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Asymptotic Expansions of Solutions
for Forward Equations

4.1 Introduction

This chapter is concerned with the analysis of the probability distributions
of two-time-scale Markov chains. We aim to approximate the solution of
forward equation by means of sequences of functions so that the desired
accuracy is reached. As alluded to in Chapter 1, we devote our attention to
nonstationary Markov chains with time-varying generators. A key feature
here is time-scale separation. By introducing a small parameter ε > 0, the
generator and hence the corresponding Markov chain have “two times,”
a usual running time t and a fast time t/ε. The main approach that we
are using is the matched asymptotic expansions from singular perturbation
theory. We first construct a sequence of functions that well approximate the
solution of the forward equation when t is large enough (outside the initial
layer of O(ε)). By adopting the notion of singular perturbation theory, this
part of the approximation will be called outer expansions. We demonstrate
that it is a good approximation as long as t is not in a neighborhood of 0 of
the order O(ε). Nevertheless, this sequence of functions does not satisfy the
given initial condition and the approximation breaks down when t ≤ O(ε).
To circumvent these difficulties, we construct another sequence of func-
tions by magnifying the asymptotic behavior of the solution near 0 using
the stretched fast time τ = t/ε. Following the traditional terminology in
singular perturbation theory, we call this sequence of functions initial-layer
corrections (or sometimes, boundary-layer corrections). It effectively yields
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60 4. Asymptotic Expansions of Solutions for Forward Equations

corrections to the outer expansions and makes sure that the approximation
is good in a neighborhood of O(ε). By combining the outer expansions and
the initial-layer corrections, we obtain a sequence of matched asymptotic
expansions. The entire process is constructive. Our aims in this chapter
include:

• Construct the outer expansions and the initial-layer corrections. This
construction is often referred to as formal expansions.

• Justify the sequence of approximations obtained by deriving the
desired error bounds. To achieve this, we show that (i) the outer
solutions are sufficiently smooth, (ii) the initial-layer terms all decay
exponentially fast, and (iii) the error is of the desired order. Thus
not only is convergence of the asymptotic expansions proved, but
also the error bound is obtained.

• Demonstrate that the error bounds hold uniformly. We would like to
mention that in the usual singular perturbation theory, for example,
in treating a linear system of differential equations, it is required that
the system matrix be stable (i.e., all eigenvalues have negative real
parts). In our setup, even for a homogeneous Markov chain, the gen-
erator (the system matrix in the equation) has an eigenvalue 0, so is
not invertible. Thus, the stability requirement is violated. Neverthe-
less, using Markov properties, we are still able to obtain the desired
asymptotic expansions.

Before proceeding further, we present a lemma. Let Q(t) ∈ R
m×m be

a generator, and let α(t) be a finite-state Markov chain with state space
M = {1, . . . ,m} and generator Q(t). Denote by

p(t) = (P (α(t) = 1), . . . , P (α(t) = m)) ∈ R
1×m

the row vector of the probability distribution of the underlying chain at
time t. Then in view of Theorem 2.5, p(·) is a solution of the forward
equation

dp(t)

dt
= pQ(t) = p(t)Q(t),

p(0) = p0 such that p0i ≥ 0 for each i, and
m∑

i=1

p0i = 1,

(4.1)

where p0 = (p01, . . . , p
0
m) and p0i denotes the ith component of p0. Therefore,

studying the probability distribution is equivalent to examining the solution
of (4.1). Note that the forward equation is linear, so the solution is unique.
As a result, the following lemma is immediate. This lemma will prove useful
in subsequent study.
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Lemma 4.1. The solution p(t) of (4.1) satisfies the conditions

0 ≤ pi(t) ≤ 1 and

m∑

i=1

pi(t) = 1. (4.2)

Remark 4.2. For the reader whose interests are mainly in differential
equations, we point out that the initial condition

∑m
i=1 p

0
i = 1 in (4.1)

is not restrictive since if p0 = 0, then p(t) = 0 is the only solution to (4.1).
If p0i > 0 for some i, one may divide both sides of (4.1) by

∑m
i=1 p

0
i (> 0)

and consider p̃(t) = p(t)/
∑m

i=1 p
0
i in lieu of p(t).

To achieve our goal, we first treat a simple case, namely, the case that
the generator is weakly irreducible. Once this is established, we proceed to
the more complex case that the generator has several weakly irreducible
classes, the inclusion of absorbing states, and the inclusion of transient
states.
The rest of the chapter is arranged as follows. Section 4.2 begins with the

study of the situation in which the generator is weakly irreducible. Although
it is a simple case, it outlines the main ideas behind the construction of
asymptotic expansions. This section begins with the construction of formal
expansions, proves the needed regularity, and ascertains the error estimates.
Section 4.3 develops asymptotic expansions of the underlying probability
distribution for the chains with recurrent states. As will be seen in the anal-
ysis to follow, extreme care must be taken to handle two-time-scale Markov
chains with fast and slow components. One of the key issues is the selection
of appropriate initial conditions to make the series a “matched” asymptotic
expansions, in which the separable form of our asymptotic expansion ap-
pears to be advantageous compared with the two-time-scale expansions.
For easy reference, a subsection is also provided as a user’s guide.
Using the methods of matched asymptotic expansion, Section 4.4 extends

the results to include absorbing states. It demonstrates that similar tech-
niques can be used. We also demonstrate that the techniques and methods
of Section 4.3 are rather general and can be applied to a wide variety
of cases. Section 4.5 continues the study of problems involving transient
states. By treating chains having recurrent states, chains including absorb-
ing states, and chains including transient states, we are able to characterize
the probability distributions of the underlying singularly perturbed chains
of general cases with finite-state spaces, and hence provide comprehensive
pictures through these “canonical” models.
While Sections 4.3–4.5 cover most practical concerns of interest for the

finite-state-space cases, the rest of the chapter makes several remarks on
Markov chains with countable-state spaces and two-time-scale diffusions.
In Section 4.6.1, we extend the results to processes with countable-state
spaces in which Q̃(t) is a block-diagonal matrix with infinitely many blocks
each of which is finite-dimensional. Then Section 4.6.2 treats the prob-
lem in which Q̃(t) itself is an infinite-dimensional matrix. In this case,
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further conditions are necessary. As in the finite-dimensional counterpart,
sufficient conditions that ensure the validity of the asymptotic expansions
are provided. The essential ingredients include Fredholm-alternative-like
conditions and the notion of weak irreducibility. Finally, we mention re-
lated results of singularly perturbed diffusions in Section 4.7. Additional
notes and remarks are given in Section 4.8.

4.2 Irreducible Case

We begin with the case concerning weakly irreducible generators. Let
Q(t) ∈ R

m×m be a generator, ε > 0 be a small parameter, and suppose
that αε(t) is a finite-state Markov chain with state space M = {1, . . . ,m}
generated by Qε(t) = Q(t)/ε. The row vector pε(t) = (P (αε(t) =
1), . . . , P (αε(t) = m)) ∈ R

1×m denotes the probability distribution of
the underlying chain at time t. Then by virtue of Theorem 2.5, pε(·) is a
solution of the forward equation

dpε(t)

dt
= pεQε(t) =

1

ε
pε(t)Q(t),

pε(0) = p0 such that p0i ≥ 0 for each i, and

m∑

i=1

p0i = 1,

(4.3)

where p0 = (p01, . . . , p
0
m) and p0i denotes the ith component of p0. Therefore,

studying the probability distribution is equivalent to examining the solution
of (4.3). Now, Lemma 4.1 continues to hold for the solution pε(t).
As discussed in Chapters 1 and 3, the equation in (4.3) arises from various

applications involving a rapidly fluctuating Markov chain governed by the
generator Q(t)/ε. As ε gets smaller and smaller, the Markov chain fluc-
tuates more and more rapidly. Normally, the fast-changing process αε(·)
in an actual system is difficult to analyze. The desired limit properties,
however, provide us with an alternative. We can replace the actual pro-
cess by its “average” in the system under consideration. This approach
has significant practical value. A fundamental question common to numer-
ous applications involving two-time-scale Markov chains is to understand
the asymptotic properties of pε(·), namely, the limit behavior as ε → 0.
If Q(t) = Q, a constant matrix, and if Q is irreducible (see Definition 2.7),
then for each t > 0, pε(t) → ν, the familiar stationary distribution. For the
time-varying counterpart, it is reasonable to expect that the correspond-
ing distribution will converge to a probability distribution that mimics
the main features of the distribution of stationary chains, meanwhile pre-
serving the time-varying nature of the nonstationary system. A candidate
bearing such characteristics is the quasi-stationary distribution ν(t). Recall
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that ν(t) is said to be a quasi-stationary distribution (see Definition 2.8) if
ν(t) = (ν1(t), . . . , νm(t)) ≥ 0 and it satisfies the equations

ν(t)Q(t) = 0 and

m∑

i=1

νi(t) = 1. (4.4)

If Q(t) ≡ Q, a constant matrix, then an analytic solution of (4.3) is
obtainable, since the fundamental matrix solution (see Hale [79]) takes the
simple form exp(Qt); the limit behavior of pε(t) is derivable through the
solution p0 exp(Qt/ε). For time-dependent Q(t), although the fundamental
matrix solution still exists, it does not have a simple form. The complex
integral representation is not very informative in the asymptotic study of
pε(t), except in the case m = 2. In this case, αε(·) is a two-state Markov
chain and the constraint pε1(t) + pε2(t) = 1 reduces the current problem to
a scalar one. Therefore, a closed-form solution is possible. However, such a
technique cannot be generalized to m > 2. Let 0 < T < ∞ be a finite real
number. We divide the interval [0, T ] into two parts. One part is for t very
close to 0 (in the range of an ε-layer), and the other is for t bounded away
from 0. The behavior of pε(·) differs significantly in these two regions. Such
a division led us to the utilization of the matched asymptotic expansion.
Not only do we prove the convergence of pε(t) as ε → 0, but we also ob-
tain an asymptotic series. The procedure involves constructing the regular
part (outer expansion) for t to be away from 0, as well as the initial-layer
corrections for small t, and to match these expansions by a proper choice
of initial conditions.
In what follows, in addition to obtaining the zeroth-order approxima-

tion, i.e., the convergence of pε(·) to its quasi-stationary distribution, we
derive higher-order approximations and error bounds. A consequence of the
findings is that the convergence of the probability distribution and related
occupation measures of the corresponding Markov chain takes place in an
appropriate sense. The asymptotic properties of a suitably scaled occupa-
tion time and the corresponding central limit theorem for αε(·) (based on
the expansion) will be studied in Chapter 5.

4.2.1 Asymptotic Expansions

To proceed, we make the following assumptions.

(A4.1) Given 0 < T <∞, for each t ∈ [0, T ], Q(t) is weakly irreducible,
that is, the system of equations

f(t)Q(t) = 0,

m∑

i=1

fi(t) = 1

(4.5)

has a unique nonnegative solution.
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(A4.2) For some n, Q(·) is (n+ 1)-times continuously differentiable on
[0, T ], and (dn+1/dtn+1)Q(·) is Lipschitz on [0, T ].

Remark 4.3. Condition (A4.2) requires that the matrix Q(t) be
sufficiently smooth. This is necessary for obtaining the desired asymptotic
expansion. To validate the asymptotic expansion, we need to estimate
the remainder term. Thus for the nth-order approximation, we need the
(n+ 1)st-order smoothness.

To proceed, we first state a lemma. Its proof is in Lemma A.2 in the
appendix.

Lemma 4.4. Consider the matrix differential equation

dP (s)

ds
= P (s)A, P (0) = I, (4.6)

where P (s) ∈ R
m×m. Suppose A ∈ R

m×m is a generator of a (homogeneous
or stationary) finite-state Markov chain and is weakly irreducible. Then
P (s) → P as s→ ∞ and

∣∣∣ exp(As)− P
∣∣∣ ≤ K exp(−κ̃s) for some κ̃ > 0, (4.7)

where P = 1l(ν1, · · · , νm) ∈ R
m×m, and (ν1, . . ., νm) is the quasi-stationary

distribution of the Markov process with generator A.

Recall that 1l = (1, . . . , 1)′ ∈ R
m×1 and (ν1, . . . , νm) ∈ R

1×m. Thus
1l(ν1, . . . , νm) is the usual matrix product. Recall that anm×mmatrix P (s)
is said to be a solution of (4.6) if each row of P (s) satisfies the equation.
In the lemma above, if A is a constant matrix that is irreducible, then
(ν1, . . . , νm) becomes the familiar stationary distribution. In general, A
could be time-dependent, e.g., A = A(t). As shown in Lemma A.4, by
assuming the existence of the solution ν(t) to (4.5), it follows that ν(t) ≥ 0;
that is, the nonnegativity assumption is redundant. We seek asymptotic
expansions of the form

pε(t) = Φε
n(t) + Ψε

n

(
t

ε

)
+ eεn(t),

where eεn(t) is the remainder,

Φε
n(t) = ϕ0(t) + εϕ1(t) + · · ·+ εnϕn(t), (4.8)

and

Ψε
n

(
t

ε

)
= ψ0

(
t

ε

)
+ εψ1

(
t

ε

)
+ · · ·+ εnψn

(
t

ε

)
, (4.9)

with the functions ϕi(·) and ψi(·) to be determined in the sequel. We now
state the main result of this section.
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Theorem 4.5. Suppose that (A4.1) and (A4.2) are satisfied. Denote the
unique solution of (4.3) by pε(·). Then two sequences of functions ϕi(·) and
ψi(·), 0 ≤ i ≤ n, can be constructed such that

(a) ϕi(·) is (n+ 1− i)-times continuously differentiable on [0, T ];

(b) for each i, there is a κ0 > 0 such that

∣∣∣∣ψi

(
t

ε

)∣∣∣∣ ≤ K exp

(
−κ0t

ε

)
;

(c) the following estimate holds:

sup
t∈[0,T ]

∣∣∣∣p
ε(t)−

n∑

i=0

εiϕi(t)−
n∑

i=0

εiψi

(
t

ε

)∣∣∣∣ ≤ Kεn+1. (4.10)

Remark 4.6. The method described in what follows gives an explicit con-
struction of the functions ϕi(·) and ψi(·) for i ≤ n. Thus the proof to be
presented is constructive. Our plan is first to obtain these sequences, and
then validate properties (a) and (b) above and derive an error bound in (c)
by showing that the remainder

∣∣∣∣p
ε(t)−

n∑

i=0

εiϕi(t)−
n∑

i=0

εiψi

(
t

ε

)∣∣∣∣

is of order O(εn+1) uniformly in t.

It will be seen from the subsequent development that ϕ0(t) is equal to the
quasi-stationary distribution, that is, ϕ0(t) = ν(t). In particular, if n = 0
in the above theorem, we have the following result.

Corollary 4.7. Suppose Q(·) is continuously differentiable on [0, T ], which
satisfies (A4.1), and (d/dt)Q(·) is Lipschitz on [0, T ]. Then for all t > 0,

lim
ε→0

pε(t) = ν(t) = ϕ0(t), (4.11)

i.e., pε(·) converges to the quasi-stationary distribution.

Remark 4.8. The theorem manifests the convergence of pε(·) to ϕ0(·),
as well as the rate of convergence. In addition to the zeroth-order
approximation, we have the first-order approximation, the second-order ap-
proximation, and so on. In fact, the difference pε(·)−ϕ0(·) is characterized
by the initial-layer term ψ0(·) and the associated error bound.
If the initial condition is chosen to be exactly equal to p0 = ϕ0(0),

then in the expansion, the zeroth-order initial layer ψ0(·) will vanish. This
cannot be expected in general, however. Even if ψ0(·) = 0, the rest of the
initial-layer terms ψi(·), i ≥ 1 will still be there.
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To proceed, we define an operator Lε by

Lεf = ε
df

dt
− fQ, (4.12)

for any smooth row-vector-valued function f(·). Then Lεf = 0 iff f is a
solution to the differential equation in (4.3). The proof of Theorem 4.5 is
divided into the following steps.

1. Construct the asymptotic series, i.e., find ϕi(·) and ψi(·), for
i ≤ n. For the purpose of evaluating the remainder, we need to
calculate two extra terms ϕn+1(·) and ψn+1(·). This will become
clear when we carry out the error analysis.

2. Obtain the regularity of ϕi(·) and ψi(·) by proving that ϕi(·) is
(n + 1 − i)-times continuously differentiable on [0, T ] and that
ψi(·) decays exponentially fast.

3. Carry out the error analysis and justify that the remainder has
the desired property.

4.2.2 Outer Expansion

We begin with the construction of Φε
n(·) in the asymptotic expansion. We

call it the outer expansion or the regular part of expansion. Consider the
differential equation

LεΦε
n+1 = 0

where Lε is given by (4.12).
By equating the coefficients of εk, for k = 1, . . . , n+ 1, we obtain

ε0 : ϕ0(t)Q(t) = 0,

ε1 : ϕ1(t)Q(t) =
dϕ0(t)

dt
,

· · ·

εk : ϕk(t)Q(t) =
dϕk−1(t)

dt
, for k = 1, . . . , n+ 1.

(4.13)

Remark 4.9. First, one has to make sure that the equations above have
solutions, that is, a consistency condition needs to be verified. For each t ∈
[0, T ], denote the null space of Q(t) by N(Q(t)). Note that the irreducibility
of Q(t) implies that

rank(Q(t)) = m− 1,
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thus

dim(N(Q(t))) = 1.

It is easily seen that N(Q(t)) is spanned by the vector 1l. By virtue of the
Fredholm alternative (see Corollary A.38), the second equation in (4.13)
has a solution only if its right-hand side, namely, (d/dt)ϕ0(t) is orthogonal
to N(Q(t)). Since N(Q(t)) is spanned by 1l,

ϕ0(t)1l = 1

and
dϕ0(t)

dt
1l =

d (ϕ0(t)1l)

dt
= 0,

the orthogonality is easily verified. Similar arguments hold for the rest of
the equations. The consistency in fact is rather crucial. Without such a
condition, one would not be able to solve the equations in (4.13). This
point will be made again when we deal with weak and strong interaction
models in Section 4.3.

Recall that the components of pε(·) are probabilities (see (4.2)). In what
follows, we show that all these ϕi(·) can be determined by (4.13) and (4.2).
Note that rank(Q(t)) = m− 1. Thus Q(t) is singular, and each equation

in (4.13) is not uniquely solvable. For example, the first equation (4.13)
cannot be solved uniquely. Nevertheless, this equation together with the
constraint

∑m
i=1 ϕ

i
0(t) = 1 leads to a unique solution, namely, the quasi-

stationary distribution.
In fact, a direct consequence of (A4.3) and (A4.4) is that the weak ir-

reducibility of Q(t) is uniform in the sense that for any t ∈ [0, T ], if any
column of Q(t) is replaced by 1l ∈ R

m×1, the resulting determinant Δ(t)
satisfies |Δ(t)| > 0, since (4.5) has only one solution, and

∑m
j=1 qij(t) = 0

for each i = 1, . . . ,m. Moreover, there is a number c > 0 such that |Δ(t)| ≥
c > 0. Thus, in view of the uniform continuity of Q(t), |Δ(t)| ≥ c > 0 on
[0, T ]. We can replace any equation in the first m equations of the system
ϕ0(t)Q(t) = 0 by the equation

∑m
i=1 ϕ

i
0(t) = 1. The corresponding deter-

minant Δ(t) of the resulting coefficient matrix satisfies |Δ(t)| ≥ c > 0, for
some c > 0 and all t ∈ [0, T ]. To illustrate, we may suppose without loss of
generality that the mth equation is the one that can be replaced. Then we
have

q11(t)ϕ
1
0(t) + · · ·+ qm1(t)ϕ

m
0 (t) = 0,

q12(t)ϕ
1
0(t) + · · ·+ qm2(t)ϕ

m
0 (t) = 0,

· · ·
q1,m−1(t)ϕ

1
0(t) + · · ·+ qm,m−1(t)ϕ

m
0 (t) = 0,

ϕ1
0(t) + · · ·+ ϕm

0 (t) = 1.

(4.14)
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The determinant of the coefficient matrix in (4.14) is

Δ(t) =

∣∣∣∣∣∣∣∣∣∣

q11(t) q21(t) · · · qm1(t)
q12(t) q22(t) · · · qm2(t)

...
... · · · ...

q1,m−1(t) q2,m−1(t) · · · qm,m−1(t)
1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣

(4.15)

and satisfies |Δ(t)| ≥ c > 0. Now by Cramer’s rule, for each 0 ≤ i ≤ m,

ϕi
0(t) =

1

Δ(t)

∣∣∣∣∣∣∣∣∣∣∣∣

q11(t) · · · 0 · · · qm1(t)
q12(t) · · · 0 · · · qm2(t)

... · · · ... · · · ...
q1,m−1(t) · · · 0 · · · qm,m−1(t)

1 · · · 1︸︷︷︸
ith column

· · · 1

∣∣∣∣∣∣∣∣∣∣∣∣

,

that is, the ith column of Δ(t) in (4.15) is replaced by (0, . . . , 0, 1)′ ∈ R
m×1.

By the assumption of Q(·), it is plain that ϕ0(·) is (n+1)-times continuously
differentiable on [0, T ].
The foregoing method can be used to solve other equations in (4.13)

analogously. Owing to the smoothness of ϕ0(·), (d/dt)ϕ0(t) exists, and we
can proceed to obtain ϕ1(·). Repeat the procedure above, and continue
inductively. For each k ≥ 1,

m∑

i=1

ϕi
k(t)qij(t) =

dϕj
k−1(t)

dt
for j = 1, . . . ,m,

m∑

i=1

ϕi
k(t) = 0.

(4.16)

Note that ϕj
k−1(·) has been found so (d/dt)ϕj

k−1(t) is a known function.
After a suitable replacement of one of the first m equations by the last
equation in (4.16), the determinant Δ(t) of the resulting coefficient matrix
satisfies |Δ(t)| ≥ c > 0. We obtain for each 0 ≤ i ≤ m,

ϕi
k(t) =

1

Δ(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q11(t) · · · dϕ1
k−1(t)

dt
· · · qm1(t)

q12(t) · · · dϕ2
k−1(t)

dt
· · · qm2(t)

... · · · ... · · · ...

q1,m−1(t) · · · dϕm−1
k−1 (t)

dt
· · · qm,m−1(t)

1 · · · 0︸︷︷︸
ith column

· · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Hence ϕk(·) is (n+1− k)-times continuously differentiable on [0, T ]. Thus
we have constructed a sequence of functions ϕk(t) that are (n+1−k)-times
continuously differentiable on [0, T ] for k = 0, 1, . . . , n+ 1.

Remark 4.10. The method used above is convenient for computational
purposes. An alternative way of obtaining the sequence ϕk(t) is as follows.
For example, to solve

ϕ0(t)Q(t) = 0,

m∑

j=1

ϕj
0(t) = 1,

define Qc(t) = (1l
...Q(t)) ∈ R

m×(m+1). Then the equation above can be
written as

ϕ0(t)Qc(t) = (1, 0, . . . , 0).

Note that Qc(t)Q
′
c(t) has full rank m owing to weak irreducibility. Thus

the solution of the equation is

ϕ0(t) = (1, 0, . . . , 0)Q′
c(t)[Qc(t)Q

′
c(t)]

−1.

We can obtain all other ϕk(t) for k = 1, . . . , n+ 1, similarly.

The regular part Φε
n(·) is a good approximation to pε(·) when t is bounded

away from 0. When t approaches 0, an initial layer (or a boundary layer)
develops and the approximation breaks down. To accommodate this situ-
ation, an initial-layer correction, i.e., a sequence of functions ψk(t/ε) for
k = 0, 1, . . . , n+ 1 needs to be constructed.

4.2.3 Initial-Layer Correction

This section is on the construction of the initial-layer terms. The presen-
tation consists of two parts. We obtain the sequence {ψk(·)} in the first
subsection, and derive the exponential decay property in the second sub-
section.

Construction of ψk(·). Following usual practice in singular perturbation
theory, define the stretched (or rescaled) time variable by

τ =
t

ε
. (4.17)

Note that τ → ∞ as ε→ 0 for any given t > 0.
Consider the differential equation

LεΨε
n+1 =

n+1∑

i=0

εiLεψi = 0.
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Using the stretched time variable τ , we arrive at

dΨε
n+1(τ)

dτ
= Ψε

n+1(τ)Q(ετ).

Owing to the smoothness ofQ(·), a truncated Taylor expansion about τ = 0
leads to

Q(t) = Q(ετ) =

n+1∑

i=0

(ετ)i

i!

diQ(0)

dti
+Rn+1(ετ),

where

Rn+1(t) =
tn+1

(n+ 1)!

(
dn+1Q(ξ)

dtn+1
− dn+1Q(0)

dtn+1

)
,

for some 0 < ξ < t. In view of (A4.2),

Rn+1(t) = O(tn+2) uniformly in t ∈ [0, T ].

Drop the term Rn+1(t) and use the first n+ 2 terms to get

dΨε
n+1(τ)

dτ
= Ψε

n+1(τ)

(
n+1∑

i=0

(ετ)i

i!

diQ(0)

dti

)
.

Similar to the previous section, for k = 1, . . . , n + 1, equating coefficients
of εk, we have

ε0 :
dψ0(τ)

dτ
= ψ0(τ)Q(0),

ε1 :
dψ1(τ)

dτ
= ψ1(τ)Q(0) + τψ0(τ)

dQ(0)

dt
,

· · ·

εk :
dψk(τ)

dτ
= ψk(τ)Q(0) + rk(τ),

(4.18)

where rk(τ) is a function having the form

rk(τ) =
τk

k!
ψ0(τ)

dkQ(0)

dtk
+ · · ·+ τψk−1(τ)

dQ(0)

dt

=

k∑

i=1

τ i

i!
ψk−i(τ)

diQ(0)

dti
.

(4.19)

These equations together with appropriate initial conditions allow us to
determine the ψk(·)’s. For constructing ϕk(·), a number of algebraic equa-
tions are solved, whereas when determining ψk, one has to solve a num-
ber of differential equations instead. Two points are worth mentioning in
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connection with (4.18). First the time-varying differential equation is re-
placed by one with constant coefficients; the solution thus can be written
explicitly. The second point is on the selection of the initial conditions for
ψk(·), with k = 0, 1, . . . , n+1. We choose the initial conditions so that the
initial data of the asymptotic expansion will “match” that of the differential
equation (4.3). To be more specific,

ϕ0(0) + ψ0(0) = p0, and

ϕk(0) + ψk(0) = 0 for k = 1, 2, . . . , n+ 1.

Corresponding to ε0, solving

dψ0(τ)

dτ
= ψ0(τ)Q(0),

ψ0(0) = p0 − ϕ0(0),

where p0 is the initial data given in (4.3), one has

ψ0(τ) = (p0 − ϕ0(0)) exp (Q(0)τ) . (4.20)

Continuing in this fashion, for k = 1, . . . , n+ 1, we obtain

dψk(τ)

dτ
= ψk(τ)Q(0) + rk(τ),

ψk(0) = −ϕk(0).

In the equations above, we purposely separated Q(0) from the term rk(τ).
As a result, the equations are linear systems with a constant matrix Q(0)
and time-varying forcing terms. This is useful for our subsequent investi-
gation.
For k = 1, 2, . . ., the solutions are given by

ψk(τ) = −ϕk(0) exp(Q(0)τ)

+

∫ τ

0

rk(s) exp (Q(0)(τ − s)) ds.

(4.21)

The construction of ψk(·) for k = 0, 1, . . . , n+1, and hence the construction
of the asymptotic series is complete.
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4.2.4 Exponential Decay of ψk(·)
This subsection concerns the exponential decay of ψk(·). At first glance,
it seems to be troublesome since Q(0) has a zero eigenvalue. Nevertheless,
probabilistic argument helps us to derive the desired property. Two key
points in the proof below are the utilization of orthogonality and repeated
application of the approximation of exp(Q(0)τ) in Lemma 4.4.
By virtue of Assumption (A4.1), the finite-state Markov chain gener-

ated by Q(0) is weakly irreducible. Identifying Q(0) with the matrix A in
Lemma 4.4 yields that

exp(Q(0)τ) → P as τ → ∞,

where P = 1lν, and ν = (ν1, . . . , νm) is the quasi-stationary distribution
corresponding to the constant matrix Q(0).

Proposition 4.11. Under the conditions of Theorem 4.5, for each 0 ≤ k ≤
n + 1, there exist a nonnegative real polynomial c2k(τ) of degree 2k and a
positive number κ0,0 > 0 such that

|ψk(τ)| ≤ c2k(τ) exp(−κ0,0τ). (4.22)

Proof: First of all, note that

m∑

i=1

p0i = 1 and

m∑

i=1

ϕi
0(0) = 1.

It follows that
m∑

i=1

ψi
0(0) =

m∑

i=1

p0i −
m∑

i=1

ϕi
0(0) = 0.

That is, ψ0(0) is orthogonal to 1l. Consequently, ψ0(0)P = 0 and by virtue
of Lemma 4.4 (with A = Q(0)), for some κ0,0 := κ̃ > 0,

|ψ0(τ)| = |ψ0(0) exp(Q(0)τ)|

≤ ∣∣ψ0(0)P
∣∣+

∣∣ψ0(0)(exp(Q(0)τ)− P )
∣∣

=
∣∣ψ0(0)(exp(Q(0)τ)− P )

∣∣ ≤ K exp(−κ0,0τ).

(4.23)

Note that
Q(t)1l = 0 for all t ≥ 0.

Differentiating this equation repeatedly leads to

dkQ(t)

dtk
1l =

dk(Q(t)1l)

dtk
= 0.
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Hence, it follows that

dkQ(0)

dtk
1l = 0 and

dkQ(0)

dtk
P = 0,

for each 0 ≤ k ≤ n+ 1. Owing to Lemma 4.4 and (4.21),

|ψ1(τ)| ≤ |ϕ1(0) exp(Q(0)τ)|

+

∣∣∣∣
∫ τ

0

ψ0(s)
dQ(0)

dt

(
P +

(
exp(Q(0)(τ − s)− P

))
sds

∣∣∣∣

≤ K exp(−κ0,0τ)

+

∫ τ

0

|ψ0(s)|
∣∣∣∣
dQ(0)

dt

(
exp(Q(0)(τ − s))− P

)∣∣∣∣ sds

≤ K exp(−κ0,0τ) +K

∫ τ

0

exp(−κ0,0s) exp(−κ0,0(τ − s))sds

≤ K exp(−κ0,0τ) +Kτ2 exp(−κ0,0τ) ≤ c2(τ) exp(−κ0,0τ),

for some nonnegative polynomial c2(τ) of degree 2.
Note that rk(s) is orthogonal to P . By induction, for any k with k =

1, . . . , n+ 1,

|ψk(τ)|

≤ |ϕk(0) exp(Q(0)τ)|+
∫ τ

0

∣∣rk(s)
(
exp(Q(0)(τ − s))− P

)∣∣ ds

≤ K exp(−κ0,0τ) +
k∑

i=1

1

i!

∫ τ

0

si|ψk−i(s)|

×
∣∣∣∣
diQ(0)

dti
(
exp(Q(0)(τ − s))− P

)∣∣∣∣ ds

≤ K exp(−κ0,0τ) +K

2k−1∑

i=1

∫ τ

0

si exp(−κ0,0τ)ds

≤ K exp(−κ0,0τ) +K

2k∑

i=1

τ i exp(−κ0,0τ) ≤ c2k(τ) exp(−κ0,0τ),

where c2k(τ) is a nonnegative polynomial of degree 2k. This completes the
proof of the proposition. �

Since n is a finite integer, the growth of c2k(τ) for 0 ≤ k ≤ n+1 is much
slower than exponential. Thus the following corollary is in force.
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Corollary 4.12. For each 0 ≤ k ≤ n + 1, with κ0,0 given in Proposi-
tion 4.11,

|ψk(τ)| ≤ K exp (−κ0τ) , for some κ0 with 0 < κ0 < κ0,0.

4.2.5 Asymptotic Validation

Recall that Lεf = ε(d/dt)f − fQ. Then we have the following lemma.

Lemma 4.13. Suppose that for some 0 ≤ k ≤ n+ 1,

sup
t∈[0,T ]

|Lεvε(t)| = O
(
εk+1

)
and vε(0) = 0.

Then

sup
t∈[0,T ]

|vε(t)| = O
(
εk
)
.

Proof: Let ηε(·) be a function satisfying supt∈[0,T ] |ηε(t)| = O
(
εk+1

)
. Con-

sider the differential equation

Lεvε(t) = ηε(t),

vε(0) = 0.

(4.24)

Then the solution of (4.24) is given by

vε(t) =
1

ε

∫ t

0

ηε(s)Xε(t, s)ds,

where Xε(t, s) is a principal matrix solution. Recall that (see Hale [79,
p. 80]) a fundamental matrix solution of the differential equation is an
invertible matrix each row of which is a solution of the equation; a principal
matrix solution is a fundamental matrix solution with initial value the
identity matrix. In view of Lemma 4.1,

|Xε(t, s)| ≤ K for all t, s ∈ [0, T ].

Therefore, we have the inequalities

sup
t∈[0,T ]

|vε(t)| ≤ K

ε
sup

t∈[0,T ]

∫ t

0

|ηε(s)|ds ≤ Kεk.

The proof of the lemma is thus complete. �



4.2 Irreducible Case 75

Recall that the vector-valued “error” or remainder eεn(t) is defined by

eεn(t) = pε(t)−
n∑

i=0

εiϕi(t)−
n∑

i=0

εiψi

(
t

ε

)
, (4.25)

where pε(·) is the solution of (4.3), and ϕi(·) and ψi(·) are constructed in
(4.13) and (4.18). It remains to show that eεn(t) = O

(
εn+1

)
. To do so, we

utilize Lemma 4.13 as a bridge. It should be pointed out, however, that
to get the correct order for the remainder, a trick involving “back up one
step” is needed. The details follow.

Proposition 4.14. Assume (A4.1) and (A4.2), for each k = 0, . . . , n,

sup
t∈[0,T ]

|eεk(t)| = O(εk+1).

Proof: We begin with

eε1(t) = pε(t)− ϕ0(t)− εϕ1(t)− ψ0

(
t

ε

)
− εψ1

(
t

ε

)
. (4.26)

We will use the exponential decay property given in ψi(τ) Corollary 4.12.
Clearly, eε1(0) = 0, and hence the condition of Lemma 4.13 on the initial
data is satisfied. By virtue of the exponential decay property of ψi(·) in
conjunction with the defining equations of ϕi(·) and ψi(·),

Lεeε1(t) = −
[
ε
dϕ0(t)

dt
− ϕ0(t)Q(t) + ε2

dϕ1(t)

dt
− εϕ1(t)Q(t)

+ε
d

dt
ψ0

(
t

ε

)
− ψ0

(
t

ε

)
Q(t) + ε2

d

dt
ψ1

(
t

ε

)

−εψ1

(
t

ε

)
Q(t)

]

= −ε2dϕ1(t)

dt
+ ψ0

(
t

ε

)[
Q(t)−Q(0)− t

dQ(0)

dt

]

+εψ1

(
t

ε

)
[Q(t)−Q(0)].

For the term involving ψ0(t/ε), using a Taylor expansion on Q(t) yields
that for some ξ ∈ (0, t)

∣∣∣∣Q(t)−Q(0)− t
dQ(0)

dt

∣∣∣∣ =
∣∣∣∣
1

2

(
d2Q(ξ)

dt2

)
t2
∣∣∣∣ ≤ Kt2.

Owing to the exponential decay property of ψi(·), the fact that ϕ1(·) is n-
times continuously differentiable on [0, T ], and the above estimate, we have

|Lεeε1(t)| ≤ K

(
ε2 + (εt+ t2) exp

(
−κ0t

ε

))
.
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Moreover, for any k = 0, 1, 2 . . . , n+ 1, it is easy to see that

tk exp

(
−κ0t

ε

)
= εk

(
t

ε

)k

exp

(
−κ0t

ε

)
≤ Kεk. (4.27)

This implies Lεeε1(t) = O(ε2) uniformly in t. Thus, eε1(t) = O(ε) by virtue
of Lemma 4.13 and the bound is uniform in t ∈ [0, T ].
We now go back one step to show that the zeroth-order approximation

also possesses the correct error estimate, that is, eε0(t) = O(ε). Note that
the desired order seems to be difficult to obtain directly, and as a result
the back-tracking is employed.
Note that

eε1(t) = eε0(t)− εϕ1(t)− εψ1

(
t

ε

)
. (4.28)

However, the smoothness of ϕ1(·) and the exponential decay of ψ1(·) imply
that

εϕ1(t) + εψ1

(
t

ε

)
= O(ε) uniformly in t. (4.29)

Thus eε0(t) = O(ε) uniformly in t.
Proceeding analogously, we obtain

Lεeεn+1

= Lε

(
pε(t)−

n+1∑

i=0

εiϕi(t)−
n+1∑

i=0

εiψi

(
t

ε

))

= −ε
(

n+1∑

i=0

εi
dϕi(t)

dt
+

n+1∑

i=0

εi
d

dt
ψi

(
t

ε

))

+

(
n+1∑

i=0

εiϕi(t) +
n+1∑

i=0

εiψi

(
t

ε

))
Q(t)

= −εn+2dϕn+1(t)

dt
+

[
n+1∑

i=0

εiϕi(t)Q(t)−
n∑

i=0

εi+1ϕi+1(t)Q(t)

]

+

n+1∑

i=0

εiψi

(
t

ε

)
Q(t)−

n+1∑

i=0

εi
[
ψi

(
t

ε

)
Q(0) + ri

(
t

ε

)]
.

(4.30)

Note that the term in the fifth line above is

n+1∑

i=0

εiϕi(t)Q(t)−
n+1∑

i=1

εiϕi(t)Q(t) = ϕ0(t)Q(t) = 0.

Using (4.19), we represent ri(t) in terms of (di/dti)Q(0), etc. For the term
involving ψ0(t/ε), using a truncated Taylor expansion up to order (n+ 1)
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for Q(t), by virtue of the Lipschitz continuity of (dn+1/dtn+1)Q(·), there
is a ξ ∈ (0, t) such that

∣∣∣∣Q(t)−
n+1∑

i=0

ti

i!

diQ(0)

dti

∣∣∣∣ =
1

(n+ 1)!

∣∣∣∣t
n+1 d

n+1Q(ξ)

dtn+1
− tn+1 d

n+1Q(0)

dtn+1

∣∣∣∣

≤ Ktn+1ξ ≤ Ktn+2.

For all the other terms involving ψi(t/ε), for i = 1, . . . , n+ 1 in (4.30), we
proceed as in the calculation of Lεeε1. As a result, the last two terms in
(4.30) are bounded by

ψ0

(
t

ε

)
O(tn+2) + εψ1

(
t

ε

)
O(tn+1) + · · ·+ εn+1ψn+1

(
t

ε

)
O(t),

which in turn leads to the bound

K(tn+2 + εtn+1 + · · ·+ εn+1t) exp

(
−κ0t

ε

)
≤ Kεn+2,

in accordance with (4.27). Moreover, it is clear that eεn+1(0) = 0. In view
of the fact that ϕn+1(·) is continuously differentiable on [0, T ] and Q(·) is
(n+1)-times continuously differentiable on [0, T ], by virtue of Lemma 4.13,
we infer that eεn+1(t) = O(εn+1) uniformly in t. Since

eεn+1(t) = eεn(t) +O(εn+1),

it must be that eεn(t) = O(εn+1). The proof of Proposition 4.14 is complete,
and so is the proof of Theorem 4.5. �

Remark 4.15. In the estimate given above, we actually obtained

Lεeεk(t) = O

(
εk+1 + (εtk + · · ·+ εkt) exp

(
−κ0t

ε

))
. (4.31)

This observation will be useful when we consider the unbounded interval
[0,∞).

The findings reported are very useful for further study of the limit
behavior of the corresponding Markov chain problems of central limit type,
which will be discussed in the next chapter. In many applications, a system
is governed by a Markov chain, which consists of both slow and fast mo-
tions. An immediate question is this: Can we still develop an asymptotic
series expansion? This question will be dealt with in Section 4.3.
Suppose that in lieu of (A4.2), we assume that Q(·) is piecewise (n+1)-

times continuously differentiable on [0, T ], and (dn+1/dtn+1)Q(·) is piece-
wise Lipschitz, that is, there is a partition of [0, T ], namely,

t0 = 0 < t1 < t2 < · · · ≤ tk = T
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such that Q(·) is (n+1)-times continuously differentiable and (dn+1/dtn+1)
Q(·) is Lipschitz on each subinterval [ti, ti+1). Then the result obtained still
holds. In this case, in addition to the initial layers, one also has a finite
number of inner-boundary layers. In each interval [ti, ti+1 − η] for η > 0,
the expansion is similar to that presented in Theorem 4.5.

4.2.6 Examples

As a further illustration, we consider two examples in this section. The first
example is concerned with a stationary Markov chain, i.e., Q(t) = Q is a
constant matrix. The second example deals with an analytically solvable
case for a two-state Markov chain with nonstationary transition probabil-
ities. Although they are simple, these examples give us insight into the
asymptotic behavior of the underlying systems.

Example 4.16. Let αε(t) be an m-state Markov chain with a constant
generator Q(t) = Q that is irreducible. This is an analytically solvable
case, with

pε(t) = p0 exp

(
Qt

ε

)
.

Using the technique of asymptotic expansion, we obtain

ϕ0(t) + ψ0

(
t

ε

)
= ϕ0 + (p0 − ϕ0) exp

(
Qt

ε

)
,

with exp

(
Qt

ε

)
→ P , as ε→ 0,

where

ϕ0(t) = (ν1, . . . , νm) and P = 1lϕ0.

Note that p0P = ϕ0, and hence

(p0 − ϕ0) exp

(
Qt

ε

)
= (p0 − ϕ0)

[
exp

(
Qt

ε

)
− P

]
.

Moreover,

ϕi(t) ≡ 0, ψi

(
t

ε

)
≡ 0 for i ≥ 1.

In this case, ϕ0(t) ≡ ϕ0, a constant vector, which is the equilibrium distri-
bution of Q; the series terminates. Moreover, the solution consists of two
terms, one of them the equilibrium distribution (the zeroth-order approxi-
mation) and the other the zeroth-order initial-layer correction term. Since
ϕ0 is the quasi-stationary distribution,

ϕ0Q = 0 and ϕ0 exp

(
Qt

ε

)
= ϕ0.
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Hence the analytic solution and the asymptotic expansion coincide.
In particular, let Q be a two-dimensional matrix, i.e.,

Q =

(−λ λ
μ −μ

)
.

Then setting
yε0(t) = ϕ0(t) + ψ0(t/ε),

we have

pε1(t) = yε0,1(t) =
μ

λ+ μ
+

(
p01 −

μ

λ+ μ

)
exp

(
− (λ+ μ)t

ε

)
,

pε2(t) = yε0,2(t) =
λ

λ+ μ
+

(
p02 −

λ

λ+ μ

)
exp

(
− (λ+ μ)t

ε

)
.

Therefore,

ϕ0(t) =

(
μ

λ+ μ
,

λ

λ+ μ

)
,

ψ0

(
t

ε

)
=

((
p01 −

μ

λ+ μ

)
,

(
p02 −

λ

λ+ μ

))
exp

(
− (λ+ μ)t

ε

)
,

ϕi(t) ≡ 0 and ψi

(
t

ε

)
≡ 0 for i ≥ 1.

Example 4.17. Consider a two-state Markov chain with generator

Q(t) =

(−λ(t) λ(t)
μ(t) −μ(t)

)

where λ(t) ≥ 0, μ(t) ≥ 0 and λ(t) + μ(t) > 0 for each t ∈ [0, T ]. Therefore
Q(·) is weakly irreducible. For the following discussion, assume Q(·) to be
sufficiently smooth. Although it is time-varying, a closed-form solution is
obtainable. Since pε1(t) + pε2(t) = 1 for each t, (4.3) can be solved explicitly
and the solution is given by

pε1(t) = p01 exp

(
−1

ε

∫ t

0

(λ(s) + μ(s))ds

)

+

∫ t

0

μ(u)

ε
exp

(
−1

ε

∫ t

u

(λ(s) + μ(s))ds

)
du,

pε2(t) = p02 exp

(
−1

ε

∫ t

0

(λ(s) + μ(s))ds

)

+

∫ t

0

λ(u)

ε
exp

(
−1

ε

∫ t

u

(λ(s) + μ(s))ds

)
du.
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Following the approach in the previous sections, we construct the first a
few terms in the asymptotic expansion. By considering (4.13) together with
(4.2), a system of the form

λ(t)ϕ1
0(t)− μ(t)ϕ2

0(t) = 0,

ϕ1
0(t) + ϕ2

0(t) = 1

is obtained. The solution of the system yields that

ϕ0(t) =

(
μ(t)

λ(t) + μ(t)
,

λ(t)

λ(t) + μ(t)

)
.

To find ϕ1(·), consider

λ(t)ϕ1
1(t)− μ(t)ϕ2

1(t) =
λ̇(t)μ(t) − μ̇(t)λ(t)

(λ(t) + μ(t))2
,

ϕ1
1(t) + ϕ2

1(t) = 0,

where λ̇ = (d/dt)λ and μ̇ = (d/dt)μ. Solving this system of equations
gives us

ϕ1(t) =

(
λ̇(t)μ(t)− μ̇(t)λ(t)

(λ(t) + μ(t))3
,
λ(t)μ̇(t)− μ(t)λ̇(t)

(λ(t) + μ(t))3

)
.

To get the inner expansion, consider the differential equation

dψ0(τ)

dτ
= ψ0(τ)Q(0),

ψ0(0) = p0 − ϕ0(0),

with τ = t/ε. We obtain

ψ0(τ) = (p0 − ϕ0(0)) exp(Q(0)τ),

where

exp (Q(0)τ) =
1

λ(0) + μ(0)

×

⎛

⎜⎜⎝
μ(0) + λ(0)e−(λ(0)+μ(0))τ λ(0)− λ(0)e−(λ(0)+μ(0))τ

μ(0)− μ(0)e−(λ(0)+μ(0))τ λ(0) + μ(0)e−(λ(0)+μ(0))τ

⎞

⎟⎟⎠ .
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Similarly ψ1(·) can be obtained from (4.21) with the exponential matrix
given above.
It is interesting to note that either λ(t) or μ(t) can be equal to 0 for some

t as long as λ(t) + μ(t) > 0. For example, if we take μ(·) to be the repair
rate of a machine in a manufacturing model, then μ(t) = 0 corresponds to
the repair workers taking breaks or waiting for parts on order to arrive.
The minors of Q(t) are λ(t), −λ(t), μ(t), and −μ(t). As long as not all of
them are zero at the same time, the weak irreducibility condition will be
met.

4.2.7 Two-Time-Scale Expansion

The asymptotic expansion derived in the preceding sections is separable in
the sense that it is the sum of a regular part and initial-layer corrections.
Naturally, one is interested in the relationship between such an expansion
and the so-called two-time-scale expansion (see, for example, Smith [199]).
To answer this question, we first obtain the two-time-scale asymptotic ex-
pansion for the forward equation (4.3), proceed with the exploration of the
relationships between these two expansions, and conclude with a discussion
of the connection between these two methods.

Two-Time-Scale Expansion. Following the literature on asymptotic
expansion (e.g., Kevorkian and Cole [108, 109] and Smith [199] among
others), consider two scales t and τ = t/ε, both as “times.” One of them is
in a normal time scale and the other is a stretched one. We seek asymptotic
expansions of the form

yε(t, τ) =

n∑

i=0

εiyi(t, τ), (4.32)

where {yi(t, τ)}ni=0 is a sequence of two-time-scale functions. Treating t and
τ as independent variables, one has

d

dt
=

∂

∂t
+

1

ε

∂

∂τ
. (4.33)

Formally substituting (4.32) into (4.3) and equating coefficients of like pow-
ers of εi results in

∂y0(t, τ)

∂τ
= y0(t, τ)Q(t),

∂y1(t, τ)

∂τ
= y1(t, τ)Q(t) − ∂y0(t, τ)

∂t
,

· · ·
∂yi(t, τ)

∂τ
= yi(t, τ)Q(t) − ∂yi−1(t, τ)

∂t
, 1 ≤ i ≤ n.

(4.34)
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The initial conditions are

y0(t, 0) = p0 and

yi(t, 0) = 0, for 1 ≤ i ≤ n.

(4.35)

Holding t constant and solving the first equation in (4.34) (with the first
equation in (4.35) as the initial condition) yields

y0(t, τ) = p0 exp(Q(t)τ). (4.36)

By virtue of (A4.4), (∂/∂t)y0(t, τ) exists and

∂y0(t, τ)

∂t
= p0 exp(Q(t)τ)

(
dQ(t)

dt

)
τ.

As a result, (∂/∂t)y0(t, τ) is orthogonal to 1l. We continue the procedure
recursively. It can be verified that for 1 ≤ i ≤ n,

yi(t, τ) = −
∫ τ

0

∂yi−1(t, s)

∂t
exp(Q(t)(τ − s))ds. (4.37)

Furthermore, for i = 1, . . . , n, (∂/∂t)yi(t, τ) exists and is continuous; it is
also orthogonal to 1l. It should be emphasized that in the equations above,
t is viewed as being “frozen,” and as a consequence, Q(t) is a “constant”
matrix.
Parallel to the previous development, one can show that for all 1 ≤ i ≤ n,

|yi(t, τ)| ≤ K(t) exp(−κ0(t)τ).

Compared with the separable expansions presented before, note the t-
dependence of K(·) and κ0(·) above. Furthermore, the asymptotic series
is valid. We summarize this as the following theorem.

Theorem 4.18. Under the conditions of Theorem 4.5, a sequence of
functions {yi(t, τ)}ni=0 can be constructed so that

sup
t∈[0,T ]

∣∣∣∣p
ε(t)−

n∑

i=0

εiyi(t, τ)

∣∣∣∣ = O(εn+1).

Example 4.19. We return to Example 4.16. It is readily verified that the
zeroth-order two-time-scale expansion coincides with that of the analytic
solution, in fact, with

y0(t, τ) = p0 exp

(
Qt

ε

)
and yi(t, τ) ≡ 0 for all i ≥ 1.
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Relationship between the Two Methods. Now we have two different
asymptotic expansions. Do they in some sense produce similar asymptotic
results? Note that each term in yi(t, τ) contains the regular part ϕi(t) as
well as the initial-layer corrections. Examining the zeroth-order approxi-
mation leads to

exp(Q(t)τ) → P (t) as τ → ∞
via the same argument employed in the proof of Lemma 4.4. The matrix
has identical rows, and is given by P (t) = 1lν(t). In fact, owing to p01l =∑m

i=1 p
0
i = 1, we have

y0(t, τ) = ν(t) + p0
(
exp(Q(t)τ) − P (t)

)
= ν(t) + ỹ0(t, τ), (4.38)

where ỹ0(t, τ) decays exponentially fast as τ → ∞ for t < τ .
In view of (4.38), the two methods produce the same limit as τ → ∞,

namely, the quasi-stationary distribution. To explore further, we study a
special case (a two-state Markov chain) so as to keep the notation simple.
Consider the two-state Markov chain model Example 4.17. In view of (4.38)
and the formulas in Example 4.17, we have

y0(t, τ) = ν(t) + ỹ0(t, τ) = ϕ0(t) + ỹ0(t, τ).

Owing to (4.37), direct calculation yields that

y1(t, τ) = −
∫ τ

0

dϕ0(t)

dt
exp(Q(t)(τ − s))ds

−
∫ τ

0

∂ỹ0(t, τ)

∂t
exp(Q(t)(τ − s))ds.

It can be verified that the second term on the right-hand side of the equal
sign above decays exponentially fast, while the first term yields ϕ1(t) plus
another term tending to 0 exponentially fast as τ → ∞. Using the result
of Example 4.17 yields

−
∫ τ

0

dϕ0(t)

dt
exp(Q(t)(τ − s))ds

=
dϕ0(t)

dt

(
1− exp(−(λ(t) + μ(t))τ)

λ(t) + μ(t)

)(
λ(t) −λ(t)
−μ(t) μ(t)

)

= ϕ1(t)− dϕ0(t)

dt

(
exp(−(λ(t) + μ(t))τ)

λ(t) + μ(t)

)(
λ(t) −λ(t)
−μ(t) μ(t)

)
.

Thus, it follows that

y1(t, τ) = ϕ1(t) + ỹ1(t, τ),
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where

ỹ1(t, τ) = −
∫ τ

0

∂ỹ0(t, τ)

∂t
exp(Q(t)(τ − s))ds

−dϕ0(t)

dt

(
exp(−(λ(t) + μ(t))τ)

λ(t) + μ(t)

)(
λ(t) −λ(t)
−μ(t) μ(t)

)
.

Similarly, we can obtain

yi(t, τ) = ϕi(t) + ỹi(t, τ), for 1 ≤ i ≤ n,

where ỹi(t, τ) decay exponentially fast as τ → ∞ for all t < τ . This estab-
lishes the connection between these two different expansions.

Comparison and Additional Remark. A moment of reflection reveals
that:

– The conditions required to obtain the asymptotic expansions are
the same.

– Except for the actual forms, there is no significant difference
between these two methods.

– No matter which method is employed, in one way or another the
results for stationary Markov chains are used. In the separable
expansion, this is accomplished by using Q(0), and in the two-
time-scale expansion, this is carried out by holding t constant
and hence treating Q(t) as a constant matrix.

– Although the two-time-scale expansion admits a seemingly more
general form, the separable expansion is more transparent as far
as the quasi-stationary distribution is concerned.

– When a more complex problem, for example the case of weak
and strong interactions, is encountered, the separable expansion
becomes more advantageous.

– To study asymptotic normality, etc., in the sequel, the separable
expansion will prove to be more convenient than the two-time-
scale expansion.

In view of the items mentioned above, we choose to use the separable form
of the expansion throughout.

4.3 Markov Chains with Multiple Weakly
Irreducible Classes

This section presents the asymptotic expansions of two-time-scale Markov
chains with slow and fast components subject to weak and strong in-
teractions. We assume that all the states of the Markov chain are re-
current. In contrast to Section 4.2, the states belong to multiple weakly
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irreducible classes. As was mentioned in the introductory chapter, such
time-scale separation stems from various applications in production plan-
ning, queueing networks, random fatigue, system reliability, competing risk
theory, control and optimization of large-scale dynamical systems, and re-
lated fields. The sunderlying models in which some components change
very rapidly whereas others vary relatively slowly, are more complex than
those of Section 4.2. The weak and strong interactions of the systems are
modeled by assuming the generator of the underlying Markov chain to be
of the form

Qε(t) =
1

ε
Q̃(t) + Q̂(t), (4.39)

where Q̃(t) governs the rapidly changing part and Q̂(t) describes the slowly
changing components. They have the appropriate forms to be mentioned
in the sequel.
This section extends the results in Section 4.2 to incorporate the cases

in which the generator Q̃(t) is not irreducible. Our study focuses on the
forward equation, similar to (4.3); now the forward equation takes the form

dpε(t)

dt
= pε(t)

(
1

ε
Q̃(t) + Q̂(t)

)
, pε(0) = p0 (4.40)

such that

p0i ≥ 0 for each i and

m∑

i=1

p0i = 1.

To illustrate, we present a simple example below.

Example 4.20. Consider a two-machine flowshop with machines that are
subject to breakdown and repair. The production capacity of the machines
is described by a finite-state Markov chain. If the machine is up, then it
can produce parts with production rate u(t); its production rate is zero if
the machine is under repair. For simplicity, suppose each of the machines
is either in operating condition (denoted by 1) or under repair (denoted by
0). Then the capacity of the workshop becomes a four-state Markov chain
with state space {(1, 1), (0, 1), (1, 0), (0, 0)}. Suppose that the first machine
breaks down much more often than the second one. To reflect this situation,
consider a Markov chain αε(·) generated by Qε(t) in (4.39), with Q̃(·) and
Q̂(·) given by

Q̃(t) =

⎛

⎜⎝

−λ1(t) λ1(t) 0 0
μ1(t) −μ1(t) 0 0
0 0 −λ1(t) λ1(t)
0 0 μ1(t) −μ1(t)

⎞

⎟⎠
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and

Q̂(t) =

⎛

⎜⎝

−λ2(t) 0 λ2(t) 0
0 −λ2(t) 0 λ2(t)

μ2(t) 0 −μ2(t) 0
0 μ2(t) 0 −μ2(t)

⎞

⎟⎠ ,

where λi(·) and μi(·) are the rates of repair and breakdown, respectively.

The matrices Q̃(t) and Q̂(t) are themselves generators of Markov chains.
Note that

Q̃(t) = diag

((
−λ1(t) λ1(t)

μ1(t) −μ1(t)

)
,

(
−λ1(t) λ1(t)

μ1(t) −μ1(t)

))

is a block-diagonal matrix, representing the fast motion, and Q̂(t) gov-
erns the slow components. In order to obtain any meaningful results for
controlling and optimizing the performance of the underlying systems, the
foremost task is to determine the asymptotic behavior (as ε → 0) of the
probability distribution of the underlying chain.

In this example, a first glance reveals that Q̃(t) is reducible, hence the
results in Section 4.2 are not applicable. However, closer scrutiny indicates
that Q̃(t) consists of two irreducible submatrices. One expects that the
asymptotic expansions may still be established. Our main objective is to
develop asymptotic expansions of such systems and their variants. The cor-
responding procedure is, however, much more involved compared with the
irreducible cases.
Examining (4.39), it is seen that the asymptotic properties of the

underlying Markov chains largely depend on the structure of the matrix
Q̃(t). In accordance with the classification of states, we may consider
three different cases: the chains with recurrent states only, the inclusion
of absorbing states, and the inclusion of transient states. We treat the
recurrent-state cases in this section, and then extend the results to nota-
tionally more involved cases including absorbing states and transient states
in the following two sections.
Suppose αε(·) is a finite-state Markov chain with generator given by

(4.39), where both Q̃(t) and Q̂(t) are generators of appropriate Markov
chains. In view of the results in Section 4.2, it is intuitively clear that
the structure of the generator Q̃(t) governs the fast-changing part of the
Markov chain. As mentioned in the previous section, our study of the finite-
state-space cases is naturally divided into the recurrent cases, the inclusion
of absorbing states, and the inclusion of transient states of the generator
Q̃(t). In accordance with classical results (see Chung [31] and Karlin and
Taylor [105, 106]), one can always decompose the states of a finite-state
Markov chain into recurrent (including absorbing) and transient classes.
Inspired by Seneta’s approach to nonnegative matrices (see Seneta [189]),

we aim to put the matrix Q̃(t) into some sort of “canonical” form so that a
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systematic study can be carried out. In a finite-state Markov chain, not all
states are transient, and it has at least one recurrent state. Similar to the
argument of Iosifescu [95, p. 94] (see also Goodman [75], Karlin and Mc-
Gregor [104], Keilson [107] among others), if there are no transient states,
then after suitable permutations and rearrangements (i.e., by appropriately

relabeling the states), Q̃(t) can be put into the block-diagonal form

Q̃(t) =

⎛

⎜⎜⎜⎝

Q̃1(t)

Q̃2(t)
. . .

Q̃l(t)

⎞

⎟⎟⎟⎠

= diag
(
Q̃1(t), . . . , Q̃l(t)

)
,

(4.41)

where Q̃k(t) ∈ R
mk×mk are weakly irreducible, for k = 1, 2, . . . , l, and∑l

k=1mk = m. Here and hereinafter, Q̃k(t), (a superscript without paren-

theses) denotes the kth block matrix in Q̃(t). The rest of this section deals

with the generator Qε(t) given by (4.39) with Q̃(t) taking the form (4.41).
Note that an example of the recurrent case is that of the irreducible (or
weakly irreducible) generators treated in Section 4.2.
Let Mk = {sk1, . . . , skmk

} for k = 1, . . . , l denote the states correspond-

ing to Q̃k(t) and let M denote the state space of the underlying chains
given by

M = M1 ∪ · · · ∪Ml

=
{
s11, . . . , s1m1 , . . . , sl1, . . . , slml

}
.

Since Q̃k(t) = (q̃kij(t))mk×mk
and Q̂(t) = (q̂ij(t))m×m are generators, for

k = 1, 2, . . . , l, we have

mk∑

j=1

q̃kij(t) = 0, for i = 1, . . . ,mk, and

m∑

j=1

q̂ij(t) = 0, for i = 1, . . . ,m.

The slow and fast components are coupled through weak and strong
interactions in the sense that the underlying Markov chain fluctuates
rapidly within a single group Mk and jumps less frequently between
groups Mk and Mj for k 	= j. The states in Mk, k = 1, . . . , l, are not
isolated or independent of each other. More precisely, if we consider the
states in Mk as a single “state,” then these “states” are coupled through
the matrix Q̂(t), and transitions from Mk to Mj , k 	= j are possible.
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In fact, Q̂(·), together with the quasi-stationary distributions of Q̃k(t),
determines the transition rates among states in Mk, for k = 1, . . . , l.
Consider the forward equation (4.40). Our goal here is to develop an

asymptotic series for the solution pε(·) of (4.40). Working with the interval
[0, T ] for some T <∞, we will need the following conditions:

(A4.3) For each t ∈ [0, T ] and k = 1, 2, . . . , l, Q̃k(t) is weakly irreducible.

(A4.4) For some positive integer n, Q̃(·) and Q̂(·) are (n + 1)-times
and n-times continuously differentiable on [0, T ], respectively.

Moreover, (dn+1/dtn+1)Q̃(·) and (dn/dtn)Q̂(·) are Lipschitz on
[0, T ].

Compared with the irreducible models in Section 4.2, the main difficulty
in this chapter lies in the interactions among different blocks. In construct-
ing the expansion in Section 4.2, for i = 1, . . . , n, the two sets of functions
{ϕi(·)} and {ψi(·)} are obtained independently except the initial conditions
ψi(0) = −ϕi(0). For Markov chains with weak and strong interactions,
ϕi(·) and ψi(·) are highly intertwined. The essence is to find ϕi(·) and ψi(·)
jointly and recursively. In the process of construction, one of the crucial
and delicate points is to select the “right” initial conditions. This is done
by demanding that ψi(τ) decay to 0 as τ → ∞. For future use, we define a
differential operator Lε on R

1×m-valued functions by

Lεf = ε
df

dt
− f(Q̃+ εQ̂). (4.42)

Then it follows that Lεf = 0 iff f is a solution to the differential equation
in (4.40). We are now in a position to derive the asymptotic expansion.

4.3.1 Asymptotic Expansions

As in Section 4.2, we seek expansions of the form

yεn(t) = Φε
n(t) + Ψε

n(t) =

n∑

i=0

εiϕi(t) +

n∑

i=0

εiψi

(
t

ε

)
. (4.43)

For the purpose of estimating the remainder (or error), the terms ϕn+1(·)
and ψn+1(·) are needed. Set Lεyεn+1(t) = 0. Parallel to the approach in
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Section 4.2, equating like powers of εi (for i = 0, 1, . . . , n+ 1) leads to the
equations for the regular part:

ε0 : ϕ0(t)Q̃(t) = 0,

ε1 : ϕ1(t)Q̃(t) =
dϕ0(t)

dt
− ϕ0(t)Q̂(t),

· · ·

εi : ϕi(t)Q̃(t) =
dϕi−1(t)

dt
− ϕi−1(t)Q̂(t).

(4.44)

As discussed in Section 4.2, the approximation above is good for t away
from 0. When t is sufficiently close to 0, an initial layer of thickness ε
develops. Thus for the singular part of the expansion we enlarge the picture
near 0 using the stretched variable τ defined by τ = t/ε. Identifying the
initial-layer terms in Lεyεn+1 = 0, we obtain

d

dτ

(
ψ0(τ) + εψ1(τ) + · · ·+ εn+1ψn+1(τ)

)

=
(
ψ0(τ) + εψ1(τ) + · · ·+ εn+1ψn+1(τ)

) (
Q̃(ετ) + εQ̂(ετ)

)
.

By means of the Taylor expansion, we have

Q̃(ετ) = Q̃(0) + ετ
dQ̃(0)

dt
+ · · ·

+
(ετ)n+1

(n+ 1)!

dn+1Q̃(0)

dtn+1
+ R̃n+1(ετ),

εQ̂(ετ) = εQ̂(0) + ε2τ
dQ̂(0)

dt
+ · · ·

+
ε(ετ)n

n!

dnQ̂(0)

dtn
+ R̂n(ετ),

where

R̃n+1(t) =
tn+1

(n+ 1)!

(
dn+1Q̃(ξ)

dtn+1
− dn+1Q̃(0)

dtn+1

)
,

R̂n(t) =
εtn

n!

(
dnQ̂(ζ)

dtn
− dnQ̂(0)

dtn

)
,

for some 0 ≤ ξ ≤ t and 0 ≤ ζ ≤ t. Note that in view of (A4.4),

R̃n+1(t) = O(tn+2) and R̂n(t) = O(εtn+1).
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Equating coefficients of like powers of εi, for i = 0, 1, . . . , n+ 1, and using
the Taylor expansion above, we obtain

ε0 :
dψ0(τ)

dτ
= ψ0(τ)Q̃(0),

ε1 :
dψ1(τ)

dτ
= ψ1(τ)Q̃(0)

+ψ0(τ)

(
Q̂(0) + τ

dQ̃(0)

dt

)
,

· · ·

εi :
dψi(τ)

dτ
= ψi(τ)Q̃(0) +

i−1∑

j=0

ψi−j−1(τ)

×
(
τ j

j!

djQ̂(0)

dtj
+

τ j+1

(j + 1)!

dj+1Q̃(0)

dtj+1

)
.

(4.45)

In view of the essence of matched asymptotic expansion, we have necessarily
at t = 0 that

n+1∑

i=0

εi (ϕi(0) + ψi(0)) = p0. (4.46)

This equation implies

p0 = ϕ0(0) + ψ0(0) and ϕi(0) + ψi(0) = 0,

for i ≥ 1. Moreover, note that pε(t)1l = 1 for all t ∈ [0, T ]. Sending ε →
0 in the asymptotic expansion, one necessarily has to have the following
conditions: For all t ∈ [0, T ],

ϕ0(t)1l = 1 and ϕi(t)1l = 0, i ≥ 1. (4.47)

Our task now is to determine the functions ϕi(·) and ψi(·).

Determining ϕ0(·) and ψ0(·). Write v = (v1, . . . , vl) for a vector v ∈
R

1×m, where vk denotes the subvector corresponding to the kth block of the
partition. Meanwhile, a superscript with parentheses denotes a sequence.
Thus vkn denotes the kth subblock of the corresponding partitioned vector
of the sequence vn.
Let us start with the first equation in (4.44). In view of (4.47), we have

ϕ0(t)Q̃(t) = 0,

m∑

i=1

ϕi
0(t) = 1.

(4.48)
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Note that the system above depends only on the generator Q̃(t). However,
by itself, the system is not uniquely solvable. Since for each t ∈ [0, T ]

and k = 1, . . . , l, Q̃k(t) is weakly irreducible, it follows that rank(Q̃k(t)) =

mk−1 and rank(Q̃(t)) = m−l. Therefore, to get a unique solution, we need
to supply l auxiliary equations. Where can we find these equations? Upon
dividing the system (4.48) into l subsystems, one can apply the Fredholm
alternative (see Lemma A.37 and Corollary A.38) and use the orthogonality
condition to choose l additional equations to replace l equations in the
system represented by the first equation in (4.48).

Since for each k, Q̃k(t) is weakly irreducible, there exists a unique quasi-
stationary distribution νk(t). Therefore any solution to the equation

ϕk
0(t)Q̃

k(t) = 0

can be written as the product of νk(t) and a scalar “multiplier,” say ϑk0(t).

It follows from the second equation in (4.48) that
∑l

k=1 ϑ
k
0(t) = 1. These

ϑk0(t)’s can be interpreted as the probabilities of the “grouped states” (or
“aggregated states”) Mk.
As will be seen in the sequel, ϑk0(t) becomes an important spinoff in the

process of construction. Effort will subsequently be devoted to finding the
unique solution (ϑ10(t), . . . , ϑ

l
0(t)). Let 1lmk

= (1, . . . , 1)′ ∈ R
mk×1.

Lemma 4.21. Under (A4.3) and (A4.4), for each k = 1, . . . , l, the solution
of the equation

ϕk
0(t)Q̃

k(t) = 0,

ϕk
0(t)1lmk

= ϑk0(t),

(4.49)

can be uniquely expressed as ϕk
0(t) = νk(t)ϑk0(t), where νk(t) is the

quasi-stationary distribution corresponding to Q̃k(t). Moreover, ϕk
0(t) is

(n + 1)-times continuously differentiable on [0, T ], provided that ϑk0(·) is
(n+ 1)-times continuously differentiable.

Proof: For each k, let us regard ϑk0(·) as a known function temporarily. For

t ∈ [0, T ], let Q̃k
c (t) = (1lmk

... Q̃k(t)). Then the solution can be written as

ϕk
0(t) = (ϑk0(0)

...0′mk
)Q̃k,′

c (t)
(
Q̃k

c (t)Q̃
k,′
c (t)

)−1

,

where 0mk
= (0, . . . , 0)′ ∈ R

mk×1. Moreover, ϕ0(·) is (n+ 1)-times contin-
uously differentiable. The lemma is thus concluded. �

Remark 4.22. This lemma indicates that for each k, the subvector ϕk
0(·)

is a multiple of the quasi-stationary distribution νk(·) for each k = 1, . . . , l.
The multipliers ϑk0(·) are to be determined. Owing to the interactions
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among different “aggregated states” corresponding to the block matrices,
piecing together quasi-stationary distributions does not produce a quasi-
stationary distribution for the entire system (i.e., (ν1(t), . . . , νk(t)) is not
a quasi-stationary distribution for the entire system). Therefore, the lead-
ing term in the asymptotic expansion is proportional to (or a “multiple”
of) the quasi-stationary distributions of the Markov chains generated by

Q̃k(t), for k = 1, . . . , l. The multiplier ϑk0(t) reflects the interactions of the
Markov chain among the “aggregated states.” The probabilistic meaning
of the leading term ϕ0(·) is in the sense of total probability. Intuitively,
ϑk0(t) is the corresponding probability of the chain belonging to Mk, and
ϕk
0(t) is the probability distribution of the chain belonging to Mk and the

transitions taking place within this group of states.

We proceed to determining ϑk0(·) for k = 1, . . . , l. Define an m× l matrix

1̃l =

⎛

⎜⎜⎝

1lm1

1lm2

. . .

1lml

⎞

⎟⎟⎠ = diag(1lm1 , . . . , 1lml
).

A crucial observation is that Q̃(t)1̃l = 0, that is, Q̃(t) and 1̃l are orthogonal.

Thus postmultiplying by 1̃l leads to

Lε

(
n+1∑

i=0

εiϕi(t)1̃l

)
= 0.

Recall that

ϕk
0(t) = ϑk0(t)ν

k(t) and ϕk
0(t)1l = ϑk0(t).

Equating the coefficients of ε in the above equation yields

d

dt
(ϑ10(t), . . . , ϑ

l
0(t)) = (ϑ10(t), . . . , ϑ

l
0(t))Q(t), (4.50)

where

Q(t) =

⎛

⎜⎜⎝

ν1(t)
ν2(t)

. . .

νl(t)

⎞

⎟⎟⎠ Q̂(t)1̃l

= diag(ν1(t), . . . , νl(t))Q̂(t)1̃l.

(4.51)

Remark 4.23. Intuitively, Q(t) is the “average” of Q̂(t) weighted by the
collection of quasi-stationary distributions (ν1(t), . . . , νl(t)). In fact, (4.50)



4.3 Markov Chains with Multiple Weakly Irreducible Classes 93

is merely a requirement that the equations in (4.44) be consistent in the

sense of Fredholm. This can be seen as follows. Denote by N(Q̃(t)) the

null space of the matrix Q(t). Since rank(Q̃(t)) = m− l, the dimension of

N(Q̃(t)) is l. Observe that 1̃l = diag(1̃lm1 , . . . , 1̃lml
) where

1̃lm1 = (1, . . . , 1︸ ︷︷ ︸
m1

, 0, . . . , 0︸ ︷︷ ︸
m2+···+ml

)′,

1̃lm2 = (0, . . . , 0︸ ︷︷ ︸
m1

, 1, . . . , 1︸ ︷︷ ︸
m2

, 0, . . . , 0︸ ︷︷ ︸
m3+···+ml

)′,

· · ·
1̃lml

= ( 0, . . . , 0,︸ ︷︷ ︸
m1+···+ml−1

1, . . . , 1︸ ︷︷ ︸
ml

)′

(4.52)

are linearly independent and span the null space of Q̃(t). The equations
in (4.44) have solutions only if the right-hand side of each equation is

orthogonal to 1̃l. Hence, (4.50) must hold.

Next we determine the initial value ϑ0(0). Assuming that the asymptotic
expansion of pε(·) is given by yεn(·) (see (4.43)), then it is necessary that

ϕ0(0)1̃l = lim
δ→0

lim
ε→0

pε(δ)1̃l. (4.53)

We will refer to such a condition as an initial-value consistency condition.
Moreover, in view of (4.40) and Q̃(t)1̃l = 0,

pε(t)1̃l = p01̃l +

∫ δ

0

pε(s)Q̂(s)ds1̃l.

Since pε(·) and Q̂(·) are both bounded, it follows that

lim
δ→0

(
lim sup

ε→0

∫ δ

0

pε(s)Q̂(s)ds1̃l

)
= 0.

Therefore, the initial-value consistency condition (4.53) yields

ϕ0(0)1̃l = lim
δ→0

(
lim
ε→0

pε(δ)1̃l
)
= p01̃l.

Note that (ϑ10(0), . . . , ϑ
l
0(0)) = ϕ0(0)1̃l. So the initial value for ϑ0(t)

should be
(ϑ10(0), . . . , ϑ

l
0(0)) = p01̃l.

Using this initial condition and solving (4.50) yields that

(ϑ10(t), . . . , ϑ
l
0(t)) = p01̃lX(t, 0),
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where X(t, s) is the principal matrix solution of (4.50) (see Hale [79]).
Since the smoothness ofX(·, ·) depends solely on the smoothness properties

of Q̃(t) and Q̂(t), (ϑ10(·), . . . , ϑl0(·)) is (n + 1)-times continuously differ-
entiable on [0, T ]. Up to now, we have shown that ϕ0(·) can be con-
structed that is (n + 1)-times continuously differentiable on [0, T ]. Set
ϑ0(t) = (ϑ10(t), . . . , ϑ

l
0(t)). We now summarize the discussion above as

follows:

Proposition 4.24. Assume conditions (A4.3) and (A4.4). Then for t ∈
[0, T ], ϕ0(t) can be obtained uniquely by solving the following system of
equations:

ϕk
0(t)Q̃

k(t) = 0,

ϕk
0(t)1lmk

= ϑk0(t),

dϑ0(t)

dt
= ϑ0(t)Q(t),

with ϑ0(0) = p01̃l,

(4.54)

such that ϕ0(·) is (n+ 1)-times continuously differentiable. �

We next consider the initial-layer term ψ0(·). First note that solving
(4.45) for each i = 0, 1 . . . , n+ 1 leads to

ψ0(τ) = ψ0(0) exp(Q̃(0)τ),

· · ·
ψi(τ) = ψi(0) exp(Q̃(0)τ)

+
i−1∑

j=0

∫ τ

0

ψi−j−1(s)

(
sj

j!

djQ̂(0)

dt
+

sj+1

(j + 1)!

dj+1Q̃(0)

dtj+1

)

× exp(Q̃(0)(τ − s))ds.

(4.55)

Once again, to match the asymptotic expansion requires that (4.46) hold
and hence

p0 = pε(0) = ϕ0(0) + ψ0(0).

Solving the first equation in (4.45) together with the above initial condition,
one obtains

ψ0(τ) = (p0 − ϕ0(0)) exp(Q̃(0)τ). (4.56)

Note that in Proposition 4.25 to follow, we still use κ0,0 as a positive con-
stant, which is generally a different constant from that in Section 4.2.



4.3 Markov Chains with Multiple Weakly Irreducible Classes 95

Proposition 4.25. Assume conditions (A4.3) and (A4.4). Then ψ0(·) can
be obtained uniquely by (4.56). In addition, there is a positive number κ0,0
such that

|ψ0(τ)| ≤ K exp(−κ0,0τ), τ ≥ 0.

Proof: We prove only the exponential decay property, since the rest is obvi-
ous. Let νk(0) be the stationary distribution corresponding to the generator

Q̃k(0). Define

π = 1̃l

⎛

⎜⎜⎝

ν1(0)
ν2(0)

. . .

νl(0)

⎞

⎟⎟⎠

=

⎛

⎜⎜⎝

1lm1ν
1(0)

1lm2ν
2(0)

. . .

1lml
νl(0)

⎞

⎟⎟⎠ ,

(4.57)

where

1lmk
νk(0) =

⎛

⎜⎝
νk1 (0) · · · νkmk

(0)
...

νk1 (0) · · · νkmk
(0)

⎞

⎟⎠ .

Noting the block-diagonal structure of Q̃(0), we have

exp(Q̃(0)τ) =

⎛

⎜⎜⎜⎝

exp(Q̃1(0)τ)

exp(Q̃2(0)τ)
. . .

exp(Q̃l(0)τ)

⎞

⎟⎟⎟⎠ .

It is easy to see that

(p0 − ϕ0(0))1̃l = p01̃l− ϕ0(0))1̃l = p01̃l− ϑ0(0) = 0.

Owing to the choice of initial condition, (p0 − ϕ0(0)) is orthogonal to π,
and by virtue of Lemma 4.4, for each k = 1, . . . , l and some κ0,k > 0,

∣∣∣exp(Q̃k(0)τ)− 1lmk
νk(0)

∣∣∣ ≤ K exp(−κ0,kτ),



96 4. Asymptotic Expansions of Solutions for Forward Equations

we have

|ψ0(τ)| =
∣∣∣(p0 − ϕ0(0))[exp(Q̃(0)τ) − π]

∣∣∣

≤ K sup
k≤l

∣∣∣exp(Q̃k(0)τ) − 1lmk
νk(0)

∣∣∣

≤ K exp(−κ0,0τ),

where κ0,0 = mink≤l κ0,k > 0. �

Determining ϕi(·) and ψi(·) for i ≥ 1. In contrast to the situation
encountered in Section 4.2, the sequence {ϕi(·)} cannot be obtained with-
out the involvement of {ψi(·)}. We thus obtain the sequences pairwise.
While the determination of ϕ0(·) and ψ0(·) is similar to that of Section 4.2,
the solutions for the rest of the functions show distinct features resulting
from the underlying weak and strong interactions. With known

b0(t) =
dϕ0(t)

dt
− ϕ0(t)Q̂(t),

we proceed to solve the second equation in (4.44) together with the con-
straint

∑m
i=1 ϕ

i
1(t) = 0 due to (4.47). Partition the vectors ϕ1(t) and b0(t) as

ϕ1(t) = (ϕ1
1(t), . . . , ϕ

l
1(t)),

b0(t) = (b10(t), . . . , b
l
0(t)).

In view of the definition of Q(t) in (4.51) and ϕk
0(t) = νk(t)ϑk0(t), it follows

that b0(t)1̃l = 0, thus,

bk0(t)1lmk
= 0, k = 1, . . . , l.

Let ϑk1(t) denote the function such that
∑l

k=1 ϑ
k
1(t) = 0 because ϕ1(t)1l = 0.

Then for each k = 1, . . . , l, the solution to

ϕk
1(t)Q̃

k(t) = bk0(t),

ϕk
1(t)1lmk

= ϑk1(t),

(4.58)

can be expressed as

ϕk
1(t) = b̃k0(t) + ϑk1(t)ν

k(t), (4.59)
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where b̃k0(t) is a solution to the following equation:

b̃k0(t)Q̃
k(t) = bk0(t),

b̃k0(t)1lmk
= 0,

or equivalently,

b̃k0(t)(1lmk

...Q̃k(t)) = (0
...bk0(t)).

The procedure for solving this equation is similar to that for ϕ0(·).
Analogously to the previous treatment, we proceed to determine ϑk1(t)

by solving the system of equations

Lε

( n+1∑

i=0

εiϕi(t)1̃l

)
= 0. (4.60)

Using the conditions

b̃k0(t)1lmk
= 0 and νk(t)1lmk

= 1,

we have

ϕ1(t)1̃l = (ϑ11(t), . . . , ϑ
l
1(t))

and

ϕ1(t)Q̂(t)1̃l = (ϑ11(t), . . . , ϑ
l
1(t))Q(t) + (̃b10(t), . . . , b̃

l
0(t))Q̂(t)1̃l,

where Q(t) was defined in (4.51).
By equating the coefficients of ε2 in (4.60), we obtain a system of linear

inhomogeneous equations

d

dt
(ϑ11(t), . . . , ϑ

l
1(t)) = (ϑ11(t), . . . , ϑ

l
1(t))Q(t)

+(̃b10(t), . . . , b̃
l
0(t))Q̂(t)1̃l,

(4.61)

with initial conditions

ϑk1(0), for k = 1, 2, . . . , l such that
l∑

k=1

ϑk1(0) = 0.

Again, as observed in Remark 4.23, equation (4.61) comes from the con-
sideration in the sense of Fredholm since the functions on the right-hand
sides in (4.44) must be orthogonal to 1̃l.
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The initial conditions ϑk1(0) for k = 1, . . . , l have not been completely
specified yet. We do this later to ensure the matched asymptotic expansion.
Once the ϑk1(0)’s are given, the solution of the above equation is

(ϑ11(t), . . . , ϑ
l
1(t)) = (ϑ11(0), . . . , ϑ

l
1(0))X(t, 0)

+

∫ t

0

(̃b10(s), . . . , b̃
l
0(s))Q̂(s)1̃lX(t, s)ds.

Thus if the initial value ϑk1(0) is given, then ϑ
k
1(·), k = 1, . . . , l can be found,

and so can ϕ1(·). Moreover, ϕ1(·) is n-times continuously differentiable on
[0, T ]. The problem boils down to finding the initial condition of ϑ1(0).
So far, with the proviso of specified initial conditions ϑk1(0), for k =

1, . . . , l, the construction of ϕ1(·) has been completed, and its smoothness
has been established. Compared with the determination of ϕ0(·), the mul-
tipliers ϑk1(·) can no longer be determined using the information about
the regular part alone because its initial values have to be determined in
conjunction with that of the singular part. This will be seen as follows.
In view of (4.55),

ψ1(τ) = ψ1(0) exp(Q̃(0)τ)

+

∫ τ

0

ψ0(0) exp(Q̃(0)s)Q̂(0) exp(Q̃(0)(τ − s))ds

+

∫ τ

0

sψ0(0) exp(Q̃(0)s)
dQ̃(0)

dt
exp(Q̃(0)(τ − s))ds.

(4.62)

Recall that ψ1(0) has not been specified yet.

Similar to Section 4.2, for each t ∈ [0, T ], Q̃(t)1̃l = 0. Therefore,
(
diQ̃(t)

dti

)
1̃l = 0 and

(
diQ̃(0)

dti

)
π = 0,

for i = 1, . . . , n+1, where π is defined in (4.57). This together with ψ0(0)π =
0 yields

∣∣∣∣
∫ τ

0

sψ0(0) exp(Q̃(0)s)
dQ̃(0)

dt
exp(Q̃(0)(τ − s))ds

∣∣∣∣

≤
∫ τ

0

s

∣∣∣∣ψ0(0)[exp(Q̃(0)s)− π]

∣∣∣∣

×
∣∣∣∣
dQ̃(0)

dt
[exp(Q̃(0)(τ − s))− π]

∣∣∣∣ds

≤ Kτ2 exp(−κ0,0τ).

(4.63)
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To obtain the desired property, we need only work with the first two terms
on the right side of the equal sign of (4.62). Noting the exponential decay

property of ψ0(τ) = ψ0(0) exp(Q̃(0)τ), we have

∫ ∞

0

∣∣∣ψ0(0) exp(Q̃(0)s)
∣∣∣ds <∞,

that is, the improper integral converges absolutely. Set

ψ0 =

(∫ ∞

0

ψ0(0) exp(Q̃(0)s)ds

)
Q̂(0) ∈ R

1×m. (4.64)

Consequently,

lim
τ→∞ψ1(0) exp(Q̃(0)τ) = ψ1(0)π and

lim
τ→∞

∫ τ

0

ψ0(0) exp(Q̃(0)s)Q̂(0) exp(Q̃(0)(τ − s))ds

=

(∫ ∞

0

ψ0(0) exp(Q̃(0)s)ds

)
Q̂(0)π

:= ψ0π.

(4.65)

Recall that π = diag(1lm1ν
1(0), . . . , 1lml

νl(0)). Partitioning the vector ψ0

as (ψ
1

0, . . . , ψ
l

0) for k = 1, . . . , l, we have

ψ1(0)π =
((
ψ1
1(0)1lm1

)
ν1(0), . . . ,

(
ψl
1(0)1lml

)
νl(0)

)

ψ0π =
((
ψ
1

01lm1

)
ν1(0), . . . ,

(
ψ
l

01lml

)
νl(0)

)
.

(4.66)

Our expansion requires that limτ→∞ ψ1(τ) = 0. As a result,

ψ1(0)π + ψ0π = 0, (4.67)

which implies, by virtue of (4.66),

ψk
1 (0)1lmk

= −ψk

01lmk
,

for k = 1, . . . , l. Solving these equations and in view of

ϑk1(0) = ϕk
1(0)1lmk

,

we choose

ϑk1(0) = −ψk
1 (0)1lmk

= ψ
k

01lmk
for k = 1, . . . , l.
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Substituting these into (4.59), we obtain ϕ1(·). Finally, we use ψ1(0) =
−ϕ1(0). The process of choosing initial conditions for ϕ1(·) and ψ1(·) is
complete. Furthermore,

|ψ1(τ)| ≤ K exp(−κ1,0τ) for some 0 < κ1,0 < κ0,0.

This procedure can be applied to ϕi(·) and ψi(·) for i = 2, . . . , n+1. We
proceed recursively to solve for ϕi(·) and ψi(·) jointly. Using exactly the
same methods as the solution for ϕ1(·), we define

ϑki (t) = ϕk
i (t)1lmk

,

for each k = 1, . . . , l and i = 2, . . . , n+ 1. Similar to b̃k0(·), we define b̃ki (·).
and write

b̃i(t) = (̃b1i (t), . . . , b̃
l
i(t)).

Proceeding inductively, suppose that ϑki (0) is selected and in view of (4.55),
it has been shown that

|ψi(τ)| ≤ K exp(−κi,0τ), i ≤ n (4.68)

for some 0 < κi,0 < κi−1,0. Solve

ψi+1(0)π = −
( i∑

j=0

∫ ∞

0

sj

j!
ψi−j(s)ds

djQ̂(0)

dtj

)
π := −ψiπ

to obtain ψk
i+1(0)1lmk

= −ψk

i 1lmk
. Set

ϑki+1(0) = −ψk
i+1(0)1lmk

= ψ
k

i 1lmk
, for k = 1, . . . , l.

Finally choose ψi+1(0) = −ϕi+1(0). We thus have determined the initial
conditions for ϕi(·). Exactly the same arguments as in Proposition 4.25
lead to

|ψi+1(τ)| ≤ K exp(−κi+1,0τ) for some 0 < κi+1,0 < κi,0.

Proposition 4.26. Assume (A4.3) and (A4.4). Then the following asser-
tions hold:

(a) The sequences of row-vector-valued functions ϕi(·) and ϑi(·) for i =
1, 2, . . . , n can be obtained by solving the system of algebraic differen-
tial equations

ϕi(t)Q̃(t) =
dϕi−1(t)

dt
− ϕi−1(t)Q̂(t),

ϑki (t) = ϕk
i (t)1lmk

,

dϑi(t)

dt
= ϑi(t)Q(t) + b̃i−1(t)Q̂(t)1̃l.

(4.69)
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(b) For i = 1, . . . , n, the initial conditions are selected as follows:

– For k = 1, 2, . . . , l, find ψk
i (0)1lmk

from the equation

ψi(0)π = −
( i−1∑

j=0

∫ ∞

0

sj

j!
ψi−j−1(s)ds

djQ̂(0)

dtj

)
π := −ψi−1π.

– Choose

ϑki (0) = −ψk
i (0)1lmk

= ψ
k

i−11lmk
, for k = 1, . . . , l.

– Choose ψi(0) = −ϕi(0).

(c) There is a positive real number 0 < κ0 < κi,0 (given in (4.68)) for
i = 0, 1, . . . , n+ 1 such that

|ψi(τ)| ≤ K exp(−κ0τ).
(d) The choice of initial conditions yields that ϑki (·) is (n + 1 − i)-times

continuously differentiable on [0, T ] and hence ϕi(·) is (n+1−i)-times
continuously differentiable on [0, T ]. �

4.3.2 Analysis of Remainder

The objective here is to carry out the error analysis and validate the asymp-
totic expansion. Since the details are quite similar to those of Section 4.2,
we make no attempt to spell them out. Only the following lemma and
proposition are presented.

Lemma 4.27. Suppose that (A4.3) and (A4.4) are satisfied. Let ηε(·) be a
function such that

sup
t∈[0,T ]

|ηε(t)| = O(εk+1) for k ≤ n

and let Lε be an operator defined in (4.42). If f ε(·) is a solution to the
equation

Lεf ε(t) = ηε(t) with f ε(0) = 0,

then f ε(·) satisfies
sup

t∈[0,T ]

|f ε(t)| = O(εk).

Proof: Note that using Qε(t) = Q̃(t)/ε+ Q̂(t), the differential equation can
be written as

df ε(t)

dt
= f ε(t)Qε(t) +

ηε(t)

ε
.

We can then proceed as in the proof of Lemma 4.13. �

Lemma 4.27 together with detailed computation similar to that of Section
4.2 yields the following proposition.
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Proposition 4.28. For each i = 0, 1, . . . , n, define

eεi (t) = pε(t)− yεi (t). (4.70)

Under conditions (A4.3) and (A4.4),

sup
0≤t≤T

|eεi (t)| = O(εi+1).

4.3.3 Computational Procedure: User’s Guide

Since the constructions of ϕi(·) and ψi(·) are rather involved, and the choice
of initial conditions is tricky, we summarize the procedure below. This pro-
cedure, which can be used as a user’s guide for developing the asymptotic
expansion, comprises two main stages.

Step 1: Initialization: finding ϕ0(·) and ψ0(·).
1. Obtain the unique solution ϕ0(·) via (4.54).

2. Obtain the unique solution ψ0(·) via (4.55) and the initial con-
dition ψ0(0) = p0 − ϕ0(0).

Step 2. Iteration: finding ϕi(·) and ψi(·) for 1 ≤ i ≤ n.
While i ≤ n, do the following:

1. Find ϕi(·) the solution of (4.69) with temporarily unspecified
ϑki (0) for k = 1, . . . , l.

2. Obtain ψi(·) from (4.55) with temporarily unspecified ψi(0).

3. Use the equation

ψi(0)π = −
( i−1∑

j=0

∫ ∞

0

sj

j!
ψi−j−1(s)ds

djQ̂(0)

dtj

)
π := −ψi−1π

to obtain ψk
i (0)1lmk

= −ψk

i−11lmk
.

4. Set ϑki (0) = −ψk
i (0)1lmk

= ψ
k

i−11lmk
. By now, ϕi(·) has been

determined uniquely.

5. Choose ψi(0) = −ϕi(0). By now, ψi(·) has also been determined
uniquely.

6. Set i = i+ 1.

7. If i > n, stop.

4.3.4 Summary of Results

While the previous subsection gives the computational procedure, this
subsection presents the main theorem. It establishes the validity of the
asymptotic expansion.
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Theorem 4.29. Suppose conditions (A4.3) and (A4.4) are satisfied. Then
the asymptotic expansion

yεn(t) =

n∑

i=0

(
εiϕi(t) + εiψi

(
t

ε

))

can be constructed as in the computational procedure such that

(a) ϕi(·) is (n+ 1− i)-times continuously differentiable on [0, T ];

(b) |ψi(t)| ≤ K exp(−κ0t) for some κ0 > 0;

(c) |pε(t)− yεn(t)| = O(εn+1) uniformly in t ∈ [0, T ].

Remark 4.30 In general, in view of Proposition 4.11, the error bound is
of the form c2n(t) exp(−κ0t), where c2n(t) is a polynomial of degree 2n.
The exponential constant κ0 typically depends on n. The larger n is, the
smaller κ0 will be to account for the polynomial c2n(t).

The following result is a corollary to Theorem 4.29 and will be used in
Chapters 5 and 7. Denote the jth component of νk(t) by νkj (t).

Corollary 4.31. Assume, in addition to the conditions in Theorem 4.29
with n = 0, that Q̃(t) = Q̃ and Q̂(t) = Q̂ are time independent. Then there
exist positive constants K and κ0 (both independent of ε and t) such that

∣∣∣P (αε(t) = skj)− νkj (t)ϑ
k(t)

∣∣∣ ≤ K

(
ε(t+ 1) + exp

(
−κ0t

ε

))
, (4.71)

where ϑk(t) satisfies

d

dt
(ϑ1(t), . . . , ϑl(t)) = (ϑ1(t), . . . , ϑl(t))Q,

with (ϑ1(0), . . . , ϑl(0)) = (P (αε(0) ∈ M1), . . . , P (α
ε(0) ∈ Ml)).

Proof: By a slight modification of the analysis of remainder in Section
4.3, we can obtain (4.71) with a constant K independent of ε and t. The
second part of the lemma follows from the uniqueness of the solution to
the ordinary differential equation (4.71). �

Remark 4.32. We mention an alternative approach to establishing the
asymptotic expansion. In lieu of the constructive procedure presented pre-
viously, one may wish to write ϕi(t) as a sum of solutions of the homoge-
neous part and the inhomogeneous part. For instance, one may set

ϕi(t) = vi(t)diag(ν
1(t), . . . , νl(t)) + Ui(t), (4.72)
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where vi(t) ∈ R
l and Ui(t) is a particular solution of the inhomogeneous

equation. For i ≥ 0, the equation

ϕ(i+1)(t)Q̃(t) =
dϕi(t)

dt
− ϕi(t)Q̂(t)

and Q̃(t)1̃l = 0 lead to

0 =

(
dϕi(t)

dt
− ϕi(t)Q̂(t)

)
1̃l.

Substituting (4.72) into the equation above, and noting that νk(t)1lmk
= 1

for k = 1, . . . , l, and that diag(ν1(t), . . . , νl(t))1̃l = Il, the l × l identity
matrix, one obtains

dvi(t)

dt
= vi(t)Q(t) + Ui(t)Q̂(t)1̃l−

(
dUi(t)

dt

)
1̃l.

One then proceeds to determine vi(0) via the matching condition. The main
ideas are similar, and the details are slightly different.

4.3.5 An Example

Consider Example 4.20 again. Note that the conditions in (A4.3) and (A4.4)
require that

λ1(t) + μ1(t) > 0 for all t ∈ [0, T ],

and the jump rates λ(t) and μ(t) be smooth enough.
The probability distribution of the state process is given by pε(t)

satisfying

dpε(t)

dt
= pε(t)Qε(t),

pε(0) = p0 such that

p0i ≥ 0 and

4∑

i=1

p0i = 1.

To solve this set of equations, note that

d

dt
(pε1(t) + pε2(t)) = −λ2(t)(pε1(t) + pε2(t)) + μ2(t)(p

ε
3(t) + pε4(t)),

d

dt
(pε1(t) + pε3(t)) = −λ1(t)

ε
(pε1(t) + pε3(t)) +

μ1(t)

ε
(pε2(t) + pε4(t)),

d

dt
(pε2(t) + pε4(t)) =

λ1(t)

ε
(pε1(t) + pε3(t))−

μ1(t)

ε
(pε2(t) + pε4(t)),

d

dt
(pε3(t) + pε4(t)) = λ2(t)(p

ε
1(t) + pε2(t))− μ2(t)(p

ε
3(t) + pε4(t)).
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To proceed, define functions a12(t), a13(t), a24(t), and a34(t) as follows:

a12(t) = (p01 + p02) exp

(
−
∫ t

0

(λ2(s) + μ2(s))ds

)

+

∫ t

0

μ2(u) exp

(
−
∫ t

u

(λ2(s) + μ2(s))ds

)
du,

a13(t) = (p01 + p03) exp

(
−1

ε

∫ t

0

(λ1(s) + μ1(s))ds

)

+

∫ t

0

μ1(u)

ε
exp

(
−1

ε

∫ t

u

(λ1(s) + μ1(s))ds

)
du,

a24(t) = (p02 + p04) exp

(
−1

ε

∫ t

0

(λ1(s) + μ1(s))ds

)

+

∫ t

0

λ1(u)

ε
exp

(
−1

ε

∫ t

u

(λ1(s) + μ1(s))ds

)
du,

a34(t) = (p03 + p04) exp

(
−
∫ t

0

(λ2(s) + μ2(s))ds

)

+

∫ t

0

λ2(u) exp

(
−
∫ t

u

(λ2(s) + μ2(s))ds

)
du.

Then using the fact that pε1(t) + pε2(t) + pε3(t) + pε4(t) = 1, we have

pε1(t) + pε2(t) = a12(t),

pε1(t) + pε3(t) = a13(t),

pε2(t) + pε4(t) = a24(t),

pε3(t) + pε4(t) = a34(t).

(4.73)

Note also that

dpε1(t)

dt
= −

(
λ1(t)

ε
+
μ1(t)

ε
+ λ2(t) + μ2(t)

)
pε1(t)

+
μ1(t)

ε
a12(t) + μ2(t)a13(t).

The solution to this equation is

pε1(t) = p01 exp

(
−
∫ t

0

(
λ1(s) + μ1(s)

ε
+ λ2(s) + μ2(s)

)
ds

)

+

∫ t

0

(
μ1(u)

ε
a12(u) + μ2(u)a13(u)

)

× exp

(
−
∫ t

u

(
λ1(s) + μ1(s)

ε
+ λ2(s) + μ2(s)

)
ds

)
du.
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Consequently, in view of (4.73), it follows that

pε2(t) = a12(t)− pε1(t),

pε3(t) = a13(t)− pε1(t),

pε4(t) = a24(t)− pε2(t).

In this example, the zeroth-order term is given by

ϕ0(t) = (ν1(t)ϑ10(t), ν
2(t)ϑ20(t)),

where the quasi-stationary distributions are given by

ν1(t) = ν2(t) =

(
μ1(t)

λ1(t) + μ1(t)
,

λ1(t)

λ1(t) + μ1(t)

)
,

and the multipliers (ϑ10(t), ϑ
2
0(t)) are determined by the differential equation

d

dt
(ϑ10(t), ϑ

2
0(t)) = (ϑ10(t), ϑ

2
0(t))

(
−λ2(t) λ2(t)

μ2(t) −μ2(t)

)
,

with initial value (ϑ10(0), ϑ
2
0(0)) = (p01 + p02, p

0
3 + p04).

The inner expansion term ψ0(τ) is given by

dψ0(τ)

dτ
= ψ0(τ)Q̃(0), ψ0(0) = p0 − ϕ0(0).

By virtue of Theorem 4.29,

pε(t)− ϕ0(t)− ψ0

(
t

ε

)
= O(ε),

provided that Qε(t) is continuously differentiable on [0, T ]. Noting the ex-
ponential decay of ψ0(t/ε), we further have

pε(t) = ϕ0(t) +O

(
ε+ exp

(
−κ0t

ε

))
.

In particular, for any t > 0,

lim
ε→0

pε(t) = ϕ0(t).

Namely, ϕ0(t) is the limit distribution of the Markov chain generated by
Qε(t).



4.4 Inclusion of Absorbing States 107

4.4 Inclusion of Absorbing States

While the case of recurrent states was considered in the previous section,
this section concerns the asymptotic expansion in which the Markov chain
generated by Qε(t) in which Q̃(t) includes components corresponding to

absorbing states. By rearrangement, the matrix Q̃(t) takes the form

Q̃(t) =

⎛

⎜⎜⎜⎜⎜⎝

Q̃1(t)

Q̃2(t)
. . .

Q̃l(t)
0ma×ma

⎞

⎟⎟⎟⎟⎟⎠
, (4.74)

where Q̃k(t) ∈ R
mk×mk for k = 1, 2, . . . , l, 0ma×ma is an ma × ma zero

matrix, and

m1 +m2 + · · ·+ml +ma = m.

Let Ma = {sa1, . . . , sama} denote the set of absorbing states. We may, as
in Section 4.3, represent the state space as

M = M1 ∪ · · · ∪Ml ∪Ma

=
{
s11, . . . , s1m1 , . . . , sl1, . . . , slml

, sa1, . . . , sama

}
.

Following the development of Section 4.3, suppose that αε(·) is a Markov

chain generated by Qε(·) = Q̃(·)/ε+ Q̂(·). Compared with Section 4.3, the
difference is that now the dominant part in the generator includes absorbing
states corresponding to the ma ×ma matrix 0ma×ma . As in the previous
case, our interest is to obtain an asymptotic expansion of the probability
distribution.

Remark 4.33. The motivation of the current study stems from the
formulation of competitive risk theory discussed in Section 3.3. The idea is
that within the m states, there are several groups. Some of them are much
riskier than the others (in the sense of frequency of the occurrence of the
corresponding risks). The different rates (sensitivity) of risks are modeled
by the use of a small parameter ε > 0.

Denote by pε(·) the solution of (4.40). The objective here is to obtain an
asymptotic expansion

yεn =

n∑

i=0

εiϕi(t) +

n∑

i=0

εiψi

(
t

ε

)
.
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Since the techniques employed are essentially the same as in the previous
section, it will be most instructive here to highlight the main ideas. Thus,
we only note the main steps and omit most of the details.
Assume conditions (A4.3) and (A4.4) for the current matrices Q̃k(t),

Q̃(t), and Q̂(t). For t ∈ [0, T ], substituting the expansion above into (4.40)
and equating coefficients of εi, for i = 1, . . . , n+ 1, yields

ϕ0(t)Q̃(t) = 0,

ϕi(t)Q̃(t) =
dϕi−1(t)

dt
− ϕi−1(t)Q̂(t),

(4.75)

and (with the use of the stretched variable τ = t/ε)

dψ0(τ)

dτ
= ψ0(τ)Q̃(0),

dψi(τ)

dτ
= ψi(τ)Q̃(0) +

i−1∑

j=0

ψi−j−1(τ)

×
(
τ j

j!

djQ̂(0)

dtj
+

τ j+1

(j + 1)!

dj+1Q̃(0)

dtj+1

)
.

(4.76)

For each i ≥ 0, we use the following notation for the partitioned vectors:

ϕi(t) = (ϕ1
i (t), . . . , ϕ

l
i(t), ϕ

a
i (t)),

ψi(τ) = (ψ1
i (τ), . . . , ψ

l
i(τ), ψ

a
i (τ)).

In the above ϕa
i (t) and ψ

a
i (τ) are vectors in R

1×ma .
To determine the outer- and the initial-layer expansions, let us start

with i = 0. For each t ∈ [0, T ], the use of the partitioned vector ϕ0(t) leads
to

ϕk
0(t)Q̃

k(t) = 0, for k = 1, . . . , l.

Note that ϕa
0(t) does not show up in any of these equations owing to the

0ma×ma matrix in Q̃(t). It will have to be obtained from the equation in
(4.75) corresponding to i = 1. Put another way, ϕa

0(t) is determined mainly

by the matrix Q̂(t).
Similar to Section 4.3, ϕk

0(t) = ϑk0(t)ν
k(t), where νk(t) are the quasi-

stationary distributions corresponding to the generators Q̃k(t) for k =
1, . . . , l and ϑk0(t) are the corresponding multipliers. Define

1̃la =

⎛

⎜⎜⎝

1lm1

. . .

1lml

Ima

⎞

⎟⎟⎠ ,
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where Ima is an ma×ma identity matrix. Clearly, 1̃la is orthogonal to Q̃(t)

for each t ∈ [0, T ]. As a result, multiplying (4.75) by 1̃la from the right with
i = 1 leads to

dϕ0(t)

dt
1̃la = ϕ0(t)Q̂(t)1̃la,

(ϑ0(0), ϕ
a
0(0)) = p01̃la,

(4.77)

where ϑ0(0) = (ϑ10(0), . . . , ϑ
l
0(0)).

The above initial condition is a consequence of the initial-value consis-
tency condition in (4.53). It is readily seen that

l∑

k=1

ϑk0(0) = 1− ϕa
0(0)1lma = 1− p0,a1lma,

where p0 = (p0,1, . . . , p0,l, p0,a).
We write

ϕ0(t) = (ϑ10(t), . . . , ϑ
l
0(t), ϕ

a
0(t))diag(ν

1(t), . . . , νl(t), Ima).

Define

Q(t) = diag(ν1(t), . . . , νl(t), Ima)Q̂(t)1̃la. (4.78)

Then (4.77) is equivalent to

d

dt
(ϑ0(t), ϕ

a
0(t)) = (ϑ0(t), ϕ

a
0(t))Q(t),

(ϑ0(0), ϕ
a
0(0)) = p01̃la.

This is a linear system of differential equations. Therefore it has a unique
solution given by

(ϑ0(t), ϕ
a
0(t)) = p01̃laX(t, 0),

where X(t, 0) is the principal matrix solution of the homogeneous equation.
Thus ϕ0(t) has been found and is (n+1)-times continuously differentiable.

Remark 4.34. Note that in ϕ0(t), the term ϕa
0(t) corresponds to the set of

absorbing states Ma. Clearly, these states cannot be aggregated to a single
state as in the case of recurrent states. Nevertheless, the function ϕa

0(t)
tends to be stabilized in a neighborhood of a constant for t large enough.
To illustrate, let us consider a stationary case, that is, both Q̃(t) = Q̃ and

Q̂(t) = Q̂ are independent of t. Partition Q̂ as blocks of submatrices

Q̂ =

(
Q̂11 Q̂12

Q̂21 Q̂22

)
,
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where Q̂22 is an ma×ma matrix. Assume that the eigenvalues of Q̂22 have
negative real parts. Then, in view of the definition of Q(t) = Q in (4.78),
it follows that

ϕa
0(t) → a constant as t→ ∞.

Using the partition ψ0(τ) = (ψ1
0(τ), . . . , ψ

l
0(τ), ψ

a
0 (τ)), consider the zeroth-

order initial-layer term given by

dψ0(τ)

dτ
=

d

dτ
(ψ1

0(τ), . . . , ψ
l
0(τ), ψ

a
0 (τ))

= ψ0(τ)Q̃(0) = (ψ1
0(τ)Q̃

1(τ), . . . , ψl
0(τ)Q̃

l(0), 0ma).

We obtain

ψk
0 (τ) = ψk

0 (0) exp(Q̃
k(0)τ), for k = 1, . . . , l, and

ψa
0 (τ) = constant.

Noting that p0,a = ϕa
0(0) and choosing ψ0(0) = p0 −ϕ0(0) lead to ψa

0 (τ) =
0ma . Thus

ψ0(τ) = (ψ1
0(0) exp(Q̃

1(0)τ), . . . , ψl
0(0) exp(Q̃

l(0)τ), 0ma).

Similar to the result in Section 4.3, the following lemma holds. The proof
is analogous to that of Proposition 4.25.

Lemma 4.35. Define

πa = diag(1lm1ν
1(0), . . . , 1lml

νl(0), Ima).

Then there exist positive constants K and κ0,0 such that

| exp(Q̃(0)τ) − πa| ≤ K exp(−κ0,0τ).

By virtue of the lemma above and the orthogonality (p0 −ϕ0(0))πa = 0,
we have

|ψ0(τ)| = |(p0 − ϕ0(0))(exp(Q̃(0)τ) − πa)|

≤ K exp(−κ0,0τ)

for some K > 0 and κ0,0 > 0 given in Lemma 4.35; that is, ψ0(τ) decays
exponentially fast. Therefore, ψ0(τ) has the desired property.
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We continue in this fashion and proceed to determine the next term ϕ1(t)
as well as ψ1(t/ε). Let

b0(t) =
dϕ0(t)

dt
− ϕ0(t)Q̂(t) with

b0(t) = (b10(t), . . . , b
l
0(t), b

a
0(t)).

It is easy to check that ba0(t) = 0ma . The equation ϕ1(t)Q̃(t) = b0(t) then
leads to

ϕk
1(t)Q̃

k(t) = bk0(t), for k = 1, . . . , l,

ba0(t) = 0ma .

(4.79)

The solutions of the l inhomogeneous equations in (4.79) above are of
the form

ϕk
1(t) = ϑk1(t)ν

k(t) + b̃k0(t), k = 1, . . . , l,

where ϑk1(t) for k = 1, . . . , l are scalar multipliers. Again, ϕa
1(t) cannot be

obtained from the equation above, it must come from the contribution of
the matrix-valued function Q̂(t).
Note that

b̃k0(t)Q̃
k(t) = bk0(t) and b̃k0(t)1lmk

= 0.

Using the equation

ϕ2(t)Q̃(t) =
dϕ1(t)

dt
− ϕ1(t)Q̂(t),

one obtains

0 = ϕ2(t)Q̃(t)1̃la =
dϕ1(t)

dt
1̃la − ϕ1(t)Q̂(t)1̃la,

which in turn implies that

d

dt
(ϑ1(t), ϕ

a
1(t)) = (ϑ1(t), ϕ

a
1(t))Q(t)

+(̃b0(t), 0ma)Q̂(t)1̃la,

(4.80)

where

ϑ1(t) = (ϑ11(t), . . . , ϑ
l
1(t)) and b̃0(t) = (̃b10(t), . . . , b̃

l
0(t)).
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Let X(t, s) denote the principal matrix solution to the homogeneous dif-
ferential equation

dy(t)

dt
= y(t)Q(t).

Then the solution to (4.80) can be represented by X(t, s) as follows:

(ϑ1(t), ϕ
a
1(t)) = (ϑ1(0), ϕ

a
1(0))X(t, 0)

+

∫ t

0

(̃b0(s), 0ma)Q̂(s)1̃laX(t, s)ds.

Note that the initial conditions ϕa
1(0) and ϑ

k
1(0) for k = 1, . . . , l need to be

determined using the initial-layer terms just as in Section 4.3.
Using (4.76) with i = 1, one obtains an equation that has the same form

as that of (4.62). That is,

ψ1(τ) = ψ1(0) exp(Q̃(0)τ)

+

∫ τ

0

ψ0(0) exp(Q̃(0)s)Q̂(0) exp(Q̃(0)(τ − s))ds

+

∫ τ

0

sψ0(0) exp(Q̃(0)s)
dQ̃(0)

dt
exp(Q̃(0)(τ − s))ds.

As in Section 4.3, with the use of πa, it can be shown that |ψ1(τ)| ≤
K exp(−κ1,0τ) for some K > 0 and 0 < κ1,0 < κ0,0. By requiring that
ψ1(τ) decay to 0 as τ → ∞, we obtain the equation

ψ1(0)πa = −ψ0πa, (4.81)

where

ψ0 =

∫ ∞

0

ψ0(0) exp(Q̃(0)s)dsQ̂(0).

Owing to (4.81) and the known form of ψ0(τ),

ψ0 = (ψ
1

0, . . . , ψ
l

0, ψ
a

0)

= (p0,1 − ϕ1
0(0), . . . , p

0,l − ϕl
0, 0ma)

(∫ ∞

0

exp(Q̃(0)s)ds

)
Q̂(0),

which is a completely known vector. Thus the solution to (4.81) is

ψk
1 (0)1lmk

= −ψk

01lmk
for k = 1, . . . , l, and ψa

1 (0) = −ψa

0 .
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To obtain the desired matching property for the inner-outer expansions,
choose

ϑk1(0) = −ψk
1 (0)1lmk

= ψ
k

01lmk
for k = 1, . . . , l,

ϕa
1(0) = −ψa

1 (0) = ψ
a

0 .

In general, for i = 2, . . . , n, the initial conditions are selected as follows:
For k = 1, 2, . . . , l, find ψk

i (0)1lmk
from the equation

ψi(0)πa = −
( i−1∑

j=0

∫ ∞

0

sj

j!
ψi−j−1(s)ds

djQ̂(0)

dtj

)
πa := −ψi−1πa.

Choose

ϑki (0) = −ψk
i (0)1lmk

= ψ
k

i−11lmk
,

for k = 1, . . . , l,

φai (0) = −ψa

i−1, and ψi(0) = −ϕi(0).

Proceeding inductively, we then construct all ϕi(t) and ψi(τ). Moreover,
we can verify that there exists 0 < κi,0 < κi−1,0 < κ0,0 such that |ψi(τ)| ≤
K exp(−κi,0τ). This indicates that the inclusion of absorbing states is very
similar to the case of all recurrent states. In the zeroth-order outer ex-
pansion, there is a component ϕa

0(t) that “takes care of” the absorbing
states. Note, however, that starting from the leading term (zeroth-order
approximation), the matching will be determined not only by the multipli-
ers ϑi(0) but also by the vector ψi(0) associated with the absorbing states.
We summarize the results in the following theorem.

Theorem 4.36. Consider Q̃(t) given by (4.74), and suppose conditions

(A4.3) and (A4.4) are satisfied for the matrix-valued functions Q̃k(·) for

k = 1, . . . , l and Q̂(·). An asymptotic expansion

yεn(t) =

n∑

i=0

(
εiϕi(t) + εiψi

(
t

ε

))

exists such that

(a) ϕi(·) is (n+ 1− i)-times continuously differentiable on [0, T ];

(b) |ψi(t)| ≤ K exp(−κ0t) for some 0 < κ0 < κi,0;

(c) |pε(t)− yεn(t)| = O(εn+1) uniformly in t ∈ [0, T ].

Finally, at the end of this section, we give a simple example to illustrate
the result.
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Example 4.37. Let us consider a Markov chain generated by

Qε =
1

ε
Q̃+ Q̂,

where

Q̃ =

⎛

⎝
−1 1 0
1 −1 0
0 0 0

⎞

⎠ and Q̂ =

⎛

⎝
0 0 0
0 0 0
1 0 −1

⎞

⎠ .

Not being irreducible, the chain generated by Q̃ includes an absorbing state.

In this example, Q =

(
0 0
1 −1

)
. Let p0 = (p01, p

0
2, p

0,a) denote the initial

distribution of αε(·). Then solving the forward equation (4.40) gives us

pε(t) = (pε1(t), p
ε
2(t), p

ε
3(t)),

where

pε1(t) =
p01 + p02 + p0,a

2

−
(−p01 + p02 − p0,a

2
+

p0,a

2− ε

)
exp

(
−2t

ε

)
−
(
(1− ε)p0,a

2− ε

)
exp(−t),

pε2(t) =
p01 + p02 + p0,a

2

+

(−p01 + p02 − p0,a

2
+

p0,a

2− ε

)
exp

(
−2t

ε

)
−
(
p0,a

2− ε

)
exp(−t),

pε3(t) = p0,a exp(−t).

Computing ϕ0(t) yields

ϕ0(t) =

(
p01 + p02 + p0,a

2
,
p01 + p02 + p0,a

2
, 0

)

+

(
−p

0,a

2
,−p

0,a

2
, p0,a

)
exp(−t).

It is easy to see that for t > 0,

lim
ε→0

|pε(t)− ϕ0(t)| = 0.

The limit behavior of the underlying Markov chain as ε→ 0 is determined
by ϕ0(t) (for t > 0). Moreover, when t is large, the influence from Q̂ corre-
sponding to the absorbing state (the vector multiplied by exp(−t)) can be
ignored because exp(−t) goes to 0 exponentially fast as t → ∞.
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4.5 Inclusion of Transient States

If a Markov chain has transient states, then, relabeling the states through
suitable permutations, one can decompose the states into several groups
of recurrent states, each of which is weakly irreducible, and a group of
transient states. Naturally, we consider the generator Q̃(t) in Qε(t) having
the form

Q̃(t) =

⎛

⎜⎜⎜⎜⎜⎝

Q̃1(t)
. . .

Q̃l(t)

Q̃1
∗(t) · · · Q̃l

∗(t) Q̃∗(t)

⎞

⎟⎟⎟⎟⎟⎠
(4.82)

such that for each t ∈ [0, T ], and each k = 1, . . . , l, Q̃k(t) is a generator

with dimension mk ×mk, Q̃∗(t) is an m∗ ×m∗ matrix, Q̃k∗(t) ∈ R
m∗×mk ,

and
m1 +m2 + · · ·+ml +m∗ = m.

We continue our study of singularly perturbed chains with weak and strong
interactions by incorporating the transient states into the model. Let αε(·)
be a Markov chain generated by Qε(·), with Qε(t) ∈ R

m×m given by (4.39)

with Q̃(t) given by (4.82). The state space of the underlying Markov chain
is given by

M = M1 ∪ · · · ∪Ml ∪M∗

where Mk = {sk1, . . . , skmk
} are the states corresponding to the recurrent

states and M∗ = {s∗1, . . . , s∗m∗} are those corresponding to the transient
states.
Since Q̃(t) is a generator, for each k = 1, . . . , l, Q̃k(t) is a generator.

Thus the matrix Q̃k
∗(t) = (q̃k∗,ij) satisfies q̃k∗,ij ≥ 0 for each i = 1, . . . ,m∗

and j = 1, . . . ,mk, and Q̃∗(t) = (q̃∗,ij) satisfies

q̃∗,ij(t) ≥ 0 for i 	= j, q̃∗,ii(t) < 0, and q̃∗,ii(t) ≤ −
∑

j �=i

q̃∗,ij(t).

Roughly, the block matrix (Q̃1
∗(t), . . . , Q̃

l
∗(t), Q̃∗(t)) is “negatively domi-

nated” by the matrix Q̃∗(t). Thus it is natural to assume that Q̃∗(t) is a
stable matrix (or Hurwitz, i.e., all its eigenvalues have negative real parts).

Comparing with the setups of Sections 4.3 and 4.4, the difference in Q̃(t) is

the additional matrices Q̃k∗(t) for k = 1, . . . , l and Q̃∗(t). Note that Q̃k∗(t)
are nonsquare matrices, and Q̃(t) no longer has block-diagonal form.
The formulation here is inspired by the work of Phillips and Kokotovic

[175] and Delebecque and Quadrat [44]; see also the recent work of Pan and

Başar [164], in which the authors treated time-invariant Q̃ matrix of a sim-
ilar form. Sections 4.3 and 4.4 together with this section essentially include
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generators of finite-state Markov chains of the most practical concerns.
It ought to be pointed out that just as one cannot in general simultane-
ously diagonalize two matrices, for Markov chains with weak and strong
interactions, one cannot put both Q̃(t) and Q̂(t) into the forms mentioned
above simultaneously. Although the model to be studied in this section is
slightly more complex compared with the block-diagonal Q̃(t) in (4.41),
we demonstrate that an asymptotic expansion of the probability distribu-
tion can still be obtained by using the same techniques of the previous
sections. Moreover, it can be seen from the expansion that the underlying
Markov chain stays in the transient states only with very small probability.
In some cases, for example Q̂(t) = 0, these transient states can be ignored;
see Remark 4.40 for more details.
To incorporate the transient states, we need the following conditions.

The main addition is the assumption that Q̃∗(t) is stable.

(A4.5) For each t ∈ [0, T ] and k = 1, . . . , l, Q̃(t), Q̂(t), and Q̃k(t) satisfy
(A4.3) and (A4.4).

(A4.6) For each t ∈ [0, T ], Q̃∗(t) is Hurwitz (i.e., all of its eigenvalues
have negative real parts).

Remark 4.38. Condition (A4.6) indicates the inclusion of transient states.

Since Q̃∗(t) is Hurwitz, it is nonsingular. Thus the inverse matrix Q̃−1∗ (t)
exists for each t ∈ [0, T ].

Let pε(·) denote the solution to (4.40) with Q̃(t) specified in (4.82).
We seek asymptotic expansions of pε(·) having the form

yεn(t) =
n∑

i=0

εiϕi(t) +
n∑

i=0

εiψi

(
t

ε

)
.

The development is very similar to that of Section 4.3, so no attempt is
made to give verbatim details. Instead, only the salient features will be
brought out.
Substituting yεn(t) into the forward equation and equating coefficients of

εi for i = 1, . . . , n lead to the equations

ϕ0(t)Q̃(t) = 0,

ϕi(t)Q̃(t) =
dϕi−1(t)

dt
− ϕi−1(t)Q̂(t),

(4.83)
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and with the change of time scale τ = t/ε,

dψ0(τ)

dτ
= ψ0(τ)Q̃(0),

dψi(τ)

dτ
= ψi(τ)Q̃(0) +

i−1∑

j=0

ψi−j−1(τ)

×
(
τ j

j!

djQ̂(0)

dtj
+

τ j+1

(j + 1)!

dj+1Q̃(0)

dtj+1

)
.

(4.84)

As far as the expansions are concerned, the equations have exactly the same
form as that of Section 4.3. Note, however, that the partitioned vector ϕi(t)
has the form

ϕi(t) = (ϕ1
i (t), . . . , ϕ

l
i(t), ϕ

∗
i (t)), i = 0, 1, . . . , n,

where ϕk
i (t), k = 1, . . . , l, is an mk row vector and ϕ∗

i (t) is an m∗ row
vector. A similar partition holds for the vector ψi(t). To construct these

functions, we begin with i = 0. Writing ϕ0(t)Q̃(t) = 0 in terms of the
corresponding partition, we have

ϕk
0(t)Q̃

k(t) + ϕ∗
0(t)Q̃

k
∗(t) = 0, for k = 1, . . . , l, and

ϕ∗
0(t)Q̃∗(t) = 0.

Since Q̃∗(t) is stable, it is nonsingular. The last equation above implies
ϕ∗
0(t) = 0m∗ = (0, . . . , 0) ∈ R

1×m∗ . Consequently, as in the previous sec-

tion, for each k = 1, . . . , l, the weak irreducibility of Q̃k(t) implies that
ϕk
0(t) = ϑk0(t)ν

k(t), for some scalar function ϑk0(t). Equivalently,

ϕ0(t) = (ϑ10(t)ν
1(t), . . . , ϑl0(t)ν

l(t), 0m∗).

Comparing the equation above with the corresponding expression of ϕ0(t)
in Section 4.3, the only difference is the addition of the m∗-dimensional
row vector 0m∗ .

Remark 4.39. Note that the dominant term in the asymptotic expansion
is ϕ0(t), in which the probabilities corresponding to the transient states
are 0. Thus, the probability corresponding to αε(t) ∈ { transient states }
is negligibly small.

Define

1̃l∗(t) =

⎛

⎜⎜⎜⎜⎜⎜⎝

1lm1

. . .

1lml

am1(t) · · · aml
(t) 0m∗×m∗

⎞

⎟⎟⎟⎟⎟⎟⎠
(4.85)
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where amk
(t) = −Q̃−1

∗ (t)Q̃k
∗(t)1lmk

for k = 1, . . . , l, and 0m∗×m∗ is the zero
matrix in R

m∗×m∗ .
It is readily seen that

Q̃(t)1̃l∗(t) = 0 for each t ∈ [0, T ].

In view of (4.83), it follows that

d

dt
(ϑ10(t), . . . , ϑ

l
0(t), 0m∗)

= (ϑ10(t), . . . , ϑ
l
0(t), 0m∗)Q(t),

(4.86)

where

Q(t) = diag(ν1(t), . . . , νl(t), 0m∗×m∗)Q̂(t)1̃l∗(t).

We write Q̂(t) as follows:

Q̂(t) =

⎛

⎝ Q̂11(t) Q̂12(t)

Q̂21(t) Q̂22(t)

⎞

⎠ ,

where for each t ∈ [0, T ],

Q̂11(t) ∈ R
(m−m∗)×(m−m∗), Q̂12(t) ∈ R

(m−m∗)×m∗ ,

Q̂21(t) ∈ R
m∗×(m−m∗), and Q̂22(t) ∈ R

m∗×m∗ .

Let

Q∗(t) = diag(ν1(t), . . . , νl(t))
(
Q̂11(t)1̃l + Q̂12(t)(am1(t), . . . , aml

(t))
)
.

Then Q(t) = diag(Q∗(t), 0m∗×m∗). Moreover, the differential equation
(4.86) becomes

d

dt
(ϑ10(t), . . . , ϑ

l
0(t)) = (ϑ10(t), . . . , ϑ

l
0(t))Q∗(t).

Remark 4.40. Note that the submatrix Q̂12(t) in Q̂(t) determines the
jump rates of the underlying Markov chain from a recurrent state in M1 ∪
· · · ∪ Ml to a transient state in M∗. If the magnitude of the entries of
Q̂12(t) is small, then the transient state can be safely ignored because the

contribution of Q̂12(t) to Q(t) is small. On the other hand, if Q̂12(t) is not
negligible, then one has to be careful to include the corresponding terms in
Q(t).
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We now determine the initial value ϑk0(0). In view of the asymptotic
expansions yεn(t) and the initial-value consistency condition in (4.53), it is
necessary that for k = 1, . . . , l,

ϑk0(0) = ϕk
0(0)1lmk

= lim
δ→0

lim
ε→0

pε,k(δ)1lmk
, (4.87)

where pε(t) = (pε,1(t), . . . , pε,l(t), pε,∗(t)) is a solution to (4.40). Here pε,k(t)
has dimensions compatible with ϕk

0(0) and ψk
0 (0). Similarly, we write the

partition of the initial vector as p0 = (p0,1, . . . , p0,l, p0,∗). The next theorem
establishes the desired consistency of the initial values. Its proof is placed
in Appendix A.4.

Theorem 4.41. Assume (A4.5) and (A4.6). Then for k = 1, . . . , l,

lim
δ→0

(
lim sup

ε→0

∣∣∣pε,k(δ)1lmk
−
(
p0,k1lmk

− p0,∗Q̃−1
∗ (0)Q̃k

∗(0)1lmk

)∣∣∣
)

= 0.

Remark 4.42. In view of this theorem, the initial value should be given as

ϑk0(0) = p0,k1lmk
− p0,∗Q̃−1

∗ (0)Q̃k
∗(0)1lmk

. (4.88)

Therefore, in view of (4.88), to make sure that the initial condition satisfies
the probabilistic interpretation, it is necessary that

ϑk0(t) ≥ 0 for t ∈ [0, T ] and k = 1, . . . , l and

l∑

k=1

ϑk0(0) = 1.

In view of the structure of the Q̃(0) matrix, for each k = 1, . . . , l, all

components of the vector Q̃k
∗(0)1lmk

are nonnegative. Note that the solution
of the differential equation

dy(t)

dt
= y(t)Q̃(0),

y(0) = p0

is p0 exp(Q̃(0)t). This implies that all components of p0,∗ exp(Q̃∗(0)t) are

nonnegative. By virtue of the stability of Q̃∗(0),

−Q̃−1
∗ (0) =

∫ ∞

0

exp(Q̃∗(0)t)dt.

Thus all components of −p0,∗Q̃−1
∗ (0) are nonnegative, and as a result, the

inner product

−p0,∗Q̃−1
∗ (0)Q̃k

∗(0)1lmk
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is nonnegative. It follows that for each k = 1, . . . , l, ϑk0(0) ≥ p0,k1lmk
≥ 0.

Moreover,

l∑

k=1

ϑk0(0) =

l∑

k=1

p0,k1lmk
− p0,∗Q̃−1

∗ (0)

( l∑

k=1

Q̃k
∗(0)1lmk

)

= (1− p0,∗1lm∗)− p0,∗Q̃−1
∗ (0)(−Q̃∗(0)1lm∗) = 1.

(4.89)

Before treating the terms in ψ0(·), let us give an estimate on exp(Q̃(0)t).

Lemma 4.43. Set

π∗ =

⎛

⎜⎜⎜⎜⎜⎜⎝

1lm1ν
1(0)

. . .

1lml
νl(0)

am1(0)ν
1(0) · · · aml

(0)νl(0) 1lm∗0m∗

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Then there exist positive constants K and κ0,0 such that

∣∣∣ exp(Q̃(0)τ) − π∗
∣∣∣ ≤ K exp(−κ0,0τ), (4.90)

for τ ≥ 0.

Proof: To prove (4.90), it suffices to show for any m-row vector y0,

∣∣∣y0(exp(Q̃(0)τ)− π∗)
∣∣∣ ≤ K|y0| exp(−κ0τ).

Given y0 = (y0,1, . . . , y0,l, y0,∗) ∈ R
1×m, let

y(τ) = (y1(τ), . . . , yl(τ), y∗(τ)) = y0 exp(Q̃(0)τ).

Then, y(τ) is a solution to

dy(τ)

dτ
= y(τ)Q̃(0), y(0) = y0.

It follows that

y∗(τ) = y0,∗ exp(Q̃∗(0)τ)

and for k = 1, . . . , l,

yk(τ) = y0,k exp(Q̃k(0)τ) +

∫ τ

0

y∗(s)Q̃k
∗(0) exp(Q̃

k(0)(τ − s))ds.
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For each k = 1, . . . , l, we have

yk(τ) −
(
y0,k1lmk

νk(0) + y0,∗
∫ ∞

0

exp(Q̃∗(0)s)dsQ̃k
∗(0)1lmk

νk(0)

)

= y0,k
(
exp(Q̃k(0)τ)− 1lmk

νk(0)
)

+y0,∗
∫ τ

0

exp(Q̃∗(0)s)Q̃k
∗(0)

(
exp(Q̃k(0)(τ − s))− 1lmk

νk(0)
)
ds

−y0,∗
∫ ∞

τ

exp(Q̃∗(0)s)Q̃k
∗(0)1lmk

νk(0)ds.

By virtue of the stability of Q̃∗(0), the last term above is bounded above by
K|y0,∗| exp(−κ∗τ). Recall that by virtue of Lemma 4.4, for some κ0,k > 0,

∣∣∣exp(Q̃k(0)τ)− 1lmk
νk(0)

∣∣∣ ≤ K exp(−κ0,kτ).

Choose κ0,0 = min(κ∗,mink{κ0,k}). The terms in the second and the third
lines above are bounded by K|y0| exp(−κ0,0τ). The desired estimate thus
follows. �

Next consider the first equation in the initial-layer expansions:

dψ0(τ)

dτ
= ψ0(τ)Q̃(0).

The solution to this equation can be written as

ψ0(τ) = ψ0(0) exp(Q̃(0)τ).

To be able to match the asymptotic expansion, choose

ψ0(0) = p0 − ϕ0(0).

Thus,

ψ0(τ) = (p0 − ϕ0(0)) exp(Q̃(0)τ)

= (p0 − ϕ0(0))
(
exp(Q̃(0)τ)− π∗

)
+ (p0 − ϕ0(0))π∗.

By virtue of the choice of ϕ0(0), it is easy to show that

(p0 − ϕ0(0))π∗ = 0.

Therefore, in view of Lemma 4.43, ψ0(·) decays exponentially fast in that
for some constants K and κ0,0 > 0 given in Lemma 4.43,

|ψ0(τ)| ≤ K exp(−κ0,0τ), τ ≥ 0.
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We have obtained ϕ0(·) and ψ0(·). To proceed, set

b0(t) =
dϕ0(t)

dt
− ϕ0(t)Q̂(t)

and

b0(t) = (b10(t), . . . , b
l
0(t), b

∗
0(t)).

Note that b0(t) is a completely known function.
In view of the second equation in (4.83),

ϕk
1(t)Q̃

k(t) + ϕ∗
1(t)Q̃

k
∗(t) = bk0(t) for k = 1, . . . , l,

ϕ∗
1(t)Q̃∗(t) = b∗0(t).

(4.91)

Solving the last equation in (4.91) yields

ϕ∗
1(t) = b∗0(t)Q̃

−1
∗ (t).

Putting this back into the first l equations of (4.91) leads to

ϕk
1(t)Q̃

k(t) = bk0(t)− b∗0(t)Q̃
−1
∗ (t)Q̃k

∗(t). (4.92)

Again, the right side is a known function. In view of the choice of ϕ0(·) and
(4.86), we have b0(t)1̃l∗(t) = 0. This implies

bk0(t)1lmk
− b∗0(t)Q̃

−1
∗ (t)Q̃i

∗(t)1lmk

= bk0(t)1lmk
+ b∗0(t)amk

(t) = 0.

Therefore, (4.92) has a particular solution b̃k0(t) with

b̃k0(t)1lmk
= 0, for k = 1, . . . , l.

As in the previous section, we write the solution of ϕk
1(t) as a sum of the

homogeneous solution and a solution of the inhomogeneous equation b̃k0(t),
that is,

ϕk
1(t) = ϑk1(t)ν

k(t) + b̃k0(t) for k = 1, . . . , l.

In view of

Q̃(t)1̃l∗(t) = 0 and

b̃k0(t)1lmk
= 0,
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using the equation

ϕ2(t)Q̃(t) =
dϕ1(t)

dt
− ϕ1(t)Q̂(t),

we obtain that

d

dt
(ϑ11(t), . . . , ϑ

l
1(t), 0)

= (ϑ11(t), . . . , ϑ
l
1(t), 0)Q(t) + b̃0(t)Q̂(t)1̃l∗(t)

−
(
db̃∗0(t)
dt

)(
am1(t), . . . , aml

(t), 0′m∗

)
.

(4.93)

The initial value ϑ1(0) will be determined in conjunction with the initial
value of ψ1(·) next.
Note that in comparison with the differential equation governing ϑ1(t) in

Section 4.3, the equation (4.93) has an extra term involving the derivative

of b̃∗0(t).
To determine ψ1(·), solving the equation in (4.84) with i = 1, we have

ψ1(τ) = ψ1(0) exp(Q̃(0)τ)

+

∫ τ

0

ψ0(0) exp(Q̃(0)s)Q̂(0) exp(Q̃(0)(τ − s))ds

+

∫ τ

0

sψ0(0) exp(Q̃(0)s)

(
dQ̃(0)

dt

)
exp(Q̃(0)(τ − s))ds.

Choose the initial values of ψ1(0) and ϑ
k
1(0) as follows:

ψ1(0) = −ϕ1(0),

ϑk1(0) = −ψk
1 (0)1lmk

,

ψ1(0)π∗ = −
(∫ ∞

0

ψ0(0) exp(Q̃(0)s)ds

)
Q̂(0)π∗

−
(∫ ∞

0

sψ0(0) exp(Q̃(0)s)ds

)
dQ̃(0)

dt
π∗

:= −ψ0π∗.

(4.94)

Write ψ0 = (ψ
1

0, . . . , ψ
l

0, ψ
∗
0). Then the definition of π∗ implies that

ψk
1 (0)1lmk

+ ψ∗
1(0)amk

(0) = −(ψ
k

01lmk
+ ψ

∗
0amk

(0)).
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Recall that

ϕ∗
1(0) + ψ∗

1(0) = 0

and

ϕ∗
1(t) = b∗0(t)Q̃

−1
∗ (t).

It follows that

ψk
1 (0)1lmk

= −(ψ
k

01lmk
+ ψ

∗
0amk

(0)) + b∗0(0)Q̃
−1
∗ (0)amk

(0).

Moreover, it can be verified that |ψ1(τ)| ≤ K exp(−κ1,0τ) for some 0 <
κ1,0 < κ0,0.

Remark 4.44. Note that there is an extra term

(∫ ∞

0

sψ0(0) exp(Q̃(0)s)ds

)
dQ̃(0)

dt
π∗

involved in the equation determining ϑ1(0) in (4.94). This term does not

vanish as in Section 4.3 because generally ((d/dt)Q̃(0))π∗ 	= 0.

To obtain the desired asymptotic expansion, continue inductively.
For each i = 2, . . . , n, we first obtain the solution of ϕi(t) with the
“multiplier” given by the solution of the differential equation but with
unspecified condition ϑi(0); solve ψi(t) with the as yet unavailable initial
condition ψi(0) = −ϕi(0). Next jointly prove the exponential decay prop-
erties of ψi(τ) and obtain the solution ϑi(0). The equation to determine
ϑi(0) with transient states becomes

ψi(0)π∗

= −
( i−1∑

j=0

∫ ∞

0

ψi−j−1(s)

(
sj

j!

djQ̂(0)

dtj
+

sj+1

(j + 1)!

dj+1Q̃(0)

dtj+1

)
ds

)
π∗.

In this way, we have constructed the asymptotic expansion with transient
states. In addition, we can show that ϕi(·) are smooth and ψi(·) satisfies
|ψi(τ)| ≤ K exp(−κi,0τ) for some 0 < κi,0 < κi−1,0 < κ0,0. Similarly as in
the case with all recurrent states, we establish the following theorem.

Theorem 4.45. Suppose (A4.5) and (A4.6) hold. Then an asymptotic ex-
pansion

yεn(t) =

n∑

i=0

(
εiϕi(t) + εiψi

(
t

ε

))
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can be constructed such that for i = 0, . . . , n,

(a) ϕi(·) is (n+ 1− i)-times continuously differentiable on [0, T ];

(b) |ψi(t)| ≤ K exp(−κ0t) for some K > 0 and 0 < κ0 < κi,0;

(c) |pε(t)− yεn(t)| = O(εn+1) uniformly in t ∈ [0, T ].

Example 4.46. Let Q̃(t) = Q̃, a constant matrix such that

Q̃ =

⎛

⎜⎝

−1 1 0 0
1 −1 0 0
1 0 −2 1
0 1 1 −2

⎞

⎟⎠ and Q̂ = 0.

In this example,

Q̃1 =

(−1 1
1 −1

)
, Q̃∗ =

(−2 1
1 −2

)
, and Q̃1

∗ =

(
1 0
0 1

)
.

The last two rows in Q̃ represent the jump rates corresponding to the
transient states. The matrix Q̃1 is weakly irreducible and Q̃∗ is stable.
Solving the forward equation gives us

pε(t) = (pε1(t), p
ε
2(t), p

ε
3(t), p

ε
4(t)),

where

pε1(t) =
1

2
+

1

2

[
(−p03 − p04) exp

(
− t

ε

)

+(p01 − p02 + p03 − p04) exp

(
−2t

ε

)

+(−p03 + p04) exp

(
−3t

ε

)]
,

pε2(t) =
1

2
+

1

2

[
(−p03 − p04) exp

(
− t

ε

)

+(−p01 + p02 − p03 + p04) exp

(
−2t

ε

)

+(p03 − p04) exp

(
−3t

ε

)]
,

pε3(t) =
1

2

[
(p03 + p04) exp

(
− t

ε

)
+ (p03 − p04) exp

(
−3t

ε

)]
,

pε4(t) =
1

2

[
(p03 + p04) exp

(
− t

ε

)
+ (−p03 + p04) exp

(
−3t

ε

)]
.
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It is easy to see that ϕ0(t) = (1/2, 1/2, 0, 0) and

|pε(t)− ϕ0(t)| ≤ K exp

(
− t

ε

)
.

The limit behavior of the underlying Markov chain as ε→ 0 is determined
by ϕ0(t) for t > 0. It is clear that the probability of the Markov chain
staying at the transient states is very small for small ε.

Remark 4.47. The model discussed in this section has the extra ingre-
dient of including transient states as compared with that of Section 4.3.
The main feature is embedded in the last few rows of the Q̃(t) matrix.

One of the crucial points here is that the matrix Q̃∗(t) in the right corner
is Hurwitzian. This stability condition guarantees the exponential decay
properties of the boundary layers. As far as the regular part (or the outer)
expansion is concerned, we have that the last subvector ϕ∗

0(t) = 0. The
determination of the initial conditions ϑi(0) uses the same technique as
before, namely, matching the outer terms and inner layers. The procedure
involves recursively solving a sequence of algebraic and differential equa-
tions. Although the model is seemingly more general, the methods and
techniques involved in obtaining the asymptotic expansion and proof of
the results are essentially the same as in the previous section. The notation
is slightly more complex, nevertheless.

4.6 Remarks on Countable-State-Space Cases

4.6.1 Countable-State Spaces: Part I

This section presents an extension of the singularly perturbed Markov
chains with fast and slow components and finite-state spaces. In this sec-
tion, the generator Q̃(·) is a block-diagonal matrix consisting of infinitely
many blocks each of which is of finite dimension. The generator Qε(t) still
has the form (4.39). However,

Q̃(t) =

⎛

⎜⎜⎜⎜⎜⎜⎝

Q̃1(t)

Q̃2(t)
. . .

Q̃k(t)
. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
, (4.95)

where Q̃k(t) ∈ R
mk×mk is a generator of an appropriate Markov chain

with finite-state space, and Q̂(t) is an infinite-dimensional matrix and is
a generator of a Markov chain having a countable-state space, that is,
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Q̂(t) = (q̂ij(t)) such that

q̂ij(t) ≥ 0 for i 	= j, and
∑

j

q̂ij(t) = 0.

We aim at deriving asymptotic results under the current setting. To do so,
assume that the following condition holds:

(A4.7) For t ∈ [0, T ], Q̃k(t), for k = 1, 2, . . ., are weakly irreducible.

Parallel to the development of Section 4.3, the solution of ϕi(·) can be
constructed similar to that of Theorem 4.29 as in (4.44) and (4.45). In fact,
we obtain ϕ0(·) from (4.49) and (4.50) with l = ∞; the difference is that
now we have an infinite number of equations. Similarly, for all k = 1, 2, . . .
and i = 0, 1, . . . , n+ 1, ϕi(·) can be obtained from

ϕ0(t)Q̃(t) = 0, if i = 0

ϕi(t)Q̃(t) =
dϕi−1(t)

dt
− ϕi−1(t)Q̂(t), if i ≥ 1

ϕk
i (t)1lmk

= ϑki (t),

dϑi(t)

dt
= ϑi(t)Q(t) + b̃i−1(t)Q̂(t)1̃l.

(4.96)

The problem is converted to one that involves infinitely many algebraic
differential equations. The same technique as presented before still works.
Nevertheless, the boundary layer corrections deserve more attention. Let

us start with ψ0(·), which is the solution of the abstract Cauchy problem

dψ0(τ)

dτ
= ψ0(τ)Q̃(0),

ψ0(0) = p0 − ϕ0(0).

(4.97)

To continue our study, one needs the notion of semigroup (see Dunford
and Schwartz [52], and Pazy [172]). Recall that for a Banach space B, a
one-parameter family T (t), 0 ≤ t < ∞, of bounded linear operators from
B into B is a semigroup of bounded linear operators on B if (i) T (0) = I
and (ii) T (t+ s) = T (t)T (s) for every t, s ≥ 0.
Let R∞ be the sequence space with a canonical element x = (x1, x2, . . .) ∈

R
∞. Let A = (aij) satisfying A : R∞ 
→ R

∞, equipped with the l1-norm

|A|1 = sup
j

∑

i

|aij |;



128 4. Asymptotic Expansions of Solutions for Forward Equations

(see Hutson and Pym [90, p. 74]) Using the definition of semigroup above,
the solution of (4.97) is

ψ0(τ) = T (τ)ψ0(0),

where T (τ) is a one-parameter family of semigroups generated by Q̃(0).

Moreover, since Q̃(0) is a bounded linear operator, exp(Q̃(0)τ) still makes

sense. Thus T (τ)ψ0(0) = ψ0(0) exp(Q̃(0)τ), where

T (τ) = exp(Q̃(0)τ) =
∞∑

j=0

(
Q̃(0)τ

)j

j!

= diag
(
exp

(
Q̃1(0)τ

)
, . . . , exp

(
Q̃k(0)τ

)
, . . .

)
.

Therefore, the solution has the same form as in the previous section. Under
(A4.7), exactly the same argument as in the proof of Lemma 4.4 yields that
for each k = 1, 2, . . . ,

exp(Q̃k(0)τ) → 1lmk
νk(0) as τ → ∞

and the convergence takes place at an exponential rate, that is,
∣∣∣exp(Q̃k(0)τ) − 1lmk

νk(0)
∣∣∣ ≤ K exp(−κkτ),

for some κk > 0. In order to obtain a valid asymptotic expansion, another
piece of assumption is needed. That is, these κk, for all k = 1, 2, . . ., are
uniformly bounded below by a positive constant κ0.

(A4.8) There exists a positive number κ0 = mink{κk} > 0.

Set

1̃l = diag (1lm1 , . . . , 1lmk
, . . .) and ν(0) = diag

(
ν1(0), . . . , νk(0), . . .

)
.

In view of (A4.8)

∣∣∣exp(Q̃(0)τ) − 1̃lν(0)
∣∣∣
1
≤ sup

k

∣∣∣exp(Q̃k(0)τ)− 1lmk
νk(0)

∣∣∣

≤ K exp(−κ0τ).
(4.98)

The exponential decay property of ψ0(·) is thus established. Likewise, it
can be proved that all ψi(·) for i = 1, . . . , n + 1, satisfy the exponential
decay property. From here on, we can proceed as in the previous section to
get the error estimate and verify the validity of the asymptotic expansion.
In short the following theorem is obtained.

Theorem 4.48. Suppose conditions (A4.7) and (A4.8) are satisfied. Then
the results in Theorem 4.29 hold for the countable-state-space model with
Q̃(·) given by (4.95).
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4.6.2 Countable-State Spaces: Part II

The aim of this section is to develop further results on singularly perturbed
Markov chains with fast and slow components whose generators are infinite-
dimensional matrices but in different form from that described in Section
4.6.1. The complexity as well as difficulty increase. A number of technical
issues also arise. One idea arises almost immediately: to approximating the
underlying system via a Galerkin-kind procedure, that is, to approximate
an infinite-dimensional system by finite-dimensional truncations. Unfortu-
nately, this does not work in the setting of this section. We will return to
this question at the end of this section.
To proceed, as in the previous sections, the first step invariably involves

the solution of algebraic differential equations in the constructions of the
approximating functions. One of the main ideas used is the Fredholm al-
ternative. There are analogues to the general setting in Banach spaces for
compact operators. Nevertheless, the infinite-dimensional matrices are in
fact more difficult to handle.
Throughout this section, we treat the class of generators with |Q(t)|1 <

∞ only. We use 1l to denote the column vector with all components equal to

1. Consider (1l
...Q(t)) as an operator for a generator Q(t) of a Markov chain

with state space M = {1, 2, . . .}. To proceed, we first give the definitions

of irreducibility and quasi-stationary distribution. Set Qc(t) := (1l
...Q(t)).

Definition 4.49. The generator Q(t) is said to be weakly irreducible at
t0 ∈ [0, T ], for w ∈ R

∞, if the equation wQc(t0) = 0 has only the zero
solution. If Q(t) is weakly irreducible for each t ∈ [0, T ], then it is said to
be weakly irreducible on [0, T ].

Definition 4.50. A quasi-stationary distribution ν(t) (with respect to
Q(t)) is a solution to (2.8) with the finite summation replaced by∑∞

i=1 νi(t) = 1 that satisfies ν(t) ≥ 0.

As was mentioned before, the Fredholm alternative plays an important
role in our study. For infinite-dimensional systems, we state another defi-
nition to take this into account.

Definition 4.51. A generator Q(t) satisfies the F-Property if wQc(t) = b
has a unique solution for each b ∈ R

∞.

Note that for all weakly irreducible generators of finite dimension (i.e.,
generators for Markov chains with finite-state space), the F-Property above
is automatically satisfied.
Since 1l ∈ l∞ (l∞ denotes the sequence space equipped with the l∞ norm)

for each t ∈ [0, T ], Q(t) ∈ R
∞ × R

∞. Naturally, we use the norm

|(z...A)|∞,1 = max

{
sup
zj

|zj |, sup
j

∞∑

i=1

|aij(t)|
}
.
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It is easily seen that

|Qc(t)|∞,1 ≤ max

{
1, sup

j

∑

i

|qij(t)|
}
.

If a generator Q(t) satisfies the F-Property, then it is weakly irreducible.
In fact if Q(t) satisfies the F-Property on t ∈ [0, T ], then yQc(t) = 0 has a
unique solution y = 0.
By the definition of the generator, in particular the q-Property, Qc(t) is

a bounded linear operator for each t ∈ [0, T ]. If Qc(t) is bijective (i.e., one-
to-one and onto), then it has a bounded inverse. This, in turn, implies that
Qc(t) exhibits the F-Property. Roughly, the F-Property is a generalization
of the conditions in dealing with finite-dimensional spaces. Recall from
Section 4.2 that although fQ(t) = b is not solvable uniquely, by adding an
equation f1l = c, the system has a unique solution.
Owing to the inherited difficulty caused by the infinite dimensionality,

the irreducibility and smoothness of Q(·) are not sufficient to guarantee the
existence of asymptotic expansions. Stronger conditions are needed. In the
sequel, for ease of presentation, we consider the model with Q̃(·) irreducible
and both Q̃(·) and Q̂(·) infinite-dimensional.
For each t, we denote the spectrum of Q(t) by σ(Q(t)). In view of Pazy

[172] and Hutson and Pym [90], we have

σ(Q(t)) = σd(Q(t)) ∩ σc(Q(t)) ∩ σr(Q(t)),

where σd(Q(t)), σc(Q(t)), and σr(Q(t)) denote the discrete, continuous,
and residue spectrum of Q(t), respectively. The well-known linear operator
theory implies that for a compact operator A, σr(A) = ∅, and the only
possible candidate for σc(A) is 0. Keeping this in mind, we assume that
the following condition holds.

(A4.9) The following condition holds.

(a) The smoothness condition (A4.4) is satisfied.

(b) The generator Q̃(t) exhibits the F-Property.

(c) supt∈[0,T ] |Q̃(t)|1 <∞ and supt∈[0,T ] |Q̂(t)| <∞.

(d) The eigenvalue 0 of Q̃(t) has multiplicity 1 and 0 is not an
accumulation point of the eigenvalues.

(e) σr(Q̃(t)) = ∅.
Remark 4.52. Item (a) above requires that the smoothness condition be

satisfied and Item (b) requires the operator (1l
...Q̃(t)) satisfy a Fredholm-

alternative-like condition. Finally, (d) indicates the spectrum of (1l
...Q̃(t)) is

like a compact operator. Recall that for a compact linear operator, 0 is in
its spectrum, and the only possible accumulation point is 0. Our conditions
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mimic such a condition. It will be used when we prove the exponential decay
property of the initial-layer terms.

Theorem 4.53. Under condition (A4.9), the results in Theorem 4.29 hold
for Markov chains with countable-state space.

Proof: The proof is very similar to its finite-dimensional counterpart.
We only point out the difference here.
As far as the regular part is concerned, we get the same equation (4.44).

One thing to note is that we can no longer use Cramer’s rule to solve
the systems of equations. Without such an explicit representation of the
solution, the smoothness of ϕi(·) needs to be proved by examining (4.44)
directly. For example,

∞∑

i=1

ϕ0,i(t) = 1,

ϕ0(t)Q̃(t) = 0,

can be rewritten as

ϕ0(t)

(
1l
...Q̃(t)

)
= (1, 0, . . .). (4.99)

Since Q̃(t) satisfies the F-Property, this equation has a unique solution.
To verify the differentiability, consider also

ϕ0(t+ δ)

(
1l
...Q̃(t+ δ)

)
= (1, 0, . . .).

Examining the difference quotient leads to

0 =

ϕ0(t+ δ)

(
1l
...Q̃(t+ δ)

)
− ϕ0(t)

(
1l
...Q̃(t)

)

δ

=

[ϕ0(t+ δ)− ϕ0(t)]

(
1l
...Q̃(t+ δ)

)

δ

+

ϕ0(t)

(
(1l
...Q̃(t+ δ))− (1l

...Q̃(t))

)

δ
.

Taking the limit as δ → 0 and by virtue of the smoothness of Q̃(·), we have

lim
δ→0

[ϕ0(t+ δ)− ϕ0(t)]

(
1l
...Q̃(t+ δ)

)

δ
= −ϕ0(t)

(
0
...
dQ̃(t)

dt

)
.
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That is (d/dt)ϕ0(t) exists and is given by the solution of

dϕ0(t)

dt

(
1l
...Q̃(t)

)
= −ϕ0(t)

(
0
...
dQ̃(t)

dt

)
.

Again by the F-Property, there is a unique solution for this equation.
Higher-order derivatives of ϕ0(·) and smoothness of ϕi(·) can be proved
in a similar way.
As far as the initial-layer terms are concerned, since Q̃(0) is a bounded

linear operator, the semigroup interpretation exp(Q̃(0)τ) makes sense.
It follows from Theorem 1.4 of Pazy [172, p. 104] that the equation

dψ0(τ)

dτ
= ψ0(τ)Q̃(0), ψ0(0) = p0 − ϕ0(0)

has a unique solution.
To show that ψ0(·) decays exponentially fast, we use an argument that is

analogous to the finite-dimensional counterpart. Roughly, since the multi-
plicity of the eigenvalue 0 is 1, the subspace generated by the corresponding
eigenvector v0 is one-dimensional. Similar to the situation of Section 4.2,
limτ→∞ exp(Q̃(0)τ) exists and the limit must have identical rows. Denote
the limit by P . It then follows that

∣∣∣ exp(Q̃(0)τ) − P
∣∣∣ ≤ K exp(−κ0τ).

The meaning should be very clear. Upon “subtracting” the subspace
generated by v0, it ought to behave like exp(−κ0τ). A similar argument
works for i = 1, . . . , n+ 1, so the ψi(·) decay exponentially fast. �

4.6.3 A Remark on Finite-Dimensional Approximation

Concerning the cases in Section 4.6.2, a typical way of dealing with infinite-
dimensional Markov chains is to make a finite-dimensional approximation.
Let Q(t) = (qij(t)), t ≥ 0, denote a generator of a Markov chain with
countable-state space. We consider an N × N , N = 1, 2, . . ., truncation
matrix QN(t) = (qij(t))

N
i,j=1. Then QN (t) is a subgenerator in the sense

that
∑N

j=1 qij(t) ≤ 0, i = 1, 2, . . . , N .
A first glance seems to indicate that the idea of subgenerator provides

a way to treat the problem of approximating an infinite-dimensional gen-
erator by finite-dimensional matrices. In fact, Reuter and Ledermann used
such an idea to derive the existence and uniqueness of the solution to
the forward equation (see Bharucha-Reid [10]). Dealing with singularly
perturbed chains with countable-state space, one would be interested in
knowing whether a Galerkin-like approximation would work in the sense
that an asymptotic expansion of a finite-dimensional system would provide
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an approximation to the probability distribution. To be more precise, let
αε(·) denote the Markov chain generated by Q(t)/ε and let

pε(t) = (P (αε(t) = 1), . . . , P (αε(t) = k), . . .).

Consider the following approximation via N -dimensional systems

dpε,N (t)

dt
=

1

ε
pε,N (t)QN (t), pε,N(0) = p0. (4.100)

Using the techniques presented in the previous sections, we can find outer
and inner expansions to approximate pε,N (t). The questions are these: For
small ε and large N , can we approximate pε(t) by pε,N(t)? Can we ap-
proximate pε,N (t) by yε,Nn (t), where yε,Nn (t) is an expansion of the form
(4.43) when subgenerators are used? More importantly, can we use yε,Nn (t)
to approximate pε(t)?

Although pεi (t) can be approximated by its truncation pε,Ni (t) for large
N and pε,N(t) can be expanded as yε,Nn (t) for small ε, the approximation
of yε,Nn (t) to pε(t) does not work in general because the limits as ε → 0
and N → ∞ are not interchangeable. This can be seen by considering the
following example.
Let

Q(t) = Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
1

2

1

22
· · ·

1

2
−1

1

22
· · ·

1

22
1

2
−1 · · ·

...
...

...
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then for any N , the truncation matrix QN has only negative eigenvalues.
It follows that the solution pε,N (t) decays exponentially fast, i.e.,

∣∣∣pε,N(t)
∣∣∣ ≤ C exp

(
−κ0t

ε

)
.

Thus, all terms in the regular part of yε,Nn vanish. It is clear from this
example that yε,Nn (t) cannot be used to approximate pε(t).

4.7 Remarks on Singularly Perturbed Diffusions

In this section, we present some related results on singular perturbations
of diffusions. If in lieu of a discrete state space, one considers a continuous-
state space, then naturally the singularly perturbed Markov chains become
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singularly perturbed Markov processes. We illustrate the idea of matched
asymptotic expansions for singularly perturbed diffusions. In this section,
we only summarize the results and refer the reader to Khasminskii and Yin
[116] for details of proofs. To proceed, consider the following example.

Example 4.54. This example discusses a model arising from stochastic
control, namely, a controlled singularly perturbed system. As pointed out
in Kushner [140] and Kokotovic, Bensoussan, and Blankenship [127], many
control problems can be modeled by systems of differential equations, where
the state variables can be divided into two coupled groups, consisting of
“fast” and “slow” variables. A typical system takes the form

dxε1 = f1(x
ε
1, x

ε
2, u)dt+ σ1(x

ε
1, x

ε
2)dw1, x

ε
1(0) = x1,

dxε2 =
1

ε
f2(x

ε
1, x

ε
2, u)dt+

1√
ε
σ2(x

ε
1, x

ε
2)dw2, x

ε
2(0) = x2,

where w1(·) and w2(·) are independent Brownian motions, fi(·) and σi(·)
for i = 1, 2 are suitable functions, u is the control variable, and ε > 0 is a
small parameter. The underlying control problem is to minimize the cost
function

Jε(x1, x2, u) = E

∫ T

0

R(xε1(t), x
ε
2(t), u)dt,

where R(·) is the running cost function. The small parameter ε > 0 signifies
the relative rates of xε1 and xε2. Such singularly perturbed systems have
drawn much attention (see Bensoussan [8], Kushner [140], and the refer-
ences therein). The system is very difficult to analyze directly; the approach
of Kushner [140] is to use weak convergence methods to approximate the
total system by the reduced system that is obtained using the differen-
tial equation for the slow variable, where the fast variable is fixed at its
steady-state value as a function of the slow variable. In order to gain further
insight, it is crucial to understand the asymptotic behavior of the rapidly
changing process xε2 through the transition density given by the solution of
the corresponding Kolmogorov-Fokker-Planck equations.

As demonstrated in the example above, a challenge common to many
applications is to study the asymptotic behavior of the following problem.
Let ε > 0 be a small parameter, and let Xε

1(·) and Xε
2(·) be real-valued

diffusion processes satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dXε
1 = a1(t,X

ε
1 , X

ε
2)dt+ σ1(t,X

ε
1 , X

ε
2)dw1,

dXε
2 =

1

ε
a2(t,X

ε
1 , X

ε
2)dt+

1√
ε
σ2(t,X

ε
1 , X

ε
2)dw2,
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where the real-valued functions a1(t, x1, x2), a2(t, x1, x2), σ1(t, x1, x2), and
σ2(t, x1, x2) represent the drift and diffusion coefficients, respectively, and
w1(·) and w2(·) are independent and standard Brownian motions. Define a
vector X as X = (X1, X2)

′. Then Xε(·) = (Xε
1(·), Xε

2 (·))′ is a diffusion pro-
cess. This is a model treated in Khasminskii [113], in which a probabilistic
approach was employed. It was shown that as ε → 0, the fast component
is averaged out and the slow component Xε

1(·) has a limit X0
1 (·) such that

dX0
1 (t) = a1(X

0
1 (t))dt+ σ1(X

0
1 (t))dw1,

where

a1(t, x1) =

∫
a1(t, x1, x2)μ(t, x1, x2)dx2,

σ1(t, x1) =

∫
σ1(t, x1, x2)μ(t, x1, x2)dx2,

and μ(·) is a limit density of the fast process Xε
2(·).

To proceed further, it is necessary to investigate the limit properties of
the rapidly changing processXε

2(·). To do so, consider the transition density
of the underlying diffusion process. It is known that it satisfies the forward
equation

∂pε

∂t
=

1

ε
L∗
2p

ε + L∗
1p

ε,

pε(0, x1, x2) = p0(x1, x2) with p0(x1, x2) ≥ 0 and

∫ ∫
p0(x1, x2)dx1dx2 = 1,

(4.101)

where

L∗
1(t, x1, x2) · =

1

2

∂2

∂x21
(σ2

1(t, x1, x2) ·)−
∂

∂x1
(a1(t, x1, x2) ·),

L∗
2(t, x1, x2) · =

1

2

∂2

∂x22
(σ2

2(t, x1, x2) ·)−
∂

∂x2
(a2(t, x1, x2) ·).

Similar to the discrete-state-space cases, the basic problems to be addressed
are these: As ε→ 0, does the system display certain asymptotic properties?
Is there any equilibrium distribution? If pε(t, x1, x2) → p(t, x1, x2) for some
function p(·), can one get a handle on the error bound (i.e., a bound on
|pε(t, x1, x2)− p(t, x1, x2)|)?
To obtain the desired asymptotic expansion in this case, one needs to

make sure the quasi-stationary density exists. Note that for diffusions in
unbounded domains, the quasi-stationary density may not exist. Loosely
for the existence of the quasi-stationary distribution, it is necessary that
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the Markov processes corresponding to L∗
2 be positive recurrent for each

fixed t. Certain sufficient conditions for the existence of the quasi-stationary
density are provided in Il’in and Khasminskii [93]. An alternative way of
handling the problem is to concentrate on a compact manifold. In doing
so we are able to establish the existence of the quasi-stationary density.
To illustrate, we choose the second alternative and suppose the following
conditions are satisfied.
For each t ∈ [0, T ], i, j = 1, 2, and

– for each x2 ∈ R, a1(t, ·, x2), σ2
1(t, ·, x2) and p0(·, x2) are periodic

with period 1;

– for each x1 ∈ R, a2(t, x1, ·), σ2
2(t, x1, ·) and p0(x1, ·) are periodic

with period 1.

There is an n ∈ ZZ+ such that for each i = 1, 2,

ai(·), σ2
i (·) ∈ Cn+1,2(n+1),2(n+1), for all t ∈ [0, T ], x1, x2 ∈ [0, 1], (4.102)

the (n + 1)st partial with respect to t of ai(·, x1, x2), and σ2
i (·, x1, x2) are

Lipschitz continuous uniformly in x1, x2 ∈ [0, 1]. In addition, for each t ∈
[0, T ] and each x1, x2 ∈ [0, 1], σ2

i (t, x1, x2) > 0.

Definition 4.55. A function μ(·) is said to be a quasi-stationary density
for the periodic diffusion corresponding to the Kolmogorov-Fokker-Planck
operator L∗

2 if it is periodic in x1 and x2 with period 1,

0 ≤ μ(t, x1, x2) for each (t, x1, x2) ∈ [0, T ]× [0, 1]× [0, 1],

and for each fixed t and x1,
∫ 1

0

μ(t, x1, x2)dx2 = 1 and L∗
2μ(t, x1, x2) = 0.

To proceed, letH be the space of functions that are bounded and continuous
and are Hölder continuous in (x1, x2) ∈ [0, 1]× [0, 1] (with Hölder exponent
Δ for some 0 < Δ < 1), uniformly with respect to t. For each h1, h2 ∈ H
define 〈h1, h2〉H as

〈
h1, h2

〉
H =

∫ T

0

∫ 1

0

∫ 1

0

h1(t, x1, x2)h2(t, x1, x2)dx1dx2dt.

Under the assumptions mentioned above, two sequences of functions ϕi(·)
(periodic in x1 and x2) and ψi(·) for i = 0, . . . , n can be found such that

(a) ϕi(·, ·, ·) ∈ Cn+1−i,2(n+1−i),2(n+1−i);

(b) ψi(t/ε, x1, x2) decay exponentially fast in that for some c1 > 0 and
c2 > 0,

sup
x1,x2∈[0,1]

∣∣∣∣ψi

(
t

ε
, x1, x2

)∣∣∣∣ ≤ c1 exp

(
−c2t
ε

)
;
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(c) define s̃εn by

s̃εn(t, x1, x2) =

n∑

i=0

(
εiϕi(t, x1, x2) + εiψi

(
t

ε
, x1, x2

))
;

for each h ∈ H, the following error bound holds:

∣∣〈pε − s̃εn, h
〉
H
∣∣ = O(εn+1). (4.103)

It is interesting to note that the leading term of the approximation ϕ0(·) is
approximately the probability density of X1, namely, v0(t, x1) multiplied
by the conditional density of X2 given X1 = x1 (i.e., holding x1 as a
parameter), the quasi-stationary density μ(t, x1, x2). The rest of the terms
in the regular part of the expansion assume the form

μ(t, x1, x2)vi(t, x1) + Ui(t, x1, x2),

where Ui(·) is a particular solution of an inhomogeneous equation. Note
the resemblance of the form to that of the Markov-chain cases studied
in this chapter. A detailed proof of the assertion is in Khasminskii and
Yin [116]. In fact, more complex systems (allowing interaction of Xε

1 and
Xε

2 , the mixed partial derivatives of x1 and x2 as well as extension to
multidimensional systems) are treated in [116]. In addition, in lieu of 〈·, ·〉H,
convergence under the uniform topology can be considered via the use
of stochastic representation of solutions of partial differential equations
or energy integration methods (see, for example, the related treatment of
singularly perturbed switching diffusion systems in Il’in, Khasminskii, and
Yin [94]).

4.8 Notes

Two-time-scale Markov chains are dealt with in this chapter using purely
analytic methods, which are closely connected with the singular perturba-
tion methods. The literature of singular perturbation for ordinary differen-
tial equations is rather rich. For an extensive list of references in singular
perturbation methods for ordinary differential equations and various tech-
niques such as initial-layer etc., we refer to Vasi’leva and Butuzov [209],
Wasow [215, 216], O’Malley [163], and the references therein. The develop-
ment of singular perturbation methods has been intertwined with advances
in technology and progress in various applications. It can be traced back to
the beginning of the twentieth century when Prandtl dealt with fluid mo-
tion with small friction (see Prandtl [178]). Nowadays, the averaging princi-
ple developed by Krylov, Bogoliubov, and Mitropolskii (see Bogoliubov and
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Mitropolskii [18]) has become a popular technique, taught in standard grad-
uate applied mathematics courses and employed widely. General results on
singular perturbations can be found in Bensoussan, Lion, and Papanico-
laou [7], Bogoliubov and Mitropolskii [18], Eckhaus [54], Erdélyi [58], Il’in
[92], Kevorkian and Cole [108, 109], Krylov and Bogoliubov [133], O’Malley
[163], Smith [199], Vasil’eava and Butuzov [209, 210], Wasow [215, 216]; ap-
plications to control theory and related fields are in Bensoussan [8], Bielecki
and Filar [11], Delebecque and Quadrat [44], Delebecque, Quadrat, and
Kokotovic [45], Kokotovic [126], Kokotovic, Bensoussan, and Blankenship
[127], Kokotovic and Khalil [128], Kokotovic, Khalil, and O’Reilly [129],
Kushner [140], Pan and Başar [164, 165, 166], Pervozvanskii and Gaitsgori
[174], Phillips and Kokotovic [175], Yin and Zhang [233], among others; the
vast literature on applications to different branches of physics are in Risken
[182], van Kampen [208]; the survey by Hänggi, Talkner, and Borkovec [80]
contains hundreds of references concerning applications in physics; related
problems via large deviations theory are in Lerman and Schuss [151]; some
recent work of singular perturbations to queueing networks, and heavy traf-
fic, etc., is in Harrison and Reiman [81], Knessel and Morrison [125], and
the references therein; applications to manufacturing systems are in Sethi
and Zhang [192], Soner [202], Zhang [248], and the references cited there;
related problems for stochastic differential equations and diffusion approx-
imations, etc., can be found in Day [42], Friedlin and Wentzell [67], Il’in
and Khasminskii [93], Khaminskii [111, 112], Kushner [139], Ludwig [152],
Matkowsky and Schuss [158], Naeh, Klosek, Matkowski, and Schuss [160],
Papanicolaou [169, 170], Schuss [187, 188], Skorohod [198], Yin [222], Yin
and Ramachandran [227], and Zhang [247], among others. Singularly per-
turbed Markov processes also appear in the context of random evolution,
a generalization of the motion of a particle on a fixed line with a ran-
dom velocity or a random diffusivity; see, for example, Griego and Hersh
[76, 77] and Pinsky [177]; an extensive survey can be found in Hersh [85]. A
first-order approximation of the distribution of the Cox process with rapid
switching is in Di Masi and Kabanov [48]. Recently, modeling communica-
tion systems via two-time-scale Markov chains has gained renewed interest;
see Tse, Gallager, and Tsitsiklis [206], and the references therein.
It should be pointed out that there is a distinct feature in the problem

we are studying compared with the traditional study of singularly per-
turbed systems. In contrast to many singularly perturbed ordinary differ-
ential equations, the matrix Q(t) in (4.3) is singular, and has an eigenvalue
0. Thus the usual stability condition does not hold. To circumvent this dif-
ficulty, we utilize the q-Property of the matrix Q(t), which leads to a prob-
abilistic interpretation. The main emphasis in this chapter is on developing
approximations to the solutions of the forward equations. The underlying
systems arise from a wide range of applications where a finite-state Markov
chain is involved and a fast time scale t/ε is used. Asymptotic series of the
probability distribution of the Markov chain have been developed by em-
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ploying the techniques of matched expansions. An attempt to obtain the
asymptotic expansion of (4.3) is initiated in Khasminskii, Yin, and Zhang
[119] for time-inhomogeneous Markov chains. The result presented here is
a refinement of the aforementioned reference.
Extending the results for irreducible generators, this chapter further

discusses two-time-scale Markov chains with weak and strong interactions.
The formulations substantially generalize the work of Khasminskii, Yin,
and Zhang [120]. Section 4.3 discusses Markovian models with recurrent
states belonging to several ergodic classes is a refinement of [120].
Previous work on singularly perturbed Markov chains with weak and

strong interactions can be found in Delebecque, Quadrat, and Kokotovic
[45], Gaitsgori and Pervozvanskii [69], Pervozvanskii and Gaitsgori [174],
and Phillips and Kokotovic [175]. The essence is a decomposition and ag-
gregation point of view. Their models are similar to that considered in this
chapter. For example, translating the setup into our setting, the authors
of [175] assumed that the Markov chain generated by Q̃/ε + Q̂ has a sin-
gle ergodic class for ε sufficiently small. Moreover, for each j = 1, 2, . . . , l,
the subchain has a single ergodic class. Their formulation requires that
Q̃(t) = Q̃ and Q̂(t) = Q̂, and it requires essentially the irreducibility of

Q̃/ε+ Q̂ for all ε ≤ ε0 for some ε0 > 0 small enough in addition to the irre-

ducibility of Q̃j for j = 1, 2, . . . , l. The problem considered in this chapter
is nonstationary; the generators are time-varying. The irreducibility is in
the weak sense, and only weak irreducibility of each subgenerator (or block

matrix) Q̃j(t) for j = 1, 2, . . . , l is needed. Thus our results generalize the
existing theorems to nonstationary cases under weaker assumptions. The
condition on Q̃(t) exploits the intrinsic properties of the underlying chains.
Furthermore, our results also include Markov chains with countable-state
spaces. The formulation and development of Section 4.5 are inspired by
that of [175] (see also Pan and Başar [164]). This together with the con-
sideration of chains with recurrent states and the inclusion of absorbing
states includes most of practical concerns for the rapidly varying part of
the generator. Although the forms of the generators with absorbing states
and with transient states have more complex structures, the asymptotic
expansion of the probability distributions can still be obtained via a sim-
ilar approach to that of the case of block-diagonal Q̃(·). Applications to
manufacturing systems are discussed, for example, in Jiang and Sethi [99]
and Sethi and Zhang [192] among others. As a complement of the develop-
ment in this chapter, the work of Il’in, Khasminskii, and Yin [94] deals with
the cases that the underlying Markov processes involve both diffusion and
pure jump processes; see also Yin and Yang [229]. Previous work of singu-
lar perturbation of stochastic systems can be found in Day [42], Friedlin
and Wentzel [67], Khasminskii [111, 112, 113], Kushner [139], Ludwig [152],
Matkowsky and Schuss [158], Naeh, Klosek, Matkowski, and Schuss [160],
Papanicolaou [169, 170], Schuss [187], Yin and Ramachandran [227], and
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the references therein. Singular perturbation in connection with optimal
control problems are contained in Bensoussan [8], Bielecki and Filar [11],
Delebecque and Quadrat [44], Kokotovic [126], Kokotovic, Bensoussan, and
Blankenship [127], Kushner [140], Lehoczky, Sethi, Soner, and Taksar [150],
Martins and Kushner [156], Pan and Başar [164], Pervozvanskii and Gaits-
gori [174], Sethi and Zhang [192], Soner [202], and Yin and Zhang [233]
among others. For discrete-time two-time-scale Markov chains, we refer
the reader to Yin and Zhang [238] Yin, Zhang, and Badowski [242] among
others.
We note that one of the key points that enables us to solve these problems

is the Fredholm alternative. This is even more crucial compared with the
situation in Section 4.2 for irreducible generators. In Section 4.2, the con-
sistency conditions are readily verified, whereas in the formulation under
weak and strong interactions, the verification needs more work and we have
to utilize the consistency to obtain the desired solution.
The discussions on Markov chains with countable-state spaces in this

chapter focused on simple situations. For more general cases, see Yin and
Zhang [230, 231], in which applications to quasi-birth-death queues were
considered; see also Altman, Avrachenkov, and Nunez-Queija [4] for a dif-
ferent approach. The discussions on singularly perturbed diffusion processes
dealt with mainly forward equations. For related work on singularly per-
turbed diffusions, see the papers of Khasminskii and Yin [115, 116] and the
references therein; one of the motivations for studying singularly perturbed
diffusion comes from wear process modeling (see Rishel [181]). For treat-
ments of averaging principles and related backward equations, we refer the
reader to Khasminskii and Yin [117, 118]. For a number of applications on
queueing systems, financial engineering, and insurance risk, we refer the
reader to Yin, Zhang, and Zhang [232] and references therein.
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