
Chapter 7

An Identification Method for the Viscoelastic

Characterization of Materials

David Yang

Abstract A driving point dynamic load non destructive test can be used to determine the modal stiffness, damping and mass

of a structure. If the constitutive equations of viscoelasticity consist of a combination of time independent elastic behavior

and time dependent viscous behavior and can be modeled as a collection of spring-dashpot arrangements then the modal

stiffness can be used to determine the time independent elastic behavior and the modal damping to determine the time

dependent viscous behavior. Using a simple spring and dashpot in parallel model (Kelvin-Voigt), solutions for the material

properties of uniform beams in axial deformation, torsion and bending will be given. For non-uniform beams, the elastic

properties can be identified by the finite element method which is used to derive the equilibrium equations. The modal

stiffness is used to get the zero frequency response (equivalent static response) which determines a single point in the global

system flexibility matrix. The identification becomes a problem in minimizing the error norm of the equilibrium equations.

Several numerical examples are presented, one of varying geometry and one of varying rigidity.

Keywords Modal analysis • Structural dynamics • Nondestructive test • Viscoelasticity • Damping • System

identification • Finite element method • Parameter estimation

7.1 Introduction

There are several methods to determine the coefficient of elasticity of a pavement’s sub grade soil from dynamic load non

destructive tests. The frequency sweep method [1] uses the driving point frequency response to correlate to the static response

of a pavement from a plate load test. The frequency sweep method uses a weighted average of the driving point frequency

response to determine the equivalent static response. A previous paper by this author [2] correlated the uniform beam response

from a dynamic test to the static response from a conventional test but uses the zero frequency response of the dynamic test to

compare to the static response of a conventional test. This paper shows that after introducing viscous damping into the

equations of motion, the coefficient of elasticity remains constant but the dynamic response is dependent on two additional

constants, a stiffness proportional constant and a mass proportional constant. The stiffness proportional constant is dependent

on the material and the mass proportional constant is dependent on the system. Using the zero frequency response of

the dynamic test as the equivalent static response, static data system identification methods are now possible.

7.2 Simple Models of Viscoelastic Behavior

In the simplest models of viscoelastic behavior, elastic behavior is represented by a spring while viscous behavior is

represented by a dashpot. In the Kelvin-Voight model, the spring and dashpot are arranged in parallel so that under load, the

same strain applies to both elements and the response is
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s ¼ Eeþ c
de
dt

(7.1)

For the creep test, the strain is found by solving the ordinary differential equation with the boundary condition that the

stress is constant for positive time.

e ¼ s0
E

1� e
� t

t1

h i
(7.2)

The retardation time is

t1 ¼ c

E
(7.3)

In the Maxwell model, the spring and dashpot are arranged in series so that under load, the same stress applies to both

elements and the response is

de
dt

¼ 1

E

ds
dt

þ s
c

(7.4)

For the relaxation test, the stress is found by solving the ordinary differential equation with the boundary condition that

the strain is constant for positive time.

s ¼ Ee0e
� t

t2 (7.5)

The relaxation time is

t2 ¼ c

E
(7.6)

For the generalized Kelvin-Voight model, where multiple parallel spring and dashpot are arranged in series, the total

strain is

X
ei ¼

X s� ci ei
:

Ei
(7.7)

The stress is

s ¼ 1P
1
Ei

X 1

Ei
Eiei þ ci ei

:ð Þ
� �

(7.8)

For the creep test,

e ¼
X s0

Ei
1� e

� t
t1i

� �
(7.9)

For the generalized Maxwell model, where multiple series of spring and dashpot are arranged in parallel, the total stress is

X
si ¼

X
ci _e�

X ci
Ei

si
:

(7.10)

The strain is

_e ¼
P

ci
1
Ei
si
: þ 1

ci
si

� �
P

ci
(7.11)

For the relaxation test,
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s ¼
X

Eie0e
� t

t2i (7.12)

More details are available in reference [3].

7.3 Uncoupled Axial Equations of Motion of Beam with Viscous Damping

The equilibrium of a differential beam element in axial deformation is

Fþ Finertial dx� Fþ @F

@x
dx

� �
þ Fdamping dx� Fexternal dx ¼ 0 (7.13)

Finertial ¼ mðxÞ€u (7.14)

Fdamping ¼ cðxÞ _u Generalized damping (7.15)

Let cðxÞ ¼ t0mðxÞ Mass proportional damping (7.16)

F ¼ sAðxÞ ¼ u
0 þ t1 _u

0
h i

EAðxÞ Using Kelvin� Voight material model: (7.17)

u x; tð Þ can be transformed from the geometric displacement coordinates to the modal amplitudes or normal coordinates.

u x; tð Þ ¼
X1
i

1iðxÞUiðtÞ (7.18)

The1iðxÞ functions are orthogonal. Substituting the above equation into the force equilibrium and multiplying by1nðxÞ
and integrating over the beam length gives the uncoupled axial equations of motion of beam with viscous damping.

Mn
€Un þCn

_Un þKnUn ¼
ðL
0

1nFexternal dx (7.19)

Mn ¼
ðL
0

1 2
n mðxÞdx (7.20)

Kn ¼ �
ðL
0

1n

@

@x
1

0
nEAðxÞ

h i
dx (7.21)

Cn ¼ t0Mn þ t1Kn (7.22)

t0 and t1 should be constant for all modes if the model is valid.

More details are available in reference [4].

7.4 Uncoupled Torsional Equations of Motion of Beam with Viscous Damping

The equilibrium of a differential beam element in torsion is similar to axial deformation

T þ Tinertial dx� T þ @T

@x
dx

� �
þ Tdamping dx� Texternal dx ¼ 0 (7.23)
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Tinertial ¼ mðxÞJðxÞ€y (7.24)

Tdamping ¼ cðxÞ _y Generalized damping (7.25)

Let cðxÞ ¼ t0mðxÞJðxÞ Mass proportional damping (7.26)

T ¼ tJðxÞ ¼ y
0 þ t1 _y

0h i
GJðxÞ Using Kelvin� Voight material model: (7.27)

y x; tð Þ ¼
X

1iðxÞ�yiðtÞ Normal coordinate transformation (7.28)

Mn
€�yn þCn

_�yn þKn
�yn ¼

ðL
0

1nTexternaldx (7.29)

Mn ¼
ðL
0

1 2
n mðxÞJðxÞdx (7.30)

Kn ¼ �
ðL
0

1n

@

@x
1

0
nGJðxÞ

h i
dx (7.31)

Cn ¼ t0Mn þ t1Kn (7.32)

7.5 Uncoupled Flexural Equations of Motion of Beam with Viscous Damping

The vertical force equilibrium of a differential flexural beam element is

�V� �Vinertial dx� �Vþ @ �V

@x
dx

� �
� �Vdamping dxþ �Vexternal dx ¼ 0 (7.33)

�Vinertial ¼ mðxÞ€v (7.34)

�Vdamping ¼ cðxÞ _v Generalized damping (7.35)

Let cðxÞ ¼ t0mðxÞ Mass proportional damping (7.36)

The moment equilibrium of a differential flexural beam element is

�Mþ �V dx� �Mþ @ �M

@x
dx

� �
¼ 0 (7.37)

and ignoring rotational inertia

�V ¼ @ �M

@x
and

@ �V

@x
¼ @2 �M

@x2
(7.38)

Assuming normal strains vary linearly over the beam cross section and using the axial stress strain relationship from the

Kelvin-Voight material model the moment curvature is

�M ¼ EIðxÞ v00 þ t1 _v
00½ � (7.39)
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v x; tð Þ ¼
X

1iðxÞViðtÞ Normal coordinate transformation (7.40)

As with the axial deformation the uncoupled flexural equation of motion is

Mn
€Vn þCn

_Vn þKnVn ¼
ðL
0

1n
�Vexternaldx (7.41)

Mn ¼
ðL
0

12
nmðxÞdx (7.42)

Kn ¼
ðL
0

1n

@2

@x2
1

00
nEIðxÞ

h i
dx (7.43)

Cn ¼ t0Mn þ t1Kn (7.44)

7.6 Dynamic Modal Model

The response of a multiple degree of freedom system under forced harmonic vibration [4–6], given by the general dynamic

modal model is

xsðtÞ ¼
XN
n¼1

fsn

PN
n¼1

fdnFd

Kn � o2Mn þ ioCn
eiot (7.45)

For the special case when there is only one harmonic load at the sth degree of freedom and the mode shapes are

normalized with respect to that location of the load, then fsn ¼ 1 for n ¼ 1,2,. . .,N and Fd ¼ 0 for all d <> s and Fd ¼ F
when d ¼ s. The driving point response is

xðtÞ ¼ HðioÞFeiot (7.46)

HðioÞ ¼
XN
n¼1

HnðioÞ (7.47)

HnðioÞ ¼ 1

Kn � o2Mn þ ioCn
(7.48)

The driving point response can be written as the sum of the magnitudes and phases of the individual modes

xðtÞ ¼
XN
n¼1

HnðioÞj jeiðotþynÞ (7.49)

HnðioÞj j2 ¼ 1

Kn � o2Mnð Þ2 þ oCnð Þ2 (7.50)

yn ¼ �tan�1 oCn

Kn � o2Mn

� �
(7.51)

The driving point response can also be written directly as the total system magnitude and phase
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xðtÞ ¼ HðioÞj jFeiðotþyÞ (7.52)

HðioÞj j2 ¼ real HðioÞð Þ2 þ imaginary HðioÞð Þ2 (7.53)

y ¼ tan�1 imaginary HðioÞð Þ
real HðioÞð Þ

� �
(7.54)

real HðioÞð Þ ¼
XN
n¼1

Kn � o2Mn

Kn � o2Mnð Þ2 þ oCnð Þ2 (7.55)

imaginary HðioÞð Þ ¼ �
XN
n¼1

oCn

Kn � o2Mnð Þ2 þ oCnð Þ2 (7.56)

When the load is harmonic, the response is harmonic and the magnitude and phase of the response has contributions from

the individual modes. In theory, the magnitude of the frequency response at a frequency of zero corresponds to the static

deflection due to a unit force. The zero frequency response [7] is defined as

Hð0Þ ¼ Hð0Þj j ¼
XN
n¼1

1

Kn
(7.57)

The zero frequency response is equivalent to the static deflection (flexibility) under a unit load of N springs in series

where the spring constants, Kn, n ¼ 1,2,. . .N, are the modal spring constants. The system stiffness is simply the inverse of

the zero frequency response.

7.7 Static Response of Uniform Beam

The basic mechanical tension, compression, torsion and bending tests of uniform beams to determine the coefficient of

elasticity are based on the following equations of static equilibrium [8].

Axial Tension/Compression

w ¼ FL

EA
(7.58)

Torsion

# ¼ TL

GJ
(7.59)

3 Point Bending at mid span

w ¼ FL3

48EI
(7.60)

Poisson’s Ratio can be determined by the relation

n ¼ E

2G
� 1 (7.61)
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7.8 Dynamic Response of Uniform Beam in Bending

From the available frequency equation of a simply supported uniform beam bending at mid span [4–6]46

o2
n ¼

Kn

Mn
¼ n4p4EI

L4m
(7.62)

Mn ¼ mL

2
(7.63)

Kn ¼ n4p4EI
2L3

(7.64)

fn ¼ sin
npx
L

� �
(7.65)

Hð0Þ ¼
X1
n¼1

f2
n

Kn
(7.66)

The static response is equal to the zero frequency response of the simply supported uniform beam in bending at mid span

and can be expressed as a function of the first modal stiffness [2]

L3

48EI
¼ p4

96K1

(7.67)

The coefficient of elasticity as a function of the first modal stiffness is

E ¼ 2L3K1

p4I
(7.68)

7.9 Dynamic Response of Uniform Beam in Axial Deformation

For axial deformation the available frequency equation [4–6]46 for a beam fixed at x ¼ 0 and free at x ¼ L is

o2
n ¼

Kn

Mn
¼ p2 2n� 1ð Þ2EA

4mL2
(7.69)

Mn ¼ mL

2
(7.70)

Kn ¼ p2 2n� 1ð Þ2EA
8L

(7.71)

fn ¼ sin ð2n� 1Þ p
2

x

L

� �
(7.72)

The static response is equal to the zero frequency response of the beam and can be expressed as a function of the first

modal stiffness
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L

EA
¼ p2

8K1

(7.73)

The coefficient of elasticity as a function of the first modal stiffness is

E ¼ 8LK1

p2A
(7.74)

Dynamic Response of Uniform Beam in Torsion

For torsion the frequency equation [4–6]46 for a cylindrical beam fixed at x ¼ 0 and free at x ¼ L is similar to the axial

frequency equation

o2
n ¼

Kn

Mn
¼ p2 2n� 1ð Þ2GJ

4mL2
(7.75)

G ¼ 8LK1

p2J
(7.76)

Knowing E and G, Poisson’s ratio can be determined as

n ¼ JK1axial

2AK1torsion
� 1 (7.77)

7.10 Uniform Beam in Bending Quarter Span

When xd ¼ L
2
and xs ¼ L

4
then the zero frequency response is

X1
n¼1

sin np
4

� 	
sin np

2

� 	
 !

Kn

sin np
2

� 	2
 ! (7.78)

and includes modes where sin np
4

� 	
<>0

When xd ¼ xs ¼ L
4
then the zero frequency response is

X1
n¼1

1

Kn

sin np
4ð Þ2

� � (7.79)

So measured Kn ¼ Kn

sin np
4

� 	2 (7.80)

Kn xd ¼ xs ¼ L

4

� �
¼ Kn xd ¼ xs ¼ L

2

� 	
sin np

4

� 	2 (7.81)

From statics [8], the quarter span elastic deformation is related to the mid span elastic deformation

48 D. Yang



w xd ¼ xs ¼ L

4

� �
¼ 9

16
w xd ¼ xs ¼ L

2

� �
(7.82)

So

X1
n¼1

sin np
4

� 	2
n4

¼ p4

96

9

16
(7.83)

Reciprocity is valid because the zero frequency response when xd ¼ L
4
and xs ¼ L

2
is equal to the zero frequency response

when xd ¼ L
2
and xs ¼ L

4

The zero frequency response is

X1
n¼1

sin np
2

� 	
sin np

4

� 	
 !

Kn

sin np
4

� 	2
 ! ¼

X1
n¼1

sin np
4

� 	
sin np

2

� 	
 !

Kn

sin np
2

� 	2
 ! (7.84)

From statics [8], the quarter span deformation due to the load at the mid span is related to the mid span elastic

deformation.

w xd ¼ L

2
; xs ¼ L

4

� �
¼ 11

16
w xd ¼ xs ¼ L

2

� �
(7.85)

So

X1
n¼1

sin np
2

� 	
sin np

4

� 	
n4

¼ p4

96

11

16
(7.86)

7.11 Experimental Modal Analysis

From experimental modal analysis the frequency, damping, poles and residues can be estimated. From the damped

frequencies and residues the zero frequency response can be determined. The partial fraction form of the frequency response

function for a single force at xd and the response at xs

Hsd ioð Þ ¼
X 1sn1dn

Mn io� snð Þ io� s�n
� 	 ¼X An

io� sn
þ A�

n

io� s�n

� �
(7.87)

sn ¼ � Cn

2Mn
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kn

Mn
� Cn

2Mn

� �2s
(7.88)

An ¼ 1sn1dn

i2Mn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kn

Mn
� Cn

2Mn

� �2r (7.89)

Setting the frequency to zero, it can be shown that
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Hsdð0Þ ¼
X An

�sn
þ A�

n

�s�n

� �
¼
X1sn1dn

Kn
(7.90)

To get the stiffness proportional constant and mass proportional constant use the following equation. Since there are

usually more modal frequencies than the two unknowns, the solution requires the pseudo inverse.

fn ¼
�realðsnÞ

on
¼ t0

2on
þ t1on

2
(7.91)

Where on ¼ snj j.

7.12 Element Stiffness Identification from Equivalent Static Test Data

The procedure for element stiffness identification follows that of [9] with a modification to use the complex variable semi-

analytical method instead of the finite difference method in approximating the derivatives of the sensitivity matrix [10].

Using the zero frequency response as the equivalent static response, the global experimental stiffness matrix can be

determined from inverting the flexibility matrix where

uðx ¼ xs ¼ xdÞ ¼
X12

n

Kn
and u x ¼ xs 6¼ xdð Þ ¼

X1sn1dn

Kn
(7.92)

Ke ¼ u�1 (7.93)

The stiffness matrix derived from the finite element method matrix must be partitioned into four sub matrices.

Fm

Fu

� �
¼ Kmm Kmu

Kum Kuu

� �
Um

Uu

� �
(7.94)

The m subscript indicates the degrees of freedom which represent the measured force, stiffness and displacement. The u
subscript indicates the unmeasured degrees of freedom. The global analytical stiffness matrix is

Ka ¼ Kmm � KmuK
�1
uu Kum (7.95)

By adjusting the experimental and analytical stiffness matrices into vectors that match the unknown parameters that are to

be identified and minimizing the error norm between the two vectors, an estimate for the parameters can be made. Since the

analytical stiffness vector of unknown parameters is non linear, a first order Taylor series expansion is used.

ka pþ Dpð Þ ffi kaðpÞ þ sðpÞDp where sðpÞ ¼ @

@p
kaðpÞ (7.96)

SðpÞ ¼ @

@p
KaðpÞ ¼ @

@p
Kmm � @

@p
Kmu

� �
K�1
uu Kum þ KmuK

�1
uu

@

@p
Kuu

� �
K�1
uu Kum � KmuK

�1
uu

@

@p
Kum

� �
(7.97)

Placing the values of SðpÞ into the vector sðpÞ.

J Dpð Þ ¼ eðDpÞ½ �T eðDpÞ½ � where eðDpÞ½ � ¼ ke � ka pþ Dpð Þ ¼ ke � kaðpÞ � sðpÞDp (7.98)
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Setting
@JðDpÞ
@p

¼ 0 the relationship sðpÞDp ¼ DkðpÞ can be derived where DkðpÞ ¼ ke � kaðpÞ: (7.99)

An iterative procedure for parameter identification can now be used.

piþ1 ¼ pi þ Dp where Dp ¼ sðpÞTsðpÞ
h i�1

sðpÞTDkðpÞ (7.100)

The partial derivatives can be solved analytically, finite differences, or by complex variable semi analytical method. The

CVSAM has several numerical advantages and a brief description follows.

A Taylor series expansion of a function in the complex plane is

f xþ iDxð Þ ¼ f ðxÞ þ iDxf
0 ðxÞ � Dx2f

00 ðxÞ
2!

� iDx3f
000 ðxÞ

3!
þ . . . (7.101)

Grouping the real and imaginary parts, the first order derivative can be obtained as

f
0 ðxÞ ¼ imagðf xþ iDxð ÞÞ

Dx
þ OðDx2Þ (7.102)

Note the calculation of the first order derivative does not involve the subtraction of two numbers and using the above

approximation avoids the subtractive cancellation errors that plague the finite difference approach.

7.13 A 2 Node Isotropic Beam Element

Considering the well known 2 node, 6 degree of freedom isotropic beam element, the analytic stiffness matrix for a

cantilever beam element is as follows, where the free end is at x ¼ 0 and the fixed end at x ¼ L and there are 2 degrees of

freedom which are considered to be measured, the axial and flexural at x ¼ 0 and where the unknown parameter is the

coefficient of elasticity.

Kmm ¼
AE
L 0

0 12EI
L3

� �
and

@Kmm

@E
¼

A
L 0

0 12I
L3

� �
(7.103)

Kum ¼ 0 6EI
L2

� �
and

@Kum

@E
¼ 0 6I

L2

� �
and Kmu ¼ KT

um and
@Kmu

@E
¼ @KT

um

@E
(7.104)

Kuu ¼ 4EI

L
and

@Kuu

@E
¼ 4I

L
and K�1

uu ¼ L

4EI
(7.105)

Using CVSAM, the first derivative approximation for this element is equal to the analytic first derivative.

@Kmm

@E
¼

imag
AðEþiDEÞ

L 0

0
12ðEþiDEÞI

L3

" #

DE
¼

A
L 0

0 12I
L3

� �
(7.106)

SðEÞ ¼
A
L 0

0 3I
L3

� �
and Ka ¼

AE
L 0

0 3EI
L3

� �
(7.107)
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After some manipulation,

Eiþ1 ¼ Ei þ
A
L kx � AEi

L

� �
þ 3I

L3
ðky � 3EiI

L3
Þ

A
L

� 	2 þ 3I
L3

� �2 (7.108)

7.14 A 2 Node Orthotropic Beam Element

Considering the 2 node, 6 degree of freedom orthotropic beam element [11], the analytic stiffness matrix for a cantilever

beam element is as follows, where the free end is at x ¼ 0 and the fixed end at x ¼ L and there are 2 degrees of freedom

which are considered to be measured, the axial and flexural at x ¼ 0 and where the unknown parameter is the fiber angle.

The stress strain relations for an orthotropic material in plane stress are as follows

@u

@x
¼ ex ¼ a11sx þ a12sy þ a16sxy (7.109)

@v

@y
¼ ey ¼ a12sx þ a22sy þ a26sxy (7.110)

@u

@y
þ @v

@x
¼ exy ¼ a16sx þ a26sy þ a66sxy (7.111)

m ¼ cosy and n ¼ siny

S11 ¼ 1

E1

and S12 ¼ � v12
E1

and S22 ¼ 1

E2

and S66 ¼ 1

G12

(7.112)

a11 ¼ S11m
4 þ 2S12 þ S66ð Þm2n2 þ S22n

4 (7.113)

a12 ¼ S12ðm4 þ n4Þ þ S11 þ S22 � S66ð Þm2n2 (7.114)

a22 ¼ S11n
4 þ 2S12 þ S66ð Þm2n2 þ S22m

4 (7.115)

a16 ¼ ð2S11 � 2S12 � S66Þnm3 � ð2S22 � 2S12 � S66Þn3m (7.116)

a26 ¼ ð2S11 � 2S12 � S66Þmn3 � ð2S22 � 2S12 � S66Þm3n (7.117)

a66 ¼ 2ð2S11 þ 2S22 � 4S12 � S66Þn2m2 � S66ðn4 þ m4Þ (7.118)

The deflection equation in the symmetry axis of the beam, y ¼ 0 is

v ¼ P

I

a11
6

x3 � 3L2xþ 2L3
� 	

and v x ¼ 0ð Þ ¼ P

I

a11L
3

3
(7.119)

When y ¼ 00; v x ¼ 0ð Þ ¼ PL3

3E1I
and when y ¼ 900; v x ¼ 0ð Þ ¼ PL3

3E2I
(7.120)

Kmm ¼
A

La11
0

0 12I
L3a11

" #
(7.121)

Kum ¼ 0 6I
L2a11

h i
and Kmu ¼ KT

um and
@Kmu

@E
¼ @KT

um

@E
(7.122)
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Kuu ¼ 4I

La11
and K�1

uu ¼ La11
4I

(7.123)

Using CVSAM requires evaluating

@a11
@y

ffi imag S11cos
4ðyþ iDyÞ þ 2S12 þ S66ð Þcos2ðyþ iDyÞsin2ðyþ iDyÞ þ S22sin

4ðyþ iDyÞ½ �
Dy

(7.124)

7.15 Summary

When the frequency equation is known, the elastic properties of uniform beams can be determined from knowledge of the

first modal stiffness. If the frequency equation is not known then the elastic properties can be determined by inverse

identification methods using finite elements with the zero frequency response as the equivalent static response. The modal

stiffness is derived from parameter estimation using experimental modal data [12]. The experimental modal data can be from

any dynamic test using a time domain or frequency domain parameter estimation technique. After introducing viscous

damping into the equations of motion, the coefficient of elasticity remains constant but the dynamic response is dependent on

two additional constants, a stiffness proportional constant and a mass proportional constant. The stiffness proportional

constant is dependent on the material and the mass proportional constant is dependent on the system. The two constants can

be estimated by the pseudo inverse of a matrix based on the modal frequency and damping.
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