mi. Therefore,

dηε(t)

dt
= 2

∫ t

0

O

(

ε+ exp

(

−κ0(t− r)

ε

))

dr = O(ε). (5.57)

This together with ηε(0) = 0 implies that ηε(t) = O(ε). �

Theorem 5.25 indicates that νk(t) together with αε(·) approximates well
the Markov chain αε(·) in an appropriate sense. Nevertheless, in general,
{αε(·)} is not tight. The following example provides a simple illustration.
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Example 5.26. Let αε(·) ∈ {1, 2} denote a Markov chain generated by

1

ε

( −λ λ
μ −μ

)

,

for some λ, μ > 0. Then αε(·) is not tight.
Proof: If αε(·) is tight, then there exists a sequence εk → 0 such that αεk (·)
converges weakly to a stochastic process α(·) ∈ D([0, T ];M). In view of the
Skorohod representation (without changing notation for simplicity), Theo-
rem A.11, we may assume αεk(·) → α(·) w.p.1. It follows from Lemma A.41
that

E

∣
∣
∣
∣

∫ t

0

αεk(s)ds−
∫ t

0

α(s)ds

∣
∣
∣
∣

2

→ 0,

for all t ∈ [0, T ]. Moreover, similarly as in Theorem 5.25, we obtain

E

∣
∣
∣
∣

∫ t

0

αεk(s)ds−
∫ t

0

(ν1 + 2ν2)ds

∣
∣
∣
∣

2

→ 0,

where (ν1, ν2) is the stationary distribution of αε(·) and ν1+2ν2 is the mean
with respect to the stationary distribution. As a consequence, it follows that
α(t) = ν1 + 2ν2 for all t ∈ [0, T ] w.p.1. Let

δ0 = min{|1− (ν1 + 2ν2)|, |2− (ν1 + 2ν2)|} > 0.

Then for t ∈ [0, T ],

|αε(t)− (ν1 + 2ν2)| ≥ δ0.

Hence, under the Skorohod topology

d(αεk (·), ν1 + 2ν2) ≥ δ0.

This contradicts the fact that αεk (·) → α(·) = ν1 + 2ν2 w.p.1. Therefore,
αε(·) cannot be tight. �

Although αε(·) is not tight because it fluctuates in Mk very rapidly for
small ε, its aggregation αε(·) is tight, and converges weakly to α(t), t ≥ 0,
a Markov chain generated by Q(t), t ≥ 0, where Q(t) is defined in (5.48).
The next theorem shows that αε(·) can be further approximated by α(·).
Theorem 5.27. Assume (A5.5) and (A5.6). Then αε(·) converges weakly
to α(·) in D([0, T ];M), as ε→ 0.

Proof: The proof is divided into two steps. First, we show that αε(·) defined
in (5.51) is tight in D([0, T ];M). The definition of αε(·) implies that

{αε(t) = i} = {αε(t) ∈ Mi} = {αε(t) = sij for some j = 1, . . . ,mi}.
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Consider the conditional expectation

E
[
(αε(t+ s)− αε(s))2

∣
∣
∣αε(s) = sij

]

= E
[
(αε(t+ s)− i)2

∣
∣
∣αε(s) = sij

]

=

l∑

k=1

E
[
(αε(t+ s)− i)

2
I{αε(t+s)=k}

∣
∣
∣αε(s) = sij

]

=

l∑

k=1

(k − i)2P (αε(t+ s) = k|αε(s) = sij)

≤ l2
∑

k �=i

P (αε(t+ s) = k|αε(s) = sij).

Since {αε(t+ s) = k} = {αε(t+ s) ∈ Mk}, it follows that

P (αε(t+ s) = k|αε(s) = sij)

=

mk∑

k1=1

P (αε(t+ s) = skk1 |αε(s) = sij)

=

mk∑

k1=1

νkk1
(t+ s)ϑik(t+ s, s) +O

(

ε+ exp

(

−κ0t
ε

))

= ϑik(t+ s, s) +O

(

ε+ exp

(

−κ0t
ε

))

.

Therefore, we obtain

E
[
(αε(t+ s)− αε(s))

2
∣
∣
∣αε(s) = sij

]

≤ l2
∑

k �=i

ϑik(t+ s, s) +O

(

ε+ exp

(

−κ0t
ε

))

.

Note that limt→0 ϑik(t+ s, s) = 0 for i �= k.

lim
t→0

(
lim
ε→0

E
(
(αε(t+ s)− αε(s))2|αε(s) = sij

))
= 0.

Thus, the Markov property of αε(·) implies

lim
t→0

(
lim
ε→0

E
(
(αε(t+ s)− αε(s))2|αε(r) : r ≤ s

))
= 0. (5.58)

Recall that αε(·) is bounded. The tightness of αε(·) follows from Kurtz’
tightness criterion (see Lemma A.17).



180 5. Occupation Measures: Asymptotic Properties and Ramification

To complete the proof, it remains to show that the finite-dimensional
distributions of αε(·) converge to that of α(·). In fact, for any

0 ≤ t1 < t2 < · · · < tn ≤ T and i1, i2, . . . , in ∈ M = {1, . . . , l},
we have

P (αε(tn) = in, . . . , α
ε(t1) = i1)

= P (αε(tn) ∈ Min , . . . , α
ε(t1) ∈ Mi1)

=
∑

j1,...,jn

P (αε(tn) = sinjn , . . . , α
ε(t1) = si1j1)

=
∑

j1,...,jn

P (αε(tn) = sinjn |αε(tn−1) = sin−1jn−1)

× · · · × P (αε(t2) = si2j2 |αε(t1) = si1j1 )P (α
ε(t1) = si1j1).

In view of Lemma 5.24, for each k, we have

P (αε(tk) = sikjk |αε(tk−1) = sik−1jk−1
) → νikjk (tk)ϑik−1ik(tk, tk−1).

Moreover, note that
mik∑

jk=1

νikjk (tk) = 1.

It follows that

∑

j1,...,jn

P (αε(tn) = sinjn |αε(tn−1) = sin−1jn−1)

× · · · × P (αε(t2) = si2j2 |αε(t1) = si1j1)P (α
ε(t1) = si1j1)

→
∑

j1,...,jn

νinjn(tn)ϑin−1in(tn, tn−1) · · · νi2j2 (t2)ϑi1i2(t2, t1)νi1j1 (t1)ϑ̃i1 (t1)

= ϑin−1in(tn, tn−1) · · ·ϑi1i2(t2, t1)ϑ̃i1(t1)

= P (α(tn) = in, . . . , α(t1) = i1),

where
∑

j1,...,jn
=
∑mi1

j1=1 · · ·
∑min

jn=1 and ϑ̃i1 (t1) denotes the initial distribu-
tion (also known as absolute probability in the literature of Markov chains).
Thus, αε(·) → α(·) in distribution. �

This theorem implies that αε(·) converges to a Markov chain, although
αε(·) itself is not a Markov chain in general. If, however, the generatorQε(t)
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has some specific structure, then αε(·) is a Markov chain. The following
example demonstrates this point.

Example 5.28. Let Q̃(t) = (q̃ij(t)) and Q(t) = (qij(t)) denote generators
with the corresponding state spaces {a1, . . . , am0} and {1, . . . , l}, respec-
tively. Consider

Qε(t)=
1

ε

⎛

⎜
⎜
⎝

Q̃(t)
. . .

Q̃(t)

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

q11(t)Im0 · · · q1l(t)Im0

...
...

...

ql1(t)Im0 · · · qll(t)Im0

⎞

⎟
⎟
⎠ , (5.59)

where Im0 is the m0 ×m0 identity matrix. In this case

m1 = m2 = · · · = ml = m0.

Then αε(·) is a Markov chain generated by Q(t). In fact, let

χε(t) =
(
I{αε(t)=s11}, . . . , I{αε(t)=s1m0}, . . . , I{αε(t)=sl1}, . . . , I{αε(t)=slm0

}
)
.

Note that sij = (i, aj) for j = 1, . . . ,m0 and i = 1, . . . , l. In view of
Lemma 2.4, we obtain that

χε(t)−
∫ t

0

χε(s)Qε(s)ds (5.60)

is a martingale. Postmultiplying (multiplying from the right) (5.60) by

1̃l = diag(1lm0 , . . . , 1lm0)

and noting that {αε(t) = i} = {αε(t) ∈ Mi} and

χε(t)1̃l = (I{αε(t)=1}, . . . , I{αε(t)=l}),

we obtain that

(
I{αε(t)=1}, . . . , I{αε(t)=l}

)−
∫ t

0

χε(s)Qε(s)ds1̃l

is still a martingale. In view of the special structure of Qε(t) in (5.59),

Q̃(t)1lm0 = 0, Qε(t)1̃l = Q̂(t)1̃l,

and
χε(s)Q̂(s)1̃l =

(
I{αε(s)=1}, . . . , I{αε(s)=l}

)
Q(s).

Therefore, (5.60) implies that

(
I{αε(t)=1}, . . . , I{αε(t)=l}

)−
∫ t

0

(
I{αε(s)=1}, . . . , I{αε(s)=l}

)
Q(s)ds

is a martingale. This implies, in view of Lemma 2.4, that αε(·) is a Markov
chain generated by Q(t), t ≥ 0.
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5.3.2 Exponential Bounds

For each i = 1, . . . , l, j = 1, . . . ,mi, α ∈ M, and t ≥ 0, let βij(t) be a
bounded, Borel measurable, deterministic function and let

Wij(t, α) =
(
I{α=sij} − νij(t)I{α∈Mi}

)
βij(t). (5.61)

Consider normalized occupation measures

nε(t) =
(
nε
11(t), . . . , n

ε
1m1

(t), . . . , nε
l1(t), . . . , n

ε
lml

(t)
)
,

where

nε
ij(t) =

1√
ε

∫ t

0

Wij(s, α
ε(s))ds.

In this section, we establish the exponential error bound for nε(·), a se-
quence of suitably scaled occupation measures for the singularly perturbed
Markov chains with weak and strong interactions.
In view of Theorem 4.29, there exists κ0 > 0 such that

∣
∣
∣P ε(t, s)− P0(t, s)

∣
∣
∣ = O

(

ε+ exp

(

−κ0(t− s)

ε

))

. (5.62)

Similar to Section 5.3.2, for fixed but otherwise arbitrary T > 0, let

KT = max

{

1, sup
0≤s≤t≤T

( |P ε(t, s)− P0(t, s)|
ε+ exp(−κ0(t− s)/ε)

)}

. (5.63)

We may write (5.62) in terms of KT and O1(·) as follows:
∣
∣
∣P ε(t, s)− P0(t, s)

∣
∣
∣ = KTO1

(

ε+ exp

(

−κ0(t− s)

ε

))

, (5.64)

where |O1(y)|/|y| ≤ 1. The notation of KT and O1(·) above emphasizes
the separation of the dependence of the constant and a “norm 1” function.
Essentially, KT serves as a magnitude of the bound indicating the size of
the bounding region, and the rest is absorbed into the function O1(·).
Theorem 5.29. Assume (A5.5) and (A5.6). Then there exist ε0 > 0 and
K > 0 such that for 0 < ε ≤ ε0, T ≥ 0, and for any bounded, Borel
measurable, and deterministic process βij(·),

E exp

(
θT

(T + 1)3
sup

0≤t≤T
|nε(t)|

)

≤ K, (5.65)

where θT is any constant satisfying

0 ≤ θT ≤ min{1, κ0}
KT |β|T (1 + |Q̂|T )

, (5.66)
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and where | · |T denotes the matrix norm as defined in (5.12), that is,

|β|T = max
i,j

sup
0≤t≤T

|βij(t)|,

similarly for |Q̂|T .
Remark 5.30. This theorem is a natural extension to Theorem 5.4. Owing
to the existence of the weak and strong interactions, slightly stronger con-
ditions on KT and θT are made in (5.63) and (5.66). Also the exponential
constant in (5.65) is changed to (T + 1)3.

Proof of Theorem 5.29: Here the proof is again along the lines of Theo-
rem 5.4. Since Steps 2-5 in the proof are similar to those of Theorem 5.4,
we will only give the proof for Step 1.
Let χε(·) denote the vector of indicators corresponding to αε(·), that is,

χε(t) =
(
I{αε(t)=s11}, . . . , I{αε(t)=s1m1}, . . . , I{αε(t)=sl1}, . . . , I{αε(t)=slml

}
)
.

Then wε(·) defined by

wε(t) = χε(t)− χε(0)−
∫ t

0

χε(s)Qε(s)ds (5.67)

is an R
m-valued martingale. In fact, wε(·) is square integrable on [0, T ]. It

then follows from a well-known result (see Elliott [55] or Kunita and Watan-
abe [134]) that a stochastic integral with respect to wε(t) can be defined.
In view of the defining equation (5.67), the linear stochastic differential
equation

dχε(t) = χε(t)Qε(t)dt+ dwε(t) (5.68)

makes sense. Recall that P ε(t, s) is the principal matrix solution of the
matrix differential equation

dy(t)

dt
= y(t)Qε(t). (5.69)

The solution of this stochastic differential equation is

χε(t) = χε(0)P ε(t, 0) +

∫ t

0

(dwε(s))P ε(t, s)

= χε(0) (P ε(t, 0)− P0(t, 0))

+

∫ t

0

(dwε(s)) (P ε(t, s)− P0(t, s))

+χε(0)P0(t, 0) +

∫ t

0

(dwε(s))P0(t, s).

(5.70)
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Use ϑij(t, s) defined in Lemma 5.24 and write Θ(t, s) = (ϑij(t, s)). Then it
is easy to check that

P0(t, s) = 1̃lΘ(t, s)diag(ν1(t), . . . , νl(t)). (5.71)

Set
χε(t) =

(
ν1(t)I{αε(t)=1}, . . . , νl(t)I{αε(t)=l}

) ∈ R
m

and
χ̃ε(t) =

(
I{αε(t)=1}, . . . , I{αε(t)=l}

) ∈ R
l.

Then it follows that

χ̃ε(t) = χε(t)1̃l and

χε(t) = χ̃ε(t)diag(ν1(t), . . . , νl(t)).

(5.72)

Moreover, postmultiplying both sides of (5.67) by 1̃l yields that

χε(t)1̃l− χε(0)1̃l−
∫ t

0

χε(s)Qε(s)1̃lds = wε(t)1̃l. (5.73)

Here wε(·)1̃l is also a square-integrable martingale. Note that Q̃(s)1̃l = 0
and hence

Qε(s)1̃l = Q̂(s)1̃l and

χε(s)Q̂(s)1̃l = χ̃ε(s)diag(ν1(s), . . . , νl(s))Q̂(s)1̃l = χ̃ε(s)Q(s).

We obtain from (5.73) that

χ̃ε(t)− χ̃ε(0)−
∫ t

0

(
(χε(s)− χε(s))Q̂(s)1̃l + χ̃ε(s)Q(s)

)
ds = wε(t)1̃l.

Since Θ(t, s) is the principal matrix solution to

dΘ(t, s)

dt
= Θ(t, s)Q(t), with Θ(s, s) = I,

similar to (5.68), solving the stochastic differential equation for χ̃ε(·) leads
to the equation:

χ̃ε(t) = χ̃ε(0)Θ(t, 0) +

∫ t

0

(dwε(s)1̃l)Θ(t, s)

+

∫ t

0

(χε(s)− χε(s))Q̂(s)1̃lΘ(t, s)ds.

(5.74)
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Let us now return to the last two terms in (5.70) and use (5.71), (5.72),
and (5.74) to obtain

χε(0)P0(t, 0) +

∫ t

0

(dwε(s))P0(t, s)

=

(

χε(0)1̃lΘ(t, 0) +

∫ t

0

(dwε(s))1̃lΘ(t, s)

)

diag(ν1(t), . . . , νl(t))

=

(

χ̃ε(0)Θ(t, 0) +

∫ t

0

(dwε(s)1̃l)Θ(t, s)

)

diag(ν1(t), . . . , νl(t))

=

(

χ̃ε(t)−
∫ t

0

(χε(s)− χε(s))Q̂(s)1̃lΘ(t, s)ds

)

diag(ν1(t), . . . , νl(t))

= χε(t)−
∫ t

0

(χε(s)− χε(s))Q̂(s)1̃lΘ(t, s)diag(ν1(t), . . . , νl(t))ds

= χε(t)−
∫ t

0

(χε(s)− χε(s))Q̂(s)P0(t, s)ds.

Combining this with (5.70), we have

(χε(t)− χε(t)) +

∫ t

0

(χε(s)− χε(s))Q̂(s)P0(t, s)ds = ηε(t), (5.75)

where

ηε(t) = χε(0) (P ε(t, 0)− P0(t, 0)) +

∫ t

0

(dwε(s)) (P ε(t, s)− P0(t, s)) .

Note that the matrix P ε(t, s) is invertible but P0(t, s) is not. The idea is
to approximate the noninvertible matrix P0(t, s) by the invertible P ε(t, s).
Let

ηε1(t) =

∫ t

0

(χε(s)− χε(s))Q̂(s) (P0(t, s)− P ε(t, s)) ds (5.76)

and

φε(t) = (χε(t)− χε(t))− (ηε(t)− ηε1(t)).

Then φε(0) = 0 and φε(t) satisfies the following equation:

φε(t) +

∫ t

0

φε(s)Q̂(s)P ε(t, s)ds+

∫ t

0

(ηε(s)− ηε1(s))Q̂(s)P ε(t, s)ds = 0.

The properties of the principal matrix solution imply that

P ε(t, s) = P ε(0, s)P ε(t, 0).
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Set

Q̌ε(t) = P ε(t, 0)Q̂(t)P ε(0, t),

ψε(t) = φε(t)P ε(0, t), and

ηε2(t) = (ηε(t)− ηε1(t))Q̂(t)P ε(0, t).

Owing to the properties of the principal matrix solution, for any t ∈ [0, T ],
we have

P ε(0, t)P ε(t, 0) = P ε(t, t) = I, (5.77)

ψε(0) = 0 and ψε(t) satisfies the equation

ψε(t) +

∫ t

0

ψε(s)Q̌ε(s)ds +

∫ t

0

ηε2(s)ds = 0.

The solution to this equation is given by

ψε(t) = −
∫ t

0

ηε2(s)Φ̌
ε(t, s)ds, (5.78)

where Φ̌ε(t, s) is the principal matrix solution to

dΦ̌ε(t, s)

dt
= −Φ̌ε(t, s)Q̌ε(t), with Φ̌ε(s, s) = I.

Postmultiplying both sides of (5.78) by P ε(t, 0) yields

φε(t) = ψε(t)P ε(t, 0)

= −
∫ t

0

ηε2(s)Φ̌
ε(t, s)P ε(t, 0)ds

= −
∫ t

0

(ηε(s)− ηε1(s))Q̂(s)Ψ̌ε(t, s)ds,

where

Ψ̌ε(t, s) = P ε(0, s)Φ̌ε(t, s)P ε(t, 0).

Thus it follows that

χε(t)− χε(t) = ηε(t)− ηε1(t)−
∫ t

0

(ηε(s)− ηε1(s))Q̂(s)Ψ̌ε(t, s)ds. (5.79)
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Again using (5.77), we have

d

dt

(
Φ̌ε(t, 0)P ε(t, 0)

)

=

(
dΦ̌ε(t, 0)

dt

)

P ε(t, 0) + Φ̌ε(t, 0)

(
dP ε(t, 0)

dt

)

= −Φ̌ε(t, 0)Q̌ε(t)P ε(t, 0) + Φ̌ε(t, 0)P ε(t, 0)Qε(t)

= −Φ̌ε(t, 0)P ε(t, 0)Q̂(t)P ε(0, t)P ε(t, 0) + Φ̌ε(t, 0)P ε(t, 0)Qε(t)

= −Φ̌ε(t, 0)P ε(t, 0)Q̂(t) + Φ̌ε(t, 0)P ε(t, 0)Qε(t)

= Φ̌ε(t, 0)P ε(t, 0)
(
−Q̂(t) +Qε(t)

)

= Φ̌ε(t, 0)P ε(t, 0)

(
1

ε
Q̃(t)

)

.

This implies that Ψ̌ε(t, s) is the principal matrix solution to the differential
equation

dΨ̌ε(t, s)

dt
= Ψ̌ε(t, s)

(
1

ε
Q̃(t)

)

, with Ψ̌ε(s, s) = I. (5.80)

Therefore, all entries of Ψ̌ε(t, s) are bounded below from 0 and bounded
above by 1, and these bounds are uniform in 0 ≤ s ≤ t ≤ T . Thus,
|Ψ̌ε(t, s)|T ≤ 1.
Multiplying both sides of (5.79) by the m×m matrix

β(t) := diag(β11(t), . . . , β1m1(t), . . . , βl1(t), . . . , βlml
(t))

from the right and integrating over the interval [0, ς ], for each ς ∈ [0, T ],
we have

∫ ς

0

(χε(t)− χε(t))β(t)dt =

∫ ς

0

ηε(t)β(t)dt −
∫ ς

0

ηε1(t)β(t)dt

−
∫ ς

0

∫ t

0

(ηε(s)− ηε1(s))Q̂(s)Ψ̌ε(t, s)dsβ(t)dt.

By changing the order of integration, we write the last term in the above
expression as

∫ ς

0

∫ t

0

(ηε(s)− ηε1(s))Q̂(s)Ψ̌ε(t, s)dsβ(t)dt

=

∫ ς

0

(ηε(s)− ηε1(s))

(∫ ς

s

Q̂(s)Ψ̌ε(t, s)β(t)dt

)

ds.
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Therefore, it follows that

∫ ς

0

(χε(t)− χε(t))β(t)dt =

∫ ς

0

ηε(t)β̃(t)dt−
∫ ς

0

ηε1(t)β̃(t)dt, (5.81)

where

β̃(t) = β(t) +

∫ ς

t

Q̂(t)Ψ̌ε(r, t)β(r)dr.

Moreover, in view of the fact that |Ψ̌ε(t, s)|T ≤ 1, it is easy to see that

|β̃|T ≤ (1 + T )|β|T (1 + |Q̂|T ). (5.82)

Note that nε(·) can be written in terms of χε(·) and χε(·) as

nε(ς) =
1√
ε

∫ ς

0

(χε(t)− χε(t))β(t)dt.

By virtue of (5.81), it follows that

|nε(ς)| ≤ 1√
ε

∣
∣
∣
∣

∫ ς

0

ηε(t)β̃(t)dt

∣
∣
∣
∣+

1√
ε

∣
∣
∣
∣

∫ ς

0

ηε1(t)β̃(t)dt

∣
∣
∣
∣ .

Note that in view of the definition of ηε1(·) in (5.76),

|ηε1(t)| =
∫ t

0

O

(

ε+ exp

(

−κ0(t− s)

ε

))

ds = O(ε(t + 1)).

Thus, in view of (5.82),

sup
0≤ς≤T

∣
∣
∣
∣

∫ ς

0

ηε1(t)β̃(t)dt

∣
∣
∣
∣ = |β̃|T sup

0≤ς≤T

∫ ς

0

O(ε(t+ 1))dt

= |β̃|T sup
0≤ς≤T

O(ε(ς2 + ς))

= |β̃|T (T 2 + T )O(ε)

≤ (1 + T )3|β|T (1 + |Q̂|T )O(ε).

(5.83)

Thus, in view of (5.63) and (5.66), for some ε0 > 0, and all 0 < ε ≤ ε0,

exp

(
θT

(T + 1)3
sup

0≤ς≤T

∣
∣
∣
∣

∫ ς

0

ηε1(t)β̃(t)√
ε

dt

∣
∣
∣
∣

)

≤ exp

(
O(

√
ε)min{1, κ0}
KT

)

≤ exp
(
O(

√
ε0)min{1, κ0}

)
≤ K.

(5.84)
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Moreover, using (5.64), as in the proof of Theorem 5.4, we obtain that

E exp

(
θT

(T + 1)
3
2

sup
0≤ς≤T

∣
∣
∣
∣

∫ ς

0

(
ηε(t)β̃(t)√

ε

)

dt

∣
∣
∣
∣

)

≤ K, (5.85)

for

0 ≤ θT ≤ min{1, κ0}
KT |β|T (1 + |Q̂|T )

.

Finally, combine (5.81), (5.83), and (5.85) to obtain

E exp

(
θT

(T + 1)3
sup

0≤t≤T
|nε(t)|

)

≤ K.

This completes the proof. �

Remark 5.31. It is easily seen that the error bound so obtained has a
form similar to that of the martingale inequality. If nε(·) were a martin-
gale, the inequality would be obtained much more easily since exp(·) is a
convex function. As in Section 5.2, the error bound is still a measure of
“goodness” of approximation. However, one cannot compare the unscaled
occupation measures with a deterministic function. A sensible alternative
is to use an approximation by the aggregated process that is no longer
deterministic. The exponential bounds obtained tell us exactly how closely
one can carry out the approximation. It should be particularly useful for
many applications in stochastic control problems with Markovian jump
disturbances under discounted cost criteria.

The next two corollaries show that the error bound can be improved
under additional conditions by having smaller exponential constants, e.g.,
(T + 1)3/2 or (T + 1)5/2 instead of (T + 1)3.

Corollary 5.32. Assume that the conditions of Theorem 5.29 hold. Let
Q̃(t) = (q̃ij(t)) and Q(t) = (qij(t)) denote generators with the correspond-
ing state spaces {a1, . . . , am0} and {1, . . . , l}, respectively. Consider

Qε(t)=
1

ε

⎛

⎜
⎝

Q̃(t)
. . .

Q̃(t)

⎞

⎟
⎠+

⎛

⎜
⎝

q11(t)Im0 · · · q1l(t)Im0

... · · · ...
ql1(t)Im0 · · · qll(t)Im0

⎞

⎟
⎠ ,

where Im0 is the m0 ×m0 identity matrix. Then there exist positive con-
stants ε0 and K such that for 0 < ε ≤ ε0, and T ≥ 0,

E exp

(
θT

(T + 1)
3
2

sup
0≤t≤T

|nε(t)|
)

≤ K.
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Proof: Under the special structure of the generator Qε, it is easy to see
that

Q̂(s)1̃l = 1̃lQ(s),

where 1̃l now takes the form

1̃l = diag(1lm0 , . . . , 1lm0).

Note that under current conditions on the fast-changing part of the gener-
ator Q̃(t),

ν1(t) = ν2(t) = · · · = νl(t) and diag(ν1(t), . . . , νl(t))1̃l = Il,

where Il denotes the l-dimensional identity matrix. This together with
(5.72) implies that

(χε(s)− χε(s))Q̂(s)1̃l = 0.

It follows from (5.71) that

∫ t

0

(χε(s)− χε(s))Q̂(s)P0(t, s)ds = 0.

Then (5.75) becomes

χε(t)− χε(t) = ηε(t).

The rest of the proof follows exactly that of Theorem 5.29. �

Corollary 5.33. Assume the conditions of Theorem 5.29. Suppose Q̃(t) =

Q̃ and Q̂(t) = Q̂ for some constant matrices Q̃ and Q̂. Then there exist
positive constants ε0 and K such that for 0 < ε ≤ ε0, and T ≥ 0,

E exp

(
θT

(T + 1)
5
2

sup
0≤t≤T

|nε(t)|
)

≤ K.

Remark 5.34. Note that in view of Corollary 4.31, one can show under
the condition Q̃(t) = Q̃ and Q̂(t) = Q̂ that there exists a constant K such
that

P ε(t, s)− P0(t, s) = K(T + 1)O1

(

ε+ exp

(

−κ0(t− s)

ε

))

.

In this case, θT can be taken as

0 ≤ θT ≤ min{1, κ0}
K(T + 1)|β|T (1 + |Q̂|T )

.

That is, compared with the general result, the constant KT can be further
specified as KT = K(T + 1).
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Proof of Corollary 5.33: Note that when the generators are time indepen-
dent, the quasi-stationary distribution νi(t) is also independent of time and
is denoted by νi. In this case, the argument from (5.75) to (5.80) can be
replaced by the following. Let

Q̌0 = Q̂1̃ldiag(ν1, . . . , νl).

Then it can be shown that

Q̂1̃l
(
Q
)k

diag(ν1, . . . , νl) = (Q̌0)
k+1, for k ≥ 0.

This implies that

Q̂P0(t, s) = Q̂1̃l exp
(
Q(t− s)

)
diag(ν1, . . . , νl)

= Q̌0 exp(Q̌0(t− s)).

Let φε(t) = (χε(t)− χε(t))− ηε(t). Then φε(·) satisfies the equation

φε(t) +

∫ t

0

(φε(s) + ηε(s))Q̌0 exp(Q̌0(t− s))ds = 0.

Solving for φε(·), we obtain

φε(t) = −
∫ t

0

ηε(s)Q̌0ds.

Writing χε(t)− χε(t) in terms of φε(t) and ηε(t) yields,

χε(t)− χε(t) = ηε(t)−
∫ t

0

ηε(s)Q̌0ds.

The rest of the proof follows that of Theorem 5.29. �

Similar to Section 5.2, we derive estimates that are analogous to Corol-
lary 5.7 and Corollary 5.8. The details are omitted, however.

5.3.3 Asymptotic Distributions

In Section 5.2, we obtained a central limit theorem for a class of Markov
chains generated by Qε(t) = Q(t)/ε+ Q̂(t) with a weakly irreducible Q(t).
In this case for sufficiently small ε > 0, Qε(t) is weakly irreducible. What,
if anything, can be said about the weak and strong interaction models,
when Q̃(t) is not weakly irreducible? Is there a central limit theorem for
the corresponding occupation measure when one has a singularly perturbed
Markov chain with weak and strong interactions? This section deals with
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such an issue; our interest lies in the asymptotic distribution as ε → 0.
It is shown that the asymptotic distribution of the corresponding occupa-
tion measure can be obtained. However, the limit distribution is no longer
Gaussian, but a Gaussian mixture, and the proof is quite different from
that of the irreducible case in Section 5.2.
For each i = 1, . . . , l, j = 1, . . . ,mi, α ∈ M, and t ≥ 0, let βij(t) be a

bounded Borel measurable deterministic function. Use Wij(t, α) defined in
(5.61) and the normalized occupation measure

nε(t) =
(
nε
11(t), . . . , n

ε
1m1

(t), . . . , nε
l1(t), . . . , n

ε
lml

(t)
)
,

with

nε
ij(t) =

1√
ε

∫ t

0

Wij(s, α
ε(s))ds.

We will show in this section that nε(·) converges weakly to a switching
diffusion modulated by α(·). The procedure is as follows:

(a) Show that (nε(·), αε(·)) is tight;

(b) verify that the limit of a subsequence of (nε(·), αε(·)) is a solution to
a martingale problem that has a unique solution;

(c) characterize the solution of the associated martingale problem;

(d) construct a switching diffusion that is also a solution to the martingale
problem and therefore the limit of (nε(·), αε(·)).

To accomplish our goal, these steps are realized by proving a series of
lemmas. Recall that Fε

t = σ{αε(s) : 0 ≤ s ≤ t} denotes the filtration
generated by αε(·). The lemma below is on the order estimates of the
conditional moments, and is useful for getting the tightness result in what
follows.

Lemma 5.35. Assume (A5.5) and (A5.6). Then for all 0 ≤ s ≤ t ≤ T and
ε small enough, the following hold:

(a) sup
s≤t≤T

E[nε(t)− nε(s)|Fε
s ] = O(

√
ε);

(b) sup
ε
E
[ |nε(t)− nε(s)|2|Fε

s

]
= O(t− s).

Proof: First, note that for any fixed i, j,

E[(nε
ij(t)− nε

ij(s))|Fε
s ] =

1√
ε

∫ t

s

E[Wij(r, α
ε(r))|Fε

s ]dr.
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Moreover, in view of the definition of Wij(t, α) and the Markov property,
we have, for 0 ≤ s ≤ r,

E[Wij(r, α
ε(r))|Fε

s ]

= E
[(
I{αε(r)=sij} − νij(r)I{αε(r)∈Mi}

) |Fε
s

]
βij(r)

=
(
P (αε(r) = sij |Fε

s )− νij(r)P (α
ε(r) ∈ Mi|Fε

s )
)
βij(r)

=
(
P (αε(r) = sij |αε(s)) − νij(r)P (α

ε(r) ∈ Mi|αε(s))
)
βij(r).

In view of Lemma 5.24, in particular, similar to (5.55) and (5.56), for all
i0 = 1, . . . , l and j0 = 1, . . . ,mi0 ,

P (αε(r) = sij |αε(s) = si0j0)− νij(r)P (α
ε(r) ∈ Mi|αε(s) = si0j0)

= O

(

ε+ exp

(

−κ0(r − s)

ε

))

.

Thus owing to Lemma A.42, we have

(
P (αε(r) = sij |αε(s))− νij(r)P (α

ε(r) ∈ Mi|αε(s))
)
βij(r)

=

l∑

i0=1

mi0∑

j0=1

I{αε(s)=si0j0}

(

P (αε(r) = sij |αε(s) = si0j0)

−νij(r)P (αε(r) ∈ Mi|αε(s) = si0j0)

)

βij(r)

= O

(

ε+ exp

(

−κ0(r − s)

ε

))

.

Note also that

1√
ε

∫ t

s

O

(

ε+ exp

(

−κ0(r − s)

ε

))

dr = O(
√
ε).

This implies (a).
To verify (b), fix and suppress i, j and define

ηε(t) = E

[(∫ t

s

Wij(r, α
ε(r))dr

)2 ∣∣
∣
∣Fε

s

]

.

Then by the definition of nij(·),

E

[
(
nε
ij(t)− nε

ij(s)
)2
∣
∣
∣
∣Fε

s

]

=
ηε(t)

ε
. (5.86)
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In accordance with the definition of αε(·), αε(t) = i iff αε(t) ∈ Mi. In what
follows, we use αε(t) ∈ Mi and α

ε(t) = i interchangeably. Set

Ψε
1(t, r) = I{αε(r)=sij}I{αε(t)=sij} − νij(t)I{αε(r)=sij}I{αε(t)=i},

Ψε
2(t, r) = −νij(r)I{αε(r)=i}I{αε(t)=sij} + νij(r)ν

i
j(t)I{αε(r)=i}I{αε(t)=i}.

Then as in the proof of Theorem 5.25,

dηε(t)

dt
= 2

∫ t

s

E [Ψε
1(t, r) + Ψε

2(t, r)|Fε
s ]βij(r)βij(t)dr.

Using Lemma 5.24, we obtain

E[Ψε
1(t, r)|αε(s) = si0j0 ] = O

(

ε+ exp

(

−κ0(t− r)

ε

))

,

E[Ψε
2(t, r)|αε(s) = si0j0 ] = O

(

ε+ exp

(

−κ0(t− r)

ε

))

,

for all i0 = 1, . . . , l and j0 = 1, . . . ,mi0 . Then from Lemma A.42, we obtain

E[Ψε
1(t, r)|Fε

s ] = O

(

ε+ exp

(

−κ0(t− r)

ε

))

,

E[Ψε
2(t, r)|Fε

s ] = O

(

ε+ exp

(

−κ0(t− r)

ε

))

.

As a consequence, we have

dηε(t)

dt
= O(ε).

Integrating both sides over [s, t] and recalling ηε(s) = 0 yields

ηε(t)

ε
= O(t− s).

This completes the proof of the lemma. �

The next lemma is concerned with the tightness of {(nε(·), αε(·))}.

Lemma 5.36. Assume (A5.5) and (A5.6). Then {(nε(·), αε(·))} is tight in
D([0, T ];Rm ×M).
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Proof: The proof uses Lemma A.17. We first verify that the condition given
in Remark A.18 holds. To this end, note that 0 ≤ αε(t) ≤ l for all t ∈ [0, T ].
Moreover, by virtue of Theorem 5.25, for each δ > 0 and each rational t ≥ 0,

inf
ε
P (|nε(t)| ≤ Kt,δ) = inf

ε
[1− P (|nε(t)| ≥ Kt,δ)]

≥ inf
ε

(

1− E|nε(t)|2
K2

t,δ

)

≥ 1− Kt

K2
t,δ

,

where the last inequality is due to Theorem 5.25. Thus if we choose Kt,δ >√
KT/δ, (A.6) will follow.
It follows from Lemma 5.35 and (5.58) that for all t ∈ [0, T ],

lim
Δ→0

{

lim sup
ε→0

(

sup
0≤s≤Δ

E
{
E
[ |nε

ij(t+ s)− nε
ij(t)|2|Fε

t

]}
)}

= 0,

lim
Δ→0

{

lim sup
ε→0

(

sup
0≤s≤Δ

E
{
E
[ |αε(t+ s)− αε(t)|2|Fε

t

]}
)}

= 0.

(5.87)

Using (5.86) and (5.87), Theorem A.17 yields the desired result. �

The tightness of (nε(·), αε(·)) and Prohorov’s theorem allow one to ex-
tract convergent subsequences. We next show that the limit of such a sub-
sequence is uniquely determined in distribution. An equivalent statement
is that the associated martingale problem has a unique solution. The fol-
lowing lemma is a generalization of Theorem 5.25 and is needed for proving
such a uniqueness property.

Lemma 5.37. Let ξ(t, x) be a real-valued function that is Lipschitz in (t, x)
∈ R

m+1. Then

sup
0≤ς≤T

E

∣
∣
∣
∣

∫ ς

0

Wij(s, α
ε(s))ξ(s, nε(s))ds

∣
∣
∣
∣

2

→ 0,

where Wij(t, α) = (I{α=sij} − νij(t)I{α∈Mi})βij(t) as defined in (5.61).

Remark 5.38. This lemma indicates that the weighted occupation mea-
sure (with weighting function ξ(t, αε(t))) defined above goes to zero in
mean square uniformly in t ∈ [0, ς ]. If ξ(·) were a bounded and measur-
able deterministic function not depending on αε(·) or nε(·), this assertion
would follow from Theorem 5.25 easily. In the current situation, it is a
function of nε(·) and therefore a function of αε(·), which results in much
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of the difficulty. Intuitively, if we can “separate” the functions Wij(·) and
ξ(·) in the sense treating ξ(·) as deterministic, then Theorem 5.25 can be
applied to obtain the desired limit. To do so, subdivide the interval [0, ς ]
into small intervals so that on each of the small intervals, the two func-
tions can be separated. To be more specific, on each partitioned interval,
use a piecewise-constant function to approximate ξ(·), and show that the
error goes to zero. In this process, the Lipschitz condition of ξ(t, x) plays
a crucial role.

Proof of Lemma 5.37: For 0 < δ < 1 and 0 < ς ≤ T , let N = [ς/ε1−δ]. Use
a partition of [0, ς ] given by

[t0, t1] ∪ [t1, t2) ∪ · · · ∪ [tN , tN+1]

of [0, ς ], where tk = ε1−δk for k = 0, 1, . . . , N and tN+1 = ς . Consider a
piecewise-constant function

ξ̃(t) =

⎧
⎪⎨

⎪⎩

ξ(0, nε(0)), if 0 ≤ t < t2,

ξ(tk−1, n
ε(tk−1)), if tk ≤ t < tk+1, k = 2, . . .N,

ξ(tN−1, n
ε(tN−1)), if t = tN+1.

Let W ε
ij(t) =Wij(t, α

ε(t)). Then

E

∣
∣
∣
∣

∫ ς

0

W ε
ij(t)ξ(t, n

ε(t))dt

∣
∣
∣
∣

2

≤ 2E

∣
∣
∣
∣

∫ ς

0

W ε
ij(t)|ξ(t, nε(t)) − ξ̃(t)|dt

∣
∣
∣
∣

2

+ 2E

∣
∣
∣
∣

∫ ς

0

W ε
ij(t)ξ̃(t)dt

∣
∣
∣
∣

2

.

(5.88)

We now estimate the first term on the second line above. In view of the
Cauchy inequality and the boundedness ofW ε

ij(t), it follows, for 0 ≤ ς ≤ T ,
that

E

∣
∣
∣
∣

∫ ς

0

W ε
ij(t)|ξ(t, nε(t)) − ξ̃(t)|dt

∣
∣
∣
∣

2

≤ TE

∫ ς

0

(ξ(t, nε(t))− ξ̃(t))2dt

= T

∫ ς

0

E(ξ(t, nε(t))− ξ̃(t))2dt.

Note that Theorem 5.25 implies

E|nε(t)|2 ≤ K,

for a positive constant K and for all t ∈ [0, T ]. Therefore, in view of the
Lipschitz condition of ξ(·), we have

E|ξ(t, nε(t))| ≤ K(1 + E|nε(t)|) ≤ K(1 + (E|nε(t)|2) 1
2 ) = O(1).
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Noting that t2 = 2ε1−δ = O(ε1−δ), it follows that

∫ ς

0

E(ξ(t, nε(t)) − ξ̃(t))2dt

=

N∑

k=2

∫ tk+1

tk

E(ξ(t, nε(t))− ξ̃(t))2dt+O(ε1−δ).

Using the definition of ξ̃(t), the Lipschitz property of ξ(t, x) in (t, x), the
choice of the partition of [0, ς ], and Lemma 5.35, we have

N∑

k=2

∫ tk+1

tk

E(ξ(t, nε(t))− ξ̃(t))2dt

=

N∑

k=2

∫ tk+1

tk

E(ξ(t, nε(t))− ξ(tk−1, n
ε(tk−1)))

2dt

≤ 2

N∑

k=2

∫ tk+1

tk

K
(
(t− tk−1)

2 + E|nε(t)− nε(tk−1))|2
)
dt

≤ 2

N∑

k=2

∫ tk+1

tk

K
(
(t− tk−1)

2 +O(t− tk−1)
)
dt

= 2

N∑

k=2

∫ tk+1

tk

O(ε1−δ)dt = O(ε1−δ).

Let us estimate the second term on the second line in (5.88). Set

η̃ε(t) = E

(∫ t

0

W ε
ij(s)ξ̃(s)ds

)2

.

Then the derivative of η̃ε(t) is given by

dη̃ε(t)

dt
= 2E

∫ t

0

W ε
ij(s)ξ̃(s)W

ε
ij(t)ξ̃(t)ds

= 2

∫ t

0

E
(
W ε

ij(s)ξ̃(s)W
ε
ij(t)ξ̃(t)

)
ds.

For 0 ≤ t ≤ t2, in view of the Lipschitz property and Theorem 5.25, we
obtain

∫ t2

0

E
(
W ε

ij(s)ξ̃(s)W
ε
ij(t)ξ̃(t)

)
ds ≤

∫ t2

0

E
(
|ξ̃(s)| · |ξ̃(t)|

)
ds

≤
∫ t2

0

(E|ξ̃(s)|2) 1
2 (E|ξ̃(t)|2) 1

2 ds

= O(t2) = O(ε1−δ).
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If tk ≤ t < tk+1, for k = 2, . . . , N , then using the same argument gives us

∫ t

k−1

E
(
W ε

ij(s)ξ̃(s)W
ε
ij(t)ξ̃(t)

)
ds

= O(t− tk−1) = O(tk+1 − tk−1) = O(ε1−δ)

and
dη̃ε(t)

dt
= 2

∫ tk−1

0

E
(
W ε

ij(s)ξ̃(s)W
ε
ij(t)ξ̃(t)

)
ds+O(ε1−δ).

Recall that Fε
t = σ{αε(s) : 0 ≤ s ≤ t}. For s ≤ tk−1 < tk ≤ t < tk+1,

E
(
W ε

ij(s)ξ̃(s)W
ε
ij(t)ξ̃(t)

)

= E
(
W ε

ij(s)ξ̃(s)E[W ε
ij(t)ξ̃(t)|Ftk−1

]
)
.

(5.89)

Moreover, in view of the definition of ξ̃(·) and the proof of Lemma 5.35, we
have for some κ0 > 0,

E[W ε
ij(t)ξ̃(t)|Ftk−1

] = ξ̃(t)E[W ε
ij(t)|Ftk−1

]

= ξ̃(t)O

(

ε+ exp

(

−κ0(t− tk−1)

ε

))

= ξ̃(t)O

(

ε+ exp

(

−κ0(tk − tk−1)

ε

))

= ξ̃(t)O

(

ε+ exp

(

−κ0
εδ

))

= ξ̃(t)O(ε).

Combine this with (5.89) to obtain

E
(
W ε

ij(s)ξ̃(s)W
ε
ij(t)ξ̃(t)

)
= O(ε)E|ξ̃(s)ξ̃(t)| = O(ε).

Therefore,
dη̃ε(t)

dt
= O(ε1−δ)

uniformly on [0, T ], which implies, together with η̃ε(0) = 0, that

sup
0≤ς≤T

η̃ε(ς) = sup
0≤ς≤T

∫ ς

0

(
dη̃ε(t)

dt

)

dt = O(ε1−δ).

This completes the proof. �

To characterize the limit of (nε(·), αε(·)), consider the martingale prob-
lem associated with (nε(·), αε(·)). Note that

dnε(t)

dt
=

1√
ε
W (t, αε(t)) and nε(0) = 0,
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where

W (t, α) = (W11(t, α), . . . ,W1m1(t, α), . . . ,Wl1(t, α), . . . ,Wlml
(t, α)) .

Let Gε(t) be the operator

Gε(t)f(t, x, α) =
∂

∂t
f(t, x, α) +

1√
ε

〈
W (t, α),∇xf(t, x, α)

〉

+Qε(t)f(t, x, ·)(α),

for all f(·, ·, α) ∈ C1,1, where ∇x denotes the gradient with respect to x and
〈·, ·〉 denotes the usual inner product in Euclidean space. It is well known
that (see Davis [41, Chapter 2])

f(t, nε(t), αε(t))−
∫ t

0

Gε(s)f(s, nε(s), αε(s))ds (5.90)

is a martingale.
We use the perturbed test function method (see Ethier and Kurtz [59]

and Kushner [139]) to study the limit as ε→ 0. To begin with, we define a
functional space on R

m ×M

C2
L =

{
f0(x, i) : with bounded derivatives up to the

second order such that the second derivative is Lipschitz
}
.

(5.91)
For any real-valued function f0(·, i) ∈ C2

L, define

f(x, α) =

l∑

i=1

f0(x, i)I{α∈Mi} =

⎧
⎪⎨

⎪⎩

f0(x, 1), if α ∈ M1,
...

...
f0(x, l), if α ∈ Ml,

and consider the function

f(t, x, α) = f(x, α) +
√
εh(t, x, α), (5.92)

where h(t, x, α) is to be specified later. The main idea is that by appro-
priate choice of h(·), the perturbation is small and results in the desired
cancelation in the calculation.
In view of the block-diagonal structure of Q̃(t) and the definition of

f(x, α), it is easy to see that

Q̃(t)f(x, ·)(α) = 0.
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Applying the operator Gε(t) to the function f(·) defined in (5.92) yields
that

f(nε(t), αε(t)) +
√
εh(t, nε(t), αε(t))

−
∫ t

0

{
1√
ε

〈
W (s, αε(s)),∇xf(n

ε(s), αε(s)) +
√
ε∇xh(s, n

ε(s), αε(s))
〉

+
√
ε
∂

∂s
h(s, nε(s), αε(s)) +

1√
ε
Q̃(s)h(s, nε(s), ·)(αε(s))

+Q̂(s)(f(nε(s), ·) +√
εh(s, nε(s), ·)(αε(s))

}

ds

defines a martingale.
The basic premise of the perturbed test function method is to choose the

function h(·) that cancels the “bad” terms of order 1/
√
ε:

Q̃(s)h(s, x, ·)(α) = −〈W (s, α),∇xf(x, α)
〉
. (5.93)

Note that as mentioned previously, Q̃(t) has rank m− l. Thus the dimen-

sion of the null space is l; that is, N(Q̃(t)) = l. A crucial observation is that
in view of the Fredholm alternative (see Lemma A.37 and Corollary A.38),
a solution of (5.93) exists iff the matrix (〈W (s, sij),∇xf(x, sij)〉) is or-

thogonal to 1̃lm1 , . . . , 1̃lml
, the span of N(Q̃(t)) (see Remark 4.23 for the

notation). Moreover, since f0(·, i) is C2
L, h(·) can be chosen to satisfy the

following properties assuming βij(·) to be Lipschitz on [0, T ]:

(1) h(t, x, α) is uniformly Lipschitz in t;

(2) |h(t, x, α)| and |∇xh(t, x, α)| are bounded;

(3) ∇xh(t, x, α) is Lipschitz in (t, x).

Such an h(·) leads to

f(nε(t), αε(t)) +
√
εh(t, nε(t), αε(t))

−
∫ t

0

{
〈
W (s, αε(s)),∇xh(s, n

ε(s), αε(s))
〉

+
√
ε

(
∂

∂s
h(s, nε(s), αε(s))

)

+ Q̂(s)f (nε(s), ·)(αε(s))

+
√
εQ̂(s)h(s, nε(s), ·)(αε(s))

}

ds

(5.94)
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being a martingale. For each s, x, α, define

g(s, x, α) =
〈
W (s, α),∇xh(s, x, α)

〉
. (5.95)

With f0 ∈ C2
L, it is easy to see that g(s, x, α) is Lipschitz in (s, x). This

function will be used in defining the operator for the limit problem later.

Remark 5.39. Note that the choice of h(·) in (5.93) is not unique. If h1(·)
and h2(·) are both solutions to (5.93), then the irreducibility of Q̃i(s) im-
plies that, for each i = 1, . . . , l,

⎛

⎜
⎝

h1(s, x, si1)
...

h1(s, x, simi)

⎞

⎟
⎠−

⎛

⎜
⎝

h2(s, x, si1)
...

h2(s, x, simi )

⎞

⎟
⎠ = h0(s, x, i)1lmi

for some scalar functions h0(s, x, i). Although the choice of h is not unique,
the resulting function g(s, x, α) is well defined. As in Remark 4.23, the
consistency condition or solvability condition due to Fredholm alternative
is in force. Therefore, if h1 and h2 are both solutions to (5.93), then

〈
W (s, α),∇xh1(s, x, α)

〉
=
〈
W (s, α),∇xh2(s, x, α)

〉
,

for α ∈ Mi and i = 1, . . . , l.

Using g(s, x, α) defined above, we obtain

∫ t

0

〈
W (s, αε(s)),∇xh(s, n

ε(s), αε(s))
〉
ds

=

∫ t

0

g(s, nε(s), αε(s))ds

=

∫ t

0

l∑

i=1

mi∑

j=1

I{αε(s)=sij}g(s, n
ε(s), sij)ds

=

∫ t

0

l∑

i=1

mi∑

j=1

(I{αε(s)=sij} − νij(s)I{αε(s)=i})g(s, nε(s), sij)ds

+

∫ t

0

l∑

i=1

mi∑

j=1

I{αε(s)=i}νij(s)g(s, n
ε(s), sij)ds.

In view of Lemma 5.37, the term in the fourth line above goes to zero in
mean square uniformly in t ∈ [0, T ]. Let

g(s, x, i) =

mi∑

j=1

νij(s)g(s, x, sij).
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Then it follows that

∫ t

0

l∑

i=1

mi∑

j=1

I{αε(s)=i}νij(s)g(s, n
ε(s), sij)ds

=

∫ t

0

l∑

i=1

I{αε(s)=i}g(s, nε(s), i)ds

=

∫ t

0

g(s, nε(s), αε(s))ds.

Therefore, as ε→ 0, we have

E

∣
∣
∣
∣

∫ t

0

〈
W (s, αε(s)),∇xh(s, n

ε(s), αε(s))
〉
ds

−
∫ t

0

g(s, nε(s), αε(s))ds

∣
∣
∣
∣

2

→ 0

(5.96)

uniformly in t ∈ [0, T ].
Furthermore, we have

∫ t

0

Q̂(s)f(nε(s), ·)(αε(s))ds

=

∫ t

0

l∑

i=1

mi∑

j=1

I{αε(s)=sij}Q̂(s)f(nε(s), ·)(sij)ds

=

∫ t

0

l∑

i=1

mi∑

j=1

(I{αε(s)=sij} − νij(s)I{αε(s)=i})Q̂(s)f(nε(s), ·)(sij)ds

+

∫ t

0

l∑

i=1

mi∑

j=1

νij(s)I{αε(s)=i}Q̂(s)f(nε(s), ·)(sij)ds.

Again, Lemma 5.37 implies that the third line above goes to 0 in mean
square uniformly in t ∈ [0, T ]. The last term above equals

∫ t

0

Q(s)f0(nε(s), ·)(αε(s))ds,

where Q(s) = diag(ν1(t), . . . , νl(t))Q̂(s)1̃l. It follows that as ε→ 0,

E

∣
∣
∣
∣

∫ t

0

Q̂(s)f(nε(s), ·)(αε(s))ds

−
∫ t

0

Q(s)f0(nε(s), ·)(αε(s))ds

∣
∣
∣
∣→ 0

(5.97)

uniformly in t ∈ [0, T ].
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We next examine the function g(s, x, i) closely. Using the block-diagonal

structure of Q̃(s), we can write (5.93) in terms of each block Q̃j(s). For
j = 1, . . . , l,

Q̃j(s)

⎛

⎜
⎝

h(s, x, sj1)
...

h(s, x, sjmj )

⎞

⎟
⎠ = −

⎛

⎜
⎝

〈
W (s, sj1),∇xf

0(x, j)
〉

...〈
W (s, sjmj ),∇xf

0(x, j)
〉

⎞

⎟
⎠ . (5.98)

Note that Q̃j(s) is weakly irreducible so rank(Q̃j(s)) = mj − 1. As in
Remark 4.9, equation (5.98) has a solution since it is consistent and the
solvability condition in the sense of Fredholm alternative is satisfied. We can
solve (5.98) using exactly the same technique as in Section 4.2 for obtaining
the ϕi(t), that is, replacing one of the rows of the augmented matrix in
(5.98) by (1, 1, . . . , 1, 0), which represents the equation

∑mj

k=1 h(s, x, sjk) =
0. The coefficient matrix of the resulting equation then has full rank; one
readily obtains a solution. Equivalently, the solution may be written as

⎛

⎜
⎜
⎝

h(s, x, sj1)
...

h(s, x, sjmj )

⎞

⎟
⎟
⎠ =

−
[(

Q̃j(s)

1l′mj

)′(
Q̃j(s)

1l′mj

)]−1(
Q̃j(s)

1l′mj

)′

⎛

⎜
⎜
⎜
⎜
⎝

〈
W (s, sj1),∇xf

0(x, j)
〉

...
〈
W (s, sjmj ),∇xf

0(x, j)
〉

0

⎞

⎟
⎟
⎟
⎟
⎠
.

Note that
I{α=sjk} − νjk(t)I{α∈Mj} = 0 if α �∈ Mj .

Recall the notation for the partitioned vector x = (x1, . . . , xl) where xj is an
mj-dimensional vector and xj = (xj1, . . . , x

j
mj

). For the partial derivatives,
use the notation

∂j,k =
∂

∂xjk
and ∂2j,j1j2 =

∂2

∂xjj1∂x
j
j2

.

Then h(s, x, sjk) is a functional of ∂j,j1f
0(x, j),...∂j,mj f

0(x, j). It follows
that g(s, x, sjk) is a functional of ∂2j,j1j2f

0(x, j), for j1, j2 = 1, . . . ,mj , and
so is g(s, x, j). Write

g(s, x, j) =
1

2

mj∑

j1,j2=1

aj1j2(s, j)∂
2
j,j1j2f

0(x, j), (5.99)

for some continuous functions aj1j2(s, j).
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Lemma 5.40. Assume (A5.5) and (A5.6). Suppose (nε(·), αε(·)) converges
weakly to (n(·), α(·)). Then for f0(·, i) ∈ C2

L,

f0(n(t), α(t))−
∫ t

0

(
g(s, n(s), α(s)) +Q(s)f0(n(s), ·)(α(s))) ds

is a martingale.

Proof: Define

Hε(t) = f(nε(t), αε(t)) +
√
εh(t, nε(t), αε(t))

−
∫ t

0

{
〈
W (s, αε(s)),∇xh(s, n

ε(s), αε(s))
〉

+
√
ε
∂

∂s
h(s, nε(s), αε(s)) + Q̂(s)f(nε(s), ·)(αε(s))

+
√
εQ̂(s)h(s, nε(s), ·)(αε(s))

}

ds.

The martingale property implies that

E [(Hε(t)−Hε(s))z1(n
ε(t1), α

ε(t1)) · · · zk(nε(tk), α
ε(tk))] = 0,

for any 0 ≤ t1 ≤ · · · ≤ tk ≤ s ≤ t and any bounded and continuous
functions z1(·), . . . , zk(·).
In view of the choice of h(·), it follows that all the three terms

√
εh(t, nε(t), αε(t)),

√
ε

(
∂

∂t
h(t, nε(t), αε(t))

)

, and

√
εQ̂(t)h(t, nε(t), ·)(αε(t))

converge to 0 in mean square. Recall (5.96), (5.97), and

f(nε(t), αε(t)) = f0(nε(t), αε(t)).

Denote the weak limit of Hε(·) by H(·). We have

E
[(
H(t)−H(s)

)
z1(n(t1), α(t1)) · · · zk(n(tk), α(tk))

]
= 0,

where H(·) is given by

H(t) = f0(n(t), α(t))

−
∫ t

0

(
g(r, n(r), α(r)) +Q(r)f0(n(r), ·)(α(r))) dr.

Thus (n(·), α(·)) is a solution to the martingale problem. �
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Lemma 5.41. Let L denote the operator given by

Lf0(x, j) =
1

2

mj∑

j1,j2=1

aj1j2(s, j)∂
2
j,j1j2f

0(x, j) +Q(s)f0(x, ·)(j).

Then the martingale problem with operator L has a unique solution.

Proof: In view of Lemma A.14, we need only verify the uniqueness in dis-
tribution of (n(t), α(t)) for each t ∈ [0, T ]. Let

f(x, j) = exp
(
ι{〈θ, x〉+ θ0j}

)
,

where θ ∈ R
m, θ0 ∈ R, j ∈ M, and ι is the pure imaginary number with

ι2 = −1.
For fixed j0, k0, let Fj0k0(x, j) = I{j=j0}f(x, k0). Then

Fj0k0(n(t), α(t)) = I{α(t)=j0}f(n(t), k0).

Moreover, note that

g(s, n(s), α(s)) =

l∑

j=1

I{α(s)=j}g(s, n(s), j)

=
1

2

l∑

j=1

I{α(s)=j}

mj∑

j1,j2=1

aj1j2(s, j)∂
2
j,j1j2Fj0k0(n(s), j)

=
1

2
I{α(s)=j0}

mj0∑

j1,j2=1

aj1j2(s, j0)∂
2
j0,j1j2f(n(s), k0)

=
1

2

mj∑

j1,j2=1

aj1j2(s, j0)(−θj0j1θj0j2)(I{α(s)=j0}f(n(s), k0)).

(5.100)

Furthermore, we have

Q(s)Fj0k0(n(s), ·)(α(s))

=

l∑

j=1

I{α(s)=j}Q(s)Fj0k0(n(s), ·)(j)

=

l∑

j=1

I{α(s)=j}
l∑

k=1

qjk(s)Fj0k0(n(s), k)

=

l∑

j=1

I{α(s)=j}
l∑

k=1

qjk(s)I{k=j0}f(n(s), k0)

=

l∑

j=1

I{α(s)=j}qjj0 (s)f(n(s), k0)

=

l∑

j=1

qjj0 (s)I{α(s)=j}f(n(s), k0).

(5.101)
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Let

φjk(t) = E
(
I{α(t)=j}f(n(t), k)

)
, for j, k = 1, . . . , l.

Then in view of (5.100) and (5.101),

φj0k0(t)− φj0k0(0)−
∫ t

0

{ mj0∑

j1,j2=1

aj1j2(s, j0)(−θj0j1θj0j2)φj0k0(s)

+

l∑

j=1

qjj0 (s)φjk0 (s)

}

ds = 0.

(5.102)

Let

φ(t) = (φ11(t), . . . , φ1m1(t), . . . , φl1(t), . . . , φlml
(t)).

Rewrite (5.102) in terms of φ(·) as

φ(t) = φ(0) +

∫ t

0

φ(s)B(s)ds,

where φ(0) = (φjk(0)) with φjk(0) = EI{α(0)=j}f(0, k), and B(t) is a
matrix-valued function whose entries are defined by the integrand of
(5.102). The equation for φ(t) is a linear ordinary differential equation.
It is well known that such a differential equation has a unique solution.
Hence, φ(t) is uniquely determined. In particular,

E exp
(
ι{〈θ, n(t)〉 + θ0α(t)}

)

=

l∑

j=1

E
(
I{α(t)=j} exp

(
ι{〈θ, n(t)〉+ jθ0}

))

is uniquely determined for all θ, θ0, so is the distribution of (n(t), α(t)) by
virtue of the uniqueness theorem and the inversion formula of the charac-
teristic function (see Chow and Teicher [30]). �

The tightness of (nε(·), αε(·)) together with Lemma 5.40 and Lemma 5.41
implies that (nε(·), αε(·)) converges weakly to (n(·), α(·)). We will show
that n(·) is a switching diffusion, i.e., a diffusion process modulated by
a Markov process such that the covariance of the diffusion depends on
the Markov jump process. Precisely, owing to the presence of the jump
Markov chains, the limit process does not possess the independent incre-
ment property shared by many processes. A moment of reflection reveals
that, necessarily, the coefficients in g(s, x, i) must consist of a symmetric
nonnegative definite matrix serving as a covariance matrix. The following
lemma verifies this assertion.
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Lemma 5.42. For s ∈ [0, T ] and j = 1, . . . , l, the matrix

A(s, j) = (aj1j2(s, j))

is symmetric and nonnegative definite.

Proof: Let ηj = (ηj1, . . . , ηjmj )
′ and xj = (xj1, . . . , xjmj )

′. Define

fj(x) =
1

2

(〈
ηj , xj

〉)2
.

Then the corresponding g(·) defined in (5.99) has the following form:

g(s, x, j) =
1

2
ηj,′A(s, j)ηj .

Moreover, let fj(x, k) = fj(x), independent of k. Then for all k = 1, . . . , l,

Q(s)fj(n
ε(s), ·)(k) = 0.

To verify the nonnegativity of A(s, j), it suffices to show that
∫ t

s

ηj,′A(r, j)ηjdr ≥ 0,

for all 0 ≤ s ≤ t ≤ T . Recall that fj(x) is a quadratic function. In view of
(5.94) and the proof of Lemma 5.40, it then follows that

1

2

∫ t

s

ηj,′A(r, j)ηjdr = lim
ε→0

(Efj(n
ε(t)) − Efj(n

ε(s))) .

We are in a position to show that the limit is nonnegative. Let

nε,j(t) = (nε
j1(t), . . . , n

ε
jmj

(t)).

Then

E (fj(n
ε(t)) − fj(n

ε(s)))

=
1

2
E
(〈
ηj , nε,j(t)

〉2 − 〈ηj , nε,j(s)
〉2)

.

For t ≥ s ≥ 0, using
〈
ηj , nε,j(t)

〉
=
〈
ηj , nε,j(s)

〉
+
〈
ηj , nε,j(t)− nε,j(s)

〉
,

we have

E
(〈
ηj , nε,j(t)

〉2 − 〈ηj , nε,j(s)
〉2)

= E
(
2
〈
ηj , nε,j(s)

〉〈
ηj , nε,j(t)− nε,j(s)

〉
+
〈
ηj , nε,j(t)− nε,j(s)

〉2)

≥ 2E
(〈
ηj , nε,j(s)

〉〈
ηj , nε,j(t)− nε,j(s)

〉)

= 2E

(
〈
ηj , nε,j(s)

〉
E

[
〈
ηj , nε,j(t)− nε,j(s)

〉
∣
∣
∣
∣Fε

s

])

.
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We next show that the last term goes to 0 as ε→ 0. In fact, in view of (a)
in Lemma 5.35, it follows that

E[nε,j(t)− nε,j(s)|Fε
s ] = O(

√
ε),

and hence

E

[
〈
ηj , nε,j(t)− nε,j(s)

〉
∣
∣
∣
∣Fε

s

]

=
〈
ηj , E[(nε,j(t)− nε,j(s))|Fε

s ]
〉
= O(

√
ε).

Using (b) in Lemma 5.35, we derive the following inequalities

E
〈
ηj , nε,j(s)

〉2 ≤ |ηj |2E|nε,j(s)|2 ≤ |ηj |2O(s).

The Cauchy–Schwarz inequality then leads to

∣
∣
∣
∣E

(
〈
ηj , nε,j(s)

〉
E

[
〈
ηj , nε,j(t)− nε,j(s)

〉
∣
∣
∣
∣Fε

s

])∣
∣
∣
∣

≤
(
E
〈
ηj , nε,j(s)

〉2)
1
2

(

E

[
〈
ηj , nε,j(t)− nε,j(s)

〉
∣
∣
∣
∣Fε

s

]2)
1
2

=
(
E
〈
ηj , nε,j(s)

〉2)
1
2

O(
√
ε) → 0, as ε→ 0.

As a result for some K > 0, we have

E

(
〈
ηj , nε,j(s)

〉
E

[
〈
ηj , nε,j(t)− nε,j(s)

〉
∣
∣
∣
∣Fε

s

])

≥ −K|ηj|s√ε→ 0,

as ε→ 0. The nonnegativity of A(s, j) follows.
To show that A(s, j) is symmetric, consider

fj,j1j2(x) = xjj1xjj2 for j1, j2 = 1, . . . ,mj .

Then, we have

1

2

∫ t

0

aj1j2(s, j)ds = lim
ε→0

E(nε,j
j1

(t)nε,j
j2

(t)) =
1

2

∫ t

0

aj2j1(s, j)ds, (5.103)

for all t ∈ [0, T ]. Thus, A(s, j) is symmetric. �

Next, we derive an explicit representation of the nonnegative definite
matrix A(s, j) similar to that of Theorem 5.9. Recall that given a function
f0(·), one can find h(·) as in (5.93). Using this h(·), one defines f(·) as in
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(5.95) which leads to g(·) given in (5.99). In view of the result in Theo-

rem 5.9 for a single block of the irreducible matrix Q̃j(t) together with the
computations of g(s, x, j), it follows that A(s, j) = 2A0(s, j), where

A0(t, j) = βj
diag(t)

(

νjdiag(t)

∫ ∞

0

Q0(r, t, j)dr

+

(∫ ∞

0

Q0(r, t, j)dr

)

νjdiag(t)

)

βj
diag(t),

with

βj
diag(t) = diag(βj1(t), . . . , βjmj (t)),

νjdiag(t) = diag(νj1(t), . . . , ν
j
mj

(t)),

and

Q0(r, t, j) =

⎡

⎢
⎣I −

⎛

⎜
⎝

νj(t)
...

νj(t)

⎞

⎟
⎠

⎤

⎥
⎦ exp

(
Q̃j(t)r

)
.

Applying Lemma 5.42 to the case of Q̃(s) a single block irreducible matrix

Q̃j(s), it follows that A0(s, j) is symmetric and nonnegative definite. Hence,
standard results in linear algebra yield that there exists an mj×mj matrix
σ0(s, j) such that

σ0(s, j)σ0,′(s, j) = A0(s, j). (5.104)

Note that the definition of g(s, x, j) is independent of Q̂(t), so for deter-

mining A0(s, j), we may consider Q̂(t) = 0. Note also that

Q̃(t) = diag(Q̃1(t), 0, . . . , 0) + · · ·+ diag(0, . . . , 0, Q̃l(t)).

The foregoing statements suggest that in view of (5.104), the desired co-
variance matrix is given by

σ(s, j) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0m1×m1

0m2×m2

. . .

σ0(s, j)
. . .

0ml×ml

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= diag(0m1×m1 , 0m2×m2 , . . . , σ
0(s, j) . . . , 0ml×ml

),

(5.105)

where 0mk×mk
is the mk ×mk zero matrix. That is, it is a matrix with the

jth block-diagonal submatrix equal to σ0(s, j) and the rest of its elements
equal to zero.
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Theorem 5.43. Assume that (A5.5) holds. Suppose Q̃(·) is twice

differentiable with Lipschitz continuous second derivative and Q̂(·) is
differentiable with Lipschitz continuous derivative. Let βij(·) be bounded
and Lipschitz continuous deterministic functions. Then nε(·) converges
weakly to a switching diffusion n(·), where

n(t) =
(∫ t

0

σ(s, α(s))dw(s)
)′

and w(·) is a standard m-dimensional Brownian motion.

Proof: Let

ñ(t) =
(∫ t

0

σ(s, α(s))dw(s)
)′

and α(·) be a Markov chain generated by Q(t). Then for all f0(·, i) ∈ C2
L,

f0(ñ(t), α(t))−
∫ t

0

(
g(s, ñ(s), α(s)) +Q(s)f0(ñ(s), ·)(α(s))) ds

is a martingale. This and the uniqueness of the martingale problem in
Lemma 5.41 yields that (ñ(·), α(·)) has the same probability distribution
as (n(·), α(·)). This proves the theorem. �

Remark 5.44. Note that the Lipschitz condition on βij(·) is not required
in analyzing the asymptotic normality in Section 5.3.3. It is needed in
this section because the perturbed test function method typically requires
smoothness conditions of the associated processes.
It appears that the conditions in (A5.5) and (A5.6) together with the

Lipschitz property of βij(·) are sufficient for the convergence of nε(·) to a
switching diffusion n(·). The additional assumptions on further derivatives

of Q̃(·) and Q̂(·) are needed for computing the covariance of the limit
process n(·).
Remark 5.45. If α(·) were a deterministic function, n(·) above would be
a diffusion process in the usual sense. However since the limit α(·) is a
Markov chain, the diffusion process is modulated by this jump process; the
resulting distribution has the features of the “continuous” diffusion process
and the “discrete” Markov chain limit.
In this section, we use the perturbed test function method, which is quite

different from the approach of Section 5.2. The method used in that section,
which might be called a direct approach, is interesting in its own right and
makes a close connection between asymptotic expansion and asymptotic
normality. It is effective whenever it can be applied. One of the main ingre-
dients is that the direct approach makes use of the mixing properties of the
scaled occupation measures heavily. In fact, using asymptotic expansion,
it was shown that the scaled sequence of occupation measures is a mixing
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process with exponential mixing rate. For the weak and strong interaction
cases presented, the mixing condition, and even approximate mixing con-
ditions, no longer hold. To illustrate, consider Example 4.20 with constant
jump rates and calculate

E[nε,′(s)(nε(t)− nε(s))].

By virtue of the proof of Theorem 5.25, a straightforward but tedious cal-
culation shows that

E [nε,′(s)(nε(t)− nε(s))] �→ 0 as ε→ 0

for the weak and strong interaction models because E[nε,′(s)(nε(t)−nε(s))]
depends on P1(t, s), generally a nonzero function. A direct consequence is
that the limit process does not have independent increments in general. It
is thus difficult to characterize the limit process via the direct approach.
The perturbed test function method, on the other hand, can be considered
as a combined approach. It uses enlarged or augmented states by treating
the scaled occupation measure nε(·) and the Markov chain αε(·) together.
That is, one considers a new state variable with two components (x, α).
This allows us to bypass the verification of mixing-like properties such
that the limit process is characterized by means of solutions of appropri-
ate martingale problems via perturbed test functions, which underlies the
rationale and essence of the approach. As a consequence, the limit process
is characterized via the limit of the underlying sequence of operators.
Note that if Q̃(t) itself is weakly irreducible (i.e., Q̃(t) consists of only

one block), then the covariance matrix is given by (5.30). In this case, since
there is only one group of recurrent states, the jump behavior due to the
limit process α(·) will disappear. Moreover, owing to the fast transition rate

Q̃(t)/ε, the singularly perturbed Markov chain rapidly reaches its quasi-
stationary regime. As a result, the jump behavior does not appear in the
asymptotic distribution, and the diffusion becomes the dominant factor.
Although the method employed in this chapter is different from that of
Section 5.2, the result coincides with that of Section 5.2 under irreducibility.
We state this in the following corollary.

Corollary 5.46. Assume that the conditions of Theorem 5.43 are fulfilled
with l = 1 (i.e., Q̃(t) has only one block). Then nε(·) converges weakly to
the diffusion process

n(t) =
(∫ t

0

σ(s)dw(s)
)′
,

where w(·) is an m-dimensional standard Brownian motion with covariance

A(t) = σ(t)σ′(t)

given by (5.30).
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To further illustrate, consider the following example. This problem is
concerned with a singularly perturbed Markov chain with four states di-
vided into two groups. It has been used in modeling production planning
problems with failure-prone machines. As was mentioned, from a modeling
point of view, it may be used to depict the situation that two machines op-
erate in tandem, in which the operating conditions (the machine capacity)
of one of the machines change much faster than the other; see also related
discussions in Chapters 7 and 8.

Example 5.47. Let αε(·) be a Markov chain generated by

Qε(t) =
1

ε

⎛

⎜
⎜
⎜
⎝

−λ1(t) λ1(t) 0 0

μ1(t) −μ1(t) 0 0

0 0 −λ1(t) λ1(t)

0 0 μ1(t) −μ1(t)

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

−λ2(t) 0 λ2(t) 0

0 −λ2(t) 0 λ2(t)

μ2(t) 0 −μ2(t) 0

0 μ2(t) 0 −μ2(t)

⎞

⎟
⎟
⎟
⎠
.

Then

Q(t) =

(
−λ2(t) λ2(t)

μ2(t) −μ2(t)

)

.

Let α(·) be a Markov chain generated by Q(t), t ≥ 0. In this example,

σ0(s, 1) = 2

(
λ1(s)μ1(s)

(λ1(s) + μ1(s))3

) 1
2
(

β11(s) 0
−β12(s) 0

)

,

σ0(s, 2) = 2

(
λ1(s)μ1(s)

(λ1(s) + μ1(s))3

) 1
2
(

β21(s) 0
−β22(s) 0

)

,

σ(s, 1) = 2

(
λ1(s)μ1(s)

(λ1(s) + μ1(s))3

) 1
2

⎛

⎜
⎜
⎝

β11(s) 0 0 0
−β12(s) 0 0 0

0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

and

σ(s, 2) = 2

(
λ1(s)μ1(s)

(λ1(s) + μ1(s))3

) 1
2

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 β21(s) 0
0 0 −β22(s) 0

⎞

⎟
⎟
⎠ .
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The limit of nε(·) is given by

n(t) =
( ∫ t

0

σ(s, α(s))dw(s)
)′
,

where w(·) is a standard Brownian motion taking values in R
4.

5.4 Measurable Generators

In Section 4.2, we considered the asymptotic expansions of probability dis-
tributions. A natural requirement of such expansions is that the generator
Qε(t) be smooth enough to establish the desired error bounds. It would
be interesting to consider the case in which the generator Qε(t), t ≥ 0, is
merely measurable. The method used in this section is very useful in some
manufacturing problems; see Sethi and Zhang [192]. Moreover, the results
are used in Section 8.6 to deal with a control problem under relaxed con-
trol formulation. Given only the measurability of Qε(t), there seems to be
little hope to obtain an asymptotic expansion. Instead of constructing an
asymptotic series of the corresponding probability distribution, we consider
the convergence of P (αε(t) = sij) under the framework of convergence of

∫ T

0

P (αε(t) = sij)f(t)dt for f(·) ∈ L2[0, T ];R).

Since the phrase “weak convergence” is reserved throughout the book for
the convergence of probability measures, to avoid confusion, we refer to
the convergence above as convergence in the weak sense on L2([0, T ];R) or
convergence under the weak topology of L2([0, T ];R).

Case I: Weakly Irreducible Q̃(t)

Let αε(·) ∈ M = {1, . . . ,m} denote the Markov chain generated by

Qε(t) =
1

ε
Q̃(t) + Q̂(t),

where both Q̃(t) and Q̂(t) are generators.
We assume the following conditions in this subsection.

(A5.7) Q̃(t) and Q̂(t) are bounded and Borel measurable. Moreover,

Q̃(t) is weakly irreducible.

Remark 5.48. In fact, both the boundedness and the Borel measurabil-
ity in (A5.7) are redundant. Recall that our definition of generators (see
Definition 2.2) uses the q-Property, which includes both the Borel measura-
bility and the boundedness. Thus, (A5.7) requires only weak irreducibility.
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Nevertheless, we retain both boundedness and measurability for those who
read only this section. Similar comments apply to assumption (A5.8) in
what follows.

Define the probability distribution vector

pε(t) = (P (αε(t) = 1), . . . , P (αε(t) = m))

and the transition matrix

P ε(t, s) = (pεij(t, s)) = (P (αε(t) = j|αε(s) = i)) .

Then using the martingale property in Lemma 2.4, we have

pε(t) = pε(s) +

∫ t

s

pε(r)Qε(r)dr (5.106)

and

P ε(t, s) = I +

∫ t

s

P ε(r, s)Qε(r)dr. (5.107)

The next two lemmas are concerned with the asymptotic properties of pε(t)
and P ε(t, s).

Lemma 5.49. Assume (A5.7). Then for each i, j, and T > 0, P (αε(t) = i)
and P (αε(t) = i|αε(s) = j) both converge weakly to νi(t) on L2([0, T ];R)
and L2([s, T ];R), respectively, that is, as ε→ 0,

∫ T

0

[P (αε(t) = i)− νi(t)]f(t)dt → 0 (5.108)

and ∫ T

s

[P (αε(t) = i|αε(s) = j)− νi(t)]f(t)dt → 0, (5.109)

for all f(·) ∈ L2([0, T ];R) and L2([s, T ];R), respectively.

Proof: We only verify (5.108); the proof of (5.109) is similar. Recall that

pε(t) = (pε1(t), . . . , p
ε
m(t)) = (P (αε(t) = 1), . . . , P (αε(t) = m)).

Since pε(·) ∈ L2([0, T ];Rm) (space of square-integrable functions on [0, T ]
taking values in R

m), for each subsequence of ε → 0 there exists (see
Lemma A.36) a further subsequence of ε → 0 (still denoted by ε for sim-
plicity), and for such ε, the corresponding {pε(·)} converges (in the weak
sense on L2([0, T ];Rm)) to some p(·) = (p1(·), . . . , pm(·)) ∈ L2([0, T ];Rm),
that is,

∫ T

0

pε(r)(f1(r), . . . , fm(r))′dr →
∫ T

0

p(r)(f1(r), . . . , fm(r))′dr,
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for any (f1(·), . . . , fm(·))′ ∈ L2([0, T ];Rm). Moreover,

0 ≤ pi(t) ≤ 1 and p1(t) + · · ·+ pm(t) = 1 (5.110)

almost everywhere. Since Q̃(·) ∈ L2([0, T ];Rm×m), we have for 0 ≤ s ≤ t ≤
T ,

∫ t

s

pε(r)Q̃(r)dr →
∫ t

s

p(r)Q̃(r)dr.

Thus, using (5.106) we obtain

∫ t

s

p(r)Q̃(r)dr = lim
ε→0

∫ t

s

pε(r)Q̃(r)dr

= lim
ε→0

(

ε(pε(t)− pε(s))− ε

∫ t

s

pε(r)Q̂(r)dr

)

= 0.

Since s and t are arbitrary, it follows immediately that

p(t)Q̃(t) = 0 a.e. in t.

By virtue of (5.110), the irreducibility of Q̃(t) implies p(t) = ν(t) almost ev-
erywhere. Thus the limit is independent of the chosen subsequence. There-
fore, pε(·) → ν(·) in the weak sense on L2([0, T ];Rm). �

Theorem 5.50. Assume (A5.7). Then for any bounded deterministic func-
tion βi(·) and for each i ∈ M and t ≥ 0,

E

∣
∣
∣
∣

∫ t

0

(I{αε(s)=i} − νi(s))βi(s)ds

∣
∣
∣
∣

2

→ 0 as ε→ 0. (5.111)

Proof: Let

η(t) = E

∣
∣
∣
∣

∫ t

0

(I{αε(s)=i} − νi(s))βi(s)ds

∣
∣
∣
∣

2

.

Then as in the proof of Theorem 5.25, we can show that

η(t) = 2(η1(t) + η2(t)),

where

η1(t) =

∫ t

0

∫ s

0

(−νi(r))[P (αε(s) = i)− νi(s)]βi(s)βi(r)drds,

η2(t) =

∫ t

0

∫ s

0

P (αε(r) = i)[P (αε(s) = i|αε(r) = i)− νi(s)]

×βi(s)βi(r)drds.
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By virtue of Lemma 5.49, P (αε(s) = i) → νi(s) in the weak sense on
L2([0, T ];R) and therefore as ε→ 0,

η1(t) =

∫ t

0

[P (αε(s) = i)− νi(s)]βi(s)

(∫ s

0

(−νi(r))βi(r)dr
)

ds→ 0.

Similarly, in view of the convergence of

P (αε(s) = i|αε(r) = i) → νi(s)

under the weak topology of L2([r, t];R), we have

η2(t) =

∫ t

0

[∫ t

r

[P (αε(s) = i|αε(r) = i)− νi(s)]βi(s)ds

]

×P (αε(r) = i)βi(r)dr → 0.

This concludes the proof of the theorem. �

Case II: Q̃(t) = diag(Q̃1(t), . . . , Q̃l(t))

This subsection extends the preceding result to the cases in which Q̃(t)
is a block-diagonal matrix with irreducible blocks. We make the following
assumptions:

(A5.8) Q̂(t) and Q̃i(t), for i = 1, . . . , l, are bounded and Borel measur-

able. Moreover, Q̃i(t), i = 1, . . . , l, are weakly irreducible.

Lemma 5.51. Assume (A5.8). Then the following assertions hold:

(a) For each i = 1, . . . , l and j = 1, . . . ,mi, P (α
ε(t) = sij) converges in

the weak sense to νij(t)ϑ
i(t) on L2([0, T ];R), that is,

∫ T

0

[P (αε(t) = sij)− νij(t)ϑ
i(t)]f(t)dt → 0, (5.112)

for all f(·) ∈ L2([0, T ];R), where

(ϑ1(t), . . . , ϑl(t)) = p01̃l +

∫ t

0

(ϑ1(s), . . . , ϑl(s))Q(s)ds.

(b) For each i, j, i1, j1, P (α
ε(t) = sij |αε(s) = si1j1) converges in the weak

sense to νij(t)ϑii(t, s) on L
2([s, T ];R), that is,

∫ T

s

[P (αε(t) = sij |αε(s) = si1j1)−νij(t)ϑii(t, s)]f(t)dt → 0, (5.113)

for all f(·) ∈ L2([s, T ];R), where ϑij(t, s) is defined in Lemma 5.24
(see (5.50)).
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Proof: We only derive (5.112); the proof of (5.113) is similar. Let

pε(t) =
(
pε11(t), . . . , p

ε
1m1

(t), . . . , pεl1(t), . . . , p
ε
lml

(t)
)

where pεij(t) = P (αε(t) = sij). Since pε(·) ∈ L2([0, T ];Rm), there ex-
ists (see Lemma A.36) a subsequence of ε → 0 (still denoted by ε for
simplicity), such that corresponding to this ε, pε(t) converges to some
p(·) ∈ L2([0, T ];Rm) under the weak topology. Let

p(t) = (p11(t), . . . , p1m1(t), . . . , pl1(t), . . . , plml
(t)) .

Then 0 ≤ pij(t) ≤ 1 and
∑

i,j pij(t) = 1 almost everywhere. Similarly as in
the proof of Lemma 5.49, for 0 ≤ t ≤ T ,

p(t)Q̃(t) = 0 a.e. in t.

The irreducibility of Q̃k(t), k = 1, . . . , l, implies that

p(t) = (ϑ1(t), . . . , ϑl(t))diag(ν1(t), . . . , νl(t)), (5.114)

for some functions ϑ1(t), . . . , ϑl(t).
In view of (5.106), we have

pε(t)1̃l = p01̃l +

∫ t

0

pε(s)

(
1

ε
Q̃(s) + Q̂(s)

)

1̃lds.

Since Q̃(s)1̃l = 0, it follows that

pε(t)1̃l = p01̃l +

∫ t

0

pε(s)Q̂(s)1̃lds.

Owing to the convergence of pε(t) → p(t) under the weak topology of
L2([0, T ];Rm), we have

p(t)1̃l = p01̃l +

∫ t

0

p(s)Q̂(s)1̃lds.

Using (5.114) and noting that

diag(ν1(t), . . . , νl(t))1̃l = I,

we have

(ϑ1(t), . . . , ϑl(t)) = p01̃l +

∫ t

0

(ϑ1(s), . . . , ϑl(s))Q(s)ds.

The uniqueness of the solution then yields the lemma. �
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Theorem 5.52. Assume (A5.8). Then for any i = 1, . . . , l, j = 1, . . . ,mi,
and bounded deterministic function βij(t), t ≥ 0,

E

(∫ T

0

(
I{αε(t)=sij} − νij(t)I{αε(t)=i}

)
βij(t)dt

)2

→ 0, as ε→ 0.

Proof: Let η(t) be defined as in (5.52). Then we can show similarly as in
the proof of Theorem 5.25 that

η(T ) = 2

∫ T

0

∫ t

0

Φε(t, r)βij(t)βij(r)drdt,

where Φε(t, r) = Φε
1(t, r) + Φε

2(t, r) with Φε
1(t, r) and Φε

2(t, r) defined by
(5.53) and (5.54), respectively.
Note that by changing the order of integration,

∫ T

0

∫ t

0

Φε
1(t, r)βij(t)βij(r)drdt

=

∫ T

0

P (αε(r) = sij)βij(r)

{∫ T

r

[P (αε(t) = sij |αε(r) = sij)

−νij(t)P (αε(t) ∈ Mi|αε(r) = sij)]βij(t)dt

}

dr.

Since the βij(·) are bounded uniformly on [0, T ], βij(·) ∈ L2([0, T ];R). As
a result, Lemma 5.51 implies that

∫ T

r

[P (αε(t) = sij |αε(r) = sij)

−νij(t)P (αε(t) ∈ Mi|αε(r) = sij)]βij(t)dt → 0.

Hence as ε→ 0,

∫ T

0

∫ t

0

Φε
1(t, r)βij(t)βij(r)drdt → 0.

Similarly,

∫ T

0

∫ t

0

Φε
2(t, r)βij(t)βij(r)drdt → 0, as ε→ 0.

The proof is complete. �

Theorem 5.53. Assume (A5.8). Then αε(·) converges weakly to α(·) on
D([0, T ];M), as ε→ 0.
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Proof: Recall that χε(t) denotes the vector of indicator functions
(
I{αε(t)=s11}, . . . , I{αε(t)=s1m1}, . . . , I{αε(t)=sl1}, . . . , I{αε(t)=slml

}
)
,

and let
χε(t) = (χε

1(t), . . . , χ
ε
l (t)) = χε(t)1̃l.

Then χε
i (t) = I{αε(t)=i} for i = 1, . . . , l.

We show that χε(·) is tight in Dl[0, T ] first. Let Fε
t = σ{αε(r) : r ≤ t}.

Then in view of the martingale property associated with αε(·), we have,
for 0 ≤ s ≤ t,

E

[

χε(t)− χε(s)−
∫ t

s

χε(r)Qε(r)dr

∣
∣
∣
∣Fε

s

]

= 0.

Right multiplying both sides of the equation by 1̃l and noting that Q̃(r)1̃l =
0, we obtain

E

[

χε(t)− χε(s)−
∫ t

s

χε(r)Q̂(r)1̃ldr

∣
∣
∣
∣Fε

s

]

= 0. (5.115)

Note that ∣
∣
∣
∣

∫ t

s

χε(r)Q̂(r)1̃ldr

∣
∣
∣
∣ = O(t− s).

It follows from (5.115) that

E
[
I{αε(t)=i}|Fε

s

]
= I{αε(s)=i} +O(t− s). (5.116)

Note also that (IA)
2 = IA for any set A. We have, in view of (5.116),

E

[
(
I{αε(t)=i} − I{αε(s)=i}

)2
∣
∣
∣
∣Fε

s

]

= E

[

I{αε(t)=i} − 2I{αε(t)=i}I{αε(s)=i} + I{αε(s)=i}

∣
∣
∣
∣Fε

s

]

= E

[

I{αε(t)=i}

∣
∣
∣
∣Fε

s

]

− 2E

[

I{αε(t)=i}

∣
∣
∣
∣Fε

s

]

I{αε(s)=i} + I{αε(s)=i}

= I{αε(s)=i} +O(t− s)

−2
(
I{αε(s)=i} +O(t − s)

)
I{αε(s)=i} + I{αε(s)=i}

= O(t− s),

for each i = 1, . . . , l. Hence,

lim
t→s

lim
ε→0

E

{

E

[
(
I{αε(t)=i} − I{αε(s)=i}

)2
∣
∣
∣
∣Fε

s

]}

= 0.
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Therefore, by Lemma A.17, χε(·) is tight.
The tightness of χε(·) implies that for any sequence εk → 0, there exists

a subsequence of {εk} (still denoted by {εk}) such that χεk(·) converges
weakly. We next show that the limit of such a subsequence is uniquely
determined by Q(·) := diag(ν1(·), . . . , νl(·))Q̂(·)1̃l.
Note that

∫ t

s

χε(r)Q̂(r)1̃ldr =

∫ t

s

χε(r)Q(r)dr

+

∫ t

s

(
χε(r) − χε(r)diag(ν1(r), . . . , νl(r))

)
Q̂(r)1̃ldr.

In view of Theorem 5.52, we have, as ε→ 0,

E

∣
∣
∣
∣

∫ t

s

[
χε(r) − χε(r)diag(ν1(r), . . . , νl(r))

]
Q̂(r)1̃ldr

∣
∣
∣
∣→ 0. (5.117)

Now by virtue of (5.115),

E

[(

χε(t)− χε(s)−
∫ t

s

χε(r)Q̂(r)1̃ldr

)

z1(χ
ε(t1)) · · · zj(χε(tj))

]

= 0,

for 0 ≤ t1 ≤ · · · ≤ tj ≤ s ≤ t and bounded and continuous functions
z1(·), . . . , zj(·).
Let χ(·) denote the limit in distribution of χεk(·). Then in view of (5.117)

and the continuity of
∫ t

s
η(r)Q(r)dr with respect to η(·) (see Lemma A.40),

we have χε(·) → χ(·) as εk → 0, and χ(·) satisfies

E

[(

χ(t)− χ(s)−
∫ t

s

χ(r)Q(r)dr

)

z1(χ(t1)) · · · zj(χ(tj))
]

= 0.

It is easy to see that χ(·) = (χ1(·), . . . , χl(·)) is an l-valued measurable
process having sample paths in Dl[0, T ] and satisfying χi(t) = 0 or 1 and
χ1(·) + · · ·+ χl(·) = 1 w.p.1. Let

α(t) =
l∑

i=1

iI{χi(t)=1},

or in an expanded form,

α(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if χ1(t) = 1,

2, if χ1(t) = 0, χ2(t) = 1,
...

...

l, if χi(t) = 0, for i ≤ l − 1, χl(t) = 1.
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Then α(·) is a process with sample paths in D([0, T ];M) and

χ(t) = (I{α(t)=1}, . . . , I{α(t)=l}) w.p.1.

Therefore, α(·) is a Markov chain generated by Q(·). As a result, its dis-
tribution is uniquely determined by Q(·). It follows that αε(·) converges
weakly to α(·). �

Remark 5.54. Note that Theorem 5.53 gives the same result as The-
orem 5.27 under weaker conditions. The proofs are quite different. The
proof of Theorem 5.53 is based on martingale properties associated with
the Markov chain, whereas the proof of Theorem 5.27 follows the tra-
ditional approach, i.e., after the tightness is verified, the convergence of
finite-dimensional distributions is proved.

Remark 5.55. In view of the development in Chapter 4, apart from the
smoothness conditions, one of the main ingredients is the use of the Fred-
holm alternative. One hopes that this will carry over (under suitable condi-
tions) to the measurable generators. A possible approach is the utilization
of the formulation of weak derivatives initiated in the study of partial dif-
ferential equations (see Hutson and Pym [90]).
Following the tactics of the weak sense formulation, for some T < ∞

and for given g(·) ∈ L2([0, T ];R), a function f(·) ∈ L2([0, T ];R) is a weak
solution of (d/dt)f = g if

∫ T

0

f(t)

(
dφ(t)

dt

)

dt =

∫ T

0

g(t)φ(t)dt

for any C∞-functions on [0, T ] vanishing on the boundary together with
their derivatives (denoted by φ ∈ C∞

0 ([0, T ];R)). Write the weak solution

as (d/dt)f
w
= g.

Recall that L2
loc is the set of functions that lie in L

2(S;R) for every closed
and bounded set S ⊂ (0, T ). A function f(·) ∈ L2

loc has a jth-order weak
derivative if there is a function g(·) ∈ L2

loc such that

∫ T

0

g(t)φ(t)dt = (−1)j
∫ T

0

f(t)
djφ(t)

dtj
dt

for all φ ∈ C∞
0 ([0, T ];R). The function g(·) above is called the jth-order

weak derivative of f(·), and is denoted by Djf = g.
To proceed, define the space of functions Hn as

Hn = {f on [0, T ]; for 0 ≤ j ≤ n, Djf exist and are in L2([0, T ];R)}.
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Equip Hn with an inner product and a norm as

(f, g)n =
∑

j≤n

∫ T

0

DjfDjgdt,

|f |2n = (f, f)n =
∑

j≤n

∫ T

0

|Djf |2dt.

One can then work under such a framework and proceed to obtain the
asymptotic expansion of the probability distribution. It seems that the
conditions required are not much different from those in the case of smooth
generators; we will not pursue this issue further.

5.5 Remarks on Inclusion of Transient and
Absorbing States

So far, the development in this chapter has focused on Markov chains with
only recurrent states (either a single weakly irreducible class or a number
of weakly irreducible classes). This section extends the results obtained to
the case that a transient class or a group of absorbing states is included.

5.5.1 Inclusion of Transient States

Consider the Markov chain αε(·) ∈ M, where its generator is still given by
(5.47) and the state space of αε(t) is given by

M = M1 ∪M2 ∪ · · · ∪Ml ∪M∗, (5.118)

with Mi = {si1, . . . , simi} and M∗ = {s∗1, . . . , s∗m∗}. In what follows, we
present results concerning the asymptotic distributions of scaled occupation
measures and properties of measurable generators.While main assumptions
and results are provided, the full proofs are omitted. The interested reader
can derive the results using the ideas presented in the previous sections.
To proceed, assume that Q̃(t) is a generator of a Markov chain satisfying

Q̃(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q̃1(t)
. . .

Q̃l(t)

Q̃1∗(t) · · · Q̃l∗(t) Q̃∗(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.119)

such that for each t ∈ [0, T ] and each i = 1, . . . , l, Q̃i(t) is a generator with

dimension mi × mi, Q̃∗(t) is an m∗ × m∗ matrix, Q̃i
∗(t) ∈ R

m∗×mi , and
m1 +m2 + · · ·+ml +m∗ = m. We impose the following conditions.
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(A5.9) For all t ∈ [0, T ], and i = 1, . . . , l, Q̃i(t) are weakly irreducible,

and Q̃∗(t) is Hurwitz (i.e., all of its eigenvalues have negative real
parts). Moreover, Q̃(·) is differentiable on [0, T ] and its derivative

is Lipschitz; Q̂(·) is Lipschitz continuous on [0, T ].

Use the partition

Q̂(t) =

(
Q̂11(t) Q̂12(t)

Q̂21(t) Q̂22(t)

)

where

Q̂11(t) ∈ R
(m−m∗)×(m−m∗), Q̂12(t) ∈ R

(m−m∗)×m∗ ,

Q̂21(t) ∈ R
m∗×(m−m∗), and Q̂22(t) ∈ R

m∗×m∗ ,

and write

Q∗(t) = diag(ν1(t), . . . , νl(t))(Q̂11(t)1̃l + Q̂12(t)(am1(t), . . . , aml
(t)))

Q(t) = diag(Q∗(t), 0m∗×m∗),

(5.120)
where

1̃l = diag(1lm1 , . . . , 1lml
), 1lmj = (1, . . . , 1)′ ∈ R

mj×1,

and
ami(t) = −Q̃−1

∗ (t)Q̃i
∗(t)1lmi , for i = 1, . . . , l. (5.121)

In what follows, if ami(t) is time independent, we will simply write it as

ami . The requirement on Q̃∗(t) in (A5.9) implies that the correspond-
ing states are transient. The Hurwitzian property also has the follow-
ing interesting implication: For each t ∈ [0, T ], and each i = 1, . . . , l,
ami(t) = (ami,1(t), . . . , ami,m∗(t))

′ ∈ R
m∗×1. Then

ami,j(t) ≥ 0 and

l∑

i=1

ami,j(t) = 1 (5.122)

for each j = 1, . . . ,m∗. That is, for each t ∈ [0, T ] and each j = 1, . . . , l,
(am1,j(t), . . . , aml,j(t)) can be considered a probability row vector. To see
this, note that ∫ ∞

0

exp(Q̃∗(t)s)ds = −Q̃−1
∗ (t),

which has nonnegative components. It follows from the definition that
ami(t) ≥ 0. Furthermore,

l∑

i=1

ami(t) = −Q̃−1
∗ (t)

l∑

i=1

Q̃i
∗(t)1lmi = (−Q̃−1

∗ (t))(−Q̃∗(t))1lm∗ = 1lm∗ .
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Thus (5.122) follows. Similar to the development in the section for the case
of weak and strong interactions, we can derive the following results.

Theorem 5.56. Define

χε
ij(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ t

0

(
I{αε(s)=sij} − νij(s)I{αε(s)∈Mi}

)
ds, for i = 1, . . . , l,

∫ t

0

I{αε(s)=s∗j}ds, for i = ∗,
(5.123)

and assume (A5.9). Then for each j = 1, . . . ,mi,

sup
t∈[0,T ]

E|χε
ij(t)|2 =

{
O(ε), for i = 1, . . . , l,
O(ε2), for i = ∗. (5.124)

Next, for each fixed t ∈ [0, T ], let ξ be a random variable uniformly
distributed on [0, 1] that is independent of αε(·). For each j = 1, . . . ,m∗,
define an integer-valued random variable ξj(t) by

ξj(t) = I{0≤ξ≤am1,j(t)} + 2I{am1,j(t)<ξ≤am1,j(t)+am2,j(t)}

+ · · ·+ lI{am1,j(t)+···+aml−1,j(t)<ξ≤1}.

Now redefine the aggregated process αε(·) by

αε(t) =

⎧
⎪⎪⎨

⎪⎪⎩

i, if αε(t) ∈ Mi,

ξj(t), if αε(t) = s∗j(t).

(5.125)

Note that the state space of αε(t) is M = {1, . . . , l}, and that αε(·) ∈
D([0, T ];M). Similar to the weak and strong interaction case, but with
more effort, we can obtain the following result.

Theorem 5.57. Under conditions (A5.9), αε(·) converges weakly to α(·),
a Markov chain generated by Q∗(·) given by (5.120).

Next, for t ≥ 0, and α ∈ M, let βij(t) be bounded Borel measurable
deterministic functions, and let

Wij(t, α)=

⎧
⎪⎪⎨

⎪⎪⎩

(I{α=sij} − νij(t)I{α∈Mi})βij(t), if i = 1, . . . , l, j = 1, . . . ,mi,

I{α=s∗j}βij(t), if i = ∗, j = 1, . . . ,m∗.

(5.126)
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Consider the normalized occupation measure

nε(t) = (nε
11(t), . . . , n

ε
1m1

(t), . . . , nε
∗1(t), . . . , n

ε
∗m∗(t)),

where

nε
ij(t) =

1√
ε

∫ t

0

Wij(s, α
ε(s))ds.

We can then proceed to obtain the asymptotic distribution.

Theorem 5.58. Assume (A5.9), and suppose Q̃(·) is twice differentiable

with Lipschitz continuous second derivative. Moreover, Q̂(·) is differen-
tiable with Lipschitz continuous derivative. Let βij(·) (for i = 1, . . . , l,
j = 1, . . . ,mi) be bounded and Lipschitz continuous deterministic func-
tions. Then nε(·) converges weakly to a switching diffusion n(·), where

n(t) =
( ∫ t

0

σ(s, α(s))dw(s)
)′
, (5.127)

where σ(s, i) is similar to (5.105) with the following modifications:

σ(s, i) = diag(0m1×m1 , . . . , σ
0(s, i), . . . , 0ml×ml

, 0m∗×m∗) (5.128)

and w(·) is a standard m-dimensional Brownian motion.

Finally, we confirm that the case of the generators being merely measur-
able can be treated as well. We state this as the following theorem.

Theorem 5.59. Assume the generator is given by (5.47) with Q̃(·) given

by (5.120) such that Q̃ and Q̂ are measurable and bounded and that Q̃i(t) is
weakly irreducible for each i = 1, . . . , l. Then the following assertions hold:

• For any i = 1, . . . , l, j = 1, . . . ,mi, and bounded deterministic func-
tion βij(t), t ≥ 0,

E

(∫ T

0

(
I{αε(t)=sij} − νij(t)I{αε(t)=i}

)
βij(t)dt

)2

→ 0, as ε→ 0.

• αε(·) converges weakly to α(·), a Markov chain generated by Q∗(·).

5.5.2 Inclusion of Absorbing States

Consider the Markov chain αε(·) ∈ M, where the generator of αε(·) is still
given by (5.47) with

Q̃(t) = diag(Q̃1(t), . . . , Q̃l(t), 0ma×ma), (5.129)

where 0ma×ma is the ma×ma zero matrix, the state space of αε(t) is given
by

M = M1 ∪M2 ∪ · · · ∪Ml ∪Ma, (5.130)

with Mi = {si1, . . . , simi} and Ma = {sa1, . . . , sama}, and m1+m2+ · · ·+
ml +ma = m. Assume the following conditions.
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(A5.10) For all t ∈ [0, T ] and i = 1, . . . , l, Q̃i(t) is weakly irreducible.

Furthermore, Q̃(·) is differentiable on [0, T ] and its derivative is

Lipschitz. Moreover, Q̂(·) is Lipschitz continuous on [0, T ].

Define

1̃l = diag(1lm1 , . . . , 1lml
) and 1̃la = diag(1̃l, Ima)

Q(t) = diag(ν1(t), ν2(t), . . . , νl(t), Ima )Q̂(t)1̃la.

(5.131)

Assume that the conditions in (A5.10) are satisfied. Then we can prove the
following:

(a) As ε→ 0,

pε(t) = (ϑ(t), ϑa(t))diag(ν1(t), . . . , νl(t), Ima )+O (ε+ exp(−κ0t/ε)) ,
where

ϑ(t) = (ϑ1(t), . . . , ϑl(t))) ∈ R
1×l and

ϑa(t) = (ϑa1(t), . . . , ϑ
a
ma

(t)) ∈ R
1×ma ,

satisfying

d(ϑ(t), ϑa(t))

dt
= (ϑ(t), ϑa(t))Q(t), (ϑ(0), ϑa(0)) = pε(0)1̃la

whereQ(t) is given in (5.131) and pε(0) = (pε,1(0), . . . , pε,l(0), pε,a(0))
with pε,i(0) ∈ R

1×mi and pε,a(0) ∈ R
1×ma .

(b) For the transition probability P ε(t, t0), we have

P ε(t, t0) = P 0(t, t0) +O (ε+ exp(−κ0(t− t0)/ε))) , (5.132)

for some κ0 > 0, where

P 0(t, t0) = 1̃laΘ(t, t0)diag(ν
1(t), . . . , νl(t), Ima),

and
dΘ(t, t0)

dt
= Θ(t, t0)Q(t), Θ(t0, t0) = I.

To proceed, we aggregate the states in Mi for i = 1, . . . , l as one state
leading to the definition of the following process:

αε(t) =

{
i, if αε(t) ∈ Mi,
αε(t), if αε(t) ∈ Ma.

(5.133)
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For each j = 1, . . . ,mi, we also define a sequence of centered occupation
measures by

χε
ij(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ t

0

(
I{αε(s)=sij} − νij(s)I{αε(s)=i}

)
ds, for i = 1, . . . , l,

∫ t

0

(I{αε(s)=saj} − ϑaj (s))ds.

(5.134)
For t ≥ 0 and α ∈ M, let

Wij(t, α) =

{
I{α=sij} − νij(t)I{α∈Mi}, for i = 1, . . . , l, j = 1, . . . ,mi,
I{α=saj} − ϑaj (t), for j = 1, . . . ,ma.

(5.135)
Consider the normalized occupation measure

nε(t) = (nε
11(t), . . . , n

ε
1m1

(t), . . . , nε
l1(t), . . . , n

ε
lml

(t), nε
a1(t), . . . , n

ε
ama

(t)),

where

nε
ij(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1√
ε

∫ t

0

Wij(s, α
ε(s))βij(s)ds, i = 1, . . . , l, j = 1, . . . ,mi,

∫ t

0

Waj(s, α
ε(s))βaj(s)ds, j = 1, . . . ,ma.

Note that

dnε(t)

dt
=

⎧
⎨

⎩

1√
ε
W r(t, αε(t)), for αε(t) ∈ M1 ∪ · · · ∪Ml,

W a(t, αε(t)), for αε(t) ∈ Ma,

nε(0) = 0,

where

W r(t, α) = (W11(t, α), . . . ,W1m1(t, α), . . . ,Wl1(t, α), . . . ,Wlml
(t, α)),

W a(t, α) = (Wa1(t, α), . . . ,Wama(t, α)), and

W (t, α) = (W r(t, α),W a(t, α)).

〈W a(u, α)),∇a
xf

0(x, α)〉 =
ma∑

j=1

bj(u, α)
∂

∂a,j
f0(x, α).

We can obtain the following results.

Theorem 5.60. Assume (A5.10). Then the following assertions hold.
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(a) For all i = 1, . . . , l and j = 1, . . . ,mi, corresponding to the recurrent
states, supt∈[0,T ]E|Oε

ij(t)|2 = O(ε).

(b) αε(·) converges weakly to α(·), a Markov chain generated by Q(·).
(c) Define the generator L by

Lf0(x, α) =
1

2

mα∑

j1,j2=1

aj1j2(s, α)∂
2
α,j1j2f

0(x, α)

+

ma∑

j=1

bj(s, α)∂a,jf
0(x, α) +Q(s)f0(x, ·)(α).

Then the sequence Y ε(·) = (nε(·), αε(·)) converges weakly to Y (·) =
(n(·), α(·)) that is a solution of the martingale problem with operator
L.

Next, assume that Q̃(·) and Q̂(·) are bounded and measurable and Q̃i(t)
for each i = 1, . . . , l is weakly irreducible. Then

pε(t) = (pε11(t), . . . , p
ε
1m1(t), . . . , p

ε
l1(t), . . . , p

ε
lml

(t), pεa1(t), . . . , p
ε
ama

(t))

converges in the weak topology of L2([0, T ];Rm) (with m =
∑l

i=1mi+ma)
to

p(t) = (ϑ1(t)ν
1(t), . . . , ν1(t)ϑl(t), p

0,a),

where p0,a is the subvector in the initial data p0 corresponding the absorbing
state.

Note that in deriving the asymptotic distribution of the scaled occupa-
tion measures, we need to compute the asymptotic covariance of the limit
process. That is, we need to evaluate the limit of

E

∫ t

0

( 1√
ε
(W r(s, αε(s)))′

(W a(s, αε(s)))′

)(
1√
ε
W r(s, αε(s)), W a(s, αε(s))

)

ds

def
=

(
W rr

ε (t) W ra
ε (t)

W ar
ε (t) W aa

ε (t)

)

,

(5.136)
where

W rr
ε (t) =

1

ε

∫ t

0

E(W r(s, αε(s)))′W r(s, αε(s))ds

W ra
ε (t) =

1√
ε

∫ t

0

E(W r(s, αε(s)))′W a(s, αε(s))ds

W ar
ε (t) =

1√
ε

∫ t

0

E(W a(s, αε(s)))′W r(s, αε(s))ds

W aa
ε (t) =

∫ t

0

E(W a(s, αε(s)))′W a(s, αε(s))ds.
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It can be shown that

W rr
ε (t) →W

r
(t), W ra

ε (t) → 0, W ar
ε (t) → 0, and W aa

ε (t) →W
a
(t),

as ε→ 0, where for i = 1, . . . , l, W
r
(t) =W

r
(t, i) =

∫ t

0
Ŵ r(s, i)ds with

Ŵ r(s, i) = diag(0m1×m1 , . . . , σ(s, i), . . . , 0ml×ml
) (5.137)

with σ(s, i) the mi × mi matrix such that σ(s, i)σ′(s, i) = A(s, i) for i =
1, . . . , l, and

W
a
(t) = (W

a

jk(t)) with W
a

jk(t) =

∫ t

0

(
δjkϑ

a
j (s)− ϑaj (s)ϑ

a
k(s)

)
ds,

(5.138)

where δjk = 1 if j = k, δjk = 0 if j �= k. The detailed proof of Theorem 5.60
can be found in Yin, Zhang, and Badowski [241].

5.6 Remarks on a Stability Problem

So far, our study has been devoted to systems with two time scales in
a finite interval. In many problems arising in networked control systems,
stability is often a main concern. A related problem along this line is in
Badowski and Yin [5].
It is interesting to note that intuitive ideas sometimes are not necessarily

true for systems with switching, for example, if one put together two stable
systems by using, for instance, Markovian switching. Our intuition may
lead to the conclusion that the combined systems should also be stable.
Nevertheless, this is, in fact, not true. Such an idea was illustrated in Wang,
Khargonekar, and Beydoun [212] for deterministically switched systems; see
also Chapter 1 of this book concerning this matter.
As a variation of the system in [212], we consider the following example.

Suppose that αε(·) is a continuous-time Markov chain with state space

M = {1, 2} and generator Qε = Q/ε, where Q =

⎛

⎜
⎝

−1 1

1 −1

⎞

⎟
⎠. Consider

a controlled system

ẋ = A(αε(t))x +B(αε(t))u(t),

with state feedback u(t) = K(αε(t))x(t). Then we obtain the equivalent
representation

ẋ = [A(αε(t))−B(αε(t))K(αε(t))]x. (5.139)
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Suppose that

G(1) = A(1)−B(1)K(1) =

⎛

⎜
⎝

−100 20

200 −100

⎞

⎟
⎠ ,

G(2) = A(2)−B(2)K(2) =

⎛

⎜
⎝

−100 200

20 −100

⎞

⎟
⎠ .

Note that both matrices are Hurwitz (i.e., their eigenvalues have negative
real parts). A question of interest is this: Is system (5.139) stable? The key
to understanding the system is to examine

ẋε(t) = G(αε(t))xε(t), (5.140)

where both G(1) and G(2) are stable matrices.
Since Q is irreducible, the stationary distribution associated with Q is

given by (1/2, 1/2). As a result, as ε → 0, using our weak convergence
result, xε(·) converges weakly to x(·), which is a solution of the system

ẋ(t) = Gx(t), where

G =
1

2
(G(1) +G(2)) =

⎛

⎜
⎝

−100 110

110 −100

⎞

⎟
⎠ .

(5.141)

In addition, for any T < ∞, using the large deviations result obtained in
He, Yin, and Zhang [84], we can show that for any δ > 0, there is a c1 > 0
such that

P (ρ0,T (x
ε(t), x(t)) ≥ δ) ≤ exp(−c1/ε), (5.142)

where ρ0,T (x, y) = sup0≤t≤T |x(t)− y(t)|.
Note that G is an unstable matrix with eigenvalues −210 and 10. Thus

for (5.141), the critical point (0, 0)′ is a saddle point. But why should the
stability of the averaged system dominate that of the original system? To
see this, from a result of differential equations, there is a nonsingular matrix
H such thatHGH−1 = Λ = diag(−210, 10). Clearly, the stability of (5.141)
is equivalent to that of

ẏ(t) = Λy(t) = H

2∑

i=1

νiG(i)H
−1y(t) = diag(−210, 10)y(t), (5.143)

where y = Hx = (y1, y2)
′. The stability of (5.141) is equivalent to that of

(5.143), which is completely decoupled and y1(t) = exp(−210t)y1(0) → 0
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and y2(t) = exp(10t)y2(0) → ∞. To see how the original system (5.140)
behaves, we apply the same transformation to get

ẏε(t) = H
2∑

i=1

I{αε(t)=i}G(i)H−1yε(t). (5.144)

For the transformed system (5.143), by choosing V (y) = y22/2, we obtain
V̇ (y(t)) = 10y22 > 0 for all y2 �= 0. Define Lεz(t) = limδ↓0 Eε

t [z(t + δ) −
z(t)]/δ for a real-valued function z(t) that is continuously differentiable,
where Eε

t denotes the conditioning on the Fε
t = σ{αε(s) : s ≤ t}. With

V (y) = y22/2, we have

LεV (yε(t)) = 10(yε2(t))
2 + V ′

y(y
ε(t))H

2∑

i=1

[I{αε(t)=i} − νi]G(i)H
−1yε(t),

where V ′
y(y) = (0, y2) ∈ R

1×2. Using perturbed Liapunov function tech-
niques as done in Badowski and Yin [5], define a perturbation

V ε
2 (y, t) = Eε

t

∫ ∞

t

et−sV ′
y(y)H

2∑

i=1

[I{αε(s)=i} − νi]G(i)H
−1y.

It can be shown that V ε
2 (y, t) = O(ε)V (y). In addition,

LεV ε
2 (y

ε(t), t) = −V ′
y(y

ε(t))H

2∑

i=1

[I{αε(t)=i} − νi]G(i)H
−1yε(t)

+O(ε)V (yε(t)).

Define
V ε(y, t) = V (y) + V ε

2 (y, t).

Evaluate LεV ε(yε(t), t). Upon cancelation, for sufficiently small ε, we can
make

O(ε)V (yε(t)) ≥ −(yε2(t))
2.

It then follows that

LεV ε(yε(t), t) = 10(yε2(t))
2 +O(ε)V (yε(t))

≥ 9(yε2(t))
2.

Taking expectation of the left- and right-hand sides above leads to

d

dt
E|yε2(t)|2 ≥ 9E|yε2(t)|2,
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which in turn yields that

E(yε2(t))
2 ≥ E(yε2(0))

2 exp(9t) → ∞ as t → ∞.

Similar to the previous development, choose V (y) = y21/2, define

V ε
1 (y, t) = Eε

t

∫ ∞

t

et−sV ′
y(y)H

2∑

i=1

[I{αε(s)=i} − νi]G(i)H
−1y,

and redefine
V ε(y, t) = V (y) + V ε

1 (y, t).

Using the upper bound O(ε)V (yε(t)) ≤ (yε1(t))
2 this time and calculating

LεV ε(yε(t), t), we obtain

d

dt
E|yε1(t)|2 ≤ −209E|yε1(t)|2,

which in turn yields that

E(yε1(t))
2 ≤ E(yε1(0))

2 exp(−209t) → 0 as t→ ∞.

This yields that (5.144) and hence (5.140) are unstable in probability (see
Yin and Zhu [244, p. 220] for a definition). In fact, it can be seen that the
trivial solution of the original system is also a saddle.
In the same spirit of the last example, consider a system given by

ẋε(t) = G(αε(t))xε(t), αε(t) ∼ Q/ε, where

G(1) =

⎛

⎜
⎝

−7

3
−1

0 1

⎞

⎟
⎠ , G(2) =

⎛

⎜
⎝

1 0

−1 −7

3

⎞

⎟
⎠ ,

(5.145)

where Q is as in the last example. Then it can be shown that xε(·) converges
weakly to x(·) that is a solution of the following system

ẋ(t) = Gx(t),

G =

⎛

⎜
⎝

−4

3
−1

−1 −4

3

⎞

⎟
⎠ .

(5.146)

Neither G(1) nor G(2) is a stable matrix, but the system (5.146) is a stable
one. The stability analysis is again carried out using perturbed Liapunov
function methods. Here exactly the same kind of argument as in [5] can
be applied. Using the techniques of perturbed Liapunov functions, we can
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show that the stability of the averaged system “implies” that of the original
system.
These two examples illustrate that one can combine two stable systems

using Markovian switching to produce an unstable limit system. Likewise,
one can combine two unstable systems to produce a limit stable systems.
More importantly, using our weak convergence result of this chapter and
the large deviations results in He, Yin, and Zhang [84], combined with the
perturbed Liapunov function argument, we can give the reason why such
a thing can happen.

5.7 Notes

This chapter concerns sequences of functional occupation measures. It
includes convergence of an unscaled sequence (in probability) and central-
limit-type results for suitably scaled sequences. For a general introduction
to central limit theorems, we refer to the book by Chow and Teicher [30]
and the references therein. In the stationary case, that is, Q(t) = Q, a con-
stant matrix, the central limit theorem may be obtained as in Friedlin and
Wentzell [67]. Some results of central limit type for discrete Markov chains
are in Dobrushin [50] (see also the work of Linnik on time-inhomogeneous
Markov chains [147]). Work in the context of random evolution, with pri-
mary concern the central limit theorem involving a singularly perturbed
Markov chain, is in Pinsky [176]; see also Kurtz [135, 137] for related dis-
cussions and the martingale problem formulation. Exponential bounds for
Markov processes are quite useful in analyzing the behavior of the underly-
ing stochastic processes. Some results in connection with diffusions can be
found in Kallianpur [102]. Corollary 5.8 can be viewed as a large deviations
result. For extensive treatment of large deviations, see Varadhan [207].
The central theme here is limit results of unscaled as well as scaled

sequences of occupation measures, which include the law of large numbers
for an unscaled sequence, exponential upper bounds, and asymptotic distri-
bution of a suitably scaled sequence of occupation times. Results in Section
5.2 are based on the paper of Zhang and Yin [252]; however, a somewhat
different approach to the central limit theorem was used in [252]. Some of
the results in Section 5.3 are based on Zhang and Yin [253]. The result on
exponential error bound in Section 5.3 is a natural extension for the irre-
ducible generators. Such result holds uniformly in t ∈ [0, T ] for fixed but
otherwise arbitrary T > 0. The main motivation for treating T as a parame-
ter stems from various control and optimization problems with discounted
cost over the infinite horizon. In such a situation, the magnitude of the
bound counts. Thus detailed information on the bounding constant is help-
ful for dealing with the near optimality of the underlying problem. Section
5.3 also presents a characterization of the limit process using martingale
problem formulations. Much of the foundation of this useful approach is
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in the work of Stroock and Varadhan [203]. Using perturbed operators to
study limit behavior may be traced back to Kurtz [135]. The general idea
of perturbed test functions was used in Blankenship and Papanicolaou [16],
and Papanicolaou, Stroock, and Varadhan [168]. It was further developed
and extended by Kushner [139] for various stochastic systems, and singu-
larly perturbed systems in Kushner [140]; see also Kushner and Yin [145]
for related stochastic approximation problems, and Ethier and Kurtz [59]
and Kurtz [137] for related work in stochastic processes. The results of this
section have benefited from the discussion with Thomas Kurtz, who sug-
gested treating the pair of processes (nε(·), αε(·)) together, which led to
the current version. Earlier treatment of a pair of processes may be found
in the work of Kesten and Papanicolaou [110] for stochastic acceleration.
The results on asymptotic properties for the inclusion of transient states

can be found in Yin, Zhang, and Badowski [239]; the results for the case
of generators being measurable can be found in the work of Yin, Zhang,
and Badowski [240]; the results on asymptotic properties of occupation
measures with absorbing states can be found in Yin, Zhang, and Bad-
owski [241].
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