Chapter 1
Introduction to Network-on-Chip Design

Computing technology affects every aspect of our modern society and is a
major catalyst for innovation across different sectors. Semiconductor technology
and computer architecture has provided the necessary infrastructure on top of
which every computer system has been developed offering high performance
for computationally-intensive applications and low-energy operation for less
demanding ones. Innovation in the semiconductors industry provided more
transistors for roughly constant cost per chip, while computer architecture exploited
the available transistor budget and discovered innovative techniques to scale
systems’ performance.

We have reached a point where transistor integration capacity will continue to
scale, though with limited performance and power benefit. Computer architects
reacted to this challenge with multicore architectures. The first systems devel-
oped followed an homogeneous architecture, while recent ones move gradually
to heterogeneous architectures that look like complex platform Systems-on-Chip
(SoCs) integrating in the same chip latency-optimized cores, throughput optimized
cores (like GPUs) and some specialized cores that together with the associated
memory hierarchies and memory controllers (mostly for off-chip DRAM) allows
them to cover the needs of many application domains. SoCs for mobile devices
were heterogeneous from the beginning including various specialized components
such as display controllers, camera interfaces, sensors, connectivity modules such
as Bluetooth, WiFi, FM radio, GNSS (Global Navigation Satellite System), and
multimedia subsystems. Programming such heterogeneous systems in a unified
manner is still an open challenge. Nevertheless, any revolutionary development in
heterogeneous systems programming should rely on a solid computation and com-
munication infrastructure that will aid and not limit the system-wide improvements.

Scalable interconnect architectures form the solid base on top of which
heterogeneous computing platforms and their unifying programming environments
will be developed; parallelism is all about cooperation that cannot be achieved
without the equivalent concurrency in communication. The interconnect implements

© Springer Science+Business Media New York 2015 1
G. Dimitrakopoulos et al., Microarchitecture of Network-on-Chip Routers:
A Designer’s Perspective, DOI 10.1007/978-1-4614-4301-8__1

2 1 Introduction to Network-on-Chip Design

the physical and logical medium for any kind of data transfer and its latency,
bandwidth and energy efficiency directly affects overall system performance.
Interconnect design is a multidimensional problem involving hardware and software
components such as network interfaces, routers, topologies, routing algorithms and
communication programming interfaces.

Modern heterogeneous multiprocessing systems have adopted a Network-on-
Chip (NoC) technology that brings interconnect architectures inside the chip. The
NoC paradigm tries to find a scalable solution to the tough integration challenge
of modern SoCs, by applying at the silicon chip level well established networking
principles, after suitably adapting them to the silicon chip characteristics and to
application demands (Dally and Towles 2001; Benini and Micheli 2002; Arteris
2005). While the seminal idea of applying networking technology to address
the chip-level interconnect problem has been shown to be adequate for current
systems (Lecler and Baillieu 2011), the complexity of future computing platforms
demands new architectures that go beyond physical-related requirements and
equally participate in delivering high-performance, quality of service, and dynamic
adaptivity at the minimum energy and area overhead (Bertozzi et al. 2014; Dally
et al. 2013).

The NoC is expected to undertake the expanding demands of the ever increasing
numbers of processing elements, while at the same time technological and appli-
cation constraints increase the pressure for increased performance and efficiency
with limited resources. Although NoC research has evolved significantly the last
decade, crucial questions remain un-answered that call for fresh research ideas and
innovative solutions. Before diving in the details of the router microarchitecture that
is the focus of this book, we will briefly present in this chapter the technical issues
involved in the design of a NoC as a whole and how it serves its goal for offering
efficient system-wide communication.

1.1 The Physical Medium

The available resources that the designer has at the physical level are transistors and
wires. Using them appropriately the designer can construct complex circuits that
are designed at different abstraction levels, following either custom or automated
design methodologies. Interconnect architectures should use these resources in the
most efficient manner offering a globally optimum communication medium for the
components of the system.

The wires are used as the physical medium for transferring information between
any two peers. On-chip wires are implemented in multiple metal layers that are
organized in groups (Weste and Harris 2010), as shown in Fig. 1.1. Each group
satisfies a specific purpose for the on-chip connectivity. The first metal layers are
tailored for local connectivity and are optimized for on-chip connections spanning
up to several hundreds of pwm. They offer highly dense connections that allow
thousands of bits to be transferred in close distance. Upper metal layers, are built

1.1 The Physical Medium 3

° m10
metal /7
layers m8
m7 Z/ s~ — .
\7 mSZ/ m4\9/ {v
<\/ =, m2 {v
Vs V{V m %1 a4
<\/ {t\:an{srstors

| silicon

Fig. 1.1 The transistor and the metal layers of an integrated circuit

3D Stacked Chips

__‘_‘,,,.Through-SiIicon VIAs

for 2.5D integration

Fig. 1.2 2.5D and 3D integration possibilities for large SoCs

with larger cross sections, that offer lower resistance, and allow transferring bits
in longer distance with lower delay. Due to manufacturing limitations upper metal
layers should be placed further apart and should have a larger minimum width
thus limiting the designer to use less wires per connection bus. Still, the wires that
belong to the upper metal layers can be a very useful resource since they allow
crossing several mms of on-chip distance very fast (Golander et al. 2011; Passas
et al. 2010). In every case, using wisely the density of the upper and the lower
metal layers allows for the design of high-bandwidth connections between any two
components (Ho et al. 2001).

Technology improvement provides the designer with more connectivity. For
example 2.5D integration offers additional across-chip wires with good charac-
teristics allowing fast connections within the same package using the vertical
through-silicon vias of a silicon interposer (Maxfield 2012) as depicted in Fig. 1.2.
On the other hand, 3D integration promises even more dense connectivity by
allowing vertical connections across different chips that are stacked on top of
each other offering multiple layers of transistor and metal connections. Instead
of allowing stacked chips to communicate using wired connections, short-distance
wireless connectivity can be used instead, using, either inductive, or capacitive data
transfer across chips (Take et al. 2014). Finally, instead of providing more wiring

4 1 Introduction to Network-on-Chip Design

connections as is the mainstream approach followed so far, several other research
efforts try to provide a better communication medium for the on-chip connections
utilizing on-chip optical connections (Bergman et al. 2014).

1.2 Flow Control

At the system level, using only a set of data wires in a communication channel
between two peers (a sender and a receiver module) is not enough. The receiver
should be able to distinguish the old data sent by the sender from the new data
that it sees at its input. Also, the sender should be informed if the data that has
sent has been actually accepted by the receiver or not. Therefore, some additional
form of information needs to be conveyed across the sender and the receiver
that would allow them to understand when a transaction between them has been
completed successfully. Such information is transferred both in the forward and
in the backward direction, as depicted in Fig. 1.3, and constitutes the flow-control
mechanism.

The flow control mechanism can be limited at the borders of a single wire (called
link-level flow control) or it can be expanded between any source and destination
possibly covering many links and thus called end-to-end flow control (Gerla and
Kleinrock 1980). Figure 1.3 tries to explain graphically the difference between
the local and the global flow control mechanisms. While link-level flow control
is explicitly implemented by the additional flow control wires of the link, end-
to-end flow control can be either explicitly or implicitly implemented in a NoC
environment. Explicit implementation requires several flow control wires arriving
at each node from different destinations, that each one would describe the status
of the corresponding connection. Implicit implementation means that any source or
destination node has a mechanism to understand the status of the other side using the
normal or special messages transmitted between them. Message transmission in this
case, would have used all the intermediate links between the source and destination
pair.

end-to-end data

- -~

-7 Link-Level =~
SRC Flow Control data DST
data
\ data //\{>/' ,
(>—>Q g
\ notify notlfy notn‘y

-
S~ —_——

end-to-end notification

Fig. 1.3 Link-level and end-to-end flow control

1.3 Read-Write Transactions 5

Flow-control strategies are connected in one or in another way with the avail-
ability of buffering positions either at the other end of the link or at the destination.
Therefore, the semantics of the flow-control protocol lead to various constraints
regarding the implementation of the buffering alternatives.

The messages transferred across any two peers depend on the applications
running on the system. Therefore, it is very common the granularity of the messages
that are transferred at the application level to be different from the physical wiring
resources available on the links. The selection of the channel width depends on a
mix of constraints that span from application-level requirements down to physical
chip-level integration limitations.

The messages between a source and a destination can be short and fit the
channel width or can be longer and need to be serialized to many words that
traverse the link in multiple cycles. This attribute should be also reflected to
the flow-control mechanism that decides the granularity to which it allocates the
channels and the buffers at the receive side. Coarse-grained flow control treats each
message (or packet) as an atomic entity, while fine-grained flow control mechanisms
operate at the sub-message (sub-packet) level, allowing parts of the message to be
distributed to several stages.

1.3 Read-Write Transactions

Besides simple data transfers between two IP cores on the same chip, the exchange
of information across multiple IP cores requires the implementation of multiple
interfaces between them that would allow them to communicate efficiently and
implement high-level protocol semantics. In widely accepted interfaces such as
AMBA AXI and OCP-IP, each core should implement distinct and independently
flow-controlled interfaces for writing, and reading from another IP core, including
also interfaces for transferring additional notification messages (ARM 2013; Accel-
era2013). An example of two connected cores via a single channel, where each core
implements the full set of interfaces needed by AXI is shown in Fig. 1.4.

In most cases, where such address-based load/store transactions are used for
the communication of two IPs the interfaces shown in Fig. 1.4 suffice to describe
the needed functionality. The implementation of these interfaces and respect-
ing the rules that come with the associated interconnect protocol, e.g., AXI,
constitute the transaction layer of the network-on-chip communication architecture.
Every transaction is initiated by a core (called the master for this transaction) via
the request interface (read or write) and completed via the corresponding reply
interface, while it may include an additional transaction response. Each transaction
always involves a master and a slave core (that receives and services the request),
while the two peers of a transaction are identified by the address used in the request
and reply interfaces. Transaction-layer communication is an end-to-end operation
between a master and slave and its definition, besides the support for the necessary
physical interfaces, does not constrain the designer on how to implement it.

6 1 Introduction to Network-on-Chip Design

Write Data

<— flow control ——{

Write Adr/Cmd

l<— flow control —>

/] Write Response
l<— flow control —>

IP core master interface

IP core slave interface

< Read Data
l<— flow control ——>|

Read Adr/Cmd >
<— flow control —>

Fig. 1.4 An example of master and slave interfaces as needed by the AXI transaction protocol

1.4 Transactions on the Network: The Transport Layer

Directly supporting all the interfaces of the transaction layer in all links of the
system is an overkill that requires an enormous number of wiring resources.
Following the encapsulation principle followed by any network, the required
interfaces can be substituted by transport layer interfaces that exchange packets
of information that include in their headers the information delivered by each
encapsulated interface (Mathewson 2010). Each packet can be either a read or
a write packet consisting of a header word and some payload words.The packet
header encodes the read/write address of the transaction and all other transaction
parameters and control signals included in the original transaction-layer interface.
Also, the header signal should include the necessary identification information that
would guide the packet to its appropriate destination.

1.4.1 Network Interfaces

Interfacing between the transport and the transaction layer of communication is
done at the network interfaces (NIs), located at the NoC periphery. The NI is respon-
sible for both sending packets to the network as well as receiving packets from the
network and after the appropriate manipulation to present it to the connected IP core
according to the semantics of the transaction-layer interface (Saponara et al. 2014).

1.4 Transactions on the Network: The Transport Layer 7

a b
. Control Outdoi N Control Send
Q
8 [Aduress| 8 |Oagare B hdess| g |eeess >
S| pata | £ S [pata | £ (T
2 2
= c
- NoC o Receive |NoC
° Control %‘ Control *g : i
& Address 2 - 2 | Address 2
» | Data 2 Incoming % | Data 2 replies
packets

Fig. 1.5 Connection of the network interfaces using (a) simple connections to the network or
(b) separate request and reply connections

For example as shown in Fig. 1.5a, the NI connected to a master implements a slave
interface, while a NI connected to slave acts as a master to it. At the network’s side,
the send and receive paths at the edge of the NoC and the NI act as two independent
flow-controlled channels that transfer packets according to the rules imposed by the
transport layer.

The request and the responses of the transaction layer often assume that they
are completely independent and isolated from each other thus eliminating any
logical and architectural dependencies and allowing for deadlock-free operation at
the transaction-protocol level. Enabling this separation by default at the transaction
layers means that the transport and the physical layer provide a packet isolation
mechanism. At the transport layer, this means that different packet classes such as
request and reply packets should not interfere in the network in such a way that
creates dependencies between them that may lead to a deadlock condition.

This can happen by imposing isolation either in space or in time. Isolation in
space means that each packet class uses completely separated physical resources
(separate request/reply channels, different switching mechanism), e.g., like adding
different lanes on a road network for the different types of cars we don’t want to
interfere (see Fig. 1.5b) (Wentzlaff et al. 2007; Kistler et al. 2006). On the other
hand, isolation in time means that different time slots are used by different packet
classes. This time-sharing mechanism is equivalent to emulating the different lanes
of a road network by virtual lanes, called virtual channels that each one appears at
the physical channel in a different time instance (Dally 1992).

Any isolation mechanism implemented either in space or in time can be also
used for providing deadlock-free routing for the packets travelling in the network.
A routing deadlock can happen when a set of packets request access to already
allocated channels and the chain of dependencies evolve in a cyclic manner that
blocks any packet from moving forward (Duato et al. 1997).

8 1 Introduction to Network-on-Chip Design
1.4.2 The Network: The Physical Layer

The packets generated by the NIs reach their destination via a network of routers and
links that are independently flow-controlled and form an arbitrary topology (Balfour
and Dally 2006; Kim et al. 2007). Each router, in parallel to the network links, can
connect to one or multiple NIs thus allowing to some of the cores of the system to
communicate locally without their data to enter the network (Kumar et al. 2009).

At the network, the main issues that need to be resolved is handling connectivity
and contention. Connectivity means that any two IP cores connected to the network
via their NIs should be able to exchange information irrespective of their physical
placement on the chip. Contention on the other hand is the result of offering
connectivity via shared channels. Handling contention at the physical layer requires
arbitration, multiplexing and buffering. In the example shown in Fig. 1.6, many
IP cores are eligible to access the memory controller (RAM). However, in each
clock cycle only one of them will actually transfer its data to it. The selection of
the winning IP core is done by the arbitration logic and the movement of data is
done via the switching multiplexers that exist inside each router. The IPs that lost in
arbitration keep their data/packets in local buffers waiting to be selected in the next
arbitration rounds.

While link-level flow control enables lossless operation across a sender and a
receiver in a one-to-one connection, and arbitration and multiplexing enable sharing
a link by many peers, real networks involve more complex switching cases that
involve many to many connections. Each router should concurrently support all
input-output permutations and solve the contention to all outputs at once respecting
also the flow-control policy of the output links. Establishing a path between any
source and destination of a complex network topology is a matter of the routing
algorithm that is either implemented completely at the NIs or by the routers in a
step-by-step and distributed manner.

Fig. 1.6 A network-on-chip consisting of routers and links that reach the system’s modules via
the network interfaces (NI)

1.5 Putting It All Together 9
1.5 Putting It All Together

Initially assume that the CPU of the example system shown in Fig. 1.7 wants to
read from an address that is stored in a memory in the other side of the chip. The
NI of the CPU packetizes the read transaction including all the necessary control
and addressing information that will allow the read request of the CPU to reach
the memory controller. The NI acting as a packet source sends the read request
packet to the first router. The router parses the header of the packet and understands
to which output it should forward the incoming packet. Assuming that no other
packet wants to leave from the same output and there is buffer space available to
the next router, the first router forwards the packet to the next router. The following
router will execute exactly the same tasks and finally the packet will reach the NI
of the memory (RAM). The NI of the RAM parses the incoming packet and presents
the read transaction to the slave memory controller. The memory (slave) produces
the requested data and tries to send it back to the master that requested them. The
NI of the RAM packetizes the reply data and using the network of routers allows
the reply packet to reach the NI of the CPU (master). The CPU gets the necessary
data in the appropriate interface of the transaction-layer protocol.

Using this network of routers multiple transactions could have completed in
parallel between different master and slave pairs. When two or more packets
want to move using the same link, the router solves the contention and serializes
appropriately the requesting packets.

As in any network, the fundamental operation of a NoC is based on protocol
layering that allows the decomposition of the network’s functionality to simpler
tasks, hides the implementation details of each layer and enables the network
resources to be shared by allowing multiple transactions to execute on the same
communication medium.

Following Fig. 1.8, each layer of the network acts as a service provider to the
higher layers while it acts as a service user of the lower layers. Each layer can
be implemented, optimized, and upgraded independently from the other layers
thus allowing for maximum flexibility at network design and SoC integration
phases. The main benefit of this layered design approach is that multiple different
implementations of a layer can exist depending on the application domain and the

Fig. 1.7 Transfer of information across the network between two system’s cores

10 1 Introduction to Network-on-Chip Design

Read/Write

Transaction I

Send a packet from/to NI

Transport
Packets/Routing

Send/Receive data from router to router

Physical
Wires/Clocks

Fig. 1.8 Layered approach in network-on-chip design

technology node used for the system. For example, a network can employ different
link widths and flow control mechanisms (Mishra et al. 2011) or even clocking at
the physical layer without affecting the operation of the transport and transaction
layers of communication.

1.6 Take-Away Points

The Network-on-chip paradigm solves the problem of on-chip communication
by applying at the silicon chip level well established networking principles,
after suitably adapting them to the silicon chip characteristics and to application
demands. Network-on-chip design evolves in a layered approach that allows the
transformation of abstract load/store transactions to packets of bits that travel in
the network following the correct path from their source to their destination. The
transformation between transactions and packets is done at the network interfaces,
while the routers provide arbitrary lossless connectivity between inputs and outputs
and allow for the implementation of arbitrary network topologies.

	1 Introduction to Network-on-Chip Design
	1.1 The Physical Medium
	1.2 Flow Control
	1.3 Read–Write Transactions
	1.4 Transactions on the Network: The Transport Layer
	1.4.1 Network Interfaces
	1.4.2 The Network: The Physical Layer

	1.5 Putting It All Together
	1.6 Take-Away Points

