Chapter 7
Baseline Virtual-Channel Based Switching
Modules and Routers

In this chapter we describe the operation and the microarchitecture of a virtual
channel based router by analyzing in detail the subtasks involved, the dependencies
across these tasks, and the extra state needed for their implementation. This chapter
covers single-cycle implementations of virtual-channel-based routers, while high-
speed alternatives and pipelined organizations are left for the following chapters.
Every router should support arbitrary connections between inputs and output ports
that connect to independently flow-controlled links. The links in this case host many
virtual channels (VCs) that are interleaved in a time-multiplexed manner.

We start our discussion on the implementation VC-based switching by describing
the organization and the operation of a many-to-one connection that connects many
input links to one output link that each one supports a set of virtual channels. Then,
we generalize this design to a complete VC-based router that supports many-to-
many connections, while still allowing the existence of many VCs in parallel.

7.1 Many to One Connection with VCs

The abstract organization of a many-to-one connection that supports multiple VCs
at the input and the output channels is shown in Fig. 7.1. Each input is equipped with
as many parallel buffers as the number of VCs. The switching module connects the
input VC buffers to a single output via a simple physical link. The flits passing from
the output of the switching module should be placed to a buffer that corresponds to
the VC that they belong to. The parallel output VC buffers can be placed either at the
output of the switching module or at the other side of the link. In this configuration
we chose to include the output VC buffers at the other end of the link, and include
at the output of the switching module only a pipeline register that just isolates the
internal timing paths of the switching module from the link. Even if the output VC
buffers are placed far from the output of the switching module, any state variables

© Springer Science+Business Media New York 2015 111
G. Dimitrakopoulos et al., Microarchitecture of Network-on-Chip Routers:
A Designer’s Perspective, DOI 10.1007/978-1-4614-4301-8__7

112 7 Baseline Virtual-Channel Based Switching Modules and Routers

m outVCAvailable
|4
ves poaty,

Credit Counters
valid 1 ready L=+

data update
—1 1
Input #0 ;| valid 1
: data L1

Output

update

update

valid
—_
data
=<,

Input #N-1

Fig. 7.1 Multiple inputs connect to a single output, with multiple parallel queues on each side,
one for each VC

required per output VC are stored locally at the output of the switching module, but
refer to state of the VC buffers at the other side of the link.

Each input can receive the flit of only one VC in each clock cycle. Therefore, it
is enough for each input to try to send to the output at most one flit from a selected
input VC. To support this rate of outgoing traffic per input the switching module
consists of two levels of multiplexing. In the first level (per input) a multiplexer
selects one VC from all input VCs, while, in the second level (at the output), the
selected input VCs are multiplexed to the output. If we need a large rate of outgoing
flits per input, multiple VCs of the same input should be able to reach the output
multiplexer.

7.1.1 State Variables Required Per-Input and Per-Output VC

Similar to wormhole routers, the inputs and the outputs of the switching module
should be enhanced with some extra state variables that allow scheduling, both at
the VC-level and at the physical port level, to be performed and combined to the
flow control mechanism of the input and the output channels.

First of all, the state needed involves the flow control mechanism. In the examples
used in this chapter we adopt the credit-based flow control. Therefore, at the output
of the switching module a set of credit counters is used; one for each VC. The
maximum value of each counter is equal to the maximum number of positions
available per VC at the output VC buffers. The credit counters produce the necessary
ready signals for each VC, e.g., ready[i] = 1 when creditCounter[i] > 0. Once a
flit from an input VC leaves the output of the switching module (or when it knows
that it has gained access to the output) it consumes one credit by the corresponding

7.1 Many to One Connection with VCs 113

credit counter. The credit counters are incremented depending on the update signals
they receive from the output VC buffers.

In wormbhole routers, the output of the switching module in a many-to-one
connection, kept an outAvailable variable that denoted if the output has been
allocated to a certain input. The variable was set by the head flits and was locked
for the rest flits of the packet; the tail flit released the availability of the output.
In VC-based routers, each flit fights on its own for gaining access to the output port.
Output locking is avoided and different kinds of flits can be interleaved at the output,
provided that they belong to different output VCs and thus stored in different buffers
at the other end. Such flit interleaving reduces effectively head-of-line blocking and
increases the observed throughput per output.

In the case of VC-based routers, the output lock mechanism used in wormhole
connections is maintained, but at the output VC level. Each packet has to choose a
VC at the output before leaving an input VC. Matching input VCs to output VCs is
done once per packet via the head flit by the VC allocator (VA), while the rest flits
(body and tail) of the same packet inherit the allocated output VC. To support this
ownership mechanism V' outVCAvailable flags are maintained at the output of the
switching module, each one corresponding to a different VC of the output. When
outVCAvailable[i] = 1, it means that the ith output VC is available to be allocated
to any input VC (N x V input VCs are eligible to connect to this output VC; V' VCs
per input). When outVCAvailable[i] = 0, it means that the i th output VC has been
allocated to a packet of a certain input VC and it will be released when the tail flit of
the packet passes through the output of the switching module. Allowing packets to
change VC in-flight can be employed when the routing algorithm and/or the upper-
layer protocol (e.g., cache coherence) do not place any specific restrictions on the
use of VCs. In the presence of VC restrictions, the VC allocator will enforce all
rules during VC allocation to ensure deadlock freedom.

Equivalently, the implementation of this input-output VC ownership mechanism,
requires each input VC to hold two state variables per input VC: outVCLock|[i] and
outVC[i]. When the single-bit outVCLock[i] is asserted, the ith input VC has been
matched to an output VC, while the id of the output VC assigned to this input VC
is specified by the value of ourVCJi]. In the opposite case (outVCLock[i] = 0), the
ith input VC has not been assigned yet to an output VC and the value of outVCJi] is
irrelevant.

7.1.2 Request Generation for the VC Allocator

Each input is equipped with an input controller that is responsible for the orchestra-
tion of all the intermediate steps needed before a flit from an input VC is transferred
to a certain output VC. The part of the input controller that is responsible for
preparing the requests to the VC allocator and gathering the corresponding grants
is shown in Fig.7.2. Once the input controller detects the presence of a head flit
of an input VC with un-assigned output VC (outVCLock[i] = 0), it should form

114 7 Baseline Virtual-Channel Based Switching Modules and Routers

Fig. 7.2 The request

generation and grant handling
logic regarding the process of
VC allocation. Each input VC

outVCAvailable

reqVCli] E

is responsible for sending — E
new requests to the VC g §
allocator that matches input 5 &
to output VCs according to "0...00" % >
output VC availability and the 2

state of the requesting input candidateOutvVC

VGCs
() outVCli] p>

<
<

head
outVCLock][i]

T ready
valid

data

Y A

>

the appropriate requests to the VC allocator. Each input VC i sends to the VC
allocator a set of candidate output VCs candidateOutVCJi] (V bits). If the packet is
not allowed to change VC while traversing the network from source to destination,
then candidateOutVCJi] = i. If there is no restriction on the selection of the output
VC then candidateOutVCJi] vector may have several bits asserted, even all V' of
them, meaning that it is requesting any available output VC.

The VC allocator should find a match between requesting input VCs (reqVCli])
and the available output VCs. By merging the reqVC vectors produced by all input
VCs, we can represent the requests given to the VC allocator in a matrix of N X
V rows and V' columns. When reqVCJi][j] = 1 means that the ith input VC is
requesting output VC j. The ith input VC belongs to the kth input where k =
i + V. The example of Fig. 7.3 shows the output VC requests for a 2-input switching
module that hosts three VCs per physical channel. A valid match to the request
matrix should contain at most 1 bit asserted per row and per column, meaning that
an input VC cannot be assigned to more than one available output VC. Likewise,
an available output VC cannot be assigned to more than one input VC. The match
shown in Fig. 7.3 satisfies all required conditions. Please notice that the requests that
correspond to unavailable output VCs are filtered from the allocation process.

The VC allocator returns its decision to all input controllers, where the infor-
mation is organized per input VC, as shown in Fig.7.2. Each input VC gets the
selOutVCIi] (V bits in onehot form) which is a subset of the candidateOutVCli]
and indexes the output VC that the VC allocator selected for the ith input VC.
It also receives a single-bit flag VCgranted|[i], that when asserted informs the ith
input VC that the match with output VC selOutVC[i] was indeed successful. In
this case, outVC[i] < selOutVC]Ji] for use by the rest flits of the packet, while
outVCLockli] variable is set to 1. Both variables will be reset once a tail flit is
dequeued. If VCgranted[i] = 0, the ith input VC has not received an output VC

7.1 Many to One Connection with VCs 115

outVCAvailable

Requests to

available output VCs Matched VCs

Initial Requests

vc# @ ()

veit1 @@ | @ o o v
ve#2 @ | @ | @ o ([

VCH#3

VCi#4 o

vcits @ | @ | @ () o v

Fig. 7.3 An example output VC request matrix that feeds the VC allocator. The switching module
connects 2 inputs that each one hosts 3 VCs. An input VC may request any of the output VCs, while
the requests that correspond to unavailable output VCs are filtered from the allocation process.
The requested and available output VCs will be assigned to one of the requesting input VCs, while
making sure that no input VC is assigned to more than one output VC

yet and should retry in the next cycle. The assignment selected by the VC allocator,
besides the input controllers, is also used to update the status of the outVCAvailable
flags accordingly, so that no other input VC is allowed to request it on a future cycle,
until it is released by the tail flit of the same packet.

Once an input VC succeeds in allocating an output VC it should stop issuing
any requests to the VC allocator. This stop of requesting for an output VC is
critical, since the VC allocator does not have any mechanism to understand that
an input VC already holds an output VC, and may grant to it another available
output VC. Therefore, a head flit that has succeeded in VC allocation, but still
remains at the input VC buffer due to possible lack of available credit at the output
VC buffers, should not make any further request. The only condition that qualifies
candidateOutVC|i] to reach the VC allocator, is when a head flit is present at
the frontmost position of an input VC buffer and observes its local outVCLock]i]
being 0.

7.1.3 Request Generation for the Switch Allocator

Once an output VC is allocated, the packet is allowed to move to the next stage
of switch allocation (SA), in which it has to fight with other input VCs for getting
access to the output port. Unlike VA, which is performed once per packet, switch
allocation is performed by every flit independently. The switch allocator of the

116 7 Baseline Virtual-Channel Based Switching Modules and Routers

many-to-one switching module takes many requests and grants only one of them.
An input VC can have a valid request to the switch allocator when three conditions
are satisfied:

Valid flit: The ith input VC is not empty in the current cycle, i.e., there is a valid
flit at the frontmost position of the corresponding input VC buffer.

Output VC already allocated: The input VC has been assigned to an output VC
either in the same or in a previous cycle. When outVCLock[i] = 1, the ith input
VC has already allocated an output VC with id equal to outVC[i]. In case that
outVCLock[i] = 0 but VCgranted[i] = 1, it means that the flit (for sure a head
flit) is allocated to an output VC in this cycle and the id of the output VC is equal
to selOutVCli].

The output VC has enough credits: A given input VC can only request access
to the output port if its destination VC has at least one credit available. Therefore,
the i th input VC should check whether ready[outVC[i]] = 1. The ready signal of
all output VC credit counters are distributed to all input VCs. The ready bit that
corresponds to the matched output VC is selected by outVCl[i] or by selOutVCli],
depending on whether the corresponding flit has already allocated an output VC
in a previous cycle, or, it is allocated to a new output VC in the same cycle that
prepares the requests for SA (Fig. 7.4).

The requests of all input VCs are gathered and sent to the switch allocator. The
switch allocator is responsible for selecting one eligible input VC, and driving the
per-input and output data multiplexers, according to that selection.

|——— outVCAvailable

l<VA req>i VA e | l«<—SA req—> SA

il

S ¥)
= € E 3 B
< o & 1 L3 B
= — o = @
W w
o 8 (&) o O =
*0..00" e > = 03 8
ready VC g =25 3
[5]
candidateQutVC @ < g g
en L2 T 1
1 Y Y
’
outVC[i]
credit update ;
> repiace
= | ready) outVCLockﬂ '.-’C'?q.f.le.fd
~valid .: N
data -

Input VC #i

from other VCs :
of the same input .

from other inputs Output

Fig. 7.4 The per-input-VC logic that implements request generation and grant handling for both
VA and SA allocation stages in a many-to-one connection that supports VCs

7.1 Many to One Connection with VCs 117
7.1.4 Gathering Grants and Moving to the Output

Each input VC receives a vector of wires from the switch allocator called
inputGrantSA. When inputGrantSA[i] = 1 it means that the ith input VC has
been granted to move in this cycle to the output port. The flit from the selected input
VC is dequeued and transferred to the data output of the input controller and from
there to the output multiplexers.

In the most generic configuration, the input VCs are allowed to change VC in
flight, i.e., when moving from input to output. Thus, the id of the input VC buffer
that currently holds the outgoing flit may be different from the id of the output
VC buffer that has been allocated to this packet. In this case, the departing flit,
while moving to the output, should also change accordingly the VCid field that
carries with it. The new VCid is needed at the output of the switching module for
consuming the credit from the appropriate credit counter as well as at the output VC
buffers for ensuring that the flit will be written to the correct buffer. The new VCid
of the outgoing flit is equal to outVC[sel] where sel is the input VC that won switch
allocation, i.e., inputGrantSA[sel] = 1. Finally, keep in mind that when a tail flit
is leaving the 7th input VC, it de-allocates all resources reserved per packet at the
input controller, by resetting both outVCLock[i] and outVC][i] variables.

The per-input and the output multiplexer of the switching module are driven by
the switch allocator and manage to carry the winning flit from the selected input VC
to the output. When the flit passes the output of the switching module it decrements
the credit counter of the new VC and in the next cycle it is forwarded to the link.
Since credit availability has been checked before switch allocation, the flit that
arrives at the output will always leave in the next cycle and cannot stop there. In the
case that the outgoing flit is a tail one, the output should also reset the corresponding
outVCAvailable.

In the place of the output pipeline register one could have used complete VC
buffers. In that case, the credits and the status of the output VCs would refer to these
local output VC buffers and not to the VC buffers at other side of the output link.
This configuration does not change the design of the VC-based switching module;
the only changes involve the credit-based flow control mechanism and to which
buffers it refers to.

7.1.5 The Internal Organization of the VC Allocator
Jor a Many-to-One Connection

The VC allocator receives the output VC requests of all input VCs and tries to find
a one-to-one matching between requesting input VCs and available output VCs. In
the most general case, each input VC may have many candidate output VCs, some
of which may refer to already allocated ones. Therefore, masking the requests with

118 7 Baseline Virtual-Channel Based Switching Modules and Routers

outVCAuvailable
v perinput VC

VCgranted][i] :
selOUtVC[i] ~—1i L

& V:1
rocVCtl] V7] ard
v

NV:1

L V:1 :
v]ab v E arb
total NV total V
V:1 arbiters NV:1 arbiters

Fig. 7.5 The organization of a VC allocator for a many-to-one connection. In VA1, each input VC
independently selects to request one of the available output VCs. Then, after VA2, each output VC
selects to which input VC will be allocated

output VC availabilities should be performed first, before any arbitration occurs. The
first arbitration, called VA1, is done per input VC with the goal to select the output
VC that each input VC will finally ask for, thus limiting potential requests for output
VCs to only one. Since the first stage of arbitration is done independently per input
VC, many VCs may select the same output VC. As a result, a second arbitration
step is required, called VA2, which is performed per output VC, selecting only one
input VC to match the corresponding output VC. The organization of this two-step
allocation process between input and output VCs is shown in Fig. 7.5.

The VC allocator in the case of a many-to-one connection includes a V' : 1
arbiter per input VC and a N x V : 1 arbiter per output VC, as shown in Fig.7.5.
The selected output VC (selOutVCl[i]) for the ith input VC is decided during VAI.
If the selected output VC is indeed allocated to the ith input VC, is revealed by
VCgranted|[i] that is produced after reorganizing the results of the output VC arbiters
and gathering the grants that correspond to the same input VC using a wide OR gate.

An example of the operation of the VC allocator, showing also the intermediate
grants produced by the VA1 stage of arbitration, is shown in Fig. 7.6. Please notice
that since VC allocation is done independently for each input VC, it is possible that
multiple VCs of the same input to allocate an output VC in the same cycle. In the
example shown in Fig. 7.6 VC#1 and VC#2, that both belong to input 0, are matched
to output VC#2 and VC#O respectively in the same allocation round.

7.1 Many to One Connection with VCs 119

outVCAuvailable

Initial Requests lRequests to Per-inpgt VC Per-outpyt VC
available output VCs selection selection

VC#0 @ () @® (]
Vel @@ |® o |o o @© @
v o|e|e o |o ® | @
VC#3
VC#4 []
VCH5 @ | @ | @ o |o @ | e

Fig. 7.6 An example of the operation of a VC allocator for a 2-input-1-output connection that
hosts 3VCs. Multiple output VCs may be requested by a single input VC (Initial Requests), but
only the available ones will qualify to the per-input VC allocation stage, in which only one will
be selected. Then, each output VC will be assigned to one of the requesting input VCs. In this
way, no output VC can be assigned to more than one input VC and no input VC can allocate more
than one output VCs. The circles around the bullets illustrate the grants of VA1 (per-row) and VA2
(per-column) arbitration stages

7.1.6 The Internal Organization of the Switch Allocator
Jor a Many-to-One Connection

Switch allocator services the requests of all input VCs that have been matched to
an output VC and have also the available credits. Input VCs share an input port of
the output multiplexer (only one VC per input can be served in each clock cycle).
Therefore, switch allocation is done in two steps. The first step, called SA1, involves
a local per input arbitration that selects which input VC to promote to the output
arbiter. The second global arbitration step, called SA2, selects one valid input to
connect to the output.

The organization of the switch allocator is shown in Fig. 7.7. It receives an output
request bit per input VC and using a local V : 1 arbiter (SA1) selects one input VC
from each input to participate to the next arbitration step. The global arbitration step
(SA2) sees one request per input. An input has a valid request as long as the local
arbiter gave at least one grant.! The grant signals of the output arbiter are given back
to all inputs and also given to the output multiplexer for setting up the appropriate
input-output connection. Each input receives 1 bit that denotes if any VC from this
input was granted. Once this information reaches the input, it is combined with the
decision of SA1 and prepares the winning input VC for sending a new flit to the
crossbar, as shown in Fig. 7.7.

!This can be performed in parallel to SA1 by checking if the input arbiters have at least one request.

120 7 Baseline Virtual-Channel Based Switching Modules and Routers

per input
local MUX
N D_' V1 -+ select
. —>—4 q
DL. arb : per output . crossbar
N . " select
L]
Vi1 . . N:1
ol 1 | arb
total N total N
V:1 arbiters N:1 arbiters

Fig. 7.7 The switch allocator for a many-to-one connection requires two stages of arbitration. One
per input that selects one input VC from each input port, and, one per output that finally grants on
the competing inputs

In the routers that do not support VCs and presented in Chaps. 3 and 5, an arbiter
updates its priority whenever it delivers at least one grant. However, SA1 arbiters
should update their priority only if a grant is also received by SA2, following the
iSlip rules (McKeown 1999). The reason why this is crucial can be perceived by
the following example, in which the arbiters of SA1 and SA2 update their priorities
independent of the result of each other.

Assume that input VC#3, that belongs to input port 1, has already allocated an
output VC and performs switch allocation using the round-robin arbiters of SA1
and SA2, respectively. Input VC#2, that belongs to input port 0, also owns an
output VC of the output port and participate in SA as well. Both input VCs win
in SAI (they belong to different inputs) and advance to SA2, in order to fight for
accessing the output port. SA2 arbiter’s priority favors input port 0, thus, input VC#2
is granted and priority is updated to point to input port 1. However, the SA1 of
input 1 has updated its priority to point to VC#4. As a result, in the next cycle,
input VC#4, which is also allocated to an output VC, wins in SA1 and possibly in
SAZ2 thus letting VC#3 loose for two consecutive cycles. Depending on the router’s
configuration and the traffic pattern, the above situation of VC#3 wining in SA1
but losing in SA2, may be repeated indefinitely. This situation can be avoided by
guaranteeing that if an input VC wins in SA1, it will remain the winner input VC
until it is granted in SA2 as well. Under this rule, an input VC may need to wait at
most N — 1 cycles to be granted in SA2.

7.2 Many-to-Many Connections Using an Unrolled Datapath: A Complete. . . 121
7.1.7 Output-First Allocation

The order of arbitration in either VA or SA can be changed from input first to output
first. In the case of output-first allocation all input VCs forward first their requests to
the output arbiters for SA and to the output VC arbiters for VA. In this way, in VA,
it is possible that one input VC receives a grant from more than one output VCs.
Selecting one of them requires an additional local per-input VC arbitration step.
Equivalently, in SA, with output-first arbitration it is possible that two input VCs
of the same input to receive simultaneously a grant from the same or a different
output. Then, since only one input VC can be served from each input, an additional
arbitration step should take place that would resolve the conflict.

Output first allocation has been proven superior in terms of matching quality
when compared to input-first allocation (Becker and Dally 2009). However, in
terms of hardware implementation input-first allocation is more delay efficient. The
reason for this efficiency is that input-first allocation decisions allow the concurrent
implementation of the necessary multiplexing. For example, the grants of SA1 can
be used directly to multiplex the flit of the winning VC in parallel to SA2 arbitration.
Thus, when SA2 finishes, the data to the output multiplexer are ready waiting for the
corresponding grants. On the contrary, in output-first allocation, the input and the
output multiplexers should wait both SA2 and SA1 to complete before switching
the flits from input VCs to the output. In the pipelined implementations those
differences are partially alleviated, while still observing that input-first allocation
provides faster circuits.

7.2 Many-to-Many Connections Using an Unrolled
Datapath: A Complete VC-Based Router

The design of a generic VC-based router that supports many-to-many connections
using a fully unrolled switching datapath, i.e., a crossbar, can be easily derived as
an extension to the already presented many-to-one switching module. The baseline
datapath of the generic VC-based router is shown in Fig. 7.8. Similarly to the many-
to-one case, a pipeline register is used at each output, which cuts off the timing path
of the link from the paths of the router.

The presented router is just an unrolled version of the baseline switching module
shown in Fig.7.1. Every output is equipped with an output multiplexer, while it
includes also V credit counters used for the link-level flow control and the V
outVCAvailable flags that are used during VC allocation. The VA and SA stages
operate in a separable manner taking local per-input or per-input VC and global per
output or per output VC decisions that guide the assignment of input to output VCs
and the allocation of the output ports of the router on cycle-by-cycle basis.

122 7 Baseline Virtual-Channel Based Switching Modules and Routers

outVCAvailable
Credit Counters
(e =

update .

Input #N-1 Output #N-1

Fig. 7.8 The organization of a VC-based router connecting in parallel multiple inputs to multiple
outputs that each own supports many VCs. Routing computation (RC) is responsible for selecting
an output port for each input VC, while VC allocation (VA) and switch allocation (SA) handle
the allocation of the output VCs and the output ports to the requesting input VCs. The per-output
multiplexers of the crossbar implement the actual transfer of flits in the switch traversal stage (ST)

7.2.1 Routing Computation

The main difference of the generic many-to-many router versus the simpler many-
to-one switching module is the role of routing computation and the selection logic
that is involved. In the many-to-many organization every input VC is eligible to
connect to the output VC of any output of the router. Therefore, each input VC is
equipped with the outPort[i] variable that stores the output port that the packet,
currently in the ith input VC, needs to follow in order to reach its destination.
outPort[i] variable is updated after routing computation, which is performed only
when the head flit of a packet reaches the frontmost position of the ith input VC
buffer. The outPort variable is reset to zero once the last flit of the packet, i.e., the
tail flit, is granted to leave the corresponding input VC buffer.

The simplest implementation would introduce a routing computation unit per
input VC, as shown in Fig.7.9a. Depending on the complexity of the routing
computation unit this choice may not be the best one. Taking into account that
at most one new head flit will arrive per clock cycle at each input then routing
computation is needed only for one packet. Hence, the routing computation unit can
be shared between all input VCs, as depicted in Fig. 7.9b. Although a shared routing
computation unit seems like an area saver it does not represent the best choice in
area-delay sense. The delay overhead of the multiplexer and the arbitration unit
(just a simple fixed priority arbiter) may lead to increased implementation area when
the design is synthesized under strict delay constraints. In the rest of this book we
assume that each input VC is equipped with its own routing computation unit.

7.2 Many-to-Many Connections Using an Unrolled Datapath: A Complete. . . 123

b new head][i]

[@ ..
- L1 L

= T .

Fig. 7.9 (a) Each input VC can have its own RC unit for performing routing computation
independent of the rest or (b) one RC unit can be shared by all input VCs of the same input

7.2.2 Requests to VC the Allocator

A head flit of a packet that has not been yet assigned an output VC to its destined
output port should send a request to the VC allocator. Depending on the limitations
imposed by the routing algorithm or some other upper level protocol, the packet
can request from one to many output VCs. Besides the requested VC (reqVCli]),
each input VC should also send its destination output port (reqPort[i]), which will
be used for the per-output arbitration stage of VA, as depicted in Fig. 7.10.

Similar to the many-to-one connection, the VC allocator returns per input VC the
selected output VC derived by the local VC arbitration step and a flag that denotes
if this input-output VC pair has been matched or not. Please keep in mind that since
VC allocation is performed in parallel across input and output VCs many input VCs
can be matched in parallel as long as they refer to different output VCs (or output
VCs that belong to different output ports).

7.2.3 Requests to the Switch Allocator

The packets that have been successfully assigned to an output VC can participate
in switch allocation. The output requests for the flits of each input VC are already
stored in the outPort variable. The head flits do not use the stored variable but the
one available via the bypass path of the outPort register shown in Fig. 7.11. This is
necessary in the single-cycle router implementation described in this chapter. The
outPort[i] lines per input VC are actually driven to the switch allocator after being
qualified by three conditions:

The request corresponds to a valid flit: The outPort[i] variable that was set by
the head flit of a packet may contain active output requests even if the buffer of

124 7 Baseline Virtual-Channel Based Switching Modules and Routers

VA —<——— outVCAvailable
= =
&) 3
5 § =z ¢
> & 29 8
g g & >
"0...00" —o = =
|
- ---candidateOutvC —
1 en
! outPort[i]
RC 0 outVCli]
> >
en 1
dst outVCLock[i] P>
head <
-
T ready _
valid ; >
| | F—> >
data

Fig. 7.10 The request generation and grant handling logic for the output VC allocation process.
Each input VC forwards to the VA unit the candidate output VCs and the selected output port (as
computed by the RC unit) and receives the id of the selected output VC along with a flag that
reveals if the allocation process was successful or not

the ith input VC is empty in the current cycle. This can occur since flits are not
guaranteed to arrive contiguously for a single input VC. Therefore, masking the
requests with the valid[i] bit solves this issue.

The packet has allocated an output VC: The second condition dictates that the
input VC has been assigned an output VC. This is resolved by masking the
outVCLockl[i] variable with the bits of the outPort[i] bit vector (see right side
of Fig.7.11). Similar to the many to one connection, a head flit is allowed to use
the VA result directly at the same cycle using selOutVC][i] instead of outVCli]
via a bypass multiplexer.

The output VC has enough credits: An input VC can send a request to the
switch allocator if the selected output VC has at least one credit available. This
checking requires first the selection of the appropriate ready signal. Therefore,
the i th input VC checks if ready[outPort[i]|[outVC]i]] = 1. Thus, each input VC
should select from the N x V ready bits the one that corresponds to its destined
output port and allocated output VC. This selection is done by the multiplexers
shown in Fig.7.11. In the first selection stage the ready bits that belong to the
selected output are distinguished from the rest. In the second selection stage
the ready bit that belongs to the assigned output VC is selected and it is finally
masked with the outPort[i] requests.

7.2 Many-to-Many Connections Using an Unrolled Datapath: A Complete. . . 125

|€«— RC —>»}« VA req >

outVCAvailable
l«—SA req—>l SA

reqVCli]
reqPort]i]

"0...00" —¢g

selOutVCi]
VCgranted[i]

ready VC

outputSelect[j]

[— -candidateOutvC —{1)
| outPort[i] 1

g
2]
c
S
Q
2
£
outvcli oo ‘

reqSA[i]

ol
5|

=
=
(53
2
]
n
o
>
=
3
o
=

4

dst

credit update

%ﬂ

I <
ready

outVCLockﬁQ
r " valid o |

{ o
Input VC #i data ! :

from other VCs _°
of the same input _.

replace VC id field

from other inputs _I Output #

Fig. 7.11 The complete request generation and grant handling logic for a VC-based router that
supports many-to-many input-output connections. The requests to the switch allocator are driven
by the internal variables of each input VC that guarantee the allocation of an output VC and
qualified by the ready signals of the per-output VC credit counters

The requests seen by the switch allocator can be graphically represented in matrix
form: When reqSA[i][j] = 1 means that input VC i is requesting output port j. The
ith input VC belongs to the kth input where k = i + V. The example of Fig.7.12a
shows the output requests for a 3 x 3 router that hosts two VCs per physical channel.
Please keep in mind that every active request of this matrix has already guaranteed
buffer availability to the destined output VC.

First of all, a valid match to the request matrix should contain at most 1 bit
asserted per row and per column meaning that an input VC cannot be assigned
to more than one output port and an output port cannot be assigned to more than
one input VCs respectively. If this was the only condition imposed by the switch
allocator, then more than one VC of the same input could receive a grant in the
same cycle. Satisfying multiple grants to the same input means that each input VC
sees a private input port of the crossbar. In the baseline case, all input VCs of the
same input share a common input port of the crossbar via a data multiplexer per
input. Thus, the switch allocator should grant at most one input VC from the same
input. Therefore, a valid match to the request matrix should contain at most one
asserted bit to the group of rows that belong to the same input with index i = V,
wherei = 0...N x V — 1. The match shown in Fig. 7.12a satisfies all the required
conditions. The requests of all input VCs and the corresponding grants are illustrated
in Fig. 7.12b using an equivalent bipartite graph representation.

126 7 Baseline Virtual-Channel Based Switching Modules and Routers

Fig. 7.12 (a) An example of a Requests SA Grants
the request and grant matrix
of switch allocation, and (b) VC#0 o \/
its equivalent bipartite graph
representation. Although ve#r @
every input VC can request VCH#2 ()
any output, only one VC per
input can be granted vc#s @
VCH4 [J
VCH5 [v

7.2.4 Gathering Grants and Moving to the Output

The switch allocator’s decisions are distributed in the same cycle to the input
controllers and the crossbar. Each input VC receives a flag bit showing if it has
won access to the selected output port or not. Once granted, the corresponding input
VC dequeues its flit from the input VC buffers, and sends a credit update backwards,
informing that a buffer slot is emptied. The multiplexer that selects only one input
VC per input is also driven by the switch allocator’s output, so that only the selected
input VC to reach the crossbar. On dequeue, the flit updates its VC id field by using
the id stored in the local outVC][i] variable (or the one just returning from the VC
allocator). If a tail flit is preparing to leave the ith input VC, then it should de-
allocate all resources reserved per packet at the input controller, such as the state
variables outPort[i], outVCLock[i] and outVCli].

The crossbar knows how to handle the incoming flits from all input controllers
since the switch allocator has transferred to the crossbar the switching configuration
of the current cycle that describes the connections between inputs and outputs. As
the flit traverses the crossbar and moves to the output pipeline register, its VC ID
field is used to decrement appropriately creditCounter[VCid]. In the next cycle, the
flit is forwarded to the link where it cannot be stopped, since credit availability has
been checked before it was allowed to participate in switch allocation. In the case

7.2 Many-to-Many Connections Using an Unrolled Datapath: A Complete. . . 127

that the outgoing flit is a tail flit the output controller should reset the corresponding
output VC availability flags to available since the packet that used this output VC
has left the current router.

7.2.5 The Internal Organization of the VC Allocator
Jor a VC-Based Router

The VC allocator should be able to allocate in parallel the input VCs to the output
VCs of the router. In this case, the router consists of many outputs that each one
services a number of VCs. Therefore, the input VC should not only inform the VC
allocator on the candidate output VCs but it should also declare the output that these
candidate VCs belong to. Therefore, the VC allocator receives a pair of vectors from
each input VC: A vector that indexes the requested output port reqPort[i], and the
reqVC]i] that indexes the requested output VC(s). The first step of VC allocation is
to filter out from the requested output VCs those that are not available. Each input
VCsees N x V output VC availability flags. From those flags selects the ones that
refer to the destined output port, that are later masked with the candidate output VCs
of each input VC.

The allocation process evolves in two steps, according to the organization
depicted in Fig.7.13. In the first step (VA1) each input VC selects one of the

outVCAvailable

J[J[per input VC
reqPort[i] :
N
Vv
VCgranted]i] —
) : A per output VC
selOutVCIi] & ‘ 5
i V:1 Xl ik L
. E EV arb [V |3 it i
reqVCli] v S 5 ;
[)
[)
[]
VA NV:1 _
Vlab | arb LIV
total NV total NV
V:1 arbiters NV:1 arbiters

Fig. 7.13 The VC allocator of a complete VC-based router. The requested output VCs (reqVC)
are masked with their corresponding outVCavailable flags and a single output VC is selected per
input VC after VA1 arbitration. During VA2, each available output VC is assigned to at most one
requesting input VC

128 7 Baseline Virtual-Channel Based Switching Modules and Routers

outVCAvailable
per input VC

Vi i e
selOutVC[i] ;
reqPort[i] = /_I_H]
arb |v ._| %v
ﬁv

reqVCli]

V:1
arb |v

0k

total N
V:1 arbiters

Fig. 7.14 An alternative organization of VA1 stage of the VC allocator that offers delay benefits,
under small area overhead. It replaces a mux, one arbiter and a demux with N arbiters that run
in parallel and prepare the output VC requests of each input VC in a form that fits directly the
connections of the arbiters in the VA2 stage

available output VCs and then in VA2 each output VC selects at most one input
VC. The input VCs are informed by the arbiters of VA2 if their request was finally
accepted.

Faster Organization of the VA1 Stage

Implementation results prove that the (de)multiplexing logic at VA1 has a non trivial
contribution to the overall delay of VC allocation. A simple microarchitectural
change can completely eliminate this logic and speedup significantly VC allocation.
The new fast organization of VA1 is shown in Fig. 7.14.

First all the output VC availability flags of all outputs are masked with the reqVC
vector of each input VC without any pre-selection step. The resulting availability
vectors, e.g., one for each output, are independently arbitrated by V' : 1 arbiters
selecting one available VC for each output. From the selected output VCs (one
available VC per output), each input VC needs only one of them; the one that
belongs to the destined output port. Selecting one does not require any multiplexing
but just an additional masking operation with the output port request (outPort[i]) of
the ith input VC. The selected output VC in all outputs will become zero except
the one that matches the destination output port. Therefore, after this last step, the
output VC request of an input VC is ready and aligned per output as needed by the
output VC arbiters of the second stage. Thus additional demultiplexing/alignment
logic is not needed and significant delay is saved. The cost of this method is that it
replaces a mux (outVCAvailable multiplexer of Fig. 7.13), one arbiter and a demux
(Fig.7.13), with N arbiters that run in parallel and offer faster implementation.

Please notice also that since the outPort[i] request bits are used only after the
V : 1 arbitration step then routing computation can be overlapped in time with the

7.2 Many-to-Many Connections Using an Unrolled Datapath: A Complete. . . 129

per-input VC arbitration and additional delay can saved. Certainly, this time overlap
is only enabled if the generation of the candidateOutVC for each input VC is not
strictly dependent on the routing algorithm.

7.2.6 The Internal Organization of the Switch Allocator
Jor a VC-Based Router

Switch allocation involves both a per-input and a per output arbitration step.
Differently from the case of a many-to-one connection, in this case, the switch
allocator receives a request vector from each input VC that points to the requested
output port. When an input VC has an active output port request (at least one bit
of the request vector is asserted) it is eligible to participate in SA1. The input VC
that is selected by SAT1 carries its request vector to the next arbitration step (SA2).
This is done via the multiplexer shown per input in Fig. 7.15. Each arbiter of SA2
independently from the rest selects which input to grant, based on its local priority
status. The grant signals are distributed to the crossbar setting up the appropriate
input-output connections and to the inputs. Once this information reaches the inputs
it is combined with the decision of SA1 and prepares the winning input VC for
sending a new flit to the crossbar. An example of the grants generation process
by the switch allocator, including both arbitration stages’ results, is presented in
Fig.7.16.

per input
« local MUX
TR v i select
M . 1 '
- *,| arb 1 crossbar
T | peroutput - select
. N:1
arb

................

[]
[]
[]
N:1
—: :
arb arb |
total N total N
V:1 arbiters N:1 arbiters

Fig. 7.15 The switch Allocator for a complete VC-based router that supports many input/output
parallel connections. The SA1 stage promotes one VC per input that fights with the rest inputs in
SA2 to get access to the requested output port

130 7 Baseline Virtual-Channel Based Switching Modules and Routers

a Initial Requests Local arbitration (SA1) Global arbitration (SA2)
VCH#0 o @ ®
vc#t @ et
vCH2 ® @® e
VC#3 ® e
VC#4 ® bt
VC#5 ® @ @

Fig. 7.16 An example of the requests seen by the switch allocator and the derived grants in SA1
and SA2 following (a) a matrix representation and (b) a bipartite graph model between input VCs
and outputs. Local arbitration (SA1) allows the request of at most one input VC to qualify per
input, while global arbitration (SA2) selects one input to access a specific output port

Please notice that, like in the many-to-one connection, the arbiters of the
SAL1 stage should update their priority only once their selected input VC is
also granted at the SA2 stage. Even though the arbiters operate independently,
their eventual outcomes in switch allocation are very much dependent each one
affecting each other port separately, as well as the aggregate matching quality of the
router (Mukherjee et al. 2002). In order to improve the efficiency of such separable
switch allocators that rely on independent per-input and per-output arbitration steps
we have two generic options. We can either try to “desynchronize” their bindings, so
that each input (output) requests a different output (input) on every new scheduling
cycle, or to employ multiple scheduling iterations until a good match with many
input-output pairs is constructed. Desynchronization is hard to achieve in the context
of NoCs since it requires the addition of many independent queues per input equal
to the number of output ports (McKeown 1999). This is either prohibitive, or it may
lead to very shallow buffers that will destroy throughput. On the other hand the
execution of multiple scheduling iterations for converging to one allocation remains
an unexplored alternative for NoCs mostly because it prolongs the scheduling
time; SA evolves in multiple iterations, where in each iteration the set of already

7.3 VA and SA Built with Centralized Allocators 131

matched input-output pairs is augmented with new matchings. Pipelining between
iterations is a viable alternative (Gupta and McKeown 1999), however a more
scalable solution is desirable.

Instead of letting a different input VC to connect to an output in each cycle,
other allocation strategies try to prolong the duration of an input and output
match by letting whole flows of packets to pass before changing the connec-
tion (Michelogiannakis et al. 2011; Ma et al. 2012). This approach allows for full
output utilization for many cycles but may create starvation phenomena. The main
implementation strategy for this exhaustive-like scheduling approach, involves some
form of weighted arbitration that is biased in favor of certain input-output pairs that
correspond to heavily backlogged flows (Ramabhadran and Pasquale 2003; Abts
and Weisser 2007).

Switch Allocation in the Case of Adaptive Routing

The presented organization of the SA unit assumed that each input VC will never
ask for more than one output port. In the case of adaptive routing this may not
be the case and the adaptive routing algorithm may allow each input VC to select
more than one possible output ports. In this case, SA1 and SA2 do not suffice for
completing the switch allocation process and an additional selection step is needed.
The additional selection steps can be done either at the beginning of SA letting each
input VC to select one candidate output port or at the end. The selection unit (not
shown in Fig. 7.11) either picks randomly a destination or decides after sensing the
state of the network (Ascia et al. 2008) and taking into account other network-level
criteria such as load balancing the traffic throughout the network or offering quality
of service guarantees.

7.3 VA and SA Built with Centralized Allocators

Besides separable allocation strategies that implement the allocation process sepa-
rately per input (or per input VC) and per output (or per output VC), VA and SA can
be built in a centralized manner that solves allocation at once by actually merging
input and output arbitration phases in one merged step.

A centralized allocator of N requesters and N resources receives the corre-
sponding requests in a matrix form. Each row of the matrix corresponds to the
requests of one requester that can ask for multiple resources. Equivalently, each
column of the request matrix corresponds to one resource that can accept multiple
requests. A valid schedule should contain at most a single 1 per row and per column
guaranteeing in this way a unique requester-resource connection. A centralized
allocator does not examine the requests independently per row and per column
as done by the separable allocators but solves the problem concurrently for many
requester-resource pairs. The request-resource pairs that can be matched at once

132 7 Baseline Virtual-Channel Based Switching Modules and Routers

Wavefront Allocation
01 2 3 0 1 2 3

0® 0@

Input 1 Oin v Final
Requests 2 @ @ 2 v Grants
01 2 3 01 2 3

e 3 || |le 3 ® v
Step 1 Step 2
1 o0 1 v
1 2 01 2 3
0 0 s 2 [V
3 o ° v v 3 v
1 v 1 v
v 2|V
3 e 3 O)
Step 3 Step 4

Fig. 7.17 An example of the operation of a centralized allocator. All requests are examined
starting from the main diagonal of the request matrix. The active requests of a diagonal do not
cause any conflicts and they can be granted at once. A grant given to a certain request-resource
pair directly erases all the remaining requests of the same row and column

without any further checking are the requests that belong to the diagonals of the
matrix. Every element that belongs to a matrix diagonal corresponds to a different
request-resource pair and can be granted without causing any conflict. Once a
request of the ith row and jth column is granted then all the requests of the ith
row and the jth column should be nullified before moving to the next diagonal of
the matrix. An example, of this diagonal-based scheduling mechanism is shown
in Fig.7.17. The allocation process evolves in 4 steps (equal to the number of
diagonals) and at each step the non-conflicting requests are granted. The most
efficient centralized allocator is the wavefront arbiter (Tamir and Chi 1993; Hurt
et al. 1999; Becker 2012b).

Using a centralized allocator, such as the wavefront arbiter, we can design VC
and switch allocators. A VC allocator is built around a NV x NV centralized
allocator that receives the requests of all input VCs in parallel. Figure 7.18 illustrates
this organization. The rows of the centralized allocator correspond to input VCs
and the columns to output VCs, respectively. Each input VC may request many
output VCs of the same output, i.e., it asserts a request to multiple columns of the
centralized allocator. When allocation finishes the N x V' grant signals coming from
all output VCs are gathered per-input VC, while the OR function at each input VC
just detects if at least one output VC granted the corresponding input VC.

Equivalently, a switch allocator can be built using a N x N centralized allocator,
as illustrated in Fig. 7.19. The rows of the centralized allocator correspond to the
inputs of the routers and the columns to the outputs. Since each input hosts many
VCs, a row of the request matrix can have many active requests that correspond to
the output requests of the input VCs. When the centralized allocator finishes, each

7.4 Take-Away Points 133

outVCAvailable

reqPort[i] N

NV NV
reqVCli]

; % e NxV Bt :

§ :| centralized | : |} ><

i i Nv| allocator | Nv| i NNV
VCgranted][i] *—‘—C(—l ” § : :
selOutVC[i] < (@

per input VC

]

Fig. 7.18 The organization of a VC allocator that uses a NV X NV centralized allocator

Fig. 7.19 The organization per input

of a switch allocator that uses N
a N X N centralized allocator :

Yeooy

local MUX

select

N_ : PN
. NxN .
. centralitzed . el
allocator ! el
N N/ |5 >IN i
> > . Y

crossbé{r

select

output is matched to at most one input. The only thing that remains to be selected
is the VC per input that actually won. For each input, the VCs that requested the
matched output are kept alive through a masking process. Since these can be more
than one input VCs that requested the selected output port, a final V' : 1 arbiter is
used to select which input VC will finally send a flit to the selected output port.

7.4 Take-Away Points

The operation of a VC-based router includes multiple steps that should be executed
in the correct order in order to allow the packets placed at the input VCs to move to
their selected output port. The execution of each step such as routing computation,
VC allocation and switch allocation is supported by additional per-input VC and
per-output VC state variables that guide request generation and grant handling for
the allocation steps, and implement the virtual-channel flow control mechanism of
the input and output links. Input VCs allocate an output VC to their selected output

134 7 Baseline Virtual-Channel Based Switching Modules and Routers

port (decided by the routing computation logic) and then after checking the available
credits of their selected output VC proceed to switch allocation and traversal that
guides them to their destined output port. The organization of per-input VC and
per-output VC logic as well as the internal organization of the allocators has been
presented in detail and in a ready-to-use manner.

	7 Baseline Virtual-Channel Based Switching Modules and Routers
	7.1 Many to One Connection with VCs
	7.1.1 State Variables Required Per-Input and Per-Output VC
	7.1.2 Request Generation for the VC Allocator
	7.1.3 Request Generation for the Switch Allocator
	7.1.4 Gathering Grants and Moving to the Output
	7.1.5 The Internal Organization of the VC Allocator for a Many-to-One Connection
	7.1.6 The Internal Organization of the Switch Allocator for a Many-to-One Connection
	7.1.7 Output-First Allocation

	7.2 Many-to-Many Connections Using an Unrolled Datapath: A Complete VC-Based Router
	7.2.1 Routing Computation
	7.2.2 Requests to VC the Allocator
	7.2.3 Requests to the Switch Allocator
	7.2.4 Gathering Grants and Moving to the Output
	7.2.5 The Internal Organization of the VC Allocator for a VC-Based Router
	Faster Organization of the VA1 Stage

	7.2.6 The Internal Organization of the Switch Allocator for a VC-Based Router
	Switch Allocation in the Case of Adaptive Routing

	7.3 VA and SA Built with Centralized Allocators
	7.4 Take-Away Points

