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Preface

The book is composed as a combination of two intertwined areas: multimedia signal

processing and multimedia systems. Note that multimedia signal processing is

presented in a larger extent than in the standard books on fundamentals of multi-

media systems.

Besides commonly used signal processing techniques, here we also consider the

tools convenient for certain advanced applications that might inspire a reader for

further improvement of the existing multimedia algorithms.

The book is divided into nine chapters. We should emphasize that the chapters

on Mathematical Transforms Used for Multimedia Signal Processing (Chap. 1), on

Compressive Sensing (Chap. 6), on Digital Watermarking (Chap. 7), and on

Telemedicine (Chap. 8) contain a more extensive and detailed analysis than usual

in the existing literature on multimedia systems. We especially note the chapter on

Compressive Sensing and its application in multimedia is a completely new area

that provides a new insight into the existing applications.

Chapters on Digital Audio (Chap. 2), on Digital Data Storage and Compression

(Chap. 3), on Digital Image (Chap. 4), on Digital Video (Chap. 5), and on Multi-

media Communications (Chap. 9) basically follow the classical pattern of the

content in this type of literature. However, the authors have put considerable effort

to enrich this material with a lot of comprehensive information, in order to facilitate

the understanding of the presented text. These chapters also contain some new and,

in our opinion, interesting recently published results.

Each chapter ends with a section with worked out examples that may be useful

for additional mastering and clarification of the presented material and for taking

into account certain interesting applications. Beside basic examples, strictly

associated with the presented theory, the book also contains some advanced

applications that could be considered as a complement to the presented theory. A

considerable number of Matlab codes are included in the examples, so that the

reader can easily reconstruct most of the particular presented techniques.

Thus, the book basically contains a necessary material for understanding the

fundamentals of multimedia systems, and in that sense it may be used in the

undergraduate courses. On the other hand, the parts related to the multimedia signal
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processing, together with the advanced techniques included in other chapters, may

be used in the graduate courses as an appropriate literature related to the initial

research.

Since this is the first edition, the authors are aware that, nevertheless all the

efforts they have made to avoid the errors and ambiguities, they are practically

unavoidable. Therefore, we will appreciate all the comments and suggestions to

reduce these in the subsequent editions.

Finally, the authors gratefully acknowledge the useful and constructive

suggestions of our colleagues during the preparation of the manuscript. We extend

special gratitude to: Prof. Zdravko Uskoković, Prof. Ljubiša Stanković, Prof.

Moeness Amin, and Prof. Victor Sucic. Also, we are thankful to Dr. Nikola

Žarić, as well as to the Ph.D. students Branka Jokanović and Andjela Draganić.

Podgorica, Montenegro Srdjan Stanković

Podgorica, Montenegro Irena Orović

Ervin SejdićPittsburgh, PA, USA
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Introduction

Nowadays, there is an intention to merge different types of data into a single vivid

presentation. By combining text, audio, images, video, graphics, and animations we

may achieve a more comprehensive description and better insight into areas,

objects, and events. Formerly, each of the mentioned types of data were produced

and presented by using a separate device. Consequently, making an integration of

different data types was a demanding project by itself. The process of digitalization

brings new perspectives and the possibility to make a universal data representation

in binary (digital) format. Furthermore, this creates the possibility of computer-

based multimedia data processing, and now we may observe computer as a multi-

media device, which is a basis of modern multimedia systems.

Thus,Multimedia is one of the frequently used words during the last decade and
it is mainly related to the representation and processing of combined data types/

media into a single package by using the computer technologies. Nevertheless, one

should make the difference between the term multimedia that is used within certain

creative disciplines (assuming a combination of different data for the purpose of

efficient presentation) and the engineering aspect of multimedia, where the focus is

directed to optimizing the algorithms for merging, processing, and transmission of

such complex data structures.

When considering the etymology, we may say that the term multimedia is

derived from the Latin word multus meaning numerous (or several), and medium
meaning middle or center.

The fundamentals of multimedia systems imply creating, processing, compres-

sion, storing, and transmission of multimedia data, and as such the multimedia

systems are multidisciplinary (they include certain parts from different fields,

especially digital signal processing, hardware design, telecommunications, and

computer networking).

The fact that the multimedia data can be either time-dependent (audio, video,

and animations) or space-dependent (image, text, and graphics) additionally

complicates the attempts to provide unified algorithms, which would be used for

all types of multimedia signals.
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Most of the algorithms in multimedia systems have been derived from the

general signal processing algorithms. Hence, significant attention should be paid

to the signal processing theory and methods, which are the key issues in further

enhancing multimedia applications. Finally, to keep up with the modern

technologies, the multimedia systems should include advanced techniques related

to digital data protection, compressive data acquiring, signal reconstruction, etc.

Since the multimedia systems are founded on the assumption of integrating the

digital signals represented in the binary form, the process of digitalization and its

reflection on the signal quality will be briefly reviewed in the sequel.

Analog to Digital Signal Conversion

The process of converting analog to digital signals is called the digitalization. It can

be illustrated by using the following scheme:

The sampling of an analog signal is performed on the basis of the sampling

theorem, which ensures the exact signal reconstruction from its digital samples. The

Shannon-Nyquist sampling theorem defined the maximal sampling interval

(the interval between successive samples) as follows:

T � 1

2 fmax

;

where fmax represents the maximal signal frequency. According to the analog signal

nature, the discrete signal samples may have any value from the set of real numbers.

It means that, in order to represent the samples with high precision in the digital

form, a large number of bits are required. Obviously, this is difficult to realize in

practice, since limited number of bits are available for representation of signal

samples. The number of bits per sample defines the number of quantization

intervals, which further determines a set of possible values for digital samples.

Hence, if the value of the sample is between two quantization levels, it is rounded to

the closer quantization level. Therefore, the original values of samples are changed,

which is modeled as a quantization noise. The signal, represented by n bits, will

have 2n quantization levels. As illustrations, let us observe the examples of 8-bit

and 16-bit format; in the first case, the signal is represented by 256 quantization

levels, while in the second case 65,536 levels are available.

Working with digital signals brings several advantages. For instance, due to the

same digital format, different types of data can be stored in the same storage media,

transmitted using the same communication channels, can be processed and

viii Introduction



displayed by using the same devices, which is inapplicable in the case of analog

data format. Also, an important property is robustness to noise. Namely, the digital

values “0” and “1” are associated to the low (e.g., 0 V) and high voltages (e.g., 5V).

Usually, the threshold between the values 0 and 1 is set to the average between their

corresponding voltage levels. During transmission, a digital signal can be corrupted

by noise, but it does not affect the signal as long as the digital values are preserved,

i.e., as long as the level of “1” does not become the level of “0” and vice versa.

However, the certain limitations and drawbacks of digital format should be

mentioned as well, such as quantization noise and significant memory requirements,

which further requires the development of sophisticated masking models and data

compression algorithms.

In order to provide a better insight into the memory requirements of multimedia

data, we can mention that text requires 1.28 Kb per line (80 characters per line,

2 bytes per character), stereo audio signal sampled at 44,100 Hz with 16 bits per

sample requires 1.41 Mb, color image of size 1,024 � 768 requires 18.8 Mb

(24 bits per pixel are used), while video signal with TV resolution requires

248.8 Mb (resolution 720 � 576, 24 bits per pixel, 25 frames per second).
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Chapter 1

Mathematical Transforms Used

for Multimedia Signal Processing

Various mathematical transformations are used for multimedia signal processing

due to the diverse nature of these signals. Specifically, multimedia signals can be

time-dependent, i.e., the content changes over time (audio, video) or time-independent

media (text, images). In addition to the Fourier analysis, the time-frequency and

wavelet transforms are often used. In some cases, other advanced methods (e.g., the

Hermite projection method) may be of interest as well. In this chapter, we will

consider the basic principles of the commonly used signal transformations.

1.1 Fourier Transform

Fourier transform is one of the basicmathematical transformations used formultimedia

signal processing, and many other mathematical transformations are based on

the Fourier transform.

To understand Fourier transform, let us consider a simple example involving a

sinusoidal signal, f(t) ¼ cos(o1t), as shown in Fig. 1.1a.

The signal is completely defined by its frequency, initial phase, and amplitude.

These three parameters can be obtained by the Fourier transform as depicted in

Fig. 1.1b. Also, we may observe from Fig. 1.1b that a sinusoid is represented by two

peaks in the frequency domain. This occurs due to the nature of the Fourier

transform, namely, symmetrical components at negative frequencies appear for

real signals. Hence, the signal is often transformed into its analytical form before

processing.

Consider the signal in Fig. 1.2a. It is more beneficial to represent the signal in the

frequency domain, since the signal consists of two sine waves of different

frequencies and amplitudes (Fig. 1.2b).

The time domain representation can be especially difficult to interpret if the

signal is corrupted by noise (e.g., white Gaussian noise, as shown in Fig. 1.3a).

If the frequency domain representation is considered, it is easier to interpret the

S. Stanković et al., Multimedia Signals and Systems,
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Fig. 1.1 Signal representations in: (a) Time domain; (b) Frequency domain

Fig. 1.2 Representations of a multicomponent signal: (a) Time domain representation;

(b) Frequency domain representation

Fig. 1.3 Signal representation: (a) Time domain; (b) Frequency domain
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signal parameters as shown in Fig. 1.3b. Specifically, the energy of noise is

scattered across all frequencies, while the signal is concentrated at the frequencies

of the sinusoidal components.

Let us introduce the mathematical definition of the Fourier transform for a signal

f(t):

FðoÞ ¼
ð1

�1
f ðtÞe�jotdt: (1.1)

The inverse Fourier transform is used to obtain the time domain representation

of the signal:

f ðtÞ ¼ 1

2p

ð1
�1

FðoÞe jotdo: (1.2)

Next, we briefly review some of the Fourier transform properties.

Linearity: The Fourier transform of a linear combination of signals is equal to the

linear combination of their Fourier transforms:

ð1
�1

af ðtÞ þ bgðtÞð Þe�jotdt ¼ a
ð1

�1
f ðtÞe�jotdtþ b

ð1
�1

gðtÞe�jotdt

¼ aFðoÞ þ bGðoÞ:
(1.3)

In other words, FT af ðtÞ þ bgðtÞf g ¼ aFT f ðtÞf g þ bFT gðtÞf g , where FT
denotes the Fourier transform.

Time shift: Shifting the signal f(t) by t0 in the time domain results in multiplying the

Fourier transform with a phase factor:

ð1
�1

f t� t0ð Þe�jotdt ¼ e�jot0F oð Þ: (1.4)

Frequency shift: Modulating the signal with a complex exponential function shifts

the Fourier transform F(o) along the frequency axis:

ð1
�1

e jo0tf ðtÞ� �
e�jotdt ¼ F o� o0ð Þ: (1.5)

1.1 Fourier Transform 3



Convolution: The Fourier transform of convolution of two functions f(t) and g(t) is
equal to the product of the Fourier transforms of the individual signals:

FT f ðtÞ�gðtÞ
� � ¼ FT

ð1
�1

f tð Þg t� tð Þdt
8<
:

9=
; ¼ F oð ÞG oð Þ: (1.6)

On the other hand, the Fourier transform of the product of two signals equals to

convolution of their Fourier transforms:

FT f ðtÞ � gðtÞf g ¼ FðoÞ�oGðoÞ; (1.7)

where �
o denotes the convolution in frequency domain.

1.1.1 Discrete Fourier Transform

Given that discrete signals are mainly used in applications, it is necessary to

introduce the Fourier transform in its discrete form. Specifically, for a discrete

signal (Fig. 1.4) of limited duration, the discrete Fourier transform is given by:

DFTðkÞ ¼
XN�1

n¼0

f ðnÞe�j 2pN nk: (1.8)

The inverse discrete Fourier transform is defined as:

f ðnÞ ¼ 1

N

XN�1

k¼0

DFTðkÞe j2pN nk: (1.9)

Fig. 1.4 Finite duration

discrete signal
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It should be mentioned that computationally efficient algorithms have been

derived based on the Fast Fourier Transform (FFT) algorithm to obtain discrete

Fourier transform and its inverse.

To gain confidence in understanding the Fourier transform, we recommend

working with problems provided at the end of this chapter.

1.1.2 Discrete Cosine Transform

Beside the Fourier transform, in many applications with real signals the discrete

cosine transform (DCT) is used. The DCT is real-valued transform and represents

the positive part of the spectrum. It is defined as:

DCTðkÞ ¼ cðkÞ
XN�1

n¼0

f ðnÞ cos 2nþ 1ð Þkp
2N

; k ¼ 0; :::;N � 1; (1.10)

where the normalization coefficient c(k) is:

cðkÞ ¼
ffiffiffiffiffiffiffiffiffi
1=N

p
; k ¼ 0ffiffiffiffiffiffiffiffiffi

2=N
p

; k ¼ 1; . . . ;N � 1

�
:

The inverse DCT is given by:

f ðnÞ ¼
XN�1

k¼0

cðkÞDCTðkÞ cos ð2nþ 1Þkp
2N

; n ¼ 0; :::;N � 1: (1.11)

1.2 Filtering in the Frequency Domain

The frequency domain representation of signals is suitable for signal filtering,

which can be done by using low-pass, high-pass, and/or band-pass filters. The

ideal forms of these filters are defined as follows (Fig. 1.5):

Low-pass filter:

HðoÞ ¼ 1; for oj j<oL;
0; otherwise:

�
(1.12)

High-pass filter:

HðoÞ ¼ 1; for oj j>oH;
0; otherwise:

�
(1.13)
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Band-pass filter:

HðoÞ ¼ 1; for oL< oj j<oH;
0; otherwise:

�
(1.14)

Filtering in the frequency domain is simply performed by multiplying the

Fourier transform of the signal with the filter transfer function. Then, the time

domain representation of the filtered signal (g(t)) can be obtained by the inverse

Fourier transform of their product:

GðoÞ ¼ FðoÞHðoÞ;

gðtÞ ¼ 1

2p

ð1
�1

GðoÞe jotdo :
(1.15)

1.3 Time-Frequency Signal Analysis

Time-frequency analysis is used to represent signals with time-varying spectral

content, since the Fourier transform does not provide sufficient information about

these signals. Specifically, Fourier transform provides information about the fre-

quency content of the signal, but there is no information about the time instants

when spectral components appear. For example, using the Fourier transform to

analyze a speech signal, we obtain the spectral content of spoken words, but not

their timing.

Using a simple example, let us illustrate the advantages of using the time-

frequency analysis in comparison to the Fourier transform of the signal.

Fig. 1.5 (a) Low-pass filter, (b) High-pass filter, (c) Band-pass filter
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For example, Fig. 1.6 depicts that the amplitude spectra (the amplitude of the

Fourier transforms) of two different signals can be almost the same.

Hence, to obtain more information about these signals, it is necessary to use a

representation from which one can follow temporal changes of the spectrum. Such a

representation can be obtained by using the time-frequency analysis, as illustrated

in Fig. 1.7.

Time-frequency distributions also provide information about the energy distribution

around the instantaneous frequency. It is important to note that there is no single

time-frequency distribution that is optimal for all nonstationary signals. In other

words, different time-frequency distributions are used, depending on the application

and on the signal type. Themost commonly used distributions are the spectrogram and

Fig. 1.6 (a) Sum of two sinusoids with equal duration, (b) Composition of two sinusoids

appearing at different time instants, (c) Fourier transform for the first signal, (d) Fourier transform

for the second signal

Fig. 1.7 (a) The ideal time-frequency representation of the sum of sinusoids from Fig. 1.6a,

(b) The ideal time-frequency representation of the time-shifted sinusoids from Fig. 1.6b
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the Wigner distribution. The spectrogram is the squared module of the short-time

Fourier transform, while the Wigner distribution is a quadratic distribution and

exhibits significant drawbacks when applied to multicomponent signals that are

often found in practical applications.

1.4 Ideal Time-Frequency Representation

Before we start considering various time-frequency representations, let us introduce

an ideal time-frequency representation. Consider a signal defined as:

f ðtÞ ¼ Ae jfðtÞ; (1.16)

where A is the amplitude, and f(t) is the phase of the signal. Note that the first phase
derivative has the physical meaning and represents the instantaneous frequency,

i.e., o ¼ f0(t). Therefore, the ideal time-frequency representation should concen-

trate energy along the instantaneous frequency of the signal and is defined as:

ITFðt;oÞ ¼ 2pA2dðo� f0ðtÞÞ: (1.17)

1.5 Short-Time Fourier Transform

The short-time Fourier transform (STFT) of a signal f(t) is defined as:

STFTðt;oÞ ¼
ð1

�1
wðtÞf ðtþ tÞe�jotdt; (1.18)

where w(t) is a window function. It provides the time-frequency representation by

sliding the window and calculating the local spectrum for each windowed part of

the signal, as illustrated in Fig. 1.8.

The STFT is a linear transform. In other words, the STFT of a multicomponent

signal: f ðtÞ ¼ PM
m¼1

fmðtÞ , is equal to the sum of the STFTs of the individual

components:

STFTðt;oÞ ¼
XM
m¼1

STFTfmðt;oÞ: (1.19)

This is an important feature of STFT, since many practical signals are the

multicomponent ones.
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As previously mentioned, the spectrogram is the squared module of the STFT:

SPECðt;oÞ ¼ jSTFTðt;oÞj2: (1.20)

Unlike the STFT, the spectrogram is a real-value function. The main drawback

of STFT (and the spectrogram) is the fact that the time-frequency resolution

depends on the window width. Specifically, we obtain good time resolution (and

poor frequency resolution) using a narrow window. On the other hand, a wider

window enhances the frequency resolution, but decreases the time resolution.

To illustrate this trade-off between time and frequency resolutions, let us consider

the following example:

f ðtÞ ¼ d t� t1ð Þ þ d t� t2ð Þ þ e jo1t þ e jo2t: (1.21)

The ideal time-frequency representation of f(t) is illustrated in Fig. 1.9.

Using the definition of STFT, we obtain the following time-frequency

representation:

STFTðt;oÞ ¼wðt1 � tÞe�joðt1�tÞ þ wðt2 � tÞe�joðt2�tÞ

þWðo� o1Þe jo1t þWðo� o2Þe jo2t;
(1.22)

Fig. 1.8 An illustration of the STFT calculations
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where W(o) is the Fourier transform of the window function. Figure 1.10 clearly

shows the dependence of time-frequency representation on the window function.

When using the rectangular window, the product of time and frequency resolutions

for the considered example is D·d ¼ 4p, where d is the window width in the time

domain, while D is the window width in the frequency domain. Hence, increasing

the resolution in one domain decreases the resolution in other domain.

Generally, the uncertainty principle states that the product of measures of

duration in time and frequency is:

MTMW � 1

2
; (1.23)

where:

MT ¼
Ð1
�1 t2 wðtÞj j2dtÐ1
�1 wðtÞj j2dt ; Mw ¼

Ð1
�1 o2 WðoÞj j2doÐ1
�1 WðoÞj j2do :

Fig. 1.9 Ideal time-frequency representation of signal f(t)

Fig. 1.10 Illustration of the uncertainty principle
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The signal should satisfy wðtÞ ffiffi
t

p ! 0 as t ! �1 . The lowest product is

obtained for the Gaussian window:MTMW ¼ 1
2
. In addition, Fig. 1.11 demonstrates

time-frequency representations using wide and narrow windows of two multicom-

ponent signals: the first one consists of two sinusoids and a linear-frequency

modulated signal, i.e., chirp (Fig. 1.11a), while the second consists of three

sinusoids and a chirp (Fig. 1.11b). The ideal time-frequency representations are

presented as well.

Using a narrow window, we achieve good time resolution for sinusoidal signal

components, as shown in the second column of Fig. 1.11. Using a wide window,

good frequency resolution of these components is achieved, but the time resolution

is significantly decreased. Notice that the time-frequency resolution of the chirp

component is poor in both cases.

1.6 Wigner Distribution

In order to improve time-frequency representation, a number of quadratic

distributions are introduced. A common requirement is that they meet the marginal

conditions, which will be discussed in the sequel.

Given a time-frequency representation P(t,o), the signal energy within the

region t; tþ Dtð Þ; o;oþ Doð Þ½ � is equal to:

Pðt;oÞDo
2p

Dt: (1.24)

Fig. 1.11 Spectrograms of multicomponent signals: (a) Two sinusoids and chirp, (b) Three

sinusoids and chirp
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Projections of the distribution on time and frequency axes provide spectral

energy density and instantaneous power of the signal, respectively:

ð1
�1

Pðt;oÞdt ¼ FðoÞj j2;

1

2p

ð1
�1

Pðt;oÞdo ¼ f ðtÞj j2: (1.25)

These conditions are known as marginal conditions (Fig. 1.12).

The signal energy can be obtained as:

1

2p

ð1
�1

ð1
�1

Pðt;oÞdodt ¼
ð1

�1
f ðtÞj j2dt ¼ Ex: (1.26)

One of the distributions that satisfy marginal conditions is theWigner distribution,

and it originated from the quantum mechanics. The distribution is defined as:

WDðt;oÞ ¼
ð1

�1
Rðt; tÞe�jotdt ¼

ð1
�1

f tþ t
2

� 	
f � t� t

2

� 	
e�jotdt; (1.27)

where:

Rðt; tÞ ¼ f tþ t
2

� 	
f � t� t

2

� 	
;

is the local autocorrelation function. In real applications, we use a windowed

version of the Wigner distribution:

PWDðt;oÞ ¼
ð1

�1
w

t
2

� 	
w� � t

2

� 	
f tþ t

2

� 	
f � t� t

2

� 	
e�jotdt; (1.28)

Fig. 1.12 Calculation

of marginal conditions
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which is often referred as the pseudo Wigner distribution (PWD). A window

function does not play a significant role for PWD as for the STFT (or spectrogram).

For example, it is possible to use a wider window and to keep good time resolution.

The Wigner distribution is a real-valued function and satisfies the marginal

conditions, which makes it suitable for a wide range of applications. Let us consider

the Wigner distribution of delta pulse, a sinusoidal signal, and a linear frequency

modulated signal. For the delta pulse:

f ðtÞ ¼ Ad t� t1ð Þ; (1.29)

the Wigner distribution equals to:

WD t;oð Þ ¼ 2pA2d t� t1ð Þ: (1.30)

For sinusoidal and chirp signals, we may still obtain the ideal representation by

using the Wigner distribution:

f ðtÞ ¼ Ae jo1t f ðtÞ ¼ Ae jat2=2

WDðt;oÞ ¼ 2pA2dðo� o1Þ WDðt;oÞ ¼ 2pA2dðo� atÞ

However, for a multicomponent signal f ðtÞ ¼ PM
m¼1

fmðtÞ, theWigner distribution is:

WDðt;oÞ ¼
XM
m¼1

WDfm fmðt;oÞ þ
XM
m¼1

XM
n¼1

m 6¼ n

WDfm fnðt;oÞ: (1.31)

Therefore, the Wigner distribution of the multicomponent signal equals to the

sum of Wigner distributions of all signal components (auto-terms) and the Wigner

distributions of quadratic terms obtained by multiplication of different signal

components (fm and fn, m 6¼ n) called cross-terms. Hence, the Wigner distribution

can be useless for time-frequency representations of multicomponent signals, since

it can yield the time-frequency components that do not exist in the analyzed signal.

For example, the Wigner distribution of a multicomponent signal, whose spectro-

gram is shown in Fig. 1.11a, is shown in Fig. 1.13a. The presence of strong cross-

terms is obvious and they diminish the accuracy of the representation. However,

when the cross-terms are removed, a concentrated representation is obtained as

shown in Fig. 1.13b.

In order to reduce or completely eliminate the cross-terms, many distributions

have been defined over the years. One such distribution is the S-method (SM),

1.6 Wigner Distribution 13



which combines good properties of the spectrogram and of the Wigner distribution.

The SM is defined as:

SMðt;oÞ ¼ 1

p

ð1
�1

PðyÞSTFTðt;oþ yÞSTFT�ðt;o� yÞdy; (1.32)

and its discrete version is:

SMðn; kÞ ¼
XLd
i¼�Ld

PðiÞSTFTðn; k þ iÞSTFT�ðn; k � iÞ

¼ STFTðn; kÞj j2 þ 2 � Re
XLd
i¼1

STFTðn; k þ iÞSTFT�ðn; k � iÞ
( )

;

(1.33)

where the parameter Ld determines the frequency window length. In order to avoid

the presence of cross-terms, the value of Ld should be less than half of the distance

between two auto-terms. Note that the SM is suitable for hardware implementation.

Let us consider the previous example and its time-frequency representations

obtained with the SM for various values of Ld (Fig. 1.14).
In many real applications, Ld ¼ 3 provides satisfactory results, since it

eliminates the cross-terms and provides good concentration of the auto-terms,

which almost equals the concentration achieved by the Wigner distribution. In

addition, we consider the time-frequency representation of a speech signal obtained

with the spectrogram and the SM, as shown in Fig. 1.15.

The time-frequency representation obtained with SM provides better temporal

and frequency resolution, which allows us to obtain more accurate description and

analysis of speech components.

Fig. 1.13 (a) Wigner distribution of a multicomponent signal, (b) Auto-terms of the Wigner

distribution
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Fig. 1.14 Time-frequency representations of a multicomponent signal obtained by using SM for

different values of window width (defined as 2Ld + 1)
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1.7 Time-Varying Filtering

For nonstationary signals, the time-varying filtering provides better results com-

pared to the techniques performed in either the time of frequency domain sepa-

rately. The time-varying filtering has been defined as:

ðHxÞðtÞ ¼
ð1

�1
hðt; t� tÞxðtÞdt; (1.34)

where h(t,t) is the impulse response of the time-varying system H.
The optimal system form can be obtained by minimizing the mean squared error:

Hopt ¼ argmin
H

E


f ðtÞ � H xðtÞ½ �

2n o

; (1.35)

where f(t) is the signal, while x(t) ¼ f(t) + n(t). Time-varying transfer function in

the Wigner distribution framework has been defined as the Weyl symbol mapping

of the impulse response into the time-frequency plane:

LHðt;oÞ ¼
ð1

�1
h tþ t

2
; t� t

2

� 	
e�jotdt: (1.36)

Assuming that the signal and noise are uncorrelated, the optimal filter in the

time-frequency domain is defined by:

LHðt;oÞ ¼ WDff ðt;oÞ
WDff ðt;oÞ þWDnnðt;oÞ

: (1.37)

Fig. 1.15 Spectrogram and SM of speech signal
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Here, WD represents the mean value of the Wigner distributions for different

realizations of the signal and noise. As a consequence of averaging, the cross-terms

are significantly reduced as well as the noise. However, in practice, the time-

varying filtering should be often performed on a single noisy realization. It means

that for multicomponent signals, instead of the Wigner distribution, a cross-terms

free distribution should be used (e.g., the S-method). The approximate filter, based

on the cross-terms free and single distribution realization, provides satisfying

results in many real applications.

Assuming that the Wigner distribution of the observed signal lies inside a region

R, while the noise is outside this region, the support function is defined as:

LHðt;oÞ ¼ 1; for ðt;oÞ 2 R;
0; for ðt;oÞ =2R:

�
(1.38)

By using the Parseval’s theorem, a form of time-varying filtering, appropriate for

real-time applications, is obtained:

ðHxÞðtÞ ¼
ð1

�1
h tþ t

2
; t� t

2

� 	
wðtÞxðtþ tÞdt

¼ 1

2p

ð1
�1

LHðt;oÞSTFTðt;oÞdo: (1.39)

1.8 Wavelet Transform

1.8.1 Continuous Wavelet Transform

Wavelets are mathematical functions formed by scaling and translation of basis

functions c(t) in the time domain. c(t) is also called the mother wavelet and

satisfies the following conditions:

1. The total area under the curve c(t) is equal to zero:

ð1
�1

cðtÞdt ¼ 0: (1.40)

2. The function has a finite energy, i.e., it is square-integrable:

ð1
�1

cðtÞj j2dt<1: (1.41)
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The wavelet is defined by the formula:

ca;bðtÞ ¼
1ffiffiffiffiffiffi
aj jp c

t� b

a

��
; (1.42)

where a and b are two arbitrary real numbers used as scaling and translation

parameters, respectively. The factor a�1/2 also represents a normalization factor,

which allows the energy of the wavelet function to remain independent of parame-

ter a. For the values 0 < a < 1, the basis function shrinks in time, while for a > 1,

it spreads in time.

The wavelet transform of the signal f(t) is mathematically described by the

expression:

Wða; bÞ ¼
ð1

�1
ca;bðtÞf ðtÞdt: (1.43)

W(a,b) is called the continuous wavelet transform (CWT), where a and b are

continuous variables and f(t) is a continuous function. The inverse wavelet trans-

form is obtained as:

f ðtÞ ¼ 1

C

ð1
�1

ð1
�1

ca;bðtÞWða; bÞdadb; (1.44)

where:

C ¼
ð1

�1

CðoÞj j2
o

do; (1.45)

andC(o) is the Fourier transform ofc(t). The inverse continuous wavelet transform
exists if the parameter C is positive and finite.

1.8.2 Wavelet Transform with Discrete Wavelet Functions

In practical applications, the parameters a and b are discretized (i.e., scaling and

translation are performed in discrete steps). For discretization of parameter a, we
choose powers of fixed dilation parameter a0 > 1:

a ¼ am0 ; where m 2 Z
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while for b, we use:

b ¼ nb0a
m
0 ; n 2 Z; b0>0:

By using the discrete parameters a and b, we obtain the discretized family of

wavelets:

cm;nðtÞ ¼ a0
�m=2c a�m

0 t� nb0
� �

: (1.46)

The corresponding wavelet transform is then given by:

Wd
m;n ¼ a0

�m=2

ð1
�1

f ðtÞc a�m
0 t� nb0

� �
dt: (1.47)

If a0 ¼ 2 and b0 ¼ 1 are used, we achieve the dyadic sampling. The

corresponding signal decomposition is called the dyadic decomposition. In such a

case, the discrete wavelet functions with the given parameters form a set of

orthonormal basis functions:

cm;nðtÞ ¼ 2�m=2c 2�mt� nð Þ: (1.48)

Therefore, the dyadic wavelet transform is calculated as:

Wd
m;n ¼ 2�m=2

ð1
�1

f ðtÞc 2�mt� nð Þdt: (1.49)

1.8.3 Wavelet Families

Wavelets are widely applied in image processing, biomedical signal processing,

audio signal processing, just to name a few. Let us mention some of the most

commonly used wavelets:

• Haar wavelet is the oldest and the simplest wavelet.

• Daubechies wavelets represent a set of orthonormal wavelets of limited duration.

For example, Daubechies D4 wavelet has four coefficients; D8 has eight

coefficients, and so on. Note that the Haar wavelet is actually the Daubechies

wavelet of the first order.

• Biorthogonal wavelets are widely used in image compression. For example,

JPEG2000 compression algorithm is based on biorthogonal Le Gall (5,3) and

Cohen-Daubechies-Feauveau (CDF) (9,7) wavelets.
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• Mexican Hat wavelet is a wavelet function that equals to the second derivative of

the Gaussian function.

• Symlets are symmetric wavelets, created as a modification of the Daubechies

wavelet.

• Morlet wavelet is based on a modulated Gaussian function.

1.8.4 Haar Wavelet

The Haar wavelet function is defined as:

cðtÞ ¼ 1; 0 � t< 0:5
�1; 0:5 � t< 1:

�
(1.50)

Let us consider its scaled and shifted version, in the form:

cj;kðtÞ ¼ 2
j
2cð2jt� kÞ;

j ¼ 0;�1;�2; :::; k ¼ 0;�1; :::; 2j � 1
(1.51)

where the scaling parameter is a ¼ 2�j, while the translation parameter is b ¼ 2�jk.
The parameter j represents the scale. Greater j values shrink the basis function in

time. In addition, for each scale, the basis function translates in time by k, as
depicted in Fig. 1.16.

Note that the Haar wavelets are orthogonal functions:

<cj;k;cj0;k0> ¼
ð
cj;kðtÞcj0;k0 ðtÞdt ¼ 1; for j ¼ j0; k ¼ k0

0; otherwise:

�
(1.52)

The Haar wavelets can be used to represent the function f(t) as follows:

f ðtÞ ¼
X
j;k

<f ;cj;k>cj;kðtÞ; (1.53)

where dj;k ¼ <f ;cj;k> denotes the Haar wavelet coefficients. In order to use the

discrete values of f, the samples on the scale j can be taken as the mean values on

the interval of length 2�j, and we have that:

sj;k ¼ 2j=2
ð2�j

0

f tþ 2�jk
� �

dt ¼ < f ; ’j;k>: (1.54)
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Therefore, the 2j/2sj, k is the mean value of f within the kth time interval

[2�jk, 2�j(k + 1)]. The function ’ in the previous relation is the basic scaling

function:

’ðtÞ ¼ 1; 0 � t<1

0, otherwise:

(
(1.55)

while the’j;kðtÞ ¼ 2
j
2’ð2jt� kÞ. Consider now the difference between two adjacent

samples:

sj;2k � sj;2kþ1 ¼
ð
f ðtÞ2j=2 ’ 2jt� 2k

� �� ’ 2jt� 2k þ 1ð Þ� �� �
dt: (1.56)

The difference between the scaling functions is:

’ 2jt� 2k
� �� ’ 2jt� 2k þ 1ð Þ� � ¼ 1� 0 ¼ 1; 2jt� 2kð Þ 2 ð0; 1�

0� 1 ¼ �1; 2jt� 2k þ 1ð Þð Þ 2 ð0; 1�

�
¼

¼ 1; t 2 2k
2j
; 2kþ1

2j


�
�1; t 2 2kþ1

2j
; 2kþ2

2j


�
(

¼ 1; t 2 2�ðj�1Þk; 2kþ1
2j


�
�1; t 2 2kþ1

2j
; 2�ðj�1Þðk þ 1Þ��

(

Therefore, we have:

’ 2jt� 2k
� �� ’ 2jt� ð2k þ 1Þ� � ¼ c 2j�1t� k

� �
; (1.57)

and the difference between the mean values can be expressed as:

sj;2k � sj;2kþ1 ¼
ð
f ðtÞ2j=2c 2j�1t� 2k

� �
dt

¼
ffiffiffi
2

p ð
f ðtÞ 2ðj�1Þ=2c 2j�1t� 2k

� �h i
dt; (1.58)

Fig. 1.16 Wavelet functions
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or,

1ffiffiffi
2

p sj;2k � sj;2kþ1

� � ¼ dj�1;k: (1.59)

To simplify the calculation of the Haar wavelet transform, we use an approach

based on the calculation of mean values and their differences. In other words,

samples at a certain level of decomposition are obtained as the mean of samples

from the previous level, and the differences among samples can be interpreted as

details (wavelet coefficients).

Let us illustrate how this simplified algorithm can be used to decompose a row of

image pixels:

10; 12; 14; 16; 18; 20; 22; 24f g:

First, we find the mean value of pairs. As it is impossible to reconstruct the

original sequence from the obtained mean values, we also calculate pixel

differences representing the coefficients of details.

Clearly, the newly created pixel vector {11, 15, 19, 23, �1, �1, �1, �1} can be

used to completely reconstruct the image row. In the next level, we use four mean

values and obtain two new mean and two new detail coefficients.

The new vector has the values {13, 21, �2, �2, �1, �1, �1, �1}.

Then carry out the decomposition of the remaining two mean values, from which

we get a vector {17,�4, �2, �2, �1, �1, �1, �1}. The last step is the wavelet

transform normalization by using the parameter 2�j/2:

17ffiffiffiffiffi
20

p ;
�4ffiffiffiffiffi
20

p ;
�2ffiffiffiffiffi
21

p ;
�2ffiffiffiffiffi
21

p ;
�1ffiffiffiffiffi
22

p ;
�1ffiffiffiffiffi
22

p ;
�1ffiffiffiffiffi
22

p ;
�1ffiffiffiffiffi
22

p
� �

:

The same procedure can be applied to every image row, and thus the whole

image can be decomposed. The mean values produce a lower resolution image from

which the details are removed.
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1.8.5 Multiresolution Analysis

The previous considerations can be generalized by using the concepts of

multiresolution analysis described in the sequel.

The Hilbert space can be represented as a decomposition of approximation

spaces Vj; j 2 Z , where each approximation space represents the scaled version

of the basic space V0. Note that the approximation Vj � 1 contains more details

compared to Vj, which are modeled by the wavelet space Wj : Vj�1 ¼ Vj 	Wj

(Fig. 1.17), where 	 denotes the orthogonal summation.

Therefore, the expansion functions from a certain space can be derived using the

expansion functions from double-resolution space, which can be written in terms of

dilation equation as follows:

’ðtÞ ¼
X
k

sðkÞ
ffiffiffi
2

p
’ð2t� kÞ; (1.60)

while the wavelet equation is:

cðtÞ ¼
X
k

dðkÞ
ffiffiffi
2

p
’ð2t� kÞ: (1.61)

Starting from the coefficients s(k) (which satisfy certain conditions), we solve

the dilation equation to obtain the basis function ’j,k(t) of space Vj. Then the

coefficients d(k) should be determined (usually depending on the choice of s(k)),
and thus, the basis cj, k(t) of wavelet space Wj is determined.

Now, observe the approximation or projection of the function f(t) in the space Vj

given by:

fjðtÞ ¼
X
k

fj; ’j;k

D E
’j;k; (1.62)

Fig. 1.17 Approximation

(scaling) and wavelet spaces
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The details that remain after the approximation in Vj are modeled by:

DfjðtÞ ¼
X
k

fj;cj;k

D E
cj;k; (1.63)

such that:

fj�1ðtÞ ¼ fjðtÞ þ DfjðtÞ: (1.64)

Therefore, we may observe that fjðtÞ ! f ðtÞ for j ! 1, or in other words we

have:

f ðtÞ ¼ fJðtÞ þ
XJ
j¼�1

DfjðtÞ or f ðtÞ ¼
X�1

j¼�1
DfjðtÞ; (1.65)

where J denotes the lowest resolution scale. Thus, the Hilbert space can be observed
as a composition of approximation space VJ and the infinite set of wavelet spaces

Wj, ( j ¼ J + 1,. . ., 1).

The wavelet decomposition of a signal can be described by using a set of

coefficients, each providing the information about time and frequency localization

of the signal. However, the uncertainty principle prevents us from a precise locali-

zation in both time and frequency. For example, the Haar wavelet is well-localized in

time, but supports a wide frequency band. The Mexican wavelet is well-localized

in the frequency domain, but not in the time domain.

We can conclude that the multiresolution analysis allows the discrete wavelet

transform to decompose the signal into different subbands. The subbands at lower

frequencies have better frequency resolution and poor time resolution, while the

subbands at higher frequencies have better time resolution and poor frequency

resolution, as illustrated in Fig. 1.18.

Fig. 1.18 Time-frequency representation of wavelet
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1.8.6 Filter Bank

Using the multiresolution analysis, the signal can be decomposed into two parts:

one representing the approximation of the original signal and the other containing

information about the details. Thus, the signal can be represented by the formula:

fmðtÞ ¼
X
n

amþ1;n ’mþ1;n þ
X
n

bmþ1;n cmþ1;n; (1.66)

where am+1,n are the approximation coefficients at resolution 2m+1, while bm+1,n are
the coefficients of details. The functions jm+1,n and cm+1,n represent the scaling and

wavelet function, respectively. The recursive realization of discrete wavelet trans-

form in different levels can be written as:

am;nðf Þ ¼
X
k

h2n�kam�1;kðf Þ;

bm;nðf Þ ¼
X
k

g2n�kam�1;kðf Þ; (1.67)

where h and g are low-pass and high-pass filters, respectively (Fig. 1.19), often

referred to as analysis filters: hi ¼ 21=2
Ð
’ðx� iÞ’ð2xÞdx; gi ¼ ð�1Þih�iþ1:

Since h and g are defined from the orthonormal basis functions, they provide

exact reconstruction:

am�1;iðf Þ ¼
X
n

h2n�iam;nðf Þ þ
X
n

g2n�ibm;nðf Þ: (1.68)

Theoretically, for many orthonormal basis wavelet functions, there are large

number of filters that can be used for their implementation. In practice, FIR (finite

impulse response) filters are used to implement the wavelets efficiently.

Synthesis filters (h0 and g0) are used for the signal reconstruction. Namely, the

signal decomposition is done by using (1.67), while the reconstruction is now given

by the following expression:

am�1;iðf Þ ¼
X
n

am;nðf Þh02n�i þ
X
n

bm;nðf Þg02n�i: (1.69)

Fig. 1.19 Analysis filters
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If (h0,g0) ¼ (h,g) holds, the filters are orthogonal. Otherwise, they are

biorthogonal. Figure 1.20 illustrates the concept of filter banks. The input signal

a(0,n) is filtered in parallel by a low-pass filter h and a high-pass filter g. The signal
is downsampled after passing through the filters. Therefore, the output from the

analysis filters at the first level of decomposition is given by:

# að1; nÞð Þ ¼ . . . ; að1;�6Þ; að1;�4Þ; að1;�2Þ; að1; 0Þ; að1; 2Þ; að1; 4Þ; að1; 6Þ; . . .ð Þ

Before passing through the synthesis filters, the signal has to be upsampled:

" að1; nÞð Þ ¼ . . . ; að1;�6Þ; 0; að1;�4Þ; 0; að1;�2Þ; 0; að1; 0Þ; 0; að1; 2Þ;ð
0; að1; 4Þ; 0; að1; 6Þ; . . .Þ

1.8.7 Daubechies Orthogonal Filters

The Daubechies filter family is often used for the construction of orthogonal

discrete wavelets. Suppose that the filter bank consists of the analysis filters h and

g and the synthesis filters h’ and g’ of length N (N is even). The impulse responses

of filters are then given by:

h ¼ðhð0Þ; hð1Þ; :::; hðN � 1ÞÞ;
g ¼ðgð0Þ; gð1Þ; :::; gðN � 1ÞÞ;
h0 ¼ðh0ð0Þ; h0ð1Þ; :::; h0ðN � 1ÞÞ;
g0 ¼ðg0ð0Þ; g0ð1Þ; :::; g0ðN � 1ÞÞ:

Fig. 1.20 Wavelet decomposition and reconstruction of signals using a filter bank
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The Daubechies filters satisfy the following conditions:

1. The vector h is normalized;

2. For each integer that satisfies 1 � n<N 2= , the vector formed by the first 2n
elements of h should be orthogonal to the vector containing the last 2n elements

of the same h;
3. The filter h0 is the flipped version of h;
4. Vector g is formed based on h0 by multiplying the vector elements with �1 on

even positions;

5. Vector g0 is obtained from h by inverting the sign of the elements on odd

positions;

6. The frequency response of the filter is equal to
ffiffiffi
2

p
for o ¼ 0:

Hð0Þ ¼
ffiffiffi
2

p
:

7. The kth derivative of the filter is equal to zero for o ¼ p:

HðkÞðpÞ ¼ 0 for k ¼ 0; 1; 2; . . . ;
N

2
� 1:

Suppose that the length of the filters is N ¼ 4 . Then, by using the above

conditions we get:

Condition 1: h2ð0Þ þ h2ð1Þ þ h2ð2Þ þ h2ð3Þ ¼ 1,

Condition 2: hð0Þhð2Þ þ hð1Þhð3Þ ¼ 0,

Condition 3: h0 ¼ ðhð3Þ; hð2Þ; hð1Þ; hð0ÞÞ,
Condition 4: g ¼ ðhð3Þ;�hð2Þ; hð1Þ;�hð0ÞÞ,
Condition 5: g0 ¼ ð�hð0Þ; hð1Þ;�hð2Þ; hð3ÞÞ.
Condition 6: The filter h in the frequency domain can be written in the form of

Fourier series:

HðoÞ ¼ hð0Þ þ hð1Þe�io þ hð2Þe�2io þ hð3Þe�3io:

It is necessary to construct a filter that satisfies the condition Hð0Þ ¼ ffiffiffi
2

p
. If we

set o ¼ 0, we get: ffiffiffi
2

p
¼ hð0Þ þ hð1Þ þ hð2Þ þ hð3Þ:

Based on the condition 7, we obtain:

Hð0ÞðoÞ ¼ hð0Þ þ hð1Þe�io þ hð2Þe�2io þ hð3Þe�3io

Hð0ÞðpÞ ¼ 0

)
hð0Þ � hð1Þ þ hð2Þ � hð3Þ ¼ 0

Hð1ÞðoÞ ¼ ihð1Þe�io þ 2ihð2Þe�2io þ 3ihð3Þe�3io

Hð1ÞðpÞ

)
�hð1Þ þ 2hð2Þ � 3hð3Þ ¼ 0
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Hence, a system of equations is obtained, which can be used to calculate the

coefficients:

h2ð0Þ þ h2ð1Þ þ h2ð2Þ þ h2ð3Þ ¼ 1

hð0Þhð2Þ þ hð1Þhð3Þ ¼ 0

hð0Þ þ hð1Þ þ hð2Þ þ hð3Þ ¼ ffiffiffi
2

p
hð0Þ � hð1Þ þ hð2Þ � hð3Þ ¼ 0

�hð1Þ þ 2hð2Þ � 3hð3Þ ¼ 0

The system has two solutions. The first solution represents the coefficients of a

low-pass analysis filter, and the second solution represents the coefficients of a low-

pass synthesis filter (Table 1.1).

1.8.8 Two-Dimensional Signals

The two-dimensional discrete wavelet transform is generally used to decompose

two-dimensional signals (e.g., images). Consider the two-dimensional separable

scaling and wavelet functions. They can be represented as the product of one-

dimensional functions ’ðx; yÞ ¼ ’ðxÞ’ðyÞ and cðx; yÞ ¼ cðxÞcðyÞ , enabling

the application of the one-dimensional discrete wavelet transform separately to

the rows and columns of a two-dimensional matrix. Several different approaches

to analyze two-dimensional signals using the discrete wavelet transform are

described below.

• Standard wavelet decomposition
The first step of decomposition involves creating a low-frequency subband L1

and a high-frequency subband H1. The same procedure is then carried out over

low-frequency subband L1 by forming subbands L2 and H2. We continue this

procedure until we reach a desired number of subbands. The second step

involves the same procedure for the columns. The end result is a low-pass

coefficient in the upper left corner. The decomposition is illustrated in Fig. 1.21.

• Quincunx decomposition
This decomposition uses each low-frequency subband on the level i (Li) and

divides it into subbands Li + 1 andHi + 1 (subbands on the level i + 1). Figure 1.22

illustrates the Quincunx decomposition.

Table 1.1 Coefficients of Daubechies D4 low-pass analysis filter h

h(0) h(1) h(2) h(3)

�0.12941 0.224144 0.836516 0.482963
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• Pyramidal wavelet decomposition
The most commonly used decomposition method in practical applications is the

pyramidal decomposition as shown in Fig. 1.23. Suppose that the image

dimensions are M 
 N. Initially, the one-dimensional wavelet transform is

performed for image rows and subbands L1 andH1 are obtained. Then the wavelet

transform is performed for each column resulting in four subbands LL1, LH1,

HL1, HH1 with dimensions equal to M/2 
 N/2. The LL1 subband represents a

version of the original image with lower resolution. The LL1 subband is then

Fig. 1.21 Standard wavelet decomposition

Fig. 1.22 Quincunx decomposition
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further decomposed into subbands LL2, LH2, HL2 and HH2. If further decompo-

sition is needed, it would be based on the low-pass subbands LLi.
• Uniform wavelet decomposition

This decomposition is initially performed for rows and columns, producing the

four subbands. Then, the same procedure is repeated for each subband and 16

new subbands are obtained. Figure 1.24 illustrates this process for two levels of

decomposition.

Fig. 1.23 Pyramidal wavelet decomposition

Fig. 1.24 Uniform wavelet decomposition
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1.9 Signal Decomposition Using Hermite Functions

Projecting signals using the Hermite functions is widely used in various image and

signal processing applications (e.g., image filtering, texture analysis, speaker identifica-

tion). The Hermite functions allow us to obtain good localization of the signals in both

the signal and transform domains. These functions are defined as follows (Fig. 1.25):

C0ðxÞ ¼ 1ffiffiffi
p4

p e�x2=2; C1ðxÞ ¼
ffiffiffi
2

p
xffiffiffi
p4

p e�x2=2;

CpðxÞ ¼ x

ffiffiffi
2

p

s
Cp�1ðxÞ �

ffiffiffiffiffiffiffiffiffiffiffi
p� 1

p

s
Cp�2ðxÞ; 8p � 2: (1.70)

1.9.1 One-Dimensional Signals and Hermite Functions

Assume that X is a discrete one-dimensional signal (of length M) that will be

expanded by using the Hermite functions. The first step in the Hermite projection

method is to remove the baseline, defined as:

xðiÞ ¼ Xð1Þ þ XðMÞ � Xð1Þ
M

� i; (1.71)

where i ¼ 1,. . ., M. The baseline is then subtracted from the original signal:

f ðiÞ ¼ XðiÞ � xðiÞ: (1.72)

Fig. 1.25 Illustration of the first few Hermite functions
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Then, the decomposition by using N Hermite functions is defined as follows:

f ðiÞ ¼
XN�1

p¼0

cpy pðiÞ; (1.73)

where the coefficients cp are obtained as:

cp ¼
ð1

�1
f ðiÞy pðiÞdi: (1.74)

The Gauss-Hermite quadrature technique can be used to calculate the Hermite

expansion coefficients as follows:

cp � 1

M

XM
m¼1

mpM�1 xmð Þf xmð Þ; (1.75)

where the points xm (m ¼ 1,. . .,M) are obtained as zeros of an Mth order Hermite

polynomial:HMðxÞ ¼ ð�1ÞMex2 dM e�x2
� �
dxM . The Hermite polynomials of orders from 1

to 10, as well as the corresponding zeros, are given in Table 1.2.

Table 1.2 Hermite polynomials of orders from 1 to 10 and the corresponding zeros

Hermite polynomials Zeros

H1ðxÞ ¼ 2x 0

H2ðxÞ ¼ 4x2 � 2 �0.707

H3ðxÞ ¼ 8x3 � 12x �1.2247, 0

H4ðxÞ ¼ 16x4 � 48x2 þ 12 �1.6507, �0.5246

H5ðxÞ ¼ 32x5 � 160x3 þ 120x �2.0202, �0.9586, 0

H6ðxÞ ¼ 64x6 � 480x4 þ 720x2 � 120 �2.3506, �1.3358, �0.4361

H7ðxÞ ¼ 128x7 � 1; 344x5 þ 3; 360x3 � 1; 680x �2.6520, �1.6736, �0.8163, 0

H8ðxÞ ¼ 256x8 � 3; 584x6 þ 13; 440x4 � 13; 440x2 þ 1; 680 �2.9306, �1.9817, �1.1572,

�0.3812

H9ðxÞ ¼ 512x9 � 9216x7 þ 48; 384x5 � 80; 640x3 þ 30; 240x �3.1910, �2.2666, �1.4686,

�0.7236, 0
H10ðxÞ ¼ 1; 024x10 � 23; 040x8 þ 161; 280x6�

403; 200x4 þ 302; 400x2 � 30; 240
�3.4362, �2.5327, �1.7567,

�1.0366, �0.3429
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The constants mpM�1 xmð Þcan be obtained using the Hermite functions:

mpM�1 xmð Þ ¼ cp xmð Þ
cM�1 xmð Þð Þ2 : (1.76)

Figure 1.26 depicts the original signal whose length is equal to 126 samples, and

three reconstructed signals using 126, 90, and 70 Hermite functions, respectively.

In the first case, the reconstructed signal is approximately equal to the original

signal. However, the signal can be successfully reconstructed with a smaller

number of Hermite functions (while losing some finer details). The fact that the

signal can be represented with a fewer number of Hermite coefficients makes this

method attractive for signal compression.

1.9.2 Two-Dimensional Signals and Two-Dimensional
Hermite Functions

For two-dimensional signals such as images, we use the two-dimensional Hermite

functions defined as follows:

Cklðx; yÞ ¼ ð�1Þkþlex
2=2þy2=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kþlk!l!p
p

dk e�x2
� 	
dxk

dl e�y2
� 	
dyl

: (1.77)

Some examples of two-dimensional Hermite functions are illustrated in

Fig. 1.27.

Two-dimensional functions can be evaluated as a composition of one-

dimensional Hermite functions:

Cklðx; yÞ ¼ CkðxÞClðyÞ ¼ ð�1Þkex2=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kk!

ffiffiffi
p

pp dk e�x2
� 	
dxk

ð�1Þley2=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ll!

ffiffiffi
p

pp dl e�y2
� 	
dyl

:

In the sequel, we consider the Hermite projection method along one coordinate.

For the two-dimensional signal of size M1 
 M2, the signal baseline is defined as:

byðxÞ ¼ Fð1; yÞ þ FðM1; yÞ � Fð1; yÞ
M1

� x; (1.78)

where F(x,y) is the two-dimensional signal, and x ¼ 1,. . ., M1 and y ¼ 1,. . ., M2.
The baseline by(x) is calculated for a fixed value of y. The corresponding matrix
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Fig. 1.26 (a) Original signal of length 126 samples, (b) Reconstructed signal with 126 functions,

(c) Reconstructed signal with 90 functions, (d) Reconstructed signal with 70 functions



b(x,y) contains all vectors by(x) for y ¼ 1,. . .,M2. Then, we subtract the baselines

from the original signal:

f ðx; yÞ ¼ Fðx; yÞ � bðx; yÞ: (1.79)

The signal decomposition using N Hermite functions is defined as follows:

fyðxÞ ¼
XN�1

p¼0

cpcpðxÞ; (1.80)

where fyðxÞ ¼ f ðx; yÞ is valid for fixed y. The coefficients are equal to:

cp ¼
ð1

�1
fyðxÞcpðxÞdx: (1.81)

Using the Gauss-Hermite quadrature rule, the coefficients can be calculated as

follows:

cp � 1

M1

XM1

m¼1

mpM1�1 xmð Þfy xmð Þ; (1.82)

where constants mpM1�1 xmð Þ can be obtained by using Hermite functions as in the

one-dimensional case.

To illustrate this concept, the original image and three reconstructed images are

shown in Fig. 1.28.

Fig. 1.27 Examples of two-dimensional Hermite functions: (a)C00ðx; yÞ, (b)C24ðx; yÞ, (c)C44ðx; yÞ
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1.10 Examples

1.1. According to the Nyquist-Shannon sampling theorem, what should be the

maximal value of frequency fmax for the signal whose sampling interval is

Dt ¼ 0.001, so that the signal is completely determined by its samples?

Solution:

fmax � 1

2Dt
¼ 1

2 � 0:001 ¼ 500 Hz

1.2. (a) If the maximal signal frequency is fmax ¼ 4 KHz, what should be the

maximal sampling interval T according to the sampling theorem?

(b) For the signals whose sampling intervals are given as T1 ¼ 2·T0 and T2 ¼ T0/2,
specify the maximal values of signal frequency having in mind that the sampling

theorem has to be satisfied?

Solution:

(a) For the known maximal signal frequency, the sampling interval can be calcu-

lated according to the relation:

T � 1

2 � fmax

¼ 1

2 � 4 � 103 ¼ 125 ms:

Fig. 1.28 (a) Original image, reconstructed image by using Hermite projection method along the

rows: (b) with 100 Hermite functions, (c) 80 Hermite functions, (d) 60 Hermite functions
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(b) For the sampling interval T1 ¼ 2·T0, we have:

fmax � 1

2 � T1 ¼
1

2 � 2 � T0 ¼
1

2 � 2 � 125 � 10�6
¼ 2 kHz:

In the case T2 ¼ T0/2, the maximal frequency of the considered signal can be

calculated as:

fmax � 1

2 � T0=2 ¼ 1

2 � 125=2 � 10�6
¼ 8 kHz:

1.3. Consider the signal in the form y ¼ sin(150·p·t), where t ¼ �5:0.001:5. What

is the frequency f of the sinusoidal signal? What can be the maximal signal

frequency if the sampling theorem is satisfied?

Solution:

The frequency of the considered sinusoidal signal can be determined as follows:

o ¼ 2 � p � f ¼ 150 � p ) f ¼ 150=2 ¼ 75 Hz:

The maximal frequency in this example is given by:

fmax � 1

2 � Dt ¼
1

2 � 0:001 ¼ 500 Hz:

1.4. Plot the Fourier transform of the signal y ¼ sin(150pt), t∈(�1,1), by using

Matlab. The sampling interval should be set as: T ¼ 1/1,000.

Solution:

First, we should check if the sampled signal satisfies the sampling theorem, i.e., we

check if the condition f � fmax is satisfied.
The maximal frequency of the signal is: fmax � 1/(2T) ¼ 500 Hz, while the

sinusoidal signal frequency is obtained as: 2pf ¼ 150p ) f ¼ 75 Hz, and satisfies

the condition f � fmax.
For the Fourier transform calculation, we use fft Matlab function. In order to

centralize the zero-frequency component of the Fourier spectrum, the fftshift
function is used as well. Matlab code is given in the sequel:

t¼-1:1/1000:1;
y¼sin(150*pi*t);
F¼fft(y);
F¼fftshift(F);
plot(abs(F))

1.5. Calculate the Fourier transform of the signal y ¼ sin(150·p·t), t ¼ �5:0.001:5.

Is the same sampling interval appropriate to satisfy the sampling theorem even for

signals: y ¼ sin(600·p·t), y ¼ sin(1,800·p·t)? If the answer is yes, plot the spectra

of the considered signals by using Matlab.
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Solution:

fmax ¼ 1

2 � Dt ¼
1

2 � 0:001 ¼ 500 Hz

o1 ¼ 2pf1 ¼ 150p ) f1 ¼ 150=2 ¼ 75 Hz

o2 ¼ 2pf2 ¼ 600p ) f2 ¼ 600=2 ¼ 300 Hz:

In the third case, the sampling theorem is not satisfied:

o3 ¼ 2pf3 ¼ 1; 800p ) f3 ¼ 1; 800=2 ¼ 900 Hz

f3 > fmax

Matlab code:
t¼-5:0.001:5;
y1¼sin(150*pi*t);
F1¼fft(y1);
plot (abs(F1))
y2¼sin(600*pi*t);
F2¼fft(y2);
figure,plot (abs(F2))

1.6. Consider the signal y ¼ sin(150·p·t) with an additive white Gaussian noise

(zero mean value m ¼ 0, and variance s ¼ 1) and plot the illustration of its

spectrum via the Fourier transform calculation.

Solution:

y¼sin(150*pi*t);
noise¼randn(1,length(y));
yn¼y+noise;
sound(yn);
F¼fftshift(fft(yn));
plot (abs(F))

1.7. Design a simple low-pass filter with a cutoff frequency fc ¼ 1,102,5 Hz for the

signal having 44,000 samples, sampled at the frequency 22,050 Hz.

Solution:

Let us denote the signal by y, while fs ¼ 22,050 Hz represents the sampling

frequency. The maximal signal frequency is: fmax ¼ fs/2 ¼ 11,025 Hz. The Fourier

transform of y contains 44,000 coefficients: 22,000 coefficients are located at the

positive and 22,000 coefficients at negative frequencies (Fig. 1.29).

Hence, the following proportion holds:

fmax : fc ¼ 22;000 : n
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and, consequently, we obtain n ¼ 2,200.

The corresponding filter transfer function in the frequency domain can be

defined as:

H ¼ [zeros(1,22000–2200) ones(1,4400) zeros(1,22000–2200)];

In order to obtain the filtered signal, the Fourier transform of y should be

multiplied by the filter function H, and then the inverse Fourier transform should

be performed.

1.8. Make the illustrations for the Fourier transform and the ideal time-frequency

representation, if the signal is given in the form:

(a) ya ¼ ejo1t þ ejo2t; t 2 ð0; 2Þ,
(b) yb ¼ y1 þ y2; y1 ¼ ejo1t for t 2 ð0; 1Þ; y2 ¼ ejo2tfor t 2 ð1; 2Þ.

We may assume that o1 < o2.

Solution (Fig. 1.30):

1.9. Based on the ideal time-frequency representation of a certain signal f(t), define
each of the signal components and signal itself. Unit amplitudes and zero initial

phases are assumed (Fig. 1.31).

Solution:

The analytic form of signal f(t) can be defined as:

f ðtÞ ¼
ejo1t þ ejo2t; t 2 0; t1ð Þ
ejo3t; t 2 t1; t2ð Þ
ejo1t þ ejo3t; t 2 t2; t3ð Þ

8<
: :

1.10. Consider a constant-frequency modulated signal and demonstrate how the

window width influences the resolution of the spectrogram. The signal is given in

the form:

f ðnÞ ¼ ej15nT ; n ¼ 1; . . . ; 127
ej5nT ; n ¼ 128; . . . ; 256

�
; where T ¼ 0:25:

Fig. 1.29 Illustration of the

filter function
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Solution:

The discrete version of the considered signal can be created in Matlab as follows:

T¼0.25;
for n¼1:256

if n<128; f(n)¼exp(j*15*n*T);
else

Fig. 1.31 Ideal time-frequency representation of signal f(t)

Fig. 1.30 Fourier transform and the ideal time-frequency distribution for signal: (a) ya, (b) yb
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f(n)¼exp(j*5*n*T);
end

end

The spectrogram calculation in Matlab can be done by using the inbuilt function

specgram as follows:

[s,F,T] ¼ specgram(f,w,freq,w,w-1);
imagesc(T,F,abs(s))

Hereby, to change the window width w in a few realizations one should take, for

instance, the following values: w ¼ 32, w ¼ 64, w ¼ 128 (Fig. 1.32). Note that

freq does not influence the spectrogram; it just scales the y axes (freq ¼ 8 is used in

this example).

1.11. Write the Matlab code that calculates the S-method. Also, the signal is

loaded from the separate file signal.m, and it is defined as: f ðtÞ ¼ ejð2 sinðptÞþ11ptÞ þ
ej2p t2þ3tð Þ. The signal length is N ¼ 128 samples, t ¼ �2:2 with sampling interval

Dt ¼ 4/N, the window width is M ¼ 128 samples, while Ld ¼ 5. The Gaussian

window should be used.

Fig. 1.32 Spectrograms for different window widths
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Solution:

The Matlab file signal.m creates the signal:

function f ¼ signal(t)
f ¼ exp(j*2*(sin(pi*t) + 11*pi*t)) + exp(j*2*pi*(t.
^2 + 3*t));

The Matlab code for the S-method calculation is given in the sequel (Fig. 1.33).

clear
f¼[];
N¼128; %signal length
M¼128; %window width
Ld¼5; % parameter which determines the frequency domain

% window width in the S-method calculation
t¼-2+4/N:4/N:2;

% signal

for m¼-M/2:1:M/2-1;
tau¼2*m/N;
f¼[f;signal(t+4*tau)];
end

% Calculating STFT and Spectrogram (SPEC)

for i¼1:N
w¼gausswin(length(f(:,1)),10); % Gaussian window
STFT(:,i)¼fftshift(fft(f(:,i).*w));
SPEC(:,i)¼abs(STFT(:,i)).^2;

end

Fig. 1.33 Spectrogram and S-method
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% Calculating the S-method (SM)

SFP¼STFT;
SFN¼STFT;
SM¼SPEC;
for L¼1:Ld
SFP¼[zeros(1,N);SFP(1:N-1,:)];
SFN¼[SFN(2:N,:);zeros(1,N)];
SM¼SM+2*real([SFP.*conj(SFN)]);
end

% Plotting the spectrogram and the S-method

figure(1),pcolor(abs(SPEC)),shading interp
figure(2),pcolor(abs(SM)),shading interp

1.12. Observe a general form of a constant amplitude signal with a phase function

f(t): f ðtÞ ¼ AejfðtÞ . Prove that the second and higher phase derivatives cause the

spreading of the concentration around the instantaneous frequency in the case of the

STFT?

Solution:

The STFT of the signal f(t) is defined as:

STFTðt;oÞ ¼
ð1
�1

f ðtþ tÞwðtÞe�jotdt ¼
ð1
�1

A � ejfðtþtÞwðtÞe�jotdt: (1.83)

By applying the Taylor series expansion to the phase function, we obtain:

fðtþ tÞ ¼ fðtÞ þ f0ðtÞtþ f00ðtÞt2=2!þ � � � (1.84)

The short-time Fourier transform can be rewritten in the form:

STFTðt;oÞ ¼ AejfðtÞ
ð1
�1

ejf
0ðtÞtwðtÞejðf00ðtÞt2=2!þ���Þe�jotdt:

We can further develop the above expression as:

STFTðt;oÞ ¼ AejfðtÞFT ejf
0ðtÞt

n o
�o
FT wðtÞf g�oFT ejf

00ðtÞt2=2!þ���
n o

:

Finally, we obtain the STFT in the form:

STFTðt;oÞ ¼ 2pAejfðtÞdðo� f0ðtÞÞ�oWðoÞ�oFT ejf
00ðtÞt2=2!þ���

n o
: (1.85)
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Note that the last term in the expression for the STFT contains second and higher

phase derivatives, and thus, we may conclude that this term will produce spreading

of the concentration around the instantaneous frequency o ¼ f0(t).

1.13. For the signal from the previous example, analyze and derive the influence of

the higher order phase derivatives in the case of the Wigner distribution.

Solution:

The Wigner distribution is defined as:

WDðt;oÞ ¼
ð1

�1
f ðtþ t=2Þf �ðt� t=2Þe�jotdt

¼
ð1

�1
A2ejfðtþt=2Þe�jfðt�t=2Þe�jotdt:

(1.86)

The Taylor series expansion of the moment phase function results in:

fðtþ t=2Þ � fðt� t=2Þ ¼ fðtÞ þ f0ðtÞt=2þ
X1
k¼2

fðkÞðtÞðt=2Þk=k!Þ�
 

�ðfðtÞ � f0ðtÞt=2þ
X1
k¼2

ð�1ÞkfðkÞðtÞðt=2Þk=k!Þ
!

By using the Taylor series expansion terms in the definition of the Wigner

distribution, we obtain:

WDðt;oÞ ¼ A2

ð1
�1

e
jf0ðtÞtþ2

P1
k¼1

fð2kþ1ÞðtÞ
ð2kþ1Þ!

t
2ð Þ2kþ1�jot

� �
dt; (1.87)

Or, in other words:

WDðt;oÞ ¼ 2pA2d o� f0ðtÞð Þ�oFT e
2j
P1
k¼1

fð2kþ1Þ
ð2kþ1Þ!

t
2ð Þ2kþ1

8<
:

9=
;: (1.88)

Hence, we may see that only the odd phase derivatives are included in the spread

factor, causing inner-interferences and spreading of the concentration in the time-

frequency domain.

1.14. Consider a signal in the form: xðtÞ ¼ f ðktÞejAt22
� 	

� 1ffiffiffiffiffiffiffi
2pjB

p ej
t2

2B, where * denotes

the convolution. Prove that the Wigner distribution of x(t) is equal to the Wigner

distribution of f(t) in the rotated coordinate system:

WDxðt;oÞ ¼ WDf ðt cos a� o sin a;o cos aþ t sin aÞ;
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where k ¼ 1= cos a, B ¼ sin a= cos a, A ¼ � sin a cos a.

Solution:

The signal x(t) can be written as a convolution of two signals:

xðtÞ ¼ f1ðtÞ�f2ðtÞ;
where f1ðtÞ ¼ f ðktÞejAt2=2 and f2ðtÞ ¼ 1ffiffiffiffiffiffiffi

2pjB
p ejt

2=2B.

It means that the Fourier transform of x(t) can be written as:

XðoÞ ¼ F1ðoÞF2ðoÞ ¼ F1ðoÞejBo2=2; (1.89)

where,

F2ðoÞ ¼ FT
1ffiffiffiffiffiffiffiffiffiffi
2pjB

p ejt
2=2B

� �
¼ ejBo

2=2: (1.90)

Furthermore, the Wigner distribution of x(t) can be obtained by using X(o) as
follows:

WDxðt;oÞ ¼
ð1

�1
Xðoþ y=2ÞX�ðo� y=2Þejytdy

¼
ð1

�1
F1ðoþ y=2ÞF2ðoþ y=2ÞF1

�ðo� y=2ÞF2
�ðo� y=2Þejytdy

¼
ð1

�1
F1ðoþ y=2ÞF1

�ðo� y=2Þe�jBðoþy=2Þ2=2þjBðo�y=2Þ2=2ejytdy

¼
ð1

�1
F1ðoþ y=2ÞF1

�ðo� y=2Þe�jBoyejytdy

Hence, the following relation holds:

WDxðt;oÞ ¼ WDf1ðt� Bo;oÞ: (1.91)

Furthermore, we calculate the Wigner distribution WDf1ðt;oÞ of the signal f1(t)
as follows:

WDf1ðt;oÞ ¼
ð1

�1
f ðkðtþ t=2ÞÞf �ðkðt� t=2ÞÞejAðtþt=2Þ2=2e�jAðt�t=2Þ2=2e�jotdt ¼

¼
ð1

�1
f ðkðtþ t=2ÞÞf �ðkðt� t=2ÞÞejAtte�jotdt ¼

¼
ð1

�1
f ðkðtþ t=2ÞÞf �ðkðt� t=2ÞÞe�jktððo�AtÞ=kÞdt:
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The Wigner distribution WDf1ðt;oÞ can be, thus, expressed as:

WDf1ðt;oÞ ¼ WDf ðkt;o=k � AtÞ: (1.92)

Consequently, from (1.91) and (1.92) we have:

WDxðt;oÞ ¼ WDf ðkt� Bðo=k � AktÞ;o=k � AktÞ; (1.93)

or WDxðt;oÞ ¼ WDf 1þ BAð Þkt� Bo=k;o=k � Akt½ �.
By substituting the given parameters: k ¼ 1= cos a, B ¼ sin a= cos a,

A ¼ � sin a cos a, we obtain:

WDxðt;oÞ ¼ WDf ðt cos a� o sin a;o cos aþ t sin aÞ: (1.94)

The rotation of the coordinate system is defined as:

tr
or

� �
¼ cos a � sin a

sin a cos a

� �
t
o

� �
:

1.15. By using the recursive procedure for the calculation of the Haar transform,

perform the first level decomposition of a given 8 
 8 image. Use the one-

dimensional decomposition of image rows in the first step, and then the decompo-

sition of image columns.

10 10 10 10 26 10 10 10

10 10 10 10 26 10 10 10

10 10 10 10 26 10 10 10

10 10 10 10 26 10 10 10

10 10 10 10 26 10 10 10

10 10 10 10 26 10 10 10

18 18 18 18 26 18 18 18

10 10 10 10 26 10 10 10

Solution:

First, we perform the first level decomposition along the image rows. Hence, for

each row, it is necessary to calculate the mean values and differences (details). Then

the resulted matrix should be used to perform the decomposition along columns.

The low-frequency image content is obtained in the first quadrant, while the

remaining parts contain image details.
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Decomposition of rows Decomposition of columns
10 10 18 10 0 0 8 0

10 10 18 10 0 0 8 0

10 10 18 10 0 0 8 0

10 10 18 10 0 0 8 0

10 10 18 10 0 0 8 0

10 10 18 10 0 0 8 0

18 18 22 18 0 0 4 0

10 10 18 10 0 0 8 0

10 10 18 10 0 0 8 0

10 10 18 10 0 0 8 0

10 10 18 10 0 0 8 0

14 10 20 14 0 0 6 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

4 4 2 4 0 0 �2 0

1.16. Consider the function f(t) in the form:

f ðtÞ ¼ t2 þ t; 0 � t<1;
0; otherwise:

�

By using the Haar wavelets calculate the expansion coefficients:

sj0ðkÞ ¼
Ð
f ðtÞ’j0;k

ðtÞdt; djðkÞ ¼
Ð
f ðtÞcj;kðtÞdt, for j0 ¼ 0.

Solution:

s0ð0Þ ¼
ð1
0

ðt2 þ tÞ’0;0ðtÞdt ¼
ð1
0

ðt2 þ tÞdt ¼ t3

3

1

0





 þ t2

2

1

0





 ¼ 5

6

d0ð0Þ ¼
ð1
0

ðt2 þ tÞc0;0ðtÞdt ¼
ð0:5
0

ðt2 þ tÞdt�
ð1
0:5

ðt2 þ tÞdt ¼ �0:5

d1ð0Þ ¼
ð1
0

ðt2 þ tÞc1;0ðtÞdt ¼
ð0:25
0

ðt2 þ tÞ
ffiffiffi
2

p
dt�

ð0:5
0:25

ðt2 þ tÞ
ffiffiffi
2

p
dt ¼ � 3

ffiffiffi
2

p

32

d1ð1Þ ¼
ð1
0

ðt2 þ tÞc1;1ðtÞdt ¼
ð0:75
0:5

ðt2 þ tÞ
ffiffiffi
2

p
dt�

ð1
0:75

ðt2 þ tÞ
ffiffiffi
2

p
dt ¼ � 5

ffiffiffi
2

p

32

f ðtÞ ¼ 5

6
’0;0ðtÞ|fflfflfflffl{zfflfflfflffl}
V0

þ � 1

2
c0;0ðtÞ

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

W0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V1¼V0	W0

þ � 3
ffiffiffi
2

p

32
c1;0ðtÞ �

5
ffiffiffiffiffi
32

p

32
c1;1ðtÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

W1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V2¼V1	W1¼V0	W0	W1

þ � � �
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1.17. Consider the signal illustrated in Fig. 1.34 and perform the Haar wavelet

decomposition (e.g., 3-level decomposition).

Solution (Fig. 1.35):

1.18. Starting from the dilation equation:

’ðtÞ ¼
XN�1

k¼0

sðkÞ
ffiffiffi
2

p
’ð2t� kÞ; (1.95)

and using the filter coefficients h(k), where sðkÞ ¼ ffiffiffi
2

p
hðkÞ and PN�1

k¼0

hðkÞ ¼ 1, show

that the Fourier transform F(o) of scaling function j(t) is equal to the product of

filter frequency responses:

FðoÞ ¼
Y1
j¼1

H
o
2j

� 	
:

Solution:

The Fourier transform of the scaling function can be calculated as:

FðoÞ ¼
ð1

�1
’ðtÞe�jotdt ¼ 2

XN�1

k¼0

hðkÞ
ð1

�1
’ð2t� kÞe�jotdt

¼
XN�1

k¼0

hðkÞ
ð1

�1
’ðxÞe�joðxþkÞ=2dx ¼

XN�1

k¼0

hðkÞe�jok=2
ð1

�1
’ðxÞe�jox=2dx:

(1.96)

Fig. 1.34 Signal f(0) before decomposition
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From (1.96), we may observe that:

FðoÞ ¼ F
o
2

� 	XN�1

k¼0

hðkÞe�jok=2 ¼ F
o
2

� 	
H

o
2

� 	
: (1.97)

Hence, by applying the recursion we obtain:

FðoÞ ¼ H
o
2

� 	
H

o
4

� 	
:::H

o
2n

� 	
F

o
2n

� 	
: (1.98)

Fig. 1.35 Signal decomposition

1.10 Examples 49



Having in mind that: lim
n!1F o

2n

� � ¼ Fð0Þ ¼ Ð1
�1

’ðtÞdt ¼ 1, the Fourier transform

of the scaling function is obtained in the form:

FðoÞ ¼
Y1
j¼1

H
o
2j

� 	
: (1.99)

1.19. Determine the Hermite expansion coefficients, for a short signal f(n) given
below.

f ¼ 1332:4 1313:4 1148:4 1243:2 735:7 861:9 1261:1 1438:1½
1443:9 1454:1�;

Solution:

The signal consists of M ¼ 10 samples. The zeros of the Hermite polynomial of

order ten are (Table 1.2):

xm ¼ �3:4362 � 2:5327 � 1:7567 � 1:0366 � 0:3429 0:3429½
1:0366 1:7567 2:5327 3:4362�;

The first 10 Hermite functions, calculated for xm, are given below:

c0 0:0021 0:0304 0:1605 0:4389 0:7082 0:7082 0:4389 0:1605 0:0304 0:0021
c1 �0:0100 �0:1089 �0:3989 �0:6434 �0:3435 0:3435 0:6434 0:3989 0:1089 0:0100
c2 0:0328 0:2542 0:5871 0:3566 �0:3830 �0:3830 0:3566 0:5871 0:2542 0:0328
c3 �0:0838 �0:4368 �0:5165 0:2235 0:3877 �0:3877 �0:2235 0:5165 0:4368 0:0838
c4 0:1753 0:5622 0:1331 �0:4727 0:2377 0:2377 �0:4727 0:1331 0:5622 0:1753
c5 �0:3060 �0:5098 0:3141 0:1100 �0:3983 0:3983 �0:1100 �0:3141 0:5098 0:3060
c6 0:4471 0:2323 �0:4401 0:3657 �0:1382 �0:1382 0:3657 �0:4401 0:2323 0:4471
c7 �0:5378 0:1575 0:1224 �0:3044 0:3941 �0:3941 0:3044 �0:1224 �0:1575 0:5378
c8 0:5058 �0:4168 0:3041 �0:1843 0:0617 0:0617 �0:1843 0:3041 �0:4168 0:5058
c9 �0:3123 0:3491 �0:3672 0:3771 �0:3815 0:3815 �0:3771 0:3672 �0:3491 0:3123

Furthermore, the constants mpM�1 xmð Þ are calculated by using the Hermite

functions:

mpM�1 xmð Þ ¼ cp xmð Þ
cM�1 xmð Þð Þ2 ; p ¼ 0; :::;N � 1:
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The obtained matrix is:

m09 0:0210 0:2494 1:1904 3:0868 4:8662 4:8662 3:0868 1:1904 0:2494 0:0210
m19 �0:1022 �0:8934 �2:9573 �4:5253 �2:3598 2:3598 4:5253 2:9573 0:8934 0:1022
m29 0:3362 2:0864 4:3533 2:5082 �2:6317 �2:6317 2:5082 4:3533 2:0864 0:3362
m39 0:8598 �3:5851 �3:8294 1:5719 2:6636 �2:6636 �1:5719 3:8294 3:5851 0:8598
m49 1:7980 4:6137 0:9867 �3:3244 1:6333 1:6333 �3:3244 0:9867 4:6137 1:7980
m59 �3:1384 �4:1838 2:3289 0:7735 �2:7366 2:7366 �0:7735 �2:3289 4:1838 3:1384
m69 4:5848 1:9062 �3:2628 2:5718 �0:9492 �0:9492 2:5718 �3:2628 1:9062 4:5848
m79 �5:5153 1:2929 0:9076 �2:1412 2:7076 �2:7076 2:1412 �0:9076 �1:2929 5:5153
m89 5:1871 �3:4203 2:2549 �1:2959 0:4237 0:4237 �1:2959 2:2549 �3:4203 5:1871
m99 �3:2023 2:8647 �2:7229 2:6520 �2:6212 2:6212 �2:6520 2:7229 �2:8647 3:2023

The resulting vector of the Hermite expansion coefficients c is (for the sake of

simplicity the constants are written with two-decimal places):

c ¼ �701:61 90:30 140:84 77:5 � 140:56 2:08 94:06 � 54:75½
�52:74 88:06�;

1.20. In this example, we provide the Matlab code for the Hermite projection

method, which is used to obtain the illustrations in Fig. 1.26.

N¼126; % signal length
n¼70; % the number of Hermite functions

% the function that calculates the zeros of the Hermite
polynomial
xm¼hermite_roots(N);

% function that calculates Hermite functions

y¼psi(n,xm);
% Loading a one-dimensional signal
load sig1.mat
x¼signal1;

% Removing the baseline

i¼1:N;
baseline¼x(1)+(x(N)-x(1))/N.*i;
f¼x-baseline;

% Calculating Hermite coefficients

for i¼1:n
mi(i,:)¼y(i,:)./(y(N,:)).^2;
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Mi(i)¼1/N*sum(mi(i,:).*f);
end
c¼Mi;
ff¼zeros(1,length(xm));
for ii¼1:length(xm)
for i¼1:n

ff(ii)¼ff(ii)+c(i)*y(i,ii);
end
end

% Signal reconstruction

ss¼ff+baseline;
figure,plot((ss))

Matlab function psi.m that is used for the recursive calculation of the Hermite

functions is given in the sequel:

function y¼psi(n,x);
Psi¼zeros(n,length(x));
psi0¼1./(pi^(1/4)).*exp(-x.^2/2);
psi1¼sqrt(2).*x./(pi^(1/4)).*exp(-x.^2/2);
Psi(1,:)¼psi0; Psi(2,:)¼psi1;

for i¼2:180
Psi(i+1,:)¼x.*sqrt(2/i).*Psi(i,:)-sqrt((i-1)/(i)).*Psi
(i-1,:);
end
y¼Psi;
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Chapter 2

Digital Audio

2.1 The Nature of Sound

The sound is created as a result of wave fluctuations around the vibrating material.

The propagation speed, frequency, and sound pressure level are important sound

features. For example, the sound propagation speed through the air under normal

atmospheric conditions is 344 m/s. Since, in this chapter, we will focus our attention

to specific types of audio signals such as speech and music, let us consider their

frequency characteristics. Music is defined as the sound that has a distinct period-

icity. Its frequency ranges from 20 to 20 KHz; while in the case of speech, the

frequency ranges from 50 to 10 KHz. It is important to note that the human auditory

system is most sensitive to frequencies from 700 to 6,600 Hz.

Let us observe what affects the perception of sound in the human auditory

system. If we consider a closed room, as shown in Fig. 2.1, the auditory system

receives direct and reflected waves. Reflected waves are delayed in comparison to

the direct waves. The number of reflected waves and their respective delays depend

on the geometry of the room.

The position of the sound source is perceived based on the delays between the

direct and reflected waves detected by left and right ear. The time delay between

two ears is about 0.7 ms. Here, it is interesting to mention some effects that appear

as a result of the stereo nature of the human auditory system. For example, if one

signal channel is delayed for 15 ms with respect to the other, it will be perceived as

a signal with lower amplitude, although both signals are actually of the same

amplitude. Hence, this effect can be reduced by increasing the amplitude of delayed

signal. However, the auditory system registers two different sounds if the delay

exceeds 50 ms.

The sound pressure level (SPL) is another key characteristic of audio signals.

The SPL is the ratio of the measured sound pressure to the reference pressure

(P0 ¼ 20mPa). The reference pressure denotes the lowest SPL that can be registered

S. Stanković et al., Multimedia Signals and Systems,
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by the auditory system in a noise-free environment. The sound pressure is calcu-

lated as follows:

SPL ¼ 20log10
P

P0

½dB�: (2.1)

In addition to these characteristics of acoustic signals, the Fletcher curve, shown

in Fig. 2.2, is a measure of SPL over the frequency spectrum for which a listener

perceives a constant loudness when presented with pure steady tones. From

Fig. 2.2, it can be observed that the human auditory system has a nonlinear

sensitivity to the frequency.

Fig. 2.1 An illustration of sound propagation within a closed room

Fig. 2.2 The Fletcher curve
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2.2 Development of Systems for Storing and Playback

of Digital Audio

The first system for audio recording and playback dates back to 1877 (the Edison

phonograph). The first gramophone dates back to 1893. Electrical playback systems

began replacing mechanical systems in 1925. The broadcast of AM (amplitude

modulated) audio signals began in 1930. The LP (Long Play) system with a

playback time of about 25 min was developed in 1948. This brief review of some

of the inventions testifies that the audio industry has developed significantly over

the last 100 years. For example, the first gramophones could play recordings about

2 min long, and the system used 78 rpm. The frequency range of the system was

200 Hz–3 KHz and its dynamic range was 18 dB. The later systems had the

extended frequency range (30–15 KHz), with the dynamic range being 65 dB.

Efforts to improve the performance of audio devices have led to the use of tape

recorders during the 1960s and 1970s. The development of compact disc (CD)

began during 1970s, when Mitsubishi, Sony, and Hitachi demonstrated the digital

audio disc (DAD). DAD was 30 cm in diameter. Philips and Sony continued to

work together on this system. As a result, they produced a disc with a diameter of

12 cm in the early 1980s. The capacity of the disc was 74 min. A further develop-

ment of the CD technology led to the development of mini discs, digital versatile

discs (DVD), super audio CDs (SACDs).

Along with the development of digital audio devices, there was a growing need

to develop systems for digital audio broadcasting (DAB). The used bandwidth is

1.54 MHz. The frequency blocks are arranged as: 12 frequency blocks in the range

87–108 MHz, 39 blocks in the VHF band (174–240 MHz) and 23 frequency blocks

in the L band (1,452–1,492 MHz). An example of DAB system is given in Fig. 2.3,

Fig. 2.3 Block diagram of a DAB system
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showing the general principle of combining different signals and their transmission

in digital form.

2.3 Effects of Sampling and Quantization on the Quality

of Audio Signal

Sampling is the first step in digitalization of analog signals. Recall that sampling

causes periodic extensions in the frequency domain. If the discretization is

performed according to the sampling theorem, then the basic part of the signal

spectrum will not overlap with periodic extensions. However, if the sampling rate is

not sufficiently high, then there is a spectrum overlap (or aliasing) (Fig. 2.4).

The signal spectrum is extracted by using antialiasing filters with steep transition

from pass to stop regions (a filter example is shown in Fig. 2.5). Note that filters

with steep transitions are usually the higher order ones.

In many real applications, it is necessary to use more economic versions of

antialiasing filters of lower orders. Therefore, the sampling rate is increased beyond

what is required by the sampling theorem in order to allow for less steeper

Fig. 2.4 Aliasing effects

Fig. 2.5 An example of antialiasing filter with a steep transition
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transitions. For example, the sampling frequency used for a CD is equal to

44.1 KHz, although the maximum frequency we want to reproduce is 20 KHz.

A sample and hold circuit that can be used for sampling of analog signals is

shown in Fig. 2.6. A switching element is controlled by the signal fs, which defines
the sampling frequency. The operational amplifier provides high resistance, and

thus a large time constant for the capacitor C to discharge. Thus, the voltage on the

capacitor is changed slightly between the two control pulses fs.
The next step after the sampling process is the quantization. Analog signals can

have infinitely many different values, but the number of quantization levels is

limited. As a result, the signal after quantization can meet only a certain degree

of accuracy, as defined by the number of quantization levels. In other words, the

quantization introduces the quantization noise. A relationship between the signal-

to-noise ratio (S/N or SNR) and the number of bits (which is determined by the

number of quantization levels) can be easily determined. Suppose the probability

density function of quantization error is uniform, as shown in Fig. 2.7.

The number of quantization levels in an n-bit system is denoted as M ¼ 2n.

Now, consider a sinusoidal signal with the amplitude V/2. Then, the quantization

interval is Q ¼ V/(M � 1). Since the quantization noise is uniformly distributed in

the range [�Q/2, Q/2], the quantization noise power is equal to:

N¼ 2

Q

ðQ=2
0

x2dx ¼ 2

Q

Q=2ð Þ3
3

¼ Q2

12
: (2.2)

Fig. 2.6 A circuit for signal sampling

Fig. 2.7 The probability density function of the quantization error
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On the other hand, the power of a sinusoidal signal is equal to:

P ¼ 1

2p

ð2p
0

V

2

� �2
sin2xdx ¼ 1

2p
V2

4

ð2p
0

1� cos 2x

2
dx ¼ V2

8
: (2.3)

Therefore, S/N in the n-bit system is given by:

S=N ¼ P

N
¼ V2=8

V2= 22n=12ð Þ ¼
3

2
22n; (2.4)

or equivalently:

S=N½dB� ¼ 10 log
S

N
¼ 10 log

3

2
þ 10 log 22n ¼ 1:76þ 6n: (2.5)

For example, if we use 16 bits to quantize the signal, then S/N � 98 dB.

2.3.1 Nonlinear Quantization

The previous section discussed a uniform quantization approach (where each

quantization interval Q is identical). However, we can assign the quantization

levels in a nonlinear manner. For instance, the quantization levels can be adjusted

according to the input signal amplitude, such that a small amplitude signal will have

smaller quantization intervals, and vice versa.

A process of nonlinear quantization of a variable x can be described as follows:

First x is transformed (compressed) by using the nonlinear function f (i.e., f(x)),
which is then linearly quantized. The quantized values are then processed

(expanded) by the inverse nonlinear function f�1. Lastly, for a nonlinear quantizer,

we have:

QðxÞ ¼ f�1 Qu f ðxÞð Þð Þ; (2.6)

where Qu(x) denotes a linear quantizer. A typical function for nonlinear

quantization is the A-law, which is defined as follows:

FðxÞ ¼ Ax= 1þ lnAð Þ for 0<x � V=A;

V 1þ ln Ax=Vð Þð Þ= 1þ lnAð Þ for V=A � x � V;

(
(2.7)

where A is a constant that controls the compression ratio, while the peak magnitude

of the input signal is labeled as V. A ¼ 87.6 is often used in practice.

Figure 2.8 depicts the process of nonlinear quantization. The x-axis represents

the normalized amplitude of the input signal, while the y-axis represents the values
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of quantization intervals. For example, when the signal amplitude drops four times

(�12 dB), the quantization interval is 3/4Q.

The concept of nonlinear quantization is applied in other schemes such as the

floating-point conversion, which is used in professional audio systems. The princi-

ple of floating-point conversion is shown in Fig. 2.9.

This system is based on the principle of a logarithmic scale. Namely, the signal is

sent through several parallel circuits with different gains ensuring that the input to

linear A/D converter is always a signal whose level is suitable for linear conversion.

The converted part of the signal is called the mantissa.

Information on the amplitude of the signal is provided through the second part of

the system, whose output is a binary value called the exponent. Note that with three

bits of the exponent, we can achieve a conversion of signals with the following

Fig. 2.8 Nonlinear quantization

Fig. 2.9 Floating-point conversion
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gains: 0, 6, 12, 18, 24, 30, 36, and 42 dB. Hence, we can effectively digitize signals

with very different amplitude levels, which is often a practical demand for audio

signals. A typical S/N curve for a signal based on an 8-bit mantissa and a 3-bit

exponent is illustrated in Fig. 2.10.

It should be noted that although it is an 11-bit system, the S/N is between 42 and

48 dB, and its maximum value is defined by the mantissa.

2.3.2 Block Floating-Point Conversion

This is a special case of floating-point conversion, used when a low bandwidth is

required. Namely, the exponent is not associated with every sample, but it is done

for a block of successive samples. In this way, a considerable bit rate reduction is

enabled. This technique is also known as near-instantaneous companding.

2.3.3 Differential Pulse Code Modulation

Using the previous conversion techniques, we analyze each sample separately in

order to prepare it for transmission. In the case of differential pulse code modulation

(DPCM), we transmit the differences between neighboring samples.

This modulation is a form of predictive coding in which the prediction for the

current sample is carried out on the basis of the previous sample. It is particularly

Fig. 2.10 S/N ratio for a considered floating-point converter (8-bit mantissa and 3-bit exponent)
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efficient when a small sampling period is used, since the differences between

adjacent samples are very small and practically related to a single bit (the least

significant bit). Sigma delta converters are used for this type of conversion. Note that

the serial bit stream is impractical, and therefore digital filters (decimation filters)

are usually applied to convert the serial stream into a multibit format (e.g., 16 bits for

the CD system). A block scheme of a single-bit A/D converter is shown in Fig. 2.11.

2.3.4 Super Bit Mapping

In the CD technology, audio signals are usually encoded with 16 bits. In some cases

(e.g., professional audio studios), 20 bits are used for encoding of audio signal.

Then, the super bit mapping is used to convert 20-bit signals to 16-bit signals.

The additional four bits are used to increase the accuracy of the least significant bits

of the 16-bit signal.

2.4 Speech Signals

The system for generating speech signals is illustrated in Fig. 2.12. We can see that

the lungs initialize the air flow through the trachea and larynx to the mouth. The lips

form a longitudinal wave that will spread further through the air.

Note that the air flow is modulated by passing through the larynx and the vocal

folds. Therefore, the vocal folds generate waves that pass through the mouth and the

nasal cavity. The observed system for the voice production can be viewed through

two subsystems called glottal and vocal tract. The glottal tract (up to the beginning

of the pharynx) generates waves under the influence of the vocal folds, while

the vocal tract works as a set of resonators and filters, which modulate and shape

the wave in order to make specific sounds.

As the speech sounds can be divided into vowels and consonants, it is necessary

to describe how they are formed within the speech production system. When

generating vowels, the vocal folds resonate and produce quasi-periodic oscillating

impulses that continue to be shaped in the vocal tract where the oral cavity acts as a

resonator. During this process, some of the frequencies are attenuated, while others

are amplified. By examining the spectrum of vowels, we can notice some harmonics

that dominate over other components. These harmonics are called the formants

Fig. 2.11 Single-bit A/D converter
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and they actually represent the resonant frequencies of vocal tract. When analyzing

the speech signal, we can often observe the first four formants. The structure of

formants in the time-frequency domain is shown in Fig. 2.13.

Fig. 2.12 Illustration of the speech generation system

Fig. 2.13 Time-frequency representation of speech formants
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The strongest formants for the vowel A range from 700 to 1,000 Hz. For the

vowel I these formants are in the range of 200–400 Hz and 2,200–3,200 Hz, while

for the vowel O they are restricted to frequencies from 400 to 800 Hz.

Consonants can be divided into voiced and voiceless consonants. In the case

of voiced consonants, the vocal folds produce noise, which is then modulated in

the vocal tract. Although, the noise spectrum is mainly spread and continuous, the

specific components representing a certain form of formants appear as well. Voice-

less consonants occur only in the oral cavity, when the vocal folds are not active.

Let us define some of the most important features of the formant, since it

represents an important voice characteristic. The formant frequency is the maxi-

mum frequency within the frequency band defined by the formant. The formant

bandwidth is defined as the frequency region in which the amplification differs less

than 3 dB from the amplification at the peak (central) frequency of the formant.

Having in mind the characteristics of the speech production system, the speech

signal can have a variety of values due to its continuous nature. However, from the

perceptual point of view, we are able to distinguish just a finite number of sounds,

since there is a limited set of meaningful information contained in speech. In this

way, we consider only the functional units called phonemes. Note that the same

phoneme can occur in different forms, which have no impact on its meaning.

In other words, the strength and timbre of the voice will not affect the understanding

of phonemes and will not change their functional value.

2.4.1 Linear Model of Speech Production System

Based on the previous analysis, we can model the speech production system as

shown in Fig. 2.14.

The transfer functions of the glottal tract, the vocal tract, and the lips are denoted

by G(z), V(z), and L(z), respectively. e(n) is the input excitation signal, which can

be modeled as a train of Dirac impulses for voiced sounds or Gaussian noise for

unvoiced sounds. Based on the system in Fig. 2.14, we can write:

SðzÞ ¼ EðzÞGðzÞVðzÞLðzÞ: (2.8)

By introducing the inverse filter:

AðzÞ ¼ 1

GðzÞVðzÞLðzÞ ; (2.9)

Fig. 2.14 A model of the speech production system
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where A(z) has a form of all-zero filter AðzÞ ¼ 1þPp
i¼1

aiz
�i , we can write the

following relation:

EðzÞ ¼ AðzÞSðzÞ: (2.10)

In other words, if z�1 is interpreted as the unit delay operator: z�1sðnÞ ¼ s n� 1ð Þ,
then the previous relation can be written as the autoregressive model of order p:

sðnÞ þ
Xp
i¼1

ais n� ið Þ ¼ eðnÞ: (2.11)

We can model every 700 Hz with one pair of poles.

Let us consider now the impact of the glottal tract and mouth. The speech

production system can be observed from the glottal wave g(n). Moreover, the

characteristics of the glottal wave are known and given by:

gðtÞ ¼

sin2
pt
2Tp

; for 0 � t � Tp;

cos
p t� Tp
� �
2Tn

; for Tp<t � Tc; Tc ¼ Tp þ Tn;

0; for Tc<t � T;

8>>>>><
>>>>>:

(2.12)

where Tp ¼ 3.25 ms, Tn ¼ 1.25 ms, and the pitch period (time interval between two

consecutive periodic excitation cycles) is T ¼ 8 ms. The glottal tract can be

modeled by the following transfer function:

HgðzÞ ¼ 1

1� qz�1ð Þ2 ; (2.13)

which attenuates –12 dB/oct. (for q � 1). The influence of radiation from the lips

can be approximated by:

LðzÞ ¼ 1� z�1: (2.14)

Since a linear model of the speech production system is assumed, the transfer

functions L(Z) and V(Z) in Fig. 2.14 can replace the positions. Thus, as the input of

V(z), we have:

1� z�1
� �

gðnÞ ¼ gðnÞ � g n� 1ð Þ ¼ g0ðnÞ; (2.15)

where g0(n) is a differentiated glottal wave. When considering the remaining part of

the system, we get:

sðnÞ ¼ VðzÞg0ðnÞ: (2.16)
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Next, an additional differentiation can be performed, which will result in:

s0ðnÞ ¼ VðzÞg00ðnÞ: (2.17)

Assuming that:

VðzÞ ¼ 1

ApðzÞ ¼
1

1þPp
i¼1

aiz�i

; (2.18)

we can obtain the final model of the speech production system:

s0ðnÞApðzÞ ¼ s0ðnÞ þ
Xp
i¼1

ais
0 n� ið Þ ¼ g00ðnÞ: (2.19)

It is important to emphasize that g00(n) is the excitation signal that can be

approximated in the form of the Dirac pulse train (Fig. 2.15). Then the signal s0

(n) is the pre-emphasized signal s(n), with no influence of the glottal wave and

radiation. This model also represents the autoregressive model of the order p, as the
one defined by (2.11).

2.5 Voice Activity Analysis and Detectors

Recall that different speech sounds are formed by forcing the air through the vocal

system. They could be classified as voiced and unvoiced speech sounds, as shown in

Fig. 2.16. Voiced speech parts are generated by vocal folds vibrations that cause

the periodical air oscillations. As a result, a sequence of air pulses is created, which

excites the vocal tract and produces the acoustically filtered output. On the other

hand, the unvoiced sounds are usually generated by forcing the air through certain

constrictions in the vocal tract.

The voiced sounds are characterized by a significant periodicity in the time

domain, with the pitch (fundamental) frequency. Note that, the unvoiced sounds

Fig. 2.15 Excitation signals g(t), g0(t), g00(t)
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have a more noisy-like nature. Also, the voiced parts are characterized by

significantly higher energy compared to the unvoiced sounds. As mentioned before,

the voiced sounds contain formants in the frequency domain. Formants are very

important in the speech analysis and applications (e.g., speech coding). Frequency

components of unvoiced sounds are generally low-energy components located

mostly at the high frequencies. Due to the significant differences between voiced

and unvoiced speech parts, some applications employ the sounds classification

as a preprocessing step. The classification of voiced and unvoiced sounds can be

done by using voice activity detectors. These detectors are based on voice activity

indicators (energy, zero-crossing rate, prediction gain, etc.) combined with

thresholding to decide between voiced and unvoiced option. Some of the existing

voice activity indicators are described in the sequel.

Energy
Before processing, the speech signals are usually divided into frames with a certain

number of samples. The length of the frame is determined such that the statistical

signal characteristics are almost constant within the frame. The simplest way to

make differentiation between the voiced and unvoiced parts is the frame energy,

which is defined as:

EðnÞ ¼
Xn

k¼n�Nþ1

s2ðkÞ; (2.20)

Fig. 2.16 An illustration of different speech parts
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where s denotes the speech signal, N is the length of frame, while n is the endpoint

of the frame. The voiced parts have the energy that is several times higher than the

unvoiced parts energy.

Instead of energy, one can use the magnitudes of the frame samples:

MAðnÞ ¼
Xn

k¼n�Nþ1

sðkÞj j: (2.21)

Zero-Crossing Rate
Due to the presence of low-frequency pitch component, the voiced sounds are

characterized by a low zero-crossing rate compared to the unvoiced sounds. For a

certain frame, the zero-crossing rate can be calculated as follows:

ZCðnÞ ¼ 1

2

Xn
k¼n�Nþ1

sgn sðkÞð Þ � sgn
�
s k � 1ð Þ��� ��: (2.22)

Prediction Gain
As previously mentioned, the linear prediction algorithm is commonly used in the

analysis and synthesis of speech signals. This method provides the extraction of

certain sound characteristics that can be used for the voiced/unvoiced speech

classification. The prediction of discrete signal s(n) based on the M samples can

be defined as:

bsðkÞ ¼ �
XM
i¼1

ais k � ið Þ; k ¼ n� N þ 1; :::; n; (2.23)

where ai, i ¼ 1,. . .,M are estimated linear prediction coefficients of the

autoregressive model, while M is the order of the prediction system. For a nonsta-

tionary signal such as speech, the linear prediction is performed separately for each

frame.

The estimation of linear prediction parameters is based on the criterion of mean

square prediction error:

J ¼ E e2ðkÞ� � ¼ E sðkÞ þ
XM
i¼1

ais k � ið Þ
 !28<

:
9=
;: (2.24)

The optimal linear prediction coefficients are obtained by solving the system of

equations based on the partial derivatives of the error function J with respect to

parameters am, for m ¼ 1, 2,. . .,M:

@J

@am
¼ 2E sðkÞ þ

XM
i¼1

ais k � ið Þ
 !

s k � mð Þ
( )

¼ 0: (2.25)
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The prediction gain is defined as the ratio between the signal energy and the

prediction error:

PG½n� ¼ 10log10

Pn
k¼n�Nþ1

s2ðkÞ
Pn

k¼n�Nþ1

e2ðkÞ

0
BB@

1
CCA: (2.26)

This parameter can be used as an indicator of differences between the voiced and

unvoiced speech parts. It is known that voiced sounds achieve higher prediction

gain compared to the unvoiced ones for at least 3 dB. The periodicity of voiced

frames causes a stronger correlation between the frame samples. On the other hand,

random nature of unvoiced parts makes the prediction less efficient.

The outputs of the considered voiced/unvoiced sounds indicators for the frames

with 180 samples (22.5 ms when the sampling rate is 8 KHz) are illustrated in

Fig. 2.17.

The simple versions of the voice activity detectors assume one of these indicators

as the input signal. As in the standard classification problems, here also it is

necessary to define suitable thresholds to separate the voiced and unvoiced speech

parts. The thresholds setting is based on the analysis of large signal sets, with the aim

to minimize the classification errors. In the practical applications, the considered

detectors could be combined to improve the performance of the detection system.

Fig. 2.17 The outputs of the voice activity indicators based on the magnitudes (MA), zero-
crossing rate (ZC), and prediction gain (PG)
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2.5.1 Word Endpoints Detector

The start and endpoints of words can be detected by using a word endpoints

detector. One realization of this detector is based on the energy-entropy signal

feature. The signal is first divided into time frames that are 8 ms long (e.g.,

64 samples long for a speech signal sampled at 8 KHz). The energy of frame Ei is

calculated according to (2.20). On the other hand, the probability density function

for the speech spectrum S(o) is obtained by normalizing the frequency content

within the frame. Hence, for the i-th frame, we have:

pi ¼ S oið ÞPN
k¼1

S okð Þ
; (2.27)

where N is the number of components within the frame. The energy-entropy feature

can be calculated as follows:

EEFi ¼ 1þ Ei � Hij jð Þ1=2; (2.28)

where Hi represents the entropy of the i-th frame defined as:

Hi ¼
XK
k¼1

pk log pk: (2.29)

Energy-entropy features for the consecutive frames of speech signal are

illustrated in Fig. 2.18.

By using the energy-entropy feature, the start and the endpoint of a spoken word

can be determined as follows:

ts ¼ argmin
i

EEFðiÞ>T1f g; 1 � i � N

te ¼ argmax
i

EEFðiÞ>T2f g; 1 � i � N
(2.30)

Fig. 2.18 (a) Speech signal, (b) Energy-entropy feature for speech frames
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where N is the total number of considered speech frames, while T1 and T2 are

thresholds for the start and endpoint, respectively. The thresholds can be set

empirically, based on various experiments with different speech signals and

speakers. The typical values for the thresholds are T1 ¼ 0.16 and T2 ¼ 0.17. The

resulting word endpoints are illustrated in Fig. 2.18.

2.6 Speech and Music Decomposition Algorithm

The singular value decomposition (SVD) has been used in numerous practical

applications for characterization of signals and their components. The SVD has

been applied on the time-frequency distributions to extract features used for

signal characterization. Most of the procedures are based on the use of singular

values. However, significant information about the patterns embedded in the

matrix can be obtained by using the left and right singular vectors, especially

those corresponding to the largest singular values. Namely, the left and right

singular vectors contain the information about time and frequency domain of

the signal, respectively. Here, the SVD is used to extract speech and musical

components from the autocorrelation function. The autocorrelation function is

obtained by using the inversion of suitable time-frequency distribution, as

described in the sequel.

2.6.1 Principal Components Analysis Based on SVD

SVD transforms the original correlated variables into the uncorrelated set of

variables. It allows one to identify the direction along which the data variations

are dominant. For a certain matrix S, SVD is defined as follows:

S ¼ USVT ; (2.31)

where S is a diagonal matrix of singular values. S is of the same size as S, and the

values are sorted in decreasing order along the main diagonal. The U and V are

orthonormal matrices whose columns represent left and right singular vectors,

respectively. If S is M � N matrix (M > N), then the size of U is M � M, S is

anM � N matrix, while V is an N � N matrix. A memory-efficient method known

as economy-sized SVD is computed as follows:

– Only N columns of U are computed.

– Only N rows of S are computed.
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2.6.2 Components Extraction by Using the SVD and the S-Method

The audio signals, such as the speech and musical signals are multicomponent

signals: f ðnÞ ¼P
c
fcðnÞ . Let us consider the inverse Wigner distribution for a

separately observed c-th signal component:

fc nþ mð Þfc� n� mð Þ ¼ 1

N þ 1

XN=2
k¼�N=2

WDc n; kð Þej 2p
Nþ1

k2m: (2.32)

By replacing nþ m ¼ p and n� m ¼ q, we obtain:

fcðpÞfc�ðqÞ ¼ 1

N þ 1

XN=2
k¼�N=2

WDc
pþ q

2
; k

	 

ej

2p
Nþ1

p�qð Þk: (2.33)

The left-hand side corresponds to the autocorrelation matrix:

Rcðp; qÞ ¼ fcðpÞfc�ðqÞ;

where fc(p) is a column vector, whose elements represent the signal terms, and fc*
(q) is a row vector, with complex conjugate elements. For a sum of M signal

components, the total autocorrelation matrix becomes:

XM
c¼1

Rc p; qð Þ ¼ 1

N þ 1

XN=2
k¼�N=2

XM
c¼1

WDc
pþ q

2
; k

	 

ej

2p
Nþ1

p�qð Þk

¼ 1

N þ 1

XN=2
k¼�N=2

SM
pþ q

2
; k

	 

ej

2p
Nþ1

p�qð Þk:

(2.34)

Applying SVD to the autocorrelation matrix, we get:

R p; qð Þ ¼
XM
c¼1

Rc p; qð Þ ¼ USVT : (2.35)

Furthermore, we observe the case when the time-frequency distribution is

represented by a square matrix, i.e., time and frequency dimensions are the same.

Consequently, the autocorrelation function R(p, q) will be the symmetric square

matrix with the symmetry axis along the main diagonal. Therefore, we have U ¼ V
are the matrices containing eigenvectors, while S ¼ L is the eigenvalue matrix:

USVT ¼ ULUT : (2.36)
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Hence, the autocorrelation matrix R(p, q) can be decomposed as follows:

R p; qð Þ ¼
XM
c¼1

Rc p; qð Þ ¼
XM
j¼1

ljujðnÞu�jðnÞ; (2.37)

where lj are the eigenvalues and uj(n) are the eigenvectors of the autocorrelation

matrix R. Note that the eigenvectors correspond to the signal components, while the

eigenvalues are related to the components energy.

The speech formants, separated by using the eigenvalue decomposition,

are shown in Fig. 2.19 (the formants at positive frequencies are shown). Now, it

is possible to arbitrarily combine the components that belong to the low-, middle-,

or high-frequency regions. Consequently, an arbitrary time-frequency mask

(Fig. 2.20) can be made and used in speech processing applications.

Let us consider a violin signal with a number of closely spaced components, as

it can be seen from Fig. 2.21. The eigenvalue decomposition method is applied

in the same way as in the case of speech signal. The extracted components are

shown in Fig. 2.22. It is important to note that, due to the specific nature of audio

signals, the perfect signal reconstruction from its separated components is not fully

attainable.

Fig. 2.19 The formants isolated by using the eigenvalues decomposition method
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Fig. 2.20 Illustrations of different components combinations selected by a few time-frequency

masks

Fig. 2.21 The time-frequency representation of the violin signal obtained by using the S-method

Fig. 2.22 Separated components of violin signal
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The characteristics of a signal in the time-frequency domain could also be

analyzed by using the SVD technique. Namely, the right and left singular vectors

(within the matrices U and V) contain information about signal characteristics

along the time and frequency axes, respectively. Usually, only a few singular

vectors (left and right) associated with the highest singular values are observed,

since they bring most of the information about the signal structure. Namely, the

specific features obtained from these vectors can be combined with neural networks

for analysis and classification of sounds. An example of differences between the

first three singular vectors, obtained from the time-frequency region containing

speech and swallowing sounds (recorded by the microphone on the neck) are

illustrated in Fig. 2.23.

Fig. 2.23 Left and right vectors of speech (left column) and swallowing sound (right column)
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2.7 Psychoacoustic Effects

It was mentioned earlier that the ear is not equally sensitive to different frequencies.

The sensitivity function (shown in Fig. 2.2) is obtained experimentally and is given

by the following expression:

Tðf Þ ¼ 3:64
f

1; 000

� ��0:8

� 6:5e�0:6 f=1;000�3:3ð Þ2 þ 10�3 f

1; 000

� �4
dB: (2.38)

Let us perform now a detailed analysis of the auditory system. It is composed

of the outer (lobe) ear, the middle ear, and the inner ear, as illustrated in Fig. 2.24.

The auditory system up to the inner ear can be simply represented as a combination

of a horn and open pipes.

Sound waves, collected by the ear shell, are forwarded over the ear channel.

In the inner ear there is the organ of Corti, which contains the fibrous elements with

different lengths and resonant frequencies. These elements are connected to the

auditory nerve that is used to convey any information to the brain. As a conse-

quence of the applied sound wave, the mechanical vibrations are passed through the

ossicles to the cochlea causing the basilar membrane to oscillate. The parts of

basilar membrane resonate depending on the frequencies (Fig. 2.24). In the case

of high frequencies, the resonance is produced in the front part of basilar mem-

brane, while in the case of low frequencies, it occurs in the rear part.

The hearing system works effectively as a filter bank. We devote our attention to

a particular sound only after our brain focuses on it.

2.7.1 Audio Masking

We have already stated that there is a threshold value of SPL below which we

cannot hear a beep. However, even the components above this threshold can be

non-audible if they are masked by other components. Masking effects can be either

in the time and/or in the frequency domain. In the case of frequency masking, tones

Fig. 2.24 Illustration of human auditory system
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with greater intensity can mask lower intensity tones at neighboring frequencies.

Therefore, if we know a value of the threshold below which the adjacent frequencies

become non-audible, then we can ignore those frequencies without sacrificing the

quality of the sound, as shown in Fig. 2.25. This is particularly important when

applied to each of the critical frequency bands, where we can say that the ear is

equally sensitive. The sensitivity is different for different critical bands.

It should be mentioned that the width of the critical frequency bands varies from

a few hundred Hz at lower frequencies to several KHz at higher frequencies.

An overview of the 25 experimentally determined critical bands will be given in

the following section.

A masking curve is illustrated in Fig. 2.26. Note that the samples below the

masking curve are dismissed and only the samples that are not masked are consid-

ered for encoding and transmission. In addition to frequency masking, we can use

time masking where the threshold is defined as a function of time. For example, let

us assume that we have a signal with a dominant frequency f at time t. Then, it is
possible to determine the masking threshold for the interval (t, t + Dt) for which the
signal becomes non-audible at the given frequency f or adjacent frequencies.

Fig. 2.25 Masking noise

Fig. 2.26 An illustration of audio masking
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2.8 Audio Compression

Based on the aforementioned characteristics of the audio signal, we can conclude

that storing high quality digital audio signals requires a large memory space. There-

fore, the transmission of such signals also requires a network with large bandwidth.

The reduction of the required bandwidth and memory space, while maintaining

high audio quality, can be achieved by compression algorithms. Recent advances in

computer technology have prompted significant improvements in compression

algorithms. Also, there is a growing need to transfer large amount of data over the

network. Hence, the compression algorithms have a significant economic impact

related to various storage media or better utilization of network connections.

Data compression is performed by a circuit called the encoder. After transmis-

sion over a communication channel, the data are restored back into its basic form by

using decoders. The encoder is generally much more complex and expensive than

the decoder. However, a single encoder can be used to provide data to a large

number of decoders.

A compression ratio is the ratio of the compressed signal size versus the original

signal size. This ratio is often referred to as a coding gain. The compression is

especially important in the Internet-based communications and applications. The

need for efficient compression algorithms is also growing in radio broadcasting, as

we are trying to use the available bandwidth more efficiently.

2.8.1 Lossless Compressions

Compression, in general, can be divided into lossless and lossy compression.

In lossless compression, the information before and after compression must be

identical. To achieve lossless compression, we use algorithms such as Huffman

coding and LZW coding. Lossless compression algorithms have limited compres-

sion abilities. If the audio signal is compressed by using lossless compression

techniques, then we refer to it as heavy, due to a low compression ratio.

Figure 2.27 illustrates the concept of entropy as the information content without

redundancy. Namely, if we transmit the amount of information smaller than the

information content or entropy, we actually introduce the artifacts. This is called

lossy compression. Otherwise, the compression scheme is lossless when it is

possible to recover the signal by uncompressing, i.e., the compressed signal has

the same entropy as the original. We can conclude that the redundancy is actually a

difference between the information rate and the overall bit rate. An ideal coder

should provide the information bit rate defined by the entropy.

The relationship between the compression ratio and the complexity of the com-

pression system is depicted in Fig. 2.28. In order to maintain the quality of signal

under high compression ratio, we have to increase the complexity of the system.
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2.8.1.1 LZ-77

LZ-77 algorithms achieve compression by replacing repeated occurrences of data

with references to a single copy of those existing earlier in the input (uncom-

pressed) data stream. It is especially important to determine the optimal length of

the sequence that is encoded. A very short or very long sequence can cause negative

effects on compression.

Pointers can be encoded with 12 bits such that the first 8 bits are used to denote

the number of characters we have to go back, and the last 4 bits are used to denote

the length of the sequence. In some cases, the pointers are encoded with 18 bits,

where the first 12 bits determine the position, and the last 6 bits denote the length of

the sequence. Encoding an entire sentence is performed by inserting 1 in front of an

uncompressed part and 0 in front of a compressed part.

Fig. 2.28 Quality of a compressed signal depends on the complexity of the compression system

and the compression ratio

Fig. 2.27 Lossless and lossy compressions
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For the sake of simplicity, let us illustrate this compression principle on the text

by using the following sentence:

she sells seashells by the seashore

The letters _se (from the word seashells) are found in the word _sells and they are
replaced by the pointer (6,3) meaning that we go back six characters and take the

following three characters. The sequence she (from seashells) is found in the word

she and can be replaced by a pointer (13,3), meaning that we go back 13 characters

and take the next 3 characters. The procedure continues until we reach the end of the

sentence, which we are encoding. The sentence can be then encoded as follows:

she sells <6; 3>a<13; 3><10; 4>by t<23; 5><17; 3>ore

Since the pointers are encoded with 12 bits, in this short example we can reduce

the amount of information by 76 bits (out of 280).

2.8.1.2 LZW Coding

LZW coding is a generalization of the LZ-77 coding, and it is based on defining a

code book (dictionary) of words and strings found in the text. Strings are placed in

the dictionary. Since the first 255 entries found in the dictionary are assigned to

single characters, the first available index in the dictionary is actually 256. The

dictionary is formed by initially indexing any two-character string found in the

message. Then, we continue with three-character string, and so on. For example, let

us consider the previous example:

she sells seashells by the seashore

256 ->sh <sh>e sells seashells by the seashore

257 ->he s<he> sells seashells by the seashore

258 ->e sh<e >sells seashells by the seashore

259 -> s she< s>ells seashells by the seashore

260 ->se she < se>lls seashells by the seashore

261 ->el she s<el>ls seashells by the seashore

262 ->ll she se<ll>s seashells by the seashore

263 ->ls she sel<ls> seashells by the seashore

264 ->s she sell<s > seashells by the seashore

The next two characters are “_s”, but they already exist in the dictionary under
the number 259. This means that we can now place the three characters “_se” as a
new entry in the dictionary and then continue with the strings of two characters:

265 -> se she sells< se>ashells by the seashore

266 ->ea she sells s<ea>shells by the seashore

267 ->as she sells se<as>hells by the seashore
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The next two characters “sh” are already indexed in the dictionary under 256.
Therefore, we add a new three-character string “she”:

268 ->she she sells sea<she>lls by the seashore

The string “el” is already in the dictionary with the label (261), and therefore we
add “ell":

269 ->ell she sells seash<ell>s by the seashore

The string “ls” is already in the dictionary with the label (263), and we add
“ls_”, and then continue with the string of two characters:

270 ->ls she sells seashel<ls >by the seashore

271 -> b she sells seashells< b>y the seashore

272 ->by she sells seashells <by> the seashore

273 ->y she sells seashells b<y >the seashore

274 -> t she sells seashells by< t>he seashore

275 ->th she sells seashells by <th>e seashore

As the string “he” is already in the dictionary with the label (257), “he_” is added:

276 ->he she sells seashells by t<he >seashore

String “_s” is already in the dictionary with the label (259), as well as the string
“_se” with the label (265). Thus, we add a new string with four characters “_sea”:

277 -> sea she sells seashells by the< sea>shore

278 ->ash she sells seashells by the se<ash>ore

279 ->ho she sells seashells by the seas<ho>re

280 ->or she sells seashells by the seash<or>e

281 ->re she sells seashells by the seasho<re>

Finally, the dictionary will contain the following strings:

256 ->sh 269 ->ell

257 ->he 270 ->ls

258 ->e 271 -> b

259 -> s 272 ->by

260 ->se 273 ->y

261 ->el 274 -> t

262 ->ll 275 ->th

263 ->ls 276 ->he

264 ->s 277 -> sea

265 -> se 278 ->ash

266 ->ea 279 ->ho

267 ->as 280 ->or

268 ->she 281 ->re
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In parallel to forming the dictionary, the encoder continuously transmits characters

until it encounters the string that is in the dictionary. Then, instead of sending the

string, the index from the dictionary is sent. This process is repeated until the whole

message is transmitted. It means that the compressed messages in our case will be:

she sells<259>ea<256><261><263> by t<257><265><267>hore

Note that it is not necessary to send to the decoder the dictionary created by the

encoder. While reading and decoding the message, the decoder creates the dictio-

nary in the same way as the encoder.

Let us consider another example:

Thomas threw three free throws

256 ->th <Th>omas threw three free throws

257 ->ho T<ho>mas threw three free throws

258 ->om Th<om>as threw three free throws

259 ->ma Tho<ma>s threw three free throws

260 ->as Thom<as> threw three free throws

261 ->s Thoma<s >threw three free throws

262 -> t Thomas< t>hrew three free throws

263 ->thr Thomas <thr>ew three free throws

264 ->re Thomas th<re>w three free throws

265 ->ew Thomas thr<ew> three free throws

266 ->w Thomas thre<w >three free throws

267 -> th Thomas threw< th>ree free throws

268 ->hr Thomas threw t<hr>ee free throws

269 ->ree Thomas threw th<ree> free throws

270 ->e Thomas threw thre<e >free throws

271 -> f Thomas threw three< f>ree throws

272 ->fr Thomas threw three <fr>ee throws

273 ->ree Thomas threw three f<ree >throws

274 -> thr Thomas threw three free< thr>ows

275 ->ro Thomas threw three free th<ro>ws

276 ->ow Thomas threw three free thr<ow>s

277 ->ws Thomas threw three free thro<ws>

The dictionary is formed as follows:

256 ->th 267 -> th

257 ->ho 268 ->hr

258 ->om 269 ->ree

259 ->ma 270 ->e

260 ->as 271 -> f

261 ->s 272 ->fr

262 -> t 273 ->ree

263 ->thr 274 -> thr

264 ->re 275 ->ro

265 ->ew 276 ->ow

266 ->w 277 ->w
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while the coded message is:

Thomas <256>rew<262>h<264>e f<269><267>rows

2.8.1.3 Huffman Coding

The idea behind the Huffman coding is to encode each character with a code word

whose length is inversely proportional to the probability of occurrence of that

character. In other words, if a character appears more frequently, it should be

encoded with the shortest possible code word.

The characters are first sorted according to the number of occurrences (NO).

Then, we observe a pair of characters with the lowest NO. If the logical value of “1”

is assigned to the character with a higher NO, then “0” is assigned to the character

with a lower NO. The cumulative NO for the two characters is calculated and it

replaces this pair in the next iterations. The next character is used in the new

iteration and its NO is compared with the smaller one, between NO for another

character and cumulative NO from the previous iteration. Again, “1” is assigned to

the higher NO, while “0” is assigned to lower NO. The procedure is repeated until

we get the entire tree. Each branch within the tree corresponds to one character, and

it is uniquely determined by the resulting sequence of logical values “1” and “0.”

Consider an example with the following characters A, M, R, C, D, and U.

Assume that the NOs of characters in a text are: A ¼ 60, M ¼ 38, R ¼ 21,

C ¼ 11, D ¼ 34, U ¼ 51. For Huffman coding we will form the following tree:
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Therefore, the binary combinations denoting each of the characters are given as:

A U M D R C

10 01 00 111 1101 1100

2.8.2 Lossy Compressions

The idea of lossy compression is based on the perceptual characteristics. Namely,

the information that is least important, from a perceptual point of view, is omitted.

For lossy compressions we utilize our understanding of psychoacoustics (e.g., the

auditory system responds differently to different frequencies and some sounds may

be masked by the others). Therefore, this coding method is often referred to as the

perceptual coding. MPEG (Moving Picture Experts Group) compression algorithms

represent the important and widely used cases of lossy compression.

The amount of compressed data depends on the signal nature (i.e., the encoding

may have a variable compression factor) that causes variable bit rate through the

channel. In practice, it is often required that coders have a constant compression

factor in order to transmit at a constant rate.

In order to use the perceptual coding, it is important to adjust and calibrate

correctly the microphone gain and the volume control of the reproduction system.

The overall gains should be adjusted to the human hearing system such that the

coder uses the SPL, which is actually heard. Otherwise, we might have a situation

that the low gain from the microphone is interpreted as low SPL, which further

causes inappropriate masking of the coded signal. Thus, the compression systems

must include the calibration model based on human hearing system. In addition

to calibration, an important role in perceptual coding has a masking model.

The accuracy of the model used for the separation of relevant and irrelevant

components is of particular importance. Based on this model, we decide to ignore

a certain amount of information that will not affect the signal quality. The most

reliable approach for assessing the quality of the masking is listening. Such

methods are usually expensive to carry out. Therefore, systems have been devel-

oped to measure the quality of sound masking. A system based on noise

measurements is shown in Fig. 2.29.

Fig. 2.29 The system for measuring the noise/masking ratio
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The system compares the original and coded signals and determines the noise

introduced by encoder. The lower branch performs the noise analysis and provides the

critical band spectrum of the noise. The blocks in the upper branch of the system are

used to calculate the masking threshold of the input signal. The ratio noise/masking

(N/M) is obtained at the output of the observed system (Fig. 2.29). This ratio is

a quality measure of masking. Smaller values denote more accurate masking models.

2.8.2.1 Critical Subbands and Perceptual Coding

The spectrum of the audio signal can be divided into the subbands (critical bands)

within which is assumed that the human hearing system has equal sensitivity for all

frequencies. Table 2.1 provides the lower (Fl) and upper (Fu) limit frequencies, the

center frequency (Fc), and the bandwidth for each critical band.

Thus, the auditory system can be approximately modeled through a filter

bank. However, implementing selected critical bands would be a demanding task.

Table 2.1 Critical bands

Subband Fl Fc Fu

Bandwidth

(Hz)

1 0 50 100 100

2 100 150 200 100

3 200 250 300 100

4 300 350 400 100

5 400 450 510 110

6 510 570 630 120

7 630 700 770 140

8 770 840 920 150

9 920 1,000 1,080 160

10 1,080 1,170 1,270 190

11 1,270 1,370 1,480 210

12 1,480 1,600 1,720 240

13 1,720 1,850 2,000 280

14 2,000 2,150 2,320 320

15 2,320 2,500 2,700 380

16 2,700 2,900 3,150 450

17 3,150 3,400 3,700 550

18 3,700 4,000 4,400 700

19 4,400 4,800 5,300 900

20 5,300 5,800 6,400 1,100

21 6,400 7,000 7,700 1,300

22 7,700 8,500 9,500 1,800

23 9,500 10,500 12,000 2,500

24 12,000 13,500 15,500 3,500

25 15,500 18,775 22,050 6,550
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Hence, we can obtain a simpler system with some approximations as shown in

Fig. 2.30.

At each filtering stage, the signal bandwidth is halved, allowing us to decrease

the sampling frequency1 by 2. The high-frequency part of the spectrum is obtained

as a difference between the input and the filtered spectrum (low-frequency part).

In this way, a ladder scheme of the spectrum partition into critical bands is obtained.

The frequency subbands are illustrated in Fig. 2.31.

The scale used to number these critical bands is known as the Bark scale named

after the German scientist Barkhausen. The scale depends on the frequencies

(expressed in Hz) and can be approximately given by:

B ðBarkÞ ¼
f

100
for f<500 Hz;

9þ 4log2
f

1; 000

� �
for f 	 500 Hz;

8>><
>>: (2.39)

Fig. 2.30 Dividing the spectrum into critical bands by using a filter bank

Fig. 2.31 Illustration of the critical bands

1 For the signal with spectrum bandwidth B, the sampling frequency is fs ¼2B if (2fc + B)/2B is an

integer ( fc is the central frequency).
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where B is the number of the critical band. It is often used by the following

approximate relation:

B(Bark) ¼ 13 arctan 0:76 f ðHzÞ=1; 000ð Þð Þ þ 3:5 arctan f ðHzÞ=7; 500ð Þ2
	 


For example, the frequency of 200 Hz can be represented by 2 from the Bark

scale, while the frequency of 2,000 Hz can be represented by 13 from the Bark scale.

To obtain the frequency in Hz from the Bark scale, we can use the following

relationship:

f ðHzÞ ¼ 1;000 expð0:219 �BÞ=352ð Þþ 0:1ð Þ �B� 0:032 � exp �0:15 � B� 5ð Þ2
	 
n o

Figure 2.32 shows the masking effects versus the frequency expressed in KHz

and the Bark scale. In both cases, the dotted line shows the curve representing a

hearing threshold in quiet. Figure 2.32a also depicts masking curves for samples at

frequencies 1, 4, and 8 KHz, respectively. Similarly, Fig. 2.32b shows the masking

curve for different ranges on the Bark scale.

Consider the following example. Amplitude levels in certain frequency bands

are provided in the Table 2.2.

Note that the amplitude level in the 12th band is 43 dB. Suppose that it masks all

components below 15 dB in the 11th band and the components below 17 dB in the

13th band.

• The signal level in the 11th band is 25 dB (>15 dB) and this band should be

encoded for transmission. However, the quantization noise of 12 dB will be

masked, and therefore, we can use 2 bits less to represent the samples in this

band.

• The signal level in the 13th band is 14 dB (<17 dB). Hence, the components in

the 13th band are masked and there is no need to transmit this band.

2.8.3 MPEG Compression

In 1988, the ISO (International Standards Organization) and IEC (International

Commission Electrotechnical) have begun to establish international standards

for audio compression. As a result, they established guidelines for MPEG audio

compression, which is currently used for the audio coding in digital audio broad-

casting (DAB). Algorithms for MPEG audio compression were derived from

Masking-pattern Universal Subband Integrated Coding And Multiplexing

(MUSICAM) algorithm. A block diagram for an audio compression coder based

on the MUSICAM is shown in Fig. 2.33.

MUSICAM compresses audio data such that the optimal bit rate is approxi-

mately 700 Kb/s. In parallel to the MUSICAM, a compression algorithm known as
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Fig. 2.32 Illustration of the effects of masking tones: (a) Masking in frequency, (b) Masking of

the bandwidth range

Table 2.2 An example of amplitude levels in different frequency bands
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Adaptive Spectral Perceptual Entropy Coding (ASPEC) was developed. Its main

goal was to achieve high compression factors in order to facilitate transmission of

audio signals over the ISDN lines. By combining MUSICAM and ASPEC, MP3

(MPEG layer III) algorithm was created. In other words, while the MPEG layer I

and layer II represent simplified versions of MUSICAM, MP3 combines the best

features of MUSICAM and ASPEC. The layers of MPEG audio coding deal with

signals having maximal frequencies: 16, 22.05, and 24 KHz and supports bit rates

of 32, 48, 56, 64, 96, 112, 128, 192, 256, and 384 Kb/s. MPEG layer I is based on

two channels (i.e., a stereo signal), while MPEG layer II can handle a five-channel

audio signal. MPEG layer II can also convert a five-channel signal into a two-

channel signal, and such a system is illustrated in Fig. 2.34.

The compression algorithm known as AC-3, developed by Dolby Laboratories,

is also used in North America. At the beginning, the AC-3 was developed as a

compression scheme that provides the surround sound for the theater and cinema.

Nowadays, it is usually referred as Dolby Digital and can be found in the HDTV,

home theaters, DVD players, some TV receivers, etc.

Fig. 2.33 Block diagram of MUSICAM-based coder

Fig. 2.34 A scheme for converting from five channels into two channels
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2.8.3.1 MPEG Layer I

As already noted, the MPEG layer I is a simplified version of the MUSICAM

algorithm. According to the MPEG layer I algorithm, an audio signal is divided into

32 subbands. All 32 subbands are of the same width, which is one of the drawbacks

of this compression scheme, since the bandwidths of the critical bands are fre-

quency dependent. Thus, subbands can be either too wide at lower frequencies or

too narrow at higher frequencies. In order to compensate the imprecision caused by

the uniform subbands width, audio masking is used. The Fourier transform has an

important role in the audio masking (it is computed by the FFT algorithm). A block

scheme for MPEG layer I compression is given in Fig. 2.35.

The signal compression is carried out in blocks of 384 samples. After coding, we

obtain 32 blocks with 12 samples corresponding to the width of 8 ms at the

sampling frequency of 48 KHz. The FFT is calculated for 512 points in order to

obtain higher resolution. This provides a more accurate model of masking. The data

in each block are encoded according to the maximum signal value in that block.

A 6-bit scale factor is assigned to each block and it is applied to all the 12 block

samples. The gain step between two successive 6-bit combinations is 2 dB, thus

providing a 128 dB of dynamic range. Having in mind the nature of audio signals,

the number of bits reserved for samples will vary for the 32 different blocks, but the

total length of 32 blocks has to be equal for each coded block (the size of the output

block with 384 samples is fixed for a certain bit rate).

The bit allocation is used to determine the structure of binary code words for the

appropriate subband. Namely, four bits are used to describe the samples code

length. The length can vary between 1 and 15 bits (i.e., from the combination

0000–1110). The combination 0000 denotes that each of the 12 samples within the

block can be encoded with one bit, while 1110 denotes that we need 15 bits for each

sample in the block. The combination 1111 is not used in order to avoid possible

conflict with the synchronization code. There is also a special code if all samples in

the block are equal to zero. Hence, for each block it is necessary to send 4 allocation

bits and 6 bits that define the amplification factor (Fig. 2.36).

Note that the block length of 8 ms is quite long to avoid premasking effects that

may appear due to the abrupt changes in signal followed by silence at the transition

between two blocks. This phenomenon can be avoided by comparing the values

Fig. 2.35 A block diagram of MPEG layer I compression
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in the neighboring blocks. A significant difference between consecutive blocks

indicates transient in the signal. A typical value of the compression factor in MPEG

layer I is 1:4, and the bit rate is 384 Mb/s.

2.8.3.2 MPEG Layer II

The MPEG layer II is an improved version of the MPEG layer I algorithm, which

almost completely utilizes the MUSICAM algorithm. The scheme with 32 blocks is

also used for this compression. However, the total frequency range is divided into

three parts: low, medium, and high (Fig. 2.37). Given the different sensitivities of

the auditory system to these three parts, the number of bits used for encoding will be

different in each part. Namely, the low-frequency range uses up to 15 bits, the mid-

frequency range uses up to 7 bits, and the high-frequency range uses up to 3 bits. In

addition, 4 bits are needed for bit allocation in the low-frequency band, while the

middle and high-frequency ranges use 3 and 2 allocation bits, respectively. The

input blocks contain 1,152 samples, and since they split into three new blocks, each

of them will contain 384 samples. In such a way, we get a structure that corresponds

to the previously described code scheme for the MPEG layer I. The masking

procedure is done by using the FFT algorithm with 1,024 samples. The compression

ratio of the MPEG layer II is approximately equal to 6–8 times.

2.8.3.3 MPEG Layer III (MP3)

Unlike the previous two compression algorithms, MP3 is based on ASPEC and

MUSICAM. Namely, compression is carried out using samples in the transform

domain, and the structure of the blocks resembles the previous algorithms. MP3 uses

the blocks containing 1,152 samples divided into 32 subbands. The transformation

Fig. 2.36 A part of the bits packing structure in MPEG layer I
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from the time to the frequency domain is performed using the modified discrete

cosine transform (MDCT). It is important to note that the MP3 algorithm does

not use the fixed-length windows, but they are either 24ms or 8 ms long. Thewindows

of short duration are used when there are sudden signal changes, since shorter

windows ensure a good time resolution. Wider windows are used for slowly varying

signals. Figure 2.38 shows window forms used in the MP3 compression.

The algorithm based on variable window widths provides a better quality of the

compressed signals. However, it should be noted that a choice of an appropriate

window function depends on a more complex psychoacoustical model than the

models used in the MPEG layer I and layer II algorithms. Namely, the complexity

of the psychoacoustical model is increased due to the use of the MDCT. A block

diagram of the MP3 compression is shown in Fig. 2.39.

It should be mentioned that the MP3 coding also uses blocks for entropy coding

based on Huffman code. The MP3 was developed primarily for Internet appli-

cations and provides high compression ratio (about 12 times) with a good quality of

the reproduced signal.

Fig. 2.37 Dividing the frequency range in MPEG layer II

Fig. 2.38 Windows used by MP3 algorithm: (a) Wide window, (b) Narrow window, (c) and (d)

Transition windows, (e) Shifting from wide to narrow window and vice versa
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2.8.4 ATRAC Compression

The ATRAC compression algorithm is used for mini-discs in order to store the

same amount of audio signals and with same quality as in the case of the CD, but on

the significantly smaller disc area. ATRAC stands for Adaptive Transform Acoustic

Coder. Using filters, the range of the input signal is divided into three subband

(0–5.5, 5.5–11, and 11–22 KHz). Each subband is passed to the MDCT processors.

The first subband has 20 blocks, while the other two contain 16 blocks each. Such a

resolution corresponds to the sensitivity of the auditory system. The time slot for

the analysis can vary from 1.45 to 11.6 ms by using the increments of 1.45 ms.

In this way, the time-frequency plane of the signal is divided into a number of

different areas, which enable successful compression, taking into account the

difference in sensitivity of the auditory system in different parts of the time-

frequency plane. The ATRAC compression reduces the bit rate from 1.4 Mb/s to

292 Kb/s. A block scheme of ATRAC compression system is shown in Fig. 2.40.

Figure 2.41 demonstrates the division of the time-frequency plane as required by

the ATRAC compression algorithm.

Fig. 2.39 A block diagram of the system for MP3 compression

Fig. 2.40 A block scheme of ATRAC compression system
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2.9 Examples

2.1. The sound pressure level for a signal is SPL ¼ 20 dB. If the reference level of

pressure is Po ¼ 20 mPa, calculate the value of the pressure P in Pascals.

Solution:

SPL ¼ 20 dB

Po ¼ 20mPa

SPL ¼ 20 � log10 P=Poð Þ
20 ¼ 20 � log10 P=Poð Þ ¼> log P=Poð Þ ¼ 1 ¼> P=Po ¼ 10

P ¼ Po � 10 ¼ 20 � 10�6 � 10 Pa ¼ 2 � 10�4Pa ¼ 0:2 mPa

2.2. If the signal to quantization noise is S/N ¼ 61.76 dB, determine the number of

bits used for signal representation?

Solution:

S=N ¼ 1:76þ 6 � n n - number of bits used to represent signal

6 � n ¼ 60 ¼> n ¼ 10 bits

2.3. A 13-bit signal is obtained at the output of the floating-point converter, with the

signal to noise ratio S/N ¼ 61.76 dB. Determine the number of bits used to

represent mantissa, and the number of bits used for exponent?

Fig. 2.41 Division of the time-frequency plane in the ATRAC algorithm
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Solution:

S=N ¼ 61:76 dB

6 � n ¼ 60 ¼ > n ¼ 10 bits for mantissa

m ¼ 13� 10 ¼ 3 bits for exponent

2.4. The communication channel consists of three sections. The average level of

transmission power is 400 mW. The first section introduces 16 dB attenuation

compared to the average power level, the second introduces 20 dB gain compared

to the first section, while the third introduces attenuation of 10 dB compared to the

second section. Determine the signal power at the output of each channel section.

Solution:

P0 ¼ 400mW

First section:

16 dB ¼ 10 log
P0

P1

� �
¼ 10 log

400

P1

� �
) P1 ¼ 10:0475 mW

Second section:

20 dB ¼ 10 log
P2

P1

� �
¼ 10 log

P2

10:0475

� �
) P2 ¼ 1004:75 mW

Third section:

10 dB ¼ 10 log
P2

P3

� �
¼ 10 log

1004:75

P3

� �
) P3 ¼ 100:475 mW

2.5. Load the signal speech_dft.wav in Matlab. Make a new signal y that will

contain 2 s of the original speech signal, and listen to the resulting signal.

Solution:

[y,fs]¼wavread(’speech_dft.wav’);

length(y)

ans ¼ 110033

fs¼ 22050

y¼y(1:2*fs);

soundsc(y,fs)

2.6. For a signal obtained in the previous example, design a low-pass filter in

Matlab, with the cut-off frequency fc ¼ 735 Hz.

Solution:

The sampling frequency of the considered signal is 22,050Hz. The total length of the

signal is 44,100 samples. Hence, the Fourier transform will produce 44,100 samples
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in the frequency domain, from which 22,050 samples are related to positive and

22,050 to negative frequencies (Fig. 2.42).

fmax ¼ fs=2 ¼ 11; 025 Hz;

In the frequency range between zero and the cut-off frequency fc ¼ 735 Hz, we

have: 22,050·(735/11,025) ¼ 1,470 samples

The filtering operation can be done by using Matlab as follows (Fig. 2.43):

F¼fftshift(fft(y)); % Fourier transform of the signal

figure(1), plot((abs(F)))

% Filter transfer function

H¼[zeros(1,20580) ones(1,2940) zeros(1,20580)];

G¼F.*H’; % Signal filtering in the frequency domain

figure(2), plot(abs(G));

% The filtered signal is obtained by applying the inverse Fourier

transform

yg¼ifft(fftshift(G));

soundsc(real(yg),fs)

2.7. For the speech signal used in previous examples, design the band-pass filter

with the band frequencies defined by 1,102.5 Hz and 2,205 Hz.

Solution:

The cutoff frequencies of the band-pass filter are: fc1 ¼ 1,102.5 Hz and fc2¼ 2,205

Hz, while the maximal signal frequency is fmax ¼ 11,025 Hz (Fig. 2.44).

Fig. 2.42 Filter function

Fig. 2.43 (a) Fourier transform of the original signal, (b) Fourier transform of the filtered signal
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Hence, we made the proportions as:

fc1 : a ¼ fmax : 22;050 ) a ¼ 2; 205
fc2 : b ¼ fmax : 22;050 ) b ¼ 4; 410

The number of samples passing unchanged through the filter is b � a ¼ 2,205.

Note that the length between the cutoff frequency fc2 and the maximal signal

frequency fmax is:

C ¼ 22;050� b ¼ 22;050� 4; 410 ¼ 17; 640 samples:

The filter transfer function in Matlab is given by (Fig. 2.45):

>>H¼[zeros(1,17640) ones(1,2205) zeros(1,4410) ones(1,2205)

zeros(1,17640)];

Finally, we can perform signal filtering in the frequency domain by using the

filter transfer function H:

>>G¼F.* H’;

The filtered signal is obtained by applying the inverse Fourier transform to the

filtered signal spectrum:

>>yg¼ifft(fftshift(G));

>>soundsc(real(yg),fs)

Fig. 2.44 Parameters of band-pass filter function

Fig. 2.45 Filter transfer function
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2.8. By using the speech signal “speech_dft.wav”in Matlab, realize the echo by

using a 0.2 s delay, while the echo amplitude is decreased for 50 %. Listen to the

achieved echo effect.

Solution:

Echo effect can be realized in a way that we make two versions of the original

signal: one is obtained by adding a zero sequence at the beginning of the

original signal, while the other is obtained by adding zeros at the end of the

considered signal. The signal with echo effect is obtained as a sum of two modified

signal versions.

The length of the zero sequence is defined by the delay which is equal to 0.2 s.

Since the sampling frequency for the observed speech signal is 22,050 Hz, the delay

0.2 s corresponds to 4,410 samples. The echo realization in Matlab can be done as

follows:

[y,fs]¼wavread(‘speech_dft.wav’);

y1¼[zeros(1,4410) y’];

y2¼[y’ zeros(1,4410)];

echo¼0.5*y1+y2;

soundsc(echo,fs)

2.9. By using the linear prediction coefficients given by vector a, and the set of

20 signal samples (vector f), determine the 14th signal sample and the prediction

error.

a¼ �1:7321 0:9472 �0:3083 0:0748 �0:0812 0:1260 0:2962 �0:3123 0:0005 . . .½
. . .0:0216 �0:1595 0:2126 �0:0496�

f ¼ �2;696 �2;558 �2;096 �1;749 �1;865 �2;563 �2;280 �1;054 �635 �41 . . .½
. . .1;695 3;645 5;150 6;188 5;930 4;730 3;704 3;039 2;265 1;159�

Solution:

Based on the linear prediction analysis, the estimated value of 14th sample is

calculated according to:

bf ðnÞ ¼ �
XL
i¼1

aif n� ið Þ

For n ¼ 14, L ¼ 13, we have: bf 14ð Þ ¼ �P13
i¼1

aif 14� ið Þ ¼ 6; 064.

The prediction error is: e 14ð Þ ¼ f 14ð Þ � bf 14ð Þ ¼ 6; 188� 6; 064 ¼ 124.

2.10. For a given set f of signal samples and the corresponding prediction errors

(given by vector e) calculated as in the previous example, determine the value of

prediction gain.
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e ¼ 103 � �0:0095 � 0:7917 � 1:1271 � 0:3273 0:0907 � 0:1379½
�0:1106 0:1444 � 0:1762 0:5057�

f ¼ 6; 188 5; 930 4; 730 3; 704 3; 039 2; 265 1; 159 168 � 434 120½ �

Solution:

The prediction gain for the observed set of samples given in f can be calculated as:

PG ¼ 10log10

P10
k¼1

f 2ðkÞ
P10
k¼1

e2ðkÞ

0
BBB@

1
CCCA ¼ 17:27dB:

2.11. For a set of 10 samples (given below), calculate the value of energy-entropy

feature EEF.

f ¼ �437 � 97 � 3 � 163 182 143 225 � 242 � 262½ �:

Solution:

First, we calculate the energy E of the frame:

E ¼
X10
k¼1

fk
2 ¼ 269; 291:

The Fourier transform coefficients of the signal f are:

FðoÞ ¼ �2:5300 � 5:8848þ 1:0069i 1:4868� 7:6610i 3:0148� 0:1360i½
3:2532þ 0:1677i . . .� 5:5100 3:2532� 0:1677i 3:0148þ 0:1360i

1:4868þ 7:6610i � 5:8848� 1:0069i�

The probability density function is calculated as:

p ¼ FðoÞ=
X10
k¼1

FðoÞ;

and the corresponding vector p is obtained:

p ¼ 0:0526 0:1240 0:1621 0:0627 0:0677 0:1145 0:0677 0:0627 0:1621 0:1240½ �:
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The entropy of the observed frame is calculated as:

H ¼
X10
k¼1

pk log pk ¼ �0:9651:

Finally, the energy-entropy feature can be calculated as:

EEF ¼ 1þ E � Hj jð Þ1=2 ¼ 509:8067:

2.12. Write the Matlab code for the word endpoints detector based on the energy-

entropy feature.

Solution:

%% load test speech signal in vector f

k¼1;

for i¼1:64: round(length(f)/64)*64

E(k)¼sum(f(i:i+63).^2);

X¼fft(f(i:i+63));

p¼(abs(X)./sum(abs(X)));

H(k)¼sum(p.*log10(p));

EEF(k)¼sqrt(1+abs(E(k).*H(k)));

k¼k+1;

end

for i¼0:length(EEF)-1

s(1+i*64:i*64+64)¼EEF(i+1);

end

figure(1),plot(real(s)./max(real(s)))

2.13. In this example, a short Matlab code for the time-frequency based eigenvalue

decomposition is provided. We assume that the S-method is calculated in advance

(Chap. 1).

Solution:

%Sm is the S-method matrix

%% Calculation of the auto-correlation matrix

R¼zeros(N+1);

for n¼1:N+1;

v¼N+n;

k¼n;

for m¼1:N+1;

R(n,m)¼Sm(v,k);

v¼v-1;k¼k+1;

end

end
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% Eigenvalues matrix D and eigenvectors V

[V,D]¼eigs(R,Nc,’lm’,opt); %columns of V are eigenvectors

D¼abs(diag(D));

2.14. For the given subband samples, determine the number of bits that will be

transmitted, if we know that the samples below 13 dB are masked by the neighbor-

ing subband (as shown in Fig. 2.46). Assume that the signal samples are originally

represented by 8 bits.

Solution:

Due to the audio masking effects, only the samples that are above the masking level

will be transmitted. Due to the masking of tones below 13 dB, the quantization

noise of 12 dB is masked as well. Therefore, we use two bits less to represent the

samples, and the total number of transmitted bits is:

5 samples � 8� 2ð Þb ¼ 30 b

2.15. Perform the Huffman coding algorithm, for the symbols whose numbers of

occurrences within a certain sequence are given below.

Number of occurrences : a ! 15

b ! 11

c ! 12

d ! 13

e ! 5

f ! 3

Fig. 2.46 Subband samples

and masking level
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Solution:

In order to perform Huffman coding, the numbers of occurrences for symbols a, b,

c, d, e, and f are first sorted in decreasing order. Then the coding is performed

according to the scheme in Fig. 2.47:

Thus, the symbols are coded as follows:

a ! 10 d ! 01 c ! 00 b ! 111 e ! 1101 f ! 1100

2.16. Consider the sequence this_image_is_damaged. Code the sequence by using

the LZ-77 code. Determine the number of bits that can be saved by applying this

coding algorithm. Assume that the pointers are represented by 12 bits.

Solution:

The sequences can be coded as follows:

this_image_is_damaged

this_image_(9,3)da(10,4)d

(9,3) ! 00001001 0011

(10,4) ! 00001010 0100

Before LZ77: 21�8 bits¼168 bits (21 characters including spaces)

After LZ 77: 14�8b+24b¼ 136 b

168 � 136¼32 (19%)

2.17. Perform the LZW coding of the sequence: strange strategic statistics.

Solution:

strange_strategic_statistics

256 ->st <st>range strategic statistics

257 ->tr s<tr>ange strategic statistics

258 ->ra st<ra>nge strategic statistics

259 ->an str<an>ge strategic statistics

260 ->ng stra<ng>e strategic statistics

261 ->ge stran<ge> strategic statistics

262 ->e strang<e >strategic statistics

Fig. 2.47 An example of

Huffman coding
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263 -> s strange< s>trategic statistics

264 ->str strange <str>ategic statistics

265 ->rat strange st<rat>egic statistics

266 ->te strange stra<te>gic statistics

267 ->eg strange strat<eg>ic statistics

268 ->gi strange strate<gi>c statistics

269 ->ic strange strateg<ic> statistics

270 ->c strange strategi<c >statistics

271 -> st strange strategic< st>atistics

272 ->ta strange strategic s<ta>tistics

273 ->at strange strategic st<at>istics

274 ->ti strange strategic sta<ti>stics

275 ->is strange strategic stat<is>tics

276 ->sti strange strategic stati<sti>cs

277 ->ics strange strategic statist<ics>

Coded sequence:

strange <256><258>tegic<263> tati<256><269>s

2.18. Determine the bit rate (in Kb/s) for the following cases:

(a) Speech signal with the maximal frequency 10 KHz, while the samples are

coded by using 12 b/sample;

(b) Musical signal with the maximal frequency 20 KHz, coded using 16 b/sample.

How much memory is required to store 10 min of this stereo music?

The speech and musical signals are sampled according to the sampling theorem.

Solution:

(a) Speech signal:

fmax ¼ 10 KHz ¼ >fs 	 2 � fmax ¼ 20 KHz . Let us consider fs ¼20 KHz.

Therefore, we have:

(20,000 samples/s)·(12 b/sample) ¼ 240 Kb/s

(b) Musical signal:

fmax ¼ 20 KHz ¼ >fs 	 2 � fmax ¼ 40 KHz

mono signal: 40; 000 samples=sð Þ � 16 b=sampleð Þ ¼ 640 Kb=s
stereo signal: 2 � 640 Kb=s ¼ 1; 280 Kb=s

Memory requirements:

1; 280 Kb=s � 10min ¼ 1; 280 Kb=s � 600s ¼ 768;000 Kb

768;000 Kb=8 ¼ 93; 750 KB
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2.19. Consider a stereo signal, sampled at 44.1 KHz, and coded by using 16 b/sample.

Calculate the memory requirements for storing 1 min of this audio format? What

time is required to download 1 min of audio content from the Internet if the

connection speed is 50 Kb/s?

Solution:

The sampling rate for the considered signal is 44,100 samples per second.

This number is multiplied by 2 due to stereo format, so that we have 88,200 samples

per second. Since each sample is coded with 16 bits, the total number of bits used to

represent 1 s of this audio format is:

88; 200 � 16 ¼ 1; 411; 200 b=s

Furthermore, 60 s of audio contains:

1,411,200b/s·60 s ¼ 84,672,000b,

or equivalently,

84; 672; 000

8
¼ 10,584,000 B = 10,336 KB = 10 MB:

The time required for a download of 1 min long audio content is:

84; 672; 000 b

50; 000 b
s

¼ 1; 693:44 s ¼ 28:22min

2.20. If the sampling frequency of a signal is fs ¼ 32,000 Hz, determine the

frequency bandwidth of each subband in the case of the MPEG layer I compression

algorithm.

Solution:

fs ¼ 32 KHz

fmax ¼ fs=2 ¼ 16 KHz

In the MPEG layer I compression algorithm the total frequency bandwidth is

divided into 32 subbands. Hence, each of the subbands has the following width:

16;000=32 ¼ 500 Hz:

2.21. Calculate the bit rate of the compressed 16-bit stereo signal if the sampling

frequency is:

(a) 32 KHz, (b) 44.1 KHz, (c) 48 KHz.

Assume that the MPEG layer I compression factor is 1:4.
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Solution:

(a)
16b � 2 � 32; 000 1

s
4

¼ 256; 000 b=s ¼ 256 Kb=s:

(b)
16b � 2 � 44; 100 1

s
4

¼ 352; 800 b=s ¼ 352:8 Kb=s:

(c)
16 b � 2 � 48000 1

s
4

¼ 384; 000 b=s ¼ 384 Kb=s:

2.22. Consider 1,152 signal samples and show that MPEG layer II compression

algorithm provides considerable savings compared to the MPEG layer I algorithm,

even in the case when the samples are coded with the maximal number of bits in

each subband.

Solution:

MPEG layer I algorithm:

1152 samples ¼ 3 block x 384 samples

384 samples ¼ 32 block x 12 samples

4 allocation bits are assigned to each block

Maximal number of bits that is available for coding of samples is 15

6 bits that corresponds to scale factor is assigned to each block

3�32�4 b + 3�32�6 b + 3�32�12�15 ¼ 18240 b

MPEG layer II algorithm:

The signal with 1,152 samples is divided into three parts: 384 samples belonging to

low frequencies, 384 middle frequency samples and 384 samples corresponding to

high frequencies.

We assign 4 allocation bits, for each low-frequency block and consequently we

have 15 b/sample at most;

3 allocation bits are assigned to each of 32 middle frequency blocks, meaning that at

most 7 b/samples are available;

Finally, high-frequency blocks get 2 allocation bits each, and this means at most 3

b/sample;

The scale factor requires 6 bits per block.

Therefore, the total number of bits that is required for coding the set of 1,152

samples is:

32 �4þ32 �3þ32 �2þ3 �32 �6þ32 �12 �15þ32 �12 �7 þ32 �12 �3¼ 10;464 b
The savings can be calculated as a difference between the number of required bits:

18,240–10,464 ¼ 7,776 b.
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2.23. Consider a simplified part of the sequence obtained by using the MPEG layer I

algorithm and determine the value of the third sample in the first block (from 32

blocks)? (Fig. 2.48)

Solution:

First 4 allocations bits – 0110 – correspond to the first block.

The sequence 0110 determines the samples within the considered block are

coded by using 6 + 1 ¼ 7 b/sample. Hence, we have:

I sample: 0110010

II sample: 1101100

III sample: 0110101

The value of the third signal sample is 53.

The scale factor is defined by the sequence 011101, i.e. the scaling factor is

29·2 dB ¼ 58 dB.

2.24. The signal with maximal frequency 24 KHz is coded by using the MPEG layer

II algorithm and the achieved bit rate is 192 Kb/s. Calculate the number of bits

required for representation of the constant-length block used as a coding unit.

Solution:

fmax ¼ 24 KHz ) fs ¼ 48 KHz, or in other words 1 s of the signal consists of

48,000 samples.

The total number of bits for the coding blockwithin theMPEG layer II algorithm is:

n ¼ 1; 152 samples � 192; 000 b=s

48; 000 samples=s
¼ 4; 608 b:
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8. Kovačević B, Milosavljević M, Veinović M, Marković M (2000) Robustna Digitalna Obrada

Signala. Akademska misao, Beograd

9. Maes J, Vercammen M, Baert L (2002) Digital audio technology, 4th edn. In association with

Sony, Focal Press
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Chapter 3

Storing and Transmission of Digital

Audio Signals

In this chapter, we consider the widely used media for storing digital data. Special

attention is given to CD, Mini Disc (MD), DVD (concepts of data writing and

reading processes are considered), as well as to the coding principles. Different

error correction and interleaving algorithms such as cyclic redundancy check, cross

interleaving, Reed–Solomon code, and Eight-to-FourteenModulation are presented.

Also, the basic concepts of the digital audio broadcasting system are considered.

3.1 Compact Disc: CD

The basic characteristics of a CD are provided in Table 3.1.

A CD has 20,625 tracks, where the distance between tracks is 1.6 mm. The audio

storage space is placed between the lead-in and the lead-out area, having diameters

of 46 and 116 mm, respectively. The lead-in area contains information about the

CD content, the length and the starting time of audio sequences. The lead-out area

provides the information that the playback is completed. The internal structure of

the CD is given in Fig. 3.1.

On the CD surface, there are pits and a flat layer called land. The pits can have

one of nine different lengths, from T3 to T11 (Table 3.2). The smallest pit size is

0.833 � 0.5 mm. However, the pit and land lengths may vary, depending on the disc

writing (turning) speed while recording. For example, T3 pit’s length is 833 nm for

the writing speed 1.2 m/s, while for the speed 1.4 m/s it is 972 nm.

Laser rays that fall on the land of the CD are reflected with the same path and the

same intensities, while the intensities of rays scattered from the bumps are lower.

The intensity of reflected beam is detected as one of the logical values (1 or 0).

Figure 3.2 illustrates the laser beam reflections from a CD.

It is noteworthy that a CD is not sensitive to some amount of dust, fingerprints,

and scratches. One reason that a CD has a good performance in terms of sensitivity

S. Stanković et al., Multimedia Signals and Systems,
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to dust is a protective layer of 1.2 mm thickness, which completely passes the laser

beam through. For example, if there is a dust grain on the protective layer, the

laser ray will pass to the focal point without obstacles as long as the dust grain

diameter is less than 0.8 mm. The intensity of the reflected ray will correspond to

the same logical value as in the case of reflection from the clean surface, Fig. 3.2.

Table 3.1 Basic features

of CD
Characteristics Values

Frequency range 20 Hz–20 KHz

Dynamic range �96 dB

Diameter 12 cm

Playing time 60–74 min

Fig. 3.1 The structure of CD

Table 3.2 Lengths of pits

Pits length Size in nm

T3 ¼ 10001 833

T4 ¼ 100001 1,111

T5 ¼ 1000001 1,388

. . . . . . . . .

T11 ¼ 1000000000001 3,054
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3.1.1 Encoding CD

In order to be resistant to scratches and other errors, an efficient coding scheme is

applied. Namely, the audio signal stored on a CD is encoded within four steps:

1. Cross-Interleaved Reed–Solomon Coding (CIRC)

2. Generating a control word

3. EFM encoding

4. Generating synchronization word

When passing through the CD encoding system, a bit rate for a 16-bit stereo

audio signal changes from 1.4112·106 to 4.3218·106 b/s. To easily understand the

coding schemes used for CD, let us first briefly consider cyclic redundancy check

(CRC) and interleaving.

3.1.1.1 Cyclic Redundancy Check

CRC is a general method used for error detection. The method relies on the division

of a polynomial corresponding to the original sequence by another predefined

polynomial function, resulting in a residue, which is actually a CRC. The length

of a residue is always smaller than the length of the polynomial. CRC coding can

also be done by using the exclusive OR operation, but both polynomials have to be

represented as binary sequences.

Let us assume that the message is 11010011101100, while the divisor sequence

is equal to 1011 (as a polynomial it is defined by x3 + x + 1). Now, the EX OR

operation should be carried out between the original sequence and the divisor

sequence (from left to right). It should be mentioned that if the first bit in the

original sequence is equal to 0, then we begin the EX OR operation on the next bit

Fig. 3.2 Reflections from a CD
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that has the value 1. The second step is to move the divisor sequence by one position

to the right and perform the EX OR operation again. This procedure is repeated

until the sequence 1011 reaches the end of the original sequence, as illustrated in the

example. At the end, a binary residual sequence is obtained, representing the CRC

function.

11010011101100

1011

01100011101100

1011

00111011101100

1011

00010111101100

1011

00000001101100

1011

00000000110100

1011

00000000011000

1011

00000000001110

1011

00000000000101 the remaining 3 bitsð Þ

Typical polynomials used in the CRC encoding are given in Table 3.3.

3.1.1.2 Interleaving

Interleaving is an approach that arranges the data in noncontiguous order to

decrease the effects of errors. This enables us to possibly recover damaged

information by an interpolation method. For example, consider a signal with 24

samples and divide it into blocks of 12 samples. A simple interleaving can be

obtained by reordering samples, as shown in Fig. 3.3. In this case, interleaving is

based on moving the first 6 samples within the block to the right by i � 1, where i
is the sample position (e.g., the third sample is moved for 3 � 1 ¼ 2 positions

to the right).
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Another simple example of interleaving, which is closer to the concept used in

the CIRC encoding, is shown in Fig. 3.4. Note that the distance between the

consecutive samples is increased.

Each row has a different delay (the first row has no delay, the second row has a

unit delay, etc.).

3.1.1.3 Cross-Interleaved Reed–Solomon Coding

Consider now the interleaving procedure used in the CD coding, which is consider-

ably more complex and is illustrated in Fig. 3.5.

Table 3.3 Some of the

polynomials used for CRC

coding

Code Polynomial

CRC-1 xþ 1

CRC-4 ITU x4 þ xþ 1

CRC-5 ITU x5 þ x4 þ x2 þ x1

CRC-8-CCITT x8 þ x2 þ xþ 1

CRC-10 x10 þ x9 þ x5 þ x4 þ xþ 1

CRC-12 x12 þ x11 þ x3 þ x2 þ xþ 1

CRC-16 CCIT x16 þ x12 þ x5 þ 1

CRC-16 IBM x16 þ x15 þ x2 þ 1

Fig. 3.3 An example of interleaving

Fig. 3.4 Interleaving based on the delay lines
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The structure is based on a group of six samples for the left and six samples for

the right channel of stereo audio signals. Each sample is represented by 16 bits. Odd

and even samples are separated. From each sample, two 8-bit words are formed (24

words in total). Then, all even samples are delayed by two symbols.

Figure 3.6 illustrates an example depicting how even the part of the system with

a two-symbol delay can be useful to reconstruct the damaged part of the signal.

Labels Li and Ri represent the left and right ith sample, respectively. Shaded parts

denote damaged samples. In the lower part of Fig. 3.6, the delay compensation is

performed and the samples are synchronized according to their initial order. Based

on the even samples, the damaged odd samples are reconstructed by interpolation,

and vice versa.

Fig. 3.5 Interleaving used in CD coding
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Fig. 3.6 The reconstruction principle of the damaged signal part
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The C2 encoder, shown in Fig. 3.5, generates four Q words that are 8-bits long.

These words represent the parity bytes used to increase the distance between the

odd and even samples and allows for the errors detection. Additional interleaving is

performed after the C2 encoder, which arranges the order and distances between the

existing 28 words. The introduced delay between the words is used to dissipate the

error across distant positions in order to increase the ability to recover as many

samples as possible. After the interleaving subsystem, the C1 encoder generates

four P words (P parity bytes). Therefore, the CIRC encoder ends up with 32 words

from the initial 24 input words, introducing the redundancy of 8 words and

increasing the bit rate from 1.4112·106 to 1.8816·106 b/s. The resultant 32 sequ-

ences are included within the unit called frame.

The procedure for determining P and Q parity words is made by using the

Reed–Solomon code. It is based on the finite field arithmetic, which is usually

referred to as Galois fields. A finite field of q elements is denoted as GF(q). The
field GF(q) always contains at least one element, called a primitive element, with

the order (q � 1). If a is a primitive in GF(q), then (q � 1) consecutive powers of

a: {1, a, a2,. . ., aq � 2} must be distinct and they are (q � 1) nonzero elements of

GF(q). The “exponential representation” allows in describing the multiplication

operation as an addition: axay ¼ ax + y. A primitive element is a root of a primitive
polynomial p(x). For example, if we consider the polynomial: p(x) ¼ x3 + x + 1,

then a3 + a + 1 ¼ 0. Note that the addition is done as the XOR operation.

The Reed–Solomon code uses the Galois field in the form GF(2k), where the

elements of the field are represented by k bits. The 3-bit terms given in Table 3.4

describe a Galois field GF(23).
In order to understand how to obtain P and Q words, let us consider one

simplified, but illustrative example. Suppose that we have five data words labeled

as A, B, C, D, and E (3-bit words are used). Then, we set the following equations:

A� B� C� D� E� P� Q ¼ 0; (3.1)

Table 3.4 The Galois field GF(23)

Exponential Algebraic Binary

0 0 000

1 1 001

a a 010

a2 a2 100

a3 aþ 1 011

a4 a � a3 ¼ a2 þ a 110

a5 a2 � a3 ¼ a2 þ aþ 1 111

a6 a � a5 ¼ a3 þ a2 þ a ¼ aþ 1þ a2 þ a ¼ a2 þ 1 101

a7 a � a6 ¼ a � a2 þ 1ð Þ ¼ aþ 1þ a ¼ 1 001
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a7A� a6B� a5C� a4D� a3E� a2P� aQ ¼ 0; (3.2)

where ai are the above defined constants. By solving the equations simultaneously,

the expressions for P and Q word are obtained. Hence, (3.2) is divided by a, and
then Q is replaced by A� B� C� D� E� P (since from (3.1) Q ¼ A� B� C
�D� E� P holds):

a6A� a5B� a4C� a3D� a2E� aP� Q ¼
¼ a6A� a5B� a4C� a3D� a2E� aP� A� B� C� D� E� P

) a6 � 1
� �

A� a5 � 1
� �

B� a4 � 1
� �

C� a3 � 1
� �

D� a2 � 1
� �

E ¼ a� 1ð ÞP:
(3.3)

By using the binary representation of constants from the Table 3.4, (3.3) can be

simplified as:

a2A� a4B� a5C� aD� a6E ¼ a3P

P ¼ a6A� aB� a2C� a5D� a3E;
(3.4)

where a2/a3 ¼ a�1 ¼ a7–1 ¼ a6. Similarly, by multiplying (3.1) by a2, we have:

a2A�a2B�a2C�a2D�a2E�a2P�a2Q¼ 0 )
a7A�a6B�a5C�a4D�a3E� a2A�a2B�a2C�a2D�a2E�a2Q

� ��aQ¼ 0 )
a7�a2
� �

A� a6�a2
� �

B� a5�a2
� �

C� a4�a2
� �

D� a3�a2
� �

E� a�a2
� �

Q¼ 0

Again using the binary representation of constants, the Q word is obtained as:

a6A� B� a3C� aD� a5E ¼ a4Q )
Q ¼ a2A� a3B� a6C� a4D� aE:

(3.5)

In order to detect errors, two syndromes are considered:

S1 ¼A0 � B0 � C0 � D0 � E� P0 � Q0;

S2 ¼ a7A0 � a6B0 � a5C0 � a4D0 � a3E� a2P0 � aQ0;
(3.6)

where A0,B0,. . .,Q0 denote received words that may contain an error. Assume that

the error occurred in the word C (C0 ¼ C + G), while the other words are without
errors. Then, we obtain:

S1 ¼ A� B� ðCþ GÞ � D� E� P� Q ¼ G;

S2 ¼ a7A� a6B� a5ðCþ GÞ � a4D� a3E� a2P� aQ ¼ a5G;
(3.7)
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or S2 ¼ a5S1. Therefore, the error is equal to the syndrome S1 and the error location

is obtained based on the weighting coefficient. After calculating the coefficient as:

ax ¼ S2
S1
, and concluding that ax ¼ a5 holds, one may know that an error occurred

within the C word, because C is multiplied by a5.

3.1.1.4 Generating Control Word

The next step in the CD coding procedure is a control word generation. The control

word is added to each block of 32 words. This word consists of the codes P, Q, R, S,
T, U, V, W. Note that the choice of P and Q labels is made a bit unadvisedly, since

we used them to obtain new code sequences independent of P and Q words

generated in CIRC. P can have values 0 or 1. From Fig. 3.7, we can observe that

P has value 1 between two sequences recorded on CD and value 0 during the

sequence duration. Switching from 0 to 1 with frequency equal to 2 Hz in the lead-

out area indicates the end of the disc. The Q word specifies the number of audio

channels. It should be noted that the total length of these subcodes is 98 bits, which

means that it can be read from 98 frames. After adding the control word, the bit rate

is increased to:

33=32 � 1:8816 � 106b=s ¼ 1:9404 � 106b=s:

An example of the P and Q words is given in Fig. 3.7.

The Q word in the BCD format contains the current track number (01, 02, 03,

etc.), the index number, running time, etc. Track number (TNO) represents the

current track number and ranges from 01 to 99. The TNO within the lead in area has

the value 00. The index point is a two-digit number in the BCD format, and within

the sequences, it can be up to 99 index points. During a pause, the index point is

equal to 00, while the index point at the beginning of each sequence is equal to 01.

Also, the index point in the lead out area is equal to 01. Setting up the values for

Fig. 3.7 Illustration of timing diagrams for P and Q channels

118 3 Storing and Transmission of Digital Audio Signals



index pointers is a way to divide the sequence into smaller parts. Index pointers are

primarily intended for CDs with long sequences (e.g., a classical music CD), since

they allow direct access to some parts of the sequence. However, they are rarely

used nowadays.

Other subcodes are used for transmitting additional information such as text and

information on duration of individual sequences.

After we determine the control word, the EFM (Eight to Fourteen Modulation)

is used to convert 8-bit symbols into 14-bit symbols. Observe that with 8 bits we can

make 256 combinations, while with 14 bits we can achieve 16,384 combinations.

The basic idea of EFM coding is to map 8-bit words into 14-bit words such that the

number of inversions between consecutive bits is reduced, i.e., the distance between

transitions on the disc surface is increased (logical value 1 is used to determine the

transitions). An example of an EMF mapping is shown in Table 3.5, while the EFM

encoding procedure is illustrated in Fig. 3.8.

Note that the 14-bit signals are separated by using threemerging bits to additionally

reduce the distance between consecutive values 1. In other words, the initial 8-bit

sequences are extended to 17 bits and represented by the NRZ code. Then the

sequence of bits from the NRZ code is transferred into the NRZ1 code, such that

each value 1 in the NRZ code makes the transition in NRZ1, as shown in Fig. 3.8.

The NRZ1 sequence defines the position of pits when writing data to a CD. The

minimum duration of the NRZ1 signals is 3 T (3 clock periods) and the maximum

duration is 11 T.

Table 3.5 Examples

of extending 8-bit words

to 14-bit words

8-bit word 14 bit words

00000011 00100100000000

01001110 01000001001000

10101010 10010001000100

11110010 00000010001001

Fig. 3.8 An example of EFM encoding
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The bit rate after this coding stage is:

17=8 � 1:9404 � 106b=s ¼ 4:12335 � 106b=s:

Finally, the CD encoding process ends with a synchronization (sync) word. This

word is added after each frame to indicate the beginning of the frame, but also

serves to control the spinning motor speed. The sync word consists of 12 values

equal to 1, another 12 values 0, and 3 filter bits, making a total of 27 bits. Hence,

from the previously achieved 561 bits per frame, now we get 588 bits within the

frame (33 words·17 bits ¼ 561).

The final bit rate is:

4:12335 � 588=561 ¼ 4:3218 � 106b=s:

3.2 Mini Disc

Mini Disc (MD) has a diameter of 6.4 cm, almost twice smaller than a CD, with the

same playing time of 74 min. The sound quality is almost identical to the CD audio

quality. The structure of MD is depicted in Fig. 3.9.

Sophisticated compression algorithms are needed to reduce the amount of

information that has to be stored in order to retain a high-quality sound on MDs.

For this purpose, the MD uses ATRAC compression, described in the previous

chapter. Note that the sampling frequency used for MDs is the same as for CDs

(44.1 KHz), and the track width is 1.6 mm.

Data recording is done through the magnetization performed by the magnetic

head. The magnetization is done at the specific temperature, which is above the

Curie point (about 185 �C). Note that the materials that are easily magnetized

are not used for manufacturing of MDs due to the possibility of data loss in the

presence of an external magnetic field. Therefore, even when exposed to an external

Fig. 3.9 The structure of MD
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magnetic field, MDs will not lose its contents, unless the required temperature is

achieved. A system for the MD magnetization is illustrated in Fig. 3.10.

When recording the data, the laser heats the magnetic layer up to the Curie

temperature. Then, the magnetic head, placed on the opposite disc surface,

performs the magnetization by producing the correct polarity for each logical

value (north or south, depending on the bit 1 or 0). The laser beam is reflected

from the magnetic layer while reading the data. The polarization of the laser beam

is changed based on the orientation of the magnetic layer (Fig. 3.11). An optical

device with a polarizing filter collects reflected polarized signals. When the laser

beam passes through the filter, the intensity changes according to the laser beam

polarization, and the output signal is generated.

MDs use the Advanced CIRC (ACIRC) for encoding, which is similar to the

CIRC used in CDs. It also uses the EFM encoding, along with the ATRAC

compression, which is not used in CDs.

The antishock system is an important part of MDs as it enables the system to

recover from any shocks during playback. This system is based on the RAM,

allowing recovery from the shock with duration of several seconds.

A block diagram of the entire MD system is illustrated in Fig. 3.12.

When data are written to the MD (upper part in Fig. 3.12), the digital audio

signal is fed to the ATRAC encoder. The ATRAC data compression is performed

and the data are loaded to the antishock system, and further through the EFM/

ACIRC encoder (which includes interleaving, error detection and EFM coding).

The signal from the EFM/ACIRC encoder is used to control the magnetic head

when recording the data.

Fig. 3.10 Recording the data on the MD
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Reproduction or reading of the data starts at the unit called the optical signal

collector, shown in the lower part of Fig. 3.12. A special device within this unit is

called the optical detector. Then, the signal is amplified by the radio frequency (RF)

amplifier and fed to the EFM/ACIRC decoder. The data are decompressed using the

ATRAC decoder that follows the antishock system. The output of the ATRAC

decoder is a digital audio signal.

3.3 Super Audio CD (SACD)

SACD provides a high-quality sound, with the option of multichannel records.

The diameter of SACD is the same as of a CD, while the width of pit lane is less

than in the case of CD (the track width is 0.74 mm and the length of a pit is 0.40 mm).

Fig. 3.11 Reflections of the laser beam in the case of MD

Fig. 3.12 A block diagram of the MD system
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The sampling frequency is 2.8224 MHz and the 1-bit DSD encoding is used. The

maximum frequency of the reproduced sound is up to 100 KHz and with 120 dB

dynamic range. Data are protected with the SACD watermarking techniques.

The memory space required to store 74 min stereo audio recording is

(2·74·60·2.8224·106)/8 B ¼ 2.9 GB. Hence, in the case of six-channel format, the

required memory capacities would be certainly much larger. Therefore, SACDs use

lossy compression (e.g., AC3) or lossless compression based on the complex

algorithms with adaptive prediction and entropy coding.

3.4 DVD-Audio

DVD-audio (DVD hereinafter) is also used to record high-quality sound with the

sampling frequency of 192 KHz and 24 bit data format. DVD allows the signal-to-

noise ratio of S/N ¼ 146 dB. The capacity of a DVD is 4.7 GB and its diameter is

8 or 12 cm. The maximum number of channels is 6. Based on these requirements, a

DVD cannot store 74 min of high quality music within 4.7 GB of memory space.

Therefore, the data have to be compressed. For this purpose, the lossless compres-

sion called Meridian Lossless Packing (or Packed PCM) has been developed. It is

based on three lossless techniques: Infinite Impulse Response (IIR) waveform

predictor selected from a set of predetermined filters to reduce the intersample

correlation, lossless interchannel decorrelation, and Huffman coding. This com-

pression algorithm compresses the original data by 50 %. However, even with this

high compression ratio, it is not possible to record six channels with sampling

frequency of 192 KHz and 24 bits. Therefore, the channels reflecting the influence

of the environment (surround sound) use different sampling frequencies. For

example, the direct left, right, and center channels are characterized by 24-bit

format and the sampling frequency of 192 KHz, while the signals in the remaining

three channels (representing the surround effects) have a sampling frequency

96 KHz and they are coded by 16 bits.

3.5 Principles of Digital Audio Broadcasting: DAB

Before we consider the main characteristics of DAB systems, let us review some

basic facts about the FM systems. In order to receive an FM signal with a stable

high quality, the fixed and well-directed antennas are required. For example, it is

impossible to achieve this condition with car antennas. Also, due to the multipath

propagation, the waves with different delays (i.e., different phases) can cause a

significant amplitude decrease and, hence, the poor reception of such signals

(Fig. 3.13).

The DAB system can avoid the aforementioned problems. Consider a DAB

system given in Fig. 3.14.
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The first block compresses the data, which are then forwarded to the second

block. The second block encodes the data in order to become less sensitive to noise.

Lastly, the signal is forwarded to a transmitter that broadcasts the data. Figure 3.15

shows the channel interleaving process used to combine data from different

channels into one transmission channel.

If interference occurs, it will not damage only the signal in one channel, but will

be scattered across all channels. Hence, a significant damage of signal belonging to

only one channel is avoided.

Fig. 3.13 Direct and reflected FM signals with equal strength are nulled when 180� phase

difference occur

Fig. 3.14 A block scheme of DAB system

Fig. 3.15 An illustration of channel interleaving

124 3 Storing and Transmission of Digital Audio Signals



3.5.1 Orthogonal Frequency-Division Multiplexing (OFDM)

OFDM is used to achieve more efficient bandwidth utilization for DAB systems.

Binary data sequence is first divided into pairs of bits, which are then forwarded to

the QPSK modulator (some systems use QAM or other modulation schemes). This

means that two bits are mapped into one of the four phase values, as illustrated in

the diagram in Fig. 3.16.

This produces the complex QPSK symbols. If the changes in the phase of

the received signal are used instead of the phase itself, the scheme is called the

differential QPSK (DQPSK). It depends on the difference between successive

phases. In DQPSK the phase shifts are 0�, 90�, 180�, 270�, corresponding to the

data ‘00’, ‘01’, ‘11’, ‘10’, respectively.

Each of the symbols obtained after QPSK modulation is multiplied by a

subcarrier frequency:

skðtÞ ¼ Ake
jfk ej2pfk t; (3.8)

where Ak i fk are the amplitude and the phase of a QPSK symbol. For example,

symbols obtained by using the QPSK modulation have the constant amplitude and

their phases can have one of the four possible values. If we assume that we have N
subcarriers, then one OFDM symbol will be in the form:

sðtÞ ¼ 1ffiffiffiffi
N

p
XN�1

k¼0

Ake
j 2pfk tþfkð Þ; 0<t<T; (3.9)

Fig. 3.16 Diagram and table for QPSK modulation
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where fk ¼ f0 þ kDf ¼ f0 þ k 1
NTs

, Ts is the length of the symbols (e.g., the QPSK

symbols), while T ¼ N·Ts is the OFDM symbol duration. The carrier frequency is

f0, while the subcarriers are separated by 1/T. The subcarriers are transmitted in

mutually orthogonal frequencies, so that the subcarriers are peak centered at the

positions where other subcarries pass through zero (Fig. 3.17). Note that the OFDM

symbol corresponds to the definition of the inverse Fourier transform. Comparing to

the previously used form of the Fourier transform, ok is replaced by 2pfk, and
consequently 1/N is replaced by 1=

ffiffiffiffi
N

p
.

The spectrum of an individual subcarrier is of the form sin(x)/x and it is centered
at the subcarrier frequency.

A simplified scheme including QPSK and OFDM modulator is given in

Fig. 3.18. Note that an OFDM system should include additional elements, such as

pilot symbols, guard intervals, etc., but here, we only deal with the basic OFDM

concepts.

We saw that the OFDM modulation can be performed by calculating the inverse

Fourier transform. Demodulation is achieved by dividing the signal into the parts that

are equal in duration to OFDM symbols. Then, the Fourier transform is performed

and we can identify the subcarrier frequencies. The resulting signal is obtained by

calculating the phases of the components on the subcarrier frequencies.

Fig. 3.17 An OFDM spectrum: (a) One subcarrier, (b) Five subcarriers

Fig. 3.18 A simplified block diagram of OFDM system
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3.6 Examples

3.1. Starting from the sequence:

1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16f g;

perform a simple interleaving procedure defined as follows: the sequence is divided

into four-sample segments, and then the first interleaved block is formed by taking

the first elements from each segment, the second block is formed from the elements

on the second position, and so on. Determine the output sequence.

Solution (Fig. 3.19):

3.2. Consider the following input sequence:

1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16f g

The interleaving procedure is defined as follows:

– The input samples are placed to the 4 � 4 matrix, by filling the matrix rows.

– The matrix rows are reordered according to the principle 4–2–3–1 (the new order

of rows).

– The columns are reordered by using the same rule.

Determine the output sequence obtained by reading the columns of the resulting

matrix.

Solution:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

)
13 14 15 16

5 6 7 8

9 10 11 12

1 2 3 4

)
16 14 15 13

8 6 7 5

12 10 11 9

4 2 3 1

Output sequence is: {16,8,12,4,14,6,10,2,15,7,11,3,13,5,9,1}.

3.3. Consider a 16-bit audio stereo signal and calculate how much does the bit rate

change when passing through the first three CD encoding stages (CIRC, Generating

control word, EFM), if the starting bit rate at the input of the coder is 1.4112·106 b/s.

Solution:

CIRC: At the input of the CIRC coder, we have 24 words (8 bits each). The coder

C2 generates 4 Q words (8 bits each), while the coder C1 generates 4 P words

(8 bits each).

Fig. 3.19 Example of interleaving
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At the output of the CIRC Coder, we have 32 words.

24 words produce the bit rate equal to 1.4112·106 b/s )
32 words produce the following bit rate:

32=24ð Þ � 1:4112 � 106 ¼ 1:8816 � 106b=s:

Generating control word: The 8-bit control word (P, Q, R, S, T, U, V,W) is assigned

to each block.

Before generating the control word, the bit rate was 1.8816·106 b/s. At the end of

this stage the bit rate becomes:

33=32ð Þ � 1:8816 � 106b=s ¼ 1:9404 � 106b=s:

EFM: In this stage 8-bit symbols are firstly extended into 14-bit symbols, and then three

additional bits are embedded between 14-bit combinations. Hence, instead of 8-bit

words,wehave17-bitwordsat theoutput of theEFMcoder,which results in the bit rate:

17=8ð Þ � 1:9404 � 106b=s ¼ 4:1233 � 106b=s:

3.4. Consider the Super audio CD with sampling frequency 2.8224 MHz and 1-bit

DSD coding. It is recommended that the 74 min of an audio is stored within 4.7 GB.

Is it enough memory to store the considered six-channel audio format?

Solution:

fs ¼ 2:8224 MHz ) 2:8224 � 106samples=s:

74 min ¼ 74 � 60 ¼ 4440 s

Memory requirements: 6 � 4440 � 2:8224 � 106 � 1b ¼ 75188 � 106b;

75188 � 106
8

¼ 9:4 � 109B ¼ 8:75GB:

Hence, 4.7 GB is not enough to store 74 min of the considered audio format.

3.5. In the case of DVD, the samples of direct left, right, and central channel are

coded by using 24 bits, while the sampling frequency is 192KHz. The samples of the

three environmental channels are coded by using 16 bits (the sampling frequency is

96 KHz). Calculate the memory requirements for storing 10 min of audio on DVD.

Solution:

In the considered case, we have:

– Three channels with 192·103 samples/s, each coded by using 24 bits

– Three channels with 96·103 samples/s, each coded by using 16 bits
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Memory requirements:

3 � 24 � 192 � 103 � 10 � 60þ 3 � 16 � 96 � 103 � 10 � 60 ¼
¼ 8294400 � 103 þ 2764800 � 103 ¼ 11059200 � 103 b

ð11059200 � 103=8Þ= 10243
� � ¼ 1:29 GB

3.6. Having in mind that the sector of a CD contains 98 frames, each frame contains

588 bits, and each sample is coded by using 16 bits (the sampling frequency is

44.1 KHz, stereo channel), calculate the number of sectors that are processed/read

within 2 s.

Solution:

One sector of a CD contains the following number of bits:

98 frames � 588 b ¼ 57624 b:

The bit rate for a considered stereo signal is:

2 � 44100 � 16 ¼ 1411200 b=s:

Hence, the total number of sectors that are read in 2 s is:

2 � 1411200=57624 ¼ 49 sectors:

3.7. By using the CD bit rate equal to 4.3218·106 b/s, calculate the number of bits

which are used for (P, Q, R, S, T, U, V, W) words within 1 s of the audio signal

stored on CD?

Solution:

The total number of frames: 4:3218�106 b/s
588 b=frames

¼ 7; 350 frames=s

The total number of sectors is: 7;350
98

¼ 75.

Each sector contains one of each word type: P, Q, R, S, T, U, V,W. Hence, the total

number of bits used to represent these words is:

75 sectors � 98 b=word � 8 words ¼ 58; 800 b

3.8. Consider a 16-bit sequence: 1001101010101010, which is fed to the QPSK

modulator. The resulting QPSK sequence duration is T ¼ 4.984 ms and it is

the input of OFDM block. Assuming that the carrier frequency is f0 ¼ 1 KHz,

while the inverse Fourier transform is calculated in 768 points, determine the

frequencies of subcarriers f1 and f2.

Solution:

At the output of QPSK modulator, we obtain the sequence of eight symbols. The

QPSK symbol duration is:
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TS ¼ T

8
¼ 4:984 ms

8
¼ 0:623 ms:

The frequency of the k-th subcarrier is given by:

fk ¼ f0 þ kDf ¼ f0 þ k
1

NTS
;

Hence, the frequencies of the first two subcarriers are obtained as:

f1 ¼ f0 þ Df ¼ f0 þ 1

NTS
¼ 1 KHzþ 1

768 � 0:623 ms
¼ 1002:09 Hz;

f2 ¼ f0 þ 2Df ¼ f0 þ 2
1

NTS
¼ 1 KHzþ 2

768 � 0:623 ms
¼ 1004:18 Hz:

3.9. Determine the frequency of the subcarrier k ¼ 5 within a certain OFDM

system, if the carrier frequency is f0 ¼ 2,400 MHz, while the symbols rate is

fS ¼ 2 MHz and the total number of subcarriers is N ¼ 200.

Solution:

The frequency of the k-th subcarrier can be calculated as:

fk ¼ f0 þ kDf ¼ f0 þ k
1

NTS
;

where:fS ¼ 1
TS
. The frequency of fifth subcarrier is then:

f5 ¼ f0 þ 5Df ¼ f0 þ 5
fS
N
¼ 2; 400 MHzþ 5

2 MHz

200
¼ 2400:05 MHz:

3.10. Determine the number of subcarriers in the OFDM system if the OFDM

symbol duration is 3.2 ms, while the total transmission bandwidth is B ¼ 20 MHz.

Solution:

For a given OFDM symbol duration NTS ¼ 3.2 ms, we can calculate subcarrier

spacing:

Df ¼ 1

NTS
¼ 1

3:2 ms
¼ 312:5 KHz:

The number of subcarriers in the OFDM system can be obtained as:

Nsc ¼ B

Df
¼ 64:
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tion in OFDM systems. J Green Eng 1(1):477–489

9. Painter T (2000) Perceptual coding of digital audio. Proc IEEE 88(4):451–513

10. Roth R (2006) Introduction to coding theory. Cambridge University Press, Cambridge
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Chapter 4

Digital Image

4.1 Fundamentals of Digital Image Processing

An image can be represented as a two-dimensional analog function f(x,y). After
digitalization, a digital image is obtained and it is represented by a two-dimensional

set of samples called pixels. Depending on the number of bits used for pixel

representation, a digital image can be characterized as:

• Binary image – each pixel is represented by using one bit

• Computer graphics – four bits per pixel are used

• Grayscale image – eight bits per pixel are used

• Color image – each pixel is represented by using 24 or 32 bits

Increasing the number of bits reduces the quantization error, i.e., increases the

SNR by 6 dB per bit.

Grayscale image with N1 rows and N2 columns contains N1 � N2 spatially

distributed pixels, and it requires 8 � N1 � N2 bits for representation. Color

images are represented by using three matrices (for three color channels). Hence,

if 8 bits per pixel are used, we need 3 � 8 � N1 � N2 bits of memory to store a

color image.

In addition to the spatial distribution of pixels, which provides the information

about the positions of grayscale values, a pixel value distribution in different image

regions can be analyzed as well. Such a distribution can be described by the joint

density function:

pðxiÞ ¼
XN
k¼1

pkpkðxiÞ; i ¼ 1; 2; . . . ;M; (4.1)

S. Stanković et al., Multimedia Signals and Systems,
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where xi represents the gray level of the i-th pixel, pk(xi) is the probability density

function (pdf) for a region k, and pk is a weighting factor. The pdf for a region k can
be described by the generalized Gaussian function:

pkðxiÞ ¼ abk
2Gð1=aÞ e

� bk xi�mkð Þj ja½ �; a>0; bk ¼ 1
sk

Gð3=aÞ
Gð1=aÞ
h i1

2 ; (4.2)

where G is the gamma function and mk represents the mean value. The variance sk is
used to calculate bk. For a>>1, the pdf becomes uniform. For a ¼ 2, the Gaussian

distribution is obtained, while for a ¼ 1 the Laplace distribution follows. The

generalized Gaussian pdf is suitable, because it can be used to describe the image

histogram. The image histogram provides important information about the occur-

rence of certain pixel values, and as such, plays an important role in image analysis.

The histogram of a grayscale image “Lena” is given in Fig. 4.1.

4.2 Elementary Algebraic Operations with Images

Consider two images of the same dimensions, whose pixels at an arbitrary position

(i, j ) are denoted as a(i, j ) for the first and b(i, j) for the second image. Addition or

subtraction of two images is done by adding or subtracting the corresponding pixels

of an image, so that the resulting pixel is given in the form: c(i, j ) ¼ a(i, j ) � b
(i, j ).Multiplying the image by a constant term k can be written as c(i, j ) ¼ ka(i, j ).
However, if we want to represent the result of these and other operations as a new

image, we must perform quantization (i.e., rounding to integer values) and limit the

results in the range of 0–255 (grayscale image is assumed).

Consider now the grayscale images “Baboon” and “Lena” (Fig. 4.2).

Let us perform the following operation: c(i,j ) ¼ a(i, j ) + 0.3b(i, j ),where a(i, j )
denotes the pixel belonging to the “Lena” image, while b(i, j ) belongs to the

“Baboon” image. The result is the image shown in Fig. 4.3.

Fig. 4.1 Histogram of “Lena” image
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To obtain a negative of a grayscale image, we use the following relation:

n i; jð Þ ¼ 255� a i; jð Þ:

The negative image of “Lena” is shown in Fig. 4.4.

Clipping (cutting the pixels values over a certain level cmax and below a certain

level cmin) is another mathematical operation used in image processing, and it is

defined as:

aði; jÞ ¼
cmax; aði; jÞ>cmax;
aði; jÞ; cmax � aði; jÞ � cmin;
cmin; aði; jÞ<cmin:

8<
: (4.3)

For example, consider clipping of image “Lena” with cmin ¼ 100, cmax ¼ 156.
The result of clipping is shown in Fig. 4.5.

Fig. 4.2 (a) Grayscale image “Baboon”, (b) grayscale image “Lena”

Fig. 4.3 The resulting image obtained by adding 30% of “Baboon” to “Lena”

4.2 Elementary Algebraic Operations with Images 135



4.3 Basic Geometric Operations

Translation of an image a(i,j ) with dimensions N1 � N2 can be represented as

moving the pixels in one or both directions for a certain number of positions. In the

example shown in Fig. 4.6, we translated the image by embedding 31 rows and 31

columns of black color (zero value), while omitting the last 31 rows and columns.

If we would like a white surface to appear after translation, the zero values should

be replaced by the maximum values (e.g., value 255).

For an image a(x,y) the coordinates can be written by the vector
x
y

� �
. Then the

image rotation can be defined by:

X
Y

� �
¼ cos y � sin y

sin y cos y

� �
x
y

� �
; (4.4)

where
X
Y

� �
are the new coordinates after rotation (Fig. 4.7).

Fig. 4.4 Negative of “Lena”

image

Fig. 4.5 Clipped “Lena”

image
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After image rotation, we need to transform points from the polar coordinate

system to the rectangular coordinate system. In general, this transform is performed

with certain approximations.

4.4 The Characteristics of the Human Eye

By considering the characteristics of human visual system, we can define different

image processing algorithms that will meet important perceptual criteria.

One of the specific features of the human eye is sensitivity to the change of light

intensity. Specifically, the eye does not perceive the changes in light intensity

linearly, but logarithmically. It means that at lower intensity human eye can notice

very small changes in brightness, while at high intensity even a much bigger change

can hardly be registered.

There are two types of cells in the eye: elongated (rod cells or rods) and cone-like

(cone cells or cones). There are about 125 million rods and about 5 million cones.

Fig. 4.6 “Lena” image

translated for 31 columns

and 31 rows

Fig. 4.7 “Lena” is rotated

by 45�
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The rods just detect the amount of light, while the cones detect colors. An eye is not

equally sensitive to three primary colors: red, green, and blue. The relative ratio of

these sensitivities is:

Red : Green : Blue ¼ 30% : 59% : 11%

An eye is able to identify approximately between 40 and 80 shades of gray, while

for color images it can recognize between 15 and 80 million colors. The light

entering the eye is detected by the cones and rods. The image in the brain is actually

obtained as the sum of images in primary colors. TV sets (CRT, LCD, and plasma),

monitors, video projectors follow the human three-color model.

It is interesting to note that various models are used to measure the image quality

in different applications. Namely, the image quality can be represented by three

dimensions: fidelity, usefulness, and naturalness. For example, the usefulness is a

major metric for medical imaging, the fidelity is the major metric for paintings,

while the naturalness is used in virtual reality applications.

4.5 Color Models

Color is one of the most important image characteristics. It is generally invariant to

translation, rotation, and scaling. The color image can be modeled using various

color systems. RGB is one of the commonly used color systems. It can be

represented by the color cube as shown in Fig. 4.8. The gray level is defined by

the line R ¼ G ¼ B. Although the RGBmodel is based on the human perception of

colors, and thus, it has been used for displaying images (monitors, TV, etc.), other

color systems have also been defined in order to meet various constraints that exist

in the applications.

Fig. 4.8 Color cube
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The RGBmodel is based on the fact that color can be viewed as a vector function

of three coordinates for each position within the image. Sometimes this model

is called the additive model, because the image is obtained by adding the

components in primary colors. Each point in the image can be represented by

the sum of values of the three primary colors (R, G, B). A size of an RGB digital

image depends on how many bits we use for quantization. For example, for n ¼ 8

bits, the values range from 0 to 255. In the RGB model, the value 0 (coordinate

¼ 0) means the absence of color, while the value 255 (coordinate ¼ 1) denotes the

color with maximum intensity. Thus, we conclude that (0,0,0) represents black and

(1,1,1) represents white. When converting a color image to a grayscale one, the

luminescence is calculated as the mean value of the RGB components. By combin-

ing two of the three primary colors (R, G, B), we get the colors used in the CMY

color model, and white color as a sum of all three colors:

Gþ B ¼ C cyanð Þ; Rþ B ¼ M magentað Þ;
Rþ G ¼ Y yellowð Þ; Rþ Gþ B ¼ W whiteð Þ:

In Fig. 4.8, the color cube is shown in rectangular coordinates. It illustrates the

relative position of the RGB and CMY color model.

4.5.1 CMY, CMYK, YUV, and HSV Color

The coordinate system in the color space can be formed by using three noncollinear

color vectors. Thus, if we choose the basis vectors as follows: C – Cyan, M –

Magenta and Y – Yellow, the CMY color model is obtained. This model is basically

the most commonly used in printers, because the white is obtained by the absence of

colors. Even though, black is obtained by combining all three colors, the printers

usually have a separate cartridge for the black color. The CMYmodel including the

black color is called the CMYK color model. K is used to refer to the black color.

The connection between the CMY and RGB models is evident from the color cube:

C ¼ 1� R;M ¼ 1� G;Y ¼ 1� B; (4.5)

while the CMYK model can be obtained as:

K ¼ min C;M;Yð Þ; C ¼ C� K;M ¼ M� K;Y ¼ Y� K: (4.6)

Another commonly used system is YUV. Here, the color is represented by three

components: luminance (Y) and two chrominance components (U and V). The

YUV is obtained from the RGB by using the following equations:

Y ¼ 0:299Rþ 0:587Gþ 0:114B;

U ¼ 0:564ðB� YÞ;
V ¼ 0:713ðR� YÞ: (4.7)
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It is interesting to note that in the case of R ¼ G ¼ B, we have Y ¼ R ¼ G ¼ B,

which is actually the luminance component, while U ¼ 0, V ¼ 0.

Special efforts have been made to define the color systems that are more uniform

from the standpoint of perceptual sensitivity, such as L*u*v* and L*a*b* systems.

Perceptually uniform means that two colors that are equally distant in the color

space are equally distant perceptually, which is not the case with the RGB or CMY

models (the calculated distance between two colors does not correspond with the

perceived difference between the colors). In the L*a*b* model the perceptual color

difference is represented by the Euclidean distance:

DE�
ab ¼ DL�2 þ Da�2 þ Db�2

� �1
2 where

DL� ¼ L1
� � L2

�

Da� ¼ a1
� � a2

�

Db� ¼ b1
� � b2

� (4.8)

The L*a*b* model can be obtained from the RGB by the following

transformations:

X

Y

Z

2
664

3
775 ¼

0:490 0:310 0:200

0:177 0:813 0:011

0:000 0:010 0:990

2
64

3
75

R

G

B

2
664

3
775; (4.9)

L� ¼ 25
100Y

Y0

� �1
3

� 16;

a� ¼ 500
X

X0

� �1
3

� Y

Y0

� �1
3

" #
;

b� ¼ 200
Y

Y0

� �1
3

� Z

Z0

� �1
3

" #
: (4.10)

The condition 1 	 100Y 	 100 should be satisfied in (4.10). (X0,Y0,Z0) is the
value representing reference white. On the basis of this system, we can introduce

the HSV color system that is more oriented towards the perceptual model. The HSV

color system is represented by a cylindrical coordinate system as shown in Fig. 4.9.

This system is based on the three coordinates: H, S, and V. H is a measure of the

spectral composition of color, while S provides information about the purity of color,

ormore accurately, it indicates how far is the color from the gray level, under the same

amount of luminescence. V is a measure of the relative luminescence. The component

H is measured by the angle around the V axis, ranging from 0 (red) to 360�.
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Along the V axis, the luminance is changed from black to white. The value of theH, S,
and V can be defined by using the RGB model as follows:

H1 ¼ cos�1
1
2
ðR� GÞ þ ðR� BÞ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðR� GÞ2 þ ðR� BÞðG� BÞ
q

0
B@

1
CA;

H ¼ H1 for B 	 G;

H ¼ 360� � H1 for B>G;

(4.11)

S ¼ maxðR;G;BÞ �minðR;G;BÞ
maxðR;G;BÞ ; (4.12)

V ¼ maxðR;G;BÞ
255

: (4.13)

The HSV model is suitable for face detection and tracking algorithms. The

thresholds that define the human face color are defined as:

340� 	 H 	 360� and 0� 	 H 	 50�;
S � 20%;

V � 35%: (4.14)

Having in mind the coordinate system of this color model, we may observe that

the previously given intervals are wide, which may lead to the false detection of the

object that actually does not represent the face, but have a similar color information.

In order to avoid this possibility, additional analyses are required.

Fig. 4.9 The HSV color model
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4.6 Filtering

4.6.1 Noise Probability Distributions

Image noise may occur during image transmission over a communication channel.

The most common types of noise are impulse noise and Gaussian noise. Impulse

noise is manifested as a set of black and white pulses in the image (Fig. 4.10).

It occurs as a result of atmospheric discharges, or due to electromagnetic field

generated by various appliances.

If impulse noise takes two fixed values: a (negative impulse) and b (positive

impulse), with equal probabilities p/2, we will have the two-sided impulse noise

model. In this case, an image with impulse noise can be defined as:

fIði; jÞ ¼
a; with a probability p=2;
b; with a probability p=2;
f ði; jÞ; with a probability ð1� pÞ:

8<
: (4.15)

Thermal noise is usually modeled as the white Gaussian one and its distribution

is given by:

PgðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
e
�ðx�mÞ2

2s2 ; (4.16)

where m is the mean, while s2 denotes the variance of noise (s is the standard

deviation of noise). Figure 4.11 demonstrates image “Lena” affected by white

Gaussian noise.

Beside the impulse and Gaussian noise, the uniformly distributed noise can

appear. The gray level values of the noise are evenly distributed across a specific

Fig. 4.10 “Lena” affected

by an impulse noise with

density 0.05
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range. The quantization noise can be approximated by using uniform distribution.

The corresponding pdf is defined as:

PuðxÞ ¼
1

b�a ; for a 	 x 	 b
0; otherwise:

	
(4.17)

The mean value and variance of the uniform density function are:

m ¼ ðaþ bÞ=2 and s2 ¼ ðb� aÞ2=12; respectively.

Radar images may contain noise characterized by the Rayleigh distribution:

PRðxÞ ¼
2
b ðx� aÞe�ðx�aÞ2=b; for x � a
0; otherwise;

	
(4.18)

with the mean equal to m ¼ aþ ffiffiffiffiffiffiffiffiffiffiffi
pb=4

p
and the variance s2 ¼ bð4� pÞ=4.

4.6.2 Filtering in the Spatial Domain

Filtering of noisy images intends to reduce noise and to highlight image details.

For this purpose, the commonly used filters in the spatial domain are the mean and

median filters. Use of these filters depends on the nature of the noise that is present

within the image. Spatial domain filters are especially suitable in the cases when

additive noise is present.

4.6.2.1 Mean Filter

Mean filters are used to filter the images affected by the Gaussian white noise, since

it is based on calculating the average pixel intensity within an image part captured

by a specified window. The filter should use a small number of points within the

Fig. 4.11 “Lena” affected

by zero-mean white Gaussian

noise whose variance is

equal to 0.02
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window to avoid blurring of image details. Note that a larger window would

provide better noise filtering.

Consider a window of the size (2N1 + 1) � (2N2 + 1). The signal f(i,j ) is

affected by the noise n(i, j ) and the noisy signal is:

x i; jð Þ ¼ f i; jð Þ þ n i; jð Þ: (4.19)

The output of the arithmetic mean filter is defined by the relation:

xf ði; jÞ ¼ 1

2N1 þ 1ð Þ 2N2 þ 1ð Þ
XiþN1

n¼i�N1

XjþN2

m¼j�N2

xðn;mÞ; (4.20)

where x(n,m) is the pixel value within the window, while the impulse response of

the filter ish i; jð Þ ¼ 1= 2N1 þ 1ð Þ 2N2 þ 1ð Þð Þ. The output of this filter is actually the
mean value of pixels captured by the window. For a window size 3 � 3, we deal

with 9 points, while the 5 � 5 window includes 25 points. From the aspect of noise

reduction, the second window will be more effective. However, it will introduce

more smoothed edges and blurred image (Fig. 4.12).

As an example, “Lena” image affected by a zero-mean Gaussian noise with

variance 0.02 and its filtered versions are shown in Fig. 4.13.

Instead of the arithmetic mean filter, the geometric mean can be used as well,

where the filter output is given by:

xf ði; jÞ ¼
YiþN1

n¼i�N1

YjþN2

m¼j�N2

xðn;mÞ
 ! 1

2N1þ1ð Þ 2N2þ1ð Þ
: (4.21)

The geometric mean filter introduces less blurring and preserves more image

details (Figs. 4.14 and 4.15).

Fig. 4.12 Illustration of blurring after applying mean filter on the image edge (the mask size used

is 5 � 5)
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4.6.2.2 Median Filter

Median filters are used to filter out the impulse noise. Consider a sequence with an

odd number of elements. After sorting the elements, the median value is obtained as

the central element. In a sequence with an even number of elements, the median is

calculated as the mean of two central elements of the sorted sequence.

Example

The sequence is given as:

3 14 7 1 5

Sort the numbers in the ascending order:

1 3 5 7 14

and then the median is central element 5.

Fig. 4.13 (a) “Lena” affected by Gaussian noise with zero mean and variance 0.02, (b) filtered

image obtained by using mean filter of size 3 � 3, (c) filtered image obtained by using mean filter

of size 5 � 5
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Consider now a sequence with an even number of elements:

1 12 7 4 9 2

Sort the elements in ascending order:

1 2 4 7 9 12

4 and 7 are the two central elements, and the median is equal to their mean value,
or 5.5.

The median filter is applied in image denoising by using a rectangular window

that slides over the entire image. The elements captured by the window are

reordered as a vector x:{x(k), k∈[1,N]} and then the median value xm for the vector

is calculated as follows:

xm ¼ med x 1ð Þ; . . . ; xðkÞ; . . . ; xðNÞð Þ

¼
xs N=2b c þ 1ð Þ; N is odd;
xsðN=2ÞþxsðN=2þ1Þ

2
; N is even;

(
(4.22)

Fig. 4.14 (a) Original image, (b) noisy image (Gaussian noise with 0.05 mean and variance

0.025), (c) image filtered by using arithmetic mean of size 3 � 3, (d) image filtered by using

geometric mean of size 3 � 3
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where xs is the sorted version of x. Another way to calculate the median of a matrix

is to calculate the median value for columns and then for rows (or vice versa).

Generally, these two approaches usually do not produce exactly the same result.

Suppose that the filter window covers (2 N1 + 1)(2 N2 + 1) pixels. The pixel x
(i, j ) is the central one in the filter window. From all the pixels within the window,

we form a matrix:

x i� N1; j� N2ð Þ ::: x i� N1; jð Þ ::: x i� N1; jþ N2ð Þ
..
. ..

. ..
.

x i; j� N2ð Þ ::: x i; jð Þ ::: x i; jþ N2ð Þ
..
. ..

. ..
.

x iþ N1; j� N2ð Þ ::: x iþ N1; jð Þ ::: x iþ N1; jþ N2ð Þ

2
6666664

3
7777775

Fig. 4.15 (a) Original image, (b) noisy image (Gaussian noise with 0.05 mean and variance

0.025), (c) image filtered by using arithmetic mean of size 3 � 3, (d) image filtered by using

geometric mean of size 3 � 3
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The first step is to sort the elements within columns and to determine the median

for each column. The second step uses the median values of columns and calculates

the median again. Mathematically, it is described as:

qn ¼ med x i� N1; jð Þ; x i� N1 þ 1; jð Þ; . . . ; x iþ N1; jð Þf g; for n ¼ j;

qði; jÞ ¼ med qn; n 2 j� N2; :::; jþ N2ð Þf g: (4.23)

Therefore, q(i, j ) represents the output of separable median filter. An application

of the median filter to image “Lena” affected by the impulse noise is illustrated in

Fig. 4.16.

The a-trimmed mean filter has been introduced as a good compromise between

the median and arithmetic mean filter. Namely, after sorting the windowed pixels,

we discard a few lowest and highest samples, while the remaining pixels are

averaged. The a-trimmed mean filter can be defined as:

xaði; jÞ ¼ 1

N � 2 aN½ �ð Þ
XN� aN½ �

n¼ aN½ �þ1

xsðnÞ; (4.24)

Fig. 4.16 (a) “Lena” affected by impulse noise with density 0.05, (b) denoised image (median

filter of size 3 � 3 is used), (c) denoised image (5 � 5 median filter)
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where xs(n) is the vector of sorted pixels from the window N1 � N2, N ¼ N1N2,

aN½ � denotes rounding to the greatest integer not greater than aN. The parameter a
takes the values from the range: 0 	 a < 0.5. Note that this filter form corresponds

to the median for a ¼ 0.5 (for odd N), while for a ¼ 0 it performs as a moving

average filter. Alternatively, we can apply the same operation separately on the

rows and columns as follows:

xaði; jÞ ¼ 1

N1 � 2½aN1�ð Þ N2 � 2½aN2�ð Þ
XN1�½aN�

n¼½aN1�þ1

XN2�½aN�

m¼½aN2�þ1

xðm; nÞ: (4.25)

4.6.3 Filtering in the Frequency Domain

Filters in the frequency domain are designed on the basis of a priori knowledge

about signal frequency characteristics. The most significant frequency content of

images is mostly concentrated at low frequencies. Therefore, in many applications,

the images are usually filtered with low-pass filters. The ideal rectangular separable

low-pass filter has the following transfer function:

H o1;o2ð Þ ¼ 1; o1j j 	 W1 and o2j j 	 W2

0; otherwise:

	
(4.26)

A band-pass filter can be defined as:

H o1;o2ð Þ ¼ 1; W11 	 o1j j 	 W12; W21 	 o2j j 	 W22

0; otherwise:

	
(4.27)

In addition to rectangular, a circular low-pass filter can be used:

H o1;o2ð Þ ¼ 1; o2
1 þ o2

2 	 W;
0; otherwise:

	
(4.28)

Filtering images with a high-pass filter provides high-frequency components that

contain the image details:

H o1;o2ð Þ ¼ 1; o1j j>W1 and o2j j>W2ð Þ or o2
1 þ o2

2>W
� �

0; otherwise:

	
(4.29)
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4.6.4 Image Sharpening

A blurred noisy image in the Fourier domain can be written as:

Xðu; vÞ ¼ Hðu; vÞFðu; vÞ þ Nðu; vÞ; (4.30)

where X(u,v) is the Fourier transform of blurred image, H(u,v) is the impulse

response of the system that induces blurring (degradation), F(u,v) is the Fourier

transform of the original image, and N(u,v) is the Fourier transform of noise. For

example, if the blurring is produced by the uniform linear motion between the

image and the sensor (during image acquisition) along the x axis, then the degrada-
tion function can be defined by:

Hðu; vÞ ¼ T
sinðpnuÞ
pnu

e�jpnu; (4.31)

where n is the distance of pixels displacement, while T is the duration of the

exposure. Sharpening of the image is achieved based on the following relation:

Fðu; vÞ ¼ Xðu; vÞ
Hðu; vÞ : (4.32)

4.6.5 Wiener Filtering

The Wiener filter is defined in the theory of optimal signal estimation. It is based on

the equation:

feði; jÞ ¼ L½ f ði; jÞ�; (4.33)

where L is a linear operator meaning that the estimated values are a linear function

of the original (degraded) values. The estimated values are obtained such that the

mean square error:

E f i; jð Þ � fe i; jð Þð Þ2
n o

; (4.34)

is minimized. The Wiener filter in the frequency domain is obtained in the form:

Hwðu; vÞ ¼ H�ðu; vÞ
Hðu; vÞj j2 þ Snðu;vÞ

Sf ðu;vÞ
; (4.35)
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where Sn(u,v) and Sf(u,v) represent the power spectrum of the noise and the signal,

respectively: Sn u; vð Þ ¼ Nðu; vÞj j2 , Sf u; vð Þ ¼ Fðu; vÞj j2 . H*(u,v) is the complex

conjugate of the degradation function and for H*(u,v) ¼ 1, (4.35) becomes:

Hwðu; vÞ ¼ Sf ðu; vÞ
Sf ðu; vÞ þ Snðu; vÞ ¼ 1� Snðu; vÞ

Sxðu; vÞ : (4.36)

It is assumed that the signal and noise are uncorrelated: Sxðu; vÞ ¼ Sf ðu; vÞ þ Sn
ðu; vÞ. Note that when Sn tends to zero, the filter function is approximately equal to 1

(no modification of the signal), while in the case when Sf tends to zero, the filter

function is zero. Thus, the filtered spectrum is:

Feðu; vÞ ¼ Hwðu; vÞXðu; vÞ; (4.37)

where X(u,v) is the spectrum of noisy image. The noise measurement should be

performed when the signal is not present (e.g., consider a communication channel

without signal during an interval of time), and then the estimated noise spectrum is

available for calculating Hw(u,v).

4.7 Enhancing Image Details

An image can be represented in terms of its illumination and reflectance

components:

aði; jÞ ¼ aiði; jÞarði; jÞ; (4.38)

where ai is the illumination describing the amount of incident light on the observed

scene, while ar is the reflectance component describing the amount of light reflected

by the objects. It is usually assumed that the scene illumination varies slowly over

space, while the reflectance varies rapidly especially on the transitions between

different objects. Hence, the illumination and the reflectance components are

associated with low and high frequencies, respectively. Usually, the goal is to

extract the reflectance component and to minimize the illumination effect, which

can be done by using the logarithm to transform multiplicative into additive

procedure:

logðaði; jÞÞ ¼ logðaiði; jÞÞ þ logðarði; jÞÞ: (4.39)

Having in mind their frequency characteristics, we can separate these two

components of images and emphasize the details.
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4.8 Analysis of Image Content

The distribution of colors and textures are considered as two important features for

the analysis of image content.

4.8.1 The Distribution of Colors

The distribution of colors can be described by using histogram. If we want to search

an image database, we can achieve it by comparing the histogram of the sample

image Q and the histogram of each image I from the database. Suppose that both

histograms have N elements. Comparison is done by calculating the total number of

pixels that are common to both histograms:

S ¼
XN
i¼1

min Ii;Qið Þ: (4.40)

This amount is often normalized by the total number of pixels in one of the two

histograms. Having in mind that this method is computationally demanding, the

modified forms have been considered. Namely, by using a suitable color model, an

image can retain its relevant properties even with a coarser representation. Hence, a

significant computational savings can be achieved.

A computationally efficient method for comparison of color images can be

obtained if colors are represented by fewer bits. For example, if each color is

reduced to 2 bits, then we have 64 possible combinations in the case of three colors.

The colorfulness of images can be described by using the color coherence

vectors. Assume that the total number of colors is N, the color coherence vectors

for images Q and I are given by:

aQ1 ; b
Q
1


 �
; . . . ; aQN ; b

Q
N


 �h i
and aI1; b

I
1

� �
; . . . ; aIN;b

I
N

� �� 

;

where ai and bi represent the number of coherent and incoherent pixels for color i,
respectively. Coherent pixels are those that belong to a region characterized by the

same color. A difference between two images can be calculated by using the

following formula:

distðQ; IÞ ¼
XN
i¼1

aQi � aI i
aQi þ aI i þ 1

����
����þ bQi � bI i

bQi þ bI i þ 1

����
����

 !
: (4.41)
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4.8.2 Textures

A texture is an important characteristic of the image surface. There are different

methods and metrics for texture analysis. For instance, the textures can be described

by using the following properties: contrast, directionality, and coarseness.

The contrast can be quantified by the statistical distribution of pixel intensities.

It is expressed as:

Con ¼ s
K1=4

; (4.42)

where s is the standard deviation, K is the kurtosis, defined by:

K ¼ m4
s4

; (4.43)

where m4 is the fourth moment about the mean. The presented definition is a global

measure of the contrast obtained for the entire image.

Coarseness represents a measure of texture granularity. It is obtained as the

mean value calculated over windows of different sizes 2k � 2k, where k is usually
between 1 and 5. The windowing and averaging is done for each image pixel.

Consider a pixel at the position (x,y). The mean value within the window of size

2k � 2k is defined as:

Akðx; yÞ ¼
Xxþ2k�1�1

i¼x�2k�1

Xyþ2k�1�1

j¼y�2k�1

aði; jÞ
22k

; (4.44)

where a(i,j ) is the grayscale pixel value at the position (i,j ). Then the differences

between mean values in the horizontal and vertical directions are calculated as

follows:

Dkh ¼ Ak xþ 2k�1; y
� �� Ak x� 2k�1; y

� ��� ��;
Dkv ¼ Ak x; yþ 2k�1

� �� Ak x; y� 2k�1
� ��� ��: (4.45)

Using the above equations, we choose the value of k, which yields the maximum

values for Dkh and Dkv. The selected k is used to calculate the optimization
parameter:

gðx; yÞ ¼ 2k: (4.46)

Finally, the measure of granulation can be expressed in the form:

Gran ¼ 1

mn

Xm
i¼1

Xn
j¼1

gði; jÞ: (4.47)
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In order to reduce the number of calculations, the measure of granularity can be

calculated for lower image resolution.

Directionality is the third important texture feature. As a measure of directionality,

at each pixel we calculate a gradient vector, whose amplitude and angle are given as:

DGj j ¼ DHj j þ DVj jð Þ=2;

j ¼ arctan
DV

DH

� �
þ p

2
; (4.48)

where horizontal DH and vertical DV differences are calculated over 3 � 3 window

around a pixel. After determining the above parameters for each pixel, we can draw

a histogram of angle values ’, taking only those pixels where DGj j is larger than a

given threshold. The resulting histogram will have dominant peaks for highly

directional images, while for nondirectional images it will be flatter.

4.8.3 Co-occurrence Matrix

A simplified method to measure the contrast of textures can be performed by using

the co-occurrence matrices. First, we form the co-occurrence matrices, that show

how many times y values appear immediately after the x values. For example,

consider the following sample matrix:

1 1 1 2 3

1 1 1 2 3

1 1 1 2 3

1 1 1 3 4

The corresponding co-occurrence matrix is then obtained as:

x y 1 2 3 4

1 8 3 1 0

2 0 0 3 0

3 0 0 0 1

4 0 0 0 0

Let us analyze the numbers in the matrix. The number 8 means that 1 occurs

eight times after 1, while 3 denotes that value 2 occurs three times after 1. The

expression for the measure of the texture contrast is given by:

Con ¼
XN�1

x¼0

XN�1

y¼0

ðx� yÞ2cðx; yÞ; (4.49)
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where c(x,y) represents the co-occurrencematrix of sizeN � N. If there are significant
variations in the image, c(x,y) will be concentrated outside the main diagonal and

contrast measures will have greater values. The co-occurrence matrix with values

concentrated on its diagonal corresponds to a homogeneous region.

There are other useful features that can be computed from the co-occurrence

matrix, as listed below:

Energy :
PN�1

x¼0

PN�1

y¼0

c2ðx; yÞ;

Entropy : � PN�1

x¼0

PN�1

y¼0

cðx; yÞlog2cðx; yÞ;

Homogeneity :
PN�1

x¼0

PN�1

y¼0

cðx;yÞ
1þ x�yj j;

Correlation :
PN�1

x¼0

PN�1

y¼0

ðx�mxÞðy�myÞcðx;yÞ
sxsy

:

4.8.4 Edge Detection

Edge detection plays an important role in a number of applications. Consider an

image with pixels a(i,j ). Edges of the image should be obtained by simple differ-

entiation. However, bearing in mind that the image is always more or less affected

by noise, the direct application of differentiation is not effective. For this purpose,

several algorithms have been defined, and among them the most commonly used

one is based on the Sobel matrices (for vertical and horizontal edge). Specifically,

the image is analyzed pixel by pixel using the Sobel matrix as a mask. The matrix

elements are the weights that multiply the pixels within the mask. Then the sum is

calculated by adding all the obtained values. The resulting value is compared with a

threshold. If it is greater than the threshold, the central pixel belongs to the edge,

and vice versa.

The Sobel matrices for vertical and horizontal edges are given by:

Sv ¼
1 0 �1

2 0 �2

1 0 �1

2
4

3
5 Sh ¼

1 2 1

0 0 0

�1 �2 �1

2
4

3
5

The edges are obtained by:

Lði; jÞ ¼
X1
m¼�1

X1
n¼�1

aðiþ m; jþ nÞSðmþ 2; nþ 2Þ; (4.50)
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where S(m,n) is a filtering function (e.g., the Sobel matrix Sh or Sv). After calculating
Lh and Lv (using the horizontal and vertical matrix), the overall L is calculated as

follows:

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lh

2 þ Lv
2

p
: (4.51)

The obtained values (for all pixels) are compared with a threshold and the results

are represented in a binary form. An example of edge detection is illustrated in

Fig. 4.17. For simplicity, the threshold was set to 100 for the entire image.

However, the local threshold values are frequently used in practical applications.

They are calculated based on the mean response of the edge detector around the

current pixel. For example, a threshold value can be calculated as:

Tði; jÞ ¼ �Lði; jÞð1þ pÞ ¼ 1þ p

2N þ 1

XiþN

k¼i�N

XjþN

l¼j�N

Lðk; lÞ; (4.52)

where p has a value between 0 and 1.

Fig. 4.17 Illustration of edge detection: (a) Original image, (b) Lv, (c) Lh, (d) L
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4.8.5 The Condition of the Global Edge (Edge-Based
Representation: A Contour Image)

An algorithm for edge-based image representation is described in the sequel. First,

the image is normalized by applying the affine transformation which results in the

square image of the size 64 � 64. Then the gradient is calculated for each pixel:

@i; j ¼
Dpi; j
�� ��
Ii; j
�� �� ; (4.53)

where the numerator represents the maximum of the differences between the

intensity of a given pixel and the intensity of its neighbors. The denominator is

the local power of intensity values. The calculated gradient is compared with the

sum of the mean and the variance of original image:

@i; j � mþ s: (4.54)

Pixels that fulfill the condition (4.54) are called the global edge candidates. Now,

from pixels selected as the global edge candidates, we reselect the pixels for which:

@i; j � mi; j þ si; j; (4.55)

holds, where m and s are mean and variance, respectively, of the local gradient to its

neighbors. They are called the local edge candidates.

4.8.6 Dithering

One of the properties of the human eye is that when observing a small area from a

long distance, it perceives just the overall intensity as a result of averaging granular

details. This feature is used in dithering, where a group of points represents a color.

Consider a simple example by using four points:

We see that with only two values, we can create five different colors (from pure

white to pure black). If this 2 � 2 structure is used with the three primary colors, we

can get 125 color combinations.
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4.9 Image Compression

Multimedia information is very demanding on the memory space and usually needs

much processing power. Additionally, it may require higher bit rates compared to

the available bit rates of communication channels. All of these aspects lead to the

inevitable use of compression algorithms. As already mentioned, data compression

can be performed as lossless compression and lossy compression. This section

considers compression algorithms for digital images. Special attention will be

devoted to JPEG and JPEG2000 compression.

4.9.1 JPEG Image Compression Algorithm

Note that the JPEG algorithm can achieve significant compression ratio while

maintaining high image quality. Therefore in this chapter, we will discuss in details

the elements of JPEG encoder. JPEG algorithm can be analyzed across several

blocks used for image compression. These blocks can be summarized as follows: a

block performing DCT on the 8 � 8 image blocks, quantization block, zigzag

matrix scanning, and an entropy coding block (Fig. 4.18).

The DCT of an 8 � 8 image block is defined by:

DCTðk1; k2Þ ¼ Cðk1Þ
2

Cðk2Þ
2

�
X7
i¼0

X7
j¼0

aði; jÞ cos ð2iþ 1Þk1p
16

� �
cos

ð2jþ 1Þk2p
16

� �
(4.56)

where:

Cðk1Þ ¼
1ffiffi
2

p ; for k1 ¼ 0

1; for k1>0
;

	
Cðk2Þ ¼

1ffiffi
2

p ; for k2 ¼ 0

1; for k2>0
:

	

Fig. 4.18 JPEG encoder block diagram
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The DCT coefficient (0,0) is called the DC component, and it carries an

information about the mean value of 64 coefficients. The remaining 63 coefficients

are the AC coefficients.

The samples of the grayscale image whose values are in the range 0; 2n � 1½ � (n is
number of bits used to represent samples), are shifted to the range �2n�1; 2n�1 � 1½ �,
and then the DCT is applied. Hence, in the case of 8-bit samples, the shifted range is

�128; 127½ �. The corresponding DCT coefficients will be in the range �1024; 1023½ �
and they require additional 3 bits. To encode the DC coefficient of a current block,

we subtract its value from the DC coefficient in the previous block, and then encode

their difference.

Before introducing the quantization matrix, let us show that the most important

transform coefficients of images are concentrated at low frequencies. For this

purpose, we will analyze the image “Lena” (of the size 256 � 256 pixels). After

applying the DCT, we take the first 128 � 128 coefficients, then the first 64 � 64

coefficients, and finally the first 25 � 25 coefficients. Applying the inverse DCT,

we reconstruct the images shown in Fig. 4.19. Note that, although the number of

coefficients is significantly decreased, the image retains much of the information.

Fig. 4.19 (a) Original image “Lena” (b) image based on the first 128 � 128 DCT coefficients,

(c) image based on the first 64 � 64 DCT coefficients, (d) image based on the first 25 � 25 DCT

coefficients
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The previous fact was extensively investigated in order to determine the optimal

block size and to provide the efficient energy compaction within the smallest

number of coefficients. Even though the 32 � 32 and 16 � 16 blocks slightly

improve the coding gain compared to the 8 � 8 blocks, the JPEG compression

still uses 8 � 8 blocks due to a quite easier calculation. Namely, the 8 � 8 blocks

provides an optimal trade-off between the computational complexity, prediction

gain and energy compaction with as smallest artifacts as possible. Therefore, the

algorithm for JPEG image compression first decomposes an image into 8 � 8

blocks. Next, the DCT is calculated for each 8 � 8 block. The DCT coefficients

are divided by weighting coefficients, representing the elements of quantization

matrix. Therefore, we have:

DCTqðk1; k2Þ ¼ round
DCTðk1; k2Þ
Qðk1; k2Þ

	 �
; (4.57)

where Q is a quantization matrix, while DCTq are the quantized coefficients.

A simplified example for calculating coefficients of a matrix that can be used for

quantization is given by the following code:

for i ¼ 0 : N � 1

for j ¼ 0 : N � 1

Q iþ 1; jþ 1ð Þ ¼ 1þ 1þ iþ jð Þ � quality½ �;
end

end

The quality parameter ranges from 1 to 25. Higher values denote better com-

pression, but worse image quality. The compression matrix for quality ¼ 2 is given

in Fig. 4.20.

In practical applications, the quantization matrices are derived from the experi-

mental quantization matrix given in Fig. 4.21. The experimental quantization

matrix is defined for the 50% compression ratio (quality factor � QF ¼ 50).

Fig. 4.20 Quantization

matrix obtained for

quality ¼ 2
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Using the matrix Q50, we can obtain matrices for other compression degrees as

follows:

QQF ¼ roundðQ50 
 qÞ; (4.58)

where q is defined as:

q ¼ 2� 0:02QF; for QF � 50;
50

QF
; for QF<50:

	

The DCT coefficients of 8 � 8 blocks are divided by the corresponding

coefficients of quantization matrices and rounded to the nearest integer values.

After quantization, the zigzag reordering is applied to the 8 � 8 matrix to form a

vector of 64 elements. This reordering allows the values to be sorted from the low-

frequency coefficients toward the high-frequency ones. A schematic of zigzag

reordering is shown in Fig. 4.22.

Next, the entropy coding is applied based on the Huffman coding. Each AC

coefficient is encoded with two symbols. The first symbol is defined as: (a,b) ¼
(runlength,size). The runlength provides the information about the number of

consecutive zero coefficients preceding the non-zero AC coefficient. Since it is

encoded with 4 bits, it can be used to represent no more than 15 consecutive zero

coefficients. Hence, the symbol (15,0) represents 16 consecutive zero AC

coefficients and it can be up to three (15,0) extensions. This symbol also contains

information on the number of bits required to represent the coefficient value (size).
The second symbol is the amplitude of the coefficient (which is in the range

[�1023, 1024]) that can be represented with up to 10 bits.

Fig. 4.21 Coefficients of the

quantization matrix Q50

Fig. 4.22 Zigzag reordering
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For example, if we have the following sequence of coefficients: 0,0,0,0,0,0,0,239,

we code it as: (7,8) (239).

The symbol (0,0) denotes the end of the block (EOB).

Since there is a strong correlation between the DC coefficients from adjacent

blocks, the differences between DC coefficients are coded instead of their values.

The DC coefficients are in the range ½�2048 ; 2047� and are coded by two symbols:

the first symbol is the number of bits (size) used to represent the amplitude, while the

second symbol is the amplitude itself.

The amplitude for both DC and AC coefficients are encoded by using the

variable-length integer code, as shown in the Table 4.1.

Consider an example of JPEG compression applied to the 8 � 8 block. The pixel

values (Fig. 4.23a) from range [0,255] are initially shifted to range [�128,127]

(Fig. 4.23b). The values of DCT coefficients are shown in Fig. 4.23c. Note that,

for the sake of simplicity, the DCT coefficients are rounded to the nearest integers.

The quantization matrix is used with a quality factor QF ¼ 70% (Fig. 4.23d) and

the quantized DCT coefficients are shown in Fig. 4.23e.

The zigzag sequence is obtained in the form:

18, �1, 1, �1, 4, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 1,

0, 0, 0, 0, 0, 0, �1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

and by using symbols for DC and AC coefficients, we obtain the intermediate

symbol sequence:

(5)(18), (0,1)(�1), (0,1)(1), (0,1)(�1) (0,3)(4), (0,3 )(4), (1,1)(1),

(10,2)(2), (1,1)(1), (3,1)(1), (0,1)(1), (6,1)(�1), (0,0)

The symbols for AC components ((a,b) ¼ (runlength,size)) are coded by using

the Huffman tables, specified by the JPEG standard and given at the end of this

chapter (for luminance component). The symbols used in this example are provided

in the Table 4.2 (the list of all symbols is given in Table 4.4).

Table 4.1 Encoding of the

coefficients amplitudes
Amplitude range Size

�1,1 1

�3,�2,2,3 2

�7,�6,�5,�4,4,5,6,7 3

�15,. . .,�8,8,. . .,15 4

�31,. . .,�16,16,. . .,31 5

�63,. . .,�32,32,. . .,63 6

�127,. . .,�64,64,. . .,127 7

�255,. . .,�128,128,. . .,255 8

�511,. . .,�256,256,. . .,511 9

�1,023,. . .,�512,512,. . .,1,023 10
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The entire 8 � 8 block in encoded form is given by:

(101)(10010) (00)(0) (00)(1) (00)(0) (100)(100) (100)(100)

(1100)(1) (1111111111000111)(10) (1100)(1) (111010)(1) (00)(1)

(1111011)(0) (1010)

Note that in this example, we have coded the DC coefficient value, not the DC

coefficients difference, since we have examined a single block.

Decoding is performed using the blocks in Fig. 4.24.

Fig. 4.23 (a) 8 � 8 image block, (b) values of pixels after shifting to the range [�128, 127],

(c) DCT coefficients (rounded to integers) for the given block, (d) quantization matrix QF ¼ 70,

(e) DCT coefficients after quantization

Table 4.2 Code words for

the symbols obtained in the

example

Symbol (a,b) Code word

(0,1) 00

(0,2) 01

(0,3) 100

(1,1) 1100

(3,1) 111010

(6,1) 1111011

(10,2) 1111111111000111

(0,0) EOB 1010
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We first return the sequence of samples into the matrix form. Next, we perform

dequantization, followed by the inverse DCT. In other words, after we get:

DCTdq ¼ DCTqðk1; k2Þ 
 Qðk1; k2Þ; (4.59)

we apply the inverse DCT transformation:

aði; jÞ ¼
X7
k1¼0

X7
k2¼0

Cðk1Þ
2

Cðk2Þ
2

DCTdqðk1; k2Þ

cos
ð2iþ 1Þk1p

16

� �
cos

ð2jþ 1Þk2p
16

� �
(4.60)

It is obvious that quantization/dequantization procedures and rounding

procedures introduce an error proportional to the quantization step.

In order to illustrate the efficiency of JPEG compression in terms of the compro-

mise between the compression factor and image quality, the examples of com-

pressed images with different qualities are shown in Fig. 4.25.

4.9.2 JPEG Lossless Compression

The JPEG lossless compression provides a compression ratio approximately equal

to 2:1. It uses a prediction approach to encode the difference between the current

pixel X and the one predicted from three previous pixels A, B, C, as illustrated

below:

C B

A X

The prediction sample Xp can be obtained using one of the formulas:

Fig. 4.24 JPEG decoder
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Case Prediction formula

1 Xp ¼ A

2 Xp ¼ B

3 Xp ¼ C

4 Xp ¼ Aþ B� C

5 Xp ¼ Aþ B� Cð Þ=2
6 Xp ¼ Bþ A� Cð Þ=2
7 Xp ¼ Aþ Bð Þ=2

Then the difference DX ¼ X � Xp is encoded by using the Huffman code.

Fig. 4.25 (a) Original “Lena” image, (b) “Lena” image after applying JPEG compression with

QF ¼ 70%, (c) “Lena” image after JPEG compression with QF ¼ 25%, (d) “Lena” image after

JPEG compression with QF ¼ 5%
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4.9.3 Progressive JPEG Compression

4.9.3.1 Spectral Compression

During the image transmission, it is often demanded that a receiver gradually

improves the image resolution. Namely, a rough version of the image is first

transmitted (which can be done with a high compression factor), and then we

transmit the image details. This is achieved with progressive compression methods.

In the algorithm for progressive compression, coding is implemented by using

several spectral bands. The bands are divided according to their importance. For

example, the first band can be dedicated only to DC coefficients; the second band

may be dedicated to the first two AC coefficients (AC1 and AC2); the third

band contains the next four AC coefficients, while the fourth band may contain

the remaining coefficients.

4.9.3.2 Successive Approximations

In this algorithm, the coefficients are not initially sent with the original values

(i.e., they are sent with fewer bits). For example, we first send the coefficients with

2 bits left out (divided by 4), then with one bit left out (divided by 2), and finally at

full resolution.

4.9.3.3 Combined Progressive Algorithms

This algorithm combines the two previously described algorithms. Specifically, all

the coefficients are grouped into the spectral bands (as in the spectral algorithm),

and then the information from all bands is sent with different resolutions (in terms

of the number of bits), as in the second algorithm. An example of this algorithm is

shown in Fig. 4.26.

4.9.4 JPEG Compression of Color Images

JPEG compression of color images can be performed by compressing each color

channel as described for the grayscale images. In JPEG compression, the RGB

model can be transformed into the YCrCb space (Fig. 4.27). The Y channel contains

information about luminance, and Cr and Cb channels are related to the color along

the axes red-green and yellow-blue, respectively. Then, each channel is treated

separately, because it is not necessary to encode them with the same precision.
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During decompression, the process is reversed: each channel is decoded indi-

vidually and then the information is merged together. Lastly, we convert from the

YCrCb to the RGB color space.

However, a drawback of this approach is that the color components appear

sequentially until the complete image is displayed: the red color is displayed first,

then the green color is joined, and finally the blue. In the real applications where the

image is decompressed and displayed simultaneously, the interleaved ordering

approach is used to combine data from different color channels. Let us consider

the case of an image with four components of different resolutions. In addition,

each component is divided into rectangular regions with resolutions {Hi,Vi}. Spe-

cifically, factors Hi and Vi define the horizontal and vertical resolutions, respec-

tively, for each component (Fig. 4.28).

The coefficients are combined from the rectangular regions of different

components. Each component has the same number of rectangular regions (e.g.,

six regions) as shown in Fig. 4.28. The basic coding units (Minimum Coded

Units—MCU) are formed by using one region from each component. The

coefficients in each region are sorted from left to right and from top to bottom.

Each MCU can contain up to 10 coefficients.

In the example, in Fig. 4.28, the basic MCUs for encoding are:

MCU1 ¼ a100a
1
01a

1
10a

1
11a

2
00a

2
01a

3
00a

3
10a

4
00

MCU2 ¼ a102a
1
03a

1
12a

1
13a

2
02a

2
03a

3
01a

3
11a

4
01

MCU3 ¼ a104a
1
05a

1
14a

1
15a

2
04a

2
05a

3
02a

3
12a

4
02

MCU4 ¼ a120a
1
21a

1
30a

1
31a

2
10a

2
11a

3
20a

3
30a

4
10

The described procedure ensures that an image is always displayed with all color

components.

Fig. 4.26 An example of

using the combined

progressive JPEG algorithm

Fig. 4.27 Y, Cr, and Cb

component
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4.9.5 JPEG2000 Compression

The standard JPEG algorithm based on the 8 � 8 DCT blocks often leads to visible

block distortions (block effects). To avoid these effects, a JPEG2000 compression

algorithm based on the wavelet transform is introduced.

In this algorithm, the entire system can be divided into three parts: (1) image

preprocessing, (2) compression, and (3) encoding.

1. Image preprocessing contains some of the optional functions including:

• Dividing large images into regions (this process is called tiling),

• DC level shifting,

• Color components transformation.

Dividing large images (usually larger than 512 � 512) into smaller rectangular

areas that are separately analyzed is required in order to avoid large buffers in the

implementation of the algorithm.

Similarly to the standard JPEG compression, DC level shifting (I(x,y) ¼
I(x,y) � 2n � 1) is also used in order to obtain an image with dynamic range

that is centered around zero. Values in the range [0, 2n � 1] are shifted to the

values in the range [�2n � 1, 2n � 1 � 1] (n is the number of bits used to

represent pixel values).

This algorithm is defined for the color images consisting of three components.

The JPEG2000 standard supports two-color transforms: the reversible color trans-

form (RCT) and the irreversible color transform (ICT).RCT can be applied for both

lossy and lossless compression, while ICT can be used only for lossy compression.

Fig. 4.28 An interleaving procedure for JPEG color image compression
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The RCT transform (integer-to-integer) is defined as:

Yr ¼ Rþ 2Gþ B

4

� �
; Ur ¼ B� G; Vr ¼ R� G: (4.61)

In the case of RCT, the pixels can be exactly reconstructed by using the inverse

RCT defined as follows:

R ¼ Vr þ G; G ¼ Yr � Ur þ Vr

4

� �
; B ¼ Ur þ G: (4.62)

ICT is actually a YCrCb transform (real-to-real transform):

Y

Cr

Cb

2
4

3
5 ¼

0:299 0:587 0:114
�0:168 �0:331 0:5
0:5 �0:41 �0:08

2
4

3
5 R

G

B

2
4

3
5; (4.63)

while the inverse transform is given as:

R

G

B

2
64

3
75 ¼

1:0 0:0 1:402
1:0 �0:344136 �1:714136
1:0 1:772 0:0

2
4

3
5 Y

Cr

Cb

2
4

3
5: (4.64)

2. Compression

JPEG2000 algorithm uses two types of the wavelet transforms. These are (9,7)

floating-point wavelets (irreversible) and (5,3) integer wavelet transform

(reversible). Only the (5,3) integer transform, which is fully reversible, can be

used for lossless compression.

Consider a sequence of pixels denoted as Ik, Ik + 1, Ik + 2, . . ., Im that belong to

an image row. To calculate the wavelet transform, it is necessary to use a few

pixels with indices less than k and greater than m. Before applying the wavelet

transform, the considered area has to be expanded. An easy way to extend a

sequence of pixels (Ik, Ik + 1, Ik + 2,. . ., Im � 2, Im � 1, Im) is illustrated in

Fig. 4.29.

Fig. 4.29 Expansion of a sequence of pixels
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After expanding the sequence of pixels, the wavelet coefficients are calculated.

For the (5,3) integer wavelet transform, the coefficients are calculated according to:

dj�1;i ¼ Ij;2iþ1 � Ij;2iþ2 þ Ij;2i
2

� �
;

sj�1;i ¼ Ij;2i þ dj�1;i þ dj�1;i�1 þ 2

4

� �
:

(4.65)

Here, d coefficients represent high frequency components, while s coefficients
represent low frequency components.

In the case of the (9,7) floating-point wavelet transform, wavelet coefficients

are obtained as follows:

Pj;2iþ1 ¼ Ij;2iþ1 þ a Ij;2i þ Ij;2iþ2

� �
;

Pj;2i ¼ Ij;2i þ b Pj;2i�1 þ Pj;2iþ1

� �
;

d0j�1;i ¼ Pj;2i�1 þ g Pj;2i�2 þ Pj;2i

� �
;

s0j�1;i ¼ Pj;2i þ d d0j�1;i þ d0j�1;iþ1

� �
;

dj�1;i ¼ �Kd0j�1;i;

sj�1;i ¼ ð1=KÞs0j�1;i; (4.66)

where the constants (wavelet filter coefficients) for the JPEG2000 algorithm are:

a ¼ �1.586134342, b ¼ � 0.052980118, g ¼ 0.882911075, d ¼ 0.443506852,

K ¼ 1.230174105. As in (4.65), d are details, and s are low-frequency

coefficients.

Consider a simple example with five consecutive pixels Ij;2i�2; Ij;2i�1; Ij;2i;
Ij;2iþ1; Ij;2iþ2. The (9,7) wavelet coefficients can be calculated in four steps:

The first step is : Pj;2i�1 ¼ Ij;2i�1 þ aIj;2i�2 þ aIj;2i;

Pj;2iþ1 ¼ Ij;2iþ1 þ aIj;2i þ aIj;2iþ2;

The second step is : Pj;2i�2 ¼ Ij;2i�2 þ bPj;2i�3 þ bPj;2i�1;

Pj;2i ¼ Ij;2i þ bPj;2iþ1 þ bPj;2i�1;

The third step is : d0j�1;i ¼ Pj;2i�1 þ g Pj;2i�2 þ Pj;2i

� �
;

d0j�1;iþ1 ¼ Pj;2iþ1 þ g Pj;2i þ Pj;2iþ2

� �
;

The fourth step is : s0j�1;i ¼ Pj;2i þ d d0j�1;i þ d0j�1;iþ1

� �
;

s0j�1;iþ1 ¼ Pj;2iþ2 þ d d0j�1;iþ1 þ d0j�1;iþ2

� �
:

At the end, d0 coefficients are scaled by the parameter K and s0 coefficients are
scaled by the parameter 1/K. This procedure is illustrated schematically in

Fig. 4.30.

The considered one-dimensional wavelet transform is usually applied to the

image rows and then to the columns, as it is illustrated in Fig. 4.31.

Subbands can be organized in one of the three ways, as illustrated in Fig. 4.32.
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Fig. 4.30 Calculating the wavelet coefficients

Fig. 4.31 Illustration of applying the wavelet transform to two-dimensional signals
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4.9.5.1 JPEG2000 Quantization

For each subband denoted by b, a quantization step Db is used for quantization of

the coefficients in the subband. Quantization is defined as follows:

Qbðu; vÞ ¼ signðCbðu; vÞÞ Cbðu; vÞj j
Db

� �
; (4.67)

where Cb(u,v) is the original DWT coefficient from the subband b. The operator 
b c
represents rounding to integer number. Hence, the value of quantized coefficient is:

Qb(u,v)Db. The quantization step is defined as follows:

Db ¼ 2Rb�eb 1þ mb
211


 �
; (4.68)

where Rb represents the nominal dynamic range of the subband b. The parameter mb
is the 11-bit mantissa and eb is the 5-bit exponent of the quantization step (0 	 mb
<211, 0 	 eb<25). The exponent/mantissa pairs (mb,eb) can be explicitly signaled in
the bit stream syntax for every subband. The dynamic range depends on the number

of bits used to represent the original image tile component and on the choice of the

wavelet transform. For reversible compression, the quantization step-size is

required to be 1.

The inverse quantization is defined as:

RQðu; vÞ ¼
ðQðu; vÞ þ dÞDb; for Qðu; vÞ>0;
ðQðu; vÞ � dÞDb; for Qðu; vÞ<0;
0; for Qðu; vÞ ¼ 0:

8<
: (4.69)

The reconstruction parameter is usually given by 0 	 d<1 and the most

commonly used value is d ¼ 0:5.

Fig. 4.32 Organization of subbands for JPEG2000
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4.9.5.2 Coding the Regions of Interest

One of the important techniques in the JPEG2000 algorithm is coding the regions of

interest (ROI). ROI is expected to be encoded with better quality than the other

regions (e.g., image background). Coding of the ROI aims to scale the ROI

coefficients and place them in the higher bit planes (comparing to the bit planes

of other coefficients). Hence, the ROI coefficients will be progressively transmitted

before the non-ROI coefficients. Consequently, ROI will be decoded before other

image parts and with higher accuracy (Fig. 4.33).

The method based on scaling is implemented as follows:

1. First, the wavelet transform is calculated.

2. Then, we form a mask indicating the set of coefficients that belong to ROI.

Specifically, the ROI mask is mapped from the pixels domain into each subband

in the wavelet domain (Fig. 4.34).

Fig. 4.33 Face is coded as ROI

Fig. 4.34 ROI mask mapped into subbands

4.9 Image Compression 173



3. Wavelet coefficients are quantized.

4. ROI coefficients are scaled and shifted to higher bit planes (MAXSHIFT).
5. Finally, the coefficients are encoded.

The value of the scaling factor has to be sufficiently large to ensure that the

lowest value in the ROI is greater than the largest value of the surrounding non-ROI

coefficients. The scaling factor is transmitted with the coefficients in order to be

able to reconstruct the original ROI values. An illustration of this process is shown

in Fig. 4.35.

Fig. 4.35 (a) Quantized wavelet coefficients before scaling, (b) quantized wavelet coefficients

after scaling
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Themost significant bit of each coefficient is indicated by “1” (the first non-zero bit

in each column), while the following bits are denoted by “x” (could be either 0 or 1).
The coefficients that belong to the ROI are shaded in gray. The bit planes that remain

after scaling the ROI are filled by “0.”

There are several ways to set the ROI masks. As shown in Fig. 4.36a, the low-

frequency coefficients can be transmitted together with the ROI coefficients if the

ROI masks are placed in all other subbands. Also, ROI regions can be only used in

specific subbands as shown in Fig. 4.36b.

Areas and Code Blocks

To achieve more efficient coding, each wavelet decomposition subband can be

further divided into precincts. The size of the precincts may vary at different levels

of decomposition, but can be usually expressed as a power of 2. Areas on the same

positions in different subbands are shaded in gray in Fig. 4.37. Each area is further

divided into the code-blocks whose dimensions are also a power of 2. This division

provides memory efficient implementation. Simple coders will use this division. On

the other hand, sophisticated coders will use a large number of code-blocks to

ensure that the decoder performs progressive decompression, as well as to provide

higher bit rate, image zooming, and other operations when decoding only parts of

the image.

The highlighted precincts in Fig. 4.37 correspond roughly to the same N/2� N/2
region in the original image (of size N � N). Note that the code-blocks in all

subbands are of the same size, except when their size is constrained by the subband

precinct size, as in the low-frequency subbands in Fig 4.37.

4.9.5.3 Entropy Coding

The wavelet coefficients are coded by bit-planes using the arithmetic encoding

scheme. The encoding is done from the most significant to the least significant

Fig. 4.36 (a) The low-frequency subband is codded together with ROI regions in other subbands,

(b) arbitrary ROI mask
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bit-plane. We also have to determine the bit context, where the probability of

occurrence for each bit is estimated. The bit value and its probability are forwarded

to an arithmetic coder. Hence, unlike many other compression algorithms, which

encode the coefficients of images, the JPEG2000 encodes the sequences of bits.

Each wavelet coefficient should have an indicator of importance (1 if the

coefficient is significant, and 0 if not). At the beginning of coding, all wavelet

coefficients are set to be insignificant. If there are bit-planes that contain all zero

values, the number of these bit-planes is stored in the bit stream.

A most significant non-zero bit plane is encoded in one pass, which is called the

cleanup pass. Each subsequent bit plane is encoded within three passes. Here, each

bit-plane is divided into tracks containing four lines (rows), while the tracks are

scanned by using the zigzag order (from left to right), as shown in Fig. 4.38.

At the beginning, all bits from the most significant non-zero bit-plane are fed to

the encoder (they are encoded in one pass). During this step, the coefficient is

denoted as significant if its bit is equal to 1. The coefficient remains significant until

the end of the encoding process.

The remaining bit-planes are encoded one after the other (from most to least

significant bit-planes), and within the three passes:

• The first pass involves the coefficients denoted as insignificant, which have at

least one significant neighbor (one of its eight nearest neighbors is denoted as

significant). Their bits from the observed bit plane are forwarded to the coder.

As previously described, the coefficients whose bit is 1 are declared significant

(a significance indicator is set to 1).

• The second pass encodes the bits of the coefficients that became significant in

earlier steps, when passing through a previous bit planes.

Fig. 4.37 An example of subbands, precincts, and code-blocks partition
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• The third step considers the bits omitted in the previous two steps. If the bit value

in the third step is 1, the corresponding coefficient is declared significant.

Example: We will illustrate the bit-planes encoding process by considering sepa-

rately only four isolated wavelet coefficients whose values are 9, 1, 2, and �6,

Fig. 4.39. The coefficients are encoded with 9 bits (1 sign bit and 8 bits for value).

Therefore, 9 ¼ 0 | 00001001, 1 ¼ 0 | 00000001, 2 ¼ 0 | 00000010, �6 ¼ 1 |

00000110

Bit plane containing the sign bits is considered separately and it is ignored at the

beginning. If we observe just the four given coefficients, the first four bit planes

(planes from 7 to 4) are zero, so the encoding starts from the third plane.

Plane 3: The bit-plane 3 is the most significant non-zero bit plane and it is encoded

in a single pass. One bit from each coefficient is brought to the encoder. Note that

in the plane 3, a bit for the coefficient with value 9 has the logical value of 1 and

the coefficient is declared as significant. The sign bit for the coefficient 9 is

encoded immediately after this bit.

Plane 2: The bit-plane 2 is encoded after plane 3. We first encode the coefficients

that are insignificant, but they are the neighbors to the significant ones. The

coefficient 1 is insignificant, but it is the adjacent coefficient to 9, which is

significant. Therefore, the bit 0 of the coefficient 1 is passed to the encoder.

Note that none of the coefficients have been declared significant at this stage. The

second step includes bits belonging to the significant coefficients. The coefficient

9 is significant, thus its bit 0 is passed to the encoder. Coefficients 2 and�6 are not

significant, and they are not located next to the significant coefficients. Hence,

they will be encoded in the third step. Since the bit of the coefficient�6 (plane 2)

has value 1, this is declared significant, and its sign bit is encoded, as well.

Fig. 4.38 The bit-planes

scan method
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Plane 1: The bits of the coefficients 1 and 2 are coded in the first pass (they are

neighbors of significant coefficients), while the bits of the significant coefficients

9 and�6 will be encoded in the second pass. The bit for coefficient 2 is 1, so this

coefficient becomes significant (its sign bit is passed to the encoder as well).

Plane 0: This plane is encoded last. The bit of coefficient 1 is encoded in the first

pass. The coefficient 1 becomes significant and its sign bit is encoded. The

coefficients 9, 2, and �6 are significant, and their bits are encoded in the second

pass.

Arithmetic Coding

The sequence of bits from each plane is forwarded to an arithmetic coder. Here, we

use the bit context to determine a probability of a binary symbol. One simple

example of using arithmetic coding with known probabilities of symbols

occurrences is illustrated in Fig. 4.40. Suppose that we want to encode the binary

sequence 1011, where the probability of occurrence of symbol “1” is equal to 0.6,

while for the symbol “0,” it is 0.4.

At the beginning, we have the interval [0, 1], which is divided into two intervals

according to the probability of symbol occurrence, as shown in Fig. 4.40. The lower

interval [0, 0.6], used to denote the symbol “1,” is then divided again into two

intervals with the same proportions as in the previous case. The second symbol is

“0,” and therefore, the upper interval [4.36, 4.6] is divided into two new intervals.

We continue this process until the whole sequence is encoded. At the end, we get

Fig. 4.39 Part of bit planes that contain four considered coefficients
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C ¼ [0.36, 0.446]. Finally, the sequence 1011 is coded by using one value from the

obtained interval, e.g., value 0.4. The interval should be available during

the decoding process. Note that the encoding is usually applied to much longer

sequences.

Determining the Context

The bit context is used in each step to estimate the probability for bit encoding. The

following procedure describes how to determine the context of bits in the first pass.

We consider eight neighboring coefficients around the wavelet coefficient X and

their current indicators of importance (1 indicating a significant coefficient, and

0 indicating the insignificant one). Let us assume that the indicators of neighboring

coefficients are denoted as in Fig. 4.41.

The context is selected based on the criteria listed in Table 4.3. Note that there

are 9 contexts, and the criteria depend on the subband (LL, LH, HL, HH), which is

encoded. For example, the context 0 represents the coefficient without any signifi-

cant neighbor. JPEG2000 standard defines similar rules for determining the bit

context for the other two passes.

Based on the estimated bit context, the probability estimation process (for

encoding the bit) is done by using lookup tables.

4.9.6 Fractal Compression

Having in mind that nowadays the devices (e.g., printers) constantly increase the

resolution, it is necessary to provide that once compressed image can be decompressed

at any resolution. This can be accomplished by using the fractal compression.

Fig. 4.40 An example of arithmetic coding
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Fig. 4.41 Significance

indicators for eight

neighboring coefficients

Table 4.3 Nine contexts

for the first pass
LL and LH subbands

Context
P

Hi

P
Vi

P
Di

2 8

1 >1 7

1 0 >1 6

1 0 0 5

0 2 4

0 1 3

0 0 >2 2

0 0 1 1

0 0 0 0

HL subband

Context
P

Hi

P
Vi

P
Di

2 8

>1 1 7

0 1 >1 6

0 1 0 5

2 0 4

1 0 3

0 0 >2 2

0 0 1 1

0 0 0 0

HH subband

Context
P ðHi þ ViÞ

P
Di

>3 8

>1 2 7

0 2 6

>2 1 5

1 1 4

0 1 3

>2 0 2

1 0 1

0 0 0
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In fractal compression, the entire image is divided into pieces (fractals). Using an

affine transformation,we are able tomathematically rotate, scale, skew, and translate a

function, and thus certain fractals can be used to “cover” the whole image.

Affine transformations for two-dimensional case are given by the relation:

Wðx; yÞ ¼ ðaxþ byþ e; cxþ dyþ f Þ; (4.70)

or in the matrix form:

W
x

y

 !
¼ a b

c d

� �
x

y

 !
þ e

f

 !
; (4.71)

where the matrix with elements a, b, c, d determines the rotation, skew, and scaling,

while the matrix with elements e and f defines the translation.
In the algorithm for fractal compression the entire image is firstly divided into

nonoverlapping domain regions. Then, each region is divided into a number of

predefined shapes (e.g., rectangles, squares, or triangles) as shown in Fig. 4.42.

The third step is to determine the affine transformations that closely match the

domain regions. In the final step, the image is recorded in the Fractional Image

Format (FIF) and it contains information about regions selection and the

coefficients of affine transformation (for each region).

4.9.7 Image Reconstructions from Projections

Image reconstruction based on projections has important applications in various

fields (e.g., in medicine when dealing with computer tomography, which is widely

used in everyday diagnosis).

Fig. 4.42 “Lena” image divided into different fractals
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A theoretical approach to this problem is presented below. Consider an object in

space, which can be described by the function f(x,y).The projection of function f(x,y)
along an arbitrary direction AB (defined by an angle j) can be defined as follows:

p’ðuÞ ¼
ð
AB

f ðx; yÞdl; (4.72)

where u ¼ x cosjþ y sinj. Thus, (4.72) can be written as:

pjðuÞ ¼
ð1

�1

ð1
�1

f ðx; yÞdðx cosjþ y sinj� uÞdxdy: (4.73)

The Fourier transform of the projection is given by:

PjðoÞ ¼
ð1

�1
pjðuÞe�joudu: (4.74)

Furthermore, the two-dimensional Fourier transform of f(x,y) is defined as:

Fðox;oyÞ ¼
ð1

�1

ð1
�1

f ðx; yÞe�j oxxþoyyð Þdxdy: (4.75)

As a special case, we can observe Fðox;oyÞ for oy ¼ 0:

Fðox; 0Þ ¼
ð1

�1

ð1
�1

f ðx; yÞe�joxxdxdy ¼
ð1

�1
p0ðxÞe�joxxdx ¼ P0ðoÞ: (4.76)

Hence, the Fourier transform of a two-dimensional object along the axis oy ¼ 0

is equal to the Fourier transform along the projection angle j ¼ 0. Consider now

what happens in the rotated coordinate system:

u

l

 !
¼ cosj sinj

� sinj cosj

� �
x

y

 !
: (4.77)

In this case, (4.74) can be written as:
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PjðoÞ ¼
ð1

�1
pjðuÞe�joudu ¼

ð1
�1

ð1
�1

f ðu; lÞe�joududl

¼
ð1

�1

ð1
�1

f ðx; yÞe�joðx cosjþy sinjÞdxdy ¼ Fðo;jÞ; (4.78)

where:
Fðo;jÞ ¼ Fðox;oyÞ

ox¼o cosj
oy¼o sinj

��� E
.

Now, let us summarize the previous considerations. If we have the object

projections, then we can determine their Fourier transforms. The Fourier transform

of a projection represents the transform coefficients along the projection line of the

object. By varying the projection angle from 0� to 180�, we obtain the Fourier

transform along all the lines (e.g., we get the Fourier transform of the entire object),

but in the polar coordinate system. To use the well-known FFT algorithm, we have

to switch from polar to rectangular coordinate system. Then, the image of the object

is obtained by calculating the inverse Fourier transform.

The transformation from the polar to the rectangular coordinate system can be

done by using the nearest neighbor principle, or by using some other more accurate

algorithms that are based on the interpolations.

4.10 Examples

4.1. Calculate the memory requirements for an image of size 256 � 256 pixels, in

the case of:

(a) Binary image

(b) Grayscale image

(c) Color image

Solution:

(a) In the case of binary image each sample is represented by a single bit, and thus

the required memory space is:

256·256·1 ¼ 65,536 bits.

(b) Grayscale image is usually represented by 8 bits per pixel, thus having 256

grayscale levels. The memory requirements for such a kind of image are:

256·256·8 ¼ 524,288 bits.

(c) Color image usually contains three different matrices for each color channel

and requires three-times higher memory space than the grayscale image:

256·256·8·3 ¼ 1,572,864 bits.
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4.2. If the values of R, G, and B components in the RGB systems are known and for

a certain pixel they are given by: R ¼ 0.5, G ¼ 0.2, B ¼ 0.8, determine the

corresponding values of the components in the YUV color model.

Solution:

Y ¼ 0:299Rþ 0:587Gþ 0:114B

U ¼ 0:564ðB� YÞ

V ¼ 0:713ðR� YÞ

Y ¼ 0:299 
 0:5þ 0:587 
 0:2þ 0:114 
 0:8 ¼ 0:36

U ¼ 0:564 
 0:8� 0:358ð Þ ¼ 0:25

V ¼ 0:713 
 0:5� 0:358ð Þ ¼ 0:1

4.3. Write a Matlab code that will load color image (e.g., lena.jpg), determine

the image size, and then convert the color image into a grayscale version by using

the Matlab built-in function rgb2gray, as well as by using the formula: Grayscale

¼ RvalueþGvalueþBvalue

3
.

Solution:

I¼imread(’lena.jpg’); % load image
size(I) % image size
ans ¼
512 512 3
I1¼rgb2gray(I);
figure, imshow(I1) % show image

Fig. 4.43 (a) Original image cameraman, (b) negative of image cameraman
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I¼double(I);
I2¼(I(:,:,1)+I(:,:,2)+I(:,:,3))/3;
figure, imshow(uint8(I2));

Note: The color channels are obtained as: I(:,:,1), I(:,:,2), I(:,:,3).

4.4. Write a code in Matlab that will create a negative of image “cameraman.tif”
(Fig. 4.43).

Solution:

I¼imread(’cameraman.tif’);
I¼double(I);
N¼255-I;
figure, imshow(uint8(I))
figure, imshow(uint8(N))

4.5. Write a code in Matlab that will provide a simple image darkening and

brightening procedure by decreasing/increasing original pixels values for 40%

(Fig. 4.44).

Solution:

I¼imread(’cameraman.tif’);
I¼double(I);
IB¼I+0.4*I; % brightening
figure(1), imshow(uint8(IB))
ID¼I-0.4*I; % darkening
figure(2), imshow(uint8(ID))

4.6. Starting from the grayscale image “cameraman.tif,” make a version of binary

image by setting the threshold on value 128.

Solution:

Fig. 4.44 Image lightening and darkening
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A binary image will have values 255 at the positions (i,j ) where the original

image has values above the threshold. On the remaining positions the pixels in the

binary image will be 0:

Bði; jÞ ¼ 255; Iði; jÞ>threshold

0; otherwise

	
:

The Matlab code that transforms grayscale into binary image is given in the

sequel (Fig. 4.45).

I¼imread(’cameraman.tif’);
[m,n]¼size(I);
for i¼1:m
for j¼1:n
if I(i,j)>128

I(i,j)¼255;
else

I(i,j)¼0;
end

end
end
figure, imshow(I)

4.7. Consider a color image “lena.jpg.” Transform the image into grayscale one and

add a white Gaussian noise with variance 0.02 (Fig. 4.46).

Solution:

I¼imread(’lena.jpg’);
I¼rgb2gray(I);
I1¼imnoise(I,’gaussian’,0,0.02);
figure, imshow(uint8(I1))

Fig. 4.45 Binary image

cameraman
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4.8. Calculate the mean and median values for vectors:

(a) v1 ¼ [12 22 16 41 �3]; (b) v2 ¼ [12 9 22 16 41 �3];

Solution:

(a) v1 ¼ [12 22 16 41 �3];

mean ¼ 17.6

sorted_v1 ¼ [�3 12 16 22 41];

median ¼ 16.

(b) v2 ¼ [12 9 22 16 41 �3]

mean ¼ 16.17

sorted_ v2 ¼ [�3 9 12 16 22 41]

median ¼ (12 + 16)/2 ¼ 14.

4.9. By using the Matlab function imnoise, add the impulse noise (“salt &

pepper” with a density 0.1) to the image “lena.jpg.” Then perform the image

Fig. 4.46 (a) Original image, (b) noisy image, (c) filtered image

Fig. 4.47 (a) Noisy image, (b) filtered image
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filtering by using the two-dimensional median filter realized by Matlab function

medfilt2.

Solution:

I¼imread(’lena.jpg’);
I¼rgb2gray(I);
figure, imshow(I)
In¼imnoise(I,’salt & pepper’,0.1);
figure, imshow(In)
If¼medfilt2(In);
figure, imshow(If)

4.10. Write your own code for median filtering in Matlab: the filtering should be

applied to image “cameraman.tif” which is corrupted by the impulse noise with

density 0.1. Use the window of size 3 � 3. It is necessary to include the image

boundaries as well (Fig. 4.47).

Solution:

I¼imread(’cameraman.tif’);
In¼imnoise(I,’salt & pepper’,0.03);
[m,n]¼size(In);
IM¼zeros(m,n);
In¼double(In);
for i¼1:m

for j¼1:n
b¼In(max(i,i-1):min(m,i+1),max(j,j-1):min(n,j+1));
b¼b(:);
IM(i,j)¼median(b);
end

end

Fig. 4.48 (a) Noisy image (Gaussian noise), (b) filtered image
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figure(1),imshow(uint8(In))
figure(2),imshow(uint8(IM))

4.11. Write a Matlab code that filters an image corrupted by Gaussian noise with

zero mean and variance equal to 0.01. The window of size 5 � 5 is used (Fig. 4.48).

Solution:

I¼imread(’cameraman.tif’);
In ¼imnoise(I,’gaussian’,0,0.01);
[m,n]¼size(In);
IM¼zeros(m,n);
In¼double(In);
for i¼1:m

for j¼1:n
b¼In(max(i,i-2):min(m,i+2),max(j,j-2):min(n,j+2));
b¼b(:);
IM(i,j)¼mean(b);
end

end
figure(1),imshow(uint8(In))
figure(2),imshow(uint8(IM))

4.12. For a given matrix of size 5 � 5, determine the corresponding cooccurrence

matrix and the measure of contrast.

12 11 11 11 14

12 11 11 11 14

12 11 11 14 14

13 11 11 14 14

13 13 12 12 12

Solution:

Cooccurence matrix c is obtained in the following form:

x/y 11 12 13 14

11 6 0 0 4

12 3 2 0 0

13 1 1 1 0

14 0 0 0 2

The measure of contrast is given by:

Con ¼
X3
x¼0

X3
y¼0

ðx� yÞ2cðx; yÞ ¼ 44:
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4.13. For a given block of 8 � 8 DCT coefficients and the given JPEG quantization

matrix Q, perform the quantization, zigzag scanning and determine the coded

sequence.

D¼

80 50 26 10 33 11 0 0

22 �28 34 10 0 0 0 0

14 10 17 11 5 0 5 0

56 17 20 12 0 12 8 0

10 12 8 3 2 0 7 0

10 13 17 3 0 2 2 0

6 0 5 10 14 0 0 0

0 0 0 0 0 0 0 0

2
66666666664

3
77777777775

Q¼

3 5 7 9 11 13 15 17

5 7 9 11 13 15 17 19

7 9 11 13 15 17 19 21

9 11 13 15 17 19 21 23

11 13 15 17 19 21 23 25

13 15 17 19 21 23 25 27

15 17 19 21 23 25 27 29

17 19 21 23 25 27 29 31

2
66666666664

3
77777777775

Solution:

DCT coefficients from the 8 � 8 block are divided by the quantization matrix and

rounded to the integer values, as follows:

Dq ¼ roundðD=QÞ ¼

27 10 4 1 3 1 0 0

4 �4 4 1 0 0 0 0

2 1 2 1 0 0 0 0

6 2 2 1 0 1 0 0

1 1 1 0 0 0 0 0

1 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

2
66666666664

3
77777777775

After performing the zigzag scanning of the matrix Dq, the sequence is obtained

in the form:

27; 10; 4; 2;�4; 4; 1; 4; 1; 6; 1; 2; 2; 1; 3; 1; 0; 1; 2; 1; 1; 0; 1; 1; 1; 0;

0; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0;

0; . . .

The intermediate symbol sequence is given by:

5ð Þ 27ð Þ; 0; 4ð Þ 10ð Þ; 0; 3ð Þ 4ð Þ; 0; 2ð Þ; 2ð Þ; 0; 3ð Þ �4ð Þ; 0; 3ð Þ 4ð Þ; 0; 1ð Þ 1ð Þ;
0; 3ð Þ 4ð Þ; 0; 1ð Þ 1ð Þ; 0; 3ð Þ 6ð Þ; 0; 1ð Þ 1ð Þ; 0; 2ð Þ 2ð Þ; 0; 2ð Þ 2ð Þ; 0; 1ð Þ 1ð Þ;
0; 2ð Þ 3ð Þ; 0; 1ð Þ 1ð Þ; 1; 1ð Þ 1ð Þ; 0; 2ð Þ 2ð Þ; 0; 1ð Þ 1ð Þ; 0; 1ð Þ 1ð Þ; 1; 1ð Þ 1ð Þ;
0; 1ð Þ 1ð Þ; 0; 1ð Þ 1ð Þ; 8; 1ð Þ 1ð Þ; 6; 1ð Þ 1ð Þ; 9; 1ð Þ 1ð Þ; 0; 0ð Þ:

190 4 Digital Image



The code words for the symbols (a,b) are given in the table:

Symbol (a,b) Code word

(0,1) 00

(0,2) 01

(0,3) 100

(0,4) 1011

(1,1) 1100

(6,1) 1111011

(8,1) 111111000

(9,1) 111111001

(0,0) EOB 1010

Hence, the coded sequence is:

101ð Þ 11011ð Þ 1011ð Þ 1010ð Þ 100ð Þ 100ð Þ 01ð Þ 10ð Þ 100ð Þ 011ð Þ 100ð Þ
ð100Þ 00ð Þ 1ð Þ 100ð Þ 100ð Þ 00ð Þ 1ð Þ 100ð Þ 110ð Þ 00ð Þ 1ð Þ 01ð Þ 10ð Þ 01ð Þ
10ð Þ 00ð Þ 1ð Þ 01ð Þ 11ð Þ 00ð Þ 1ð Þ 1100ð Þ 1ð Þ 01ð Þ 10ð Þ 00ð Þ 1ð Þ 00ð Þ 1ð Þ
1100ð Þ 1ð Þ 00ð Þ 1ð Þ 00ð Þ 1ð Þ 111111000ð Þ 1ð Þ 1111011ð Þ 1ð Þ ð111111001Þ
1ð Þ 1010ð Þ

4.14. Consider four 8-bit coefficients A, B, C, and D with values A ¼ �1, B ¼ �3,

C ¼ 11, D ¼ 5. Explain the encoding procedure using the bit planes concept as in

JPEG2000 compression.

Solution:

Bit plane sign A B C D

8 1 1 0 0

7 0 0 0 0

6 0 0 0 0

5 0 0 0 0

4 0 0 0 0

3 0 0 1 0

2 0 0 0 1

1 0 1 1 0

0 1 1 1 1

The coding starts from the bit-plane 3 since it is the first bit-plane that contains

the non-zero coefficients.

Bit-plane 3: This bit plane is encoded within a single encoding pass. C is declared

significant, since its bit has value 1. The sign bit is encoded immediately after bit 1.
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Bit-plane 2: The coefficients B and D are insignificant, but they are neighbors of the

significant coefficient C. Hence, their bits are encoded in the first pass. The

corresponding bit of coefficientD is 1, and thusD is declared significant (sign bit

is encoded as well).

The bits of significant coefficients are encoded in the second pass, i.e., the bit

of the coefficient C. Bit of the coefficient A is encoded in the third pass.

Bit-plane 1: The bit of the coefficient B is encoded in the first pass, since B is a

neighbor of the significant coefficientC (the sign bit of B is encoded after its bit 1).

The bits of significant coefficientsC andD are encoded in the second pass. The bit

of coefficient A is encoded in the third pass.

Bit-Plane 0: Bit of coefficient A is encoded in the first pass, and since the bit is 1, the

sign bit is encoded as well. The bits of coefficients B, C, and D are encoded in

the second pass.

Appendix – Matlab Codes for Some of the Considered

Image Transforms

IMAGE CLIPPING

I¼imread(’lena512.bmp’);

I¼I(1:2:512,1:2:512);

I¼double(I);

for i¼1:256

for j¼1:256

if I(i, j )<100

I(i, j )¼100;

elseif I(i, j )>156

I(i, j )¼156;

end

end

end

I¼uint8(I);

imshow(I)

TRANSFORMING IMAGE LENA TO IMAGE BABOON
Ia¼imread(’lena512.bmp’);

Ia¼Ia(1:2:512,1:2:512);

Ia¼double(Ia);

Ib¼imread(’baboon.jpg’);

Ib¼rgb2gray(Ib);

Ib¼double(Ib);

for i¼1:10

Ic¼(1-i/10)*Ia+(i/10)*Ib;

imshow(uint8(Ic))

pause(0.5)

end
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GEOMETRIC MEAN FILTER
clear all

I¼imread(’board.tif’);

I¼imnoise(I,’gaussian’,0,0.025);

I¼double(I);

[m,n]¼size(I);

Im¼zeros(size(I));

for i¼1:m

for j¼1:n

a¼I(max(i,i-1):min(m,i+1),max(j,j-1):min(n,j+1));

Im(i, j )¼geomean(a(:));

end

end

figure(1), imshow(uint8(I))

figure(2), imshow(uint8(Im))

CONSECUTIVE IMAGE ROTATIONS (Image is rotated in steps of 5� up to 90�)
I¼imread(’lena512.bmp’);

I¼I(1:2:512,1:2:512);

for k¼5:5:90

I1¼imrotate(I,k,’nearest’);

imshow(I1)

pause(1)

end

SOBEL EDGE DETECTOR version1
I¼imread(’cameraman.tif’);

subplot(221),imshow(I)

edge_h¼edge(I,’sobel’,’horizontal’);

subplot(222),imshow(edge_h)

edge_v¼edge(I,’sobel’,’vertical’);

subplot(223),imshow(edge_v)

edge_b¼edge(I,’sobel’,’both’);

subplot(224),imshow(edge_b)

SOBEL EDGE DETECTOR version2
WITH AN ARBITRARY GLOBAL THRESHOLD

clear all

I¼imread(’lena512.bmp’);

I¼I(1:2:512,1:2:512);

[m,n]¼size(I);

I¼double(I);

H¼[1 2 1; 0 0 0; -1 -2 -1];

V¼[1 0 -1; 2 0 -2; 1 0 -1];

Edge_H¼zeros(m,n);

Edge_V¼zeros(m,n);

Edges¼zeros(m,n);
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thr¼200;

for i¼2:m-1

for j¼2:n-1

Lv¼sum(sum(I(i-1:i+1,j-1:j+1).*V));

Lh¼sum(sum(I(i-1:i+1,j-1:j+1).*H));

L¼sqrt(Lv^2+Lh^2);

if Lv>thr

Edge_V(i, j )¼255;

end

if Lh>thr

Edge_H(i, j )¼255;

end

if L>thr

Edges(i, j )¼255;

end

end

end

figure, imshow(uint8(Edge_H))

figure, imshow(uint8(Edge_V))

figure, imshow(uint8(Edges))

WAVELET IMAGE DECOMPOSITION
I¼imread(’lena512.bmp’);

I¼double(I);

n¼max(max(I));

%First level decomposition

[S1,H1,V1,D1]¼dwt2(I,’haar’);

S1¼wcodemat(S1,n);

H1¼wcodemat(H1,n);

V1¼wcodemat(V1,n);

D1¼wcodemat(D1,n);

dec2d_1 ¼ [S1 H1; V1 D1];

%Next level decomposition

I¼S1;

[S2,H2,V2,D2]¼dwt2(I,’haar’);

S2¼wcodemat(S2,n);

H2¼wcodemat(H2,n);

V2¼wcodemat(V2,n);

D2¼wcodemat(D2,n);

dec2d_2 ¼ [S2 H2; V2 D2];

dec2d_1 ¼ [dec2d_2 H1; V1 D1];

imshow(uint8(dec2d_1))

JPEG IMAGE QUANTIZATION
I¼imread(’lena.jpg’);

I¼rgb2gray(I);

I¼double(I(1:2:512,1:2:512));
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Q50¼[16 11 10 16 24 40 51 61;

12 12 14 19 26 58 60 55;

14 13 16 24 40 57 69 56;

14 17 22 29 51 87 80 62;

18 22 37 56 68 109 103 77;

24 35 55 64 81 104 113 92;

49 64 78 87 103 121 120 101;

72 92 95 98 112 100 103 99];

Table 4.4 Symbols and corresponding code words for AC luminance components

(a,b) Code word (a, b) Code word

(0,0) 1010 (3,9) 1111111110010100

(0,1) 00 (3,A) 1111111110010101

(0,2) 01 (4,1) 111011

(0,3) 100 (4,2) 1111111000

(0,4) 1011 (4,3) 1111111110010110

(0,5) 11010 (4,4) 1111111110010111

(0,6) 1111000 (4,5) 1111111110011000

(0,7) 11111000 (4,6) 1111111110011001

(0,8) 1111110110 (4,7) 1111111110011010

(0,9) 1111111110000010 (4,8) 1111111110011011

(0,A) 1111111110000011 (4,9) 1111111110011100

(1,1) 1100 (4,A) 1111111110011101

(1,2) 11011 (5,1) 1111010

(1,3) 1111001 (5,2) 11111110111

(1,4) 111110110 (5,3) 1111111110011110

(1,5) 11111110110 (5,4) 1111111110011111

(1,6) 1111111110000100 (5,5) 1111111110100000

(1,7) 1111111110000101 (5,6) 1111111110100001

(1,8) 1111111110000110 (5,7) 1111111110100010

(1,9) 1111111110000111 (5,8) 1111111110100011

(1,A) 1111111110001000 (5,9) 1111111110100100

(2,1) 11100 (5,A) 1111111110100101

(2,2) 11111001 (6,1) 1111011

(2,3) 1111110111 (6,2) 111111110110

(2,4) 111111110100 (6,3) 1111111110100110

(2,5) 1111111110001001 (6,4) 1111111110100111

(2,6) 1111111110001010 (6,5) 1111111110101000

(2,7) 1111111110001011 (6,6) 1111111110101001

(2,8) 1111111110001100 (6,7) 1111111110101010

(2,9) 1111111110001101 (6,8) 1111111110101011

(2,A) 1111111110001110 (6,9) 1111111110101100

(3,1) 111010 (6,A) 1111111110101101

(3/2) 111110111 (7,1) 11111010

(3,3) 111111110101 (7,2) 111111110111

(3,4) 1111111110001111 (7,3) 1111111110101110

(3,5) 1111111110010000 (7,4) 1111111110101111

(continued)
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Table 4.4 (continued)

(a,b) Code word (a, b) Code word

(3,6) 1111111110010001 (7,5) 1111111110110000

(3,7) 1111111110010010 (7,6) 1111111110110001

(3,8) 1111111110010011 (7,7) 1111111110110010

(7,8) 1111111110110011

(7,9) 1111111110110100 (C,2) 1111111111011001

(7,A) 1111111110110101 (C,3) 1111111111011010

(8,1) 111111000 (C,4) 1111111111011011

(8,2) 111111111000000 (C,5) 1111111111011100

(8,3) 1111111110110110 (C,6) 1111111111011101

(8,4) 1111111110110111 (C,7) 1111111111011110

(8,5) 1111111110111000 (C,8) 1111111111011111

(8,6) 1111111110111001 (C,9) 1111111111100000

(8,7) 1111111110111010 (C,A) 1111111111100001

(8,8) 1111111110111011 (D,1) 11111111000

(8,9) 1111111110111100 (D,2) 1111111111100010

(8,A) 1111111110111101 (D,3) 1111111111100011

(9,1) 111111001 (D,4) 1111111111100100

(9,2) 1111111110111110 (D,5) 1111111111100101

(9,3) 1111111110111111 (D,6) 1111111111100110

(9,4) 1111111111000000 (D,7) 1111111111100111

(9,5) 1111111111000001 (D,8) 1111111111101000

(9,6) 1111111111000010 (D,9) 1111111111101001

(9,7) 1111111111000011 (D,A) 1111111111101010

(9,8) 1111111111000100 (E,1) 1111111111101011

(9,9) 1111111111000101 (E,2) 1111111111101100

(9,A) 1111111111000110 (E,3) 1111111111101101

(A,1) 111111010 (E,4) 1111111111101110

(A,2) 1111111111000111 (E,5) 1111111111101111

(A,3) 1111111111001000 (E,6) 1111111111110000

(A,4) 1111111111001001 (E,7) 1111111111110001

(A,5) 1111111111001010 (E,8) 1111111111110010

(A,6) 1111111111001011 (E,9) 1111111111110011

(A,7) 1111111111001100 (E,A) 1111111111110100

(A,8) 1111111111001101 (F,0) 11111111001

(A,9) 1111111111001110 (F,1) 1111111111110101

(A,A) 1111111111001111 (F,2) 1111111111110110

(B,1) 1111111001 (F,3) 1111111111110111

(B,2) 1111111111010000 (F,4) 1111111111111000

(B,3) 1111111111010001 (F,5) 1111111111111001

(B,4) 1111111111010010 (F,6) 1111111111111010

(B,5) 1111111111010011 (F,7) 1111111111111011

(B,6) 1111111111010100 (F,8) 1111111111111100

(B,7) 1111111111010101 (F,9) 1111111111111101

(B,8) 1111111111010110 (F,A) 1111111111111110

(B,9) 1111111111010111

(B,A) 1111111111011000

(C,1) 1111111010
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QF¼70;

q¼2-0.02*QF; %q¼50/QF;

Q¼round(Q50.*q);

I1¼zeros(256,256);

for i¼1:8:256-7

for j¼1:8:256-7

A¼I(i:i+7,j:j+7);

dct_block¼dct2(A);

dct_Q¼round(dct_block./Q).*Q;

I1(i:i+7,j:j+7)¼idct2(dct_Q);

end

end

figure(1), imshow(uint8(I))

figure (2), imshow (uint8(I1))
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Chapter 5

Digital Video

Unlike digital audio signals that are sampled in time or digital images sampled in

the spatial domain, a digital video signal is sampled in both space and time, as

illustrated in Fig. 5.1.

Time sample is called frame. The sampling rate is 25 frames/s or 30 frames/s.

However, it should be noted that instead of a frame, two fields are used, one

containing even and the other odd lines. In this case, the sampling rate is

50 fields/s or 60 fields/s.

Digital video is based on the YCrCb color model given by:

Y ¼ 0:299Rþ 0:587Gþ 0:114B;

Cb ¼ 0:564ðB� YÞ;
Cr ¼ 0:713ðR� YÞ:

Different sampling schemes are available, depending on the resolution of the

luminance Y and the chrominance components Cr and Cb. They have been known

as: 4:4:4, 4:2:2, and 4:2:0.

The 4:4:4 scheme means that all components are used with the full resolution:

each pixel contains Y, Cr, and Cb component, as shown in Fig. 5.2a. For 4:2:2

scheme, the Cr and Cb components are represented with a twice lower resolution

compared to Y. Observing the four pixels, we see that for 4 Y samples, there are

2 Cr and 2 Cb samples, Fig. 5.2b. Lastly, the 4:2:0 sampling scheme has a four

times lower resolution for Cr and Cb components compared to the Y component.

So, among four pixels only one contains Cr and Cb component, Fig. 5.2c.

Now, let us compute a required number of bits per pixel for each of these

sampling schemes. Again we consider the four neighboring pixels. In the 4:4:4

scheme, all pixels contain three components (YCrCb), and if 8 bits is required for

each of them, we have:

4� 3� 8 ¼ 96 b in total; i:e:; 96=4 ¼ 24 b=pixel:

S. Stanković et al., Multimedia Signals and Systems,
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In the 4:2:2 scheme, two pixels contain three components and the other two

pixels contain only one component. Hence, the average number of bits per pixel is

calculated as:

2� 3� 8þ 2� 1� 8 ¼ 64 b in total; i:e:; 64=4 ¼ 16 b=pixel:

In analogy to the previous case, for the 4:2:0 scheme we obtain:

1� 3� 8þ 3� 1� 8 ¼ 48 b in total; i:e:; 48=4 ¼ 12 b=pixel

In the sequel, we consider one simple example to illustrate how the sampling

schemes 4:4:4 and 4:2:0 influence the amount of data. The frame size is 352� 288.

In the first case (4:4:4), we have: 352 � 288 � 24 b/pixel ¼ 2.433 Mb. In the

second case (4:2:0): 352 � 288 � 12 b/pixel ¼ 1.216 Mb.

5.1 Digital Video Standards

The standard for digital video broadcasting is ITU-RBT.601–5 (International Telecom-

munication Union, Radiocommunications Sector – ITU-R). This standard specifies:

Fig. 5.1 An illustration of video signal sampling

Fig. 5.2 Sampling schemes (a) 4:4:4, (b) 4:2:2, (c) 4:2:0
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• 60 fields/s for NTSC or 50 fields/s for PAL system

• NTSC requires 525 lines per frame, while PAL system requires 625 lines, with

8 b/sample in both systems.

The bit rate of video data is 216 Mb/s in both cases.

In addition to the considered sampling schemes, an important resolution param-

eter is video signal format. The most frequently used formats are:

• 4CIF with the resolution 704� 576, and this format corresponds to broadcasting

standards

• CIF 352 � 288

• QCIF 176 � 144

• SubQCIF 128 � 96

The video signal bit rate depends on the video frame format. The mentioned bit

rate of 216 Mb/s corresponds to the quality used in standard television. Only 187 s

of such a signal can be stored on a 4.7 GB DVD. For the CIF format with 25

frames/s and the 4:2:0 scheme, we achieve the bit rate of 30 Mb/s. Similarly, for the

QCIF format with 25 frames/s, the bit rate is 7.6 Mb/s. Consider now these video bit

rates in the context of the ADSL network capacity. For example, typical bit rates in

the ADSL networks are 1–2 Mb/s. Hence, it is obvious that the signal must be

compressed in order to be transmitted over the network.

Since we will deal with video compression later on, here we only mention that the

compression algorithms belong to the International Organization for Standardization

(ISO) and International Telecommunication Union (ITU) standards. The MPEG

algorithms belong to the ISO standard, while the ITU standards cover VCEG

algorithms. In order to improve the compression ratio and the quality of the com-

pressed signal, compression algorithms have been improved over time, so today we

have MPEG-1, MPEG-2, MPEG-4, MPEG-7. The VCEG standards include: H.261,

H.263, H.264.

5.2 Motion Parameters Estimation in Video Sequences

Motion estimation is an important part of video compression algorithms. One of the

simplest methods for motion estimation is a block matching technique. Namely, we

consider a block of pixels from the current frame, and in order to estimate its

position (motion vector), we compare it with the blocks within a predefined region

in the reference frame. As a comparison parameter, it is possible to use the mean

square error (MSE) or the sum of absolute errors (SAE):

MSE ¼ 1

N2

XN
i¼1

XN
j¼1

Ci; j � Ri; j

� �2
; (5.1)
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SAE ¼
XN
i¼1

XN
j¼1

Ci; j � Ri; j

�� ��; (5.2)

where Rij and Cij are the pixels in the reference and current frame, respectively.

Hence, MSE or SAE are calculated for a set of neighboring blocks in the reference

frame. The minimal error is compared with a certain threshold. If the minimal error

is below the threshold, the corresponding position represents the motion vector.

This vector indicates the motion of the considered block within the two frames. The

threshold plays an important role in determining motion vectors. Inappropriate

threshold could cause spurious motion vectors, especially in the presence of noise.

Let us illustrate the block matching procedure on a simple example of a 3 � 3

block (larger blocks are used in practical applications), shown in Fig. 5.3.

Compute the MSE for the central position (0,0):

MSE00 ¼ ð2� 3Þ2 þ ð1� 3Þ2 þ ð2� 4Þ2 þ ð2� 3Þ2 þ ð3� 1Þ2þ
n
ð4� 3Þ2 þ ð1� 2Þ2 þ ð3� 3Þ2 þ ð1� 2Þ2

o
=9 ¼ 1:89: (5.3)

In analogy with (5.3), the MSEs for other positions are obtained as:

ð�1;�1Þ ! 4:11 ð1; 0Þ ! 4:22
ð0;�1Þ ! 4:44 ð�1; 1Þ ! 0:44
ð1;�1Þ ! 9:44 ð0; 1Þ ! 1:67
ð�1; 0Þ ! 2:56 ð1; 1Þ ! 4

We see that minfMSEnkg ¼ MSE�1;1 and the vector (�1,1) is the candidate for
motion vector. Assuming that the value 0.44 is below a threshold, the motion vector

is determined by (�1,1).
A procedure for motion vectors estimation in the case of larger blocks is

analyzed in the sequel, and it is known as the full search algorithm. It compares

blocks of size 16�16, within the search area of 31 � 31 pixels. It means that the

Fig. 5.3 Motion vector estimation for a 3 � 3 block
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search is done over 15 pixels on each side from the central position (0,0), Fig. 5.4.

This method is computationally demanding, since we need to calculate 31 � 31

MSEs for 16 � 16 blocks.

Therefore, the fast search algorithms have been defined to reduce the number of

calculations, still providing sufficient estimation accuracy. The search procedure

based on the three-step algorithm is shown in Fig. 5.5. In the first step, we observe the

eight positions at the distance of p pixels (e.g., p ¼ 4) from the central point (0,0).

The MSEs are calculated for all nine points (denoted by 1 in Fig. 5.5). The position

that provides the lowest MSE becomes the central position for the next step.

Fig. 5.4 Illustration

of full search

Fig. 5.5 Illustration

of three-step search
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In the second step, we consider locations on a distance p/2 from the new central

position. Again, the MSEs are calculated for eight surrounding locations (denoted

by 2). The position related to the lowest MSE is a new central position. In the third

step, we consider another eight points around the central position, with the step p/4.
The position with minimal MSE in the third step determines the motion vector.

Another interesting search algorithm is called the logarithmic search (Fig. 5.6).

In the first iteration, it considers the position that forms a “+” shape (denoted by 1 in

Fig. 5.6). The position with the smallest MSE is chosen for the central point. Then,

in the second iteration, the same formation is done around the new central point and

the MSE is calculated. The procedure is repeated until the same position is chosen

twice in two consecutive iterations. After that the search continues by using the

closest eight points (denoted by 5). Finally, the position with the lowest MSE is

declared as the motion vector.

The motion vectors search procedures can be combined with other motion

parameters estimation algorithms to speed up the algorithms.

5.3 Digital Video Compression

Compression algorithms are of great importance for digital video signals. In fact, as

previously demonstrated, the uncompressed video contains large amount of data

that requires significant transmission and storage capacities. Hence, the powerful

MPEG algorithms are developed and used.

Fig. 5.6 Illustration

of the logarithmic search
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5.3.1 MPEG-1 Video Compression Algorithm

The primary purpose of the MPEG-1 algorithm was to store 74 min of digital video

recording on a CD, with a bit rate 1.4 Mb/s. This bit rate is achieved by using the

MPEG-1 algorithm, but with a VHS video quality. A low video quality obtained by

the MPEG-1 algorithm was one of the main drawbacks that prevented a wide use of

this algorithm. However, the MPEG-1 algorithm served as a basis for the develop-

ment of the MPEG-2 and was used in some Internet applications, as well.

The main characteristics of the MPEG-1 algorithm are the CIF format

(352 � 288) and the YCrCb 4:2:0 sampling scheme. The basic coding units are

16 � 16 macroblocks. Therefore, the 16 � 16 macroblocks are used for the Y

component while, given the 4:2:0 scheme, the 8 � 8 macroblocks are used for the

Cr and Cb components. The MPEG-1 algorithm consists of the I, B, and P frames.

The I frame is first displayed, followed by B and then by P frames. The scheme

continuously repeats as shown in Fig. 5.7.

The I frames are not coded by using motion estimation. Thus, the I frames use

only the intracoding, where the blocks are compared within the same frame. P is an

intercoded frame and it is based on the forward prediction. It means that this frame

is coded by using motion prediction from the reference I frame. B frame is the

intercoded frame as well, but unlike the P frame, the forward and backward motion

predictions are used. Namely, the motion prediction can be done with respect to the

I frame or to the P frame, depending on which gives more optimal results. Hence,

the motion vectors are of particular importance in the MPEG algorithms. They are

calculated for the blocks of DCT coefficients.

Let us consider the following example. Assume that we have a video scene in

which there is a sudden change in the background at the position of the second B

frame. In this case, it is much more efficient to code the first B frame with respect to

I frame, while the second B frame is coded with respect to the P frame. Having in

mind the role of individual frames in video decoding, the sequence of frames used

for transmission is depicted in Fig. 5.8.

So, an I frame is transmitted first, followed by P and then by B frames. For the

considered case, the frame transfer order is:

I1 P4 B2 B3 P7 B5. . .

Fig. 5.7 Structure of frames in MPEG-1 algorithm
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To reconstruct the video sequence, we use the following order:

I1 B2 B3 P4 B5. . .

The data structure of MPEG-1 algorithms
The data in MPEG-1 are structured in several levels.

1. Sequence layer. The level of sequence contains information about the image

resolution and a number of frames per second.

2. Group of pictures layer. This level contains information about I, P, and B

frames. For example, a scheme consisted of 12 frames can be: 1 I frame, 3 P

frames, and 8 B frames.

3. Picture layer. It carries information on the type of images (e.g., I, P, or B frame),

and defines when the picture should be displayed in relation to other pictures.

4. Slice layer. Pictures consist of slices, which are further composed of macroblocks.

The slice layer provides information about slice position within the picture.

5. Macroblock layer. The macroblock level consists of six 8� 8 blocks (four 8� 8

blocks represent the information about luminance and two 8� 8 blocks are used

to represent colors).

6. Block layer. This level contains the quantized transform coefficients from 8 � 8

blocks.

5.3.2 MPEG-2 Compression Algorithm

The MPEG-2 is a part of the ITU-R 601 standard and it is still present in digital TV

broadcasting. The standard consists of the MPEG-1 audio algorithm, MPEG-

2 video algorithm, and a system for multiplexing and transmission of digital

audio/video signals.

MPEG-2 is optimized for data transfer at a bit rate 3–5 Mb/s. Unlike the MPEG-

1 algorithm, it is based on fields rather than the frames, i.e., the field pictures are

coded separately. Recall that one frame consists of two fields: odd- and even-

numbered frame lines are placed within two fields. If we observe a 16 � 16

block, the fields in DCT domain can be represented by using even and odd lines.

On the other side, it is possible to split a DCT block into upper and lower blocks of

size 16 � 8. This representation provides a separate motion estimation, which

improves the performance of the algorithm, because a significant difference in

motion may exist between fields with lower and higher frequencies.

Fig. 5.8 The order of I, B and P frames during transmission
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5.3.3 MPEG-4 Compression Algorithm

The MPEG-4 compression algorithm is designed for low bit rates. The main

difference in comparison to the MPEG-1 and MPEG-2 is reflected in the object-

based coding and content-based coding. Hence, the algorithm uses an object as the

basic unit instead of a frame (the entire scene is split into the objects and back-

ground). Equivalently to the frame, in the MPEG-4, we have a video object plane.

This concept provides higher compression ratio, because the interaction between

objects is much higher than among frames.

MPEG-4 video algorithm with very low bit rate (MPEG-4 VLBV) is basically

identical to the H.263 protocol for video communications. The sampling scheme is

4:2:0 and it supports formats 16CIF, 4CIF, CIF, QCIF, SubQCIF with 30 frames/s.

The motion parameters estimation is performed for 16 � 16 or 8 � 8 blocks. The

DCT is used together with the entropy coding.

The data structure of MPEG-4 VLBV algorithm is:

1. Picture layer. It provides the information about the picture resolution, its relative

temporal positions among other pictures, and the type of encoding (inter, intra).

2. Group of blocks layer. This layer contains a group of macroblocks (with a fixed

size defined by the standard) and has a similar function as slices in the MPEG-1

and MPEG-2.

3. Macroblock layer. This consists of four blocks carrying information about

luminance and two blocks with chrominance components. Therefore, its header

contains information about the type of macroblock, about the motion vectors, etc.

4. Block layer. This consists of coded coefficients from the 8 � 8 blocks.

Shape coding is used to provide information about the shape of video object

plane. In other words, it is used to determine whether a pixel belongs to an object or

not, and thus, it defines the contours of the video object. The shape information can

be coded as a binary (pixel either belongs to the object or not) or gray scale

information (coded by 8 bits to provide more description about possible

overlapping, pixel transparency, etc).

Objects are encoded by using the 16 � 16 blocks. Note that all pixels within the

block can completely belong to an object, but can also be on the edge of the object.

For blocks that are completely inside the object plane, the motion estimation is

performed similarly to the MPEG-1 and MPEG-2 algorithms. For the blocks outside

the object (blocks with transparent pixels) nomotion estimation is performed. For the

blocks on the boundaries of the video object plane, the motion estimation is done as

follows. In the reference frame, the blocks (16� 16 or 8� 8) on the object boundary

are padded by the pixels from the object edge, in order to fill the transparent pixels.

Then the block in the current frame is compared with the blocks in the referent frame.

TheMSE (or SAE) is calculated only for pixels that are inside the video object plane.

Motion estimation is done for video object plane as follows:

– For the I frame, the motion estimation is not performed;

– For the P frame, the motion prediction is based on the I frame or the previous P

frame;
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– For the B frame, the video object plane is coded by using the motion prediction

from the I and P frames (backward and forward).

The MPEG-4 in its structure contains spatial and temporal scalability. We can

change the resolution with spatial scaling, while the time scaling can change the

time resolution for objects and background (e.g., we can display objects with more

frames/s, and the background with less frames/s). Also, at the beginning of the

video sequence, we can transmit larger backgrounds than the one that is actually

displayed at the moment. Hence, when zooming or moving the camera, the back-

ground information already exists. This makes the compression more efficient.

5.3.4 VCEG Algorithms

The VCEG algorithms are used for video coding and they belong to the ITU

standards. Thus, they are more related to the communication applications. Some

of the algorithms belonging to this group are: H.261, H.263, and H.264.

5.3.4.1 H.261

This standard was developed in the late 1980s and early 1990s. The main objective

was to establish the standards for video conferencing via an ISDN network with a

bit rate equal to p� 64 Kb/s. Typical bit rates achieved with this standard are in the

range 64–384 Kb/s. The CIF and QCIF formats are used with the 4:2:0 YCrCb

scheme. The coding unit is a macroblock containing four luminance and two

chrominance blocks (of size 8 � 8). This compression approach requires relatively

simple hardware and software, but has a poor quality of video signals at bit rates

below 100 Kb/s.

5.3.4.2 H.263

In order to improve compression performance, the H.263 standard is developed as

an extension of H.261. It can support video communication at bit rates below

20 Kb/s with a quite limited video quality that may be used, for example, in

video telephony. The functionality of H.263 is identical to the MPEG-4 algorithm.

It uses 4:2:0 sampling scheme. The motion prediction can be done separately for

each of the four 8� 8 luminance blocks or for the entire 16� 16 block. The novelty

of this approach can be seen in introducing an extra frame, called a PB frame,

whose macroblocks contain data from the P and B frames, which increase the

efficiency of compression (H.263+ optional modes).
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An illustration of bit rate variations, depicted as a function of frames, is given in

Fig. 5.9. Note that the compression of the P frames is up to 10 times higher than that

for I frames.

5.3.4.3 H.264/MPEG4-AVC

H.264/MPEG4-AVC is one of the latest standards for video encoding and has been

introduced as a joint project of the ITU-T Video Coding Experts Group (VCEG)

and ISO/IEC Moving Picture Experts Group (MPEG). This standard covers many

current applications, including the applications for mobile phones (mobile TV),

video conferencing, IPTV, HDTV, and HD video applications.

Five Types of Frames

The H.264/MPEG4-AVC supports five types of frames: I, P, B, SP, and SI frames.

SP and SI frames are used to provide transitions from one bit rate to another.

Intra 4� 4 or Intra 16� 16 blocks are used for intracoding. Intra 4� 4 coding is

based on the prediction of 4 � 4 blocks, and it is used to encode the parts of images

that contain the details. Intra 16� 16 coding is based on the 16� 16 blocks that are

used to encode uniform (smooth) parts of the frame.

SP and SI Frames

The SP and SI frames are specially encoded and they are introduced to provide a

transition between different bit rates. These frames are also used to provide other

operations such as frame skipping, fast forwarding, transition between two different
video sequences, and so on. The SP and SI frames are added only if it is expected

that some of these operations may be carried out. The application of these special

Fig. 5.9 Illustration of the bit rate (bit rate profile)
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frames can be illustrated by the following example. During the transfer of signals

over the Internet, the same video is encoded for different (multiple) bit rates. The

decoder attempts to decode the video with the highest bit rate, but often there is a

need to automatically switch to a lower bit rate, if the incoming data stream drops.

Let us assume that during the decoding of sequencewith bit rateA,we have to switch

automatically to the bit rate C (Fig. 5.10). Also, assume that the P frames are predicted

from one reference I frame. After decoding P frames denoted by A0 and A1 (sequence

A), the decoder needs to switch to the bit rate C and to decode frames C2, C3, etc. Now,

since the frames in the sequence C are predicted from other I frames, the frame in

A sequence is not an appropriate reference for decoding the frame in C sequence.

One solution is to determine a priori the transition points (e.g., the C2 frame

within the C sequence) and to insert an I frame, as shown in Fig. 5.10.

As a result of inserting I frames, the transitions between two video sequences

would produce peaks in the bit rate. Therefore, the SP-frames are designed to

support the transition from one bit rate to another, without increasing the number

of I frames. Transition points are defined by the SP frames (in the example these are

the frames A2, C2, and AC2 that are shown in Fig. 5.11). We can distinguish two

types of SP frames: the primary (A2 and C2, which are the parts of the video

sequences A and C) and the switching SP frames. If there is no transition, the SP

frame A2 is decoded by using the frame A1, while the SP frame C2 is decoded using

C1. When switching from A to C sequence, the switching secondary frame (AC2) is

used. This frame should provide the same reconstruction as the primary SP frame

C2 in order to be the reference frame for C3. Also, the switching frame needs to have

characteristics that provide the smooth transition between the sequences. Unlike

coding of the P frames, the SP-frames coding requires an additional requantization

procedure with a quantization step that corresponds to the step used for the

Fig. 5.10 Switching from one to another bit rate by using I frames
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switching SP frame. Obviously, the switching frame should also contain the

information about the motion vectors corrections in order to provide an identical

reconstruction in both cases: with and without the switching between the sequences.

In the case of switching from C to A bit rate, the switching frame CA2 is needed.

Another application of SP frames is to provide arbitrary access to the frames of a

video sequence, as shown in Fig. 5.12. For example, the SP frame (A10) and the

switching SP frame (A0–10) are on the position of the tenth frame. The decoder

performs a fast forward from the A0 frame to the A11 frame, by first decoding A0,

then the switching SP frame A0–10, which will use the motion prediction from A0 to

decode the frame A11.

The second type of transition frames are the SI frames. They are used in a similar

way as the SP frames. These frames can be used to switch between completely

different video sequences.

Intracoding in the Spatial Domain

Unlike other video encoding standards where intracoding is performed in the

transform domain, the H.264/MPEG-4 intracoding is performed in the spatial

domain (i.e., the pixel domain).

For the intracoding, the prediction of each 4� 4 block is based on the neighboring

pixels. Sixteen pixels in the 4 � 4 block are denoted by a, b,. . ., p (Fig. 5.13a).

Fig. 5.11 Switching between different bit rates by using SP frames
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They are coded by using the pixels: A, B, C, D, E, F, G, H, I, J, K, L, Q, belonging to

the neighboring blocks. Figure 5.13a shows the block that is used in the prediction

and Fig. 5.13b depicts prediction directions. Figure 5.14 illustrates the way of using

some directions for block prediction.

The vertical prediction, as shown in Fig. 5.14a, indicates that the pixels above

the current 4 � 4 block are copied to the appropriate positions according to the

illustrated direction. Horizontal prediction indicates that the pixels are copied to the

marked positions on the left side. Figure 5.14c, d, and e also present some interest-

ing prediction approaches.

Interframe Prediction with Increased Accuracy

of Motion Parameters Estimation

This prediction method uses blocks of sizes 16 � 16, 16 � 8, 8 � 16, and 8 � 8.

The 8 � 8 can be further divided into the subblocks of sizes 8 � 4, 4 � 8, or 4 � 4,

as shown in Fig. 5.15.

Fig. 5.12 Illustration of the fast-forward procedure using the SP frames

Fig. 5.13 (a) Intra 4 � 4 prediction of block a–p based on the pixels A–Q, (b) eight prediction

directions for Intracoding
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In comparison to other algorithms, the H.264/MPEG-4 standard provides higher

precision for the motion vectors estimation. Namely, its accuracy is equal to

one quarter of pixels distance in the luminance component. For other algorithms,

the precision is usually one-half of the distance. If the motion vector does not

indicate an integer position (within the existing pixels grid), the corresponding pixel

can be obtained by using the interpolation.

First, a six-tap FIR filter is used to obtain the interpolation accuracy equal to one

half. Filter coefficients are (1, �5, 20, 20,�5, 1), and it can be considered as a low-
pass filter. Then the bilinear filter is applied to obtain the precision equal to one

quarter pixel.

Fig. 5.14 Five (from nine) 4 � 4 intraprediction modes

Fig. 5.15 Macroblocks and subblocks
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Pixels b, h, j, m, and s (Fig. 5.16) are obtained following the relations:

b ¼ ðE� 5Fþ 20Gþ 20H � 5I þ JÞ þ 16ð Þ=32
h ¼ ðA� 5Cþ 20Gþ 20M � 5Rþ TÞ þ 16ð Þ=32
m ¼ ðB� 5Dþ 20H þ 20N � 5Sþ UÞ þ 16ð Þ=32
s ¼ ðK � 5Lþ 20M þ 20N � 5Pþ QÞ þ 16ð Þ=32
j ¼ ðcc� 5dd þ 20hþ 20m� 5eeþ ff Þ þ 512ð Þ=1024

or j ¼ ðaa� 5bbþ 20bþ 20s� 5ggþ hhÞ þ 512ð Þ=1024 (5.4)

To obtain a pixel j, it is necessary to calculate the values of pixels cc, dd, ee, and
ff, or aa, bb, gg, and hh. Pixels placed at the quarter of the distance between the

pixels a, c, d, e, f, g, i, k, n, p, q are obtained as:

Fig. 5.16 Interpolation method for ¼ pixel precision (luminance component)
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a ¼ ðGþ bþ 1Þ
2

c ¼ ðH þ bþ 1Þ
2

d ¼ ðGþ hþ 1Þ
2

n ¼ ðM þ hþ 1Þ
2

f ¼ ðbþ jþ 1Þ
2

i ¼ ðhþ jþ 1Þ
2

k ¼ ðjþ mþ 1Þ
2

q ¼ ðjþ sþ 1Þ
2

e ¼ ðbþ hþ 1Þ
2

g ¼ ðbþ mþ 1Þ
2

p ¼ ðhþ sþ 1Þ
2

r ¼ ðmþ sþ 1Þ
2

(5.5)

Multiple Reference Frames

The H.264 introduces the concept of multiple reference frames. Specifically, the

decoded reference frames are stored in the buffer. It allows finding the best possible

references from the two sets of buffered frames (List 0 is a set of past frames, and

List 1 is a set of future frames). Each buffer contains up to 16 frames. The prediction

for the block is calculated as a weighted sum of blocks from different multiple

reference frames. It is used in the scenes where there is a change in perspective,

zoom, or the scene where new objects appear (Fig. 5.17).

Another novelty with the H.264 standard is a generalization of the B frames

concept. B frames (bidirectional frames) can be encoded so that some macroblocks

are obtained as the mean prediction, based on different frames from the List 0 and

List 1. Hence, H.264/MPEG-4 allows three types of interprediction: List 0, List 1,

and bidirectional prediction.

Fig. 5.17 Multiple reference frames
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Coding in the Transform Domain Using the Integer Transform

The H.264/MPEG-4 and other coding standards encode the difference between the

reference frame and the frame obtained by prediction. However, unlike the previous

standards (such as MPEG-2 and H.263), based on the DCT coefficients, the H.264/

MPEG-4 uses integer transform (based on the 4 � 4 or 8 � 8 transform matrices),

which is simpler to implement and allows more accurate inverse transform. The

commonly used 4 � 4 transform matrix is given by:

H ¼
1 1 1 1

2 1 �1 �2
1 �1 �1 1

1 �2 2 �1

2
664

3
775:

The H.264 provides significantly better compression ratio than the existing

standards. At the same time, it uses advanced entropy coding, such as Context

Adaptive Variable Length Coding (CAVLC), and especially Context-based Adap-

tive Binary Arithmetic Coding (CABAC).

5.4 Data Rate and Distortion

The video sequences, in general, have variable bit rates that depend on several

factors:

• Applied algorithms – intra- and intercoding techniques use different compression

approaches. Hence, it is clear that different types of frames have different

compression factors.

• Dynamics of videos sequence – compression will be higher in the sequences

where there are fewer movements and moving objects.

• Encoding parameters – the choice of quantization steps will also influence the bit

rate.

It is obvious that the video compression ratio is closely related to the degree

of quality distortion, which is in turn related to the degree of quantization Q.

Therefore, an important issue is to provide a compromise between the data rate

and quality distortion. This issue can be described by:

minfDg for R � Rmax; (5.6)

where D is a distortion, while R is the data rate. The algorithm searches for an

optimal combination of D and R. It can be summarized as follows:

• Encode a video signal for a certain set of compression parameters and measure

the data rate and distortion of decoded signals.
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• Repeat the coding procedure for different sets of compression parameters, which

will produce different compression ratio. For each compression ratio, a measure

of distortion is calculated.

• As a result, different points in the R-D (rate-distortion) plane are obtained.

The optimal point in the R-D plane is obtained by using the Lagrangian

optimization:

minfJ ¼ Dþ lRg; (5.7)

where l is the Lagrange constant. It will find the nearest point on the convex

optimization curve (Fig. 5.18).

In practice, most applications require the constant bit rate for the video signals.

For this purpose, the bit rate control system, shown in Fig. 5.19, can be used.

RV indicates the variable bit rates, while RC denotes the constant ones. The
system buffers a video signal with variable bit rate obtained at the output of coder,

and then transmits the buffered signal with the constant bit rate. A buffer feedback

controls the quantization step size Q and, consequently, the compression ratio.

Namely, when the bit rate of the input signal to the buffer is high, the buffer may

overflow. Then, the quantization step should be increased to increase compression

and to reduce the bit rate at the output of the encoder. However, there are situations

when the bit rate increases rapidly during one frame. In these cases, this system

produces an image with significant quality variations, as it is shown in Fig. 5.20.

Fig. 5.18 Determining an optimal point for distortion-data rate compromise
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A field dealing with matching the video quality and transmission capacity of the

network is called the Quality of Service (QoS). On the one side, we have the QoS

required by the application; and on the other side, the available QoS offered by the

network. QoS differs for different video applications and transmission scenarios.

For example, a one-sided simplex transmission (broadcasting) requires a different

QoS compared to a two-sided duplex transmission (video conferencing). In sim-

plex, it is important to have video and audio synchronization, because the synchro-

nization loss greater than 0.1 s becomes obvious. In duplex, delays greater than 0.4 s

cause difficulties and unnatural communication.

Digital data can be carried over networks with constant or variable bit rates.

Networks with constant rates are the Public Switched Telephone Networks (PSTN)

– circuit switched networks and Integrated Services Digital Networks ( ISDN).

Networks with variable bit rates are the Asynchronous Transfer Mode networks

(ATM – packet switched networks), where the bit rate depends on the traffic within

the network.

Fig. 5.19 Rate control for video signal

Fig. 5.20 Illustration of changes in quality due to reduced rate
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Errors that can occur when transferring video material can generally be divided

into spatial and temporal. The spatial error occurs in one of the macroblocks within

the frame and it affects other blocks that are intracoded by using the erroneous

block (Fig. 5.21).

Correcting these errors is done by interpolation, using the undamaged parts of

the frame. The most prominent time errors are those that occur in the initial frame

and they are transmitted through the motion vectors to B and P frames. When such

an error is detected, then the motion prediction is done by using the previous error-

free reference frame. An illustration of removing these errors is given in Fig. 5.21.

5.5 Communications Protocols for Multimedia Data

In this part, we provide an overview of some multimedia protocols used in different

networks (other protocols are discussed in Chap. 9). In the PSTN (typically ISDN),

H.324 and H.320 protocols are used, and both have a constant bit rate. For

multimedia data over the IP and LAN, the H.323 protocol can be used, which has

a variable delay and unreliable data transfer.

5.6 H.323 Multimedia Conference

The H.323 protocol provides the multimedia communication sessions (voice and

videoconferencing in point-to-point and multipoint configurations). This standard

involves call signaling, control protocol for multimedia communication, bandwidth

Fig. 5.21 Error reduction by using the older reference frame
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control, etc. The H.323 network usually includes four components: the H.323

terminal, gatekeeper, gateway, and multipoint control units (MCU). The H.323

terminals are the endpoints on the LAN that provide real-time communications.

The gateway provides communication between H.323 networks and other networks

(PSTN or ISDN). The gatekeeper is used to translate IP addresses and to manage the

bandwidth. The MCU allows communication between multiple conference units.

The structure of the H.323 terminal is given in Fig. 5.22.

This protocol requires the audio coding and control protocols, while the video

coding and Real-Time Transport Protocol (RTP) are optional. The audio signals are

encoded using the G.711, G.723, and G.729 standards, while the video signals

are encoded using the H.261 and H.263 standards. The block Q.931 is used to set-up

the calls, the H.245 block controls the operation of the network, and the RAS block

is used to communicate with the gatekeeper.

A centralized conference assumes that all connections are routed through the

MCU (unicast communication). Then, the MCU is loaded. In a decentralized

conference (multicast communication), each terminal sends data to all other

terminals. The basic transport protocol in the H.323 is the User Datagram Protocol

(UDP) that will be explained in details in Chap. 9 – Multimedia Communications.

5.6.1 SIP Protocol

The Session Initiation Protocol (SIP) is a protocol designed for the session control in

the multiservice networks. The software that provides real-time communications

between the end users can use SIP to establish, maintain, and terminate the commu-

nication between two or more endpoints. These applications include the voice over

IP (VoIP), video teleconferencing, virtual reality applications, multiplayer video

games, etc. The SIP does not provide all the functions required for communication

Fig. 5.22 H.323 terminal
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between these programs, but it is an important component that facilitates

communication.

One of the major demands that the network should meet is the maintenance of

QoS for the client application. The SIP is a client–server protocol, based on the

protocols HTTP (HyperText Transfer Protocol) and SMTP (Simple Mail Transfer

Protocol). The SIP can use either UDP or Transmission Control Protocol (TCP) as a

transport protocol.

The SIP messages can be in a form of a request (from a client to a server) or a

response (from a server to a client).

SIP performs five basic functions:

• Determines the location of endpoint

• Determines the availability of endpoint, i.e., whether the endpoint is able to

participate in a session

• Determines the characteristics of users, i.e., the parameters of the medium that

are essential for communication

• Establishes a session or performs the exchange of parameters for establishing a

session

• Manages sessions

One of the main reasons for using the SIP is to increase flexibility in multimedia

data exchange. Specifically, users of these applications can change the location and

use different computers, with multiple user names and user accounts, or to commu-

nicate using a combination of voice, text and other media that require different

protocols separately. The SIP uses various components of the network to identify

and locate the users. The data go through a proxy server that is used to register and

forward the user connection requests. Given that there are different protocols for

voice, text, video, and other media, the SIP is positioned above any of these

protocols.

The SIP architecture is illustrated in Fig. 5.23. The SIP is independent of network

topology and can be used with different transport protocols such as the UDP, TCP,

X.25, ATM AAL5, CLNP, TP4, IPX, and PPP. The SIP does not require a reliable

transport protocol, and therefore, the client side can use the UDP. For servers, it is

recommended to support both protocols, the UDP and TCP. The TCP connection

is opened only when the UDP connection cannot be established.

The functionality of SIP is mainly based on signaling. This is its main difference

in comparison to the H.323, which includes all necessary functions to carry out the

conference. The SIP architecture is designed to be modular so that the different

functions can be easily replaced. The SIP environment can implement some

components of the H.323 protocol.

For a description of multimedia sessions, SIP uses the Session Description

Protocol (SDP). To transfer in real time, the SIP architecture includes the RTP

protocol. It also includes the Real-Time Streaming Protocol (RTSP), which is a

control protocol for streaming multimedia data in real-time. This protocol is

suitable for audio/video on-demand streaming.
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In the SIP protocol, the following methods are used:

INVITE – making the connection

BYE – end connection

OPTIONS – indicates information about the possibilities

ACK – is used for reliable messaging

CANCEL – cancels the last request

REGISTER – SIP server provides information about the location

5.7 Audio Within a TV Signal

Audio signal together with a video sequence is an integral part of the TV signal.

Inserting audio in the video signal requires knowledge of many different disciplines

like compression algorithms, multiplexing, standards for packetized data stream

and algorithms for signal modulation. In the case of digital TV, the compression

algorithms have the main influence to the received signal quality. A system for

transmission of audio and video data is an iso-synchronized system. This means that

both transmitter and receiver use the data buffering to avoid asynchronous data.

Video and audio data from a channel form the elementary stream (ES). Multiple

program channels are combined such that the variable-length elementary stream is

packetized into the fixed length transport stream packets. A simplified block

diagram of this system is shown in Fig. 5.24.

The metadata provides the synchronization of audio and video data (the timing

reference). It should be noted that the stream of coded audio and video data is

packetized by using the Packetized Elementary Stream (PES) blocks, which have a

defined structure for both video and audio data. In video compression, the frames

are not included in the same order as they are generated, so that the video block

Fig. 5.23 SIP architecture
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must contain a part that takes care when the frame is played. The Transport Stream

(TS) is composed of the fixed length packets (188 bytes). The TS packet is made of

the header and the data. Multiplexer is an important part of the system, because it

combines data from various channels.

5.8 Video Signal Processor

An example of a simple video processor (VCPex processor) is shown in Fig. 5.25.

The RISC is the major processor. The SRAM bus is used for lower bit rates, such

as the compressed data (audio and video). The DRAM bus is used for higher bit

Fig. 5.24 Transport stream multiplexing and demultiplexing

Fig. 5.25 Video processor
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rates, as it is the case with the uncompressed material. The RISC and VP6 processor

can be reprogrammed to support different coding standards. The variable-length

encoding (VLE) and variable-length decoding (VLD) are used to encode and

decode the signal.

5.9 Examples

5.1. Determine the number of bits used to represent 16 pixels, by using the

following sampling schemes:

(a) 4:4:4

(b) 4:2:2

(c) 4:2:0

Solution:

(a) 4:4:4

We observe four blocks with four pixels, each having the three components

(Y,Cr,Cb)

4� ð4� 3� 8Þ b ¼ 4� 96 b ¼ 384 b or 16 � 24 b=pixel ¼ 384 b=pixel

(b) 4:2:2

According to this scheme, two out of four pixels within the observed block are

represented by using three components (Y,Cr,Cb), while the remaining two

pixels contain just the luminance Y.

4� ð2� 3� 8 bÞ þ 4� ð2� 1� 8 bÞ ¼ 256 b or

16 � 16 b=pixel ¼ 256 b=pixel

(c) 4:2:0

In this case, only one pixel is represented with a full resolution (Y,Cr,Cb), while

the remaining three pixels contains the luminance components Y. Hence, for

the observed 16 pixels, we have:

4� ð1� 3� 8 bÞ þ 4� ð3� 1� 8 bÞ ¼ 192 b or

16 � 12 b=pixel ¼ 192 b=pixel

5.2. Determine the bit rate of the PAL video sequence for the CIF format and

sampling schemes:

(a) 4:4:4

(b) 4:2:2

(c) 4:2:0
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Solution:

The CIF format resolution is 352 � 288. Hence, we obtain the following bit rates:

(a) 352� 288� 24� 25 b=s ¼ 60825600 b=s ¼ 60:8 Mb=s
(b) 352� 288� 16� 25 b=s ¼ 40550400 b=s ¼ 40:5 Mb=s
(c) 352� 288� 12� 25 b=s ¼ 30412800 b=s ¼ 30:4 Mb=s

5.3. How many minutes of the uncompressed video data in the CIF format with

sampling scheme 4:2:2 can be stored on a DVD (capacity 4.7 GB)? The PAL

system is assumed.

Solution: t ¼ 4:7�10243�8 b
25�352�288�16�60 b=s

� 16:6 min

5.4. Consider a 3 � 3 block of pixels within a current frame and the 5 � 5 region

centered at the same position in the reference frame. Determine the motion vector

by using the block matching technique based on the MSE and assuming that the

motion vector is within the given 5 � 5 block. The threshold value is 2.

1 4 7

9 11 8

4 5 6

2 5 7 17 19

9 11 8 8 5

4 6 6 4 1

0 9 15 7 4

4 8 7 3 1

Solution:

The observed 3 � 3 block is compared with the corresponding 3 � 3 block (within

5� 5 block) in the reference frame, centered at (0,0). The MSE is calculated. Then,

the procedure is repeated for eight positions around the central one.

1 4 7

9 11 8

4 5 6

MSE00
 !

11 8 8

6 6 4

9 15 7

MSE00 ¼ 1� 11ð Þ2 þ 4� 8ð Þ2 þ 7� 8ð Þ2 þ 9� 6ð Þ2 þ 11� 6ð Þ2 þ 8� 4ð Þ2
�
þ 4� 9ð Þ2 þ 515ð Þ2 þ 6� 7ð Þ2Þ=9 ¼ 32:55

1 4 7

9 11 8

4 5 6

MSE�10
 !

9 11 8

4 6 6

0 9 15

MSE�10 ¼ 1� 9ð Þ2 þ 4� 11ð Þ2 þ 7� 8ð Þ2 þ 9� 4ð Þ2 þ 11� 6ð Þ2 þ 8� 6ð Þ2
�
þ 4� 0ð Þ2 þ 5� 9ð Þ2 þ 6� 15ð Þ2Þ=9 ¼ 31:22
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1 4 7

9 11 8

4 5 6

MSE�11 !

2 5 7

9 11 8

4 6 6

MSE�11 ¼ 1� 2ð Þ2 þ 4� 5ð Þ2 þ 7� 7ð Þ2 þ 9� 9ð Þ2 þ 11� 11ð Þ2 þ 8� 8ð Þ2
�
þ 4� 4ð Þ2 þ 5� 6ð Þ2 þ 6� 6ð Þ2Þ=9 ¼ 0:33

1 4 7

9 11 8

4 5 6

MSE11 !

7 17 19

8 8 5

6 4 1

MSE11 ¼ 1� 7ð Þ2 þ 4� 17ð Þ2 þ 7� 19ð Þ2 þ 9� 8ð Þ2 þ 11� 8ð Þ2 þ 8� 5ð Þ2
�
þ 4� 6ð Þ2 þ 5� 4ð Þ2 þ 6� 1ð Þ2Þ=9 ¼ 44:22

1 4 7

9 11 8

4 5 6

MSE�1�1 !

4 6 6

0 9 15

4 8 7

MSE�1�1 ¼ 1� 4ð Þ2 þ 4� 6ð Þ2 þ 7� 6ð Þ2 þ 9� 0ð Þ2 þ 11� 9ð Þ2 þ 8� 15ð Þ2
�
þ 4� 4ð Þ2 þ 5� 8ð Þ2 þ 6� 7ð Þ2Þ=9 ¼ 17:55

1 4 7

9 11 8

4 5 6

MSE0�1
 !

6 6 4

9 15 7

8 7 3

MSE0�1 ¼ 1� 6ð Þ2 þ 4� 6ð Þ2 þ 7� 4ð Þ2 þ 9� 9ð Þ2 þ 11� 15ð Þ2 þ 8� 7ð Þ2
�
þ 4� 8ð Þ2 þ 5� 7ð Þ2 þ 6� 3ð Þ2Þ=9 ¼ 9:33

1 4 7

9 11 8

4 5 6

MSE1�1 !

6 4 1

15 7 4

7 3 1

MSE1�1 ¼ 1� 6ð Þ2 þ 4� 4ð Þ2 þ 7� 1ð Þ2 þ 9� 15ð Þ2 þ 11� 7ð Þ2
�

þ 8� 4ð Þ2 þ 4� 7ð Þ2 þ 5� 3ð Þ2 þ 6� 1ð Þ2Þ=9 ¼ 18:55

1 4 7

9 11 8

4 5 6

MSE10
 !

8 8 5

6 4 1

15 7 4
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MSE10 ¼ 1� 8ð Þ2 þ 4� 8ð Þ2 þ 7� 5ð Þ2 þ 9� 6ð Þ2 þ 11� 4ð Þ2 þ 8� 1ð Þ2
�
þ 4� 15ð Þ2 þ 5� 7ð Þ2 þ 6� 4ð Þ2Þ=9 ¼ 33:88

1 4 7

9 11 8

4 5 6

MSE01 !

5 7 17

11 8 8

6 6 4

MSE01 ¼ 1� 5ð Þ2 þ 4� 7ð Þ2 þ 7� 17ð Þ2 þ 9� 11ð Þ2 þ 11� 8ð Þ2 þ 8� 8ð Þ2
�
þ 4� 6ð Þ2 þ 5� 6ð Þ2 þ 6� 4ð Þ2Þ=9 ¼ 16:33

Since min(MSEnm) ¼ MSE�11, and it is below the threshold (MSE�11 < 2), we

conclude that the position (�1,1) represents the motion vector.

5.5. At the output of a video coder, the average bit rate is R ¼ 5.07 Mb/s for the CIF

video format in PAL system. The quantization is done by the matrix Q1. The bit rate

control system sends the information back to the coder to reduce the bit rate by

increasing the quantization step. The coder switches to quantization Q2 and

increases the compression degree. Determine the new average bit rate at the

coder output.

The quantization matrices Q1 and Q2, as well as a sample representative 8 � 8

block of the DCT coefficients (from video frames) are given below. In order to

simplify the solution, one may assume that the ratio between the compression

degrees achieved by Q1 and Q2 is proportional to the ratio between the number of

nonzero DCT coefficients that remain within the representative 8 � 8 block after

quantization.

DCT ¼

96 35 82 41 11 0 0 0

70 70 40 21 5 0 0 0

45 40 20 29 13 19 0 0

27 44 42 15 0 20 0 0

34 23 0 35 11 0 10 0

68 34 32 34 10 10 0 0

38 25 0 10 0 0 0 0

0 0 0 0 0 0 0 0

2
66666666664

3
77777777775

Q1¼

3 5 7 9 11 13 15 17

5 7 9 11 13 15 17 19

7 9 11 13 15 17 19 21

9 11 13 15 17 19 21 23

11 13 15 17 19 21 23 25

13 15 17 19 21 23 25 27

15 17 19 21 23 25 27 29

17 19 21 23 25 27 29 31

2
66666666664

3
77777777775

Q2¼

11 21 31 41 51 61 71 21

21 31 41 51 61 71 81 91

31 41 51 61 71 81 91 101

41 51 61 71 81 91 101 111

51 61 71 81 91 101 111 121

61 71 81 91 101 111 121 131

71 81 91 101 111 121 131 141

81 91 101 111 121 131 141 151

2
66666666664

3
77777777775
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Solution:

First, we calculate the average number of bits per pixel for the given bit rate

R ¼ 5.07 Mb/s.

R ¼ 25 frame=s � 352 � 288 pixel � x1 b=pixel

x1 ¼ 5:07 � 106
25 � 352 � 288 ¼ 2 b/pixel:

DCTQ1

32 7 12 5 1 0 0 0

14 10 4 2 0 0 0 0

6 4 2 2 1 1 0 0

3 4 3 1 0 1 0 0

3 2 0 2 1 0 0 0

5 2 2 2 0 0 0 0

3 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2
66666666664

3
77777777775

DCTQ2 ¼

9 2 3 1 0 0 0 0

3 2 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2
66666666664

3
77777777775

The number of nonzero coefficients after Q1 and Q2 are respectively:

No DCTQ1 6¼ 0
� � ¼ 30; No DCTQ2 6¼ 0

� � ¼ 15:

The average number of bits for the observed 8 � 8 block is: Xb1 ¼ x1 � 64, when
the quantization Q1 is applied,

while in the case of Q2 : Xb2 ¼ x2 � 64. Since we assume that the ratio between

compression degrees achieved by Q1 and Q2 is proportional to the ratio between the

number of nonzero coefficients after Q1 and Q2, we may write:

No DCTQ1
6¼ 0

� �
No DCTQ2

6¼ 0
� � ¼ Xb1

Xb2
¼ k

30

15
) x2 ¼ x1

2k
¼ 1

k
b/pixel:

The new average bit rate obtained at the coder output is:

Rnew ¼ 25 frame=s � 352 � 288 pixels � x2b=pixel ¼ 2:53

k
Mb=s

5.6. Consider a video sequence with N ¼ 1,200 frames. The frames are divided into

8� 8 blocks, in order to analyze the stationarity of the coefficients. We assume that

the stationary blocks do not vary significantly over the sequence duration. The

coefficients from the stationary blocks are transmitted only once (within the first

frame). The coefficients from the nonstationary blocks change significantly over

time. In order to reduce the amount of data that will be sent, the nonstationary

coefficients are represented by using K Hermite coefficients, where N/K ¼ 1.4.
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Determine how many bits are required for encoding the considered sequence and

what is the compression factor? The original video frames can be coded by using on

average 256 bits per block.

Blocks statistics

Total number of frames 1,200

Frame size 300 � 450

Stationary blocks 40%

Nonstationary blocks 60%

Solution:

The stationary blocks are transmitted only for the first frame. Thus, the total number

of bits used to represent the coefficients from the stationary blocks is:

ns ¼ 40

100

300 � 450
64

� 256
� 	

¼ 216 � 103b:

In the case of nonstationary blocks, we observe the sequences of coefficients that

are on the same position within different video frames. Hence, each sequence

having N ¼ 1,200 coefficients, is represented by using K Hermite coefficients,

where N/K ¼ 1.4 holds. The total number of bits used to encode the coefficients

from the nonstationary blocks is:

nn ¼ 1; 200 � K
N
� 60

100
� 300 � 450

64
� 256

� 	� 	
¼ 2:77 � 108b:

The number of bits that is required for sequence coding is:

p ¼ 1; 200 � 300 � 450 � 4 ¼ 6:4 � 108b:

The compression factor is: 6:4�108
216�103þ2:77�108 ¼ 2:33 :

5.7. A part of the video sequence contains 126 frames in the JPEG format (Motion

JPEG – MJPEG format) and its total size is 1.38 MB. The frame resolution is

384 � 288, while an average number of bits per 8 � 8 block is B ¼ 51.2. Starting

from the original sequence, the DCT blocks are classified into stationary S and

nonstationary NS blocks. The number of the blocks are No{S} ¼ 1,142 and

No{NS} ¼ 286. The coefficients from the S blocks are almost constant over time

and can be reconstructed from the first frame. The coefficients from the NS blocks

are represented by using the Hermite coefficients. Namely, the each sequence of

126 coefficients is represented by 70 Hermite coefficients. Calculate the compres-

sion ratio between the algorithm based on the blocks classification and Hermite

expansion, and the MJPEG algorithm.
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Solution:

A set of 126 frames in the JPEG format requires NofSg � B � 126 bits for stationary
andNofNSg � B � 126bits for nonstationary blocks. In other words, the total number

of bits for the original sequence in the MJPEG format is:

NofSg � B � 126þ NofNSg � B � 126 ¼
ð1; 142þ 286Þ � 51:2 � 126 ¼ 9:21 � 106b

The algorithm based on the classification of blocks will encode the stationary

blocks from the first frame only: NofSg � B.
For nonstationary blocks, instead of 126 coefficients over time, it uses 70

Hermite coefficients, with the required number of bits equal to: NofNSg � N � B.
The total number of bits for stationary and nonstationary blocks is:

NofSg � Bþ NofNSg � N � B ¼ 1; 142 � 51:2þ 286 � 70 � 51:2 ¼ 1:083 � 106 b

In this example, the achieved compression factor is approximately 8.5 times.
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Chapter 6

Compressive Sensing

According to the Shannon-Nyquist sampling theorem, a signal can be reconstructed

from its samples only when the sampling frequency is at least twice higher than the

maximal signal frequency (2fmax). Obviously the sampling procedure results in a

large number of samples for signals with considerably high maximal frequency. As

discussed in the previous chapters, in order to store and transmit the signals over the

communication channels with generally limited bit rates, it was necessary to

develop efficient and sophisticated signal compression algorithms. We saw that

the lossy compression algorithms are mainly based on the fact that signals actually

contain a large amount of information that is not necessary for perceiving good

signal quality. Namely, in a lossy compression, two basic assumptions are used: the

first is related to the imperfection of human perception (sense), while the second is

related to the specific properties of signals in a certain transform domain. For

instance, in the case of images, a large energy compaction in the low-frequency

region is achieved by using the DCT transform. Hence, a significant number of

coefficients can be omitted without introducing visible image quality degradation.

Although compression algorithms can significantly reduce the total amount of

data, the signal acquisition is performed with a large number of samples. So, one

can ask if it would be possible to significantly reduce the amount of data (the

number of samples) during the acquisition process, i.e., is it always necessary to

sample the signals according to the Nyquist criterion? Thus, is it possible to take

smaller number of samples and to sample data randomly? If so, in which case would

this be possible?

Compressive sensing is a field dealing with the above-defined problem of

interest and provides a solution that differs from the classical signal theory

approach (Fig. 6.1). Namely, the compressive sensing represents an alternative

method for signal acquisition. Based on the compressive sensing concepts, signal

reconstruction can be performed by using a fewer number of randomly chosen

signal samples. Hence, a certain signal f with N samples can be reconstructed by

using a set of measurements obtained by the measurement matrix F, which ran-

domly selects only M samples, with M << N.

S. Stanković et al., Multimedia Signals and Systems,
DOI 10.1007/978-1-4614-4208-0_6, # Springer Science+Business Media, LLC 2012
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Compressive sensing is based on powerful mathematical algorithms for error

minimization. They are able to reconstruct the original signal by using a small set of

signal samples. Sparsity is one of the main requirements that should be satisfied in

order to efficiently apply the compressive sensing. Properly chosen basis can

provide a sparse signal representation. If the signal is not sparse, then the compres-

sive sensing cannot recover signal successfully.

6.1 The Compressive Sensing Requirements

6.1.1 Sparsity Property

Sparsity means that the signal in a certain transform domain contains just a small

number of nonzero coefficients when compared to the signal length. Most of real

signals can be considered as sparse or almost sparse if they are represented using the

proper basis vectors. A signal f with N samples can be represented as a linear

combination of the orthonormal basis vectors as:

f ðtÞ ¼
XN
i¼1

xiCiðtÞ; or : f ¼ Cx: (6.1)

If the number of nonzero coefficients in x is K << N, then the signal:

fK ¼ CxK; (6.2)

Fig. 6.1 Signal sampling: classical approach and compressive sensing alternative
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is said to be K-sparse. Also, since the basis C is orthonormal, we have:

f � fKk k‘2 ¼ x� xKk k‘2: (6.3)

It means that, if x is well approximated by its K coefficients, the error f � fKk k‘2
will be sufficiently small.

We may observe that sparsity is a desirable property. The advantages of signal

sparsity have been explored in compression algorithms: The coding is done for the

K most significant coefficients in the transform domain, while the remaining N-K
coefficients are discarded and set to zero. Note that different basis can be used, such

as the Fourier basis, the DCT basis, the wavelet basis, etc.

Let us summarize the assumptions we have introduced so far (Fig. 6.2):

– A set of random measurements are selected from the signal f (N � 1), which

can be defined by using the random measurement matrix F (M � N) as follows:

y ¼ Ff : (6.4)

– In order to reconstruct f from y, f should be sparse in the transform domain

(defined by the orthogonal basis matrix C (N � N)). Hence,

f ¼ Cx: (6.5)

Accordingly, (6.4) and (6.5) can be combined as:

y ¼ FCx ¼ Ax: (6.6)

The measurement procedure and the measurement matrix should be properly

created to provide the reconstruction of signal f (of length N) by using M << N
measurements. The reconstructed signal is obtained as a solution ofM linear equations

with N unknowns. Having in mind that this system is undetermined and can have

infinitelymany solutions, optimization-basedmathematical algorithms should be used

to search for the sparsest solution, consistent with the linear measurements.

Fig. 6.2 Illustration of the compressive sensing procedure
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Another important question is related to the conditions that matrices C and F
should satisfy in order to make compressive sensing applicable. In that sense, we

consider the incoherence requirement in the sequel.

6.1.2 Incoherence

Incoherence is related to the property that signals having sparse representation in

the transform domain C should be dense in the domain where the acquisition is

performed (e.g., the time domain). For instance, it is well known that the signal

represented by the Dirac pulse in one domain is spread in the other (inverse)

domain. Hence, the compressive sensing approach assumes that the signal is

acquired in the domain where it is rich with samples, so that by using random

sampling, we can collect enough information about the signal.

The relationship between the number of nonzero samples in the transform domain

C and the number ofmeasurements (required to reconstruct the signal) depends on the

coherence between the matrices C and F. For example, if C and F are maximally

coherent, then all coefficients are required for the signal reconstruction. The matrices

F andC are incoherent if the rows ofF are spread out in the domainC (the rows of the

first matrix cannot provide a sparse representation of the second matrix columns, and

vice versa). The coherence between the twomatricesC andF can be measured as the

maximal absolute value of correlation between their elements:

mðF;CÞ ¼
ffiffiffiffi
N

p
max

k�1;j�N
fk;Cj

� ��� ��; (6.7)

where N is the signal length, while fk and Cj are the rows of F and columns of C,

respectively. Hence, each vector in F should be spread out in the transform domain

C. The coherence lies within the range:

1 � m �
ffiffiffiffi
N

p
: (6.8)

The minimum value of the coherence is 1, which is the maximum incoherence

between the two matrices. If the number of measurementsM (selected uniformly at

random from F) is:

M � C � K � mðF;CÞ � logN; (6.9)

then the sparsest solution is exact with high probability (C is a constant). It is

assumed that the original signal f 2 RN is K-sparse in C. The concept of incoher-

ence is now clearer: the lower the coherence between F and C is, the smaller

number of random measurements is required for signal reconstruction.
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6.1.3 Restricted Isometry Property

For each integer number K, the isometry constant dK of the matrix A is the smallest

number for which the relation:

1� dKð Þ xk k2‘2� Axk k2‘2� 1þ dKð Þ xk k2‘2; (6.10)

holds for all K-sparse vectors, where A ¼ FC. The restricted isometry property

means that any subset of columns of the sensing matrix A is nearly orthogonal. We

may say that a sensing matrix A satisfies the restricted isometry property with high

probability if:

M � C � K � logðN=KÞ; (6.11)

holds. Furthermore, if this property holds for d2K < 0.414 or even for d2K < 0.465,

the algorithms for convex optimizations are stable and can be efficient in determin-

ing sparse vectors, based on their compressive measurements. Namely, the

distances between K-sparse signals must be well preserved in the measurement

space, i.e.:

1� d2Kð Þ x1 � x2k k2‘2� Ax1 � Ax2k k2‘2� 1þ d2Kð Þ x1 � x2k k2‘2; (6.12)

holds for K-sparse vectors x1 and x2.
The method for solving the undetermined system of equations (6.6) by searching

for the sparsest solution can be described as:

min ~xk k‘0 subject to y ¼ A~x; (6.13)

where xk k‘0 represents the ‘0 norm defined as the number of nonzero elements in x.
This is a nonconvex combinatorial optimization problem and the solution requires

exhaustive searches over subsets of columns of A with exponential complexity.

A more efficient approach uses the near-optimal solution based on the ‘1 norm,

which is defined as:

xk k‘1 ¼
XN
i¼1

xij j: (6.14)

The ‘1 norm-based minimization is given by:

min exk k‘1 subject to y ¼ A~x: (6.15)

The ‘1 norm is convex and thus the linear programming can be used for solving

the above optimization problem.
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In real applications, we deal with noisy signals. Thus, the previous relation

should be modified to include the influence of noise. Namely, it is assumed that

in the presence of noise the observations contain an error:

y ¼ FCxþ e ¼ Axþ e; (6.16)

where e represents the error with its energy being limited to ek k‘2 ¼ e . The
optimization problem (6.15) can now be reformulated as follows:

min ~xk k‘1 subject to y� A~xk k‘2 � e: (6.17)

The ‘2 norm is defined as: ak k‘2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP
i¼1

aið Þ2
s

, with P being the total number of

samples in the vector a.
The reconstructed signal will be consistent with the original one in the sense that

y� A~x will remain within the noise level.

6.1.4 Numerical Realizations

Most of the numerical methods or algorithms fall into three distinct categories:

‘1 minimization, greedy algorithms, and total variation (TV) minimization.

According to (6.15) and (6.17), the general system of equations that should be

solved in compressive sensing approach is:

min xk k‘1 s:t: Ax ¼ y;
or; min xk k‘1 s:t: Ax� yk k‘2<x; (6.18)

where s.t. stands for “subject to.” This approach is known as Basis Pursuit, which

was introduced in computational harmonic analysis to extract a sparse signal

representation from highly overcomplete dictionaries. The optimization problems

can be solved by using some of the known solvers such as the simplex and interior

point methods (e.g., primal-dual interior point method).

A modification of (6.18) can be defined as:

min
x

1

2
y� Axk k2

‘2
s:t: xk k‘1<t; (6.19)

which is known as Least Absolute Shrinkage and Selection Operator (LASSO).

Another frequently used approach is the Basis Pursuit denoising (BRDN), which

considers solving this problem in Lagrangian form:

min
x

1

2
y� Axk k2

‘2
þl xk k‘1 ; (6.20)

where l > 0 is a regularization parameter.

238 6 Compressive Sensing



Commonly used greedy algorithms are Orthogonal Matching Pursuit (OMP)

and Iterative Thresholding. The OMP algorithm provides a sparse solution by

using an iterative procedure to approximate the vector y as a linear combination

of a few columns of A. At each iteration, the algorithm selects the column of A that

best correlates with the residual signal. The residual signal is obtained by

subtracting the contribution of the partial signal estimate from the measurement

vector.

Iterative hard thresholding algorithm starts from an initial signal estimate ~x ¼ 0

and then iterates a gradient descent step followed by hard thresholding until a

convergence criterion is achieved.

6.1.5 An Example of Using Compressive Sensing Principles

In order to provide better understanding of the compressive sensing, we will

consider a simple example (sinusoidal signal), which aims only to demonstrate

some of the concepts introduced in this chapter (such as the vector of

measurements, sensing matrices, etc.).

For the purpose of signal visualization, it is a good idea to choose for sinusoid

the sample rate, which is 10 (or more) times higher than it is required by the

sampling theorem. Hence, a given signal x has N ¼ 21 samples and it is defined as:

fx ¼ sin 2 � p � 2=Nð Þ � nð Þ for n ¼ 0; . . . ; 20: (6.21)

The values of the signal samples are given in the vector form:

fx ¼ 0 0:5633 0:9309 0:9749 0:6802 0:149 � 0:4339 � 0:866½
� 0:9972 � 0:7818 � 0:2948 0:2948 0:7818 0:9972 0:866

0:4339 � 0:149 � 0:6802 � 0:9749 � 0:9309 � 0:5633�

The Fourier transform of the observed signal consists of two frequency peaks:

one belonging to positive and the other to the negative frequencies. The vector

containing the Fourier transform coefficients of fx, denoted as Fx (Fx corresponds

to x from the previously presented theory), has the values:

Fx ¼ 0 0 0 0 0 0 0 0 10:5 i 0 0 0 � 10:5 i 0 0 0 0 0 0 0 0½ �;

The signal and its Fourier transform are given in Fig. 6.3.

Note that fx is sparse in the frequency domain. Hence, we may consider the

signal reconstruction based on a small set of randomly selected signal samples. For

this purpose we have to define the sensing matrix.
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First, we calculate the elements of the inverse and direct Fourier transform

matrices, denoted by C and C�1, respectively:

C ¼ 1
21

1 1 1 1 ::: 1

1 ej
2p
21 e2j

2p
21 e3j

2p
21 ::: e20j

2p
21

1 e2j
2p
21 e4j

2p
21 e6j

2p
21 ::: e40j

2p
21

::: ::: ::: ::: ::: :::

1 e19j
2p
21 e38j

2p
21 e57j

2p
21 ::: e380j

2p
21

1 e20j
2p
21 e40j

2p
21 e60j

2p
21 ::: e400j

2p
21

2
666666666666664

3
777777777777775

C�1 ¼

1 1 1 1 ::: 1

1 e�j
2p
21 e�2j

2p
21 e�3j

2p
21 ::: e�20j

2p
21

1 e�2j
2p
21 e�4j

2p
21 e�6j

2p
21 ::: e�40j

2p
21

::: ::: ::: ::: ::: :::

1 e�19j
2p
21 e�38j

2p
21 e�57j

2p
21 ::: e�380j

2p
21

1 e�20j
2p
21 e�40j

2p
21 e�60j

2p
21 ::: e�400j

2p
21

2
666666666666664

3
777777777777775

The matrices are of size N � N. So, the relationship between fx and Fx is:

fx ¼ CFx: (6.22)

Now, we would like to select M ¼ 8 random samples (measurements) in the

time domain, which will be used to reconstruct the entire signal fx by applying the

compressive sensing approach. In other words, we should define the measurement

matrix F of size M � N, which is used to obtain the measurement vector:

y ¼ Ffx: (6.23)

Fig. 6.3 (a) Signal fx, (b) Fourier transform Fx
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The measurement matrix F can be defined as a random permutation matrix, and

thus y is obtained by taking the first M permuted elements of fx. For instance, the
vector y can be given by:

y ¼ 0:7818 � 0:7818 0:8660 0:2948 � 0:9972 � 0:6802 0:6802 � 0:9309½ �;

where the random permutation of N ¼ 21 elements is done according to:

perm ¼ 13 10 15 12 9 18 5 20 16 4 8 1 2 11 6 21 17 19 7 14 3½ �

or equivalently by taking only its M ¼ 8 first elements:

perm 1 : Mð Þ ¼ 13 10 15 12 9 18 5 20½ �:

The N points Fourier transform of the vector y is obtained as:

Fy ¼ C�1y; (6.24)

resulting in:

Fy ¼ ð�0:0793� 0:0997 iÞ ð0:0533� 0:0739 iÞ ð�0:0642� 0:0514 iÞ½
ð0:0183þ 0:0110 iÞ ð0:1005þ 0:0284 iÞ ð�0:0263� 0:0178 iÞ
ð0:0704þ 0:0174 iÞ ð0:0089� 0:1007 iÞ ð�0:0270þ 0:2307 iÞ
ð�0:0363� 0:0171 iÞ ð�0:0365þ 0:0000 iÞ ð�0:0363þ 0:0171 iÞ
ð�0:0270� 0:2307 iÞ ð0:0089þ 0:1007 iÞ ð0:0704� 0:0174 iÞ
ð�0:0263þ 0:0178 iÞ ð0:1005� 0:0284 iÞ ð0:0183� 0:0110 iÞ
ð�0:0642þ 0:0514 iÞ ð0:0533þ 0:0739 iÞ ð�0:0793þ 0:0997 iÞ�

The starting Fourier transform vector Fy significantly differs from Fx, which we

aim to reconstruct (Fig. 6.4). Based on (6.22) and (6.23), y can be written as:

y ¼ FCFx:

In analogy with the random measurements vector y, the matrix A ¼ FC can be

obtained by using the permutation of rows in C and then selecting the first M ¼ 8

permuted rows. The matrix A for this example is defined as:

AMxN ¼ FC ¼ 1

21

1 e12j
2p
21 e24j

2p
21 ::: e240j

2p
21

1 e9j
2p
21 e18j

2p
21 ::: e180j

2p
21

1 e14j
2p
21 e28j

2p
21 ::: e280j

2p
21

1 e11j
2p
21 e22j

2p
21 ::: e220j

2p
21

1 e8j
2p
21 e16j

2p
21 ::: e160j

2p
21

1 e17j
2p
21 e34j

2p
21 ::: e340j

2p
21

1 e4j
2p
21 e8j

2p
21 ::: e80j

2p
21

1 e19j
2p
21 e38j

2p
21 ::: e380j

2p
21

2
666666666666666664

3
777777777777777775
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Finally, we obtain the system with 8 equations and 21 unknowns. The ‘1 norm
minimization with equality constraint:

min Fxk k‘1 s:t: y ¼ AFx; (6.25)

is recast as a linear program: min
Fx;u

P
u s:t:� u � Fx � u; y ¼ AFx.

It is solved by applying the primal-dual interior point method. The reconstructed

vector Fx is obtained, and then the signal fx itself: fx ¼ CFx (Fig. 6.4).

6.1.5.1 Primal-Dual Interior Point Method

Let us briefly consider the primal-dual interior point method, which has been used

to solve most of the optimization problems discussed in this chapter. The optimiza-

tion problem:

min xk k‘1 s:t: Ax ¼ b;

can be recast as:

min
u

X
u s:t: Ax ¼ b; fu1 ¼ x� u; fu2 ¼ �x� u

Fig. 6.4 (a) Original signal and randomly selected samples denoted by red points, (b)

Reconstructed signal, (c) N point Fourier transform Fy, (d) Fourier transform of reconstructed

signal
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Generally, the minimization problem can be observed by forming the

Lagrangian:

L x; u; v; lu1 ; lu1ð Þ ¼ f ðuÞ þ v Ax� bð Þ þ lu1 fu1 þ lu2 fu2 : (6.26)

Finding its first derivatives in terms of x, u, v, lu1, and lu2, the following

relations are obtained:

Ru
dual ¼ 1� lu1 � lu2 ; Rx

dual ¼ lu1 � lu2 þ ATv; Rv
prim ¼ Ax� b; (6.27)

Rlu1
cent ¼ lu1 fu1 þ

1

t
; Rlu2

cent ¼ lu2 fu2 þ
1

t
: (6.28)

Note that besides A and b, which are known, we should initialize the following

variables: x ¼ x0, u ¼ u0 (e.g., which is obtained by using x0), lu1 and lu2,
v ¼ �A lu1 � lu2ð Þ and t.

In order to compute Newton’s steps, the following system of equations is solved:

@Ru
dual

@x
Dxþ @Ru

dual

@u
Duþ @Ru

dual

@v
Dv ¼ �Ru

dual;

@Rx
dual

@x
Dxþ @Rx

dual

@u
Duþ @Rx

dual

@v
Dv ¼ �Rx

dual;

@Rv
prim

@x
Dxþ @Rv

prim

@u
Duþ @Rv

prim

@v
Dv ¼ �Rv

prim; (6.29)

@Rlu1
cent

@x
Dxþ @Rlu1

cent

@u
Duþ @Rlu1

cent

@lu1
Dlu1 ¼ �@Rlu1

cent;

@Rlu2
cent

@x
Dxþ @Rlu2

cent

@u
Duþ @Rlu2

cent

@lu2
Dlu2 ¼ �@Rlu2

cent: (6.30)

From (6.29), we have:

� 1

tf 2u1
þ 1

tf 2u2

 !
Dxþ 1

tf 2u1
þ 1

tf 2u2

 !
Du ¼ �1� 1

t
1

fu1
þ 1

fu2

� �

1

tf 2u1
þ 1

tf 2u2

 !
Dxþ � 1

tf 2u1
þ 1

tf 2u2

 !
Duþ ATDv ¼ 1

t
1

fu1
� 1

fu2

� �
� ATv

ADx ¼ �Axþ b

After calculating Dx, Du, and Dv (e.g. by using linsolve in Matlab), we compute

Dlu1 and Dlu2 by using:

Dlu1 ¼ lu1 f
�1
u1

ð�Dxþ DuÞ � lu1 �
1

tfu1
;

Dlu2 ¼ lu2 f
�1
u2

ðDxþ DuÞ � lu2 �
1

tfu2
;
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which are derived from (6.30). The Newton step actually represents the step

direction. In order to update the values of variables for the next iteration:

x ¼ xþ sDx; u ¼ uþ sDu; v ¼ vþ sDv; lu1 ¼ lu1 þ sDlu1 ;

lu2 ¼ lu2 þ sDlu2

the step length s should be calculated. For this purpose, the backtracking line search
can be applied. The general backtracking method is explained in the sequel.

6.1.5.2 Backtracking Method

Let us assume that f(x) is the function that should be minimized. One solution would

be to use the step length s (s � 0), which minimizes the function f(xk + sDxk):

argmin
s�0

f xk þ sDxkð Þ:

This method can be computationally demanding, and thus the backtracking line
search has been used:

for given sðs>0Þ
while f xkþ1ð Þ>f xkð Þ þ a � s � f 0 xkð Þ � Dxk
s ¼ b � s
end

The constants a and b can take values in the range a 2 ð0; 0:5Þ; b 2 ð0; 1Þ. Since
we have five variables that should be updated, the condition in while loop can be

modified as follows:

rkþ1k k2>ð1� a � sÞ rkk k2;

where r is a vector that contains the elements of Ru
dual, R

x
dual, R

v
dual, R

lu1
cent, R

lu2
cent.

6.2 Applications of Compressive Sensing Approach

6.2.1 Multicomponent One-Dimensional Signal Reconstruction

In the sequel, we will apply the compressive sensing method to reconstruct a sparse

signal composed of a few nonzero frequency components. Hence, let us consider a
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signal that is made of five different sinusoids. The signal length is N ¼ 500

samples. The analytic form of signal can be written as:

fxðnÞ ¼
X5
i¼1

sinð2pf ðiÞn=NÞ; n ¼ 0; . . . ;N � 1; (6.31)

where the vector of frequencies is: f ¼ 25 45 80 100 176½ �;
In the Fourier domain, the signal consists of five components. Consequently, the

signal can be considered as sparse in the frequency domain. Thus, the signal

reconstruction can be done by using a small set of samples (150) that are chosen

randomly from 500 signal samples. The measurements are taken from the time

domain, while the sparsifying matrix is obtained by taking the first M ¼ 150 rows

of the permuted inverse Fourier basis matrix.

The signal is reconstructed by using 30% of the total number of coefficients.

The original and the reconstructed signal in the time domain are shown in Fig. 6.5. The

original and the reconstructed Fourier transforms of the signal are shown in Fig. 6.6.

The reconstruction error is small and negligible when compared to the signal

amplitudes (an average absolute error is e ~ 10�4, for the average signal amplitude

higher than 1). The maximal and mean absolute errors for different numbers of

measurements M are plotted in Fig. 6.7.

Next, we consider an audio signal representing a flute tone, with a total length of

2,000 samples. In this application, we will use the DCT transform domain (for the

matrixC). The rows ofC are then randomly permuted and the firstM rows are used

for sensing. The signal is reconstructed by using M ¼ 700 random measurements

out of N ¼ 2,000 signal samples. The results are shown in Fig. 6.8. By using the

Fig. 6.5 (a) Original signal, (b) reconstructed signal, (c) reconstruction error
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listening test it has been confirmed that the quality of the reconstructed audio file is

preserved without introducing any audible distortions.

6.2.2 Compressive Sensing Applied to Image Reconstruction

In this section, we consider the compressive sensing applications to image

processing. In order to illustrate the results of applying some of the basic compressive

sensing concepts, let us consider the image of size 256 � 256. First, we split the

image into blocks of size 64 � 64. The compressive sensing is performed as follows:

• Each block is represented as a vector f with N ¼ 4,096 elements;

• As an observation set we select only M ¼ 1,500 random measurements (within

the vector y) from the block elements;

• The DCT (of size 4,096 � 4,096) is used, while A ¼ FC is obtained by taking

M rows of the randomly permuted transform matrix C.

The original and the reconstructed version of the images “Lena” and “Baboon”

are shown in Fig. 6.9. Note that, due to the fact that signal is not strictly sparse

in the DCT domain, the reconstructed images would require further processing

to enhance their quality.

Fig. 6.6 (a) Fourier transform of the original signal, (b) Fourier transform of the reconstructed

signal

Fig. 6.7 Maximal and mean absolute errors of signal reconstruction
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6.2.2.1 Total-Variation Method

One of the approaches used in various image processing applications is based on

the variational parameters, i.e., on the total-variation of an image. An example

of using the total-variation method is in denoising and restoring of noisy images. If

xn ¼ x0 þ e is a “noisy” observation of x0, we can restore x0 by solving the

following minimization problem:

min
x

TVðxÞ s:t: xn � xk k2
‘2
<e2; (6.32)

Fig. 6.8 (a) Original (left) and reconstructed (right) flute signal, (b) zoomed segment of the

original (left) and reconstructed (right) signal, (c) Fourier transform of original (left) and

reconstructed (right) signal
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where e ¼ ek k2‘2 should hold and TV denotes the total-variation. The total-variation

of x represents the sum of the gradient magnitudes at each point and can be

approximated as:

TVðxÞ ¼
X
i;j

Di;jx
�� ��

‘2
; Di;jx ¼ xðiþ 1; jÞ � xði; jÞ

xði; jþ 1Þ � xði; jÞ
	 


: (6.33)

The TV based denoising methods tend to remove the noise while retaining the

details and edges in an image. The TV approach could be applied in compressive

sensing to define an efficient reconstruction method. Thus, in the light of compres-

sive sensing we may write:

min
x

TVðxÞ s:t: Ax� yk k2‘2<e2: (6.34)

The TV minimization provides a solution whose variations are concentrated on a

small set (small number of edges). The results obtained by applying the TV

Fig. 6.9 L1 minimization based reconstruction: (a) Original “Lena” image, (b) reconstructed

“Lena” image, (c) original “Baboon” image, (d) reconstructed “Baboon” image
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minimization algorithm in image reconstruction are shown in Fig. 6.10. The

algorithm is applied to 64 � 64 blocks. The total number of samples per block is

N ¼ 4,096, while the randomM ¼ 1,500 measurements are used for reconstruction

(the DFT matrix is used). Note that the quality of results has been significantly

improved when compared to the images in Fig. 6.9. The L1-magic toolbox (see

References) is used for solving the minimization problems.

6.2.3 Compressive Sensing and Sparse Time-Frequency Analysis

Compressive sensing can be successfully applied in the area of time-frequency

signal representation as well. It has been proven that a nonstationary signal, which

is sparse neither in time nor in frequency, may become sparse in the joint time-

frequency domain. One such example is a chirp signal whose power is concentrated

along a linear time-frequency path, while the rest of time-frequency points can be

considered to be zeros. This property can be generalized to a wide class of signals,

Fig. 6.10 TV reconstruction: (a) Original “Lena” image, (b) reconstructed “Lena” image, (c)

Original “Baboon” image, (d) reconstructed “Baboon” image
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which are uniquely characterized by their respective instantaneous frequency laws.

The time-frequency sparsity would be certainly reduced in the case of multicom-

ponent signals, since the occupancy of the time-frequency plane is increased.

As previously argued, in most cases the signal is typically sparse in one domain

and nonsparse in others. However, it has been shown that for many signals, the

joint-variable signal description yields sparse representation in the time-frequency

and its dual ambiguity domain (related by the two-dimensional Fourier transform).

For instance, the observations can be taken in the ambiguity domain and used to

reconstruct the signal’s instantaneous frequency.

6.2.3.1 Compressive Sensing Based on the Wigner Distribution

and Ambiguity Domain Function

Let us consider the Wigner distribution, as one of the commonly used time-

frequency distributions. The ambiguity domain counterpart of the Wigner distribu-

tion is called the ambiguity function. They are related by the two-dimensional

Fourier transform as follows:

Af t; yð Þ ¼ F2D WD t;oð Þf g: (6.35)

The advantage of using the ambiguity domain and its relation with the time-

frequency domain has been widely used in the analysis of multicomponent signals.

The Wigner distribution of multicomponent signal produces undesired components

called cross-terms, which appear between the signal auto-terms, at the position of

their arithmetic mean. On the other hand, the cross-terms are usually dislocated

from the origin in the ambiguity domain and can be suppressed, or significantly

attenuated, by the use of low-pass filtering. This is achieved by applying the kernel

c(t,y) in the ambiguity domain as:

Af ðt; yÞ ¼ Aðt; yÞcðt; yÞ: (6.36)

Removing the cross-terms by the kernel function usually affects the concentra-

tion of the auto-terms. Hence, there is always a trade-off between the cross-terms

reduction and auto-terms concentration, which may affect the accuracy of the

instantaneous frequency estimation. An improved time-frequency signal power

localization can be achieved by using the compressive sensing approach and

exploiting the signal sparsity in the time-frequency domain. Namely, we can collect

a set of samples from the ambiguity domain and solve the ‘1-norm minimization

problem to obtain the sparsest time-frequency distribution.

By using the compressive sensing approach, the desired time-frequency distri-

bution TFDx can be obtained as:

TFDx ¼ argmin
TFD

TFDk k‘1 ; F�1
2DfTFDg � AM

f ¼ 0 ðt;yÞ2O
�� ; (6.37)
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where AM
f denotes the set of samples from the ambiguity domain in the region

defined by the mask ðt; yÞ 2 O, while TFD denotes the time-frequency distribution.

In the presence of noise, we may use the approximation:

TFDx ¼ argmin
TFD

TFDk k‘1 ; F�1
2DfTFDg � AM

f

��� ���
‘2
� e ðt;yÞ2O
�� : (6.38)

Here, it is important to select a suitable set of ambiguity domain samples, which can

be done by an appropriate ambiguity function masking. The mask (from which we

obtain the measurement vector AM
f ) can be formed as a small area around the origin

of the ambiguity plane, Fig. 6.11.

As an example, let us consider the monocomponent signal of the form:

f1ðtÞ ¼ ejð32=3�cosð3=2�p�tÞþ3�cosðp�tÞÞ þ uðtÞ; (6.39)

where uðtÞ is Gaussian noise with variance equal to 1. In order to provide faster

computations, we use the time-frequency representations of size 60 � 60 (3,600

points). The mask is of size 7 � 7 (1.4% of the total number of points) in the

ambiguity domain.

The original time-frequency distribution and ambiguity function are shown in

Fig. 6.12a, b, respectively. The resulting sparse representation is illustrated in

Fig. 6.12c. Note that the compressive sensing approach provides improved results,

by significantly reducing the noise influence. The number of nonzero points in the

sparse time-frequency representation is approximately between 45 and 50

(estimated from different experiments), which is a small percentage of the total

number of points in the time-frequency domain.

Next, we consider a noisy multicomponent signal, which consists of a chirp and

a sine frequency-modulated component:

f2 ¼ ejð16=5cosð3=2ptÞþ6cosðptÞþ12ptÞ þ e�jð5pt2þ20ptÞ þ uðtÞ: (6.40)

Fig. 6.11 Illustration of the

ambiguity domain mask
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Fig. 6.12 (a) Wigner distributions, (b) ambiguity function, (c) resulting sparse time-frequency

representation

Fig. 6.13 (a) Wigner distribution, (b) ambiguity function, (c) resulting sparse time-frequency

representation
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The noise parameters are the same as in the previous example. The results are

shown in Fig. 6.13. The mask of size 7 � 7 is used as in the previous example,

while the resulting number of nonzero points in the sparse representation is

approximately 130. It can be observed that the compressive sensing approach not

only provides a good signal power localization, but it also improves the time-

frequency resolution of signal components, while de-emphasizing cross-terms.
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Chapter 7

Digital Watermarking

Advances in the development of digital data and the Internet have resulted in

changes in the modern way of communication. A digital multimedia content, as

opposed to an analog one, does not lose quality due to multiple copying processes.

However, this advantage of digital media is also their major disadvantage in terms

of copyright and the unauthorized use of data.

Cryptographic methods and digital watermarking techniques have been

introduced in order to protect the digital multimedia content. Cryptography is

used to protect the content during transmission from sender to recipient. On the

other hand, digital watermarking techniques embed permanent information into a

multimedia content. The digital signal embedded in the multimedia data is called

digital watermark. A watermarking procedure can be used for the following

purposes: ownership protection, protection and proof of copyrights, data authentic-

ity protection, tracking of digital copies, copy and access controls.

The general scheme of watermarking is shown in Fig. 7.1. In general, a

watermarking procedure consists of watermark embedding and watermark detec-

tion. Although the low watermark strength is preferable in order to meet the

imperceptibility requirement, one must ensure that such a watermark is detectable

as well. This can be achieved by using an appropriate watermark detector.

Watermark embedding can be based on additive or multiplicative procedures. In

multiplicative procedures, the watermark is multiplied by the original content.

Watermark detection can be blind (without using the original content) or nonblind

(in the presence of the original content).

7.1 Classification of Digital Watermarking Techniques

A number of different watermarking techniques have been developed. Most of them

can be classified into one of the categories given in Fig. 7.2. From the perceptual

aspect, the watermark can be classified as either perceptible or imperceptible.

Noticeable watermark visibly changes the original content. It is sometimes used

S. Stanković et al., Multimedia Signals and Systems,
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to protect images and videos, but generally it is not very popular nowadays. This

technique involves embedding characters that uniquely identify the owners of the

content and appear as a background image, or as a visible sign. However, this type

of watermark can be removed. Almost all techniques currently used fall into the

class of imperceptible techniques.

Imperceptible techniques are further divided into robust techniques, semifragile

and fragile watermarking techniques. Fragile watermarking assumes embedding of

certain watermark that will be significantly damaged or removed in an attempt to

modify the content. These techniques are useful in proving the data authenticity. In

semifragile watermarking, the watermark should be resistant to certain signal

Fig. 7.1 A block scheme of a watermarking procedure

Fig. 7.2 Classification of digital watermarking techniques
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processing techniques (e.g., compression), while it is fragile under any other attack.

However, the most commonly used techniques are based on the robust

watermarking and will be considered in the next sections.

Robust techniques involve embedding a watermark in the original signal, such

that the watermark removal causes serious degradation of the signal quality. Water-

mark should be designed to be robust to the standard signal processing approaches

(compression, filtering, etc.), as well as to intentional attempts to remove the

watermark.

7.1.1 Classification in Terms of the Embedding Domain

Watermarking techniques are further divided by the domains inwhich thewatermark

is embedded. Namely, the watermark can be embedded directly in the signal domain,

or in one of the transform domains. The choice of the watermarking domain depends

on the type of multimedia data and the watermarking application. The most fre-

quently used transform domains are based on the DFT, DCT, and DWT transforms.

The transform domain watermarking is more convenient for modeling the spectral

characteristics of watermark according to the human perceptual model. For highly

nonstationary signals, the modeling can be achieved by using time-frequency

transforms.

7.2 Common Requirements Considered in Watermarking

Depending on the application and the type of data to be watermarked, the

watermarking procedure should fulfill a number of requirements. In the sequel,

we discuss some general and very common watermarking requirements.

1. The watermark should be accessible only to the authorized users. This issue is

referred as security of the watermarking procedure and it is generally achieved

by using cryptographic keys.

2. The watermark detectability should be assured regardless of the conventional

signal processing or malicious attacks that may be applied.

3. Generally, although one should provide an unremovable watermark, it should be

imperceptible within the host data.

4. The watermark should convey a sufficient amount of information.

As stated above, the first requirement is related to the security of the watermark

and watermarking procedure, in general. In some applications, the specific security

keys (which can be encrypted) are used during the watermark embedding and

extraction. If the watermark is created as a pseudorandom sequence, then the key

used to generate a sequence can be considered as a watermarking key.
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The next requirement is watermark robustness, which is one of the main

challenges when designing the watermarking procedure. The watermark should

be robust not only to the standard signal processing techniques, but also to the

malicious attacks aiming to remove the watermark. All algorithms that may lead to

the loss of the watermark information are simply called attacks. Some of the

common examples are compression algorithms, filtering, change of the data format,

noise, cropping signal samples, resampling, etc. The list of commonly present

attacks for audio signals and images is given in Table 7.1.

Perceptual transparency is one of the most important requirements. Watermark

should be adapted to the host content, and should not introduce any perceptible

artifacts or signal quality degradations. However, the imperceptibility is usually

confronted with the watermark robustness requirement. In order to be impercepti-

ble, the watermark strength should be low, which directly affects its robustness.

Hence, an efficient watermarking procedure should always provide a trade-off

between the imperceptibility and robustness. In order to perform the watermark

embedding just below the threshold of perception, various masking procedures can

be employed.

In some applications it is desirable that the watermark convey a significant

number of bits, which will be extracted by detector. Hence, it is sometimes required

that the watermark data rate (payload) is high. The property that describes the

ability to embed a certain amount of information is known as a capacity of the

watermarking algorithm.

Besides the general watermarking requirements discussed above, there could be

some specific requirements as well related to the following issues:

– Real-time implementation

– Complete extraction/reconstruction of the watermark at the decoder

– Absence of the original data during the watermark extraction (blind extraction)

Table 7.1 Common attacks in audio and image watermarking procedures

Attacks

Audio watermarking Image watermarking

Resampling Requantization

Wow and flutter JPEG compression

Requantization Darkening

mp3 with constant bit rate Lightening

mp3 with variable bit rates Mean filter (of size 3 � 3, 5 � 5, 7 � 7)

Pitch scaling Median filter (of size 3 � 3, 5 � 5, 7 � 7)

Audio samples cropping Image cropping

Echo and timescale modifications Image resize

Filtering Rotation

Amplitude normalization Adding noise

Gaussian or impulse
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7.3 Watermark Embedding

This section will consider the additive and multiplicative watermark embedding

techniques.

Additive embedding techniques can be defined as:

Iw ¼ I þ aw; (7.1)

where I represents the vector of signal samples or transform domain coefficients used

for watermarking, Iw is the vector of watermarked coefficients, w is the watermark,

while the parameter a controls the watermark strength. If the parameter a should be

adjusted to the signal coefficients, then the watermark embedding can be written as:

Iw ¼ I þ aðIÞw: (7.2)

Another frequently used approach is multiplicative embedding, given by the

relation:

Iw ¼ I þ awI: (7.3)

In order to provide that the watermark does not depend on the sign of selected

watermarking coefficients, a modified version of (7.3) can be used:

Iw ¼ I þ aw Ij j: (7.4)

Multiplicative watermark is often used in the frequency domain to ensure that

the watermark energy at a particular frequency is proportional to the image energy

at that frequency. An additional advantage of multiplicative watermark embedding

is that it is difficult to estimate and remove watermark by averaging a set of

watermarked signals, which is one of the common attacks.

Let us consider an example of robust image watermarking in the transform

domain. Two-dimensional DFT of an image is shown in Fig. 7.3a, while its two-

dimensional DCT is illustrated in Fig. 7.3b. Note that the DCT is real and has only

positive part of the spectrum, making it suitable for applications in watermarking.

Fig. 7.3 (a) DFT of image “Baboon”, (b) DCT of image “Baboon”
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The region marked by the red line corresponds to low-frequency coefficients,

which contain most of the image energy. Consequently, the modification of these

coefficients can cause significant image quality degradation. Therefore, the low-

frequency coefficients are usually avoided in watermarking. Outside the blue circle,

we have high-frequency components. These components carry certain image details

and can be filtered out, without significant image degradation. Therefore, the high-

frequency components are also often omitted in watermarking. It follows that the

watermarking should be done in the middle frequency part (between the blue and

red circles in Fig. 7.3).

Consider the sorted DCT coefficients of an image. Given the nature of the DCT

transform, it is necessary to omit the first L coefficients (which are mostly low-

frequency components) and choose the nextM coefficients (which mostly belong to

middle frequencies). Watermarking is then performed as:

IwðiÞ ¼ IðiÞ þ a IðiÞj jwðiÞ for i ¼ Lþ 1; Lþ 2; . . . ; LþM; (7.5)

where I denotes the DCT coefficients of an image. The watermark w can be created

as a pseudorandom sequence. The inverse DCT is then applied to obtain the

watermarked image. The original and watermarked “Lena” images are shown in

Fig. 7.4 (peak signal to noise ratio PSNR ¼ 47 dB).

7.4 Watermark Detection

7.4.1 Hypothesis Testing Approach

The goal of each algorithm for watermark detection is to provide a reliable proof of

the watermark presence within the signal. Denote by Ix a set of coefficients on

Fig. 7.4 (a) Original image “Lena”, (b) watermarked image “Lena”
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which the watermark detection is performed (Ix can be either Iw or I, depending on

whether the watermark is present or not), and the watermark is w. A general

approach for watermark detection is based on a hypothesis testing problem. The
assumptions are:

H0 : Ix does not contain watermark w;

H1 : Ix contains watermark w:

The problem of watermark detection is based on a reliable threshold, used to

decide whether a watermark is present or not. The threshold is determined by

defining a criterion that ensures a minimum probability of detection error. Since

the watermark detection can be viewed as a detection of signal in noise, the

likelihood ratio is used to minimize the error. Detection errors can occur in

two cases: G10—when the assumption of H0 is accepted as true, although the

correct hypothesis is H1, G01—when the assumption H1 is accepted as true, but

the correct hypothesis is H0.

The criterion that determines the presence of the watermark is defined as follows:

F Ixð Þ ¼ 1; Ix 2 R1;
0; Ix 2 R0;

�
(7.6)

where R1 and R0 are regions in which the assumptionsH1 andH0 are tested. In order

to minimize error during detection, a likelihood ratio l is defined by using the

conditional probability density functions pðIxjH1Þ and p IxjH0ð Þ:

l Ixð Þ ¼ p IxjH1ð Þ
p IxjH0ð Þ : (7.7)

The minimum probability of error will be achieved when the region R1 is

determined as:

R1 ¼ Ix : lðIxÞ > p0P01

p1P10

� �
; (7.8)

where p0 and p1 are a priori known probabilities of the assumptions H0 and H1

occurrence, while P01 and P10 are decision weights associated with G01 and G10,

respectively. The criterion for the detection can be written as:

F Ixð Þ ¼ 1; l Ixð Þ > p0P01

p1P10

0; otherwise:

�
(7.9)

Therefore, the detection is done by comparing the likelihood ratio with:

l ¼ p0P01

p1P10

: (7.10)
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The threshold l can be set to minimize the total probability of error that occurs

during detection:

Pe ¼ p0Pf þ p1 1� Pdð Þ; (7.11)

where Pf is the probability that the watermark is detected, when in fact it is not

present (false alarm), and (1 � Pd) is the probability of watermark misdetection.

The error minimization procedure is commonly performed under the assumption

that P01 ¼ P10 and p0 ¼ p1, or in other words for l ¼ 1. It means that the

probabilities of false alarm Pf and misdetection Pm ¼ (1 � Pd) are the same. In

practice, we usually have a predefined maximum false alarm probability from

which the threshold l is calculated as follows:

ð1
l

pðljH0Þdl ¼ Pf ; (7.12)

where pðljH0Þ is the pdf of l under H0. After the threshold l is determined, the

probability of misdetection is calculated as:

Pm ¼
ðl

�1
p ljH1ð Þdl: (7.13)

7.4.1.1 Additive White Gaussian Model

Let us consider the procedure to minimize the detection error in the case of additive

white Gaussian noise (AWGN) model, which is the simplest one encountered in

practice. This model assumes that the coefficients are uncorrelated and have a

Gaussian distribution. Note that the watermark is considered as a noisy signal:

Ix ¼ I þ wþ n; (7.14)

where Ix, I, and w are the coefficients of the watermarked content, the original

content, and the watermark, respectively. The watermarked content can be modified

in the presence of attack, which is modeled by noise n (white Gaussian noise).

Under the assumption that the original coefficients, as well as the noise coefficients,

are uncorrelated and follow the Gaussian distribution, (7.14) can be written as

follows:

Ix ¼ In þ w: (7.15)
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In also has the Gaussian distribution with the modified mean value and the variance

compared to the original content I. Now, the previously defined hypothesis can be

written as:

H0 : Ix ¼ In

H1 : Ix ¼ In þ w:

In order to minimize the similarity measure lðIxÞ ¼ pðIxjH1Þ
pðIxjH0Þ ; it is necessary to

know the conditional probability density function, which in the case of the Gaussian

distribution is defined as:

pðIxjH1Þ ¼
Yn
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2ps2x

p e
�
ðIxðiÞ � mx � wðiÞÞ2

2s2x

pðIxjH0Þ ¼
Yn
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2ps2x

p e
�
ðIxðiÞ � mxÞ2

2s2x ;

(7.16)

where mx is the mean value of signal coefficients used in watermark detection. Now

the measure of similarity is calculated as:

l Ixð Þ ¼ p IxjH1ð Þ
p IxjH0ð Þ ¼

Qn
i¼1

e
�

IxðiÞ � mx � wðiÞð Þ2
2s2x

Qn
i¼1

e
�

IxðiÞ � mxð Þ2
2s2x

: (7.17)

Equation 7.17 can be written in a simplified form by applying the logarithmic

function:

‘ðIxÞ ¼
Xn
i¼1

1

2s2x
IxðiÞ � mxð Þ2 � IxðiÞ � mx � wðiÞð Þ2

h i
¼

¼ 1

2s2x

Xn
i¼1

2IxðiÞwðiÞ �
Xn
i¼1

2mxwðiÞ �
Xn
i¼1

w2ðiÞ
" #

; ð7:18Þ

where ‘ðIxÞindicates the natural logarithm function of lðIxÞ. Note that the last two

terms within the brackets do not depend on Ix. Therefore, the term representing

linear correlation of Ix and w is used as a watermark detector:

D ¼
Xn
i¼1

IxðiÞwðiÞ; (7.19)
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which is optimal under the considered assumptions and is called the standard

correlator. In the case when the signal statistics is not distributed according to the

Gaussian distribution, other detector forms can be used.

According to the procedure for determining the general detection threshold l,
we can now determine the threshold for the standard correlator as:

ð1
Tp

p DjH0ð ÞdD ¼ Pf ; (7.20)

where pðDjH0Þ is the pdf of detector responses D under H0. The pdf of D under H0

and H1 are illustrated in Fig. 7.5. If the response of the detector is D < Tp, we
conclude that the watermark is not present, and vice versa. In the case of equal

probabilities Pf ¼ 1 � Pd, the optimum threshold is A/2 (Fig. 7.5).

In order to determine the threshold and the probability of error, we need to know

how the watermark is embedded, the statistical characteristics of the image

coefficients, as well as the characteristics of attacks.

7.4.2 A Class of Locally Optimal Detectors

According to the signal detection theory, it is difficult to define a general test that

maximizes the signal detection probability. Also, it is known that for detection of

weak signals a locally optimal detector can be created (in our case a watermark

signal is weak in comparison to the host signal). It is defined as follows:

D ¼ g
LO
ðIxÞ � w; (7.21)

where gLO is the local optimum nonlinearity, defined by:

Fig. 7.5 Illustration of the errors that may occur in watermark detection
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g
LO

Ixð Þ ¼ � p0 Ixð Þ
p Ixð Þ ; (7.22)

with p(Ix) and p0(Ix) indicating the coefficients probability density function and its

derivative, respectively. Note that, the detector contains the nonlinear part gLO,
which is correlated with the watermark signal. If the coefficients have the Gaussian

distribution, the proposed detector corresponds to the standard correlator.

7.4.2.1 The Most Commonly Used Distribution Functions

and the Corresponding Detector Forms

The coefficients distribution for most images can be modeled by the Gaussian,

Laplace, generalized Gaussian, or Cauchy distribution functions. For example,

recall that the generalized Gaussian function can be defined as:

GGF ¼ ab
2Gð1=aÞ e

�b x�mj jð Þa ; a > 0; b ¼ 1

s
Gð3=aÞ
Gð1=aÞ

� �1=2
: (7.23)

For a ¼ 1, this function is equal to the Laplace distribution, and for a ¼ 2 it is

equal to the Gaussian distribution. Figure 7.6 shows a coefficient distribution of an

image. The form of the detector, which corresponds to the generalized Gaussian

distribution, is given by:

D1 ¼
XL
i¼1

sign IxðiÞð Þ IxðiÞj ja�1wðiÞ; (7.24)

while the detector form for Cauchy distribution, CF ¼ g
p g2þðx�dÞ2ð Þ , is equal to:

Fig. 7.6 Distribution of

coefficients: Gaussian (green
line) and Laplace distribution

(purple line)
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D2 ¼
XL
i¼1

2 IxðiÞ � dð Þ
IxðiÞ � dð Þ2 þ g2

wðiÞ: (7.25)

Note that x (in the pdf) corresponds to the watermarked coefficients Ix in the

detector form.

It is important to emphasize that the locally optimum detector form can be quite

sensitive to the pdf variations.

A simple measure of detection quality can be defined as:

R ¼ Dwr � Dwwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
swr2 þ sww2

p ; (7.26)

where D and s2 are mean values and standard deviations of detector responses,

while the indices wr and ww are used for right keys (watermarks) and wrong keys

(wrong trials), respectively. The wrong trial is any sequence that is not the water-

mark, but is generated in the same way.

7.4.3 Correlation Coefficient and Similarity Measure

In order to determine the similarity between the original watermark w and the

watermark w* extracted from the protected data at the detection side, we can use the

similarity measure defined as follows:

Simðw;w�Þ ¼ w � w�ffiffiffiffiffiffiffiffiffiffiffiffiffi
w � w�p : (7.27)

The similarity measure is usually given in the form of the correlation coefficient,

which can be calculated as:

rðw;w�Þ ¼
PN
i¼1

wðiÞw�ðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

wðiÞð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1

w�ðiÞð Þ2
s : (7.28)

7.5 Examples of Watermarking Procedures

7.5.1 Audio Watermarking Techniques

Audio watermarking procedures are mainly based on the specific audio signal

characteristics and psychoacoustics. In the next subsections, a brief description of

audio watermarking approaches such as the spread-spectrum audio watermarking,

two-sets method, and echo embedding, is provided.
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7.5.1.1 Spread-Spectrum Watermarking

Spread-spectrum watermarking is an example of correlation-based method that

assumes a pseudorandom sequence embedding, where the standard correlator is used

for detection. This is a commonly used watermarking approach. The pseudorandom

sequence, r(n), i.e., thewidebandnoise sequence, can be embedded in the time or in the

transformdomain. This sequence is used tomodulate the binarymessageu ¼ 0; 1f g, or
equivalently b ¼ �1; 1f g. The watermarked sequence wðnÞ ¼ brðnÞ obtained in this
way is scaled according to the energy of the host signal s(n) to provide a compromise

between the watermark imperceptibility and robustness. The watermark embedding

can be done, for example, by an additive procedure: swðnÞ ¼ sðnÞ þ awðnÞ:A suitable

pseudorandom sequence should have good correlation properties, in such a way that it

should be orthogonal to the other pseudorandom sequences. The commonly used

sequence is called theMsequence (maximum length sequence), and its autocorrelation

is given by:

1

N

XN�1

i¼0

wðiÞwði� kÞ ¼ 1; for k ¼ 0;
1
N ; for k 6¼ 0:

�
(7.29)

7.5.1.2 Two-Sets Method

This blind audio watermarking procedure is based on the two sets A and B of audio

samples. A value d (watermark) is added to the samples within the set A, while it is

subtracted from the samples in B:

a�i ¼ ai þ d; b�i ¼ bi � d;

where ai and bi are samples from A and B, respectively. When making decision

about watermark presence, the expected valueE �a� � �b
�� �
is employed, where �a�and

�b�are mean values of samplesa�i andb
�
i . This method is based on the assumption that

the mean values of the samples from different signal blocks are the same, i.e., that

E½a� b� ¼ 0 holds (which may not be always the case in the practice). Only in this

case, the watermark can be detected as:

E �a� � �b
�� � ¼ E �aþ dð Þ � �b� dð Þ½ � ¼ E �a� �bð Þ þ 2d ¼ 2d: (7.30)

7.5.1.3 Echo Embedding

The echo embedding procedure can be realized according to:

xðnÞ ¼ sðnÞ þ asðn� dÞ; (7.31)

7.5 Examples of Watermarking Procedures 267



where d represents a certain delay of the echo signal. The extraction of the

embedded echo requires the detection of delay d. The signal copy is usually delayed
for approximately 1 ms. The echo amplitude is significantly lower than the original

signal amplitude, and hence, the signal quality is not degraded. On the contrary, the

sound is enriched. There is also a variant of this procedure, where two delays are

considered: one is related to the logical value “1,” while the other is related to “0.”

The double echo embedding operation can be written as:

xðnÞ ¼ sðnÞ þ asðn� dÞ � asðn� d � DÞ; (7.32)

where the difference between delays corresponding to “1” and “0” is denoted by D,
and its value does not exceed four samples. The delay detection is done by using the

cepstrum autocorrelation, which is the inverse Fourier transform of the log-

magnitude spectrum. The complexity of cepstrum calculation is one of the main

disadvantages of this method.

7.5.1.4 Watermarking Based on the Timescale Modifications

Timescale modifications are related to compressing and expanding of the time axis.

The basic idea of timescale watermarking is to change the timescale between two

successive extremes (maximum and minimum). The interval between two extremes

is divided into N segments with equal amplitudes. The signal slope is changed

within a certain amplitudes range according to the bits that should be embedded.

Namely, the steep slope corresponds to “0,”while the mild slope corresponds

to bit “1.”

7.5.2 Image Watermarking Techniques

A simple watermarking algorithm for digital image protection is based on the

additive watermark embedding procedure in the 8 � 8 DCT domain. First, an

image is divided into 8 � 8 blocks of pixels as in the case of JPEG algorithm.

Then, the two-dimensional DCT transform is applied to each block separately.

The watermark is embedded into the set of selected coefficients. In order to

provide a good compromise between the watermark imperceptibility and robust-

ness, the coefficients are selected from the middle frequency region, as illustrated

in Fig. 7.7.

Watermark embedding is based on the standard additive procedure: Iw ¼ I þ aw;
where I denotes the original middle-frequency DCT coefficients (from 8 � 8

block), while Iw are the watermarked DCT coefficients. Next, we perform the

inverse DCT transform that results in watermarked 8 � 8 block. This is repeated

for each block.
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Watermark detection can be performed by using a standard correlation detector

(assuming that the distribution of selected coefficients can be modeled by the

Gaussian function). However, more accurate modeling can be obtained by using

generalized Gaussian and Cauchy function, where the corresponding detectors D1

and D2 (defined by (7.24) and (7.25)) are used for detection.

7.5.3 The Procedure for Watermarking of Color Images

Unlike the previous procedure, where the block-based DCT is performed, here we

will use the two-dimensional DCT transform of the entire image. The procedure is

described in the sequel.

(a) The selection of coefficients for watermark embedding is done through the

following steps:

1. The color channels are separated (e.g., R,G, B), Fig. 7.8.

2. Two-dimensional DCT is computed for each color matrix.

3. The matrices of DCT coefficients are transformed into vectors and sorting

operation is performed.

4. The largest L coefficients are omitted and the nextM coefficients are selected

for watermarking.

(b) Watermark embedding

Let us denote the sortedDCT coefficients by I, whilew is the watermark created as

a pseudorandom sequence. The watermarked DCT coefficients are calculated as:

IwðiÞ ¼ IðiÞ þ a � jIðiÞj � wðiÞ; i ¼ Lþ 1; . . . ;M þ L;

Fig. 7.7 A region of middle

frequency DCT coefficients

within 8 � 8 block (shaded in

gray)
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where i denotes the coefficient position in the sorted sequence.

(c) Reorder the sequence into matrix form.

(d) Calculate the two-dimensional inverse DCT (with rounding to integer values).

7.5.4 An Overview of Some Time-Frequency-Based
Watermarking Techniques

The time-frequency-based watermarking can be used for different types of multi-

media data: audio signals, images, and video signals. The time-frequency domain

can be efficient regarding the watermark imperceptibility and robustness. Namely,

the watermark with specific time-frequency characteristics can be designed and

adapted to the host signal components, which enhances the efficiency of the

watermarking procedure. Note that the time-frequency representations defined for

one-dimensional signals can be extended to two-dimensional cases in order to be

applied to images. In this case, they are usually referred as the space/spatial-

frequency representations.

Fig. 7.8 Color image and the separated color channels
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1. The watermark can be created with specific space/spatial-frequency

characteristics, while its embedding can be done even in the space domain.

This approach is among the first time-frequency-based image watermarking

procedures. Namely, a two-dimensional chirp signal is used as watermark:

W x; yð Þ ¼ 2A cos ax2 þ by2
	 
 ¼ A ej ax2þby2ð Þ þ e�j ax2þby2ð Þ� �

: (7.33)

The watermark is embedded within the entire image:

Iwðx; yÞ ¼ Iðx; yÞ þWðx; yÞ: (7.34)

It is interesting to observe that multiple different chirps with small amplitudes

can be used for watermarking. The parameters of the chirp signals and the

random sequence that define the amplitudes of chirps serve as the watermark

key. Since the watermark is embedded within the entire image in the spatial

domain, a proper masking that provides imperceptibility should be applied. Note

that the Wigner distribution provides an ideal representation for the chirp signal.

Hence, the watermark detection is performed by using a form of the Radon-

Wigner distribution:

P ox;oy;Wv

	 
 ¼ FT2D Iw x; yð ÞWv x; yð Þf gj j2 ¼ð1
�1

ð1
�1

Iw x; yð ÞWv x; yð Þe�j xoxþyoyð Þdxdy










2; (7.35)

where:

Wv x; yð Þ ¼ e�j avx
2þbvy

2þcvxyð Þ: (7.36)

Different values of parameters av, bv, and cv define a set of projection planes.
The additional term cvxy is used to detect some geometrical transformations, as

well. In order to make a decision about the watermark presence within the

image, the maxima of the Radon-Wigner distribution are calculated:

M av; bv; cvð Þ ¼ max
ox;oy

P ox;oy;Wv

	 

; (7.37)

and compared with a reference threshold. This procedure provides robustness to

various attacks, some being a median filter, geometrical transformations (trans-

lation, rotation, and cropping simultaneously applied), a high-pass filter, local

notch filter, and Gaussian noise.

2. Digital audio watermarking can be done by using time-frequency expansion and

compression. The audio signal is first divided into frames of size 1,024 samples,

where the successive frames have 512 samples overlapping. If the original frame
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is lengthened or shortened, the logical value 1 is assigned, otherwise the “normal

frames” corresponds to the logical value 0. The watermark is a sequence

obtained as a binary code of the alphabet letters, converted to the ASCII code.

The frames with signal energy level above a certain threshold are selected. The

signal is transformed to frequency domain and a psychoacoustic model is used to

determine the masking threshold for each selected frame. The length of the

frames is changed in frequency domain by adding or removing four samples with

amplitudes that do not exceed the masking threshold. It prevents a perceptual

distortion. In order to preserve the total length of the signal, the same number of

expanded and compressed frames are used (usually an expanded frame is

followed by a compressed frame). The detection procedure is nonblind, i.e.,

the original signal is required. The difference between the original and

watermarked samples in time domain will have diamond shape for the pair

expanded–compressed frame (Diamond frames), while the difference is flat

and close to zero for unaltered frames. The pair of Diamond frames is used to

represent the binary 1, while the logical values 0 are assigned to the unaltered

frames. Hence, it is possible to detect binary values, and, consequently, the

corresponding alphabetical letters.

3. A spread spectrum-based watermarking in the time-frequency domain.
The watermark is created as:

wiðnÞ ¼ aðnÞmiðnÞpiðnÞ cos o0ðnÞnð Þ; (7.38)

where mi(n) is the watermark before spreading, pi(n) is the spreading code or the
pseudonoise sequence (bipolar sequence taking the values +1 and�1 with equal

probabilities), while o0 is the time-varying carrier frequency that represents the

instantaneous mean frequency of the signal. The parameter a(n) controls the

watermark strength. The masking properties of the human auditory system are

used to shape an imperceptible watermark. The pseudonoise sequence is low-

pass filtered according to the signal characteristics. Two different scenarios of

masking have been considered. The tone- or noise-like characteristics are

determined by using the entropy:

HðXÞ ¼ �
Xomax

i¼1

P xið Þlog2P xið Þ: (7.39)

The probability of energy for each frequency (within a window used for the

spectrogram calculation) is denoted by P(xi), while omax is the maximum fre-

quency. A half of the maximum entropy Hmax(x) ¼ log2omax is taken as a thresh-

old between noise-like and tone-like characteristics. If the entropy is lower than

Hmax, it is considered as a tone-like, otherwise it is a noise-like characteristic.

The time-varying carrier frequency is obtained as the instantaneous mean

frequency of the host signal, calculated by:
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oiðnÞ ¼
Pomax

o¼0

oTFDðn;oÞ
Pomax

o¼0

TFDðn;oÞ
: (7.40)

The instantaneous mean frequency is computed over each time window of the

STFT, and the TFD(n,o) is the energy of the signal at a given time and

frequency.

Finally, after the watermark is modulated and shaped, it is embedded in the

time domain as: swi
ðnÞ ¼ siðnÞ þ wiðnÞ. During the detection, the demodulation

is done by using the time-varying carrier and then the watermark is detected by

using the standard correlation procedure.

4. Watermarking approach based on the time-frequency-shaped watermark.
In order to ensure imperceptibility constraints, the watermark can be modeled

according to the time-frequency characteristics of the signal components. For

this purpose, the concept of nonstationary filtering is adapted and used to create a

watermark with specific time-frequency characteristics. The algorithm includes

the following steps:

(a) Selection of signal regions suitable for watermark embedding;

(b) Watermark modeling according to the time-frequency characteristics of the

host signal;

(c) Watermark embedding and watermark detection in the time-frequency

domain.

Due to the multicomponent nature of multimedia signals (e.g., speech

signals), the cross-terms free time-frequency distributions (TFD) should be

used, such as the spectrogram and the S-method. If a region selected from the

TFD is:

D ¼ t;oð Þ : t 2 t1; t2ð Þ;o 2 o1;o2ð Þf g; (7.41)

we can define a time-frequency mask as follows:

LMðt;oÞ ¼
1 for ðt;oÞ 2 D and TFDðt;oÞj j > x;

0 for ðt;oÞ=2D or TFDðt;oÞj j < x:

(
(7.42)

The parameter x is a threshold that can be calculated as a portion of the TFD

maximum: x ¼ l10llog10 max TFDðt;oÞj jð Þð Þ (l is a constant). The mask LM contains

the information about the significant components within the region D. Hence, if
we start with an arbitrary random sequence p, the modeled watermark is

obtained at the output of the nonstationary (time-varying) filter:

wðtÞ ¼
X
o

LMðt;oÞSTFTpðt;oÞ; (7.43)
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where STFTp stands for the short-time Fourier transform of p. The watermark

embedding is done according to:

STFTIwðt;oÞ ¼ STFTIðt;oÞ þ STFTwkey
ðt;oÞ; (7.44)

where Iw, I, and w are related to the watermarked signal, original signal, and

watermark, respectively.

The watermark detector can be made by using the correlation in the time-

frequency domain:

D ¼
XN
i¼1

STFTi
wkey

STFTi
Iw
: (7.45)

Note that the time-frequency domain provides a larger number of coefficients

for correlation (compared to time or frequency domains), which enhances the

detection performance.

7.6 Examples

7.1. Consider a vector with a few image DFT coefficients chosen for watermarking.

DFT ¼ [117 120 112 145 136 115].

The watermarking procedure should be done in the following way:

(a) Sort the vector of DFT coefficients.

(b) Add a watermark given by w ¼ [�3.5 �2 4 5 9 �7].

(c) Assume that the sequence wrong ¼ [3 2 �5 �7 2 4] provides the highest

response of the correlation-based detector among large number of wrong trials

(wrong keys) used for testing.

(d) Prove that the watermark can be successfully detected by using the standard

correlator.

Solution:

DFTsort ¼ 112 115 117 120 136 145½ �:

DFTw ¼ DFTsort þ w ¼ 108:5 113 121 125 145 138½ �:

In order to ensure a reliable watermark detection using the standard correlator,

the detector response for the watermark should be higher than the maximal detector

response when using wrong trials:

SDFTw � w > SDFTw � wrong
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SDFTw � w ¼ 842:25

SDFTw � wrong ¼ �86:5

Having in mind the results, we may conclude that the watermark detection is

successful.

7.2. Write a program in Matlab that performs the image watermarking as follows:

(a) Calculate and sort the DCT coefficients of the considered image;

(b) Create a watermark as a pseudorandom sequence, e.g., watermark ¼ 0.5rand

(1500,1);

(c) After omitting the strongest 1,500 coefficients, embed the watermark into the

next 1,500 coefficients by using the multiplicative procedure with a ¼ 0.8;

(d) Check if the watermark is imperceptible within the protected image;

(e) Perform the watermark detection in the DCT domain by using the standard

correlator. It is necessary to demonstrate that the detector response for the water-

mark is higher than the detector response for any of the 100wrong trials (Fig. 7.9).

Solution:

alfa¼0.8;
Det¼zeros(2,100);
image¼imread(’lena512.bmp’);
image¼image(1:2:512,1:2:512);
N¼256;

DCT1¼dct2(image);
Vector¼DCT1(:);
[g,v]¼sort(abs(Vector));
watermark¼0.5*rand(1500,1);
Vectorwat¼Vector;
Vectorwat(v(N*N-1500-1500+1:N*N-1500))¼Vector(v(N*N-
1500-1500+1:N*N-1500))+alfa*abs(Vector(v(N*N-1500-1500
+1:N*N-1500))).*watermark;
DCTwat¼DCT1;

DCTwat(:)¼Vectorwat;
imagewat¼idct2(DCTwat);
figure,imshow(uint8(imagewat))

DCTwat1¼dct2(imagewat);
DCTwat1¼DCTwat1(:);
x¼DCTwat1(v(N*N-1500-1500+1:N*N-1500));
for k¼1:100
wrong¼0.5*rand(1500,1);
Det(1,k)¼sum(x.*watermark);
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Det(2,k)¼sum(x.*wrong);
end
figure,
plot(1:100,Det(2,1:100),’r’,1:100,Det(1,1:100),’g’)

7.3. Consider the watermarking procedure described in the sequel. A block of the

8 � 8 DCT coefficients is selected. The watermark is added to the block

coefficients: Iw ¼ I þ w . The watermarked image is exposed to the quantization

attack defined by the quantization matrix Q. Determine which watermark samples

will contribute to the difference between the watermarked and the original coeffi-

cient after quantization attack.

DCT ¼

45 20 54 81 0 0 0 0

15 77 0 11 0 0 0 0

21 0 0 39 0 0 0 0

27 44 52 75 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

w ¼

5 4 1 �3 0 0 0 0

3:5 5 0 5 0 0 0 0

3 3 2 �5 0 0 0 0

0 �2 0 6:5 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Q ¼

3 5 7 9 11 13 15 17

5 7 9 11 13 15 17 19

7 9 11 13 15 17 19 21

9 11 13 15 17 19 21 23

11 13 15 17 19 21 23 25

13 15 17 19 21 23 25 27

15 17 19 21 23 25 27 29

17 19 21 23 25 27 29 31

Fig. 7.9 Results of

watermark detection
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Solution:

Approach I: It is possible to perform the quantization of the original and the

watermarked coefficients, to compare them, and to select the coefficients that

are different after quantization.

DCTq ¼

15 4 8 9 0 0 0 0

3 11 0 1 0 0 0 0

3 0 0 3 0 0 0 0

3 4 4 5 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

DCTwq ¼

17 5 8 9 0 0 0 0

4 12 0 1 0 0 0 0

3 0 0 3 0 0 0 0

3 4 4 5 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Hence, the positions of the selected coefficients are: (1,1), (1,2), (2,1), (2,2).

Approach II: Select the watermark samples higher than Q/2.

Q
2
¼

1:5 2:5 3:5 4:5 5:5 6:5 7:5 8:5

2:5 3:5 4:5 5:5 6:5 7:5 8:5 9:5

3:5 4:5 5:5 6:5 7:5 8:5 9:5 10:5

4:5 5:5 6:5 7:5 8:5 9:5 10:5 11:5

5:5 6:5 7:5 8:5 9:5 10:5 11:5 12:5

6:5 7:5 8:5 9:5 10:5 11:5 12:5 13:5

7:5 8:5 9:5 10:5 11:5 12:5 13:5 14:5

8:5 9:5 10:5 11:5 12:5 13:5 14:5 15:5

w ¼

5 4 1 �3 0 0 0 0

3:5 5 0 5 0 0 0 0

3 3 2 �5 0 0 0 0

0 �2 0 6:5 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

The selected watermark samples will produce a difference between the quan-

tized original and watermarked image coefficients.
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7.4. Based on the principles introduced in the previous example, the image

watermarking procedure is implemented as follows:

(a) DCT is calculated for the 8 � 8 image blocks.

(b) The watermark w is added to the quantized coefficients: Iq(i,j) ¼ K(i,j)Q(i,j),
(K(i,j) are integers), but the coefficients quantized to zero value are immedi-

ately omitted.

(c) The selection of coefficients suitable for watermarking is done according to the

constraints:

– The watermarked DCT coefficients after quantization with Q should have

nonzero values.

– The watermarked coefficients should not be rounded to the same value as the

original coefficients.

Analyze and define the values of K(i,j) and watermark w that satisfy the above

constraints.

Solution and explanation:

To ensure that the watermarked DCT coefficients after quantization with Q have

nonzero values, the following relation should hold:

Kði; jÞQði; jÞj j � wj j � Qði; jÞ
2

; (7.46)

or equivalently, the watermark should satisfy the condition:

Condition 1

wj j � Kði; jÞQði; jÞj j � Qði; jÞ
2

: (7.47)

The watermarked coefficients will not be quantized to the same value as the

original one if the following condition is satisfied:

Condition 2

Kði; jÞQði; jÞ þ w < Kði; jÞQði; jÞ � Q=2

or

Kði; jÞQði; jÞ þ w�Kði; jÞQði; jÞ þ Q=2 (7.48)

From (7.48), we have: wj j > Qði; jÞ=2. Combining conditions 1 and 2, we get:

w 	 � Kði; jÞj j � 1=2½ �Qði; jÞ;�Qði; jÞ
2

Þ [ ðQði; jÞ
2

; Kði; jÞj j � 1=2½ �Qði; jÞ
� �

;
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Note that Kði; jÞj j � 2 should hold.

7.5. Define the form of a locally optimal watermark detector, that corresponds to the

watermarked coefficients pdf, assuming that they are selected by using the criterion

Kði; jÞj j � 2. The coefficients pdf can bemodeled by a function illustrated in Fig. 7.10.

Solution:

In the considered case, the coefficients pdf from Fig. 7.10 can be approximately

described by using the following function:

p Ixð Þ ¼
Ix
a

	 
2n
1þ Ix

a

	 
2n e� Ix
aj j2g ; (7.49)

where parameter a defines the positions of the pdf maxima, while n controls the pdf

decay between themaximum and the origin. The parameter g is usually equal to 1/2, 1,
or 2.

A locally optimal detector can be defined as:

Dopt ¼ � p0ðIxÞ
pðIxÞ � w; (7.50)

which in the case of the specified function p becomes:

Dopt ¼
XK
i¼1

wi
g
a2g

I2g�1
xi

sgn
Ixi
a

� �2g

� n

Ixi 1þ Ixi
a

� �2n
� �

0
BB@

1
CCA: (7.51)

7.6. By using the results obtained in the Example 7.4, derive the condition for

watermarked coefficients selection which would provide the robustness to a certain

JPEG quantization degree defined by Q’. By robustness we assume that the

coefficients pdf is preserved even after quantization Q’, in order to provide

Fig. 7.10 Distribution of

coefficients after omitting

low-frequency components
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successful detection by using locally optimal detector. Assume that the watermark

embedding is done according to:

Iwði; jÞ ¼ round
Iði; jÞ
Qði; jÞ

� �
Qði; jÞ þ Qði; jÞw; (7.52)

where Q is the quantization with high quality factor QF (i.e., a low compression

ratio).

Solution:

In order to provide robustness to the quantization Q0, the criterion for coefficients

selection should be modified. The watermarked coefficients will be robust after

applying Q0 if they are not rounded to zero, i.e., if the following condition is

satisfied:

Kði; jÞQði; jÞj j � Qði; jÞwj j > Q0ði; jÞ
2

: (7.53)

Note that the worst case is used in (7.53): the coefficient and the watermark have

opposite signs. Hence, we may observe that for efficient watermark detection, the

coefficients should be selected for watermarking if:

Kði; jÞj j �wþ Q0ði; jÞ
2Qði; jÞ : (7.54)

Therefore, if Q with an arbitrary high QF is used for watermark embedding, the

robustness is satisfied even for Q0 as long as the criterion (7.54) is satisfied. In this

way, the procedure provides the full control over the robustness to any JPEG

quantization degree.

Note that if the criterion is satisfied for QF0 < QF, then the watermark detection

will certainly be successful for any Qx defined by QFx for which QFx > QF0 holds.

7.7. A speech watermarking procedure in the time-frequency domain can be

designed according to the following instructions:

1. Voiced speech regions are used for watermarking.

2. Watermark is modeled to follow the time-frequency characteristics of speech

components in the selected region.

3. Watermark embedding and detection is done in the time-frequency domain by

using the S-method and time-varying filtering procedure.

(a) Design a time-frequency mask for watermark modeling and define the

modeled watermark form.

(b) Define a watermark detection procedure in the time-frequency domain

which includes the cross-terms.
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Solution:

(a) By using the S-method (with L ¼ 3), a voiced speech region is selected:

D ¼ fðt;oÞ : t 2 ðt1; t2Þ; o 2 ðo1;o2Þg;

where t1 and t2 are the start and endpoints in the time domain, while frequency

range is o 2 ðo1;o2Þ . According to (7.42), the time-frequency mask can be

defined as:

LMðt;oÞ ¼
1 for ðt;oÞ 2 D and SMðt;oÞj j > x

0 for ðt;oÞ=2D or SMðt;oÞj j � x

(
;

where parameter l within the energy floor x can be set to 0.7. The illustration of
speech region is given in Fig. 7.11a, the corresponding mask is shown in

Fig. 7.11b, while the time-frequency representation of the modeled watermark

is shown in Fig. 7.11c. The modeled version of the watermark is obtained by

using (7.43).

Note that the time-frequency characteristics of watermark correspond to the

speech components. Hence, it would be difficult to remove the watermark

without introducing serious signal quality degradation.

(b) The watermark detection can be performed by using the S-method with L ¼ 32

to intentionally produce the cross-terms:

D ¼
XN
i¼1

SMi
wkey

SMi
xw
þ

XN
i;j¼1

i 6¼ j

SMi;j
wkey

SMi;j
xw
; (7.55)

Fig. 7.11 (a) Speech region selected for watermarking, (b) mask function, (c) time-frequency

representation of modeled watermark
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where the index w is related to watermark and xw to watermarked coefficients.

Although the cross-terms are usually undesirable in the time-frequency analy-

sis, they may increase performance of watermark detector.

7.8. In analogy with one-dimensional case described in the previous example,

design a space/spatial-frequency-based image watermarking procedure.

Note: Space/spatial-frequency representation is calculated for each pixel and it

reflects the two-dimensional local frequency content around the pixel. The two-

dimensional form of the STFT for the window of size N � N is extended from the

one-dimensional version as:

STFT n1; n2; k1; k2ð Þ ¼
XN=2�1

i1¼�N=2

XN=2�1

i2¼�N=2

I n1 þ i1; n2 þ i2ð Þw i1; i2ð Þe�j2pN k1i1þk2i2ð Þ:

Fig. 7.12 (a) Busy region and its spectrogram, (b) flat region and its spectrogram
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Solution:

Space/spatial-frequency representation can be used for classification between the

flat and busy image regions. Namely, busy image regions are preferred in

watermarking, because it is easier to provide watermark imperceptibility. The

examples of busy and flat image regions are shown in Fig. 7.12a, b, respectively.

Note that, unlike the busy regions, the flat regions contain small number of signifi-

cant components in the space/spatial-frequency domain, which can be used as a

criterion for regions classification.

Following analogy with the procedure for speech signals, watermark can be

modeled according to the local frequency characteristics defined by the mask L:

wkey n1; n2ð Þ ¼
X
o1

X
o2

STFTp n1; n2;o1;o2ð ÞL n1; n2;o1;o2ð Þ; (7.56)

where STFTp is a short-time Fourier transform of the two-dimensional pseudoran-

dom sequence. The mask is obtained as:

L n1; n2;o1;o2ð Þ ¼ 1 for o1;o2ð Þ : STFT n1; n2;o1;o2ð Þj j2 > x

0 for o1;o2ð Þ : STFT n1; n2;o1;o2ð Þj j2 � x:

(

Watermark embedding and detection can be done in the space/spatial-frequency

domain in the same way as in the case of speech signals.
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5. Djurović I, Stanković S, Pitas I (2001) Digital watermarking in the fractional Fourier transfor-

mation domain. J Netw Comput Appl Academic 24(2):167–173

6. Esmaili S, Krishnan S, Raahemifar K (2003) Audio watermarking time-frequency

characteristics. Canadian J Electr Comput Eng 28(2):57–61

7. Foo SW, Ho SM, Ng LM (2004) Audio watermarking using time-frequency compression

expansion. In: Proceedings of the international symposium on circuits and systems, ISCAS 04,

vol 3, pp III-201–III-4

8. Hernandez JR, Amado M, Perez Gonzales F (2000) DCT-domain watermarking techniques for

still images: detector performance analysis and a new structure. IEEE Trans Image Process

9:55–68

9. Kirovski D, Malvar HS (2003) Spread-spectrum watermarking of audio signals. IEEE Trans

Signal Process 51(4):1020–1033

References 283



10. Mobasseri BG, Zhang Y, Amin MG, Dogahe BM (2005) Designing robust watermarks using

polynomial phase exponentials. In: Proceedings of acoustics, speech, and signal processing

(ICASSP’05), vol 2, pp ii/833–ii/836
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19. Stanković S (2000) About time-variant filtering of speech signals with time-frequency

distributions for hands-free telephone systems. Signal Process 80(9):1777–1785
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Chapter 8

Multimedia Signals and Systems

in Telemedicine

Due to the advances in technology and medicine, humans tend to live longer. This

has increased the pressure on healthcare systems worldwide to provide higher

quality health care for a greater number of patients. A greater demand for healthcare

services prompted researchers to seek new ways of organizing and delivering

healthcare services. Telemedicine, as a new research area, promotes the use of

multimedia systems as a way of increasing the availability of care for patients in

addition to cost and time-saving strategies. In other words, telemedicine provides a

way for patients to be examined and treated, while the healthcare provider and the

patient are at different physical locations. Using telemedicine technologies, future

hospitals will provide healthcare services to patients all over the world using

multimedia systems and signals that can be acquired over distances. Signal and

image transmission, storage, and processing are the major components of

telemedicine.

8.1 General Health Care

8.1.1 Telenursing

Telenursing requires the use of multimedia systems and signals to provide nursing

practice over the distance. It was developed as a need to alter the current nursing

practices and provide home care to older adults and/or other patient groups, which

preferred to stay in the comfort of their own homes. Multimedia technologies (e.g.,

video-telephony) allow patients to maintain their autonomy by enhancing their

emotional, relational, and social abilities. Generally, the patients welcome the use

of multimedia systems to communicate with a nurse about their physical and

psychological conditions. So far, the use of advanced technology did not have

any significant effects on healthcare providers and patients, as well as on their

abilities to communicate.
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Multimedia systems, when used for patient care, provide various advantages. As

an example, let us mention that the multimedia signals and systems have been used

to significantly reduce congestive heart failure readmission charges. Also, these

systems can reduce the amount of needed time to care for a patient, while providing

the same level of health care as in-patient visits. Similarly, an analysis of telenursing

in the case of metered dose inhalers in a geriatric population have shown that

multimedia systems can provide most of services, and only small percentage require

on-site visits. It should bementioned that some of the telenursing systems can reduce

the number of visits to emergency departments or doctors in private practice.

It should be mentioned that other potential applications of telenursing also

include, but are not limited to:

• Training nurses remotely

• Caring for patients in war zones

• Global collaboration between nurses

8.1.2 Telepharmacy

Particularly, in rural and remote areas the pharmacy services to patients are often

limited. This has led to the creation of service called telepharmacy, which assumes

providing pharmaceutical care to patients and medication dispensing from distance.

In this way, the multimedia systems and technology preserve pharmacy services in

remote rural communities. The telepharmacy services adhere to all official

regulations and services as traditional pharmacies, including verification of drugs

before dispensing and patient counseling. In other words, telepharmacy services

maintain the same services as the traditional pharmacies and provide additional

value-added features. Additional services provided by telepharmacies can also

include point-of-care refill authorization and medication assistance referrals.

Specifically, in a recent study analyzing the utility of telepharmacy services for

education on a metered-dose inhaler technique, it has been shown that patient

education provided by pharmacists via video was superior to education provided

via written instructions on an inhaler package insert.

8.1.3 Telerehabilitation

Rehabilitation is based on the idea that therapeutic interventions can enhance patient

outcomes, since human physiological system can dynamically alter as a function of

inputs (e.g., exercise). Therefore, telerehabilitation tools enable us to decrease the

distance between patients and clinicians/researchers, which opens up new

possibilities for discovering and implementing optimized intervention strategies.

Telerehabilitation was established in 1997 when the National Institute on Dis-

ability and Rehabilitation Research (U.S. Department of Education) ranked it as

one of the top priorities for a newly established Rehabilitation Engineering
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Research Center (RERC). While telerehabilitation covers diverse fields of

investigations (e.g., intelligent therapeutic robots and other health gadgets), it

also addresses societal challenges in the delivery of rehabilitative services. The

main efforts have been made to provide telecommunication techniques that are

capable of supporting rehabilitation services at a distance, then to provide technology

for monitoring and evaluating the rehabilitation progress, and, finally, to provide

technology for therapeutic intervention at a distance, Fig. 8.1.

Having these comprehensive objectives, telerehabilitation may have far-

reaching effects on patients. One such example is based on using a video consulting

system in a community-based poststroke program that involves educational talks,

exercise, and psychosocial support, proving significant improvements in the health

status of the patients after the intervention.

Furthermore, the feasibility of telerehabilitation has been applied for functional

electrical stimulation of affected arm after stroke or for evaluating the speech and

swallowing status of laryngectomy patients following discharge from acute care.

Telerehabilitation tools have also been used to address the fall risks. Nevertheless,

we still need to acquire strong evidence regarding the impact of telerehabilitation

on resources and associated costs to support clinical and policy decision making.

8.2 Specialist Health Care

8.2.1 Telecardiology

Telecardiology encompasses merging technology with cardiology in order to pro-

vide a patient with a proper medical care without disturbing the patient’s daily

Fig. 8.1 A typical telerehabilitation system
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routines. Due to the advances in multimedia systems, telecardiology is currently a

well-developed medical discipline involving many different aspects of cardiology

(e.g., acute coronary syndromes, congestive heart failure, sudden cardiac arrest,

arrhythmias). It is safe to state that telecardiology has become an essential tool for

cardiologists in either a hospital-based or community-based practices. Patient

consultations with cardiologists via multimedia systems are becoming extremely

common. For example, a consulting cardiologist receives many signals and images

in real time to assess the patient condition (Fig. 8.2).

Further technological advances will be fueled by the development of novel

sensors and multimedia systems. This will result in a move from device-centered

to patient-oriented telemonitoring. By focusing on patient-oriented monitoring, a

comprehensive approach of disease management, based on coordinating healthcare

interventions, is provided. Such a possibility will not only help us with early

diagnosis and quick interventions, but will also prove to be cost effective.

Therefore, telecardiology has the two major aims. The first aim is to reduce the

healthcare cost. The second aim is to evaluate the efficiency of telecardiac tools

(e.g., wireless ECG) at variable distances. By accomplishing these two aims,

telecardiology will enhance the psychological well-being of patients in addition

to bridging the gap between rural areas and hospitals. Note that, the search for new

telecardiac technologies is a big challenge. However, various constraints such as

institutional and financial factors may play a significant role in the further develop-

ment of these multimedia systems needed in telecardiology before we see an

increase of these tools in clinical practices.

In order to fulfill the aims of telecardiology, multimedia-based technologies

have been increasingly applied to patients in small rural communities needing

distance monitoring of their chronic heart conditions. These multimedia systems

provided an alternative modality for effective cardiac care from a variable distances

by utilizing information and communication technology.

Fig. 8.2 An example of multimedia systems in telecardiology
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8.2.2 Teleradiology

Teleradiology defines a field in which multimedia systems are used to acquire and

interpret multimedia signals (e.g., radiological images) at different geographical

locations. Teleradiology has especially flourished in recent years due to the

increased development of digital imaging systems and the Internet. Nevertheless,

it should be mentioned that teleradiology is not only acquisition and transmission of

digital images between different locations, but also involves sharing of expertise

between radiologists across the globe, providing radiological services to remote

areas, around the clock coverage, etc.

Initially, teleradiology was developed to provide health care to wounded

soldiers. In the 1980s, the first commercial teleradiology system was developed

with the ability to capture and transfer radiological videos. However, further

development of teleradiological systems was slowed down to lack of systems for

inexpensive transfer of radiological videos. Due to the advances in multimedia

systems for acquisition and transfer of video data (e.g., wavelet compression

algorithms for images) and the development of the Internet telecommunication

systems, we have witnessed a significant growth in teleradiological services. An

illustration of teleradiological communication system is shown in Fig. 8.3. A picture

archive and communication system is used to store, transfer, and display digital

images acquired in diagnostic imaging. The archive server is used to provide a long-

term backup of the data. The radiology information server is used to connect

different aspects of the radiology information system.

Given the current state-of-the-art, when it comes to multimedia systems, most of

the current efforts in teleradiology are geared toward medico-legal issues.

Teleradiology is one of the first fields where the development of technologies in

the recent years has sparked intense professional and even legal debates regarding

the role of radiologists in patient care. For example, teleradiology can provide great

benefits in emergency departments, when used correctly. However, poorly

implemented teleradiological services can degrade the quality of patient care.

Hence, it has been urged that during the design, management, and performance of

teleradiology services, radiologists should play a significant role.

8.2.3 Telesurgery

Dissemination of new surgical skills and techniques across the wide spectrum of

practicing surgeons is often difficult and time consuming, especially because

the practicing surgeons can be located very far from large teaching centers. There-

fore, telesurgery provides multiple advantages to practicing surgeons, including

but not limited to dissemination of expertise, widespread patient care, cost savings,

and improved community care (Fig. 8.4). It is expected that more widespread
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Fig. 8.3 A teleradiology system

Fig. 8.4 A typical use of a telesurgery system
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multimedia systems and technologies may exist to launch everyday telesurgery

procedures within a few years.

Specifically, telesurgery has already shown to be a powerful method for

performing minimally invasive surgery (MIS) because patients recover more rap-

idly when small MIS incisions are made in comparison to conventional methods.

To examine the practicality of telesurgery over long distances, a recent study

showed that operators using a telesurgery platform can complete maneuvers with

delays up to 500 ms and no additional increase in error rates. Also, the emulated

surgery in animals can be effectively executed using either ground or satellite,

while keeping the satellite bandwidth above 5 Mb/s.
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Chapter 9

Multimedia Communications

Multimedia communications are related to the transmission of multimedia data.

Different types of networks were initially used for transmission depending on the

data type. Nowadays, given the high degree of interaction among different types of

networks, all of them together would be called a global multimedia network. When

it comes to multimedia communications, it is necessary to look back on some

widely used networks, such as telephone communication network, Public Switched

Telephone Network (PSTN), data network, television broadcasting network, broad-

cast TV network (BTVN), Integrated Services Digital Network (ISDN), and broad-

band multipurpose networks.

9.1 An Overview of Different Networks Types

9.1.1 Telephone Networks

Telephone networks were originally designed for transmission of voice, although

nowadays they can be used for transmission of multimedia signals. These networks

are based on the local exchange (LE) offices which connect different types of users,

from households and small businesses to the various local networks of large

corporations. National PSTN are interconnected. In fact, international calls are

realized using the International gateway exchange (IGE), by which data are

directed to a specified PSTN abroad. Furthermore, these networks are connected

to mobile operators via Mobile Switching Center (MSC). During each communica-

tion between the users, a connection is created, i.e., a circuit is set up through the

network. Hence, these networks operate in a circuit mode. The PSTN modems are

used for transmission of digital signals over analog networks. In this way, it is

ensured that the digital data is routed within the PSTN network in the same way as

voice, for which it was primarily designed (Fig. 9.1).
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Due to the fact that modems usually have two channels, one for telephone

communications (it requires a small bandwidth), and others with a high data rate

for audio and video connections, the PSTNs today can be treated as multimedia

networks.

9.1.2 Data Network

Data networks are basically developed to provide file transfer and email communi-

cation. Initially, the X.25 network and the Internet were the two types of networks

developed for this purpose. Over the time, the Internet has become the primary

network used to realize the multimedia communication. Internet is a global network

composed of many interconnected networks that use the same rules of communica-

tion, i.e., the same communication protocols. The communication protocol should

provide the same syntax for all data to be transferred.

The basic structure of the Internet network is quite complex and includes the

global Internet backbone network (IBN). Different types of networks are connected

to the backbone network: computer networks connected to the PSTN through the

same intermediary called Internet Service Provider (ISP), then the local area

networks (LAN), computer networks of large companies, and so on. All these

types of networks are connected to the IBN over the network units called gateways

(GW). Therefore, it can be said that the Internet is a global network comprising a

huge number of interconnected, smaller networks.

Fig. 9.1 An illustration of PSTN as a system of Central Offices that provide access to subscribers

and Inter eXchange Carriers providing long-distance services
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9.1.3 Broadcast TV Networks

Broadcast TV networks were initially designed specifically for the transmission of

TV signals. The cable networks are used in urban environment (towns), while

satellite networks are more suitable for the large areas. These networks are also

upgraded to enable multiuser and service interaction. A special device called set-

top box in cable networks provides the control of TV channels, but for interaction

purposes it can also provide other multimedia communications services. A user can

connect to the PSTN and the Internet using channels with either low or high data

rates. Therefore, the ability to link with other networks is the basis of what we call

the interactive television (Fig. 9.2).

9.1.4 Integrated Services Digital Network (ISDN)

Unlike the previous networks, the ISDNs are designed for simultaneous transmission

of multiple data types. Hence, they were created to extend types of services available

within the PSTN. In other words, the ISDNs are designed to integrate voice and

nonvoice services together in digital form. The ISDN supports both switched and

nonswitched connections. Also, switched connection includes both packet-switched

and circuit-switched connections. A user has access to the ISDN through the local

interface to a digital “pipe” with a certain bit rate. It may require a capacity that is

sufficient to handle a phone and a personal computer. However, larger business user

may connect a digital Private Branch eXchange (PBX—switch station for telephone

systems used by the companies to connect all internal phones to external line) and

LAN to the ISDN, which will require higher capacity pipe (Fig. 9.3).

There are two basic types of ISDN service: Basic Rate Interface (BRI) and Primary

Rate Interface (PRI). TheBRI consists of two 64Kb/sB channels (Bearer channel) and

Fig. 9.2 An illustration of broadcast cable network
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one 16 Kb/s D channel (Data channel), which provide in total 144 Kb/s. B channel

transmits digital voice, data, or compressed video. This service is intended tomeet the

needs of most individual users. D channel is used for signaling, i.e., it controls B

channels.

The PRI is intended for users with higher capacity requirements. Typically, the

channel structure is 23 B channels plus one D channel of 64 Kb/s, having a total of

1,536 Kb/s. Generally, the PRI consists of 30 B channels: n � 64 Kb/s, for n ¼ 1,2,

. . .,30, and one additional 64 Kb/s D channel (1,984 Kb/s in total) (Fig. 9.4).

Fig. 9.3 Illustration of ISDN communication concepts

Fig. 9.4 Services provided by an ISDN
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9.1.5 Multiservice Broadband Networks

Broadband networks are designed as the enhanced ISDNs, with a data rate that

corresponds to the maximum flow of the ISDN: 30 � 64 Kb/s ¼ 1,920 Kb/s � 2

Mb/s. Hence, these networks are called the B-ISDNs (Broadband ISDN), while

the ordinary ISDNs are often referred to as the N-ISDN (Narrowband ISDN).

The B-ISDNs are used as the basis for the development of other broadband

multiservice networks.

Since the purpose of multiservice networks is to provide multiple services,

assuming different multimedia applications with different bit rates, switching,

and transmission methods should be more efficient. Thus, the data belonging to

different multimedia types are first divided into cells of constant length (fixed-size

packets) that are transmitted over the network. Switching the fixed-size cells is

much faster than the variable-length packets.

It is interesting that depending on the type of multimedia data, the cells transfer

rate can differ. This method is called the ATM transfer mode, while the networks

are called the cell-switching networks. Depending on the size and application, these

can be ATM LAN, or larger ATM MAN (metropolitan area network).

9.2 Multimedia Applications

Applications that involve different types of multimedia data can be divided into

several categories, such as interpersonal communications, interactive Internet

applications, and entertainment.

9.2.1 Communications

Communication may include transmission of voice, images, text, and/or video data.

Voice transmission can be done by using the PSTN, but a more interesting

example of communication is by using a computer. In such cases, it is necessary

that a computer has an appropriate extra hardware (phone cards and related

software). Also, by using special servers, additional voice-mail service can be

provided.

Teleconferencing is also an interesting form of communication, which is used to

establish a conference call using a device called audio bridge.

An especially important role plays the telephony over the Internet. In this case,

the speech signal is transmitted in the packets form (i.e., as in the case of data

transmission network), Fig. 9.5. This type of telephony is called packet voice or

voice over IP (VoIP), due to the transmission using the Internet Protocol (IP). The

communication between computers (on the Internet) and phones (connected to the
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PSTN or ISDN) is carried out through a special device called a telephone gateway.

Specifically, the computer communicates with the associated phone gateway device

and requires a connection to one of the registered users of this service. The gateway

based on the phone number initiates the call with a user connected to the PSTN or

ISDN. Hence, the telephony gateway represents a kind of adapter between the

packet and circuit modes.

Text transmission is now carried out in a number of applications by using email.

For this type of communication, it is necessary to have an email server, where each

user will have a space to store emails (i.e., mailboxes). Each network should have

email servers connected to the Internet over a gateway.

Particularly interesting applications are those involving voice and video. Nowa-
days, they can be transmitted over each of the networks described earlier. Commu-

nication can be established between two parties (person to person) or can be

realized in the form of videoconferencing, when all conference participants can

communicate with each other. To achieve the communication without a large

number of channels (if n is the number of participants, we should have n � 1

outgoing and incoming channels), the multicontrol units (MCUs) are used. In this

case, only a singe two-way channel is required between each participant and the

MCU. Therefore, the MCU transmits the signal from active participants (those who

currently speak) to the other participants. The conference with multiple participants

is based on multicasting, which provides transmission from any participant to all

other participants belonging to the predefined multicast group. This mode of

communication does not require a separate MCU. A multicast participant

broadcasts the material using the appropriate application (e.g., the VLC). This

form of communication can be used even in monitoring systems, when a large

number of cameras transmit the video material to different multiple locations within

the network (tunnels, railways, subways, etc.).

Fig. 9.5 A scheme of an VoIP system
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9.2.2 Interactive Internet Applications

Besides already described applications, where direct communication is established

between two or more users, the interactive Internet applications are nowadays very
popular. They use interaction with Web servers, which stores a large number of

multimedia files. These files on Web servers can be in the form of a hypertext, text,

or hypermedia documents. The main feature of the Web is that there is no central

database, but each server on the network is a separate source of information. Hence,

using all the available space on the server, information can be shared with all users

on the Internet. In addition, any term from a given document can be hyperlinked

with the desired address on the Internet. Each document has a first page called a

home page with a unique Uniform Resource Locator (URL). It is not necessary to

explain that such a broad exchange of information requires strict standards that

enable a unique representation of data for all users. The standard format for theWeb

pages is Hyper Text Markup Language (HTML).

9.2.3 Entertainment Applications

The entertainment applications can be generally divided into video on demand and

interactive television.

Video on demand means that users access a server containing preferred video

materials. Since many customers may require the same movie in short time

intervals, the movies are split into sequences that are broadcast to all users. This

solution is called near video on demand.

Interactive television is based on the communication between TV users and

service providers. Namely, we said that in cable broadcasting networks, a dual-

channel device can establish a connection to the PSTN (low bit rate) and the

Internet network (high bit rate). Hence, the connection to the PSTN can be used

for voting, games, home shopping, etc., which is called the interactive television.

9.3 Multiplexing

The goal of each network is to connect users and to provide communication

between them. The connection can be accomplished via routers, hubs, or switches.

The simplest connection can be achieved via a switch, Fig. 9.6. Note that, for

establishing the connection, we need one selector at each side, which will connect

one of the available ports. However, there is a serious limitation, because the

connection can be established only between two users at the same time. On the

other hand, a realization in which each possible pair of ports can communicate

simultaneously can make the system very complex and impractical.
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This problem is solved by using time or frequency multiplexing, and in some

applications, we use a combination of time and frequency multiplexing. In a time

division multiplexing (Fig. 9.6c), one pair of connections is established during a

certain interval. Frequency multiplexing is based on the use of different frequency

bands for simultaneous communication.

The networks can be divided into asynchronous, synchronous and isochronous

systems. In asynchronous network, the time required to deliver the data is unknown

(Ethernet, storage systems buses, etc.). The synchronous networks guarantee a

constant data rate and small fixed delay. Hence, it is used in real-time applications

(broadcasting). Finally, the isochronous system can be described as a strictly

controlled asynchronous network (e.g., ATM network).

9.4 Quality of Service: QoS

Important features of the network are the QoS (Quality of Service) parameters. In

the circuit-switched networks, the QoS parameters are the bit rate, the average

error, and the transmission delay. In the packet-switched networks, the QoS

parameters are the maximum packet size, the average error, the mean data rate,

the mean packet delay, and the total delay.

A large number of networks do not provide a reliable service. It means that

during the data transfer, erroneously transmitted blocks are dismissed. These

networks are called networks with the best-effort service. In the case of reliable

Fig. 9.6 (a) Switch connects a pair of users, (b) each user is connected by a separate link, thus

forming a radial network, (c) time-division multiplexing
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service, if it happens that a block of data is transferred with an error, the source is

asked to retransmit the same block, which introduces additional delay.

To calculate the probability that a bit error occurs in one block with N bits is:

PB ¼ 1� ð1� PÞN;

where P is the probability of error for a single bit. This can be approximated by:

PB ¼ NP for NP < 1:

If we assume PB ¼ 0.05 and P ¼ 10�4, we get the approximate length of the

block: N ¼ 500 bits.

9.5 Internet

The Internet is a global network of interconnected computers or “the network of all

networks”. The most important feature of the Internet is the facility of information

sharing. On the Internet, one can find a company presentation, personal

presentations, books, encyclopedias, magazines, archives, and many other types

of information and multimedia content. All components of the Internet are

connected by a communication medium that may be of different types: fiber optics,

radio communication links, satellite communication links, etc.

The data are divided into packets that are transmitted across routers in the

network (Fig. 9.7).

A router checks the destination address and forwards the package to the next

router on the path to the destination. If there is more than one router in the direction

of destination, the forwarding router chooses the least loaded path. Thus, the

packets originating from the same data set do not have to travel along the same

path within the network. In these networks, the problems often occur in the form of

packet delay or even packet loss due to network congestion.

Internet works on the client-server principle (Fig. 9.8). Clients are users who

require information from the server. Servers are devices used to store the data and

send them to clients if required. The connection between client and server exists

only when there is a need for providing information.

9.6 IP Address

The IP address is used to uniquely identify devices (computers, servers, gateways,

routers) within the network. Namely, in order to provide the transfer of information

between clients and servers, it is essential that every computer in the network has a

corresponding address. In this way, for each data packet, we know the originating
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and destination addresses. An IP address can be permanent and it is called static, or

it can change whenever we connect to the Internet, which is called dynamic. An

example of IP address displayed in the Command prompt is given in Fig. 9.9.

IP Address . . . . . . . . . . . . .. 147.91.168.31

9.6.1 Format of IPv4 Address

An IP address according to the IPv4 standard consists of four numbers separated

by dots:

Fig. 9.8 Communication between server and client

Fig. 9.7 Network as a system of routers, servers, and workstations
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Number1: Number2: Number3: Number4

where the numbers range from 0 to 255. An IP address contains 32 bits, which

means that 8 bits are used for each of the four numbers. Each IP address can be

viewed as a two-part sequence of bits: one part is related to the network identifier

(Network ID) and the other to the user identifier (User ID). There are different

classes of IP addresses: A, B, C, etc.

The position of the first zero bit in the sequence determines the class to which the

corresponding IP address belongs: zero bit on the first position—Class A, zero on

the second position—Class B, zero on the third position—Class C, and so on. Class

A addresses use 7 bits for the network ID and 24 bits for the user ID. An address

from class B uses 14 bits for the network and 16 bits for the user ID, while the class

C addresses have 21 bit for the Network ID and 8 bits for the User ID.

Number of bits
Class A

1 7 24
0 Network ID User ID

Number of bits
Class B

2 14 16
1 0 Network ID User ID

Number of bits
Class C

3 21 8

1 1 0 Network ID User ID

Each of these classes is designed to be used within the networks of

corresponding sizes. Consider first the addresses from class A.

Class A:

Networks ID: from 1 to 126

User ID: from 0.0.1 to 255.255.254

The total number of networks with IP addresses that belong to class A is 126, while

the total number of users that may be within such a network is 16,777,214.

Fig. 9.9 Information about the IP address using the Command Prompt
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We can similarly determine the total number of networks and users for the

addresses from classes B and C.

Class B:

Network ID: from 128.0 to 191.255 (total of 16,382 networks).

User ID: from 0.1 to 255.254 (a total of 65,534 users in the network).

Class C:

Network ID: from 192.0.0 to 223.255.255 (can support up to 2,097,152 networks).

User ID: from 1 to 254 (total of 254 users in the network).

Given the number of bits reserved for network and user IDs, it can be concluded

that class A addresses are used in the networks with a large number of users such as

national networks, while class C addresses are used within the networks with a few

users (a small LAN).

Some IP addresses for special purposes are:

• The address whose User ID is made of all zeros (but not the Network ID),

represents the IP address of the network.

• The address that in the binary form contains all bits equal to 1 within the User ID

is used for broadcasting within the network.

9.6.2 Classless Addressing

This method implies the existence of subnet masks. It does not require the existence
of classes. The subnet mask defines which part of the IP address indicates the

network and which part indicates the computers within the network. We will

consider the three most common types of subnet mask:

Subnet mask: 255.0.0.0

Subnet mask: 255.255.0.0

Subnet mask: 255.255.255.0

If the subnet mask is equal to 255.0.0.0, then the first number of IP address refers

to the network, and the remaining three numbers indicate the computers in the

network. Assume that the first number of IP address is denoted as Num 1. Then,

knowing that the subnet mask is 255.0.0.0, we define the following terms:

IP address of the network: Num1. 0 . 0 . 0
IP addresses of computers: Num1. 0 . 0 . 1 to Num1. 255 . 255 . 254
Broadcast address: Num1. 255 . 255 . 255

For the networks with the subnet mask equal to 255.255.0.0, the first two

numbers indicates the network, while the remaining two numbers are used to denote

computers within the network. In this case, the first two numbers of IP addresses
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will be equal for all computers within the network. If the first two numbers are

denoted as Num 1 and Num 2, then:

IP address of the network: Num1.Num2.0.0
IP addresses of computers:      Num1.Num2.0.1 to Num1.Num2.255.254 
Broadcast address: Num1.Num2.255.255

Whenusing the networkmask 255.255.255.0, thefirst three numbers of IP addresses

indicate the network, and the last number refers to the computers in the network. The

first three numbers of IP addresses will be common to all computers on the network.

IP address of the network: Num1.Num2.Num3.0
IP addresses of computers: Num1.Num2.Num3. 1 to Num1.Num2.Num3.254  
Broadcast address: Num1.Num2.Num3.255

There are other types of subnet masks given in the binary form: they consist of the

sequence of “1” followed by a sequence of “0.” The length of the sequencewith values

“1” determines the network ID. For example, a mask with 9 ones (denoted by /9):

11111111 10000000 00000000 00000000 (or 255.127.0.0) means that the first nine

bits determine the network ID and they are common to all computers in the network.

9.6.3 IPv6 Address Format

The IPv6 addressing is introduced in order to provide a larger address space than the

IPv4. The IPv6 addresses are hierarchical and they can be used in a number of

alternative formats. For example, to facilitate the use of the existing IPv4 routers,

there is a format that allows the IPv4 addresses to be embedded in the IPv6

addresses. The address format is defined by the first set of bits in the address, called

the prefix format. The IPv6 addresses are 128 bits long, unlike the 32 bits long IPv4

addresses. The IPv4 address space contains about 4.3�109 addresses, while the IPv6
supports approximately 3.4�1038 addresses. IPv6 addresses consist of two parts: a

64-bit network prefix and a 64-bit identifier of computers/devices within the

network. These addresses are classified into the following types:

• Unicast addresses identify individual network interfaces.

• Anycast addresses identify a group of network interfaces, usually at different

locations.

• Multicast addresses are used to deliver data packets to multiple interfaces.

• Loopback addresses are used by an interface to send an IPv6 packet to itself.

• Unspecified address indicates the absence of an IPv6 address. For example, the

new interface can be initialized using unspecified address (as the source address

when sending packets) until it receives an IPv6 address.
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The IPv6 addresses are composed of eight groups with four hexadecimal num-

bers. The symbol “:” is used between groups (e.g., 4FDE: 0000:0000:0002:0022:

F376: FF3B: AB3F).

Each digit is a 4-bit hexadecimal value. A continuous sequence of zeros within

the IPv6 address can be denoted as “::”. An example is given in Table 9.1.

9.6.3.1 Specific IPv6 Addresses

The unicast address has the following format:

Network ID Interface ID

N bits 128 – N bits

There are several types of unicast addresses: global unicast address, site-local

unicast address, link-local unicast address, IPv6 address with IPv4 address inserted,

and so on. Link local addresses are used for communication of neighboring devices

on the same link, and cannot be used outside the area. Site-local address is used for

routing within a private network of the company. It can be used within the public

IPv6 networks.

Global Unicast Address

Global routing prefix Network ID Interface ID

N M 128 – N – M

For example, according to the standard RFC 3587 and RFC 3177, N ¼ 48 bits,

and M ¼ 16 bits.

The format of link-local addresses

10 54-bit 64 bits

1111111010 0 Interface ID

The format of site-local addresses

10 bit 38-bit 16 bits 64 bits

1111111011 0 Network ID Interface ID

Table 9.1 Examples of long and short formats of IPv6 addresses

IPv6 addresses Long format Short format

Unicast (an example) 10FB:0:0:0:C:ABC:1F0C:44DA 10FB::C:ABC:1F0C:44DA

Multicast FF01:0:0:0:0:0:0:1F FF01::1F

Loopback 0:0:0:0:0:0:0:1 ::1
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IPv4-Mapped Embedded IPv6 Addresses

80-bit 16 bits 32-bit

0000 . . . 0000 FFFF IPv4 address

This address designates an IPv4 device that is not compatible with IPv6 and

whose IPv4 address has been mapped into the IPv6 format.

IPv4-compatible IPv6 address

80-bit 16 bits 32-bit

0000 . . .0000 0000 IPv4 address

The IPv4-compatible IPv6 address is used for devices that are compatible with

both IPv4 and IPv6.

Multicast addresses

80-bit 4 bits 4 bits 112 bits

11111111. . . Flags Scope Group ID

Four bits denoted as flags in a multicast address are: 000X. The case X ¼ 0

indicates that the multicast has been permanently assigned by the Internet Assigned

Numbers Authority (IANA). When X ¼ 1, the multicast address is a transient

multicast address.

A scope is a 4-bit field that defines the area of multicast groups. For example,

interface-local area is the interface itself. For the link-local address, used for

communication between neighboring interfaces on the same link, the area is

actually the local link.

The Group ID is the identifier of a multicast group.

9.7 A Protocol Set for Data Transmission over the Internet

(TCP/IP Environment)

Communication among different computers and smaller LANs within the Internet

is possible by using the same protocol. Primarily, we should mention the IP network
layer protocol, Transmission Control Protocol (TCP), User Datagram Protocol

(UDP), Real-time Transport Protocol (RTP) and its associated protocol Real-time

Transport Control Protocol (RTCP). The TCP provides a reliable data transfer,

because it requires the acknowledgement for the received packets. The UDP and

RTP protocols represent the “best try” methods, since they do not require feedback

on the transmitted data. Their application depends on the specific requirement. For

example, the TCP can be used for the transfer of text, while the UDP can be used for

VoIP. The RTP protocol can be used to transmit video signals when time-

synchronization of video stream is required.
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Let us observe the hierarchy of the considered protocols within the TCP/IP suite.

The first level protocol is the IP protocol as a part of the operating system kernel and

it belongs to the network layer. The IP protocol is in charge for IP addressing. It

allows routers within the network to check the destination address and thus to route

the data. Also, it determines the size of data packets. Thus, IP is a basic level

protocol that is used by the higher level protocols.

The TCP and UDP belong to the transport level (higher than the network level),

while the RTP and RTCP belong to the application level and they are located above

the UDP protocol. In fact, both protocols (TCP and UDP) are always available, and

the choice depends on the application requirements.

9.7.1 IP Protocol and IP Datagram

As we have pointed out, the IP protocol is a network layer protocol. It is responsible

for routing data packets to different users through a system of gateways and routers.

The IP protocol defines a unique IP address for each device in the network and

identifies the device. When sending a data block to a specific address, the IP adds a

header containing both a source and a destination IP address. Also, depending on

the application, the IP specifies the requested transport protocol (TCP or UDP).

This block of data with a specific header is referred to as IP datagram (Fig. 9.10).

The datagram is forwarded to the first gateway on the path to the destination.

Field Version refers to the IP version (e.g., IPv4 or IPv6).

The header can be of different length and the intermediate header length (IHL)
field is used to specify the length of the packet header.

The Type of service field specifies the priority for data to be transferred. It is used
to transfer first the packages with higher priority.

The total length field refers to the length of the datagram including the header

and data. It is sometimes necessary to transmit the data divided into several smaller

packets called fragments. Then the value of the total length is used at the destination

when collecting fragments of the original datagram.

Fig. 9.10 Format of IP datagram
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In doing so, the value of the Identification fieldmust be the same for all fragments,

in order to connect all fragments at the destination into the original datagram.

The D bit (do not fragment) indicates that a packet should be transferred in

whole without fragmenting. M bit (may fragment) is used when a packet is divided

into several fragments. It has a value of 1 for all fragments except the last one, when

it is equal to 0.

The fragment offset is used to indicate the position of the first byte of the

fragment from the original data packet.

The Time-to-live field defines the maximum time for which a packet can be

routed over the Internet.

A value in the field Protocol refers to a type of protocol that accepts data at the

destination. For example, it may be higher level protocol such as TCP or UDP.

Header checksum is calculated only for the data in the header and is used to

detect an error in the packet header.

Field Options contains some additional information about security of data (if the

data are encrypted), the specification of the route (route can be specified as a list of

IP addresses of gateways and routers), memorizing the route (storing the IP

addresses of devices used to route one packet, so that the same devices could be

used for the next packet), etc.

9.7.2 TCP Protocol and Connection-Oriented Service

The TCP protocol organizes data in packets that networks can effectively transmit.

In order to provide reliable service, a logical connection is established between two

TCP objects that communicate. After the completion of data transfer in both

directions, the logical connection is closed. Because of the connection between

client and server, this protocol is called the connection-oriented.

The TCP takes care that all data arrive at the proper destination, and then

reorganizes the data in the original form. The TCP is reliable service. It detects

the erroneous blocks discarded at the destination, and assures that they are resent

again from the source. Applications such as file transfer or email require transmis-

sion without possible errors and expect to receive data in the same order in which

they are sent. Therefore, this type of application requires the reliable service, which

is made possible by the TCP protocol. In order to detect errors in transmission, the

data are divided into blocks, called segments. The rule that defines the maximum

size of data segments is called the Maximum Segment Size (MSS), which is

typically 536 bytes.

The TCP protocol includes a special control:

– Flow control—the sender cannot send data faster than the receiver can receive

them,

– Congestion control—if it detects congestion in the traffic data, the sender must

reduce the speed of sending.
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9.7.2.1 Format of TCP Segments

Each segment begins with a 20-bit header. In the case of segments that carry

acknowledgment and flow rate control segments, there is only a header (Fig. 9.11).

As illustrated above, each segment, besides the data related to application, contains

a header that defines all the necessary parameters such as the source code (16-bit

data), the number of segments in a sequence that is sent, a confirmation number for the

received segment checksum (to verify the errors in the segment), and so on.

The fields that contain 16 bits for source and 16 bits for destination port along

with 32 bits for source and 32 bits for destination address form a 96 bit identifier of

the connection. Typically, the port number on client side specifies the client

application, and server port number is one of the well-known ports (numbers less

than 1024 are called well-known ports), which are reserved for standard services:

Port Protocol Description

21 FTP File transfer

23 Telnet Remote login

25 SMTP E-mail

69 TFTP Trivial file transfer protocol

80 HTTP World Wide Web

110 POP-3 Remote email access

The header length indicates the number of 32-bit words in the header. The

Reserved field consists of bits reserved for a later use. One bit code (a total of 6

code bits) is associated with each of the following fields:

URG: Urgent Pointer field significant

ACK: Acknowledgment field significant

PSH: Push Function

RST: Reset the connection

SYN: Synchronize sequence numbers

FIN: No more data from sender

Fig. 9.11 Format of TCP segment
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The URG (urgent) bit is set to 1 when the urgent pointer is used to indicate the

position of urgent data (if any) in the segment.

The ACK bit indicates that the segment carries an acknowledgement.

The PUSH bit indicates the data that must be transferred immediately, i.e., we do

not wait to fill buffers (important for interactive work, e.g., Telnet)

The RST will reset the connection because of possible problems in communica-

tion. It is also used to reject invalid segment or to refuse a connection.

The SYN bit is used to establish a connection. The request for connection is

determined by the combination SYN ¼ 1 and ACK ¼ 0, while the response to the

request is determined by SYN ¼ 1 and ACK ¼ 1.

The FIN bit is used to terminate a connection.

The checksum field is a 16-bit one’s complement, of the one’s complement of

the total 16-bit words sum in the header and the text. If the segment contains an odd

number of octets, which should be considered within the checksum, then the zero

octet is added to form a 16-bit word. However, the additional zero octet is not

transmitted as a part of the segment.

Checksum also includes a 96-bit pseudoheader, which contains 32-bit source

and destination addresses, protocol, and TCP header, Fig. 9.12. It provides correc-

tion of errors that appear during the routing process. The value 6 in field Protocol
indicates the TCP.

9.7.2.2 Establishing a Connection

To establish a TCP connection we use the three-way handshaking procedure

(Fig. 9.13):

1. ACTIVE OPEN – The client sends a segment with:

– SYN bit set to 1

– The client port number

– Initial sequence number (ISN) of the client

Fig. 9.12 TCP pseudoheader and TCP segment
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2. PASSIVE OPEN – If the server application is in the LISTEN state, the server

responds by sending a segment to the client (otherwise the connection is

refused):

– SYN bit set to 1

– ISN of the server

– Confirmation (ACK) for the client’s ISN

3. The client sends an acknowledgment (ACK)

9.7.3 UDP and Connectionless Services

In the case of applications that include sending, receiving, and broadcasting of

audio/video in real time (video conferencing, Internet telephony, etc.), resending

corrupted data is excessive and unnecessary. Therefore, for these types of

applications, the best efforts protocols such as the UDP are sufficient.

Some important features of this protocol are:

• UDP segments may be lost or may arrive at the destination in a different order

than the order of sending.

• Flow or congestion controls are not provided.

Therefore, it is used only in applications that are not too sensitive to loss of

segments but, on the other hand, require a certain speed.

The UDP service is called a connectionless one, because there is no connection

established before sending data. This reduces the delay.

Fig. 9.13 Illustration of procedure for establishing TCP connection
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In the case of UDP each block of data is transmitted directly within the IP

datagram. The UDP simply adds a header to form a UDP datagram, which is

forwarded to the IP layer for transmission over the Internet. At the destination,

the IP protocol uses the information within the field Protocol (in the datagram

header) to forward the content to the UDP protocol.

A UDP segment header is much simpler than the TCP header due to consider-

ably simpler implementation of the protocol (Fig. 9.14).

As with the TCP protocol, some additional fields in the IP header are included to

calculate the UDP checksum. These fields form the UDP pseudoheader. Each

protocol has its corresponding number. The value of 17 in the Protocol field

indicates the UDP protocol (Fig. 9.15).

9.8 Higher-Order Protocols

9.8.1 HTTP Protocol

The Hypertext Transfer Protocol (HTTP) is a set of rules that allows a client to

connect to the server, to create and send a request for information, and also allows

the server to accept connections and send the feedback information. As its name

suggests, this protocol provides hypertext transfer between computers. Hypertext is

a special kind of text that is encoded by using the Hypertext Markup Language

(HTML). So, one of the most important services of the Internet, the World Wide

Fig. 9.14 Format of UDP segment

Fig. 9.15 UDP pseudoheader
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Web (WWW) is based on the HTTP protocol. A set of documents that can be found

on the Web are called Web pages. Web pages can contain different data types: text,

images, audio, video, etc. In addition, very often Web pages contain links

(connections) to other Web pages. To open a web page, its Web address (or

URL) should be entered in the address line of a browser. In a general case, the

URL can be expressed as:

protocol://server_name.domain_name.domain:PortNumber/folder/file_name

Example: http://www.tfsa.ac.me/tfsa_members.html

Fig. 9.16 shows the basic operations performed by the HTTP when opening a

Web page.

The Domain Name System (DNS) is a system based on the databases. Specifi-

cally, the DNS translates domain names that are suitable for users to numerical

identifiers and IP addresses. For example, the domain name www.tfsa.ac.me is

mapped to the address 89.188.43.17 (IPv4). A user specifies an URL of the page or

an email address. The DNS resolver is responsible for initiating and forwarding

queries to translate URLs to IP addresses.

9.8.1.1 Persistent and Nonpersistent HTTP Protocol

There are two types of HTTP protocol: persistent and nonpersistent. In the case of

nonpersistent HTTP, the client first initiates a connection to the server. The server

accepts the connection and then sends feedback on the established connection.

Fig. 9.16 HTTP communication
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After receiving the confirmation of an established connection, the client sends a

request for a specific object. When the server receives the request, it creates and

sends a response (i.e., the object). At the same time, the server closes the TCP

connection and the client receives the object. Thus, for each of the objects, it is

necessary to establish a separate TCP connection.

In case of persistent HTTP, the server does not close the connection after

sending the response and allows for all subsequent HTTP messages to be

exchanged over the same connection.

9.8.1.2 HTTP Format

HTTP requests and responses have specific formats that are reviewed in the sequel.

Request format

A request is formed as a set of ASCII characters. Version HTTP 1.0 request

contains the commands GET, POST, and HEAD, while the HTTP 1.1 version

also includes the commands PUT and DELETE.

Request line GET, POST, HEAD methods

Header

Host:
User-agent:
Connection:
Accept:

Empty line – denotes the end of 
request

The lines within the header are:

Host – the URL of the requested content,

User-agent – specifies the type of browser (program that allows viewing of Web

pages),

Connection – defines the type of connection (if the connection is close it means that

no persistent connection is required)

Accept – defines the types of objects that can be displayed by the browser.

Example : GET =tutorial=index:html HTTP1:1
Host: www:tfsa:ac:me
User � agent: InternetExplorer
Connection: close

Accept: text=html; image=giff ; image=jpeg

Response format

Response is also made of ASCII characters. The response format is illustrated in

the sequel.
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Status line Version HTTP and status code

Header

Date:
Server:
Location:
Last modified:
Content-Type:
Content-Length:

Required data

Beside the HTTP version (HTTP 1.0 or HTTP 1.1), within the status line there is

a status code which can be:

200 OK – indicates a successful request,

304 Not Modified – the required page is not modified,

400 Bad Request – the request is not understood by the server,

404 Not found – the requested page was not found on this server.

The fields Content-Type and Content-Length refer to the type and the length of

the content.

Example: HTTP=1:1 200 OK
Date: Mon; 12 Jan 2004:
Server: Aname
Location: www:w3school:edu
LastModified: Fri; 16 Oct 2005:
Content � Type:text=html
Content � Length:76234

9.8.2 FTP Protocol

The File Transfer Protocol (FTP) is a set of rules that allows transferring files between
the computers (clients and servers). Devices used to store the files are called the FTP

servers. Computer programs that access these files are called the FTP client programs.

Computers that communicate using the FTP protocol may have different operating

systems and file systems. A schematic diagram that includes the most important

components to transfer files using the FTP protocol is shown in Fig. 9.17.

Note that each FTP client and server consists of two parts: Control part and Data

part. The Control part is used for transferring control messages (commands and

replies), while the Data transfer part is used to transfer the file content. The users

communicate with their local FTP via user interfaces, which converts each user

command to the format of FTP control. After receiving the command from the user,

the FTP client establishes a connection with the Control part on the server side. This

connection is called the control connection and it lasts until the file transfer is finished.
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The port on the client side (1216 in the example shown in Fig. 9.17) is a currently

available port, while the port on the server side is reserved for the FTP control

connection. When the server side receives a command from the client side, it sends

the reply message by using the control connection.

The second connection is a TCP connection for data transfer and is used to

transfer the file content. The control of the client-side server also sends a message

about the number of port to be used for data transfer, and the server then establishes

a TCP connection for data transfer, using port 20, which is reserved for this type of

FTP connection.

An example of an FTP client-server communication

Command Command description
USER user name User name on the FTP server
PASS password Password on the server
TYPE type File type to be transferred
GET filename.type Get a file
PUT filename.type Store a file
LS (or DIR) List files and directories
QUIT Log off from the server

Reply 3 digits xyz Description
1yz Positive reply. Waiting for another reply before

sending a new command
2yz Positive reply and a new command can be 

sent
3yz Positive reply and wait for another command
4yz Negative reply, try again
5yz Negative reply, do not try again
x0z Syntax
x1z Information
x2z Control or data connection
x3z Authentication
x4z Unspecified
x5z File status

Fig. 9.17 System components for FTP file transfers
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Any reply message is composed of three digits: the first specifies type of

response (positive or negative), the second indicates the nature of the answer, and

the third digit provides additional information on error messages. A few typical

responses are given below.

220 FTP server is ready

331 Password required

425 Data connections can be established

530 User access is rejected

9.8.3 Other Higher-Order Protocols

The TELNET is a protocol that allows the user (computer) to connect to another

computer, which may be at a great distance, and to use data and programs from that

computer.

The Simple Mail Transfer Protocol (SMTP) is a protocol governing email

transfers between PCs. The POP3 or IMAP protocols are used for receiving emails.

9.9 HTML

The HyperText Markup Language (HTML) is a standard language for creating Web

pages. All page elements: text, images, graphics, tables, etc. are added to Web

pages using commands that are called tags. Tags are written in square brackets<>.

HTML documents have the .html extension.

Each HTML page begins with the tag <html> and ends with the tag </html>.

<head>marks the beginning of the header, while the page title can be specified by

using tag < title>. The end of tag is specified by using “/”, for example </head>
and </title>.

Consider the following example.

<html><head><title> Multimedia signals and systems </title></head>
<! - - HERE YOU CAN ADD CODE FOR HTML PAGE BODY- - !>
</html>

The title of our web page will be Multimedia signals and systems. Note that the
page is blank except for the title and still does not contain any other text.
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The comment is written within the tag:

<! - - HERE YOU CAN ADD CODE FOR HTML PAGE BODY- - !>

and it is not visible on the page.

Note that the tag that was opened last, must be closed first. For example, we first

end the tag </title>, and then </head>.

To begin creating content on the page, we use the command <body>. For

example, let us add text “Multimedia signal processing and Multimedia systems.”

<html><head><title> Multimedia signals and systems </title></head>
<body>

Multimedia signal processing and Multimedia systems

</body>
</html>

9.9.1 Text Formatting

To format the text, we use the following tags:

<h1> defines the font size for the main title (Heading 1)

<h2> defines the font size for subheading (Heading 2), etc.

<p> is used to start a new paragraph

<b> denotes bold letters

<i> denotes italics

<u> underlines letters

<br> denotes a new line

These tags are used to format the text in the example:

<html><head><title>Multimedia signals and systems </title>
</head>
<body>
<h1>Multimedia signal processing and Multimedia systems</h1>
<h2>Welcome to the Multimedia signals and systemsWeb presentation.</h2>
<p><b><i> Here you can find various information related to multimedia,

different algorithms for multimedia signal processing, <br> algorithms for

multimedia data compression, systems for multimedia data transmission and

storage. <br>
Detailed explanations are followed by illustrations. We hope that you will find

the presented content interesting. </b></i></p>
</body></html>
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The code is written in the text document, and then the file is saved asMultimedia
signals and systems.html. To access the code of the Web page (in order to modify or

add content on a page), choose the Source option from the View menu.

9.9.2 Background Color and Text Color

The attributes defining the color of background and text need to be added inside the

tag < body>. Otherwise, the color of pages will be white, and the text color will be

black. Setting the background color and text is done as follows:

<body bgcolor¼"Page_Color" text¼"Text_Color">

The colors are usually given in a hexadecimal form #RRGGBB, where the

numbers R, G, and B can have values 0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F. RR refers

to the red color, GG to the green, and BB to the blue color in the RGB color system.

In addition, the value of FF means that the color is present in full intensity, and

00 is the absence of color. All colors can be obtained from a combination of the

three color channels.

To define the background color and text in the given example, the tag <body>
should be extended as follows:

<html><head><title> Multimedia signals and systems </title></head>
<body bgcolor¼"#006699" text¼"#FFC852">
. . .

</body></html>

The page with the specified color is shown in Fig. 9.18.

Fig. 9.18 Web page after setting the background color and text color

320 9 Multimedia Communications



9.9.3 Adding an Image to HTML Page

Adding an image to a HTML page is possible by using the tag <img>. Also, the

location from which the image is loaded has to be specified.

Tag for image embedding:
<img src=”IMAGE LOCATION/Image_name.format”>

If we want to add an image at the top of previously designed page, we need to

include a line of code:

<img src¼"C:/Folder/multimedia.jpg" width¼"800" height¼"150">

In addition, the image height and width are set by using the width and height
attributes.

For example, width ¼ 800 height ¼ 150, means that the image width is set to

800 pixels and its height is set to 150 pixels. The images, in our example, are

located in some folder “Folder” on drive C, so the path is: C:/Folder/

<html><head><title>Multimedia signals and systems</title></head>
<body bgcolor¼"#006699" text¼"#FFC852" link¼"#FFFFFF">
<img src¼"C:/Folder/multimedia.jpg" width¼"800" height¼"150">
<h1>Multimedia signal processing and Multimedia systems</h1>
<h2>Welcome to the Multimedia signals and systemsWeb presentation.</h2>
<p><b><i> Here you can find various information related to multimedia,

different algorithms for multimedia signal processing,<br> algorithms for

multimedia data compression, systems for multimedia data transmission and

storage. <br>
Detailed explanations are followed by illustrations. We hope that you will find

the presented content interesting. </b></i></p>
</body></html>

The page is shown in Fig. 9.19.

9.9.4 Unordered and Ordered Lists

If there is a need that the content of a web page is displayed as a list of items, then

we can use the unordered (items are marked with bullets) or ordered (items are

marked with numbers) lists. The tag that marks the beginning of the unordered list

is <ul>, while the tag for an ordered list is <ol>. Each element of the list is

indicated by the tag <li>.
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Suppose that we would like to add a list of a few members. Therefore, we add

new elements (marked in red) to the existing code.

Note that before the unordered list, we added a horizontal line by using tag

<hr>. The Web page is illustrated in Fig. 9.20.

<html><head><title>Multimedia signals and systems</title></head>
<body bgcolor¼"#006699" text¼"#FFC852">
<img src¼"C:/Folder/multimedia.jpg" width¼"800" height¼"150">
<h1>Multimedia signal processing and Multimedia systems</h1>
<h2>Welcome to the Multimedia signals and systemsWeb presentation.</h2>
<p><b><i> Here you can find various information related to multimedia,

different algorithms for multimedia signal processing,<br> algorithms for

multimedia data compression, systems for multimedia data transmission and

storage. <br>
Detailed explanations are followed by illustrations. We hope that you will find

the presented content interesting. </b></i></p>
<b>The fields covered by this presentation are . . .</b>
<ul>
<li>Mathematical transforms for Multimedia signal processing</li>
<li>Digital audio</li>
<li>Storing and transmission of digital audio signals</li>
<li>Digital image</li>
<li>Digital video</li>

Fig. 9.19 A web page with image included

(continued)
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<li>Digital watermarking</li>
<li>Multimedia communications</li>
<li>Other fields in Multimedia</li></ul>
</body></html>

9.9.5 Links to Other Websites

Link creates a connection to another page. It is usually placed on a single word or line

of text. By clicking on the link, the Web browser opens the page that link refers to.

To create a link we use the tag:
<a href=”http://www.page_name”> Text </a>

We can change the color of the displayed link by setting the following attributes

within the <body> tag:

Color of the link: link ¼ "#ffffff" (for example)

Color of the visited link: vlink ¼ "#ffffff"

Color of the active link: alink ¼ "#ff0000"

Fig. 9.20 Unordered list is added to the web page
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9.9.6 Setting an Anchor Within a Web Page

A specific kind of link is used to create an anchor or bookmark inside the document.

The link to an anchor can be created as:
<a href=”#Anchor_name”> Text that denotes link</a>

Symbol # gives an instruction to the Web browser to look for an anchor with the

specified name. In other words, when a user activates the anchor link, a part of the

page containing the anchor name will be focused.

Anchor name is set as:
<a name=”Anchor_name”> Any text </a>

Hence, in one part of the page we set the anchor link and in the other part we set

the anchor.

Every anchor link <a href=”Anchor_name”> should refer
to the corresponding anchor name <a name=”Anchor_name”> 

The use of anchors and links will be illustrated by modifying our web page. The

new lines of code are marked in red. The appearance of added elements is illustrated

in Fig. 9.21.

<html><head><title>Multimedia signals and systems</title></head>
<body bgcolor¼"#006699" text¼"#FFC852" link¼"#ffffff" vlink¼"#ffffff"

alink¼"#ff0000">
<img src¼"C:/Folder/multimedia.jpg" width¼"800" height¼"150">
<h1>Multimedia signal processing and Multimedia systems</h1>
<h2> Welcome to the Multimedia signals and systems Web presentation.</

h2>
<p><b><i> Here you can find various information related to multimedia,

different algorithms for multimedia signal processing,<br> algorithms for

multimedia data compression, systems for multimedia data transmission and

storage. <br>
Detailed explanations are followed by illustrations. We hope that you will find

the presented content interesting. </b></i></p>
<b>The fields covered by this presentation are . . .</b>
<ul><li><a href¼"#Mathematical transforms">Mathematical transforms for

Multimedia signal processing</a></li>
<li><a href¼"#Digital audio">Digital audio</a></li>
<li><a href¼"#Storing and transmission">Storing and transmission of digital

audio signals</a></li>

(continued)
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<li><a href¼"#Digital image">Digital image</a></li>
<li><a href¼"#Digital video">Digital video</a></li>
<li><a href¼"#Digital watermarking">Digital watermarking</a>
</li>
<li><a href¼"#Multimedia communications">Multimedia communications</

a></li>
<li><a href¼"#Other fields in Multimedia">Other fields in Multimedia</

a></li></ul>
<hr>
<h3><a name¼"Mathematical transforms">Mathematical transforms for

Multimedia signal processing</a></h3>
<img style¼"float: left; margin-right: 15px;" src¼"C:/Folder/SM.jpg"

width¼"180" height¼"150">
<p align¼justify>Different mathematical transformations are used for multi-

media signals processing due to the diverse nature of these signals. Specifically,

multimedia signals can be time-dependent, i.e., the content changes over time

(audio, video) or time-independent media (text, images). Hence, in addition to

the Fourier analysis, the time-frequency and wavelet transforms are often used.

(continued)

Fig. 9.21 Web page after adding anchors to text paragraphs
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In some cases, other advanced methods (e.g., the Hermite projection method)

may be of interest as well.

<a href¼"http://Mathematical_transforms.html">Readmore. . .</a>
</p>
</body></html>

As an example, let us observe the anchor link:

<a href ¼ "#Mathematical transforms">Mathematical transforms for Multimedia

signal processing</a>

It looks for an anchor name, i.e., the string “Mathematical transform” and

focuses the page view to its location.

The same holds for the links:

<a href ¼ "#Digital audio"> Digital audio</a>
<a href ¼ "#Storing and transmission"> Storing and transmission of digital audio

signals</a>
<a href ¼ "#Digital image"> Digital image</a>
<a href ¼ "#Digital video">Digital video</a></li>
<a href ¼ "#Digital watermarking"> Digital watermarking</a>
<a href ¼ "#Multimedia communications"> Multimedia communications</a>
<a href ¼ "#Other fields in Multimedia"> Other fields in Multimedia</a>

Now we should set the names for the anchors. For instance, the name for the first

anchor is set as follows:

<a name ¼ "Mathematical transforms" > Mathematical transforms for Multime-

dia signal processing</a>

Together with the anchor links and names, we added an image, text paragraph

(the attribute align is set to justify), and finally a standard link to another html page

(Mathematical_transform.html):

<a href ¼ "http://Mathematical_transforms.html">Readmore. . .</a>

Placing images in the same line with text is achieved by defining the following

attributes in <img>:

<img style ¼ "FLOAT: margin-right:15px;" src ¼ "name.format" width ¼ 180

height ¼ 150>

The Float option provides a flexibility to place the image anywhere with respect

to the text (not just above or below) while the leftmeans that the image is placed on

the left. The option margin-right: 15px; means that the image is shifted by 15 pixels

to the right from the edge of the page.
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Note that each anchor should provide a link to a subsection on the web page.

Hence, we should add other subsections as we did for the subsection “Mathematical
transforms for Multimedia signal processing.”

Link to an email

In addition to linking a web page, it is possible to link an email address. By clicking

on the text that indicates the link, it is possible to open an email client (e.g., Outlook

Express). In the field To: we should enter email address, while in the field Subject,

we enter the message subject.

Link to an email address:
<a href="mailto:user_email@domain?subject=Hello">

Text</a>

The corresponding commands for linking to an email address are indicated in red

in the code below. Hence, we set the link (as text “Send Email”) to the email

address: WebT@gmail.com, while the title of the message is “Hello.”

<html><head><title>Multimedia signals and systems </title></head>
<body bgcolor¼"#006699" text¼"#FFC852" link¼"#ffffff" vlink¼"#ffffff"

alink¼"#ff0000">
. . .

<hr>
<a href¼"mailto:WebT@gmail.com?subject¼Hello">
Send E-mail</a><br>
</body></html>

By activating the link “Send Email” at the bottom of the page (Fig. 9.22), we

open an email client window as in Fig. 9.23.

9.9.7 Adding Video Content to a Web Page

Video content can be embedded within the web page. For example, we can

add a video file from the existing websites (e.g., www.youtube.com). When we

select a video file on the mentioned website, there will be the option Share just

below the video playing window. By clicking on Embed, the code appears as shown
in Fig. 9.24.
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<iframe width¼"280" height¼"157"

src¼"http://www.youtube.com/embed/Uyxy9DCrq1U" frameborder¼"0"

allowfullscreen></iframe>

Among different options, we can choose the color and size of the video playing

frame. Then, it is necessary to copy the code and paste it in the desired location

within the HTML page, as we did at the end of the web page (Fig. 9.25).

9.9.8 Creating and Formatting Tables

Tables are created using the tag <table>. A row is created by the command <tr>,

while <td> is used for each cell in the row. The table header with column names is

set by using the tag <th>.

Fig. 9.22 The layout of a created web page
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Fig. 9.23 Message window in Microsoft Outlook

Fig. 9.24 The window with the code to embed video
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An example of the table is shown in Fig. 9.26, and the code is given below.

<html><head><title>Example</title></head>
<body text¼"#FFC852">

<table width¼”400” height¼”250” border¼3 cellspacing¼"12"

cellpadding¼"5" bgcolor¼"006699" bordercolor¼"white">
<tr><th>Column1</th><th>Column2</th><th>Column3</th></tr>
<tr><td>value_11 </td><td>value_21</td><td>value_31</td></tr>
<tr><td>value_12</td><td>value_22</td><td>value_32</td></tr>
<tr><td>value_13</td><td>value_23</td><td>value_33</td></tr>
<tr><td>value_14</td><td>value_24</td><td>value_34</td></tr>
</table>
</body></html>

Inside the tag <table> we add attributes to format table cells (boundary lines

width, line colors, background colors of cells, spaces between the cells, etc.).

In our example, the attributes have the following values:

width ¼ "400" – the table width is 400 pixels

height ¼ "250" – the height table is 250 pixels

border ¼ "3" – the width of the boundary lines is 3

Fig. 9.25 Embedded video on the Web page
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bgcolor ¼ "006699" – the background color is set to dark blue

bordercolor ¼ "white" – the color of cell borders

cellspacing ¼ "12" – the distance between the cells is 12

cellpadding ¼ "5" – the text distance from the edge of the cell is 5

In the first row of the table, we have the header cells:

<tr><th>Column1</th><th>Column2</th><th>Column3</th></tr>

Other table rows are filled by the values:

<tr><td>value_11 </td><td>value_21</td><td>value_31</td></tr>
<tr><td>value_12</td><td>value_22</td><td>value_32</td></tr>
<tr><td>value_13</td><td>value_23</td><td>value_33</td></tr>
<tr><td>value_14</td><td>value_24</td><td>value_34</td></tr>

Tables could beused to efficiently organize the content of the page. For instance, the

text paragraphs and images on theWeb page could be organized within the table cells.

9.9.9 Forms for Data Entry

Data entry forms can be created in HTML. However, to send data to a server, the

HTML code can be used in combination with the Hypertext Preprocessor (PHP) code.

Form is indicated by : <form> and </form>

Some of the most commonly used form elements are discussed in the sequel. For

the sake of simplicity, we first use some very basic examples and at the end we

create the entire form for the considered Multimedia signals and systems web page.

Fig. 9.26 An example of the table
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Text field

<input type ¼ "text" > defines the field as a single line in which the user enters

text.

Example:

<form>
Name: <input type¼"text" name¼"NAME" size¼15> <br>
Surname: <input type¼"text" name¼"SNAME" size¼15>
</form>

Name: and Surname: are plain text.

name ¼ "NAME" specifies name of the location on the server where the name

data will be stored.

name ¼ "SNAME" specifies name of the location on the server where the sur-

name data will be placed.

size defines the number of characters that can be entered.

Radio Button and Checkbox

The fields that are used to select an option are known as the radio button and

checkbox. They are defined with the following tags:

<input type ¼ "radio">
<input type ¼ "checkbox">

Example:

<form>
<input type¼"radio" name¼"answer" value¼"Yes" > YES <br>
<input type¼"radio" name¼"answer" value¼"No" > NO <br>
<input type¼"checkbox" name¼"Multimedia" value¼"MSP"> Multimedia

signal processing<br><input type¼"checkbox" name¼"Multimedia"

value¼"MS">Multimedia systems

</form>

Note that the name field has the same name for both “radio” options (forYes and

No options). The field value must have different values. The same holds for the

checkbox.
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Setting options for sending data

The option to send data can be achieved by using the Submit button. The command

<input type ¼ "submit"> defines the data sent to the server. In this case, the data

are sent to the page specified in the action attribute.

Example:

<form name¼"input" action¼"html_form.asp" method¼"post">
Username: <input type¼"text" name¼"user">
<input type¼"submit" value¼"Send">
</form>

Parameter method can be “get” or “post” 

In our example, the entered data should be sent to a page titled "html_form.asp".

Drop-down menu

A drop-down menu is created using the tag < select>. The elements are

specified as:

<option value ¼ " . . . "> . . . </option>

<select>

<option value¼"Jan">January</option>

<option value¼"Feb">February</option>

<option value¼Mar">March</option>

<option value¼"Apr">April</option>

</select>

Now let us create a simple form for log-in, which will be later included in the

web page for Multimedia signals and systems (Fig. 9.27).

<html><head>

<title>Log in</title></head>
<body bgcolor¼"006699" text¼"#ffc852">

<H4 style¼"color:#FFFFFF">log in to download codes</H4>
<form action¼"www.ac.me" method¼POST>
Provide the following info:

(continued)
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<P>Name :<input name¼"user_name" size¼21><P>
<P>Surname :<input name¼"user_surname" size¼18><P>

Address:<textarea name¼"address" cols¼15 rows¼2></textarea><P>
Phone:<input name¼"phone" size¼22 value¼"+382"><P>
<hr>
Operating system:<br>
Windows <input type¼checkbox name¼"OS" value¼"win">
MAC<input type¼checkbox name¼"OS" value¼"mac">
<P>
Matlab version:<P>

Fig. 9.27 A form for data

entry

(continued)

334 9 Multimedia Communications



<input type¼radio name¼"matlab" value¼"R2007">Matlab 7.4<br>
<input type¼radio name¼"matlab" value¼"R2009">Matlab 7.8<br>
<input type¼radio name¼"matlab" value¼"R2011">Matlab 7.12<P>
Release name:

<select>
<option value¼"R2007.a">R2007.a</option>
<option value¼"R2009.a">R2009.a</option>
<option value¼"R2011.b">R2010.b</option>

</select>
<P>
<input type¼submit value¼"Register">
<input type¼reset value¼"Cancel">
</form>
</body></html>

In the sequel, we integrate all the commands discussed so far, in order to get a

complex page that contains all of the analyzed options. The appearance of the

central part of the page is shown in Fig. 9.28.

Code for the page

<html><head>
<meta http-equiv¼"content-type" content¼"text/html; charset¼ISO-8859-

1"><title>Multimedia signals and systems</title></head><body bgcolor¼
"006699" text¼"#ffc852" link¼"#ffffff" vlink¼"#ffffff" alink¼"#ff0000">
<img src¼" C:/Folder/multimedia.jpg" width¼"800" height¼"150">

<h1>Multimedia signal processing and Multimedia systems</h1>
<h2>Welcome to the Multimedia signals and systems Web presentation.</h2>
<p><b><i>Here you can find various information related to multimedia, differ-

ent algorithms for multimedia signal processing,<br>
algorithms for multimedia data compression, systems for multimedia data trans-

mission and storage. <br>
Detailed explanations are followed by illustrations. We hope that you will find the

presented content interesting.

</i></b><i></i></p>
<hr align¼left width¼800>
<table align¼left cellpading¼5 cellspacing¼12><tr><td VALIGN¼"top">

<H3 style¼"color:#FFFFFF">Tutorials</H4>
<a href¼"Hermite_expansion.pdf">Image compression</a><br>
<a href¼"Digital_audio.pdf">Audio coding</a><br>
<a href¼"Compressive_sensing.pdf">Compressive_sensing

</a><br>
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Fig. 9.28 Final Web page design
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<!DOCUMENTS SHOULD BE IN THE SAME FOLDER AS THE WEB

PAGE. OTHERWISE THE ENTIRE PATH TO THE DOCUMENT

SHOULD BE SPECIFIED!>

<hr>
<H3 style¼"color:#FFFFFF">Available Matlab codes</H3>
<ul>

<li><a href¼"Hermite_expansion.m">Hermite_expansion.m</a>
</li><li><a href¼"Wavelets.m">Wavelet_transform.m</a>
</li><li><a href¼"Imafilt.m">Image_filtering.m</a>
</li><li><a href¼"jpeg.m">JPEG_code.m</a>
</li><li><a href¼"findedges.m">Find_Edges.m</a>
</li><li><a href¼"compressive_sens.m">Compressive_sensing.m</a>
</li></ul>
<!M-FILES SHOULD BE IN THE SAME FOLDER AS THE WEB PAGE!>

<hr>
<H4 style¼"color:#FFFFFF">log in to download codes</H4>
<form action¼"www.ac.me" method¼POST>
Provide the following info:

<P>Name :<input name¼"user_name" size¼21><P>
<P>Surname :<input name¼"user_surname" size¼18><P>

Address:<textarea name¼"address" cols¼15 rows¼2></textarea><P>
Phone:<input name¼"phone" size¼22 value¼"+382"><P>
<hr>
Operating system:<br>
Windows <input type¼checkbox name¼"OS" value¼"win">
MAC<input type¼checkbox name¼"OS" value¼"mac">
<P> Matlab version:<P>
<input type¼radio name¼"matlab" value¼"R2007">Matlab 7.4<br>
<input type¼radio name¼"matlab" value¼"R2009">Matlab 7.8<br>
<input type¼radio name¼"matlab" value¼"R2011">Matlab 7.12<P>
Release name:

<select>
<option value¼"R2007.a">R2007.a</option>
<option value¼"R2009.a">R2009.a</option>
<option value¼"R2011.b">R2010.b</option>
</select>
<P>
<input type¼submit value¼"Register">
<input type¼reset value¼"Cancel">
</form></td>
<td VALIGN¼"top"><hr width¼1, size¼2500></td>

9.9 HTML 337



<td VALIGN¼"top" width¼550>
<b>The fields covered by this presentation are . . .</b>
<ul>
<li><a href¼"#Mathematical transforms">
Mathematical transforms for Multimedia signal processing</a></li>
<li><a href¼"#Digital audio">Digital audio</a></li>
<li><a href¼"#Storing and transmission">Storing and transmission of digital

audio signals</a></li>
<li><a href¼"#Digital image">Digital image</a></li>
<li><a href¼"#Digital video">Digital video</a></li>
<li><a href¼"#Digital watermarking">Digital watermarking</a></li>
<li><a href¼"#Multimedia communications">Multimedia communications

</a></li>
<li><a href¼"#Other fields in Multimedia">Other fields in Multimedia

</a></li></ul>

<hr><h3><a name¼"Mathematical transforms">Mathematical transforms for

Multimedia signal processing</a></h3>
<img style¼"float: left; margin-right: 15px;" src¼"C:/Folder/SM.jpg"

width¼"180" height¼"150">
<p align¼justify>Different mathematical transformations are used for multimedia

signals processing due to the diverse nature of these signals. Specifically, multime-

dia signals can be time-dependent, i.e., the content changes over time (audio, video)

or time-independent media (text, images). Hence, in addition to the Fourier

analysis, the time-frequency and wavelet transforms are often used. In some

cases, other advanced methods (e.g., the Hermite projection method) may be of

interest as well.

<a href¼"Mathematical_transforms.html">Read more. . . </a> </p>
<h3><a name¼"Digital audio">Digital audio</a></h3>
<img style¼"float: left; margin-right: 15px;" src¼"C:/Folder/mpeg1.jpg"

width¼"220" height¼"130">
<p align¼justify> Based on the characteristics of the audio signal, we can con-

clude that the storage of digital audio signals of high quality requires a large

memory space. Therefore, the transmission of such signals also requires a network

with large bandwidth. The reduction of the required memory space, while

maintaining high audio quality, can be achieved by compression algorithms.

<a href¼"Digital_audio.html">Read more. . . </a> </p>
<h3><a name¼"Storing and transmission">Storing and transmission of digital

audio signals</a></h3>
<img style¼"float: left; margin-right: 15px;" src¼"C:/Folder/CD1.jpg"

width¼"220" height¼"170">
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<p align¼justify> We consider the widely used media for digital audio storage.

A special attention will be given to CDs, Mini Discs and DVDs, data writing and

reading processes, as well as the coding principles. Different error correction and

interleaving algorithms have been presented such as Cyclic redundancy check,

Cross interleaving Reed-Solomon and EFM. Also, the basic concepts of the digital

audio broadcasting system has been considered and presented.

<a href¼"Storing_and_transmission.html">Read more. . . </a> </p>
<h3><a name¼"Digital video">Digital video</a></h3>
<img style¼"float: left; margin-right: 15px;" src¼"C:/Folder/video.jpg"

width¼"220" height¼"140">
<p align¼justify> Algorithms for compression of digital video signals are of great

importance, not only for multimedia applications, but also for digital video trans-

mission. The MPEG algorithms belong to the ISO standard, while the ITU

standards cover VCEG algorithms. In order to improve the compression ratio and

the quality of the compressed signal, compression algorithms have been improved

over time, so that today we have: MPEG-1, MPEG-2, MPEG-4, MPEG-7. VCEG

standards include: H.261, H.263, H.264.

<a href¼"Digital_video.html">Read more. . . </a></p>
<br>
<iframe width¼"280" height¼"157"

src¼"http://www.youtube.com/embed/Uyxy9DCrq1U" frameborder¼"0" allow-

fullscreen></iframe>

<!ADDITIONAL PARAGRAPHS ON THE WEB PAGE SHOULD BE

PLACED HERE !>
. . .

<hr>
<a href¼"mailto:WebT@gmail.com?subject¼Hello">Send us anE-mail</a><br>
</td></tr></table></body></html>

9.10 Email

Electronic mail or email is another useful Internet service that allows the exchange

of information between the computer users. An electronic address (email address) is

needed to send and receive messages. Email can be sent to one or more email

addresses (one or more users). It works through the SMTP protocol, which is based

on TCP/IP protocol.

In addition to text, messages can also contain other data types, which need to be

encoded and decoded. For encoding and decoding of nontext files the Multipurpose

Internet Mail Extensions (MIME) standard is used.
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As noted above, email operates on the principle of client and server, which also

means that there must be appropriate software for clients and servers that allow

sending and retrieving email. Namely, when sending an email, the message is sent

from the client to the appropriate server. A client needs the access (by using either

POP3 or IMAP protocols) to the appropriate server to download or read emails

(Fig. 9.29).

Client programs (email clients) are the programs that are used for creating,

sending, and reading emails. Examples of the email clients are Outlook Express
and Mozilla Thunderbird.

E-mail Address
The general form of an email address is:

username@domain.top_domain

9.10.1 MIME: Multipurpose Internet Mail Extensions

The SMTP protocol is used to exchange email messages. Messages are formatted

using the RFC 822 standard. Specifically, each message consists of header and

message body. The format of each header field is defined by this standard. The

standard header (defined in the RFC 822 standard) is extended to the new fields in

the MIME standard. In addition to fields:

To:

From:

Subject:

the header also contains:

MIME version (a version of MIME used)

Content-Description: (description of message)

Content-ID (unique identifier of the content)

Content-Type: (type of content contained in the message body)

Content-Transfer-Encoding: (method for encoding data)

Content-Length: (size in bytes of the message body)

Fig. 9.29 Client–server model for sending/receiving email
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MIME content types

Multipart Different content types

Content type Subtype

Text Plain (ASCII), Richtext (HTML)

Image JPEG, GIFF
Audio Basic
Video MPEG

Applications MSWord, Octet-stream

An example of multipart message type

From: Karen@yahoo.com
To: Jack@gmail.com
Subject: Out of sight
MIME-version: 1.0
Content-Type: Multiport/Alternative; boundary¼”StartOfNextPart”;

–StartOfNextPart
Content-Type: Message/External-body;

name ¼ “out_of_sight.mpeg”;
directory ¼ “Out_of_Sight”;
access-type¼”anon-ftp”;
site¼”universalpictures.com”;

Content-Type: Video/MPEG;
Content-Transfer-Encoding: Base64
– StartOfNextPart
Content-Type: Text/Plain;

***Have you watched this movie?***
–StartOfNextPart

9.11 Examples

9.1. Consider the networks denoted as X, Y, and Z. The IP addresses within the

network X begin with 110, within the network Y with 133, while the addresses

within the network Z begin with 192 (Fig. 9.30).

(a) Determine IP addresses of networks X, Y, and Z.

(b) Determine the class of addresses for each of the networks X, Y, and Z.

Solution:

(a) IP address of X is: 110.0.0.0,

IP address of Y is: 133.12.0.0,

IP address of Z is: 192.3.12.0.
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(b) Addresses from X belong to class A (the first number is 110),

Addresses from Y belong to class B (the first number is 133),

Addresses from Z belong to class C (the first number is 192).

9.2. For a given IP addresses of a PC, determine whether it belongs to one of the

networks from the previous example. The IP addresses are:

(a) 110.3.14.55

(b) 11.2.14.55

(c) 133.12.12.12

(d) 192.12.2.2

(e) 192.3.12.31

Solution:

(a) PC belongs to network X.

(b) PC does not belong to any of the networks X, Y, and Z.

(c) PC belongs to Y.

(d) PC does not belong to any of the networks X, Y, and Z.

(e) PC belongs to the network Z.

9.3. Consider the following data:

Physical Address:::::::::::::::::::::: 00 - 54 - 99 - B4 - BA - 92

Dhcp Enabled::::::::::::::::::::::::::: Yes

Autoconfiguration Enabled:::::: Yes

Subnet Mask:::::::::::::::::::::::::::: 255:255:0:0

Default Gateway:::::::::::::::::::::: 38:189:1:2

DHCP Server::::::::::::::::::::::::::: 38:189:1:3

(a) Determine the local network address.

(b) What could be the IP addresses of the PCs within the network?

Solution:

(a) The local network address is : 38.189.0.0.

Fig. 9.30 Networks X, Y and Z
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(b) The PCs within the observed network could have addresses from 38.189.0.4 to

38.189.255.254.

9.4. What type of IPv6 addresses starts with FEC0 (in hexadecimal format)?

Solution:

The address starting with FEC0 or in the binary form with 1111 1110 1100 0000 has

the first 10 bits that correspond to the site-local address.

9.5. Determine the type of IPv6 address:

(a) ::FFFF:129.144.52.38

(b) ::129.144.52.38

(c) FE80:0000:0000:0000:0000:0800:0212:3456

(d) FEC0:0000:0000:0000:0011:0000:0C12:3456

(e) 0000:0000:0000:0000:0000:0000:0000:0000

(f) 0000:0000:0000:0000:0000:0000:0000:0001

(g) FF01:0000:0000:0000:0000:0000:0000:0002

Solution:

(a) IPv4-Mapped Embedded IPv6 address

(b) IPv4 compatible Ipv6 address

(c) link-local address

(d) site-local address

(e) unspecified

(f) loopback address

(g) multicast address

9.6. Write the following addresses in the short format:

(a) 4E80:00D2:0156:0000:0000:0000:0000:3456

(b) 4E80:00D2:0156:0000:0000:0800:0000:3456

Solution:

(a) 4E80:D2:156::3456

(b) 4E80:D2:156::800:0:3456

9.7. Discuss the following commands:

ftp> open domain.name
Connected to domain.name
220 FTP server ready.
User (domain.name:(none)): User-Name
331 Password required for user-name
Password: password
230 User user-name logged in.

ftp>
Solution:
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The command ftp is entered in the command line. Then using the command open,
the connection is initiated with the server. We get the information that the connec-

tion is established (Connected to domain.name) and the acknowledgement that the

server is ready for communication (220 FTP server ready). The user enters itsUser-
name, and then the server requires the password (331 Password required for user-
name). The user enters the password as well. The server sends the acknowledge-

ment that the user is logged in (230 User user-name logged in).

References

1. Black UD (2000) Internet architectures: an introduction to IP protocols. Prentice Hall, Upper

Saddle River

2. Doyle J (1998) Routing TCP/IP volume I (CCIE professional development). Cisco Press,

Indianapolis

3. Halsall F (2001) Multimedia communications: applications, networks, protocols, and

standards. Addison-Wesley, Harlow

4. Forouzan BA, Fegan SC (2003) Data communications and networking. McGraw-Hill, Boston

5. Johnston AB, Sinnreich H (2006) Internet communications using SIP: delivering VoIP and

multimedia services with session initiation protocol. Wiley, Indianapolis

6. Keshav S (1997) An engineering approach to computer networking: ATM networks, the

internet, and the telephone network. Addison-Wesley, Reading

7. Korpi M, Kumar V, Sengodan S (2001) IP telephony with H.323: architectures for unified

networks and integrated services. Wiley, New York

8. Kraig G (2007) The essential guide to CSS and HTML web design. Springer, New York

9. Niederst J, Niederst Robbins J (2001) Web design in a nutshell: a desktop quick reference.

O’Reilly Media, Inc, Beijing

10. Ohm JR (2004) Multimedia communication technology representation, transmission and

identification of multimedia signals. Springer, Berlin

11. Sulkin A (2002) PBX systems for IP telephony. McGraw-Hill Professional, New York

12. Wright DJ (2001) Voice over packet networks. Wiley, Chichester

344 9 Multimedia Communications



Index

A

AC-3 Dolby, 90

Adaptive Spectral Perceptual Entropy

Coding (ASPEC), 88

Adaptive Transform Acoustic Coder

(ATRAC), 121

Affine transformation, 157, 179

A-law, 60
Aliasing, 58

Ambiguity function, 250

Analysis filters, 25

Antialiasing filter, 58

Antishock, 121

Approximation space, 23

Arithmetic coding, 178

Arithmetic mean filter, 144

ASPEC. See Adaptive Spectral Perceptual
Entropy Coding (ASPEC)

Asynchronous Transfer Mode (ATM), 218,

221, 297

ATRAC. See Adaptive Transform Acoustic

Coder (ATRAC)

Attacks, 258

Audio signal, 55, 57, 86

Auto-correlation, 72

B

Bark, 87

Basic Rate Interface (BRI), 295

Best-effort service, 300

Binary image, 133

Bit allocation, 91

Bit context, 175

Bit planes, 173, 176

BRI. See Basic Rate Interface (BRI)
Broadband ISDN, 297

C

CABAC. See Context-based Adaptive Binary

Arithmetic Coding (CABAC)

Cauchy distribution, 265–266

CAVLC. See Context Adaptive Variable
Length Coding (CAVLC)

CD encoding, 111

Cell-switching networks, 297

CIF, 201

4CIF, 201

CIRC. See Cross-Interleaved Reed-Solomon

Coding (CIRC)

Classes of IP addresses, 303

Classless addressing, 304

Cleanup pass, 176

CMY, 139

CMYK, 139

Colorfulness, 152

Compact disc (CD), 57, 109

Compression ratio, 79

Consonants, 63, 65

Context, 178, 179

Context Adaptive Variable Length Coding

(CAVLC), 216

Context-based Adaptive Binary Arithmetic

Coding (CABAC), 216

Continuous wavelet transform

(CWT), 18

Contrast, 153, 189

Co-occurrence matrix, 154

Correlation, 155, 236, 263

Correlation coefficient, 266

CRC. See Cyclic redundancy check (CRC)

Critical bands, 78, 86

Cross-Interleaved Reed-Solomon Coding

(CIRC), 113–117

Cross-terms, 13

S. Stanković et al., Multimedia Signals and Systems,
DOI 10.1007/978-1-4614-4208-0, # Springer Science+Business Media, LLC 2012

345



Curie point, 120
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Likelihood ratio, 261
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M
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Masking-pattern Universal Subband

Integrated Coding And Multiplexing

(MUSICAM), 88
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PSTN. See Public Switched Telephone
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(PSTN), 218, 293
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Q
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Quadrature phase-shift keying (QPSK), 125
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Quality of service, 218, 300

Quantization, 59, 158, 160, 172

Quantization matrix, 160
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Quarter common intermediate format

(QCIF), 201

Quarter pixel precision, 214

Quincunx decomposition, 28

R
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Rayleigh distribution, 143

Real-time Transport Control

Protocol (RTCP), 307

Real-time Transport Protocol

(RTP), 220, 307

Reed-Solomon code, 116

Reference frame, 201, 207, 215
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Restricted isometry property, 237

Reversible color transform, 168

RGB color system, 138

ROI. See Regions of interest (ROI)
RTCP. See Real-time Transport Control

Protocol (RTCP)

RTP. See Real-Time Transport

Protocol (RTP)

S

SACD. See Super Audio CD (SACD)

Sample and hold circuit, 59

Sampling theorem, 36, 37

Scale factor, 91

Scaling parameter, 18

Semi-fragile watermarking, 256

Sensing matrix, 237, 239

Session Initiation Protocol (SIP), 220, 222

Short-time Fourier transform, 8

SI frames, 211

Signal to noise ratio, 59, 62

Simple Mail Transfer Protocol (SMTP), 318,

339, 340

Singular value decomposition (SVD), 72

Singular values, 72

Singular vectors, 72, 76

SIP. See Session Initiation Protocol (SIP)

S-method, 13–14, 73, 273

SMTP. See Simple Mail Transfer Protocol

(SMTP)

Sobel matrices, 155

Sound pressure level, 55

Sparsity, 234

Sparsity property, 234

Spectral energy density, 12

Spectrogram, 9

SP frames, 210

Spread-spectrum watermarking, 267

Standard wavelet decomposition, 28

SubQCIF, 201

Super Audio CD (SACD), 122

SVD. See Singular value
decomposition (SVD)

Switch, 299

Synchronization word, 111, 120

Synthesis filters, 25

T

Tag, 318

TCP. See Transmission Control

Protocol (TCP)

Telecardiology, 287

Teleconferencing, 297

Telemedicine technologies, 285

Telenursing, 285

Telepharmacy, 286

Teleradiology, 289

Telerehabilitation, 286

Telesurgery, 289

Texture, 153

Three steps algorithm, 203

Three-way handshaking, 311

Threshold, 70, 72, 77, 86, 141, 155,

202, 261, 262, 264

Threshold in quiet, 88

Time-frequency analysis, 6

Time resolution, 9

Time-varying filtering, 16

Total-variation minimization, 238, 247

Translation parameter, 18, 20

Transmission Control Protocol (TCP), 307

segment, 310

segment header, 310

U

UDP. See User Datagram
Protocol (UDP)

Uncertainty principle, 10

Uniform distribution, 143

Uniform wavelet decomposition, 30

User Datagram Protocol (UDP), 307

segment header, 313

segments, 312

V

Video Coding Experts Group (VCEG)

algorithms, 208

Videoconferencing, 298

Video formats, 201

Video on demand, 299

Vocal folds, 63

Vocal tract, 63, 65

Voice activity indicators, 68

Voice over IP, 220, 297

Vowels, 63

W

Watermark, 255, 257

Watermark detection, 255, 260, 261

Watermark robustness, 258

Wavelets, 17, 19
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Wavelet space, 23

Web page, 314

Web server, 299

Wiener filter, 150

Wigner distribution, 7–8

Wireless ECG, 288

World Wide Web (WWW), 313–314

Y

YCrCb color model, 166, 169

Z

Zero-crossing rate, 68

Zig-zag reordering, 161
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