
Chapter 8
High-Speed Allocators for VC-Based Routers

The packets arriving to a VC-based router should allocate two kinds of resources
before being able to move to their destined output port. Each packet should allocate
an output VC and each flit should guarantee exclusive access to a router’s output
port, on a cycle-by-cycle basis. The output VCs are allocated to the packets of the
input VCs during VC Allocation (VA), while Switch Allocation (SA) decides which
input VC will move to which output in each clock cycle. Both allocation operations
evolve in two steps.

For example, VA is split in two parts called VA1 and VA2. VA1 decides locally
the output VC that each input VC will ask for. In case that there are several candidate
output VCs, VA1 performs a local arbitration step and selects only one of them. Thus
after VA1 each input VC holds only one output VC request (the output port that the
output VC belongs to is known beforehand by routing computation). In a baseline
router organization, VA1 selects among output VC requests that are checked to be
available; an input VC will never ask for an output VC that is not currently available.
In a loosely coupled VA1 implementation, this availability check of output VCs is
not always necessary. In any case, after VA1, the second stage of VC allocation,
called VA2, is executed per output VC; each output VC receives at most one request
from each input VC and grants only them. After VA2, a match between input VCs
and output VCs has been derived that contains no conflicts. The matched output
VCs become un-available and the matching input VCs are set to a lock state using
the outVCLock state variables.

Equivalently, SA also evolves in two steps. In the first step, called SA1, one
input VC from each input is selected to try to reach the selected output port of the
router. Then, each output independent from the rest, in SA2, decides which input to
select. After SA1 and SA2 the winning flits move to their destined output port. The
movement is done via the per-input and per-output multiplexers that get configured
by the grants produced by SA1 and SA2, respectively. Before SA begins, it is
assumed that the input VCs have already allocated an output VC. This conservative
assumption can be removed with care and let packets that have not yet allocated an

© Springer Science+Business Media New York 2015
G. Dimitrakopoulos et al., Microarchitecture of Network-on-Chip Routers:
A Designer’s Perspective, DOI 10.1007/978-1-4614-4301-8__8

135



136 8 High-Speed Allocators for VC-Based Routers

output VC to try to win in SA and in parallel to receive an output VC. Depending on
the implementation, receiving an output VC in parallel to SA, can be done in several
ways.

In the rest paragraphs, we will analyze in detail all the possible alternatives of
implementing VA and SA, with the goal to minimize the delay of the allocation
process by letting the intermediate steps to execute in parallel when possible.
The material of this chapter should be considered as an enhancement of the
basic allocation strategies presented in Chap. 7 that lead to high-speed router
implementations.

8.1 Virtual Networks: Reducing the Complexity
of VC Allocation

The baseline organization of a VC allocator requires a V W 1 arbiter per input
VC for implementing VA1, followed by a N � V W 1 arbiter per output VC
for implementing VA2 and also some non trivial signal gathering, masking and
distribution logic. The complexity of the VC allocator can be reduced significantly
if the “freedom” enjoyed by each input VC is reduced. VCs can be used for the
definition of virtual networks (VNs). Packets that belong to a VN complete their
whole trip in the network it the same VN and jumping from a VN to another VN
is either prohibited or done with very restrictive rules that are used to guarantee
deadlock freedom (Azimi et al. 2009).

When a set VCs, say k, belong to a specific VN, the requests for VC allocation
are restricted to the VCs of the same VN. In this case, VC allocation is split into
parallel and smaller VC allocators where each one is serving N V=k input VCs. As
shown in Fig. 8.1, each input VC sends the requests and receives grants from the
smaller VC allocator (with N V=k inputs and N V=k outputs) that corresponds to
the same VN.

In the minimum case that each VC is always a VN, the design of the VC allocator
is further simplified since VA1 is completely removed. If an input VC does not want
or is not allowed to change the VC that it belongs to, then VA1 is not needed, since

Fig. 8.1 The separation of
the VCs of the network to
VNs and restricting a packet
from changing VN simplifies
a lot the design of the VC
allocator that now involves
multiple parallel VC
allocators that each one
serves only the VCs of a
specific VN

NV/k:NV/k 

NV/k:NV/k 

requests for
different VNs

Input VCs

total k
smaller VAs

VA

VA

VA

VN#0

VN#1

VN#k-1

NV/k:NV/k 



8.2 Lookahead VA1 137

the i th input VC will always ask for the i th output VC. Even if the i th output VC
is not available, the i th input VC does not have any other choice rather than waiting
for the i th output VC to become available before trying to match to it.

8.2 Lookahead VA1

The second alternative for removing VA1 from the critical path of the VC allocator,
but still allow packets to change VC in flight irrespective the VN they belong,
is called lookahead VA1 (LVA1) and works similar to the lookahead routing
computation. Instead of waiting each input VC to perform VA1, when it reaches
the frontmost position of its input VC buffer, we allow VA1 to complete beforehand.
Each input VC in parallel to the VA step performed in the previous router (or even in
parallel to the SA of the previous router) selects which output VC will ask for when
it reaches the next router; the selection is done via arbitration among the candidate
output VCs and is stored at a special field of the packet’s head flit. Thus, once a
head flit of a packet reaches the frontmost position of the input VC buffer it can
immediately participate in VA2 since it already stores in one of its fields the output
VC requests, as depicted in Fig. 8.2. In parallel to VA2, each input VC performs
VA1 for selecting the output VC that will ask for when it reaches the next router.

In lookahead VA1 each input VC is oblivious of the state of the output VCs.
Therefore, there is the possibility that the selected output VC of the head flit to be
un-available when the flit asks for it in the VA2 of the next router. In this case, the

total NV
NV:1 arbiters

VCgranted[i]

reqVC[i]

reqPort[i]

V NV

NV

NV

NV

per output VC

de
M

U
X

NV:1
arb

NV:1
arb

per input VC

LVA1nextReqVC[i]

outVCAvailable

V

N

prepared in the
previous router

Fig. 8.2 The organization of the VC allocator that accepts the pre-computed output VC requests
of each input VC that are directly propagated to VA2. In parallel, lookahead VA1 takes place in
parallel and saves the output VC request that will be used in the next router in the head flit of the
packet



138 8 High-Speed Allocators for VC-Based Routers

head flit does not have any choice rather than to wait for the selected output VC
to become available. Even if other eligible output VCs are available the head flit
cannot change its output VC request decided during LVA1. Instead of performing
the lookahead VA1 step in the previous router, VA1 can be also performed at the
end of link traversal. In this way, the head flit decides for an output VC request at
the time that it is written to the input VC buffer. If done this way, it is more easy for
the head flit to know the status of the output VCs since it already reached the next
router.

Inevitably, the lack of information about which output VCs are available during
lookahead VA1, will cause several input VCs to pre-select and fight for the same
output VC, even if there are other output VCs that are available to use. Depending
on the application and the number of VCs in the network this feature may limit
the throughput of the network. From our measurements only slight reductions are
expected that can be possibly alleviated by the increased operating speed offered by
lookahead VA1.

8.3 VC Allocation Without VA2: Combined Allocation

By either not letting a packet to change VC while it is traversing the network or
performing VA1 in a lookahead manner, we achieved to remove VA1 from the
critical path of VC allocation. In this case, the needed allocation steps that should
be executed in series include VA2 to match an output VC to a certain input VC
and then the two steps of SA that match an input VC to an output port on a cycle-
by-cycle basis. Even in this reduced-complexity allocation organization, we assume
that all requesting input VCs can be allocated simultaneously to available output
VCs assuming that no other input VC is asking for the same output VC. However,
we know that due to SA1 only one input VC will be allowed to leave the router from
each input. This is a structural requirement imposed by the datapath of the router
(the input VCs of the same input share an input of the crossbar). Therefore, there is
no reason for letting more than one VCs per input to get matched to an output VC;
at the end, at most one VC per input will be allowed to leave the router.

The restriction that at most one new VC per input is allowed to match to a new
VC per output, can be applied by allocating an output VC only to the input VC that
won in SA. In this way, the allocation of an output port in SA is accompanied by
the allocation of an output VC. This combined allocation eliminates completely the
VA2 stage of VC allocation (Lu et al. 2012). VA1 is still needed in order for every
input VC to know beforehand which output VC to request, when it wins in SA.

From the previous discussion we know that the VA1 step can be performed either
in series with SA, or using lookahead VA1. Since the selected output VC will be
used directly for driving SA, it should be checked both for availability and for
available credits. Credit masking can be performed prior to VC availability checking



8.3 VC Allocation Without VA2: Combined Allocation 139

excluding those output VCs that even if they are free do not have available credits
to host a new incoming flit.

The relative placement of VA1 with respect to switch allocation (SA) for the
implementation of combined allocation is discussed in the following paragraphs.

8.3.1 Combined Allocation with VA1 in Series to SA

The organization of the combined allocator that performs VA1 for each input VC in
series to the SA stage is shown in Fig. 8.3a. Each input VC is searching in VA1 for an
output VC that is available and has at least one credit available. The input VCs that
managed to find an output VC that fulfills both criteria are eligible to participate
in SA1. SA1 accepts also the requests of those input VCs that have allocated an
output VC in the past and secured the existence of at least one available credit. The
winning input VC as in traditional SA passes its input request via a multiplexer to
the output stage of switch allocation (SA2). The grants of the per-output arbiters are
gathered per input and the existence of at least one grant for each input is computed
via an OR gate. Then, each input taking into account the grants of SA1 knows which
input VC (if any) has won in switch allocation. The grants per input VC have a dual
meaning: First it allows the flit to move to the output, and, at the same time, if it is a
head flit that has not allocated an output VC, to receive the output VC that has been
selected during VA1.

8.3.2 Combined Allocation with VA1 in Parallel to SA

In the previous paragraph before letting SA to begin, each input VC should select an
output VC to request, selecting one from the pool of available ones that had at least
one credit as well. The output VC that each input VC has selected after arbitration
(VA1) is not used before the end of SA2. Therefore, there is no reason for SA1
and SA2 to wait for VA1 to finish but can execute in parallel to it, as illustrated
in Fig. 8.3b. The only information that each input VC needs in order to participate
in SA1 is that there is at least one output VC at the selected output port that is
available and with credits. There is no need the input VC to know which output
VC exactly fulfills the two criteria of availability and readiness. This will be found
during VA1 that executes in parallel to SA1 and SA2. Then, once SA2 decided
which VC won per input, if this winning input VC has not allocated yet an output
VC, it gets allocated in the same cycle to the output VC that was selected by VA1 in
parallel. This is needed only for the head flits that acquire an output VC at the same
time they win in SA. The rest flits keep the output VC that has been allocated to them
in previous cycle and actually participate only in the SA part of combined allocation.
In Kumar et al. (2007), a similar approach has been followed that does not include



140 8 High-Speed Allocators for VC-Based Routers

N

N
V

V:1
arb

outVCAvailable

reqVC[i]

reqPort[i]
V

VV

N

ready VC

N:1
arb

N:1
arb

V:1
arb

Output VC selection Local Arbitration Global Arbitration

per input VC

per input port

V

de
M

U
X

granted[i]

local MUX

V
V:1
arb

outVCAvailable

reqVC[i]

reqPort[i]
V

VV

N

ready VC

N:1
arb

N:1
arb

Output VC selection

Local Arbitration

Global Arbitration

per input VC

per input port

V

granted[i]

N

V:1
arb

deMUX

N

V

outVCAvailable

reqVC[i]

reqPort[i]
V

VV

N

ready VC

N:1
arb

N:1
arb

Output VC selection

Local Arbitration

Global Arbitration

per input VC

per input port

V

granted[i]

N

V:1
arb

deMUX

N

LVA1
nextReqVC[i]

(c)

selec

a

b

c

Fig. 8.3 The possible organizations for a combined allocator using (a) a VA1 module in series to
SA, (b) a VA1 module in parallel to SA, and (c) running SA using the output VC requests prepared
beforehand using LVA1



8.4 Speculative Switch Allocation 141

VA1 but gives to the winning head flit the first available output VC. If routing
computation involves the selection of certain output VCs this last approach cannot
be applied.

8.3.3 Combined Allocation with Lookahead VA1

LVA1 in combined allocation is a degenerate case of the organization presented in
the previous paragraph that enables VA1 to evolve in parallel to SA. With LVA1 each
input VC knows already the requested output VC. Therefore, it can participate in
SA1 after checking the availability of the corresponding output VC and its readiness
in terms of credits. If the pre-selected output VC satisfies the two needed criteria the
input VC moves in SA1. In the case that it wins SA2, it gets allocated to the pre-
selected output VC. Of course, in parallel to SA, the input VC should execute LVA1
for the next router. The input VCs that own already an output VC participate only
in the SA stage of the combined allocator.

Combined allocation removes the need for the VA2 stage of VC allocation. When
applied using the presented techniques that let VA1 execute in parallel to the SA, it
offers high-speed router implementations where the incoming packets are allowed
to change VC in flight while the critical path of allocation includes only the SA1
and SA2 steps and none of the VA1 or VA2.

8.4 Speculative Switch Allocation

Following another school of thought the serial dependency that exists between VA
and SA can be removed by performing SA speculatively (Peh and Dally 2001;
Mullins et al. 2004). Under speculative switch allocation a head flit is allowed to
try to get access to an output port via switch allocation without having allocated
first an output VC. VA and SA run in parallel for the head flit of a packet, and
depending on the outcome of each module four cases can occur:

• A packet fails in both VC and switch allocation: The packet tries again in the
next cycle for both allocations.

• A packet is granted by the VC allocator and fails in switch allocation: Although
the head flit lost in switch allocation, it keeps the assignment made by the VC
allocator and retries for switch allocation in the next cycle (non speculatively this
time).

• A packet fails in VC allocation but is granted in switch allocation: This is the
case of miss-speculation and is the worst scenario that can occur. Although, a
head flit has allocated an output is obliged to not to use it in this cycle, since it
does not own yet an output VC.



142 8 High-Speed Allocators for VC-Based Routers

• A packet gets granted by both allocators: The head flit received all the necessary
resources and can leave the input VC buffer. This is the best case of speculative
switch allocation and is expected to happen often under low traffic conditions,
where the output resources (VCs and ports) are free most of the time and
contention probability is very low.

In order to reduce the probability of miss-speculation, the speculative VC-based
router involves two separate switch allocators. The first switch allocator receives
only the speculative requests, i.e., those coming from head flits that have not
allocated an output VC. The second switch allocator receives the remaining requests
including the requests from the head flits that have been assigned to an output VC
and the requests from the body and tail flits that always participate in SA non-
speculatively (always a preceding head flit has allocated for them an output VC).
If we give higher priority to the grants of the non-speculative switch allocator, we
guarantee that the winning flit can always move to the selected output. To satisfy this
feature the grants of the speculative switch allocator should be rejected, when there
is a grant for the same input–output pair from the non-speculative switch allocator.
The organization of the allocation logic in the case of a speculative VC-based router,
including the two switch allocators and the VC allocation logic that runs in parallel,
is illustrated in Fig. 8.4.

When an input VC has already allocated an output VC it participates only in the
non-speculative SA. On the contrary, the input VCs that do not have allocated yet an
output VC participate in VA and in the speculative SA. During VA, they try to match
to an output VC, but they should guarantee that the requested output VC selected
at VA1 not only is available (as needed in baseline VA), but it is also ready, i.e., it

V

outVCAvailable

reqVC[i]

reqPort[i]
V

VV

N

ready VC

Switch Allocation

per input VC
V

deMUX

VA2

Output VC
assignment

non-speculative

SA

speculative

mask

SA

speculative
requests

non-speculative
requests

granted for
speculative

VA1

Fig. 8.4 The organization of the speculative VC-based router. Each input VC generates in parallel
requests to the VC allocator and to the speculative SA for the head flits and to the non-speculative
SA for the rest flits and the head flits that managed to allocate an output VC in a previous cycle.
The grants that return from the three allocation units are handled according to the four scenarios
described in the beginning of this section



8.4 Speculative Switch Allocation 143

has enough credits (similar to combined allocation); else a grant from the SA will
be useless. At the same time, during speculative SA, they compete with other input
VCs that do not have allocated an output VC, after checking that there is at least
one available output VC and with credits. Although they don’t know which specific
output VC to check for availability and readiness (they will know only when VA1
that runs in parallel, finishes), checking the existence of at least one output VC
that satisfies both criteria is enough, since the same two-criteria qualify also the
candidates of VA1.

8.4.1 Handling the Speculative and the Non-speculative
Grants

Once the availability and readiness of the selected output VCs is checked for all flits
both switch allocators run in parallel. A grant from the speculative SA is considered
valid only when there is no other grant from the non-speculative SA referring to the
same input and output port. All invalid speculative grants are masked away and the
rest are kept and included in the final input-output SA match. Figure 8.5a depicts
the switch allocator and its two subcomponents used in the case of speculative
VC-based router including also the masking logic of the speculative grants.

Masking of the invalid speculative grants is done in two steps. In the first step,
we need to identify the input-output pairs that have been matched by the non-
speculative switch allocator that produces always valid matches. Two bit vectors,
named grantInput and grantOutput are computed in parallel; grantInput.i/ D
1 when the i th input has received a grant from the non speculative SA, and
grantOutput.j / D 1 when the j th output has been granted from the non-speculative
SA. Then, using the grantInput and the grantOutput bit vectors a 2D matrix of bits
is computed called the free matrix; free.i; j / D 1 when input i and output j have
not received a grant from the non-speculative SA. Therefore, the input–output pair
i; j is a candidate for accepting a grant from the speculative switch allocator. Using
the free matrix we can derive the final valid grants of the speculative SA as follows:
validSpecGrants.i; j / D free.i; j / ^ initialSpecGrants.i; j /.

Becker and Dally in (2009) observed that instead of waiting the non-speculative
SA to produce grants and mask afterwards the invalid grants of the non-speculative
SA, we can achieve the same result, if pessimistically, mask the speculative grants
with the corresponding non-speculative requests. The organization of the SA with
a pessimistic masking of the speculative grants is shown in Fig. 8.5b. Using this
approach, we are allowed to compute the row- and column-wise reduction trees
for computing the free bits, in parallel with allocation, removing them from the
critical path. This pessimism makes sense at low network traffic, where a non-
speculative request is likely to be granted due to the low contention in the network.
As the network traffic increases more and more speculative grants are unnecessarily
masked by non-speculative requests that fail to produce a grant.

The grants returning from the VC allocator, the speculative and the non-
speculative switch allocator should be treated accordingly so that no output with



144 8 High-Speed Allocators for VC-Based Routers

Fig. 8.5 The masking of the
invalid grants of a speculative
SA using (a) either the grants
produced by the
non-speculative SA or (b)
using the requests of the
non-speculative SA that
masks pessimistically a
speculative grant even if the
request that caused the
masking was not granted
after all

NxN

NxN

non-speculative
a

b

rows

columns

NxN

speculative

NxN

non-speculative
grants

speculative
grants

SA

SA

non-speculative
requests

speculative
requests

NxN

NxN

non-speculative

rows

columns

speculative

non-speculative
grants

speculative
grants

SA

SA

a valid assignment remains idle. The four possible scenarios have been discussed
at the beginning of this section. A non-speculative grant always means that the
corresponding flit of the packet (the flit can be of any kind) has already allocated
an output VC and can leave the input VC buffer and move to the selected output in
this cycle. On the contrary, a speculative grant from the SA is not a guarantee for
success. The corresponding head flit that generated the speculative request should
match to an output VC in the same cycle. If not, the speculative grant is lost and
the head flit should retry in the next cycle. If the VA match is successful, the head
flit allocates at once two resources, e.g., an output VC and a time slot for an output
port, and leaves the input VC buffer. In the case that a head flit receives a grant
only from the VA and not the speculative SA, it stores the matched output VC and
in the next cycle it participates in the non-speculative SA. This last option actually
differentiates speculative switch allocation from combined allocation.



8.5 VC-Based Routers with Input Speedup 145

8.5 VC-Based Routers with Input Speedup

Allocation efficiency can be improved by letting more than one VCs per input to
reach independently the crossbar thus allowing the switch to offer speedup at the
input side.1 In the baseline organization of a VC-based router discussed so far, there
is only one input to the crossbar per input port, and thus only one virtual channel in
an input port can transmit a flit in a cycle. Allowing more than one VCs per input to
reach the crossbar directly, means that the inputs of the crossbar are multiplied with
the number of transmit ports per input. The input VCs can be separated in m groups
where each group receives a dedicated input port of the crossbar. This organization
is depicted in Fig. 8.6. In this case the one per-input multiplexer that switched V

input VCs is replaced by m smaller multiplexers that select between V=m input
VCs. Equivalently, the input port that used only one input of crossbar, now sees m

inputs available. The output multiplexers of the router grow from N inputs to m�N

inputs, since now every input is allowed to send flits from m different VCs assuming
that they move to different outputs.

Virtual channel allocation does not need to change, unless it is simplified to treat
the group input VCs as virtual networks and thus limiting the set of output VCs
that each input VC can allocate. On the contrary, switch allocation should change in
order to support the input speedup of the VC-based routers. In this case, SA1 that
operated using a V W 1 arbiter per input, now should support m arbiters that run in
parallel each one receiving V=m requests. At the output side the number of SA2
arbiters do not change and remains equal to one per output. However, since now
each input may receive the flits from the m � N different inputs of the crossbar,
each output arbiter should handle m � N requests. In overall, the delay of the SA
is not expected to change since the arbiter’s delay depends logarithmically on the

Fig. 8.6 Input speedup
increases the input ports of
the crossbar thus allowing
multiple input VCs of the
same input to allocate an
output port and move to their
selected output. This
organization partially
alleviates the problems
inherent in separable switch
allocation thus increasing the
overall throughput of the
router

Input #0

mNxN
crossbar

m

Input #N-1

Output #0

Output #N-1

1Input speedup means that although the rate of incoming flits is one flit per cycle for each input the
rate of the flits that can leave each input towards the crossbar is larger than one.



146 8 High-Speed Allocators for VC-Based Routers

number of inputs and thus the increase of the logic depth of the SA2 arbiters is
balanced by the decrease of the logic depth of the SA1 arbiters.

Input speedup is a useful technique for handling the possible inefficiencies of
separable switch allocation (Dally and Towles 2004; Rao et al. 2014). The only
drawback remains the increased wiring between the input VC buffers and the output
multiplexers of the crossbar that may limit the effectiveness of input speedup when
the network operates using very wide flits. At the same time, input speedup requires
changing also the flow-control mechanism, since in this case, multiple credits update
need to return in each cycle; one from each input VC that was selected by the switch
allocator.

Applying input speedup to its maximum extent and by assuming that each input
VC represents an isolated virtual network, allows us to design VC-based routers
using simple wormhole switches in parallel. Once each VC is a separate virtual
network, VA is not required, since no packet will ever change the VC that it
already uses. Also, since maximum speedup is enabled, the packets that belong
to the same VC but come from different inputs can be switched together using a
private wormhole router as shown in Fig. 8.7. For a router that supports V VCs,
V wormhole routers are used in parallel that each one handles the flits of one VC
from all inputs (Gilabert et al. 2010). Each wormhole router independently from
the rest solves the output contention and prepares the flits that should depart from
each output. At the output of the VC-based router the flit of one sub-router should
be selected, effectively selecting which VC will use the output link in this cycle.
This requires an additional arbiter and multiplexer that selects which VC should be
served by each output. By keeping an independent flow control mechanism between
the input VC buffers and the inputs of the wormhole router, as well as, the output
of the VC-based router and the outputs of the wormhole routers, single, or multi-
cycle/pipelined configurations can be derived. For example, if we assume that each

Output #N-1

Input #0

NxN
wormhole

router

Input #N-1

Output #0VC #0

VC #1

VC #V-1

NxN
wormhole

router

NxN
wormhole

router

NxN
wormhole

router

NxN
wormhole

router

NxN
wormhole

router

Fig. 8.7 Each VC of the router can be serviced by a private wormhole router. The results of all sub-
routers are merged at the output of the VC-based router using another arbitration and multiplexing
step that merges also the VC-based flow control of the output links



8.6 Take-Away Points 147

smaller wormhole router has elastic buffers at its inputs and output ports, then each
flit of the VC-based routers will spend three cycles in the VC-based router: one for
moving from the input VC to the input of the wormhole router; the next to switch to
the selected output port of the sub-router, and the last one to move from the output
of the sub-router to the output of the VC-based router.

Using the freedom offered by input speed up we can design hierarchical
switching modules similar to the ones presented in Sect. 3.7 for wormhole routers
that instead of elastic buffers would include Elastistores at each merging point and
in the place of an arbiter and a multiplexer would contain a combined allocator
with a parallel VA1 stage. The design of such hierarchical VC-based networks
was proposed in ElastiNoC (Seitanidis et al. 2014b), and represent the first truly
distributed VC-based NoC architectures.

8.6 Take-Away Points

The allocation steps in a VC-based router are responsible for the largest part of the
router’s delay. Speeding up the allocation process requires either the application of
lookahead VA1 techniques that remove VA1 completely from the critical path, or the
adoption of combined allocation that removes the need for VA2. On the contrary,
instead of removing any of the required tasks, speculative allocation manages to
parallelize the execution of VA and SA by employing more hardware modules for
switch allocation. The employment of virtual networks or input speedup can further
simplify the allocation process with the cost of additional multiplexing area.


	8 High-Speed Allocators for VC-Based Routers
	8.1 Virtual Networks: Reducing the Complexity of VC Allocation
	8.2 Lookahead VA1
	8.3 VC Allocation Without VA2: Combined Allocation
	8.3.1 Combined Allocation with VA1 in Series to SA
	8.3.2 Combined Allocation with VA1 in Parallel to SA
	8.3.3 Combined Allocation with Lookahead VA1

	8.4 Speculative Switch Allocation
	8.4.1 Handling the Speculative and the Non-speculative Grants

	8.5 VC-Based Routers with Input Speedup
	8.6 Take-Away Points


