
Chapter 6
Virtual-Channel Flow Control and Buffering

In all cases described so far when a packet allocated a link (or an output of a router)
the connection was kept until the tail of the packet traversed the link and released its
usage to other packets. This behavior was imposed by the fact that the buffers at the
other side of the link (or the input of the next router) kept the control information
of only one packet, thus prohibiting the interleaving of flits from different packets.
This flow of packets resembles a single-lane street where cars move one after the
other and even if a car wants to turn to a different direction it is obliged to wait the
rest cars to pass the turning point before being able to make the turn to its preferred
direction (see Fig. 6.1a). Also, this serial packet movement prohibits packet flow
isolation since all traffic is inevitably mixed in the one-lane streets of the network.

Allowing for flow separation and isolation needs the dedication of multiple
resources either in space (more physical lanes by adding extra wires on the links) or
in time (more virtual resources interleaved on the same physical resources in a well-
defined manner). This chapter deals with virtual channels that represent an efficient
flow control mechanism for adding lanes to a street network in an efficient and
versatile manner, as illustrated in Fig. 6.1b. Adding virtual channels to the network
removes the constraints that appear in single-lane streets and allow otherwise
blocked packets to continue moving by just turning to an empty (less congested)
lane of the same street (Dally and Aoki 1993; Dally 1992). Since the additional
lanes are virtually existent their implementation involves the time multiplexing of
the packets that belong to different lanes (virtual channels) on the same physical
channel. Briefly, virtual channels behave similar to having multiple wormhole
channels present in parallel. However, adding extra lanes (virtual channel) to each
link does not add bandwidth to the physical channel. It just enables better sharing
of the physical channel by different flows (Boura and Das 1997; Nachiondo et al.
2006).

Besides performance improvement, virtual channels are used for a variety of
other purposes. Initially, virtual channels were introduced for deadlock avoid-
ance (Dally and Aoki 1993). A cyclic network can be made deadlock-free by
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Fig. 6.1 Virtual channels is
analogous to adding lanes in a
street allowing cars(packets)
to flow in parallel without
interfering with each other.
The added lanes/channels are
virtualized since they do not
physically exist but appear on
the one physical channel in a
time-multiplexed manner

single-lane street multi-lane street

restricting routing so that there are no cycles in the channel dependency graph. The
channels can be thought as the resources of the network that are assigned to distinct
virtual channels. The transition between these resources in the packet’s routing path
is being restricted in order to enforce a partial order of resource acquisition, which
practically removes cyclic dependencies (Duato 1993).

In a similar manner, different types of packets, like requests and reply packets,
can be assigned to disjoint sets of virtual channels (VCs) to prevent protocol-
level deadlock that may appear at the terminal nodes of the network. For instance,
protocol-level restrictions in Chip Multi-Processors (CMP) employing directory-
based cache coherence necessitate the use of VCs. Coherence protocols require
isolation between the various message classes to avoid protocol-level deadlocks
(Martin et al. 2005). For example, the MOESI directory-based cache coherence
protocol requires at least three virtual networks to prevent protocol-level deadlocks.
A virtual network comprises of one VC (or a group of VCs) that handles a specific
message class of the protocol. Virtual networks and the isolation they provide are
also used for offering quality of service guarantees in terms of bandwidth allocation
and packet delivery deadlines (Grot et al. 2012).

Architectures supporting the use of VCs may reduce also on-chip physical
routing congestion, by trading off physical channel width with the number of VCs,
thereby creating a more layout-flexible SoC architecture. Instead of connecting two
nodes with many parallel links that are rarely used at the same time, one link can be
used instead that supports virtual channels, which allows the interleaving in time of
the initial parallel traffic, thus saving wires and increasing their utilization.

6.1 The Operation of Virtual-Channel Flow Control

To divide a physical channel into V virtual channels, the input queue at the receiver
needs to be separated into as many independent queues as the number of virtual
channels. These virtual channels maintain control information that is computed only
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Fig. 6.2 Virtual channels require the addition of separate buffers for each VC at the receiver’s
side and at the same time call for enhancements to the flow control signaling to accommodate the
multiple and independent flows travelling in each VC

once per packet. To support the multiple independent queues link-level flow control
is also augmented and includes separate information per virtual channel.

Ready/valid handshake on each network channel cannot distinguish between
different flows. This feature prevents the interleaving of packets and the isolation
of traffic flows, while it complicates deadlock prevention. A channel that supports
VCs consists of a set of data wires that transfer one flit per clock cycle, and as many
pairs of control wires valid(i )/ready(i ) as the number of VCs. Figure 6.2 shows an
example of a 3-VC elastic channel. Although multiple VCs may be active at the
sender, flits from only one VC can be sent per clock cycle; only one valid(i ) signal
is asserted per cycle. The selection of the flit that will traverse the link requires
some form or arbitration that will select one VC from those that hold valid flits. At
the same time, the receiver may be ready to accept flits that can potentially belong
to any VC. Therefore, there is no limitation on how many ready(j ) signals can be
asserted per cycle.

In VC flow control, both the buffering resources and the flow-control handshake
wires have been multiplied with the number of VCs. Therefore, the abstract flow
control model developed for the single-lane case in Chap. 2 should be enhanced to
support virtual channels. As shown in Fig. 6.3a, we use a separate slot counter for
each VC that gets updated by the corresponding buffer and reflects via the ready
signal the status of the VC buffer. Normally, only one VC will drain a new flit
and thus the status of only one slot counter will be updated. Of course the case
of multiple VCs draining flits in parallel can be supported. Keeping the rate of
incoming flits equal to the rate of outgoing flits (leaving the receiver’s buffer), it
is safe to assume that only one update will be asserted in each clock cycle.

Moving the slot counters at the sender side, as shown in Fig. 6.3b transforms the
flow control mechanism to the equivalent credit-based flow control for VCs. The
i th VC is eligible to send a new flit as long as creditCountŒi � > 0 meaning that
there is at least one empty slot at the downstream buffer for the i th VC. When a
new flit leaves the sender it decrements the corresponding credit counter, while the
credit updates returned per cycle are indexed by the corresponding credit update
wire (update[i ]).

Instead of transferring V valid signals and V credit update signals in the forward
and in the backward direction, it is preferable to encode the id of the valid VC and
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Fig. 6.3 The abstract flow control model enhanced for supporting virtual channels. One free slot
(or credit) counter is added per VC that can be placed either at the receiver or at the sender. Multiple
ready signals can be asserted per cycle showing which VCs is ready to accept new flits. In the
simplest case only one VC will leave the receiver and update the status of the corresponding VC
buffer

the id of the VC that returns a new credit; the encoding minimizes the flow control
wires to 1Clog2 V in each direction. This is possible since at most one VC will send
valid data to the receiver and the receiver will drain at most one flit for its buffers
thus updating the status of only one credit counter. Thus, in each direction a single
valid/update bit is used and a VCid that encodes the index of the selected VC in
log2 V bits; the VCids arriving at the receiver via the valid signals and at the sender
via the update signals should be first decoded before being used in either side of
the link. The complete list of wires used in a physical channel that accommodates
V VCs is shown in Fig. 6.4, including also the appropriate packet framing signals
isHead and isTail that are used to describe the id of the flit that is currently on
the link.

The basic property of VC-based flow control is the interleaving of flits of
different packets. In each cycle, a flit from a different VC can be selected and appear
on the link after having consumed its corresponding credit. The flit once it arrives
at the receiver is placed at the appropriate VC buffer indexed by the VC ID of the
forward valid signals. Since the buffering resources of each VC at the receiver’s side
are completely separated, interleaving the flits of different packets does not create
any problems, assuming that the VC-based flow control mechanism does not involve
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Fig. 6.4 When a physical channel supports many VCs the wires of a link that connect a sender
and a receiver besides the flit’s data and id should also include the necessary signals for VC-based
flow control: a valid bit and a VC id that identify the outgoing flit and an update bit together with
the corresponding VC id that addresses the VC of the returned credit

Fig. 6.5 A baseline
VC-buffer architecture for
3VCs built by just replicating
one 2-slot EB per VC and
including an arbiter and a
multiplexer at the read side of
the VC buffer
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any dependencies across VC, e.g., if the buffer of a certain VC is full to stop the
transmission of flits from another VC. Examples of such dependencies arising from
sharing the buffers used for the VCs will be discussed in the following sections.

6.2 Virtual-Channel Buffers

In the simplest form of single-cycle links the valid and the backpressure information
needs one cycle to propagate in the forward and in the backward direction.
Therefore, in a single-cycle channel without VCs, a 2-slot elastic buffer (EB) would
suffice to provide lossless operation and 100 % throughput. Equivalently, a primitive
VC buffer can be built by replicating one 2-slot EB per VC, and including a
multiplexer, following the connections shown in Fig. 6.5 for the case of 3 VCs. Each
EB will be responsible for driving the corresponding ready(i )/valid(i ) signals while
all of the them will be connected to the same data wires on the write side. When
more buffering space is required a FIFO buffer per VC can be used in the place of a
simple elastic buffer.
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Fig. 6.6 Flit flow on a channel between two primitive VC buffers that employ a 2-slot EB for
each VC

On the read side of the VC buffer, an arbitration mechanism will select only
one of the valid VCs, that is also ready downstream, to leave the buffer. A packet
that belongs to the i th VC can be hosted either to the same VC in the next buffer
or to a different VC provided that it has won exclusive access to this VC. VC-
based flow control does not impose any rules on how the VCs should be assigned
between a sender buffer and a receiver buffer. Allowing packets to change VC
in-flight can be employed when the routing algorithm does not impose any VC
restrictions (e.g., XY routing does not even require the presence of VCs). However,
if the routing algorithm and/or the upper-layer protocol (e.g., cache coherence)
place specific restrictions on the use of VCs, then arbitrary in-flight VC changes are
prohibited, because they may lead to deadlocks. In the presence of VC restrictions,
the allocator/arbiter should enforce all rules during VC allocation to ensure deadlock
freedom. The VC selection policies used inside the routers will be thoroughly
discussed in the next chapter.

Figure 6.6 depicts a running example of a VC-based pipeline using a 2-slot EB
per VC. The two active VCs each receive a throughput of 50 % and each VC uses
only one buffer out of the two available per VC. The second buffer is only used
when a VC stalls. This uniform utilization of the channel among different VCs
leads to high buffer underutilization. The buffer underutilization gets worse when
the number of VCs increases. In the case of V active VCs, although the physical
channel will be fully utilized, each VC will receive a throughput of 1=V and use
only one of the two available buffer slots since it is accessed once every V cycles.
Only under extreme congestion will one see the majority of the second buffers
of each VC occupied. However, even under this condition, a single active VC is
allowed to stop and resume transmission at a full rate independently from the rest
VCs. This feature is indeed useful in the case of traffic originating only from a
single VC, where any extra cycles spent per link will severely increase the overall
latency of the packet. However, in the case of multiple active VCs, whereby each
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one receives only a portion of the overall throughput (1=M in the case of M active
VCs), allocating more than 1 buffer slot per VC is an overkill.

Larger buffers per VC are only needed for covering the increased round-trip time
of the flow control mechanism as it will be described in the second part of this
chapter or to absorb bursty traffic that rapidly fills up the buffers of the network
in a specific direction. Still in these cases, only a subset of the total VCs will be
active and the rest will stay idle leaving their buffers empty most of the time, thus
increasing the buffer underutilization.

6.3 Buffer Sharing

Naturally, the answer to the underutilization of the VC buffers is buffer sharing;
reuse some of the available buffer resources along many VCs (Tamir and Frazier
1992; Nicopoulos et al. 2006; Tran and Baas 2011). From a functional perspective,
all variants of shared buffer architectures exhibit the same overall behavior: They
manage multiple variable-length queues – one per VC in our case – and allow flits
to be removed from the head or added to the tail of each queue. The individual
variants differ in how they preserve the order of flits within each queue. At first, we
will describe a generic shared buffer architecture utilizing credit-based flow control
for each VC and then derive the minimum possible VC-based buffered architecture
that employs sharing too and can work with ready/valid handshake similar to the
primitive 2-slot EBs presented for the case of single-lane traffic.

In a shared buffer configuration, illustrated in an abstract form in Fig. 6.7, each
VC owns a private space of buffers. When the private space of one VC is full the
corresponding VC can utilize more space from a shared buffer pool. The minimum
private space required is equal to 1 slot, while the shared buffer space can be larger.

When credit-based flow control is applied at the VC level the available number
of credits for one VC directly reflects the available buffer slots for that VC. So,
the maximum number of credits is fixed and equal to the buffering positions of
each VC. In a shared buffer organizations any VC can hold an arbitrary number of
buffer slots both in its private region as well as in the shared buffer space. Therefore,

Fig. 6.7 The rough
organization of a VC buffer
that employs sharing of buffer
space across different VCs.
Each VC owns a private
buffer space and all of them
share the slots provided by a
shared buffer module that is
dynamically allocated to the
requirements of each VC

Private buffers connect directly
to input when not using the shared buffer

Private
VC#0

VC#1

VC#2

Shared
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the maximum allowed value for each credit counter may change dynamically. This
feature may complicate a lot the update of the credit counters (Nicopoulos et al.
2006).

Instead, we present a different approach that keeps the depth of each credit
counter constant and simplifies a lot the handling of the credits of each VC
in a shared buffer configuration. The sender keeps one credit counter, for each
downstream VC that refers to its private buffer space and a counter for the shared
buffer that counts the available buffer slots in the shared region. A VC is eligible
to send a new flit when there is at least one free position either at the private or
the shared buffer (creditCounterŒi � > 0 or creditShared > 0). Once the flit is sent
from the i th VC, it decrements the credit counter of the i th VC. If the credit counter
of the i th VC was already equal to or smaller than zero, this means that the flit
consumed a free slot of the shared buffer and the counter of the shared buffer is also
decremented.

Since the state of each VC is kept at the sender, the receiver only needs to send
backwards a credit-update signal, including a VC ID, which indexes the VC that
has one more available credit for the next cycle. On a credit update that refers to the
j th VC, the corresponding credit counter is increased. If the credit counter is still
smaller than zero, this means that this update refers to the shared buffer. Thus, the
credit counter of the shared buffer is also increased. Please note that even if there is a
separate credit counter for the shared buffer the forward valid signals and the credit
updates refer only to the VCs of the channel and no separate flow control wiring is
needed in the channel to implement a shared buffer at the receiver.

In this case, safe operation is guaranteed even if there is only 1 empty slot per
VC. In the case of single-cycle links (Lf D 1, Lb D 1), each VC can utilize up to 2
buffer slots before it stops, and those positions are enough for enabling safe and full
throughput operation per VC. Therefore, when each VC can utilize at least 2 buffer
slots of either private or shared buffer space it does not experience any throughput
limitations. If a certain VC sees only 1 buffer slot available then inevitably it should
limit its throughput to 50 % even if it is the only active VC on the link.

The generic shared buffer architecture that includes a private buffer space per
VC and a shared buffer space across VCs can be designed in a modular and
extensible manner if we follow certain design rules (operational principles). First,
any allocation decision regarding which VC should dequeue a flit from the buffer,
is taken based only on the status of the private VC buffers; the private buffers act
as parallel FIFOs each one presenting to the allocation logic just one frontmost flit
per VC. Second, when the private buffer per VC drains one flit that empties one
position, the free slot is refilled in the same cycle, either with a flit possibly present
in the shared buffer, or directly from the input, assuming the new flit belongs to the
same VC. Whenever the private buffer per VC cannot accommodate an incoming
flit, a shared slot is allocated, where the flit is stored. As soon as the private space
becomes available again, the flit is retrieved from the shared buffer and moves to the
corresponding private buffer.

Every time a VC dequeues a flit from its private buffer, it should check the shared
buffer for another flit that belongs to the same VC. Figure 6.8 demonstrates the
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Fig. 6.8 An example of the interaction between the shared buffer (3 slots) and the private buffers
(2 slots) per VC. Every time a flit is drained from the private VC buffer, the shared buffer is checked
for another flit that belongs to the same VC. A VC uses the shared buffer only when it runs out of
private buffer space

interaction between the shared buffer and the private buffer space per VC through
a simple example. In this configuration, each VC owns a private buffer of 2 slots
and all VCs share three extra buffer slots. In cycle 0, VC A owns 2 shared slots
and dequeues a flit from its private buffer that was previously full. The empty slot
in the private buffer of VC A should be refilled by a flit from the shared buffer.
Therefore, VC A accesses the shared buffer to find the flits that match VC A and
locate the oldest (the one that came first). The refill of the private buffer of VC A is
completed in cycle 1. Then, in cycle 2, the same procedure is followed, effectively
loading the private buffer of VC A with a new flit. The private buffer of a VC does
not necessarily get new data from the shared buffer, but it can be loaded directly
from the input, as done for VC C in cycle 0.

6.3.1 The Organization and Operation of a Generic
Shared Buffer

Maintaining the flits’ order of arrival among VCs is the main concern when
designing a shared buffer. It should be as flexible as possible, without imposing
any restrictions on the expected traffic patterns. The way this is achieved leads
to different implementations. For example, the self-compacting shared buffers (Ni
et al. 1998; Park et al. 1994) require the flits of a single VC to be stored in
contiguous buffer positions. To enable this continuity in the storage of flits of each
VC, every time a flit enters or leaves the queue of a certain VC the data of all
queues should be shifter either to make room for the incoming flit or to close the
gap left by the outgoing flit. To avoid shifting that may lead to increased power
consumption, the shared buffer can employ pointers that allow locating flits by
reference, although they may be stored in practically random addresses (Tamir and
Frazier 1992; Katevenis et al. 1998).

An example of such an approach is presented in Fig. 6.9. Apart from the
main buffer space used to store flits (Buffer Memory), the shared buffer uses a
list of single-bit elements which tells whether an address actually contains data
(Availability List) and a Linked List, used to track flits’ order of arrival. If a flit
for VC k is stored in address a of the buffer memory, then the next flit for VC k

is stored in the address pointed by element a of the Linked List (a NULL pointer
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Fig. 6.9 Abstract organization of a shared buffer using pointer logic. pH and pT represent the
head and tail pointer of each queue

fs = head(avail) // Get the first free slot
buffer[fs] <- flit_new // Store the new flit
l_list[pT[k]] <- fs // Link previous tail of VC k to new flit
pT[k] <- fs // Update tail pointer of VC k
l_list[fs] <- NULL // Make new flit the last flit of the queue
avail[fs] <- 0 // Mark the slot as occupied

Enqueue NewFlit at VC #k

Dequeue OutputFlit from VC #k
flit_out <- buffer[pH[k]] // Read flit from the head address
avail[pH[k]] <- 1 // Mark the buffer slot as available
pH[k] <- l_list[pH[k]] // Set the head pointer to point to the

// address of the next flit

Fig. 6.10 Operations involved when enqueuing or dequeuing a flit from the shared buffer

means that no other flit exists for VC k). Combined with its head and tail pointers
(pH and pT ), a VC can always find its flits in the shared buffer, in the order they
initially arrived.

The necessary operations executed in case of enqueue or dequeue are shown
through the abstract description of Fig. 6.10. Assume that a flit arrives for VC A at
the input of the shared buffer, which is currently in the state of Fig. 6.9. A search
is initiated and the first free slot is located using a fixed priority arbiter (in that
case, fs D 2). Then, in parallel, (a) the actual flit data are stored in address 2 of the
Buffer Memory, (b) the fs value is stored in slot 5 of the linked list, as pointed by
the tail pointer of VC A and (c) VC A’s tail pointer is replaced by the fs value. In
the opposite case, where a dequeue is requested by VC A, the shared buffer’s output
is driven by the data stored in the address pointed by head pointer (pH D 3 for VC
A). Then, the element 3 of the linked list is accessed to retrieve the address of the
next flit, and it is used to replace VC A’s head pointer, while the value of element 3
is reset to NULL. Finally, address 3 is marked as available in the availability list.

Notice that the use of a tail pointer is not mandatory. It would have been possible
to locate it implicitly, after following the path of the linked list’s pointers, starting
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from the head position until a NULL pointer is found. However, this would add
significant latency, that is not needed when being able access the last flit position
directly, with almost no overhead.

6.3.2 Primitive Shared Buffer for VCs: ElastiStore

Buffer sharing can be pushed to the limit and design low-cost VC buffers that offer
the minimum buffering possible and still allow to a single VC to enjoy 100 %
throughput of data transfer. The buffering architecture, called ElastiStore, utilizes
only V C 1 buffers for V VCs (Seitanidis et al. 2014a). Each VC owns a single
buffer, which is enough in the case of uniform utilization, where each VC receives
a throughput of 1=M; with 2 � M � V . Furthermore, when a single VC uses
the channel without any other VC being active, i.e., M D 1, it receives 100 %
throughput, and, in the case of a stall, it may use the additional buffer available in
ElastiStore. This additional buffer is shared dynamically by all VCs, although only
one VC can have it in each clock cycle. However, when all VCs, except one, are
blocked, and the shared buffer is utilized by a blocked VC, then the only active VC
will get 50 % of the throughput, since it effectively sees only one buffer available
per channel. Note that the baseline VC-based buffer of Fig. 6.5, which allocates 2
buffers to each VC would allow this active VC to enjoy full channel utilization.

Figure 6.11 illustrates an example of flit flow between two ElastiStores that each
one supports 2 VCs. In the first cycles, each VC receives 50 % of the throughput per
channel (M D 2), and, at each step, they utilize only one buffer slot. In those cycles,
the shared registers of the two ElastiStores are not utilized. The shared buffers are
used between cycles 4 and 7 to accommodate the stalled words of VC B. In those
cycles, VC A – which is not blocked – continues to deliver its words to the output
of the channel.
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Fig. 6.11 An example of the of flow of flits on a channel that supports 2 VCs and utilizes
ElastiStores at both ends of the link
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Fig. 6.12 The organization of an ElastiStore primitive for 3 VCs. ElastiStore consists of just a
single register per VC (main registers) along with a shared register that is dynamically shared by
all VCs

ElastiStore saves many buffer slots per VC buffer, as compared to the baseline
VC-based EB of Fig. 6.5, and limits throughput only under heavy congestion that
blocks all the VCs except one. In the case of light traffic, a single active VC receives
100 % throughput without any limitation.

ElastiStore can be designed using the datapath shown in Fig. 6.12, which consists
of a single register per VC (main registers) along with a shared register that is
dynamically shared by all VCs. The select signals of the bypass multiplexers, the
load enable signals of the registers, as well as the interface ready/valid signals are
all connected to ElastiStore control.

When a new flit that belongs to the i th VC arrives at the input of ElastiStore, it
may be placed either in the main register of the corresponding VC, or in the shared
register. If the main register of the i th VC is empty, or becomes empty in the same
cycle, the flit will occupy this position. If the main register is full, the incoming flit
will move to the shared buffer. Concurrently, once the shared buffer is utilized, all
the VCs that have their main register full will stop being ready to accept new data,
while those with an empty main register remain un-affected. In ElastiStore, any VC
is ready to accept a new flit if at least one of two registers is empty: either the main
register corresponding to said VC, or the shared one.

ElastiStore dequeues data only from the main registers. The shared register acts
only as an auxiliary storage and does not participate in any arbitration that selects
which VC should be dequeued. When the main register of a VC dequeues a new flit
and the shared buffer is occupied by the same VC, the main register of this VC is
refilled by the data stored in the shared buffer in the same cycle. The shared buffer
cannot receive a new word in the same cycle, since its readiness – which releases
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all VCs that have their main register full – will appear on the upstream channel
in the next clock cycle. The automatic data movement from the shared to main
buffer avoids any bubbles in the flow of flits of the same VC and achieves maximum
throughput.

ElastiStore should be considered as the equivalent of the primitive the 2-slot
EB used in the single-lane case where a main and an auxiliary HBEB are used for
allowing full transmission throughput. It allows the implementation of VC-based
flow control using close to the absolute minimum of one buffer slot per VC, without
sacrificing performance and without introducing any dependencies between VCs,
thus ensuring deadlock-free operation.

6.4 VC Flow Control on Pipelined Links

When the delay of the link exceeds the preferred clock cycle, one needs to segment
the link into smaller parts by inserting an appropriate number of pipeline stages. In
the case of single-lane channels, the role of the pipeline stages is covered by EBs,
which isolate the timing paths (all output signals – data, valid, and ready – are first
registered before being propagated in the forward or in the backward direction),
while still maintaining link-level flow control, as shown in Fig. 6.13a, and discussed
in Sect. 2.5. In the case of multi-lane channels that support VCs, we can achieve the
same result by replacing the EBs with the VC buffers of Fig. 6.5 or with ElastiStores
(see Fig. 6.13b). Although this approach works correctly and allows for distributed
buffer placement, while still supporting VC-based flow control, it is not easily
handled in complex SoCs, since the addition of many registers (at least one for each
VC) in arbitrary positions, may create layout and physical integration problems.

Using VC buffers at the ends of the link and simple EBs on the link introduces
dependencies across VCs, since the flow control information per VC needs to be

Fig. 6.13 Pipelined links
with (a) EBs that support a
single-lane operation and
with (b) EBs for a link that
supports multiple VCs. The
VC-based buffers distributed
on the link can be either
ElastiStores or baseline
buffers that use a separate
2-slot EB per VC
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serialized under a common ready/valid handshake; if one VC stops being ready,
all the words on the link should stop, irrespective of the VC they belong to. Such
dependencies ruin the isolation and deadlock-freedom properties of the VCs and
require ad-hoc modifications to the flow control mechanism.

6.4.1 Pipelined Links with VCs Using Ready/Valid Flow
Control

In the case of pipelined channels that employ ready/valid flow control for each
VC, we can rely on simple registers for pipelining the data and the ready/valid
handshakes signals on the link, as shown in Fig. 6.14. In this case, the flits cannot
stop in the middle of the link, since the pipeline registers do not employ any flow
control. Many words may be in-flight, since it takes Lf cycles for the signals
to propagate in the forward direction and Lb cycles in the backward direction.
Therefore, the buffers at the receiver need to be sized appropriately to guarantee
lossless and full throughput operation. In the case of pipelined links, as also done in
the single-lane channels, any VC declares that it holds valid data after checking the
readiness of the corresponding downstream buffer, else multiple copies of the same
valid data will appear at the receiver’s VC buffer.

First of all, assume that only one VC, i.e., the i th one, is active and the remaining
VCs do not send or receive any data. When the buffer of the i th VC is empty, it
asserts the ready(i ) signal. The sender will observe that ready(i ) is asserted after Lb

cycles and immediately starts to send new data to that VC. The first flit will arrive
at the receiver after Lf C Lb cycles. This is the first time that the receiver can react
by possibly de-asserting the ready(i ) signal. If this is done, i.e., ready(i ) = 0, then
under the worst-case assumption, the receiver should be able to accept the Lf � 1

flits that are already on the link, plus the Lb flits that may arrive in the next cycles
(the sender will be notified to stop with a delay of Lb cycles). Thus, when the i th
VC stalls, it should have at least Lf CLb empty buffers to ensure lossless operation.
Actually, the minimum number of buffers for the i th VC reduces to Lf C Lb � 1,
if we assume that the sender stops transmission in the same cycle it observes that
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receiver
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sender
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...

control

Fig. 6.14 Abstract model of a pipelined link with multiple VCs and independent ready/valid
handshake signals per VC
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ready.i/ D 0. Thus, a channel with V VCs and a round-trip time of Lf C Lb needs
at least V.Lf C Lb � 1/ slots. When many VCs are active on the channel, their flits
would be interleaved and the probability that all Lf C Lb � 1 flits belong to the
same VC is small. However, the worst-case condition calls for providing as much
buffer space to each VC as needed to prevent the dropping of any flit, independent
of the traffic conditions on the remaining VCs.

Unfortunately, giving the minimum number of buffers to each VC has some
throughput limitations. Assume that the i th VC has occupied all its buffer slots at the
receiver and starts draining the stored flits downstream at a rate of one flit per cycle.
After Lf C Lb � 1 cycles, the buffer will be empty (no more flits to drain) and the
ready(i ) signal will be asserted, causing the fist new flit to arrive Lf CLb �1 cycles
later (the ready(i ) signal is asserted in the same cycle that the last flit is drained).
Therefore, in a time frame of 2.Lf C Lb � 1/ cycles, the receiver was able to drain
only Lf C Lb � 1 flits, which translates to 50 % throughput. Thus, a single active
VC can enjoy 100 % throughput when it has 2.Lf C Lb � 1/ buffers and is ready
when the number of empty slots is at least Lf C Lb � 1. The baseline VC-based
EB of Fig. 6.5 employed in single-cycle links (Lf D Lb D 1) is a sub-case of the
general pipelined link and achieves 100 % throughput of lossless operation using 2
buffers per VC.

Buffer Sharing on Pipelined Links

In the case of pipelined links the required buffer space per VC grows fast with
the increasing forward and backward latency of the flow control signals. Buffer
sharing should be employed in this case too in order to minimize the buffering
requirements. In the case of single-cycle links the private buffer space of each VC
and the shared buffer space across VCs can drop down to one slot of private space
and one shared buffer slot as shown by the primitive ElastiStore modules. In the
case of large latencies different configurations should be followed.

In the general case of multi-cycle links, instead of having 2.Lf C Lb � 1/ buffer
slots for each VC, we dedicate Lf C Lb � 1 slots private to each VC needed for
safe operation and Lf CLb �1 more, which can be dynamically shared by all VCs.
In this way, we remove Lf C Lb � 1 of private buffer slots per VC and keep the
extra Lf CLb �1 buffers needed only once in a dynamically shared manner. In this
configuration, any VC is ready, as long as there are Lf C Lb � 1 empty slots either
in its private buffer, or accounting for the free space in the shared buffer as well.
Therefore, a single active VC can enjoy 100 % throughput, while, in the case where
the shared buffer is full, every active VC cannot get more than 50 % of throughput
(it can receive/send Lf C Lb � 1 flits at most every 2.Lf C Lb � 1/ cycles). Keep
in mind that when many VCs are active, the throughput per VC is much lower
than 50 %. Under high utilization, the channel is already shared by many VCs, and
achieving high-throughput per independent VC does not give much benefit, unless
it is the only active VC.
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If we try to minimize further the overall buffer space it means that we need to
minimize private buffering too; the shared buffer remains the same holding Lf C
Lb �1 flits. If the private buffer space per VC drops below Lf CLb �1 slots, say k, it
means that safety per VC cannot be guaranteed by the private buffer only. The Lf C
Lb � 1 slots needed per VC for safety should be covered by using both the k private
buffers of each VC and some positions of the shared buffer. This configuration, and
using an independent ready/valid handshake for each VC, may create dependencies
across VCs that can possibly lead to a deadlock. Assume, for example, that the i th
VC uses its all of its private buffer, e.g., k slots with k < Lf C Lb � 1 and the
rest needed to cover Lf C Lb � 1 buffers in total from the shared buffer; it leaves
less than Lf C Lb � 1 free slots in the shared buffer. Then, every other VC must
de-assert its ready signal, even if its private buffer is empty, since the available free
slots for each VC are less than Lf C Lb � 1, which are needed to guarantee safe
operation per VC. Under this scenario, the traffic on one VC is allowed to block
the traffic on another VC, which removes the needed isolation property across VCs.
Such dependencies are removed if the shared buffer has more buffers to share across
VCs and each VC limits the maximum number of slots it can use from the shared
buffer (Becker 2012a).

6.4.2 Pipelined Links with VCs Using Credit-Based
Flow Control

Using credits, safe operation is guaranteed even if there is only 1 empty slot per VC
of private space, but with very limited throughput due to the increased round-trip
time; no flit can be in flight if it has not consumed a credit beforehand thus there is
no minimum requirement for safe transmission. With credits, once a credit update
is sent backwards for a VC it means that a new flit will arrive for this VC after
Lf C Lb � 1 cycles. Therefore, offering to a single VC Lf C Lb � 1 buffers, means
that at the time the last flit is drained from the VC the first new one will arrive thus
leaving no gaps in the transmission and offering full throughput. A single active
VC can utilize both its private space and all the positions of the shared buffer and
achieve 100 % throughput, by effectively allowing this VC to use Lf C Lb buffers
in total, as needed by credit-based flow control.

The Lf C Lb buffers needed for one VC to achieve 100 % throughput in a
pipelined link with credit-based flow control can be achieved in many configurations
between the private and the shared buffer space. For example, the VC buffer can
allocate 1 buffer of private space per VC and have a shared buffer that can hold
Lf C Lb � 1 flits. Equivalently, in another organization, each VC can have a 2-slots
of private buffering and the shared buffer can be sized to host a total of Lf CLb �2

flits.
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6.5 Take-Away Points

Virtual channels is analogous to adding lanes in a street network although imple-
mented virtually and allowing flits that belong to different lanes to appear on the
physical link in a time-multiplexed manner. The existence of multiple VCs requires
the enhancement of the flow control mechanism and the associated buffering
architectures. Sharing the buffers across different VCs, when applied with care, can
increase buffer utilization and reduce the overall cost of supporting multiple VCs.
The latency in the forward and the backward propagation of the flow control signals
increases the minimum buffering requirements for supporting full transmission
throughput and complicates buffer sharing.
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