


Stochastic Mechanics Stochastic Modelling
Random Media and Applied Probability

Signal Processing

and Image Synthesis
(Formerly:Mathematical Economics and Finance
Applications of Mathematics)Stochastic Optimization

Stochastic Control

37
Stochastic Models in Life Sciences

Edited by B. Rozovskiı̆
P.W. Glynn

Advisory Board M. Hairer
I. Karatzas
F. Kelly
A. Kyprianou
Y. Le Jan
B. Øksendal
G. Papanicolaou
E. Pardoux
E. Perkins
H.M. Soner



For further volumes:
http://www.springer.com/series/602

http://www.springer.com/series/602


G. George Yin • Qing Zhang

Continuous-Time Markov
Chains and Applications

A Two-Time-Scale Approach

Second edition

123



G. George Yin
Department of Mathematics
Wayne State University
Detroit, Michigan
USA

Qing Zhang
Department of Mathematics
University of Georgia
Athens, Georgia
USA

Managing Editors

B. Rozovskĭı
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Preface

It has been fourteen years since the first edition of this book was published.
Two-time-scale Markovian systems have drawn continuing and resurgent
attention, and have been used in many existing and emerging applications.
To bring some of the most recent progress up to date, we decided to put
together this second, expanded, edition. The main theme remains the same,
but the contents have been revised and updated. The main changes include
the addition of two chapters and the reorganization of two chapters. One
of the new chapters is on asymptotic expansions of solutions of backward
equations, which serves as a complement to the chapter on asymptotic ex-
pansions of solution of forward equations. The other new chapter presents
near-optimal controls of linear quadratic Gaussian systems with random
switching. Apart from the addition of the new chapters, we have combined
Chapters 4 and 6 in the first edition to form the current Chapter 4, and
combined Chapters 5 and 7 in the first edition to form Chapter 5 in this edi-
tion. Moreover, we have made an effort to simplify the notation throughout
so as to make the book more reader-friendly.

Detroit, Michigan G. George Yin
Athens, Georgia Qing Zhang
August 2012
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Preface to the First Edition

This book is concerned with continuous-time Markov chains. It develops
an integrated approach to singularly perturbed Markovian systems, and
reveals interrelations of stochastic processes and singular perturbations.
In recent years, Markovian formulations have been used routinely for nu-
merous real-world systems under uncertainties. Quite often, the underlying
Markov chain is subject to rather frequent fluctuations and the correspond-
ing states are naturally divisible to a number of groups such that the chain
fluctuates very rapidly among different states within a group, but jumps
less frequently from one group to another. Various applications in engineer-
ing, economics, and biological and physical sciences have posed increasing
demands on an in-depth study of such systems. A basic issue common to
many different fields is the understanding of the distribution and the struc-
ture of the underlying uncertainty. Such needs become even more pressing
when we deal with complex and/or large-scale Markovian models, whose
closed-form solutions are usually very difficult to obtain.
Markov chain, a well-known subject, has been studied by a host of re-

searchers for many years. While nonstationary cases have been treated
in the literature, much emphasis has been on stationary Markov chains
and their basic properties such as ergodicity, recurrence, and stability. In
contrast, this book focuses on singularly perturbed nonstationary Markov
chains and their asymptotic properties.
Singular perturbation theory has a long history and is a powerful tool

for a wide variety of applications. Complementing to the ever growing lit-
erature in singular perturbations, by using the basic properties of Markov
chains, this book aims to provide a systematic treatment for singularly per-

xv



xvi Preface to the First Edition

turbed Markovian models. It collects a number of ideas on Markov chains
and singular perturbations scattered through the literature.
This book reports our recent research findings on singularly perturbed

Markov chains. We obtain asymptotic expansions of the probability distri-
butions, validate the asymptotic series, deduce the error estimates, estab-
lish asymptotic normality, derive exponential type of bounds, and inves-
tigate the structure of the weak and strong interactions. To demonstrate
the applicability of the asymptotic theory, we focus on hierarchical produc-
tion planning of manufacturing systems, Markov decision processes, and
control and optimization of stochastic dynamic systems. Since numerical
methods are viable and indispensable alternatives to many applications,
we also consider numerical solutions of control and optimization problems
involving Markov chains and provide computationally feasible algorithms.
Originating from a diverse range of applications in production planning,

queueing network, communication theory, system reliability, and control
and optimization of uncertain systems, this book is application oriented. It
is written for applied mathematicians, operations researchers, physical sci-
entists, and engineers. Selected material from the book can also be used for
a one semester course for advanced graduate students in applied probability
and stochastic processes.
We take great pleasure to acknowledge those who have made it possible

for us to bring the book into being. We express our profound gratitude
to Wendell Fleming and Harold Kushner, who introduced the intellectual
horizon–stochastics to us and whose mathematical inspiration and constant
encouragement have facilitated our progress. We have had the privilege to
work with Rafail Khasminskii and have greatly benefited from his expertise
in probability and singular perturbations. We are very much indebted to
Alain Bensoussan, Wendell Fleming, Ruihua Liu, Zigang Pan, Zeev Schuss
and the four reviewers for their reviews of earlier versions of the manuscript,
and for their comments, criticisms and suggestions. Our thanks also go
to Petar Kokotovic for providing us with references that led to further
study, investigation, and discovery. We have benefited from discussions with
Thomas Kurtz, whose suggestions are very much appreciated. We are very
grateful to the series editor Ioannis Karatzas for his encouragement, and
to the Springer-Verlag senior editor of statistics John Kimmel and the
Springer-Verlag professionals for their help in finalizing the book. This
research has been supported in part by the National Science Foundation
and the Office of Naval Research, to whom we extend our hearty thanks.

Detroit, Michigan G. George Yin
Athens, Georgia Qing Zhang
March 1998



Convention

Here we clarify the numbering system and cross-reference conventions used
in the book. Within a chapter, equations are numbered consecutively, e.g.,
(3.10) indicates the tenth equation in Chapter 3. Corollaries, definitions,
examples, lemmas, propositions, remarks, and theorems are treated as one
entity and numbered sequentially throughout the chapter, e.g., Definition
4.1, Theorem 4.2, Corollary 4.3, etc. Likewise, assumptions are also marked
consecutively within a chapter, e.g., (A6.1) stands for Assumption 1 of
Chapter 6. For cross reference either within a chapter or to another chapter,
equations are identified by the chapter number and the equation number,
e.g., (5.2) refers to Equation 2 of Chapter 5. Similar methods apply to
theorems, remarks, assumptions, etc.
Throughout the book, all deterministic processes are assumed to be Borel

measurable and all stochastic processes are assumed to be measurable with
respect to a given filtration. The notation | · | denotes either an Euclidean
norm or a norm on the appropriate function spaces, which will be clear from
the context. The ith component of a vector z ∈ R

r is denoted by zi; the
ijth entry of a matrix A is denoted by aij . In the asymptotic expansions,
to simplify the notation, we use ϕn(t) and ψn(t) etc. to denote sequences,
whereas ϕi(t) denotes the ith partitioned vector of dimension R

1×mi or the
ith component of ϕ(t) when mi = 1.
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Glossary of Symbol and Notation

A′ transpose of a matrix (or a vector) A
Bc complement of a set B
Cov(ζ) covariance of a random variable ζ
C([0, T ];S) space of continuous functions on [0, T ] taking

values in S
C(O;S) space of continuous functions on O taking values in S
Ck space of functions with continuous derivatives up to

the kth order (space of Ck functions)
C2

L space of C2 functions with bounded derivatives up to
the second order and with Lipschitz second
derivatives

D([0, T ];S) space of right continuous defined on [0, T ] taking
values is S functions with left-hand limits

Eξ expectation of a random variable ξ
F σ-algebra
{Ft} filtration {Ft, t ≥ 0}
IA indicator function of a set A
In n× n identity matrix
K generic positive constant with

convention K +K = K and KK = K
L2([0, T ];S) space of square integrable functions on [0, T ] with

values in S
M state space of the Markov chain

xix



xx Notation

N(x) neighborhood of x

O(y) function of y such that supy |O(y)|/|y| <∞
O1(y) function of y such that supy |O(y)|/|y| ≤ 1

P (ξ ∈ ·) probability distribution of a random variable ξ

Q or Qε generator of a Markov chain

Q(t) or Qε(t) generator of a Markov chain

Qf(·)(i) =
∑

j �=i qij(f(j)− f(i)) where Q = (qij)

R
r r-dimensional Euclidean space

a+ = max{a, 0} for a real number a

a− = max{−a, 0} for a real number a

a1 ∧ · · · ∧ al = min{a1, . . . , al} for ai ∈ R, i = 1, . . . , l
a1 ∨ · · · ∨ al = max{a1, . . . , al} for ai ∈ R, i = 1, . . . , l

a.e. almost everywhere

a.s. almost surely

diag(A1, . . . , Al) diagonal matrix of blocks A1, . . . , Al

exp(Q) eQ for any argument Q
log x natural logarithm of x

o(y) a function of y such that limy→0 o(y)/|y| = 0

pε(t) P (αε(t) = 1, . . . , αε(t) = m) or

P (αε(t) = 1, αε(t) = 2, . . .)
w.p.1 with probability one

pε,i(t) ith partitioned vector of pε(t) (∈ R
1×mi)

p0 = pε(0), initial data
(Ω,F , P ) probability space

α(t) or αε(t) Markov chain with finite or countable state space

δij equals 1 if i = j and 0 otherwise

ε positive small parameter
ι pure imaginary number with ι2 = −1

ν(t) quasi-stationary distribution

νij(t) the jth component of νi(t) ∈ R
1×mi

ϕn(t), ψn(t) sequences of functions

ϕi
n(t) ith partitioned vector or ith component of ϕn(t)
ϕi(t) ith partitioned vector or ith component of ϕ(t)

σ{α(s) : s≤ t} σ-algebra generated by the process α(·) up to t

ϑk(t) = (ϑ1k(t), . . . , ϑ
l
k) ∈ R

1×l

1l column vector with all components equal to one

:= defined to be equal to

=̇ approximately equal to
∇f gradient of a function f

� end of a proof
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(a1, . . . , al) > 0 a1 > 0,. . . , al > 0
(a1, . . . , al) ≥ 0 a1 ≥ 0, . . . , al ≥ 0

|(a1, . . . , al)| =
√
a21 + · · ·+ a2l

|y|T = max
i,j

sup
0≤t≤T

|yij(t)|, where y = (yij) ∈ R
r1×r2

〈a, b〉 scalar product of vectors a and b
ξn ⇒ ξ ξn converges to ξ weakly
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Prologue and Preliminaries



1

Introduction and Overview

1.1 Introduction

This book presents asymptotic analysis and applications for two-time-scale
Markov chains and reveals the interrelations of Markov chains and sin-
gular perturbations. It is the second edition of our book Yin and Zhang
[237]. Treating a wide variety of real-world systems under uncertainties,
one frequently uses Markovian models. Quite often, the formulations lead
to two-time-scale or singularly perturbed Markov chains. In many applica-
tions, various factors change at different rates: Some evolve slowly, whereas
others vary rapidly. As a result, the separation of fast and slow time scales
arises. The phenomena are often described by introducing a small parame-
ter ε > 0, which leads to a singularly perturbed system involving two-time
scales, namely, the actual time t and the stretched time t/ε. To analyze
such systems, one seeks to “average out” the fast variables and to consider
only certain averaged characteristics via asymptotic methods.
Our study originates from a large class of problems in engineering, oper-

ations research, management, and biological and physical sciences. To pro-
ceed, we present a couple of problems in what follows to further elaborate
the motivation of our investigation. The system in the first problem in-
volves a rapidly fluctuating Markov chain, whereas the second one entails
modeling of large-scale systems via decomposition and aggregation. More
examples, applications, and models will be given in Chapter 3 and in Chap-
ters 7–10.

G.G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications,
Stochastic Modelling 37, DOI 10.1007/978-1-4614-4346-9 1,
© Springer Science+Business Media, LLC 2013
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4 1. Introduction and Overview

Consider a model for production planning of a failure-prone
manufacturing system. The system consists of a single machine whose
production capacity is modeled by a finite-state Markov chain αε(·) =
{αε(t) : t ≥ 0} taking values in {α1, . . . , αm}. Let x(t), u(t), and z(t)
denote the surplus, the rate of production, and the rate of demand, respec-
tively. The system is given by

dx(t)

dt
= u(t)− z(t), x(0) = x0.

Assume that the Markov chain αε(·) is generated by Q(u(t))/ε (see Sethi
and Zhang [192, Chapter 5]). Our objective is to choose the production
rate u(t), t ≥ 0, that is subject to the production constraint

0 ≤ u(t) ≤ αε(t),

and that minimizes the discounted cost function

E

∫ ∞

0

e−ρtG(x(t), u(t))dt,

where ρ > 0 is a discount factor and G(·) is a running cost function.
It is difficult to obtain the closed-form solution of the optimal control.

Nevertheless, as was shown in [192], for sufficiently small ε > 0, the given
problem can be approximated by a limit control problem

dx(t)

dt
=

m∑

i=1

νi(t)ui(t)− z(t), x(0) = x0,

where ν(t) = (ν1(t), . . . , νm(t)) ∈ R
1×m is the “average distribution” (a pre-

cise definition is given in Definition 2.8) of the Markov chain generated by
Q(u(t)). The corresponding cost function becomes

∫ ∞

0

e−ρt
m∑

i=1

νi(t)G(x(t), ui(t))dt.

To solve the limit problem, we choose (u1(t), . . . , um(t)) over time to min-
imize the corresponding cost function. The optimal solution of the limit
system can be used to construct a control for the given problem and to
show that it is asymptotically optimal as ε→ 0.
The second problem is concerned with a large-scale controlled dynamic

system. It is necessary to develop adequate models for such large-scale sys-
tems with complex structures that are otherwise difficult to handle, even
with powerful computing devices. As an effective way, using the so-called
weak and strong interaction models will result in the formulation of sin-
gularly perturbed systems. By taking appropriate decomposition and ag-
gregation, we will be able to divide a formidable, large-dimensional system
into a number of simpler subsystems with lower dimensions thereby making
the underlying problem solvable.
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To be more specific, for a given T > 0, suppose t ∈ [0, T ], and x(t) ∈ R
n

represents the state of the dynamic system given by

dx(t)

dt
= b(x(t), u(t), α(t)), x(0) = x0,

where b(·) is an appropriate function, α(·) is a finite-state Markov chain
having a large state spaceM = {1, . . . ,m} withm 1, and u(t) ∈ Γ ∈ R

r1

is the control or input of the system. The random process may be regarded
as a driving noise. One aims to select u(·) within the class of “admissible
controls” to minimize the expected cost

J(u(·)) = E

∫ T

0

G(x(t), u(t), α(t))dt.

The analysis is quite involved and the computation is likely to be costly
due to the high dimensionality. Consequently, a direct application of the dy-
namic programming (or maximum principle) approach may not be feasible
and alternative methods are therefore desirable.
Hierarchical structure, a feature common to most systems of practical

concerns (see Simon [195] and Simon and Ando [196]), can help us to sur-
mount these obstacles. In a large-scale system, various “components” may
change at different rates. By taking advantage of these, the system may
be decomposed, and the states of the Markov chain may be aggregated.
The introduction of a small parameter ε > 0 makes the system belong to
the category of two-time-scale systems; see Section 3.6 for a simple illus-
tration. For the dynamic system given above, assume (for simplicity) that
the generator of the Markov chain is time-invariant and has the form

Qε =
1

ε
Q̃+ Q̂,

where Q̃ and Q̂ are constant matrices and are themselves generators of
suitable Markov chains, in which Q̃/ε represents the fast motion part and

Q̂ models the slow motion part. Suppose

Q̃ = diag
(
Q̃1, Q̃2, . . . , Q̃l

)
=

⎛

⎜
⎜
⎜
⎝

Q̃1

Q̃2

. . .

Q̃l

⎞

⎟
⎟
⎟
⎠
,

where all Q̃k ∈ R
mk×mk are irreducible generators (see Definition 2.7) for

k = 1, 2, . . . , l, and
∑l

k=1mk = m. Denote

M = M1 ∪ · · · ∪Ml,
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where M1 . . . ,Ml is a partition of M. Define the aggregation of the
corresponding singularly perturbed chain αε(t) by

αε(t) =
l∑

i=1

iI{αε(t)∈Mi},

where IA denotes the indicator function of a set A. We may also write
similar expressions of other types of generators for Q̃ (see Chapter 4) such
as Markov chains including absorbing states and Markov chains including
transient states.
In this book, we show that αε(·) converges to a stochastic process α(·)

in an appropriate sense, and the limit α(·) is a Markov chain generated by

Q = diag(ν1, . . . , νl) Q̂ diag(1lm1 , . . . , 1lml
)

=

⎛

⎜
⎜
⎝

ν1

ν2

. . .

νl

⎞

⎟
⎟
⎠ Q̂

⎛

⎜
⎜
⎝

1lm1

1lm2

. . .

1lml

⎞

⎟
⎟
⎠ ,

where νk denotes the stationary distribution corresponding to the Markov
chain generated by Q̃k, 1lmk

= (1, . . . , 1)′ ∈ R
mk×1, and a′ denotes the

transpose of a. Note that Q is an l × l matrix. If l � m, the large-
dimensional problem originally encountered is replaced by an averaged
problem having a generator with substantially reduced dimension. The
essence is to examine a limit problem with an “averaged” Markov chain
in lieu of solving the original problem. Applying the optimal control of the
limit problem to the original problem leads to the construction of asymp-
totic optimal controls.
Next, we consider a related problem in networked control systems. Very

often one needs to consider stability problems. With the presence of both
continuous dynamics and discrete events, hybrid systems are capable of de-
scribing complex systems and their inherent uncertainty and randomness
in the environment. The hybrid formulation provides more opportunity
for realistic models, but adds more difficulties in analyzing the underly-
ing systems. One class of such systems is hybrid systems with Markovian
switching. Such systems have been found in emerging applications of fi-
nancial engineering, wireless communications, manufacturing systems, and
other related fields; see for example, Barone-Adesi and Whaley [6], Mari-
ton [155], Yin, Krishnamurthy, and Ion [225], Yin and Zhou [243], Zhang
and Yin [255], Zhang, Yin, and Liu [257], Zhou and Yin [259], and many
references therein. Much of the contemporary study of stochastic stabil-
ity of dynamic systems can be traced back to the original work of Kac and
Krasovskii [101], in which a systematic approach was developed for stability
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of systems with Markovian switching using Liapunov function methods. For
nonlinear differential equations, the well-known Hartman-Grobman theo-
rem (see Perko [173, Section 2.8]) provides an important result concerning
the local qualitative behavior. It says that near x0, a hyperbolic equilibrium
point, the nonlinear system ẋ = f(x) has the same qualitative structure
as that of the linear system ẋ = ∇f(x0)x. While the topological equiva-
lence may not hold for a non-hyperbolic equilibrium point (e.g., a center).
Treating hybrid systems, consider the differential equations ẋ = f(x, α(t))
and ẋ = ∇f(x0, α(t))x for α(t) being in a finite set. We showed in a recent
work of Zhu, Yin, and Song [260], although some of the linear equations
have centers, as long as the spectrum of the coefficients of the differential
equation corresponding to the stable node dominates that of the centers,
we may still use linearization in the analysis.
In fact, it is known that the switching systems are notoriously more diffi-

cult to treat. Sometimes rather unexpected events happen. Treating purely
deterministic systems, Wang, Khargonecker, and Beydoun [212] dealt with
an interesting system. Consider a linear in x system given by

ẋ = [A(αε(t))−B(αε(t))K(αε(t))]x, (1.1)

where αε(t) is a purely deterministic discrete event process that is running
in the continuous time and that takes values in {1.2}. Using a linear in x
feedback control u(t) = K(i)x for i = 1, 2 and let

G(1) = A(1)−B(1)K(1) =

⎛

⎜
⎝

−100 20

200 −100

⎞

⎟
⎠,

G(2) = A(2)−B(2)K(2) =

⎛

⎜
⎝

−100 200

20 −100

⎞

⎟
⎠.

Then the above two closed-loop systems are stable individually. It is demon-
strated in [212], when the switching takes place at kε for ε = 0.01 and
k = 1, 2, 3, . . . , then the resulting switched system is unstable. Intuitively,
one might expect that when one puts two stable systems together, the com-
bined system should also be stable. Nevertheless, the aforementioned refer-
ence provides a counterintuitive example to the common belief. Naturally,
we would like to ask: What is the reason behind this example? Turning the
question into stochastic setup, we assume that the switching process αε(·)
is a continuous-time Markov chain with state space {1, 2}. Using the ana-
lytic techniques provided in this book, we can show that associated with
the original switching system, there is a limit system. Even if the two indi-
vidual systems are stable, the limit one is not. Using large deviations type
estimates, we can conclude that in any finite time interval, with large prob-
ability, the combined system will reside in the unstable mode. Furthermore,
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using a perturbed Liapunov function method, the reason that the switched
system being unstable can be revealed. Such a question cannot be precisely
addressed without using properties obtained in the current book. Further
discussions on this example will be provided in Section 5.6.
To handle singularly perturbed systems driven by Markov chains, it is

essential to have a thorough understanding of the underlying probabilistic
structure, to which a large portion of the book is devoted. Our main inter-
ests are the asymptotic properties of singularly perturbed Markov chains
with nonstationarity. In the subsequent chapters, the asymptotic properties
of such systems will be closely examined through their probability distri-
butions.
Consider the following illustrative model. Let Q = (qij) ∈ R

m×m be a
matrix with

Q =

⎛

⎜
⎜
⎝

q11 q12 · · · q1m
q21 q22 · · · q2m
...

... · · ·
...

qm1 qm2 · · · qmm

⎞

⎟
⎟
⎠ , (1.2)

satisfying

qij ≥ 0, for i �= j, and qii = −
∑

j �=i

qij .

Let αε(t) ∈ M, for t ≥ 0, denote a finite-state Markov chain generated by
Qε := Q/ε, whose state space is M = {1, . . . ,m}. Then, the probability
distribution of αε(t) denoted by pε(t) = (P (αε(t) = 1), . . . , P (αε(t) = m)),
which lies in R

1×m, satisfies the differential equation

dpε(t)

dt
=

1

ε
pε(t)Q, 0 ≤ t ≤ T,

pε(0) = p0 = (p01, . . . , p
0
m) such that

p0i ≥ 0 for each i, and

m∑

i=1

p0i = 1,

(1.3)

where ε > 0 is a small parameter and T <∞. The unique solution of (1.3)
can be written explicitly as

pε(t) = p0 exp

(
Qt

ε

)

.

Assume that the Markov chain is irreducible, that is, the system of equa-
tions

νQ = 0 and

m∑

i=1

νi = 1
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has a unique positive solution ν = (ν1, . . . , νm), which is the stationary
distribution of the Markov chain generated by Q. In addition,

p0 exp(Qt) → ν as t→ ∞.

Therefore, for each t > 0, pε(t) converges to ν, as ε→ 0 because t/ε→ ∞.
Moreover, it is not difficult to prove that the convergence rate is exponen-
tial, i.e.,

pε(t)− ν = O

(

exp

(

−κ0t
ε

))

for some κ0 > 0.

Much of our effort in this book concerns obtaining asymptotic properties
of pε(·), when the generator Q is a function of time. With time-dependent
generator Q(t), t ≥ 0, we will address the following issues: (1) When ε→ 0,
does the limit of pε(t) exist? (2) If pε(t) converges, how can one determine
the limit? (3) What is the convergence rate? (4) Suppose pε(t) → ν(t) =
(ν1(t), . . . , νm(t)), a probability distribution as ε→ 0. Define

χε(t) = (I{αε(t)=1}, . . . , I{αε(t)=m}).

Consider the centered and scaled occupation measure

nε(t) =
1√
ε

∫ t

0

(χε(s)− ν(s))ds.

As ε → 0, what is the limit distribution of the random process nε(·)? (5)
Will the results carry over to singularly perturbed Markov chains with
weak and strong interactions (when the states of the Markov chain belong
to multiple irreducible classes)? (6) Is there anything that can be said about
merely measurable generators? The subsequent chapters provide detailed
answers to these questions and related topics.
This book concentrates on continuous-time singularly perturbed Markov

chains. The phrase singular perturbation used herein is defined in a broad
sense that includes both deterministic and probabilistic methods. One of
the principal component of the work is to develop various approximation
methods of Markov chains. In many applications, an approximate solution
provides results that are nearly as good as the analytical one. An approxi-
mation is often more desirable since an exact solution is not obtainable or
it requires too much effort to obtain, especially if on-line computations are
involved.
To summarize, various real-world systems under uncertainties can be

modeled as singularly perturbed Markov chains. The singular perturbation
approach is applicable to problems involving processes with rapid fluc-
tuations; it can also serve as a convenient machinery for handling large-
dimensional systems not manageable otherwise. The formulation of such
systems are achieved by introducing a small parameter ε > 0, which indi-
cates the relative order of magnitude; only the relative order is important in
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applications. For instance, ε = 0.1 might be considered as a small quantity
from a practical point of view. The mathematical results to be presented
can serve as a guide for various approximations and for estimating error
bounds; the asymptotic results of the underlying systems (as ε → 0) pro-
vide insights into the structure of the system and heuristics in applications.
A thorough understanding of the intrinsic behavior of the systems will be
instructive and beneficial for in-depth studies of applications in hierarchi-
cal production planning, Markov decision processes, random evolution, and
control and optimization of stochastic dynamic systems involving singularly
perturbed Markov chains.

1.2 A Brief Survey

The review of the literature is composed of two parts, namely, Markov
chains and singular perturbations; additional review and references are
given at the end of each chapter. The references provided are mostly related
to the materials treated in this book and are by no means exhaustive.

1.2.1 Markov Chains

The theory of Markov chains belongs to that of Markov processes, which is
named after A. A. Markov who introduced the concept in 1907 for discrete-
time processes with finite-state spaces. Perhaps, his original intention was
to generalize classical theory for sums of independent random variables
to that of dependent random variables. Rapid and continued progress has
been made for several decades. The development of the theory began with
the systematic treatment of A. N. Kolmogorov in the early 1930s, and
was followed by Doeblin’s important contribution. Fundamental work on
continuous-time chains was done by J. L. Doob in the 1940s and P. Lévy
in the 1950s. To consolidate and to continue the pioneering work, D. G.
Kendall, G. E. H. Reuter, and K. L. Chung among others launched compre-
hensive studies. Extensive surveys of the development of Markov chains can
be found in, for example, Anderson [3], Chung [31], Davis [41], Doob [49],
Dynkin and Yushkevich [53], Feller [60], Hou and Guo [89], Kannan [103],
Revuz [180], Rosenblatt [183], and Wang and Yang [213]. Classical work
on Markov processes with continuous-state space is contained in Dynkin
[51]. An exposition of elementary theory of Markov chains is in Karlin and
Taylor [105]. A detailed study of discrete-time Markov chains and their
stability is in Meyn and Tweedie [159]; a modern treatment of the theory
of Markov processes is in Ethier and Kurtz [59]. Effort has also been made
to treat evolution of systems in random media in Korolyuk and Swishchuk
[130], and semi-Markov processes in Korolyuk and Limnios [131, 132] and
references therein. The nonstationary cases were first treated by Markov
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himself; subsequently, a number of people made important contributions,
to name just a few, S. N. Bernstein, W. Doeblin, Yu. V. Linnik, and R.
L. Dobrushin among others; see Iosifescu [95] for discussion on this aspect
and the corresponding historical notes. In depth studies of such topics as
probability metrics, coupling methods, and spectral gaps are covered in the
book by Chen [25]. The recent work of Davis [41] on piecewise-deterministic
processes sets up a framework for the treatment of nonstationary Markov
processes. For the subsequent study herein, the main results of Markov
chains are taken from Chung [31] and Davis [41] among others.

1.2.2 Singular Perturbations

The topics of this book are at the verge of singular perturbation theory,
which also has a long history. At the beginning of this century, L. Prandtl
published his seminal paper “On fluid motion with small friction,” which
established the foundation of the boundary layer theory. The origin of the
nowadays well-knownWKBmethod initiated independently by three physi-
cists, G. Wentzell, H. A. Kramers, and L. Brillouin in 1926, can be traced
back to the work of Liouville and Green in 1837; see Wasow [216] for a
historical remark.
Owing to its wide spectrum of applications, singular perturbation theory

has witnessed tremendous progress for decades. The Kiev school headed
by N. M. Krylov and N. N. Bogoliubov developed the so- called averag-
ing methods to treat oscillations. Their work was further continued by
K. Friedrichs, N. Levinson, and Y. A. Mitropolskii among others. For de-
tailed survey and historical development, consult the work of Bogoliubov
and Mitropolskii [18], Eckhaus [54], Erdélyi [58], Il’in [92], Kevorkian and
Cole [108, 109], Krylov and Bogoliubov [133], Lochak and Meunier [149],
Nayfeh [161], O’Malley [163], Smith [199], Vasil’eava and Butuzov [210],
Wasow [215, 216], and the references therein.
Singular perturbation methods have been extensively used in various

branches of physics including statistical mechanics, solid state physics,
chemical physics, molecular biophysics (see Gardiner [68], Risken [182],
van Kampen [208], Schuss [188], Hänggi, Talkner, and Borkovec [80] and
the over hundreds of references cited there). For the related applications
in control theory and optimization, we refer the reader to Bensoussan [8],
Kokotovic [126], Kokotovic, Bensoussan, and Blankenship [127], Kokotovic
and Khalil [128], Kokotovic, Khalil, and O’Reilly [129], Pervozvanskii and
Gaitsgori [174], Phillips and Kokotovic [175], and the large reference ci-
tations contained therein. The idea of two-time-scale expansion has also
found emerging applications in communication theory (see Tse, Gallager,
and Tsitsiklis [206] among others).
Parallel to the advances in the deterministic theory, there is a stochastic

version of the averaging methods. It began with the work of Khasminskii
[112], continued by the large deviations approach of Friedlin and Wentzell
[67], and the martingale averaging methods of Kushner [139].
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In summary, the theories of Markov chains and singular perturbation
have flourished. They have now become important techniques in various
branches of applied mathematics and have a diverse range of applications.

1.3 Outline of the Book

This book consists of three parts including ten chapters and an appendix.
Part I and Part II each consists three chapters, whereas Part III comprises
four chapters.
Including an introduction, mathematical preliminaries, and a number of

Markovian models, Part I provides background material. It begins with
Chapter 1 that contains an overview, a brief review of the literature, and
the plan of the book.
Chapter 2 is concerned with mathematical preliminaries and technical

aspects such as Chapman–Kolmogorov equations, forward and backward
differential equations, irreducibilities, quasi-stationary distributions, and
piecewise-deterministic processes. The definition of Markov chains is given
through the formulation of martingales, which appears to be natural for
nonstationary processes. This chapter also collects certain properties of
martingales and Gaussian processes. It serves as a quick reference of results
to be used later in the book. A list of related textbooks is given at the end
of the chapter for further consultation.
To demonstrate the versatility of Markov chains, we present a number

of models and examples in Chapter 3. They include birth and death pro-
cesses, queueing systems with finite capacity, competing risk theory, singu-
larly perturbed Cox processes, seasonal variation, simulated annealing and
stochastic optimization algorithms, system reliability, and optimal control
of jump linear systems. These models are used to exhibit the scope of the
diversity of applications rather than to provide complete solutions of the
underlying problems.
Consisting of Chapters 4–6, Part II is devoted to asymptotic properties

of singularly perturbed Markov chains. To allow a better understanding,
this part begins with a thorough treatment of singularly perturbed chains
under weak irreducibility. Then more complex cases are treated following
the logical path of development from simpler to more complex problems.
In Chapter 4, we begin the study with the case that the Markov chain

is generated by an irreducible generator Qε(t) = Q(t)/ε, where ε > 0 is
a small parameter. The smaller the ε is, the more rapidly the underly-
ing Markov chain fluctuates. To analyze the asymptotic properties of the
Markov chains for small ε, we make use of the forward differential equa-
tions and an asymptotic expansion of the probability distribution. The
asymptotic expansion is composed of a regular part (outer expansion) and
initial layer corrections. The regular part and the initial layer corrections
are matched through appropriate choices of the initial conditions. We then
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give rigorous justification on the validity of the asymptotic series and obtain
the upper bounds on the approximation errors. Then much more complex
models of Markov chains generated by Qε(t) = Q̃(t)/ε + Q̂(t) are consid-

ered. Since the fast varying part of the generator Q̃(t)/ε is the dominant
factor, we treat recurrent chains, chains having absorbing states, and chains
containing transient states in accordance with the classification of states for
the underlying chains. We first detail the asymptotic development of the
model with recurrent states. As will be seen in this chapter, the analysis
becomes much more involved due to the complexity of the model. Similar
techniques are then applied to treat chains with absorbing states and chains
with transient states. The choice of the initial conditions is a delicate issue
in dealing with models with fast and slow motions and/or weak and strong
interactions. It is interesting to note that the proper choices of initial con-
ditions are so critical that without them an ad hoc formal expansion will
not yield the desired asymptotic estimates.
Also considered here is another generalization involves the study of

countable state space cases. We first consider the case where Q̃(t) and Q̂(t)

are themselves generators of appropriate Markov chains, in which Q̃(t)
is a block-diagonal matrix with infinitely many blocks each of which is a
generator of a Markov chain with a finite-state space. Then we study the
case Qε(t) = Q(t)/ε with Q(t) being an infinite-dimensional generator, and
provide sufficient conditions ensuring the validity of the asymptotic expan-
sion. Finally, remarks on the corresponding results of singularly perturbed
diffusion processes are discussed briefly.
As another main core of the book, Chapter 5 concerns the asymptotic

distribution and exponential error estimates of unscaled and scaled occu-
pation measures. Chapter 4 focuses on purely analytic properties and uses
mainly analysis tool to treat the underlying problems, whereas this chap-
ter takes up the related probabilistic issues. Starting with the case that the
Markov chain is weakly irreducible, by use of the asymptotic expansions
developed in Chapter 4, it is shown that a sequence of unscaled occupation
measures converges to that of an “integrated” quasi-stationary distribu-
tion, and a scaled sequence of the occupation measures verifies a mixing
condition and is tight in an appropriate function space. We establish the
weak convergence of the sequence and derive the explicit representation of
the covariance of the Gaussian process. One of the distinct features of the
central limit result is that its asymptotic covariance involves explicit ex-
pression of the initial layers, a property not shared by many of the existing
results of asymptotic normality. In various applications, it is often needed
to make use of an exponential error estimate to obtain the corresponding
large deviations results. Deriving such upper bounds is another main task
of this chapter.
Next, we ask the question: If the irreducible Markovian models are re-

placed by Markovian models with weak and strong interactions, can we still
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get desired asymptotic distribution results? A natural question is whether
the asymptotic normality holds for the scaled occupation measures. The
situation becomes more complex. To begin, for the weakly irreducible case,
the scaled occupation measures are centered about a non-random quantity,
namely, the quasi-stationary distribution. When weak and strong iteration
models are treated, the centering term can no longer be a constant, but
a random process that stems from the idea of aggregations and that is in
a form of conditional mean. In fact, the limit of the scaled sequence of
occupation measures does not possess independent increments. To char-
acterize the limit process, one has to examine a combined process of the
Markov chain and the scaled occupation measure. Owing to the interac-
tions among different blocks, although there is an analog to the central limit
result, the limit distribution is no longer Gaussian but Gaussian mixture
(or a switching diffusion characterized by solutions of martingale problems
with appropriate operators). Thus, strictly speaking, we no longer have the
asymptotic normality. Nevertheless, a limit in distribution result still holds.
The limit process displays a certain mixture property; it resembles both
diffusion processes and jump processes. Note that for small ε, the Markov
chain αε(·) jumps more frequently within each block and less frequently
from one block to another. To further the understanding of the underlying
process, we study the structural properties of the Markov chain by aggre-
gating the states in the kth block by a single state k and approximating
αε(·) by the aggregated process. In addition to analyzing the aggregated
chain, we also take up the issue of generators being merely measurable and
obtain a number of results concerning the probability distribution under
the weak topology in L2[0, T ], the space of square integrable functions.
With emphases on the “deterministic” and the “probabilistic” aspects of

the distributions of the Markov chains, both Chapters 4 and 5 are concerned
with forward equations. Chapter 6 serves as the “adjoint” of Chapter 4; it
treats the backward equations, also known as Kolmogorov backward equa-
tions. There are plenty cases that we need to deal with backward equations.
We ask the following questions. Do there exist asymptotic expansions for
the backward equations? We provide an affirmative answer to this question
in Chapter 6. In contrast to the Kolmogorov forward equations, instead of
having initial conditions, we now have terminal conditions. Similar to what
have been done in Chapter 4, we construct outer expansions and terminal
layer corrections, and obtain the desired error bounds. One of the crucial
results is Lemma 6.1.
Part III deals with several applications including Markov decision pro-

cesses, nearly optimal controls of stochastic dynamic systems, numerical
solutions of control and optimization of Markov chains, and hybrid two-
time-scale LQG problems. The materials are divided into Chapters 7–10.
The studies of many operations research and operations management

problems can be boiled down to analysis of Markov decision processes. One
of the main advantages of Markov decision processes is that the dynamics
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of the model are governed purely by the generator Qε(u), as a function
of control u, without involving differential equations. Chapter 7 focuses
on optimal decisions of these problems involving weak and strong inter-
actions. Specifically, the generator of the underlying Markov chain is as-
sumed to be a function of the control variable, i.e., the generator is given
by Qε(t) = Q̃(u(t))/ε+ Q̂(u(t)) such that Q̃(u(t)) is a block-diagonal ma-
trix with each block being irreducible. This yields a limit control problem
obtained by replacing the states in each group with a single state and by
using the corresponding average distributions. A nearly optimal solution
for the original problem is constructed by using an optimal solution to the
limit problem. Both discounted cost and long-run average cost criteria are
considered. Error bounds of the constructed controls are obtained; related
computational methods are also discussed.
Stemming from hierarchical decomposition of large and complex sys-

tems, Chapter 8 is about asymptotic optimal controls of singularly per-
turbed dynamic systems under Markovian disturbance. Assuming that the
Markov chain is under weak and strong interactions, we obtain the asymp-
totic optimal control and derive the corresponding error bounds. As spe-
cific examples, hierarchical control of manufacturing systems are examined.
Moreover, obtaining near optimality via weak convergence methods is also
demonstrated. The main idea is that in lieu of dealing with the more dif-
ficult singularly perturbed problems, one considers the limit problems and
uses them as a bridge to establish nearly optimal controls of the actual sys-
tems. In this process, the asymptotic properties of the singularly perturbed
Markov chains play an essential role.
To implement a control policy in practice, numerical methods are often

necessary and indispensable. In Chapter 9, we develop numerical algorithms
for approximating control and optimization problems of finite-state Markov
chains. It encompasses two parts. The first part concentrates on approxima-
tion of the controlled dynamic systems by an appropriate controlled Markov
chain on a finite-state space using discretization; the suggested algorithm
leads to the desired optimal control. The second part converts a class of
control problems to an optimization procedure; in lieu of approximating
the optimal controls, we focus our attention on the threshold control poli-
cies, and obtain the optimal threshold values by stochastic approximation
methods.
A basic model used extensively in the control and systems literature is

the LQP (linear quadratic Gaussian) model, which has enjoyed a wide vari-
ety of applications range from traditional setup to manufacturing systems,
telecommunication, financial engineering, and networked systems. Due to
the uncertain world, to reflect the random environment reality and/or to
aim at more “robust” control designs, one often has to allow the system
parameters to change within a set, which leads to the regime-switching
Markov models. Chapter 10 takes up the issues of Markovian switching
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diffusion models. It illustrates how the two-time-scale methods of the book
can be used to design nearly optimal strategies.
In the entire book, each chapter begins with an introduction that gives

the outline of the chapter, and ends with a section “notes” that provides
further remarks, literature citations, and other related matters. The ap-
pendix contains brief discussions, basic notion, and results on the topics
of viscosity solutions, piecewise-deterministic processes, weak convergence,
relaxed controls, and a number of technical complements. The flow chart
in Figure 1.1 should help to visualize the logical dependence, relationship,
and connection among various chapters.

Chapter 1

Chapter 5

Chapter 7

Chapter 4

Chapter 8 Chapter 9

Chapter 6

Chapter 10

Chapter 2 Chapter 3

FIGURE 1.1. Relationship and Dependence Among Chapters
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Mathematical Preliminaries

2.1 Introduction

To prepare us for the subsequent study, this chapter summarizes certain
background materials used in the rest of the book. Section 2.2 begins with
the definitions of stochastic processes and filtrations, which lead to a very
important concept in stochastic processes, namely, the notion of martin-
gales. In Section 2.3, we recall the definition of Markov chains. Rather
than working exclusively with their transition probabilities, this book con-
centrates on their generators. In view of various applications, it is practical
and natural to characterize a Markov chain by using its generator. Given
a generator, the construction of the associated Markov chain is described
in Section 2.4 by means of the piecewise-deterministic process approach.
Since one of the central themes of the book encompasses quasi-stationary
distributions of singularly perturbed chains, we introduce this notion to-
gether with the weak and strong irreducibilities in Section 2.5, which are
used extensively in the chapters to follow. Section 2.6 reviews Gaussian
and diffusion processes. Section 2.7 discusses switching diffusion processes.
Finally, Section 2.8 closes the chapter with some postscript notes.

2.2 Martingales

Let (Ω,F , P ) be a probability space. Denote the space of Rr-valued contin-
uous functions defined on [0, T ] by C([0, T ];Rr), and the space of functions

G.G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications,
Stochastic Modelling 37, DOI 10.1007/978-1-4614-4346-9 2,
© Springer Science+Business Media, LLC 2013
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that are right continuous with left-hand limits by D([0, T ];Rr). Consider
x(·) = {x(t) ∈ R

r : t ≥ 0}. If for each t ≥ 0, x(t) is a random vector (or an
R

r-valued random variable), we call x(·) a stochastic process and write it
as x(t), t ≥ 0, or simply x(t) if there is no confusion.

• A collection of σ-algebras {Ft, t ≥ 0}, or simply {Ft}, is called a
filtration if Fs ⊂ Ft for s ≤ t. It is understood that Ft is complete in
the sense that it contains all null sets. A probability space (Ω,F , P )
together with a filtration {Ft} is termed a filtered probability space
(Ω,F , {Ft}, P ).

• A process x(·) is adapted to a filtration {Ft}, if for each t ≥ 0, x(t)
is an Ft-measurable random variable; x(·) is progressively measurable
if for each t ≥ 0, the process restricted to [0, t] is measurable with
respect to the σ-algebra B[0, t] × Ft in [0, t] × Ω, where B[0, t] de-
notes the Borel sets of [0, t]. A progressively measurable process is
measurable and adapted, whereas the converse is not generally true.
However, any measurable and adapted process with right-continuous
sample paths is progressively measurable (see Davis [41, p. 19]).

• A stopping time τ on (Ω,F , P ) with a filtration {Ft} is a nonnegative
random variable such that {τ ≤ t} ∈ Ft, for all t ≥ 0.

• A stochastic process {x(t) : t ≥ 0} (real or vector valued) is said to
be a martingale on (Ω,F , P ) with respect to {Ft} if

(a) For each t ≥ 0, x(t) is Ft-measurable,

(b) E|x(t)| <∞, and

(c) E[x(t)|Fs] = x(s) w.p.1 for all t ≥ s.

If we only say that x(·) is a martingale (without specifying the
filtration Ft), Ft is taken to be σ{x(s) : s ≤ t}.

• If there exists a sequence of stopping times {τn} such that 0 ≤ τ1 ≤
τ2 ≤ · · · ≤ τn ≤ τn+1 ≤ · · ·, τn → ∞ w.p.1 as n→ ∞, and the process
x(n)(t) := x(t ∧ τn) is a martingale, then x(·) is a local martingale.

2.3 Markov Chains

A jump process is a right-continuous stochastic process with piecewise-
constant sample paths. Let α(·) = {α(t) : t ≥ 0} denote a jump process
defined on (Ω,F , P ) taking values in either M = {1, 2, . . . ,m} or M =
{1, 2, . . .}. Then {α(t) : t ≥ 0} is a Markov chain with state space M if

P (α(t) = i|α(r) : r ≤ s) = P (α(t) = i|α(s)), (2.1)
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for all 0 ≤ s ≤ t and i ∈ M. Note that (2.1) is known as Markov property
and that the state space is either finite or countable.
For any i, j ∈ M and t ≥ s ≥ 0, let pij(t, s) denote the transition

probability P (α(t) = j|α(s) = i), and P (t, s) the matrix (pij(t, s)). We
name P (t, s) the transition matrix of the Markov chain α(·), and postulate
that

lim
t→s+

pij(t, s) = δij ,

where δij = 1 if i = j and 0 otherwise. It follows that, for 0 ≤ s ≤ ς ≤ t,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pij(t, s) ≥ 0, i, j ∈ M,
∑

j∈M
pij(t, s) = 1, i ∈ M,

pij(t, s) =
∑

k∈M
pik(ς, s)pkj(t, ς), i, j ∈ M.

The last identity is usually referred to as the Chapman–Kolmogorov
equation. If the transition probability P (α(t) = j|α(s) = i) depends only
on (t−s), then α(·) is stationary. In this case, we define pij(h) := pij(s+h, s)
for any h ≥ 0. The process is nonstationary otherwise.

Definition 2.1 (q-Property). Denote Q(t) = (qij(t)), for t ≥ 0. It satisfies
the q-Property, if

(a) qij(t) is Borel measurable for all i, j ∈ M and t ≥ 0;

(b) qij(t) is uniformly bounded, that is, there exists a constant K such
that |qij(t)| ≤ K, for all i, j ∈ M and t ≥ 0;

(c) qij(t) ≥ 0 for j �= i and qii(t) = −
∑

j �=i qij(t), t ≥ 0.

For any real-valued function f on M and i ∈ M, write

Q(t)f(·)(i) =
∑

j∈M
qij(t)f(j) =

∑

j �=i

qij(t)(f(j)− f(i)).

We are now in a position to define the generator of a Markov chain.

Definition 2.2 (Generator). A matrix Q(t), t≥ 0, is an infinitesimal
generator (or simply a generator) of α(·) if it satisfies the q-Property, and
for all bounded real-valued functions f defined on M

f(α(t))−
∫ t

0

Q(ς)f(·)(α(ς))dς (2.2)

is a martingale.
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Remark 2.3. Motivated by the many applications we are interested in, a
generator is defined for a matrix satisfying the q-Property. Different defini-
tions, including other classes of matrices, may be devised as in Chung [31].
To proceed, we give an equivalent condition for a finite-state Markov chain
generated by Q(t).

Lemma 2.4. Let M = {1, . . . ,m}. Then α(t) ∈ M, t ≥ 0, is a Markov
chain generated by Q(t) iff

(
I{α(t)=1}, . . . , I{α(t)=m}

)
−
∫ t

0

(
I{α(ς)=1}, . . . , I{α(ς)=m}

)
Q(ς)dς (2.3)

is a martingale.

Proof: If Q(t) is a generator of α(·), for any f(·), (2.2) defines a martingale.
For any k ∈ M, choose fk(α) = I{α=k}. Then

fk(α(t)) = I{α(t)=k}

and

Q(ς)fk(·)(α(ς)) =
m∑

i=1

I{α(ς)=i}[Q(ς)fk(·)(i)]

=
m∑

i=1

m∑

j=1

I{α(ς)=i}qij(ς)fk(j)

=
m∑

i=1

I{α(ς)=i}qik(ς).

Thus, (2.3) defines a martingale.
Conversely, note that

f(α(ς)) =
m∑

i=1

I{α(ς)=i}f(i)

=
(
I{α(ς)=1}, . . . , I{α(ς)=m}

)
(f(1), . . . , f(m))

′

and

Q(ς)f(·)(α(ς)) =
m∑

i=1

I{α(ς)=i}[Q(ς)f(·)(i)]

=
(
I{α(ς)=1}, . . . , I{α(ς)=m}

)
Q(ς) (f(1), . . . , f(m))′ .

Multiplying (2.3) by (f(1), . . . , f(m))′ and using the equations above con-
firms that (2.2) defines a martingale. �
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We will show in the next section that for any given Q(t) satisfying the
q-Property, there exists a Markov chain α(·) generated by Q(t). For conve-
nience, call any matrix Q(t) that possesses q-Property a generator.

2.4 Piecewise-Deterministic Processes

This section gives an account of the construction of nonstationary Markov
chains generated by Q(t) for t ≥ 0. If Q(t) = Q, a constant matrix, the
idea of Ethier and Kurtz [59] can be utilized for the construction. For time-
varying generator Q(t), we need to use the piecewise-deterministic process
approach, described in Davis [41], to define the Markov chain α(·).

2.4.1 Construction of Markov Chains

Let 0 = τ0 < τ1 < · · · < τl < · · · denote a sequence of jump times of α(·)
such that the random variables τ1, τ2−τ1, . . ., τk+1−τk, . . . are independent.
Let α(0) = i ∈ M. Then α(t) = i on the interval [τ0, τ1). The first jump
time τ1 has the probability distribution

P (τ1 ∈ B) =

∫

B

exp

{∫ t

0

qii(s)ds

}

(−qii(t)) dt,

where B ⊂ [0,∞) is a Borel set. The post-jump location of α(t) = j, j �= i,
is given by

P (α(τ1) = j|τ1) =
qij(τ1)

−qii(τ1)
.

Note that qii(τ1) may equal 0. In this case, define P (α(τ1) = j|τ1) = 0,
j �= i. We claim P (qii(τ1) = 0) = 0. In fact, if we let Bi = {t : qii(t) = 0},
then

P (qii(τ1) = 0) = P (τ1 ∈ Bi)

=

∫

Bi

exp

{∫ t

0

qii(s)ds

}

(−qii(t)) dt = 0.

In general, α(t) = α(τl) on the interval [τl, τl+1). The jump time τl+1 has
the conditional probability distribution

P (τl+1 − τl ∈ Bl|τ1, . . . , τl, α(τ1), . . . , α(τl))

=

∫

Bl

exp

{∫ t+τl

τl

qα(τl)α(τl)(s)ds

}
(
−qα(τl)α(τl)(t+ τl)

)
dt.
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The post-jump location of α(t) = j, j �= α(τl) is given by

P (α(τl+1) = j|τ1, . . . , τl, τl+1, α(τ1), . . . , α(τl)) =
qα(τl)j(τl+1)

−qα(τl)α(τl)(τl+1)
.

Theorem 2.5. Suppose that the matrix Q(t) satisfies the q-Property for
t ≥ 0. Then

(a) The process α(·) constructed above is a Markov chain.

(b) The process

f(α(t))−
∫ t

0

Q(ς)f(·)(α(ς))dς (2.4)

is a martingale for any uniformly bounded function f(·) on M. Thus
Q(t) is indeed the generator of α(·).

(c) The transition matrix P (t, s) satisfies the forward differential equa-
tion

dP (t, s)

dt
= P (t, s)Q(t), t ≥ s,

P (s, s) = I,

(2.5)

where I is the identity matrix.

(d) Assume further that Q(t) is continuous in t. Then P (t, s) also satisfies
the backward differential equation

dP (t, s)

ds
= −Q(s)P (t, s), t ≥ s,

P (t, t) = I.

(2.6)

Remark 2.6. In (c) and (d) above, the derivatives can also be written
as partial derivatives, (∂/∂t)P (t, s) and (∂/∂s)P (t, s), respectively. Never-
theless, we note that the s in (2.5) and the t in (2.6) only appear in the
formulas as parameters. That is, they main represents the initial and ter-
minal conditions. For notational simplicity, we write them as in (c) and (d),
and keep this convention throughout. It should be clear from the context.

Proof of Theorem 2.5: Parts (a) and (b) are in Davis [41, pp. 62-69].
To prove part (c), take f(α) = I{α=j} for j ∈ M. Owing to the Markov
property and the definition of martingales,

P (α(t) = j|α(s) = i)

= δij +

∫ t

s

∑

k∈M
P (α(ς) = k|α(s) = i)qkj(ς)dς.

(2.7)
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To prove (d), note that the continuity of Q(t) imply that

pij(s, s−Δ)

−Δ
→ −qij(s) for i �= j and

pii(s, s−Δ)− 1

−Δ
→ −qii(s),

as Δ → 0. The rest of the proof follows from the standard line of argument
using the Chapman–Kolmogorov equation (see [27, pp. 398-403].). �

2.5 Irreducibility and Quasi-Stationary
Distributions

Let M= {1, 2, . . . ,m} for some integer m≥ 2. Suppose that α(t), t≥ 0, is a
Markov chain generated by anm×mmatrixQ(t). This section concentrates
on the irreducibility and quasi-stationary distribution, which are key points
for the rest of the book.

Definition 2.7 (Irreducibility).

(a) A generator Q(t) is said to be weakly irreducible if, for each fixed
t ≥ 0, the system of equations

ν(t)Q(t) = 0,

m∑

i=1

νi(t) = 1

(2.8)

has a unique solution ν(t) = (ν1(t), . . . , νm(t)) and ν(t) ≥ 0.

(b) A generator Q(t) is said to be strongly irreducible, or simply irre-
ducible, if for each fixed t ≥ 0 the systems of equations (2.8) has a
unique solution ν(t) and ν(t) > 0.

The expression ν(t) ≥ 0 means that for each i ∈ M, νi(t) ≥ 0. Similar
interpretation holds for ν(t) > 0. It follows from the definitions above that
irreducibility implies weak irreducibility. However, the converse does not
hold. For example, the generator

Q =

(
−1 1
0 0

)

is weakly irreducible, but it is not irreducible because it contains an absorb-
ing state corresponding to the row (0, 0). A moment of reflection reveals
that for a two-state Markov chain with generator

Q =

(
−λ(t) λ(t)
μ(t) −μ(t)

)

,
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the weak irreducibility requires only λ(t) + μ(t) > 0 whereas the
irreducibility requires that both λ(t) and μ(t) be positive. If a weakly
irreducible Markov chain contains only one communicating class of recur-
rent states, and if there are no transient states, then the Markov chain is
irreducible.

Definition 2.8 (Quasi-Stationary Distribution). For t ≥ 0, ν(t) is termed
a quasi-stationary distribution if it is the solution of (2.8) satisfying ν(t)≥ 0.

Remark 2.9. While studying problems of stationary Markov chains,
the stationary distributions play an important role. In the context of
nonstationary Markov chains, they are replaced by the quasi-stationary
distributions, which will be used extensively in this book.

If ν(t) = ν > 0, it is termed a stationary distribution. In view of
Definitions 2.7 and 2.8, if Q(t) is weakly irreducible, then there is a quasi-
stationary distribution. Note that the rank of a weakly irreducible m ×
m matrix Q(t) is m − 1, for each t ≥ 0. The definition given above
emphasizes the probabilistic interpretation. An equivalent definition for the
weak irreducibility that pinpoints the algebraic properties of Q(t) is given
below. One can verify their equivalence using the Fredholm alternative; see
Lemma A.37 and Corollary A.38 in Appendix.

Definition 2.10. A generator Q(t) is said to be weakly irreducible if, for
each fixed t ≥ 0, the system of equations

f(t)Q(t) = 0,

m∑

i=1

fi(t) = 0

(2.9)

has only the trivial (zero) solution.

In the subsequent development, we often need to treat nonhomogeneous
systems of linear equations. Consider

f(t)Q(t) = g(t), (2.10)

where for each 0 < t ≤ T , Q(t) is a weakly irreducible generator (an m×m
matrix), f(t), g(t) are unknown and known vectors, respectively. Zero is
an eigenvalue of the matrix Q(t) and the null space of Q(t) is spanned
by 1l. Then by the Fredholm alternative (see Corollary A.38), (2.10) has a
solution iff g(t)1l = 0, where 1l = (1, . . . , 1)′ ∈ R

m×1.
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Define Qc(t) = (1l
...Q(t)) ∈ R

m×(m+1). Consider (2.10) together with the
condition f(t)1l =

∑m
i=1 fi(t) = f . This may be written as f(t)Qc(t) = gc(t)

where gc(t) = (f
... g(t)). Since for each t, (2.9) has a unique solution, it

follows that Qc(t)Q
′
c(t) is a matrix with full rank; therefore, the equation

f(t)[Qc(t)Q
′
c(t)] = gc(t)Q

′
c(t) (2.11)

has a unique solution. This observation will be used repeatedly in what
follows.

Remark 2.11. The difference between weak irreducibility and strong
irreducibility is that the former only requires the unique solution ν(t) to
be nonnegative and the latter requires ν(t) to be strictly positive. We
keep the nonnegativity requirement ν(t) ≥ 0 in the definition of the weak
irreducibility to remind the reader of its probabilistic meaning. In fact,
this requirement is superfluous, which can be seen from Lemma A.4.

2.6 Gaussian Processes and Diffusions

A random vector (x1, x2, . . . , xr) is Gaussian if its characteristic function
has the form

φ(y) = exp

(

ι〈y, a〉 − 1

2
〈Ay, y〉

)

,

where a is a constant vector in R
r, 〈y, a〉 is the usual inner product, ι

denotes the pure imaginary number satisfying ι2 = −1, and A is a sym-
metric nonnegative definite r×r matrix. A stochastic process x(t), t ≥ 0, is
a Gaussian process, if its finite-dimensional distributions are Gaussian, that
is, for any 0 ≤ t1 < t2 < · · · < tk and k = 1, 2, . . ., (x(t1), x(t2), . . . , x(tk))
is a Gaussian vector.
If for any 0 ≤ t1 < t2 < · · · < tk and k = 1, 2, . . .,

(x(t1)− x(0)), (x(t2)− x(t1)), . . . , (x(tk)− x(tk−1))

are independent, then we say x(·) is a process with independent increments.
The following lemma provides a sufficient condition for a process to be
Gaussian. The proof of the lemma can be found in Skorohod [197, p. 7].

Lemma 2.12. Assume that the process x(·) has independent increments
and continuous sample paths with probability one. Then x(·) is a Gaussian
process.
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An R
d-valued Gaussian random process w(t), t ≥ 0, is called a Brownian

motion, if

(a) w(0) = 0, w.p.1;

(b) w(·) is a process with independent increments;

(c) w(·) has continuous sample paths (in C([0,∞);Rd)) with probability
one;

(d) the increments w(t)−w(s) have Gaussian distribution with Ew(t) = 0
and Cov(w(t)) = σt for some nonnegative definite d × d matrix σ,
where Cov(ζ) denotes the covariance of ζ.

When σ = I, the identity matrix, w(·) is a standard Brownian motion.
In view of Lemma 2.12, a Brownian motion is necessarily a Gaussian pro-
cess. For an R

d-valued Brownian motion w(t), let Ft = σ{w(s) : s ≤ t}.
Let σ(·) denote an Ft-measurable process taking values in R

d×d such that
∫ t

0
|σ(s)|2ds < ∞ for all t ≥ 0. Using w(·) and σ(·), one can define a

stochastic integral
∫ t

0 σ(s)dw(s) such that it is a martingale with mean 0

and quadratic variation
∫ t

0 σ(s)σ
′(s)ds.

Given Ft-measurable processes b(·) and σ(·), a process ζ(·) defined as

ζ(t) := ζ(0) +

∫ t

0

b(s)ds+

∫ t

0

σ(s)dw(s)

is called a diffusion. Let C2,1 denote the class of real-valued functions on
(a subset of) R

r × [0,∞) whose second-order mixed partial derivatives
with respect to x and first-order partial derivatives with respect to t are
continuous. Define an operator L on C2,1 by

Lf(t, x) := ∂f(t, x)

∂t
+

r∑

i=1

bi(t)
∂f(t, x)

∂xi
+

1

2

r∑

i,j=1

aij(t)
∂2f(t, x)

∂xi∂xj
, (2.12)

where a(t) = (aij(t)) = σ(t)σ′(t). Then for all f ∈ C2,1, the process

f(t, ζ(t))− f(0, ζ(0))−
∫ t

0

Lf(s, ζ(s))ds

is a local martingale. Moreover, ζ(·) is a Markov process (provided σ(·) and
b(·) are suitable non-random Borel functions) in the sense that

P (x(t) ∈ A|Fs) = P (x(t) ∈ A|x(s))

for all 0 ≤ s ≤ t and for any Borel set A. The operator L is naturally the
generator of the diffusion ζ(·).
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2.7 Switching Diffusions

Let w(·) be an R
d-valued standard Brownian motion defined in the filtered

probability space (Ω,F , {Ft}, P ). Suppose that b(·, ·) : Rr ×M �→ R
r and

that σ(·, ·) : Rr×M �→ R
r×R

d. A switching diffusion or a regime-switching
diffusion is a two-component process (x(·), α(·)), satisfying

dx(t) = b(x(t), α(t))dt + σ(x(t), α(t))dw(t),

(x(0), α(0)) = (x, α),

(2.13)

and for i �= j,

P{α(t+Δ) = j|α(t) = i, x(s), α(s), s ≤ t} = qij(x(t))Δ + o(Δ). (2.14)

For the two-component process (x(t), α(t)), we call x(t) the continuous
component and α(t) the discrete component, in accordance with their sam-
ple path properties. Note that in the above, the switching process α(t) itself
is not a Markov chain. The two-component process (x(t), α(t)) is jointly
Markovian, however. A special case is the so-called Markovian switching
diffusion. That is, the switching process α(t) is independent of the Brown-
ian motion and itself a Markov chain.
For (x(t), α(t)), there is an associated operator. For each i ∈ M and

each f(·, i) ∈ C2, where C2 denotes the class of real-valued functions whose
partial derivatives with respect to the variable x up to the second-order are
continuous, we have

Lf(x, ι) = ∇f ′(x, ι)b(x, ι) +
1

2
tr(∇2f(x, ι)A(x, ι)) +Q(x)f(x, ·)(ι)

=
r∑

i=1

bi(x, ι)
∂f(x, ι)

∂xi
+

1

2

r∑

i,j=1

aij(x, ι)
∂2f(x, ι)

∂xi∂xj

+Q(x)f(x, ·)(ι), (2.15)

where ∇f(x, ι) and ∇2f(x, ι) denote the gradient and Hessian of f(x, ι)
with respect to x, respectively,

Q(x)f(x, ·)(ι) =
m∑

j=1

qιjf(x, j), and

A(x, ı) = (aij(x, ı)) = σ(x, ı)σ′(x, ı) ∈ R
r×r.

The evolution of the discrete component α(·) can be represented by a
stochastic integral with respect to a Poisson random measure (see, e.g.,
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Ghosh, Arapostathis, and Marcus [72] and Skorohod [198]). In fact, for
x ∈ R

r and i, j ∈ M with j �= i, let Δij(x) be the consecutive (w.r.t. the
lexicographic ordering on M×M), left-closed, right-open intervals of the
real line, each having length qij(x). Define a function h : Rr×M×R �→ R by

h(x, i, z) =

m∑

j=1

(j − i)I{z∈Δij(x)}. (2.16)

That is, with the partition {Δij(x) : i, j ∈ M} used and for each i ∈ M,
if z ∈ Δij(x), h(x, i, z) = j − i; otherwise h(x, i, z) = 0. Then (2.14) is
equivalent to

dα(t) =

∫

R

h(x(t), α(t−), z)p(dt, dz), (2.17)

where p(dt, dz) is a Poisson random measure with intensity dt×m(dz), and
m is the Lebesgue measure on R. The Poisson random measure p(·, ·) is
independent of the Brownian motion w(·).
Similar to the case of diffusions, for each f(·, ı) ∈ C2, ı ∈ M, a result

known as the generalized Itô lemma (see Björk [14], Mao and Yuan [153],
or Skorohod [198]) reads

f(x(t), α(t)) − f(x(0), α(0)) =

∫ t

0

Lf(x(s), α(s))ds +M1(t) +M2(t),

(2.18)

where

M1(t) =

∫ t

0

〈
∇f(x(s), α(s)), σ(x(s), α(s))dw(s)

〉
,

M2(t) =

∫ t

0

∫

R

[
f(x(s), α(0) + h(x(s), α(s), z))

−f(x(s), α(s))
]
μ(ds, dz),

and

μ(ds, dz) = p(ds, dz)− ds×m(dz)

is a martingale measure.

2.8 Notes

A reference of basic probability theory is Chow and Teicher [30], and a
reference on stochastic processes is Gihman and Skorohod [73]. The results
mentioned in this chapter and more detailed discussions regarding martin-
gales and diffusions can be found in Elliott [55]; discussion on stochastic
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differential equations and diffusion processes can also be found in Ikeda and
Watanabe [91] and Khasminskii [114]. The well-known book of Chung [31]
provides us with a classical treatment of continuous-time Markov chains.
The connection between generators of Markov processes and martingales is
illustrated, for example, in Ethier and Kurtz [59]. For a complete account of
piecewise-deterministic processes, see Davis [41], Rishel [181], and Vermes
[211]. For a comprehensive study of switching diffusion processes including
recurrence, ergodicity, stability etc., we refer the reader to Yin and Zhu
[244]; see also the references therein.
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Markovian Models

3.1 Introduction

With the motivation of bridging the gap of theory and practice, this chapter
presents a number of Markovian models and examples from a diverse range
of applications. Markov chains with stationary transition probabilities have
been studied extensively; they are contained in many classical books, for
example, Chung [31], Taylor and Karlin [204] among others. However, the
homogeneity or stationarity is often violated in applications, and the gen-
erator Q(t) of the underlying Markov chain is frequently time dependent.
The results for stationary cases alone are no longer adequate in handling
these situations. In the discussion to follow, much emphasis is on finite-
state Markov chains and on Markov chains with nonstationary transition
probabilities; many examples are modifications of classical work for sta-
tionary Markov chains. In various applications involving complex systems,
the issue of different time scales naturally arises. This often results from
aggregating the states, decomposing a large-scale system into a number of
subsystems with manageable size, using multiple step size in optimization
procedures and other consideration in modeling. To formulate such prob-
lems, one introduces a small parameter ε > 0 yielding a two-time scale, the
original time scale t and the stretched time scale t/ε. Consequently, one
has to face singularly perturbed Markovian systems, in which the genera-
tor is given by Qε(t) for ε > 0 small enough so that the process is subject
to rapid variation and/or weak and strong interactions. For motivational

G.G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications,
Stochastic Modelling 37, DOI 10.1007/978-1-4614-4346-9 3,
© Springer Science+Business Media, LLC 2013
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purposes of the subsequent studies, a number of models and/or examples
involving singularly perturbed Markov chains are also presented.
This chapter is arranged as follows. It begins with the birth and death

processes. In Section 3.3, we treat a number of Markov chains with finite-
state spaces, including queueing systems, seasonal variation, and system
reliability. Section 3.4 gives examples arising from the context of stochas-
tic optimization involving Markovian structures. Section 3.5 deals with
jump linear systems, in particular, the optimal control formulation of linear
quadratic control problems with Markovian jumps and large-scale systems
via aggregation and decomposition. One of the main ideas that underlies
the basis of the asymptotic results throughout the book is the time-scale
separation. To give motivation, some heuristic arguments and interpreta-
tion of such separations are provided in Section 3.6. Finally, this chapter
concludes with further discussion and notes in Section 3.7.

3.2 Birth and Death Processes

In the study of physical and/or biological sciences, one needs to analyze
the random evolution of a certain population. Its size (an integer-valued
process) is a family of random variables {x(t) : t ≥ 0}. The reproduction
and distinction of the population are conveniently modeled by assuming
x(·) to be a Markov chain known as a birth and death process.
Dealing with homogeneous cases, one normally (see Karlin and Tay-

lor [105]) makes the following postulates about the transition probability
P (t) = (pij(t)) of the underlying processes

1. pi,i+1(h) = λih+ o(h) as h→ 0 for i ≥ 0;

2. pi,i−1(h) = μih+ o(h) as h→ 0 for i ≥ 1;

3. pii(h) = 1− (λi + μi)h+ o(h) as h→ 0 for i ≥ 0;

4. pij(0) = δij ;

5. μ0 = 0, λ0 > 0, μi, λi > 0 for all i ≥ 1.

Note that the term o(h) above may depend on i, i.e., o(h) = oi(h).
The quantities λi and μi are known as the birth and death rates, respec-
tively. Following from the basic postulates, the infinitesimal generator of
the Markov chain is

Q =

⎛

⎜
⎜
⎜
⎜
⎝

−λ0 λ0 0 0 . . .
μ1 −(λ1 + μ1) λ1 0 . . .
0 μ2 −(λ2 + μ2) λ2 . . .
0 0 μ3 −(λ3 + μ3) . . .
...

...
...

...

⎞

⎟
⎟
⎟
⎟
⎠
,
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which is time independent and hence the chain is known as having
stationary transition probabilities according to Chung [31]. This agrees
with the intuitive notion that Q represents the rate or “derivative” in an
appropriate sense.
One can readily derive the differential equations satisfied by the transi-

tion probabilities. They are

dpi0(t)

dt
= −λ0pi0(t) + μ1pi1(t),

dpij(t)

dt
= λj−1pi,j−1(t)− (λj + μj)pij(t)

+μj+1pi,j+1(t), j ≥ 1.

and

dp0j(t)

dt
= −λ0p0j(t) + λ0p1j(t),

dpij(t)

dt
= μipi−1,j(t)− (λi + μi)pij(t)

+λipi+1,j(t), i ≥ 1.

More details of the derivations can be found in Karlin and Taylor [105, pp.
135-137].
There are many possible variations and/or specifications of the birth and

death processes. For instance, if λi = 0 for all i, the process becomes the
pure death process. If μi = 0 for all i, the underlying process is the pure
birth process. A pure birth process with λi = λ for all i is known as a
Poisson process.
For chains with nonstationary transition probabilities, using the defini-

tion of generators given in Chapter 2, for the birth and death processes,
we simply assume that the generators are given by Q(t) that satisfies the
q-Property and

qij(t) =

⎧
⎪⎨

⎪⎩

−λ0(t), for j = i = 0,
−(λi(t) + μi(t)), for j = i and i ≥ 1,
μi(t), for j = i − 1 and i ≥ 1,
λi(t), j = i+ 1 and i ≥ 0.

One of the widely used models for daily-life congestion and machine perfor-
mance random systems is the Markovian queueing formulation. A queueing
process (with a single server) is one in which customers arrive at some des-
ignated place where a service is rendered. For example, the queue in a
supermarket checkout counter can be modeled as a birth and death pro-
cess. Under stationary assumptions, the system is simplified to λi(t) = λ
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and μi(t) = μ for all i ≥ 0. Using the Markovian framework, the inter-
arrival and service times follow exponential distributions with arrival and
service rates λ and μ, respectively. Suppose that λ > 0 and μ > 0. Then
the stationary distribution νi, i ≥ 0 of the queueing process can be eas-
ily calculated. In fact, νi = (1 − (λ/μ))(λ/μ)i provided λ < μ. For more
detailed account on this and related issues as well as other examples, we
refer the reader to Karlin and Taylor [105], Sharma [194], and Taylor and
Karlin [204] among others.

3.3 Finite-State Space Models

This section contains several examples from a diverse range of applica-
tions. It begins with a variation of the single-sever queueing model with
limited number of waiting rooms, treats singularly perturbed queues, pro-
ceeds with discussions of system reliability issues, deals with competing
risk problems, continues with singularly perturbed Cox processes, studies
random evolutions, and presents a seasonal variation model.

3.3.1 Queues with Finite Capacity

Originated from the classical example of M/M/1/(N + 1) (see, for exam-
ple, Sharma [194]), the queueing system considered below is a modification
and generalization of that of [194]. Here M/M/1/(N + 1) is the so-called
Kendall’s notation for a queueing system with a single server. It indicates
the Markovian interarrival and service times with limited capacity, namely,
N -waiting rooms. That is, the maximum number of customers in the system
is (N+1) including the one being served. Under the Markovian framework,
the inter-arrival and service distributions of the M/M/1/(N +1) queueing
system follow exponential distributions with mean 1/λ and 1/μ, respec-
tively. The problem under consideration is a finite-state Markov chain with
stationary transition probabilities.
Very often the mean arrival and service rates are not constants, but

rather varying with respect to the time elapsed. Thus a more reasonable
model to reflect reality is that both λ and μ are functions of t. Let the
generator of the Markov chain be given by

Q(t) =

⎛

⎜
⎜
⎜
⎜
⎝

−λ(t) λ(t)
μ(t) −(λ(t) + μ(t)) λ(t)

. . .
. . .

. . .

μ(t) −(λ(t) + μ(t)) λ(t)
μ(t) −μ(t)

⎞

⎟
⎟
⎟
⎟
⎠
. (3.1)
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Compared with the classicalM/M/1/(N+1) model, the generator Q is no
longer a constant. Its corresponding forward equation is

dp(t)

dt
= p(t)Q(t),

where p(t) = (p0(t), . . . , pN(t)) is a row vector representing the probability

distribution of x(t), i.e., pi(t) ≥ 0 and
∑N

i=0 pi(t) = 1.

Singularly Perturbed Queues. To proceed, consider a singular pertur-
bation problem for the queueing model above. Suppose that ε > 0 is a
small parameter. Let Q(t) be a matrix satisfying the q-Property and define
Qε(t) = Q(t)/ε. We are interested in the limit behavior of the system

dpε(t)

dt
= pε(t)Qε(t), pε(0) = p0.

The interpretation of the model is that the rates of the interarrival and
service are changing rapidly for small ε. Consequently, the entire system is
expected to reach a quasi-stationary regime in a very short period of time.
For other queueing-related problems, see Knessel [124], and Knessel and
Morrison [125], among many others.

Uniform Acceleration of Markov Queues. Consider an Mt/Mt/1/m
queue with a finite number of waiting buffers, and the first-in first-out ser-
vice discipline. Suppose that the arrival process is non-homogeneous Pois-
son with intensity function (arrival rate function) λ(t), and that the service
time is exponentially distributed with time-dependent rate μ(t). Let α(t)
be the queue length at time t. Then α(t) is a nonstationary Markov chain
with generator given by (3.1). Our objective is to seek an approximation
to the probability P (α(t) = k) with 0 ≤ k ≤ m. Denote

p(t) = (P (α(t) = 0), . . . , P (α(t) = m)).

Then we have
dp(t)

dt
= p(t)Q(t). (3.2)

Considering the above problem, Massey and Whitt [157] introduced a small
parameter ε > 0 to the generator Q(t). Assume that the rate of change of
the generator Q(t) varies slowly in time that the process α(t) can achieve
equilibrium before there is any significant change in the rate. Then we can
replace Q(t) by Q(εt). In this replacement, we focus on α(t) in the neigh-
borhood of time 0. Let pε(t) be the probability distribution corresponding
to the generator Q(εt). Then

dpε(t)

dt
= pε(t)Q(εt). (3.3)
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To get the uniform acceleration, Massey and Whitt [157] consider the limits
as t→ ∞ and ε→ 0 simultaneously. Let τ = εt and αε(·) be the new pro-
cess associated with the time scale τ . Then the corresponding probability
distribution pε(τ) will solve the forward equation

dpε(τ)

dτ
= pε(τ)

Q(τ)

ε
. (3.4)

Studying such a singularly perturbed model is the objective of this book.

A Queueing System with Weak and Strong Interactions. Let us
consider a queueing system consisting of two types of customers. Denote
by x1(t) and x2(t) the queue lengths of type I and type II customers, re-
spectively. Assume the maximum queue length for both type I and type II
customers to be 2, i.e., x1(t) ∈ {0, 1, 2} and x2(t) ∈ {0, 1, 2}. Suppose that
the events of interarrival and service of type I customers occur more fre-
quently than that of type II customers. Formulate the queueing system as a
finite-state Markov chain, i.e., the process (x1(·), x2(·)) is Markovian with
state space

M =
{
(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)

}

and generator Qε(t) = Q̃(t)/ε+ Q̂(t), where

Q̃(t) = diag
(
Q̃1(t), Q̃2(t), Q̃3(t)

)
,

Q̃1(t) = Q̃2(t) = Q̃3(t) =

⎛

⎜
⎝

−λ1(t) λ1(t) 0

λ1(t) −(λ1(t) + μ1(t)) μ1(t)

0 μ1(t) −μ1(t)

⎞

⎟
⎠ ,

and

Q̂(t) =

⎛

⎜
⎝

−λ2(t)I3 λ2(t)I3 0

λ2(t)I3 −(λ2(t) + μ2(t))I3 μ2(t)I3

0 μ2(t)I3 −μ2(t)I3

⎞

⎟
⎠

with I3 being the 3 × 3 identity matrix. Assume that for some T > 0,
λi(t) ≥ 0 and μi(t) ≥ 0 for all t ∈ [0, T ] and each i = 1, 2. The arrival
and service rates for type I customers are λ1(t)/ε and μ1(t)/ε, respectively.
Those rates for type II customers are λ2(t) and μ2(t).
For a prototype example, consider the transactions taking place in a

bank, which usually have different types of customers. Some customers
come to the bank just for depositing a check and others may wish to open
a new account. Apparently, the transaction of opening an account requires
much longer time than depositing a check. If we consider check-depositing
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customers as type I customers and account-opening customers as those of
type II, then such a queueing system can be formulated using Qε defined
above. Again, the small parameter ε > 0 is merely a convenient device for
separating the different arrival and service rates. How large ε > 0 should
be will depend on the actual situation. In any case, the emphasis is this: It
is the relative rates that count. The asymptotic results to be presented in
the sequel provide hints and guidance for real-world applications.
In the chapters to follow, we will discuss singular perturbation problems

extensively in a more general setting and will derive a number of asymptotic
results for the transition probabilities of the Markov chains. A crucial no-
tion is the concept of quasi-stationary distribution. As will be seen in the
analysis of the subsequent chapters, this “equilibrium” is different from
the case of Markov chains with stationary transition probabilities since the
limiting probabilities are time dependent.

3.3.2 System Reliability

This subsection studies system reliability. It begins with a basic model,
and proceeds with the discussion of the redundancy formulation and burn-
in phenomenon.

A System with Parallel Components. Consider a system consisting
of two independent components. The system is functioning if at least one
of the components is functioning. Assume that each component has two
possible states, functioning, denoted by 1, and out of order, denoted by 0.
Therefore, the system as a whole has four states, (0, 0), (0, 1), (1, 0), and
(1, 1). For example, (0, 1) means that the first component failed whereas
the second one is in good condition. Let λi(t) and μi(t) denote the failure
rate and repair rate of component i for i = 1, 2, respectively. The generator
of the Markov chain can be written as

Q(t) =

⎛

⎜
⎝

q11(t) μ2(t) μ1(t) 0
λ2(t) q22(t) 0 μ1(t)
λ1(t) 0 q33(t) μ2(t)
0 λ1(t) λ2(t) q44(t)

⎞

⎟
⎠ ,

where qii(t) are the combinations of λi(t) and μi(t), i = 1, 2, such that the
sum in each row of the matrix above is equal to 0. Representation of the
probability distribution is obtainable by solving the forward equation via
the use of fundamental solutions of the differential equation.

Standby Systems. Very often, certain units, components, or subsystems
in a system may be more important for the system’s reliability than others.
To ensure the entire system’s reliability, one may either use units with
high reliability or introduce redundancy–standby systems. Owing to cost
considerations, the latter often appears to be more preferable. For various
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terminology, such as active redundance, cold standby, partly loaded, consult
the work of Hoyland and Rausand [88]. We now present a simple standby
model. Suppose that a system has two units, one on-line and the other
as a backup. The operating component (unit) fails after some time that
has an exponential distribution with parameter λ(t), and is then replaced
by the standby unit. There is a repair facility in which the repair time is
exponentially distributed with parameter μ(t). Let x(t) denote the number
of units functioning at time t. The infinitesimal generator of the chain is

Q(t) =

⎛

⎝
−μ(t) μ(t) 0
λ(t) −(λ(t) + μ(t)) μ(t)
0 λ(t) −λ(t)

⎞

⎠ . (3.5)

Given t ≥ 0, if λ(t) + μ(t) > 0, then Q(t) is weakly irreducible; if λ(t) > 0
and μ(t) > 0, then Q(t) is irreducible. The quasi-stationary distribution is
given by

νi(t) =
(μ(t)/λ(t))i−1

1 + (μ(t)/λ(t)) + (μ(t)/λ(t))2
, for i = 1, 2, 3.

If in addition, λ(t) = λ > 0 and μ(t) = μ > 0, the quasi-stationary distri-
bution becomes the stationary distribution.

Burn-in Phenomenon. It is common that a newly manufactured or newly
repaired unit or device has greater chance of failing early in its usage. Such
a phenomenon is usually called the burn-in phenomenon. Suppose that
a manufacturing system consists of two components, one on-line and one
backup. As discussed in Taylor and Karlin [204], the assumption of ex-
ponentially distributed operating time does not reflect reality well due to
the burn-in phenomenon. To simplify the discussion below, suppose that
λ(t) = λ and μ(t) = μ in (3.5), i.e., the Markov chain is stationary. In-
troduce the hazard rate function r(t) = f(t)/(1 − F (t)), where f(t) is
the probability density function of the failure time, and F (t) is the cor-
responding distribution function. In [204] the following mixed exponential
distribution is introduced: f(t) = pαe−αt + qβe−βt, and p > 0, q > 0 with
p+ q = 1. The probability density function is a convex combination of two
exponential distributions. That is, with probability p the unit beginning
operation will have an exponential up time with parameter α, and likewise
with probability q = 1 − p the unit beginning operation will have an ex-
ponential up time with parameter β. The rationale behind this is that the
hazard rate is initially high and eventually decays to a constant level. This
system has the following five states,

0: both units are down;
1α: one unit is up, and the current up time has parameter α;
1β : one unit is up, and the current up time has parameter β;
2α: two units are up, and the current up time has parameter α;
2β : two units are up, and the current up time has parameter β.
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Arrange the states as {0, 1α, 1β, 2α, 2β}. Then we can write the generator
of the Markov chain as

Q =

⎛

⎜
⎜
⎜
⎝

−λ pλ qλ 0 0
α −(λ+ α) 0 λ 0
β 0 −(λ+ β) 0 λ
0 pα qα −α 0
0 pβ qβ 0 −β

⎞

⎟
⎟
⎟
⎠
.

Assuming α > 0 and β > 0, then Q is irreducible. Therefore there exists
a unique stationary distribution that can be determined by solving the
system of equations

νQ = 0 and ν1l = 1.

3.3.3 Competing Risk Theory

Suppose that there are a number of different risks (diseases, accidents,
etc.) competing for the lives of individuals. For each of the individuals,
one of these risks will “win,” and this individual will die. The competing
risk theory aims to study these risks and their prevention. These risks can
often be modeled by using a Markovian assumption; the work of Thompson
[205] collects a number of examples and applications in safety and reliability
analysis.
Consider the following scenario. Suppose that the risks can be modeled

by a finite-state Markov chain. Assume some of them are much riskier
than others; the transition rates are quite different. Thus one can split
up the different states into two groups, very risky group and not so risky
group. These groups are not isolated, and there are transitions among them.
To model this situation, introduce a small parameter ε > 0, and let the
generator be Qε(t) = Q̃(t)/ε+ Q̂(t), where Q̃(t) is a block-diagonal matrix
of the form

Q̃(t) =

(
Q0(t) 0
0 0

)

,

Q0(t) is itself a generator, and Q̂(t) is another generator. All these matrix-
valued functions have appropriate dimensions. The matrix Q0(t) corre-
sponds to the not-so-risky states. The small parameter ε indicates that the
rates of jumps within the not-so-risky states are larger than those of the
risky groups.
The results to be presented in Chapter 4 describe the asymptotic behav-

ior of the corresponding probability distribution. Intuitively, owing to the
presence of the small parameter ε > 0, the matrix Q̃(t) has the dominating

effect in the transitions. Since the right-hand corner of Q̃(t) is a 0 matrix,
the probability of absorbing into the states corresponding to this part of
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the generator is fairly close to 1. A generalization of the model above calls
for the modeling of Q(t) of the form

Q̃(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Q̃1(t)

Q̃2(t)
. . .

Q̃l(t)
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

This shows that there are (l+1) groups of different competing risks. Among
them, there are strong and weak interactions.

3.3.4 Two-Time-Scale Cox Processes

In 1955, D. Cox introduced the notion of doubly stochastic Poisson pro-
cesses that are more commonly referred to as Cox processes nowadays.
A Cox process N(·) is a conditional Poisson process with stochastic inten-
sity λ(t, α(t)) in that for almost every given path of the process α(·), N(·)
is a Poisson process with intensity λ(t, α(t)). That is, the intensity of the
process is modulated by an “outside” force or process, which influences the
evolution of the point process N(·).
The notion of Cox process is a convenient way to describe and to pro-

duce general random sets. By choosing different α(·), one may get a large
class of conditional Poisson processes, which are widely used in ecology
(to represent the position of the members of a biological production in a
plane habitat with variation in fertility or attractiveness of different parts
of the habitat; see Kingman [122, Chapter 6]), in system reliability theory
describing failures of complex systems (see Di Masi and Kabanov [47, 48]),
and in optical detection and communication theory; see Snyder [200], which
contains many interesting examples in information and communication sys-
tems. For general discussion on the Cox processes as well as further details,
we refer to [122, 200] and the large number of references therein; for related
problems in point processes and queues, see Brémaud [20].
In what follows, we focus on the case that the modulating process is

a finite-state Markov chain. Frequently, the problem of interest is a singu-
larly perturbed one. Let ε > 0 be a small parameter. Denote the underlying
conditional Poisson process by Nε(t). This process is modulated by a non-
homogeneous Markov chain αε(·) with finite-state space M. The generator
of the Markov chain is given by Qε(t) = Q(t)/ε, where Q(t) is itself a
generator. To study the Cox process, one needs to first have a handle on
the asymptotic properties of the Markov chain αε(·). Chapter 4 deals with
such a problem. It will be shown that under simple conditions the prob-
ability distribution of αε(t) admits an asymptotic expansion. The leading
term in the expansion is the quasi-stationary distribution. Furthermore, let
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the compensator of Nε(·) be Gε(·). As in [48], it satisfies the differential
equation

dGε(t)

dt
=

m∑

i=1

aiI{αε(t)=i}, Gε(0) = G0

for some ai > 0 with i = 1, . . . ,m. This can be written in an integral form

Gε(t) = G0 +
m∑

i=1

∫ t

0

aiI{αε(s)=i}ds.

In fact, it is a weighted occupation measure. The result of Chapter 5 infers
the convergence of the process Gε(t) in the mean square sense. Further
investigation shows that the problem can be studied even when the gener-
ator Q(t) is only measurable.

3.3.5 Random Evolutions

A wide range of physical models belong to the random evolution category.
Consider the following scenarios. A particle moves in a straight line with a
constant velocity, until a random collision happens; it then changes the
velocity and again moves in a straight line. A radio signal propagates
through a turbulent medium; a population of bacteria evolves in an environ-
ment that is subject to random disturbances; all these reflect an abstract
notion, namely, random evolution. There is a large amount of literature in
dealing with such problems; an extensive survey is in Hersh [85].
A random evolution is an operator M satisfying a linear differential

equation
dM(s, t)

ds
= −V (α(s), ω)M(s, t), t ≥ s ≥ 0,

where ω is a sample point belonging to the sample space Ω and s indicates
the starting time. As a usual practice, we suppress the ω-dependence in
what follows. Denote the expected value of the solution above (with initial
condition α(0) = α) by u(t, α) = Eα[M(0, t)]. If α(t) is Markovian, u(t, α)
satisfies the equation

du

dt
= V (α)u +Qu, (3.6)

where Q is the generator of the Markov chain α(t). This is known as a
generalized Feynman-Kac formula in potential theory.
Various applications call for the investigation of “speed up” in the ran-

dom evolution. To do so, introduce a small parameter ε > 0. In lieu of
(3.6), consider the differential equation

du

dt
= V (α(t))u +

1

ε
Qu;
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see [85] for the formulation and more detail. It is clear that the probability
distribution of the random process α(t) is an important matter. Chapter 4
deals with this issue for a time-dependent generator Qε(t) = Q(t)/ε. It is
conceivable that the effort in this direction should provide further insight
into the study of random evolution.

3.3.6 Seasonal Variation Models

Many problems in real life display a periodic variation or a seasonal behav-
ior that repeats itself after a certain period of time. A typical example is the
seasonal temperature variations in our surrounding environment. Similar
formulations also arise in financial engineering, production planning, inven-
tory and operation management, etc. A distinct feature of these models is
the nonstationary property due to their periodic nature.
To exploit modeling opportunities, we present a simple example in what

follows. Let us concentrate on the temperature variation of a given city.
Intuitively, the probability of the next day’s temperature reaching 70◦F
given the current and the past temperatures depends mainly on the current
temperature. It is thus reasonable to adopt a Markovian model. Previously,
a similar formulation was considered by Hillier and Leiberman [86, p. 587].
Nevertheless, their setup is essentially time homogeneous. To proceed, we
consider a formulation with a finite horizon that includes the whole year.
The graph in Figure 3.1 represents a sample path of a daily temperature
variation of the city.

t0

30

60

90

Daily Temperature

Winter  1 Spring  2 Fall WinterSummer 3 4

FIGURE 3.1. A Sample Path of Daily Temperature

Clearly, the temperature variation depends largely on the seasonal changes
that occur around certain periods of time during the year, which is highly
nonstationary in nature. One may approximate the seasonal average by a
piecewise-constant function; a typical case is depicted in Figure 3.2.
Although it is a simplified model, it gives us insight from a modeling

point of view. To describe the daily temperature process, let αε(t) be a
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t0
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90

Seasonal Average Temperature

Winter  1 Spring  2 Fall WinterSummer 3 4

FIGURE 3.2. Average Temperature

Markov chain representing the temperature process of the city. Suppose
that the state space of αε(·) is

M = {20, 30, 40, 50, 60, 70, 80, 90, 100},

and that the generator is

Qε(t) =
1

ε
diag

(
Q̃1, Q̃2, Q̃3

)
+

⎛

⎜
⎝

−λ̄1(t)I3 λ̄1(t)I3 0

μ̄2(t)I3 −(λ̄2(t)+μ̄2(t))I3 λ̄2(t)3I3

0 μ̄3(t)I3 −μ̄3(t)I3

⎞

⎟
⎠,

where

Q̃i =

⎛

⎜
⎝

−2 1 1

1 −2 1

1 1 −2

⎞

⎟
⎠ , for i = 1, 2, 3,

I3 is the 3× 3 identity matrix, ε = 1/20, and λ̄1(t), λ̄2(t), μ̄2(t), and μ̄3(t)
are given by graphs in Figures 3.3–3.6, respectively.

1 (t)

t0 Winter  1 Spring  2 Fall WinterSummer 3 4

FIGURE 3.3. Jump Rate from Winter to Spring

Let M1 = {20, 30, 40} denote the group of temperatures in Winter,
M2 = {50, 60, 70} in Spring and Fall, and M3 = {80, 90, 100} in Summer.
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t0 Winter  1 Spring  2 Fall WinterSummer 3 4

2 (t)

FIGURE 3.4. Jump Rate from Spring to Summer

2 (t)

t0 Winter  1 Spring  2 Fall WinterSummer 3 4

FIGURE 3.5. Jump Rate from Fall to Winter

3 (t)

t0 Winter  1 Spring  2 Fall WinterSummer 3 4

FIGURE 3.6. Jump Rate from Summer to Fall

The Mi, for i = 1, 2, 3, subdivide the entire state space M into three differ-
ent groups. Within each season, the temperature changes frequently within
a certain range (i.e., within some Mi), and less so from one group (Mi)
to others (Mj , j �= i). Thus the weak and strong interaction formulation
naturally reflects such a situation.
In view of the construction of the Markov chain in Chapter 2, it is very

likely that αε(·) will jump fromM1 toM2 near t = 1 owing to the behavior
of λ1(t) (see Figure 3.3). Similarly the functions λ2(t), μ2(t), and μ3(t)
affect the behavior of the Markov chain at t = 2, t = 4, and t = 3,
respectively.
To proceed, define

ν1(t) = ν2(t) = ν3(t) =

(
1

3
,
1

3
,
1

3

)

.
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These are the quasi-stationary distributions for the groups Mi, with i =
1, 2, 3, respectively. Using these quasi-stationary distributions, it is easy to
obtain the corresponding averages of temperature: 30, 60, 90 degrees.
By grouping the states in accordance with the preceding strategy, the

aggregated states act as if each of them were a single state in a Markov
chain. One can then get an aggregated process αε(t) = α(t) that is inde-
pendent of ε. This aggregated process is Markovian and the generator is

Q(t) =

⎛

⎜
⎜
⎝

−λ̄1(t) λ̄1(t) 0

μ̄2(t) −(λ̄2(t)+μ̄2(t)) λ̄2(t)

0 μ̄3(t) −μ̄3(t)

⎞

⎟
⎟
⎠ .

The formulation of singularly perturbed Markovian models with weak and
strong interactions provides us with an appropriate mathematical frame-
work. The detailed studies of the asymptotic properties of the aggregated
Markov chains are given in Chapters 4 and 5.

3.4 Stochastic Optimization Problems

This section is devoted to stochastic optimization methods with the driv-
ing processes being Markovian. Simulated annealing schemes are discussed
first and then continuous-time stochastic approximation algorithms are
considered.

3.4.1 Simulated Annealing

We use the formulation in Chiang and Chow [28] as follows. Consider a
Markov chain x(t) generated by Q(t) = (qij(t)). Let B = (bij) be a matrix
satisfying bij ≥ 0 for i �= j, and Uij : M×M �→ [0,∞] be a cost function
that measures the degree of reachability from one state to another. Assume
without loss of generality that Uii = 0, and Uij = ∞ if bij = 0. Suppose
that

qij(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(bij)(λ(t))
Uij , if i �= j,

−
∑

k �=i

qik(t) if i = j,

where λ(t) is a function with limt→∞ λ(t) = 0.
Such Markov models have been used frequently in simulated annealing

(for example, see Kirkpatrick, Gebatt, and Vecchi [123], and Geman and
Geman [70] among others), where Uij = (uj − ui)

+ is determined by a
potential function u and T (t) = (− logλ(t))−1 is said to be a “temperature”
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at time t. Much effort is expended to obtain asymptotic results of the
related optimization problem. It can be established that

lim
t→∞

P (x(t) ∈ G) = 1,

where G = {i : ui = min u}. The underlying Markov chain plays an
important role in studying such a global optimization problem.
To treat the underlying problems, one of the approaches is to examine

the Kolmogorov forward equation

dFi(t)

dt
=

N∑

j=0

qji(t)Fj(t), i = 0, . . . , N,

where Fi(t) = P (x(t) = i). Observe that the annealing cooling schedule
T (t) → 0 as t→ ∞. Therefore, the problem is closely related to a singular
perturbation problem (roughly, T (t) can be treated as a small parameter).
Chiang and Chow [28] used the result on the eigenvalue distributions of a
generator derived in Wentzel [217] to study the asymptotic properties of
the simulated annealing problems.

3.4.2 Continuous-Time Stochastic Approximation

In many optimization problems, one is interested in finding zeros and/or
in locating minimal values of a function f(x). Frequently, however, either
the function has a very complex form or its exact expression is not known
explicitly. Consequently, f(x) is not at our disposal, and only noise-
corrupted measurements or observations of the form f(x) plus some noise
are available at selected values of x. One can only rely on the measurements
or use some form of Monte Carlo method (see various examples in Kushner
and Yin [145]). Although discrete procedures are often used, one needs to
consider continuous-time algorithms when the sampling rate is high.
Let x, ξ ∈ R

n and f : Rn �→ R
n be a continuous function satisfying

certain conditions. A continuous-time stochastic approximation algorithm
takes the form

dx(t)

dt
= a(t)(f(x(t)) + ξ(t)), (3.7)

where

a(t) > 0, a(t) → 0 as t→ ∞ and

∫ ∞

0

a(t)dt = ∞.

Typical step size sequences take the form

a(t) =
1

tγ
with

1

2
< γ ≤ 1.

In the discussion to follow, assume that the driving process ξ(t), satisfying
Eξ(t) = 0, is a finite-state Markov chain with generator Q(t) = Q. Suppose
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Q is irreducible. Then the process ξ(t) is a stationary φ-mixing process
with exponential mixing rate (see Billingsley [13, p. 168]). It is ergodic (see
Karlin and Taylor [105, p. 488]) with

1

t

∫ t

0

ξ(s)ds → 0 w.p.1.

Suppose that x∗ is the unique root of the function f(x). Without loss of
generality, assume x∗ = 0 in what follows. Then under suitable conditions,
one can show that x(t) → 0 w.p.1 and that (1/

√
a(t))x(t) converges in

distribution to a normal random variable.
Ever since the introduction of the stochastic approximation method,

there have been continuing efforts to improve the asymptotic performance
and efficiency. Recently, an averaging approach was proposed independently
by B. T. Polyak and D. Ruppert independently. The basic idea is to gen-
erate a sequence of rough estimates using slowly varying step sizes first
and then form a new sequence of estimates by taking a simple arithmetic
averaging. It was demonstrated that such an approach leads to asymptotic
optimality (see Kushner and Yin [145, Chapter 11]). This method uses
large step sizes, hence forcing the iterates to reach the vicinity of the true
parameter faster. It is in a simple form; no complicated estimation proce-
dure (for determining the optimal step size) is needed. Moreover, owing to
the use of slowly varying step sizes, the iterates move faster than the usual
algorithm with smaller step sizes.
A continuous-time version of the averaging approach was examined in

Yin and Gupta [224]. The algorithm is a differential-integral equation of
the form

dx(t)

dt
=

1

tγ
f(x(t)) +

1

tγ
ξ(t),

1

2
< γ < 1

x(t) =
1

t

∫ t

0

x(s)ds.

(3.8)

There is a natural analog of the averaging procedure to a singularly per-
turbed system. To exploit this connection, define

u(t) =
√
tx(t) =

1√
t

∫ t

0

x(s)ds.

Using the same time scale for both x(t) and u(t), we arrive at

(
1

t1−γ

)
dx(t)

dt
=

1

t
(f(x(t)) + ξ(t)),

du(t)

dt
= − 1

2t
u(t) +

1√
t
x(t).
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Since our interest is focused on the case of t→ ∞, loosely speaking, one can
treat 1/t1−γ as a small parameter ε. In [224], it was shown that x(t) → 0
w.p.1. Moreover, defining z(t, τ) = τ

√
tx(tτ) for each τ ∈ [0, 1], we proved

that z(t, ·) converges weakly to a Brownian motion and u(t) ∼ N(0,Σ∗),
i.e., it is asymptotically normal with mean 0 and the optimal covariance
Σ∗ (the best possible covariance in an appropriate sense). The procedure
is therefore asymptotically optimal. Algorithms with constant step size of
the form

dxε(t)

dt
= ε(f(xε(t)) + ξ(t)),

and procedures with additional averaging in the observations

x(t) = x(t) +
1

tγ

∫ t

0

f(x(s))ds +
1

tγ

∫ t

0

ξ(s)ds,

x(t) =
1

t

∫ t

0

x(s)ds,

can also be considered. The setup of the problem in [224] was much more
general than the one presented here. For various issues related to stochas-
tic approximation problems, we refer to Kushner and Yin [145] and the
references therein.

3.4.3 Systems with Markovian Disturbances

Originating from the study in control of singularly perturbed systems (see
Kokotovic [126], Kokotovic, Bensoussan, and Blankenship [127], Kokotovic,
Khalil, and O’Reilly [129], Kushner [140], and Sethi and Zhang [192]), this
example focuses on systems involving singularly perturbed Markov chains.
Let the state xε(t) ∈ R

n and the control u(t) ∈ Γ ⊂ R
n1 such that

dxε(t)

dt
= f(xε(t), αε(t), u(t)), xε(0) = x, t ≥ 0, (3.9)

where ε > 0 is a small parameter, f(·) is an R
n-valued function, and αε(t),

t ≥ 0, is a Markov chain defined on a probability space (Ω,F , P ) taking
values in

M = M1 ∪ · · · ∪Ml.

Our objective is to find a control process u(t) as a function of xε(s) and
αε(s), s ≤ t that minimizes a finite horizon cost function

Jε(x, α, u(·)) = E

∫ T

0

G(xε(t), αε(t), u(t))dt

for some 0 < T < ∞ and a running cost function G(·). Suppose that the
generator of the random process αε(·) takes the form

Qε(t) =
1

ε
diag

(
Q̃1(t), . . . , Q̃l(t)

)
+ Q̂(t),
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where for each k = 1, . . . , l, Q̃k(t) is the generator corresponding to the
states in Mk. Such a system is suitable for certain applications in manu-
facturing and queueing systems; it describes the interconnections and in-
teractions of a number of subsystems involved.
The singularly perturbed system given above can be viewed as one in

which the state xε(t) is driven by a process αε(t) with weak and strong
interactions. Owing to the nonlinearity of the system and the singularity
of αε(·), it is difficult to obtain the optimal solutions in closed form. More-
over, the state space of αε(·) is often very large, which makes the underlying
problem even more difficult. Nevertheless, one may seek an alternative ap-
proach and may look for nearly optimal solutions. The idea is as follows. For
small ε > 0, we disregard the detailed variation of the process αε(t) at each
time t and concentrate on an average system in which αε(·) is aggregated
so that all the states in Mk can be replaced by a single state k. Using an
optimal solution to the limit of the averaged problem, one may construct
a solution to the original problem that is nearly optimal (as ε → 0). For
a detailed account on the problem mentioned above, see Chapter 8 (see
also Yin and Zhang [234]), where the techniques of martingale averaging
developed in Kushner [140] are used.

3.5 Linear Systems with Jump Markov
Disturbance

Owing to a wide range of applications of jump linear systems, there has
been a growing interest in control theory and optimization of such systems.
In this section, we present several variations of the linear quadratic (LQ)
control problem.

3.5.1 Linear Quadratic Control Problems

In the classical setting, feedback control design of linear systems is based
on a plant with fixed parameters. This, however, does not allow one to
treat situations in which the real systems differ from the assumed nominal
model. The closed-loop stability may not be preserved if the real system
is different from the nominal plant. To take this into account, efforts have
been made to design robust controls such that stability requirements are
met simultaneously for a set of plants.
Let α(t) be a finite-state Markov chain with generator Q(t). Consider

the linear system

dx(t)

dt
= A(t, α(t))x(t) +B(t, α(t))u(t),

x(0) = x,

(3.10)
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where x(t) ∈ R
r, u(t) ∈ R

m, A(t, α) ∈ R
r×r, and B(t, α) ∈ R

r×m. The
objective is to find the optimal control u(·) so that the expected quadratic
cost function

J(x, α, u(·)) = E

{∫ T

0

[x′(t)Φ(t, α(t))x(t)

+u′(t)Ψ(t, α(t))u(t)]dt + x′(T )Φ̃(α(T ))x(T )

}

(3.11)

is minimized. For general notion of optimal control theory and related top-

ics, see Fleming and Rishel [63]. In the formulation above, A(·, α), B(·, α),
Φ(·, α), and Ψ(·, α) are continuous functions for each α. Moreover, Φ, Ψ,

and Φ̃ are symmetric nonnegative matrices. Some of the recent work on this
and related problems can be found in Ji and Chizeck [98]. This problem
can be referred to as an LQ problem with Markovian jumps.
A slight variation of the problem mentioned above is based on the linear

quadratic Gaussian (LQG) formulation. Let the system equation be

dx(t) = [A(t, α(t))x(t) +B(t, α(t))u(t)]dt +D(t, α(t))dw(t), (3.12)

where w(t) is an R
l-valued standard Brownian motion, D(t, α(t)) ∈ R

r×l.
The problem now becomes an LQG problem with Markov jumps. Com-
pared with the classical LQ and LQG problems, complication arises due
to the jump processes. Many current research activities are on the control,
stabilization, and related matters of the underlying systems.

3.5.2 Singularly Perturbed LQ Systems with Wide-Band
Noise

In the LQG problem above, if one considers the system consisting of (3.10)
and (3.11) with α(t) replaced by αε(t) generated by Qε(t) = Q(t)/ε, then
one has a singularly perturbed LQG system. The system undergoes rather
rapid changes and variations for small ε. The jumps occur frequently and
the system is subject to “irregular” or singular perturbations.
Another variation of the problem is to replace the white noise by a wide-

band noise. This is originated from the jump LQG formulation. Consider
the system

dxε(t)

dt
= A(t, αε(t))xε(t) +B(t, αε(t))u(t) +

1

ε
D(t, αε(t))ξε(t). (3.13)

The other quantities remain the same as (3.12) while ξε(t) is a wide-band
noise process. Note that in general the wide-band noise depends on another
small parameter δ > 0, so the process to be considered is ξδ(t). Here we
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consider a special case, namely, ε = δ for simplicity. A wide-band noise is
one such that it approximates the “white noise.” To illustrate, assume

ξε(t) = ξ

(
t

ε2

)

,

where ξ(·) is a right-continuous stationary process with correlation R(·)
and spectral density S(·). Let Rε(s) be the correlation of (1/ε)ξε(·), i.e.,

Rε(s) =
1

ε2
Eξε(t+ s)ξε,′(t),

and assume that the corresponding power spectral density (Fourier trans-
form)

Sε(τ) =

∫ ∞

−∞
eiτsRε(s)ds

exists. If ξε(·) is wide-band, then Sε(τ) is effectively band limited, i.e.,
Sε(τ) = 0 for τ outside a certain interval, and the length of this interval
is wide enough. Owing to the scaling, the spectral density of (1/ε)ξ

(
t/ε2

)

is Sε(τ) = S(ε2τ). Moreover, Sε(τ) = 0 for all τ satisfying |τ | > ε−2τ0 for
some τ0 > 0. The bandwidth is of the order (1/ε2). As ε gets smaller and
smaller, the bandwidth gets wider and wider. As ε → 0 the bandwidth of
Sε(τ) tends to infinity, and the spectral density tends to that of the white or
Gaussian noise. The motivation for using wide-band noise is that in various
applications an exact Gaussian white noise may not exist, but it can be
approximated by a physical random process. The optimal control problem
of (3.11) subject to (3.13) is quite difficult especially when the underlying
system is large. However, one may wish to find nearly optimal controls
instead. Interested readers are referred to Kushner [140]; see also Yin and
Zhang [233, 234]. Further applications of nearly optimal controls and the
corresponding numerical methods will be discussed in Chapters 7–10.

3.5.3 Large-Scale Systems: Decomposition and Aggregation

Consider the following system

dx(t) = [A(t, α(t))x(t) +B(t, α(t))u(t)]dt +D(t, α(t))dw(t),

where w(·) is a standard Brownian motion, or consider

dx(t)

dt
= A(t, α(t))x(t) +B(t, α(t))u(t) +D(t, α(t))v(t),

where v(·) is a bounded (deterministic) disturbance. In either of the mod-
els above, α(t) ∈ M = {1, . . . ,m}, t ≥ 0, is a finite-state Markov chain
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characterizing the piecewise-deterministic behavior of the parameter pro-
cess. One then works with an appropriate cost function J(·), and aims at
deriving the optimality.
Recent interest for such jump linear systems stems from the fact they can

be used to describe unpredictable structural changes. Owing to the vari-
ous source of uncertainties, in many real-world applications, the parameter
process is of very high dimension. This brings about much of the difficulty
in analyzing such systems. In addition, the systems may be quite sensitive
to small perturbations of the parameter values. The large dimensionality
together with the sensitivity makes the actual computation infeasible. An
immediate question is how can one resolve the problem and render a rea-
sonable solution?
It turns out that the idea of hierarchical approach is useful in this regard.

In fact, almost all complex systems in nature exhibit a hierarchical structure
(see Simon [195]). If one can effectively take advantage of the structural
properties, a large-dimensional (complex) system can be decomposed into
a number of subsystems such that each of them with a simpler structure
can be handled relatively easily. With this in mind, one introduces a small
parameter ε > 0 to make the system under consideration display a two-
time-scale behavior (see Phillips and Kokotovic [175] and Pan and Başar
[165]).
Note that under the two-time-scale framework, the underlying Markov

chain becomes a singularly perturbed one, i.e., α(t) = αε(t) where the
generator of αε(t) is given by Qε(t). To analyze the system or to design the
optimal controls, the foremost task is to study the structure of the Markov
chain αε(·) through its probability distribution. In what follows, consider
two models. In both models, the generator Qε(t) consists of two parts, a
rapidly changing part and a slowly varying one, i.e.,

Qε(t) =
1

ε
Q̃(t) + Q̂(t).

In the first model,

Q̃(t) =

⎛

⎜
⎜
⎜
⎝

Q̃1(t)

Q̃2(t)
. . .

Q̃l(t)

⎞

⎟
⎟
⎟
⎠
,

where Q̃k(t) ∈ R
mk×mk for k = 1, 2, . . . , l, and

∑l
k=1mk = m. Assume that

Q̃k(t) and Q̂(t) are generators. Treating such nonstationary models, Chap-
ter 4 obtains asymptotic expansion under mild conditions. Then Chapter 5
continues the discussion, derives further properties of the model, and
establishes the convergence of an aggregated chain. Furthermore, in
Chapters 7 and 8, we deal with nearly optimal control of large-scale
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systems under such a Markovian structure. The key idea is decomposi-
tion/aggregation, which leads to an effective reduction of dimensionality.
In the second model, assume that the fast changing part also involves

transient states presented by

Q̃(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Q̃1(t)
. . .

Q̃l(t)

Q̃1
∗(t) · · · Q̃l

∗(t) Q̃∗(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

such that for each k = 1, . . . , l, Q̃k(t) is an generator with dimension mk ×
mk, Q̃∗(t) is an m∗ ×m∗ stable matrix, Q̃k

∗(t) ∈ R
m∗×mk , m1 +m2 + · · ·+

ml +m∗ = m, and Q̃(t) and Q̂(t) are themselves generators. This model
is inspired by the work of Phillips and Kokotovic [175] and Pan and Başar
[165]; unlike these references, our main concern is on nonstationary (time-
dependent) Markov chains. Chapter 4 studies analytic properties of this
model. Although the inclusion of the transient states gives rise to seemingly
more complex formulation, we demonstrate that the problem can still be
dealt with. Our approach does provide generality for various situations.

3.6 Time-Scale Separation

Focusing on singularly perturbed Markov chains, one of our main concerns
is time-scale separation, i.e., the models under consideration have two-time
scales. The underlying Markovian models involve fast and slow motions
that interact through weak and strong components. A main assumption
in this book is that the corresponding generator can be separated into
two generators having different scales of jump rates. This section gives
motivation and interpretation on the time-scale separation. For simplicity,
consider a model with time-independent generator

Qε =
1

ε
Q̃+ Q̂, (3.14)

where Q̃ and Q̂ are themselves time-invariant generators. Here ε is a small
parameter that separates the time-scale. The generator Q̃ dictates the fast
motion of the Markov chain and Q̂ governs the slow motion. As will be seen
in Chapter 4, the probability distribution of the underlying Markov chain
will quickly reach a stationary regime determined by Q̃, then the influence
of Q̂ takes over subsequently.
To apply the results of this book in a practical scenario, it is important

to determine if a given problem fits the models in this book. The small
parameter ε should be interpreted as the parameter that separates different
scales in the sense of order of magnitude. For a given generator Q, if we can
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write it as the sum of two generators of the form (3.14), where Q̃ and Q̂ are
of the same order of magnitude, then ε > 0 takes care of the separation of
scales. Typically, it works well in practice when ε is sufficiently small (i.e.,
less than a “small” constant, e.g., 0.5). For instance, if all the elements

in Q̃/ε are around 10, and that of Q̂ are near 1, then ε = 0.1. In the
queueing example of Section 3.3, if the interarrival and service rates of
type I customers are 0.5 customer/minute and the corresponding rates of
type II customers are 0.05 customer/minute, then ε = 0.1.
If one has certain knowledge about the behavior of the physical model,

then one can use the information to determine the rates of different time
scales. Alternatively, one may numerically decompose a given generator to
determine its structure. To illustrate, consider the following example.
Let a generator Q be given by

Q =

⎛

⎜
⎜
⎜
⎝

−12 1 10 1

0 −11 1 10

21 1 −22 0

1 30 2 −33

⎞

⎟
⎟
⎟
⎠

;

the corresponding state space is M = {s1, s2, s3, s4}. We demonstrate how
such a generator may be decomposed into the form (3.14).

Step 1. Separate the entries of the matrix in accordance with their order of
magnitude.
Apparently, the numbers in {1, 2} are at different scale (order of mag-

nitude) from the numbers in {10,−11,−12, 21,−22, 30,−33}, so we write
Q as

Q =

⎛

⎜
⎜
⎜
⎝

−12 0 10 0

0 −11 0 10

21 0 −22 0

0 30 0 −33

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

0 1 0 1

0 0 1 0

0 1 0 0

1 0 2 0

⎞

⎟
⎟
⎟
⎠
.

Step 2. Make each matrix a generator.
This step requires moving the entries so that each of the two matrices

satisfies the condition of a generator, i.e., a matrix with nonnegative off-
diagonal elements, non-positive diagonal elements, and zero row sums. For
the Q matrix given above, by rearrangements,

Q =

⎛

⎜
⎜
⎜
⎝

−10 0 10 0

0 −10 0 10

21 0 −21 0

0 30 0 −30

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

−2 1 0 1

0 −1 1 0

0 1 −1 0

1 0 2 −3

⎞

⎟
⎟
⎟
⎠
.

Step 3. Permute rows and columns.
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By exchanging rows and columns, make the dominating matrix Q̃ be
one having a desired form, e.g., block diagonal form (corresponding to
irreducible blocks). In this example, if we exchange the order s2 and s3 in
M, i.e., taking M = {s1, s3, s2, s4}, then the corresponding generator is

Q =

⎛

⎜
⎜
⎜
⎝

−10 10 0 0

21 −21 0 0

0 0 −10 10

0 0 30 −30

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

−2 0 1 1

0 −1 1 0

0 1 −1 0

1 2 0 −3

⎞

⎟
⎟
⎟
⎠
.

Let ε = 0.1. Then we can write

Q =
1

ε

⎛

⎜
⎜
⎜
⎝

−1 1 0 0

2.1 −2.1 0 0

0 0 −1 1

0 0 3 −3

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

−2 0 1 1

0 −1 1 0

0 1 −1 0

1 2 0 −3

⎞

⎟
⎟
⎟
⎠
.

Note that the above procedure may provide more than one representations
of the decomposition. For instance, we can also write

Q =
1

ε

⎛

⎜
⎜
⎜
⎝

−1 1 0 0

2 −2 0 0

0 0 −1 1

0 0 3 −3

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

−2 0 1 1

1 −2 1 0

0 1 −1 0

1 2 0 −3

⎞

⎟
⎟
⎟
⎠

with ε = 0.1. Up to now, with only elementary row and column opera-
tions and some rearrangements, we succeed to reduce the matrix Q under
consideration to the form (3.14).
This procedure is applicable to time-dependent generators as well. It

can be used to incorporate generators with a block of transient states.
The reduction to the “canonical form” may also be done by using the
decomposition procedure outlined by Avramovic. The idea is to compute
the eigenvalues of the generator and to use that to determine the structure
of the fast part Q̃. This is a more involved approach. We refer the reader
to the paper of Phillips and Kokotovic [175] for more details.

3.7 Notes

This chapter presents a number of examples involving Markov chains. The
problems arising in manufacturing systems (see, for example, Sethi and
Zhang [192], and also Yin and Zhang [235]) are the original motivation of
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our study. More details on related problems in Markov decision processes
and stochastic dynamic systems will be discussed in Chapters 7–10.
We include relatively simple examples in this chapter. Our purpose is

to give an overview and to illustrate the needed study for the underlying
properties of Markov chains. For general definition and basic properties
of Markov processes, see Chung [31], Davis [41], Dynkin [51], Karlin and
Taylor [105] among others. Queueing problems and more finite-state models
and variations of the formulations than those presented here can be found in
Sharma [194]. Research in queueing system is very active; we are only able
to include a handful of examples here and many references can be found in
the most recent literature; for example Serfozo [190] and references therein.
Reliability theory is discussed in detail in Hoyland and Rausand [88]. Most
of these references are concerned primarily with homogeneous or stationary
Markov chains. The study of the simulated annealing is related to the
asymptotic behavior of the generator (see, for example, Chiang and Chow
[28] and Wentzel [217]). A comprehensive study on stochastic optimization
and related matters is in Kushner and Yin [145]. Optimal control of Markov
decision processes and discrete stochastic dynamic programming can be
found in Puterman [179] among others. For recent work on continuous-
time Markov decision processes, see Guo and Hernández-Lerma [78]. Other
topics not covered in this chapter include, for example, the formulation of
random environment and the corresponding queueing system in a random
environment (see Neuts [162]). In addition, in this book, we are only able
to cover a handful of application examples. A work exclusively dealt with
applications in queueing systems, and financial market models, insurance
risk problems etc. is Yin, Zhang, and Zhang [232]. For some recent work on
two-time-scale systems, we refer the reader to Kushner [140], and Kabanov
and Pergamenshchikov [100].
In this book, we mainly deal with continuous-time Markov chains. Re-

lated issues and examples for discrete-time models can be found in the
classical work of Karlin and Taylor [105], Revuz [180] or the recent publi-
cation of Meyn and Tweedie [159]. For discrete-time singularly perturbed
Markov chains, see Abbad, Filar, and Bielecki [1], Bielecki and Filar [11],
and the references therein. A comprehensive study on singularly perturbed,
discrete-time, Markov systems is Yin and Zhang [238].



Part II

Two-Time-Scale Markov Chains



4

Asymptotic Expansions of Solutions
for Forward Equations

4.1 Introduction

This chapter is concerned with the analysis of the probability distributions
of two-time-scale Markov chains. We aim to approximate the solution of
forward equation by means of sequences of functions so that the desired
accuracy is reached. As alluded to in Chapter 1, we devote our attention to
nonstationary Markov chains with time-varying generators. A key feature
here is time-scale separation. By introducing a small parameter ε > 0, the
generator and hence the corresponding Markov chain have “two times,”
a usual running time t and a fast time t/ε. The main approach that we
are using is the matched asymptotic expansions from singular perturbation
theory. We first construct a sequence of functions that well approximate the
solution of the forward equation when t is large enough (outside the initial
layer of O(ε)). By adopting the notion of singular perturbation theory, this
part of the approximation will be called outer expansions. We demonstrate
that it is a good approximation as long as t is not in a neighborhood of 0 of
the order O(ε). Nevertheless, this sequence of functions does not satisfy the
given initial condition and the approximation breaks down when t ≤ O(ε).
To circumvent these difficulties, we construct another sequence of func-
tions by magnifying the asymptotic behavior of the solution near 0 using
the stretched fast time τ = t/ε. Following the traditional terminology in
singular perturbation theory, we call this sequence of functions initial-layer
corrections (or sometimes, boundary-layer corrections). It effectively yields

G.G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications,
Stochastic Modelling 37, DOI 10.1007/978-1-4614-4346-9 4,
© Springer Science+Business Media, LLC 2013
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corrections to the outer expansions and makes sure that the approximation
is good in a neighborhood of O(ε). By combining the outer expansions and
the initial-layer corrections, we obtain a sequence of matched asymptotic
expansions. The entire process is constructive. Our aims in this chapter
include:

• Construct the outer expansions and the initial-layer corrections. This
construction is often referred to as formal expansions.

• Justify the sequence of approximations obtained by deriving the
desired error bounds. To achieve this, we show that (i) the outer
solutions are sufficiently smooth, (ii) the initial-layer terms all decay
exponentially fast, and (iii) the error is of the desired order. Thus
not only is convergence of the asymptotic expansions proved, but
also the error bound is obtained.

• Demonstrate that the error bounds hold uniformly. We would like to
mention that in the usual singular perturbation theory, for example,
in treating a linear system of differential equations, it is required that
the system matrix be stable (i.e., all eigenvalues have negative real
parts). In our setup, even for a homogeneous Markov chain, the gen-
erator (the system matrix in the equation) has an eigenvalue 0, so is
not invertible. Thus, the stability requirement is violated. Neverthe-
less, using Markov properties, we are still able to obtain the desired
asymptotic expansions.

Before proceeding further, we present a lemma. Let Q(t) ∈ R
m×m be

a generator, and let α(t) be a finite-state Markov chain with state space
M = {1, . . . ,m} and generator Q(t). Denote by

p(t) = (P (α(t) = 1), . . . , P (α(t) = m)) ∈ R
1×m

the row vector of the probability distribution of the underlying chain at
time t. Then in view of Theorem 2.5, p(·) is a solution of the forward
equation

dp(t)

dt
= pQ(t) = p(t)Q(t),

p(0) = p0 such that p0i ≥ 0 for each i, and
m∑

i=1

p0i = 1,

(4.1)

where p0 = (p01, . . . , p
0
m) and p0i denotes the ith component of p0. Therefore,

studying the probability distribution is equivalent to examining the solution
of (4.1). Note that the forward equation is linear, so the solution is unique.
As a result, the following lemma is immediate. This lemma will prove useful
in subsequent study.
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Lemma 4.1. The solution p(t) of (4.1) satisfies the conditions

0 ≤ pi(t) ≤ 1 and

m∑

i=1

pi(t) = 1. (4.2)

Remark 4.2. For the reader whose interests are mainly in differential
equations, we point out that the initial condition

∑m
i=1 p

0
i = 1 in (4.1)

is not restrictive since if p0 = 0, then p(t) = 0 is the only solution to (4.1).
If p0i > 0 for some i, one may divide both sides of (4.1) by

∑m
i=1 p

0
i (> 0)

and consider p̃(t) = p(t)/
∑m

i=1 p
0
i in lieu of p(t).

To achieve our goal, we first treat a simple case, namely, the case that
the generator is weakly irreducible. Once this is established, we proceed to
the more complex case that the generator has several weakly irreducible
classes, the inclusion of absorbing states, and the inclusion of transient
states.
The rest of the chapter is arranged as follows. Section 4.2 begins with the

study of the situation in which the generator is weakly irreducible. Although
it is a simple case, it outlines the main ideas behind the construction of
asymptotic expansions. This section begins with the construction of formal
expansions, proves the needed regularity, and ascertains the error estimates.
Section 4.3 develops asymptotic expansions of the underlying probability
distribution for the chains with recurrent states. As will be seen in the anal-
ysis to follow, extreme care must be taken to handle two-time-scale Markov
chains with fast and slow components. One of the key issues is the selection
of appropriate initial conditions to make the series a “matched” asymptotic
expansions, in which the separable form of our asymptotic expansion ap-
pears to be advantageous compared with the two-time-scale expansions.
For easy reference, a subsection is also provided as a user’s guide.
Using the methods of matched asymptotic expansion, Section 4.4 extends

the results to include absorbing states. It demonstrates that similar tech-
niques can be used. We also demonstrate that the techniques and methods
of Section 4.3 are rather general and can be applied to a wide variety
of cases. Section 4.5 continues the study of problems involving transient
states. By treating chains having recurrent states, chains including absorb-
ing states, and chains including transient states, we are able to characterize
the probability distributions of the underlying singularly perturbed chains
of general cases with finite-state spaces, and hence provide comprehensive
pictures through these “canonical” models.
While Sections 4.3–4.5 cover most practical concerns of interest for the

finite-state-space cases, the rest of the chapter makes several remarks on
Markov chains with countable-state spaces and two-time-scale diffusions.
In Section 4.6.1, we extend the results to processes with countable-state
spaces in which Q̃(t) is a block-diagonal matrix with infinitely many blocks
each of which is finite-dimensional. Then Section 4.6.2 treats the prob-
lem in which Q̃(t) itself is an infinite-dimensional matrix. In this case,
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further conditions are necessary. As in the finite-dimensional counterpart,
sufficient conditions that ensure the validity of the asymptotic expansions
are provided. The essential ingredients include Fredholm-alternative-like
conditions and the notion of weak irreducibility. Finally, we mention re-
lated results of singularly perturbed diffusions in Section 4.7. Additional
notes and remarks are given in Section 4.8.

4.2 Irreducible Case

We begin with the case concerning weakly irreducible generators. Let
Q(t) ∈ R

m×m be a generator, ε > 0 be a small parameter, and suppose
that αε(t) is a finite-state Markov chain with state space M = {1, . . . ,m}
generated by Qε(t) = Q(t)/ε. The row vector pε(t) = (P (αε(t) =
1), . . . , P (αε(t) = m)) ∈ R

1×m denotes the probability distribution of
the underlying chain at time t. Then by virtue of Theorem 2.5, pε(·) is a
solution of the forward equation

dpε(t)

dt
= pεQε(t) =

1

ε
pε(t)Q(t),

pε(0) = p0 such that p0i ≥ 0 for each i, and

m∑

i=1

p0i = 1,

(4.3)

where p0 = (p01, . . . , p
0
m) and p0i denotes the ith component of p0. Therefore,

studying the probability distribution is equivalent to examining the solution
of (4.3). Now, Lemma 4.1 continues to hold for the solution pε(t).
As discussed in Chapters 1 and 3, the equation in (4.3) arises from various

applications involving a rapidly fluctuating Markov chain governed by the
generator Q(t)/ε. As ε gets smaller and smaller, the Markov chain fluc-
tuates more and more rapidly. Normally, the fast-changing process αε(·)
in an actual system is difficult to analyze. The desired limit properties,
however, provide us with an alternative. We can replace the actual pro-
cess by its “average” in the system under consideration. This approach
has significant practical value. A fundamental question common to numer-
ous applications involving two-time-scale Markov chains is to understand
the asymptotic properties of pε(·), namely, the limit behavior as ε → 0.
If Q(t) = Q, a constant matrix, and if Q is irreducible (see Definition 2.7),
then for each t > 0, pε(t) → ν, the familiar stationary distribution. For the
time-varying counterpart, it is reasonable to expect that the correspond-
ing distribution will converge to a probability distribution that mimics
the main features of the distribution of stationary chains, meanwhile pre-
serving the time-varying nature of the nonstationary system. A candidate
bearing such characteristics is the quasi-stationary distribution ν(t). Recall



4.2 Irreducible Case 63

that ν(t) is said to be a quasi-stationary distribution (see Definition 2.8) if
ν(t) = (ν1(t), . . . , νm(t)) ≥ 0 and it satisfies the equations

ν(t)Q(t) = 0 and

m∑

i=1

νi(t) = 1. (4.4)

If Q(t) ≡ Q, a constant matrix, then an analytic solution of (4.3) is
obtainable, since the fundamental matrix solution (see Hale [79]) takes the
simple form exp(Qt); the limit behavior of pε(t) is derivable through the
solution p0 exp(Qt/ε). For time-dependent Q(t), although the fundamental
matrix solution still exists, it does not have a simple form. The complex
integral representation is not very informative in the asymptotic study of
pε(t), except in the case m = 2. In this case, αε(·) is a two-state Markov
chain and the constraint pε1(t) + pε2(t) = 1 reduces the current problem to
a scalar one. Therefore, a closed-form solution is possible. However, such a
technique cannot be generalized to m > 2. Let 0 < T < ∞ be a finite real
number. We divide the interval [0, T ] into two parts. One part is for t very
close to 0 (in the range of an ε-layer), and the other is for t bounded away
from 0. The behavior of pε(·) differs significantly in these two regions. Such
a division led us to the utilization of the matched asymptotic expansion.
Not only do we prove the convergence of pε(t) as ε → 0, but we also ob-
tain an asymptotic series. The procedure involves constructing the regular
part (outer expansion) for t to be away from 0, as well as the initial-layer
corrections for small t, and to match these expansions by a proper choice
of initial conditions.
In what follows, in addition to obtaining the zeroth-order approxima-

tion, i.e., the convergence of pε(·) to its quasi-stationary distribution, we
derive higher-order approximations and error bounds. A consequence of the
findings is that the convergence of the probability distribution and related
occupation measures of the corresponding Markov chain takes place in an
appropriate sense. The asymptotic properties of a suitably scaled occupa-
tion time and the corresponding central limit theorem for αε(·) (based on
the expansion) will be studied in Chapter 5.

4.2.1 Asymptotic Expansions

To proceed, we make the following assumptions.

(A4.1) Given 0 < T <∞, for each t ∈ [0, T ], Q(t) is weakly irreducible,
that is, the system of equations

f(t)Q(t) = 0,

m∑

i=1

fi(t) = 1

(4.5)

has a unique nonnegative solution.
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(A4.2) For some n, Q(·) is (n+ 1)-times continuously differentiable on
[0, T ], and (dn+1/dtn+1)Q(·) is Lipschitz on [0, T ].

Remark 4.3. Condition (A4.2) requires that the matrix Q(t) be
sufficiently smooth. This is necessary for obtaining the desired asymptotic
expansion. To validate the asymptotic expansion, we need to estimate
the remainder term. Thus for the nth-order approximation, we need the
(n+ 1)st-order smoothness.

To proceed, we first state a lemma. Its proof is in Lemma A.2 in the
appendix.

Lemma 4.4. Consider the matrix differential equation

dP (s)

ds
= P (s)A, P (0) = I, (4.6)

where P (s) ∈ R
m×m. Suppose A ∈ R

m×m is a generator of a (homogeneous
or stationary) finite-state Markov chain and is weakly irreducible. Then
P (s) → P as s→ ∞ and

∣
∣
∣ exp(As)− P

∣
∣
∣ ≤ K exp(−κ̃s) for some κ̃ > 0, (4.7)

where P = 1l(ν1, · · · , νm) ∈ R
m×m, and (ν1, . . ., νm) is the quasi-stationary

distribution of the Markov process with generator A.

Recall that 1l = (1, . . . , 1)′ ∈ R
m×1 and (ν1, . . . , νm) ∈ R

1×m. Thus
1l(ν1, . . . , νm) is the usual matrix product. Recall that anm×mmatrix P (s)
is said to be a solution of (4.6) if each row of P (s) satisfies the equation.
In the lemma above, if A is a constant matrix that is irreducible, then
(ν1, . . . , νm) becomes the familiar stationary distribution. In general, A
could be time-dependent, e.g., A = A(t). As shown in Lemma A.4, by
assuming the existence of the solution ν(t) to (4.5), it follows that ν(t) ≥ 0;
that is, the nonnegativity assumption is redundant. We seek asymptotic
expansions of the form

pε(t) = Φε
n(t) + Ψε

n

(
t

ε

)

+ eεn(t),

where eεn(t) is the remainder,

Φε
n(t) = ϕ0(t) + εϕ1(t) + · · ·+ εnϕn(t), (4.8)

and

Ψε
n

(
t

ε

)

= ψ0

(
t

ε

)

+ εψ1

(
t

ε

)

+ · · ·+ εnψn

(
t

ε

)

, (4.9)

with the functions ϕi(·) and ψi(·) to be determined in the sequel. We now
state the main result of this section.
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Theorem 4.5. Suppose that (A4.1) and (A4.2) are satisfied. Denote the
unique solution of (4.3) by pε(·). Then two sequences of functions ϕi(·) and
ψi(·), 0 ≤ i ≤ n, can be constructed such that

(a) ϕi(·) is (n+ 1− i)-times continuously differentiable on [0, T ];

(b) for each i, there is a κ0 > 0 such that

∣
∣
∣
∣ψi

(
t

ε

)∣
∣
∣
∣ ≤ K exp

(

−κ0t
ε

)

;

(c) the following estimate holds:

sup
t∈[0,T ]

∣
∣
∣
∣p

ε(t)−
n∑

i=0

εiϕi(t)−
n∑

i=0

εiψi

(
t

ε

)∣
∣
∣
∣ ≤ Kεn+1. (4.10)

Remark 4.6. The method described in what follows gives an explicit con-
struction of the functions ϕi(·) and ψi(·) for i ≤ n. Thus the proof to be
presented is constructive. Our plan is first to obtain these sequences, and
then validate properties (a) and (b) above and derive an error bound in (c)
by showing that the remainder

∣
∣
∣
∣p

ε(t)−
n∑

i=0

εiϕi(t)−
n∑

i=0

εiψi

(
t

ε

)∣
∣
∣
∣

is of order O(εn+1) uniformly in t.

It will be seen from the subsequent development that ϕ0(t) is equal to the
quasi-stationary distribution, that is, ϕ0(t) = ν(t). In particular, if n = 0
in the above theorem, we have the following result.

Corollary 4.7. Suppose Q(·) is continuously differentiable on [0, T ], which
satisfies (A4.1), and (d/dt)Q(·) is Lipschitz on [0, T ]. Then for all t > 0,

lim
ε→0

pε(t) = ν(t) = ϕ0(t), (4.11)

i.e., pε(·) converges to the quasi-stationary distribution.

Remark 4.8. The theorem manifests the convergence of pε(·) to ϕ0(·),
as well as the rate of convergence. In addition to the zeroth-order
approximation, we have the first-order approximation, the second-order ap-
proximation, and so on. In fact, the difference pε(·)−ϕ0(·) is characterized
by the initial-layer term ψ0(·) and the associated error bound.
If the initial condition is chosen to be exactly equal to p0 = ϕ0(0),

then in the expansion, the zeroth-order initial layer ψ0(·) will vanish. This
cannot be expected in general, however. Even if ψ0(·) = 0, the rest of the
initial-layer terms ψi(·), i ≥ 1 will still be there.
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To proceed, we define an operator Lε by

Lεf = ε
df

dt
− fQ, (4.12)

for any smooth row-vector-valued function f(·). Then Lεf = 0 iff f is a
solution to the differential equation in (4.3). The proof of Theorem 4.5 is
divided into the following steps.

1. Construct the asymptotic series, i.e., find ϕi(·) and ψi(·), for
i ≤ n. For the purpose of evaluating the remainder, we need to
calculate two extra terms ϕn+1(·) and ψn+1(·). This will become
clear when we carry out the error analysis.

2. Obtain the regularity of ϕi(·) and ψi(·) by proving that ϕi(·) is
(n + 1 − i)-times continuously differentiable on [0, T ] and that
ψi(·) decays exponentially fast.

3. Carry out the error analysis and justify that the remainder has
the desired property.

4.2.2 Outer Expansion

We begin with the construction of Φε
n(·) in the asymptotic expansion. We

call it the outer expansion or the regular part of expansion. Consider the
differential equation

LεΦε
n+1 = 0

where Lε is given by (4.12).
By equating the coefficients of εk, for k = 1, . . . , n+ 1, we obtain

ε0 : ϕ0(t)Q(t) = 0,

ε1 : ϕ1(t)Q(t) =
dϕ0(t)

dt
,

· · ·

εk : ϕk(t)Q(t) =
dϕk−1(t)

dt
, for k = 1, . . . , n+ 1.

(4.13)

Remark 4.9. First, one has to make sure that the equations above have
solutions, that is, a consistency condition needs to be verified. For each t ∈
[0, T ], denote the null space of Q(t) by N(Q(t)). Note that the irreducibility
of Q(t) implies that

rank(Q(t)) = m− 1,
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thus

dim(N(Q(t))) = 1.

It is easily seen that N(Q(t)) is spanned by the vector 1l. By virtue of the
Fredholm alternative (see Corollary A.38), the second equation in (4.13)
has a solution only if its right-hand side, namely, (d/dt)ϕ0(t) is orthogonal
to N(Q(t)). Since N(Q(t)) is spanned by 1l,

ϕ0(t)1l = 1

and
dϕ0(t)

dt
1l =

d (ϕ0(t)1l)

dt
= 0,

the orthogonality is easily verified. Similar arguments hold for the rest of
the equations. The consistency in fact is rather crucial. Without such a
condition, one would not be able to solve the equations in (4.13). This
point will be made again when we deal with weak and strong interaction
models in Section 4.3.

Recall that the components of pε(·) are probabilities (see (4.2)). In what
follows, we show that all these ϕi(·) can be determined by (4.13) and (4.2).
Note that rank(Q(t)) = m− 1. Thus Q(t) is singular, and each equation

in (4.13) is not uniquely solvable. For example, the first equation (4.13)
cannot be solved uniquely. Nevertheless, this equation together with the
constraint

∑m
i=1 ϕ

i
0(t) = 1 leads to a unique solution, namely, the quasi-

stationary distribution.
In fact, a direct consequence of (A4.3) and (A4.4) is that the weak ir-

reducibility of Q(t) is uniform in the sense that for any t ∈ [0, T ], if any
column of Q(t) is replaced by 1l ∈ R

m×1, the resulting determinant Δ(t)
satisfies |Δ(t)| > 0, since (4.5) has only one solution, and

∑m
j=1 qij(t) = 0

for each i = 1, . . . ,m. Moreover, there is a number c > 0 such that |Δ(t)| ≥
c > 0. Thus, in view of the uniform continuity of Q(t), |Δ(t)| ≥ c > 0 on
[0, T ]. We can replace any equation in the first m equations of the system
ϕ0(t)Q(t) = 0 by the equation

∑m
i=1 ϕ

i
0(t) = 1. The corresponding deter-

minant Δ(t) of the resulting coefficient matrix satisfies |Δ(t)| ≥ c > 0, for
some c > 0 and all t ∈ [0, T ]. To illustrate, we may suppose without loss of
generality that the mth equation is the one that can be replaced. Then we
have

q11(t)ϕ
1
0(t) + · · ·+ qm1(t)ϕ

m
0 (t) = 0,

q12(t)ϕ
1
0(t) + · · ·+ qm2(t)ϕ

m
0 (t) = 0,

· · ·
q1,m−1(t)ϕ

1
0(t) + · · ·+ qm,m−1(t)ϕ

m
0 (t) = 0,

ϕ1
0(t) + · · ·+ ϕm

0 (t) = 1.

(4.14)
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The determinant of the coefficient matrix in (4.14) is

Δ(t) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

q11(t) q21(t) · · · qm1(t)
q12(t) q22(t) · · · qm2(t)

...
... · · ·

...
q1,m−1(t) q2,m−1(t) · · · qm,m−1(t)

1 1 · · · 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(4.15)

and satisfies |Δ(t)| ≥ c > 0. Now by Cramer’s rule, for each 0 ≤ i ≤ m,

ϕi
0(t) =

1

Δ(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

q11(t) · · · 0 · · · qm1(t)
q12(t) · · · 0 · · · qm2(t)

... · · ·
... · · ·

...
q1,m−1(t) · · · 0 · · · qm,m−1(t)

1 · · · 1︸︷︷︸
ith column

· · · 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

that is, the ith column of Δ(t) in (4.15) is replaced by (0, . . . , 0, 1)′ ∈ R
m×1.

By the assumption of Q(·), it is plain that ϕ0(·) is (n+1)-times continuously
differentiable on [0, T ].
The foregoing method can be used to solve other equations in (4.13)

analogously. Owing to the smoothness of ϕ0(·), (d/dt)ϕ0(t) exists, and we
can proceed to obtain ϕ1(·). Repeat the procedure above, and continue
inductively. For each k ≥ 1,

m∑

i=1

ϕi
k(t)qij(t) =

dϕj
k−1(t)

dt
for j = 1, . . . ,m,

m∑

i=1

ϕi
k(t) = 0.

(4.16)

Note that ϕj
k−1(·) has been found so (d/dt)ϕj

k−1(t) is a known function.
After a suitable replacement of one of the first m equations by the last
equation in (4.16), the determinant Δ(t) of the resulting coefficient matrix
satisfies |Δ(t)| ≥ c > 0. We obtain for each 0 ≤ i ≤ m,

ϕi
k(t) =

1

Δ(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

q11(t) · · ·
dϕ1

k−1(t)

dt
· · · qm1(t)

q12(t) · · ·
dϕ2

k−1(t)

dt
· · · qm2(t)

... · · ·
... · · ·

...

q1,m−1(t) · · ·
dϕm−1

k−1 (t)

dt
· · · qm,m−1(t)

1 · · · 0︸︷︷︸
ith column

· · · 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.
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Hence ϕk(·) is (n+1− k)-times continuously differentiable on [0, T ]. Thus
we have constructed a sequence of functions ϕk(t) that are (n+1−k)-times
continuously differentiable on [0, T ] for k = 0, 1, . . . , n+ 1.

Remark 4.10. The method used above is convenient for computational
purposes. An alternative way of obtaining the sequence ϕk(t) is as follows.
For example, to solve

ϕ0(t)Q(t) = 0,

m∑

j=1

ϕj
0(t) = 1,

define Qc(t) = (1l
...Q(t)) ∈ R

m×(m+1). Then the equation above can be
written as

ϕ0(t)Qc(t) = (1, 0, . . . , 0).

Note that Qc(t)Q
′
c(t) has full rank m owing to weak irreducibility. Thus

the solution of the equation is

ϕ0(t) = (1, 0, . . . , 0)Q′
c(t)[Qc(t)Q

′
c(t)]

−1.

We can obtain all other ϕk(t) for k = 1, . . . , n+ 1, similarly.

The regular part Φε
n(·) is a good approximation to pε(·) when t is bounded

away from 0. When t approaches 0, an initial layer (or a boundary layer)
develops and the approximation breaks down. To accommodate this situ-
ation, an initial-layer correction, i.e., a sequence of functions ψk(t/ε) for
k = 0, 1, . . . , n+ 1 needs to be constructed.

4.2.3 Initial-Layer Correction

This section is on the construction of the initial-layer terms. The presen-
tation consists of two parts. We obtain the sequence {ψk(·)} in the first
subsection, and derive the exponential decay property in the second sub-
section.

Construction of ψk(·). Following usual practice in singular perturbation
theory, define the stretched (or rescaled) time variable by

τ =
t

ε
. (4.17)

Note that τ → ∞ as ε→ 0 for any given t > 0.
Consider the differential equation

LεΨε
n+1 =

n+1∑

i=0

εiLεψi = 0.
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Using the stretched time variable τ , we arrive at

dΨε
n+1(τ)

dτ
= Ψε

n+1(τ)Q(ετ).

Owing to the smoothness ofQ(·), a truncated Taylor expansion about τ = 0
leads to

Q(t) = Q(ετ) =

n+1∑

i=0

(ετ)i

i!

diQ(0)

dti
+Rn+1(ετ),

where

Rn+1(t) =
tn+1

(n+ 1)!

(
dn+1Q(ξ)

dtn+1
− dn+1Q(0)

dtn+1

)

,

for some 0 < ξ < t. In view of (A4.2),

Rn+1(t) = O(tn+2) uniformly in t ∈ [0, T ].

Drop the term Rn+1(t) and use the first n+ 2 terms to get

dΨε
n+1(τ)

dτ
= Ψε

n+1(τ)

(
n+1∑

i=0

(ετ)i

i!

diQ(0)

dti

)

.

Similar to the previous section, for k = 1, . . . , n + 1, equating coefficients
of εk, we have

ε0 :
dψ0(τ)

dτ
= ψ0(τ)Q(0),

ε1 :
dψ1(τ)

dτ
= ψ1(τ)Q(0) + τψ0(τ)

dQ(0)

dt
,

· · ·

εk :
dψk(τ)

dτ
= ψk(τ)Q(0) + rk(τ),

(4.18)

where rk(τ) is a function having the form

rk(τ) =
τk

k!
ψ0(τ)

dkQ(0)

dtk
+ · · ·+ τψk−1(τ)

dQ(0)

dt

=

k∑

i=1

τ i

i!
ψk−i(τ)

diQ(0)

dti
.

(4.19)

These equations together with appropriate initial conditions allow us to
determine the ψk(·)’s. For constructing ϕk(·), a number of algebraic equa-
tions are solved, whereas when determining ψk, one has to solve a num-
ber of differential equations instead. Two points are worth mentioning in
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connection with (4.18). First the time-varying differential equation is re-
placed by one with constant coefficients; the solution thus can be written
explicitly. The second point is on the selection of the initial conditions for
ψk(·), with k = 0, 1, . . . , n+1. We choose the initial conditions so that the
initial data of the asymptotic expansion will “match” that of the differential
equation (4.3). To be more specific,

ϕ0(0) + ψ0(0) = p0, and

ϕk(0) + ψk(0) = 0 for k = 1, 2, . . . , n+ 1.

Corresponding to ε0, solving

dψ0(τ)

dτ
= ψ0(τ)Q(0),

ψ0(0) = p0 − ϕ0(0),

where p0 is the initial data given in (4.3), one has

ψ0(τ) = (p0 − ϕ0(0)) exp (Q(0)τ) . (4.20)

Continuing in this fashion, for k = 1, . . . , n+ 1, we obtain

dψk(τ)

dτ
= ψk(τ)Q(0) + rk(τ),

ψk(0) = −ϕk(0).

In the equations above, we purposely separated Q(0) from the term rk(τ).
As a result, the equations are linear systems with a constant matrix Q(0)
and time-varying forcing terms. This is useful for our subsequent investi-
gation.
For k = 1, 2, . . ., the solutions are given by

ψk(τ) = −ϕk(0) exp(Q(0)τ)

+

∫ τ

0

rk(s) exp (Q(0)(τ − s)) ds.

(4.21)

The construction of ψk(·) for k = 0, 1, . . . , n+1, and hence the construction
of the asymptotic series is complete.
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4.2.4 Exponential Decay of ψk(·)
This subsection concerns the exponential decay of ψk(·). At first glance,
it seems to be troublesome since Q(0) has a zero eigenvalue. Nevertheless,
probabilistic argument helps us to derive the desired property. Two key
points in the proof below are the utilization of orthogonality and repeated
application of the approximation of exp(Q(0)τ) in Lemma 4.4.
By virtue of Assumption (A4.1), the finite-state Markov chain gener-

ated by Q(0) is weakly irreducible. Identifying Q(0) with the matrix A in
Lemma 4.4 yields that

exp(Q(0)τ) → P as τ → ∞,

where P = 1lν, and ν = (ν1, . . . , νm) is the quasi-stationary distribution
corresponding to the constant matrix Q(0).

Proposition 4.11. Under the conditions of Theorem 4.5, for each 0 ≤ k ≤
n + 1, there exist a nonnegative real polynomial c2k(τ) of degree 2k and a
positive number κ0,0 > 0 such that

|ψk(τ)| ≤ c2k(τ) exp(−κ0,0τ). (4.22)

Proof: First of all, note that

m∑

i=1

p0i = 1 and

m∑

i=1

ϕi
0(0) = 1.

It follows that
m∑

i=1

ψi
0(0) =

m∑

i=1

p0i −
m∑

i=1

ϕi
0(0) = 0.

That is, ψ0(0) is orthogonal to 1l. Consequently, ψ0(0)P = 0 and by virtue
of Lemma 4.4 (with A = Q(0)), for some κ0,0 := κ̃ > 0,

|ψ0(τ)| = |ψ0(0) exp(Q(0)τ)|

≤
∣
∣ψ0(0)P

∣
∣+

∣
∣ψ0(0)(exp(Q(0)τ)− P )

∣
∣

=
∣
∣ψ0(0)(exp(Q(0)τ)− P )

∣
∣ ≤ K exp(−κ0,0τ).

(4.23)

Note that
Q(t)1l = 0 for all t ≥ 0.

Differentiating this equation repeatedly leads to

dkQ(t)

dtk
1l =

dk(Q(t)1l)

dtk
= 0.



4.2 Irreducible Case 73

Hence, it follows that

dkQ(0)

dtk
1l = 0 and

dkQ(0)

dtk
P = 0,

for each 0 ≤ k ≤ n+ 1. Owing to Lemma 4.4 and (4.21),

|ψ1(τ)| ≤ |ϕ1(0) exp(Q(0)τ)|

+

∣
∣
∣
∣

∫ τ

0

ψ0(s)
dQ(0)

dt

(
P +

(
exp(Q(0)(τ − s)− P

))
sds

∣
∣
∣
∣

≤ K exp(−κ0,0τ)

+

∫ τ

0

|ψ0(s)|
∣
∣
∣
∣
dQ(0)

dt

(
exp(Q(0)(τ − s))− P

)
∣
∣
∣
∣ sds

≤ K exp(−κ0,0τ) +K

∫ τ

0

exp(−κ0,0s) exp(−κ0,0(τ − s))sds

≤ K exp(−κ0,0τ) +Kτ2 exp(−κ0,0τ) ≤ c2(τ) exp(−κ0,0τ),

for some nonnegative polynomial c2(τ) of degree 2.
Note that rk(s) is orthogonal to P . By induction, for any k with k =

1, . . . , n+ 1,

|ψk(τ)|

≤ |ϕk(0) exp(Q(0)τ)|+
∫ τ

0

∣
∣rk(s)

(
exp(Q(0)(τ − s))− P

)∣
∣ ds

≤ K exp(−κ0,0τ) +
k∑

i=1

1

i!

∫ τ

0

si|ψk−i(s)|

×
∣
∣
∣
∣
diQ(0)

dti
(
exp(Q(0)(τ − s))− P

)
∣
∣
∣
∣ ds

≤ K exp(−κ0,0τ) +K

2k−1∑

i=1

∫ τ

0

si exp(−κ0,0τ)ds

≤ K exp(−κ0,0τ) +K

2k∑

i=1

τ i exp(−κ0,0τ) ≤ c2k(τ) exp(−κ0,0τ),

where c2k(τ) is a nonnegative polynomial of degree 2k. This completes the
proof of the proposition. �

Since n is a finite integer, the growth of c2k(τ) for 0 ≤ k ≤ n+1 is much
slower than exponential. Thus the following corollary is in force.
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Corollary 4.12. For each 0 ≤ k ≤ n + 1, with κ0,0 given in Proposi-
tion 4.11,

|ψk(τ)| ≤ K exp (−κ0τ) , for some κ0 with 0 < κ0 < κ0,0.

4.2.5 Asymptotic Validation

Recall that Lεf = ε(d/dt)f − fQ. Then we have the following lemma.

Lemma 4.13. Suppose that for some 0 ≤ k ≤ n+ 1,

sup
t∈[0,T ]

|Lεvε(t)| = O
(
εk+1

)
and vε(0) = 0.

Then

sup
t∈[0,T ]

|vε(t)| = O
(
εk
)
.

Proof: Let ηε(·) be a function satisfying supt∈[0,T ] |ηε(t)| = O
(
εk+1

)
. Con-

sider the differential equation

Lεvε(t) = ηε(t),

vε(0) = 0.

(4.24)

Then the solution of (4.24) is given by

vε(t) =
1

ε

∫ t

0

ηε(s)Xε(t, s)ds,

where Xε(t, s) is a principal matrix solution. Recall that (see Hale [79,
p. 80]) a fundamental matrix solution of the differential equation is an
invertible matrix each row of which is a solution of the equation; a principal
matrix solution is a fundamental matrix solution with initial value the
identity matrix. In view of Lemma 4.1,

|Xε(t, s)| ≤ K for all t, s ∈ [0, T ].

Therefore, we have the inequalities

sup
t∈[0,T ]

|vε(t)| ≤ K

ε
sup

t∈[0,T ]

∫ t

0

|ηε(s)|ds ≤ Kεk.

The proof of the lemma is thus complete. �
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Recall that the vector-valued “error” or remainder eεn(t) is defined by

eεn(t) = pε(t)−
n∑

i=0

εiϕi(t)−
n∑

i=0

εiψi

(
t

ε

)

, (4.25)

where pε(·) is the solution of (4.3), and ϕi(·) and ψi(·) are constructed in
(4.13) and (4.18). It remains to show that eεn(t) = O

(
εn+1

)
. To do so, we

utilize Lemma 4.13 as a bridge. It should be pointed out, however, that
to get the correct order for the remainder, a trick involving “back up one
step” is needed. The details follow.

Proposition 4.14. Assume (A4.1) and (A4.2), for each k = 0, . . . , n,

sup
t∈[0,T ]

|eεk(t)| = O(εk+1).

Proof: We begin with

eε1(t) = pε(t)− ϕ0(t)− εϕ1(t)− ψ0

(
t

ε

)

− εψ1

(
t

ε

)

. (4.26)

We will use the exponential decay property given in ψi(τ) Corollary 4.12.
Clearly, eε1(0) = 0, and hence the condition of Lemma 4.13 on the initial
data is satisfied. By virtue of the exponential decay property of ψi(·) in
conjunction with the defining equations of ϕi(·) and ψi(·),

Lεeε1(t) = −
[

ε
dϕ0(t)

dt
− ϕ0(t)Q(t) + ε2

dϕ1(t)

dt
− εϕ1(t)Q(t)

+ε
d

dt
ψ0

(
t

ε

)

− ψ0

(
t

ε

)

Q(t) + ε2
d

dt
ψ1

(
t

ε

)

−εψ1

(
t

ε

)

Q(t)

]

= −ε2dϕ1(t)

dt
+ ψ0

(
t

ε

)[

Q(t)−Q(0)− t
dQ(0)

dt

]

+εψ1

(
t

ε

)

[Q(t)−Q(0)].

For the term involving ψ0(t/ε), using a Taylor expansion on Q(t) yields
that for some ξ ∈ (0, t)

∣
∣
∣
∣Q(t)−Q(0)− t

dQ(0)

dt

∣
∣
∣
∣ =

∣
∣
∣
∣
1

2

(
d2Q(ξ)

dt2

)

t2
∣
∣
∣
∣ ≤ Kt2.

Owing to the exponential decay property of ψi(·), the fact that ϕ1(·) is n-
times continuously differentiable on [0, T ], and the above estimate, we have

|Lεeε1(t)| ≤ K

(

ε2 + (εt+ t2) exp

(

−κ0t
ε

))

.
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Moreover, for any k = 0, 1, 2 . . . , n+ 1, it is easy to see that

tk exp

(

−κ0t
ε

)

= εk
(
t

ε

)k

exp

(

−κ0t
ε

)

≤ Kεk. (4.27)

This implies Lεeε1(t) = O(ε2) uniformly in t. Thus, eε1(t) = O(ε) by virtue
of Lemma 4.13 and the bound is uniform in t ∈ [0, T ].
We now go back one step to show that the zeroth-order approximation

also possesses the correct error estimate, that is, eε0(t) = O(ε). Note that
the desired order seems to be difficult to obtain directly, and as a result
the back-tracking is employed.
Note that

eε1(t) = eε0(t)− εϕ1(t)− εψ1

(
t

ε

)

. (4.28)

However, the smoothness of ϕ1(·) and the exponential decay of ψ1(·) imply
that

εϕ1(t) + εψ1

(
t

ε

)

= O(ε) uniformly in t. (4.29)

Thus eε0(t) = O(ε) uniformly in t.
Proceeding analogously, we obtain

Lεeεn+1

= Lε

(

pε(t)−
n+1∑

i=0

εiϕi(t)−
n+1∑

i=0

εiψi

(
t

ε

))

= −ε
(

n+1∑

i=0

εi
dϕi(t)

dt
+

n+1∑

i=0

εi
d

dt
ψi

(
t

ε

))

+

(
n+1∑

i=0

εiϕi(t) +
n+1∑

i=0

εiψi

(
t

ε

))

Q(t)

= −εn+2dϕn+1(t)

dt
+

[
n+1∑

i=0

εiϕi(t)Q(t)−
n∑

i=0

εi+1ϕi+1(t)Q(t)

]

+

n+1∑

i=0

εiψi

(
t

ε

)

Q(t)−
n+1∑

i=0

εi
[

ψi

(
t

ε

)

Q(0) + ri

(
t

ε

)]

.

(4.30)

Note that the term in the fifth line above is

n+1∑

i=0

εiϕi(t)Q(t)−
n+1∑

i=1

εiϕi(t)Q(t) = ϕ0(t)Q(t) = 0.

Using (4.19), we represent ri(t) in terms of (di/dti)Q(0), etc. For the term
involving ψ0(t/ε), using a truncated Taylor expansion up to order (n+ 1)
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for Q(t), by virtue of the Lipschitz continuity of (dn+1/dtn+1)Q(·), there
is a ξ ∈ (0, t) such that

∣
∣
∣
∣Q(t)−

n+1∑

i=0

ti

i!

diQ(0)

dti

∣
∣
∣
∣ =

1

(n+ 1)!

∣
∣
∣
∣t
n+1 d

n+1Q(ξ)

dtn+1
− tn+1 d

n+1Q(0)

dtn+1

∣
∣
∣
∣

≤ Ktn+1ξ ≤ Ktn+2.

For all the other terms involving ψi(t/ε), for i = 1, . . . , n+ 1 in (4.30), we
proceed as in the calculation of Lεeε1. As a result, the last two terms in
(4.30) are bounded by

ψ0

(
t

ε

)

O(tn+2) + εψ1

(
t

ε

)

O(tn+1) + · · ·+ εn+1ψn+1

(
t

ε

)

O(t),

which in turn leads to the bound

K(tn+2 + εtn+1 + · · ·+ εn+1t) exp

(

−κ0t
ε

)

≤ Kεn+2,

in accordance with (4.27). Moreover, it is clear that eεn+1(0) = 0. In view
of the fact that ϕn+1(·) is continuously differentiable on [0, T ] and Q(·) is
(n+1)-times continuously differentiable on [0, T ], by virtue of Lemma 4.13,
we infer that eεn+1(t) = O(εn+1) uniformly in t. Since

eεn+1(t) = eεn(t) +O(εn+1),

it must be that eεn(t) = O(εn+1). The proof of Proposition 4.14 is complete,
and so is the proof of Theorem 4.5. �

Remark 4.15. In the estimate given above, we actually obtained

Lεeεk(t) = O

(

εk+1 + (εtk + · · ·+ εkt) exp

(

−κ0t
ε

))

. (4.31)

This observation will be useful when we consider the unbounded interval
[0,∞).

The findings reported are very useful for further study of the limit
behavior of the corresponding Markov chain problems of central limit type,
which will be discussed in the next chapter. In many applications, a system
is governed by a Markov chain, which consists of both slow and fast mo-
tions. An immediate question is this: Can we still develop an asymptotic
series expansion? This question will be dealt with in Section 4.3.
Suppose that in lieu of (A4.2), we assume that Q(·) is piecewise (n+1)-

times continuously differentiable on [0, T ], and (dn+1/dtn+1)Q(·) is piece-
wise Lipschitz, that is, there is a partition of [0, T ], namely,

t0 = 0 < t1 < t2 < · · · ≤ tk = T
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such that Q(·) is (n+1)-times continuously differentiable and (dn+1/dtn+1)
Q(·) is Lipschitz on each subinterval [ti, ti+1). Then the result obtained still
holds. In this case, in addition to the initial layers, one also has a finite
number of inner-boundary layers. In each interval [ti, ti+1 − η] for η > 0,
the expansion is similar to that presented in Theorem 4.5.

4.2.6 Examples

As a further illustration, we consider two examples in this section. The first
example is concerned with a stationary Markov chain, i.e., Q(t) = Q is a
constant matrix. The second example deals with an analytically solvable
case for a two-state Markov chain with nonstationary transition probabil-
ities. Although they are simple, these examples give us insight into the
asymptotic behavior of the underlying systems.

Example 4.16. Let αε(t) be an m-state Markov chain with a constant
generator Q(t) = Q that is irreducible. This is an analytically solvable
case, with

pε(t) = p0 exp

(
Qt

ε

)

.

Using the technique of asymptotic expansion, we obtain

ϕ0(t) + ψ0

(
t

ε

)

= ϕ0 + (p0 − ϕ0) exp

(
Qt

ε

)

,

with exp

(
Qt

ε

)

→ P , as ε→ 0,

where

ϕ0(t) = (ν1, . . . , νm) and P = 1lϕ0.

Note that p0P = ϕ0, and hence

(p0 − ϕ0) exp

(
Qt

ε

)

= (p0 − ϕ0)

[

exp

(
Qt

ε

)

− P

]

.

Moreover,

ϕi(t) ≡ 0, ψi

(
t

ε

)

≡ 0 for i ≥ 1.

In this case, ϕ0(t) ≡ ϕ0, a constant vector, which is the equilibrium distri-
bution of Q; the series terminates. Moreover, the solution consists of two
terms, one of them the equilibrium distribution (the zeroth-order approxi-
mation) and the other the zeroth-order initial-layer correction term. Since
ϕ0 is the quasi-stationary distribution,

ϕ0Q = 0 and ϕ0 exp

(
Qt

ε

)

= ϕ0.
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Hence the analytic solution and the asymptotic expansion coincide.
In particular, let Q be a two-dimensional matrix, i.e.,

Q =

(
−λ λ
μ −μ

)

.

Then setting
yε0(t) = ϕ0(t) + ψ0(t/ε),

we have

pε1(t) = yε0,1(t) =
μ

λ+ μ
+

(

p01 −
μ

λ+ μ

)

exp

(

− (λ+ μ)t

ε

)

,

pε2(t) = yε0,2(t) =
λ

λ+ μ
+

(

p02 −
λ

λ+ μ

)

exp

(

− (λ+ μ)t

ε

)

.

Therefore,

ϕ0(t) =

(
μ

λ+ μ
,

λ

λ+ μ

)

,

ψ0

(
t

ε

)

=

((

p01 −
μ

λ+ μ

)

,

(

p02 −
λ

λ+ μ

))

exp

(

− (λ+ μ)t

ε

)

,

ϕi(t) ≡ 0 and ψi

(
t

ε

)

≡ 0 for i ≥ 1.

Example 4.17. Consider a two-state Markov chain with generator

Q(t) =

(
−λ(t) λ(t)
μ(t) −μ(t)

)

where λ(t) ≥ 0, μ(t) ≥ 0 and λ(t) + μ(t) > 0 for each t ∈ [0, T ]. Therefore
Q(·) is weakly irreducible. For the following discussion, assume Q(·) to be
sufficiently smooth. Although it is time-varying, a closed-form solution is
obtainable. Since pε1(t) + pε2(t) = 1 for each t, (4.3) can be solved explicitly
and the solution is given by

pε1(t) = p01 exp

(

−1

ε

∫ t

0

(λ(s) + μ(s))ds

)

+

∫ t

0

μ(u)

ε
exp

(

−1

ε

∫ t

u

(λ(s) + μ(s))ds

)

du,

pε2(t) = p02 exp

(

−1

ε

∫ t

0

(λ(s) + μ(s))ds

)

+

∫ t

0

λ(u)

ε
exp

(

−1

ε

∫ t

u

(λ(s) + μ(s))ds

)

du.
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Following the approach in the previous sections, we construct the first a
few terms in the asymptotic expansion. By considering (4.13) together with
(4.2), a system of the form

λ(t)ϕ1
0(t)− μ(t)ϕ2

0(t) = 0,

ϕ1
0(t) + ϕ2

0(t) = 1

is obtained. The solution of the system yields that

ϕ0(t) =

(
μ(t)

λ(t) + μ(t)
,

λ(t)

λ(t) + μ(t)

)

.

To find ϕ1(·), consider

λ(t)ϕ1
1(t)− μ(t)ϕ2

1(t) =
λ̇(t)μ(t) − μ̇(t)λ(t)

(λ(t) + μ(t))2
,

ϕ1
1(t) + ϕ2

1(t) = 0,

where λ̇ = (d/dt)λ and μ̇ = (d/dt)μ. Solving this system of equations
gives us

ϕ1(t) =

(
λ̇(t)μ(t)− μ̇(t)λ(t)

(λ(t) + μ(t))3
,
λ(t)μ̇(t)− μ(t)λ̇(t)

(λ(t) + μ(t))3

)

.

To get the inner expansion, consider the differential equation

dψ0(τ)

dτ
= ψ0(τ)Q(0),

ψ0(0) = p0 − ϕ0(0),

with τ = t/ε. We obtain

ψ0(τ) = (p0 − ϕ0(0)) exp(Q(0)τ),

where

exp (Q(0)τ) =
1

λ(0) + μ(0)

×

⎛

⎜
⎜
⎝

μ(0) + λ(0)e−(λ(0)+μ(0))τ λ(0)− λ(0)e−(λ(0)+μ(0))τ

μ(0)− μ(0)e−(λ(0)+μ(0))τ λ(0) + μ(0)e−(λ(0)+μ(0))τ

⎞

⎟
⎟
⎠ .
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Similarly ψ1(·) can be obtained from (4.21) with the exponential matrix
given above.
It is interesting to note that either λ(t) or μ(t) can be equal to 0 for some

t as long as λ(t) + μ(t) > 0. For example, if we take μ(·) to be the repair
rate of a machine in a manufacturing model, then μ(t) = 0 corresponds to
the repair workers taking breaks or waiting for parts on order to arrive.
The minors of Q(t) are λ(t), −λ(t), μ(t), and −μ(t). As long as not all of
them are zero at the same time, the weak irreducibility condition will be
met.

4.2.7 Two-Time-Scale Expansion

The asymptotic expansion derived in the preceding sections is separable in
the sense that it is the sum of a regular part and initial-layer corrections.
Naturally, one is interested in the relationship between such an expansion
and the so-called two-time-scale expansion (see, for example, Smith [199]).
To answer this question, we first obtain the two-time-scale asymptotic ex-
pansion for the forward equation (4.3), proceed with the exploration of the
relationships between these two expansions, and conclude with a discussion
of the connection between these two methods.

Two-Time-Scale Expansion. Following the literature on asymptotic
expansion (e.g., Kevorkian and Cole [108, 109] and Smith [199] among
others), consider two scales t and τ = t/ε, both as “times.” One of them is
in a normal time scale and the other is a stretched one. We seek asymptotic
expansions of the form

yε(t, τ) =

n∑

i=0

εiyi(t, τ), (4.32)

where {yi(t, τ)}ni=0 is a sequence of two-time-scale functions. Treating t and
τ as independent variables, one has

d

dt
=

∂

∂t
+

1

ε

∂

∂τ
. (4.33)

Formally substituting (4.32) into (4.3) and equating coefficients of like pow-
ers of εi results in

∂y0(t, τ)

∂τ
= y0(t, τ)Q(t),

∂y1(t, τ)

∂τ
= y1(t, τ)Q(t) − ∂y0(t, τ)

∂t
,

· · ·

∂yi(t, τ)

∂τ
= yi(t, τ)Q(t) − ∂yi−1(t, τ)

∂t
, 1 ≤ i ≤ n.

(4.34)
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The initial conditions are

y0(t, 0) = p0 and

yi(t, 0) = 0, for 1 ≤ i ≤ n.

(4.35)

Holding t constant and solving the first equation in (4.34) (with the first
equation in (4.35) as the initial condition) yields

y0(t, τ) = p0 exp(Q(t)τ). (4.36)

By virtue of (A4.4), (∂/∂t)y0(t, τ) exists and

∂y0(t, τ)

∂t
= p0 exp(Q(t)τ)

(
dQ(t)

dt

)

τ.

As a result, (∂/∂t)y0(t, τ) is orthogonal to 1l. We continue the procedure
recursively. It can be verified that for 1 ≤ i ≤ n,

yi(t, τ) = −
∫ τ

0

∂yi−1(t, s)

∂t
exp(Q(t)(τ − s))ds. (4.37)

Furthermore, for i = 1, . . . , n, (∂/∂t)yi(t, τ) exists and is continuous; it is
also orthogonal to 1l. It should be emphasized that in the equations above,
t is viewed as being “frozen,” and as a consequence, Q(t) is a “constant”
matrix.
Parallel to the previous development, one can show that for all 1 ≤ i ≤ n,

|yi(t, τ)| ≤ K(t) exp(−κ0(t)τ).

Compared with the separable expansions presented before, note the t-
dependence of K(·) and κ0(·) above. Furthermore, the asymptotic series
is valid. We summarize this as the following theorem.

Theorem 4.18. Under the conditions of Theorem 4.5, a sequence of
functions {yi(t, τ)}ni=0 can be constructed so that

sup
t∈[0,T ]

∣
∣
∣
∣p

ε(t)−
n∑

i=0

εiyi(t, τ)

∣
∣
∣
∣ = O(εn+1).

Example 4.19. We return to Example 4.16. It is readily verified that the
zeroth-order two-time-scale expansion coincides with that of the analytic
solution, in fact, with

y0(t, τ) = p0 exp

(
Qt

ε

)

and yi(t, τ) ≡ 0 for all i ≥ 1.
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Relationship between the Two Methods. Now we have two different
asymptotic expansions. Do they in some sense produce similar asymptotic
results? Note that each term in yi(t, τ) contains the regular part ϕi(t) as
well as the initial-layer corrections. Examining the zeroth-order approxi-
mation leads to

exp(Q(t)τ) → P (t) as τ → ∞

via the same argument employed in the proof of Lemma 4.4. The matrix
has identical rows, and is given by P (t) = 1lν(t). In fact, owing to p01l =∑m

i=1 p
0
i = 1, we have

y0(t, τ) = ν(t) + p0
(
exp(Q(t)τ) − P (t)

)
= ν(t) + ỹ0(t, τ), (4.38)

where ỹ0(t, τ) decays exponentially fast as τ → ∞ for t < τ .
In view of (4.38), the two methods produce the same limit as τ → ∞,

namely, the quasi-stationary distribution. To explore further, we study a
special case (a two-state Markov chain) so as to keep the notation simple.
Consider the two-state Markov chain model Example 4.17. In view of (4.38)
and the formulas in Example 4.17, we have

y0(t, τ) = ν(t) + ỹ0(t, τ) = ϕ0(t) + ỹ0(t, τ).

Owing to (4.37), direct calculation yields that

y1(t, τ) = −
∫ τ

0

dϕ0(t)

dt
exp(Q(t)(τ − s))ds

−
∫ τ

0

∂ỹ0(t, τ)

∂t
exp(Q(t)(τ − s))ds.

It can be verified that the second term on the right-hand side of the equal
sign above decays exponentially fast, while the first term yields ϕ1(t) plus
another term tending to 0 exponentially fast as τ → ∞. Using the result
of Example 4.17 yields

−
∫ τ

0

dϕ0(t)

dt
exp(Q(t)(τ − s))ds

=
dϕ0(t)

dt

(
1− exp(−(λ(t) + μ(t))τ)

λ(t) + μ(t)

)(
λ(t) −λ(t)
−μ(t) μ(t)

)

= ϕ1(t)−
dϕ0(t)

dt

(
exp(−(λ(t) + μ(t))τ)

λ(t) + μ(t)

)(
λ(t) −λ(t)
−μ(t) μ(t)

)

.

Thus, it follows that

y1(t, τ) = ϕ1(t) + ỹ1(t, τ),
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where

ỹ1(t, τ) = −
∫ τ

0

∂ỹ0(t, τ)

∂t
exp(Q(t)(τ − s))ds

−dϕ0(t)

dt

(
exp(−(λ(t) + μ(t))τ)

λ(t) + μ(t)

)(
λ(t) −λ(t)
−μ(t) μ(t)

)

.

Similarly, we can obtain

yi(t, τ) = ϕi(t) + ỹi(t, τ), for 1 ≤ i ≤ n,

where ỹi(t, τ) decay exponentially fast as τ → ∞ for all t < τ . This estab-
lishes the connection between these two different expansions.

Comparison and Additional Remark. A moment of reflection reveals
that:

– The conditions required to obtain the asymptotic expansions are
the same.

– Except for the actual forms, there is no significant difference
between these two methods.

– No matter which method is employed, in one way or another the
results for stationary Markov chains are used. In the separable
expansion, this is accomplished by using Q(0), and in the two-
time-scale expansion, this is carried out by holding t constant
and hence treating Q(t) as a constant matrix.

– Although the two-time-scale expansion admits a seemingly more
general form, the separable expansion is more transparent as far
as the quasi-stationary distribution is concerned.

– When a more complex problem, for example the case of weak
and strong interactions, is encountered, the separable expansion
becomes more advantageous.

– To study asymptotic normality, etc., in the sequel, the separable
expansion will prove to be more convenient than the two-time-
scale expansion.

In view of the items mentioned above, we choose to use the separable form
of the expansion throughout.

4.3 Markov Chains with Multiple Weakly
Irreducible Classes

This section presents the asymptotic expansions of two-time-scale Markov
chains with slow and fast components subject to weak and strong in-
teractions. We assume that all the states of the Markov chain are re-
current. In contrast to Section 4.2, the states belong to multiple weakly
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irreducible classes. As was mentioned in the introductory chapter, such
time-scale separation stems from various applications in production plan-
ning, queueing networks, random fatigue, system reliability, competing risk
theory, control and optimization of large-scale dynamical systems, and re-
lated fields. The sunderlying models in which some components change
very rapidly whereas others vary relatively slowly, are more complex than
those of Section 4.2. The weak and strong interactions of the systems are
modeled by assuming the generator of the underlying Markov chain to be
of the form

Qε(t) =
1

ε
Q̃(t) + Q̂(t), (4.39)

where Q̃(t) governs the rapidly changing part and Q̂(t) describes the slowly
changing components. They have the appropriate forms to be mentioned
in the sequel.
This section extends the results in Section 4.2 to incorporate the cases

in which the generator Q̃(t) is not irreducible. Our study focuses on the
forward equation, similar to (4.3); now the forward equation takes the form

dpε(t)

dt
= pε(t)

(
1

ε
Q̃(t) + Q̂(t)

)

, pε(0) = p0 (4.40)

such that

p0i ≥ 0 for each i and

m∑

i=1

p0i = 1.

To illustrate, we present a simple example below.

Example 4.20. Consider a two-machine flowshop with machines that are
subject to breakdown and repair. The production capacity of the machines
is described by a finite-state Markov chain. If the machine is up, then it
can produce parts with production rate u(t); its production rate is zero if
the machine is under repair. For simplicity, suppose each of the machines
is either in operating condition (denoted by 1) or under repair (denoted by
0). Then the capacity of the workshop becomes a four-state Markov chain
with state space {(1, 1), (0, 1), (1, 0), (0, 0)}. Suppose that the first machine
breaks down much more often than the second one. To reflect this situation,
consider a Markov chain αε(·) generated by Qε(t) in (4.39), with Q̃(·) and
Q̂(·) given by

Q̃(t) =

⎛

⎜
⎝

−λ1(t) λ1(t) 0 0
μ1(t) −μ1(t) 0 0
0 0 −λ1(t) λ1(t)
0 0 μ1(t) −μ1(t)

⎞

⎟
⎠
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and

Q̂(t) =

⎛

⎜
⎝

−λ2(t) 0 λ2(t) 0
0 −λ2(t) 0 λ2(t)

μ2(t) 0 −μ2(t) 0
0 μ2(t) 0 −μ2(t)

⎞

⎟
⎠ ,

where λi(·) and μi(·) are the rates of repair and breakdown, respectively.

The matrices Q̃(t) and Q̂(t) are themselves generators of Markov chains.
Note that

Q̃(t) = diag

((
−λ1(t) λ1(t)

μ1(t) −μ1(t)

)

,

(
−λ1(t) λ1(t)

μ1(t) −μ1(t)

))

is a block-diagonal matrix, representing the fast motion, and Q̂(t) gov-
erns the slow components. In order to obtain any meaningful results for
controlling and optimizing the performance of the underlying systems, the
foremost task is to determine the asymptotic behavior (as ε → 0) of the
probability distribution of the underlying chain.

In this example, a first glance reveals that Q̃(t) is reducible, hence the
results in Section 4.2 are not applicable. However, closer scrutiny indicates
that Q̃(t) consists of two irreducible submatrices. One expects that the
asymptotic expansions may still be established. Our main objective is to
develop asymptotic expansions of such systems and their variants. The cor-
responding procedure is, however, much more involved compared with the
irreducible cases.
Examining (4.39), it is seen that the asymptotic properties of the

underlying Markov chains largely depend on the structure of the matrix
Q̃(t). In accordance with the classification of states, we may consider
three different cases: the chains with recurrent states only, the inclusion
of absorbing states, and the inclusion of transient states. We treat the
recurrent-state cases in this section, and then extend the results to nota-
tionally more involved cases including absorbing states and transient states
in the following two sections.
Suppose αε(·) is a finite-state Markov chain with generator given by

(4.39), where both Q̃(t) and Q̂(t) are generators of appropriate Markov
chains. In view of the results in Section 4.2, it is intuitively clear that
the structure of the generator Q̃(t) governs the fast-changing part of the
Markov chain. As mentioned in the previous section, our study of the finite-
state-space cases is naturally divided into the recurrent cases, the inclusion
of absorbing states, and the inclusion of transient states of the generator
Q̃(t). In accordance with classical results (see Chung [31] and Karlin and
Taylor [105, 106]), one can always decompose the states of a finite-state
Markov chain into recurrent (including absorbing) and transient classes.
Inspired by Seneta’s approach to nonnegative matrices (see Seneta [189]),

we aim to put the matrix Q̃(t) into some sort of “canonical” form so that a
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systematic study can be carried out. In a finite-state Markov chain, not all
states are transient, and it has at least one recurrent state. Similar to the
argument of Iosifescu [95, p. 94] (see also Goodman [75], Karlin and Mc-
Gregor [104], Keilson [107] among others), if there are no transient states,
then after suitable permutations and rearrangements (i.e., by appropriately

relabeling the states), Q̃(t) can be put into the block-diagonal form

Q̃(t) =

⎛

⎜
⎜
⎜
⎝

Q̃1(t)

Q̃2(t)
. . .

Q̃l(t)

⎞

⎟
⎟
⎟
⎠

= diag
(
Q̃1(t), . . . , Q̃l(t)

)
,

(4.41)

where Q̃k(t) ∈ R
mk×mk are weakly irreducible, for k = 1, 2, . . . , l, and

∑l
k=1mk = m. Here and hereinafter, Q̃k(t), (a superscript without paren-

theses) denotes the kth block matrix in Q̃(t). The rest of this section deals

with the generator Qε(t) given by (4.39) with Q̃(t) taking the form (4.41).
Note that an example of the recurrent case is that of the irreducible (or
weakly irreducible) generators treated in Section 4.2.
Let Mk = {sk1, . . . , skmk

} for k = 1, . . . , l denote the states correspond-

ing to Q̃k(t) and let M denote the state space of the underlying chains
given by

M = M1 ∪ · · · ∪Ml

=
{
s11, . . . , s1m1 , . . . , sl1, . . . , slml

}
.

Since Q̃k(t) = (q̃kij(t))mk×mk
and Q̂(t) = (q̂ij(t))m×m are generators, for

k = 1, 2, . . . , l, we have

mk∑

j=1

q̃kij(t) = 0, for i = 1, . . . ,mk, and

m∑

j=1

q̂ij(t) = 0, for i = 1, . . . ,m.

The slow and fast components are coupled through weak and strong
interactions in the sense that the underlying Markov chain fluctuates
rapidly within a single group Mk and jumps less frequently between
groups Mk and Mj for k �= j. The states in Mk, k = 1, . . . , l, are not
isolated or independent of each other. More precisely, if we consider the
states in Mk as a single “state,” then these “states” are coupled through
the matrix Q̂(t), and transitions from Mk to Mj , k �= j are possible.
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In fact, Q̂(·), together with the quasi-stationary distributions of Q̃k(t),
determines the transition rates among states in Mk, for k = 1, . . . , l.
Consider the forward equation (4.40). Our goal here is to develop an

asymptotic series for the solution pε(·) of (4.40). Working with the interval
[0, T ] for some T <∞, we will need the following conditions:

(A4.3) For each t ∈ [0, T ] and k = 1, 2, . . . , l, Q̃k(t) is weakly irreducible.

(A4.4) For some positive integer n, Q̃(·) and Q̂(·) are (n + 1)-times
and n-times continuously differentiable on [0, T ], respectively.

Moreover, (dn+1/dtn+1)Q̃(·) and (dn/dtn)Q̂(·) are Lipschitz on
[0, T ].

Compared with the irreducible models in Section 4.2, the main difficulty
in this chapter lies in the interactions among different blocks. In construct-
ing the expansion in Section 4.2, for i = 1, . . . , n, the two sets of functions
{ϕi(·)} and {ψi(·)} are obtained independently except the initial conditions
ψi(0) = −ϕi(0). For Markov chains with weak and strong interactions,
ϕi(·) and ψi(·) are highly intertwined. The essence is to find ϕi(·) and ψi(·)
jointly and recursively. In the process of construction, one of the crucial
and delicate points is to select the “right” initial conditions. This is done
by demanding that ψi(τ) decay to 0 as τ → ∞. For future use, we define a
differential operator Lε on R

1×m-valued functions by

Lεf = ε
df

dt
− f(Q̃+ εQ̂). (4.42)

Then it follows that Lεf = 0 iff f is a solution to the differential equation
in (4.40). We are now in a position to derive the asymptotic expansion.

4.3.1 Asymptotic Expansions

As in Section 4.2, we seek expansions of the form

yεn(t) = Φε
n(t) + Ψε

n(t) =

n∑

i=0

εiϕi(t) +

n∑

i=0

εiψi

(
t

ε

)

. (4.43)

For the purpose of estimating the remainder (or error), the terms ϕn+1(·)
and ψn+1(·) are needed. Set Lεyεn+1(t) = 0. Parallel to the approach in
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Section 4.2, equating like powers of εi (for i = 0, 1, . . . , n+ 1) leads to the
equations for the regular part:

ε0 : ϕ0(t)Q̃(t) = 0,

ε1 : ϕ1(t)Q̃(t) =
dϕ0(t)

dt
− ϕ0(t)Q̂(t),

· · ·

εi : ϕi(t)Q̃(t) =
dϕi−1(t)

dt
− ϕi−1(t)Q̂(t).

(4.44)

As discussed in Section 4.2, the approximation above is good for t away
from 0. When t is sufficiently close to 0, an initial layer of thickness ε
develops. Thus for the singular part of the expansion we enlarge the picture
near 0 using the stretched variable τ defined by τ = t/ε. Identifying the
initial-layer terms in Lεyεn+1 = 0, we obtain

d

dτ

(
ψ0(τ) + εψ1(τ) + · · ·+ εn+1ψn+1(τ)

)

=
(
ψ0(τ) + εψ1(τ) + · · ·+ εn+1ψn+1(τ)

) (
Q̃(ετ) + εQ̂(ετ)

)
.

By means of the Taylor expansion, we have

Q̃(ετ) = Q̃(0) + ετ
dQ̃(0)

dt
+ · · ·

+
(ετ)n+1

(n+ 1)!

dn+1Q̃(0)

dtn+1
+ R̃n+1(ετ),

εQ̂(ετ) = εQ̂(0) + ε2τ
dQ̂(0)

dt
+ · · ·

+
ε(ετ)n

n!

dnQ̂(0)

dtn
+ R̂n(ετ),

where

R̃n+1(t) =
tn+1

(n+ 1)!

(
dn+1Q̃(ξ)

dtn+1
− dn+1Q̃(0)

dtn+1

)

,

R̂n(t) =
εtn

n!

(
dnQ̂(ζ)

dtn
− dnQ̂(0)

dtn

)

,

for some 0 ≤ ξ ≤ t and 0 ≤ ζ ≤ t. Note that in view of (A4.4),

R̃n+1(t) = O(tn+2) and R̂n(t) = O(εtn+1).
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Equating coefficients of like powers of εi, for i = 0, 1, . . . , n+ 1, and using
the Taylor expansion above, we obtain

ε0 :
dψ0(τ)

dτ
= ψ0(τ)Q̃(0),

ε1 :
dψ1(τ)

dτ
= ψ1(τ)Q̃(0)

+ψ0(τ)

(

Q̂(0) + τ
dQ̃(0)

dt

)

,

· · ·

εi :
dψi(τ)

dτ
= ψi(τ)Q̃(0) +

i−1∑

j=0

ψi−j−1(τ)

×
(
τ j

j!

djQ̂(0)

dtj
+

τ j+1

(j + 1)!

dj+1Q̃(0)

dtj+1

)

.

(4.45)

In view of the essence of matched asymptotic expansion, we have necessarily
at t = 0 that

n+1∑

i=0

εi (ϕi(0) + ψi(0)) = p0. (4.46)

This equation implies

p0 = ϕ0(0) + ψ0(0) and ϕi(0) + ψi(0) = 0,

for i ≥ 1. Moreover, note that pε(t)1l = 1 for all t ∈ [0, T ]. Sending ε →
0 in the asymptotic expansion, one necessarily has to have the following
conditions: For all t ∈ [0, T ],

ϕ0(t)1l = 1 and ϕi(t)1l = 0, i ≥ 1. (4.47)

Our task now is to determine the functions ϕi(·) and ψi(·).

Determining ϕ0(·) and ψ0(·). Write v = (v1, . . . , vl) for a vector v ∈
R

1×m, where vk denotes the subvector corresponding to the kth block of the
partition. Meanwhile, a superscript with parentheses denotes a sequence.
Thus vkn denotes the kth subblock of the corresponding partitioned vector
of the sequence vn.
Let us start with the first equation in (4.44). In view of (4.47), we have

ϕ0(t)Q̃(t) = 0,

m∑

i=1

ϕi
0(t) = 1.

(4.48)
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Note that the system above depends only on the generator Q̃(t). However,
by itself, the system is not uniquely solvable. Since for each t ∈ [0, T ]

and k = 1, . . . , l, Q̃k(t) is weakly irreducible, it follows that rank(Q̃k(t)) =

mk−1 and rank(Q̃(t)) = m−l. Therefore, to get a unique solution, we need
to supply l auxiliary equations. Where can we find these equations? Upon
dividing the system (4.48) into l subsystems, one can apply the Fredholm
alternative (see Lemma A.37 and Corollary A.38) and use the orthogonality
condition to choose l additional equations to replace l equations in the
system represented by the first equation in (4.48).

Since for each k, Q̃k(t) is weakly irreducible, there exists a unique quasi-
stationary distribution νk(t). Therefore any solution to the equation

ϕk
0(t)Q̃

k(t) = 0

can be written as the product of νk(t) and a scalar “multiplier,” say ϑk0(t).

It follows from the second equation in (4.48) that
∑l

k=1 ϑ
k
0(t) = 1. These

ϑk0(t)’s can be interpreted as the probabilities of the “grouped states” (or
“aggregated states”) Mk.
As will be seen in the sequel, ϑk0(t) becomes an important spinoff in the

process of construction. Effort will subsequently be devoted to finding the
unique solution (ϑ10(t), . . . , ϑ

l
0(t)). Let 1lmk

= (1, . . . , 1)′ ∈ R
mk×1.

Lemma 4.21. Under (A4.3) and (A4.4), for each k = 1, . . . , l, the solution
of the equation

ϕk
0(t)Q̃

k(t) = 0,

ϕk
0(t)1lmk

= ϑk0(t),

(4.49)

can be uniquely expressed as ϕk
0(t) = νk(t)ϑk0(t), where νk(t) is the

quasi-stationary distribution corresponding to Q̃k(t). Moreover, ϕk
0(t) is

(n + 1)-times continuously differentiable on [0, T ], provided that ϑk0(·) is
(n+ 1)-times continuously differentiable.

Proof: For each k, let us regard ϑk0(·) as a known function temporarily. For

t ∈ [0, T ], let Q̃k
c (t) = (1lmk

... Q̃k(t)). Then the solution can be written as

ϕk
0(t) = (ϑk0(0)

...0′mk
)Q̃k,′

c (t)
(
Q̃k

c (t)Q̃
k,′
c (t)

)−1

,

where 0mk
= (0, . . . , 0)′ ∈ R

mk×1. Moreover, ϕ0(·) is (n+ 1)-times contin-
uously differentiable. The lemma is thus concluded. �

Remark 4.22. This lemma indicates that for each k, the subvector ϕk
0(·)

is a multiple of the quasi-stationary distribution νk(·) for each k = 1, . . . , l.
The multipliers ϑk0(·) are to be determined. Owing to the interactions
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among different “aggregated states” corresponding to the block matrices,
piecing together quasi-stationary distributions does not produce a quasi-
stationary distribution for the entire system (i.e., (ν1(t), . . . , νk(t)) is not
a quasi-stationary distribution for the entire system). Therefore, the lead-
ing term in the asymptotic expansion is proportional to (or a “multiple”
of) the quasi-stationary distributions of the Markov chains generated by

Q̃k(t), for k = 1, . . . , l. The multiplier ϑk0(t) reflects the interactions of the
Markov chain among the “aggregated states.” The probabilistic meaning
of the leading term ϕ0(·) is in the sense of total probability. Intuitively,
ϑk0(t) is the corresponding probability of the chain belonging to Mk, and
ϕk
0(t) is the probability distribution of the chain belonging to Mk and the

transitions taking place within this group of states.

We proceed to determining ϑk0(·) for k = 1, . . . , l. Define an m× l matrix

1̃l =

⎛

⎜
⎜
⎝

1lm1

1lm2

. . .

1lml

⎞

⎟
⎟
⎠ = diag(1lm1 , . . . , 1lml

).

A crucial observation is that Q̃(t)1̃l = 0, that is, Q̃(t) and 1̃l are orthogonal.

Thus postmultiplying by 1̃l leads to

Lε

(
n+1∑

i=0

εiϕi(t)1̃l

)

= 0.

Recall that

ϕk
0(t) = ϑk0(t)ν

k(t) and ϕk
0(t)1l = ϑk0(t).

Equating the coefficients of ε in the above equation yields

d

dt
(ϑ10(t), . . . , ϑ

l
0(t)) = (ϑ10(t), . . . , ϑ

l
0(t))Q(t), (4.50)

where

Q(t) =

⎛

⎜
⎜
⎝

ν1(t)
ν2(t)

. . .

νl(t)

⎞

⎟
⎟
⎠ Q̂(t)1̃l

= diag(ν1(t), . . . , νl(t))Q̂(t)1̃l.

(4.51)

Remark 4.23. Intuitively, Q(t) is the “average” of Q̂(t) weighted by the
collection of quasi-stationary distributions (ν1(t), . . . , νl(t)). In fact, (4.50)
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is merely a requirement that the equations in (4.44) be consistent in the

sense of Fredholm. This can be seen as follows. Denote by N(Q̃(t)) the

null space of the matrix Q(t). Since rank(Q̃(t)) = m− l, the dimension of

N(Q̃(t)) is l. Observe that 1̃l = diag(1̃lm1 , . . . , 1̃lml
) where

1̃lm1 = (1, . . . , 1
︸ ︷︷ ︸

m1

, 0, . . . , 0
︸ ︷︷ ︸

m2+···+ml

)′,

1̃lm2 = (0, . . . , 0
︸ ︷︷ ︸

m1

, 1, . . . , 1
︸ ︷︷ ︸

m2

, 0, . . . , 0
︸ ︷︷ ︸

m3+···+ml

)′,

· · ·
1̃lml

= ( 0, . . . , 0,
︸ ︷︷ ︸

m1+···+ml−1

1, . . . , 1
︸ ︷︷ ︸

ml

)′

(4.52)

are linearly independent and span the null space of Q̃(t). The equations
in (4.44) have solutions only if the right-hand side of each equation is

orthogonal to 1̃l. Hence, (4.50) must hold.

Next we determine the initial value ϑ0(0). Assuming that the asymptotic
expansion of pε(·) is given by yεn(·) (see (4.43)), then it is necessary that

ϕ0(0)1̃l = lim
δ→0

lim
ε→0

pε(δ)1̃l. (4.53)

We will refer to such a condition as an initial-value consistency condition.
Moreover, in view of (4.40) and Q̃(t)1̃l = 0,

pε(t)1̃l = p01̃l +

∫ δ

0

pε(s)Q̂(s)ds1̃l.

Since pε(·) and Q̂(·) are both bounded, it follows that

lim
δ→0

(

lim sup
ε→0

∫ δ

0

pε(s)Q̂(s)ds1̃l

)

= 0.

Therefore, the initial-value consistency condition (4.53) yields

ϕ0(0)1̃l = lim
δ→0

(
lim
ε→0

pε(δ)1̃l
)
= p01̃l.

Note that (ϑ10(0), . . . , ϑ
l
0(0)) = ϕ0(0)1̃l. So the initial value for ϑ0(t)

should be
(ϑ10(0), . . . , ϑ

l
0(0)) = p01̃l.

Using this initial condition and solving (4.50) yields that

(ϑ10(t), . . . , ϑ
l
0(t)) = p01̃lX(t, 0),
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where X(t, s) is the principal matrix solution of (4.50) (see Hale [79]).
Since the smoothness ofX(·, ·) depends solely on the smoothness properties

of Q̃(t) and Q̂(t), (ϑ10(·), . . . , ϑl0(·)) is (n + 1)-times continuously differ-
entiable on [0, T ]. Up to now, we have shown that ϕ0(·) can be con-
structed that is (n + 1)-times continuously differentiable on [0, T ]. Set
ϑ0(t) = (ϑ10(t), . . . , ϑ

l
0(t)). We now summarize the discussion above as

follows:

Proposition 4.24. Assume conditions (A4.3) and (A4.4). Then for t ∈
[0, T ], ϕ0(t) can be obtained uniquely by solving the following system of
equations:

ϕk
0(t)Q̃

k(t) = 0,

ϕk
0(t)1lmk

= ϑk0(t),

dϑ0(t)

dt
= ϑ0(t)Q(t),

with ϑ0(0) = p01̃l,

(4.54)

such that ϕ0(·) is (n+ 1)-times continuously differentiable. �

We next consider the initial-layer term ψ0(·). First note that solving
(4.45) for each i = 0, 1 . . . , n+ 1 leads to

ψ0(τ) = ψ0(0) exp(Q̃(0)τ),

· · ·

ψi(τ) = ψi(0) exp(Q̃(0)τ)

+
i−1∑

j=0

∫ τ

0

ψi−j−1(s)

(
sj

j!

djQ̂(0)

dt
+

sj+1

(j + 1)!

dj+1Q̃(0)

dtj+1

)

× exp(Q̃(0)(τ − s))ds.

(4.55)

Once again, to match the asymptotic expansion requires that (4.46) hold
and hence

p0 = pε(0) = ϕ0(0) + ψ0(0).

Solving the first equation in (4.45) together with the above initial condition,
one obtains

ψ0(τ) = (p0 − ϕ0(0)) exp(Q̃(0)τ). (4.56)

Note that in Proposition 4.25 to follow, we still use κ0,0 as a positive con-
stant, which is generally a different constant from that in Section 4.2.
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Proposition 4.25. Assume conditions (A4.3) and (A4.4). Then ψ0(·) can
be obtained uniquely by (4.56). In addition, there is a positive number κ0,0
such that

|ψ0(τ)| ≤ K exp(−κ0,0τ), τ ≥ 0.

Proof: We prove only the exponential decay property, since the rest is obvi-
ous. Let νk(0) be the stationary distribution corresponding to the generator

Q̃k(0). Define

π = 1̃l

⎛

⎜
⎜
⎝

ν1(0)
ν2(0)

. . .

νl(0)

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

1lm1ν
1(0)

1lm2ν
2(0)

. . .

1lml
νl(0)

⎞

⎟
⎟
⎠ ,

(4.57)

where

1lmk
νk(0) =

⎛

⎜
⎝

νk1 (0) · · · νkmk
(0)

...
νk1 (0) · · · νkmk

(0)

⎞

⎟
⎠ .

Noting the block-diagonal structure of Q̃(0), we have

exp(Q̃(0)τ) =

⎛

⎜
⎜
⎜
⎝

exp(Q̃1(0)τ)

exp(Q̃2(0)τ)
. . .

exp(Q̃l(0)τ)

⎞

⎟
⎟
⎟
⎠
.

It is easy to see that

(p0 − ϕ0(0))1̃l = p01̃l− ϕ0(0))1̃l = p01̃l− ϑ0(0) = 0.

Owing to the choice of initial condition, (p0 − ϕ0(0)) is orthogonal to π,
and by virtue of Lemma 4.4, for each k = 1, . . . , l and some κ0,k > 0,

∣
∣
∣exp(Q̃k(0)τ)− 1lmk

νk(0)
∣
∣
∣ ≤ K exp(−κ0,kτ),
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we have

|ψ0(τ)| =
∣
∣
∣(p0 − ϕ0(0))[exp(Q̃(0)τ) − π]

∣
∣
∣

≤ K sup
k≤l

∣
∣
∣exp(Q̃k(0)τ) − 1lmk

νk(0)
∣
∣
∣

≤ K exp(−κ0,0τ),

where κ0,0 = mink≤l κ0,k > 0. �

Determining ϕi(·) and ψi(·) for i ≥ 1. In contrast to the situation
encountered in Section 4.2, the sequence {ϕi(·)} cannot be obtained with-
out the involvement of {ψi(·)}. We thus obtain the sequences pairwise.
While the determination of ϕ0(·) and ψ0(·) is similar to that of Section 4.2,
the solutions for the rest of the functions show distinct features resulting
from the underlying weak and strong interactions. With known

b0(t) =
dϕ0(t)

dt
− ϕ0(t)Q̂(t),

we proceed to solve the second equation in (4.44) together with the con-
straint

∑m
i=1 ϕ

i
1(t) = 0 due to (4.47). Partition the vectors ϕ1(t) and b0(t) as

ϕ1(t) = (ϕ1
1(t), . . . , ϕ

l
1(t)),

b0(t) = (b10(t), . . . , b
l
0(t)).

In view of the definition of Q(t) in (4.51) and ϕk
0(t) = νk(t)ϑk0(t), it follows

that b0(t)1̃l = 0, thus,

bk0(t)1lmk
= 0, k = 1, . . . , l.

Let ϑk1(t) denote the function such that
∑l

k=1 ϑ
k
1(t) = 0 because ϕ1(t)1l = 0.

Then for each k = 1, . . . , l, the solution to

ϕk
1(t)Q̃

k(t) = bk0(t),

ϕk
1(t)1lmk

= ϑk1(t),

(4.58)

can be expressed as

ϕk
1(t) = b̃k0(t) + ϑk1(t)ν

k(t), (4.59)
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where b̃k0(t) is a solution to the following equation:

b̃k0(t)Q̃
k(t) = bk0(t),

b̃k0(t)1lmk
= 0,

or equivalently,

b̃k0(t)(1lmk

...Q̃k(t)) = (0
...bk0(t)).

The procedure for solving this equation is similar to that for ϕ0(·).
Analogously to the previous treatment, we proceed to determine ϑk1(t)

by solving the system of equations

Lε

( n+1∑

i=0

εiϕi(t)1̃l

)

= 0. (4.60)

Using the conditions

b̃k0(t)1lmk
= 0 and νk(t)1lmk

= 1,

we have

ϕ1(t)1̃l = (ϑ11(t), . . . , ϑ
l
1(t))

and

ϕ1(t)Q̂(t)1̃l = (ϑ11(t), . . . , ϑ
l
1(t))Q(t) + (̃b10(t), . . . , b̃

l
0(t))Q̂(t)1̃l,

where Q(t) was defined in (4.51).
By equating the coefficients of ε2 in (4.60), we obtain a system of linear

inhomogeneous equations

d

dt
(ϑ11(t), . . . , ϑ

l
1(t)) = (ϑ11(t), . . . , ϑ

l
1(t))Q(t)

+(̃b10(t), . . . , b̃
l
0(t))Q̂(t)1̃l,

(4.61)

with initial conditions

ϑk1(0), for k = 1, 2, . . . , l such that
l∑

k=1

ϑk1(0) = 0.

Again, as observed in Remark 4.23, equation (4.61) comes from the con-
sideration in the sense of Fredholm since the functions on the right-hand
sides in (4.44) must be orthogonal to 1̃l.
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The initial conditions ϑk1(0) for k = 1, . . . , l have not been completely
specified yet. We do this later to ensure the matched asymptotic expansion.
Once the ϑk1(0)’s are given, the solution of the above equation is

(ϑ11(t), . . . , ϑ
l
1(t)) = (ϑ11(0), . . . , ϑ

l
1(0))X(t, 0)

+

∫ t

0

(̃b10(s), . . . , b̃
l
0(s))Q̂(s)1̃lX(t, s)ds.

Thus if the initial value ϑk1(0) is given, then ϑ
k
1(·), k = 1, . . . , l can be found,

and so can ϕ1(·). Moreover, ϕ1(·) is n-times continuously differentiable on
[0, T ]. The problem boils down to finding the initial condition of ϑ1(0).
So far, with the proviso of specified initial conditions ϑk1(0), for k =

1, . . . , l, the construction of ϕ1(·) has been completed, and its smoothness
has been established. Compared with the determination of ϕ0(·), the mul-
tipliers ϑk1(·) can no longer be determined using the information about
the regular part alone because its initial values have to be determined in
conjunction with that of the singular part. This will be seen as follows.
In view of (4.55),

ψ1(τ) = ψ1(0) exp(Q̃(0)τ)

+

∫ τ

0

ψ0(0) exp(Q̃(0)s)Q̂(0) exp(Q̃(0)(τ − s))ds

+

∫ τ

0

sψ0(0) exp(Q̃(0)s)
dQ̃(0)

dt
exp(Q̃(0)(τ − s))ds.

(4.62)

Recall that ψ1(0) has not been specified yet.

Similar to Section 4.2, for each t ∈ [0, T ], Q̃(t)1̃l = 0. Therefore,
(
diQ̃(t)

dti

)

1̃l = 0 and

(
diQ̃(0)

dti

)

π = 0,

for i = 1, . . . , n+1, where π is defined in (4.57). This together with ψ0(0)π =
0 yields

∣
∣
∣
∣

∫ τ

0

sψ0(0) exp(Q̃(0)s)
dQ̃(0)

dt
exp(Q̃(0)(τ − s))ds

∣
∣
∣
∣

≤
∫ τ

0

s

∣
∣
∣
∣ψ0(0)[exp(Q̃(0)s)− π]

∣
∣
∣
∣

×
∣
∣
∣
∣
dQ̃(0)

dt
[exp(Q̃(0)(τ − s))− π]

∣
∣
∣
∣ds

≤ Kτ2 exp(−κ0,0τ).

(4.63)
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To obtain the desired property, we need only work with the first two terms
on the right side of the equal sign of (4.62). Noting the exponential decay

property of ψ0(τ) = ψ0(0) exp(Q̃(0)τ), we have

∫ ∞

0

∣
∣
∣ψ0(0) exp(Q̃(0)s)

∣
∣
∣ds <∞,

that is, the improper integral converges absolutely. Set

ψ0 =

(∫ ∞

0

ψ0(0) exp(Q̃(0)s)ds

)

Q̂(0) ∈ R
1×m. (4.64)

Consequently,

lim
τ→∞

ψ1(0) exp(Q̃(0)τ) = ψ1(0)π and

lim
τ→∞

∫ τ

0

ψ0(0) exp(Q̃(0)s)Q̂(0) exp(Q̃(0)(τ − s))ds

=

(∫ ∞

0

ψ0(0) exp(Q̃(0)s)ds

)

Q̂(0)π

:= ψ0π.

(4.65)

Recall that π = diag(1lm1ν
1(0), . . . , 1lml

νl(0)). Partitioning the vector ψ0

as (ψ
1

0, . . . , ψ
l

0) for k = 1, . . . , l, we have

ψ1(0)π =
((
ψ1
1(0)1lm1

)
ν1(0), . . . ,

(
ψl
1(0)1lml

)
νl(0)

)

ψ0π =
((
ψ
1

01lm1

)
ν1(0), . . . ,

(
ψ
l

01lml

)
νl(0)

)
.

(4.66)

Our expansion requires that limτ→∞ ψ1(τ) = 0. As a result,

ψ1(0)π + ψ0π = 0, (4.67)

which implies, by virtue of (4.66),

ψk
1 (0)1lmk

= −ψk

01lmk
,

for k = 1, . . . , l. Solving these equations and in view of

ϑk1(0) = ϕk
1(0)1lmk

,

we choose

ϑk1(0) = −ψk
1 (0)1lmk

= ψ
k

01lmk
for k = 1, . . . , l.
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Substituting these into (4.59), we obtain ϕ1(·). Finally, we use ψ1(0) =
−ϕ1(0). The process of choosing initial conditions for ϕ1(·) and ψ1(·) is
complete. Furthermore,

|ψ1(τ)| ≤ K exp(−κ1,0τ) for some 0 < κ1,0 < κ0,0.

This procedure can be applied to ϕi(·) and ψi(·) for i = 2, . . . , n+1. We
proceed recursively to solve for ϕi(·) and ψi(·) jointly. Using exactly the
same methods as the solution for ϕ1(·), we define

ϑki (t) = ϕk
i (t)1lmk

,

for each k = 1, . . . , l and i = 2, . . . , n+ 1. Similar to b̃k0(·), we define b̃ki (·).
and write

b̃i(t) = (̃b1i (t), . . . , b̃
l
i(t)).

Proceeding inductively, suppose that ϑki (0) is selected and in view of (4.55),
it has been shown that

|ψi(τ)| ≤ K exp(−κi,0τ), i ≤ n (4.68)

for some 0 < κi,0 < κi−1,0. Solve

ψi+1(0)π = −
( i∑

j=0

∫ ∞

0

sj

j!
ψi−j(s)ds

djQ̂(0)

dtj

)

π := −ψiπ

to obtain ψk
i+1(0)1lmk

= −ψk

i 1lmk
. Set

ϑki+1(0) = −ψk
i+1(0)1lmk

= ψ
k

i 1lmk
, for k = 1, . . . , l.

Finally choose ψi+1(0) = −ϕi+1(0). We thus have determined the initial
conditions for ϕi(·). Exactly the same arguments as in Proposition 4.25
lead to

|ψi+1(τ)| ≤ K exp(−κi+1,0τ) for some 0 < κi+1,0 < κi,0.

Proposition 4.26. Assume (A4.3) and (A4.4). Then the following asser-
tions hold:

(a) The sequences of row-vector-valued functions ϕi(·) and ϑi(·) for i =
1, 2, . . . , n can be obtained by solving the system of algebraic differen-
tial equations

ϕi(t)Q̃(t) =
dϕi−1(t)

dt
− ϕi−1(t)Q̂(t),

ϑki (t) = ϕk
i (t)1lmk

,

dϑi(t)

dt
= ϑi(t)Q(t) + b̃i−1(t)Q̂(t)1̃l.

(4.69)
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(b) For i = 1, . . . , n, the initial conditions are selected as follows:

– For k = 1, 2, . . . , l, find ψk
i (0)1lmk

from the equation

ψi(0)π = −
( i−1∑

j=0

∫ ∞

0

sj

j!
ψi−j−1(s)ds

djQ̂(0)

dtj

)

π := −ψi−1π.

– Choose

ϑki (0) = −ψk
i (0)1lmk

= ψ
k

i−11lmk
, for k = 1, . . . , l.

– Choose ψi(0) = −ϕi(0).

(c) There is a positive real number 0 < κ0 < κi,0 (given in (4.68)) for
i = 0, 1, . . . , n+ 1 such that

|ψi(τ)| ≤ K exp(−κ0τ).

(d) The choice of initial conditions yields that ϑki (·) is (n + 1 − i)-times
continuously differentiable on [0, T ] and hence ϕi(·) is (n+1−i)-times
continuously differentiable on [0, T ]. �

4.3.2 Analysis of Remainder

The objective here is to carry out the error analysis and validate the asymp-
totic expansion. Since the details are quite similar to those of Section 4.2,
we make no attempt to spell them out. Only the following lemma and
proposition are presented.

Lemma 4.27. Suppose that (A4.3) and (A4.4) are satisfied. Let ηε(·) be a
function such that

sup
t∈[0,T ]

|ηε(t)| = O(εk+1) for k ≤ n

and let Lε be an operator defined in (4.42). If f ε(·) is a solution to the
equation

Lεf ε(t) = ηε(t) with f ε(0) = 0,

then f ε(·) satisfies
sup

t∈[0,T ]

|f ε(t)| = O(εk).

Proof: Note that using Qε(t) = Q̃(t)/ε+ Q̂(t), the differential equation can
be written as

df ε(t)

dt
= f ε(t)Qε(t) +

ηε(t)

ε
.

We can then proceed as in the proof of Lemma 4.13. �

Lemma 4.27 together with detailed computation similar to that of Section
4.2 yields the following proposition.
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Proposition 4.28. For each i = 0, 1, . . . , n, define

eεi (t) = pε(t)− yεi (t). (4.70)

Under conditions (A4.3) and (A4.4),

sup
0≤t≤T

|eεi (t)| = O(εi+1).

4.3.3 Computational Procedure: User’s Guide

Since the constructions of ϕi(·) and ψi(·) are rather involved, and the choice
of initial conditions is tricky, we summarize the procedure below. This pro-
cedure, which can be used as a user’s guide for developing the asymptotic
expansion, comprises two main stages.

Step 1: Initialization: finding ϕ0(·) and ψ0(·).

1. Obtain the unique solution ϕ0(·) via (4.54).

2. Obtain the unique solution ψ0(·) via (4.55) and the initial con-
dition ψ0(0) = p0 − ϕ0(0).

Step 2. Iteration: finding ϕi(·) and ψi(·) for 1 ≤ i ≤ n.
While i ≤ n, do the following:

1. Find ϕi(·) the solution of (4.69) with temporarily unspecified
ϑki (0) for k = 1, . . . , l.

2. Obtain ψi(·) from (4.55) with temporarily unspecified ψi(0).

3. Use the equation

ψi(0)π = −
( i−1∑

j=0

∫ ∞

0

sj

j!
ψi−j−1(s)ds

djQ̂(0)

dtj

)

π := −ψi−1π

to obtain ψk
i (0)1lmk

= −ψk

i−11lmk
.

4. Set ϑki (0) = −ψk
i (0)1lmk

= ψ
k

i−11lmk
. By now, ϕi(·) has been

determined uniquely.

5. Choose ψi(0) = −ϕi(0). By now, ψi(·) has also been determined
uniquely.

6. Set i = i+ 1.

7. If i > n, stop.

4.3.4 Summary of Results

While the previous subsection gives the computational procedure, this
subsection presents the main theorem. It establishes the validity of the
asymptotic expansion.
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Theorem 4.29. Suppose conditions (A4.3) and (A4.4) are satisfied. Then
the asymptotic expansion

yεn(t) =

n∑

i=0

(

εiϕi(t) + εiψi

(
t

ε

))

can be constructed as in the computational procedure such that

(a) ϕi(·) is (n+ 1− i)-times continuously differentiable on [0, T ];

(b) |ψi(t)| ≤ K exp(−κ0t) for some κ0 > 0;

(c) |pε(t)− yεn(t)| = O(εn+1) uniformly in t ∈ [0, T ].

Remark 4.30 In general, in view of Proposition 4.11, the error bound is
of the form c2n(t) exp(−κ0t), where c2n(t) is a polynomial of degree 2n.
The exponential constant κ0 typically depends on n. The larger n is, the
smaller κ0 will be to account for the polynomial c2n(t).

The following result is a corollary to Theorem 4.29 and will be used in
Chapters 5 and 7. Denote the jth component of νk(t) by νkj (t).

Corollary 4.31. Assume, in addition to the conditions in Theorem 4.29
with n = 0, that Q̃(t) = Q̃ and Q̂(t) = Q̂ are time independent. Then there
exist positive constants K and κ0 (both independent of ε and t) such that

∣
∣
∣P (αε(t) = skj)− νkj (t)ϑ

k(t)
∣
∣
∣ ≤ K

(

ε(t+ 1) + exp

(

−κ0t
ε

))

, (4.71)

where ϑk(t) satisfies

d

dt
(ϑ1(t), . . . , ϑl(t)) = (ϑ1(t), . . . , ϑl(t))Q,

with (ϑ1(0), . . . , ϑl(0)) = (P (αε(0) ∈ M1), . . . , P (α
ε(0) ∈ Ml)).

Proof: By a slight modification of the analysis of remainder in Section
4.3, we can obtain (4.71) with a constant K independent of ε and t. The
second part of the lemma follows from the uniqueness of the solution to
the ordinary differential equation (4.71). �

Remark 4.32. We mention an alternative approach to establishing the
asymptotic expansion. In lieu of the constructive procedure presented pre-
viously, one may wish to write ϕi(t) as a sum of solutions of the homoge-
neous part and the inhomogeneous part. For instance, one may set

ϕi(t) = vi(t)diag(ν
1(t), . . . , νl(t)) + Ui(t), (4.72)
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where vi(t) ∈ R
l and Ui(t) is a particular solution of the inhomogeneous

equation. For i ≥ 0, the equation

ϕ(i+1)(t)Q̃(t) =
dϕi(t)

dt
− ϕi(t)Q̂(t)

and Q̃(t)1̃l = 0 lead to

0 =

(
dϕi(t)

dt
− ϕi(t)Q̂(t)

)

1̃l.

Substituting (4.72) into the equation above, and noting that νk(t)1lmk
= 1

for k = 1, . . . , l, and that diag(ν1(t), . . . , νl(t))1̃l = Il, the l × l identity
matrix, one obtains

dvi(t)

dt
= vi(t)Q(t) + Ui(t)Q̂(t)1̃l−

(
dUi(t)

dt

)

1̃l.

One then proceeds to determine vi(0) via the matching condition. The main
ideas are similar, and the details are slightly different.

4.3.5 An Example

Consider Example 4.20 again. Note that the conditions in (A4.3) and (A4.4)
require that

λ1(t) + μ1(t) > 0 for all t ∈ [0, T ],

and the jump rates λ(t) and μ(t) be smooth enough.
The probability distribution of the state process is given by pε(t)

satisfying

dpε(t)

dt
= pε(t)Qε(t),

pε(0) = p0 such that

p0i ≥ 0 and

4∑

i=1

p0i = 1.

To solve this set of equations, note that

d

dt
(pε1(t) + pε2(t)) = −λ2(t)(pε1(t) + pε2(t)) + μ2(t)(p

ε
3(t) + pε4(t)),

d

dt
(pε1(t) + pε3(t)) = −λ1(t)

ε
(pε1(t) + pε3(t)) +

μ1(t)

ε
(pε2(t) + pε4(t)),

d

dt
(pε2(t) + pε4(t)) =

λ1(t)

ε
(pε1(t) + pε3(t))−

μ1(t)

ε
(pε2(t) + pε4(t)),

d

dt
(pε3(t) + pε4(t)) = λ2(t)(p

ε
1(t) + pε2(t))− μ2(t)(p

ε
3(t) + pε4(t)).
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To proceed, define functions a12(t), a13(t), a24(t), and a34(t) as follows:

a12(t) = (p01 + p02) exp

(

−
∫ t

0

(λ2(s) + μ2(s))ds

)

+

∫ t

0

μ2(u) exp

(

−
∫ t

u

(λ2(s) + μ2(s))ds

)

du,

a13(t) = (p01 + p03) exp

(

−1

ε

∫ t

0

(λ1(s) + μ1(s))ds

)

+

∫ t

0

μ1(u)

ε
exp

(

−1

ε

∫ t

u

(λ1(s) + μ1(s))ds

)

du,

a24(t) = (p02 + p04) exp

(

−1

ε

∫ t

0

(λ1(s) + μ1(s))ds

)

+

∫ t

0

λ1(u)

ε
exp

(

−1

ε

∫ t

u

(λ1(s) + μ1(s))ds

)

du,

a34(t) = (p03 + p04) exp

(

−
∫ t

0

(λ2(s) + μ2(s))ds

)

+

∫ t

0

λ2(u) exp

(

−
∫ t

u

(λ2(s) + μ2(s))ds

)

du.

Then using the fact that pε1(t) + pε2(t) + pε3(t) + pε4(t) = 1, we have

pε1(t) + pε2(t) = a12(t),

pε1(t) + pε3(t) = a13(t),

pε2(t) + pε4(t) = a24(t),

pε3(t) + pε4(t) = a34(t).

(4.73)

Note also that

dpε1(t)

dt
= −

(
λ1(t)

ε
+
μ1(t)

ε
+ λ2(t) + μ2(t)

)

pε1(t)

+
μ1(t)

ε
a12(t) + μ2(t)a13(t).

The solution to this equation is

pε1(t) = p01 exp

(

−
∫ t

0

(
λ1(s) + μ1(s)

ε
+ λ2(s) + μ2(s)

)

ds

)

+

∫ t

0

(
μ1(u)

ε
a12(u) + μ2(u)a13(u)

)

× exp

(

−
∫ t

u

(
λ1(s) + μ1(s)

ε
+ λ2(s) + μ2(s)

)

ds

)

du.
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Consequently, in view of (4.73), it follows that

pε2(t) = a12(t)− pε1(t),

pε3(t) = a13(t)− pε1(t),

pε4(t) = a24(t)− pε2(t).

In this example, the zeroth-order term is given by

ϕ0(t) = (ν1(t)ϑ10(t), ν
2(t)ϑ20(t)),

where the quasi-stationary distributions are given by

ν1(t) = ν2(t) =

(
μ1(t)

λ1(t) + μ1(t)
,

λ1(t)

λ1(t) + μ1(t)

)

,

and the multipliers (ϑ10(t), ϑ
2
0(t)) are determined by the differential equation

d

dt
(ϑ10(t), ϑ

2
0(t)) = (ϑ10(t), ϑ

2
0(t))

(
−λ2(t) λ2(t)

μ2(t) −μ2(t)

)

,

with initial value (ϑ10(0), ϑ
2
0(0)) = (p01 + p02, p

0
3 + p04).

The inner expansion term ψ0(τ) is given by

dψ0(τ)

dτ
= ψ0(τ)Q̃(0), ψ0(0) = p0 − ϕ0(0).

By virtue of Theorem 4.29,

pε(t)− ϕ0(t)− ψ0

(
t

ε

)

= O(ε),

provided that Qε(t) is continuously differentiable on [0, T ]. Noting the ex-
ponential decay of ψ0(t/ε), we further have

pε(t) = ϕ0(t) +O

(

ε+ exp

(

−κ0t
ε

))

.

In particular, for any t > 0,

lim
ε→0

pε(t) = ϕ0(t).

Namely, ϕ0(t) is the limit distribution of the Markov chain generated by
Qε(t).
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4.4 Inclusion of Absorbing States

While the case of recurrent states was considered in the previous section,
this section concerns the asymptotic expansion in which the Markov chain
generated by Qε(t) in which Q̃(t) includes components corresponding to

absorbing states. By rearrangement, the matrix Q̃(t) takes the form

Q̃(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Q̃1(t)

Q̃2(t)
. . .

Q̃l(t)
0ma×ma

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (4.74)

where Q̃k(t) ∈ R
mk×mk for k = 1, 2, . . . , l, 0ma×ma is an ma × ma zero

matrix, and

m1 +m2 + · · ·+ml +ma = m.

Let Ma = {sa1, . . . , sama} denote the set of absorbing states. We may, as
in Section 4.3, represent the state space as

M = M1 ∪ · · · ∪Ml ∪Ma

=
{
s11, . . . , s1m1 , . . . , sl1, . . . , slml

, sa1, . . . , sama

}
.

Following the development of Section 4.3, suppose that αε(·) is a Markov

chain generated by Qε(·) = Q̃(·)/ε+ Q̂(·). Compared with Section 4.3, the
difference is that now the dominant part in the generator includes absorbing
states corresponding to the ma ×ma matrix 0ma×ma . As in the previous
case, our interest is to obtain an asymptotic expansion of the probability
distribution.

Remark 4.33. The motivation of the current study stems from the
formulation of competitive risk theory discussed in Section 3.3. The idea is
that within the m states, there are several groups. Some of them are much
riskier than the others (in the sense of frequency of the occurrence of the
corresponding risks). The different rates (sensitivity) of risks are modeled
by the use of a small parameter ε > 0.

Denote by pε(·) the solution of (4.40). The objective here is to obtain an
asymptotic expansion

yεn =

n∑

i=0

εiϕi(t) +

n∑

i=0

εiψi

(
t

ε

)

.
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Since the techniques employed are essentially the same as in the previous
section, it will be most instructive here to highlight the main ideas. Thus,
we only note the main steps and omit most of the details.
Assume conditions (A4.3) and (A4.4) for the current matrices Q̃k(t),

Q̃(t), and Q̂(t). For t ∈ [0, T ], substituting the expansion above into (4.40)
and equating coefficients of εi, for i = 1, . . . , n+ 1, yields

ϕ0(t)Q̃(t) = 0,

ϕi(t)Q̃(t) =
dϕi−1(t)

dt
− ϕi−1(t)Q̂(t),

(4.75)

and (with the use of the stretched variable τ = t/ε)

dψ0(τ)

dτ
= ψ0(τ)Q̃(0),

dψi(τ)

dτ
= ψi(τ)Q̃(0) +

i−1∑

j=0

ψi−j−1(τ)

×
(
τ j

j!

djQ̂(0)

dtj
+

τ j+1

(j + 1)!

dj+1Q̃(0)

dtj+1

)

.

(4.76)

For each i ≥ 0, we use the following notation for the partitioned vectors:

ϕi(t) = (ϕ1
i (t), . . . , ϕ

l
i(t), ϕ

a
i (t)),

ψi(τ) = (ψ1
i (τ), . . . , ψ

l
i(τ), ψ

a
i (τ)).

In the above ϕa
i (t) and ψ

a
i (τ) are vectors in R

1×ma .
To determine the outer- and the initial-layer expansions, let us start

with i = 0. For each t ∈ [0, T ], the use of the partitioned vector ϕ0(t) leads
to

ϕk
0(t)Q̃

k(t) = 0, for k = 1, . . . , l.

Note that ϕa
0(t) does not show up in any of these equations owing to the

0ma×ma matrix in Q̃(t). It will have to be obtained from the equation in
(4.75) corresponding to i = 1. Put another way, ϕa

0(t) is determined mainly

by the matrix Q̂(t).
Similar to Section 4.3, ϕk

0(t) = ϑk0(t)ν
k(t), where νk(t) are the quasi-

stationary distributions corresponding to the generators Q̃k(t) for k =
1, . . . , l and ϑk0(t) are the corresponding multipliers. Define

1̃la =

⎛

⎜
⎜
⎝

1lm1

. . .

1lml

Ima

⎞

⎟
⎟
⎠ ,
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where Ima is an ma×ma identity matrix. Clearly, 1̃la is orthogonal to Q̃(t)

for each t ∈ [0, T ]. As a result, multiplying (4.75) by 1̃la from the right with
i = 1 leads to

dϕ0(t)

dt
1̃la = ϕ0(t)Q̂(t)1̃la,

(ϑ0(0), ϕ
a
0(0)) = p01̃la,

(4.77)

where ϑ0(0) = (ϑ10(0), . . . , ϑ
l
0(0)).

The above initial condition is a consequence of the initial-value consis-
tency condition in (4.53). It is readily seen that

l∑

k=1

ϑk0(0) = 1− ϕa
0(0)1lma = 1− p0,a1lma,

where p0 = (p0,1, . . . , p0,l, p0,a).
We write

ϕ0(t) = (ϑ10(t), . . . , ϑ
l
0(t), ϕ

a
0(t))diag(ν

1(t), . . . , νl(t), Ima).

Define

Q(t) = diag(ν1(t), . . . , νl(t), Ima)Q̂(t)1̃la. (4.78)

Then (4.77) is equivalent to

d

dt
(ϑ0(t), ϕ

a
0(t)) = (ϑ0(t), ϕ

a
0(t))Q(t),

(ϑ0(0), ϕ
a
0(0)) = p01̃la.

This is a linear system of differential equations. Therefore it has a unique
solution given by

(ϑ0(t), ϕ
a
0(t)) = p01̃laX(t, 0),

where X(t, 0) is the principal matrix solution of the homogeneous equation.
Thus ϕ0(t) has been found and is (n+1)-times continuously differentiable.

Remark 4.34. Note that in ϕ0(t), the term ϕa
0(t) corresponds to the set of

absorbing states Ma. Clearly, these states cannot be aggregated to a single
state as in the case of recurrent states. Nevertheless, the function ϕa

0(t)
tends to be stabilized in a neighborhood of a constant for t large enough.
To illustrate, let us consider a stationary case, that is, both Q̃(t) = Q̃ and

Q̂(t) = Q̂ are independent of t. Partition Q̂ as blocks of submatrices

Q̂ =

(
Q̂11 Q̂12

Q̂21 Q̂22

)

,
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where Q̂22 is an ma×ma matrix. Assume that the eigenvalues of Q̂22 have
negative real parts. Then, in view of the definition of Q(t) = Q in (4.78),
it follows that

ϕa
0(t) → a constant as t→ ∞.

Using the partition ψ0(τ) = (ψ1
0(τ), . . . , ψ

l
0(τ), ψ

a
0 (τ)), consider the zeroth-

order initial-layer term given by

dψ0(τ)

dτ
=

d

dτ
(ψ1

0(τ), . . . , ψ
l
0(τ), ψ

a
0 (τ))

= ψ0(τ)Q̃(0) = (ψ1
0(τ)Q̃

1(τ), . . . , ψl
0(τ)Q̃

l(0), 0ma).

We obtain

ψk
0 (τ) = ψk

0 (0) exp(Q̃
k(0)τ), for k = 1, . . . , l, and

ψa
0 (τ) = constant.

Noting that p0,a = ϕa
0(0) and choosing ψ0(0) = p0 −ϕ0(0) lead to ψa

0 (τ) =
0ma . Thus

ψ0(τ) = (ψ1
0(0) exp(Q̃

1(0)τ), . . . , ψl
0(0) exp(Q̃

l(0)τ), 0ma).

Similar to the result in Section 4.3, the following lemma holds. The proof
is analogous to that of Proposition 4.25.

Lemma 4.35. Define

πa = diag(1lm1ν
1(0), . . . , 1lml

νl(0), Ima).

Then there exist positive constants K and κ0,0 such that

| exp(Q̃(0)τ) − πa| ≤ K exp(−κ0,0τ).

By virtue of the lemma above and the orthogonality (p0 −ϕ0(0))πa = 0,
we have

|ψ0(τ)| = |(p0 − ϕ0(0))(exp(Q̃(0)τ) − πa)|

≤ K exp(−κ0,0τ)

for some K > 0 and κ0,0 > 0 given in Lemma 4.35; that is, ψ0(τ) decays
exponentially fast. Therefore, ψ0(τ) has the desired property.
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We continue in this fashion and proceed to determine the next term ϕ1(t)
as well as ψ1(t/ε). Let

b0(t) =
dϕ0(t)

dt
− ϕ0(t)Q̂(t) with

b0(t) = (b10(t), . . . , b
l
0(t), b

a
0(t)).

It is easy to check that ba0(t) = 0ma . The equation ϕ1(t)Q̃(t) = b0(t) then
leads to

ϕk
1(t)Q̃

k(t) = bk0(t), for k = 1, . . . , l,

ba0(t) = 0ma .

(4.79)

The solutions of the l inhomogeneous equations in (4.79) above are of
the form

ϕk
1(t) = ϑk1(t)ν

k(t) + b̃k0(t), k = 1, . . . , l,

where ϑk1(t) for k = 1, . . . , l are scalar multipliers. Again, ϕa
1(t) cannot be

obtained from the equation above, it must come from the contribution of
the matrix-valued function Q̂(t).
Note that

b̃k0(t)Q̃
k(t) = bk0(t) and b̃k0(t)1lmk

= 0.

Using the equation

ϕ2(t)Q̃(t) =
dϕ1(t)

dt
− ϕ1(t)Q̂(t),

one obtains

0 = ϕ2(t)Q̃(t)1̃la =
dϕ1(t)

dt
1̃la − ϕ1(t)Q̂(t)1̃la,

which in turn implies that

d

dt
(ϑ1(t), ϕ

a
1(t)) = (ϑ1(t), ϕ

a
1(t))Q(t)

+(̃b0(t), 0ma)Q̂(t)1̃la,

(4.80)

where

ϑ1(t) = (ϑ11(t), . . . , ϑ
l
1(t)) and b̃0(t) = (̃b10(t), . . . , b̃

l
0(t)).
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Let X(t, s) denote the principal matrix solution to the homogeneous dif-
ferential equation

dy(t)

dt
= y(t)Q(t).

Then the solution to (4.80) can be represented by X(t, s) as follows:

(ϑ1(t), ϕ
a
1(t)) = (ϑ1(0), ϕ

a
1(0))X(t, 0)

+

∫ t

0

(̃b0(s), 0ma)Q̂(s)1̃laX(t, s)ds.

Note that the initial conditions ϕa
1(0) and ϑ

k
1(0) for k = 1, . . . , l need to be

determined using the initial-layer terms just as in Section 4.3.
Using (4.76) with i = 1, one obtains an equation that has the same form

as that of (4.62). That is,

ψ1(τ) = ψ1(0) exp(Q̃(0)τ)

+

∫ τ

0

ψ0(0) exp(Q̃(0)s)Q̂(0) exp(Q̃(0)(τ − s))ds

+

∫ τ

0

sψ0(0) exp(Q̃(0)s)
dQ̃(0)

dt
exp(Q̃(0)(τ − s))ds.

As in Section 4.3, with the use of πa, it can be shown that |ψ1(τ)| ≤
K exp(−κ1,0τ) for some K > 0 and 0 < κ1,0 < κ0,0. By requiring that
ψ1(τ) decay to 0 as τ → ∞, we obtain the equation

ψ1(0)πa = −ψ0πa, (4.81)

where

ψ0 =

∫ ∞

0

ψ0(0) exp(Q̃(0)s)dsQ̂(0).

Owing to (4.81) and the known form of ψ0(τ),

ψ0 = (ψ
1

0, . . . , ψ
l

0, ψ
a

0)

= (p0,1 − ϕ1
0(0), . . . , p

0,l − ϕl
0, 0ma)

(∫ ∞

0

exp(Q̃(0)s)ds

)

Q̂(0),

which is a completely known vector. Thus the solution to (4.81) is

ψk
1 (0)1lmk

= −ψk

01lmk
for k = 1, . . . , l, and ψa

1 (0) = −ψa

0 .
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To obtain the desired matching property for the inner-outer expansions,
choose

ϑk1(0) = −ψk
1 (0)1lmk

= ψ
k

01lmk
for k = 1, . . . , l,

ϕa
1(0) = −ψa

1 (0) = ψ
a

0 .

In general, for i = 2, . . . , n, the initial conditions are selected as follows:
For k = 1, 2, . . . , l, find ψk

i (0)1lmk
from the equation

ψi(0)πa = −
( i−1∑

j=0

∫ ∞

0

sj

j!
ψi−j−1(s)ds

djQ̂(0)

dtj

)

πa := −ψi−1πa.

Choose

ϑki (0) = −ψk
i (0)1lmk

= ψ
k

i−11lmk
,

for k = 1, . . . , l,

φai (0) = −ψa

i−1, and ψi(0) = −ϕi(0).

Proceeding inductively, we then construct all ϕi(t) and ψi(τ). Moreover,
we can verify that there exists 0 < κi,0 < κi−1,0 < κ0,0 such that |ψi(τ)| ≤
K exp(−κi,0τ). This indicates that the inclusion of absorbing states is very
similar to the case of all recurrent states. In the zeroth-order outer ex-
pansion, there is a component ϕa

0(t) that “takes care of” the absorbing
states. Note, however, that starting from the leading term (zeroth-order
approximation), the matching will be determined not only by the multipli-
ers ϑi(0) but also by the vector ψi(0) associated with the absorbing states.
We summarize the results in the following theorem.

Theorem 4.36. Consider Q̃(t) given by (4.74), and suppose conditions

(A4.3) and (A4.4) are satisfied for the matrix-valued functions Q̃k(·) for

k = 1, . . . , l and Q̂(·). An asymptotic expansion

yεn(t) =

n∑

i=0

(

εiϕi(t) + εiψi

(
t

ε

))

exists such that

(a) ϕi(·) is (n+ 1− i)-times continuously differentiable on [0, T ];

(b) |ψi(t)| ≤ K exp(−κ0t) for some 0 < κ0 < κi,0;

(c) |pε(t)− yεn(t)| = O(εn+1) uniformly in t ∈ [0, T ].

Finally, at the end of this section, we give a simple example to illustrate
the result.
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Example 4.37. Let us consider a Markov chain generated by

Qε =
1

ε
Q̃+ Q̂,

where

Q̃ =

⎛

⎝
−1 1 0
1 −1 0
0 0 0

⎞

⎠ and Q̂ =

⎛

⎝
0 0 0
0 0 0
1 0 −1

⎞

⎠ .

Not being irreducible, the chain generated by Q̃ includes an absorbing state.

In this example, Q =

(
0 0
1 −1

)

. Let p0 = (p01, p
0
2, p

0,a) denote the initial

distribution of αε(·). Then solving the forward equation (4.40) gives us

pε(t) = (pε1(t), p
ε
2(t), p

ε
3(t)),

where

pε1(t) =
p01 + p02 + p0,a

2

−
(
−p01 + p02 − p0,a

2
+

p0,a

2− ε

)

exp

(

−2t

ε

)

−
(
(1− ε)p0,a

2− ε

)

exp(−t),

pε2(t) =
p01 + p02 + p0,a

2

+

(
−p01 + p02 − p0,a

2
+

p0,a

2− ε

)

exp

(

−2t

ε

)

−
(
p0,a

2− ε

)

exp(−t),

pε3(t) = p0,a exp(−t).

Computing ϕ0(t) yields

ϕ0(t) =

(
p01 + p02 + p0,a

2
,
p01 + p02 + p0,a

2
, 0

)

+

(

−p
0,a

2
,−p

0,a

2
, p0,a

)

exp(−t).

It is easy to see that for t > 0,

lim
ε→0

|pε(t)− ϕ0(t)| = 0.

The limit behavior of the underlying Markov chain as ε→ 0 is determined
by ϕ0(t) (for t > 0). Moreover, when t is large, the influence from Q̂ corre-
sponding to the absorbing state (the vector multiplied by exp(−t)) can be
ignored because exp(−t) goes to 0 exponentially fast as t → ∞.
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4.5 Inclusion of Transient States

If a Markov chain has transient states, then, relabeling the states through
suitable permutations, one can decompose the states into several groups
of recurrent states, each of which is weakly irreducible, and a group of
transient states. Naturally, we consider the generator Q̃(t) in Qε(t) having
the form

Q̃(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Q̃1(t)
. . .

Q̃l(t)

Q̃1
∗(t) · · · Q̃l

∗(t) Q̃∗(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(4.82)

such that for each t ∈ [0, T ], and each k = 1, . . . , l, Q̃k(t) is a generator

with dimension mk ×mk, Q̃∗(t) is an m∗ ×m∗ matrix, Q̃k
∗(t) ∈ R

m∗×mk ,
and

m1 +m2 + · · ·+ml +m∗ = m.

We continue our study of singularly perturbed chains with weak and strong
interactions by incorporating the transient states into the model. Let αε(·)
be a Markov chain generated by Qε(·), with Qε(t) ∈ R

m×m given by (4.39)

with Q̃(t) given by (4.82). The state space of the underlying Markov chain
is given by

M = M1 ∪ · · · ∪Ml ∪M∗

where Mk = {sk1, . . . , skmk
} are the states corresponding to the recurrent

states and M∗ = {s∗1, . . . , s∗m∗} are those corresponding to the transient
states.
Since Q̃(t) is a generator, for each k = 1, . . . , l, Q̃k(t) is a generator.

Thus the matrix Q̃k
∗(t) = (q̃k∗,ij) satisfies q̃k∗,ij ≥ 0 for each i = 1, . . . ,m∗

and j = 1, . . . ,mk, and Q̃∗(t) = (q̃∗,ij) satisfies

q̃∗,ij(t) ≥ 0 for i �= j, q̃∗,ii(t) < 0, and q̃∗,ii(t) ≤ −
∑

j �=i

q̃∗,ij(t).

Roughly, the block matrix (Q̃1
∗(t), . . . , Q̃

l
∗(t), Q̃∗(t)) is “negatively domi-

nated” by the matrix Q̃∗(t). Thus it is natural to assume that Q̃∗(t) is a
stable matrix (or Hurwitz, i.e., all its eigenvalues have negative real parts).

Comparing with the setups of Sections 4.3 and 4.4, the difference in Q̃(t) is

the additional matrices Q̃k
∗(t) for k = 1, . . . , l and Q̃∗(t). Note that Q̃k

∗(t)

are nonsquare matrices, and Q̃(t) no longer has block-diagonal form.
The formulation here is inspired by the work of Phillips and Kokotovic

[175] and Delebecque and Quadrat [44]; see also the recent work of Pan and

Başar [164], in which the authors treated time-invariant Q̃ matrix of a sim-
ilar form. Sections 4.3 and 4.4 together with this section essentially include
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generators of finite-state Markov chains of the most practical concerns.
It ought to be pointed out that just as one cannot in general simultane-
ously diagonalize two matrices, for Markov chains with weak and strong
interactions, one cannot put both Q̃(t) and Q̂(t) into the forms mentioned
above simultaneously. Although the model to be studied in this section is
slightly more complex compared with the block-diagonal Q̃(t) in (4.41),
we demonstrate that an asymptotic expansion of the probability distribu-
tion can still be obtained by using the same techniques of the previous
sections. Moreover, it can be seen from the expansion that the underlying
Markov chain stays in the transient states only with very small probability.
In some cases, for example Q̂(t) = 0, these transient states can be ignored;
see Remark 4.40 for more details.
To incorporate the transient states, we need the following conditions.

The main addition is the assumption that Q̃∗(t) is stable.

(A4.5) For each t ∈ [0, T ] and k = 1, . . . , l, Q̃(t), Q̂(t), and Q̃k(t) satisfy
(A4.3) and (A4.4).

(A4.6) For each t ∈ [0, T ], Q̃∗(t) is Hurwitz (i.e., all of its eigenvalues
have negative real parts).

Remark 4.38. Condition (A4.6) indicates the inclusion of transient states.

Since Q̃∗(t) is Hurwitz, it is nonsingular. Thus the inverse matrix Q̃−1
∗ (t)

exists for each t ∈ [0, T ].

Let pε(·) denote the solution to (4.40) with Q̃(t) specified in (4.82).
We seek asymptotic expansions of pε(·) having the form

yεn(t) =
n∑

i=0

εiϕi(t) +
n∑

i=0

εiψi

(
t

ε

)

.

The development is very similar to that of Section 4.3, so no attempt is
made to give verbatim details. Instead, only the salient features will be
brought out.
Substituting yεn(t) into the forward equation and equating coefficients of

εi for i = 1, . . . , n lead to the equations

ϕ0(t)Q̃(t) = 0,

ϕi(t)Q̃(t) =
dϕi−1(t)

dt
− ϕi−1(t)Q̂(t),

(4.83)
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and with the change of time scale τ = t/ε,

dψ0(τ)

dτ
= ψ0(τ)Q̃(0),

dψi(τ)

dτ
= ψi(τ)Q̃(0) +

i−1∑

j=0

ψi−j−1(τ)

×
(
τ j

j!

djQ̂(0)

dtj
+

τ j+1

(j + 1)!

dj+1Q̃(0)

dtj+1

)

.

(4.84)

As far as the expansions are concerned, the equations have exactly the same
form as that of Section 4.3. Note, however, that the partitioned vector ϕi(t)
has the form

ϕi(t) = (ϕ1
i (t), . . . , ϕ

l
i(t), ϕ

∗
i (t)), i = 0, 1, . . . , n,

where ϕk
i (t), k = 1, . . . , l, is an mk row vector and ϕ∗

i (t) is an m∗ row
vector. A similar partition holds for the vector ψi(t). To construct these

functions, we begin with i = 0. Writing ϕ0(t)Q̃(t) = 0 in terms of the
corresponding partition, we have

ϕk
0(t)Q̃

k(t) + ϕ∗
0(t)Q̃

k
∗(t) = 0, for k = 1, . . . , l, and

ϕ∗
0(t)Q̃∗(t) = 0.

Since Q̃∗(t) is stable, it is nonsingular. The last equation above implies
ϕ∗
0(t) = 0m∗ = (0, . . . , 0) ∈ R

1×m∗ . Consequently, as in the previous sec-

tion, for each k = 1, . . . , l, the weak irreducibility of Q̃k(t) implies that
ϕk
0(t) = ϑk0(t)ν

k(t), for some scalar function ϑk0(t). Equivalently,

ϕ0(t) = (ϑ10(t)ν
1(t), . . . , ϑl0(t)ν

l(t), 0m∗).

Comparing the equation above with the corresponding expression of ϕ0(t)
in Section 4.3, the only difference is the addition of the m∗-dimensional
row vector 0m∗ .

Remark 4.39. Note that the dominant term in the asymptotic expansion
is ϕ0(t), in which the probabilities corresponding to the transient states
are 0. Thus, the probability corresponding to αε(t) ∈ { transient states }
is negligibly small.

Define

1̃l∗(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1lm1

. . .

1lml

am1(t) · · · aml
(t) 0m∗×m∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.85)
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where amk
(t) = −Q̃−1

∗ (t)Q̃k
∗(t)1lmk

for k = 1, . . . , l, and 0m∗×m∗ is the zero
matrix in R

m∗×m∗ .
It is readily seen that

Q̃(t)1̃l∗(t) = 0 for each t ∈ [0, T ].

In view of (4.83), it follows that

d

dt
(ϑ10(t), . . . , ϑ

l
0(t), 0m∗)

= (ϑ10(t), . . . , ϑ
l
0(t), 0m∗)Q(t),

(4.86)

where

Q(t) = diag(ν1(t), . . . , νl(t), 0m∗×m∗)Q̂(t)1̃l∗(t).

We write Q̂(t) as follows:

Q̂(t) =

⎛

⎝
Q̂11(t) Q̂12(t)

Q̂21(t) Q̂22(t)

⎞

⎠ ,

where for each t ∈ [0, T ],

Q̂11(t) ∈ R
(m−m∗)×(m−m∗), Q̂12(t) ∈ R

(m−m∗)×m∗ ,

Q̂21(t) ∈ R
m∗×(m−m∗), and Q̂22(t) ∈ R

m∗×m∗ .

Let

Q∗(t) = diag(ν1(t), . . . , νl(t))
(
Q̂11(t)1̃l + Q̂12(t)(am1(t), . . . , aml

(t))
)
.

Then Q(t) = diag(Q∗(t), 0m∗×m∗). Moreover, the differential equation
(4.86) becomes

d

dt
(ϑ10(t), . . . , ϑ

l
0(t)) = (ϑ10(t), . . . , ϑ

l
0(t))Q∗(t).

Remark 4.40. Note that the submatrix Q̂12(t) in Q̂(t) determines the
jump rates of the underlying Markov chain from a recurrent state in M1 ∪
· · · ∪ Ml to a transient state in M∗. If the magnitude of the entries of
Q̂12(t) is small, then the transient state can be safely ignored because the

contribution of Q̂12(t) to Q(t) is small. On the other hand, if Q̂12(t) is not
negligible, then one has to be careful to include the corresponding terms in
Q(t).



4.5 Inclusion of Transient States 119

We now determine the initial value ϑk0(0). In view of the asymptotic
expansions yεn(t) and the initial-value consistency condition in (4.53), it is
necessary that for k = 1, . . . , l,

ϑk0(0) = ϕk
0(0)1lmk

= lim
δ→0

lim
ε→0

pε,k(δ)1lmk
, (4.87)

where pε(t) = (pε,1(t), . . . , pε,l(t), pε,∗(t)) is a solution to (4.40). Here pε,k(t)
has dimensions compatible with ϕk

0(0) and ψk
0 (0). Similarly, we write the

partition of the initial vector as p0 = (p0,1, . . . , p0,l, p0,∗). The next theorem
establishes the desired consistency of the initial values. Its proof is placed
in Appendix A.4.

Theorem 4.41. Assume (A4.5) and (A4.6). Then for k = 1, . . . , l,

lim
δ→0

(

lim sup
ε→0

∣
∣
∣pε,k(δ)1lmk

−
(
p0,k1lmk

− p0,∗Q̃−1
∗ (0)Q̃k

∗(0)1lmk

)∣
∣
∣

)

= 0.

Remark 4.42. In view of this theorem, the initial value should be given as

ϑk0(0) = p0,k1lmk
− p0,∗Q̃−1

∗ (0)Q̃k
∗(0)1lmk

. (4.88)

Therefore, in view of (4.88), to make sure that the initial condition satisfies
the probabilistic interpretation, it is necessary that

ϑk0(t) ≥ 0 for t ∈ [0, T ] and k = 1, . . . , l and

l∑

k=1

ϑk0(0) = 1.

In view of the structure of the Q̃(0) matrix, for each k = 1, . . . , l, all

components of the vector Q̃k
∗(0)1lmk

are nonnegative. Note that the solution
of the differential equation

dy(t)

dt
= y(t)Q̃(0),

y(0) = p0

is p0 exp(Q̃(0)t). This implies that all components of p0,∗ exp(Q̃∗(0)t) are

nonnegative. By virtue of the stability of Q̃∗(0),

−Q̃−1
∗ (0) =

∫ ∞

0

exp(Q̃∗(0)t)dt.

Thus all components of −p0,∗Q̃−1
∗ (0) are nonnegative, and as a result, the

inner product

−p0,∗Q̃−1
∗ (0)Q̃k

∗(0)1lmk
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is nonnegative. It follows that for each k = 1, . . . , l, ϑk0(0) ≥ p0,k1lmk
≥ 0.

Moreover,

l∑

k=1

ϑk0(0) =

l∑

k=1

p0,k1lmk
− p0,∗Q̃−1

∗ (0)

( l∑

k=1

Q̃k
∗(0)1lmk

)

= (1− p0,∗1lm∗)− p0,∗Q̃−1
∗ (0)(−Q̃∗(0)1lm∗) = 1.

(4.89)

Before treating the terms in ψ0(·), let us give an estimate on exp(Q̃(0)t).

Lemma 4.43. Set

π∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1lm1ν
1(0)

. . .

1lml
νl(0)

am1(0)ν
1(0) · · · aml

(0)νl(0) 1lm∗0m∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then there exist positive constants K and κ0,0 such that

∣
∣
∣ exp(Q̃(0)τ) − π∗

∣
∣
∣ ≤ K exp(−κ0,0τ), (4.90)

for τ ≥ 0.

Proof: To prove (4.90), it suffices to show for any m-row vector y0,

∣
∣
∣y0(exp(Q̃(0)τ)− π∗)

∣
∣
∣ ≤ K|y0| exp(−κ0τ).

Given y0 = (y0,1, . . . , y0,l, y0,∗) ∈ R
1×m, let

y(τ) = (y1(τ), . . . , yl(τ), y∗(τ)) = y0 exp(Q̃(0)τ).

Then, y(τ) is a solution to

dy(τ)

dτ
= y(τ)Q̃(0), y(0) = y0.

It follows that

y∗(τ) = y0,∗ exp(Q̃∗(0)τ)

and for k = 1, . . . , l,

yk(τ) = y0,k exp(Q̃k(0)τ) +

∫ τ

0

y∗(s)Q̃k
∗(0) exp(Q̃

k(0)(τ − s))ds.
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For each k = 1, . . . , l, we have

yk(τ) −
(

y0,k1lmk
νk(0) + y0,∗

∫ ∞

0

exp(Q̃∗(0)s)dsQ̃
k
∗(0)1lmk

νk(0)

)

= y0,k
(
exp(Q̃k(0)τ)− 1lmk

νk(0)
)

+y0,∗
∫ τ

0

exp(Q̃∗(0)s)Q̃
k
∗(0)

(
exp(Q̃k(0)(τ − s))− 1lmk

νk(0)
)
ds

−y0,∗
∫ ∞

τ

exp(Q̃∗(0)s)Q̃
k
∗(0)1lmk

νk(0)ds.

By virtue of the stability of Q̃∗(0), the last term above is bounded above by
K|y0,∗| exp(−κ∗τ). Recall that by virtue of Lemma 4.4, for some κ0,k > 0,

∣
∣
∣exp(Q̃k(0)τ)− 1lmk

νk(0)
∣
∣
∣ ≤ K exp(−κ0,kτ).

Choose κ0,0 = min(κ∗,mink{κ0,k}). The terms in the second and the third
lines above are bounded by K|y0| exp(−κ0,0τ). The desired estimate thus
follows. �

Next consider the first equation in the initial-layer expansions:

dψ0(τ)

dτ
= ψ0(τ)Q̃(0).

The solution to this equation can be written as

ψ0(τ) = ψ0(0) exp(Q̃(0)τ).

To be able to match the asymptotic expansion, choose

ψ0(0) = p0 − ϕ0(0).

Thus,

ψ0(τ) = (p0 − ϕ0(0)) exp(Q̃(0)τ)

= (p0 − ϕ0(0))
(
exp(Q̃(0)τ)− π∗

)
+ (p0 − ϕ0(0))π∗.

By virtue of the choice of ϕ0(0), it is easy to show that

(p0 − ϕ0(0))π∗ = 0.

Therefore, in view of Lemma 4.43, ψ0(·) decays exponentially fast in that
for some constants K and κ0,0 > 0 given in Lemma 4.43,

|ψ0(τ)| ≤ K exp(−κ0,0τ), τ ≥ 0.
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We have obtained ϕ0(·) and ψ0(·). To proceed, set

b0(t) =
dϕ0(t)

dt
− ϕ0(t)Q̂(t)

and

b0(t) = (b10(t), . . . , b
l
0(t), b

∗
0(t)).

Note that b0(t) is a completely known function.
In view of the second equation in (4.83),

ϕk
1(t)Q̃

k(t) + ϕ∗
1(t)Q̃

k
∗(t) = bk0(t) for k = 1, . . . , l,

ϕ∗
1(t)Q̃∗(t) = b∗0(t).

(4.91)

Solving the last equation in (4.91) yields

ϕ∗
1(t) = b∗0(t)Q̃

−1
∗ (t).

Putting this back into the first l equations of (4.91) leads to

ϕk
1(t)Q̃

k(t) = bk0(t)− b∗0(t)Q̃
−1
∗ (t)Q̃k

∗(t). (4.92)

Again, the right side is a known function. In view of the choice of ϕ0(·) and
(4.86), we have b0(t)1̃l∗(t) = 0. This implies

bk0(t)1lmk
− b∗0(t)Q̃

−1
∗ (t)Q̃i

∗(t)1lmk

= bk0(t)1lmk
+ b∗0(t)amk

(t) = 0.

Therefore, (4.92) has a particular solution b̃k0(t) with

b̃k0(t)1lmk
= 0, for k = 1, . . . , l.

As in the previous section, we write the solution of ϕk
1(t) as a sum of the

homogeneous solution and a solution of the inhomogeneous equation b̃k0(t),
that is,

ϕk
1(t) = ϑk1(t)ν

k(t) + b̃k0(t) for k = 1, . . . , l.

In view of

Q̃(t)1̃l∗(t) = 0 and

b̃k0(t)1lmk
= 0,
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using the equation

ϕ2(t)Q̃(t) =
dϕ1(t)

dt
− ϕ1(t)Q̂(t),

we obtain that

d

dt
(ϑ11(t), . . . , ϑ

l
1(t), 0)

= (ϑ11(t), . . . , ϑ
l
1(t), 0)Q(t) + b̃0(t)Q̂(t)1̃l∗(t)

−
(
db̃∗0(t)

dt

)
(
am1(t), . . . , aml

(t), 0′m∗

)
.

(4.93)

The initial value ϑ1(0) will be determined in conjunction with the initial
value of ψ1(·) next.
Note that in comparison with the differential equation governing ϑ1(t) in

Section 4.3, the equation (4.93) has an extra term involving the derivative

of b̃∗0(t).
To determine ψ1(·), solving the equation in (4.84) with i = 1, we have

ψ1(τ) = ψ1(0) exp(Q̃(0)τ)

+

∫ τ

0

ψ0(0) exp(Q̃(0)s)Q̂(0) exp(Q̃(0)(τ − s))ds

+

∫ τ

0

sψ0(0) exp(Q̃(0)s)

(
dQ̃(0)

dt

)

exp(Q̃(0)(τ − s))ds.

Choose the initial values of ψ1(0) and ϑ
k
1(0) as follows:

ψ1(0) = −ϕ1(0),

ϑk1(0) = −ψk
1 (0)1lmk

,

ψ1(0)π∗ = −
(∫ ∞

0

ψ0(0) exp(Q̃(0)s)ds

)

Q̂(0)π∗

−
(∫ ∞

0

sψ0(0) exp(Q̃(0)s)ds

)
dQ̃(0)

dt
π∗

:= −ψ0π∗.

(4.94)

Write ψ0 = (ψ
1

0, . . . , ψ
l

0, ψ
∗
0). Then the definition of π∗ implies that

ψk
1 (0)1lmk

+ ψ∗
1(0)amk

(0) = −(ψ
k

01lmk
+ ψ

∗
0amk

(0)).
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Recall that

ϕ∗
1(0) + ψ∗

1(0) = 0

and

ϕ∗
1(t) = b∗0(t)Q̃

−1
∗ (t).

It follows that

ψk
1 (0)1lmk

= −(ψ
k

01lmk
+ ψ

∗
0amk

(0)) + b∗0(0)Q̃
−1
∗ (0)amk

(0).

Moreover, it can be verified that |ψ1(τ)| ≤ K exp(−κ1,0τ) for some 0 <
κ1,0 < κ0,0.

Remark 4.44. Note that there is an extra term

(∫ ∞

0

sψ0(0) exp(Q̃(0)s)ds

)
dQ̃(0)

dt
π∗

involved in the equation determining ϑ1(0) in (4.94). This term does not

vanish as in Section 4.3 because generally ((d/dt)Q̃(0))π∗ �= 0.

To obtain the desired asymptotic expansion, continue inductively.
For each i = 2, . . . , n, we first obtain the solution of ϕi(t) with the
“multiplier” given by the solution of the differential equation but with
unspecified condition ϑi(0); solve ψi(t) with the as yet unavailable initial
condition ψi(0) = −ϕi(0). Next jointly prove the exponential decay prop-
erties of ψi(τ) and obtain the solution ϑi(0). The equation to determine
ϑi(0) with transient states becomes

ψi(0)π∗

= −
( i−1∑

j=0

∫ ∞

0

ψi−j−1(s)

(
sj

j!

djQ̂(0)

dtj
+

sj+1

(j + 1)!

dj+1Q̃(0)

dtj+1

)

ds

)

π∗.

In this way, we have constructed the asymptotic expansion with transient
states. In addition, we can show that ϕi(·) are smooth and ψi(·) satisfies
|ψi(τ)| ≤ K exp(−κi,0τ) for some 0 < κi,0 < κi−1,0 < κ0,0. Similarly as in
the case with all recurrent states, we establish the following theorem.

Theorem 4.45. Suppose (A4.5) and (A4.6) hold. Then an asymptotic ex-
pansion

yεn(t) =

n∑

i=0

(

εiϕi(t) + εiψi

(
t

ε

))
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can be constructed such that for i = 0, . . . , n,

(a) ϕi(·) is (n+ 1− i)-times continuously differentiable on [0, T ];

(b) |ψi(t)| ≤ K exp(−κ0t) for some K > 0 and 0 < κ0 < κi,0;

(c) |pε(t)− yεn(t)| = O(εn+1) uniformly in t ∈ [0, T ].

Example 4.46. Let Q̃(t) = Q̃, a constant matrix such that

Q̃ =

⎛

⎜
⎝

−1 1 0 0
1 −1 0 0
1 0 −2 1
0 1 1 −2

⎞

⎟
⎠ and Q̂ = 0.

In this example,

Q̃1 =

(
−1 1
1 −1

)

, Q̃∗ =

(
−2 1
1 −2

)

, and Q̃1
∗ =

(
1 0
0 1

)

.

The last two rows in Q̃ represent the jump rates corresponding to the
transient states. The matrix Q̃1 is weakly irreducible and Q̃∗ is stable.
Solving the forward equation gives us

pε(t) = (pε1(t), p
ε
2(t), p

ε
3(t), p

ε
4(t)),

where

pε1(t) =
1

2
+

1

2

[

(−p03 − p04) exp

(

− t

ε

)

+(p01 − p02 + p03 − p04) exp

(

−2t

ε

)

+(−p03 + p04) exp

(

−3t

ε

)]

,

pε2(t) =
1

2
+

1

2

[

(−p03 − p04) exp

(

− t

ε

)

+(−p01 + p02 − p03 + p04) exp

(

−2t

ε

)

+(p03 − p04) exp

(

−3t

ε

)]

,

pε3(t) =
1

2

[

(p03 + p04) exp

(

− t

ε

)

+ (p03 − p04) exp

(

−3t

ε

)]

,

pε4(t) =
1

2

[

(p03 + p04) exp

(

− t

ε

)

+ (−p03 + p04) exp

(

−3t

ε

)]

.
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It is easy to see that ϕ0(t) = (1/2, 1/2, 0, 0) and

|pε(t)− ϕ0(t)| ≤ K exp

(

− t

ε

)

.

The limit behavior of the underlying Markov chain as ε→ 0 is determined
by ϕ0(t) for t > 0. It is clear that the probability of the Markov chain
staying at the transient states is very small for small ε.

Remark 4.47. The model discussed in this section has the extra ingre-
dient of including transient states as compared with that of Section 4.3.
The main feature is embedded in the last few rows of the Q̃(t) matrix.

One of the crucial points here is that the matrix Q̃∗(t) in the right corner
is Hurwitzian. This stability condition guarantees the exponential decay
properties of the boundary layers. As far as the regular part (or the outer)
expansion is concerned, we have that the last subvector ϕ∗

0(t) = 0. The
determination of the initial conditions ϑi(0) uses the same technique as
before, namely, matching the outer terms and inner layers. The procedure
involves recursively solving a sequence of algebraic and differential equa-
tions. Although the model is seemingly more general, the methods and
techniques involved in obtaining the asymptotic expansion and proof of
the results are essentially the same as in the previous section. The notation
is slightly more complex, nevertheless.

4.6 Remarks on Countable-State-Space Cases

4.6.1 Countable-State Spaces: Part I

This section presents an extension of the singularly perturbed Markov
chains with fast and slow components and finite-state spaces. In this sec-
tion, the generator Q̃(·) is a block-diagonal matrix consisting of infinitely
many blocks each of which is of finite dimension. The generator Qε(t) still
has the form (4.39). However,

Q̃(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q̃1(t)

Q̃2(t)
. . .

Q̃k(t)
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.95)

where Q̃k(t) ∈ R
mk×mk is a generator of an appropriate Markov chain

with finite-state space, and Q̂(t) is an infinite-dimensional matrix and is
a generator of a Markov chain having a countable-state space, that is,



4.6 Remarks on Countable-State-Space Cases 127

Q̂(t) = (q̂ij(t)) such that

q̂ij(t) ≥ 0 for i �= j, and
∑

j

q̂ij(t) = 0.

We aim at deriving asymptotic results under the current setting. To do so,
assume that the following condition holds:

(A4.7) For t ∈ [0, T ], Q̃k(t), for k = 1, 2, . . ., are weakly irreducible.

Parallel to the development of Section 4.3, the solution of ϕi(·) can be
constructed similar to that of Theorem 4.29 as in (4.44) and (4.45). In fact,
we obtain ϕ0(·) from (4.49) and (4.50) with l = ∞; the difference is that
now we have an infinite number of equations. Similarly, for all k = 1, 2, . . .
and i = 0, 1, . . . , n+ 1, ϕi(·) can be obtained from

ϕ0(t)Q̃(t) = 0, if i = 0

ϕi(t)Q̃(t) =
dϕi−1(t)

dt
− ϕi−1(t)Q̂(t), if i ≥ 1

ϕk
i (t)1lmk

= ϑki (t),

dϑi(t)

dt
= ϑi(t)Q(t) + b̃i−1(t)Q̂(t)1̃l.

(4.96)

The problem is converted to one that involves infinitely many algebraic
differential equations. The same technique as presented before still works.
Nevertheless, the boundary layer corrections deserve more attention. Let

us start with ψ0(·), which is the solution of the abstract Cauchy problem

dψ0(τ)

dτ
= ψ0(τ)Q̃(0),

ψ0(0) = p0 − ϕ0(0).

(4.97)

To continue our study, one needs the notion of semigroup (see Dunford
and Schwartz [52], and Pazy [172]). Recall that for a Banach space B, a
one-parameter family T (t), 0 ≤ t < ∞, of bounded linear operators from
B into B is a semigroup of bounded linear operators on B if (i) T (0) = I
and (ii) T (t+ s) = T (t)T (s) for every t, s ≥ 0.
Let R∞ be the sequence space with a canonical element x = (x1, x2, . . .) ∈

R
∞. Let A = (aij) satisfying A : R∞ �→ R

∞, equipped with the l1-norm

|A|1 = sup
j

∑

i

|aij |;



128 4. Asymptotic Expansions of Solutions for Forward Equations

(see Hutson and Pym [90, p. 74]) Using the definition of semigroup above,
the solution of (4.97) is

ψ0(τ) = T (τ)ψ0(0),

where T (τ) is a one-parameter family of semigroups generated by Q̃(0).

Moreover, since Q̃(0) is a bounded linear operator, exp(Q̃(0)τ) still makes

sense. Thus T (τ)ψ0(0) = ψ0(0) exp(Q̃(0)τ), where

T (τ) = exp(Q̃(0)τ) =
∞∑

j=0

(
Q̃(0)τ

)j

j!

= diag
(
exp

(
Q̃1(0)τ

)
, . . . , exp

(
Q̃k(0)τ

)
, . . .

)
.

Therefore, the solution has the same form as in the previous section. Under
(A4.7), exactly the same argument as in the proof of Lemma 4.4 yields that
for each k = 1, 2, . . . ,

exp(Q̃k(0)τ) → 1lmk
νk(0) as τ → ∞

and the convergence takes place at an exponential rate, that is,
∣
∣
∣exp(Q̃k(0)τ) − 1lmk

νk(0)
∣
∣
∣ ≤ K exp(−κkτ),

for some κk > 0. In order to obtain a valid asymptotic expansion, another
piece of assumption is needed. That is, these κk, for all k = 1, 2, . . ., are
uniformly bounded below by a positive constant κ0.

(A4.8) There exists a positive number κ0 = mink{κk} > 0.

Set

1̃l = diag (1lm1 , . . . , 1lmk
, . . .) and ν(0) = diag

(
ν1(0), . . . , νk(0), . . .

)
.

In view of (A4.8)

∣
∣
∣exp(Q̃(0)τ) − 1̃lν(0)

∣
∣
∣
1
≤ sup

k

∣
∣
∣exp(Q̃k(0)τ)− 1lmk

νk(0)
∣
∣
∣

≤ K exp(−κ0τ).
(4.98)

The exponential decay property of ψ0(·) is thus established. Likewise, it
can be proved that all ψi(·) for i = 1, . . . , n + 1, satisfy the exponential
decay property. From here on, we can proceed as in the previous section to
get the error estimate and verify the validity of the asymptotic expansion.
In short the following theorem is obtained.

Theorem 4.48. Suppose conditions (A4.7) and (A4.8) are satisfied. Then
the results in Theorem 4.29 hold for the countable-state-space model with
Q̃(·) given by (4.95).
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4.6.2 Countable-State Spaces: Part II

The aim of this section is to develop further results on singularly perturbed
Markov chains with fast and slow components whose generators are infinite-
dimensional matrices but in different form from that described in Section
4.6.1. The complexity as well as difficulty increase. A number of technical
issues also arise. One idea arises almost immediately: to approximating the
underlying system via a Galerkin-kind procedure, that is, to approximate
an infinite-dimensional system by finite-dimensional truncations. Unfortu-
nately, this does not work in the setting of this section. We will return to
this question at the end of this section.
To proceed, as in the previous sections, the first step invariably involves

the solution of algebraic differential equations in the constructions of the
approximating functions. One of the main ideas used is the Fredholm al-
ternative. There are analogues to the general setting in Banach spaces for
compact operators. Nevertheless, the infinite-dimensional matrices are in
fact more difficult to handle.
Throughout this section, we treat the class of generators with |Q(t)|1 <

∞ only. We use 1l to denote the column vector with all components equal to

1. Consider (1l
...Q(t)) as an operator for a generator Q(t) of a Markov chain

with state space M = {1, 2, . . .}. To proceed, we first give the definitions

of irreducibility and quasi-stationary distribution. Set Qc(t) := (1l
...Q(t)).

Definition 4.49. The generator Q(t) is said to be weakly irreducible at
t0 ∈ [0, T ], for w ∈ R

∞, if the equation wQc(t0) = 0 has only the zero
solution. If Q(t) is weakly irreducible for each t ∈ [0, T ], then it is said to
be weakly irreducible on [0, T ].

Definition 4.50. A quasi-stationary distribution ν(t) (with respect to
Q(t)) is a solution to (2.8) with the finite summation replaced by∑∞

i=1 νi(t) = 1 that satisfies ν(t) ≥ 0.

As was mentioned before, the Fredholm alternative plays an important
role in our study. For infinite-dimensional systems, we state another defi-
nition to take this into account.

Definition 4.51. A generator Q(t) satisfies the F-Property if wQc(t) = b
has a unique solution for each b ∈ R

∞.

Note that for all weakly irreducible generators of finite dimension (i.e.,
generators for Markov chains with finite-state space), the F-Property above
is automatically satisfied.
Since 1l ∈ l∞ (l∞ denotes the sequence space equipped with the l∞ norm)

for each t ∈ [0, T ], Q(t) ∈ R
∞ × R

∞. Naturally, we use the norm

|(z
...A)|∞,1 = max

{

sup
zj

|zj |, sup
j

∞∑

i=1

|aij(t)|
}

.
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It is easily seen that

|Qc(t)|∞,1 ≤ max

{

1, sup
j

∑

i

|qij(t)|
}

.

If a generator Q(t) satisfies the F-Property, then it is weakly irreducible.
In fact if Q(t) satisfies the F-Property on t ∈ [0, T ], then yQc(t) = 0 has a
unique solution y = 0.
By the definition of the generator, in particular the q-Property, Qc(t) is

a bounded linear operator for each t ∈ [0, T ]. If Qc(t) is bijective (i.e., one-
to-one and onto), then it has a bounded inverse. This, in turn, implies that
Qc(t) exhibits the F-Property. Roughly, the F-Property is a generalization
of the conditions in dealing with finite-dimensional spaces. Recall from
Section 4.2 that although fQ(t) = b is not solvable uniquely, by adding an
equation f1l = c, the system has a unique solution.
Owing to the inherited difficulty caused by the infinite dimensionality,

the irreducibility and smoothness of Q(·) are not sufficient to guarantee the
existence of asymptotic expansions. Stronger conditions are needed. In the
sequel, for ease of presentation, we consider the model with Q̃(·) irreducible
and both Q̃(·) and Q̂(·) infinite-dimensional.
For each t, we denote the spectrum of Q(t) by σ(Q(t)). In view of Pazy

[172] and Hutson and Pym [90], we have

σ(Q(t)) = σd(Q(t)) ∩ σc(Q(t)) ∩ σr(Q(t)),

where σd(Q(t)), σc(Q(t)), and σr(Q(t)) denote the discrete, continuous,
and residue spectrum of Q(t), respectively. The well-known linear operator
theory implies that for a compact operator A, σr(A) = ∅, and the only
possible candidate for σc(A) is 0. Keeping this in mind, we assume that
the following condition holds.

(A4.9) The following condition holds.

(a) The smoothness condition (A4.4) is satisfied.

(b) The generator Q̃(t) exhibits the F-Property.

(c) supt∈[0,T ] |Q̃(t)|1 <∞ and supt∈[0,T ] |Q̂(t)| <∞.

(d) The eigenvalue 0 of Q̃(t) has multiplicity 1 and 0 is not an
accumulation point of the eigenvalues.

(e) σr(Q̃(t)) = ∅.

Remark 4.52. Item (a) above requires that the smoothness condition be

satisfied and Item (b) requires the operator (1l
...Q̃(t)) satisfy a Fredholm-

alternative-like condition. Finally, (d) indicates the spectrum of (1l
...Q̃(t)) is

like a compact operator. Recall that for a compact linear operator, 0 is in
its spectrum, and the only possible accumulation point is 0. Our conditions
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mimic such a condition. It will be used when we prove the exponential decay
property of the initial-layer terms.

Theorem 4.53. Under condition (A4.9), the results in Theorem 4.29 hold
for Markov chains with countable-state space.

Proof: The proof is very similar to its finite-dimensional counterpart.
We only point out the difference here.
As far as the regular part is concerned, we get the same equation (4.44).

One thing to note is that we can no longer use Cramer’s rule to solve
the systems of equations. Without such an explicit representation of the
solution, the smoothness of ϕi(·) needs to be proved by examining (4.44)
directly. For example,

∞∑

i=1

ϕ0,i(t) = 1,

ϕ0(t)Q̃(t) = 0,

can be rewritten as

ϕ0(t)

(

1l
...Q̃(t)

)

= (1, 0, . . .). (4.99)

Since Q̃(t) satisfies the F-Property, this equation has a unique solution.
To verify the differentiability, consider also

ϕ0(t+ δ)

(

1l
...Q̃(t+ δ)

)

= (1, 0, . . .).

Examining the difference quotient leads to

0 =

ϕ0(t+ δ)

(

1l
...Q̃(t+ δ)

)

− ϕ0(t)

(

1l
...Q̃(t)

)

δ

=

[ϕ0(t+ δ)− ϕ0(t)]

(

1l
...Q̃(t+ δ)

)

δ

+

ϕ0(t)

(

(1l
...Q̃(t+ δ))− (1l

...Q̃(t))

)

δ
.

Taking the limit as δ → 0 and by virtue of the smoothness of Q̃(·), we have

lim
δ→0

[ϕ0(t+ δ)− ϕ0(t)]

(

1l
...Q̃(t+ δ)

)

δ
= −ϕ0(t)

(

0
...
dQ̃(t)

dt

)

.
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That is (d/dt)ϕ0(t) exists and is given by the solution of

dϕ0(t)

dt

(

1l
...Q̃(t)

)

= −ϕ0(t)

(

0
...
dQ̃(t)

dt

)

.

Again by the F-Property, there is a unique solution for this equation.
Higher-order derivatives of ϕ0(·) and smoothness of ϕi(·) can be proved
in a similar way.
As far as the initial-layer terms are concerned, since Q̃(0) is a bounded

linear operator, the semigroup interpretation exp(Q̃(0)τ) makes sense.
It follows from Theorem 1.4 of Pazy [172, p. 104] that the equation

dψ0(τ)

dτ
= ψ0(τ)Q̃(0), ψ0(0) = p0 − ϕ0(0)

has a unique solution.
To show that ψ0(·) decays exponentially fast, we use an argument that is

analogous to the finite-dimensional counterpart. Roughly, since the multi-
plicity of the eigenvalue 0 is 1, the subspace generated by the corresponding
eigenvector v0 is one-dimensional. Similar to the situation of Section 4.2,
limτ→∞ exp(Q̃(0)τ) exists and the limit must have identical rows. Denote
the limit by P . It then follows that

∣
∣
∣ exp(Q̃(0)τ) − P

∣
∣
∣ ≤ K exp(−κ0τ).

The meaning should be very clear. Upon “subtracting” the subspace
generated by v0, it ought to behave like exp(−κ0τ). A similar argument
works for i = 1, . . . , n+ 1, so the ψi(·) decay exponentially fast. �

4.6.3 A Remark on Finite-Dimensional Approximation

Concerning the cases in Section 4.6.2, a typical way of dealing with infinite-
dimensional Markov chains is to make a finite-dimensional approximation.
Let Q(t) = (qij(t)), t ≥ 0, denote a generator of a Markov chain with
countable-state space. We consider an N × N , N = 1, 2, . . ., truncation
matrix QN(t) = (qij(t))

N
i,j=1. Then QN (t) is a subgenerator in the sense

that
∑N

j=1 qij(t) ≤ 0, i = 1, 2, . . . , N .
A first glance seems to indicate that the idea of subgenerator provides

a way to treat the problem of approximating an infinite-dimensional gen-
erator by finite-dimensional matrices. In fact, Reuter and Ledermann used
such an idea to derive the existence and uniqueness of the solution to
the forward equation (see Bharucha-Reid [10]). Dealing with singularly
perturbed chains with countable-state space, one would be interested in
knowing whether a Galerkin-like approximation would work in the sense
that an asymptotic expansion of a finite-dimensional system would provide
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an approximation to the probability distribution. To be more precise, let
αε(·) denote the Markov chain generated by Q(t)/ε and let

pε(t) = (P (αε(t) = 1), . . . , P (αε(t) = k), . . .).

Consider the following approximation via N -dimensional systems

dpε,N (t)

dt
=

1

ε
pε,N (t)QN (t), pε,N(0) = p0. (4.100)

Using the techniques presented in the previous sections, we can find outer
and inner expansions to approximate pε,N (t). The questions are these: For
small ε and large N , can we approximate pε(t) by pε,N(t)? Can we ap-
proximate pε,N (t) by yε,Nn (t), where yε,Nn (t) is an expansion of the form
(4.43) when subgenerators are used? More importantly, can we use yε,Nn (t)
to approximate pε(t)?

Although pεi (t) can be approximated by its truncation pε,Ni (t) for large
N and pε,N(t) can be expanded as yε,Nn (t) for small ε, the approximation
of yε,Nn (t) to pε(t) does not work in general because the limits as ε → 0
and N → ∞ are not interchangeable. This can be seen by considering the
following example.
Let

Q(t) = Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1
1

2

1

22
· · ·

1

2
−1

1

22
· · ·

1

22
1

2
−1 · · ·

...
...

...
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then for any N , the truncation matrix QN has only negative eigenvalues.
It follows that the solution pε,N (t) decays exponentially fast, i.e.,

∣
∣
∣pε,N(t)

∣
∣
∣ ≤ C exp

(

−κ0t
ε

)

.

Thus, all terms in the regular part of yε,Nn vanish. It is clear from this
example that yε,Nn (t) cannot be used to approximate pε(t).

4.7 Remarks on Singularly Perturbed Diffusions

In this section, we present some related results on singular perturbations
of diffusions. If in lieu of a discrete state space, one considers a continuous-
state space, then naturally the singularly perturbed Markov chains become



134 4. Asymptotic Expansions of Solutions for Forward Equations

singularly perturbed Markov processes. We illustrate the idea of matched
asymptotic expansions for singularly perturbed diffusions. In this section,
we only summarize the results and refer the reader to Khasminskii and Yin
[116] for details of proofs. To proceed, consider the following example.

Example 4.54. This example discusses a model arising from stochastic
control, namely, a controlled singularly perturbed system. As pointed out
in Kushner [140] and Kokotovic, Bensoussan, and Blankenship [127], many
control problems can be modeled by systems of differential equations, where
the state variables can be divided into two coupled groups, consisting of
“fast” and “slow” variables. A typical system takes the form

dxε1 = f1(x
ε
1, x

ε
2, u)dt+ σ1(x

ε
1, x

ε
2)dw1, x

ε
1(0) = x1,

dxε2 =
1

ε
f2(x

ε
1, x

ε
2, u)dt+

1√
ε
σ2(x

ε
1, x

ε
2)dw2, x

ε
2(0) = x2,

where w1(·) and w2(·) are independent Brownian motions, fi(·) and σi(·)
for i = 1, 2 are suitable functions, u is the control variable, and ε > 0 is a
small parameter. The underlying control problem is to minimize the cost
function

Jε(x1, x2, u) = E

∫ T

0

R(xε1(t), x
ε
2(t), u)dt,

where R(·) is the running cost function. The small parameter ε > 0 signifies
the relative rates of xε1 and xε2. Such singularly perturbed systems have
drawn much attention (see Bensoussan [8], Kushner [140], and the refer-
ences therein). The system is very difficult to analyze directly; the approach
of Kushner [140] is to use weak convergence methods to approximate the
total system by the reduced system that is obtained using the differen-
tial equation for the slow variable, where the fast variable is fixed at its
steady-state value as a function of the slow variable. In order to gain further
insight, it is crucial to understand the asymptotic behavior of the rapidly
changing process xε2 through the transition density given by the solution of
the corresponding Kolmogorov-Fokker-Planck equations.

As demonstrated in the example above, a challenge common to many
applications is to study the asymptotic behavior of the following problem.
Let ε > 0 be a small parameter, and let Xε

1(·) and Xε
2(·) be real-valued

diffusion processes satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dXε
1 = a1(t,X

ε
1 , X

ε
2)dt+ σ1(t,X

ε
1 , X

ε
2)dw1,

dXε
2 =

1

ε
a2(t,X

ε
1 , X

ε
2)dt+

1√
ε
σ2(t,X

ε
1 , X

ε
2)dw2,
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where the real-valued functions a1(t, x1, x2), a2(t, x1, x2), σ1(t, x1, x2), and
σ2(t, x1, x2) represent the drift and diffusion coefficients, respectively, and
w1(·) and w2(·) are independent and standard Brownian motions. Define a
vector X as X = (X1, X2)

′. Then Xε(·) = (Xε
1(·), Xε

2 (·))′ is a diffusion pro-
cess. This is a model treated in Khasminskii [113], in which a probabilistic
approach was employed. It was shown that as ε → 0, the fast component
is averaged out and the slow component Xε

1(·) has a limit X0
1 (·) such that

dX0
1 (t) = a1(X

0
1 (t))dt+ σ1(X

0
1 (t))dw1,

where

a1(t, x1) =

∫

a1(t, x1, x2)μ(t, x1, x2)dx2,

σ1(t, x1) =

∫

σ1(t, x1, x2)μ(t, x1, x2)dx2,

and μ(·) is a limit density of the fast process Xε
2(·).

To proceed further, it is necessary to investigate the limit properties of
the rapidly changing processXε

2(·). To do so, consider the transition density
of the underlying diffusion process. It is known that it satisfies the forward
equation

∂pε

∂t
=

1

ε
L∗
2p

ε + L∗
1p

ε,

pε(0, x1, x2) = p0(x1, x2) with p0(x1, x2) ≥ 0 and

∫ ∫

p0(x1, x2)dx1dx2 = 1,

(4.101)

where

L∗
1(t, x1, x2) · =

1

2

∂2

∂x21
(σ2

1(t, x1, x2) ·)−
∂

∂x1
(a1(t, x1, x2) ·),

L∗
2(t, x1, x2) · =

1

2

∂2

∂x22
(σ2

2(t, x1, x2) ·)−
∂

∂x2
(a2(t, x1, x2) ·).

Similar to the discrete-state-space cases, the basic problems to be addressed
are these: As ε→ 0, does the system display certain asymptotic properties?
Is there any equilibrium distribution? If pε(t, x1, x2) → p(t, x1, x2) for some
function p(·), can one get a handle on the error bound (i.e., a bound on
|pε(t, x1, x2)− p(t, x1, x2)|)?
To obtain the desired asymptotic expansion in this case, one needs to

make sure the quasi-stationary density exists. Note that for diffusions in
unbounded domains, the quasi-stationary density may not exist. Loosely
for the existence of the quasi-stationary distribution, it is necessary that
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the Markov processes corresponding to L∗
2 be positive recurrent for each

fixed t. Certain sufficient conditions for the existence of the quasi-stationary
density are provided in Il’in and Khasminskii [93]. An alternative way of
handling the problem is to concentrate on a compact manifold. In doing
so we are able to establish the existence of the quasi-stationary density.
To illustrate, we choose the second alternative and suppose the following
conditions are satisfied.
For each t ∈ [0, T ], i, j = 1, 2, and

– for each x2 ∈ R, a1(t, ·, x2), σ2
1(t, ·, x2) and p0(·, x2) are periodic

with period 1;

– for each x1 ∈ R, a2(t, x1, ·), σ2
2(t, x1, ·) and p0(x1, ·) are periodic

with period 1.

There is an n ∈ ZZ+ such that for each i = 1, 2,

ai(·), σ2
i (·) ∈ Cn+1,2(n+1),2(n+1), for all t ∈ [0, T ], x1, x2 ∈ [0, 1], (4.102)

the (n + 1)st partial with respect to t of ai(·, x1, x2), and σ2
i (·, x1, x2) are

Lipschitz continuous uniformly in x1, x2 ∈ [0, 1]. In addition, for each t ∈
[0, T ] and each x1, x2 ∈ [0, 1], σ2

i (t, x1, x2) > 0.

Definition 4.55. A function μ(·) is said to be a quasi-stationary density
for the periodic diffusion corresponding to the Kolmogorov-Fokker-Planck
operator L∗

2 if it is periodic in x1 and x2 with period 1,

0 ≤ μ(t, x1, x2) for each (t, x1, x2) ∈ [0, T ]× [0, 1]× [0, 1],

and for each fixed t and x1,
∫ 1

0

μ(t, x1, x2)dx2 = 1 and L∗
2μ(t, x1, x2) = 0.

To proceed, letH be the space of functions that are bounded and continuous
and are Hölder continuous in (x1, x2) ∈ [0, 1]× [0, 1] (with Hölder exponent
Δ for some 0 < Δ < 1), uniformly with respect to t. For each h1, h2 ∈ H
define 〈h1, h2〉H as

〈
h1, h2

〉
H =

∫ T

0

∫ 1

0

∫ 1

0

h1(t, x1, x2)h2(t, x1, x2)dx1dx2dt.

Under the assumptions mentioned above, two sequences of functions ϕi(·)
(periodic in x1 and x2) and ψi(·) for i = 0, . . . , n can be found such that

(a) ϕi(·, ·, ·) ∈ Cn+1−i,2(n+1−i),2(n+1−i);

(b) ψi(t/ε, x1, x2) decay exponentially fast in that for some c1 > 0 and
c2 > 0,

sup
x1,x2∈[0,1]

∣
∣
∣
∣ψi

(
t

ε
, x1, x2

)∣
∣
∣
∣ ≤ c1 exp

(

−c2t
ε

)

;
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(c) define s̃εn by

s̃εn(t, x1, x2) =

n∑

i=0

(

εiϕi(t, x1, x2) + εiψi

(
t

ε
, x1, x2

))

;

for each h ∈ H, the following error bound holds:

∣
∣
〈
pε − s̃εn, h

〉
H
∣
∣ = O(εn+1). (4.103)

It is interesting to note that the leading term of the approximation ϕ0(·) is
approximately the probability density of X1, namely, v0(t, x1) multiplied
by the conditional density of X2 given X1 = x1 (i.e., holding x1 as a
parameter), the quasi-stationary density μ(t, x1, x2). The rest of the terms
in the regular part of the expansion assume the form

μ(t, x1, x2)vi(t, x1) + Ui(t, x1, x2),

where Ui(·) is a particular solution of an inhomogeneous equation. Note
the resemblance of the form to that of the Markov-chain cases studied
in this chapter. A detailed proof of the assertion is in Khasminskii and
Yin [116]. In fact, more complex systems (allowing interaction of Xε

1 and
Xε

2 , the mixed partial derivatives of x1 and x2 as well as extension to
multidimensional systems) are treated in [116]. In addition, in lieu of 〈·, ·〉H,
convergence under the uniform topology can be considered via the use
of stochastic representation of solutions of partial differential equations
or energy integration methods (see, for example, the related treatment of
singularly perturbed switching diffusion systems in Il’in, Khasminskii, and
Yin [94]).

4.8 Notes

Two-time-scale Markov chains are dealt with in this chapter using purely
analytic methods, which are closely connected with the singular perturba-
tion methods. The literature of singular perturbation for ordinary differen-
tial equations is rather rich. For an extensive list of references in singular
perturbation methods for ordinary differential equations and various tech-
niques such as initial-layer etc., we refer to Vasi’leva and Butuzov [209],
Wasow [215, 216], O’Malley [163], and the references therein. The develop-
ment of singular perturbation methods has been intertwined with advances
in technology and progress in various applications. It can be traced back to
the beginning of the twentieth century when Prandtl dealt with fluid mo-
tion with small friction (see Prandtl [178]). Nowadays, the averaging princi-
ple developed by Krylov, Bogoliubov, and Mitropolskii (see Bogoliubov and
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Mitropolskii [18]) has become a popular technique, taught in standard grad-
uate applied mathematics courses and employed widely. General results on
singular perturbations can be found in Bensoussan, Lion, and Papanico-
laou [7], Bogoliubov and Mitropolskii [18], Eckhaus [54], Erdélyi [58], Il’in
[92], Kevorkian and Cole [108, 109], Krylov and Bogoliubov [133], O’Malley
[163], Smith [199], Vasil’eava and Butuzov [209, 210], Wasow [215, 216]; ap-
plications to control theory and related fields are in Bensoussan [8], Bielecki
and Filar [11], Delebecque and Quadrat [44], Delebecque, Quadrat, and
Kokotovic [45], Kokotovic [126], Kokotovic, Bensoussan, and Blankenship
[127], Kokotovic and Khalil [128], Kokotovic, Khalil, and O’Reilly [129],
Kushner [140], Pan and Başar [164, 165, 166], Pervozvanskii and Gaitsgori
[174], Phillips and Kokotovic [175], Yin and Zhang [233], among others; the
vast literature on applications to different branches of physics are in Risken
[182], van Kampen [208]; the survey by Hänggi, Talkner, and Borkovec [80]
contains hundreds of references concerning applications in physics; related
problems via large deviations theory are in Lerman and Schuss [151]; some
recent work of singular perturbations to queueing networks, and heavy traf-
fic, etc., is in Harrison and Reiman [81], Knessel and Morrison [125], and
the references therein; applications to manufacturing systems are in Sethi
and Zhang [192], Soner [202], Zhang [248], and the references cited there;
related problems for stochastic differential equations and diffusion approx-
imations, etc., can be found in Day [42], Friedlin and Wentzell [67], Il’in
and Khasminskii [93], Khaminskii [111, 112], Kushner [139], Ludwig [152],
Matkowsky and Schuss [158], Naeh, Klosek, Matkowski, and Schuss [160],
Papanicolaou [169, 170], Schuss [187, 188], Skorohod [198], Yin [222], Yin
and Ramachandran [227], and Zhang [247], among others. Singularly per-
turbed Markov processes also appear in the context of random evolution,
a generalization of the motion of a particle on a fixed line with a ran-
dom velocity or a random diffusivity; see, for example, Griego and Hersh
[76, 77] and Pinsky [177]; an extensive survey can be found in Hersh [85]. A
first-order approximation of the distribution of the Cox process with rapid
switching is in Di Masi and Kabanov [48]. Recently, modeling communica-
tion systems via two-time-scale Markov chains has gained renewed interest;
see Tse, Gallager, and Tsitsiklis [206], and the references therein.
It should be pointed out that there is a distinct feature in the problem

we are studying compared with the traditional study of singularly per-
turbed systems. In contrast to many singularly perturbed ordinary differ-
ential equations, the matrix Q(t) in (4.3) is singular, and has an eigenvalue
0. Thus the usual stability condition does not hold. To circumvent this dif-
ficulty, we utilize the q-Property of the matrix Q(t), which leads to a prob-
abilistic interpretation. The main emphasis in this chapter is on developing
approximations to the solutions of the forward equations. The underlying
systems arise from a wide range of applications where a finite-state Markov
chain is involved and a fast time scale t/ε is used. Asymptotic series of the
probability distribution of the Markov chain have been developed by em-
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ploying the techniques of matched expansions. An attempt to obtain the
asymptotic expansion of (4.3) is initiated in Khasminskii, Yin, and Zhang
[119] for time-inhomogeneous Markov chains. The result presented here is
a refinement of the aforementioned reference.
Extending the results for irreducible generators, this chapter further

discusses two-time-scale Markov chains with weak and strong interactions.
The formulations substantially generalize the work of Khasminskii, Yin,
and Zhang [120]. Section 4.3 discusses Markovian models with recurrent
states belonging to several ergodic classes is a refinement of [120].
Previous work on singularly perturbed Markov chains with weak and

strong interactions can be found in Delebecque, Quadrat, and Kokotovic
[45], Gaitsgori and Pervozvanskii [69], Pervozvanskii and Gaitsgori [174],
and Phillips and Kokotovic [175]. The essence is a decomposition and ag-
gregation point of view. Their models are similar to that considered in this
chapter. For example, translating the setup into our setting, the authors
of [175] assumed that the Markov chain generated by Q̃/ε + Q̂ has a sin-
gle ergodic class for ε sufficiently small. Moreover, for each j = 1, 2, . . . , l,
the subchain has a single ergodic class. Their formulation requires that
Q̃(t) = Q̃ and Q̂(t) = Q̂, and it requires essentially the irreducibility of

Q̃/ε+ Q̂ for all ε ≤ ε0 for some ε0 > 0 small enough in addition to the irre-

ducibility of Q̃j for j = 1, 2, . . . , l. The problem considered in this chapter
is nonstationary; the generators are time-varying. The irreducibility is in
the weak sense, and only weak irreducibility of each subgenerator (or block

matrix) Q̃j(t) for j = 1, 2, . . . , l is needed. Thus our results generalize the
existing theorems to nonstationary cases under weaker assumptions. The
condition on Q̃(t) exploits the intrinsic properties of the underlying chains.
Furthermore, our results also include Markov chains with countable-state
spaces. The formulation and development of Section 4.5 are inspired by
that of [175] (see also Pan and Başar [164]). This together with the con-
sideration of chains with recurrent states and the inclusion of absorbing
states includes most of practical concerns for the rapidly varying part of
the generator. Although the forms of the generators with absorbing states
and with transient states have more complex structures, the asymptotic
expansion of the probability distributions can still be obtained via a sim-
ilar approach to that of the case of block-diagonal Q̃(·). Applications to
manufacturing systems are discussed, for example, in Jiang and Sethi [99]
and Sethi and Zhang [192] among others. As a complement of the develop-
ment in this chapter, the work of Il’in, Khasminskii, and Yin [94] deals with
the cases that the underlying Markov processes involve both diffusion and
pure jump processes; see also Yin and Yang [229]. Previous work of singu-
lar perturbation of stochastic systems can be found in Day [42], Friedlin
and Wentzel [67], Khasminskii [111, 112, 113], Kushner [139], Ludwig [152],
Matkowsky and Schuss [158], Naeh, Klosek, Matkowski, and Schuss [160],
Papanicolaou [169, 170], Schuss [187], Yin and Ramachandran [227], and
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the references therein. Singular perturbation in connection with optimal
control problems are contained in Bensoussan [8], Bielecki and Filar [11],
Delebecque and Quadrat [44], Kokotovic [126], Kokotovic, Bensoussan, and
Blankenship [127], Kushner [140], Lehoczky, Sethi, Soner, and Taksar [150],
Martins and Kushner [156], Pan and Başar [164], Pervozvanskii and Gaits-
gori [174], Sethi and Zhang [192], Soner [202], and Yin and Zhang [233]
among others. For discrete-time two-time-scale Markov chains, we refer
the reader to Yin and Zhang [238] Yin, Zhang, and Badowski [242] among
others.
We note that one of the key points that enables us to solve these problems

is the Fredholm alternative. This is even more crucial compared with the
situation in Section 4.2 for irreducible generators. In Section 4.2, the con-
sistency conditions are readily verified, whereas in the formulation under
weak and strong interactions, the verification needs more work and we have
to utilize the consistency to obtain the desired solution.
The discussions on Markov chains with countable-state spaces in this

chapter focused on simple situations. For more general cases, see Yin and
Zhang [230, 231], in which applications to quasi-birth-death queues were
considered; see also Altman, Avrachenkov, and Nunez-Queija [4] for a dif-
ferent approach. The discussions on singularly perturbed diffusion processes
dealt with mainly forward equations. For related work on singularly per-
turbed diffusions, see the papers of Khasminskii and Yin [115, 116] and the
references therein; one of the motivations for studying singularly perturbed
diffusion comes from wear process modeling (see Rishel [181]). For treat-
ments of averaging principles and related backward equations, we refer the
reader to Khasminskii and Yin [117, 118]. For a number of applications on
queueing systems, financial engineering, and insurance risk, we refer the
reader to Yin, Zhang, and Zhang [232] and references therein.



5

Occupation Measures: Asymptotic
Properties and Ramification

5.1 Introduction

Chapter 4 deals with the probability distribution of αε(·) through the
corresponding forward equation and is mainly an analytical approach,
whereas the current chapter is largely probabilistic in nature. The cen-
tral theme of this chapter is limit results of unscaled as well as scaled
sequences of occupation measures, which include the law of large num-
bers for an unscaled sequence, exponential upper bounds, and asymptotic
distribution of a suitably scaled sequence of occupation times. It further
exploits the deviation of the functional occupation times from its quasi-
stationary distribution. We obtain estimates of centered deviations, prove
the convergence of a properly scaled and centered sequence of occupation
times, characterize the limit process by deriving the limit distribution and
providing explicit formulas for the mean and covariance functions, and
provide exponential bounds for the normalized process. It is worthwhile to
note that the limit covariance function depends on the initial-layer terms
in contrast with most of the existing results of central limit type.
The rest of the chapter is arranged as follows. We first study the asymp-

totic properties of irreducible Markov chains in Section 5.2. In view of the
developments in Remarks 4.34 and 4.39, the Markov chain with recurrent
states is the most illustrative and representative one. As a result, in the
remaining chapters, we mainly treat problems associated with this model.
Starting in Section 5.3.1, we consider Markov chains with weak and strong
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interactions with generators consisting of multiple irreducible blocks. After
treating aggregation of the Markov states, we study the corresponding ex-
ponential bounds. We deal with asymptotic distributions. Then in Section
5.4, we treat Markov chains with generators that are merely measurable.
Next, remarks on inclusion of transient and absorbing states are provided
in Section 5.5. Applications of the weak convergence results and a related
stability problem are provided in Section 5.6. Finally, Section 5.7 concludes
the chapter with notes and further remarks.

5.2 The Irreducible Case

The notion of occupation measure is set forth first. We consider a sequence
of unscaled occupation measures and establish its convergence in prob-
ability to that of the accumulative quasi-stationary distribution. This is
followed by exponential bounds of the function occupation time and mo-
ment estimates. In addition, asymptotic normality is derived. Although the
prelimit process has nonzero mean and is nonstationary, using the results of
Section 4.2, the quasi-stationary regime is established after a short period
(of order O(ε)). We also calculate explicitly the covariance representation
of the limit process, and prove that the process αε(·) satisfies a mixing
condition. The tightness of the sequence and the w.p.1 continuity of the
sample paths of the limit process are proved by estimating the fourth mo-
ment. The limit of the finite-dimensional distributions is then calculated
and shown to be Gaussian. By proving a series of lemmas, we derive the
desired asymptotic normality.
As was mentioned in previous chapters, the process αε(·) arises from per-

vasive practical use that involves a rapidly fluctuating finite-state Markov
chain. In these applications, the asymptotic behavior of the Markov chain
αε(·) has a major influence. Further investigation and understanding of the
asymptotic properties of αε(·), in particular, the probabilistic structures,
play an important role in the in-depth study.
In Section 4.2, using singular perturbation techniques, we examined the

asymptotic properties of pεi (t) = P (αε(t) = i). It has been proved that
pε(t) = (pε1(t), . . . , p

ε
m(t)) converges to the quasi-stationary distribution

ν(t) as ε → 0 for each t > 0 and pε(t) admits an asymptotic expansion in
terms of ε. To gain further insight, we ask whether there is a limit result
for the occupation measure

∫ t

0
I{αε(s)=i}ds. If a convergence is expected to

take place, then what is the rate of convergence? Does one have a cen-
tral limit theorem associated with the αε(·)-process? The answers to these
questions are affirmative. We will prove a number of limit results related
to an unscaled sequence, and a suitably scaled and normalized sequence.
Owing to the asymptotic expansions, the scaling factor is

√
ε. The limit

process is Gaussian with zero mean, and the covariance of the limit process
depends on the asymptotic expansion in an essential way, which reflects
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one of the distinct features of the central limit theorem. It appears that it
is virtually impossible to calculate the asymptotic covariance of the Gaus-
sian process without the help of the asymptotic expansion, which reveals a
salient characteristic of the two-time-scale Markov chain.
A related problem is to examine the exponential bounds on the scaled oc-

cupation measure process. This is similar to the estimation of the moment
generating function. Such estimates have been found useful in studying
hierarchical controls of manufacturing systems. Using the asymptotic ex-
pansion and the martingale representation of finite-state Markov chains,
we are able to establish such exponential bounds for the scaled occupation
measures.

5.2.1 Occupation Measure

Let (Ω,F , P ) denote the underlying probability space. As in Section 4.2,
αε(·) is a nonstationary Markov chain on (Ω,F , P ) with finite-state space
M = {1, . . . ,m} and generator Qε(t) = Q(t)/ε.
For each i ∈ M, let βi(·) denote a bounded Borel measurable determinis-

tic function and define a sequence of centered (around the quasi-stationary
distribution) occupation measures Zε

i (t) as

Zε
i (t) =

∫ t

0

(
I{αε(s)=i} − νi(s)

)
βi(s)ds. (5.1)

Set Zε(t) = (Zε
1(t), . . . , Z

ε
m(t)). It is a measure of the functional occupancy

for the process αε(·). Our interest lies in the asymptotic properties of the
sequence defined in (5.1). To proceed, we first present some conditions and
preliminary results needed in the sequel.
Note that a special choice of βi(·) is βi(t) = 1, for t ∈ [0, T ]. To insert βi(·)

in sequence allows one to treat various situations in some applications. For
example, in the manufacturing problem, βi(t) is often given by a function
of a control process; see Chapter 8 for further details.

5.2.2 Conditions and Preliminary Results

To proceed, we make the following assumptions.

(A5.1) For each t ∈ [0, T ], Q(t) is weakly irreducible.

(A5.2) Q(·) is continuously differentiable on [0, T ], and its derivative is
Lipschitz.

Recall that pε(t) = (P (αε(t) = 1), . . . , P (αε(t) = m)) and let

pεij(t, t0) = P (αε(t) = j|αε(t0) = i) for all i, j ∈ M.

Use P ε(t, t0) to denote the transition matrix (pεij(t, t0)). The following
lemma is on the asymptotic expansion of P ε(t, t0).
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Lemma 5.1. Assume (A5.1) and (A5.2). Then there exists a positive
constant κ0 such that for each fixed 0 ≤ T <∞,

P ε(t, t0) = P0(t) +O

(

ε+ exp

(

−κ0(t− t0)

ε

))

(5.2)

uniformly in (t0, t) where 0 ≤ t0 ≤ t ≤ T and

P0(t) =

⎛

⎜
⎝

ν(t)
...

ν(t)

⎞

⎟
⎠ .

In addition, assume Q(·) to be twice continuously differentiable on [0, T ]
with the second derivative being Lipschitz. Then

P ε(t, t0) = P0(t) + εP1(t)

+Q0

(
t− t0
ε

, t0

)

+ εQ1

(
t− t0
ε

, t0

)

+O(ε2)

(5.3)

uniformly in (t0, t), where 0 ≤ t0 ≤ t ≤ T ,

P1(t) =

⎛

⎜
⎝

ϕ1(t)
...

ϕ1(t)

⎞

⎟
⎠ ,

dQ0(τ, t0)

dτ
= Q0(τ, t0)Q(t0), τ ≥ 0,

Q0(0, t0) = I − P0(t0),

and

dQ1(τ, t0)

dτ
= Q1(τ, t0)Q(t0) + τQ0(τ, t0)

dQ(t0)

dt
, τ ≥ 0

Q1(0, t0) = −P1(t0),

where ϕ1(t) is given in (4.13) (with τ := (t − t0)/ε). Furthermore, for
i = 0, 1, the Pi(·) are (2− i) times continuously differentiable on [0, T ] and
there exist constants K > 0 and κ0 > 0 such that

|Qi (τ, t0)| ≤ K exp(−κ0τ), (5.4)

uniformly for t0 ∈ [0, T ].
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Remark 5.2. Recall that ν(t) and ϕ1(t) are row vectors. As a result, P0(·)
and P1(·) have identical rows. This is a consequence of the convergence of
pε(t) to the quasi-stationary distribution and the asymptotic expansions.

Proof of Lemma 5.1: It suffices to verify (5.3) because (5.2) can be de-
rived similarly. The asymptotic expansion of P ε(t, t0) can be obtained as
in Section 4.2. Thus only the exponential bound (5.4) needs to be proved.
The main task is to verify the uniformity in t0. To this end, it suffices to
treat each row of Qi(τ, t0) separately. For a fixed i = 0, 1, let

η(τ, t0) = (η1(τ, t0), . . . , ηm(τ, t0))

denote any row of Qi(τ, t0) and η0(t0) the corresponding row in Qi(0, t0)
with

Q0(0, t0) = I − P0(t0) and

Q1(0, t0) = −P1(t0).

Then η(τ, t0) satisfies the differential equation

dη(τ, t0)

dτ
= η(τ, t0)Q(t0), τ ≥ 0,

η(0, t0) = η0(t0).

By virtue of the assumptions of Lemma 5.1 and the asymptotic expansion,
it follows that η0(t0) is uniformly bounded and η0(t0)1l = 0.
Define

κ̂ = −max
{
The real parts of eigenvalues of Q(t), t ∈ [0, T ]

}
.

Then Lemma A.6 implies that κ̂ > 0. In view of Theorem 4.5, it suffices to
show that for all τ ≥ 0 and for some constant K > 0 independent of t0,

|η(τ, t0)| ≤ K exp

(

− κ̂τ
2

)

. (5.5)

To verify (5.5), note that for any ς0 ∈ [0, T ],

dη(τ, t0)

dτ
= η(τ, t0)Q(ς0) + η(τ, t0)[Q(t0)−Q(ς0)].

Solving this differential equation by treating η(τ, t0)[Q(t0) −Q(ς0)] as the
driving term, we have

η(τ, t0) = η0(t0) exp (Q(ς0)τ)

+

∫ τ

0

η(ς, t0)[Q(t0)−Q(ς0)] exp (Q(ς0)(τ − ς)) dς.

(5.6)
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In view of (A5.2), for some K0 > 0,

∣
∣
∣Q(t0)−Q(ς0)

∣
∣
∣ ≤ K0|t0 − ς0|.

Noting that η0(t0)1l = 0 and that P0(t) has identical rows, we have

η0(t0)P0(t) = 0, for t ≥ 0.

Thus the equation in (5.6) is equivalent to

η(τ, t0) = η0(t0)(exp (Q(ς0)s)− P0(ς0))

+

∫ τ

0

η(ς, t0)[Q(t0)−Q(ς0)](exp (Q(ς0)(τ − ς))− P0(ς0))dς.

From Lemma A.2, we have

|η(τ, t0)| ≤ K1 exp (−κ̂τ) +K2|t0 − ς0|
∫ τ

0

|η(ς, t0)| exp (−κ̂(τ − ς)) dς,

for some constantsK1 andK2 which may depend on ς0 but are independent
of t0. By Gronwall’s inequality (see Hale [79, p. 36]),

|η(τ, t0)| ≤ K1 exp (−(κ̂−K2|t0 − ς0|)τ) , (5.7)

for all t0 ∈ [0, T ] and τ > 0.
If (5.5) does not hold uniformly, then there exist τn > 0 and tn ∈ [0, T ]

such that

|η(τn, tn)| ≥ n exp

(

− κ̂τn
2

)

.

Since T is finite, we may assume tn → ς0, as n→ ∞. This contradicts (5.7)
for n large enough satisfying |tn − ς0| < κ̂/(2K2) and K1 < n. Thus the
proof is complete. �
Unscaled Occupation Measure
To study the unscaled occupation measure Zε

i (t) in (5.1), we define a related

sequence {Ẑε(t)} of R
m-valued processes with its ith component Ẑε

i (t)
given by

Ẑε
i (t) =

∫ t

0

(
I{αε(s)=i} − P (αε(s) = i)

)
βi(s)ds.

Assume the conditions (A5.1) and (A5.2). We claim that for any δ > 0,

lim
ε→0

(

sup
0≤t≤T

P (|Ẑε(t)| ≥ δ)

)

= 0 and (5.8)

lim
ε→0

(

sup
0≤t≤T

E|Ẑε(t)|2
)

= 0. (5.9)
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Note that (5.8) follows from (5.9) using Tchebyshev’s inequality. The veri-
fication of (5.9), which mainly depends on a mixing property of the under-
lying sequence, is almost the same as the moment estimates in the proof
of asymptotic normality in Lemma 5.13. The details of the verifications of
(5.8) and (5.9) are omitted here.
With (5.9) in hand for any δ > 0, to study the asymptotic properties of

Zε(·), it remains to show that

lim
ε→0

(

sup
0≤t≤T

P (|Zε(t)| ≥ δ)

)

= 0 and

lim
ε→0

(

sup
0≤t≤T

E|Zε(t)|2
)

= 0.

In fact, it is enough to work with each component of Zε(t). Note that both

Zε(t) and Ẑε(t) are bounded. This together with the boundedness of β(t)
and Lemma 5.1 implies that for each i ∈ M,

sup
0≤t≤T

E|Zε
i (t)|2

≤ 2

(

sup
0≤t≤T

E|Ẑε
i (t)|2 + sup

0≤t≤T
E

∣
∣
∣
∣

∫ t

0

(P (αε(s) = i)− νi(s)) βi(s)ds

∣
∣
∣
∣

2)

≤ 2

(

sup
0≤t≤T

E|Ẑε
i (t)|2 +

∫ T

0

O(ε)ds

)

→ 0,

as ε→ 0, which yields the desired results.
The limit result above is of the law-of-large-numbers type. What has

been obtained is that as ε→ 0,

∫ t

0

I{αε(s)=i}ds→
∫ t

0

νi(s)ds in probability as ε→ 0,

for 0 < t ≤ T . In fact, a somewhat stronger result on uniform conver-
gence in terms of the second moment is established. To illustrate, suppose
that αε(t) = α(t/ε) such that α(·) is a stationary process with stationary
distribution ν = (ν1, . . . , νm). Then via a change of variable ς = s/ε, we
have

1

t

∫ t

0

I{αε(s)=i}ds =
ε

t

∫ t/ε

0

I{α(ς)=i}dς

=
ε

t

∫ t/ε

0

I{α(ς)=i}dς → νi in probability as ε→ 0,

for 0 < t ≤ T . This is exactly the continuous-time version of the law of
large numbers.
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Example 5.3. Let us return to the singularly perturbed Cox process of
Section 3.3. Recall that the compensator of the singularly perturbed Cox
process is given by

Gε(t) = G0 +

m∑

i=1

∫ t

0

aiI{αε(s)=i}ds,

where ai > 0 for i = 1, . . . ,m. Assume that all the conditions in Lemma 5.1
hold. Then Theorem 4.5 implies that P (αε(t) = i) → νi(t) as ε→ 0. What
we have discussed thus far implies that for each i ∈ M,

∫ t

0

aiI{αε(s)=i}ds→
∫ t

0

aiνi(s)ds in probability as ε→ 0 and

Gε(t) → G(t) = G0 +
m∑

i=1

∫ t

0

aiνi(s)ds in probability.

Moreover,

lim
ε→0

(

sup
0≤t≤T

E|Gε(t)−G(t)|2
)

= 0.

In the rest of this chapter, we treat suitably scaled occupation measures;
the corresponding results for the Cox process can also be derived.

With the limit results in hand, the next question is this: How fast does the
convergence take place? The rate of convergence issue together with more
detailed asymptotic properties is examined fully in the following sections.

5.2.3 Exponential Bounds

This section is devoted to the derivation of exponential bounds for the
normalized occupation measure (or occupation time) nε(·). Given a deter-
ministic process β(·), we consider the “centered” and “scaled” functional
occupation-time process nε(t, i) defined by

nε(t, i) =
1√
ε

∫ t

0

(
I{αε(s)=i} − νi(s)

)
βi(s)ds and

nε(t) = (nε(t, 1), . . . , nε(t,m)) ∈ R
1×m.

(5.10)

In view of Lemma 5.1, we have, for 0 ≤ s ≤ t ≤ T ,

P ε(t, s)− P0(t) = O

(

ε+ exp

(

−κ0(t− s)

ε

))

,

for some κ0 > 0. Note that the big O(·) usually depends on T . Let KT

denote an upper bound of

P ε(t, s)− P0(t)

ε+ exp(−κ0(t− s)/ε)
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for 0 ≤ s ≤ t ≤ T . For convenience, we use the notation O1(y) to denote a
function of y such that |O1(y)|/|y| ≤ 1. The rationale is that KT represents
the magnitude of the bounding constant and the rest of the bound is in
terms of a function with norm bounded by 1. Using this notation and KT ,
we write

P ε(t, s)− P0(t) = KTO1

(

ε+ exp

(

−κ0(t− s)

ε

))

. (5.11)

Let y(t) = (yij(t)) and z(t) = (zi(t)) denote a matrix-valued function and
a vector-valued function defined on [0, T ], respectively. Their norms are
defined by

|y|T = max
i,j

sup
0≤t≤T

|yij(t)|,

|z|T = max
i

sup
0≤t≤T

|zi(t)|.
(5.12)

For future use, define β(t) = diag(β1(t), . . . , βm(t)). The following theorem
is concerned with the exponential bound of nε(t) for ε sufficiently small.

Theorem 5.4. Assume that (A5.1) and (A5.2) are satisfied. Then there
exist ε0 > 0 and K > 0 such that for all 0 < ε ≤ ε0, T ≥ 0, and any bounded
and measurable deterministic function β(·) = diag(β1(·), . . . , βm(·)), the
following exponential bound holds:

E exp

{
θT

(T + 1)
3
2

sup
0≤t≤T

|nε(t)|
}

≤ K, (5.13)

where θT is a constant satisfying

0 ≤ θT ≤ min{1, κ0}
KT |β|T

(5.14)

with κ0 being the exponential constant in Lemma 5.1.

Remark 5.5. Note that the constants ε0 and K are independent of T .
This is a convenient feature of the estimate in certain applications. The
result is in terms of a fixed but otherwise arbitrary T , which is particularly
useful for systems in an infinite horizon.

Proof: The proof is divided into several steps.
Step 1. In the first step, we show that (5.13) holds when the “sup” is absent.
Let χε(·) denote the indicator vector of αε(·), that is,

χε(t) =
(
I{αε(t)=1}, . . . , I{αε(t)=m}

)
and

wε(t) = χε(t)− χε(0)− 1

ε

∫ t

0

χε(s)Q(s)ds.
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It is well known (see Elliott [56]) that wε(t) = (wε
1(t), . . . , w

ε
m(t)), for t ≥ 0,

is a σ{αε(s) : s ≤ t}-martingale. In view of a result of Kunita andWatanabe
[134] (see also Ikeda and Watanabe [91, p. 55]), one can define a stochastic
integral with respect to wε(t). Moreover, the solution of the linear stochastic
differential equation

dχε(t) = χε(t)Qε(t)dt+ dwε(t)

is given by

χε(t) = χε(0)P ε(t, 0) +

∫ t

0

(dwε(s))P ε(t, s),

where P ε(t, s) is the principal matrix solution to the equation

dP ε(t, s)

dt
=

1

ε
P ε(t, s)Q(t), with P ε(s, s) = I

representing the transition probability matrix.
Note that for t ≥ s ≥ 0,

χε(s)P0(t) = (χε(s)1l)ν(t) = ν(t).

Using this and (5.11), we have

χε(t)− ν(t)

= χε(0)(P ε(t, 0)− P0(t)) +

∫ t

0

(dwε(s))[(P ε(t, s)− P0(t)) + P0(t)]

= KTO1

(

ε+ exp

(

−κ0t
ε

))

+KT

∫ t

0

(dwε(s))O1

(

ε+ exp

(

−κ0(t− s)

ε

))

+ wε(t)P0(t)

= KTO1

(

ε+ exp

(

−κ0t
ε

))

+KT

∫ t

0

(dwε(s))O1

(

ε+ exp

(

−κ0(t− s)

ε

))

.

The last equality above follows from the observation that

Q(s)P0(t) = 0 for all t ≥ s ≥ 0,

and

wε(t)P0(t) =

(

χε(t)− χε(0)− 1

ε

∫ t

0

χε(r)Q(r)dr

)

P0(t)

= ν(t)− ν(t)− 1

ε

∫ t

0

χε(r)Q(r)P0(t)dr = 0.
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Recall that β(t) = diag(β1(t), . . . , βm(t)). Then it follows that

∫ t

0

(χε(s)− ν(s))β(s)ds

= KTO1(ε(t+ 1))

+KT

∫ t

0

∫ s

0

(dwε(r))O1

(

ε+ exp

(

−κ0(s− r)

ε

))

β(s)ds

= KTO1(ε(t+ 1))

+KT

∫ t

0

(dwε(r))

(∫ t

r

O1

(

ε+ exp

(

−κ0(s− r)

ε

))

β(s)ds

)

= KTO1(ε(t+ 1))

+εKT

∫ t

0

(dwε(r))O1

(

(t− r) +
1

κ0

(

1− exp

(

−κ0(t− r)

ε

)))

|β|T

= KTO1(ε(t+ 1)) + εKT |β|T
(

T +
1

κ0

)∫ t

0

(dwε(r))b(r, t),

where b(s, t) is a measurable function and |b(s, t)| ≤ 1 for all s and t.
Dividing both sides by (T + 1), we obtain

1

T + 1

∣
∣
∣
∣

∫ t

0

(χε(s)− ν(s))β(s)ds

∣
∣
∣
∣

= εKTO1(1) + εKT |β|T
(
T + (1/κ0)

T + 1

) ∣
∣
∣
∣

∫ t

0

(dwε(s))b(s, t)

∣
∣
∣
∣ .

(5.15)

Therefore, we have

E exp

{
θT√

ε(T + 1)
3
2

∣
∣
∣
∣

∫ t

0

(χε(s)− ν(s))β(s)ds

∣
∣
∣
∣

}

≤ E exp

{
1

√
ε
√
T + 1

[

εO1(1) + ε

∣
∣
∣
∣

∫ t

0

(dwε(s))b(s, t)

∣
∣
∣
∣

]}

.

In view of the choice of θT , it follows that

E exp

{
θT√

ε(T + 1)
3
2

∣
∣
∣
∣

∫ t

0

(χε(s)− ν(s))β(s)ds

∣
∣
∣
∣

}

≤ exp

( √
ε√

T + 1

)

E exp

{ √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

(dwε(s))b(s, t)

∣
∣
∣
∣

}

≤ eE exp

{ √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

(dwε(s))b(s, t)

∣
∣
∣
∣

}

.

(5.16)
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Recall that
wε(t) = (wε

1(t), . . . , w
ε
m(t)).

It suffices to work out the estimate for each component wε
i (t). That is, it

is enough to show that for each i = 1, . . . ,m,

E exp

{ √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b(s, t)dwε
i (s)

∣
∣
∣
∣

}

≤ K, (5.17)

for all measurable functions b(·, ·) with |b(s, t)| ≤ 1 and 0 ≤ t ≤ T . For
each t0 ≥ 0, let b0(s) = b(s, t0).
For any nonnegative random variable ξ,

Eeξ =

∞∑

j=0

∫

{j≤ξ<j+1}
eξdP

≤
∞∑

j=0

∫

{j≤ξ<j+1}
ej+1dP

=

∞∑

j=0

ej+1P (j ≤ ξ < j + 1)

=

∞∑

j=0

ej+1[P (ξ ≥ j)− P (ξ ≥ j + 1)]

≤ e+ (e − 1)

∞∑

j=1

ejP (ξ ≥ j).

By virtue of the inequality above, we have

E exp

{ √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b0(s)dw
ε
i (s)

∣
∣
∣
∣

}

≤ e+(e−1)
∞∑

j=1

ejP

( √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b0(s)dw
ε
i (s)

∣
∣
∣
∣ ≥j

)

.

(5.18)

To proceed, let us concentrate on the estimate of

P

( √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b0(s)dw
ε
i (s)

∣
∣
∣
∣ ≥ j

)

.

For each i = 1, . . . ,m, let

p̃i(t) =

∫ t

0

b0(s)dw
ε
i (s)

and let q̃i(·) denote the only solution to the following equation (see Elliott
[55, Chapter 13])

q̃i(t) = 1 + ζ

∫ t

0

q̃i(s
−)dp̃i(s),
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where q̃i(s
−) is the left-hand limit of q̃i at s and ζ is a positive constant

to be determined later. In what follows, we suppress the i-dependence and
write p̃i(·) and q̃i(·) as p̃(·) and q̃(·) whenever there is no confusion.
Note that p̃(t), for t ≥ 0, is a local martingale. Since

ζ

∫ t

0

q̃(s−)dp̃(s), t ≥ 0,

is a local martingale, we have Eq̃(t) ≤ 1 for all t ≥ 0. Moreover, q̃(t) can
be written as follows (see Elliott [55, Chapter 13]):

q̃(t) = exp (ζp̃(t))
∏

s≤t

(1 + ζΔp̃(s)) exp (−ζΔp̃(s)) , (5.19)

where Δp̃(s) := p̃(s)− p̃(s−), with |Δp̃(s)| ≤ 1.
Now observe that there exist positive constants ζ0 and κ1 such that for

0 < ζ ≤ ζ0 and for all s > 0,

(1 + ζΔp̃(s)) exp (−ζΔp̃(s)) ≥ exp
(
−κ1ζ2

)
. (5.20)

Combining (5.19) and (5.20), we obtain

q̃(t) ≥ exp{ζp̃(t)− κ1ζ
2N(t)}, for 0 < ζ ≤ ζ0, t > 0,

where N(t) is the number of jumps of p̃(s) in s ∈ [0, t]. Since N(t) is a
monotonically increasing process, we have

q̃(t) ≥ exp
{
ζp̃(t)− κ1ζ

2N(T )
}
, for 0 < ζ ≤ ζ0.

Note also that for each i = 1, . . . ,m,

P

( √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b0(s)dw
ε
i (s)

∣
∣
∣
∣ ≥ j

)

= P

(

|p̃(t)| ≥ j
√
T + 1√
ε

)

≤ P

(

p̃(t) ≥ j
√
T + 1√
ε

)

+ P

(

−p̃(t) ≥ j
√
T + 1√
ε

)

.

Consider the first term on the right-hand side of the inequality above. Let
aj = j(T + 1)/(8κ1ε). Then
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P

(

p̃(t) ≥ j
√
T + 1√
ε

)

≤ P

(

q̃(t) ≥ exp

{
jζ
√
T + 1√
ε

− κ1ζ
2N(T )

})

≤ P

(

q̃(t) ≥ exp

{
jζ
√
T + 1√
ε

− κ1ζ
2N(T )

}

, N(T ) ≤ aj

)

+ P (N(T ) ≥ aj)

≤ P

(

q̃(t) ≥ exp

(
jζ
√
T + 1√
ε

− κ1ζ
2aj

))

+ P (N(T ) ≥ aj)

≤ 2 exp

(

− jζ
√
T + 1√
ε

+ κ1ζ
2aj

)

+ P (N(T ) ≥ aj).

The last inequality follows from the local martingale property (see Elliott
[55, Theorem 4.2]).
Now if we choose ζ = 4

√
ε/
√
T + 1, then

exp

(

− jζ
√
T + 1√
ε

+ κ1ζ
2aj

)

= e−2j .

In view of the construction of Markov chains in Section 2.4, there exists a
Poisson process N0(·) with parameter (i.e., mean) a/ε for some a > 0, such
that N(t) ≤ N0(t). Assume a = 1 without loss of generality (otherwise one
may replace ε by εa−1). Using the Poisson distribution of N0(t), we have

P (N0(T ) ≥ k) ≤ (T/ε)k

k!
for k ≥ 0.

In view of Stirling’s formula (see Chow and Teicher [30] or Feller [60]), for
ε small enough,

P (N(T ) ≥ aj) ≤
(T/ε)
aj�

�aj�!
≤ 2

(
8κ1
j

)aj−1

:= 2γ
aj−1
0 ,

where �aj� is the integer part of aj and

γ0 =
8eκ1
j0

∈ (0, 1) for j0 > max{1, 8eκ1}.

Thus, for j ≥ j0,

P

( √
ε√

T + 1

∫ t

0

b0(s)dw
ε
i (s) ≥ j

)

≤ 2e−2j + 2γ
aj−1
0 .

Repeating the same argument for the martingale (−p̃(·)), we get for j ≥ j0,

P

(

−
√
ε√

T + 1

∫ t

0

b0(s)dw
ε
i (s) ≥ j

)

≤ 2e−2j + 2γ
aj−1
0 .
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Combining the above two inequalities yields that for j ≥ j0,

P

( √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b0(s)dw
ε
i (s)

∣
∣
∣
∣ ≥ j

)

≤ 4(e−2j + γ
aj−1
0 ).

Then by (5.18),

E exp

{ √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b0(s)dw
ε
i (s)

∣
∣
∣
∣

}

≤ K0 + 4(e− 1)
∞∑

j=1

ej(e−2j + γ
aj−1
0 ),

where K0 is the sum corresponding to those terms with j ≤ j0. Now choose

ε small enough that eγ
1/(8κ1ε)
0 ≤ 1/2. Then

E exp

{ √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b0(s)dw
ε
i (s)

∣
∣
∣
∣

}

≤ K0 + 4eγ−1
0 .

Since t0 is arbitrary, we may take t0 = t in the above inequality. Then

E exp

{ √
ε√

T + 1

∣
∣
∣
∣

∫ t

0

b(s, t)dwε
i (s)

∣
∣
∣
∣

}

≤ K0 + 4eγ−1
0 .

Combining this inequality with (5.16) leads to

E exp

{
θT√

ε(T + 1)
3
2

∣
∣
∣
∣

∫ t

0

(χε(s)− ν(s))β(s)ds

∣
∣
∣
∣

}

≤ e(K0 + 4eγ−1
0 ) := K.

Step 2. Recall that

nε(t, i) =
1√
ε

∫ t

0

(
I{α(ε,s)=i} − νi(s)

)
βi(s) ds.

Then, for each i ∈ M, nε(t, i) is nearly a martingale, i.e., for ε small enough,

|E[nε(t, i)|Fs]− nε(s, i)| ≤ O(
√
ε), for all ω ∈ Ω and 0 ≤ s ≤ t ≤ T.

(5.21)

Here O(
√
ε) is deterministic, i.e., it does not depend on the sample point ω.

The reason is that it is obtained from the asymptotic expansions. In fact,
for all i0 ∈ M,
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E

[∫ t

s

(I{α(ε,r)=i} − νi(r))βi(r) dr
∣
∣α(ε, s) = i0

]

=

∫ t

s

(E[I{α(ε,r)=i}|α(ε, s) = i0]− νi(r))βi(r) dr

=

∫ t

s

[P (α(ε, r) = i|α(ε, s) = i0)− νi(r)]βi(r) dr

=

∫ t

s

O(ε+ exp(−κ0(r − s)/ε) dr = O(ε).

So, (5.21) follows.
Step 3. We show that for each a > 0,

E[exp{a|nε(t, i)|}|Fs] ≥ exp{a|nε(s, i)|}(1 +O(
√
ε)).

First of all, note that φ(x) = |x| is a convex function. There exists a
vector function φ0(x) bounded by 1 such that

φ(x) ≥ φ(a) + φ0(a) · (x− a),

for all x and a. Noting that O(
√
ε) = −O(

√
ε), we have

E[|nε(t, i)| |Fs] ≥ |nε(s, i)|+ φ0(n
ε(s, i)) ·E[nε(t, i)− nε(s, i)|Fs]

≥ |nε(s, i)|+O(
√
ε).

Moreover, note that eax is also convex. It follows that

E[exp(a|nε(t, i)|)|Fs]

≥ exp(a|nε(s, i)|) + a exp{a|nε(s, i)|}E[|nε(t, i)| − |nε(s, i)| |Fs]

≥ exp(a|nε(s, i)|)(1 +O(
√
ε)).

Step 4. Let xε(t) = exp(a|nε(t, i)|) for a > 0. Then, for any Ft stopping
time τ ≤ T ,

E[xε(T )|Fτ ] ≥ xε(τ)(1 +O(
√
ε)). (5.22)

Note that xε(t) is continuous. Therefore, it suffices to show the above
inequality when τ takes values in a countable set {t1, t2, . . .}. To this end,
note that, for each ti,

E[xε(T )|Fti ] ≥ xε(ti)(1 +O(
√
ε)).

For all A ∈ Fτ , we have A ∩ {τ = ti} ∈ Fti . Therefore,

∫

A∩{τ=ti}
xε(T ) dP ≥

(∫

A∩{τ=ti}
xε(τ) dP

)

(1 +O(
√
ε)).
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Thus
∫

A

xε(T ) dP ≥
(∫

A

xε(τ) dP

)

(1 +O(
√
ε)),

and (5.22) follows.
Step 5. Let a = θ/

√
(T + 1)3 in Step 3. Then, for ε small enough, there

exists K such that

P

(

sup
t≤T

xε(t) ≥ x

)

≤ K

x
, (5.23)

for all x > 0.
In fact, let τ = inf{t > 0 : xε(t) ≥ x}. We adopt the convention that

τ = ∞ if {t > 0 : xε(t) ≥ x} = ∅. Then we have

E[xε(T )] ≥ (E[xε(T ∧ τ)])(1 +O(
√
ε)),

and write

E[xε(T ∧ τ)] = E[xε(τ)I{τ<T}] + E[xε(T )I{τ≥T}] ≥ E[xε(τ)I{τ<T}].

Moreover, in view of the definition of τ , we have

E
[
xε(τ)I{τ<T}

]
≥ xP (τ < T ) ≥ xP

(

sup
t≤T

xε(t) ≥ x

)

.

It follows that

P

(

sup
t≤T

xε(t) ≥ x

)

≤ E[xε(T )]

(1 +O(
√
ε))x

≤ K

x
.

Thus, (5.23) follows.
Finally, to complete the proof of (5.13), note that, for 0 < κ < 1,

E exp

(
κθ

√
(1 + T )3

sup
t≤T

|nε(t, i)|
)

= E

[

sup
t≤T

(xε(t))κ
]

.

It follows that

E

[

sup
t≤T

(xε(t))κ
]

=

∫ ∞

0

P

(

sup
t≤T

(xε(t))κ ≥ x

)

dx

≤ 1 +

∫ ∞

1

P

(

sup
t≤T

(xε(t))κ ≥ x

)

dx

≤ 1 +

∫ ∞

1

P

(

sup
t≤T

xε(t) ≥ x1/κ
)

dx

≤ 1 +

∫ ∞

1

Kx−1/κ dx <∞.

This completes the proof. �
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Next we give several corollaries to the theorem. Such estimates are use-
ful for establishing exponential bounds of asymptotic optimal hierarchical
controls in manufacturing models (see Sethi and Zhang [192]).

Corollary 5.6. In Theorem 5.4, if Q(t) = Q, a constant matrix, then the
following stronger estimate holds:

E exp

{
θT√
1 + T

sup
0≤t≤T

|nε(t)|
}

≤ K. (5.24)

Moreover, the constant θT = θ is independent of T for T > 0.

Proof: If Q(t) = Q, then ϕ1(t) in Lemma 5.1 is identically 0. Therefore,
the estimate (5.11) can be replaced by

P ε(t, s)− P0(t) = KTO1

(

exp

(

−κ0(t− s)

ε

))

.

As a result, the estimate in (5.15) can be replaced by

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

(χε(s)− ν(s))β(s)ds

∣
∣
∣
∣ = εKTO1(1)+εKT sup

0≤t≤T

∣
∣
∣
∣

∫ t

0

O1(1)dw
ε(s)

∣
∣
∣
∣ .

The proof of (5.24) follows in essentially the same way as that of Theo-
rem 5.4 (from equation (5.15) on).
To see that θT in (5.24) is independent of T , it suffices to note that in

(5.11) the constantKT is independent of T , which can be seen by examining
closely Example 4.16. �

Corollary 5.7. Under the conditions of Theorem 5.4, there exist constants
Kj, such that for j = 1, 2, . . .,

E sup
0≤t≤T

|nε(t)|2j ≤ Kj(1 + T )3j . (5.25)

Moreover, if Q(t) = Q, then for some Kj independent of T and

E sup
0≤t≤T

|nε(t)|2j ≤ Kj(1 + T )j. (5.26)

Proof: Since (5.26) follows from a similar argument to that of Corollary 5.6,
it suffices to verify (5.25) using Theorem 5.4. Note that for each j = 1, 2, . . .,
there exists K0

j such that for all x, we have x2j ≤ K0
j e

x. Thus,

(
θT

(T + 1)
3
2

sup
0≤t≤T

|nε(t)|
)2j

≤ K0
j exp

{
θT

(T + 1)
3
2

sup
0≤t≤T

|nε(t)|
}

.

Taking expectations on both sides of the above inequality yields the desired
estimate. �
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Corollary 5.8. Under the conditions of Theorem 5.4, for each 0 < δ <
1/2, we have

P

(

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

(I{αε(s)=i}− νi(s))βi(s)ds

∣
∣
∣
∣≥ε

1
2−δ

)

≤K exp

{

− θT

εδ(T + 1)
3
2

}

.

(5.27)

Moreover, if Q(t) = Q, then θT = θ is independent of T and

P

(

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

(I{αε(s)=i}− νi(s))βi(s)ds

∣
∣
∣
∣≥ε

1
2−δ

)

≤K exp

{

− θ

εδ
√
1 + T

}

.

(5.28)

Proof: Using Theorem 5.4, we obtain

P

(

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

(I{αε(s)=i}− νi(s))βi(s)ds

∣
∣
∣
∣ ≥ ε

1
2−δ

)

= P

(

exp

{
θT

(T + 1)
3
2

sup
0≤t≤T

|nε(t)|
}

≥exp

{
θT ε

1
2−δ

√
ε(T + 1)

3
2

})

≤ K exp

{

− θT

εδ(T + 1)
3
2

}

.

This proves (5.27). Similarly, (5.28) follows from Corollary 5.6. �

5.2.4 Asymptotic Normality

Recall that the ith component of nε(·) is given by

nε(t, i) =
1√
ε

∫ t

0

(
I{αε(s)=i} − νi(s)

)
βi(s)ds.

It is expected that the sequence of centered and scaled occupation measures
will display certain “central limit type” phenomena. The goal here is to
study the asymptotic properties of nε(·) as ε → 0. To be more specific,
we show that nε(·) converges to a Gaussian process as ε goes to 0. The
following theorem is the main result of this section.

Theorem 5.9. Suppose that (A5.1) is satisfied and Q(·) is twice continu-
ously differentiable in [0, T ] with the second derivative being Lipschitz. Then
for t ∈ [0, T ], the process nε(·) converges weakly to a Gaussian process n(·)
with independent increments such that

En(t) = 0 and E[n′(t)n(t)] =

∫ t

0

A(s)ds, (5.29)
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where A(t) = (Aij(t)) with

Aij(t)=βi(t)βj(t)

[

νi(t)

∫ ∞

0

q0,ij(r, t)dr+νj(t)

∫ ∞

0

q0,ji(r, t)dr

]

, (5.30)

and Q0(r, t) = (q0,ij(r, t)).

Remark 5.10. In view of (5.29) and the independent increment property
of n(t), it follows that

E[n′(t1)n(t2)] =

∫ min{t1,t2}

0

A(s)ds. (5.31)

The form of the covariance matrix (between t1 and t2) reveals the nonsta-
tionarity of the limit process n(·). Note that the limit covariance of n(t)
given in (5.31) is an integral of the function A(s) defined in (5.30). For
simplicity, with a slight abuse of notation, we shall also call A(t) as the
covariance. This convention will be used throughout the chapter.

Remark 5.11. The additional assumptions on the second derivative of
Q(·) in Theorem 5.9 are required for computing or characterizing the func-
tion A(·). It is not crucial for the convergence of nε(·); see Remark 5.44 in
Section 5.3.3 for details.

Proof of Theorem 5.9: We divide the proof into several steps, which are
presented by a number of lemmas.

Step 1. Show that the limit of the mean of nε(·) is 0.

Lemma 5.12. For each t ∈ [0, T ],

lim
ε→0

Enε(t) = 0.

Proof: Using Theorem 4.5 and the boundedness of βi(·), for t ∈ [0, T ],

Enε(t, i) =
1√
ε

∫ t

0

(EI{αε(s)=i} − νi(s))βi(s)ds

=
1√
ε

∫ t

0

(P (αε(s) = i)− νi(s))βi(s)ds

=
1√
ε

∫ t

0

[

O(ε) +O

(

exp

(

−κ0s
ε

))]

βi(s)ds

= O(
√
ε) +

1√
ε

∫ t

0

O

(

exp

(

−κ0s
ε

)

ds = O(
√
ε) → 0,

for each i ∈ M. �
Step 2. Calculate the limit covariance function.
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Lemma 5.13. For each t ∈ [0, T ],

lim
ε→0

E(nε,′(t)nε(t)) =

∫ t

0

A(s)ds, (5.32)

where A(t) is given by (5.30).

Proof: For each i, j ∈ M,

E [nε(t, i)nε(t, j)] =
1

ε
E

[(∫ t

0

(I{αε(ς)=i} − νi(ς))βi(ς)dς

)

×
(∫ t

0

(I{αε(r)=j} − νj(r))βj(r)dr

)]

=
1

ε
E

[∫ t

0

∫ t

0

(

I{αε(ς)=i,αε(r)=j} − νi(ς)I{αε(r)=j}

−νj(r)I{αε(ς)=i} + νi(ς)νj(r)

)

βi(ς)βj(r)dςdr

]

.

Let

D1 = {(ς, r) : 0 ≤ r ≤ ς ≤ t},

D2 = {(ς, r) : 0 ≤ ς ≤ r ≤ t},

and let

Φε(ς, r) = P (αε(ς) = i, αε(r) = j)− νi(ς)P (α
ε(r) = j)

−νj(r)P (αε(ς) = i) + νi(ς)νj(r).

Then it follows that

E [nε(t, i)nε(t, j)] =
1

ε

[∫ t

0

∫ t

0

Φε(ς, r)βi(ς)βj(r)dςdr

]

=
1

ε

(∫

D1

+

∫

D2

)

Φε(ς, r)βi(ς)βj(r)dςdr.

Note that if (ς, r) ∈ D1, then ς ≥ r and

P (αε(ς) = i, αε(r) = j)

= P (αε(ς) = i|αε(r) = j)P (αε(r) = j).
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Hence, for (ς, r) ∈ D1 we have

Φε(ς, r) = [P (αε(ς) = i|αε(r) = j)− νi(ς)]P (α
ε(r) = j)

+νj(r)[νi(ς)− P (αε(ς) = i)].

Using Theorem 4.5 and Lemma 5.1, for (ς, r) ∈ D1,

Φε(ς, r) =

(

εϕi
1(ς) + q0,ji

(
ς − r

ε
, r

)

+ εq1,ji

(
ς − r

ε
, r

)

+O(ε2)

)

×
(

νj(r) + εϕj
1(r) + ψj

0

(
r

ε

)

+ εψj
1

(
r

ε

)

+O(ε2)

)

−νj(r)
(

εϕi
1(ς) + ψi

0

(
ς

ε

)

+ εψi
1

(
ς

ε

)

+O(ε2)

)

= νj(r)q0,ji

(
ς − r

ε
, r

)

+

[

O

(

ε exp

(

−κ0r
ε

))

+O

(

ε exp

(

−κ0(ς − r)

ε

))

+O

(

exp

(

−κ0ς
ε

))

+O(ε2)

]

.

In the above, ϕi
� and ψi

� denote the ith components of the vectors ϕ� and
ψ�, respectively. By elementary integration, we have

∫ t

0

(∫ ς

0

exp

(

−κ0ς
ε

)

dr

)

dς =

∫ t

0

ς exp

(

−κ0ς
ε

)

dς = O(ε2),

ε

∫ t

0

(∫ ς

0

exp

(

−κ0r
ε

)

dr

)

dς =
ε2

κ0

∫ t

0

(

1− exp

(

−κ0ς
ε

))

dς = O(ε2),

and

ε

∫ t

0

(∫ ς

0

exp

(

−κ0(ς − r)

ε

)

dr

)

dς = ε

∫ t

0

(∫ ς

0

exp

(

−κ0r
ε

)

dr

)

dς = O(ε2).

Thus, it follows that

∫

D1

Φε(ς, r)βi(ς)βj(r)dςdr

=

∫ t

0

(∫ ς

0

q0,ji

(
ς − r

ε
, r

)

νj(r)βi(ς)βj(r)dr

)

dς +O(ε2).
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Exchanging the order of integration leads to

∫ t

0

(∫ ς

0

q0,ji

(
ς − r

ε
, r

)

νj(r)βi(ς)βj(r)dr

)

dς

=

∫ t

0

(∫ t

r

q0,ji

(
ς − r

ε
, r

)

νj(r)βi(ς)βj(r)dς

)

dr

=

∫ t

0

βj(r)νj(r)

(∫ t

r

q0,ji

(
ς − r

ε
, r

)

βi(ς)dς

)

dr.

Making a change of variables (via ς − r = εs) yields

∫ t

r

q0,ji

(
ς − r

ε
, r

)

βi(ς)dς = ε

∫ (t−r)/ε

0

q0,ji(s, r)βi(r + εs)ds.

We note that βi(·) is bounded and βi(r + εs) → βi(r) in L1 for each r ∈
[0, T ], as ε → 0. Since q0,ji(·) decays exponentially fast, as in Lemma 5.1,
we have

∫ (t−r)/ε

0

q0,ji(s, r)βi(r + εs)ds→ βi(r)

∫ ∞

0

q0,ji(s, r)ds.

Therefore, we obtain

lim
ε→0

1

ε

∫

D1

Φε(ς, r)βi(ς)βj(r)dςdr

=

∫ t

0

βi(r)βj(r)νj(r)

(∫ ∞

0

q0,ji(s, r)ds

)

dr.

(5.33)

Similarly, we can show that

lim
ε→0

1

ε

∫

D2

Φε(ς, r)βi(ς)βj(r)dςdr

=

∫ t

0

βi(r)βj(r)νi(r)

(∫ ∞

0

q0,ij(s, r)ds

)

dr.

(5.34)

Combining (5.33) and (5.34), we obtain

lim
ε→0

E [nε(t, i)nε(t, j)] =

∫ t

0

Aij(s)ds,

with A(t) = (Aij(t)) given by (5.30). �

Step 3. Establish a mixing condition for the sequence {nε(·)}.

Lemma 5.14. For any ς ≥ 0 and σ{αε(s) : s ≥ t+ ς}-measurable η with
|η| ≤ 1,

∣
∣
∣E(η|αε(s) : s ≤ t)− Eη

∣
∣
∣ ≤ K exp

(

−κς
ε

)

w.p.1. (5.35)
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Remark 5.15. It follows from (5.35) that for any σ{αε(s) : 0 ≤ s ≤ t}-
measurable ξ with |ξ| ≤ 1 and η given in Lemma 5.14,

∣
∣
∣Eξη − EξEη

∣
∣
∣ ≤ K exp

(

−κς
ε

)

. (5.36)

We will make crucial use of (5.35) and (5.36) in what follows.

Proof of Lemma 5.14: For any

0 ≤ s1 ≤ s2 ≤ · · · ≤ sn = t ≤ t+ ς = t0 ≤ t1 ≤ · · · ≤ tl <∞,

let

E1 = {αε(t) = i, αε(sn−1) = in−1, . . . , α
ε(s1) = i1} and

E2 = {αε(t+ ς) = j, αε(t1) = j1, . . . , α
ε(tl) = jl}.

Then in view of the Markovian property of αε(·),

P (E2|E1) = P (E2|αε(t) = i)

= P (αε(t+ ς) = j|αε(t) = i)[pεj,j1(t1, t+ ς) · · · pεjl−1,jl(tl, tl−1)].

Similarly, we have

P (E2) = P (αε(t+ ς) = j)[pεj,j1 (t1, t+ ς) · · · pεjl−1,jl(tl, tl−1)].

We first show that

∣
∣
∣P (E2|E1)− P (E2)

∣
∣
∣ ≤ K exp

(

−κς
ε

)

, (5.37)

for some positive constants K and κ that are independent of i, j ∈ M and
t ∈ [0, T ].
To verify (5.37), it suffices to show that for any k ∈ M,

∣
∣
∣pεij(t+ ς, t)− pεkj(t+ ς, t)

∣
∣
∣ ≤ K exp

(

−2κς

ε

)

. (5.38)

Since P0(·) and P1(·) have identical rows, the asymptotic expansion in (5.3)
implies that pεij(t+ζ, t)−pεkj(t+ζ, t) is determined by Q0(ζ/ε, t). By virtue
of the asymptotic expansion (see Theorem 4.5 and Lemma 5.1), there exist
a K1 > 0 and a κ0 > 0 such that

∣
∣
∣
∣
∣
Q0

(
(t+ t̃)− t

ε
, t

)∣
∣
∣
∣
∣
≤ K1 exp

(

−κ0t̃
ε

)

, for all t̃ ≥ 0.
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Choose N > 0 sufficiently large that K1 exp(−κ0N) < 1. Then for ε > 0
sufficiently small, there is a 0 < ρ < 1 such that

∣
∣
∣pεij(t+Nε, t)− pεkj(t+Nε, t)

∣
∣
∣ ≤ ρ.

To proceed, subdivide [t+Nε, t+ ς ] into intervals of length Nε.
In view of the Chapman–Kolmogorov equation,

|pεij(t+ 2Nε, t)− pεkj(t+ 2Nε, t)|

=

∣
∣
∣
∣
∣

m∑

l0=1

[pεil0(t+Nε, t)− pεkl0(t+Nε, t)]pεl0j(t+ 2Nε, t+Nε)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

m∑

l0=1

[pεil0(t+Nε, t)− pεkl0(t+Nε, t)]

×[pεl0j(t+ 2Nε, t+Nε)− pεl1j(t+ 2Nε, t+Nε)]

∣
∣
∣
∣
∣
≤ Kρ2,

for any l1 ∈ M. Iterating on the inequality above, we arrive at
∣
∣
∣pεij(t+ k0Nε, t)− pεkj(t+ k0Nε, t)

∣
∣
∣ ≤ Kρk0 , for k0 ≥ 1.

Choose κ = −1/(2N) logρ, and note that κ > 0. Then for any ς satisfying
k0Nε ≤ ς < (k0 + 1)Nε,

∣
∣
∣pεij(t+ ς, t)− pεkj(t+ ς, t)

∣
∣
∣ ≤ K exp

(

−2κς

ε

)

.

Thus (5.37) holds. This implies that αε(·) is a mixing process with expo-
nential mixing rate. By virtue of Lemma A.16, (5.35) holds. �
Step 4. Prove that the sequence nε(·) is tight, and any weakly convergent
subsequence of {nε(·)} has continuous paths with probability 1.

Lemma 5.16. The following assertions hold:

(a) {nε(t); t ∈ [0, T ]} is tight in D([0, T ];Rm), where D([0, T ];Rm) de-
notes the space of functions that are defined on [0, T ] and that are
right continuous with left limits.

(b) The limit n(·) of any weakly convergent subsequence of nε(·) has con-
tinuous sample paths with probability 1.

Proof: For i ∈ M, define

ñε(t, i) =
1√
ε

∫ t

0

(
I{αε(s)=i} − P (αε(s) = i)

)
βi(s)ds.
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By virtue of Theorem 4.5,

1√
ε

∫ t

0

(P (αε(s) = i)− νi(s)) βi(s)ds = O(
√
ε).

Thus nε(t, i) = ñε(t, i)+O(
√
ε), and as a result the tightness of {nε(·)} will

follow from the tightness of {ñε(·)} (see Kushner [139, Lemma 5, p. 50]).
For the tightness of {ñε(·)}, in view of Kushner [139, Theorem 5, p. 32],

it suffices to show that

E|ñε(t+ ς)− ñε(t)|4 ≤ Kς2. (5.39)

To verify this assertion, it is enough to prove that for each i ∈ M, ñε(·, i)
satisfies the condition.
Fix i ∈ M and for any 0 ≤ t ≤ T , let

θ(t) =
(
I{αε(t)=i} − P (αε(t) = i)

)
βi(t).

We have suppressed the i and ε dependence in θ(t) for ease of presentation.
Let D = {(s1, s2, s3, s4) : t ≤ si ≤ t+ ς, i = 1, 2, 3, 4}. It follows that

E|ñε(t+ ς, i)− ñε(t, i)|4

≤ 1

ε2

∫

D

|Eθ(s1)θ(s2)θ(s3)θ(s4)|ds1ds2ds3ds4.
(5.40)

Let (i1, i2, i3, i4) denote a permutation of (1, 2, 3, 4) and

Di1i2i3i4 = {(s1, s2, s3, s4) : t ≤ si1 ≤ si2 ≤ si3 ≤ si4 ≤ t+ ς}.

Then it is easy to see that D = ∪Di1i2i3i4 . This and (5.40) leads to

E|ñε(t+ ς, i)− ñε(t, i)|4

≤ K

ε2

∫

D0

|Eθ(s1)θ(s2)θ(s3)θ(s4)|ds1ds2ds3ds4,

where D0 = D1234.
Note that

|Eθ(s1)θ(s2)θ(s3)θ(s4)|

≤ |Eθ(s1)θ(s2)θ(s3)θ(s4)− Eθ(s1)θ(s2)Eθ(s3)θ(s4)|

+|Eθ(s1)θ(s2)||Eθ(s3)θ(s4)|.

(5.41)
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By virtue of (5.36) and Eθ(t) = 0, t ≥ 0,

|Eθ(s1)θ(s2)| = |Eθ(s1)θ(s2)− Eθ(s1)Eθ(s2)|

≤ K exp

(

−κ(s2 − s1)

ε

)

.

Similarly, we have

|Eθ(s3)θ(s4)| = |Eθ(s3)θ(s4)− Eθ(s3)Eθ(s4)|

≤ K exp

(

−κ(s4 − s3)

ε

)

.

Therefore, it follows that

K

ε2

∫

D0

|Eθ(s1)θ(s2)| · |Eθ(s3)θ(s4)|ds1ds2ds3ds4 ≤ Kς2. (5.42)

The elementary inequality (a+b)1/2 ≤ a1/2+b1/2 for nonnegative numbers
a and b yields that

|Eθ(s1)θ(s2)θ(s3)θ(s4)− Eθ(s1)θ(s2)Eθ(s3)θ(s4)|

=
(
|Eθ(s1)θ(s2)θ(s3)θ(s4)− Eθ(s1)θ(s2)Eθ(s3)θ(s4)|

1
2

)2

≤ |Eθ(s1)θ(s2)θ(s3)θ(s4)− Eθ(s1)θ(s2)Eθ(s3)θ(s4))|
1
2

×
(
|Eθ(s1)θ(s2)θ(s3)θ(s4)|

1
2 + |Eθ(s1)θ(s2)Eθ(s3)θ(s4)|

1
2

)
.

In view of (5.36), we obtain

|Eθ(s1)θ(s2)θ(s3)θ(s4)− Eθ(s1)θ(s2)Eθ(s3)θ(s4))|
1
2

≤ K exp

(

−κ(s3 − s2)

2ε

)

.

Similarly, by virtue of (5.35) and the boundedness of θ(s),

|Eθ(s1)θ(s2)θ(s3)θ(s4)|
1
2

= |Eθ(s1)θ(s2)θ(s3)(E(θ(s4)|αε(s) : s ≤ s3)− Eθ(s4))|
1
2

≤ K exp

(

−κ(s4 − s3)

2ε

)

,



168 5. Occupation Measures: Asymptotic Properties and Ramification

and

|Eθ(s1)θ(s2)Eθ(s3)θ(s4)|
1
2

= |(Eθ(s1)θ(s2)− Eθ(s1)Eθ(s2))(Eθ(s3)θ(s4)− Eθ(s3)Eθ(s4))|
1
2

≤ K exp

(

−κ(s2 − s1)

2ε

)

exp

(

−κ(s4 − s3)

2ε

)

.

By virtue of the estimates above, we arrive at

K

ε2

∫

D0

|Eθ(s1)θ(s2)θ(s3)θ(s4)

−Eθ(s1)θ(s2)Eθ(s3)θ(s4)|ds1ds2ds3ds4 ≤ Kς2.

(5.43)

The estimate (5.39) then follows from (5.42) and (5.43), and so does the
desired tightness of {nε(·)}.
Since {nε(·)} is tight, by Prohorov’s theorem, we extract a convergent

subsequence, and for notational simplicity, we still denote the sequence by
{nε(·)} whose limit is n(·). By virtue of Kushner [139, Theorem 5, p. 32] or
Ethier and Kurtz [59, Proposition 10.3, p. 149], n(·) has continuous paths
with probability 1. �

Remark 5.17. Step 4 implies that both nε(·) and n(·) have continuous
sample paths with probability 1. It follows, in view of Prohorov’s theorem
(see Billingsley [13]), that nε(·) is tight in C([0, T ];Rm).

Step 5. Show that the finite-dimensional distributions of nε(·) converge to
that of a Gaussian process with independent increments.
This part of the proof is similar to Khasminskii [112] (see also Friedlin

and Wentzel [67, pp. 224]). Use ι to denote the imaginary number ι2 = −1.
To prove the convergence of the finite-dimensional distributions, we use the
characteristic function E exp(ι〈z, nε(t)〉), where z ∈ R

m and 〈·.·〉 denotes
the usual inner product in R

m. Owing to the mixing property and repeated
applications of Remark 5.15, for arbitrary positive real numbers sl and tl
satisfying

0 ≤ s0 ≤ t0 ≤ s1 ≤ t1 ≤ s2 ≤ · · · ≤ sn ≤ tn,

we have
∣
∣
∣
∣E exp

(

ι
n∑

l=0

〈
zl, (n

ε(tl)− nε(sl))
〉
)

−
n∏

l=0

E exp

(

ι
〈
zl, (n

ε(tl)− nε(sl))
〉
)∣
∣
∣
∣→ 0
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as ε → 0, for zl ∈ R
m. This, in turn, implies that the limit process n(·)

has independent increments. Moreover, in view of Lemma 5.16, the limit
process has continuous path with probability 1. In accordance with a re-
sult in Skorohod [197, p. 7], if a process with independent increments has
continuous paths w.p.1, then it must necessarily be a Gaussian process.
This implies that the limits of the finite-dimensional distribution of n(·)
are Gaussian.
Consequently, n(·) is a process having Gaussian finite-dimensional dis-

tributions, with mean zero and covariance
∫ t

0
A(s)ds given by Lemma 5.13.

Moreover, the limit does not depend on the chosen subsequence. Thus nε(·)
converges weakly to the Gaussian process n(·). This completes the proof of
the theorem. �

To illustrate, we give an example in which the covariance function of the
limit process can be calculated explicitly.

Example 5.18. Let αε(t) ∈ M = {1, 2} be a two-state Markov chain with
a generator

Q(t) =

(
−μ1(t) μ1(t)
μ2(t) −μ2(t)

)

where μ1(t) ≥ 0, μ2(t) ≥ 0, and μ1(t) +μ2(t) > 0 for each t ∈ [0, T ]. More-
over, μ1(·) and μ2(·) are twice continuously differentiable with Lipschitz
continuous second derivatives. It is easy to see that assumptions (A5.1)
and (A5.2) are satisfied. Therefore the desired asymptotic normality fol-
lows.
In this example,

ν(t) = (ν1(t), ν2(t)) =

(
μ2(t)

μ1(t) + μ2(t)
,

μ1(t)

μ1(t) + μ2(t)

)

.

Moreover,

Q0(s, t0) = −exp(−(μ1(t0) + μ2(t0))s)

μ1(t0) + μ2(t0)
Q(t0).

Thus,

A(t) =
2μ1(t)μ2(t)

(μ1(t) + μ2(t))3

(
(β1(t))

2 −β1(t)β2(t)
−β1(t)β2(t) (β2(t))

2

)

.

5.2.5 Extensions

In this section, we generalize our results in the previous sections including
asymptotic expansions, asymptotic normality, and exponential bounds, to
the Markov chain αε(·) with generator given by Qε(t) = Q(t)/ε+Q̂(t) with
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weakly irreducible generator Q(t). Recall that the vector of probabilities
pε(t) = (P (αε(t) = 1), . . . , P (αε(t) = m)) satisfies the differential equation

dpε(t)

dt
= pε(t)Qε(t), pε(t) ∈ R

m,

pε(0) = p0 with p0i ≥ 0 for i ∈ M and

m∑

i=1

p0i = 1,

To proceed, the following conditions are needed.

(A5.3) Both Q(t) and Q̂(t) are generators. For each t ∈ [0, T ], Q(t) is
weakly irreducible.

(A5.4) For some positive integer n0, Q(·) is (n0 + 1)-times continu-
ously differentiable on [0, T ] and (dn0+1/dtn0+1)Q(·) is Lipschitz.
Moreover, Q̂(·) is n0-times continuously differentiable on [0, T ]

and (dn0/dtn0)Q̂(·) is Lipschitz.

Similarly to Section 4.2 for k = 1, . . . , n0 + 1, the outer expansions lead
to equations

ε0 : ϕ0(t)Q(t) = 0,

ε1 : ϕ1(t)Q(t) + ϕ0(t)Q̂(t) =
dϕ0(t)

dt
,

· · ·

εk : ϕk(t)Q(t) + ϕk−1(t)Q̂(t) =
dϕk−1(t)

dt
,

(5.44)

with constraints

m∑

i=1

ϕ0,i(t) = 1

and

m∑

i=1

ϕk,i(t) = 0, for k ≥ 1.
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The initial-layer correction terms are

ε0 :
dψ0(τ)

dτ
= ψ0(τ)Q(0),

ε1 :
dψ1(τ)

dτ
= ψ1(τ)Q(0) + ψ0(τ)

(

τ
dQ(0)

dt
+ Q̂(0)

)

,

· · ·

εk :
dψk(τ)

dτ
= ψk(τ)Q(0) + rk(τ),

(5.45)

where

rk(τ) =

k∑

i=1

ψk−i(τ)

(
τ i

i!

diQ(0)

dti
+

τ i−1

(i− 1)!

di−1Q̂(0)

dti−1

)

,

with initial conditions

ψ0(0) = p0 − ϕ0(0), and

ψk(0) = −ϕk(0) for k ≥ 1.

Theorem 5.19. Suppose that (A5.3) and (A5.4) are satisfied. Then

(a) ϕi(·) is (n0 + 1− i)-times continuously differentiable on [0, T ],

(b) for each i, there is a κ̂ > 0 such that

∣
∣
∣
∣ψi

(
t

ε

)∣
∣
∣
∣ ≤ K exp

(

− κ̂t
ε

)

, and

(c) the approximation error satisfies

sup
t∈[0,T ]

∣
∣
∣
∣p

ε(t)−
n0∑

i=0

εiϕi(t)−
n0∑

i=0

εiψi

(
t

ε

)∣
∣
∣
∣ ≤ Kεn0+1. (5.46)

The proof of this theorem is similar to those of Theorem 4.5, and is thus
omitted. We also omit the proofs of the following two theorems because
they are similar to that of Theorem 5.4 and Theorem 5.9, respectively.

Theorem 5.20. Suppose (A5.3) and (A5.4) are satisfied with n0 = 0. Then
there exist positive constants ε0 and K such that for 0 < ε ≤ ε0, i ∈ M,
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and for any deterministic process βi(·) satisfying |βi(t)| ≤ 1 for all t ≥ 0,
we have

E exp

{
θT

(T + 1)
3
2

sup
0≤t≤T

|nε(t)|
}

≤ K,

where θT and nε(·) are as defined previously.

Corollary 5.21. Consider Qε = Q/ε+ Q̂ with constant generators Q and

Q̂ such that Q is weakly irreducible. Then (5.25) and (5.27) hold with con-
stants K and Kj independent of T .

Theorem 5.22. Suppose (A5.3) and (A5.4) are satisfied with n0 = 1. Then
for t ∈ [0, T ], the process nε(·) converges weakly to a Gaussian process n(·)
such that

En(t) = 0 and E[n′(t)n(t)] =

∫ t

0

A(s)ds,

where A(t) = (Aij(t)) with

Aij(t) = βi(t)βj(t)

[

νi(t)

∫ ∞

0

q0,ij(r, t)dr + νj(t)

∫ ∞

0

q0,ji(r, t)dr

]

,

and Q0(r, t) = (q0,ij(r, t)) satisfying

dQ0(r, t)

dr
= Q0(r, t)Q(t), r ≥ 0,

Q0(0, t) = I − P0(t),

with P0(t) = (ν′(t), . . . , ν′(t))′.

Remark 5.23. In view of Theorem 5.22, the asymptotic covariance is de-
termined by the quasi-stationary distribution ν(t) and Q0(r, t). Both ν(t)
and Q0(r, t) are determined by Q(t), the dominating term in Qε(t). In the
asymptotic normality analysis, it is essential to have the irreducibility con-
dition of Q(t), whereas the role of Q̂(t) is not as important. If Q(t) is weakly

irreducible, then there exists an ε0 > 0 such that Qε(t) = Q(t)/ε + Q̂(t)
is weakly irreducible for 0 < ε ≤ ε0, as shown in Sethi and Zhang [192,
Lemma J.10].

By introducing another generator Q̂(t), we are dealing with a singularly
perturbed Markovian system with fast and slow motions. Nevertheless,
the entire system under consideration is still weakly irreducible. This irre-
ducibility allows us to extend our previous results with minor modifications.
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Although most of the results in this section can be extended to the
case with Qε(t) = Q(t)/ε+ Q̂(t), there are some exceptions. For example,
Corollary 5.6 would not go through because even with constant matrix
Q̂(t) = Q̂, ϕ1(t) in Lemma 5.1 does not equal 0 when Q̂ �= 0.
One may wonder what happens if Q(t) in Qε(t) is not weakly irreducible.

In particular, one can consider the case in which Q(t) consists of several
blocks of irreducible submatrices. Related results of asymptotic normality
and the exponential bounds are treated in subsequent sections.

5.3 Markov Chains with Weak and Strong
Interactions

For brevity, unless otherwise noted, in the rest of the book, whenever
the phrase “weak and strong interaction” is used, it refers to the case of
two-time-scale Markov chains with all states being recurrent. Similar ap-
proaches can be used for the other cases as well. The remainder of the chap-
ter concentrates on exploiting detailed structures of the weak and strong
interactions. In addition, it deals with convergence of the probability dis-
tribution with merely measurable generators.
We continue our investigation of asymptotic properties of the Markov

chain αε(·) generated by Qε(·), with

Qε(t) =
1

ε
Q̃(t) + Q̂(t), for t ≥ 0, (5.47)

where Q̃(t) = diag(Q̃1(t), . . . , Q̃l(t)) is a block-diagonal matrix such that

Q̂(t) and Q̃k(t), for k = 1, . . . , l, are themselves generators. The state space
of αε(·) is given by

M =
{
s11, . . . , s1m1 , . . . , sl1, . . . , slml

}
.

For each k = 1, . . . , l, let Mk = {sk1, . . . , skmk
}, representing the group of

states corresponding to Q̃k(t).
The results in Section 5.3.1 reveal the structures of the Markov chains

with weak and strong interactions based on the following observations. In-
tuitively, for small ε, the Markov chain αε(·) jumps more frequently within
the states in Mk and less frequently from Mk to Mj for j �= k. Therefore,
the states in Mk can be aggregated and represented by a single state k
(one may view the state k as a super state). That is, one can approximate
αε(·) by an aggregated process, say, αε(·). Furthermore, by examining the
tightness and finite-dimensional distribution of αε(·), it will be shown that
αε(·) converges weakly to a Markov chain α(·) generated by

Q(t) = diag(ν1(t), . . . , νl(t))Q̂(t)diag(1lm1 , . . . , 1lml
). (5.48)
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Section 5.3.2 continues the investigation along the line of estimating the
error bounds of the approximation. Our interest lies in finding how closely
one can approximate an unscaled sequence of occupation measures. The
study is through the examination of appropriate exponential-type bounds.
To take a suitable scaled sequence, one first centers the sequence around
the “mean,” and then compares the actual sequence of occupation mea-
sures with this “mean.” In contrast to the results of Section 5.2, in lieu
of taking the difference of the occupation measure with that of a deter-
ministic function, it is compared with a random process. One of the key
points here is the utilization of solutions of linear time-varying stochastic
differential equations, in which the stochastic integration is with respect to
a square-integrable martingale.
In comparison with the central limit theorem obtained in Section 5.2, it

is interesting to know whether these results still hold under the structure
of weak and strong interactions. The answer to this question is in Section
5.3.3, which also contains further study on related scaled sequences of oc-
cupation measures. The approach is quite different from that of Section
5.2. We use the martingale formulation and apply the techniques of per-
turbed test functions. It is interesting to note that the limit process is a
switching diffusion process, which does not have independent increments.
When the generator is weakly irreducible as in Section 5.2, the motion of
jumping around the grouped states disappears and the diffusion becomes
the dominant force.
We have considered only Markov chains with smooth generators up to

now. However, there are cases in certain applications in which the gener-
ators may be merely measurable. Section 5.4 takes care of the scenario in
which the Markov chains are governed by generators that are only mea-
surable. Formulation via weak derivatives is also discussed briefly. Finally
the chapter is concluded with a few more remarks. Among other things,
additional references are given.

5.3.1 Aggregation of Markov Chains

This section deals with an aggregation of αε(·). The following assumptions
will be needed:

(A5.5) For each k = 1, . . . , l and t ∈ [0, T ], Q̃k(t) is weakly irreducible.

(A5.6) Q̃(·) is differentiable on [0, T ] and its derivative is Lipschitz.

Moreover, Q̂(·) is also Lipschitz.

The assumptions above guarantee the existence of an asymptotic ex-
pansion up to zeroth order. To prepare for the subsequent study, we first
provide the following error estimate. Since only the zeroth-order expan-
sion is needed here, the estimate is confined to such an approximation.
Higher-order terms can be obtained in a similar way.
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Lemma 5.24. Assume (A5.5) and (A5.6). Let P ε(t, t0) denote the transi-
tion probability of αε(·). Then for some κ0 > 0,

P ε(t, t0) = P0(t, t0) +O

(

ε+ exp

(

−κ0(t− t0)

ε

))

,

where

P0(t, t0) = 1̃lΘ(t, t0)diag(ν
1(t), . . . , νl(t))

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1lm1ν
1(t)ϑ11(t, t0), . . . , 1lm1ν

l(t)ϑ1l(t, t0)

... · · ·
...

1lml
ν1(t)ϑl1(t, t0), . . . , 1lml

νl(t)ϑll(t, t0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(5.49)

where νk(t) is the quasi-stationary distribution of Q̃k(t), and Θ(t, t0) =
(ϑij(t, t0)) ∈ R

l×l is the solution to the following initial value problem:

dΘ(t, t0)

dt
= Θ(t, t0)Q(t),

Θ(t0, t0) = I.

(5.50)

Proof: The proof is similar to those of Lemma 5.1 and Theorem 4.29, except
that the notation is more involved. �

Define an aggregated process of αε(·) on [0, T ] by

αε(t) = k if αε(t) ∈ Mk. (5.51)

The idea to follow is to treat a related Markov chain having only l states.
The transitions among its states correspond to the jumps from one group
Mk to another Mj, j �= k, in the original Markov chain.

Theorem 5.25. Assume (A5.5) and (A5.6). Then, for any i = 1, . . . , l,
j = 1, . . . ,mi, and bounded and measurable deterministic function βij(·),

E

(∫ T

0

(

I{αε(t)=sij} − νij(t)I{αε(t)=i}

)

βij(t)dt

)2

= O(ε).

Proof: For any i, j and 0 ≤ t ≤ T , let

ηε(t) = E

(∫ t

0

(
I{αε(r)=sij} − νij(r)I{αε(r)=i}

)
βij(r)dr

)2

. (5.52)
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We have suppressed the i, j dependence of ηε(·) for notational simplicity.
Loosely speaking, the argument used below is a Liapunov stability one,
and ηε(·) can be viewed as a Liapunov function. By differentiating ηε(·),
we have

dηε(t)

dt
= 2E

[(∫ t

0

(
I{αε(r)=sij} − νij(r)I{αε(r)=i}

)
βij(r)dr

)

×
(
I{αε(t)=sij} − νij(t)I{αε(t)=i}

)
βij(t)

]

.

The definition of αε(·) yields that {αε(t) = i} = {αε(t) ∈ Mi}. Thus,

dηε(t)

dt
= 2

∫ t

0

Φε(t, r)βij(t)βij(r)dr,

where Φε(t, r) = Φε
1(t, r) + Φε

2(t, r) with

Φε
1(t, r) = P (αε(t) = sij , α

ε(r) = sij)

−νij(t)P (αε(t) ∈ Mi, α
ε(r) = sij),

(5.53)

and

Φε
2(t, r) = −νij(r)P (αε(t) = sij , α

ε(r) ∈ Mi)

+νij(r)ν
i
j(t)P (α

ε(t) ∈ Mi, α
ε(r) ∈ Mi).

(5.54)

Note that the Markov property of αε(·) implies that for 0 ≤ r ≤ t,

P (αε(t) = sij , α
ε(r) = sij)

= P (αε(t) = sij |αε(r) = sij)P (α
ε(r) = sij).

In view of the asymptotic expansion, we have

P (αε(t) = sij |αε(r) = sij)

= νij(t)ϑii(t, r) +O

(

ε+ exp

(

−κ0(t− r)

ε

))

.

(5.55)
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It follows that

P (αε(t) ∈ Mi|αε(r) = sij)

=

mi∑

k=1

νik(t)ϑii(t, r) +O

(

ε+ exp

(

−κ0(t− r)

ε

))

= ϑii(t, r) +O

(

ε+ exp

(

−κ0(t− r)

ε

))

.

(5.56)

Combining (5.55) and (5.56) leads to

Φε
1(t, r) = O

(

ε+ exp

(

−κ0(t− r)

ε

))

.

Similarly, we can show that

Φε
2(t, r) = O

(

ε+ exp

(

−κ0(t− r)

ε

))

,

by noting that

Φε
2(t, r) = −νij(r)

mi∑

k=1

P (αε(t) = sij , α
ε(r) = sik)

+νij(r)

mi∑

k=1

νij(t)P (α
ε(t) ∈ Mi, α

ε(r) = sik)

and

P (αε(t) = sij |αε(r) = sik)

= νij(t)ϑii(t, r) +O

(

ε+ exp

(

−κ0(t− r)

ε

))

,

for any k = 1, . . . ,mi. Therefore,

dηε(t)

dt
= 2

∫ t

0

O

(

ε+ exp

(

−κ0(t− r)

ε

))

dr = O(ε). (5.57)

This together with ηε(0) = 0 implies that ηε(t) = O(ε). �

Theorem 5.25 indicates that νk(t) together with αε(·) approximates well
the Markov chain αε(·) in an appropriate sense. Nevertheless, in general,
{αε(·)} is not tight. The following example provides a simple illustration.
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Example 5.26. Let αε(·) ∈ {1, 2} denote a Markov chain generated by

1

ε

(
−λ λ
μ −μ

)

,

for some λ, μ > 0. Then αε(·) is not tight.
Proof: If αε(·) is tight, then there exists a sequence εk → 0 such that αεk (·)
converges weakly to a stochastic process α(·) ∈ D([0, T ];M). In view of the
Skorohod representation (without changing notation for simplicity), Theo-
rem A.11, we may assume αεk(·) → α(·) w.p.1. It follows from Lemma A.41
that

E

∣
∣
∣
∣

∫ t

0

αεk(s)ds−
∫ t

0

α(s)ds

∣
∣
∣
∣

2

→ 0,

for all t ∈ [0, T ]. Moreover, similarly as in Theorem 5.25, we obtain

E

∣
∣
∣
∣

∫ t

0

αεk(s)ds−
∫ t

0

(ν1 + 2ν2)ds

∣
∣
∣
∣

2

→ 0,

where (ν1, ν2) is the stationary distribution of αε(·) and ν1+2ν2 is the mean
with respect to the stationary distribution. As a consequence, it follows that
α(t) = ν1 + 2ν2 for all t ∈ [0, T ] w.p.1. Let

δ0 = min{|1− (ν1 + 2ν2)|, |2− (ν1 + 2ν2)|} > 0.

Then for t ∈ [0, T ],

|αε(t)− (ν1 + 2ν2)| ≥ δ0.

Hence, under the Skorohod topology

d(αεk (·), ν1 + 2ν2) ≥ δ0.

This contradicts the fact that αεk (·) → α(·) = ν1 + 2ν2 w.p.1. Therefore,
αε(·) cannot be tight. �

Although αε(·) is not tight because it fluctuates in Mk very rapidly for
small ε, its aggregation αε(·) is tight, and converges weakly to α(t), t ≥ 0,
a Markov chain generated by Q(t), t ≥ 0, where Q(t) is defined in (5.48).
The next theorem shows that αε(·) can be further approximated by α(·).

Theorem 5.27. Assume (A5.5) and (A5.6). Then αε(·) converges weakly
to α(·) in D([0, T ];M), as ε→ 0.

Proof: The proof is divided into two steps. First, we show that αε(·) defined
in (5.51) is tight in D([0, T ];M). The definition of αε(·) implies that

{αε(t) = i} = {αε(t) ∈ Mi} = {αε(t) = sij for some j = 1, . . . ,mi}.
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Consider the conditional expectation

E
[
(αε(t+ s)− αε(s))2

∣
∣
∣αε(s) = sij

]

= E
[
(αε(t+ s)− i)2

∣
∣
∣αε(s) = sij

]

=

l∑

k=1

E
[
(αε(t+ s)− i)

2
I{αε(t+s)=k}

∣
∣
∣αε(s) = sij

]

=

l∑

k=1

(k − i)2P (αε(t+ s) = k|αε(s) = sij)

≤ l2
∑

k �=i

P (αε(t+ s) = k|αε(s) = sij).

Since {αε(t+ s) = k} = {αε(t+ s) ∈ Mk}, it follows that

P (αε(t+ s) = k|αε(s) = sij)

=

mk∑

k1=1

P (αε(t+ s) = skk1 |αε(s) = sij)

=

mk∑

k1=1

νkk1
(t+ s)ϑik(t+ s, s) +O

(

ε+ exp

(

−κ0t
ε

))

= ϑik(t+ s, s) +O

(

ε+ exp

(

−κ0t
ε

))

.

Therefore, we obtain

E
[
(αε(t+ s)− αε(s))

2
∣
∣
∣αε(s) = sij

]

≤ l2
∑

k �=i

ϑik(t+ s, s) +O

(

ε+ exp

(

−κ0t
ε

))

.

Note that limt→0 ϑik(t+ s, s) = 0 for i �= k.

lim
t→0

(
lim
ε→0

E
(
(αε(t+ s)− αε(s))2|αε(s) = sij

))
= 0.

Thus, the Markov property of αε(·) implies

lim
t→0

(
lim
ε→0

E
(
(αε(t+ s)− αε(s))2|αε(r) : r ≤ s

))
= 0. (5.58)

Recall that αε(·) is bounded. The tightness of αε(·) follows from Kurtz’
tightness criterion (see Lemma A.17).
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To complete the proof, it remains to show that the finite-dimensional
distributions of αε(·) converge to that of α(·). In fact, for any

0 ≤ t1 < t2 < · · · < tn ≤ T and i1, i2, . . . , in ∈ M = {1, . . . , l},

we have

P (αε(tn) = in, . . . , α
ε(t1) = i1)

= P (αε(tn) ∈ Min , . . . , α
ε(t1) ∈ Mi1)

=
∑

j1,...,jn

P (αε(tn) = sinjn , . . . , α
ε(t1) = si1j1)

=
∑

j1,...,jn

P (αε(tn) = sinjn |αε(tn−1) = sin−1jn−1)

× · · · × P (αε(t2) = si2j2 |αε(t1) = si1j1 )P (α
ε(t1) = si1j1).

In view of Lemma 5.24, for each k, we have

P (αε(tk) = sikjk |αε(tk−1) = sik−1jk−1
) → νikjk (tk)ϑik−1ik(tk, tk−1).

Moreover, note that
mik∑

jk=1

νikjk (tk) = 1.

It follows that

∑

j1,...,jn

P (αε(tn) = sinjn |αε(tn−1) = sin−1jn−1)

× · · · × P (αε(t2) = si2j2 |αε(t1) = si1j1)P (α
ε(t1) = si1j1)

→
∑

j1,...,jn

νinjn(tn)ϑin−1in(tn, tn−1) · · · νi2j2 (t2)ϑi1i2(t2, t1)ν
i1
j1
(t1)ϑ̃i1 (t1)

= ϑin−1in(tn, tn−1) · · ·ϑi1i2(t2, t1)ϑ̃i1(t1)

= P (α(tn) = in, . . . , α(t1) = i1),

where
∑

j1,...,jn
=
∑mi1

j1=1 · · ·
∑min

jn=1 and ϑ̃i1 (t1) denotes the initial distribu-
tion (also known as absolute probability in the literature of Markov chains).
Thus, αε(·) → α(·) in distribution. �

This theorem implies that αε(·) converges to a Markov chain, although
αε(·) itself is not a Markov chain in general. If, however, the generatorQε(t)
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has some specific structure, then αε(·) is a Markov chain. The following
example demonstrates this point.

Example 5.28. Let Q̃(t) = (q̃ij(t)) and Q(t) = (qij(t)) denote generators
with the corresponding state spaces {a1, . . . , am0} and {1, . . . , l}, respec-
tively. Consider

Qε(t)=
1

ε

⎛

⎜
⎜
⎝

Q̃(t)
. . .

Q̃(t)

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

q11(t)Im0 · · · q1l(t)Im0

...
...

...

ql1(t)Im0 · · · qll(t)Im0

⎞

⎟
⎟
⎠ , (5.59)

where Im0 is the m0 ×m0 identity matrix. In this case

m1 = m2 = · · · = ml = m0.

Then αε(·) is a Markov chain generated by Q(t). In fact, let

χε(t) =
(
I{αε(t)=s11}, . . . , I{αε(t)=s1m0}, . . . , I{αε(t)=sl1}, . . . , I{αε(t)=slm0

}

)
.

Note that sij = (i, aj) for j = 1, . . . ,m0 and i = 1, . . . , l. In view of
Lemma 2.4, we obtain that

χε(t)−
∫ t

0

χε(s)Qε(s)ds (5.60)

is a martingale. Postmultiplying (multiplying from the right) (5.60) by

1̃l = diag(1lm0 , . . . , 1lm0)

and noting that {αε(t) = i} = {αε(t) ∈ Mi} and

χε(t)1̃l = (I{αε(t)=1}, . . . , I{αε(t)=l}),

we obtain that

(
I{αε(t)=1}, . . . , I{αε(t)=l}

)
−
∫ t

0

χε(s)Qε(s)ds1̃l

is still a martingale. In view of the special structure of Qε(t) in (5.59),

Q̃(t)1lm0 = 0, Qε(t)1̃l = Q̂(t)1̃l,

and
χε(s)Q̂(s)1̃l =

(
I{αε(s)=1}, . . . , I{αε(s)=l}

)
Q(s).

Therefore, (5.60) implies that

(
I{αε(t)=1}, . . . , I{αε(t)=l}

)
−
∫ t

0

(
I{αε(s)=1}, . . . , I{αε(s)=l}

)
Q(s)ds

is a martingale. This implies, in view of Lemma 2.4, that αε(·) is a Markov
chain generated by Q(t), t ≥ 0.
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5.3.2 Exponential Bounds

For each i = 1, . . . , l, j = 1, . . . ,mi, α ∈ M, and t ≥ 0, let βij(t) be a
bounded, Borel measurable, deterministic function and let

Wij(t, α) =
(
I{α=sij} − νij(t)I{α∈Mi}

)
βij(t). (5.61)

Consider normalized occupation measures

nε(t) =
(
nε
11(t), . . . , n

ε
1m1

(t), . . . , nε
l1(t), . . . , n

ε
lml

(t)
)
,

where

nε
ij(t) =

1√
ε

∫ t

0

Wij(s, α
ε(s))ds.

In this section, we establish the exponential error bound for nε(·), a se-
quence of suitably scaled occupation measures for the singularly perturbed
Markov chains with weak and strong interactions.
In view of Theorem 4.29, there exists κ0 > 0 such that

∣
∣
∣P ε(t, s)− P0(t, s)

∣
∣
∣ = O

(

ε+ exp

(

−κ0(t− s)

ε

))

. (5.62)

Similar to Section 5.3.2, for fixed but otherwise arbitrary T > 0, let

KT = max

{

1, sup
0≤s≤t≤T

(
|P ε(t, s)− P0(t, s)|

ε+ exp(−κ0(t− s)/ε)

)}

. (5.63)

We may write (5.62) in terms of KT and O1(·) as follows:
∣
∣
∣P ε(t, s)− P0(t, s)

∣
∣
∣ = KTO1

(

ε+ exp

(

−κ0(t− s)

ε

))

, (5.64)

where |O1(y)|/|y| ≤ 1. The notation of KT and O1(·) above emphasizes
the separation of the dependence of the constant and a “norm 1” function.
Essentially, KT serves as a magnitude of the bound indicating the size of
the bounding region, and the rest is absorbed into the function O1(·).

Theorem 5.29. Assume (A5.5) and (A5.6). Then there exist ε0 > 0 and
K > 0 such that for 0 < ε ≤ ε0, T ≥ 0, and for any bounded, Borel
measurable, and deterministic process βij(·),

E exp

(
θT

(T + 1)3
sup

0≤t≤T
|nε(t)|

)

≤ K, (5.65)

where θT is any constant satisfying

0 ≤ θT ≤ min{1, κ0}
KT |β|T (1 + |Q̂|T )

, (5.66)
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and where | · |T denotes the matrix norm as defined in (5.12), that is,

|β|T = max
i,j

sup
0≤t≤T

|βij(t)|,

similarly for |Q̂|T .

Remark 5.30. This theorem is a natural extension to Theorem 5.4. Owing
to the existence of the weak and strong interactions, slightly stronger con-
ditions on KT and θT are made in (5.63) and (5.66). Also the exponential
constant in (5.65) is changed to (T + 1)3.

Proof of Theorem 5.29: Here the proof is again along the lines of Theo-
rem 5.4. Since Steps 2-5 in the proof are similar to those of Theorem 5.4,
we will only give the proof for Step 1.
Let χε(·) denote the vector of indicators corresponding to αε(·), that is,

χε(t) =
(
I{αε(t)=s11}, . . . , I{αε(t)=s1m1}, . . . , I{αε(t)=sl1}, . . . , I{αε(t)=slml

}

)
.

Then wε(·) defined by

wε(t) = χε(t)− χε(0)−
∫ t

0

χε(s)Qε(s)ds (5.67)

is an R
m-valued martingale. In fact, wε(·) is square integrable on [0, T ]. It

then follows from a well-known result (see Elliott [55] or Kunita and Watan-
abe [134]) that a stochastic integral with respect to wε(t) can be defined.
In view of the defining equation (5.67), the linear stochastic differential
equation

dχε(t) = χε(t)Qε(t)dt+ dwε(t) (5.68)

makes sense. Recall that P ε(t, s) is the principal matrix solution of the
matrix differential equation

dy(t)

dt
= y(t)Qε(t). (5.69)

The solution of this stochastic differential equation is

χε(t) = χε(0)P ε(t, 0) +

∫ t

0

(dwε(s))P ε(t, s)

= χε(0) (P ε(t, 0)− P0(t, 0))

+

∫ t

0

(dwε(s)) (P ε(t, s)− P0(t, s))

+χε(0)P0(t, 0) +

∫ t

0

(dwε(s))P0(t, s).

(5.70)
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Use ϑij(t, s) defined in Lemma 5.24 and write Θ(t, s) = (ϑij(t, s)). Then it
is easy to check that

P0(t, s) = 1̃lΘ(t, s)diag(ν1(t), . . . , νl(t)). (5.71)

Set
χε(t) =

(
ν1(t)I{αε(t)=1}, . . . , ν

l(t)I{αε(t)=l}
)
∈ R

m

and
χ̃ε(t) =

(
I{αε(t)=1}, . . . , I{αε(t)=l}

)
∈ R

l.

Then it follows that

χ̃ε(t) = χε(t)1̃l and

χε(t) = χ̃ε(t)diag(ν1(t), . . . , νl(t)).

(5.72)

Moreover, postmultiplying both sides of (5.67) by 1̃l yields that

χε(t)1̃l− χε(0)1̃l−
∫ t

0

χε(s)Qε(s)1̃lds = wε(t)1̃l. (5.73)

Here wε(·)1̃l is also a square-integrable martingale. Note that Q̃(s)1̃l = 0
and hence

Qε(s)1̃l = Q̂(s)1̃l and

χε(s)Q̂(s)1̃l = χ̃ε(s)diag(ν1(s), . . . , νl(s))Q̂(s)1̃l = χ̃ε(s)Q(s).

We obtain from (5.73) that

χ̃ε(t)− χ̃ε(0)−
∫ t

0

(
(χε(s)− χε(s))Q̂(s)1̃l + χ̃ε(s)Q(s)

)
ds = wε(t)1̃l.

Since Θ(t, s) is the principal matrix solution to

dΘ(t, s)

dt
= Θ(t, s)Q(t), with Θ(s, s) = I,

similar to (5.68), solving the stochastic differential equation for χ̃ε(·) leads
to the equation:

χ̃ε(t) = χ̃ε(0)Θ(t, 0) +

∫ t

0

(dwε(s)1̃l)Θ(t, s)

+

∫ t

0

(χε(s)− χε(s))Q̂(s)1̃lΘ(t, s)ds.

(5.74)
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Let us now return to the last two terms in (5.70) and use (5.71), (5.72),
and (5.74) to obtain

χε(0)P0(t, 0) +

∫ t

0

(dwε(s))P0(t, s)

=

(

χε(0)1̃lΘ(t, 0) +

∫ t

0

(dwε(s))1̃lΘ(t, s)

)

diag(ν1(t), . . . , νl(t))

=

(

χ̃ε(0)Θ(t, 0) +

∫ t

0

(dwε(s)1̃l)Θ(t, s)

)

diag(ν1(t), . . . , νl(t))

=

(

χ̃ε(t)−
∫ t

0

(χε(s)− χε(s))Q̂(s)1̃lΘ(t, s)ds

)

diag(ν1(t), . . . , νl(t))

= χε(t)−
∫ t

0

(χε(s)− χε(s))Q̂(s)1̃lΘ(t, s)diag(ν1(t), . . . , νl(t))ds

= χε(t)−
∫ t

0

(χε(s)− χε(s))Q̂(s)P0(t, s)ds.

Combining this with (5.70), we have

(χε(t)− χε(t)) +

∫ t

0

(χε(s)− χε(s))Q̂(s)P0(t, s)ds = ηε(t), (5.75)

where

ηε(t) = χε(0) (P ε(t, 0)− P0(t, 0)) +

∫ t

0

(dwε(s)) (P ε(t, s)− P0(t, s)) .

Note that the matrix P ε(t, s) is invertible but P0(t, s) is not. The idea is
to approximate the noninvertible matrix P0(t, s) by the invertible P ε(t, s).
Let

ηε1(t) =

∫ t

0

(χε(s)− χε(s))Q̂(s) (P0(t, s)− P ε(t, s)) ds (5.76)

and

φε(t) = (χε(t)− χε(t))− (ηε(t)− ηε1(t)).

Then φε(0) = 0 and φε(t) satisfies the following equation:

φε(t) +

∫ t

0

φε(s)Q̂(s)P ε(t, s)ds+

∫ t

0

(ηε(s)− ηε1(s))Q̂(s)P ε(t, s)ds = 0.

The properties of the principal matrix solution imply that

P ε(t, s) = P ε(0, s)P ε(t, 0).
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Set

Q̌ε(t) = P ε(t, 0)Q̂(t)P ε(0, t),

ψε(t) = φε(t)P ε(0, t), and

ηε2(t) = (ηε(t)− ηε1(t))Q̂(t)P ε(0, t).

Owing to the properties of the principal matrix solution, for any t ∈ [0, T ],
we have

P ε(0, t)P ε(t, 0) = P ε(t, t) = I, (5.77)

ψε(0) = 0 and ψε(t) satisfies the equation

ψε(t) +

∫ t

0

ψε(s)Q̌ε(s)ds +

∫ t

0

ηε2(s)ds = 0.

The solution to this equation is given by

ψε(t) = −
∫ t

0

ηε2(s)Φ̌
ε(t, s)ds, (5.78)

where Φ̌ε(t, s) is the principal matrix solution to

dΦ̌ε(t, s)

dt
= −Φ̌ε(t, s)Q̌ε(t), with Φ̌ε(s, s) = I.

Postmultiplying both sides of (5.78) by P ε(t, 0) yields

φε(t) = ψε(t)P ε(t, 0)

= −
∫ t

0

ηε2(s)Φ̌
ε(t, s)P ε(t, 0)ds

= −
∫ t

0

(ηε(s)− ηε1(s))Q̂(s)Ψ̌ε(t, s)ds,

where

Ψ̌ε(t, s) = P ε(0, s)Φ̌ε(t, s)P ε(t, 0).

Thus it follows that

χε(t)− χε(t) = ηε(t)− ηε1(t)−
∫ t

0

(ηε(s)− ηε1(s))Q̂(s)Ψ̌ε(t, s)ds. (5.79)
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Again using (5.77), we have

d

dt

(
Φ̌ε(t, 0)P ε(t, 0)

)

=

(
dΦ̌ε(t, 0)

dt

)

P ε(t, 0) + Φ̌ε(t, 0)

(
dP ε(t, 0)

dt

)

= −Φ̌ε(t, 0)Q̌ε(t)P ε(t, 0) + Φ̌ε(t, 0)P ε(t, 0)Qε(t)

= −Φ̌ε(t, 0)P ε(t, 0)Q̂(t)P ε(0, t)P ε(t, 0) + Φ̌ε(t, 0)P ε(t, 0)Qε(t)

= −Φ̌ε(t, 0)P ε(t, 0)Q̂(t) + Φ̌ε(t, 0)P ε(t, 0)Qε(t)

= Φ̌ε(t, 0)P ε(t, 0)
(
−Q̂(t) +Qε(t)

)

= Φ̌ε(t, 0)P ε(t, 0)

(
1

ε
Q̃(t)

)

.

This implies that Ψ̌ε(t, s) is the principal matrix solution to the differential
equation

dΨ̌ε(t, s)

dt
= Ψ̌ε(t, s)

(
1

ε
Q̃(t)

)

, with Ψ̌ε(s, s) = I. (5.80)

Therefore, all entries of Ψ̌ε(t, s) are bounded below from 0 and bounded
above by 1, and these bounds are uniform in 0 ≤ s ≤ t ≤ T . Thus,
|Ψ̌ε(t, s)|T ≤ 1.
Multiplying both sides of (5.79) by the m×m matrix

β(t) := diag(β11(t), . . . , β1m1(t), . . . , βl1(t), . . . , βlml
(t))

from the right and integrating over the interval [0, ς ], for each ς ∈ [0, T ],
we have

∫ ς

0

(χε(t)− χε(t))β(t)dt =

∫ ς

0

ηε(t)β(t)dt −
∫ ς

0

ηε1(t)β(t)dt

−
∫ ς

0

∫ t

0

(ηε(s)− ηε1(s))Q̂(s)Ψ̌ε(t, s)dsβ(t)dt.

By changing the order of integration, we write the last term in the above
expression as

∫ ς

0

∫ t

0

(ηε(s)− ηε1(s))Q̂(s)Ψ̌ε(t, s)dsβ(t)dt

=

∫ ς

0

(ηε(s)− ηε1(s))

(∫ ς

s

Q̂(s)Ψ̌ε(t, s)β(t)dt

)

ds.
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Therefore, it follows that

∫ ς

0

(χε(t)− χε(t))β(t)dt =

∫ ς

0

ηε(t)β̃(t)dt−
∫ ς

0

ηε1(t)β̃(t)dt, (5.81)

where

β̃(t) = β(t) +

∫ ς

t

Q̂(t)Ψ̌ε(r, t)β(r)dr.

Moreover, in view of the fact that |Ψ̌ε(t, s)|T ≤ 1, it is easy to see that

|β̃|T ≤ (1 + T )|β|T (1 + |Q̂|T ). (5.82)

Note that nε(·) can be written in terms of χε(·) and χε(·) as

nε(ς) =
1√
ε

∫ ς

0

(χε(t)− χε(t))β(t)dt.

By virtue of (5.81), it follows that

|nε(ς)| ≤ 1√
ε

∣
∣
∣
∣

∫ ς

0

ηε(t)β̃(t)dt

∣
∣
∣
∣+

1√
ε

∣
∣
∣
∣

∫ ς

0

ηε1(t)β̃(t)dt

∣
∣
∣
∣ .

Note that in view of the definition of ηε1(·) in (5.76),

|ηε1(t)| =
∫ t

0

O

(

ε+ exp

(

−κ0(t− s)

ε

))

ds = O(ε(t + 1)).

Thus, in view of (5.82),

sup
0≤ς≤T

∣
∣
∣
∣

∫ ς

0

ηε1(t)β̃(t)dt

∣
∣
∣
∣ = |β̃|T sup

0≤ς≤T

∫ ς

0

O(ε(t+ 1))dt

= |β̃|T sup
0≤ς≤T

O(ε(ς2 + ς))

= |β̃|T (T 2 + T )O(ε)

≤ (1 + T )3|β|T (1 + |Q̂|T )O(ε).

(5.83)

Thus, in view of (5.63) and (5.66), for some ε0 > 0, and all 0 < ε ≤ ε0,

exp

(
θT

(T + 1)3
sup

0≤ς≤T

∣
∣
∣
∣

∫ ς

0

ηε1(t)β̃(t)√
ε

dt

∣
∣
∣
∣

)

≤ exp

(
O(

√
ε)min{1, κ0}
KT

)

≤ exp
(
O(

√
ε0)min{1, κ0}

)
≤ K.

(5.84)
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Moreover, using (5.64), as in the proof of Theorem 5.4, we obtain that

E exp

(
θT

(T + 1)
3
2

sup
0≤ς≤T

∣
∣
∣
∣

∫ ς

0

(
ηε(t)β̃(t)√

ε

)

dt

∣
∣
∣
∣

)

≤ K, (5.85)

for

0 ≤ θT ≤ min{1, κ0}
KT |β|T (1 + |Q̂|T )

.

Finally, combine (5.81), (5.83), and (5.85) to obtain

E exp

(
θT

(T + 1)3
sup

0≤t≤T
|nε(t)|

)

≤ K.

This completes the proof. �

Remark 5.31. It is easily seen that the error bound so obtained has a
form similar to that of the martingale inequality. If nε(·) were a martin-
gale, the inequality would be obtained much more easily since exp(·) is a
convex function. As in Section 5.2, the error bound is still a measure of
“goodness” of approximation. However, one cannot compare the unscaled
occupation measures with a deterministic function. A sensible alternative
is to use an approximation by the aggregated process that is no longer
deterministic. The exponential bounds obtained tell us exactly how closely
one can carry out the approximation. It should be particularly useful for
many applications in stochastic control problems with Markovian jump
disturbances under discounted cost criteria.

The next two corollaries show that the error bound can be improved
under additional conditions by having smaller exponential constants, e.g.,
(T + 1)3/2 or (T + 1)5/2 instead of (T + 1)3.

Corollary 5.32. Assume that the conditions of Theorem 5.29 hold. Let
Q̃(t) = (q̃ij(t)) and Q(t) = (qij(t)) denote generators with the correspond-
ing state spaces {a1, . . . , am0} and {1, . . . , l}, respectively. Consider

Qε(t)=
1

ε

⎛

⎜
⎝

Q̃(t)
. . .

Q̃(t)

⎞

⎟
⎠+

⎛

⎜
⎝

q11(t)Im0 · · · q1l(t)Im0

... · · ·
...

ql1(t)Im0 · · · qll(t)Im0

⎞

⎟
⎠ ,

where Im0 is the m0 ×m0 identity matrix. Then there exist positive con-
stants ε0 and K such that for 0 < ε ≤ ε0, and T ≥ 0,

E exp

(
θT

(T + 1)
3
2

sup
0≤t≤T

|nε(t)|
)

≤ K.
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Proof: Under the special structure of the generator Qε, it is easy to see
that

Q̂(s)1̃l = 1̃lQ(s),

where 1̃l now takes the form

1̃l = diag(1lm0 , . . . , 1lm0).

Note that under current conditions on the fast-changing part of the gener-
ator Q̃(t),

ν1(t) = ν2(t) = · · · = νl(t) and diag(ν1(t), . . . , νl(t))1̃l = Il,

where Il denotes the l-dimensional identity matrix. This together with
(5.72) implies that

(χε(s)− χε(s))Q̂(s)1̃l = 0.

It follows from (5.71) that

∫ t

0

(χε(s)− χε(s))Q̂(s)P0(t, s)ds = 0.

Then (5.75) becomes

χε(t)− χε(t) = ηε(t).

The rest of the proof follows exactly that of Theorem 5.29. �

Corollary 5.33. Assume the conditions of Theorem 5.29. Suppose Q̃(t) =

Q̃ and Q̂(t) = Q̂ for some constant matrices Q̃ and Q̂. Then there exist
positive constants ε0 and K such that for 0 < ε ≤ ε0, and T ≥ 0,

E exp

(
θT

(T + 1)
5
2

sup
0≤t≤T

|nε(t)|
)

≤ K.

Remark 5.34. Note that in view of Corollary 4.31, one can show under
the condition Q̃(t) = Q̃ and Q̂(t) = Q̂ that there exists a constant K such
that

P ε(t, s)− P0(t, s) = K(T + 1)O1

(

ε+ exp

(

−κ0(t− s)

ε

))

.

In this case, θT can be taken as

0 ≤ θT ≤ min{1, κ0}
K(T + 1)|β|T (1 + |Q̂|T )

.

That is, compared with the general result, the constant KT can be further
specified as KT = K(T + 1).



5.3 Markov Chains with Weak and Strong Interactions 191

Proof of Corollary 5.33: Note that when the generators are time indepen-
dent, the quasi-stationary distribution νi(t) is also independent of time and
is denoted by νi. In this case, the argument from (5.75) to (5.80) can be
replaced by the following. Let

Q̌0 = Q̂1̃ldiag(ν1, . . . , νl).

Then it can be shown that

Q̂1̃l
(
Q
)k

diag(ν1, . . . , νl) = (Q̌0)
k+1, for k ≥ 0.

This implies that

Q̂P0(t, s) = Q̂1̃l exp
(
Q(t− s)

)
diag(ν1, . . . , νl)

= Q̌0 exp(Q̌0(t− s)).

Let φε(t) = (χε(t)− χε(t))− ηε(t). Then φε(·) satisfies the equation

φε(t) +

∫ t

0

(φε(s) + ηε(s))Q̌0 exp(Q̌0(t− s))ds = 0.

Solving for φε(·), we obtain

φε(t) = −
∫ t

0

ηε(s)Q̌0ds.

Writing χε(t)− χε(t) in terms of φε(t) and ηε(t) yields,

χε(t)− χε(t) = ηε(t)−
∫ t

0

ηε(s)Q̌0ds.

The rest of the proof follows that of Theorem 5.29. �

Similar to Section 5.2, we derive estimates that are analogous to Corol-
lary 5.7 and Corollary 5.8. The details are omitted, however.

5.3.3 Asymptotic Distributions

In Section 5.2, we obtained a central limit theorem for a class of Markov
chains generated by Qε(t) = Q(t)/ε+ Q̂(t) with a weakly irreducible Q(t).
In this case for sufficiently small ε > 0, Qε(t) is weakly irreducible. What,
if anything, can be said about the weak and strong interaction models,
when Q̃(t) is not weakly irreducible? Is there a central limit theorem for
the corresponding occupation measure when one has a singularly perturbed
Markov chain with weak and strong interactions? This section deals with
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such an issue; our interest lies in the asymptotic distribution as ε → 0.
It is shown that the asymptotic distribution of the corresponding occupa-
tion measure can be obtained. However, the limit distribution is no longer
Gaussian, but a Gaussian mixture, and the proof is quite different from
that of the irreducible case in Section 5.2.
For each i = 1, . . . , l, j = 1, . . . ,mi, α ∈ M, and t ≥ 0, let βij(t) be a

bounded Borel measurable deterministic function. Use Wij(t, α) defined in
(5.61) and the normalized occupation measure

nε(t) =
(
nε
11(t), . . . , n

ε
1m1

(t), . . . , nε
l1(t), . . . , n

ε
lml

(t)
)
,

with

nε
ij(t) =

1√
ε

∫ t

0

Wij(s, α
ε(s))ds.

We will show in this section that nε(·) converges weakly to a switching
diffusion modulated by α(·). The procedure is as follows:

(a) Show that (nε(·), αε(·)) is tight;

(b) verify that the limit of a subsequence of (nε(·), αε(·)) is a solution to
a martingale problem that has a unique solution;

(c) characterize the solution of the associated martingale problem;

(d) construct a switching diffusion that is also a solution to the martingale
problem and therefore the limit of (nε(·), αε(·)).

To accomplish our goal, these steps are realized by proving a series of
lemmas. Recall that Fε

t = σ{αε(s) : 0 ≤ s ≤ t} denotes the filtration
generated by αε(·). The lemma below is on the order estimates of the
conditional moments, and is useful for getting the tightness result in what
follows.

Lemma 5.35. Assume (A5.5) and (A5.6). Then for all 0 ≤ s ≤ t ≤ T and
ε small enough, the following hold:

(a) sup
s≤t≤T

E[nε(t)− nε(s)|Fε
s ] = O(

√
ε);

(b) sup
ε
E
[
|nε(t)− nε(s)|2|Fε

s

]
= O(t− s).

Proof: First, note that for any fixed i, j,

E[(nε
ij(t)− nε

ij(s))|Fε
s ] =

1√
ε

∫ t

s

E[Wij(r, α
ε(r))|Fε

s ]dr.
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Moreover, in view of the definition of Wij(t, α) and the Markov property,
we have, for 0 ≤ s ≤ r,

E[Wij(r, α
ε(r))|Fε

s ]

= E
[(
I{αε(r)=sij} − νij(r)I{αε(r)∈Mi}

)
|Fε

s

]
βij(r)

=
(
P (αε(r) = sij |Fε

s )− νij(r)P (α
ε(r) ∈ Mi|Fε

s )
)
βij(r)

=
(
P (αε(r) = sij |αε(s)) − νij(r)P (α

ε(r) ∈ Mi|αε(s))
)
βij(r).

In view of Lemma 5.24, in particular, similar to (5.55) and (5.56), for all
i0 = 1, . . . , l and j0 = 1, . . . ,mi0 ,

P (αε(r) = sij |αε(s) = si0j0)− νij(r)P (α
ε(r) ∈ Mi|αε(s) = si0j0)

= O

(

ε+ exp

(

−κ0(r − s)

ε

))

.

Thus owing to Lemma A.42, we have

(
P (αε(r) = sij |αε(s))− νij(r)P (α

ε(r) ∈ Mi|αε(s))
)
βij(r)

=

l∑

i0=1

mi0∑

j0=1

I{αε(s)=si0j0}

(

P (αε(r) = sij |αε(s) = si0j0)

−νij(r)P (αε(r) ∈ Mi|αε(s) = si0j0)

)

βij(r)

= O

(

ε+ exp

(

−κ0(r − s)

ε

))

.

Note also that

1√
ε

∫ t

s

O

(

ε+ exp

(

−κ0(r − s)

ε

))

dr = O(
√
ε).

This implies (a).
To verify (b), fix and suppress i, j and define

ηε(t) = E

[(∫ t

s

Wij(r, α
ε(r))dr

)2 ∣∣
∣
∣F

ε
s

]

.

Then by the definition of nij(·),

E

[
(
nε
ij(t)− nε

ij(s)
)2
∣
∣
∣
∣F

ε
s

]

=
ηε(t)

ε
. (5.86)
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In accordance with the definition of αε(·), αε(t) = i iff αε(t) ∈ Mi. In what
follows, we use αε(t) ∈ Mi and α

ε(t) = i interchangeably. Set

Ψε
1(t, r) = I{αε(r)=sij}I{αε(t)=sij} − νij(t)I{αε(r)=sij}I{αε(t)=i},

Ψε
2(t, r) = −νij(r)I{αε(r)=i}I{αε(t)=sij} + νij(r)ν

i
j(t)I{αε(r)=i}I{αε(t)=i}.

Then as in the proof of Theorem 5.25,

dηε(t)

dt
= 2

∫ t

s

E [Ψε
1(t, r) + Ψε

2(t, r)|Fε
s ]βij(r)βij(t)dr.

Using Lemma 5.24, we obtain

E[Ψε
1(t, r)|αε(s) = si0j0 ] = O

(

ε+ exp

(

−κ0(t− r)

ε

))

,

E[Ψε
2(t, r)|αε(s) = si0j0 ] = O

(

ε+ exp

(

−κ0(t− r)

ε

))

,

for all i0 = 1, . . . , l and j0 = 1, . . . ,mi0 . Then from Lemma A.42, we obtain

E[Ψε
1(t, r)|Fε

s ] = O

(

ε+ exp

(

−κ0(t− r)

ε

))

,

E[Ψε
2(t, r)|Fε

s ] = O

(

ε+ exp

(

−κ0(t− r)

ε

))

.

As a consequence, we have

dηε(t)

dt
= O(ε).

Integrating both sides over [s, t] and recalling ηε(s) = 0 yields

ηε(t)

ε
= O(t− s).

This completes the proof of the lemma. �

The next lemma is concerned with the tightness of {(nε(·), αε(·))}.

Lemma 5.36. Assume (A5.5) and (A5.6). Then {(nε(·), αε(·))} is tight in
D([0, T ];Rm ×M).
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Proof: The proof uses Lemma A.17. We first verify that the condition given
in Remark A.18 holds. To this end, note that 0 ≤ αε(t) ≤ l for all t ∈ [0, T ].
Moreover, by virtue of Theorem 5.25, for each δ > 0 and each rational t ≥ 0,

inf
ε
P (|nε(t)| ≤ Kt,δ) = inf

ε
[1− P (|nε(t)| ≥ Kt,δ)]

≥ inf
ε

(

1− E|nε(t)|2
K2

t,δ

)

≥ 1− Kt

K2
t,δ

,

where the last inequality is due to Theorem 5.25. Thus if we choose Kt,δ >√
KT/δ, (A.6) will follow.
It follows from Lemma 5.35 and (5.58) that for all t ∈ [0, T ],

lim
Δ→0

{

lim sup
ε→0

(

sup
0≤s≤Δ

E
{
E
[
|nε

ij(t+ s)− nε
ij(t)|2|Fε

t

]}
)}

= 0,

lim
Δ→0

{

lim sup
ε→0

(

sup
0≤s≤Δ

E
{
E
[
|αε(t+ s)− αε(t)|2|Fε

t

]}
)}

= 0.

(5.87)

Using (5.86) and (5.87), Theorem A.17 yields the desired result. �

The tightness of (nε(·), αε(·)) and Prohorov’s theorem allow one to ex-
tract convergent subsequences. We next show that the limit of such a sub-
sequence is uniquely determined in distribution. An equivalent statement
is that the associated martingale problem has a unique solution. The fol-
lowing lemma is a generalization of Theorem 5.25 and is needed for proving
such a uniqueness property.

Lemma 5.37. Let ξ(t, x) be a real-valued function that is Lipschitz in (t, x)
∈ R

m+1. Then

sup
0≤ς≤T

E

∣
∣
∣
∣

∫ ς

0

Wij(s, α
ε(s))ξ(s, nε(s))ds

∣
∣
∣
∣

2

→ 0,

where Wij(t, α) = (I{α=sij} − νij(t)I{α∈Mi})βij(t) as defined in (5.61).

Remark 5.38. This lemma indicates that the weighted occupation mea-
sure (with weighting function ξ(t, αε(t))) defined above goes to zero in
mean square uniformly in t ∈ [0, ς ]. If ξ(·) were a bounded and measur-
able deterministic function not depending on αε(·) or nε(·), this assertion
would follow from Theorem 5.25 easily. In the current situation, it is a
function of nε(·) and therefore a function of αε(·), which results in much



196 5. Occupation Measures: Asymptotic Properties and Ramification

of the difficulty. Intuitively, if we can “separate” the functions Wij(·) and
ξ(·) in the sense treating ξ(·) as deterministic, then Theorem 5.25 can be
applied to obtain the desired limit. To do so, subdivide the interval [0, ς ]
into small intervals so that on each of the small intervals, the two func-
tions can be separated. To be more specific, on each partitioned interval,
use a piecewise-constant function to approximate ξ(·), and show that the
error goes to zero. In this process, the Lipschitz condition of ξ(t, x) plays
a crucial role.

Proof of Lemma 5.37: For 0 < δ < 1 and 0 < ς ≤ T , let N = [ς/ε1−δ]. Use
a partition of [0, ς ] given by

[t0, t1] ∪ [t1, t2) ∪ · · · ∪ [tN , tN+1]

of [0, ς ], where tk = ε1−δk for k = 0, 1, . . . , N and tN+1 = ς . Consider a
piecewise-constant function

ξ̃(t) =

⎧
⎪⎨

⎪⎩

ξ(0, nε(0)), if 0 ≤ t < t2,

ξ(tk−1, n
ε(tk−1)), if tk ≤ t < tk+1, k = 2, . . .N,

ξ(tN−1, n
ε(tN−1)), if t = tN+1.

Let W ε
ij(t) =Wij(t, α

ε(t)). Then

E

∣
∣
∣
∣

∫ ς

0

W ε
ij(t)ξ(t, n

ε(t))dt

∣
∣
∣
∣

2

≤ 2E

∣
∣
∣
∣

∫ ς

0

W ε
ij(t)|ξ(t, nε(t)) − ξ̃(t)|dt

∣
∣
∣
∣

2

+ 2E

∣
∣
∣
∣

∫ ς

0

W ε
ij(t)ξ̃(t)dt

∣
∣
∣
∣

2

.

(5.88)

We now estimate the first term on the second line above. In view of the
Cauchy inequality and the boundedness ofW ε

ij(t), it follows, for 0 ≤ ς ≤ T ,
that

E

∣
∣
∣
∣

∫ ς

0

W ε
ij(t)|ξ(t, nε(t)) − ξ̃(t)|dt

∣
∣
∣
∣

2

≤ TE

∫ ς

0

(ξ(t, nε(t))− ξ̃(t))2dt

= T

∫ ς

0

E(ξ(t, nε(t))− ξ̃(t))2dt.

Note that Theorem 5.25 implies

E|nε(t)|2 ≤ K,

for a positive constant K and for all t ∈ [0, T ]. Therefore, in view of the
Lipschitz condition of ξ(·), we have

E|ξ(t, nε(t))| ≤ K(1 + E|nε(t)|) ≤ K(1 + (E|nε(t)|2) 1
2 ) = O(1).
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Noting that t2 = 2ε1−δ = O(ε1−δ), it follows that

∫ ς

0

E(ξ(t, nε(t)) − ξ̃(t))2dt

=

N∑

k=2

∫ tk+1

tk

E(ξ(t, nε(t))− ξ̃(t))2dt+O(ε1−δ).

Using the definition of ξ̃(t), the Lipschitz property of ξ(t, x) in (t, x), the
choice of the partition of [0, ς ], and Lemma 5.35, we have

N∑

k=2

∫ tk+1

tk

E(ξ(t, nε(t))− ξ̃(t))2dt

=

N∑

k=2

∫ tk+1

tk

E(ξ(t, nε(t))− ξ(tk−1, n
ε(tk−1)))

2dt

≤ 2

N∑

k=2

∫ tk+1

tk

K
(
(t− tk−1)

2 + E|nε(t)− nε(tk−1))|2
)
dt

≤ 2

N∑

k=2

∫ tk+1

tk

K
(
(t− tk−1)

2 +O(t− tk−1)
)
dt

= 2

N∑

k=2

∫ tk+1

tk

O(ε1−δ)dt = O(ε1−δ).

Let us estimate the second term on the second line in (5.88). Set

η̃ε(t) = E

(∫ t

0

W ε
ij(s)ξ̃(s)ds

)2

.

Then the derivative of η̃ε(t) is given by

dη̃ε(t)

dt
= 2E

∫ t

0

W ε
ij(s)ξ̃(s)W

ε
ij(t)ξ̃(t)ds

= 2

∫ t

0

E
(
W ε

ij(s)ξ̃(s)W
ε
ij(t)ξ̃(t)

)
ds.

For 0 ≤ t ≤ t2, in view of the Lipschitz property and Theorem 5.25, we
obtain

∫ t2

0

E
(
W ε

ij(s)ξ̃(s)W
ε
ij(t)ξ̃(t)

)
ds ≤

∫ t2

0

E
(
|ξ̃(s)| · |ξ̃(t)|

)
ds

≤
∫ t2

0

(E|ξ̃(s)|2) 1
2 (E|ξ̃(t)|2) 1

2 ds

= O(t2) = O(ε1−δ).
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If tk ≤ t < tk+1, for k = 2, . . . , N , then using the same argument gives us

∫ t

k−1

E
(
W ε

ij(s)ξ̃(s)W
ε
ij(t)ξ̃(t)

)
ds

= O(t− tk−1) = O(tk+1 − tk−1) = O(ε1−δ)

and
dη̃ε(t)

dt
= 2

∫ tk−1

0

E
(
W ε

ij(s)ξ̃(s)W
ε
ij(t)ξ̃(t)

)
ds+O(ε1−δ).

Recall that Fε
t = σ{αε(s) : 0 ≤ s ≤ t}. For s ≤ tk−1 < tk ≤ t < tk+1,

E
(
W ε

ij(s)ξ̃(s)W
ε
ij(t)ξ̃(t)

)

= E
(
W ε

ij(s)ξ̃(s)E[W ε
ij(t)ξ̃(t)|Ftk−1

]
)
.

(5.89)

Moreover, in view of the definition of ξ̃(·) and the proof of Lemma 5.35, we
have for some κ0 > 0,

E[W ε
ij(t)ξ̃(t)|Ftk−1

] = ξ̃(t)E[W ε
ij(t)|Ftk−1

]

= ξ̃(t)O

(

ε+ exp

(

−κ0(t− tk−1)

ε

))

= ξ̃(t)O

(

ε+ exp

(

−κ0(tk − tk−1)

ε

))

= ξ̃(t)O

(

ε+ exp

(

−κ0
εδ

))

= ξ̃(t)O(ε).

Combine this with (5.89) to obtain

E
(
W ε

ij(s)ξ̃(s)W
ε
ij(t)ξ̃(t)

)
= O(ε)E|ξ̃(s)ξ̃(t)| = O(ε).

Therefore,
dη̃ε(t)

dt
= O(ε1−δ)

uniformly on [0, T ], which implies, together with η̃ε(0) = 0, that

sup
0≤ς≤T

η̃ε(ς) = sup
0≤ς≤T

∫ ς

0

(
dη̃ε(t)

dt

)

dt = O(ε1−δ).

This completes the proof. �

To characterize the limit of (nε(·), αε(·)), consider the martingale prob-
lem associated with (nε(·), αε(·)). Note that

dnε(t)

dt
=

1√
ε
W (t, αε(t)) and nε(0) = 0,
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where

W (t, α) = (W11(t, α), . . . ,W1m1(t, α), . . . ,Wl1(t, α), . . . ,Wlml
(t, α)) .

Let Gε(t) be the operator

Gε(t)f(t, x, α) =
∂

∂t
f(t, x, α) +

1√
ε

〈
W (t, α),∇xf(t, x, α)

〉

+Qε(t)f(t, x, ·)(α),

for all f(·, ·, α) ∈ C1,1, where ∇x denotes the gradient with respect to x and
〈·, ·〉 denotes the usual inner product in Euclidean space. It is well known
that (see Davis [41, Chapter 2])

f(t, nε(t), αε(t))−
∫ t

0

Gε(s)f(s, nε(s), αε(s))ds (5.90)

is a martingale.
We use the perturbed test function method (see Ethier and Kurtz [59]

and Kushner [139]) to study the limit as ε→ 0. To begin with, we define a
functional space on R

m ×M

C2
L =

{
f0(x, i) : with bounded derivatives up to the

second order such that the second derivative is Lipschitz
}
.

(5.91)
For any real-valued function f0(·, i) ∈ C2

L, define

f(x, α) =

l∑

i=1

f0(x, i)I{α∈Mi} =

⎧
⎪⎨

⎪⎩

f0(x, 1), if α ∈ M1,
...

...
f0(x, l), if α ∈ Ml,

and consider the function

f(t, x, α) = f(x, α) +
√
εh(t, x, α), (5.92)

where h(t, x, α) is to be specified later. The main idea is that by appro-
priate choice of h(·), the perturbation is small and results in the desired
cancelation in the calculation.
In view of the block-diagonal structure of Q̃(t) and the definition of

f(x, α), it is easy to see that

Q̃(t)f(x, ·)(α) = 0.
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Applying the operator Gε(t) to the function f(·) defined in (5.92) yields
that

f(nε(t), αε(t)) +
√
εh(t, nε(t), αε(t))

−
∫ t

0

{
1√
ε

〈
W (s, αε(s)),∇xf(n

ε(s), αε(s)) +
√
ε∇xh(s, n

ε(s), αε(s))
〉

+
√
ε
∂

∂s
h(s, nε(s), αε(s)) +

1√
ε
Q̃(s)h(s, nε(s), ·)(αε(s))

+Q̂(s)(f(nε(s), ·) +
√
εh(s, nε(s), ·)(αε(s))

}

ds

defines a martingale.
The basic premise of the perturbed test function method is to choose the

function h(·) that cancels the “bad” terms of order 1/
√
ε:

Q̃(s)h(s, x, ·)(α) = −
〈
W (s, α),∇xf(x, α)

〉
. (5.93)

Note that as mentioned previously, Q̃(t) has rank m− l. Thus the dimen-

sion of the null space is l; that is, N(Q̃(t)) = l. A crucial observation is that
in view of the Fredholm alternative (see Lemma A.37 and Corollary A.38),
a solution of (5.93) exists iff the matrix (〈W (s, sij),∇xf(x, sij)〉) is or-

thogonal to 1̃lm1 , . . . , 1̃lml
, the span of N(Q̃(t)) (see Remark 4.23 for the

notation). Moreover, since f0(·, i) is C2
L, h(·) can be chosen to satisfy the

following properties assuming βij(·) to be Lipschitz on [0, T ]:

(1) h(t, x, α) is uniformly Lipschitz in t;

(2) |h(t, x, α)| and |∇xh(t, x, α)| are bounded;

(3) ∇xh(t, x, α) is Lipschitz in (t, x).

Such an h(·) leads to

f(nε(t), αε(t)) +
√
εh(t, nε(t), αε(t))

−
∫ t

0

{
〈
W (s, αε(s)),∇xh(s, n

ε(s), αε(s))
〉

+
√
ε

(
∂

∂s
h(s, nε(s), αε(s))

)

+ Q̂(s)f (nε(s), ·)(αε(s))

+
√
εQ̂(s)h(s, nε(s), ·)(αε(s))

}

ds

(5.94)
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being a martingale. For each s, x, α, define

g(s, x, α) =
〈
W (s, α),∇xh(s, x, α)

〉
. (5.95)

With f0 ∈ C2
L, it is easy to see that g(s, x, α) is Lipschitz in (s, x). This

function will be used in defining the operator for the limit problem later.

Remark 5.39. Note that the choice of h(·) in (5.93) is not unique. If h1(·)
and h2(·) are both solutions to (5.93), then the irreducibility of Q̃i(s) im-
plies that, for each i = 1, . . . , l,

⎛

⎜
⎝

h1(s, x, si1)
...

h1(s, x, simi)

⎞

⎟
⎠−

⎛

⎜
⎝

h2(s, x, si1)
...

h2(s, x, simi )

⎞

⎟
⎠ = h0(s, x, i)1lmi

for some scalar functions h0(s, x, i). Although the choice of h is not unique,
the resulting function g(s, x, α) is well defined. As in Remark 4.23, the
consistency condition or solvability condition due to Fredholm alternative
is in force. Therefore, if h1 and h2 are both solutions to (5.93), then

〈
W (s, α),∇xh1(s, x, α)

〉
=
〈
W (s, α),∇xh2(s, x, α)

〉
,

for α ∈ Mi and i = 1, . . . , l.

Using g(s, x, α) defined above, we obtain

∫ t

0

〈
W (s, αε(s)),∇xh(s, n

ε(s), αε(s))
〉
ds

=

∫ t

0

g(s, nε(s), αε(s))ds

=

∫ t

0

l∑

i=1

mi∑

j=1

I{αε(s)=sij}g(s, n
ε(s), sij)ds

=

∫ t

0

l∑

i=1

mi∑

j=1

(I{αε(s)=sij} − νij(s)I{αε(s)=i})g(s, n
ε(s), sij)ds

+

∫ t

0

l∑

i=1

mi∑

j=1

I{αε(s)=i}ν
i
j(s)g(s, n

ε(s), sij)ds.

In view of Lemma 5.37, the term in the fourth line above goes to zero in
mean square uniformly in t ∈ [0, T ]. Let

g(s, x, i) =

mi∑

j=1

νij(s)g(s, x, sij).
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Then it follows that

∫ t

0

l∑

i=1

mi∑

j=1

I{αε(s)=i}ν
i
j(s)g(s, n

ε(s), sij)ds

=

∫ t

0

l∑

i=1

I{αε(s)=i}g(s, n
ε(s), i)ds

=

∫ t

0

g(s, nε(s), αε(s))ds.

Therefore, as ε→ 0, we have

E

∣
∣
∣
∣

∫ t

0

〈
W (s, αε(s)),∇xh(s, n

ε(s), αε(s))
〉
ds

−
∫ t

0

g(s, nε(s), αε(s))ds

∣
∣
∣
∣

2

→ 0

(5.96)

uniformly in t ∈ [0, T ].
Furthermore, we have

∫ t

0

Q̂(s)f(nε(s), ·)(αε(s))ds

=

∫ t

0

l∑

i=1

mi∑

j=1

I{αε(s)=sij}Q̂(s)f(nε(s), ·)(sij)ds

=

∫ t

0

l∑

i=1

mi∑

j=1

(I{αε(s)=sij} − νij(s)I{αε(s)=i})Q̂(s)f(nε(s), ·)(sij)ds

+

∫ t

0

l∑

i=1

mi∑

j=1

νij(s)I{αε(s)=i}Q̂(s)f(nε(s), ·)(sij)ds.

Again, Lemma 5.37 implies that the third line above goes to 0 in mean
square uniformly in t ∈ [0, T ]. The last term above equals

∫ t

0

Q(s)f0(nε(s), ·)(αε(s))ds,

where Q(s) = diag(ν1(t), . . . , νl(t))Q̂(s)1̃l. It follows that as ε→ 0,

E

∣
∣
∣
∣

∫ t

0

Q̂(s)f(nε(s), ·)(αε(s))ds

−
∫ t

0

Q(s)f0(nε(s), ·)(αε(s))ds

∣
∣
∣
∣ → 0

(5.97)

uniformly in t ∈ [0, T ].
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We next examine the function g(s, x, i) closely. Using the block-diagonal

structure of Q̃(s), we can write (5.93) in terms of each block Q̃j(s). For
j = 1, . . . , l,

Q̃j(s)

⎛

⎜
⎝

h(s, x, sj1)
...

h(s, x, sjmj )

⎞

⎟
⎠ = −

⎛

⎜
⎝

〈
W (s, sj1),∇xf

0(x, j)
〉

...〈
W (s, sjmj ),∇xf

0(x, j)
〉

⎞

⎟
⎠ . (5.98)

Note that Q̃j(s) is weakly irreducible so rank(Q̃j(s)) = mj − 1. As in
Remark 4.9, equation (5.98) has a solution since it is consistent and the
solvability condition in the sense of Fredholm alternative is satisfied. We can
solve (5.98) using exactly the same technique as in Section 4.2 for obtaining
the ϕi(t), that is, replacing one of the rows of the augmented matrix in
(5.98) by (1, 1, . . . , 1, 0), which represents the equation

∑mj

k=1 h(s, x, sjk) =
0. The coefficient matrix of the resulting equation then has full rank; one
readily obtains a solution. Equivalently, the solution may be written as

⎛

⎜
⎜
⎝

h(s, x, sj1)
...

h(s, x, sjmj )

⎞

⎟
⎟
⎠ =

−
[(

Q̃j(s)

1l′mj

)′(
Q̃j(s)

1l′mj

)]−1(
Q̃j(s)

1l′mj

)′

⎛

⎜
⎜
⎜
⎜
⎝

〈
W (s, sj1),∇xf

0(x, j)
〉

...
〈
W (s, sjmj ),∇xf

0(x, j)
〉

0

⎞

⎟
⎟
⎟
⎟
⎠
.

Note that
I{α=sjk} − νjk(t)I{α∈Mj} = 0 if α �∈ Mj .

Recall the notation for the partitioned vector x = (x1, . . . , xl) where xj is an
mj-dimensional vector and xj = (xj1, . . . , x

j
mj

). For the partial derivatives,
use the notation

∂j,k =
∂

∂xjk
and ∂2j,j1j2 =

∂2

∂xjj1∂x
j
j2

.

Then h(s, x, sjk) is a functional of ∂j,j1f
0(x, j),...∂j,mj f

0(x, j). It follows
that g(s, x, sjk) is a functional of ∂2j,j1j2f

0(x, j), for j1, j2 = 1, . . . ,mj , and
so is g(s, x, j). Write

g(s, x, j) =
1

2

mj∑

j1,j2=1

aj1j2(s, j)∂
2
j,j1j2f

0(x, j), (5.99)

for some continuous functions aj1j2(s, j).
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Lemma 5.40. Assume (A5.5) and (A5.6). Suppose (nε(·), αε(·)) converges
weakly to (n(·), α(·)). Then for f0(·, i) ∈ C2

L,

f0(n(t), α(t))−
∫ t

0

(
g(s, n(s), α(s)) +Q(s)f0(n(s), ·)(α(s))

)
ds

is a martingale.

Proof: Define

Hε(t) = f(nε(t), αε(t)) +
√
εh(t, nε(t), αε(t))

−
∫ t

0

{
〈
W (s, αε(s)),∇xh(s, n

ε(s), αε(s))
〉

+
√
ε
∂

∂s
h(s, nε(s), αε(s)) + Q̂(s)f(nε(s), ·)(αε(s))

+
√
εQ̂(s)h(s, nε(s), ·)(αε(s))

}

ds.

The martingale property implies that

E [(Hε(t)−Hε(s))z1(n
ε(t1), α

ε(t1)) · · · zk(nε(tk), α
ε(tk))] = 0,

for any 0 ≤ t1 ≤ · · · ≤ tk ≤ s ≤ t and any bounded and continuous
functions z1(·), . . . , zk(·).
In view of the choice of h(·), it follows that all the three terms

√
εh(t, nε(t), αε(t)),

√
ε

(
∂

∂t
h(t, nε(t), αε(t))

)

, and

√
εQ̂(t)h(t, nε(t), ·)(αε(t))

converge to 0 in mean square. Recall (5.96), (5.97), and

f(nε(t), αε(t)) = f0(nε(t), αε(t)).

Denote the weak limit of Hε(·) by H(·). We have

E
[(
H(t)−H(s)

)
z1(n(t1), α(t1)) · · · zk(n(tk), α(tk))

]
= 0,

where H(·) is given by

H(t) = f0(n(t), α(t))

−
∫ t

0

(
g(r, n(r), α(r)) +Q(r)f0(n(r), ·)(α(r))

)
dr.

Thus (n(·), α(·)) is a solution to the martingale problem. �
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Lemma 5.41. Let L denote the operator given by

Lf0(x, j) =
1

2

mj∑

j1,j2=1

aj1j2(s, j)∂
2
j,j1j2f

0(x, j) +Q(s)f0(x, ·)(j).

Then the martingale problem with operator L has a unique solution.

Proof: In view of Lemma A.14, we need only verify the uniqueness in dis-
tribution of (n(t), α(t)) for each t ∈ [0, T ]. Let

f(x, j) = exp
(
ι{
〈
θ, x

〉
+ θ0j}

)
,

where θ ∈ R
m, θ0 ∈ R, j ∈ M, and ι is the pure imaginary number with

ι2 = −1.
For fixed j0, k0, let Fj0k0(x, j) = I{j=j0}f(x, k0). Then

Fj0k0(n(t), α(t)) = I{α(t)=j0}f(n(t), k0).

Moreover, note that

g(s, n(s), α(s)) =

l∑

j=1

I{α(s)=j}g(s, n(s), j)

=
1

2

l∑

j=1

I{α(s)=j}

mj∑

j1,j2=1

aj1j2(s, j)∂
2
j,j1j2Fj0k0(n(s), j)

=
1

2
I{α(s)=j0}

mj0∑

j1,j2=1

aj1j2(s, j0)∂
2
j0,j1j2f(n(s), k0)

=
1

2

mj∑

j1,j2=1

aj1j2(s, j0)(−θj0j1θj0j2)(I{α(s)=j0}f(n(s), k0)).

(5.100)

Furthermore, we have

Q(s)Fj0k0(n(s), ·)(α(s))

=

l∑

j=1

I{α(s)=j}Q(s)Fj0k0(n(s), ·)(j)

=

l∑

j=1

I{α(s)=j}

l∑

k=1

qjk(s)Fj0k0(n(s), k)

=

l∑

j=1

I{α(s)=j}

l∑

k=1

qjk(s)I{k=j0}f(n(s), k0)

=

l∑

j=1

I{α(s)=j}qjj0 (s)f(n(s), k0)

=

l∑

j=1

qjj0 (s)I{α(s)=j}f(n(s), k0).

(5.101)
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Let

φjk(t) = E
(
I{α(t)=j}f(n(t), k)

)
, for j, k = 1, . . . , l.

Then in view of (5.100) and (5.101),

φj0k0(t)− φj0k0(0)−
∫ t

0

{ mj0∑

j1,j2=1

aj1j2(s, j0)(−θj0j1θj0j2)φj0k0(s)

+

l∑

j=1

qjj0 (s)φjk0 (s)

}

ds = 0.

(5.102)

Let

φ(t) = (φ11(t), . . . , φ1m1(t), . . . , φl1(t), . . . , φlml
(t)).

Rewrite (5.102) in terms of φ(·) as

φ(t) = φ(0) +

∫ t

0

φ(s)B(s)ds,

where φ(0) = (φjk(0)) with φjk(0) = EI{α(0)=j}f(0, k), and B(t) is a
matrix-valued function whose entries are defined by the integrand of
(5.102). The equation for φ(t) is a linear ordinary differential equation.
It is well known that such a differential equation has a unique solution.
Hence, φ(t) is uniquely determined. In particular,

E exp
(
ι{
〈
θ, n(t)

〉
+ θ0α(t)}

)

=

l∑

j=1

E
(
I{α(t)=j} exp

(
ι{
〈
θ, n(t)

〉
+ jθ0}

))

is uniquely determined for all θ, θ0, so is the distribution of (n(t), α(t)) by
virtue of the uniqueness theorem and the inversion formula of the charac-
teristic function (see Chow and Teicher [30]). �

The tightness of (nε(·), αε(·)) together with Lemma 5.40 and Lemma 5.41
implies that (nε(·), αε(·)) converges weakly to (n(·), α(·)). We will show
that n(·) is a switching diffusion, i.e., a diffusion process modulated by
a Markov process such that the covariance of the diffusion depends on
the Markov jump process. Precisely, owing to the presence of the jump
Markov chains, the limit process does not possess the independent incre-
ment property shared by many processes. A moment of reflection reveals
that, necessarily, the coefficients in g(s, x, i) must consist of a symmetric
nonnegative definite matrix serving as a covariance matrix. The following
lemma verifies this assertion.
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Lemma 5.42. For s ∈ [0, T ] and j = 1, . . . , l, the matrix

A(s, j) = (aj1j2(s, j))

is symmetric and nonnegative definite.

Proof: Let ηj = (ηj1, . . . , ηjmj )
′ and xj = (xj1, . . . , xjmj )

′. Define

fj(x) =
1

2

(〈
ηj , xj

〉)2
.

Then the corresponding g(·) defined in (5.99) has the following form:

g(s, x, j) =
1

2
ηj,′A(s, j)ηj .

Moreover, let fj(x, k) = fj(x), independent of k. Then for all k = 1, . . . , l,

Q(s)fj(n
ε(s), ·)(k) = 0.

To verify the nonnegativity of A(s, j), it suffices to show that
∫ t

s

ηj,′A(r, j)ηjdr ≥ 0,

for all 0 ≤ s ≤ t ≤ T . Recall that fj(x) is a quadratic function. In view of
(5.94) and the proof of Lemma 5.40, it then follows that

1

2

∫ t

s

ηj,′A(r, j)ηjdr = lim
ε→0

(Efj(n
ε(t)) − Efj(n

ε(s))) .

We are in a position to show that the limit is nonnegative. Let

nε,j(t) = (nε
j1(t), . . . , n

ε
jmj

(t)).

Then

E (fj(n
ε(t)) − fj(n

ε(s)))

=
1

2
E
(〈
ηj , nε,j(t)

〉2 −
〈
ηj , nε,j(s)

〉2
)
.

For t ≥ s ≥ 0, using
〈
ηj , nε,j(t)

〉
=
〈
ηj , nε,j(s)

〉
+
〈
ηj , nε,j(t)− nε,j(s)

〉
,

we have

E
(〈
ηj , nε,j(t)

〉2 −
〈
ηj , nε,j(s)

〉2
)

= E
(
2
〈
ηj , nε,j(s)

〉〈
ηj , nε,j(t)− nε,j(s)

〉
+
〈
ηj , nε,j(t)− nε,j(s)

〉2
)

≥ 2E
(〈
ηj , nε,j(s)

〉〈
ηj , nε,j(t)− nε,j(s)

〉)

= 2E

(
〈
ηj , nε,j(s)

〉
E

[
〈
ηj , nε,j(t)− nε,j(s)

〉
∣
∣
∣
∣F

ε
s

])

.
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We next show that the last term goes to 0 as ε→ 0. In fact, in view of (a)
in Lemma 5.35, it follows that

E[nε,j(t)− nε,j(s)|Fε
s ] = O(

√
ε),

and hence

E

[
〈
ηj , nε,j(t)− nε,j(s)

〉
∣
∣
∣
∣F

ε
s

]

=
〈
ηj , E[(nε,j(t)− nε,j(s))|Fε

s ]
〉
= O(

√
ε).

Using (b) in Lemma 5.35, we derive the following inequalities

E
〈
ηj , nε,j(s)

〉2 ≤ |ηj |2E|nε,j(s)|2 ≤ |ηj |2O(s).

The Cauchy–Schwarz inequality then leads to

∣
∣
∣
∣E

(
〈
ηj , nε,j(s)

〉
E

[
〈
ηj , nε,j(t)− nε,j(s)

〉
∣
∣
∣
∣F

ε
s

])∣
∣
∣
∣

≤
(
E
〈
ηj , nε,j(s)

〉2
) 1

2

(

E

[
〈
ηj , nε,j(t)− nε,j(s)

〉
∣
∣
∣
∣F

ε
s

]2
) 1

2

=
(
E
〈
ηj , nε,j(s)

〉2
) 1

2

O(
√
ε) → 0, as ε→ 0.

As a result for some K > 0, we have

E

(
〈
ηj , nε,j(s)

〉
E

[
〈
ηj , nε,j(t)− nε,j(s)

〉
∣
∣
∣
∣F

ε
s

])

≥ −K|ηj|s
√
ε→ 0,

as ε→ 0. The nonnegativity of A(s, j) follows.
To show that A(s, j) is symmetric, consider

fj,j1j2(x) = xjj1xjj2 for j1, j2 = 1, . . . ,mj .

Then, we have

1

2

∫ t

0

aj1j2(s, j)ds = lim
ε→0

E(nε,j
j1

(t)nε,j
j2

(t)) =
1

2

∫ t

0

aj2j1(s, j)ds, (5.103)

for all t ∈ [0, T ]. Thus, A(s, j) is symmetric. �

Next, we derive an explicit representation of the nonnegative definite
matrix A(s, j) similar to that of Theorem 5.9. Recall that given a function
f0(·), one can find h(·) as in (5.93). Using this h(·), one defines f(·) as in
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(5.95) which leads to g(·) given in (5.99). In view of the result in Theo-

rem 5.9 for a single block of the irreducible matrix Q̃j(t) together with the
computations of g(s, x, j), it follows that A(s, j) = 2A0(s, j), where

A0(t, j) = βj
diag(t)

(

νjdiag(t)

∫ ∞

0

Q0(r, t, j)dr

+

(∫ ∞

0

Q0(r, t, j)dr

)

νjdiag(t)

)

βj
diag(t),

with

βj
diag(t) = diag(βj1(t), . . . , βjmj (t)),

νjdiag(t) = diag(νj1(t), . . . , ν
j
mj

(t)),

and

Q0(r, t, j) =

⎡

⎢
⎣I −

⎛

⎜
⎝

νj(t)
...

νj(t)

⎞

⎟
⎠

⎤

⎥
⎦ exp

(
Q̃j(t)r

)
.

Applying Lemma 5.42 to the case of Q̃(s) a single block irreducible matrix

Q̃j(s), it follows that A0(s, j) is symmetric and nonnegative definite. Hence,
standard results in linear algebra yield that there exists an mj×mj matrix
σ0(s, j) such that

σ0(s, j)σ0,′(s, j) = A0(s, j). (5.104)

Note that the definition of g(s, x, j) is independent of Q̂(t), so for deter-

mining A0(s, j), we may consider Q̂(t) = 0. Note also that

Q̃(t) = diag(Q̃1(t), 0, . . . , 0) + · · ·+ diag(0, . . . , 0, Q̃l(t)).

The foregoing statements suggest that in view of (5.104), the desired co-
variance matrix is given by

σ(s, j) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0m1×m1

0m2×m2

. . .

σ0(s, j)
. . .

0ml×ml

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= diag(0m1×m1 , 0m2×m2 , . . . , σ
0(s, j) . . . , 0ml×ml

),

(5.105)

where 0mk×mk
is the mk ×mk zero matrix. That is, it is a matrix with the

jth block-diagonal submatrix equal to σ0(s, j) and the rest of its elements
equal to zero.
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Theorem 5.43. Assume that (A5.5) holds. Suppose Q̃(·) is twice

differentiable with Lipschitz continuous second derivative and Q̂(·) is
differentiable with Lipschitz continuous derivative. Let βij(·) be bounded
and Lipschitz continuous deterministic functions. Then nε(·) converges
weakly to a switching diffusion n(·), where

n(t) =
(∫ t

0

σ(s, α(s))dw(s)
)′

and w(·) is a standard m-dimensional Brownian motion.

Proof: Let

ñ(t) =
(∫ t

0

σ(s, α(s))dw(s)
)′

and α(·) be a Markov chain generated by Q(t). Then for all f0(·, i) ∈ C2
L,

f0(ñ(t), α(t))−
∫ t

0

(
g(s, ñ(s), α(s)) +Q(s)f0(ñ(s), ·)(α(s))

)
ds

is a martingale. This and the uniqueness of the martingale problem in
Lemma 5.41 yields that (ñ(·), α(·)) has the same probability distribution
as (n(·), α(·)). This proves the theorem. �

Remark 5.44. Note that the Lipschitz condition on βij(·) is not required
in analyzing the asymptotic normality in Section 5.3.3. It is needed in
this section because the perturbed test function method typically requires
smoothness conditions of the associated processes.
It appears that the conditions in (A5.5) and (A5.6) together with the

Lipschitz property of βij(·) are sufficient for the convergence of nε(·) to a
switching diffusion n(·). The additional assumptions on further derivatives

of Q̃(·) and Q̂(·) are needed for computing the covariance of the limit
process n(·).

Remark 5.45. If α(·) were a deterministic function, n(·) above would be
a diffusion process in the usual sense. However since the limit α(·) is a
Markov chain, the diffusion process is modulated by this jump process; the
resulting distribution has the features of the “continuous” diffusion process
and the “discrete” Markov chain limit.
In this section, we use the perturbed test function method, which is quite

different from the approach of Section 5.2. The method used in that section,
which might be called a direct approach, is interesting in its own right and
makes a close connection between asymptotic expansion and asymptotic
normality. It is effective whenever it can be applied. One of the main ingre-
dients is that the direct approach makes use of the mixing properties of the
scaled occupation measures heavily. In fact, using asymptotic expansion,
it was shown that the scaled sequence of occupation measures is a mixing
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process with exponential mixing rate. For the weak and strong interaction
cases presented, the mixing condition, and even approximate mixing con-
ditions, no longer hold. To illustrate, consider Example 4.20 with constant
jump rates and calculate

E[nε,′(s)(nε(t)− nε(s))].

By virtue of the proof of Theorem 5.25, a straightforward but tedious cal-
culation shows that

E [nε,′(s)(nε(t)− nε(s))] �→ 0 as ε→ 0

for the weak and strong interaction models because E[nε,′(s)(nε(t)−nε(s))]
depends on P1(t, s), generally a nonzero function. A direct consequence is
that the limit process does not have independent increments in general. It
is thus difficult to characterize the limit process via the direct approach.
The perturbed test function method, on the other hand, can be considered
as a combined approach. It uses enlarged or augmented states by treating
the scaled occupation measure nε(·) and the Markov chain αε(·) together.
That is, one considers a new state variable with two components (x, α).
This allows us to bypass the verification of mixing-like properties such
that the limit process is characterized by means of solutions of appropri-
ate martingale problems via perturbed test functions, which underlies the
rationale and essence of the approach. As a consequence, the limit process
is characterized via the limit of the underlying sequence of operators.
Note that if Q̃(t) itself is weakly irreducible (i.e., Q̃(t) consists of only

one block), then the covariance matrix is given by (5.30). In this case, since
there is only one group of recurrent states, the jump behavior due to the
limit process α(·) will disappear. Moreover, owing to the fast transition rate

Q̃(t)/ε, the singularly perturbed Markov chain rapidly reaches its quasi-
stationary regime. As a result, the jump behavior does not appear in the
asymptotic distribution, and the diffusion becomes the dominant factor.
Although the method employed in this chapter is different from that of
Section 5.2, the result coincides with that of Section 5.2 under irreducibility.
We state this in the following corollary.

Corollary 5.46. Assume that the conditions of Theorem 5.43 are fulfilled
with l = 1 (i.e., Q̃(t) has only one block). Then nε(·) converges weakly to
the diffusion process

n(t) =
(∫ t

0

σ(s)dw(s)
)′
,

where w(·) is an m-dimensional standard Brownian motion with covariance

A(t) = σ(t)σ′(t)

given by (5.30).
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To further illustrate, consider the following example. This problem is
concerned with a singularly perturbed Markov chain with four states di-
vided into two groups. It has been used in modeling production planning
problems with failure-prone machines. As was mentioned, from a modeling
point of view, it may be used to depict the situation that two machines op-
erate in tandem, in which the operating conditions (the machine capacity)
of one of the machines change much faster than the other; see also related
discussions in Chapters 7 and 8.

Example 5.47. Let αε(·) be a Markov chain generated by

Qε(t) =
1

ε

⎛

⎜
⎜
⎜
⎝

−λ1(t) λ1(t) 0 0

μ1(t) −μ1(t) 0 0

0 0 −λ1(t) λ1(t)

0 0 μ1(t) −μ1(t)

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

−λ2(t) 0 λ2(t) 0

0 −λ2(t) 0 λ2(t)

μ2(t) 0 −μ2(t) 0

0 μ2(t) 0 −μ2(t)

⎞

⎟
⎟
⎟
⎠
.

Then

Q(t) =

(
−λ2(t) λ2(t)

μ2(t) −μ2(t)

)

.

Let α(·) be a Markov chain generated by Q(t), t ≥ 0. In this example,

σ0(s, 1) = 2

(
λ1(s)μ1(s)

(λ1(s) + μ1(s))3

) 1
2
(

β11(s) 0
−β12(s) 0

)

,

σ0(s, 2) = 2

(
λ1(s)μ1(s)

(λ1(s) + μ1(s))3

) 1
2
(

β21(s) 0
−β22(s) 0

)

,

σ(s, 1) = 2

(
λ1(s)μ1(s)

(λ1(s) + μ1(s))3

) 1
2

⎛

⎜
⎜
⎝

β11(s) 0 0 0
−β12(s) 0 0 0

0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

and

σ(s, 2) = 2

(
λ1(s)μ1(s)

(λ1(s) + μ1(s))3

) 1
2

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 β21(s) 0
0 0 −β22(s) 0

⎞

⎟
⎟
⎠ .
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The limit of nε(·) is given by

n(t) =
( ∫ t

0

σ(s, α(s))dw(s)
)′
,

where w(·) is a standard Brownian motion taking values in R
4.

5.4 Measurable Generators

In Section 4.2, we considered the asymptotic expansions of probability dis-
tributions. A natural requirement of such expansions is that the generator
Qε(t) be smooth enough to establish the desired error bounds. It would
be interesting to consider the case in which the generator Qε(t), t ≥ 0, is
merely measurable. The method used in this section is very useful in some
manufacturing problems; see Sethi and Zhang [192]. Moreover, the results
are used in Section 8.6 to deal with a control problem under relaxed con-
trol formulation. Given only the measurability of Qε(t), there seems to be
little hope to obtain an asymptotic expansion. Instead of constructing an
asymptotic series of the corresponding probability distribution, we consider
the convergence of P (αε(t) = sij) under the framework of convergence of

∫ T

0

P (αε(t) = sij)f(t)dt for f(·) ∈ L2[0, T ];R).

Since the phrase “weak convergence” is reserved throughout the book for
the convergence of probability measures, to avoid confusion, we refer to
the convergence above as convergence in the weak sense on L2([0, T ];R) or
convergence under the weak topology of L2([0, T ];R).

Case I: Weakly Irreducible Q̃(t)

Let αε(·) ∈ M = {1, . . . ,m} denote the Markov chain generated by

Qε(t) =
1

ε
Q̃(t) + Q̂(t),

where both Q̃(t) and Q̂(t) are generators.
We assume the following conditions in this subsection.

(A5.7) Q̃(t) and Q̂(t) are bounded and Borel measurable. Moreover,

Q̃(t) is weakly irreducible.

Remark 5.48. In fact, both the boundedness and the Borel measurabil-
ity in (A5.7) are redundant. Recall that our definition of generators (see
Definition 2.2) uses the q-Property, which includes both the Borel measura-
bility and the boundedness. Thus, (A5.7) requires only weak irreducibility.
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Nevertheless, we retain both boundedness and measurability for those who
read only this section. Similar comments apply to assumption (A5.8) in
what follows.

Define the probability distribution vector

pε(t) = (P (αε(t) = 1), . . . , P (αε(t) = m))

and the transition matrix

P ε(t, s) = (pεij(t, s)) = (P (αε(t) = j|αε(s) = i)) .

Then using the martingale property in Lemma 2.4, we have

pε(t) = pε(s) +

∫ t

s

pε(r)Qε(r)dr (5.106)

and

P ε(t, s) = I +

∫ t

s

P ε(r, s)Qε(r)dr. (5.107)

The next two lemmas are concerned with the asymptotic properties of pε(t)
and P ε(t, s).

Lemma 5.49. Assume (A5.7). Then for each i, j, and T > 0, P (αε(t) = i)
and P (αε(t) = i|αε(s) = j) both converge weakly to νi(t) on L2([0, T ];R)
and L2([s, T ];R), respectively, that is, as ε→ 0,

∫ T

0

[P (αε(t) = i)− νi(t)]f(t)dt → 0 (5.108)

and ∫ T

s

[P (αε(t) = i|αε(s) = j)− νi(t)]f(t)dt → 0, (5.109)

for all f(·) ∈ L2([0, T ];R) and L2([s, T ];R), respectively.

Proof: We only verify (5.108); the proof of (5.109) is similar. Recall that

pε(t) = (pε1(t), . . . , p
ε
m(t)) = (P (αε(t) = 1), . . . , P (αε(t) = m)).

Since pε(·) ∈ L2([0, T ];Rm) (space of square-integrable functions on [0, T ]
taking values in R

m), for each subsequence of ε → 0 there exists (see
Lemma A.36) a further subsequence of ε → 0 (still denoted by ε for sim-
plicity), and for such ε, the corresponding {pε(·)} converges (in the weak
sense on L2([0, T ];Rm)) to some p(·) = (p1(·), . . . , pm(·)) ∈ L2([0, T ];Rm),
that is,

∫ T

0

pε(r)(f1(r), . . . , fm(r))′dr →
∫ T

0

p(r)(f1(r), . . . , fm(r))′dr,
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for any (f1(·), . . . , fm(·))′ ∈ L2([0, T ];Rm). Moreover,

0 ≤ pi(t) ≤ 1 and p1(t) + · · ·+ pm(t) = 1 (5.110)

almost everywhere. Since Q̃(·) ∈ L2([0, T ];Rm×m), we have for 0 ≤ s ≤ t ≤
T ,

∫ t

s

pε(r)Q̃(r)dr →
∫ t

s

p(r)Q̃(r)dr.

Thus, using (5.106) we obtain

∫ t

s

p(r)Q̃(r)dr = lim
ε→0

∫ t

s

pε(r)Q̃(r)dr

= lim
ε→0

(

ε(pε(t)− pε(s))− ε

∫ t

s

pε(r)Q̂(r)dr

)

= 0.

Since s and t are arbitrary, it follows immediately that

p(t)Q̃(t) = 0 a.e. in t.

By virtue of (5.110), the irreducibility of Q̃(t) implies p(t) = ν(t) almost ev-
erywhere. Thus the limit is independent of the chosen subsequence. There-
fore, pε(·) → ν(·) in the weak sense on L2([0, T ];Rm). �

Theorem 5.50. Assume (A5.7). Then for any bounded deterministic func-
tion βi(·) and for each i ∈ M and t ≥ 0,

E

∣
∣
∣
∣

∫ t

0

(I{αε(s)=i} − νi(s))βi(s)ds

∣
∣
∣
∣

2

→ 0 as ε→ 0. (5.111)

Proof: Let

η(t) = E

∣
∣
∣
∣

∫ t

0

(I{αε(s)=i} − νi(s))βi(s)ds

∣
∣
∣
∣

2

.

Then as in the proof of Theorem 5.25, we can show that

η(t) = 2(η1(t) + η2(t)),

where

η1(t) =

∫ t

0

∫ s

0

(−νi(r))[P (αε(s) = i)− νi(s)]βi(s)βi(r)drds,

η2(t) =

∫ t

0

∫ s

0

P (αε(r) = i)[P (αε(s) = i|αε(r) = i)− νi(s)]

×βi(s)βi(r)drds.
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By virtue of Lemma 5.49, P (αε(s) = i) → νi(s) in the weak sense on
L2([0, T ];R) and therefore as ε→ 0,

η1(t) =

∫ t

0

[P (αε(s) = i)− νi(s)]βi(s)

(∫ s

0

(−νi(r))βi(r)dr
)

ds→ 0.

Similarly, in view of the convergence of

P (αε(s) = i|αε(r) = i) → νi(s)

under the weak topology of L2([r, t];R), we have

η2(t) =

∫ t

0

[∫ t

r

[P (αε(s) = i|αε(r) = i)− νi(s)]βi(s)ds

]

×P (αε(r) = i)βi(r)dr → 0.

This concludes the proof of the theorem. �

Case II: Q̃(t) = diag(Q̃1(t), . . . , Q̃l(t))

This subsection extends the preceding result to the cases in which Q̃(t)
is a block-diagonal matrix with irreducible blocks. We make the following
assumptions:

(A5.8) Q̂(t) and Q̃i(t), for i = 1, . . . , l, are bounded and Borel measur-

able. Moreover, Q̃i(t), i = 1, . . . , l, are weakly irreducible.

Lemma 5.51. Assume (A5.8). Then the following assertions hold:

(a) For each i = 1, . . . , l and j = 1, . . . ,mi, P (α
ε(t) = sij) converges in

the weak sense to νij(t)ϑ
i(t) on L2([0, T ];R), that is,

∫ T

0

[P (αε(t) = sij)− νij(t)ϑ
i(t)]f(t)dt → 0, (5.112)

for all f(·) ∈ L2([0, T ];R), where

(ϑ1(t), . . . , ϑl(t)) = p01̃l +

∫ t

0

(ϑ1(s), . . . , ϑl(s))Q(s)ds.

(b) For each i, j, i1, j1, P (α
ε(t) = sij |αε(s) = si1j1) converges in the weak

sense to νij(t)ϑii(t, s) on L
2([s, T ];R), that is,

∫ T

s

[P (αε(t) = sij |αε(s) = si1j1)−νij(t)ϑii(t, s)]f(t)dt → 0, (5.113)

for all f(·) ∈ L2([s, T ];R), where ϑij(t, s) is defined in Lemma 5.24
(see (5.50)).



5.4 Measurable Generators 217

Proof: We only derive (5.112); the proof of (5.113) is similar. Let

pε(t) =
(
pε11(t), . . . , p

ε
1m1

(t), . . . , pεl1(t), . . . , p
ε
lml

(t)
)

where pεij(t) = P (αε(t) = sij). Since pε(·) ∈ L2([0, T ];Rm), there ex-
ists (see Lemma A.36) a subsequence of ε → 0 (still denoted by ε for
simplicity), such that corresponding to this ε, pε(t) converges to some
p(·) ∈ L2([0, T ];Rm) under the weak topology. Let

p(t) = (p11(t), . . . , p1m1(t), . . . , pl1(t), . . . , plml
(t)) .

Then 0 ≤ pij(t) ≤ 1 and
∑

i,j pij(t) = 1 almost everywhere. Similarly as in
the proof of Lemma 5.49, for 0 ≤ t ≤ T ,

p(t)Q̃(t) = 0 a.e. in t.

The irreducibility of Q̃k(t), k = 1, . . . , l, implies that

p(t) = (ϑ1(t), . . . , ϑl(t))diag(ν1(t), . . . , νl(t)), (5.114)

for some functions ϑ1(t), . . . , ϑl(t).
In view of (5.106), we have

pε(t)1̃l = p01̃l +

∫ t

0

pε(s)

(
1

ε
Q̃(s) + Q̂(s)

)

1̃lds.

Since Q̃(s)1̃l = 0, it follows that

pε(t)1̃l = p01̃l +

∫ t

0

pε(s)Q̂(s)1̃lds.

Owing to the convergence of pε(t) → p(t) under the weak topology of
L2([0, T ];Rm), we have

p(t)1̃l = p01̃l +

∫ t

0

p(s)Q̂(s)1̃lds.

Using (5.114) and noting that

diag(ν1(t), . . . , νl(t))1̃l = I,

we have

(ϑ1(t), . . . , ϑl(t)) = p01̃l +

∫ t

0

(ϑ1(s), . . . , ϑl(s))Q(s)ds.

The uniqueness of the solution then yields the lemma. �
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Theorem 5.52. Assume (A5.8). Then for any i = 1, . . . , l, j = 1, . . . ,mi,
and bounded deterministic function βij(t), t ≥ 0,

E

(∫ T

0

(
I{αε(t)=sij} − νij(t)I{αε(t)=i}

)
βij(t)dt

)2

→ 0, as ε→ 0.

Proof: Let η(t) be defined as in (5.52). Then we can show similarly as in
the proof of Theorem 5.25 that

η(T ) = 2

∫ T

0

∫ t

0

Φε(t, r)βij(t)βij(r)drdt,

where Φε(t, r) = Φε
1(t, r) + Φε

2(t, r) with Φε
1(t, r) and Φε

2(t, r) defined by
(5.53) and (5.54), respectively.
Note that by changing the order of integration,

∫ T

0

∫ t

0

Φε
1(t, r)βij(t)βij(r)drdt

=

∫ T

0

P (αε(r) = sij)βij(r)

{∫ T

r

[P (αε(t) = sij |αε(r) = sij)

−νij(t)P (αε(t) ∈ Mi|αε(r) = sij)]βij(t)dt

}

dr.

Since the βij(·) are bounded uniformly on [0, T ], βij(·) ∈ L2([0, T ];R). As
a result, Lemma 5.51 implies that

∫ T

r

[P (αε(t) = sij |αε(r) = sij)

−νij(t)P (αε(t) ∈ Mi|αε(r) = sij)]βij(t)dt → 0.

Hence as ε→ 0,

∫ T

0

∫ t

0

Φε
1(t, r)βij(t)βij(r)drdt → 0.

Similarly,

∫ T

0

∫ t

0

Φε
2(t, r)βij(t)βij(r)drdt → 0, as ε→ 0.

The proof is complete. �

Theorem 5.53. Assume (A5.8). Then αε(·) converges weakly to α(·) on
D([0, T ];M), as ε→ 0.
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Proof: Recall that χε(t) denotes the vector of indicator functions
(
I{αε(t)=s11}, . . . , I{αε(t)=s1m1}, . . . , I{αε(t)=sl1}, . . . , I{αε(t)=slml

}

)
,

and let
χε(t) = (χε

1(t), . . . , χ
ε
l (t)) = χε(t)1̃l.

Then χε
i (t) = I{αε(t)=i} for i = 1, . . . , l.

We show that χε(·) is tight in Dl[0, T ] first. Let Fε
t = σ{αε(r) : r ≤ t}.

Then in view of the martingale property associated with αε(·), we have,
for 0 ≤ s ≤ t,

E

[

χε(t)− χε(s)−
∫ t

s

χε(r)Qε(r)dr

∣
∣
∣
∣F

ε
s

]

= 0.

Right multiplying both sides of the equation by 1̃l and noting that Q̃(r)1̃l =
0, we obtain

E

[

χε(t)− χε(s)−
∫ t

s

χε(r)Q̂(r)1̃ldr

∣
∣
∣
∣F

ε
s

]

= 0. (5.115)

Note that ∣
∣
∣
∣

∫ t

s

χε(r)Q̂(r)1̃ldr

∣
∣
∣
∣ = O(t− s).

It follows from (5.115) that

E
[
I{αε(t)=i}|Fε

s

]
= I{αε(s)=i} +O(t− s). (5.116)

Note also that (IA)
2 = IA for any set A. We have, in view of (5.116),

E

[
(
I{αε(t)=i} − I{αε(s)=i}

)2
∣
∣
∣
∣F

ε
s

]

= E

[

I{αε(t)=i} − 2I{αε(t)=i}I{αε(s)=i} + I{αε(s)=i}

∣
∣
∣
∣F

ε
s

]

= E

[

I{αε(t)=i}

∣
∣
∣
∣F

ε
s

]

− 2E

[

I{αε(t)=i}

∣
∣
∣
∣F

ε
s

]

I{αε(s)=i} + I{αε(s)=i}

= I{αε(s)=i} +O(t− s)

−2
(
I{αε(s)=i} +O(t − s)

)
I{αε(s)=i} + I{αε(s)=i}

= O(t− s),

for each i = 1, . . . , l. Hence,

lim
t→s

lim
ε→0

E

{

E

[
(
I{αε(t)=i} − I{αε(s)=i}

)2
∣
∣
∣
∣F

ε
s

]}

= 0.
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Therefore, by Lemma A.17, χε(·) is tight.
The tightness of χε(·) implies that for any sequence εk → 0, there exists

a subsequence of {εk} (still denoted by {εk}) such that χεk(·) converges
weakly. We next show that the limit of such a subsequence is uniquely
determined by Q(·) := diag(ν1(·), . . . , νl(·))Q̂(·)1̃l.
Note that

∫ t

s

χε(r)Q̂(r)1̃ldr =

∫ t

s

χε(r)Q(r)dr

+

∫ t

s

(
χε(r) − χε(r)diag(ν1(r), . . . , νl(r))

)
Q̂(r)1̃ldr.

In view of Theorem 5.52, we have, as ε→ 0,

E

∣
∣
∣
∣

∫ t

s

[
χε(r) − χε(r)diag(ν1(r), . . . , νl(r))

]
Q̂(r)1̃ldr

∣
∣
∣
∣ → 0. (5.117)

Now by virtue of (5.115),

E

[(

χε(t)− χε(s)−
∫ t

s

χε(r)Q̂(r)1̃ldr

)

z1(χ
ε(t1)) · · · zj(χε(tj))

]

= 0,

for 0 ≤ t1 ≤ · · · ≤ tj ≤ s ≤ t and bounded and continuous functions
z1(·), . . . , zj(·).
Let χ(·) denote the limit in distribution of χεk(·). Then in view of (5.117)

and the continuity of
∫ t

s
η(r)Q(r)dr with respect to η(·) (see Lemma A.40),

we have χε(·) → χ(·) as εk → 0, and χ(·) satisfies

E

[(

χ(t)− χ(s)−
∫ t

s

χ(r)Q(r)dr

)

z1(χ(t1)) · · · zj(χ(tj))
]

= 0.

It is easy to see that χ(·) = (χ1(·), . . . , χl(·)) is an l-valued measurable
process having sample paths in Dl[0, T ] and satisfying χi(t) = 0 or 1 and
χ1(·) + · · ·+ χl(·) = 1 w.p.1. Let

α(t) =
l∑

i=1

iI{χi(t)=1},

or in an expanded form,

α(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if χ1(t) = 1,

2, if χ1(t) = 0, χ2(t) = 1,
...

...

l, if χi(t) = 0, for i ≤ l − 1, χl(t) = 1.
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Then α(·) is a process with sample paths in D([0, T ];M) and

χ(t) = (I{α(t)=1}, . . . , I{α(t)=l}) w.p.1.

Therefore, α(·) is a Markov chain generated by Q(·). As a result, its dis-
tribution is uniquely determined by Q(·). It follows that αε(·) converges
weakly to α(·). �

Remark 5.54. Note that Theorem 5.53 gives the same result as The-
orem 5.27 under weaker conditions. The proofs are quite different. The
proof of Theorem 5.53 is based on martingale properties associated with
the Markov chain, whereas the proof of Theorem 5.27 follows the tra-
ditional approach, i.e., after the tightness is verified, the convergence of
finite-dimensional distributions is proved.

Remark 5.55. In view of the development in Chapter 4, apart from the
smoothness conditions, one of the main ingredients is the use of the Fred-
holm alternative. One hopes that this will carry over (under suitable condi-
tions) to the measurable generators. A possible approach is the utilization
of the formulation of weak derivatives initiated in the study of partial dif-
ferential equations (see Hutson and Pym [90]).
Following the tactics of the weak sense formulation, for some T < ∞

and for given g(·) ∈ L2([0, T ];R), a function f(·) ∈ L2([0, T ];R) is a weak
solution of (d/dt)f = g if

∫ T

0

f(t)

(
dφ(t)

dt

)

dt =

∫ T

0

g(t)φ(t)dt

for any C∞-functions on [0, T ] vanishing on the boundary together with
their derivatives (denoted by φ ∈ C∞

0 ([0, T ];R)). Write the weak solution

as (d/dt)f
w
= g.

Recall that L2
loc is the set of functions that lie in L

2(S;R) for every closed
and bounded set S ⊂ (0, T ). A function f(·) ∈ L2

loc has a jth-order weak
derivative if there is a function g(·) ∈ L2

loc such that

∫ T

0

g(t)φ(t)dt = (−1)j
∫ T

0

f(t)
djφ(t)

dtj
dt

for all φ ∈ C∞
0 ([0, T ];R). The function g(·) above is called the jth-order

weak derivative of f(·), and is denoted by Djf = g.
To proceed, define the space of functions Hn as

Hn = {f on [0, T ]; for 0 ≤ j ≤ n, Djf exist and are in L2([0, T ];R)}.
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Equip Hn with an inner product and a norm as

(f, g)n =
∑

j≤n

∫ T

0

DjfDjgdt,

|f |2n = (f, f)n =
∑

j≤n

∫ T

0

|Djf |2dt.

One can then work under such a framework and proceed to obtain the
asymptotic expansion of the probability distribution. It seems that the
conditions required are not much different from those in the case of smooth
generators; we will not pursue this issue further.

5.5 Remarks on Inclusion of Transient and
Absorbing States

So far, the development in this chapter has focused on Markov chains with
only recurrent states (either a single weakly irreducible class or a number
of weakly irreducible classes). This section extends the results obtained to
the case that a transient class or a group of absorbing states is included.

5.5.1 Inclusion of Transient States

Consider the Markov chain αε(·) ∈ M, where its generator is still given by
(5.47) and the state space of αε(t) is given by

M = M1 ∪M2 ∪ · · · ∪Ml ∪M∗, (5.118)

with Mi = {si1, . . . , simi} and M∗ = {s∗1, . . . , s∗m∗}. In what follows, we
present results concerning the asymptotic distributions of scaled occupation
measures and properties of measurable generators.While main assumptions
and results are provided, the full proofs are omitted. The interested reader
can derive the results using the ideas presented in the previous sections.
To proceed, assume that Q̃(t) is a generator of a Markov chain satisfying

Q̃(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q̃1(t)
. . .

Q̃l(t)

Q̃1
∗(t) · · · Q̃l

∗(t) Q̃∗(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.119)

such that for each t ∈ [0, T ] and each i = 1, . . . , l, Q̃i(t) is a generator with

dimension mi × mi, Q̃∗(t) is an m∗ × m∗ matrix, Q̃i
∗(t) ∈ R

m∗×mi , and
m1 +m2 + · · ·+ml +m∗ = m. We impose the following conditions.
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(A5.9) For all t ∈ [0, T ], and i = 1, . . . , l, Q̃i(t) are weakly irreducible,

and Q̃∗(t) is Hurwitz (i.e., all of its eigenvalues have negative real

parts). Moreover, Q̃(·) is differentiable on [0, T ] and its derivative

is Lipschitz; Q̂(·) is Lipschitz continuous on [0, T ].

Use the partition

Q̂(t) =

(
Q̂11(t) Q̂12(t)

Q̂21(t) Q̂22(t)

)

where

Q̂11(t) ∈ R
(m−m∗)×(m−m∗), Q̂12(t) ∈ R

(m−m∗)×m∗ ,

Q̂21(t) ∈ R
m∗×(m−m∗), and Q̂22(t) ∈ R

m∗×m∗ ,

and write

Q∗(t) = diag(ν1(t), . . . , νl(t))(Q̂11(t)1̃l + Q̂12(t)(am1(t), . . . , aml
(t)))

Q(t) = diag(Q∗(t), 0m∗×m∗),

(5.120)
where

1̃l = diag(1lm1 , . . . , 1lml
), 1lmj = (1, . . . , 1)′ ∈ R

mj×1,

and
ami(t) = −Q̃−1

∗ (t)Q̃i
∗(t)1lmi , for i = 1, . . . , l. (5.121)

In what follows, if ami(t) is time independent, we will simply write it as

ami . The requirement on Q̃∗(t) in (A5.9) implies that the correspond-
ing states are transient. The Hurwitzian property also has the follow-
ing interesting implication: For each t ∈ [0, T ], and each i = 1, . . . , l,
ami(t) = (ami,1(t), . . . , ami,m∗(t))

′ ∈ R
m∗×1. Then

ami,j(t) ≥ 0 and

l∑

i=1

ami,j(t) = 1 (5.122)

for each j = 1, . . . ,m∗. That is, for each t ∈ [0, T ] and each j = 1, . . . , l,
(am1,j(t), . . . , aml,j(t)) can be considered a probability row vector. To see
this, note that ∫ ∞

0

exp(Q̃∗(t)s)ds = −Q̃−1
∗ (t),

which has nonnegative components. It follows from the definition that
ami(t) ≥ 0. Furthermore,

l∑

i=1

ami(t) = −Q̃−1
∗ (t)

l∑

i=1

Q̃i
∗(t)1lmi = (−Q̃−1

∗ (t))(−Q̃∗(t))1lm∗ = 1lm∗ .
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Thus (5.122) follows. Similar to the development in the section for the case
of weak and strong interactions, we can derive the following results.

Theorem 5.56. Define

χε
ij(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ t

0

(
I{αε(s)=sij} − νij(s)I{αε(s)∈Mi}

)
ds, for i = 1, . . . , l,

∫ t

0

I{αε(s)=s∗j}ds, for i = ∗,
(5.123)

and assume (A5.9). Then for each j = 1, . . . ,mi,

sup
t∈[0,T ]

E|χε
ij(t)|2 =

{
O(ε), for i = 1, . . . , l,
O(ε2), for i = ∗. (5.124)

Next, for each fixed t ∈ [0, T ], let ξ be a random variable uniformly
distributed on [0, 1] that is independent of αε(·). For each j = 1, . . . ,m∗,
define an integer-valued random variable ξj(t) by

ξj(t) = I{0≤ξ≤am1,j(t)} + 2I{am1,j(t)<ξ≤am1,j(t)+am2,j(t)}

+ · · ·+ lI{am1,j(t)+···+aml−1,j(t)<ξ≤1}.

Now redefine the aggregated process αε(·) by

αε(t) =

⎧
⎪⎪⎨

⎪⎪⎩

i, if αε(t) ∈ Mi,

ξj(t), if αε(t) = s∗j(t).

(5.125)

Note that the state space of αε(t) is M = {1, . . . , l}, and that αε(·) ∈
D([0, T ];M). Similar to the weak and strong interaction case, but with
more effort, we can obtain the following result.

Theorem 5.57. Under conditions (A5.9), αε(·) converges weakly to α(·),
a Markov chain generated by Q∗(·) given by (5.120).

Next, for t ≥ 0, and α ∈ M, let βij(t) be bounded Borel measurable
deterministic functions, and let

Wij(t, α)=

⎧
⎪⎪⎨

⎪⎪⎩

(I{α=sij} − νij(t)I{α∈Mi})βij(t), if i = 1, . . . , l, j = 1, . . . ,mi,

I{α=s∗j}βij(t), if i = ∗, j = 1, . . . ,m∗.

(5.126)
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Consider the normalized occupation measure

nε(t) = (nε
11(t), . . . , n

ε
1m1

(t), . . . , nε
∗1(t), . . . , n

ε
∗m∗(t)),

where

nε
ij(t) =

1√
ε

∫ t

0

Wij(s, α
ε(s))ds.

We can then proceed to obtain the asymptotic distribution.

Theorem 5.58. Assume (A5.9), and suppose Q̃(·) is twice differentiable

with Lipschitz continuous second derivative. Moreover, Q̂(·) is differen-
tiable with Lipschitz continuous derivative. Let βij(·) (for i = 1, . . . , l,
j = 1, . . . ,mi) be bounded and Lipschitz continuous deterministic func-
tions. Then nε(·) converges weakly to a switching diffusion n(·), where

n(t) =
( ∫ t

0

σ(s, α(s))dw(s)
)′
, (5.127)

where σ(s, i) is similar to (5.105) with the following modifications:

σ(s, i) = diag(0m1×m1 , . . . , σ
0(s, i), . . . , 0ml×ml

, 0m∗×m∗) (5.128)

and w(·) is a standard m-dimensional Brownian motion.

Finally, we confirm that the case of the generators being merely measur-
able can be treated as well. We state this as the following theorem.

Theorem 5.59. Assume the generator is given by (5.47) with Q̃(·) given

by (5.120) such that Q̃ and Q̂ are measurable and bounded and that Q̃i(t) is
weakly irreducible for each i = 1, . . . , l. Then the following assertions hold:

• For any i = 1, . . . , l, j = 1, . . . ,mi, and bounded deterministic func-
tion βij(t), t ≥ 0,

E

(∫ T

0

(
I{αε(t)=sij} − νij(t)I{αε(t)=i}

)
βij(t)dt

)2

→ 0, as ε→ 0.

• αε(·) converges weakly to α(·), a Markov chain generated by Q∗(·).

5.5.2 Inclusion of Absorbing States

Consider the Markov chain αε(·) ∈ M, where the generator of αε(·) is still
given by (5.47) with

Q̃(t) = diag(Q̃1(t), . . . , Q̃l(t), 0ma×ma), (5.129)

where 0ma×ma is the ma×ma zero matrix, the state space of αε(t) is given
by

M = M1 ∪M2 ∪ · · · ∪Ml ∪Ma, (5.130)

with Mi = {si1, . . . , simi} and Ma = {sa1, . . . , sama}, and m1+m2+ · · ·+
ml +ma = m. Assume the following conditions.
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(A5.10) For all t ∈ [0, T ] and i = 1, . . . , l, Q̃i(t) is weakly irreducible.

Furthermore, Q̃(·) is differentiable on [0, T ] and its derivative is

Lipschitz. Moreover, Q̂(·) is Lipschitz continuous on [0, T ].

Define

1̃l = diag(1lm1 , . . . , 1lml
) and 1̃la = diag(1̃l, Ima)

Q(t) = diag(ν1(t), ν2(t), . . . , νl(t), Ima )Q̂(t)1̃la.

(5.131)

Assume that the conditions in (A5.10) are satisfied. Then we can prove the
following:

(a) As ε→ 0,

pε(t) = (ϑ(t), ϑa(t))diag(ν1(t), . . . , νl(t), Ima )+O (ε+ exp(−κ0t/ε)) ,

where

ϑ(t) = (ϑ1(t), . . . , ϑl(t))) ∈ R
1×l and

ϑa(t) = (ϑa1(t), . . . , ϑ
a
ma

(t)) ∈ R
1×ma ,

satisfying

d(ϑ(t), ϑa(t))

dt
= (ϑ(t), ϑa(t))Q(t), (ϑ(0), ϑa(0)) = pε(0)1̃la

whereQ(t) is given in (5.131) and pε(0) = (pε,1(0), . . . , pε,l(0), pε,a(0))
with pε,i(0) ∈ R

1×mi and pε,a(0) ∈ R
1×ma .

(b) For the transition probability P ε(t, t0), we have

P ε(t, t0) = P 0(t, t0) +O (ε+ exp(−κ0(t− t0)/ε))) , (5.132)

for some κ0 > 0, where

P 0(t, t0) = 1̃laΘ(t, t0)diag(ν
1(t), . . . , νl(t), Ima),

and
dΘ(t, t0)

dt
= Θ(t, t0)Q(t), Θ(t0, t0) = I.

To proceed, we aggregate the states in Mi for i = 1, . . . , l as one state
leading to the definition of the following process:

αε(t) =

{
i, if αε(t) ∈ Mi,
αε(t), if αε(t) ∈ Ma.

(5.133)
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For each j = 1, . . . ,mi, we also define a sequence of centered occupation
measures by

χε
ij(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ t

0

(
I{αε(s)=sij} − νij(s)I{αε(s)=i}

)
ds, for i = 1, . . . , l,

∫ t

0

(I{αε(s)=saj} − ϑaj (s))ds.

(5.134)
For t ≥ 0 and α ∈ M, let

Wij(t, α) =

{
I{α=sij} − νij(t)I{α∈Mi}, for i = 1, . . . , l, j = 1, . . . ,mi,
I{α=saj} − ϑaj (t), for j = 1, . . . ,ma.

(5.135)
Consider the normalized occupation measure

nε(t) = (nε
11(t), . . . , n

ε
1m1

(t), . . . , nε
l1(t), . . . , n

ε
lml

(t), nε
a1(t), . . . , n

ε
ama

(t)),

where

nε
ij(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1√
ε

∫ t

0

Wij(s, α
ε(s))βij(s)ds, i = 1, . . . , l, j = 1, . . . ,mi,

∫ t

0

Waj(s, α
ε(s))βaj(s)ds, j = 1, . . . ,ma.

Note that

dnε(t)

dt
=

⎧
⎨

⎩

1√
ε
W r(t, αε(t)), for αε(t) ∈ M1 ∪ · · · ∪Ml,

W a(t, αε(t)), for αε(t) ∈ Ma,

nε(0) = 0,

where

W r(t, α) = (W11(t, α), . . . ,W1m1(t, α), . . . ,Wl1(t, α), . . . ,Wlml
(t, α)),

W a(t, α) = (Wa1(t, α), . . . ,Wama(t, α)), and

W (t, α) = (W r(t, α),W a(t, α)).

〈W a(u, α)),∇a
xf

0(x, α)〉 =
ma∑

j=1

bj(u, α)
∂

∂a,j
f0(x, α).

We can obtain the following results.

Theorem 5.60. Assume (A5.10). Then the following assertions hold.
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(a) For all i = 1, . . . , l and j = 1, . . . ,mi, corresponding to the recurrent
states, supt∈[0,T ]E|Oε

ij(t)|2 = O(ε).

(b) αε(·) converges weakly to α(·), a Markov chain generated by Q(·).

(c) Define the generator L by

Lf0(x, α) =
1

2

mα∑

j1,j2=1

aj1j2(s, α)∂
2
α,j1j2f

0(x, α)

+

ma∑

j=1

bj(s, α)∂a,jf
0(x, α) +Q(s)f0(x, ·)(α).

Then the sequence Y ε(·) = (nε(·), αε(·)) converges weakly to Y (·) =
(n(·), α(·)) that is a solution of the martingale problem with operator
L.

Next, assume that Q̃(·) and Q̂(·) are bounded and measurable and Q̃i(t)
for each i = 1, . . . , l is weakly irreducible. Then

pε(t) = (pε11(t), . . . , p
ε
1m1(t), . . . , p

ε
l1(t), . . . , p

ε
lml

(t), pεa1(t), . . . , p
ε
ama

(t))

converges in the weak topology of L2([0, T ];Rm) (with m =
∑l

i=1mi+ma)
to

p(t) = (ϑ1(t)ν
1(t), . . . , ν1(t)ϑl(t), p

0,a),

where p0,a is the subvector in the initial data p0 corresponding the absorbing
state.

Note that in deriving the asymptotic distribution of the scaled occupa-
tion measures, we need to compute the asymptotic covariance of the limit
process. That is, we need to evaluate the limit of

E

∫ t

0

( 1√
ε
(W r(s, αε(s)))′

(W a(s, αε(s)))′

)(
1√
ε
W r(s, αε(s)), W a(s, αε(s))

)

ds

def
=

(
W rr

ε (t) W ra
ε (t)

W ar
ε (t) W aa

ε (t)

)

,

(5.136)
where

W rr
ε (t) =

1

ε

∫ t

0

E(W r(s, αε(s)))′W r(s, αε(s))ds

W ra
ε (t) =

1√
ε

∫ t

0

E(W r(s, αε(s)))′W a(s, αε(s))ds

W ar
ε (t) =

1√
ε

∫ t

0

E(W a(s, αε(s)))′W r(s, αε(s))ds

W aa
ε (t) =

∫ t

0

E(W a(s, αε(s)))′W a(s, αε(s))ds.
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It can be shown that

W rr
ε (t) →W

r
(t), W ra

ε (t) → 0, W ar
ε (t) → 0, and W aa

ε (t) →W
a
(t),

as ε→ 0, where for i = 1, . . . , l, W
r
(t) =W

r
(t, i) =

∫ t

0
Ŵ r(s, i)ds with

Ŵ r(s, i) = diag(0m1×m1 , . . . , σ(s, i), . . . , 0ml×ml
) (5.137)

with σ(s, i) the mi × mi matrix such that σ(s, i)σ′(s, i) = A(s, i) for i =
1, . . . , l, and

W
a
(t) = (W

a

jk(t)) with W
a

jk(t) =

∫ t

0

(
δjkϑ

a
j (s)− ϑaj (s)ϑ

a
k(s)

)
ds,

(5.138)

where δjk = 1 if j = k, δjk = 0 if j �= k. The detailed proof of Theorem 5.60
can be found in Yin, Zhang, and Badowski [241].

5.6 Remarks on a Stability Problem

So far, our study has been devoted to systems with two time scales in
a finite interval. In many problems arising in networked control systems,
stability is often a main concern. A related problem along this line is in
Badowski and Yin [5].
It is interesting to note that intuitive ideas sometimes are not necessarily

true for systems with switching, for example, if one put together two stable
systems by using, for instance, Markovian switching. Our intuition may
lead to the conclusion that the combined systems should also be stable.
Nevertheless, this is, in fact, not true. Such an idea was illustrated in Wang,
Khargonekar, and Beydoun [212] for deterministically switched systems; see
also Chapter 1 of this book concerning this matter.
As a variation of the system in [212], we consider the following example.

Suppose that αε(·) is a continuous-time Markov chain with state space

M = {1, 2} and generator Qε = Q/ε, where Q =

⎛

⎜
⎝

−1 1

1 −1

⎞

⎟
⎠. Consider

a controlled system

ẋ = A(αε(t))x +B(αε(t))u(t),

with state feedback u(t) = K(αε(t))x(t). Then we obtain the equivalent
representation

ẋ = [A(αε(t))−B(αε(t))K(αε(t))]x. (5.139)
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Suppose that

G(1) = A(1)−B(1)K(1) =

⎛

⎜
⎝

−100 20

200 −100

⎞

⎟
⎠ ,

G(2) = A(2)−B(2)K(2) =

⎛

⎜
⎝

−100 200

20 −100

⎞

⎟
⎠ .

Note that both matrices are Hurwitz (i.e., their eigenvalues have negative
real parts). A question of interest is this: Is system (5.139) stable? The key
to understanding the system is to examine

ẋε(t) = G(αε(t))xε(t), (5.140)

where both G(1) and G(2) are stable matrices.
Since Q is irreducible, the stationary distribution associated with Q is

given by (1/2, 1/2). As a result, as ε → 0, using our weak convergence
result, xε(·) converges weakly to x(·), which is a solution of the system

ẋ(t) = Gx(t), where

G =
1

2
(G(1) +G(2)) =

⎛

⎜
⎝

−100 110

110 −100

⎞

⎟
⎠ .

(5.141)

In addition, for any T < ∞, using the large deviations result obtained in
He, Yin, and Zhang [84], we can show that for any δ > 0, there is a c1 > 0
such that

P (ρ0,T (x
ε(t), x(t)) ≥ δ) ≤ exp(−c1/ε), (5.142)

where ρ0,T (x, y) = sup0≤t≤T |x(t)− y(t)|.
Note that G is an unstable matrix with eigenvalues −210 and 10. Thus

for (5.141), the critical point (0, 0)′ is a saddle point. But why should the
stability of the averaged system dominate that of the original system? To
see this, from a result of differential equations, there is a nonsingular matrix
H such thatHGH−1 = Λ = diag(−210, 10). Clearly, the stability of (5.141)
is equivalent to that of

ẏ(t) = Λy(t) = H

2∑

i=1

νiG(i)H
−1y(t) = diag(−210, 10)y(t), (5.143)

where y = Hx = (y1, y2)
′. The stability of (5.141) is equivalent to that of

(5.143), which is completely decoupled and y1(t) = exp(−210t)y1(0) → 0
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and y2(t) = exp(10t)y2(0) → ∞. To see how the original system (5.140)
behaves, we apply the same transformation to get

ẏε(t) = H
2∑

i=1

I{αε(t)=i}G(i)H
−1yε(t). (5.144)

For the transformed system (5.143), by choosing V (y) = y22/2, we obtain
V̇ (y(t)) = 10y22 > 0 for all y2 �= 0. Define Lεz(t) = limδ↓0 E

ε
t [z(t + δ) −

z(t)]/δ for a real-valued function z(t) that is continuously differentiable,
where Eε

t denotes the conditioning on the Fε
t = σ{αε(s) : s ≤ t}. With

V (y) = y22/2, we have

LεV (yε(t)) = 10(yε2(t))
2 + V ′

y(y
ε(t))H

2∑

i=1

[I{αε(t)=i} − νi]G(i)H
−1yε(t),

where V ′
y(y) = (0, y2) ∈ R

1×2. Using perturbed Liapunov function tech-
niques as done in Badowski and Yin [5], define a perturbation

V ε
2 (y, t) = Eε

t

∫ ∞

t

et−sV ′
y(y)H

2∑

i=1

[I{αε(s)=i} − νi]G(i)H
−1y.

It can be shown that V ε
2 (y, t) = O(ε)V (y). In addition,

LεV ε
2 (y

ε(t), t) = −V ′
y(y

ε(t))H

2∑

i=1

[I{αε(t)=i} − νi]G(i)H
−1yε(t)

+O(ε)V (yε(t)).

Define
V ε(y, t) = V (y) + V ε

2 (y, t).

Evaluate LεV ε(yε(t), t). Upon cancelation, for sufficiently small ε, we can
make

O(ε)V (yε(t)) ≥ −(yε2(t))
2.

It then follows that

LεV ε(yε(t), t) = 10(yε2(t))
2 +O(ε)V (yε(t))

≥ 9(yε2(t))
2.

Taking expectation of the left- and right-hand sides above leads to

d

dt
E|yε2(t)|2 ≥ 9E|yε2(t)|2,
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which in turn yields that

E(yε2(t))
2 ≥ E(yε2(0))

2 exp(9t) → ∞ as t → ∞.

Similar to the previous development, choose V (y) = y21/2, define

V ε
1 (y, t) = Eε

t

∫ ∞

t

et−sV ′
y(y)H

2∑

i=1

[I{αε(s)=i} − νi]G(i)H
−1y,

and redefine
V ε(y, t) = V (y) + V ε

1 (y, t).

Using the upper bound O(ε)V (yε(t)) ≤ (yε1(t))
2 this time and calculating

LεV ε(yε(t), t), we obtain

d

dt
E|yε1(t)|2 ≤ −209E|yε1(t)|2,

which in turn yields that

E(yε1(t))
2 ≤ E(yε1(0))

2 exp(−209t) → 0 as t→ ∞.

This yields that (5.144) and hence (5.140) are unstable in probability (see
Yin and Zhu [244, p. 220] for a definition). In fact, it can be seen that the
trivial solution of the original system is also a saddle.
In the same spirit of the last example, consider a system given by

ẋε(t) = G(αε(t))xε(t), αε(t) ∼ Q/ε, where

G(1) =

⎛

⎜
⎝

−7

3
−1

0 1

⎞

⎟
⎠ , G(2) =

⎛

⎜
⎝

1 0

−1 −7

3

⎞

⎟
⎠ ,

(5.145)

where Q is as in the last example. Then it can be shown that xε(·) converges
weakly to x(·) that is a solution of the following system

ẋ(t) = Gx(t),

G =

⎛

⎜
⎝

−4

3
−1

−1 −4

3

⎞

⎟
⎠ .

(5.146)

Neither G(1) nor G(2) is a stable matrix, but the system (5.146) is a stable
one. The stability analysis is again carried out using perturbed Liapunov
function methods. Here exactly the same kind of argument as in [5] can
be applied. Using the techniques of perturbed Liapunov functions, we can
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show that the stability of the averaged system “implies” that of the original
system.
These two examples illustrate that one can combine two stable systems

using Markovian switching to produce an unstable limit system. Likewise,
one can combine two unstable systems to produce a limit stable systems.
More importantly, using our weak convergence result of this chapter and
the large deviations results in He, Yin, and Zhang [84], combined with the
perturbed Liapunov function argument, we can give the reason why such
a thing can happen.

5.7 Notes

This chapter concerns sequences of functional occupation measures. It
includes convergence of an unscaled sequence (in probability) and central-
limit-type results for suitably scaled sequences. For a general introduction
to central limit theorems, we refer to the book by Chow and Teicher [30]
and the references therein. In the stationary case, that is, Q(t) = Q, a con-
stant matrix, the central limit theorem may be obtained as in Friedlin and
Wentzell [67]. Some results of central limit type for discrete Markov chains
are in Dobrushin [50] (see also the work of Linnik on time-inhomogeneous
Markov chains [147]). Work in the context of random evolution, with pri-
mary concern the central limit theorem involving a singularly perturbed
Markov chain, is in Pinsky [176]; see also Kurtz [135, 137] for related dis-
cussions and the martingale problem formulation. Exponential bounds for
Markov processes are quite useful in analyzing the behavior of the underly-
ing stochastic processes. Some results in connection with diffusions can be
found in Kallianpur [102]. Corollary 5.8 can be viewed as a large deviations
result. For extensive treatment of large deviations, see Varadhan [207].
The central theme here is limit results of unscaled as well as scaled

sequences of occupation measures, which include the law of large numbers
for an unscaled sequence, exponential upper bounds, and asymptotic distri-
bution of a suitably scaled sequence of occupation times. Results in Section
5.2 are based on the paper of Zhang and Yin [252]; however, a somewhat
different approach to the central limit theorem was used in [252]. Some of
the results in Section 5.3 are based on Zhang and Yin [253]. The result on
exponential error bound in Section 5.3 is a natural extension for the irre-
ducible generators. Such result holds uniformly in t ∈ [0, T ] for fixed but
otherwise arbitrary T > 0. The main motivation for treating T as a parame-
ter stems from various control and optimization problems with discounted
cost over the infinite horizon. In such a situation, the magnitude of the
bound counts. Thus detailed information on the bounding constant is help-
ful for dealing with the near optimality of the underlying problem. Section
5.3 also presents a characterization of the limit process using martingale
problem formulations. Much of the foundation of this useful approach is
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in the work of Stroock and Varadhan [203]. Using perturbed operators to
study limit behavior may be traced back to Kurtz [135]. The general idea
of perturbed test functions was used in Blankenship and Papanicolaou [16],
and Papanicolaou, Stroock, and Varadhan [168]. It was further developed
and extended by Kushner [139] for various stochastic systems, and singu-
larly perturbed systems in Kushner [140]; see also Kushner and Yin [145]
for related stochastic approximation problems, and Ethier and Kurtz [59]
and Kurtz [137] for related work in stochastic processes. The results of this
section have benefited from the discussion with Thomas Kurtz, who sug-
gested treating the pair of processes (nε(·), αε(·)) together, which led to
the current version. Earlier treatment of a pair of processes may be found
in the work of Kesten and Papanicolaou [110] for stochastic acceleration.
The results on asymptotic properties for the inclusion of transient states

can be found in Yin, Zhang, and Badowski [239]; the results for the case
of generators being measurable can be found in the work of Yin, Zhang,
and Badowski [240]; the results on asymptotic properties of occupation
measures with absorbing states can be found in Yin, Zhang, and Bad-
owski [241].



6

Asymptotic Expansions of Solutions
for Backward Equations

6.1 Introduction

In Chapter 4, we focused on obtaining an approximation to the solutions of
Kolmogorov forward equations; the emphasis was on the associated proba-
bility distribution vectors. However, in many applications, instead of treat-
ing the forward equations, we need to deal with the backward equations.
In this chapter, we take a dual point of view by examining the associated
backward equations.
An important question to answer is this: Is it possible to construct

asymptotic expansions? In this chapter, we answer this question using an-
alytic techniques. We aim to obtain asymptotic expansions of solutions
of backward equations. Using matched asymptotic expansions, we con-
struct approximations to the solutions of backward equations, show that
the asymptotic expansions are valid, and obtain uniform asymptotic error
bounds.
The rest of this chapter is arranged as follows. The precise formulation is

given next. Then Section 6.3 proceeds with the constructions of the formal
asymptotic expansions. Section 6.4 validates the asymptotic expansions
by providing uniform error bounds. In this chapter, we consider finite-
state Markov chains either including only recurrent states, or containing
transient states in addition to recurrent states. Section 6.5 takes up the issue
of inclusion of transient states. Section 6.6 provides additional remarks.
Finally, the chapter is concluded with the end-of-chapter notes.

G.G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications,
Stochastic Modelling 37, DOI 10.1007/978-1-4614-4346-9 6,
© Springer Science+Business Media, LLC 2013

235



236 6. Asymptotic Expansions of Solutions for Backward Equations

6.2 Problem Formulation

We first present a result needed in the subsequent development, which is
the key for the construction of asymptotic expansions. Then we give the
formulation of the problem we wish to study.

6.2.1 A Preliminary Lemma

We use v′ to denote the transpose of v ∈ R
i1×i2 with i1 and i2 ≥ 1.

For subsequent use, we state a lemma. Part (i) of the lemma is more or less
a Fredholm alternative. Part (ii) is based on the observation that any solu-
tion of an inhomogeneous algebraic system is the sum of a general solution
of the corresponding homogeneous equation and a particular solution of
the inhomogeneous equation. A key point is this: Owing to the Markovian
structure, among the infinitely many particular solutions, there is only one
that satisfies the orthogonality condition (i.e., it is orthogonal to the sta-
tionary distribution of the Markov chain); see Yin [223] for further details.

Lemma 6.1. Suppose that a constant matrix Q ∈ R
m×m is a generator

of a continuous-time Markov chain and that Q is weakly irreducible.

(i) Then for any b ∈ R
m, the equation

Qζ = b (6.1)

has a solution if and only if νb = 0, where ν = (ν1, . . . , νm) is the
quasi-stationary distribution associated with Q. Moreover, suppose
that ζ̃1 and ζ̃2 are two solutions of (6.1). Then ζ̃1 − ζ̃2 = c01lm for
some c0 ∈ R.

(ii) Any solution of (6.1) can be written as ζ = c01lm+ ξ, where c0 ∈ R is
an arbitrary constant and ξ is the unique solution of (6.1) satisfying
νξ = 0.

Proof: The proof of part (i) is standard in linear algebra. We proceed to
prove part (ii). By part (i) of Lemma 6.1, since (6.1) has a solution, νb = 0.
Consequently, the solution of (6.1) consists of two parts, an arbitrary solu-
tion of the homogeneous equation and a particular solution of (6.1).
Since Q is a generator, the null space of Q is spanned by 1lm. Thus,

the solution of the homogeneous equation can be written as c01lm for an
arbitrary constant c0 ∈ R. It remains only to show that there is a unique
solution ξ of (6.1) satisfying νξ = 0.
Set b = (b1, . . . , bm)′ ∈ R

m and ξ = (ξ1, . . . , ξm)′ ∈ R
m. Consider the

following system:
⎧
⎪⎨

⎪⎩

Qξ = b,

νξ = 0.
(6.2)
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There are m + 1 equations and m unknowns. Recall that Q is weakly
irreducible. The null space of Q is one-dimensional and the dimension of
range(Q) is (m−1), so the rank ofQ is alsom−1. Thus we can replace one of
the firstm equations in (6.1) by the last equation, and the resulting system
of equations is uniquely solvable. A shortcut is to define an augmented

matrix Q̌ =

⎛

⎜
⎝

Q

ν

⎞

⎟
⎠ ∈ R

(m+1)×m and a new vector B =

⎛

⎜
⎝

b

0

⎞

⎟
⎠ ∈ R

m+1.

Then (6.2) can be written as

Q̌ξ = B. (6.3)

Note that Q̌′Q̌ has full rank m due to the weak irreducibility of Q. Thus
the solution of (6.3) can be represented by ξ = (Q̌′Q̌)−1Q̌′B. �

6.2.2 Formulation

To reduce complexity, we focus on a finite-state Markov chain with a large
state space M. We deal with time-inhomogeneous Markov chains. The gen-
erator of the Markov chain is time-dependent. Let us introduce a small pa-
rameter ε > 0, and suppose that αε(·) is a continuous-time Markov chain
with state space M and is time-inhomogeneous with generator

Qε(t) =
Q̃(t)

ε
+ Q̂(t), (6.4)

where both Q̃(t) and Q̂(t) are generators of some continuous-time Markov
chains (the same model as (4.39)).

Note that Q̃(t)/ε represents the fast-changing part, whereas Q̂(t)
delineates the slowly varying part. For the fast-changing part, we con-
sider two cases. Note that in a finite-state Markov chain, there is at least
one recurrent state, and not all states can be transient; either all states are
recurrent, or in addition to recurrent states, there is a group of transient
states. In the first case, the states belong to l weakly irreducible classes
(all states are “recurrent”):

Q̃(t) = diag(Q̃1(t), . . . , Q̃l(t)), (6.5)

whereas in the second case, the transient states are included,

Q̃(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q̃1(t)
. . .

Q̃l(t)

Q̃1
∗(t) . . . Q̃l

∗(t) Q̃∗(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6.6)
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In both (6.5) and (6.6), we assume that Q̃i(t) is weakly irreducible for

each i = 1, . . . , l. In (6.6), we also assume that Q̃i
∗(t), i = 1, . . . , l, are

of proper dimensions and Q̃∗(t) is Hurwitz. If Q̂(t) were missing or had

the same kind of structure as that of Q̃(t), the resulting chain would be
completely decomposable into l “weakly irreducible” classes. Nevertheless,
the presence of the matrix Q̂(t) makes the corresponding Markov chain only
nearly decomposable. In view of the form (6.5) and (6.6), the decomposition
of the state space is carried out in accordance with the structure of the
generator Q̃(t). That is, we write the space M as

M = M1 ∪M2 ∪ · · · ∪Ml (6.7)

for a chain with Q̃(t) given by (6.5), and write the state space as

M = M1 ∪M2 ∪ · · · ∪Ml ∪M∗ (6.8)

for a chain with Q̃(t) given by (6.6), where for i = 1, . . . , l,

Mi = {si1, . . . , simi}, M∗ = {s∗,1, . . . , s∗,m∗}. (6.9)

In this chapter, we focus on the system of backward equations (see Chi-
ang [27, p. 402])

d

dt
uε(t) = −Qε(t)uε(t),

uε(T ) = u0,

(6.10)

for some 0 < T < ∞, where uε(t) ∈ R
m×1. Equation (6.10) is known

as the backward Kolomogrov equation. In the next two sections, we focus
on the case that the generator is of the form (6.5). Then in Section 6.5,

we treat the case of Q̃(t) given by (6.6). Note that in the above, if u0 =
(u10, . . . , u

m
0 )′ satisfies ui0 ≥ 0 and

∑
i∈M ui0 = 1, then uε(t) represents a

probability vector; otherwise in general uε(·) is not a probability vector.

6.3 Construction of Asymptotic Expansions

This section constructs the formal asymptotic expansions of the solution
uε(·) for the case that all states are recurrent using (6.7) with

∑l
k=1mk=m.

To carry out the needed analysis, we use the following conditions. The first
one concerns the weak irreducibility of Q̃i(t) for each t, and the second one
deals with the smoothness of the generators. It follows from (A6.2) that

the (n+1)st derivatives of Q̃(·) and Q̂(·) are Lipschitz continuous. Slightly
weaker conditions are possible, but for most applications, the smoothness
condition given here poses little restriction.
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(A6.1) For each i = 1, . . . , l and each t ∈ [0, T ], Q̃i(t) is weakly irre-
ducible, and its quasi-stationary distribution is denoted by νi(t).

(A6.2) For some positive integer n, Q̃(·) and Q̂(·) are (n + 2)-times
continuously differentiable.

Following the methods of matched asymptotic expansions, we aim to
approximate uε(t), the solution of the Cauchy problem (6.10), by

Φε
n(t) + Ψε

n

(
T − t

ε

)

,

where

Φε
n(t) =

n∑

i=0

εiϕi(t),

Ψε
n(τ) =

n∑

i=0

εiψi(τ),

(6.11)

and τ = (T − t)/ε. Here τ is known as a stretched variable that magnifies
the details of the solution near the terminal time T . Using the terminology
of singular perturbations, the ϕi(t) are the outer expansion terms, and
the ψi(τ) are the so-called terminal-layer (or boundary-layer) correction
terms. Similar to the approximation to the solutions of forward equations
in Chapter 4, the idea is that away from a terminal layer of thickness O(ε),
the solution Φε

n(t) is a good approximation to the solution of (6.10), but
this solution generally fails to satisfy the terminal condition. Thus to get a
good approximation with reasonable accuracy, one has to add a correction
term to take care of the approximation in a neighborhood of T .
In constructing the asymptotic expansions, to get the desired error esti-

mates, we need to compute a few more terms. Thus, we need to compute
Φε

i (t) for i ≤ n+ 1. Substituting Φε
i (t) for i = 0, . . . , n+ 1 into (6.10) and

equating coefficients of like powers of εi, we obtain:

Q̃(t)ϕ0(t) = 0,

Q̃(t)ϕ1(t) = − d

dt
ϕ0(t)− Q̂(t)ϕ0(t),

· · · · · ·

Q̃(t)ϕi+1(t) = − d

dt
ϕi(t)− Q̂(t)ϕi(t), i = 1, 2, . . . , n.

(6.12)

Likewise, substituting Ψi(τ) for i ≤ n+ 1 into (6.10), we obtain

d

dτ

(
k∑

i=0

εiψi(τ)

)

=

k∑

i=0

εiψi(τ)
(
−Q̃(T − ετ)− εQ̂(T − ετ)

)
. (6.13)
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It is easily seen that the differential equations for ψi(τ) involve a term with

time-varying coefficient matrix Q̃(T − ετ), which is complicated to deal

with. To overcome the difficulty, we use Taylor expansions of Q̃(·) and Q̂(·)
about the terminal time T to obtain

Q̃(T − ετ) =

i∑

j=0

Q̃(j)(T )

j!
(−ετ)j + R̃i(ετ)

εQ̂(T − ετ) =

i−1∑

j=0

Q̂(j)(T )

j!
ε(−ετ)j + εR̂i−1(ετ),

where Q(j)(T ) = (dj/dtj)Q(t)|t=T , R̃i(t) = O(ti+1), and R̂i−1(t) = O(ti).
Equating coefficients of like powers of εi in (6.13) for i ≤ n+ 1 and using
the Taylor expansions above, we obtain

dψ0(τ)

dτ
= Q̃(T )ψ0(τ),

dψ1(τ)

dτ
= Q̃(T )ψ1(τ) +

(
−τQ̃′(T ) + Q̂(T )

)
ψ0(τ),

· · · · · ·

dψi(τ)

dτ
= Q̃(T )ψi(τ) + ri,

ri =

i−1∑

j=0

(

(−τ)i−j Q̃
(i−j)(T )

(i − j)!
+ (−τ)i−j−1 Q̂

(i−j−1)(T )

(i− j − 1)!

)

ψj(τ),

i = 2, . . . , n+ 1.

(6.14)

To satisfy the terminal conditions, we demand that

ϕ0(T ) + ψ0(0) = u0 and ϕi(T ) + ψi(0) = 0, for i = 1, . . . , n+ 1. (6.15)

Solving (6.14) together with terminal conditions (6.15), we obtain

ψ0(τ) = exp(Q̃(T )τ)(u0 − ϕ0(T )),

ψi(τ) = exp(Q̃(T )τ)(−ϕi(T )) +

∫ τ

0

exp(Q̃(T )(τ − s))ri(s)ds, for i > 0.

(6.16)
Set

1̃l = diag(1lm1 , . . . , 1lml
)

and

P = 1̃lν(T ) = diag(1lm1ν
1(T ), . . . , 1lml

νl(T )). (6.17)

Before proceeding further, we present a lemma.
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Lemma 6.2. There exist positive constants κ and C such that

| exp(Q̃(T )τ)− P | ≤ C exp(−κτ ), for τ > 0.

Proof: Note that exp(Q̃k(T )t) is a solution of the initial value problem

dP k(t)

dt
= Q̃k(T )P k(t), P k(0) = Imk

,

where Imk
is themk×mk identity matrix. Moreover, in view of Lemma A.2,

there are Ck and κk > 0 for k = 1, . . . , l such that

| exp(Q̃k(T )τ)− 1lmk
νk(T )| ≤ Ck exp(−κkτ).

We thus have

| exp(Q̃(T )τ)− P |

=
∣
∣
∣diag

(
exp(Q̃1(T )τ)− 1lm1ν

1(T ), . . . , exp(Q̃l(T )τ)− 1lml
ν1(T )

)∣
∣
∣

≤ C exp(−κτ),

where
κ = min(κ1, . . . , κl) and C = max(C1, . . . , Cl).

The desired estimate thus follows. �

6.3.1 Leading Term ϕ0(t) and Zero-Order Terminal-Layer
Term ψ0(τ)

We may write ϕ0(t) in a partitioned form as

ϕ0(t) = ((ϕ1
0(t))

′, . . . , (ϕl
0(t))

′)′,

where ϕi
0(t) ∈ R

mi×1. Since Q̃(t)ϕ0(t) = 0, Q̃i(t)ϕi
0(t) = 0 for each i =

1, . . . , l. Then ϕi
0(t) is in the null space of Q̃i(t) spanned by 1lmi . We can

thus write ϕi
0(t) as ϕ

i
0(t) = βi

0(t)1lmi for a smooth function βi
0(t) ∈ R to be

determined later. As a result, ϕ0(t) must be of the form

ϕ0(t) = 1̃lβ0(t) (6.18)

with

β0(t) = (β1
0(t), . . . , β

l
0(t))

′ ∈ R
l,

1̃l = diag(1lm1 , . . . , 1lml
).

(6.19)
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For a suitable function f(t), set ḟ(t) = df(t)/dt. Then

ϕ̇0(t) = 1̃lβ̇0(t).

So

Q̃(t)ϕ1(t) = −1̃lβ̇0(t)− Q̂(t)1̃lβ0(t). (6.20)

Define

ν(t) = diag(ν1(t), . . . , νl(t)). (6.21)

Then ν(t)Q̃(t) = 0 and ν(t)1̃l = Il ∈ R
l×l, the l × l identity matrix. Using

(6.21) and multiplying both sides of equation (6.20) from the left by ν(t),
we obtain

β̇0(t) = −Q(t)β0(t), (6.22)

where

Q(t) = ν(t)Q̂(t)1̃l. (6.23)

Note that Q(t) is the average of Q̂(t) with respect to the quasi-stationary

measures associated with the Q̃i(t). In view of (6.16),

ψ0(τ) = exp(Q̃(T )τ)(u0 − ϕ0(T )). (6.24)

We demand that ψ0(τ) → 0 as τ → ∞. Letting τ → ∞ in (6.24) and noting

that exp(Q̃(T )τ) → P with P given in (6.17), we obtain

Pψ0(0) = 0. (6.25)

Using (6.21) and multiplying both sides of the above equation from the left
by ν(T ), we obtain the following equivalent equation

ν(T )ψ0(0) = 0. (6.26)

In addition,

ν(T )ψ0(0) = ν(T )(u0 − ϕ0(T ))

= ν(T )u0 − β0(T ).

(6.27)

Thus,

β0(T ) = ν(T )u0. (6.28)

As a result, β0(t) can be uniquely determined from the differential equation
(6.22) and the terminal condition (6.28).
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6.3.2 Higher-Order Terms

For future use, we state a lemma. The proof uses elementary row operations
of matrices.

Lemma 6.3. Define Qv(t) =

⎛

⎜
⎝

Q̃(t)

ν(t)

⎞

⎟
⎠. Under condition (A6.1), for

each t ∈ [0, T ],

rank(Qv(t)) = m and rank(Q′
v(t)Qv(t)) = m.

Proof: Interchanging rows, we can show that

Qv(t) → Qc(t) = diag

((
Q̃1(t)
ν1(t)

)

,

(
Q̃2(t)
ν2(t)

)

, . . . ,

(
Q̃l(t)
νl(t)

))

.

Since elementary row operations do not change the rank of a matrix,
rank(Qv(t)) = rank(Qc(t)). Note that for each i = 1, . . . , l, the matrix(
Q̃i(t)
νi(t)

)

has rank mi owing to the weak irreducibility of Q̃i(t). This yields

that

rank(Qc(t)) =

l∑

i=1

rank

(
Q̃i(t)
νi(t)

)

=

l∑

i=1

mi = m.

The lemma is thus proved. �
To proceed, for i > 0, we construct ϕi(t) and ψi(τ) by induction. Suppose

that the terms ϕj(t) and ψj(τ) for j < i have been constructed such that
for each j < i, ψj(τ) decays exponentially fast and ϕj(t) is smooth. We next
construct ϕi(t) and ψi(τ).
Using (6.12), we have

Q̃(t)ϕi(t) = −ϕ̇i−1(t)− Q̂(t)ϕi−1(t)
def
= b̃i−1(t). (6.29)

The right-hand side above, namely b̃i−1 is a known function since ϕi−1(t)
has been constructed. Using the partitioned form of the vector

ϕi(t) = ((ϕ1
i (t))

′, . . . , (ϕl
i(t))

′)′,

by part (ii) of Lemma 6.1, the ith block of the solution of (6.29) is given by

ϕi(t) = 1̃lβi(t) + ϕ̂i(t), (6.30)

where 1̃lβi(t) is an arbitrary solution to the homogeneous equation and ϕ̂i(t)

the unique solution of the inhomogeneous equation satisfying νk(t)̃bki−1 = 0,

where b̃ki−1(t) denotes the kth partitioned vector of b̃i−1(t).
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Define Qv(t) as in Lemma 6.3 and b̂i−1 =

⎛

⎜
⎝

b̃i−1

0

⎞

⎟
⎠ . Then

Qv(t)ϕ̂i(t) =

(
Q̃(t)ϕ̂i(t)
ν(t)ϕ̂i(t)

)

= b̂i.

Lemma 6.3 together with Lemma 6.1 implies

ϕ̂i(t) = (Q′
v(t)Qv(t))

−1Q′
v(t)bi−1. (6.31)

Using (6.12), we obtain

Q̃(t)ϕi+1(t) = −ϕ̇i(t)− Q̂(t)ϕi(t).

Multiplying both sides by ν(t) from the left, noting (6.30) and the fact
ν(t)ϕ̂i(t) = 0, we deduce

β̇i(t) = −Q(t)βi(t)− ν(T ) ˙̂ϕi(t), (6.32)

where Q(t) is given in (6.23). Equation (6.32) is uniquely solvable if the
terminal condition is specified. We need to use the terminal-layer term to
determine the terminal condition. In view of (6.16),

ψi(τ) = exp(Q̃(T )τ)ψi(0) +

∫ τ

0

exp(Q̃(T )(τ − s))ri(s)ds. (6.33)

We demand that ψi(τ) → 0 as τ → ∞. Letting τ → ∞ in (6.33) and noting

that exp(Q̃(T )τ) → P with P given in (6.17), we obtain

Pψi(0) +

∫ ∞

0

Pri(s)ds = 0. (6.34)

Using (6.21) and multiplying both sides of the above equation from the left
by ν(T ), we obtain the following equivalent equation

ν(T )ψi(0) +

∫ ∞

0

ν(T )ri(s)ds = 0. (6.35)

We have

ν(T )ψi(0) +

∫ ∞

0

ν(T )ri(s)ds

= −ν(T )ϕi(T ) +

∫ ∞

0

ν(T )ri(s)ds

= −(βi(T ) + ν(T )ϕ̂i(T )) +

∫ ∞

0

ν(T )ri(s)ds

= −βi(T ) +
∫ ∞

0

ν(T )ri(s)ds.

(6.36)
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Note that the integral involving ri(s) is well defined since |ri(s)| ≤ Ce−κs

a consequence of ri(·) being a linear combination of ψj(·) for j ≤ i− 1, and
the ψj(·) decay exponentially fast by the induction hypothesis. By virtue
of (6.35) and (6.36),

βi(T ) =

∫ ∞

0

ν(T )ri(s)ds. (6.37)

Moreover, when βi(T ) satisfies (6.37), ψi(τ) → 0 as τ → ∞ as desired. The
terminal condition for βi(t) has thus been found. Then

ϕi(t) = 1̃lβi(t) + ϕ̂i(t) = 1̃lβi(t) + (Qv(t)
′Qv(t))

−1Qv(t)
′b̂i−1, (6.38)

with βi(t) determined uniquely by the differential equation (6.32) and the
terminal condition (6.37).

Proposition 6.4. For each i = 0, . . . , n+ 1, ϕi(·) ∈ Cn+2−i([0, T ]).

Proof: We prove this by induction. First note that (6.22) implies that
β0(·) ∈ Cn+1([0, T ]). Therefore, ϕ0(·) ∈ Cn+2([0, T ]). Assume that ϕj(·) ∈
Cn+2−j([0, T ]) for any j < i. Then b̂i−1(·) ∈ Cn+2−i([0, T ]). Set Q1(t) =

(Q̃(t) 1̃l). Then

ν(t)Q1(t) = (0l×m Il).

Moreover, using the weak irreducibility of Q̃k(t) for k = 1, . . . , l, similarly
to Lemma 6.3, we can show that rank(Q1(t)Q

′
1(t)) = m. As a result, ν(t) =

(0l×m Il)Q
′
1(t)(Q1(t)Q

′
1(t))

−1. Thus ν(t) ∈ Cn+2([0, T ]). As a result, (6.38)
implies ϕi(·) ∈ Cn+2−i([0, T ]). �

Proposition 6.5. For 0 ≤ i ≤ n + 1, there exist constants C and 0 <
κi < κ such that

|ψi(τ)| ≤ C exp(−κiτ) for τ ≥ 0.

Proof: We prove this by induction. First, by Lemma 6.2 and (6.25),

|ψ0(τ)| =
∣
∣
∣Pψ0(0) + (exp(Q̃(T )τ)− P )ψ0(0)

∣
∣
∣

= | exp(Q̃(T )τ)− P ||ψ0(0)|

≤ C exp(−κτ ) for some κ > 0.

Assume that for all j < i,

|ψj(τ)| ≤ C exp(−κjτ ) for some 0 < κj < κ.
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Then for some 0 < κ̃ ≤ κi−1,

|ri(s)| ≤ C exp(−κ̃s) for s ≥ 0.

We proceed to show that ψi(τ) also decays exponentially fast. In fact,

|ψi(τ)| =
∣
∣
∣(exp(Q̃(T )τ) − P )ψi(0)

+

∫ τ

0

(exp(Q̃(T )(τ − s))− P )ri(s)ds+

∫ ∞

τ

−Pri(s)ds
∣
∣
∣

≤ C exp(−κτ) + C

∫ τ

0

exp(−κ(τ − s)) exp(−κ̃s)ds

+C

∫ ∞

τ

exp(−κ̃s)ds

Thus |ψi(τ)| ≤ C exp(−κiτ ) for some 0 < κi < κ̃ < κ as desired. �

6.4 Error Estimates

Consider

Lεf = ε
df

dt
+ (Q̃(t) + εQ̂(t))f. (6.39)

Lemma 6.6. Suppose that ξε(t) is a solution of Lεξε(t) = 0 with ξε(T ) =
0 such that |Lεξε(t)| ≤ Cεk+1 for a positive integer 1 ≤ k ≤ n. Then
supt∈[0,T ] |ξε(t)| = O(εk).

Proof: Consider the solution of the following Cauchy problem for s ≥ t,
⎧
⎪⎪⎨

⎪⎪⎩

∂Σε(s, t)

∂t
= −Qε(t)Σε(s, t)

Σε(s, s) = I.

(6.40)

Because the equation is linear, there is a unique solution. Owing to the
well-known setup for Markov chains and the associated backward differen-
tial equations (see, e.g., [27, pp. 398-403]), Σε(s, t) is the solution of the
backward equations together with the terminal condition being an iden-
tity matrix, so it is a transition matrix. As a result, Σε(s, t) is bounded
uniformly.
To proceed, let us examine the following terminal value problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lεξε(t) = ζε(t),

|ζε(t)| = O(εk+1),

ξε(T ) = 0.
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The solution is given by

ξε(t) = −1

ε

∫ T

t

Σε(s, t)ζε(s)ds,

where Σε(s, t) is the principal matrix solution (i.e., the solution of (6.40))
that is bounded. Thus

|ξε(t)| ≤ C

ε

∫ T

t

εk+1ds ≤ Cεk.

Furthermore, taking supt∈[0,T ], the lemma is proved. �

Proposition 6.7. Let uε(t) be the solution of (6.10) and let Φε
n(t) and

Ψε
n(τ) be given by (6.11), as constructed in the last section. Under the

conditions (A6.1) and (A6.2), there exists a C > 0 such that

sup
t∈[0,T ]

∣
∣
∣
∣u

ε(t)− Φε
n(t)−Ψε

n

(
T − t

ε

)∣
∣
∣
∣ = Cεn+1.

Proof: Put

eε,k(t) = uε(t)− Φε
k(t)−Ψε

k

(
T − t

ε

)

, k ≤ n+ 1.

Since uε(t) is a solution of (6.10), Lεuε(t) = 0. For k ≤ n+ 1,

Lεeεk(t) = −LεΦε
k(t)− LεΨε

k

(
T − t

ε

)

.

Moreover, recall that Q̃(t)ϕ0(t) = 0. It follows that

LεΦε
k(t) =

k∑

i=0

εi+1ϕ̇i(t) +

k∑

i=0

εiQ̃(t)ϕi(t) +

k∑

i=0

εi+1Q̂(t)ϕi(t)

=

k∑

i=0

εi+1(−Q̃(t)ϕi+1(t)− Q̂(t)ϕi(t)) +

k∑

i=0

εiQ̃(t)ϕi(t)

+
k∑

i=0

εi+1Q̂(t)ϕi(t)

= −εk+1Q̃(t)ϕk+1(t) + Q̃(t)ϕ0(t)

= −εk+1Q̃(t)ϕk+1(t).

The smoothness of ϕi(t) then yields

|LεΦε
k(t)| ≤ Cεk+1, ∀t ∈ [0, T ].
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Furthermore, the bound holds uniformly in t ∈ [0, T ]. Now using the defi-
nition τ = (T − t)/ε,

ε
d

dt
ψk

(T − t

ε

)
= − d

dτ
ψk(τ),

which yields

LεΨε
k(τ)

=

k∑

i=0

−εi d
dτ
ψi(τ) +

k∑

i=0

εiQ̃(t)ψi(τ) +

k∑

i=0

εi+1Q̂(t)ψi(t)

=

k∑

i=0

−εi(Q̃(T )ψi(τ) + ri(τ)) +

k∑

i=0

εiQ̃(t)ψi(τ) +

k∑

i=0

εi+1Q̂(t)ψi(τ),

where

k∑

i=1

εiri(τ)

=
k−1∑

j=0

k∑

i=j+1

(
εi(−τ)i−j Q̃

(i−j)(T )

(i − j)!
+ εi(−τ)i−j−1 Q̂

(i−j−1)(T )

(i− j − 1)!

)
ψj(τ)

=
k−1∑

j=0

k∑

i=j+1

(
εj(t− T )i−j Q̃

(i−j)(T )

(i− j)!

+εj+1(t− T )i−j−1 Q̂
(i−j−1)(T )

(i− j − 1)!

)
ψj(τ)

=

k−1∑

i=0

k−i−1∑

j=0

(
εi(t− T )j+1 Q̃

(j+1)(T )

(j + 1)!
+ εi+1(t− T )j

Q̂(j)(T )

j!

)
ψi(τ).

Therefore,

LεΨε
k(τ)

=
k∑

i=0

−εi(Q̃(T )ψi(τ) + ri(τ)) +
k∑

i=0

εiQ̃(t)ψi(τ) +
k∑

i=0

εi+1Q̂(t)ψi(τ)

= εk
(
Q̃(t)− Q̃(T )

)
ψk(τ) +

k−1∑

i=0

εi
(
Q̃(t)− Q̃(T )

−
k−i−1∑

j=0

(t− T )j+1 Q̃
(j+1)(T )

(j + 1)!

)
ψi(τ)

+εk+1Q̂(t)ψk(τ) +
k−1∑

i=0

εi+1

⎛

⎝Q̂(t)−
k−i−1∑

j=0

(t− T )j
Q̂(j)(T )

j!

⎞

⎠ψi(τ).
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Moreover, the Taylor expansion implies that

∣
∣
∣Q̃(t)− Q̃(T )

∣
∣
∣ ≤ C|T − t| = Cετ,

∣
∣
∣
∣
∣
∣
Q̃(t)− Q̃(T )−

k−i−1∑

j=0

(t− T )j+1 Q̃
(j+1)(T )

(j + 1)!

∣
∣
∣
∣
∣
∣
≤ C(T − t)k−i,

= Cεk−iτk−i

∣
∣
∣
∣
∣
∣
Q̂(t)−

k−i∑

j=0

(t− T )j
Q̂(j)(T )

j!

∣
∣
∣
∣
∣
∣
≤ C(T − t)k−i = Cεk−iτk−i.

As a result,

|LεΨε
k(τ)| ≤ Cεk+1τ exp(−κkτ )

+

k−1∑

i=0

Cεk+1τk−i exp(−κiτ )

+Cεk+1 +

k−1∑

i=0

Cεk+1τk−i exp(−κiτ )

≤ Cεk+1.

Piecing this together with the estimates on LεΦε
k(t), we have shown that

|Lεeεk(t)| ≤ Cεk+1. Note the terminal condition eεk(T ) = 0. Thus Lemma 6.6
implies supt∈[0,T ] |eεk(t)| = O(εk). Taking k = n+ 1, we obtain

sup
t∈[0,T ]

|eεn+1(t)| = O(εn+1).

Finally, note that

eεn+1(t) = eεn(t) + εn+1ϕn+1(t) + εn+1ψn+1(τ). (6.41)

The continuity of ϕn+1(·) and the exponential decay properties of ψn+1(τ)
yield that

sup
t∈[0,T ]

|εn+1ϕn+1(t) + εn+1ψn+1((T − t)/ε)| = O(εn+1).

Substituting this into (6.41), we obtain

sup
t∈[0,T ]

|eεn(t)| = O(εn+1).

The proposition is proved. �
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Next, we summarize what has been obtained so far in the following the-
orem. It provides a detailed construction of the asymptotic series as well
as the error bounds.

Theorem 6.8. Assume (A6.1) and (A6.2). Then asymptotic expansions
Φε

n(t) + Ψε((T − t)/ε) can be constructed as follows:

• ϕ0(t) is obtained from (6.18), (6.22), and (6.28), and ψ0((T − t)/ε)
is obtained from the first equation in (6.16);

• ϕk(t) is obtained from (6.32), (6.37), and (6.38), and ψk((T − t)/ε)
is obtained from the second equation in (6.16);

• ϕk(·) ∈ Cn+2−k([0, T ]);

• ψk((T − t)/ε) decays exponentially fast in that

|ψk((T − t)/ε)| ≤ C exp(−κ0(T − t)/ε);

• the following error bound holds:

sup
t∈[0,T ]

|uε(t)− Φε(t)−Ψε((T − t)/ε)| = O(εn+1).

6.5 Asymptotic Expansions Including Transient
States

This section concerns the asymptotic expansions of solutions of (6.10) when
the generator is given by (6.6). We only outline the differences and state
the main results. We describe in some detail how to get the terms ϕ0(t)
and ψ0(τ), and then present the results for higher-order terms. In addition
to (A6.1) and (A6.2), we assume (A6.3).

(A6.3) For each t ∈ [0, T ], Q̃∗(t) is Hurwitz (i.e., all of its eigenvalues
have negative real parts).

We construct the formal expansions as in Section 6.3, and obtain in (6.12)
the outer expansion terms. Then we take Taylor expansions about T for
both Q̃(t) and Q̂(t) as in Section 6.3, which lead to (6.14). To proceed, we
denote ϕk(t) and ψk(t) in a partitioned form by

ϕk(t) = ((ϕ1
k(t))

′, . . . , (ϕl
k(t))

′, (ϕ∗
k(t))

′)′,

ψk(τ) = ((ψ1
k(τ))

′, . . . , (ϕl
k(τ))

′, (ϕ∗
k(τ))

′)′,

(6.42)
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whenever it is convenient. In the above, ϕi
k(t), ψ

i
k(τ) ∈ R

mi×1 with i =
1, . . . , l, ∗. Then in the zeroth-order expansion, we have

Q̃i(t)ϕi
0(t) = 0, i = 1, . . . , l,

l∑

i=1

Q̃i
∗(t)ϕ

i
0(t) + Q̃∗(t)ϕ

∗
0(t) = 0.

(6.43)

As in the previous section,

ϕi
0(t) = βi

0(t)1lmi , i = 1, . . . , l, (6.44)

with βi
0(t) to be determined and β0(t) = (β1

0(t), . . . , β
l
0(t))

′ ∈ R
l×1. Since

Q̃∗(t) is nonsingular owing to (A6.3), it is readily seen that

ϕ∗
0(t) = −

l∑

i=1

βi
0(t)Q̃

−1
∗ (t)Q̃i

0(t)1lmi =

l∑

i=1

βi
0(t)ai(t), (6.45)

where

ai(t) = −Q̃−1
∗ (t)Q̃i

∗(t)1lmi ∈ R
m∗×mi , for i = 1, . . . , l. (6.46)

Thus,

ϕ0(t) =

(

β1
0(t)1lm1 , . . . , β

l
0(t)1lml

,

l∑

i=1

βi
0(t)ai(t)

)

. (6.47)

Denote m̃∗ = m1 + · · ·+ml +m∗, and

1̃l∗(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1lm1

. . .

1lml

a1(t) . . . al(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

a(t) = (a1(t), . . . , al(t)).

(6.48)

Note that
l∑

i=1

Q̃i
∗(t)1lmi +

l∑

i=1

Q̃∗(t)ai = 0.
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Then Q̃(t)1̃l∗(t) = 0 for each t ∈ [0, T ]. Define also

ν∗(t) = (ν(t)
...0l×m∗) =

⎛

⎜
⎜
⎜
⎝

ν1(t) 01×m∗
. . .

...

νl(t) 01×m∗

⎞

⎟
⎟
⎟
⎠

∈ R
l×m̃∗ ,

P ∗ = 1̃l∗(T )ν∗(T ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1lm1ν
1(T ) 0m1×m∗

. . .
...

1lml
νl(T ) 0ml×m∗

a1(T )ν
1(T ) . . . al(T )ν

l(T ) 0m∗×m∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(6.49)
where ν(t) = diag(ν1(t), . . . , νl(t)). Define

Q∗(t) = ν∗(t)Q̂(t)1̃l∗(t) ∈ R
l×l. (6.50)

Following similar arguments to those of Section 6.3, we obtain

Q̃(t)ϕ1(t) = −1̃l∗(t)β̇0(t)− Q̂(t)1̃l∗(t)β0(t).

Then ν∗(t)Q̃(t) = 0 and ν∗(t)1̃l∗(t) = Il lead to

β̇0(t) = −Q∗(t)β0(t), (6.51)

where β0(T ) is yet to be chosen.

Lemma 6.9. Consider the system of equations

d

dτ
y(τ) = Q̃(T )y(τ), y(0) = y0

where y(τ) = (y1(τ), . . . , yl(τ), y∗(τ))′ ∈ R
m̃∗×1 satisfy νi(T )yi0 = 0 for

each i = 1, . . . , l. Then there exist positive constants κ and C such that

|yi(τ)| ≤ C exp(−κiτ), i = 1, . . . , l,

|y∗(τ)| ≤ C exp(−κτ) for τ > 0.

Proof: Using the partitioned vector notation, we obtain

d

dτ
yi(τ) = Q̃i(T )yi(τ), i = 1, . . . , l,

d

dτ
y∗(τ) = Q̃∗(T )y

∗(τ) +
l∑

i=1

Q̃i
∗(T )y

i(τ).
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As a consequence of the above orthogonality condition,

P ∗y0 = 1̃l∗(T )ν∗(T )y0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1lm1ν
1(T )y10
. . .

1lml
νl(T )yl0

l∑

i=1

ai(T )ν
i(T )yi0 + 0m∗×m∗y

∗
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 0,

since νi(T ) is orthogonal to yi0. Thus

|yi(τ)| = | exp(Q̃i(T )τ)yi0|

= |[exp(Q̃i(T )τ)− 1lmiν
i(T )]yi0 + 1lmk

νi(T )yi0|

≤ C exp(−κiτ) for some κi > 0.

(6.52)

As for y∗(τ), we obtain

y∗(τ) = exp(Q̃∗(T )τ)y
∗
0 +

l∑

i=1

∫ τ

0

exp(Q̃∗(T )(τ − s))Q̃i
∗(T )y

i(s)ds.

Since Q̃∗(T ) has all of its eigenvalues on the left-hand side of the complex
plane, it follows that

| exp(Q̃∗(T )τ)| ≤ C exp(−κ∗τ) for some κ∗ > 0.

As a result,

|y∗(τ)|

≤ | exp(Q̃∗(T )τ)||y∗0 |+
l∑

i=1

∫ τ

0

| exp(Q̃∗(T )(τ − s))||Q̃i
∗(T )||yi(s)|ds

≤ C exp(κ∗τ) + C
l∑

i=1

∫ τ

0

exp(−κ∗(τ − s)) exp(−κis)ds

≤ C exp(−κτ) for some κ < min{κ∗, κi : i = 1, . . . , l}.

Hence the lemma follows. �

Choosing ψ0(0) + ϕ0(T ) = u0, we obtain

ψ0(τ) = [exp(Q̃(T )τ)− P ∗](u0 − ϕ0(T )) + P ∗(u0 − ϕ0(T )). (6.53)
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In view of (6.53), we choose ψ0(0) such that νi(T )ψi
0 = 0 or equivalently,

P ∗ψ0(0) = 0. Since

P ∗ψ0(0) = 1̃l∗(T )ν∗(T )(u0 − ϕ0(T )),

multiplying from the left by ν∗(T ) yields that

β0(T ) = ν∗(T )u0. (6.54)

Partition ψ0(τ) so that

ψ(τ) = ((ψ1
0(τ))

′, . . . , (ψl
0(τ))

′, (ψ∗
0(τ))

′)′.

Then we have

ψi
0(τ) = exp(Q̃i(T )τ)ψi

0(0), i = 1, . . . , l,

ψ∗
0(τ) = exp(Q̃∗(T )τ)ψ

∗
0(0) +

l∑

i=1

∫ τ

0

exp(Q̃∗(T )(τ − s))Q̃∗(T )ψ
i
0(s)ds.

Then using Lemma 6.9, for some κ > 0,

|ψi
0(τ)| ≤ C exp(−κτ ), i = 1, . . . , l,

|ψ∗
0(τ)| ≤ C exp(−κτ ).

Once the leading expansion terms are obtained, we proceed to obtain
higher-order expansion terms. We summarize the result as follows.

Theorem 6.10. Under conditions (A6.1)–(A6.3), the asymptotic expan-
sions Φε

n(t) + Ψε
n(τ) (with τ = (T − t)/ε) can be constructed as follows:

• ϕ0(t) is obtained from

ϕ0(t) = 1̃l(t)β0(t)

β̇0(t) = −Q(t)β0(t), β0(T ) = ν(T )u0;

• ψ0(t) is obtained from

ψ0(τ) = exp(Q̃(T )τ)(u0 − ϕ0(T ));

• ϕk(t) is obtained from

ϕk(t) = 1̃l(t)β0(t) + (Q′
v(t)Qv(t))

−1Q′
v(t)̂bk−1

β̇k(t) = −Q(t)β0(t), βk(T ) =
∫ ∞

0

ν(T )rk(s)ds,



6.6 Remarks 255

where

Qv(t) =

⎛

⎜
⎝

Q̃(t)

ν(t)

⎞

⎟
⎠

b̂k−1 =

⎛

⎜
⎝

b̃k−1

0

⎞

⎟
⎠ , with b̃k−1 = −ϕ̇k−1(t)− Q̂(t)ϕk−1(t);

• ψk(τ) is obtained from

ψk(τ) = exp(Q̃(T )τ)(−ϕk(T )) +

∫ τ

0

exp(Q̃(T )(τ − s))rk(s)ds,

where

rk(τ) =

k−1∑

j=0

(

(−τ)k−j Q̃
(k−j)(T )

(k − j)!
+ (−τ)k−j−1 Q̂

(k−j−1)(T )

(k − j − 1)!

)

ψj(τ);

• ϕk(·) ∈ Cn+1−k([0, T ]);

• ψk(τ) decays exponentially fast, whereby |ψk(τ)| ≤ C exp(−κ0τ) for
some κ0 > 0;

• the following error bound holds:

sup
t∈[0,T ]

|uε(t)− Φε(t)−Ψε((T − t)/ε)| = O(εn+1).

6.6 Remarks

This section provides several further remarks. In the first part, it considers
Markov chains that are weakly irreducible. The second part deals with
fully degenerate switching diffusions with the diffusion coefficients being
identically 0. Although many details are omitted, an interesting problem is
outlined. Finally, a few further remarks are made at the end.

Example 6.11. We have derived asymptotic expansions of Markov chains
with fast and slow motions. The asymptotic expansions obtained can be
used in deriving so-called reduced systems. The rationale is that reduction
of complexity will be achieved by appropriate aggregation. This is partic-
ularly pronounced when the dominating force is an irreducible generator.
To illustrate, let the generator Qε(t) be given by

Qε(t) =
1

ε
Q0(t) + Q̂(t),
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where Q0(t) ∈ R
m×m is weakly irreducible for each t ∈ [0, T ] and Q̂(t) ∈

R
m×m is a generator of another Markov chain. Moreover, Q0(·), and Q̂(·)

satisfy (A6.2). Again, let uε(t) be the solution of the corresponding systems
of backward equations with uε(T ) = u0 such that u0 is a probability vector
(i.e., u′01l = 1). Denote the quasi-stationary distribution associated with
Q0(t) by ν0(t). Then our results in the last section indicates that

uε(t) = ν′0(t) +O(ε+ exp(−(κ0(T − t))/ε).

6.6.1 Related Problems

In this section, we consider a variation of the systems of backward equa-
tions considered in the previous sections. The system is a hybrid system
with both continuous dynamics and discrete events included, which is rep-
resented by a two-component process (X(t), αε(t)). These two processes are
intertwined. We have to treat the joint pair as an entity in lieu of treating
them separately. Aiming at obtaining asymptotic expansions of solutions
of certain systems of differential equations and with the main interest of
getting uniform asymptotic expansions, we let the continuous component
be in a compact set. For simplicity, we consider the compact set to be
[0, 1]. Extension to more general sets is possible; see Khasminskii and Yin
[118] and also related work in Khasminskii and Yin [117]. Let us begin
by examining an ordinary differential equation with random switching of
the form

Ẋ(t) = b(X(t), αε(t)), (6.55)

where b(·, ·) : [0, 1]×M �→ R. Associated with (6.55), there is an operator
defined by

Lεf(x, i) = b(x, i)
∂

∂x
f(x, i) +Qε(t)f(x, ·)(i), (6.56)

for each i ∈ M and any f(·, i) that is continuously differentiable. The
process associated with the operator can be thought of as a special case
of switching diffusions with diffusion part identically 0, which is the fully
degenerate case. Thus, we also have the associated system of backward
equations

− ∂

∂t
uε(x, t, i) = Lεuε(x, t, i), uε(x, T, i) = g(x, i). (6.57)

To approximate the solution of (6.57), we can construct asymptotic expan-
sions of the form

n∑

k=0

εkϕk(x, t) +

n∑

k=0

εkψk(x, τ), i ∈ M,
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where

ϕk(x, t) = (ϕk(x, t, 1), . . . , ϕk(x, t,m))′,

ψk(x, t) = (ψk(x, t, 1), . . . , ψk(x, t,m))′,

τ =
T − t

ε
.

The developments are similar to the previous case. For example, we obtain

Q̃(t)ϕ0(x, t, ·)(i) = 0, i ∈ M.

Thus, the leading term is given by ϕ0(x, t) = 1̃lβ0(x, t), where similarly to
Section 6.3, β0(x, t) can be determined. In this process, we have to work
with the terminal-layer terms ψ0(x, τ) as before. Since the techniques are
similar to the previous case, we omit the details.
It should be noted that the use of compact set for the values of X(t) is

crucial to get the desired uniform error bounds. A more general setup is to
assume b(·, ·) : Kr ×M �→ Kr, where Kr ⊂ R

r is a compact subset of Rr.
We refer the reader to [118] for such a setup. Note that the error bound
will be in the sense of using the sup-norm over (x, t) ∈ [0, 1]× [0, T ].

6.7 Notes

Because of modeling requirements and other practical considerations,
numerous problems arising in the physical sciences, biological sciences,
and engineering involve continuous-time Markov chains that are large and
complex. To overcome the difficulty, one uses partition and aggregation for
dynamic systems motivated by the work of Simon and Ando [196] (see also
Courtois [35]) for nearly completely decomposable systems.
Complementing the results presented in Chapter 4, in which we used a

singular perturbation approach to treat forward equations for two-time-
scale Markov chains, this chapter demonstrated that such an approach
can be employed to treat asymptotic expansions of backward equations for
Markov chains with two time scales. The result of this chapter is based on
Yin and Nguyen [226]. Our approach is constructive leading to practically
useful approximation schemes. A worthwhile future research direction is to
consider the case that the generator of the switching process depends not
only on t but also on the continuous state x, that is, Q(x, t). Such a case
may also be handled by similar techniques as presented in this work.
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Markov Decision Problems

7.1 Introduction

Continuing the central themes of this book, as an application of the
asymptotic properties of two-time-scale Markov chains, this chapter focuses
on a class of Markov decision processes (MDPs). Our main attention is on
finite-state continuous-time Markov decision processes having weak and
strong interactions.
Markov decision processes have received much attention lately owing to

their ability to deal with a large class of problems under uncertainty. Many
problems in applied mathematics such as inventory planning, resource al-
location, queueing, and machine replacement, fit well in the framework of
(or can be recast to) Markov decision processes. For a complete treatment
of discrete-time MDP models, we refer the reader to the books of Derman
[46], Ross [184], and White [218]. For a comprehensive study of continuous-
time Markov decision processes as well as some recent progress, we refer
the reader to Guo and Hernández-Lerma [78].
Many systems in real life are large and complex, so it is necessary to treat

them in a hierarchical fashion. Using hierarchical control to deal with large-
dimensional systems, a typical approach is to derive a limit control problem
by replacing the fast-changing processes with their “average” in terms of
the corresponding quasi-stationary distributions together with appropriate
modification of the objective function. The limit control problem is much
simpler to handle than the original one. Based on an optimal decision for
the limit problem, one can make a decision for the original problem so as

G.G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications,
Stochastic Modelling 37, DOI 10.1007/978-1-4614-4346-9 7,
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to achieve its asymptotic optimality. For related literature on hierarchical
control in the context of manufacturing, we refer the reader to the books
by Gershwin [71] and Sethi and Zhang [192].
A common practice in dealing with optimization of stochastic dynamical

systems is the method of dynamic programming. To find the optimal
decisions, one solves a set of associated dynamic programming (DP) equa-
tions. However, such an approach is only computationally feasible when
the dimension of the underlying system is not very large. For large-scale
systems, one has to resort to approximate optimal schemes. The hierar-
chical control approach provides a powerful tool for dealing with large
and complex systems and for finding approximate optimal solutions. An
approximate optimal solution is often more desirable than an exact opti-
mal solution because it can usually be obtained by working with relatively
simpler models with reduced dimensionality. This is especially the case
when the effort of working with a simpler model is substantially less than
that of a large-dimensional model (see Simon and Ando [196]).
In this chapter, we devote our attention to the Markov decision processes

with weak and strong interactions such that the states of the process can be
divided into several groups and that transitions among the states within
each group occur much more frequently than the transitions among the
states belonging to different groups. Both discounted cost and long-run
average cost criteria are considered. By aggregating the states in each group
as a single state, we derive a limit problem. Using an optimal solution of the
limit problem, we then construct a solution for the original problem that is
asymptotically optimal. Estimates of the error bounds for the constructed
controls are also derived.
Concentrating on controlled Markov chains and considering a relative

simpler model, we are able to deal with hierarchical controls avoiding the
use of hard-to-verify conditions, e.g., the Lipschitz continuity of an opti-
mal control for the limit problem (see Sethi and Zhang [192, Chapter 5]
and Chapter 8 of this book for related problem); obtain much better con-
vergence rates of value functions and error bounds of constructed controls
than that of problems considered in Section 8.5; incorporate a long-run
average cost criterion. The method used in dealing with long-run average
cost models is quite different from that for models with discounted costs,
however.
Our results provide a rigorous justification for hierarchical controls of

complex systems, elicit insights of the design of hierarchies, and suggest
nearly optimal procedures of hierarchical decision making in a general set-
ting. By establishing a criterion for determining the quality of hierarchical
solutions, the results provide guidance for a systematic approach for the
design of hierarchical structures within an organization.
The plan of the chapter is as follows. We formulate the MDP model

in Section 7.2, derive a limit problem in Section 7.3, give a method for
constructing asymptotically optimal decisions of the original problem using
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the optimal solution of the limit problem in Section 7.4, and obtain the
estimate of the deviation of the constructed decisions from optimality in
Section 7.5. Particular attention is paid to the rate of convergence of the
value functions and error bounds of constructed controls. Sections 7.2–7.5
are mainly concerned with discounted costs, whereas long-run average costs
are dealt with in Section 7.6, in which the main difficulty is to verify the
irreducibility of the limit Markov decision process. Finally, some related
computational methods are discussed in Section 7.7.

7.2 Problem Formulation

Consider a real-valued Markov decision process xε(·) = {xε(t) : t ≥ 0}
and a feedback control u(·) = {u(t) = u(xε(t)) : t ≥ 0} such that u(t) ∈ Γ,
t ≥ 0, where Γ is a compact subset of an Euclidean space. Let Qε(u(t)) =
(qεij(u(t))), t ≥ 0, denote the generator of xε(·) such that

Qε(u) =
1

ε
Q̃(u) + Q̂(u), (7.1)

where

Q̃(u) = diag
(
Q̃1(u), . . . , Q̃l(u)

)
, Q̃k(u) = (q̃kij(u))mk×mk

with q̃kij(u) ≥ 0 for j �= i and
∑

j q̃
k
ij(u) = 0, Q̂(u) = (q̂ij(u))m×m with

m = m1 + · · · +ml, q̂ij(u) ≥ 0 for j �= i and
∑

j q̂ij(u) = 0, and ε > 0 is
a small parameter. For k = 1, . . . , l, denote by Mk = {sk1, . . . , skmk

} the

substate space of xε(·) corresponding to Q̃k(u). The entire state space of
xε(·) is given by

M = M1 ∪ · · · ∪Ml

=
{
s11, . . . , s1m1 , s21, . . . , s2m2 , . . . , sl1, . . . , slml

}
.

Let u = u(i) denote a function such that u(i) ∈ Γ for all i ∈ M. We call u an
admissible control and use Af to denote the collection of all such functions.
For each u = u(x) ∈ Af , the Markov process generated by Qε(u(xε(t)))
can be constructed as in Section 2.4.
Consider the cost functional Jε(i, u) defined on M×Af by

Jε(i, u) = E

∫ ∞

0

e−ρtG(xε(t), u(xε(t)))dt,

where i = xε(0) is the initial value of xε(·), G(x, u) is the cost-to-go func-
tion, and ρ > 0 is the discount factor. Our objective is to find a function
u(·) ∈ Af that minimizes Jε(i, u).
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The original problem, termed as Pε, takes the form

Pε :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize: Jε(i, u) = E

∫ ∞

0

e−ρtG(xε(t), u(xε(t)))dt,

subject to: xε(t) ∼ Qε(u(xε(t))), t ≥ 0,

xε(0) = i, u ∈ Af ,

value function: vε(i) = inf
u∈Af

Jε(i, u),

(7.2)

where xε(t) ∼ Qε(u(xε(t))) means that xε(·) is a Markov chain generated
by Qε(u(xε(t))), t ≥ 0.
For each i ∈ M, the associated DP equation is

ρvε(i) = min
u∈Γ

{
G(i, u) +Qε(u)vε(·)(i)

}
, (7.3)

where

Qε(u)vε(·)(i) =
∑

j �=i

qεij(u)(v
ε(j)− vε(i)).

As a continuous-time analog of Ross [184], it can be shown that vε(i) is
the unique solution to the above DP equation as in Theorem A.30 with-
out using differential equations. Moreover, for each i ∈ M, let u∗ε(i) de-
note the minimizer of G(i, u) +Qε(u)vε(·)(i). Then following the proof of
Theorem A.31, it can be shown that u∗ε = u∗ε(x

ε(t)) is optimal, that is,
Jε(i, u∗ε) = vε(i). To further our understanding and to provide a better
picture of the underlying problem, let us consider the following example.

Example 7.1. Consider a manufacturing system consisting of two failure-
prone machines in a flowshop configuration. Each of the two machines has
two states, up (denoted by 1) and down (denoted by 0). Then the system
has four states, represented by {(1, 1), (0, 1), (1, 0), (0, 0)}. Let

s11 = (1, 1), s12 = (0, 1), s21 = (1, 0), and s22 = (0, 0).

The function u(·) is the rate of preventive maintenance used to reduce the
failure rate of machines and to improve the productivity of the system.
Our objective is to choose u(·) to keep the average machine capacity at a
reasonable level and, in the meantime, to avoid excessive costly preventive
maintenance.
Suppose that the state of the first machine is changing more rapidly than

the second one. A typical way of modeling the machine state process is to
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formulate the process as a Markov chain with the following generator

Qε(u) =
1

ε

⎛

⎜
⎜
⎜
⎝

−λ1(u) λ1(u) 0 0

μ1(u) −μ1(u) 0 0

0 0 −λ1(u) λ1(u)

0 0 μ1(u) −μ1(u)

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

−λ2(u) 0 λ2(u) 0

0 −λ2(u) 0 λ2(u)

μ2(u) 0 −μ2(u) 0

0 μ2(u) 0 −μ2(u)

⎞

⎟
⎟
⎟
⎠
.

The breakdown and repair rates are λ1(u)/ε and μ1(u)/ε for the first
machine, and λ2(u) and μ2(u) for the second machine, respectively. The
quantity ε represents the frequency of transitions of xε(·) between s11 and
s12 or s21 and s22. For small ε, the transition of xε(·) within either {s11, s12}
or {s21, s22} is much more frequent than that between the two groups
{s11, s12} and {s21, s22}. In this example,

M1 = {s11, s12}, M2 = {s21, s22},

and
Q̃(u) = diag

(
Q̃1(u), Q̃2(u)

)

with

Q̃1(u) = Q̃2(u) =

(
−λ1(u) λ1(u)

μ1(u) −μ1(u)

)

and

Q̂(u) =

⎛

⎜
⎜
⎜
⎝

−λ2(u) 0 λ2(u) 0

0 −λ2(u) 0 λ2(u)

μ2(u) 0 −μ2(u) 0

0 μ2(u) 0 −μ2(u)

⎞

⎟
⎟
⎟
⎠
.

The matrix Q̃(u) governs the fast transition of xε(·) within each group Mk,

k = 1, 2, and the matrix Q̂(u) dictates the slow transition of xε(·) between
M1 and M2. For small ε, the MDP xε(·) has strong interactions within
each group Mk, k = 1, 2, and weak interactions between the groups M1

and M2.

7.3 Limit Problem

This section is devoted to the derivation of the corresponding limit control
problem. In view of Example 7.1, the Markov process xε(·) can be regarded
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as a process with a fast-changing component and a slowly varying one. The
fast-changing process is governed by Q̃(u)/ε, while the slowly changing pro-

cess is governed by Q̂(u) and the quasi-stationary distributions of Q̃k(u),
k = 1, . . . , l. As ε → 0, the fast-changing process is averaged out. Con-
sequently, the Markov process xε(·) converges to a process x(·) in which

the states within each group corresponding to Q̃k(u) are aggregated into a
single state.
To proceed, define the control set for the limit problem. For each k =

1, . . . , l, let

Γk =
{
Uk := (uk1, . . . , ukmk) : such that ukj ∈ Γ, j = 1, . . . ,mk

}
.

The control set for the limit problem is defined as Γ = Γ1 × · · · × Γl;

Γ =
{
U = (U1, . . . , U l) = (u11, . . . , u1m1 , . . . , ul1, . . . , ulml) :

such that Uk ∈ Γk, k = 1, . . . , l
}
.

Define matrices Q̃k
0 , Q̂0, and Q

ε
as follows. For each U = (U1, . . . , U l) ∈

Γ, let

Q̃k
0(U

k) = (q̃kij(u
ki)), for k = 1, . . . , l and i = 1, . . . ,mk,

and

Q̂0(U) = (q̂0ij(U)),

where

q̂0ij(U) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q̂ij(u
1i), if 1 ≤ i ≤ m1,

q̂ij(u
2(i−m1)), if m1 < i ≤ m1 +m2,

· · · · · ·
q̂ij(u

l(i−m+ml)), if m−ml < i ≤ m,

with m = m1 + · · ·+ml, and

Q
ε
(U) =

1

ε
diag

(
Q̃1

0(U
1), . . . , Q̃l

0(U
l)
)
+ Q̂0(U). (7.4)

Writing it more compactly, for k = 1, . . . , l,

q̂0ij(U) = q̂ij(u
ki) for

k−1∑

r=1

mr < i ≤
k∑

r=1

mr.

This definition reveals the dependence of Q̂0(U) on the controls.
Denoting U ∈ Γ as an m-vector U = (u1, . . . , um), Q

ε
(U) is obtained

from Qε(u) by replacing the control variable u in the ith row with ui.
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Remark 7.2. For each u ∈ Af , define

Ũ = (u11, . . . , u1m1 , . . . , ul1, . . . , ulml), with uij = u(sij).

Let xε(·) denote the Markov chain generated by Qε(u(xε(t))), t ≥ 0, and

x̃ε(·) denote the Markov chain generated by Q
ε
(Ũ). Since

Qε(u(i))f(·)(i) = Q
ε
(Ũ)f(·)(i)

for any function f on M, it is easy to see that xε(·) and x̃ε(·) have the
same probability distribution (see Section 2.4).

We make the following assumptions on the generator Qε(u) and the
cost-to-go function G(x, u).

(A7.1) Qε(u) is a continuous function of u. Moreover, for each Uk ∈ Γk

and k = 1, . . . , l, Q̃k
0(U

k) is weakly irreducible. Furthermore,

there exists a U0 = (U1
0 , . . . , U

l
0) ∈ Γ such that Q̃k

0(U
k
0 ) is irre-

ducible, for k = 1, . . . , l.

(A7.2) For each x ∈ M, G(x, u) is a continuous function on Γ.

For each Uk ∈ Γk, let ν
k(Uk) denote the quasi-stationary distribution of

Q̃k
0(U

k) for k = 1, . . . , l. Define

ν(U) = diag(ν1(U1), . . . , νl(U l))

and recall that 1̃l = diag(1lm1 , . . . , 1lml
) with 1lmk

= (1, . . . , 1)′ ∈ R
mk . Using

ν(U) and 1̃l, define another matrix Q(U) as a function of U ∈ Γ

Q(U) = ν(U)Q̂0(U)1̃l. (7.5)

Note that the ith row of Q(U) depends only on U i and that

Q(U) = (qij(U
i))l×l.

With a slight abuse of notation, write

Q(Uk)f(·)(k) =
∑

k′ �=k

qkk′ (Uk)(f(k′)− f(k))

instead of Q(U)f(·)(k), for a function f(·) defined on {1, . . . , l}. Thus the
process x(·) generated by Q(U) can be viewed as a Markov chain generated
by Q(U(x(t))), t ≥ 0.

We proceed to define the limit problem. For k = 1, . . . , l and Uk ∈ Γk,
define the average of G(x, u) with respect to the quasi-stationary distribu-
tion as

G(k, Uk) =

mk∑

j=1

νkj (U
k)G(skj , u

kj), k = 1, . . . , l,
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where νk(Uk) = (νk1 (U
k), . . . , νkmk

(Uk)) is the quasi-stationary distribution

of Q̃k
0(U

k). Let A0 denote a class of functions U = U(k) ∈ Γk, k = 1, . . . , l.
For convenience, call U = (U(1), . . . , U(l)) ∈ A0 an admissible control for
the limit problem, termed as P0.
The limit problem P0 is

P0 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

minimize: J0(k, U) = E

∫ ∞

0

e−ρtG(x(t), U(x(t)))dt,

subject to: x(t) ∼ Q(U(x(t))), x(0) = k, U ∈ A0,

value function: v(k) = inf
U∈A0

J0(k, U),

(7.6)

where x(t) ∼ Q(U(x(t))) means that x(·) is a Markov chain generated by
Q(U(x(t))), t ≥ 0. As in the proof of Theorem A.30, it can be shown that
v(k) is the unique solution to the following DP equation

ρv(k) = min
Uk∈Γk

{
G(k, Uk) +Q(Uk)v(·)(k)

}
, (7.7)

where Q(Uk)v(·)(k) =
∑

k′ �=k qkk′ (Uk)(v(k′) − v(k)). Moreover, let U∗ =

(U1
∗ , . . . , U

l
∗) ∈ Γ denote a minimizer of the right-hand side of (7.7). Then

following the proof of Theorem A.31, it can be shown that U∗ ∈ A0 is
optimal for P0.

Remark 7.3. Note that the number of the DP equations for Pε is equal
to m = m1 + · · ·+ml, while the number of that for P0 is only l. For each
k = 1, . . . , l, mk ≥ 2, so it follows that m − l ≥ l. The difference between
m and l could be very large for either large l or a large mk for some k.
As is well known (see Hillier and Lieberman [86]), the computation effort
in solving the DP equations depends largely on the number of equations
involved. Thus the effort in solving the DP equations for P0 is substantially
less than that of Pε if m− l is large (i.e., m l).

Example 7.4. In Example 7.1, with

Q̃1
0(U

1) =

(
−λ1(u11) λ1(u

11)

μ1(u
12) −μ1(u

12)

)

and

Q̃2
0(U

2) =

(
−λ1(u21) λ1(u

21)

μ1(u
22) −μ1(u

22)

)

,

the quasi-stationary distributions of Q̃1
0(U

1) and Q̃2
0(U

2) are given by

ν1(U1) =

(
μ1(u

12)

λ1(u11) + μ1(u12)
,

λ1(u
11)

λ1(u11) + μ1(u12)

)
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and

ν2(U2) =

(
μ1(u

22)

λ1(u21) + μ1(u22)
,

λ1(u
21)

λ1(u21) + μ1(u22)

)

,

respectively. The generator Q(U) is given by

(
−η1(U) η1(U)

η2(U) −η2(U)

)

,

where

η1(U) =
μ1(u

12)λ2(u
11) + λ1(u

11)λ2(u
12)

λ1(u11) + μ1(u12)

and

η2(U) =
μ1(u

22)μ2(u
21) + λ1(u

21)μ2(u
22)

λ1(u21) + μ1(u22)
.

7.4 Asymptotic Optimality

This section is devoted to the convergence of the sequence of value functions
vε to v and the construction of asymptotic optimal controls for Pε.

Lemma 7.5. For i ∈ Mk, k = 1, . . . , l, if there exists a subsequence of
ε → 0 (still denoted by ε for simplicity) such that vε(i) → v(i), then the
limit function v(i) depends only on k (i.e., v(i) = v(k)).

Proof: Let xε(0) = i = skj ∈ Mk for some k = 1, . . . , l and j = 1, . . . ,mk.

In view of (A7.1), there exists Uk
0 = (uk10 , . . . , u

kmk
0 ) ∈ Γk such that Q̃k

0(U
k
0 )

is irreducible. Let U0 = (U1
0 , . . . , U

l
0). Then the DP equation in (7.3) implies

ρvε(skj) ≤ G(skj , u
kj
0 ) +Q

ε
(U0)v

ε(·)(skj).

Multiplying both sides by ε and sending ε→ 0 lead to

Q̃k
0(U

k
0 )

⎛

⎜
⎝

v(sk1)
...

v(skmk
)

⎞

⎟
⎠ ≥ 0,

for k = 1, . . . , l. Now, the irreducibility of Q̃k
0(U

k
0 ) and Lemma A.39 imply

v(sk1) = v(sk2) = · · · = v(skmk
) (:= v(k)). (7.8)

This proves the lemma. �
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Theorem 7.6. For each i ∈ Mk,

lim
ε→0

vε(i) = v(k).

Proof: Since M is a set containing finitely many elements, it is easy to show
that vε(i) is uniformly bounded. Thus, there exist a subsequence of ε→ 0
(denoted by ε) and (in view of Lemma 7.5) a v(k), with i (= skj) ∈ Mk

such that vε(i) → v(k). It will be shown that v(k) is a solution to (7.7).
Since the DP equation (7.7) has a unique solution, one concludes that
vε(i) → v(k).
Since vε(i) is a solution to (7.3), for each j = 1, . . . ,mk, k = 1, . . . , l, and

Uk ∈ Γk,

ρvε(skj) ≤ G(skj , u
kj) +Qε(ukj)vε(·)(skj).

Use νk(Uk) = (νk1 (U
k), . . . , νkmk

(Uk)) to denote the quasi-stationary distri-

bution of Q̃k
0(U

k). It follows that

ρ

mk∑

j=1

νkj (U
k)vε(skj) ≤

mk∑

j=1

νkj (U
k)G(skj , u

kj)

+

mk∑

j=1

νkj (U
k)Qε(ukj)vε(·)(skj).

Letting ε→ 0 and in view of the definition of Q(U) in (7.5) and Lemma 7.5,

ρv(k) ≤ min
Uk∈Γk

{
G(k, Uk) +Q(Uk)v(·)(k)

}
.

To derive the reverse inequality, let U∗ε = (U1
∗ε, . . . , U

l
∗ε) ∈ Γ denote the

minimizer of the right-hand side of (7.3). Then

ρvε(skj) = G(skj , u
kj
∗ε) +Qε(ukj∗ε)v

ε(·)(skj),
for j = 1, . . . ,mk and k = 1, . . . , l. Thus we have

ρ

mk∑

j=1

νkj (U
k
∗ε)v

ε(skj) =

mk∑

j=1

νkj (U
k
∗ε)G(skj , u

kj
∗ε)

+

mk∑

j=1

νkj (U
k
∗ε)Q

ε(ukj∗ε)v
ε(·)(skj).

Note that Γ is a bounded set. As ε → 0, there exists a subsequence of ε
(still denoted by ε for simplicity) such that U∗ε → Ũ ∈ Γ. Hence,

ρv(k) = G(k, Ũk) +Q(Ũk)v(·)(k)

≥ min
Uk∈Γk

{
G(k, Uk) +Q(Uk)v(·)(k)

}
.

This completes the proof. �
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Next, our task is to construct asymptotic optimal control policies for Pε.
Let us begin with the optimal control U∗ = (U1

∗ , . . . , U
l
∗) ∈ A0 for the limit

problem P0, which is obtained by minimizing the right-hand side of (7.7),
that is,

G(k, Uk
∗ ) +Q(Uk

∗ )v(·)(k)

= min
Uk∈Γk

{
G(k, Uk) +Q(Uk)v(·)(k)

}
.

(7.9)

Construct a control uc as

uc = uc(x) =

l∑

k=1

mk∑

j=1

I{x=skj}u
kj
∗ . (7.10)

It is clear that uc ∈ Af . We show next that uc is nearly optimal. To verify
this, the following lemma, based on the asymptotic expansion in Section
4.3, is needed.

Lemma 7.7. Given U ∈ Γ, let xε(·) denote the Markov chain generated by
Q

ε
(U) defined by (7.4). Then there exist positive constants K and κ0 > 0

(both independent of ε and t) such that

∣
∣
∣P (xε(t) = skj)− νkj (U

k)fk(t)
∣
∣
∣ ≤ K

(

ε(t+ 1) + exp

(

−κ0t
ε

))

, (7.11)

where fk(t) satisfies

d

dt
(f1(t), . . . , fl(t)) = (f1(t), . . . , fl(t))Q(U), (7.12)

with (f1(0), . . . , fl(0)) = (P (xε(0) ∈ M1), . . . , P (x
ε(0) ∈ Ml)). Moreover,

let x(t) denote the Markov chain generated by Q(U). Then

fk(t) = P (x(t) = k).

Proof: It follows from Corollary 4.31 by identifying Q̃k and Q̂ with Q̃k
0(U

k)

and Q̂0(U), respectively. �

Theorem 7.8. The control uc = uc(x) constructed in (7.10) is asymptoti-
cally optimal in that

lim
ε→0

|Jε(i, uc)− vε(i)| = 0.

Proof: In view of the convergence of vε(i), it suffices to show that for
xε(0) = i ∈ Mk,

lim
ε→0

Jε(i, uc) = v(k).
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Let xε(·) denote the Markov chain generated by Qε(uc(x
ε(t))), t ≥ 0, with

uc given in (7.10). Then in view of Remark 7.2, Qε(uc(x
ε(t))) and Q

ε
(U∗)

generate Markov chains with identical probability distribution.
Using the definition of uc(x), we have

Jε(i, uc) = E

∫ ∞

0

e−ρtG(xε(t), uc(x
ε(t)))dt

= E

l∑

k=1

mk∑

j=1

∫ ∞

0

e−ρtG(skj , u
kj
∗ )I{xε(t)=skj}dt

=

l∑

k=1

mk∑

j=1

∫ ∞

0

e−ρtG(skj , u
kj
∗ )P (xε(t) = skj)dt.

(7.13)

Let x(·) denote a Markov chain generated by Q(U∗). Then in view of
Lemma 7.7, the definition of G(k, U), and (7.13), we have

|Jε(i, uc)− v(k)| =
∣
∣Jε(i, uc)− J0(k, U∗)

∣
∣

≤
l∑

k=1

mk∑

j=1

∫ ∞

0

e−ρtG(skj , u
kj
∗ )

×
∣
∣P (xε(t) = skj)− νkj (U

k
∗ )P (x(t) = k)

∣
∣ dt

≤
l∑

k=1

mk∑

j=1

∫ ∞

0

e−ρtG(skj , u
kj
∗ )

×K
(

ε(t+ 1) + exp

(

−κ0t
ε

))

dt = O(ε).

(7.14)

This proves the theorem. �

Remark 7.9. The inequality in Lemma 7.7 is only valid for a discounted
cost problem. It does not work for long-run average cost problems, since
the upper bound in (7.11) depends on time t.

7.5 Convergence Rate and Error Bound

It is interesting from a computational point of view to estimate the conver-
gence rate of vε to v and to obtain the error bound of the control uc = uc(x)
constructed in (7.10). The next theorem shows that such convergence rate
and error bound are of the order ε.



7.5 Convergence Rate and Error Bound 273

Theorem 7.10. Assume that the control set Γ contains finitely many ele-
ments. Then for all i ∈ Mk,

vε(i)− v(k) = O(ε)

and

Jε(i, uc)− vε(i) = O(ε).

Proof: In view of (7.14) and the triangle inequality,

|Jε(i, uc)− vε(i)| ≤ |Jε(i, uc)− v(k)|+ |vε(i)− v(k)|.

It suffices to show vε(i) − v(k) = O(ε). Note that the inequality (7.14)
implies that for i ∈ Mk

vε(i)− v(k) ≤ Jε(i, uc)− v(k) ≤ O(ε).

To derive the reverse inequality, let u∗ε(x) denote an optimal control for
Pε and let

U∗ε = (U1
∗ε, . . . , U

l
∗ε) ∈ Γ,

where

Uk
∗ε = (uk1, . . . , ukmk) := (u∗ε(sk1), . . . , u∗ε(skmk

)).

The control set Γ contains finitely many elements by the hypothesis, so
does Γ. Suppose Γ = {γ1, . . . , γL} for some positive integer L. Define

Ej = {ε ∈ (0, 1) : U∗ε = γj}.

Then {Ej} consists of a class of disjoint sets such that (0, 1) = E1∪· · ·∪EL.
Moreover, for each j = 1, . . . , L,

lim
ε∈Ej ,ε→0

U∗ε = γj .

For fixed j and ε ∈ Ej, consider xε(·) generated by Q
ε
(γj). Then in view

of (7.14) and the optimality of u∗ε, we have

vε(i) = Jε(i, u∗ε) = J0(k, γj) +O(ε) ≥ v(k) +O(ε).

Thus for 0 < ε < 1,

vε(i) ≥ v(k) +O(ε).

This completes the proof. �

Remark 7.11. The use of O(ε) allows us to simplify the notation and to
suppress various constants. We will also keep this practice in the following
section. Working with a production-planning model of manufacturing sys-
tem described by differential equations having random machine capacity, it
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is shown in Sethi and Zhang [192, Chapter 5] (via an example) that the best
possible convergence rate of the value function for the original problem to
that of the limit problem is of the order

√
ε. In this section, we are able to

obtain much better estimates, because in the current model the dynamics
are driven by a Markov chain rather than a governing differential equation.

7.6 Long-Run Average Cost

Sections 7.2–7.5 concentrated on the MDP with a discounted cost criterion.
This section is concerned with the corresponding MDP with a long-run
average cost. Replace (A7.1) and (A7.2) with the following assumptions
throughout this section.

(A7.3) For each U ∈ Γ and k = 1, . . . , l, Q̃k
0(U

k) is irreducible; for
sufficiently small ε > 0, Q

ε
(U) is irreducible, where Q

ε
(U) is

defined in (7.4).

(A7.4) Γ is a set containing finitely many elements.

Remark 7.12. Assumption (A7.3) is not restrictive. In Example 7.1, this
assumption is satisfied when the jump rates λ1(u), μ1(u), λ2(u), and μ2(u)
are strictly positive.

Consider the following problem

Pε
av :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

minimize: Jε(u) = lim sup
T→∞

1

T
E

∫ T

0

G(xε(t), u(xε(t)))dt,

subject to: xε(t) ∼ Qε(u(t)), xε(0) = i ∈ M, u ∈ Af ,

value function: λε = inf
u∈Af

Jε(u).

Note that for any given U ∈ Γ, Q
ε
(U) is irreducible. Thus the corre-

sponding Markov chain xε(·) has a stationary distribution. Consequently,
the average cost function is independent of the initial condition xε(0) = i,
so is the value function.
The DP equation for Pε

av is

λε = min
u∈Γ

{
G(i, u) +Qε(u)hε(·)(i)

}
, (7.15)

where hε(i) is a function to be determined later. The next theorem gives
necessary and sufficient conditions for optimality. The proof of the theorem
is standard and can be found in Ross [184].
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Theorem 7.13. The following assertions hold:

(a) For each fixed ε > 0, there exists a pair (λε, hε(i)) that satisfies the
DP equation (7.15).

(b) The DP equation (7.15) has a unique solution in the sense that if
(λ̃ε, h̃ε(i)) is another solution to (7.15), λ̃ε = λε and for some con-
stant K0, h̃

ε(i) = hε(i) +K0, for i ∈ M.

(c) Let u∗ε = u∗ε(i) ∈ Γ denote a minimizer of the right-hand side of
(7.15). Then u∗ε(i) ∈ Af is optimal and

Jε(u∗ε) = λε.

As an analog to the discounted cost case, the limit problem with the
long-run average cost is given as follows:

P0
av :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

minimize: J0(U) = lim sup
T→∞

1

T
E

∫ T

0

G(x(t), U(x(t)))dt,

subject to: x(t) ∼ Q(U(x(t))), x(0) = k, U ∈ A0,

value function: λ0 = inf
U∈A0

J0(U).

The next lemma is concerned with the irreducibility of Q(U), for any U ∈ Γ,
which is required to guarantee the existence of the corresponding stationary
distribution.

Lemma 7.14. The generator Q(U) is irreducible for each U ∈ Γ.

Proof: The following proof is along the line of the Gaussian elimination
procedure in which elementary row operations do not alter the rank of
a matrix. It proceeds in two steps. The first step derives the weak irre-
ducibility of Q(U) and the second step shows that it is also (strongly)
irreducible. For simplicity, the control variable U will be suppressed in the
proof whenever no confusion arises.

Step 1. rank(Q) = l − 1.

Write Q̂0 = (Q̂ij) as the blocks of submatrices such that Q̂ij has

dimension mi × mj . Then Q = (qij)l×l with qij = νiQ̂ij1lmj , where

νi = νi(U i), Q̂ij = Q̂ij(U
i), and 1lmj = (1, . . . , 1)′. Since νi > 0 and

1lmj > 0, it follows that Q̂ij = 0 if qij = 0 for i �= j. It is not difficult to
see that the irreducibility of Qε implies qkk < 0 for k = 1, . . . , l. Multiply
the first row of Q by −qk1/q11 and add to the kth row, k = 2, . . . , l, to

make the first component of that row 0. Let Q
(1)

= (q
(1)
ij ) denote the
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resulting matrix. Then it follows immediately that

q
(1)
1j = q1j , j = 1, . . . , l,

q
(1)
k1 = 0, k = 2, . . . , l,

q
(1)
kk ≤ 0, k = 2, . . . , l, and

l∑

j=1

q
(1)
kj = 0.

We claim that q
(1)
kk < 0 for k = 2, . . . , l. For k = 2, if q

(1)
22 �< 0, then it must

be equal to 0. Thus,

(q23, . . . , q2l) +

(

−q21
q11

)

(q13, . . . , q1r) = 0. (7.16)

Recall that q22 �= 0. One must have q21 > 0 since q21 = 0 implies q22 =

q
(1)
22 = 0, which contradicts the fact that qkk < 0 for k = 1, . . . , l. Thus,
−q21/q11 > 0. It follows that both vectors in (7.16) must be equal to 0,
that is,

(q23, . . . , q2l) = 0 and (q13, . . . , q1r) = 0.

Consequently, one must have Q̂1k = 0 and Q̂2k = 0 for k = 3, . . . , l. This
implies that Q

ε
cannot be irreducible since a state in (M1∪M2)

c (the com-
plement of M1 ∪ M2) is not accessible from a state in M1 ∪ M2. The

contradiction implies that q
(1)
22 < 0. Similarly, we can show q

(1)
kk < 0 for

k = 3, . . . , l.

Repeat this procedure. Multiply the second row of Q
(1)

by −q(1)k2 /q
(1)
22 for

k = 3, . . . , l, and add to the kth row. Let Q
(2)

= (q
(2)
ij ) denote the resulting

matrix. Then

q
(2)
ij = q

(1)
ij , i = 1, 2, j = 1, . . . , l,

q
(2)
ij = 0, i = 3, . . . , l, j = 1, 2,

q
(2)
kk ≤ 0, k = 3, . . . , l, and

l∑

j=1

q
(2)
kj = 0.

Similarly, we can show q
(2)
kk < 0 for k = 3, . . . , l.
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Continue this procedure and transform Q → Q
(1) → · · · → Q

(l−1)
with

Q
(l−1)

= (q
(l−1)
ij ) such that

q
(l−1)
ij = 0, i > j,

q
(l−1)
kk < 0, k = 1, . . . , l− 1,

l∑

j=1

q
(l−1)
ij = 0, and q

(l−1)
ll = 0.

Note that the prescribed transformation does not change the rank of the
original matrix. Thus,

rank
(
Q
)
= rank

(
Q

(1)
)
= · · · = rank

(
Q

(l−1)
)
= l − 1.

By virtue of Lemma A.5, Q is weakly irreducible.

Step 2. Q is irreducible (i.e., (ν1, . . . , νl) > 0).
Suppose that this is not true. Without loss of generality, we may assume

ν1 > 0, . . ., νk0 > 0, and νk0+1 = 0, . . ., νl = 0, for some k0. Note that
(ν1, . . . , νl)Q = 0 implies that qij = 0 for i = 1, . . . , k0 and j = k0+1, . . . , l,

which in turn implies that Q̂ij = 0 for i = 1, . . . , k0 and j = k0 + 1, . . . , l.

Again, Q
ε
is not irreducible since the process xε(·) cannot jump from a

state in M1 ∪ · · · ∪Mk0 to a state in Mk0+1 ∪ · · · ∪Ml. The contradiction
yields the irreducibility of Q. �

To proceed, consider the DP equation for P0
av

λ0 = min
Uk∈Γk

{
G(k, Uk) +Q(Uk)h0(·)(k)

}
, (7.17)

for some function h0(k). Next we give the verification theorem on the limit
problem. Again, the proof of the following theorem is standard and can be
found in Ross [184].

Theorem 7.15. The following assertions hold:

(a) There exists a pair (λ0, h0(k)) that satisfies the DP equation (7.17).

(b) Any two solutions of the DP equation (7.17) differ by a constant, that
is, if (λ0, h0(k)) and (λ̃0, h̃0(k)) are solutions of (7.17), then λ̃0 = λ0

and for some constant K0, h̃
0(k) = h0(k) +K0, for k = 1, . . . , l.

(c) Let U∗ ∈ Γ denote a minimizer of the right-hand side of (7.17). Then
U∗ ∈ A0 is optimal, and J0(U∗) = λ0.
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We next show that the quasi-stationary distribution corresponding to
Q

ε
(U) can be approximated by the quasi-stationary distributions corre-

sponding to Q(U) and Q̃k(Uk), k = 1, . . . , l.

Lemma 7.16. For any U ∈ Γ, let νε(U) denote the quasi-stationary dis-
tribution of Q

ε
(U). Then

νε(U) = ν0(U) +O(ε),

where

ν0(U) = (ν1(U1)ν1(U), . . . , νl(U l)νl(U))

with νk(Uk) being the quasi-stationary distribution of Q̃k(Uk), k = 1, . . . , l,
and (ν1(U), . . ., νl(U)) the quasi-stationary distribution of Q(U).

Proof: For simplicity, we suppress the dependence of U . Note that νε is
a bounded vector-valued function. It follows that for each sequence of
ε→ 0, there exists a further subsequence of ε (still denoted by ε) such that

νε → ν0 := (ν10 , . . . , ν
l
0). Sending ε → 0 in νεQ

ε
= 0, we have νk0 Q̃

k = 0

for k = 1, . . . , l. In view of the irreducibility of Q̃k, νk0 = akν
k for some

scalar ak ≥ 0 with a1 + · · · + al = 1. Note also that νεQ
ε
1̃l = 0, where

1̃l = diag(1lm1 , . . . , 1lml
). Thus, νεQ̂1̃l = 0. This implies ν0Q̂1̃l = 0, that is,

(a1, . . . , al)Q = 0. The irreducibility of Q implies that (a1, . . . , al) is equal
to the quasi-stationary distribution (ν1, . . . , νl) of Q.
Since Q

ε
is irreducible, we can always write the solution νε to

⎧
⎪⎪⎨

⎪⎪⎩

νεQ
ε
= 0,

∑

i,j

νijε = 1,

as (see Remark 4.10)

νε = (1, 0, . . . , 0)
(
1l
... Q

ε)′
[(
1l
... Q

ε)(
1l
... Q

ε)′
]−1

,

which is a rational function of ε, where νijε denotes the jth component of
νiε for each i. Therefore, the rate of convergence of νε → ν0 must be at least
linear, i.e., νε = ν0 +O(ε). �

Theorem 7.17. Let U∗ ∈ A0 denote an optimal control for P0
av and con-

struct uc ∈ Af as in (7.10). Then uc is asymptotically optimal with an
ε-order error bound, that is,

Jε(uc)− λε = O(ε).
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Proof: Let xε(t) and x(t) denote the Markov chains generated by Q
ε
(U∗)

and Q(U∗), respectively. Recall the irreducibility of Q
ε
(U∗) and Q(U∗). It

follows that as t→ ∞

P (xε(t) = sij) → νijε (U i
∗), j = 1, . . . ,mi, i = 1, . . . , l, and

P (x(t) = i) → νi(U∗), i = 1, . . . , l.

Therefore, we obtain

Jε(uc) = lim sup
T→∞

1

T
E

∫ T

0

G(xε(t), uc(t)dt

= lim sup
T→∞

1

T

∫ T

0

∑

i,j

G(sij , u
ij
∗ )P (x

ε(t) = sij)dt

=
∑

i,j

G(sij , u
ij
∗ )ν

ij
ε (U i

∗)

(7.18)

and

λ0 = J0(U∗) =
∑

i,j

G(sij , u
ij
∗ )ν

i
j(U

i
∗)νi(U∗). (7.19)

In view of Lemma 7.16, we have

|νijε (U i
∗)− νij(U

i
∗)νi(U∗)| = O(ε).

It follows that

Jε(uc)− λ0 = O(ε). (7.20)

Note that (7.18)–(7.20) imply the inequality

λε ≤ λ0 +O(ε). (7.21)

Let u∗ε ∈ Af denote an optimal control for Pε and let

U∗ε = (u∗ε(s11), . . . , u∗ε(s1m1), . . . , u∗ε(sl1), . . . , u∗ε(slml
)).

Since Γ is a set containing finitely many elements, so is Γ = {γ1, . . . , γL}.
As in the proof of Theorem 7.10, we let Ei1 = {ε ∈ (0, 1) : U∗ε = γi1}, for
i1 = 1, . . . , L. Then for ε ∈ Ei1 , U∗ε = γi1(:= U∗i1) (independent of ε) and

λε = Jε(uc) =
∑

i,j

G(sij , u
ij
∗i1)ν

ij
ε (U i

∗i1)

=
∑

i,j

G(sij , u
ij
∗i1)ν

i
j(U

i
∗i1)νi(U∗i1) +O(ε)

= J0(U∗i1) +O(ε) ≥ λ0 +O(ε).
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Therefore,

λε ≥ λ0 +O(ε). (7.22)

Combining (7.21) and (7.22), we have

λε = λ0 +O(ε). (7.23)

Finally, in view of (7.20), we obtain

Jε(uc)− λε = O(ε).

This completes the proof. �

Remark 7.18. Note that (7.21) and (7.22) mean that there are some
positive constants K1 > 0 and K2 > 0 such that

λε ≤ λ0 +K1ε and λε ≥ λ0 −K2ε.

We can certainly select a single K > 0 such that both inequalities hold;
see also Remark 7.11 for the use of O(ε). If Q̃(u) is irreducible, we can
show Jε(uc) = λ0 = λε by using (7.18), (7.19), and the fact that νijε (U i

∗) is
independent of ε and j.

7.7 Computational Procedures

Owing to Theorems 7.8 and 7.17, to find a nearly optimal solution for Pε

and Pε
av, one need only solve the limit problems P0 and P0

av, respectively,
which requires that the solution of the associated DP equations be found.
Although an optimal control policy can be obtained as in (7.10), an ana-
lytic solution to the DP equations is usually not obtainable except in some
simple cases. To apply our results to real-life problems, one has to resort
to numerical methods. In this section, we discuss computational methods
for solving the DP equations associated with continuous-time models.

Discounted Cost Problems

Let us begin with the problem having discounted costs. The DP equation
(7.7) for P0 can be written as

ρv(k) = min
Uk∈Γk

{

G(k, Uk) +
∑

k′ �=k

qkk′ (Uk)(v(k′)− v(k))

}

.

We next show that this equation is equivalent to a DP equation of a
discrete-time Markov decision problem.
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In fact, for each U ∈ Γ,

ρv(k) ≤ G(k, Uk) +
∑

k′ �=k

qkk′ (Uk)(v(k′)− v(k)). (7.24)

Note that ∑

k′ �=k

qkk′ (Uk)v(k) = |qkk(Uk)|v(k).

Since ρ > 0, the inequality (7.24) is equivalent to

v(k) ≤ G(k, Uk)

ρ+ |qkk(Uk)| +
∑

k′ �=k

qkk′ (Uk)

ρ+ |qkk(Uk)|v(k
′).

It follows that

v(k) ≤ min
Uk∈Γk

{
G(k, Uk)

ρ+ |qkk(Uk)| +
∑

k′ �=k

qkk′ (Uk)

ρ+ |qkk(Uk)|v(k
′)

}

.

The equality holds if and only if U is equal to the minimizer U∗ of the
right-hand side of (7.7). Thus, the DP equation (7.7) is equivalent to

v(k) = min
Uk∈Γk

{
G(k, Uk)

ρ+ |qkk(Uk)| +
∑

k′ �=k

qkk′ (Uk)

ρ+ |qkk(Uk)|v(k
′)

}

. (7.25)

To show that (7.25) is equivalent to a DP equation of a discrete-time
Markov decision problem, let

G̃(k, Uk) =
G(k, Uk)

ρ+ |qkk(Uk)| ,

� = max
k=1,...,l,U∈Γ

|qkk(Uk)|
ρ+ |qkk(Uk)| ,

and

p̃kk′ =
qkk′ (Uk)

�(ρ+ |qkk(Uk)|) for k′ �= k and p̃kk = 0.

Then 0 < � < 1,
∑

k′ p̃kk′ (Uk) = 1. The corresponding discrete-time
version of the DP equation is

v(k) = min
Uk∈Γk

{

G̃(k, Uk) +�
∑

k′
p̃kk′(Uk)v(k′)

}

.

There are a number of methods available for solving discrete-time DP
equations. For example, the methods of successive approximation, policy
improvement, and linear programming can be used. We refer the reader to
Ross [184] for discussions on these methods.
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Long-Run Average Cost Problems

Similar to the case of discounted costs, we can write the discrete-time
version of the DP equation corresponding to (7.17) for P0

av as

λ̃0 + h̃0(k) = min
Uk∈Γk

{

G̃(k, Uk) +
∑

k′
p̃kk′ (Uk)h̃0(k′)

}

,

where

λ̃0 = max
k=1,...,l,U∈Γ

λ0

|qkk(Uk)| ,

G̃(k, Uk) =
G(k, Uk)

|qkk(Uk)| + λ̃0 − λ0

|qkk(Uk)| ,

h̃0(k) = h0(k),

and

p̃kk′ (Uk) =
qkk′ (Uk)

|qkk(Uk)| for k �= k′, and p̃kk(U
k) = 0.

One may also design algorithms for solving the discrete-time version DP
equations with long-run average costs. A typical method uses the idea of
linear programming (see Ross [184]); see also Kushner and Dupuis [141,
Chapter 6] for more details on computational methods.

7.8 Notes

This chapter is based on the results obtained in Zhang [249]. For related
results with discounted costs, we refer the reader to the papers of Dele-
becque and Quadrat [44] and Phillips and Kokotovic [175].
The hierarchical control approach in this chapter is concerned with

reduction of dimensionality of a class of stochastic dynamic systems.
In conjunction with solving DP equations, where the number of equations
is the main factor that affects the computational effort (see Hillier and
Lieberman [86]), our results pave the way to a substantial reduction of
complexity. The recent book of Guo and Hernández-Lerma [78] collects
a number of new results on continuous-time Markov decision processes,
which includes the so-called advanced (bias, overtaking, sensitive discount,
and Blackwell) criteria in addition to the usual discounted cost and average
cost per unit time problems.
Note that the main results in this chapter are obtained under assumptions

that the state space and the control space are finite. It would be in-
teresting to extend these results to more general models without such
finite-dimensionality restrictions (see Sethi and Zhang [193]). Recently,
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Costa and Dufour formulated and treated piecewise deterministic Markov
processes under singular perturbation [33] and singularly perturbed dis-
counted Markov control processes in a general state space in [34]. From
another angle, it is also interesting to consider problems with robust cost
criteria such as risk-sensitive cost; see Zhang [248] for discounted cost,
and Fleming and Zhang [66] for long-run average cost criteria in this
connection.



8

Stochastic Control of Dynamical
Systems

8.1 Introduction

While Chapter 7 deals with Markov decision processes, this chapter is con-
cerned with stochastic dynamical systems with the state xε(t) ∈ R

n and
the control u(t) ∈ Γ ⊂ R

n1 satisfying

dxε(t)

dt
= f(xε(t), αε(t), u(t)), xε(0) = x, t ≥ 0, (8.1)

where ε > 0 is a small parameter, and αε(t), t ≥ 0, is a Markov chain
defined on a probability space (Ω,F , P ) taking values in

M =
{
s11, . . . , s1m1 , . . . , sl1, . . . , slml

}
.

Let u(·) = {u(t) ∈ Γ : t ≥ 0}. Assuming that αε(0) = α, ρ > 0 is the
discount factor, and G(x, α, u) is the cost-to-go function. The problems of
interest are: Subject to the constraint (8.1),

(1) find a control process u(t) as a function of xε(s), αε(s), s ≤ t to
minimize a discounted cost function

Jε(x, α, u(·)) = E

∫ ∞

0

e−ρtG(xε(t), αε(t), u(t))dt, (8.2)

over the infinite horizon [0,∞), and

G.G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications,
Stochastic Modelling 37, DOI 10.1007/978-1-4614-4346-9 8,
© Springer Science+Business Media, LLC 2013
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(2) find a control process u(t) as a function of xε(s), αε(s), s ≤ t to
minimize a finite horizon cost function

Jε(x, α, u(·)) = E

∫ T

0

G(xε(t), αε(t), u(t))dt (8.3)

over [0, T ] for a given T satisfying 0 < T <∞.

As was demonstrated previously, singularly perturbed Markovian models
typically arise from either systems displaying multiple-time scales such as
Example 4.20, or from large-scale systems naturally leading to hierarchical
decomposition as illustrated in Chapters 1 and 3. One introduces a small
parameter ε > 0 to account for the time-scale separation and to achieve
the goal of dimensionality reduction.
Consider the case that the process αε(t) has weak and strong interac-

tions among different group of states as discussed in Chapters 4 and 5;
assume the generator is given by Qε(t) = Q̃(t)/ε + Q̂(t), where Q̃(t) =

diag(Q̃1(t), . . . , Q̃l(t)) is a block diagonal matrix such that Q̂(t) and Q̃k(t)
for k = 1, . . . , l, are themselves generators of appropriate dimensions. More-
over, for each k = 1,. . .,l, the block Q̃k(t) corresponds to Mk = {sk1, . . .,
skmk

}. As in Chapter 7, the focus of this chapter is on Q̃(t) corresponding
to a number of groups with recurrent states.
The control systems given above belong to the category of piecewise-

deterministic processes (see Davis [41] for the terminology). They ade-
quately describe interconnections and transformations that occur within
the subsystems, and are suited for various applications in manufacturing,
queueing networks, etc. The random process αε(t) and the weak and strong
interactions among its states are difficult to deal with, however. One can-
not obtain closed-form solutions except in some special cases. The compu-
tational problem is even more acute if the state space of αε(t) is large. It
is thus vital to reduce the complexity of the underlying problem. Keeping
these points in mind, our effort is devoted to obtaining asymptotic optimal
and nearly optimal controls.
The rationale of our approach is that, when ε is small, one may ignore

some of the details of the process αε(t) at each time t and obtain an aver-
aged model in which the stochastic process αε(t) is aggregated so that the
states in Mk can be replaced by a single state. The limit of the aggregated
problem is much simpler than the original one and is easier to analyze.
In the first five sections, we consider the generator of αε(t) having the

form

Qε =
1

ε
Q̃+ Q̂, (8.4)

with time independent Q̃ and Q̂. Our suggestion is to obtain the optimality
and to derive the feedback control for the limit problem first, then, using
this feedback control, to construct a control for the original problem, and
to show that the control so constructed is asymptotically optimal. To use
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the dynamic programming approach for the problems, and to study the
asymptotic properties of the underlying system for sufficiently small ε, the
viscosity solution method is employed to verify the convergence of the value
function, which allows us to obtain the convergence in a general setting and
helps us to characterize the structure of the limit system. Then in Section
8.6, we switch gears and present an alternative approach, namely, the weak
convergence approach via the use of relaxed control representation. In lieu
of the Hamilton-Jacobi-Bellman (HJB) equations, the investigation is on
the corresponding probability measures.
The detailed arrangement of the rest of the chapter is as follows. Sec-

tion 8.2 presents the formulation and the assumptions of the system under
consideration. Section 8.3 discusses the dynamic properties of the original
problem Pε. It is shown that the value function vε is continuous and is
the only viscosity solution to the associated HJB equation. Then we in-
troduce a limit control problem P0 and show that Pε → P0 as ε → 0 in
terms of the convergence of their value functions. Section 8.4 constructs
feedback controls for the original problem Pε using the optimal control of
P0; it is shown that the controls so constructed are asymptotically optimal.
Section 8.5 gives an estimate of the convergence rate of the value function
under assumptions such as linear system equations and irreducibility of Q̃.
The convergence rate is shown to be the order of

√
ε, which turns out to

be the best rate possible. To demonstrate the versatility of the asymptotic
properties, the weak convergence approach to the near optimality is given in
Section 8.6, which enables us to obtain asymptotic optimality under milder
conditions. Finally, Section 8.7 concludes the chapter with additional notes.

8.2 Problem Formulation

To begin, let us make the following assumptions.

(A8.1) There exist bounded functions f1(x, α) ∈ R
n and f2(x, α) ∈

R
n×n1 on R

n ×M such that

f(x, α, u) = f1(x, α) + f2(x, α)u,

where u ∈ Γ, a convex and compact subset of Rn1 . Moreover,
for i = 1, 2, fi(x, α) are Lipschitz in that

|fi(x, α) − fi(y, α)| ≤ K|x− y|, for all α ∈ M,

for a constant K.

(A8.2) For each α ∈ M, G(x, α, u) is jointly convex in (x, u) and locally
Lipschitz in the sense that

|G(x, α, u)−G(y, α, u)| ≤ K(1 + |x|κ + |y|κ)|x− y|,
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for some positive constants K and κ. Moreover,

0 ≤ G(x, α, u) ≤ K(1 + |x|κ),

that is, G(x, α, u) has at most polynomial growth rate in x.

(A8.3) The process αε(·) = {αε(t), t ≥ 0} is a finite-state Markov chain

on (Ω,F , P ) generated by Qε given in (8.4). Each block Q̃k is
irreducible.

Definition 8.1. A control u(·) = {u(t) : t ≥ 0} is admissible if u(t) ∈ Γ
and is progressively measurable with respect to σ{αε(s) : s ≤ t}. Use Aε

to denote the set of all admissible controls.

Definition 8.2. A Borel measurable function u(x, α) is an admissible feed-
back (or simply feedback) control if under u(t) = u(xε(t), αε(t)) the system
equation (8.1) has a unique solution xε(t), t ≥ 0, and u(t), t ≥ 0, is admis-
sible.

Let vε(x, α) denote the corresponding value function of the control prob-
lem (8.1) and (8.2), i.e.,

vε(x, α) = inf
u(·)∈Aε

Jε(x, α, u(·)).

In what follows, use Pε to denote our original control problem, that is,

Pε :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize: Jε(x, α, u(·)),

subject to:
dxε(t)

dt
= f(xε(t), αε(t), u(t)),

xε(0) = x, αε(0) = α, u(·) ∈ Aε,

value function: vε(x, α) = inf
u(·)∈Aε

Jε(x, α, u(·)).

(8.5)

Example 8.3. Consider the following failure-prone manufacturing system
consisting of a single machine and producing one part type. Let xε(t) ∈ R

1

be the surplus of finished goods, cε(t) ∈ {0, 1} the production capacity
rate, and zε(t) ∈ {z1, z2} the part demand rate for 0 < z1 < z2 < 1. Let
u(t) ∈ R

1 denote the control process so that cε(t)u(t) represents the rate
of production.
In this example, cε(t) = 0 means the machine is down and cε(t) =

1 means the machine is up with maximum capacity 1. Using cε(t), the
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production constraint is given as 0 ≤ u(t) ≤ 1, t ≥ 0. Let M1 = {(1, z1),
(0, z1)} and M2 = {(1, z2), (0, z2)}. Consider a Markov chain defined as

αε(t) = (cε(t), zε(t)) ∈ M =
{
(1, z1), (0, z1), (1, z2), (0, z2)

}
,

generated by Qε.
The system equation is

dxε(t)

dt
= αε(t)(u(t),−1)′ = cε(t)u(t)− zε(t), xε(0) = x.

Our objective is to choose a control u(·) to minimize the production and
surplus costs

Jε(x, α, u(·)) = E

∫ ∞

0

e−ρt
(
c+(xε(t))+ + c−(xε(t))−

)
dt,

where c+ and c− are positive constants, x+ = max{0, x}, and x− =
max{0,−x}.
Let λc, μc, λz , and μz be positive real numbers. Suppose that the gen-

erator Qε has the form

Qε =
1

ε

⎛

⎜
⎜
⎜
⎝

−λc λc 0 0

μc −μc 0 0

0 0 −λc λc

0 0 μc −μc

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

−λz 0 λz 0

0 −λz 0 λz

μz 0 −μz 0

0 μz 0 −μz

⎞

⎟
⎟
⎟
⎠
.

In this case, the rate of fluctuation of cε(t) in αε(t) is faster than that of
zε(t).
Next rearrange the order of the states in M as

M =
{
(1, z1), (1, z2), (0, z1), (0, z2)

}

and consider

Qε =
1

ε

⎛

⎜
⎜
⎜
⎝

−λz λz 0 0

μz −μz 0 0

0 0 −λz λz

0 0 μz −μz

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

−λc 0 λc 0

0 −λc 0 λc

μc 0 −μc 0

0 μc 0 −μc

⎞

⎟
⎟
⎟
⎠
.

In the second case, the demand zε(t) is the fast-changing process. The
results to follow provide guidance on how the asymptotically optimal feed-
back controls can be constructed for such systems.
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8.3 Properties of the Value Functions

This section concerns properties of the value function vε(x, α). By apply-
ing the viscosity solution methods, we show that vε(x, α) converges to a
function v(x, k) whenever α ∈ Mk. It turns out that v(x, k) is equal to the
value function of a limit problem in which the stochastic process is replaced
by the “limit” of its aggregated process.
Formally, the HJB equation of Pε takes the following form

ρvε(x, α) = min
u∈Γ

{

f(x, α, u)
∂vε(x, α)

∂x

+G(x, α, u)

}

+Qεvε(x, ·)(α).
(8.6)

Remark 8.4. Note that the term f(x, α, u)(∂vε(x, α)/∂x) in the HJB
equation is meant to be the inner product of f and (∂vε/∂x) and should
have been written as 〈f, (∂vε/∂x)〉. Nevertheless, we write it as in (8.6) for
the sake of notational simplicity. Similar notation will also be used in the
subsequent development.

Let m = m1 + · · ·+ml be the total number of states in M. Denote

ΩH := R
n ×M× R

m × R
n,

and define a Hamiltonian H on ΩH as

H(x, α, v(x, ·), p) = min
u∈Γ

{
f(x, α, u)p+G(x, α, u)

}

+Qεv(x, ·)(α) − ρv(x, α).

(8.7)

Then (8.6) can be written equivalently as

H

(

x, α, vε(x, ·), ∂v
ε(x, α)

∂x

)

= 0. (8.8)

In general, the partial derivatives of vε may not exist. To handle possible
non-smoothness of vε, we use viscosity solutions developed by Crandall and
Lions [39].
The proof of the next lemma is provided in Lemma A.28 for the convexity

and Lipschitz property, and in Theorem A.30 for the uniqueness of the
viscosity solution to (8.8).

Lemma 8.5. Assume (A8.1)–(A8.3).

(a) There exists a constant K such that, for all x, y ∈ R
n,

|vε(x, α) − vε(y, α)| ≤ K(1 + |x|κ + |y|κ)|x− y|.

Therefore the value function vε(x, α) is uniformly continuous in x.
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(b) vε(x, α) is the unique viscosity solution to the HJB equation (8.8).

(c) If f(x, α, u) is only a function of (α, u), then vε(·, α) is convex.

In view of the Lipschitz property of the value function in Lemma 8.5 and
the Arzelà-Ascoli theorem, on any compact subset of Rn, for each subse-
quence of ε, there exists a further subsequence of {ε → 0} (still denoted
by ε) such that vε converges to a limit function v on that set. The next
lemma shows that if this is so, the limit function depends only on k when-
ever α ∈ Mk for k = 1, . . . , l. That is, the aggregation of states in Mk

gives the primary information, whereas the detailed variations within the
group Mk are not as crucial, which reveals the hierarchical features of the
decomposition/aggregation.

Lemma 8.6. Assume (A8.1)–(A8.3). For each x, if for some subsequence
of ε, vε(x, α) → v(x, α), for all α ∈ M, then v(x, α) = v(x, k) whenever
α ∈ Mk for some function v(x, k) depending only on k.

Proof: Let α = si0j0 ∈ Mi0 . Let τ
ε denote the first jump time of αε(t) for

t ≥ 0. Then τε → 0 in probability as ε → 0. Moreover, for any u(·) ∈ Aε,
the dynamic programming principle in Lemma A.29 yields

vε(x, α) ≤ E

(∫ τε

0

e−ρtG(xε(t), αε(t), u(t))dt

+e−ρτε

vε(xε(τε), αε(τε))

)

.

(8.9)

In view of (A8.1) and (A8.2), we have

|xε(t)| ≤ K(1 + t+ |x|),

|G(xε(t), αε(t), u(t))| ≤ K(1 + tκ + |x|κ).
(8.10)

It follows from the Lebesgue dominated convergence theorem that

lim
ε→0

E

∫ τε

0

e−ρtG(xε(t), αε(t), u(t))dt = 0. (8.11)

Moreover, the uniform Lipschitz property of vε(x, α) implies

lim
ε→0

E |vε(xε(τε), αε(τε))− vε(x, αε(τε))| = 0. (8.12)

Combine (8.9), (8.11), and (8.12) to obtain

v(x, α) ≤ lim
ε→0

Evε(x, αε(τε)).
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Note that

Evε(x, αε(τε)) =

l∑

i=1

mi∑

j=1

vε(x, sij)P (α
ε(τε) = sij).

Since vε(x, α) → v(x, α), we need to analyze the limit of P (αε(τε) = sij)
as ε→ 0. To this end,

P (αε(τε) = sij) = EI{αε(τε)=sij}

= E
(
E[I{αε(τε)=sij}|τε]

)

= E (P (αε(τε) = sij |τε)) .

Recall that Q̃k = (q̃kij). If sij �∈ Mi0 , then the construction of Markov chain
in Section 2.4 implies that

P (αε(τε) = sij |τε) = O(ε) → 0.

If sij ∈ Mi0 , then i = i0, and

P (αε(τε) = si0j |τε) = −
ε−1q̃i0j0j + q̂si0j0si0j

ε−1q̃i0j0j0 + q̂si0j0si0j0

→ −
q̃i0j0j

q̃i0j0j0
.

Hence,

v(x, si0j0) ≤
∑

j �=i0

v(x, si0j)

(

−
q̃i0j0j

q̃i0j0j0

)

.

Then the irreducibility of Q̃i0 and Lemma A.39 imply that

v(x, si0j0) = v(x, si0j) for all j = 1, . . . ,mi0 . (8.13)

This completes the proof. �

Remark 8.7. If vε(x, α) is differentiable with respect to x, following the
Lipschitz continuity of vε(x, α), the partial derivative (∂vε(x, α)/∂x) is
uniformly bounded by K(1 + |x|κ). In this case, the proof of the lemma
can be much simplified by using the method in the proof of Lemma 7.5.
Actually, it can be shown that for k = 1, . . . , l,

Q̃k

⎛

⎜
⎝

v(x, sk1)
...

v(x, skmk
)

⎞

⎟
⎠ ≥ 0,

which implies (8.13).
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Now define another control problem P0 with averaged dynamics weighted
by the quasi-stationary distribution and cost function in which αε(t) is
replaced by the “limit” of its aggregated process. To be more precise, let
νk = (νk1 , . . . , ν

k
mk

) denote the stationary distribution of Q̃k. Recall that

1̃l = diag(1lm1 , . . . , 1lml
). Let

Q = diag(ν1, . . . , νl)Q̂1̃l

and α(t), t ≥ 0, be a Markov chain generated by Q. Define a control set
for the limit problem as

Γ0 =
{
(U1, . . . , U l) : Uk = (uk1, . . . , ukmk), ukj ∈ Γ, for k = 1, . . . , l

}
.

Consider a class of controls A0,

A0 :=
{
U(t) = (U1(t), · · · , U l(t)) ∈ Γ0 :

U(t) is progressively measurable w.r.t. σ{α(s) : s ≤ t}
}
.

For any U ∈ Γ0, define

f(x, k, U) =

mk∑

j=1

νkj f(x, skj , u
kj),

G(x, k, U) =

mk∑

j=1

νkjG(x, skj , u
kj).

The limit control problem is

P0 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize: J0(x, k, U(·))

= E

∫ ∞

0

e−ρtG(x(t), α(t), U(t))dt,

subject to:
dx(t)

dt
= f(x(t), α(t), U(t)),

x(0) = x, α(0) = k, U(·) ∈ A0,

value function: v0(x, k) = inf
U(·)∈A0

J0(x, k, U(·)).

(8.14)

Note that the HJB equations associated with the original problem Pε

consist of m equations, whereas the HJB equations for the limit prob-
lem P0 contain only l equations. By using the aggregation/decomposition
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approach, we are able to achieve substantial reduction of system dimen-
sionality when m is large and l is small.
Now we are in a position to show that the sequence of value functions vε

of Pε converges to that of P0 as ε→ 0. Let

ΩH0 = R
n × R

l × R
l × R

n.

For P0, define the Hamiltonian H0 (a function on ΩH0) as

H0(x, k, v(x, ·), p)

= min
U∈Γ0

{

f(x, k, U)p+G(x, k, U) +Qv(x, ·)(k)
}

− ρv(x, k).

The HJB equation for P0 is

H0

(

x, k, v(x, ·), ∂v(x, k)
∂x

)

= 0. (8.15)

Similar to Lemma 8.5, it can be shown that the value function v0(x, k) for
P0 is locally Lipschitz in x, and is the unique viscosity solution to (8.15).
Next we show that the value function vε(x, α) converges to a limit v(x, k)

that satisfies the HJB equation (8.15). Then the uniqueness of the solution
of (8.15) implies v(x, k) = v0(x, k). More precisely, the following theorem
holds.

Theorem 8.8. Assume (A8.1)–(A8.3). Then for all α ∈ Mk and k =
1, . . . , l,

lim
ε→0

vε(x, α) = v0(x, k).

Proof: By Lemma 8.5, for each sequence of {ε→ 0}, there exists a further
subsequence (still indexed by ε) such that vε(x, α) converges. Denote the
limit by v(x, α). Then by Lemma 8.6, v(x, α) = v(x, k); the exact value of
α is unimportant and only k counts.
Fix k = 1, . . . , l. For any α = skj ∈ Mk, let v(x, k) be a limit of vε(x, skj)

for some subsequence of ε. In view of Lemma A.25, take a function φ(·) ∈
C1(Rn) such that v(x, k) − φ(x) has a strictly local maximum at x0 in a
neighborhoodN(x0). Choose x

ε
j ∈ N(x0) such that for each α = skj ∈ Mk,

vε(xεj , skj)− φ(xεj) = max
x∈N(x0)

{vε(x, skj)− φ(x)}.

Then it follows that xεj → x0 as ε→ 0. Moreover,

mk∑

j=1

νkjH

(

xεj , skj , v
ε,
∂φ

∂x

)

≥ 0. (8.16)
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Observe that

mk∑

j=1

νkj

(
Q̃kvε(xεj , ·)(α)

)

=

mk∑

j=1

∑

i�=j

νkj q̃
k
ji[v

ε(xεj , ski)− vε(xεj , skj)]

≤
mk∑

j=1

∑

i�=j

νkj q̃
k
ji[(v

ε(xεi , ski)− φ(xεi ))− (vε(xεj , skj)− φ(xεj))]

=

mk∑

j=1

mk∑

i=1

νkj q̃
k
ji[v

ε(xεi , ski)− φ(xεi )]

=

mk∑

i=1

[vε(xεi , ski)− φ(xεi )]

mk∑

j=1

νkj q̃
k
ji = 0.

The above inequality follows from

vε(xεi , ski)− φ(xεi ) ≥ vε(xεj , ski)− φ(xεj).

Then (8.16) leads to the inequalities

mk∑

j=1

νkjH

(

x0, skj , v,
∂φ

∂x

)

≥ lim
ε→0

mk∑

j=1

νkjH

(

xεj , skj , v
ε,
∂φ

∂x

)

≥ 0.

Therefore, we have

H0

(

x0, k, v,
∂φ

∂x

)

=

mk∑

j=1

νkjH

(

x0, skj , v,
∂φ

∂x

)

≥ 0.

Thus v(x, k) is a viscosity subsolution to (8.15).
Similarly, v is also a viscosity supersolution to (8.15). Moreover, the

uniqueness of solution of (8.15) implies v(x, k) = v0(x, k), the value for P0.
Thus, for any subsequence of ε (indexed also by ε), vε(x, α) → v0(x, k).
The desired result thus follows. �

Remark 8.9. The linearity in u in (A8.1) is not essential for Theorem 8.8.
In fact, the theorem holds for more general models. However, assuming
f(x, α, u) to be linear in u enables us to derive the optimal feedback con-
trol law for the limit problem. One can then use such a control law as a
guide to construct feedback controls for the original problem Pε. The Lip-
schitz property is needed to ensure the system has a unique solution in the
viscosity sense.
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8.4 Asymptotic Optimal Controls

Using the optimal control policy for the limit problem P0, we aim at de-
riving a feedback control policy for the original problem Pε. Moreover, we
study the asymptotics of such a control policy as ε → 0, and obtain the
asymptotic optimality.
For k = 1, . . . , l, write

U∗(x, k) = (u∗1(x, k), . . . , u∗mk(x, k)),

and denote the minimizer of the left-hand side of (8.15) by

U∗(x) = (U∗(x, 1), . . . , U∗(x, l)) ∈ Γ0.

The condition below guarantees that U∗(x) is locally Lipschitz.

(A8.4) The function f(x, α, u) depends on (α, u) only in that f(x, α, u)
= f(α, u) and the cost function G(x, α, u) is twice differentiable
with respect to u such that

∂2G(x, α, u)

∂u2
≥ c0I > 0,

for some constant c0. There exists a constant K such that

∣
∣
∣
∣G(x + y, α, u)−G(x, α, u)−

〈
∂

∂x
G(x, α, u), y

〉∣
∣
∣
∣

≤ K(1 + |x|κ)|y|2.

Lemma 8.10. Assume (A8.1)–(A8.4). Then

(a) v0(x, k) is convex and continuously differentiable.

(b) U∗(x) is locally Lipschitz in that there exists a constant K such that

|U∗(x)− U∗(y)| ≤ K(1 + |x|κ + |y|κ)|x− y|. (8.17)

(c) U∗(x) is an optimal feedback control.

Proof: The convexity of v0(x, k) is due to the convergence of vε → v0 and
the convexity of vε(x, α) in Lemma 8.5.
The continuous differentiability of v0(x, k) can be obtained as in Sethi

and Zhang [192, Lemma 5.6.1]. Moreover, the value function has Lipschitz
partial derivatives in x. Then we apply Lemma A.32 to derive (b), which
yields (c). �
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For each j = 1, . . . ,mk and k = 1, . . . , l, let f̃kj(x) = f(x, skj , u
∗j(x, k)).

Then f̃kj(x) is locally Lipschitz. Therefore, under the optimal feedback
control law U∗(x) for P0, the following system

dx∗(t)

dt
=

l∑

k=1

mk∑

j=1

νkj I{α(t)=k}f̃kj(x
∗(t)), x∗(0) = x (8.18)

has a unique solution.
Now construct a feedback control u(x, α) for Pε by

u(x, α) =

l∑

k=1

mk∑

j=1

I{α=skj}u
∗j(x, k). (8.19)

Let uε(t) = u(xε(t), αε(t)), t ≥ 0. It is easily seen that the system equation
for Pε given by

dxε(t)

dt
=

l∑

k=1

mk∑

j=1

I{αε(t)=skj}f̃kj(x
ε(t)), xε(0) = x

has a unique solution xε(t). Next we show that uε(·) is asymptotically
optimal in the sense that

|Jε(x, α, uε(·))− vε(x, α)| → 0.

This step is realized by introducing an auxiliary process. Let xε(t) denote
an intermediate process defined by

dxε(t)

dt
=

l∑

k=1

mk∑

j=1

νkj I{αε(t)=k}f̃kj(x
ε(t)), xε(0) = x,

where αε(·) is the aggregated process of αε(·) defined in Section 5.3.2. By
comparing xε(·) with xε(·), we establish an estimate of |xε(t)−xε(t)|. Note
that

xε(t)− xε(t) =
l∑

k=1

mk∑

j=1

∫ t

0

[f̃kj(x
ε(s))− f̃kj(x

ε(s))]I{αε(s)=skj}ds

+
l∑

k=1

mk∑

j=1

∫ t

0

(
I{αε(s)=skj} − νkj I{αε(s)=k}

)
f̃kj(x

ε(s))ds.

In view of the Lipschitz property of f̃kj(x) and (8.10),

E|xε(t)− xε(t)| ≤ K

∫ t

0

(1 + tκ + |x|κ)E|xε(s)− xε(s)|ds

+

l∑

k=1

mk∑

j=1

E

∣
∣
∣
∣

∫ t

0

(
I{αε(s)=skj} − νkj I{αε(s)=k}

)
f̃kj(x

ε(s))ds

∣
∣
∣
∣ .
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Let f̃(s) = f̃kj(x
ε(s)). Then f̃(s) is locally Lipschitz in s. As a result, f̃(s)

is differentiable almost everywhere with bounded derivative. Integration by
parts yields

E

∣
∣
∣
∣

∫ t

0

(
I{αε(s)=skj} − νkj I{αε(s)=k}

)
f̃(s)ds

∣
∣
∣
∣

≤ E

∣
∣
∣
∣f̃(t)

∫ t

0

(
I{αε(s)=skj} − νkj I{αε(s)=k}

)
ds

∣
∣
∣
∣

+E

∣
∣
∣
∣

∫ t

0

(∫ s

0

(
I{αε(τ)=skj} − νkj I{αε(τ)=k}

)
dτ

)(
df̃(s)

ds

)

ds

∣
∣
∣
∣.

As ε→ 0, by virtue of Theorem 5.25,

E

∣
∣
∣
∣

∫ t

0

(
I{αε(s)=skj} − νkj I{αε(s)=k}

)
f̃(s)ds

∣
∣
∣
∣→ 0.

An application of Gronwall’s inequality yields

E|xε(t)− xε(t)| → 0 as ε→ 0. (8.20)

We next show E|xε(t)− x∗(t)| → 0, as ε→ 0. For each T > 0, let

αε
T (·) = {αε(t) : t ≤ T } and αT (·) = {α(t) : t ≤ T }.

Following from Theorem 5.27, one has

αε
T (·) → αT (·) in distribution.

In view of the Skorohod representation (see Theorem A.11) without chang-
ing notation, we may assume αε

T (·) → αT (·) w.p.1. Therefore, there exists
a measurable set Ω1 with P (Ω1) = 1 such that

d(αε
T (·)(ω), αT (·)(ω)) → 0 for all ω ∈ Ω1, as ε→ 0,

where d(·, ·) is the distance under Skorohod topology on D[0, T ].
Let

Ω2 =
{
αT (·) jumps at most countably many times in [0, T ]

}
.

Then P (Ω2) = 1. Let Ω0 = Ω1 ∩ Ω2. Then P (Ω0) = 1 and for all ω ∈ Ω0,

|αε
T (·)(ω) − αT (·)(ω)| → 0

for all but at most countably many t ∈ [0, T ]. Thus for all ω ∈ Ω0,

I{αε
T (t)(ω)=k} → I{αT (t)(ω)=k}
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for all but at most countably many t ∈ [0, T ]. It follows that for ε→ 0,

xε(t) → x∗(t) w.p.1. (8.21)

Thus, for all t ∈ [0, T ], (8.21) and the dominated convergence theorem
imply that E|xε(t)− x∗(t)| → 0 as ε → 0. Finally, by virtue of (8.20) and
the above estimates, as ε→ 0,

E|xε(t)− x∗(t)| ≤ E|xε(t)− xε(t)|+ E|xε(t)− x∗(t)| → 0. (8.22)

Since T is arbitrary, (8.22) holds for all t ≥ 0. �

Theorem 8.11. Assume (A8.1)–(A8.4). Then

uε(t) = u(xε(t), αε(t))

constructed in (8.19) is asymptotically optimal, i.e.,

lim
ε→0

|Jε(x, α, uε(·))− vε(x, α)| = 0.

Proof: For α ∈ Mk, k = 1, . . . , l,

0 ≤ Jε(x, α, uε(·)) − vε(x, α)

= (Jε(x, α, uε(·))− v0(x, k)) + (v0(x, k)− vε(x, α)).

In view of Theorem 8.8, we have
∣
∣vε(x, α) − v0(x, k)

∣
∣→ 0.

Thus to establish the assertion, it suffices to show that
∣
∣Jε(x, α, uε(·))− v0(x, k)

∣
∣→ 0.

Let
G̃kj(x) = G(x, skj , u

∗j(x, k)) and U∗(t) = U∗(x∗(t)).

Then

v0(x, k) = J0(x, k, U∗(·))

= E

∫ ∞

0

e−ρt
l∑

k=1

mk∑

j=1

νkj I{α(t)=k}G̃kj(x
∗(t))dt,

and

Jε(x, α, uε(·)) = E

∫ ∞

0

e−ρt
l∑

k=1

mk∑

j=1

I{αε(t)=skj}G̃kj(x
ε(t))dt.
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It follows that

Jε(x, α, uε(·)) − v0(x, k)

= E

∫ ∞

0

e−ρt
l∑

k=1

mk∑

j=1

(
G̃kj(x

ε(t))− G̃kj(x
ε(t))

)
I{αε(t)=skj}dt

+E

∫ ∞

0

e−ρt
l∑

k=1

mk∑

j=1

(
G̃kj(x

ε(t))− G̃kj(x
∗(t))

)
I{αε(t)=skj}dt

+E

∫ ∞

0

e−ρt
l∑

k=1

mk∑

j=1

G̃kj(x
∗(t))νkj

(
I{αε(t)=k} − I{α(t)=k}

)
dt

+E

∫ ∞

0

e−ρt
l∑

k=1

mk∑

j=1

G̃kj(x
∗(t))

(
I{αε(t)=skj} − νkj I{αε(t)=k}

)
dt.

The terms in the integrands of line 2 through line 4 above go to 0. In view
of the Lebesgue dominated convergence theorem, the boundedness and the
locally Lipschitz property of G̃kj , these terms go to zero. It can be shown
by integration by parts as in the proof of (8.20) the last line also goes to
zero. Therefore, ∣

∣Jε(x, α, uε(·)) − v0(x, k)
∣
∣ → 0 (8.23)

Hence,
|Jε(x, α, uε(·))− vε(x, α)| → 0

when ε→ 0 as desired. �

8.5 Convergence Rate

This section takes up the issue of rate of convergence of the sequence of
value functions vε(x, α), which indicates how well v0(x, k) approximates
vε(x, α). Owing to the complexity arising from the weak and strong inter-
actions in the singularly perturbed Markov chain, the convergence rate of
vε(x, α) is generally difficult to obtain. In this section, we confine ourselves

to the case in which Q̃ is irreducible, namely, Q̃ consisting of a single irre-
ducible block. Let M = {1, . . . ,m}. Then Γ0 = {U = (u1, . . . , um) : uj ∈
Γ}. We impose additional assumptions below.

(A8.5) Q̃ is irreducible.

(A8.6) There exist bounded functions B1(α), B2(α) such that

f(x, α, u) = B1(α)u +B2(α).

Moreover, there exist functions G1(x), G2(α, u), that are convex
in x and u, respectively, such that

G(x, α, u) = G1(x) +G2(α, u).
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Under these additional assumptions, we will be able to estimate the con-
vergence rate of the value function vε(x, α) to v0(x). Here v0(x) depends

only on x because Q̃ is irreducible.

Theorem 8.12. Assume (A8.1)–(A8.6). Then there are positive constants
K and κ such that

|vε(x, α) − v0(x)| ≤ K(1 + |x|κ)
√
ε.

Proof: The essence is to compare the trajectories of xε(·) and that of the
limit system. Let

U(t) = (u1(t), . . . , um(t)) ∈ A0,

and define a control uε(t) by

uε(t) =
m∑

j=1

I{αε(t)=j}u
j(t).

Clearly uε(t) ∈ Aε. Let xε(t) and x(t) be the trajectories of systems Pε

and P0 under the controls uε(t) and u(t), respectively. Then

dxε(t)

dt
= B1(α

ε(t))uε(t) +B2(α
ε(t)), xε(0) = x,

dx(t)

dt
=

m∑

j=1

νj(B1(j)u
j(t) +B2(j)), x(0) = x.

Take the difference of the two equations above to obtain

d

dt
(xε(t)− x(t)) =

m∑

j=1

B1(j)u
j(t)

(
I{αε(t)=j} − νj

)

+

m∑

j=1

B2(j)
(
I{αε(t)=j} − νj

)
.

(8.24)

It follows from Corollary 5.21 that

E|xε(t)− x(t)|2 = O(εt2).
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In addition, using the asymptotic expansion in Theorem 4.5, we have

EG2(α
ε(t), uε(t))

= E

m∑

j=1

G2(j, u
j(t))I{αε(t)=j}

=

m∑

j=1

G2(j, u
j(t))P (αε(t) = j)

=

m∑

j=1

νjG2(j, u
j(t)) +

m∑

j=1

G2(j, u
j(t))(P (αε(t) = j)− νj)

=

m∑

j=1

νjG2(j, u
j(t)) +O

(

ε+ exp

(

−κ0t
ε

))

.

Then we have

Jε(x, α, uε(·)) = E

∫ ∞

0

e−ρt(G1(x
ε(t)) +G2(α

ε(t), uε(t)))dt

≤ E

∫ ∞

0

(G1(x(t)) +K(1 + tκ + |x|κ)|xε(t)− x(t)|)dt

+E

∫ ∞

0

e−ρt
m∑

j=1

νjG2(j, u
j(t)) +K

√
ε

= J0(x, U(·)) +K(1 + |x|κ)
√
ε.

Recall that U(·) ∈ A0 is arbitrary. It follows that

vε(x, α) − v0(x) ≤ K(1 + |x|κ)
√
ε. (8.25)

To obtain the convergence rate, it suffices to establish the reverse inequality.
To this end, we show that for any control u(t) ∈ Aε, there exists a control
U(t) ∈ A0 such that the corresponding system states under these controls
are “close.” In fact, for each j ∈ M, let

uj(t) = E[uε(t)|αε(t) = j].

Clearly U(t) = (u1(t), . . . , um(t)) ∈ A0.
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Let xε(t) and x(t) denote the system states for Pε and P0 under controls
uε(t) ∈ Aε and U(t) ∈ A0, respectively. Then

Exε(t)− x(t) =

∫ t

0

m∑

j=1

(B1(j)u
j(s) +B2(j))(P (α

ε(s) = j)− νj)ds

=

∫ t

0

m∑

j=1

(B1(j)u
j(s) +B2(j))O

(

ε+ exp

(

−κ0s
ε

))

ds

= O(ε).

By the convexity, the local Lipschitz continuity and the a priori estimates
of x(t) and xε(t),

EG1(x
ε(t)) ≥ G1(Ex

ε(t))

≥ G1(x(t))−K(1 + |x(t)|κ + |Exε(t)|κ)|Exε(t)− x(t)|

= G1(x(t)) + (1 + |x|κ)O(ε).

Also, in view of the convexity of G2(·), we have

EG2(α
ε(t), uε(t)) =

m∑

j=1

E[G2(j, u
ε(t))|αε(t) = j]P (αε(t) = j)

≥
m∑

j=1

G2(E[uε(t)|αε(t) = j], j)P (αε(t) = j)

=
m∑

j=1

G2(j, u
j(t))νj +O

(

ε+ exp

(

−κ0t
ε

))

.

Then for any uε(t) ∈ Aε, it follows that

Jε(x, α, uε(·)) ≥ J0(x, U(·)) −K(1 + |x|κ)ε.

Thus, we obtain

vε(x, α) − v0(x) ≥ −K(1 + |x|κ)ε.

The proof of Theorem 8.12 is completed. �

Remark 8.13. Theorem 8.12 indicates that the convergence rate of vε to
v0 is of the order

√
ε. In fact, this is the best rate possible. In Sethi and
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Zhang [192], it was shown, by a one-dimensional example, that for any
α ∈ M and x > 0, there exists c1 > 0 such that

|vε(x, α) − v0(x)|√
ε

≥ c1 > 0.

This means that the order
√
ε cannot be improved.

We now establish the approximation error bound via the constructed
controls. Let U∗(t) = (u∗1(t), . . . , u∗m(t)) ∈ A0 denote an open-loop opti-
mal control for P0. Using U∗(t), construct a control

uε(t) =

m∑

j=1

I{αε(t)=j}u
∗j(t)

for Pε. Then similar to the proof of Theorem 8.12,

|Jε(x, α, uε(·))− vε(x, α)| ≤ K(1 + |x|κ)
√
ε.

Such an error bound is good for open-loop controls. For a feedback control
U∗(x), the constructed control uε(x, α) provides an asymptotically optimal
control for Pε, but so far the corresponding error bound has only been
obtained under additional conditions such as ρ being large enough. We
refer to Sethi and Zhang [192, Chapter 5] for further details.

Example 8.14 (Cont.). We continue our study of Example 8.3. Consider
the case in which the demand fluctuates more rapidly than the capacity
process. In this case, zε(t) is the fast changing process, and cε(t) = c(t) is
the slowly varying capacity process being independent of ε. The idea is to
derive a limit problem in which the fast fluctuating demand is replaced by
its average. Thus one may ignore the detailed changes in the demand when
making an average production planning decision.
Let

M = {s11, s12, s21, s22} = {(1, z1), (1, z2), (0, z1), (0, z2)}.

Consider the generator Qε given by

Qε =
1

ε

⎛

⎜
⎜
⎜
⎝

−λz λz 0 0

μz −μz 0 0

0 0 −λz λz

0 0 μz −μz

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

−λc 0 λc 0

0 −λc 0 λc

μc 0 −μc 0

0 μc 0 −μc

⎞

⎟
⎟
⎟
⎠
,

where λz is the jump rate of the demand from z1 to z2 and μz is the rate
from z2 to z1; λc and μc are the breakdown and repair rates, respectively.
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In this example,

Q =

(
−λc λc

μc −μc

)

.

It follows that α(t) = c(t). Moreover, the control set

Γ0 = {(u11, u12, 0, 0) : 0 ≤ u11, u12 ≤ 1},

since when c(t) = 0 the system is independent of the values of u21 and
u22. Furthermore, since G(·) is independent of u, we have G(·) = G(·).
Therefore, the system equation in the limit problem P0 is given by

dx(t)

dt
= c(t)u(t)− z, x(0) = x,

where u = ν11z1 + ν12z2,

ν1 = (ν11 , ν
1
2 ) =

(
μz

λz + μz
,

λz
λz + μz

)

,

and z = ν11z1 + ν12z2. Recall that 0 < z1 < z2 < 1. It follows that z is less
than 1. Then Theorem 8.8 implies that vε(x, α) → v0(x, k), for α ∈ Mk.
Let

A1 =

⎛

⎜
⎜
⎜
⎝

−ρ+ μc

z

μc

z

− λc
1− z

ρ+ λc
1− z

⎞

⎟
⎟
⎟
⎠
.

It is easy to see that A1 has two real eigenvalues, one greater than 0 and
the other less than 0. Let a− < 0 denote the negative eigenvalue of the
matrix A1 and define

x∗ = max

(

0,
1

a−
log

[
c+

c+ + c−

(

1 +
ρz

λcz − (ρ+ μc + za−)(1 − z)

)])

.

The optimal control for P0 is given by

If c(t) = 0, u∗(x) = 0, and

if c(t) = 1, u∗(x) =

⎧
⎪⎨

⎪⎩

0, if x > x∗,

z, if x = x∗,

1, if x < x∗.

Let
U∗(x) = (u∗11(x), u∗12(x), u∗21(x), u∗22(x))

denote the optimal control for P0. Note that (u∗11(x), u∗12(x)) corresponds
to c(t) = 1 and (u∗21(x), u∗22(x)) corresponds to c(t) = 0. Naturally,
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(u∗21(x), u∗22(x)) = 0, since, when c(t) = 0, there should be no production.
When c(t) = 1, let ν11u

∗11(x)+ν12u
∗12(x) = u∗(x). It should be pointed out

that in this case the solution (u∗11(x), u∗12(x)) is not unique.
Using u∗11(x) and u∗12(x), we construct a control for P0 as

uε(x, c, z) = I{c=1}
(
I{z=z1}u

∗11(x) + I{z=z2}u
∗12(x)

)

+I{c=0}
(
I{z=z1}u

∗21(x) + I{z=z2}u
∗22(x)

)

= I{c=1}
(
I{z=z1}u

∗11(x) + I{z=z2}u
∗12(x)

)
.

Note that in this example, the optimal control U∗(x) is not Lipschitz.
Therefore the conditions in Theorem 8.11 are not satisfied. However, we
can still show, as in Sethi and Zhang [192, Chapter 5], that

uε(t) = uε(x(t), c(t), zε(t))

is asymptotically optimal.
One may also consider the case in which the capacity process changes

rapidly, whereas the random demand is relatively slowly varying. Similar to
the previous case, assume cε(·) is the capacity process and zε(·) = z(·) is the
demand. Using exactly the same approach, one may resolve this problem.
The discussion is analogous to the previous case; the details are omitted.

8.6 Weak Convergence Approach

Treating asymptotic optimality of systems involving singularly perturbed
Markov chains, the previous sections all focus on the dynamical program-
ming methods. We switch gears and use a weak convergence approach to
study nearly optimal control problems in this section. As in the previous
sections, the main idea is that in lieu of dealing with the original complex
system, consider its corresponding limit and apply the optimal or nearly
optimal controls of the limit problem to that of the original problem. The
goal is to show that such a procedure leads to near optimality of the orig-
inal problems. The weak convergence approach in conjunction with the
relaxed control representation allows us to use weaker conditions. Under
the relaxed control formulation, the system is linear in the control variable,
and the compactness is also easily obtainable. To maintain the continu-
ity of presentation, definition of relaxed controls and the notation of weak
convergence are relegated to Section A.3 in Appendix.
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8.6.1 Problem Setup

Let αε(t) be a singularly perturbed Markov chain with a finite-state space
M generated by Qε(t), which is allowed to be a function of t. Consider a
stochastic dynamical system with the state xε(t) ∈ R

n, and control u(t) ∈
Γ ⊂ R

n1 . Let

f(·, ·, ·) : Rn ×M× R
n1 �→ R

n,

G(·, ·, ·) : Rn ×M× R
n1 �→ R.

The problem of interest is

minimize: Jε(u(·)) = E

∫ T

0

G(xε(t), αε(t), u(t))dt,

subject to:
dxε(t)

dt
= f(xε(t), αε(t), u(t)), xε(0) = x.

(8.26)

As in the previous section, f(x, α, u) represents the dynamics of the system
and G(x, α, u) is the running cost. The expected cost is evaluated over a
finite horizon. Such formulation allows one to treat nonstationary systems.
Note that Qε(t) is time dependent, and so is Q(t), the generator of the
limit of αε(t). Using the same approach as this section with modifications,
infinite horizon problems may also be incorporated into our formulation.
To proceed, let us set up the problem by using the relaxed control repre-
sentation.

8.6.2 Relaxed Control Formulation

Let m̃(·) be a relaxed control representation (see Section A.3) for the control
u(·) in (8.26). Rewrite (8.26) as

Pε :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize: Jε(m̃ε) = E

∫ T

0

∫

G(xε(t), αε(t), �)m̃ε
t (d�)dt,

subject to:
dxε(t)

dt
=

∫

f(xε(t), αε(t), �)m̃ε
t (d�), x

ε(0) = x,

(8.27)

where m̃t is the “derivative” of m̃ with respect to t (see Section A.3 for
definition and discussions). The cost function and system equation can be
written as

Jε(m̃ε) = E

(
l∑

i=1

mi∑

j=1

∫ T

0

∫

G(xε(t), sij , �)m̃
ε
t (�)dt

)

,

xε(t) = x+

l∑

i=1

mi∑

j=1

∫ t

0

∫

f(xε(s), sij , �)m
ε
s(d�)I{αε(s)=sij}ds.
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The integral equation for the dynamical system is convenient in the analysis
to follow.

8.6.3 Near Optimality

This subsection is devoted to the study of Pε in (8.27). It begins with a
set of assumptions, proceeds with two preparatory lemmas, and ends with
the theorems on weak convergence and near optimality.
Denote the σ-algebra of Borel subsets of any set S by B(S). Let

IM =
{
m̃(·); m̃(·) is a measure on B(Γ× [0,∞))

satisfying m̃(Γ× [0, t]) = t for all t ≥ 0
}
.

Given a filtration Ft. A random IM-valued measure m̃(·) is an admissible
relaxed control if for each B ∈ B(Γ), the function defined by

m̃(B, t) ≡ m̃(B × [0, t]) is Ft − adapted.

A relaxed control representation m̃ε(·) is admissible for Pε if m̃ε(·) ∈ IM
and is Fε

t = σ{xε(s), αε(s) : s ≤ t} adapted.
Use Rε to denote the set of all admissible controls, i.e.,

Rε = {m̃ε(·) ∈ IM; m̃ε(·) is Fε
t adapted}.

To proceed, we need the following conditions.

(A8.7) αε(·) is a Markov chain having state space

M =
{
s11, . . . , s1m1 , . . . , sl1 . . . , slml

}
,

and generator

Qε(t) =
1

ε
Q̃(t) + Q̂(t),

where Q̃(t) = diag(Q̃1(t), . . . , Q̃l(t)) such that, for t ∈ [0, T ],

Q̂(t) and Q̃k(t) for k = 1, . . . , l, are themselves generators of

appropriate dimensions. For each k = 1, . . . , l, Q̃k(t) is weakly
irreducible.

(A8.8) The control space Γ is a compact set. The function f(·) is con-
tinuous on R

n×Γ×M. For each (�, α), f(·, α, �) satisfies a linear
growth condition, and is Lipschitz continuous. In addition, for
each x and α the set f(x, α,Γ) = {f(x, α, u); u ∈ Γ} is convex
(see Definition A.33).

(A8.9) G(·) is bounded and continuous.
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Remark 8.15. A few words about the assumptions are in order. For the
dynamic programming approach used in the previous sections, the gen-
erator is independent of time. In this section, we are able to deal with
time-dependent Q̃(t) under weaker conditions. In view of the definition of

a generator (Definition 2.2), Q̃(·) and Q̂(·) are both bounded. We only re-

quire that each subgenerator Q̃i(t) is weakly irreducible, and only need the
weak convergence of αε(·) to α(·) and certain moment estimates, which
are guaranteed by our results in Theorem 5.57. It should be pointed out
that there is no smoothness assumption on Qε(·). Measurability is suffi-
cient. Note that the function f(·) depends on the variable u nonlinearly.
One of the advantages of the use of the relaxed control representation is
that it allows us to “convert” the nonlinear dependence on u to a situ-
ation where the function depends on the control linearly. As for the dif-
ferential equation, the Lipschitz condition, together with the convexity of
f(x, α,Γ) implies the existence of the unique solution (see Roxin [185]).
The boundedness of the running cost in (A8.9) is not essential; it allows
simpler exposition, however.

Corresponding to (8.27), there is an associate limit problem P0:

P0 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize:

J(m) = E

l∑

i=1

mi∑

j=1

∫ T

0

∫

G(x(t), sij , �)mt(d�)ν
i
j(t)I{α(t)=i}dt,

subject to:

x(t) = x+
l∑

i=1

mi∑

j=1

∫ t

0

∫

f(x(s), sij , �)ms(d�)ν
i
j(s)I{α(s)=i}ds.

Denote by R0 the set of admissible controls for the limit problem, that is,

R0 = {m(·) ∈ IM; m(·) is Ft adapted},

where Ft = σ{x(s), α(s); s ≤ t}.
To prepare us for the subsequent studies, we state two lemmas. The first

one reveals properties of the limit problem and gives a priori bounds for
both Pε and P0. The a priori bounds are easily obtained by examining
the defining ordinary differential equations and utilizing the linear growth
condition, the Lipschitz continuity together with Gronwall’s inequality; the
proof of the last assertion of the following lemma is similar to the corre-
sponding results in Fleming [62], Kushner and Runggaldier [142], Kushner
[140]. The second lemma is a version of the chattering lemma and can be
proved similar to that of [140, 142].
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Lemma 8.16. The following assertions hold.

(a) The solution xε(·) of the system equation in Pε,

sup
0≤t≤T

|xε(t)| ≤ K(1 + |x|) w.p.1. (8.28)

where x = xε(0) is the initial condition.

(b) Let m(·) be an admissible relaxed control for P0. Then there is an
Ft = σ{x(s), α(s); s ≤ t} adapted solution x(·) of the system equation
in P0 such that

sup
0≤t≤T

|x(t)| ≤ K(1 + |x|) w.p.1,

where x = x(0) is the initial condition.

(c) Let mη(·) ⇒ m(·), where mη(·) are admissible and η belongs to an
index set I ⊂ R such that η → 0. Suppose xη(·) is the solution to
the differential equation in P0 with m(·) replaced by mη(·). Then
xη(·) ⇒ x(·) such that m(·) is admissible.

Lemma 8.17. The following assertions hold.

(a) There is an optimal relaxed control in R0.

(b) For each δ > 0, there is an admissible uδ(·) for the limit problem
which is δ-optimal for P0, i.e.,

J(uδ) ≤ inf
m∈R0

J(m) + δ.

(c) There exists a piecewise-constant (in t) and locally Lipschitz contin-
uous in x (uniformly in t) control uδ(·) such that

J(uδ) ≤ inf
m∈R0

J(m) + δ.

Now we are in a position to obtain the weak convergence result. The fol-
lowing theorem indicates that the system of interest, namely Pε, is close
to the limit problem P0 in an appropriate sense.

Theorem 8.18. Assume (A8.7)–(A8.9). Let δε → 0 as ε → 0 and let
m̃ε(·) be a δε-optimal admissible relaxed control for Pε. Then the following
assertions hold.

(a) {xε(m̃ε, ·), m̃ε(·)} is tight in Dn[0, T ]× IM.

(b) If m̃ε(·) ⇒ m̃(·) as ε → 0, then m̃(·) ∈ R0 and the limit of any
weakly convergent subsequence of {xε(m̃ε, ·), m̃ε(·)} satisfies the sys-
tem equation in P0 with m replaced by m̃.
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(c) For the relaxed controls m̃ε(·) and m̃(·) ∈ IM given above,

Jε(m̃ε) → J(m̃) as ε→ 0.

Proof: We divide the proof into several steps. Using the weak convergence
method and averaging techniques developed by Kushner [139], the proof
proceeds by a series of approximations, each one simplifying the process a
little more to eventually obtain the desired result.
Step 1: This step focuses on the tightness of the underlying process. Owing
to the compactness of Γ, Γ× [0, T ] is compact. As a result, {m̃ε(·)} is tight
in IM. By virtue of the a priori bounds in Lemma 8.16, {xε(·)} is tight and
all limits have continuous paths w.p.1 by virtue of Kushner [139, Lemma
7, p. 51]. This yields the desired tightness of {xε(·), m̃ε(·)}.
Step 2: Since {xε(·), m̃ε(·)} is tight, using Prohorov’s theorem, we may
extract a convergent subsequence. For ease of presentation, we still use
ε as its index. Suppose the limit is (x(·), m̃(·)). In view of the Skorohod
representation, without changing notation, suppose xε(·) converges to x(·)
w.p.1, and the convergence is uniform on any bounded time interval.
First, for each Borel set B, m̃{B × [0, t]} depends on (ω, t) and is abso-

lutely continuous uniformly in (ω, t). This implies that the “derivative”

m̃t(B) = lim
Δ→0+

1

Δ

(

m̃{B × [0, t]} − m̃{B × [0, t−Δ]}
)

exists for almost all (ω, t) with t > 0. Moreover m̃t(·) is (ω, t)-measurable
such that m̃t(Γ) = 1, and for each bounded and continuous function ρ̃(·),

∫ t

0

∫

ρ̃(s, �)m̃t(d�)ds =

∫ t

0

∫

ρ̃(s, �)m̃(d�× ds).

Thus m̃(·) is admissible.
To proceed, write xε(·) as

xε(t) = x+
l∑

i=1

mi∑

j=1

[∫ t

0

∫

f(x(s), sij , �)m̃s(d�)ν
i
j(s)I{αε(s)=i}ds

+

∫ t

0

∫

[f(xε(s), sij , �)− f(x(s), sij , �)]m̃s(d�)ν
i
j(s)I{αε(s)=i}ds

+

∫ t

0

∫

f(xε(s), sij , �)[I{αε(s)=sij} − νij(s)I{αε(s)=i}]m̃s(d�)ds

+

∫ t

0

∫

f(xε(s), sij , �)[m̃
ε
s(d�)− m̃s(d�)]I{αε(s)=sij}ds

]

.

(8.29)

We show that the second, the third, and the fourth lines in (8.29) go to 0 as
ε→ 0 in probability uniformly in t. First of all, in view of the continuity of
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f(·), the weak convergence of xε(·) to x(·) and the Skorohod representation
infer that by enlarging the probability space,

lim
ε→0

sup
0≤t≤T

E

∣
∣
∣
∣

∫ t

0

∫

[f(xε(s), sij , �)− f(x(s), sij , �)]

×m̃s(d�)ν
i
j(s)I{αε(s)=i}ds

∣
∣
∣
∣ = 0.

The second line of (8.29) goes to zero in probability.
To estimate the terms in the third line, using the a priori bound of xε(·),

the continuity of f(·), and Theorem 5.52, an integration by parts leads to

lim
ε→0

(

sup
0≤t≤T

E

∣
∣
∣
∣

∫ t

0

∫

f(xε(s), sij , �)

×[I{αε(s)=sij} − νij(s)I{αε(s)=i}]m̃s(d�)ds

∣
∣
∣
∣

2)

≤ lim
ε→0

K

(

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

[I{αε(s)=sij} − νij(s)I{αε(s)=i}]ds

∣
∣
∣
∣

2)

= 0.

The last line above follows from Theorem 5.52. Hence the third line of
(8.29) also goes to 0 in probability.
In view of the convergence of m̃ε(·) to m̃(·), and the continuity and the

boundedness of f(·),

lim
ε→0

(

sup
0≤t≤T

E

∣
∣
∣
∣

∫ t

0

∫

f(xε(s), sij , �)

×[m̃ε
s(d�)− m̃s(d�)]I{αε(s)=sij}ds

∣
∣
∣
∣

)

= 0.

This implies that the fourth line of (8.29) goes to 0 in probability.
Therefore,

xε(t) = x+

l∑

i=1

mi∑

j=1

∫ t

0

∫

f(x(s), sij , �)m̃s(d�)ν
i
j(s)I{αε(s)=i}ds+ o(1),

(8.30)

where o(1) → 0 in probability uniformly in t ∈ [0, T ] as ε→ 0. Note that by
virtue of Theorem 5.53, αε(·) converges weakly to α(·) and hence I{αε(s)=i}
converges to I{α(s)=i} weakly. As a result, the limit x(·) satisfies

x(t) = x+

l∑

i=1

mi∑

j=1

∫ t

0

∫

f(x(s), sij , �)m̃s(d�)ν
i
j(s)I{α(s)=i}ds.
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Owing to the nature of the D space, there can be at most countable number
of points t at which P{x(t) �= x(t−)} > 0 (see Kushner [139, p. 32]). Let Tp
denote the complement of this set, and let tκ1 < t < t + s with t, tκ1 ,
t + s ∈ Tp, i.e., they are in the set of continuity points of x(·). Let h(·)
be any bounded and continuous function, and F (·) be any continuously
differentiable function with compact support. Let pκ2(·) be an arbitrary
bounded and continuous function. Note that

〈pκ2 , m̃
ε〉t =

∫ t

0

∫

pκ2(s, �)m̃
ε
s(d�)ds

→
∫ t

0

∫

pκ2(s, �)m̃s(d�)ds = 〈pκ2 , m̃〉t,

as ε → 0. Let i1 and j1 be arbitrary positive integers. Then by virtue of
the weak convergence and the Skorohod representation (without changing
notation),

E
(
h(xε(tκ1), 〈pκ2 , m̃

ε〉tκ1
, κ1 ≤ i1, κ2 ≤ j1)

× (F (xε(t+ s))− F (xε(t)))
)

→ E
(
h(x(tκ1), 〈pκ2 , m̃〉tκ1

, κ1 ≤ i1, κ2 ≤ j1)

× (F (x(t + s))− F (x(t)))
)
.

On the other hand,

lim
ε→0

Eh(xε(tκ1), 〈pκ2 , m̃
ε〉tκ1

, κ1 ≤ i1, κ2 ≤ j1)

×
[

F (xε(t+ s))− F (xε(t))−
∫ t+s

t

AεF (xε(τ))dτ

]

= 0,

where

AεF (x) =

(
∂F (x)

∂x

)′
(

l∑

i=1

mi∑

j=1

∫

f(x, sij , �)m̃
ε
t (d�)I{αε(t)=sij}

)

.

Consequently, using (8.30),

Eh(x(tκ1), 〈pκ2 , m̃〉tκ1
, κ1 ≤ i1, κ2 ≤ j1)

×
(

F (x(t + s))− F (x(t)) −
∫ t+s

t

AF (x(τ))dτ

)

= 0,

(8.31)
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where

AF (x) =

(
∂F (x)

∂x

)′
(

l∑

i=1

mi∑

j=1

∫

f(x, sij , �)m̃t(d�)ν
i
j(t)I{α(t)=i}

)

.

The arbitrariness of i1, j1, F (·), h(·), pκ2(·), tκ1 , t, s, together with (8.31),
implies that x(·) solves the martingale problem with operator A, that is,

F (x(t)) − F (x(0)) −
∫ t

0

AF (x(s))ds

is a martingale for each bounded real-valued function F (·) being continu-
ously differentiable with compact support. Equivalently, x(·) satisfies the
limit problem, and x(·) has continuous paths with probability one. Further-
more, m̃(·) is an admissible relaxed control for the limit problem P0.
Step 3: The weak convergence of (xε(·), m̃ε(·), αε(·)) to (x(·), m̃(·), α(·)),
the continuity of G(·), and detailed estimates similar to those leading to
(8.30) imply Jε(m̃ε) → J(m̃) as ε→ 0. �

Remark 8.19 The proof above is in the spirit of the direct averaging
method (see Kushner [139, Chapter 5]). That is, by viewing the chain
αε(·) as a “noise,” one averages it out and derives the limit system via a
direct approach. Note that in our system, the limit distributions, namely
νi(·), for i = 1, . . . , l, are time dependent. In general, nonstationarity is
very hard to deal with. The asymptotic properties of the aggregated chain
αε(·), obtained in Chapter 5, especially the weak convergence of αε(·) and
Theorem 5.52 enables us to overcome the difficulty and obtain the desired
result.

To proceed, we aim at deriving a limit result for the approximation of Pε

via P0. Denote by vε and v0 the value functions of Pε and P0, respectively.
The asymptotically near optimality is in the theorem below, which indicates
a nearly optimal control for the original problem Pε can be obtained via a
δ-optimal control of P0.

Theorem 8.20. Assume (A8.7)–(A8.9). Then

lim
ε→0

vε = v0. (8.32)

Moreover, for each δ > 0, there exists a Lipschitz continuous feedback con-
trol uδ(x, t), which is δ-optimal for P0 such that for the cost function Jε(·)
in Pε,

lim sup
ε→0

∣
∣Jε(uδ)− vε

∣
∣ ≤ δ.

Remark 8.21. This theorem indicates a nearly optimal control for the
original problem Pε can be obtained by solving the limit problem P0. Since
δ > 0 is arbitrary, uδ can be chosen to approximate the optimal solution
with desired accuracy.
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Proof of Theorem 8.20: By virtue of Lemma 8.17, for each δ > 0, a δ-optimal
control uδ(x, t) for Problem P0 exists. The weak convergence results of
Theorem 8.18 then yield

xε(uδ, ·) ⇒ x(uδ, ·) and Jε(uδ) → J(uδ). (8.33)

Since uδ is a δ-optimal control for P0,

J(uδ) ≤ v0 + δ.

In view of (8.33), we have

Jε(uδ) = J(uδ) + Δ1(ε) ≤ v0 + δ +Δ1(ε), (8.34)

where Δ1(ε) → 0 as ε→ 0.
Since vε is the value function for Pε, vε ≤ Jε(uδ). By virtue of Theo-

rem 8.18, choose m̃ε ∈ Rε such that vε ≥ Jε(m̃ε) − ε. Since Rε is rela-
tively compact, there exists a subsequence {m̃ε(·)} such that m̃ε(·) ⇒ m̃(·).
It follows from Theorem 8.18 again that

v0 ≤ J(m̃) = vε +Δ2(ε),

for some Δ2(ε) → 0 as ε→ 0,

vε ≤ Jε(uδ) ≤ v0 + δ +Δ1(ε)

≤ vε + δ +Δ1(ε) + Δ2(ε).

(8.35)

Sending ε→ 0 leads to

lim sup
ε→0

|vε − v0| ≤ δ.

Since δ is arbitrary, limε→0 v
ε = v0.

Clearly Jε(uδ)− vε ≥ 0. By virtue of (8.35),

0 ≤ Jε(uδ)− vε ≤ δ +Δ1(ε) + Δ2(ε). (8.36)

Taking lim sup in (8.36) yields

lim sup
ε→0

∣
∣Jε(uδ)− vε

∣
∣ ≤ δ.

The proof of the theorem is thus completed. �
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8.7 Notes

This chapter is based on Zhang, Yin, and Boukas [256], and Yin and Zhang
[233, 234]. As far as the dynamic programming approach (Sections 8.2–
8.5) is concerned, Theorem 8.8 can be extended to models in a finite-time
horizon with a cost function

E

∫ T

s

G(x(τ), αε(τ), u(τ))dτ,

and an initial condition x(s) = x of the dynamic system (see Zhang and
Yin [251] for a related work.) However, in this case, the optimal control U∗

would be a function of (s, x). Note that the proof of Theorem 8.11 requires
that (df̃(s)/ds) be bounded, which demands (∂v0(s, x)/∂s) be Lipschitz in
s to make U∗(s, x) Lipschitz in s. The Lipschitz property of (∂v0(s, x)/∂s) is

difficult to verify. Nevertheless, when Q̃ is irreducible (with a single block),
the Lipschitz condition on (∂v0(s, x)/∂s) is not needed; see Zhang [247] for
details.
In this chapter we only considered the structure of the two-level hierar-

chy, i.e., the original problem Pε vs. the limit problem P0. Similar analysis
can be carried out for multi-level hierarchy in which the reduction of com-
plexity can be achieved step-by-step. This procedure can also be viewed as
a multi-resolution approach in the sense of “increment in information” as in
the wavelets theory; see Daubechies [40] for related discussions. Suppose in
a given system, the frequencies of different events can be characterized by
positive numbers 1/ε1, 1/ε2, 1/ε3, . . ., 1/εn0 for some positive integer n0,
where ε1 � ε2 � ε3 � · · · � εn0 . Name the given problem Pε1,ε2,...,εn0 .
If this system is too large to deal with, to find numerical solutions, one needs
to work with an approximate problem that can be handled numerically
(termed workable in what follows) and that provides a good approxima-
tion to the given system. To begin, one examines the problem Pε1,ε2,...,εn0 .
If it is workable, solve it, otherwise, average out the variables correspond-
ing to ε1 and obtain a problem P0,ε2,...,εn0 . Then check if the resulting
problem is workable. If the answer is yes, solve it; if not, average out the
variables corresponding to ε2. Continue in this way, we eventually obtain a
system which is workable. This procedure leads to the smallest k such that
P0,...,0,εk,εk+1,...,εn0 is workable.
Naturally, it is interesting to ask the following questions. If one can go,

for example, from

Pε1,ε2,...,εn0 to P0,ε2,ε3,...,εn0 , then to P0,0,ε3,...,εn0 ,

will P0,0,ε3,...,εn0 provide a good approximation to Pε1,ε2,ε3,...,εn0 when
(ε1, ε2) as a pair is small? In fact, such an approach was demonstrated
in Sethi and Zhang [193] in the context of marketing and production plan-
ning; see also Sethi and Zhang [192]. Thus, one need only consider two-level
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hierarchy and move from one level approximation to the next level approx-
imation step-by-step till reaches a workable system.
In the context of manufacturing systems, optimal production policies

were considered by many people including E. K. Boukas, A. Haurie, W.
Fleming, S. Gershwin, J. Jiang, S. P. Sethi, H. M. Soner, G. Yin, Q. Zhang,
and X. Y. Zhou; see Boukas and Haurie [19], Fleming, Sethi, and Soner
[65] and the books Gershwin [71], Sethi and Zhang [192], Yin and Zhang
[235, 236] for a review of the literature. Other related issues in singular per-
turbations can be found in the survey by Saksena, O’Reilly, and Kokotovic
[186] and references therein.
In conjunction to the weak convergence approach, in Section 8.6, one

may wish to investigate the infinite horizon counterpart. In this case, the
objective function can be either a discounted cost

Jε(m̃ε) = E

∫ ∞

0

e−ρt

∫

G(xε(t), αε(t), �)m̃ε
t (d�)dt

for some ρ > 0, or an average cost per unit time

Jε(m̃ε) = lim sup
T→∞

1

T
E

∫ T

0

∫

G(xε(t), αε(t), �)m̃ε
t (d�)dt.

The origin of the weak convergence method to nearly optimal controls is
in the work of Kushner and Runggaldier [142] for systems driven by wide
bandwidth processes. Singularly perturbed controlled diffusion is treated
in Bensoussan [8] using partial differential equation methods and the re-
lated singularly perturbed systems (both control and filtering problems)
with wideband noise are studied extensively in Kushner [140]. Many people
have contributed to the literature of singular perturbation in control the-
ory for deterministic and stochastic systems. The article of Kokotovic [126]
contains a detailed survey on the subject, and the reference of Kokotovic,
Bensoussan, and Blankenship [127] collects a large number of references.
Systems with fast-changing processes and unknown parameters are treated
in the paper of Yin and Zhang [233], where the limit system is a controlled
diffusion. This chapter complements the previous work by providing near
optimality for systems with Markovian driving processes of nondiffusion
type and/or controlled Markov chains.
Related literature in control theory can be found in the books of Flem-

ing and Rishel [63], Fleming and Soner [64], and the reference therein. The
book by Sethi and Thompson [191] is a good source for examples in ap-
plications of management science. Note that in Lemma 8.10, we obtained
a verification theorem when the value function is differentiable. A version
of such a verification theorem can be derived without the differentiability
condition; related results can be found in Zhou [258].
Warga [214] (see also Berkovitz [9]) initiated the relaxed control formula-

tion for deterministic systems under the framework of variational problems.
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Then Fleming [62] extended the result to that of stochastic systems. Such
a representation is quite useful for many problems arising in a wide variety
of applications (see Kushner [140] and Kushner and Runggaldier [142]). An
extensive survey on this and related topics can be found in Kushner [140]
among others.
In [175] (see also the references therein), Phillips and Kokotovic take

asymptotic expansions of the cost function to treat near optimality. It will
be interesting to see if an asymptotic expansion of the cost function can be
derived under the formulation of the current chapter.
Recently, Costa and Dufour [33] studied the problem under the frame-

work of a piecewise deterministic Markov process. They established the
convergence of the value functions to the associated limit value function.
Such property is obtained by showing that the liminf and limsup of some
value functions satisfy some inequalities as ε→ 0 to relax the Lipschitz con-
tinuity condition; see also Costa and Dufour [34] for results in connection
with discrete-time Markov decision processes (see Yin and Zhang [238]) in
a general state space.
Another potential application of the approach in this chapter is to an-

alyze hybrid filtering problems; see the papers of Blom and Bar-Shalom
[17], Li [146], Haussmann and Zhang [82, 83], Zhang [250], and the book
by Elliott, Aggoun, and Moore [57] for related literature. In target tracking
and nonlinear filtering, an effective algorithm for dealing with Markovian
switching systems is that of the Interacting Multiple Model (IMM) (see
Blom and Bar-Shalom [17]). However, up to now, there is no theoreti-
cal justification for the desired optimality or near optimality of the IMM
algorithm; see a recent survey by Li [146] for details. It is interesting from
both theoretical and practical points of view to study the optimality of the
IMM algorithm. It is conceivable that the singular perturbation approach
discussed in this chapter can be used to obtain near optimality of the IMM
filtering under suitable formulations.
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Numerical Methods for Control and
Optimization

9.1 Introduction

One of the main techniques presented in Chapters 7 and 8 is to reduce the
complexity of singularly perturbed systems by studying the correspond-
ing limit systems that are easier to handle than the original problems. The
optimal or nearly optimal controls of the limit problems can be used to con-
struct nearly optimal controls of the original systems. Although the limit
systems are substantially simpler than the original pre-limit ones, very
often closed-form solutions are still difficult to obtain, except in special
cases. For example, in the context of stochastic manufacturing systems,
a closed-form solution for optimal production planning is obtained for a
system with one-machine and one-part-type by Akella and Kumar [2] for
a discounted cost problem, and Zhang and Yin [251] for a finite horizon
counterpart. Such closed-form solutions do not seem possible for more gen-
eral manufacturing systems such as flowshops and jobshops (see Sethi and
Zhang [192]). For many applications, one has to resort to a viable alterna-
tive – numerical methods.
As a complement to our discussion of singularly perturbed control

problems for Markov chains, this chapter focuses on numerical methods for
solutions of the control problems. This is a necessary step for many control
and optimization problems and alleviates considerably the difficulties en-
countered. In fact, such a step often plays a crucial role in applications. To
take up this issue, we examine the underlying problems from two different

G.G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications,
Stochastic Modelling 37, DOI 10.1007/978-1-4614-4346-9 9,
© Springer Science+Business Media, LLC 2013

319



320 9. Numerical Methods for Control and Optimization

angles, namely, numerical approximation of optimal control problems and
stochastic optimization formulation for finding optimal controls under
threshold policies.
Treating the optimal control problems, we use the finite difference

approximation method developed by Kushner (see Kushner [138], Kushner
and Dupuis [141], and the references therein), which has been proven to
be very useful for various stochastic systems. Having in our mind a wide
variety of applications, we formulate the problem as a nonlinear controlled
Markov chain. Our setup is general enough to include, for example, many
problems in manufacturing models as special cases. The results obtained
are applicable to various dynamical systems and controlled piecewise-
deterministic processes.
For various control and optimization problems with long-run average

costs, one is often content with a nearly optimal or suboptimal solution.
One of the most easily implementable and monitoring strategies in practice
is the class of threshold control policies, which provides an enticing alter-
native. Kimemia and Gershwin brought in the idea of the use of hedging
(threshold) policies. Further work along this line may be found in Carama-
nis and Liberopoulos [24] among others. Under the threshold policy, a con-
trol problem can conveniently be transferred to an optimization procedure.
The idea is to develop a systematic procedure for finding the optimal thresh-
old values. The essence is to utilize stochastic approximation/optimization
methods to resolve the problem. By focusing our attention to the class of
threshold controls and considering the expected cost as a function of the
threshold levels, we generate a sequence of noisy gradient estimates and
update the estimate of the optimal threshold values by use of stochastic
recursive algorithms.
The rest of the chapter is arranged as follows. In Section 9.2, we develop a

finite difference approximation procedure. Section 9.3 concentrates on the
stochastic optimization methods for long-run average cost under thresh-
old policies. Further discussions and citation of related references are in
Section 9.4.

9.2 Numerical Methods for Optimal Control

Consider numerical solutions for solving the following control problem:

P :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize: J(x, α, u(·)) = E

∫ ∞

0

e−ρtG(x(t), α(t), u(t))dt,

subject to:
dx(t)

dt
= f(x(t), α(t), u(t)),

x(0) = x, u(·) ∈ A, α(0) = α,

value function: v(x, α) = inf
u(·)∈A

J(x, α, u(·)),
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where α(·) is a finite-state Markov chain generated by Q, and A denotes the
set of all admissible controls (i.e., controls that are progressively measurable
with respect to F(t) = σ{α(s) : s ≤ t} and u(t) ∈ Γ, a compact subset
of Rn1).
The HJB equation of the control problem P is

ρv(x, α) = min
u∈Γ

{

f(x, α, u)
∂v(x, α)

∂x

+G(x, α, u)

}

+Qv(x, ·)(α),
(9.1)

where as noted in Remark 8.4, f(x, α, u)(∂v/∂x) means 〈f, (∂v/∂x)〉, the
usual inner product of f and (∂v/∂x).
In view of the verification theorem (Theorem A.31), to find an optimal

control for the problem, the dynamic programming approach requires a
solution to the associated HJB equation. However, more often than not, a
closed-form solution of the corresponding HJB equation is not obtainable.
Thus, it is necessary to develop numerical algorithms to resolve the prob-
lem. In this section, we adopt Kushner’s numerical methods for stochas-
tic controls. Our approach consists of using an approximation method for
the partial derivatives of the value function v(x, α) within a finite grid of the
state vector x and a finite grid for the control vector, which transforms the
original optimization problem to an auxiliary discounted Markov decision
process. This transformation allows us to apply the well-known techniques,
such as a successive approximation or the policy improvement, to solve the
HJB equations and then the underlying optimization problems.
Let Δxi > 0 denote the length of the finite difference interval of the

variables xi for i = 1, . . . , n. Using this finite difference interval, approx-
imate the value function v(x, α) by a sequence of functions vΔ(x, α) and
the partial derivatives (∂v(x, α)/∂xi) by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

Δxi
(vΔ(x(Δxi,+), α)− vΔ(x, α)), if fi(x, α, u) ≥ 0,

1

Δxi
(vΔ(x, α) − vΔ(x(Δxi,−), α)), if fi(x, α, u) < 0,

where f(x, α, u) = (f1(x, α, u), . . . , fn(x, α, u))
′ and

x(Δxi,+) = (x1, . . . , xj−1, xi +Δxi, xj+1, . . . , xn)
′,

x(Δxi,−) = (x1, . . . , xj−1, xi −Δxi, xj+1, . . . , xn)
′.
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This leads to

fi(x, α, u)
∂

∂xi
v(x, α)=̇

|fi(x, α, u)|
Δxi

vΔ(x(Δxi,+), α)I{fi(x,α,u)≥0}

+
|fi(x, α, u)|

Δxi
vΔ(x(Δxi,−), α)I{fi(x,α,u)<0}

−|fi(x, α, u)|
Δxi

vΔ(x, α).

With these approximations, we can “rewrite” the HJB equation (9.1) in
terms of vΔ(x, α) as

vΔ(x, α) = min
u∈Γ

(

ρ+ |qαα|+
n∑

i=1

|fi(x, α, u)|
Δxi

)−1

×
{

n∑

i=1

|fi(x, α, u)|
Δxi

(

vΔ(x(Δxi,+), α)I{fi(x,α,u)≥0}

+vΔ(x(Δxi,−), α)I{fi(x,α,u)<0}

)

+G(x, α, u) +
∑

β �=α

qαβv
Δ(x, β)

}

.

(9.2)

The theorem below shows that vΔ(x, α) converges to v(x, α) as the step
size Δxi goes to zero. For simplicity, we only consider the case that

Δx1 = Δx2 = · · · = Δxn = Δ > 0.

Theorem 9.1. Assume (A9.1) and (A9.2). Suppose that vΔ(x, α) is a
solution to (9.2) and

0 ≤ vΔ(x, α) ≤ K(1 + |x|κ),

for some constants K > 0 and κ > 0. Then

lim
Δ→0

vΔ(x, α) = v(x, α). (9.3)

Proof: We only give a brief sketch here; for a detailed account, see Kushner
and Dupuis [141]. Note that (9.2) can be written as

vΔ(x, α) = T vΔ(x, α), (9.4)

for an operator T . The problem becomes a fixed point iteration procedure.
It is not difficult to check that for each Δ > 0, the operator T is a contrac-
tion mapping. The contraction mapping principle then implies that (9.2)
has a unique solution vΔ(x, α).
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To proceed, define a sequence {vΔk (x, α)} as

vΔ0 (x, α) = 0, and vΔk+1(x, α) := T vΔk (x, α), k ≥ 0.

Using this sequence, we can show that the solution to (9.4) is continuous.
For any fixed positive Δ (= Δxi, for i = 1, . . . , n) and α ∈ M,

0 < ρ ≤ ρ+ |qαα|+
n∑

i=1

|fi(x, α, u)|
Δxi

≤ K1(1 + Δ−1),

for some constant K1. As a result, (9.2) is equivalent to

0 = min
u∈Γ

{
n∑

i=1

|fi(x, α, u)|
Δxi

(

[vΔ(x(Δxi,+), α)− vΔ(x, α)]I{fi(x,α,u)≥0}

+[vΔ(x(Δxi,−), α)− vΔ(x, α)]I{fi(x,α,u)<0}

)

+G(x, α, u) +
∑

β �=α

qαβ [v
Δ(x, β)− vΔ(x, α)] − ρvΔ(x, α)

}

.

For each x ∈ R
n and α ∈ M, let

v∗(x, α) := lim sup
δ→0

(

lim sup
Δ→0

[
sup{vΔ(x̃, α) : |x− x̃| ≤ δ}

]
)

and

v∗(x, α) := lim inf
δ→0

(

lim inf
Δ→0

[
inf{vΔ(x̃, α) : |x− x̃| ≤ δ}

]
)

.

It is clear that v∗(x, α) ≥ v∗(x, α). Moreover, it can be shown that v∗(x, α)
is upper semicontinuous and v∗(x, α) is lower semicontinuous.
To obtain the convergence result, it remains to derive the reverse

inequality, v∗(x, α) ≤ v∗(x, α). In fact, we need only show that v∗(x, α)
and v∗(x, α) are viscosity subsolution and viscosity supersolution to (9.1),
respectively. This can be done as in Kushner and Dupuis [141, Theorem
14.3.1]. Consequently, by virtue of the uniqueness of the viscosity solution
to the HJB equation (see Theorem A.24), v∗(x, α) ≤ v∗(x, α). Hence,

v∗(x, α) = v∗(x, α) = v(x, α)

as desired. �

Remark 9.2. To obtain an optimal control via the dynamic programming
approach, one needs to use the corresponding value function as in the
verification theorem (see Theorem A.31). Usually, the numerical scheme
produces only an approximate value function, which can be regarded as a
perturbation of the true value function. The rationale is that by using the
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approximate value function in the verification theorem, one can construct a
feedback control policy that is approximately optimal. In fact, under fairly
mild conditions and using a viscosity solution approach, Yan and Zhang
[221] have shown that the control policy obtained using an approximate
value function is indeed nearly optimal as the perturbations go to 0.

Remark 9.3. In view of the discussion above, there is nothing so special
about the problem P . The same approach can equally be applied to the
singularly perturbed problem Pε defined in Chapter 8. However, following
our previous consideration, for a large and complex system, one would
be better off to obtain a “reduced-order” system (limit system) first and
to apply the numerical method only to the limit problem. The proof of
Theorem 9.1 uses viscosity solution techniques. An alternative approach is
to apply the method of weak convergence via Markov chain approximation
techniques as in the setup of Kushner [138] or Kushner and Dupuis [141].

9.3 Optimization under Threshold Policy

This section consists of several subsections. First an optimal control
problem is reformulated as a stochastic optimization problem. The next
subsection gives the convergence proof of the recursive algorithm followed
by a couple of examples in production planning with unreliable machines.
The last subsection derives the estimation error for the approximation.

9.3.1 Stochastic Optimization Formulation

As in the previous section, suppose that α(·) is a finite-state Markov chain
with stationary transition probability or, equivalently, the generatorQ(·) =
Q, a constant matrix. Let x(t) ∈ R

n, u(t) ∈ Γ, a compact subset of Rn1 ,
f(·, ·, ·) : Rn ×Γ×M �→ R

n, and G(·, ·, ·) : Rn ×Γ×M �→ R. Consider the
following controlled dynamic system

dx(t)

dt
= f(x(t), α(t), u(t)), x(0) = x0, (9.5)

with a long-run average cost function

J(u) = lim
T1→∞

1

T1
E

∫ T1

0

G(x(t), α(t), u(t))dt. (9.6)

Instead of seeking optimal controls of the system given above, we
reformulate it as a stochastic optimization problem. The main idea lies
in concentrating on a class of controls of the threshold type. Under such
a setting, our effort is to develop an easily implementable algorithm to
approximate the optimal threshold levels. Here and hereafter, the terms
threshold values and threshold levels will be used interchangeably.
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Definition 9.4. A control policy u(t) ∈ Γ is of threshold type with
constant threshold levels if there are sets Ai ⊂ R

n and constants ci ∈ Γ ⊂
R

n1 for i = 1, . . . , n0 such that for some integer n0,

u(t) =

n0∑

i=1

ciI{x(t)∈Ai}.

Typically, the sets Ai depend on some parameter θ ∈ R
n. To illustrate,

consider the following example. This is an analytically solvable case, and
describes the salient features of the threshold type of control policies.

Example 9.5. Consider a failure-prone manufacturing system with
production capacity α(·), that is a Markov chain with finite-state space M.
For simplicity, assume M = {α1, α2}, where α1 means the machine is up
and α2 means that the machine is down. Suppose that the breakdown and
repair times are independent and exponentially distributed with parame-
ters λ and μ, respectively. Denote the inventory level and the production
rate of the system by x(t), u(t) ∈ R, respectively. For convenience, let
α1 = 1 and α2 = 0. Then, the production constraints are given as

0 ≤ u(t) ≤ umaxα(t), t ≥ 0,

where umax is the maximum production rate (since α(t) = 0 or 1, umax is
also the maximum capacity) of the machine. Our objective is to find the
optimal control u(·) to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize: J(u) = lim
T1→∞

1

T1
E

∫ T1

0

[c+x+(t) + c−x−(t)]dt,

subject to:
dx(t)

dt
= u(t)− z, x(0) = x0,

where z is a constant demand rate, x+ = max{0, x} and x− = max{0,−x},
and c+ and c− are nonnegative constants. By means of dynamical pro-
gramming equation approach, Bielecki and Kumar [12] derived the optimal
control explicitly, and showed that the optimal control is of threshold type
given by

u∗(t) =

⎧
⎨

⎩

umaxI{α(t)=1}, if x(t) < θ∗,
zI{α(t)=1}, if x(t) = θ∗,
0, if x(t) > θ∗,

where θ∗ is the optimal threshold value given by

θ∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if
umaxλ(c

+ + c−)

c+(umax − z)(λ+ μ)
≤ 1 and

umax − z

λ
>
z

μ
,

∞, if
umax − z

λ
≤ z

μ
,

z(umax − z)

μ(umax − z)− λz
log

(
umaxλ(c

+ + c−)

c+(umax − z)(λ+ μ)

)

, otherwise.
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Moreover, the optimal cost is

J(u∗) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c−λumax

(λ+ μ)(μumax − λz − μz)
, if θ∗ = 0,

c+z

λ+ μ
+

c+z(umax − z)

μ(umax − z)− λz
log

(
umaxλ(c

+ + c−)

c+(umax − z)(λ+ μ)

)

,

if θ∗ > 0.

Since the optimal control depends on the threshold parameter θ, the
expected cost can also be viewed as a function of the threshold. Intuitively,
the optimal policy can be described as follows. If the inventory level is
below the optimal threshold, one should produce at a full speed; if the
inventory level is above the threshold, one should produce nothing; if the
inventory level is at the threshold, one should produce exactly the same as
the demand.

In view of (9.6), focusing our attention to the class of controls of
threshold type, the cost J(·) becomes a function of the threshold levels
(i.e., J = J(θ)). Threshold types of control policies have drawn renewed
attention lately, since the idea is appealing and the principle is easy to
apply. First such policies are fairly simple in form and easily implementable
so that they are particularly attractive in applications. Once a threshold
value is determined, a controller or an operator can ignore detailed varia-
tions and concentrate only on adjusting controls according to the threshold
levels. The corresponding control procedure is simpler as compared with
the optimal control policies, since only a monitoring device/procedure is
needed to keep track of the performance of the underlying system. In lieu
of solving the HJB equations, only a few parameters need to be tuned.
Moreover, in various situations, one is often content with suboptimality
owing to the cost consideration and other limitations. Frequently, a sub-
optimal control is nearly or virtually as valuable as an optimal control.
Furthermore, in many cases, threshold control policies are indeed optimal
as in Example 9.5.
Upon transferring the problem to an optimization task, the foremost

important task is to locate the optimal threshold values. This dictates the
development of stochastic recursive algorithms. Our aim is to develop a
systematic approach to approximate the threshold values.
Throughout the rest of the chapter, θ ∈ R

n denotes a column vector.
Denote ξ(t, θ) = (x(t), α(t)), and use η > 0, a small parameter, to represent
the step size. The stochastic optimization algorithm takes the form

θk+1 = θk − η (gradient estimate of J(·) at θk)

= θk − η

T

∫ (k+1)T

kT

g(θk, ξ(t, θk))dt,

(9.7)
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for each integer k ≥ 0, where g(·) is an appropriate function. Example 9.11
and Example 9.12 in what follows, present two examples of such gradient
estimates.
For fixed T > 0, the gradient estimate of J(θ) at the kth iterate is of the

form

1

T

∫ (k+1)T

kT

g(θk, ξ(t, θk))dt.

In what follows, for notational convenience, we often suppress the θ depen-
dence and write ξ(t, θ) as ξ(t). Although the gradient estimate of J(·) in
(9.7) can be obtained via finite difference approximation in a straightfor-
ward way, various alternatives exist. The infinitesimal perturbation analysis
(IPA) approach (see Ho and Cao [87] and Glasserman [74]) provides a better
alternative, however. While it is more efficient, this approach is application
dependent. That is, one needs to figure out the gradient estimate for each
application; there are no general forms of the gradient estimates available.
We use a constant step size since an iterative algorithm with constant step
size has the ability to track slight variation of the parameter and is more
robust with respect to the random errors.
Using the IPA approach, for Example 9.5, the gradient estimate takes

the form

1

T

∫ T

0

g(θk, ξ(t, θk))dt =
1

T

∫ T

0

(
c+I{x(t)>0} − c−I{x(t)<0}

)
dt.

Example 9.12 gives an illustration for a two-machine system.

Remark 9.6. Equation (9.7) is not a standard stochastic approximation
algorithm since averaging is used in the scheme together with continu-
ous time random processes. In Yin, Yan, and Lou [228], with the goal of
obtaining an asymptotically unbiased gradient estimator, T is chosen so
that T = Tη → ∞ as η → 0. However, as noted in Kushner and Vázquez-
Abad [143], and Kushner and Yin [145], one need not choose T so large.
To guarantee the convergence of the algorithm, it is not necessary to use
unbiased (or asymptotically unbiased) estimators of the gradient. In fact,
large T may result in inefficient performance of the algorithms. A little bias
would not and should not concern us.

9.3.2 Convergence

This subsection is devoted to investigating the convergence of the proposed
algorithms. To proceed, the following assumptions are needed. For simplic-
ity, assume the initial approximation θ0 to be nonrandom.

(A9.1) For each θ and each k1,

1

kT

k+k1−1∑

j=k1

EFk1

∫ (j+1)T

jT

g(θ, ξ(t))dt → ∇J(θ)
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in probability, as k → ∞, where EFk1 denotes the conditional
expectation on Fk1T = {ξ(s), s ≤ k1T }, for an integer k1 ≥ 0.

(A9.2) For each T1 <∞, t ∈ [0, T1],

lim
δ→0

E

(

sup
|θ−θ̃|<δ

|g(θ, ξ(t))− g(θ̃, ξ(t))|
)

= 0.

(A9.3) For each N <∞, the set of functions

{

sup
|θ|≤N

|g(θ, ξ(t))|
}

is uniformly integrable.

Remark 9.7. These assumptions originate from particular applications of
manufacturing models. Dealing with specific applications, these conditions
can often be verified (see Yan, Yin, and Lou [220]). Condition (A9.1) is
an ergodicity condition in the sense of convergence in probability, and is a
basic averaging condition. If ξ(·) is a φ-mixing process with E|ξ(t)| < ∞,
then it is a strongly ergodic process and hence (A9.1) holds. In fact, in this
case, the convergence is in the sense of with probability one.
Condition (A9.2) indicates that the function g(·, ξ) may not be continu-

ous, but its expectation is continuous such as for the case that g(·, ξ) is an
indicator function or a combination of indicator functions.
In various applications, the function g(θ, ξ) is often bounded. In such

a case, (A9.3) is verified. Condition (A9.3) allows us to deal with more
complex situations. For example, if

|g(θ, ξ)| ≤ h0(θ)g̃1(ξ) + g̃2(ξ),

where h0(θ) is a continuous function, and E|g̃i(ξ)|1+γ < ∞, i = 1, 2, for
some γ > 0, then condition (A9.3) is also satisfied.

To proceed, we work with continuous time interpolated processes. Let
θη(·) be defined by θη(0) = θ0 and θη(t) = θk for t ∈ [kη, (k + 1)η). Under
the framework of weak convergence (see Kushner [139], and Kushner and
Yin [145]), it will be shown that the following limit theorem holds.

Theorem 9.8. Suppose that (A9.1)–(A9.3) are satisfied and the differen-
tial equation

dθ(t)

dt
= −∇J(θ) (9.8)

has a unique solution for each initial condition θ0. Assume, for simplicity,
that θη(0) = θ0 is independent of η. Then {θη(t)} is tight in D([0,∞);Rn).
Every weakly convergent subsequence has the same limit θ(·) that satisfies
the differential equation (9.8).
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Remark 9.9. Recall that D([0,∞);Rn) denotes the space of R
n-valued

functions that are right continuous and have left-hand limits, endowed with
the Skorohod topology; see Section A.2 in Appendix A. In lieu of choosing
θη(0) = θ0, independent of η, one may use θ0 = θη0 and hence θη(0) =
θη0 (depending on η). Under an additional condition θη0 ⇒ θ0, the result
still holds.

Proof of Theorem 9.8: To avoid possible unboundedness, a truncation
device will be used (see (A.8) in Appendix for a definition). For each
N < ∞, let θη,N (·) be the N -truncation of θη(·) such that θη,N (t) = θη(t)
up until the first exit from the N -sphere SN = {θ; |θ| ≤ N}. A pertinent
use of the truncation device requires the use of a truncation function qN (·),
which is a smooth function defined as

qN (θ) =

{
1 for |θ| ≤ N ,
0 for |θ| ≥ N + 1.

One then replace g(θ, ξ) below by gN (θ, ξ) = g(θ, ξ)qN (θ). For notational
simplicity, we shall omit the truncation function in what follows, however.
In view of the definition of the interpolation (without loss of generality,

assume that t/η and (t + s)/η are integers) and choosing a sequence of
integers {kη} such that kη → ∞ as η → 0 and ηkη = δη → 0, we have

θη,N (t) = θη,N (0)− η

T

t/η−1∑

j=0

∫ (j+1)T

jT

g(θη,Nj , ξ(υ))dυ

= θη,N (0)−
∑

0≤iδη≤t

δη
kηT

×
∑

ikη≤j≤(i+1)kη−1

∫ (j+1)T

jT

g(θη,Nj , ξ(υ))dυ

= θη,N (0)−
∫ t

0

Bη(τ)dτ,

(9.9)

where Bη(·) is a piecewise-constant function on [iδη, (i+ 1)δη), that is,

Bη(t) =
1

kηT

∑

ikη≤j≤(i+1)kη−1

∫ (j+1)T

jT

g(θη,Nj , ξ(υ))dυ (9.10)

for t ∈ [iδη, (i+ 1)δη). It follows from (9.9) that

dθη,N (t)

dt
= −Bη(t).

Condition (A9.3) implies that

{
1

T

∫ (j+1)T

jT

g(θNj , ξ(υ))dυ : j = 1, 2, . . .

}

is uniformly integrable.
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Then by virtue of Theorem A.15, {θη,N(·), Bη(·)} is tight and the limit of
any weakly convergent subsequence has continuous paths with probability
one.
Pick out an arbitrary convergent subsequence and denote the limit by

(θN (·), B(·)). By the Skorohod representation (without changing notation),
we may assume that

(θη,N (·), Bη(·)) → (θN (·), B(·)) w.p.1

and the convergence is uniform on any finite time interval.
Define

MN (t) = θN (t)− θN (0) +

∫ t

0

B(θN (υ))dυ. (9.11)

It will be seen in what follows that B(·) is equal to ∇J(·). If we can show
that MN(t) is a continuous martingale, the limit theorem will hold for the
truncated process. Note that MN (0) = 0 and MN(t) is Lipschitz continu-
ous. If it is a martingale, it must satisfy MN (t) ≡ 0 (see Theorem A.21).
Therefore, we need only verify the martingale property.
To verify the martingale property, let h(·) be any bounded and continuous

function, κ be any positive integer, and ti1 be such that ti1 < t < t+ s for
i1 ≤ κ. In view of the weak convergence and the Skorohod representation,
we have

lim
η→0

Eh(θη,N (ti1), i1 ≤ κ)
(
θη,N (t+ s)− θη,N (t)

)

= Eh(θN (ti1 ), i1 ≤ κ)
(
θN (t+ s)− θN (t)

)
.

(9.12)

Recall that EFj denotes the conditional expectation with respect to the
σ-algebra FjT = σ{ξ(t), t ≤ jT }. Using the recursion (9.9), we have

lim
η→0

Eh(θη,N (ti1), i1 ≤ κ)
(
θη,N (t+ s)− θη,N (t)

)

= lim
η→0

Eh(θη,N (ti1 ), i1 ≤ κ)

×
(

−
t+s∑

iδη=t

δη
kηT

∑

ikη≤j≤(i+1)kη−1

EFj

∫ (j+1)T

jT

g(θη,Nj , ξ(υ))dυ

)

= lim
η→0

Eh(θη,N (ti1 ), i1 ≤ κ)

×
(

−
t+s∑

iδη=t

δη
kηT

∑

ikη≤j≤(i+1)kη−1

EFj

∫ (j+1)T

jT

g(θη,N (τ), ξ(υ))dυ

)

.

(9.13)
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The last equality above follows from the weak convergence, the Skorohod
representation, (A9.2), and ηj → τ as η → 0 for j satisfying ikη ≤ j ≤
(i + 1)kη.
Now for any Δ > 0, there exists a function θN,Δ(·) that takes only finitely

many values (say θ1, . . ., θn0) such that

|θN (τ)− θN,Δ(τ)| < Δ.

Consequently, by applying (A9.2), the limit in (9.13) is the same as that of

lim
η→0

Eh(θη,N (ti1 ), i1 ≤ κ)

×
(

−
t+s∑

iδη=t

δη
kηT

∑

ikη≤j≤(i+1)kη−1

EFj

∫ (j+1)T

jT

g(θN,Δ(τ), ξ(υ))dυ

)

.

By virtue of (9.10), the limit of Bη(τ) is the same as that of

1

kηT

∑

ikη≤j≤(i+1)kη−1

EFj

∫ (j+1)T

jT

g(θN,Δ(τ), ξ(υ))dυ

=

n0∑

i2=1

1

kηT

∑

ikη≤j≤(i+1)kη−1

EFj

∫ (j+1)T

jT

g(θi2 , ξ(υ))dυ I{θN,Δ(τ)=θi2}

→
n0∑

i2=1

∇J(θi2 )I{θN,Δ(τ)=θi2}
in probability

= ∇J(θN,Δ(τ)).

Since Δ > 0 is arbitrary,

1

kηT

∑

ikη≤j≤(i+1)kη−1

EFj

∫ (j+1)T

jT

g(θN,Δ(τ), ξ(υ))dυ → ∇J(θN (τ))

in probability as η → 0. Incorporating this with (9.12) and (9.13) yields

lim
η→0

Eh(θη,N (ti1), i1 ≤ κ)
(
θη,N (t+ s)− θη,N (t)

)

= Eh(θN (ti1), i1 ≤ κ)

(

θN (t+ s)− θN (t) +

∫ t+s

t

∇J(θN (τ))dτ

)

.

(9.14)
Combining (9.12) to (9.14), we arrive at

Eh(θN (ti), i ≤ κ)

(

θN (t+ s)− θN (t) +

∫ t+s

t

∇J(θN (τ))dτ

)

= 0.
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Hence MN (t) is a martingale.
Finally, use the idea of Kushner [139, Theorem 2.2 and the Corollary],

to finish the proof. The main idea is outlined below. Let Pθ(0)(·) (the sub-
script θ(0) signifies the dependence on the initial data) and PN (·) be the
measures induced by θ(·) and θN (·), respectively, on B, the σ-algebra of
Borel subsets of D([0,∞);Rn). Pθ(0)(·) is unique since there is a unique so-
lution to the ordinary differential equation for the initial value θ(0). Thus,
for each T1<∞,

Pθ(0)(θ(·) ∈ A) = PN (θN (·) ∈ A)

for each A ∈ B such that θ(t) takes values in SN (the N -sphere). As a
result,

lim
N→∞

Pθ(0)

(

sup
t≤T1

|θ(t)| ≤ N

)

= 1.

This, together with the weak convergence of θη,N (·), implies that θη(·) ⇒
θ(·). Since the limit is unique, it does not depend on the chosen subsequence.
The proof of the theorem is completed. �

Theorem 9.8 is similar to the law of large numbers. It gives information
on the location and/or distribution of θη(·) for small η and for large but
bounded t. There is a natural connection between the recursive procedure
and the corresponding ordinary differential equation. The optimal threshold
values sought are stable points of the differential equation (9.8).

Theorem 9.10. Assume that the conditions of Theorem 9.8 hold. Suppose
the differential equation in (9.8) has a unique asymptotically stable point
θ∗ (in the sense of Liapunov stability) and the set

{θk; k <∞, η > 0} (9.15)

is bounded in probability in that for each Δ > 0, there is a κΔ > 0 such
that for all η > 0, and all k,

P (|θk| ≥ κΔ) ≤ Δ.

Let tη → ∞ as η → 0. Then θη(tη + ·) is tight in D([0,∞;Rn) and any
weak limit is equal to θ∗.

Equation (9.15) can be established by using a perturbed Liapunov
function method (see Kushner [139], and Kushner and Yin [145]). Theo-
rem 9.10 can be deduced analogously as in the aforementioned reference
(see also Kushner and Yin [144, Theorem 5.1]). We give the main idea
below. Let T1 > 0, and consider the pair {θη(tη + ·), θη(tη −T1+ ·)}, which
is tight. Choose a weakly convergent subsequence (still indexed by η) with
limit denoted by (θ(·), θT1 (·)). Then θ(0) = θT1(T1). The “initial value”
θT1(0) may not be known, but all possible values of θT1(0) belong to a set
that is bounded in probability for all T1 and all convergent subsequences.
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The asymptotic stability then implies that for each Δ > 0, there is a
TΔ > 0 such that for all T1 > TΔ,

P (|θT1(T1)− θ∗| > Δ) < Δ.

Hence the theorem follows.

9.3.3 Examples

To illustrate the idea of approximation of threshold control policies, we con-
sider two manufacturing models in this subsection. The reasons include: (a)
Demonstrate that for the example treated below, threshold control policies
are indeed optimal. (b) Illustrate the use of stochastic optimization proce-
dure for the long-run average cost criteria.
In the first example, our approximation results compare well with those

of Bielecki and Kumar [12]. The second example deals with a two-machine
system, in which no closed-form solution (analytic solution or explicit for-
mula) has been found up to date. To reformulate the problem using op-
timization formulation, we develop stochastic algorithms to estimate the
optimal threshold values.

Example 9.11. Return to Example 9.5. Choose λ = 0.1, μ = 0.125,
z = 1.0, c+ = 2.0, c− = 9.0, and umax = 2.0. Applying the result of
[12], the optimal threshold level and the optimal cost are θ∗ = 66.96 and
J(θ∗) = 142.89, respectively. Using our algorithm with step size η = 0.5
and initial value θ0 = 20, and taking averages of 100 replications, the
approximation method gives θ̃∗ = 67.23 (with a 95% confidence interval
[66.64, 67.80]), and J(θ̃∗) = 139.43. Different initial conditions yield equally
good approximation results. The already existing analytical result allows
us to compare the performance of the approximation algorithm with the
closed-form solution. We would like to note that even if the explicit solution
is available, various parameters (λ, μ, etc.) may not be known; these param-
eters are not required in our approach. Thus the stochastic optimization
approach provides a viable alternative and effective procedure.

Example 9.12. The example to be presented was considered by Yan, Yin,
and Lou [220], in which a combination of infinitesimal perturbation anal-
ysis initiated by Ho (see Ho and Cao [87]) and stochastic approximation
was suggested. Kushner and Vázquez-Abad [143] further examined this
model and relaxed the conditions for convergence. For i = 1, 2, use xi(t)
to denote the inventory levels of machine i, and ui(t) the production rate
of machine i. Since we are not solving the dynamic programming equa-
tions, the demand processes can be quite general. They do not have to
be constants although a constant demand rate is used here for simplicity.
In what follows, we formulate the surplus control model, and construct the
approximation procedure.
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M1 M2
u1

u2

x1 x2 z

FIGURE 9.1. A Two-Machine System

The two machines are in a cascade form and the inventory levels are
given by

dx1(t)

dt
= u1(t)− u2(t),

dx2(t)

dt
= u2(t)− z,

x1(t) ≥ 0, t ≥ 0.

(9.16)

For each i = 1, 2, let the machine capacity be αi(t) with

αi(t) =

{
1, machine i is working;
0, otherwise.

We then have

0 ≤ ui(t) ≤ uimaxαi(t), i = 1, 2,

where uimax is the maximum capacity of machine i for i = 1, 2. Assume
that

u1max > u2max > z.

This scenario is depicted in Figure 9.1.
Surplus at machine i is defined as the difference between accumulative

production and accumulated demand, i.e., it is the inventory level (or work
in progress) at machine i plus the inventory level of all downstream ma-
chines. Let si(t) be the surplus for machine i, for i = 1, 2:

s1(t) = x1(t) + x2(t) and s2(t) = x2(t).

Note that the surplus can be positive or negative. A negative surplus means
that there is a backlog. With these definitions, the system dynamics can
also be written as

ds1(t)

dt
= u1(t)− z,

ds2(t)

dt
= u2(t)− z,

s1(t) ≥ s2(t), t ≥ 0.

(9.17)
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Comparing (9.17) with the one-machine model in the work of Akella and
Kumar [2], and Bielecki and Kumar [12], the surplus control policy is more
or less like having two machines operating independently.

Let θi denote the surplus threshold levels of machine i. The control policy
is given by

u1(t) =

⎧
⎪⎨

⎪⎩

u1maxI{α1(t)=1}, if s1(t) < θ1,

zI{α1(t)=1}, if s1(t) = θ1,

0, if s1(t) > θ1;

u2(t) =

⎧
⎪⎨

⎪⎩

u2maxI{α2(t)=1}, if s2(t) < θ2, s1(t)− s2(t) > 0,

zI{α2(t)=1}, if s2(t) = θ2, s1(t)− s2(t) > 0,

0, if s2(t) > θ2, s1(t)− s2(t) > 0.

The interpretation of the control policies is similar to that of the one ma-
chine case. The problem to be investigated is to find the optimal threshold
value θ∗ = (θ∗1 , θ

∗
2) such that the cost functional

J(θ) = lim
T→∞

1

T
E

∫ T

0

(c1x1(t) + c+2 x
+
2 (t) + c−2 x

−
2 (t))dt (9.18)

is minimized.
Define

τ10 (θ) = 0, τ20 (θ) = inf{t > 0; s1(t, θ) = θ1},
and τ ik(θ) for i = 1, 2 and k > 0, recursively by

τ1k (θ) = min{t ≥ τ2k−1(θ); s1(t, θ) = s2(t, θ)} and

τ2k (θ) = min{t ≥ τ1k (θ); s2(t, θ) = θ2}.

Moreover, define γ20(θ) = 0 and

γ1k(θ) = min{t ≥ γ2k−1(θ); s2(t, θ) = θ2},

γ2k(θ) = min{t ≥ γ1k(θ); s1(t, θ) = s2(t, θ)}.

Furthermore, let

w1(t, θ) =
∞∑

k=1

I{τ1
k (θ)≤t≤τ2

k(θ)} and

w2(t, θ) =

∞∑

k=1

I{γ1
k(θ)≤t≤γ2

k(θ)}.
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FIGURE 9.2. Convergence of the Iterates

Note that at most one of the indicator functions in the sums above can be
positive at a given time t. The summation is thus well defined. Then the
integrand of the gradient estimates can be written as

g1(θ, ξ(t))=c1I{t≥τ2
0 (θ)}+c

+
2 w1(t, θ)I{s2(t,θ)≥0}−c−2 w1(t, θ)I{s2(t,θ)<0},

g2(θ, ξ(t))=c
+
2 w2(t, θ)I{s2(t,θ)≥0}−c−2 w2(t, θ)I{s2(t,θ)<0}

via perturbation analysis (see Ho and Cao [87] and Glasserman [74]).
The notation of the stopping times, suggested in Kushner and Vázquez-
Abad [143], allows us to write the gradient estimates in a compact form.
In the original paper of Yan, Yin, and Lou [220], some auxiliary processes
were used in lieu of the stopping times. The ideas are the same, however.
Figure 9.2 demonstrates the performance of the algorithm for two ma-

chine case. One may generate contour curves via simulation for each set
of threshold values, the approximation obtained in our algorithm can be
seen to belong to the region of optimality. Our numerical results demon-
strate that the initial conditions do not affect the algorithm much and the
algorithm is robust with respect to the initial data.

9.3.4 Error Bounds

This subsection continues our investigation of Algorithm (9.7). We derive
an error bound on the approximation sequence. The consideration of this
subsection falls into the category of rates of convergence.
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Theorem 9.13. Assume that the conditions of Theorem 9.8 are satisfied
and there is a twice continuously differentiable Liapunov function V (·) such
that

V (θ) ≥ 0, V (θ) → ∞ as |θ| → ∞,

(Vθ(θ))
′∇J(θ) ≥ κ0V (θ),

for some κ0 > 0, and Vθθ(·) is bounded, where Vθ(·) and Vθθ(·) denote the
first and the second derivatives of V (·), respectively, and ζ′ denotes the
transpose of a vector ζ ∈ R

n×1. Suppose that for each θ,

∣
∣
∣
∣
∣

∞∑

j=k

EFk
1

T

∫ (j+1)T

jT

(g(θ, ξ(t))−∇J(θ)) dt
∣
∣
∣
∣
∣
≤ K and

∣
∣
∣
∣
∣

∞∑

j=k

EFk
1

T

∫ (j+1)T

jT

(g(θ, ξ(t))−∇J(θ))θ dt
∣
∣
∣
∣
∣
≤ K

(9.19)

for some K > 0, where EFk denotes the conditional expectation with respect
to FkT = σ{ξ(s), s ≤ kT }. Assume that

|g(θ, ξ)|2 + |∇J(θ)|2 ≤ K(1 + V (θ)).

Then

lim sup
k→∞

V (θk) = O(η). (9.20)

Remark 9.14. An alternative form of the first inequality in (9.19) is

∣
∣
∣
∣

∫ ∞

kT

EFk (g(θ, ξ(t)) −∇J(θ)) dt
∣
∣
∣
∣ ≤ K, (9.21)

and similar analogue holds for the second inequality in (9.19). It is readily
seen that if ξ(·) is a φ-mixing process with mixing rate ρ(·) such that∫∞
0
ρ(t) <∞, the mixing inequality (see Kushner [139, p. 82]) implies that

∣
∣
∣
∣

∫ ∞

kT

EFk (g(θ, ξ(t))−∇J(θ)) dt
∣
∣
∣
∣ ≤ 2

∫ ∞

kT

ρ(t− kT )dt ≤ K,

with similar estimates regarding the second inequality in (9.19).

Outline of Proof of Theorem 9.13: We use a technique known as perturbed
Liapunov function method (see Kushner and Yin [145] and the references
therein). Since the proof is similar to that of [145, Chapter 10], only an
outline of the idea is given.
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By virtue of a Taylor expansion, direct calculation leads to

EFkV (θk+1)− V (θk)

= −η(Vθ(θk))′∇J(θk) +O(η2)(1 + V (θk))

−η(Vθ(θk))
′

T
EFk

∫ (k+1)T

kT

(g(θk, ξ(t)) −∇J(θk)) dt.

Define

V η
1 (k) = −ηE

Fk(Vθ(θk))
′

T

∞∑

j=k

∫ (j+1)T

jT

(g(θk, ξ(t)) −∇J(θk)) dt,

V η(k) = V (θk) + V η
1 (k).

It is easily seen that

|V η
1 (k)| ≤ ηK(1 + V (θk)). (9.22)

Detailed calculation leads to

EFkV η(k + 1)− V η(k) ≤ −ηκ0V (θk) +O(η2)(1 + V (θk)).

Equation (9.22) then yields that

EFkV η(k + 1) ≤ V η(k)− ηκ0V
η(k) +O(η2)(1 + V η(k)).

By choosing η small enough, we obtain

EFkV η(k + 1) ≤
(
1− ηκ0

2

)
V η(k) +O(η2).

Iterating on the above inequality, taking expectation and lim sup as k → ∞,
and using (9.22), the desired result follows. �

Remark 9.15. If the Liapunov function is locally (near θ∗) quadratic, it
can be shown that there is an Nη such that

{

Uk =
θk − θ∗
√
η

: k ≥ Nη

}

is tight. Define

Uη(t) = Uk for t ∈ [(k −Nη)η, (k −Nη + 1)η).

Under further conditions, one can obtain a local results in connection with
a stochastic differential equation.
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9.4 Notes

This chapter has been devoted to the numerical solutions of the control
problems. It consists of numerical methods for solving the HJB equa-
tions and approximation for threshold control policies. The main tech-
niques used are the finite difference approximation methods (see Kushner
[138], Kushner and Dupuis [141]) and the stochastic optimization methods
(see Kushner and Yin [145]).
The computational methods for the optimal control problem presented

here are equivalent to methods of computing the optimal controls for dis-
crete Markov chain models. For a general background and discussion on
the method and many references for controlled diffusion and jump diffu-
sion processes, we refer to Kushner [138] and Kushner and Dupuis [141].
For applications of such methods in manufacturing models, we refer the
reader to Yan and Zhang [221] among others. In the implementation of the
numerical method, one may use either “value iteration” that is essentially a
fixed point iteration, or “policy iteration,” and the variation and/or modi-
fication of the aforementioned procedures, such as Jacobi iteration, Gauss-
Seidel method, and accelerated Jacobi and Gauss-Seidel methods (see [141]
for a detailed discussion on this and related matters). In practice, one of-
ten wishes to use an accelerated procedure to speed up the computation.
The recent advances on multigrid and domain decomposition methods give
new hope for solving large-dimensional systems. As its deterministic coun-
terpart, by and large, this is still a current research topic for stochastic
systems.
Converting optimal control problems into optimization problems under

threshold type of control policies is in Yin, Yan, and Lou [228], and Yan,
Yin, and Lou [220]. Early work on developing hedging policies is in Kimemia
and Gershwin [121]; related work along this direction is in Caramanis and
Liberopoulos [24]. For systems arising in production planning see [220]
where a combined approach of the infinitesimal perturbation analysis with
stochastic optimization methods is utilized. The computation presented
here was done by Houmin Yan. We are very grateful for his help. For further
approaches on using stochastic approximation based algorithms for opti-
mization with long-run average costs, see Kushner and Yin [145, Chapter
9] and the references therein. In applications, one may use a projection or
truncation algorithm. Treatments of such algorithms and a comprehensive
study on stochastic approximation algorithms can be found in [145].
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Hybrid LQG Problems

10.1 Introduction

This chapter develops asymptotic optimal controls of a class of hybrid
linear quadratic Gaussian (LQG) systems that consist of a collection of
diffusions coupled by a finite-state Markov chain. It is well known that
LQG systems are most popular in the control systems community, espe-
cially owing to their simple structure. In addition, many nonlinear systems
can be linearized locally to simplify the analysis. Many LQG systems stem
from various applications in speech recognition, pattern recognition, signal
processing, telecommunications, and manufacturing. Owing to their im-
portance, there has been a growing interest in studying the control and
optimization of such systems.
In the traditional setting, feedback control design of linear systems is

based on a plant with fixed parameters. This, however, prevents one from
treating situations in which the actual systems differ from the assumed
nominal model. Therefore, efforts have been made to design more “robust”
controls such that certain requirements are met simultaneously for a set
of plants. Owing to the needs in various applications, one is particularly
interested in developing controls of hybrid systems.
To a large extent, a hybrid system shows both “continuous” and “dis-

crete” characteristics. These system features can be seen from the fol-
lowing two aspects. In the formulation, apart from the usual Brownian
noise, a random environment affects the dynamics through the system
coefficient matrices. In contrast to the usual continuous dynamic systems,

G.G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications,
Stochastic Modelling 37, DOI 10.1007/978-1-4614-4346-9 10,
© Springer Science+Business Media, LLC 2013
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the random environment evolves as discrete events. It is thus natural to
introduce a Markov chain model to represent the random environment.
Enlarging the “state” by considering both the continuous state variables
of the LQG problem and the Markov chain yields both continuous and
discrete characteristics.
Unlike the traditional LQG problem in which the system coefficient ma-

trices are fixed, we allow these matrices to depend on a Markov jump
process with finite-state space. Thus the system displays different configu-
ration corresponding to different states of the Markov chain. The situation
is more involved as compared to the traditional setting. The value functions
satisfy a set of Riccati equations involving the generator of the underlying
Markov chain. In many applications, the state space of the Markov chain is
often very large. It is thus difficult to obtain solutions to these Riccati equa-
tions. To overcome the difficulty, we use singular perturbation techniques
in the modeling, control design, and optimization. The resulting systems
naturally display certain two-time-scale behavior, a fast time scale and a
slowly varying one. To put this in a manageable framework, we introduce a
small parameter ε > 0, and model the underlying system as one involving
two-time-scale Markov chains.
We use an averaging approach to analyze the system in which the under-

lying Markov chain involves weak and strong interactions. The idea is to
aggregate the states according to their jump rates and replace the actual
system with its average. Using the optimal control of the limit or averaged
system as a guide, we then construct controls for the actual systems leading
to feasible approximation schemes. Our investigation encompasses three
cases, namely, recurrent Markov chains, inclusion of transient states, and
inclusion of absorbing states. Although they are related, each of them has
its distinct structure. We show that these approximation schemes give us
nearly optimal controls. By focusing on approximate optimality, we are
able to reduce the complexity of the underlying systems drastically. The
reduction of dimensionality is the main advantage of the averaging ap-
proach. To demonstrate how the average schemes work, we provide a
numerical example of a one-dimensional system.
The remainder of the chapter is organized as follows. In the next

section, we present the basic formulation and the motivation for the
two-time-scale problems. Section 10.3 proceeds with the study of the opti-
mal LQG problem. Using a dynamic programming approach, we give the
Hamilton-Jacobi-Bellman (HJB) equations satisfied by the value functions,
and then derive the corresponding Riccati equations. Section 10.4 treats
models involving recurrent Markov chains with fast and slow motions,
and we obtain approximation schemes. Sections 10.5 and 10.6 continue
our investigation by taking up the issues of inclusion of transient and
absorbing states, respectively. Using probabilistic arguments and analytic
techniques, the approximation schemes are shown to be nearly optimal.
To further illustrate, Section 10.7 gives an example to demonstrate the
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asymptotic properties and error bounds. The numerical results indicate
that the approximation scheme performs quite well. Finally, we conclude
the chapter with further thoughts and additional remarks in Section 10.9.

10.2 Problem Formulation

We consider a stationary finite-state Markov chain α(t) ∈ M = {1, . . . ,m}.
Working with a finite horizon for some finite T > 0, consider the linear
system

dx(t) = [A(α(t))x(t) +B(α(t))u(t)]dt + σdw(t),

x(s) = x, for s ≤ t ≤ T,

(10.1)

where x(t) ∈ R
n1 is the state, u(t) ∈ R

n2 is the control, A(i) ∈ R
n1×n1

and B(i) ∈ R
n1×n2 are well defined and have finite values for i ∈ M, and

w(·) is a standard Brownian motion. Our objective is to find the optimal
control u(·) such that the expected quadratic cost function

J(s, x, α, u(·)) = E

{∫ T

s

[x′(t)M(α(t))x(t)

+u′(t)N(α(t))u(t)]dt + x′(T )Dx(T )

} (10.2)

is minimized, where E is the expectation given α(s) = α and x(s) = x,
M(i), i = 1, . . . ,m, are symmetric nonnegative definite matrices, and N(i),
i = 1, . . . ,m, and D are symmetric positive definite matrices.
In many applications, due to various sources of uncertainty, the Markov

chain involved is often inevitably large. This brings about much of the
difficulty. Moreover, these systems may be quite sensitive to small pertur-
bations of the parameter values. Thus effort has been devoted to resolving
the problem and to rendering a reasonable solution.
The idea is to take advantage of the intrinsic structural properties and to

decompose the large-dimensional system into a number of subsystems each
of which has a simpler structure. The underlying Markov chain has two
time scales, i.e., α(t) = αε(t), where the generator of αε(·) Qε consists of
two parts, a rapidly changing part and a slowly varying one, i.e.,

Qε =
1

ε
Q̃+ Q̂. (10.3)

In the rest of this chapter, we consider the model (10.1) and (10.2) in which
the process α(·) is replaced by αε(·). The resulting cost function is denoted
by Jε(s, x, α, u(·)). In addition, we assume the processes αε(·) and w(·) to
be independent.
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10.3 Optimal Controls

This section studies the optimal LQG control problem using the dynamic
programming approach, and derives the associated HJB and Riccati equa-
tions. Let

vε(s, x, i) = inf
u(·)

Jε(s, x, i, u(·))

be the value function. Then vε satisfies the following system of HJB equa-
tions: for 0 ≤ s ≤ T and i ∈ M,

0=
∂vε(s, x, i)

∂s
+min

u

{

(A(i)x+B(i)u)′
∂vε(s, x, i)

∂x

+x′M(i)x+ u′N(i)u+
1

2
tr

(

σσ′ ∂
2vε(s, x, i)

∂x2

)

+Qεvε(s, x, ·)(i)
}

,

(10.4)

with the boundary condition vε(T, x, i) = x′Dx, where

Qεf(s, x, ·)(i) =
∑

j �=i

qεij(f(s, x, j)− f(s, x, i)), (10.5)

for a suitable f(·, ·, ·).
Intuitively, the solution to the system of HJB equations must be of

quadratic form. We thus propose such a form and proceed with finding
the related functions, which is to some extent like the method of undeter-
mined coefficients. To proceed, let

vε(s, x, i) = x′Kε(s, i)x+ qε(s, i), (10.6)

for somem×m matrixKε and a scalar function qε. Without loss of general-
ity, we may assume Kε to be symmetric. It follows that (∂/∂x)vε = 2Kεx.
Substituting (10.6) into (10.4) and comparing the coefficients of x leads to
the following Riccati equations for Kε(s, i);

K̇ε(s, i) = −Kε(s, i)A(i)−A′(i)Kε(s, i)−M(i)

+Kε(s, i)B(i)N−1(i)B′(i)Kε(s, i)−QεKε(s, ·)(i),
(10.7)

with Kε(T, i) = D, where QεKε(s, ·)(i) is as in (10.5), and the equations
for qε are

q̇ε(s, i) = −tr(σσ′Kε(s, i))−Qεqε(s, ·)(i), (10.8)

with qε(T, i) = 0. Moreover, it can be shown (see, for example, Fleming and
Rishel [63]) that the system of equations has a unique solution. In view of
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the positive definite property of Kε (see Lemma 10.2), the optimal control
uε,∗ has the form

uε,∗(s, x, i) = −N−1(i)B′(i)Kε(s, i)x. (10.9)

To find the optimal control, one has to solve the Riccati equations. However,
in many problems in telecommunications and manufacturing, such solutions
are difficult to obtain due to the large dimensionality. In this case, one has
to resort to approximation schemes. We present an averaging approach in
the next three sections.

10.4 Two-Time-Scale Approximation: Recurrent
States

Here, we consider the cases that the states of the Markov chain are divis-
ible into a number of groups such that it fluctuates very rapidly among
different states within a group consisting of recurrent states, but jumps
less frequently from one group to another. This is conveniently modeled in
terms of the two-time-scale Markov chains as follows. Consider the gener-
ator of the Markov chain given by (10.3). Assume Q̃ has a block-diagonal
form

Q̃ = diag(Q̃1, . . . , Q̃l), (10.10)

where Q̃k ∈ R
mk×mk are weakly irreducible, for k = 1, . . . , l, and∑l

k=1mk = m. Let

Mk = {sk1, . . . , skmk
} for k = 1, . . . , l

denote the states corresponding to Q̃k and let M denote the state space of
the underlying chains. Then

M = M1 ∪ · · · ∪Ml

= {s11, . . . , s1m1 , . . . , sl1, . . . , slml
}.

Since Q̃k = (q̃kij)mk×mk
and Q̂ = (q̂ij)m×m are generators, for k = 1, . . . , l,

∑mk

j=1 q̃kij = 0, for i = 1, . . . ,mk, and
∑m

j=1 q̂ij = 0, for i = 1, . . . ,m.

Note that Q̃ governs the rapidly changing part and Q̂ describes the slowly
varying components. The slow and fast components are intertwined through
weak and strong interactions in the sense that the underlying Markov chain
fluctuates rapidly within a single group Mk and jumps less frequently
between any two groups Mk and Mj for k �= j. More precisely, if we
consider the states in Mk as a single “state,” then all such “states” are



346 10. Hybrid LQG Problems

coupled through the matrix Q̂, and transitions from Mk to Mj , k �= j, are
possible.
By aggregating all the states in Mk into a “super” state k, we obtain

an aggregated process {αε(·)} defined by αε(t) = k when αε(t) ∈ Mk.
The process αε(·) is not necessarily Markovian. However, using a certain
probabilistic argument, we have shown in Chapter 5 that αε(·) converges
weakly to α(·) generated by

Q = diag(ν1, . . . , νl)Q̂diag(1lm1 , . . . , 1lml
),

where νk is the stationary distribution of Q̃k, k = 1, . . . , l, and 1ln =
(1, . . . , 1)′ ∈ R

n. Moreover, for any bounded deterministic β(·),

E

(∫ T

s

[I{αε(t)=skj} − νkj I{αε(t)=k}]β(t)dt

)2

= O(ε). (10.11)

10.4.1 Limit Riccati Equations

The following theorem is concerned with the convergence of Kε and qε. For
any function F on M, we define

F =

mk∑

j=1

νkj F (skj) for k = 1, . . . , l.

Similarly, for F1 and F2, we define

F1F2 =

mk∑

j=1

νkj F1(skj)F2(skj).

Theorem 10.1. For k = 1, . . . , l and j = 1, . . . ,mk, K
ε(s, skj) → K(s, k)

and qε(s, skj) → q(s, k), uniformly on [0, T ] as ε → 0, where K(s, k) and
q(s, k) are the unique solutions to the following differential equations: For
k = 1, . . . , l,

K̇(s, k) = −K(s, k)A(k)−A
′
(k)K(s, k)−M(k)

+K(s, k)BN−1B′(k)K(s, k)−Q K(s, ·)(k),
(10.12)

with K(T, k) = D and

q̇(s, k) = −tr
(
σσ′K(s, k)

)
−Qq(s, ·)(k), (10.13)

with q(T, k) = 0, respectively.
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To proceed, we first establish three lemmas concerning the positive
definiteness of Kε, the a priori estimates of Kε and qε, and their Lipschitz
continuity.

Lemma 10.2. The solution Kε(s, i) to (10.7) is positive definite for i ∈
M and 0 ≤ s ≤ T .

Proof: Let

Sε(s, i) = N−1(s, i)B′(s, i)Kε(s, i) and

F ε(s, i) = A(s, i)−B(s, i)Sε(s, i).

Then the optimal control u∗(s, x, i) is equal to −Sε(s, i)x and the optimal
trajectory x∗(t) satisfies the equation

dx∗(t) = F ε(t, αε(t))x∗(t)dt+ σdw(t).

Let

Σ(t) = Sε,′(t, αε(t))N(αε(t))Sε(t, αε(t)).

Then, we have

vε(s, x, i) = Jε(s, x, i, u∗(·))

= E

{∫ T

s

(x∗(t))′[M(αε(t)) + Σ(t)]x∗,′(t)dt

+x∗,′(T )Dx∗(T )

}

,

(10.14)

where u∗(t) = u∗(t, αε(t), x∗(t)).
Let Ψ(t, s) be the principal matrix solution to the ordinary differential

equation

ż(t) = F ε(t, αε(t))z(t),

i.e., it satisfies the above differential equation with z(t) replaced by Ψ(t, s)
and initial data Ψ(s, s) = I, for each sample path αε(·). Then we can show
that

∂

∂x
x∗(t) = Ψ(t, s) and

∂2

∂x2
x∗(t) = 0.
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Recall that M(i), N(i) and D are symmetric nonnegative definite. Differ-
entiating both sides of equation (10.14) twice with respect to x and using
the quadratic form of v leads to

Kε(s, i) = E

{∫ T

s

Ψ′(t, s)[M(αε(t)) + Σ(t)]Ψ(t, s)dt

+Ψ′(T, s)DΨ(T, s)

}

≥ E
{
Ψ′(T, s)DΨ(T, s)

}
> 0. �

Lemma 10.3. There exist constants C0 and k0 > 0 such that for all
s ∈ [0, T ] and i ∈ M,

|Kε(s, i)| ≤ C0e
k0T (T + 1),

|qε(s, i)| ≤ C0e
k0T (T + 1),

where Kε(s, i) and qε(s, i) are solutions to equations (10.7) and (10.8),
respectively.

Proof: We first show that

0 ≤ vε(s, x, i) ≤ C0e
k0T (|x|2 + 1)(T + 1). (10.15)

It is clear that vε(s, x, i) ≥ 0 because Jε(s, x, i, u(·)) ≥ 0 for all admissible
u(·). To derive the upper bound, let u0(t) = 0. Then under such a control,
we can show using Itô’s formula that

E|x(t)|2 ≤ |x|2 + k0

∫ t

s

(E|x(r)|2 + 1)dr.

Let φ(t) = E|x(t)|2 + 1. Then we have

φ(t) ≤ (|x|2 + 1) + k0

∫ t

s

φ(r)dr.

In view of Gronwall’s inequality, we have

E|x(t)|2 ≤ φ(t) ≤ ek0T (|x|2 + 1). (10.16)



10.4 Two-Time-Scale Approximation: Recurrent States 349

The above inequality holds for all t ∈ [0, T ]. Now, for 0 ≤ s ≤ T ,

vε(s, x, i) ≤ Jε(s, x, i, u0(·))

≤ E

{∫ T

s

x′(t)M(αε(t))x(t)dt + x′(T )Dx(T )

}

≤ C0

{∫ T

s

E|x(t)|2dt+ E|x(T )|2
}

≤ C0e
k0T (|x|2 + 1)(T − s+ 1)

≤ C0e
k0T (|x|2 + 1)(T + 1).

Setting x = 0 in (10.6) yields

vε(s, 0, i) = qε(s, i) and

0 ≤ qε(s, i) ≤ C0e
k0T (T + 1).

We now show that |Kε(s, i)| ≤ C0e
k0T (T + 1). In view of Lemma 10.2,

the matrix Kε(s, i) is symmetric and positive definite. It follows from the
definition of the matrix norm that

|Kε(s, i)| = max{eigenvalues of Kε(s, i)}.

It suffices to show that for every unit vector ξ,

ξ′Kε(s, i)ξ ≤ C0e
k0T (T + 1). (10.17)

In fact, in view of (10.15), we have by taking x = aξ with a a scalar,

a2ξ′Kε(s, i)ξ + qε(s, i) = vε(s, aξ, i)

≤ C0e
k0T (a2 + 1)(T + 1).

Dividing both the left- and right-hand sides of this inequality by a2 and
sending a→ ∞, we obtain (10.17). �

Lemma 10.4. For i ∈ M, the solutions to (10.7) and (10.8), namely
Kε(·, i) and qε(·, i), are uniformly Lipschitz continuous on [0, T ].

Proof: Let us divide the proof into two steps. In the first step, we show that
the value function vε(s, x, i) is uniformly Lipschitz. Then in the second step
we prove the Lipschitz property of Kε(·) and qε(·).
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Step 1. We show that there exists a constant C (which may depend on T )
such that for any δ > 0 and (s, x, i) ∈ [0, T ]× R

n1 ×M,

|vε(s+ δ, x, i)− vε(s, x, i)| ≤ C(|x|2 + 1)δ. (10.18)

In fact, for a given triple (s, x, i), we write the value function vε(s, x, i)
as follows:

vε(s, x, i) = E

{∫ T

s

[(x∗(t))′M(αε(t))x∗(t)

+(u∗(t))′N(αε(t))u∗(t)]dt+ (x∗(T ))′Dx∗(T )

}

,

(10.19)

where u∗(t) = u∗(t, αε(t), x∗(t)) is the optimal control defined in (10.9),
x∗(t) is the corresponding trajectory, and E is the conditional expectation
given (x∗(s), αε(s)) = (x, i).
By a change of variable t �→ t+ δ in (10.19), we have

vε(s, x, i) = E

{∫ T+δ

s+δ

[(x∗(t− δ))′M(αε(t− δ))x∗(t− δ)

+(u∗(t− δ))′N(αε(t− δ))u∗(t− δ)]dt

+(x∗(T ))′Dx∗(T )

}

.

For t ∈ [s+ δ, T + δ], let

x̃(t) = x∗(t− δ), α̃(t) = αε(t− δ), and ũ(t) = u∗(t− δ),

Clearly,

x̃(s+ δ) = x∗(s) = x, α̃(s+ δ) = αε(s) = i

and α̃(·) is also a Markov chain generated by Qε. Moreover,

vε(s, x, i) = E

{∫ T+δ

s+δ

[x̃′(t)M(α̃(t))x̃(t)

+ũ′(t)N(α̃(t))ũ(t)]dt+ x̃′(T + δ)Dx̃(T + δ)

}

≥ E

{∫ T

s+δ

[x̃′(t)M(α̃(t))x̃(t) + ũ′(t)N(α̃(t))ũ(t)]dt

+x̃′(T + δ)Dx̃(T + δ)

}

.
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Differentiating vε(t, x̃(t), α̃(t)), Dynkin’s formula leads to

vε(s+ δ, x, i) ≤ E

{∫ T

s+δ

[x̃′(t)M(α̃(t))x̃(t)

+ũ′(t)N(α̃(t))ũ(t)]dt + x̃′(T )Dx̃(T )

}

.

(10.20)

Applying Itô’s formula to x̃′(t)Dx̃(t) and using (10.16) yields

E
(
x̃′(T )Dx̃(T )− x̃′(T + δ)Dx̃(T + δ)

)
≤ C(|x|2 + 1)δ.

It follows that

vε(s+ δ, x, i)− vε(s, x, i) ≤ C(|x|2 + 1)δ. (10.21)

We now derive the reverse inequality. Let E = Ex,i denote the conditional
expectation given (x(s + δ), αε(s+ δ)) = (x, i). That is, we suppress the x
and i dependence in what follows for notational simplicity. Then we have,
under the optimal control u∗ and the corresponding trajectory x∗,

vε(s+ δ, x, i) = E

{∫ T

s+δ

[x∗(t))′M(αε(t))x∗(t)

+(u∗(t))′N(αε(t))u∗(t)]dt+ (x∗(T ))′Dx∗(T )

}

= E

{∫ T−δ

s

[x∗(t+ δ))′M(αε(t+ δ))x∗(t+ δ)

+(u∗(t+ δ))′N(αε(t+ δ))u∗(t+ δ)]dt

+(x∗(T ))′Dx∗(T )

}

.

(10.22)
Let

α̌(t) = αε(t+δ), ǔ(t) = u∗(t+δ), and x̌(t) = x∗(t+δ), for t ∈ [s, T −δ].

Note that α̌(·) is a Markov chain generated by Qε with α̌(s) = αε(s+δ) = i.
We may extend the definition of α̌(·) for t ∈ (T −δ, T ]. If we define ǔ(t) = 0
for t ∈ (T − δ, T ], then x̌(t) can be defined on (T − δ, T ] as well by solving
the corresponding system equation (10.1). Then

vε(s+ δ, x, i) = E

{∫ T−δ

s

[x̌′(t)M(α̌(t))x̌(t)

+ǔ′(t)N(α̌(t))ǔ(t)]dt+ x̌′(T − δ)Dx̌(T − δ)

}

.
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Moreover, differentiating vε(t, x̌(t), α̌(t)) and using Dynkin’s formula
results in

vε(s, x, i) ≤ E

{∫ T

s

[x̌′(t)M(α̌(t))x̌(t)

+ǔ′(t)N(α̌(t))ǔ(t)]dt + x̌′(T )Dx̌(T )

}

.

Thus, we have

vε(s+ δ, x, i)− vε(s, x, i)

≥ −E
∫ T

T−δ

[x̌′(t)M(α̌(t)x̌(t) + ǔ′(t)N(α̌(t)ǔ(t)]dt

+E

{

x̌′(T − δ)Dx̌(T − δ)− x̌′(T )Dx̌(T )

}

≥ −C(|x|2 + 1)δ.

Step 2. We claim that the functions Kε(·, i) and qε(·, i) are Lipschitz. Sim-
ilarly to the proof of Lemma 10.3, taking x = 0 in (10.18) yields

|qε(s+ δ, i)− qε(s, i)| ≤ Cδ.

Taking x = aξ with |ξ| = 1 and sending a→ ∞, we obtain

|Kε(s+ δ, i)−Kε(s, i)| ≤ Cδ.

This completes the proof. �

Proof of Theorem 10.1: We prove only the convergence of Kε because the
proof for that of qε is similar.
Let i = skj ∈ Mk. Then in view of Lemma 10.3 and Lemma 10.4,

{Kε(s, skj)} is equicontinuous and uniformly bounded. It follows from the
Arzelà-Ascoli theorem that, for each sequence of {ε → 0}, there exists
a further subsequence (still indexed by ε) such that Kε(s, skj) converges
uniformly on [0, T ] to a continuous function, say K0(s, skj).
First, we show that K0(s, skj) is independent of j. In fact, writing the

corresponding Riccati equation in its integral form (with time running back-
ward and the terminal condition Kε(T, skj) = D),

Kε(s, skj) = D +

∫ T

s

[Kε(r, skj)A(skj) +A′(skj)K
ε(r, skj)

+M(skj)−Kε(r, skj)B(skj)N
−1(skj)B

′(skj)K
ε(r, skj)

+QεKε(r, ·)(skj)]dr,
(10.23)
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and noting that Qε is given by (10.3) and the uniform boundedness of Kε,
multiplying both sides of (10.23) by ε yields

∫ T

s

Q̃kK0(r, ·)(skj)dr = lim
ε→0

∫ T

s

Q̃kKε(r, ·)(skj)dr = 0,

for s ∈ [0, T ].
Thus, in view of the continuity of K0(s, skj), we obtain

Q̃kK0(s, ·)(skj) = 0, for s ∈ [0, T ]. (10.24)

Following the irreducibility of Q̃k, we have K0(s, skj) = K0(s, k) which is
independent of j.
We next show that

Kε(s, skj) → K0(s, k) = K(s, k).

For each k = 1, . . . , l, we multiply Kε(s, skj) by ν
k
j and then sum over the

index j. Let

F (r, k) =

mk∑

j=1

νkj F (r, skj).

The corresponding Riccati equation has the form

mk∑

j=1

νkjK
ε(s, skj) = D +

∫ T

s

[KεA(r, k) +A′Kε(r, k) +M(k)

−KεBN−1B′Kε(r, k) +

mk∑

j=1

νkjQ
εKε(r, ·)(skj)]dr.

Sending ε → 0 and noting the uniform convergence of Kε(s, skj) →
K0(s, k), we have

⎛

⎝
mk∑

j=1

νkj Q̂1lmk

⎞

⎠K0(s, ·)(k) = QK0(s, ·)(k).

Since
∑mk

j=1 ν
k
j = 1, we obtain

K0(s, k) = D +

∫ T

s

[K0(r, k)A(k) + A
′
(k)K0(r, k) +M(k)

−K0(r, k)BN−1B′(k)K0(r, k) +QK0(r, ·)(k)]dr.

Thus the uniqueness of the Riccati equation implies that

K0(s, k) = K(s, k).

As a result, it follows that

Kε(s, skj) → K(s, k).

The proof is concluded. �
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10.4.2 Nearly Optimal Controls

The convergence of Kε(s, i) and qε(s, i) leads to that of

vε(s, x, i) = x′Kε(s, i)x+ qε(s, i),

where Kε(s, i) and qε(s, i) denote the solutions to the differential equations
(10.7) and (10.8), respectively. It follows that vε(s, x, skj) → v(s, x, k), for
j = 1, . . . ,mk, as ε→ 0, where

v(s, x, k) = x′K(s, k)x+ q(s, k)

corresponds to the value function of a limit problem. Let U denote the
control set for the limit problem

U=
{
U = (U1, . . . , U l) : Uk = (uk1, . . . , ukmk), ukj ∈ R

n2

}
.

Define

f(s, x, k, U) = A(k)x+

mk∑

j=1

νkjB(skj)u
kj ,

Ñ(k, U) =

mk∑

j=1

νkj

(
ukj,′N(skj)u

kj
)
.

Then it can be shown that v(s, x, k) satisfies the following HJB equations:

0 =
∂v(s, x, k)

∂s
+ min

U∈U

{

f(s, x, k, U)
∂v(s, x, k)

∂x

+x′M(k)x + Ñ(k, U) +
1

2
tr
(
σσ′ ∂

2v(s, x, k)

∂x2

)

+Qv(s, ·, x)(k)
}

,

(10.25)

with v(T, x, k) = x′Dx. The corresponding control problem is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Min J(s, x, k, U(·)) = E

{∫ T

s

[x′(t)M(α(t))x(t)

+Ñ(α(t), U(t))]dt+ x′(T )Dx(T )

}

s.t. dx(t) = f(t, x(t), α(t), U(t))dt + σdw(t), x(s) = x,

where α(·) ∈ {1, . . . , l} is a Markov chain generated by Q with α(s) = k.
The optimal control for this limit problem is

U∗(s, x, k) = (U1∗(s, x), . . . , U l∗(s, x))
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with
Uk∗(s, x) = (uk1∗(s, x), . . . , ukmk∗(s, x)),

and
ukj∗(s, x) = −N−1(skj)B

′(skj)K(s, k)x.

Using such controls (as in Sethi and Zhang [192] for manufacturing systems)
we construct

uε(s, x, α) =

l∑

k=1

mk∑

j=1

I{α=skj}u
kj∗(s, x) (10.26)

for the original problem. Note that this control can also be written as if
α ∈ Mk, u

ε(s, x, α) = −N−1(α)B′(α)K(s, k)x. Apparently, this control
is identical to the optimal control in (10.9) except that Kε is replaced by
K. We use uε(t) = uε(t, αε(t), x(t)) for the original problem, which will be
shown to be nearly optimal.
If B(skj) = B(k) and N(skj) = N(k) are independent of j, then, in view

of (10.11), we may replace I{αε(t)=skj} by I{αε(t)=k}ν
k
j and consider

uε(s, x, α) =

l∑

k=1

mk∑

j=1

I{α∈Mk}ν
k
j u

kj∗(s, x)

= −N−1(k)B′(k)K(s, k)x, if α ∈ Mk.

(10.27)

Thus, we can write uε(s, x, α) = uε(s, x, k). Note that the control uε needs
only the information αε(t) ∈ Mk. Thus, we can use the control

uε(t) = uε(t, x(t), αε(t)) (10.28)

instead.

Theorem 10.5. The following assertions hold:

(1) The control uε(t) defined in (10.26) is nearly optimal, i.e.,

lim
ε→0

|Jε(s, x, α, uε(·)) − vε(s, x, α)| = 0.

(2) Assume B(skj) = B(k) and N(skj) = N(k) independent of j. Then
uε(t) defined in (10.28) is nearly optimal, i.e.,

lim
ε→0

|Jε(s, x, α, uε(·)) − vε(s, x, α)| = 0.

Proof: Recall that αε(t) = k if αε(t) ∈ Mk. Then the constructed control
uε can be written as follows:

uε(t) = −N−1(αε(t))B′(αε(t))K(t, αε(t))xε(t),



356 10. Hybrid LQG Problems

where xε(t) is the corresponding trajectory governed by the differential
equation:

dxε(t) =
(
A(αε(t))−B(αε(t))N−1(αε(t))B′(αε(t))

×K(t, αε(t))
)
xε(t)dt+ σdw(t),

with xε(s) = x. The cost function is given by

Jε(s, x, α, uε(·)) = E

{∫ T

s

xε,′(t)
(
M(αε(t))

+N̂(t, αε(t))
)
xε(t)dt+ xε,′(T )Dxε(T )

}

,

where N̂(t, skj) = K(t, k)B(skj)N
−1(skj)B

′(skj)K(t, k). Let x(t) denote
the optimal trajectory of the limit problem. Then

dx(t) = f(t, x(t), α(t), U∗(t))dt + σdw(t),

with x(s) = x. Then using the weak convergence of αε(·) to α(·), the
Skorohod representation, and (10.11), we can show that

E|xε(t)− x(t)| → 0, (10.29)

which leads to
|Jε(s, x, α, uε(·))− v(s, x, k)| → 0. (10.30)

This together with vε → v leads to

lim
ε→0

|Jε(s, x, α, uε(·))− vε(s, x, α)| = 0

as desired.
To obtain the second part of the theorem, note that under the condition

B(skj) = B(k) and N(skj) = N(k), we have

uε(t) = −N−1(αε(t))B′(αε(t))K(t, αε(t))xε(t).

The corresponding trajectory is given by

dxε(t) =
(
A(αε(t))−B(αε(t))N−1(αε(t))B′(αε(t))

×K(t, αε(t))
)
xε(t)dt+ σdw(t),

with xε(s) = x. The optimal trajectory x(t) for the limit problem is

dx(t) = f(t, x(t), α(t), U∗(t))dt + σdw(t),
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where

f(t, x, k, U∗) = A(k)x(t) −B(k)N−1(k)B′(k)K(t, k)x(t),

with x(s) = x. In this case, we can verify (10.29) and (10.30) in a similar
way to complete the proof. �

Remark 10.6. This theorem indicates that the constructed control is
almost as good as the optimal one if αε(·) jumps rapidly in each of its
recurrent groups. The most attractive feature of such an approximation
scheme is that it requires much less computation effort. For instance,
if the system dimension n1 = 3 and the Markov chain has m = 40
states divided into 5 groups with each group consisting 8 states, then
the optimal scheme requires compute the Riccati equations of dimension
(n1(n1+1)/2)×m = 6×40 = 240. The dimension of the limit Riccati equa-
tion is only (n1(n1 + 1)/2) × 5 = 30. Thus the computational complexity
can be substantially reduced.

Example 10.7. Consider a special case of the Markov chain αε(t) ∈ M =

{1, . . . ,m} such that Q̃ in (10.3) is weakly irreducible. Denote the station-
ary distribution of αε(·) by ν = (ν1, . . . , νm). We have thatKε(s, i) → K(s)
and qε(s, i) → q(s), as ε→ 0, where the limit functionsK(·) and q(·) satisfy
the following differential equations:

K̇(s) = −K(s)A−A
′
K(s)−M +K(s)BN−1B′ K(s) (10.31)

with K(T ) = D and

q̇(s) = −tr
(
σσ′K(s)

)
, with q(T ) = 0. (10.32)

The optimal control for this limit problem is

U∗(s, x) = (u1∗(s, x), . . . , um∗(s, x)) with

ui∗(s, x) = −N−1(i)B′(i)K(s)x, i = 1, . . . ,m.

(10.33)

Using U∗, we construct uε for the original problem:

uε(s, x, i) = −N−1(i)B′(i)K(s)x. (10.34)

Then our result demonstrates that the control so constructed is nearly
optimal.

Remark 10.8. In this chapter, we concentrate on the case that σ in (10.1)
is a constant matrix for simplicity. Our approach can be extended to
treat σ = σ(αε(t)). In this case, tr(σσ′(∂2/∂x2)vε(s, x, i)) in (10.4) will be
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replaced by tr(σ(i)σ′(i)(∂2/∂x2)vε(s, x, i)). Then tr(σσ′(∂2/∂x2) v(s, x, k))
in (10.25) becomes

tr(σσ′(k)(∂2/∂x2)v(s, x, k))

and the term tr(σσ′K(s)) in (10.32) becomes tr(σσ′(k)K(s)). Since the
Riccati equations (10.12) and (10.31) do not involve σ, they remain to
be unchanged, so are the optimal control uε,∗(s, x, i) and nearly optimal
control uε(s, x, α).
In this case, the proof for the convergence ofKε and qε is almost identical.

The proof for the near optimality of uε needs to be modified by using

(

αε(t),

∫ t

0

σ(αε(s))dw(s)

)

→
(

α(t),

∫ t

0

σ(α(s))dw(s)

)

,

in distribution, where σ(k) is a matrix such that σ(k)σ′(k) = σσ′(k) and
w(·) is a standard Brownian motion. The fuller account will require much
more complex notation. It appears to be more instructive to present the
main line of work without going through complex notation so we choose
the current setting. Similar extensions hold for models with inclusions of
transient and absorbing states to be discussed in the subsequent sections.

10.5 Two-Time-Scale Approximation: Inclusion of
Transient States

In this section, we consider the case in which the Markov chain has transient
states. To incorporate the transient states, we assume as in Chapter 4 that

Q̃ =

⎛

⎝
Q̃r 0

Q̃0 Q̃∗

⎞

⎠ , (10.35)

where Q̃r = diag(Q̃1, . . . , Q̃l), Q̃0 = (Q̃1
∗, . . . , Q̃

l
∗) such that for each k =

1, . . . , l, Q̃k is a generator with dimension mk ×mk, Q̃∗ ∈ R
m∗×m∗ matrix,

Q̃k
∗ ∈ R

m∗×mk , and m1 + · · · + ml + m∗ = m. The state space of the
underlying Markov chain is given by

M = M1 ∪ · · · ∪Ml ∪M∗

=
{
s11, . . . , s1m1 , . . . , sl1, . . . , slml

, s∗1, . . . , s∗m∗
}
,

where M∗ = {s∗1, . . . , s∗m∗} consists of the transient states. Suppose that

for k = 1, . . . , l, Q̃k are weakly irreducible, and Q̃∗ has eigenvalues with
negative real parts.



10.5 Two-Time-Scale Approximation: Inclusion of Transient States 359

Write

Q̂ =

⎛

⎜
⎝

Q̂11 Q̂12

Q̂21 Q̂22

⎞

⎟
⎠

where Q̂11 ∈ R
(m−m∗)×(m−m∗), Q̂12 ∈ R

(m−m∗)×m∗ , Q̂21 ∈ R
m∗×(m−m∗),

and Q̂22 ∈ R
m∗×m∗ . We define

Q∗ = diag(ν1, . . . , νl)(Q̂111̃l + Q̂12(am1 , . . . , aml
)), (10.36)

with1̃l = diag(1lm1 , . . . , 1lml
), 1lmj = (1, . . . , 1)′ ∈ R

mj×1, and for j =
1, . . . , l,

amj = (amj (1), . . . , amj (l)) = −Q̃−1
∗ Q̃j

∗1lmj . (10.37)

It can be shown as in Chapter 5 that amj ≥ 0 and
∑l

j=1 amj = 1lm∗ .
Let ξj denote a random variable such that

P (ξj = i|αε(t) = s∗j) = amj (i).

Define

αε(t) =

⎧
⎪⎨

⎪⎩

k, if αε(t) ∈ Mk

ξj , if αε(t) = s∗j .

Let α(·) ∈ {1, . . . , l} be a Markov chain generated by Q∗. Then it can be
shown as in Chapter 5 that αε(·) → α(·) in distribution. Moreover, for
k = 1, . . . , l,

E

(∫ T

0

[I{αε(t)=skj} − νkj I{αε(t)=k}]β(t)dt

)2

=O(ε),

E

(∫ T

0

I{αε(t)=s∗j}dt

)2

= O(ε2).

(10.38)

Theorem 10.9. As ε→ 0, Kε(s, skj) → K(s, k) and qε(s, skj) → q(s, k),
for k = 1, . . . , l, j = 1, . . . ,mk, K

ε(s, s∗j) → K∗(s, j) and qε(s, s∗j) →
q∗(s, j), for j = 1, . . . ,m∗ uniformly on [0, T ], where

K∗(s, j) = am1(j)K(s, 1) + · · ·+ aml
(j)K(s, l),

q∗(s, j) = am1(j)q(s, 1) + · · ·+ aml
(j)q(s, l),

and K(s, k) and q(s, k) are the unique solutions to the following equations:
for k = 1, . . . , l,

K̇(s, k) = −K(s, k)A(k)−A
′
(k)K(s, k)−M(k)

+K(s, k)BN−1B′(k)K(s, k)−Q∗ K(s, ·)(k),
(10.39)
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with K(T, k) = D and

q̇(s, k) = −tr
(
σσ′K(s, k)

)
−Q∗q(s, ·)(k), (10.40)

with q(T, k) = 0.

Proof: For notational simplicity, we consider only the 1-dimensional case,
i.e., n1 = 1. In this case, Kε is a scalar function. Following the proof of
Theorem 10.1 up to equation (10.24), we have, for s ∈ [0, T ],

Q̃kK0(s, ·)(skj) = 0, for k = 1, . . . , l, j = 1, . . . ,mk,

(Q̃1
∗, . . . , Q̃

l
∗, Q̃∗)(K

0(s, s11), . . . ,K
0(s, s1m1), . . . ,K

0(s, sl1),

. . . ,K0(s, slml
),K0(s, s∗1), . . . ,K

0(s, s∗m∗))
′ = 0.

Again the irreducibility of Q̃k implies

(K0(s, sk1), . . . ,K
0(s, skmk

))′ = K0(s, k)1lmk
.

Let
K∗(s) = (K0(s, s∗1), . . . ,K

0(s, s∗m∗))
′.

Then we have

Q̃1
∗1lm1K

0(s, 1) + · · ·+ Q̃l
∗1lml

K0(s, l) + Q̃∗K∗(s) = 0.

Hence,

K∗(s) = −Q̃∗

(
Q̃1

∗1lm1K
0(s, 1) + · · ·+ Q̃l

∗1lml
K0(s, l)

)

= am1K
0(s, 1) + · · ·+ aml

K0(s, l).

The rest of the proof follows like that of Theorem 10.1 except that Q is
replaced by Q∗. �

The convergence of Kε and qε leads to vε(s, x, skj) → v(s, x, k), for
k = 1, . . . , l, j = 1, . . . ,mk, v

ε(s, x, s∗j) → v∗(s, x, j), for j = 1, . . . ,m∗,
where

v∗(s, x, j) = am1(j)v(s, x, 1) + · · ·+ aml
(j)v(s, x, l).

and v(s, x, k) = x′K(s, k)x+ q(s, k). The control set for the limit problem
is the same as that for the recurrent case and is given by

U=
{
U= (U1, . . . , U l) : Uk= (uk1, . . . , ukmk), ukj ∈ R

n2

}
.
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Then the corresponding control problem is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Min J(s, x, k, U(·)) = E

{∫ T

s

[x′(t)M(α(t))x(t)

+Ñ(α(t), U(t))]dt+ x′(T )Dx(T )

}

s.t. dx(t) = f(t, x(t), α(t), U(t))dt + σdw(t), x(s) = x,

where α(·) ∈ {1, . . . , l} is a Markov chain generated by Q∗ with α(s) = k.
The optimal control for this limit problem is

U∗(s, x, k) = (U1∗(s, x), . . . , U l∗(s, x))

with
Uk∗(s, x) = (uk1∗(s, x), . . . , ukmk∗(s, x))

and
ukj∗(s, x) = −N−1(skj)B

′(skj)K(s, k)x.

Similar to the recurrent case, we construct

uε(s, x, α) =

l∑

k=1

mk∑

j=1

I{α=skj}u
kj∗(s, x)

+

m∗∑

j=1

I{α=s∗j}u
∗j∗(s, x)

(10.41)

for the original problem, where

u∗j∗(s, x) = −N−1(s∗j)B
′(s∗j)K∗(s, j)x.

Assume, for k = 1, . . . , l, that B(skj) = B(k) and N(skj) = N(k) indepen-
dent of j. We may also consider

uε(s, x, α) =

l∑

k=1

mk∑

j=1

I{α∈Mk}ν
k
j u

kj∗(s, x)

+

m∗∑

j=1

I{α=s∗j}u
∗j∗(s, x).

(10.42)

Note that the control uε needs only the information as to whether αε(t) ∈
Mk for k = 1, . . . , l and αε(t) = s∗j .

Theorem 10.10. The following assertions hold:

(1) The control uε(t) defined in (10.41) is nearly optimal, i.e.,

lim
ε→0

|Jε(s, x, α, uε(·)) − vε(s, x, α)| = 0.
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(2) If B(skj) = B(k) and N(skj) = N(k) are independent of j, then
uε(t) defined in (10.42) is nearly optimal, i.e.,

lim
ε→0

|Jε(s, x, α, uε(·)) − vε(s, x, α)| = 0.

Proof: The proof is similar to that of Theorem 10.5 except for the use of
(10.38) in lieu of (10.11) in verifying the convergence of the trajectories. �

10.6 Two-Time-Scale Approximation: Inclusion
of Absorbing States

In this section, we consider the case in which the Markov chain has absorb-
ing states. Let αε(t) be a Markov chain generated by Qε defined in (10.3)
with

Q̃ = diag(Q̃1, . . . , Q̃l, 0ma×ma), (10.43)

where Q̃k ∈ R
mk×mk , for k = 1, . . . , l, 0ma×ma is the ma × ma zero

matrix and m1 + · · · + ml + ma = m. Let Mk = {sk1, . . . , skmk
} for

k = 1, . . . , l denote the states corresponding to recurrent states, and Ma =
{sa1, . . . , sama} denote the set of absorbing states. Then the state space
can be decomposed as

M = M1 ∪ · · · ∪Ml ∪Ma

= {s11, . . . , s1m1 , . . . , sl1, . . . , slml
, sa1, . . . , sama}.

Define 1̃la = diag(1lm1 , . . . , 1lml
, Ima), where Ima is the ma ×ma identity

matrix. Define also

Qa = diag(ν1, . . . , νl, Ima)Q̂1̃la, (10.44)

where νk is the stationary distribution of Q̃k, k = 1, . . . , l.
As in the previous sections, we assume Q̃k, for k = 1, . . . , l, to be weakly

irreducible. Then, the aggregation leads to the definition of the following
process:

αε(t) =

{
k, if αε(t) ∈ Mk

j + l, if αε(t) = saj ∈ Ma.
(10.45)

For all k = 1, . . . , l and j = 1, . . . ,mi corresponding to the recurrent
states, it can be shown as in Chapter 2 that

E

(∫ t

0

(
I{αε(s)=skj} − νkj I{αε(s)=k}

)
ds

)2

= O(ε), (10.46)

uniformly in t ∈ [0, T ]. Moreover, αε(·) converges weakly to α(·) that is
generated by Qa.
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Theorem 10.11. As ε→ 0, Kε(s, skj) → K(s, k) and qε(s, skj) → q(s, k)
for k = 1, . . . , l,j = 1, . . . ,mk; K

ε(s, saj) → K(s, l + j) and qε(s, saj) →
q(s, l+ j), for j = 1, . . . ,ma uniformly on [0, T ], where K(s, k) and q(s, k)
are the unique solutions to the following equations:

K̇(s, k) = −K(s, k)A(k)−A
′
(k)K(s, k)−M(k)

+K(s, k)BN−1B′(k)K(s, k)−Qa K(s, ·)(k),

for k = 1, . . . , l,

K̇(s, k) = −K(s, k)A(sa(k−l))−A′(sa(k−l))K(s, k)

+K(s, k)B(sa(k−l))N
−1(sa(k−l))B

′(sa(k−l))K(s, k)

−M(sa(k−l))−Qa K(s, ·)(k), for k = l + 1, . . . , l+ma,

(10.47)
with K(T, k) = D, and for k = 1, . . . , l, l+ 1, . . . , l+ma,

q̇(s, k) = −tr
(
σσ′K(s, k)

)
−Qaq(s, ·)(k), (10.48)

with q(T, k) = 0.

Proof: The proof is similar to that of Theorem 10.1. We only note the
following differences.
(i) The irreducibility of Q̃k impliesKε(s, skj)→ K0(s, k) for k = 1, . . . , l,

and Kε(s, saj) → K0(s, j + l) for j = 1, . . . ,ma.
(ii) Let K0

a(s) = (K0(s, l + 1), . . . ,K0(s, l +ma)). Then we have

diag
(
ν1, . . . , νl, Ima

)
(
1

ε
Q̃+ Q̂

)

×(K0(s, 1)1l′m1
, . . . ,K0(s, l)1l′ml

,K0
a(s))

′

= Qa(K
0(s, 1), . . . ,K0(s, l),K0

a(s))
′. �

The convergence of Kε(s, i) and qε(s, i) leads to

vε(s, x, skj) → v(s, x, k), for k = 1, . . . , l, j = 1, . . . ,mk,

vε(s, x, saj) → v(s, x, l + j), for j = 1, . . . ,ma,
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where, for k = 1, . . . , l, l+ 1, . . . , l +ma,

v(s, x, k) = x′K(s, k)x+ q(s, k).

The control set for the limit problem is given by

U =
{
U = (U1, . . . , U l, U l+1, . . . , U l+ma)

}
,

where

Uk = (uk1, . . . , ukmk), ukj ∈ R
n2 , k = 1, . . . , l, j = 1, . . . ,mk,

Uk = ua(k−l) ∈ R
n2 ,

k = l + 1, . . . , l +ma.

Define

fa(s, x, k, U) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(k)x+

mk∑

j=1

νkjB(skj)u
kj , if k = 1, . . . , l,

A(sa(k−l))x+B(sa(k−l))u
a(k−l),

if k = l + 1, . . . , l+ma,

Ma(k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mk∑

j=1

νkjM(skj), if k = 1, . . . , l,

M(sa(k−l)), if k = l + 1, . . . , l +ma,

and

Ña(k, U) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

mk∑

j=1

νkj

(
ukj,′N(skj)u

kj
)
, if k = 1, . . . , l,

ua(k−l),′N(sa(k−l))u
a(k−l),

if k = l + 1, . . . , l +ma.



10.6 Two-Time-Scale Approximation: Inclusion of Absorbing States 365

The corresponding control problem is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Min J(s, x, k, U(·)) = E

{∫ T

s

[x′(t)Ma(α(t))x(t)

+Ña(α(t), U(t))]dt + x′(T )Dx(T )

}

s.t. dx(t) = fa(t, α(t), x(t), U(t))dt + σdw(t), x(s) = x,

where α(·) ∈ {1, . . . , l, l + 1, . . . , l + ma} is a Markov chain generated by
Qa with α(s) = k.
The optimal control for this limit problem is

U∗(s, x, k) = (U1∗(s, x), . . . , U l∗(s, x),

U (l+1)∗(s, x), . . . , U (l+ma)∗(s, x))

where

Uk∗(s, x) = (uk1∗(s, x), . . . , ukmk∗(s, x)) for k = 1, . . . , l,

Uk∗(s, x) = ua(k−l)∗(s, x) for k = l + 1, . . . , l +ma,

with

ukj∗(s, x) = −N−1(skj)B
′(skj)K(s, k)x, for k = 1, . . . , l,

ua(k−l)∗(s, x) = −N−1(sa(k−l))B
′(sa(k−l))K(s, k)x,

for k = l + 1, . . . , l +ma.

Construct

uε(s, x, α) =

l∑

k=1

mk∑

j=1

I{α=skj}u
kj∗(s, x) +

ma∑

j=1

I{α=saj}u
aj∗(s, x)

=

⎧
⎪⎪⎨

⎪⎪⎩

−N−1(α)B′(α)K(s, k)x if α ∈ Mk

−N−1(α)B′(α)K(s, l + j)x if α ∈ Ma

(10.49)

for the original problem.
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Moreover, if we assume B(skj) = B(k) and N(skj) = N(k) to be inde-
pendent of j, for k = 1, . . . , l, we may also consider

uε(s, x, α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−N−1(k)B′(k)K(s, k)x if α ∈ Mk

−N−1(α)B′(α)K(s, l + j)x

if α = saj ∈ Ma

(10.50)

Such a control uε depends only on the information regarding whether
αε(t) ∈ Mk or αε(t) = saj ∈ Ma.

Theorem 10.12. The following assertions hold:

(1) The control uε(t) defined in (10.49) is nearly optimal, i.e.,

lim
ε→0

|Jε(s, x, α, uε(·)) − vε(s, x, α)| = 0.

(2) If B(skj) = B(k) and N(skj) = N(k) are independent of j, then
uε(t) defined in (10.50) is nearly optimal, i.e.,

lim
ε→0

|Jε(s, x, α, uε(·)) − vε(s, x, α)| = 0.

Proof: Using (10.46) and the convergence of αε(·) → α(·), the proof of these
results is similar to that of Theorem 10.5. �

10.7 A Numerical Example

For the purpose of demonstration, this section deals with a numerical ex-
ample with αε(t) ∈ M = {1, 2}, t ≥ 0, a Markov chain generated by

Qε =
1

ε

⎛

⎜
⎝

−0.5 0.5

0.5 −0.5

⎞

⎟
⎠ .

Consider the one-dimensional dynamic system model

dxε(t) =
(
A(αε(t))xε(t) +B(αε(t))u(t)

)
dt+ σdw(t), (10.51)

with the following specifications: xε(0) = 0, A(1) = 0.5, A(2) = −0.1,
B(1) = 1, B(2) = 2, σ = 1, M(1) =M(2) = N(1) = N(2) = D = 1.
We discretize the equations with step size h. The time horizon in the

continuous-time model is T = 5, and that in the corresponding discrete-
time setting is Th = 5/h with h = 0.01. The results below are based on
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computations using 100 sample paths. Take s = 0, α(0) = 1, and x(0) =
x = 0. Let vε = vε(0, 0, 1), Jε = Jε(0, 0, 1, uε(·)), and v = v(0, 0). Define

|Kε −K| = 1

Th

Th∑

j=1

(
|Kε(jh, 1)−K(jh)|

+|Kε(jh, 2)−K(jh)|
)
,

|xε − xε| = 1

Th

Th∑

j=1

|xε(jh)− xε(jh)|,

where xε(·) is the optimal trajectory and xε(·) is the near-optimal trajec-
tory under uε. Then for various ε we have the error bounds given in Table
10.1. Taking ε = 0.1, the sample paths of Kε(·, 1), Kε(·, 2), K(·), and the

ε |Kε −K| |xε − xε| |vε − v| |Jε − vε|

0.1 2.17ε 0.10ε 4.23ε 2.21
√
ε

0.01 2.47ε 0.19ε 5.01ε 0.36
√
ε

0.001 2.50ε 0.13ε 5.09ε 0.46
√
ε

0.0001 2.50ε 0.12ε 5.10ε 4.17
√
ε

TABLE 10.1. Error bounds

difference |Kε −K| are given in Figure 10.1. The sample paths of the tra-
jectories of αε(·), xε(·), xε(·) and the difference |xε(t)− x(t)| are depicted
in Figure 10.2.
Next, we decrease the value of ε by letting ε = 0.01. Then the fast

variation of the Markov chain is much more pronounced. The corresponding
sample paths of Kε(t, i) and K(t, i), as well as the errors are plotted in
Figure 10.3.
The sample paths of αε(·), xε(·), x(·), and the difference |xε(t) − x(t)|

are plotted in Figure 10.4.
It can be seen from these graphs that the smaller the size of ε, the

more frequently αε(·) jumps, and the better the approximations are. To
summarize, the numerical simulations indicate that our algorithm gives a
very good approximation to exact optimal solutions with only half of the
computational effort.
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FIGURE 10.1. Riccati solutions with ε = 0.1

10.8 Remarks on Indefinite Control Weights

We have demonstrated how to construct nearly optimal controls for LQG
problems. So far in our setup, the matrices associated with the control
(often referred to as control weights), namely N(α) for α ∈ M are assumed
to be positive definite. For deterministic systems, if the control weights
are not positive definite, the problem is not well posed. Nevertheless, for
stochastic systems with the noise being Brownian motions, it has been
shown recently that LQG with indefinite control weights could make sense
if a certain balance were reached; see Chen, Li, and Zhou [26] and Yong and
Zhou [246]. The control weights can be indefinite or even negative definite
as long as they are not “too negative.” The stochastic influence, to some
extent, compensates the negative control weights to make the problem well
posed. In this section, we briefly remark on treating near-optimal controls
of switching diffusion systems with indefinite controls. For brevity, we will
only formulate the problem and state the main results. For the interested
reader, we refer to the paper by Liu, Yin, and Zhou [148] for the details.
Suppose that the switching process αε(·) is as given in Section 10.4. That

is, its generator is given by (10.3) with Q̃ specified in (10.10). Consider a
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FIGURE 10.2. Various sample paths with ε = 0.1

switching diffusion system given by

dx(t) = [A(αε(t))x(t) +B(αε(t))u(t)]dt

+C(αε(t))u(t)dw(t), for s ≤ t ≤ T,

(10.52)

with x(s) = x and αε(s) = α. Our objective is to find the control u(·) to
minimize

Jε(s, x, α, u(·)) = Es

[ ∫ T

s

[x′(t)M(αε(t))x(t)

+u′(t)N(αε(t))u(t)]dt + x′(T )D(αε(T ))x(T )
]
.

(10.53)

Note that in (10.52), the variance of the diffusion part is controlled. This in
fact, is the main difference between the system given above and that con-
sidered in the previous sections. Consequently, one needs to use backward
stochastic differential equation (SDE) techniques to treat the underlying
system. For more details on backward SDEs, we refer the reader to Pardoux
and Peng [171] and Yong and Zhou [246] for further reading.
With the help of the backward SDEs, we then proceed as in the previous

sections. We can derive the limit system of Riccati equations and show that
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FIGURE 10.3. Riccati solutions with ε = 0.01

for k = 1, . . . , l and j = 1, . . . ,mk, K
ε(s, skj) → K(s, k) uniformly on [0, T ]

as ε→ 0, where K(s, k) is the unique solution to

K̇(s, k) = −K(s, k)A(k)−A
′
(k)K(s, k)−M(k)

+K(s, k)B(k)(N(k) + C′(k)K(s, k)C(k))−1B′(k)

×K(s, k)−QK(s, ·)(k),

(10.54)

with

K(T, k) = D(k)
def
=

mk∑

j=1

νkjD(skj).

We can then find the optimal control of the limit problem using backward
SDE techniques. Denote such optimal controls by

U∗(s, x, k) = (U1∗(s, x), . . . , U l∗(s, x)),

Uk∗(s, x) = (uk1∗(s, x), . . . , ukmk∗(s, x)),

ukj∗(s, x) = −Φ−1(skj)B
′(skj)K(s, k)x,
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where

Φ−1(skj) = Φ−1(s, skj) = (N(skj) + C′(skj)K(s, skj)C(skj))
−1.

We then construct controls

uε(s, x, α) =
l∑

k=1

mk∑

j=1

I{α=skj}u
∗,kj(s, x)

for the original problem. We can show that the uε(t) given above is nearly
optimal in that

|Jε(s, x, α, uε(·))− vε(s, x, α)| → 0 as ε→ 0.

10.9 Notes

LQ problems have a long and illustrious history. Nowadays, LQ control
methodology is included in almost every standard textbook in control the-
ory and is a “must” in undergraduate and graduate curricula. This chapter
is based on Zhang and Yin [254]. A classical treatment of LQG control
problems can be found in Fleming and Rishel [63], whereas much recent
research effort has been devoted to the study of hybrid LQG systems for
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over a decade; see, for example, Blair and Sworder [15], Caines and Chen
[21], Mariton [154], Rishel [181], Ji and Chizeck [97, 98], Zhang [250], and
the references therein. Related work on additive control of stochastic linear
systems can also be found in Chow, Menaldi, and Robin [29].
The two-time-scale method and singular perturbation method for sys-

tems and controls can be traced back to the works of Delebecque [43],
Delebecque and Quadrat [44], Phillips and Kokotovic [175], and Pan and
Başar [164, 167], among others. Until very recently, the main focus for
LQG problems has been on the case in which the control weight (the ma-
trix associated with the control action) is positive definite. Recent advances
in backward SDEs (see Pardoux and Peng [171] and also Yong and Zhou
[246]) make it possible to treat problems with indefinite controls. There
are ample applications of such control actions; see for example, Markowitz’s
mean-variance portfolio selection with regime switching considered in Zhou
and Yin [259], Yin and Zhou [243], and many references therein.



Appendix A

Background Materials

This appendix collects a number of results used in the book. These results
include generators of Markov chains, weak convergence methods, relaxed
control representation, viscosity solutions of HJB equations, optimal con-
trols, and a number of miscellaneous lemmas and theorems.

A.1 Properties of Generators

This section presents several properties of a generatorQ (orQ(t), t ≥ 0) of a
continuous-time Markov chain. The first lemma can be found in Wilkinson
[219].

Lemma A.1 (Gerschgorin’s Theorem). Let λ be an eigenvalue of an m×m
matrix Q = (qij). Then there exists an index k such that

|λ− qkk| ≤
∑

i�=k

|qki|.

Proof: Use ξ = (ξ1, . . . , ξm)′ ∈ R
m×1 to denote a right-eigenvector of Q

corresponding to the eigenvalue λ and use k to denote the index such that
|ξk| = maxi |ξi|. Then Qξ = λξ and, in particular,

m∑

i=1

qkiξi = λξk.

G.G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications,
Stochastic Modelling 37, DOI 10.1007/978-1-4614-4346-9,
© Springer Science+Business Media, LLC 2013
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Note, by the choice of k, that |ξi|/|ξk| ≤ 1. Consequently,

|λ− qkk| ≤
∑

i�=k

|qki|
|ξi|
|ξk|

≤
∑

i�=k

|qki|. �

Lemma A.2. Let Q be a weakly irreducible generator. Then

(a) zero is an eigenvalue with multiplicity one, and all other eigenvalues
{λ1, . . . , λm−1} have negative real parts;

(b) there exists a constant K > 0 such that
∣
∣
∣ exp(Qs)− P

∣
∣
∣ ≤ K exp(−κ̃s),

where

κ̃ = −1

2

(

max
1≤i≤m−1

Re(λi)

)

> 0,

P = 1l(ν1, · · · , νm) ∈ R
m×m, and (ν1, . . ., νm) is the stationary dis-

tribution of the Markov process with generator Q.

Proof: Clearly, zero is an eigenvalue of Q with the corresponding eigenvector
1l. Let P (s) = exp(Qs). Then P (s) is the transition probability matrix of
the Markov chain generated by Q satisfying the differential equation

dP (s)

ds
= P (s)Q, P (0) = I.

By virtue of Theorem II.10.1 of Chung [31], lims→∞ P (s) exists and is equal
to a constant matrix P . This in turn yields that

lim
s→∞

exp(Qs) = lim
s→∞

P (s) = P = (pij). (A.1)

Owing to the corollary of Theorem II.12.8 of [31],

lim
s→∞

d

ds
(exp(Qs)) = 0.

In view of the differential equation given above,

0 = lim
s→∞

dP (s)

ds
= lim

s→∞
P (s)Q = PQ. (A.2)

For each i = 1, . . . ,m, denote the ith row of P by P i. The weak irreducibil-
ity of Q then implies that the system of equations

P iQ = 0, P i1l = 1

has a unique solution. Since P is the limit of the transition matrix, P i ≥ 0.
As a result, P i is the quasi-stationary distribution ν and P has identical
rows with P = 1l(ν1, . . . , νm).
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Using the Jordan canonical form, there is a nonsingular matrix U such
that

exp(Qs) = U diag
(
exp(J0s), exp(J1s), . . . , exp(Jqs)

)
U−1,

where J0, J1, . . ., Jq are the Jordan blocks satisfying that J0 is a diagonal
matrix having appropriate dimension (if λi is a simple eigenvalue of Q,
it appears in the block J0), and that Jk ∈ R

mk×mk , k = 1, . . . , q. Since
lims→∞ exp(Qs) exists, all the nonzero eigenvalues λi, for 1 ≤ i ≤ m − 1,
must have negative real parts. Moreover, in view of the weak irreducibility
of Q, the eigenvalue zero is a simple eigenvalue (having multiplicity 1).
Then it is easily seen that

∣
∣
∣ exp(Qs)− P

∣
∣
∣ ≤ K exp(−κ̃s),

where κ̃ = (−1/2)max1≤i≤m−1 Re(λi). �

Remark A.3. The preceding lemma displays the spectrum property of a
weakly irreducible generator. Such properties have been well studied in
the literature; see Cox and Miller [36] and Iosifescu [95] (also the classical
work of Doob [49]). The paper of Karlin and McGregor [104] gives criteria
for classifying generalized birth and death processes. The treatment using
Green’s function approach is in Keilson [107]. Related issues on singularly
perturbed autonomous systems can be found in Campbell [22], and Camp-
bell and Rose [23]. The authors derived a necessary and sufficient condition
for the convergence of exp(A + B/ε)t (for t > 0 as ε → 0); they showed
that the limit exists if and only if B is semistable.

Next we further our understanding of the properties of irreducible gen-
erators. The lemmas below exploit the nonnegativity and the connection
of weak irreducibility and the rank of a generator, its eigenvalues, and
quasi-stationary distributions.

Lemma A.4. Given a generator Q, assume the system of equations

⎧
⎪⎪⎨

⎪⎪⎩

νQ = 0,

ν1l = 1.

(A.3)

has a unique solution. Then the solution is nonnegative.

Proof: Let P (t) := exp(Qt). Then P (t) is the transition matrix of a Markov
chain generated by Q, since P (t) is the unique solution to the forward
equation (2.5). It follows that P (t) ≥ 0. Consequently, as in the proof of
Lemma A.2,

0 ≤ lim
t→∞

P (t) = P = 1lν.
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Thus, P has identical rows ν and ν ≥ 0. Repeating the proof of Lemma A.2,
similar to (A.2), PQ = 0. As a result νQ = 0 and ν1l = 1. Thus ν is a
solution to (A.3). However, (A.3) has a unique solution. Therefore, ν is its
only solution and it is nonnegative. �

Lemma A.5. Let Q be an m ×m generator. If the rank of Q is equal to
m− 1, then Q is weakly irreducible.

Proof: In view of (A.1) and (A.2) in the proof of Lemma A.2, there exists
a row vector a = (a1, . . . , am) such that

aQ = 0 and a1l = 1.

Note that the null space N(Q′) = span{a} because

rank(Q′) = rank(Q) = m− 1.

Then a = (ν1, . . . , νm) is the unique nonnegative solution to aQ = 0 and
a1l = 1. Thus Q is weakly irreducible. �

Lemma A.6. For each 0 ≤ t ≤ T , let Q(t) be a generator with Q(t) ∈
R

m×m. Assume Q(t) is weakly irreducible and continuous on [0, T ]. Then
there exists a constant κ̂ > 0 such that for any nonzero eigenvalue λt of
Q(t), Re(λt) ≤ −κ̂ uniformly in t ∈ [0, T ].

Proof: For each t ∈ [0, T ], let h(λ, t) = det(λI − Q(t)). Since Q(t) has a
zero eigenvalue with multiplicity 1, there exists a polynomial (in terms of
the variable λ) h0(λ, t) such that its coefficients are continuous in t ∈ [0, T ],
h(λ, t) = λh0(λ, t), and h0(0, t) �= 0. If the lemma did not hold, then there
would exist a sequence {tn} with tn ∈ [0, T ] and nonzero eigenvalues λn
such that h0(λn, tn) = 0 and Re(λn) → 0.
In view of Gerschgorin’s theorem (Lemma A.1) and the continuity ofQ(t)

on the bounded interval [0, T ], the eigenvalues of Q(t) lie in a compact set
uniformly in t ∈ [0, T ]. We may assume tn → t and λn → λ as n → ∞. It
follows that Re(λ) = 0 and h0(λ, t) = 0. Thus λ is a nonzero eigenvalue of
Q(t) with zero real part, which contradicts (a) in Lemma A.2. �

A.2 Weak Convergence

The concept of weak convergence is a substantial generalization of conver-
gence in distribution in elementary probability theory. This section gathers
a number of definitions and results regarding weak convergence including
tightness, martingale problem, Skorohod representation, Prohorov’s theo-
rem, and tightness criteria, etc.
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Definition A.7 (Weak Convergence). Let P and Pn, n = 1, 2, . . ., denote
probability measures defined on a metric space F. The sequence {Pn} con-
verges weakly to P if ∫

fdPn →
∫

fdP

for every bounded and continuous function f on F. Suppose that {Xn}
and X are random variables associated with Pn and P , respectively. The
sequence Xn converges to X weakly if for any bounded and continuous
function f on F, Ef(Xn) → Ef(X) as n→ ∞.

Use D([0,∞);Rr) to denote the space of Rr-valued functions on [0,∞)
that are right-continuous and that have left-hand limits. Let L denote a
set of strictly increasing Lipschitz continuous functions φ : [0,∞) �→ [0,∞)
such that the mapping is surjective with φ(0) = 0, limt→∞ φ(t) = ∞, and

γ(φ) := sup
0≤t<s

∣
∣
∣
∣log

(
φ(s)− φ(t)

s− t

)∣
∣
∣
∣ <∞.

Definition A.8 (Skorohod Topology). For ξ, η ∈ D([0,∞);Rr), the Sko-
rohod topology d(·, ·) on D([0,∞);Rr) is defined as

d(ξ, η)= inf
φ∈L

{

γ(φ) ∨
∫ ∞

0

e−� sup
t≥0

(

1 ∧ |ξ(t ∧ �)− η(φ(t) ∧ �)|
)

d�

}

.

We can define Skorohod topology analogously for either D([0, T ];Rr) or
D([0, 1];Rr). For related references, see Ethier and Kurtz [59] and Billings-
ley [13]. In our study, we often work with D([0, T ];Rr). The results to
follow are often stated with respect to the space D([0,∞);Rr), since this
will allow us to apply them to the cases t ∈ [0, T ] for any T > 0.

Definition A.9 (Tightness). A family of probability measures T defined
on a metric space F is tight if for each δ > 0, there exists a compact set
Kδ ⊂ F such that

inf
P∈T

P (Kδ) ≥ 1− δ.

The notion of tightness is closely related to compactness. The following
theorem, known as Prohorov’s theorem, accounts for such an implication.
A complete proof can be found in Ethier and Kurtz [59].

Theorem A.10 (Prohorov’s Theorem). If T is tight, then T is relatively
compact, i.e., every sequence of elements in T contains a weakly convergent
subsequence. If the underlying metric space is complete and separable, the
tightness is equivalent to relative compactness.

Weak convergence techniques usually allow the use of much weaker con-
ditions and results in more general setup. For purely analytic reasons, how-
ever, it is often more convenient to work with probability one convergence.
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A device, known as Skorohod representation, provides us with such oppor-
tunities.

Theorem A.11 (The Skorohod Representation (Ethier and Kurtz [59])).
Let Pn and P denote probability measures on D([0,∞);Rr) such that Pn

converges weakly to P . Then there exists a probability space (Ω̃, F̃ , P̃ ) on

which are defined D([0,∞);Rr)-valued random variables X̃n, n = 1, 2, . . . ,

and X̃ such that for any Borel set B and all n <∞, P̃ (X̃n ∈ B) = Pn(B),

and P̃ (X̃ ∈ B) = P (B) such that

lim
n→∞

X̃n = X̃ w.p.1.

Let C([0,∞);Rr) be the space of Rr-valued continuous functions equipped
with the sup-norm topology, C0 be the set of real-valued continuous func-
tions on R

r with compact support. Let Ck
0 be the subset of C0 functions

that have continuous partial derivatives up to the order k.

Definition A.12. Let F denote a metric space and let A denote a linear
operator on B(F), the set of all Borel measurable functions defined on F.
Let X(·) = {X(t) : t ≥ 0} denote a right-continuous process with values
in F such that

f(X(t))−
∫ t

0

Af(X(s))ds,

for each f in the domain of A, is a martingale with respect to the filtration
σ{X(s) : s ≤ t}. Then X(·) is called a solution of the martingale problem
for A.

Theorem A.13 (Ethier and Kurtz [59, p. 174]). A right-continuous pro-
cess X(t), t ≥ 0, is a solution of the martingale problem for the operator
A if and only if

E

{(

f(X(ti+1))−f(X(ti))−
∫ ti+1

ti

Af(X(s))ds

) i∏

j=1

hj(X(tj))

}

= 0

whenever 0 ≤ t1 < t2 < · · · < ti+1, f ∈ D(A), and h1, . . . , hi ∈ B(F), where
D(A) denotes the domain of A and B(F) denotes the Borel field of F.

Theorem A.14 (Uniqueness of Martingale Problems). Let X(·) and Y (·)
denote two stochastic processes with paths in D([0, T ];Rr). Let A denote
an infinitesimal generator. If for any function f in the domain of A,

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds, t ≥ 0, and

f(Y (t))− f(Y (0))−
∫ t

0

Af(Y (s))ds, t ≥ 0,
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are martingales and X(t) and Y (t) have the same distribution for each
t ≥ 0, X(·) and Y (·) have the same distribution on D([0,∞);Rr).

Proof: The proof can be found in Ethier and Kurtz [59, p. 184], �

Theorem A.15. Let xε(·) be a solution of the differential equation

dxε(t)

dt
= F ε(t),

and for each T < ∞, {F ε(t) : 0 ≤ t ≤ T } be uniformly integrable. If the
set of initial values {xε(0)} is tight, then {xε(·)} is tight in C([0,∞);Rr) .

Proof: The proof is essentially in Billingsley [13, Theorem 8.2] (see also
Kushner [139, p. 51, Lemma 7]). �
Define the notion of “p-lim” and an operator Aε as in Ethier and Kurtz

[59]. Suppose that zε(·) are defined on the same probability space. Let Fε
t

be the minimal σ-algebra over which {zε(s), ξε(s) : s ≤ t} is measurable
and let Eε

t denote the conditional expectation given Fε
t . Denote

M
ε
=

{

f : f is real valued with bounded support and is

progressively measurable w.r.t. {Fε
t }, sup

t
E|f(t)| <∞

}

.

Let g(·), f(·), fΔ(·) ∈M
ε
, For each Δ > 0 and t ≤ T <∞, f = p-limΔ f

Δ

if
sup
t,Δ

E|fΔ(t)| <∞,

then
lim
Δ→0

E|f(t)− fΔ(t)| = 0 for each t.

The function f(·) is said to be in the domain of Aε, that is, f(·) ∈ D(Aε),
and Aεf = g, if

p− lim
Δ→0

(
Eε

t f(t+Δ)− f(t)

Δ
− g(t)

)

= 0.

If f(·) ∈ D(Aε), then Ethier and Kurtz [59] or Kushner [139, p. 39] implies
that

f(t)−
∫ t

0

Aεf(u)du is a martingale,

and

Eε
t f(t+ s)− f(t) =

∫ t+s

t

Eε
tA

εf(u)du w.p.1.

In applications, φ-mixing processes frequently arise, see [59] and [139]. The
assertion below presents a couple of inequalities for uniform mixing pro-
cesses. Further results on various mixing processes are in [59].
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Lemma A.16 (Kushner [139, Lemma 4.4]). Let ξ(·) be a φ-mixing process
with mixing rate φ(·) and let h(·) be a function of ξ that is bounded and
measurable on F∞

t . Then
∣
∣
∣E(h(t+ s)|F t

0)− Eh(t+ s)
∣
∣
∣ ≤ 2φ(s).

If t < u < v, and Eh(s) = 0 for all s, then

∣
∣
∣E(h(u)h(v)|F t

0)− Eh(u)h(v)
∣
∣
∣ ≤ 4

(
φ(v − u)φ(u − t)

) 1
2

,

where F t
τ = σ{ξ(s) : τ ≤ s ≤ t}.

A crucial step in analyzing many limit problems is to obtain tightness
of the sequences of interest. A sufficient condition known as the Kurtz’
criterion appears to be rather handy to utilize.

Lemma A.17 (Kushner [139, Theorem 3, p. 47]). Suppose that {Y ε(·)} is
a process with paths in D([0,∞);Rr), and suppose that

lim
K1→∞

{

lim sup
ε→0

P

(

sup
0≤t≤T

|Y ε(t)| ≥ K1

)}

= 0 for each T <∞, (A.4)

and for all 0 ≤ s ≤ Δ, t ≤ T ,

Eε
t min

(
1, |Y ε(t+ s)− Y ε(t)|2

)
≤ Eε

t γε(Δ),

lim
Δ→0

{

lim sup
ε→0

Eγε(Δ)

}

= 0.

(A.5)

Then {Y ε(·)} is tight in D([0,∞);Rr).

Remark A.18. In lieu of (A.4), one may verify the following condition
(see Kurtz [136, Theorem 2.7, p. 10]). Suppose that for each η > 0 and
rational t ≥ 0 there is a compact set Γt,η ⊂ R

r such that

inf
ε
P (Y ε(t) ∈ Γt,η) > 1− η. (A.6)

The perturbed test function method is a useful technique in dealing with
singularly perturbed stochastic systems. The next lemma, due to Kushner,
gives a criterion for tightness of singularly perturbed systems via perturbed
test function methods.

Lemma A.19 (Kushner [139, Theorem 3.4]). Let zε(·) ∈ D([0,∞);Rr),
zε(0) = z0, and

lim
κ1→∞

{

lim sup
ε→0

P

(

sup
t≤T1

|zε(t)| ≥ κ1

)}

= 0 (A.7)
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for each T1 < ∞. For each f(·) ∈ C2
0 and T1 < ∞, let there be a sequence

{fε(·)} such that f ε(·) ∈ D(Aε) and that {Aεf ε(t) : ε > 0, t < T1} is
uniformly integrable and

lim
ε→0

P

(

sup
t≤T1

|f ε(t)− f(zε(t))| ≥ κ2

)

= 0

for each T1 <∞ and each κ2 > 0. Then {zε(·)} is tight in D([0,∞);Rr).

The functions fε(·) above are the perturbed test functions. They are so
constructed that they will be close to f(zε(·)), and will result in desired
cancelation in the averaging.
To apply Lemma A.19 for proving tightness, one needs to verify (A.7).

Such verifications are usually nontrivial and involve complicated calcula-
tions. To overcome the difficulty, we utilize the device of N -truncation,
defined as follows: For each N > 0, let SN = {z : |z| ≤ N} be the ball
with radius N , let zε,N (0) = zε(0), zε,N(t) = zε(t) up until the first exit
from SN , and

lim
κ1→∞

{

lim sup
ε→0

P

(

sup
t≤T1

|zε,N (t)| ≥ κ1

)}

= 0 (A.8)

for each T1 <∞. Then zε,N (t) is said to be the N -truncation of zε(·).
Using the perturbed test function techniques, the lemma to follow pro-

vides sufficient conditions for weak convergence. Its proof is in Kushner
[139].

Lemma A.20. Suppose that {zε(·)} is defined on [0,∞). Let {zε(·)} be
tight on D([0,∞);Rr). Suppose that for each f(·) ∈ C2

0 , and each T1 <∞,
there exist fε(·) ∈ D(Aε) such that

p− lim
ε→0

(f ε(·)− f(zε(·))) = 0 (A.9)

and
p− lim

ε→0
(Aεf ε(·)−Af(zε(·))) = 0. (A.10)

Then zε(·) ⇒ z(·).

The theorem below is useful in characterizing limit processes in weak
convergence analysis. Its proof is in Kushner and Yin [145, Theorem 4.1.1].

Theorem A.21. Let M(t) be a continuous-time martingale whose paths
are Lipschitz continuous with probability one on each bounded time interval.
Then M(t) is a constant with probability one.
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A.3 Relaxed Control

Let Γ be a compact set in some Euclidean space, which denotes the control
space. Assume that Gt is any given filtration (for instance, Gt = σ{α(s) :
0 ≤ s ≤ t}, where α(·) is a finite-state Markov chain). Denote the σ-algebra
of Borel subsets of any set S by B(S). Let

IM =
{
m̃(·) : m̃(·) is a measure on B(Γ× [0,∞))

satisfying m̃(Γ× [0, t]) = t for all t ≥ 0
}
.

A random IM-valued measure m̃(·) is an admissible relaxed control if for
each B ∈ B(Γ), the function defined by m̃(B, t) ≡ m̃(B × [0, t]) is Gt-
progressively measurable. An equivalent formulation reads that m̃(·) is a
relaxed control if ∫ t

0

h(s, �)m̃(ds× d�)

is progressively measurable with respect to {Gt} for each bounded and
continuous function h(·).
If m̃(·) is an admissible relaxed control, there is a measure-valued func-

tion m̃t(·) (the “derivative”) such that m̃t(d�)dt = m̃(dt × d�) and for
smooth function h(·),

∫

h(s, �)m̃(ds× d�) =

∫

ds

∫

h(s, �)m̃s(d�). (A.11)

To proceed, topologize IM as follows. Let {fni(·) : i < ∞} be a countable
dense (under the sup-norm topology) set of continuous functions on Γ ×
[0, n] for each n. Let

〈
m̃, f

〉
=

∫

f(s, �)m̃(ds× d�), (A.12)

and define

d(m̃1, m̃2) =

∞∑

n=1

1

2n
dn(m̃1, m̃2),

where

dn(m̃1, m̃2) =

∞∑

i=1

1

2i

(
|(m̃1 − m̃2, fni)|

1 + |(m̃1 − m̃2, fni)|

)

.

m̃n(·) ⇒ m̃(·) for a sequence of measures means the weak convergence in
IM.
An ordinary admissible control u(·) is a feedback control for the system

of interest if there is a Γ-valued Borel measurable function u0(·) such that
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u(t) = u0(x(t)) for almost all ω, t. For each x, let m̂(x, ·) be a probability
measure on (Γ,B(Γ)) and suppose that for each B ∈ B(Γ), m̂(·, B) is Borel
measurable as a function of x. If for almost all ω and t, the derivative m̃t(·)
of a relaxed control m̃(·) can be written as m̃t(·) = m̂(x(t), ·), then m̃(·) is
said to be a relaxed feedback control.
Relaxed control formulation provide a convenient device with primary

mathematical use; they can be approximated by ordinary controls through
the following “chattering theorem.” Its proof can be found in Kushner [140,
Theorem 2.2, p. 50]. There is also a version of the chattering theorem for
controlled diffusions. The interested reader is referred to [140, Chapter 3];
see also the related references cited there.

Theorem A.22. Consider the differential equation

dx(t)

dt
=

∫

Γ

f(x(t), �)m̃t(d�), x(0) = x,

and the cost functional

J(m̃) =

∫ T

0

∫

Γ

G(x(s), �)m̃s(d�)ds.

Suppose the differential equation has a unique solution for each initial con-
dition x(0) = x and each relaxed control m̃(·). Then, for a given γ > 0,
there is a finite set {�γ1 , . . . , �

γ
kγ
} ≡ Γγ ⊂ Γ and a δ > 0 such that for any

admissible relaxed control m̃(·), there is a Γγ-valued ordinary admissible
control uγ(·) (depending on m̃(·)) being constant on each interval [iδ, iδ+δ),
for iδ + δ ≤ T such that

sup
t≤T

∣
∣
∣x(t, m̃)− x(t, uγ)

∣
∣
∣ ≤ γ,

∣
∣
∣J(x, m̃)− J(x, uγ)

∣
∣
∣ ≤ γ,

where x(t, m̃) and x(t, uγ) are the corresponding trajectories under m̃(·)
and uγ, respectively.

A.4 Viscosity Solutions of HJB Equations

In control theory, typically the dynamic programming argument leads to an
equation known as the Hamilton-Jacobi-Bellman (HJB) equation that the
value function of the problem must satisfy. The equation formally involves
partial derivatives of the value function, even though such a derivative may
not exist at certain points. In these cases, a useful concept is the notion
of viscosity solutions, which was introduced by Crandall and Lions [39]. In
what follows, we briefly describe the ideas and some of the related results.
For more information and discussion on viscosity solutions, the reader is
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referred to the user’s guide by Crandall, Ishii, and Lions [38] and the book
of Fleming and Soner [64].
Let M = {1, . . . ,m} and v : R

n × M → R
1 be a given function. Let

H(·) denote a real-valued function on

ΩH := R
n ×M× R

m × R
n.

Consider the following equation

v(x, α) −H

(

x, α, v(x, ·), ∂v(x, α)
∂x

)

= 0. (A.13)

Definition A.23 (Viscosity Solution). v(x, α) is a viscosity solution of
Equation (A.13) if the following hold:

(a) v(x, α) is continuous in x and |v(x, α)| ≤ K(1+ |x|κ) for some κ ≥ 0;

(b) for any α0 ∈ M,

v(x0, α0)−H

(

x0, α0, v(x0, ·),
dφ(x0)

dx

)

≤ 0,

whenever φ(x) ∈ C1 (i.e., continuously differentiable) and v(x, α0)−
φ(x) has a local maximum at x = x0; and

(c) for any α0 ∈ M,

v(x0, α0)−H

(

x0, α0, v(x0, ·),
dψ(x0)

dx

)

≥ 0,

whenever ψ(x) ∈ C1 and v(x, α0) − ψ(x) has a local minimum at
x = x0.

If (a) and (b) (resp. (a) and (c)) hold, we say that v is a viscosity subsolution
(resp. viscosity supersolution).

In this book, we mainly consider the HJB equation of the following form

ρv(x, α) = min
u∈Γ

{

b(x, α, u)
∂v(x, α)

∂x
+G(x, α, u) +Qv(x, ·)(α)

}

, (A.14)

where as indicated in Remark 8.4, b(∂/∂x)v is understood to be the inner
product of b and (∂/∂x)v, i.e., 〈b, (∂/∂x)v〉.

Theorem A.24 (Uniqueness Theorem). Assume b(x, α, u) satisfies condi-
tions in (A8.1) in Chapter 8 and for some positive constants K and κ,

|G(x, α, u)| ≤ K(1 + |x|κ) and

|G(x1, α, u)−G(x2, α, u)| ≤ K(1 + |x1|κ + |x2|κ)|x1 − x2|,
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for all α ∈ M, x, x1, and x2 ∈ R
n, and u in a compact and convex set

Γ. Let Q be a generator to a Markov chain on M. Then the HJB equation
(A.14) has a unique viscosity solution.

Proof: The proof below is based on the argument of Ishii [96] and Soner
[201]. Let v1(x, α) and v2(x, α) be two viscosity solutions to the HJB equa-
tion (A.14), and

η(x) = exp(a(1 + |x|2) 1
2 ), where a =

ρ

supu |b(x, α, u)|
.

For any 0 < δ < 1 and 0 < γ < 1, consider a function defined on R
n ×

R
n ×M,

Φ(x1, x2, α) := v1(x1, α)− v2(x2, α)−
1

δ
|x1 − x2|2 − γ(η(x1) + η(x2)).

In view of the polynomial growth condition of v1 and v2 given in Defini-
tion A.23, it is easy to see that Φ(x1, x2, α) has a global maximum at a
point (x01, x

0
2, α0), since Φ is continuous and

lim
|x1|+|x2|→∞

Φ(x1, x2, α) = −∞

for each α ∈ M. In particular,

Φ(x01, x
0
1, α0) + Φ(x02, x

0
2, α0) ≤ 2Φ(x01, x

0
2, α0).

Using the definition of Φ, we have

2

δ
|x01 − x02|2 ≤ (v1(x

0
1, α0)− v1(x

0
2, α0)) + (v2(x

0
1, α0)− v2(x

0
2, α0)).

Again, the polynomial growth of v1 and v2 yields

|x01 − x02| ≤
√
δK(1 + |x01|κ + |x02|κ). (A.15)

Moreover, the choice of (x01, x
0
2, α0) implies Φ(0, 0, α0) ≤ Φ(x01, x

0
2, α0). This

yields

γ(η(x01) + η(x02)) ≤ v1(x
0
1, α0)− v2(x

0
2, α0)−

1

δ
|x01 − x02|2 − Φ(0, 0, α0)

≤ K(1 + |x01|κ + |x02|κ).

Therefore, there exists a constant Kγ (independent of δ) such that

|x01|+ |x02| ≤ Kγ . (A.16)
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Note that x �→ Φ(x, x02, α0) takes its maximum at x = x01. According to the
definition of viscosity solutions (Definition A.23),

ρv1(x
0
1, α0) ≤ min

u∈Γ

{

b(x01, α0, u)

(
2

δ
(x01 − x02) + γ

dη(x01)

dx

)

+ G(x01, α0, u) +Qv1(x
0
1, ·)(α0)

}

.

(A.17)

Similarly, note that x �→ −Φ(x01, x, α0) takes its minimum at x = x02. We
can obtain the reverse inequality

ρv2(x
0
2, α0) ≥ min

u∈Γ

{

b(x02, α0, u)

(
2

δ
(x01 − x02)− γ

dη(x02)

dx

)

+ G(x02, α0, u) +Qv2(x
0
2, ·)(α0)

}

.

(A.18)

Combining the two inequalities (A.17) and (A.18) yields

ρ(v1(x
0
1, α0)− v2(x

0
2, α0))

≤min
u∈Γ

{

b(x01, α0, u)

(
2

δ
(x01 − x02) + γ

dη(x01)

dx

)

+G(x01, α0, u) +Qv1(x
0
1, ·)(α0)

}

−min
u∈Γ

{

b(x02, α0, u)

(
2

δ
(x01 − x02)− γ

dη(x02)

dx

)

+G(x02, α0, u) +Qv2(x
0
2, ·)(α0)

}

≤ sup
u∈Γ

{
(
b(x01, α0, u)− b(x02, α0, u)

)
(
2

δ
(x01 − x02)

)

+γ

(

b(x01, α0, u)
η(x01)

dx
+ b(x02, α0, u)

dη(x02)

dx

)

+G(x01, α0, u)−G(x02, α0, u)

+Qv1(x
0
1, ·)(α0)−Qv2(x

0
2, ·)(α0)

}

.

(A.19)

In view of (A.15) and (A.16), there exists a subsequence of δ → 0 (still
denoted by δ) and x0 such that x01 → x0 and x02 → x0. Using this fact and
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letting δ → 0 in (A.19), we have

ρ(v1(x0, α0)− v2(x0, α0))

≤ sup
u∈Γ

{

b(x0, α0, u)

(

2γ
dη(x0)

dx

)

+ Qv1(x0, ·)(α0)−Qv2(x0, ·)(α0)

}

.

(A.20)

On the other hand, Φ(x1, x2, α0) reaches a maximum at (x01, x
0
2, α0); it

follows that for all x and all α ∈ M,

v1(x, α) − v2(x, α)− 2γη(x) = Φ(x, x, α) ≤ Φ(x01, x
0
2, α0)

≤ v1(x
0
1, α0)− v2(x

0
2, α0)− γ(η(x01) + η(x02)).

Again, letting δ → 0 in the inequality above, and recalling that x01 → x0
and x02 → x0,

v1(x, α) − v2(x, α) − 2γη(x)

≤ v1(x0, α0)− v2(x0, α0)− 2γη(x0).

(A.21)

In particular, taking x = x0 in (A.21) leads to

v1(x0, α)− v2(x0, α) ≤ v1(x0, α0)− v2(x0, α0).

Thus,

Qv1(x0, ·)(α0)−Qv2(x0, ·)(α0)

=
∑

α�=α0

qα0α(u)[v1(x0, α)−v1(x0, α0)

−v2(x0, α)+v2(x0, α0)]≤0.

(A.22)

Combining (A.20), (A.21), and (A.22) yields

v1(x, α) − v2(x, α) − 2γη(x)

≤ 1

ρ
sup
u∈Γ

{

b(x0, α, u)

(

2γ
dη(x0)

dx

)}

− 2γη(x0)

≤ 2γη(x0)− 2γη(x0) = 0.
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The second inequality above follows from the fact (d/dx)η(x) ≤ aη(x).
Therefore,

v1(x, α) − v2(x, α) ≤ 2γη(x).

Letting γ → 0, we arrive at

v1(x, α)− v2(x, α) ≤ 0.

Using a similar argument, we can show

v1(x, α)− v2(x, α) ≥ 0.

Thus v1(x, α) = v2(x, α). This concludes the proof. �

The following lemma is used in the proof of Theorem 8.8. For a proof,
see Crandall, Evans, and Lions [37, Lemma 1.1].

Lemma A.25. Let O ⊂ R
n be an open set and η ∈ C(O;R) be differen-

tiable at x0 ∈ O. Then there exist φ+ ∈ C1(O;R) and φ− ∈ C1(O;R) such
that

∂φ+(x0)

∂x
=
∂φ−(x0)

∂x
=
∂η(x0)

∂x
,

and η − φ+ (resp. η − φ−) has a strictly local maximum (resp. minimum)
value of zero at x0.

A.5 Value Functions and Optimal Controls

In this section we present a number of elementary properties of value func-
tions and optimal feedback controls by considering a simple but representa-
tive model. Multidimensional analogues and models having more complex
structures can be treated similarly.
Let (Ω,F , P ) be a probability space. Let α(t) ∈ M = {1, . . . ,m},

for t ≥ 0, denote a Markov chain with generator Q. Consider the one-
dimensional optimal control problem given below. Let b(x, α, u) be a func-
tion satisfying Condition (A8.1) in Chapter 8. The system equation and
the control constraints are

dx(t)

dt
= b(x(t), α(t), u(t)), x(0) = x and u(t) ∈ Γ,

where Γ is a convex and compact subset of Rn1 .

Definition A.26. A control u(·) = {u(t) ∈ R
n1 : t ≥ 0} is called admissi-

ble with respect to the initial capacity α if

(a) u(·) is progressively measurable with respect to the filtration {Ft},
where Ft = σ{α(s) : 0 ≤ s ≤ t} and
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(b) u(t) ∈ Γ for all t ≥ 0.

Let A denote the set of all admissible controls.

Definition A.27. A function u(x, α) is called an admissible feedback con-
trol, or simply feedback control, if

(a) for any given initial data x, the equation

dx(t)

dt
= b(x(t), α(t), u(x(t), α(t))), x(0) = x

has a unique solution;

(b) u(·) = {u(t) = u(x(t), α(t)), t ≥ 0} ∈ A.

The problem of interest is to choose an admissible control u(·) so as to
minimize the objective function

J(x, α, u(·)) = E

∫ ∞

0

e−ρtG(x(t), α(t), u(t))dt,

where x and α are the initial values of x(t) and α(t), respectively, and
G(x, α, u) is a function of x and u. Let v(x, α) denote the value function of
the problem

v(x, α) = inf
u(·)∈A

J(x, α, u(·)).

We would like to remind the reader that in what follows, K is a generic
positive constant. In what follows, for simplicity, we work on u(t) being real
valued. The main techniques can be adopted to multidimensional cases with
u(t) ∈ R

n1 .

Lemma A.28. The following assertions hold:

(a) If G(x, α, u) is locally Lipschitz in that

|G(x1, α, u)−G(x2, α, u)| ≤ K(1 + |x1|κ + |x2|κ)|x1 − x2|

for some constants K and κ, then v(x, α) is also locally Lipschitz in
that

|v(x1, α)− v(x2, α)| ≤ K(1 + |x1|κ + |x2|κ)|x1 − x2|.

(b) If G(x, α, u) is jointly convex and b(x, α, u) is independent of x, then
v(x, α) is convex in x for each α ∈ M.
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Proof: To verify (a), let u(·) denote an admissible control and let x1(·) and
x2(·) denote the state trajectories under u(·) with initial values x1(0) = x1
and x2(0) = x2, respectively. Then there exists a constant K1 such that

∣
∣x1(t)− x2(t)

∣
∣ ≤ |x1 − x2|,

∣
∣x1(t)

∣
∣ ≤ K1(1 + |x1|), and

∣
∣x2(t)

∣
∣ ≤ K1(1 + |x2|).

In view of the local Lipschitz assumption on G(·), we can show that there
exists a constant K2 independent of u(·), x1, and x2 such that

|J(x1, α, u(·)) − J(x2, α, u(·))| ≤ K2(1 + |x1|κ + |x2|κ)|x1 − x2|.

It follows that

|v(x1, α)− v(x2, α)| ≤ sup
u(·)∈A

|J(x1, α, u(·))− J(x2, α, u(·))|

≤ K2(1 + |x1|κ + |x2|κ)|x1 − x2|.

We now prove (b). It suffices to show that J(·, α, ·) is jointly convex. For any
x1 and x2 and any admissible controls u1(·) and u2(·), let x1(t) and x2(t),
t ≥ 0, denote the trajectories corresponding to (x1, u

1(·)) and (x2, u
2(·)).

Then for any γ ∈ [0, 1],

γJ(x1, α, u
1(·)) + (1− γ)J(x2, α, u

2(·))

= E

∫ ∞

0

e−ρt[γG(x1(t), α(t), u1(t)) + (1 − γ)G(x2(t), α(t), u2(t))]dt

≥ E

∫ ∞

0

e−ρtG(x(t), α(t), u(t))dt,

where u(t) := γu1(t) + (1− γ)u2(t) and x(t), t ≥ 0, denotes the trajectory
with initial value γx1 + (1− γ)x2 and control u(·). Thus,

γJ(x1, α, u
1(·)) + (1− γ)J(x2, α, u

2(·))

≥ J(γx1 + (1− γ)x2, α, γu
1(·) + (1 − γ)u2(·)).

This means that J(·, α, ·) is jointly convex. Therefore, v(x, α) is convex. �

The next lemma presents the dynamic programming principle (DPP).
Such results are considered to be well known. However, it is not easy to find
a convenient reference that is applicable to the class of stochastic control
problems considered in this book. For completeness we provide a proof of
the DPP.
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Lemma A.29. Let τ be an {Ft}-stopping time. Then

v(x, α) = inf
u(·)∈A

E

{∫ τ

0

e−ρtG(x(t), α(t), u(t))dt + e−ρτv(x(τ), α(τ))

}

.

Proof: We divide the proof into two steps.

Step 1. Consider the case when τ takes at most countably many values
{t1, t2, . . .} with tj+1 > tj and tj → ∞ as j → ∞. Let u(·) be an admissible
control. On the set {τ = tj}, let uj(t) = u(t+ tj) for t ≥ 0. Then for any
fixed {α(s) : s ≤ tj}, uj(·) is admissible with respect to σ{α(t) : t ≥ tj}.
Note that

E

∫ ∞

τ

e−ρtG(x(t), α(t), u(t))dt

=
∞∑

j=1

E

(

I{τ=tj}

∫ ∞

tj

e−ρtG(x(t), α(t), u(t))dt

)

.

Changing of variable t �−→ t+ tj leads to

E

(

I{τ=tj}

∫ ∞

tj

e−ρtG(x(t), α(t), u(t))dt

)

= E

(

I{τ=tj}e
−ρtj

∫ ∞

0

e−ρtG(x(t + tj), α(t+ tj), u(t+ tj))dt

)

.

(A.23)

Moreover, taking conditional expectation and using the Markov property
yield

E

(∫ ∞

0

e−ρtG(x(t + tj), α(t+ tj), u(t+ tj))dt

∣
∣
∣
∣x(s), α(s) : s ≤ tj

)

= E

(∫ ∞

0

e−ρtG(x(t + tj), α(t+ tj), u(t+ tj))dt

∣
∣
∣
∣x(tj), α(tj)

)

= J(x(tj), α(tj), uj(·)).

Combining this equality with (A.23) and noting that I{τ=tj} is Ftj mea-
surable, we obtain

E

∫ ∞

τ

e−ρtG(x(t), α(t), u(t))dt

=
∞∑

j=1

E
(
I{τ=tj}e

−ρtjJ(x(tj), α(tj), uj(t))
)

≥
∞∑

j=1

E
(
I{τ=tj}e

−ρtjv(x(tj), α(tj))
)

= E
(
e−ρτv(x(τ), α(τ))

)
.

(A.24)
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Since v(x, α) = inf J(x, α, u(·)) taken over all admissible u(·),

v(x, α) ≥ inf
u(·)∈A

E

{∫ τ

0

e−ρtG(x(t), α(t), u(t))dt + e−ρτv(x(τ), α(τ))

}

.

We next derive the reverse inequality. Given an initial x(0) = x, the bound-
edness of b(·) implies that |x(t)| ≤ |x|+Kt. Note that

|G(x(t), α(t), u(t))| ≤ K(1 + tκ)

and ∫ ∞

N

e−ρtK(1 + tκ)dt → 0

as N → ∞. Moreover, on the set {τ > N},

e−ρτv(x(τ), α(τ)) ≤ e−ρτK(1 + τκ) ≤ e−ρNK(1 +Nκ) → 0,

as N → ∞. Without loss of generality, assume τ ≤ N for N large enough.
For tj ≤ N , |x(tj)| ≤ |x| +KN ≤ r1, for some r1. Given δ > 0, partition
{|x| ≤ r1} into intervals I1, I2, . . . , Il0 of length < δ and choose xk ∈ Ik for
k = 1, 2, . . . , l0. For any η > 0 choose admissible uik(·) such that

J(xk, i, uik(·)) < v(xk, i) + η. (A.25)

Given an admissible u(·), define ũ(·) by

ũ(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(t), if 0 ≤ t ≤ τ,

∑

i,j,k

I{τ=tj,α(tj)=i,x(tj)∈Ik}uik(t− tj), if t > τ.

(A.26)

Then ũ(·) is admissible. It follows immediately that

E

∫ τ

0

e−ρtG(x(t), α(t), u(t))dt = E

∫ τ

0

e−ρtG(x(t), α(t), ũ(t))dt.

Let Eijk = {τ = tj , α(tj) = i, x(tj) ∈ Ik}. Then as in the proof of (A.24),

E

∫ ∞

τ

e−ρtG(x(t), α(t), ũ(t))dt

= E
∑

i,j,k

IEijk

∫ ∞

tj

e−ρtG(x(t), α(t), ũ(t))dt

= E
∑

i,j,k

IEijk
e−ρtj

∫ ∞

0

e−ρtG(x(t+ tj), α(t + tj), uik(t))dt

= E
∑

i,j,k

IEijk
e−ρtjJ(x(tj), i, uik(·)).
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In view of the definition of uik(·), we have

E
∑

i,j,k

IEijk
e−ρtjJ(x(tj), i, uik(·))

≤ E
∑

i,j,k

IEijk
e−ρtjv(x(tj), i) + F (δ, η)

= Ee−ρτv(x(τ), α(τ)) + F (δ, η),

where

F (δ, η) = η + E
∑

i,j,k

IEijk
e−ρtj (J(x(tj), i, uik(·))− J(xk, i, uik(·))

−E
∑

i,j,k

IEijk
e−ρtj (v(x(tj), i)− v(xk, i)).

Using the Lipschitz property of G(·) and v(·), it is easy to verify that
F (δ, η) → 0 uniformly in u(·) ∈ A as δ, η → 0. Therefore, for all u(·) ∈ A,
we may define ũ(·) as in (A.26) such that

v(x, α) ≤ J(x, α, ũ(·))

≤ E

{∫ τ

0

e−ρtG(x(t), α(t), u(t))dt + e−ρτv(x(τ), α(τ))

}

+ F (δ, η)

→ E

{∫ τ

0

e−ρtG(x(t), α(t), u(t))dt + e−ρτv(x(τ), α(τ))

}

.

Since u(·) ∈ A is arbitrary, it follows that

v(x, α) ≤ inf
u(·)∈A

E

{∫ τ

0

e−ρtG(x(t), α(t), u(t))dt + e−ρτv(x(τ), α(τ))

}

.

Step 2. In this step, consider a general stopping time τ . For any r = 1, 2, . . .,
let

τr =

∞∑

j=1

j

2r
I{(j−1)/2r<τ≤j/2r}.

Then τr is also an {Ft}-stopping time because

{τr ≤ t} =

{

τ ≤ j0
2r

}

∈ Fj0/2r ⊂ Ft,

where j0 = sup{j : j/2r ≤ t}. Moreover, for each r,

τ ≤ τr ≤ τ +
1

2r
.
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For any u(·) ∈ A, let

ξ(τ) =

∫ τ

0

e−ρtG(x(t), α(t), u(t))dt + e−ρτv(x(τ), α(τ)).

Then it is easy to show that
∣
∣
∣
∣ inf
u(·)∈A

Eξ(τ) − inf
u(·)∈A

Eξ(τr)

∣
∣
∣
∣ ≤ sup

u(·)∈A
|Eξ(τ)− Eξ(τr)| . (A.27)

It suffices to show that the right-hand side of (A.27) goes to 0 as r → ∞.
In view of |x(t)| ≤ |x| + Kt and the polynomial growth rate of G, there
exists a constant K such that for all u(·) ∈ A,

E

∣
∣
∣
∣

∫ τ

0

e−ρtG(x(t), α(t), u(t))dt−
∫ τr

0

e−ρtG(x(t), α(t), u(t))dt

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ τr

τ

Ke−ρt(1 + tκ)dt

∣
∣
∣
∣→ 0,

uniformly in u(·) ∈ A as r → ∞.
Next examine

∣
∣e−ρτrv(x(τr), α(τr))− e−ρτv(x(τ), α(τ))

∣
∣ . (A.28)

Note that as N → ∞,

I{τ>N} {e−ρτv(x(τ), α(τ))} ≤ I{τ>N}e
−ρNK(1 +Nκ)

≤ e−ρNK(1 +Nκ) → 0.

Similarly, as N → ∞,

I{τr>N}
{
e−ρτrv(x(τr), α(τr))

}
≤ e−ρNK(1 +Nκ) → 0.

In view of the triangle inequality, given {τ ≤ N} to estimate (A.28), it
suffices to examine the following three terms

∣
∣
∣v(x(τ), α(τ)) − v(x(τ), α(τr))

∣
∣
∣,

∣
∣
∣v(x(τ), α(τr))− v(x(τr), α(τr))

∣
∣
∣, and

∣
∣
∣(e−ρτr − e−ρτ )v(x(τr), α(τr))

∣
∣
∣.

Note that on the set {τ ≤ N},

N − 1 ≤ τr ≤ N.
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In addition, |x(τ)| ≤ |x| + KN and |x(τr)| ≤ |x| + KN . These imply
|v(x(τr), α(τr))| ≤ K and

I{τ≤N}
∣
∣(e−ρτr − e−ρτ )v(x(τr), α(τr))

∣
∣ ≤ K

∣
∣e−ρτr − e−ρτ

∣
∣→ 0,

as r → ∞. Moreover,

I{τ≤N}

∣
∣
∣v(x(τ), α(τr))− v(x(τr), α(τr))

∣
∣
∣

≤ I{τ≤N}K
∣
∣
∣x(τ) − x(τr)

∣
∣
∣ ≤

K

2r
→ 0.

Finally, on the set {τ ≤ N}, |x(τ)| ≤ r2 for some r2 > 0. As in Step 1, we
may partition the set {|x| ≤ r2} with intervals Ĩ1, Ĩ2, . . . , Ĩl1 of length < δ.
Then for xk ∈ Ĩk, k = 1, . . . , l1,

I{τ≤N}

∣
∣
∣v(x(τ), α(τ)) − v(x(τ), α(τr))

∣
∣
∣

= I{τ≤N}

l1∑

k=1

I{x(τ)∈Ĩk}

∣
∣
∣v(x(τ), α(τ)) − v(x(τ), α(τr))

∣
∣
∣

≤ I{τ≤N}

l1∑

k=1

I{x(τ)∈Ĩk} sup
u(·)∈A

∣
∣
∣v(xk, α(τ)) − v(xk, α(τ)r)

∣
∣
∣ + F1(δ),

where

F1(δ) = I{τ≤N}

l1∑

k=1

I{x(τ)∈Ĩk}

(∣
∣
∣v(x(τ), α(τ)) − v(xk, α(τ))

∣
∣
∣

+
∣
∣
∣v(x(τ), α(τr))− v(xk, α(τr))

∣
∣
∣

)

.

The Lipschitz property of v implies that F1(δ) → 0 uniformly with respect
to u(·) ∈ A as δ → 0. Moreover, the right-continuity of α(·), together with
the Lebesgue dominated convergence theorem yields that, for k = 1, . . . , l1,

E

{

sup
u(·)∈A

∣
∣
∣v(xk, α(τ)) − v(xk, α(τr))

∣
∣
∣

}

→ 0.

Hence, (A.27) holds. This completes the proof. �

Theorem A.30. The value function v(x, α) is the unique viscosity solution
to the HJB equation

ρv(x, α) = min
u∈Γ

{

b(x, α, u)
∂v(x, α)

∂x
+G(x, α, u)

}

+Qv(x, ·)(α). (A.29)
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Proof: We need only show that v is a viscosity solution to (A.29) because
Theorem A.24 implies the uniqueness of v(x, α). In view of Definition A.23,
it suffices to show that v is both a viscosity subsolution and a viscosity
supersolution.
For any fixed α0 ∈ M and x0 ∈ R

n, let φ(·) ∈ C1(Rn : R) be such that
v(x, α0) − φ(x) attains its maximum at x = x0 in a neighborhood N(x0).
Let τ denote the first jump time of α(·). Consider the control u(t) = u for
0 ≤ t ≤ τ , where u ∈ Γ being a constant. Moreover, let θ ∈ (0, τ ] be such
that x(t) starts at x0 and stays in N(x0) for 0 ≤ t ≤ θ. Define

ψ(x, α) =

⎧
⎪⎪⎨

⎪⎪⎩

φ(x) + v(x0, α0)− φ(x0), if α = α0,

v(x, α), if α �= α0.

Using Dynkin’s formula and the fact that α(θ) = α0, for 0 ≤ t ≤ θ, we
have

Ee−ρθψ(x(θ), α(θ)) − v(x0, α0)

= E

∫ θ

0

e−ρt

[

−ρψ(x(t), α0) + b(x(t), α0, u(t))
dφ(x(t))

dx

+ Qψ(x(t), ·)(α0)

]

dt.

(A.30)

Moreover, x(t) ∈ N(x0) for 0 ≤ t ≤ θ. Thus, by the definition of φ(·),

φ(x(t)) ≥ v(x(t), α0)− (v(x0, α0)− φ(x0)), for 0 ≤ t ≤ θ. (A.31)

Replacing ψ(x, α0) in (A.30) by the right-hand side of (A.31) and noting
that v(x0, α0)− φ(x0) is a constant, we have

Ee−ρθv(x(θ), α0)− v(x0, α0)

≤ E

∫ θ

0

e−ρt

(

−ρv(x(t), α0) + b(x(t), α0, u(t))
dφ(x(t))

dx

+Qv(x(t), ·)(α0)

)

dt.

(A.32)

Furthermore, by the dynamic programming principle in Lemma A.29,

v(x0, α0) ≤ E

(∫ θ

0

e−ρtG(x(t), α(t), u(t))dt

+e−ρθv(x(θ), α(θ))

)

.

(A.33)
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Combining (A.32) and (A.33),

0 ≤ E

∫ θ

0

e−ρt

[

G(x(t), α(t), u(t)) − ρv(x(t), α0)

+
dφ(x(t))

dx
b(x(t), α0, u(t)) +Qv(x(t), ·)(α0)

]

dt.

Letting θ → 0 allows us to conclude

min
u∈Γ

[

b(x, α0, u)
dφ(x0)

dx
+G(x0, α0, u)

]

+Qv(x, ·)(α0)− ρv(x0, α0) ≥ 0.

Thus, v is a viscosity subsolution.
Next we show that v is a viscosity supersolution. If it were not, then

there would exist α0, x0, and δ0 > 0 such that for all u ∈ Γ,

b(x, α0, u)
dφ(x)

dx
+G(x, α0, u) +Qv(x, ·)(α0)− ρv(x, α0) ≥ δ0 (A.34)

in a neighborhood N(x0), where φ(·) ∈ C1(Rn;R) is such that v(x, α0) −
φ(x) attains its minimum at x0 in the neighborhood N(x0). Then for all
x ∈ N(x0),

v(x, α0) ≥ φ(x) + (v(x0, α0)− φ(x0)). (A.35)

Given u ∈ Γ, let θ0 denote a number so small that starting at x = x0, x(t)
stays in N(x0) for 0 ≤ t ≤ θ0. Note that θ0 depends on the control u(·).
However, since b(x(t), α(t), u(t)) is always bounded, there exists a constant
θ1 > 0 such that θ0 ≥ θ1 > 0. Let τ denote the first jump time of the
process α(·). Then for 0 ≤ θ ≤ min{θ0, τ},

J(x0, α0, u(·))

≥ E

{∫ θ

0

e−ρtG(x(t), α(t), u(t))dt + e−ρθv(x(θ), α(θ))

}

≥ E

{∫ θ

0

e−ρt[δ0 − b(x(t), α(t), u(t))
dφ(x(t))

dx

+ρv(x(t), α0)−Qv(x(t), ·)(α0)]dt+ e−ρθv(x(θ), α(θ))

}

.

The differentiability of φ together with (A.35) leads to

v(x0, α0) ≤ E

{∫ θ

0

e−ρt

[

ρv(x(t), α(t)) − b(x(t), α(t), u(t))
dφ(x(t))

dx

− Qv(x(t), ·)(α0)

]

dt+ e−ρtv(x(θ), α(θ)

}

.
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It follows that

J(x0, α0, u(·)) ≥ v(x0, α0) + δ0E

∫ θ

0

e−ρtdt ≥ v(x0, α0) + η,

where η = δ0E
∫ θ1∧τ

0 e−ρtdt > 0. This means that

v(x0, α0) ≥ v(x0, α0) + η,

which is a contradiction. Therefore, v(x, α) is a viscosity supersolution.
Consequently v(x) is a viscosity solution of Equation (A.29). �

Theorem A.31 (Verification Theorem). Let w(x, α) ∈ C1(Rn;R) such
that |w(x, α)| ≤ K(1 + |x|κ) and

ρw(x, α) = min
u∈Γ

{

b(x, α, u)
∂w(x, α)

∂x
+G(x, α, u) +Qw(x, ·)(α)

}

.

Then the following assertions hold:

(a) w(x, α) ≤ J(x, α, u(·)) for any u(t) ∈ Γ.

(b) Suppose that there are u∗(t) and x∗(t) satisfying

dx∗(t)

dt
= b(x∗(t), α(t), u∗(t))

with x∗(0) = x, r∗(t) = (∂/∂x)v(x∗(t), α(t)), and

min
u∈Γ

{

b(x, α, u)r∗(t) +G(x∗(t), α, u) +Qw(x∗(t), ·)(α(t))
}

= b(x∗(t), α(t), u∗(t))r∗(t) +G(x∗(t), α(t), u∗(t))

+Qw(x∗(t), ·)(α(t))

almost everywhere in t with probability one. Then

w(x, α) = v(x, α) = J(x, α, u∗(·)).

Proof: Only a sketch of the proof is given. Further details can be found in
Fleming and Rishel [63].
For T < ∞, the usual dynamic programming principle in Lemma A.29

yields that

v(x, α) ≤ E

{∫ T

0

e−ρtG(x(t), α(t), u(t))dt

+e−ρT v(x(T ), α(T ))

}

.

(A.36)

Note that |x(t)| = O(t). Taking limit as T → ∞ yields (a). Using the
polynomial growth condition, inequality (A.36) becomes an equality. �
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Lemma A.32. Let c(u) be twice differentiable such that (d2/du2)c(u) > 0,
and let V (x) be locally Lipschitz, i.e.,

|V (x1)− V (x2)| ≤ K(1 + |x1|κ + |x2|κ)|x1 − x2|.

Let u∗(x) be the minimum of F (x, u) := uV (x)+c(u). Then u∗(x) is locally
Lipschitz in that

|u∗(x1)− u∗(x2)| ≤ K(1 + |x1|κ + |x2|κ)|x1 − x2|.

Proof: It is easy to see that F (x, u) satisfies the conditions of Lemma 6.3
in Fleming and Rishel [63], which implies that u∗(x) is locally Lipschitz. �

A.6 Miscellany

This section consists of a number of miscellaneous results needed in this
book. They include the notion of convex functions, Arzelà-Ascoli theorem,
Fredholm alternative, and the proof of Theorem 4.41, among others.

Definition A.33 (Convex Sets and Convex Functions). A set S ⊂ R
r is

convex if for any x and y ∈ S, γx + (1 − γ)y ∈ S for any 0 ≤ γ ≤ 1. A
real-valued function f on S is convex if for any x1, x2 ∈ S and γ ∈ [0, 1],

f(γx1 + (1 − γ)x2) ≤ γf(x1) + (1− γ)f(x2).

If the inequality above is a strict inequality whenever x1 �= x2 and 0 < γ <
1, then f is strictly convex.

The definition above can be found in, for example, Fleming [61]. The
lemma that follows establishes the connection of convex function with Lip-
schitz continuity and differentiability.

Lemma A.34 (Clarke [32, Theorem 2.5.1]). Let f be a convex function on
R

r. Then

(a) f is locally Lipschitz and therefore continuous, and

(b) f is differentiable a.e.

Theorem A.35 (Arzelà-Ascoli Theorem). Let SN = {x ∈ R
r : |x| ≤ N}.

Let fn(x) denote a sequence of continuous functions defined on SN . If

sup
n

sup
x∈SN

|fn(x)| <∞

and
sup

n≥1,|x−x′|≤δ

|fn(x) − fn(x
′)| → 0 as δ → 0,
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then there exists a continuous function f(x) defined on SN and a subse-
quence {nl} such that

sup
x∈SN

|fnl
(x)− f(x)| → 0 as l → ∞.

Proof: See Yosida [245] for a proof. �

Lemma A.36 (Yosida [245, p. 126]). Let {uk} denote a sequence of ele-
ments in a Hilbert space H. If uk is bounded in norm, then there exists
a subsequence of {uk} that converges to an element of H under the weak
topology.

The following Fredholm alternative, which provides a powerful method
for establishing existence and uniqueness of solutions for various systems
of equations, can be found in, for example, Hutson and Pym [90, p. 184].

Lemma A.37 (Fredholm Alternative). Let B be a Banach space and A :
B → B be a linear compact operator. Let I : B → B be the identity operator.
Assume γ �= 0. Then one of the two following alternatives holds.

(a) The homogeneous equation (γI −A)f = 0 has only the zero solution,
in which case γ ∈ ρ(A)-the resolvent set of A, (γI−A)−1 is bounded,
and the inhomogeneous equation (γI −A)f = g has also one solution
f = (γI −A)−1g, for each g ∈ B.

(b) The homogeneous equation (γI −A)f = 0 has a nonzero solution, in
which case the inhomogeneous equation (γI −A)f = g has a solution
iff 〈g, f∗〉 = 0 for every solution f∗ of the adjoint equation γf∗ =
A∗f∗.

This lemma is in a rather general form. When it is specialized to linear
systems of algebraic equations, it can be written in the simple form below.
Let B denote an m × m matrix. For any γ �= 0, define an operator A :
R

1×m → R
1×m as

Ay = y(γI −B).

Note that in this case, I is just the m × m identity matrix I. Then the
adjoint operator A∗ : R

m×1 → R
m×1 is

A∗x = (γI −B)x.

We have the following corollary.

Corollary A.38. Suppose that b, y ∈ R
1×m and B ∈ R

m×m. Consider the
system yB = b. If the adjoint system Bx = 0 where x ∈ R

m×1 has only
the zero solution, then yB = b has a unique solution given by y = bB−1. If
Bx = 0 has a nonzero solution x, then yB = b has a solution iff 〈b, x〉 = 0.
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Lemma A.39. If a generator Q = (qij)m×m is irreducible and

f(i) ≤
∑

j �=i

γijf(j), (A.37)

where γij = qij/(−qii), then

f(1) = f(2) = · · · = f(m). (A.38)

Proof: Let

Q1 =

⎛

⎜
⎜
⎜
⎜
⎝

−1 γ12 · · · γ1m

γ21 −1 · · · γ2m
...

... · · ·
...

γm1 γm2 · · · −1

⎞

⎟
⎟
⎟
⎟
⎠
.

Then (A.37) can be written in terms of Q1 as

Q1f ≥ 0, where f = (f(1), . . . , f(m))′. (A.39)

Clearly, the irreducibility of Q implies that Q1 is also irreducible. The
irreducibility of Q1 implies that the null space N(Q1) is a one-dimensional
space spanned by 1l = (1, . . . , 1)′. Therefore, if (A.39) holds with an equality
in place of the inequality, then (A.38) holds.
We show that the equality in (A.39) holds. Without loss of generality,

assume
f(1) ≥ f(2) ≥ · · · ≥ f(m). (A.40)

Let

Q̌1 =

⎛

⎜
⎜
⎝

−1 γ12 · · · γ1m

0m−1 Q2

⎞

⎟
⎟
⎠ ,

where 0m−1 = (0, . . . , 0)′ is the (m− 1)-dimensional zero vector and

Q2 =

⎛

⎜
⎜
⎜
⎜
⎝

−1 γ223 · · · γ22m
γ232 −1 · · · γ23m
...

... · · ·
...

γ2m2 γ2m3 · · · −1

⎞

⎟
⎟
⎟
⎟
⎠

(m−1)×(m−1)

with γ2ij = (γij + γi1γ1j)/(1 − γi1γ1i). It is easy to see that
∑

j �=i γ
2
ij = 1.

Moreover, Q̌1 can be obtained from Q1 by the following procedure: (1)
multiplying the first row of Q1 by γi1 and adding to the ith row; (2) nor-
malizing the resulting matrix by dividing the ith row by 1 − γi1γ1i. Note
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that the irreducibility of Q1 implies that 1 − γi1γ1i > 0 and Q2 is also
irreducible.
Use the notation Q1f � 0 to represent Q1f ≥ 0 and Q1f �= 0. Let

f2 = (f(2), . . . , f(m))′. Then by (A.40), Q1f � 0 implies Q2f
2 � 0. Take

Q2 as Q1 and repeat the above procedure. After (m − 1) steps, we have
Qm = {0} and fm = (f(m)) such that Qmf

m � 0, which is a contradiction.
Thus the lemma follows. �

Lemma A.40. Let β(·) be a Borel measurable function. For each η(·) ∈
D([0, T ];R) define

φ(η)(t) =

∫ t

0

β(s)η(s)ds.

Then φ(η) is continuous on D([0, T ];R).

Proof: It suffices to show φ(ηn)(·) → 0 as ηn(·) → 0 under the Skoro-
hod topology. In fact, ηn(·) → 0 implies that ηn(t) → 0 for all t ∈ [0, T ]
(see Billingsley [13]). Hence, the Lebesgue dominated convergence theorem
implies that φ(ηn)(·) → 0. �

Lemma A.41. Let ηn(·) and η(·) denote uniformly bounded functions in
D([0, T ];R). Assume that η(·) has at most countably many of discontinuity
points and ηn(·) → η(·) under the Skorohod topology. Then for all t ∈ [0, T ],

∫ t

0

ηn(s)ds→
∫ t

0

η(s)ds.

Proof: In view of Billingsley [13, p. 112], ηn(t) → η(t) for all t at which
η(·) is continuous. Since the Lebesgue measure of a countable set is 0, we
have ηn(·) → η(·) a.e. The result follows from the Lebesgue dominated
convergence theorem. �

Lemma A.42. Let ξ and η denote two random variables on a probability
space (Ω,F , P ). Assume η to be a discrete random variable taking values
in {1, . . . ,m}. Then

E[ξ|η] =
m∑

i=1

E[ξ|η = i]I{η=i} (A.41)

and for any event A ∈ F ,

P (A|η) =
m∑

i=1

P (A|η = i)I{η=i}. (A.42)

Proof: We only verify (A.41) because (A.42) can be obtained by taking
ξ = IA in (A.41).
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Let Ξ denote a class of F measurable random variables such that (A.41)
holds, i.e.,

Ξ =

{

X : E[X |η] =
m∑

i=1

E[X |η = i]I{η=i}

}

.

Then it can be shown that Ξ is a monotone system and contains all indicator
functions of a set in F . Following from Chow and Teicher [30, Theorem
1.4.3], the set Ξ contains all F measurable random variables. �

Proof of Theorem 4.41

For the purpose of preparation, we establish a lemma first. It may be re-
garded as a comparison theorem, which compares two linear differential
equations, one with constant coefficients (a constant matrix A) and the
other being time-varying in nature. The rationale is that if the coefficient
matrices are “close,” then their solutions will be close as well.

Lemma A.43. Let Aε(t) = (aεij(t)) denote a matrix with

aεij(t) ≥ 0 for i �= j and aεii(t) ≤ −
∑

j �=i

aεij(t).

Assume ∣
∣
∣Aε(t)−A

∣
∣
∣ ≤ Kε(t+ 1), (A.43)

for some stable matrix A with

∣
∣
∣ exp(At)

∣
∣
∣ ≤ K exp(−κ0t), for some κ0 > 0.

Let Y (t, s) denote a fundamental matrix solution to

dY (t, s)

dt
= Y (t, s)Aε(t), Y (s, s) = I, 0 ≤ s ≤ t.

Then for 0 ≤ s ≤ t,

∣
∣
∣Y (t, s)− exp(A(t− s))

∣
∣
∣ ≤ Kε exp(−κ0(t− s))

×
(
(t+ 1)2 + ε(t+ 1)4 exp

(
Kε(t+ 1)2

) )
.

(A.44)

Proof: As hinted in the remark preceding the lemma, consider an auxiliary
problem

dY (t, s)

dt
= Y (t, s)A, Y (s, s) = I, 0 ≤ s ≤ t.
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The solution is Y (t, s) = exp(A(t− s)). Denote Ŷ (t, s) = Y (t, s)− Y (t, s).
Then

dŶ (t, s)

dt
= Ŷ (t, s)A+ Ŷ (t, s)(Aε(t)−A) + Y (t, s)(Aε(t)− A),

with Ŷ (s, s) = 0. It follows that

Ŷ (t, s) =

∫ t

s

Ŷ (τ, s)(Aε(τ)−A) exp(A(t− τ))dτ

+

∫ t

s

Y (τ, s)(Aε(τ) −A) exp(A(t − τ))dτ.

Recall (A.43) and the fact that |Y (t, s)| ≤ K exp(−κ0(t− s)). We obtain

∣
∣
∣Ŷ (t, s)

∣
∣
∣ ≤

∫ t

s

Kε(τ + 1)
∣
∣
∣Ŷ (τ, s)

∣
∣
∣ exp(−κ0(t− τ))dτ

+

∫ t

s

Kε(τ + 1) exp(−κ0(t− s))dτ.

Applying Gronwall’s inequality to exp(κ0(t−s))|Ŷ (t, s)| yields (A.44). This
concludes the proof. �

Proof of Theorem 4.41: First, write

Q̂(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Q̂11(t) · · · Q̂1l(t) Q̂1∗(t)
... · · ·

...
...

Q̂l1(t) · · · Q̂ll(t) Q̂l∗(t)

Q̂∗1(t) · · · Q̂∗l(t) Q̂∗(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (A.45)

where for all i, j = 1, . . . , l, Q̂ij(t), Q̂i∗(t), Q̂∗j(t), and Q̂∗(t), are mi ×mj ,
mi ×m∗, m∗ ×mj , and m∗ ×m∗ matrices, respectively.
In view of the differential equation governing pε(·), namely (4.40), and

Q̃k(t)1lmk
= 0, we have for k = 1, . . . , l,

pε,k(δ)1lmk
= p0,k1lmk

+
1

ε

∫ δ

0

pε,∗(s)Q̃k
∗(s)ds1lmk

+

∫ δ

0

pε(s)Q̂k(s)ds1lmk
,

where Q̂k(t) denotes the kth column of Q̂(t) given in (A.45), that is,

Q̂k(s) =

⎛

⎜
⎜
⎜
⎜
⎝

Q̂1k(t)
...

Q̂lk(t)

Q̂∗k(t)

⎞

⎟
⎟
⎟
⎟
⎠

∈ R
m×mk .
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Since pε(·) and Q̂k(·) are bounded,

lim
δ→0

{

lim sup
ε→0

∫ δ

0

pε(s)
∣
∣
∣Q̂k(s)

∣
∣
∣ds1lmk

}

= 0,

and hence

lim
δ→0

{

lim sup
ε→0

∣
∣
∣
∣

∫ δ

0

pε(s)Q̂k(s)ds1lmk

∣
∣
∣
∣

}

= 0.

It suffices to show

1

ε

∫ δ

0

pε,∗(s)Q̃k
∗(s)ds → p0,∗

∫ ∞

0

exp(Q̃∗(0)s)Q̃
k
∗(0)ds. (A.46)

By changing of variable s→ s/ε, we have

1

ε

∫ δ

0

pε,∗(s)Q̃k
∗(s)ds =

∫ δ/ε

0

pε,∗(εs)Q̃k
∗(εs)ds.

Let y(t) = pε,∗(εt) and Aε(t) = Q̃∗(εt) + εQ̂∗(εt). Then

dy(t)

dt
= y(t)Aε(t) + εgε(t), y(0) = p0,∗,

where gε(t) =
∑l

k=1 p
ε,k(εt)Q̂k∗(εt). It is easy to see that gε(t) is bounded

and all of its components are nonnegative.
Let Y (t, s) denote a fundamental matrix solution to

dY (t, s)

dt
= Y (t, s)Aε(t) with Y (s, s) = I.

Then

pε,∗(εt) = y(t) = p0,∗Y (t, 0) +

∫ t

0

εgε(r)Y (t, r)dr.

Moreover, by Lemma A.43,

p0,∗Y (t, 0) = p0,∗ exp(Q̃∗(0)t) +O(Δε(t, 0)), and

pε,∗(εt) = p0,∗ exp(Q̃∗(0)t) +O(Δε(t, 0)) +

∫ t

0

εgε(r)Y (t, r)dr,

where
Δε(t, 0) = ε exp(−κ0t)((t+ 1)2 + ε(t+ 1)4eKε(t+1)2).

Note that

∫ δ/ε

0

pε,∗(εs)Q̃k
∗(εs)ds =

∫ δ/ε

0

p0,∗ exp(Q̃∗(0)s)Q̃
k
∗(εs)ds

+

∫ δ/ε

0

O(Δε(s, 0))Q̃k
∗(εs)ds+

∫ δ/ε

0

gε1(s)ds,

(A.47)
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where

gε1(s) =

(∫ s

0

εgε(r)Y (s, r)dr

)

Q̃k
∗(εs).

The stability of Q̃∗(0) and Lipschitz property of Q̃k
∗(t) imply that the first

term on the right-hand side of (A.47) converges to

∫ ∞

0

p0,∗ exp(Q̃∗(0)s)Q̃
k
∗(0)ds.

To estimate the second term, note that for t ≤ δ/ε,

exp(−κ0t) exp(Kε(t+ 1)2) ≤ exp(−(κ0 −K(δ + ε))t).

For ε and δ small enough so that κ0 −K(ε+ δ) > 0, in view of the bound-

edness of Q̃k
∗(·),

∫ δ/ε

0

O(Δε(s, 0))Q̃k
∗(εs)ds ≤ εO(1) → 0.

Finally, we show that

lim
δ→0

{

lim sup
ε→0

∫ δ/ε

0

gε1(s)ds

}

= 0. (A.48)

In view of the probabilistic interpretation and the structure of the matrix
Q̃k

∗(εt), all components of gε1(t) are nonnegative. It in turn implies that
∫ δ/ε

0 gε1(s)ds1lm∗ ≥ 0. This together with

1 =

l∑

k=1

pε,k(δ)1lmk
+ pε,∗(δ)1lm∗ =

l∑

k=1

ϑ(0),k(0)

then yields (A.48). The proof of the theorem is thus completed. �
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