
Chapter 9
On the Application of the SDLE to the Analysis
of Complex Time Series

Jianbo Gao, Jing Hu, and Wen-wen Tung

Abstract Complex systems often generate highly nonstationary and multiscale
signals because of nonlinear and stochastic interactions among their component
systems and hierarchical regulations imposed by the operating environments. Rapid
accumulation of such complex data in life sciences, systems biology, nano-sciences,
information systems, and physical sciences has made it increasingly important
to develop complexity measures that incorporate the concept of scale explicitly,
so that different behaviors of signals on varying scales can be simultaneously
characterized by the same scale-dependent measure. The scale-dependent Lyapunov
exponent (SDLE) discussed here is such a measure and can be used as the
basis for a unified theory of multiscale analysis of complex data. The SDLE
can readily characterize deterministic low-dimensional chaos, noisy chaos, random
1/ f α processes, random Levy processes, stochastic oscillations, and processes with
multiple scaling behavior. It can also readily deal with many types of nonstationarity,
detect intermittent chaos, and accurately detect epileptic seizures from EEG data
and distinguish healthy subjects from patients with congestive heart failure from
heart rate variability (HRV) data. More importantly, analyses of EEG and HRV
data illustrate that commonly used complexity measures from information theory,
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chaos theory, and random fractal theory can be related to the values of the SDLE at
specific scales, and useful information on the structured components of the data is
also embodied by the SDLE.

9.1 Introduction

Complex systems are usually comprised of multiple subsystems that exhibit both
highly nonlinear deterministic, as well as, stochastic characteristics, and are reg-
ulated hierarchically. These systems generate signals that exhibit complex charac-
teristics such as sensitive dependence on small disturbances, long memory, extreme
variations, and nonstationarity [1]. Examples of such signals are abundant, including
biological data such as heart rate variability (HRV) and EEG data [2], highly bursty
traffic on the Internet [3–5], and highly varying stock prices and foreign exchange
rates in financial markets [6, 7]. For illustration, in Fig. 9.1, we have shown an
example of HRV data for a normal young subject [8]. Evidently, the signal is
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Fig. 9.1 (a) The HRV data for a normal subject; (b, c) the segments of signals indicated as A and
B in (a); (d, e) power spectral density for the signals shown in (b,c)
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highly nonstationary and multiscaled, appearing oscillatory for some period of
time (Fig. 9.1b, d) and then varying as a 1/ f process for another period of time
(Fig. 9.1c, e).

While the multiscale nature of signals such as that shown in Fig. 9.1 cannot
be fully characterized by existing methods, the nonstationarity of the data is even
more troublesome, because it prevents direct application of spectral analysis or
methods based on chaos theory and random fractal theory. For example, in order
to reveal that the HRV data is of 1/ f nature [9, 10] with anti-persistent long-range
correlations [11, 12] and multifractality [13], time series such as shown in Fig. 9.1a
have to be preprocessed to remove components (such as oscillatory ones) that do not
conform to fractal scaling analysis. However, automated segmentation of complex
biological signals to remove undesired components is a significant open problem,
since it is closely related to the challenging task of accurately detecting transitions
from normal to abnormal states in physiological data.

Rapid accumulation of complex data in life sciences, systems biology, nano-
sciences, information systems, and physical sciences has made it increasingly
important to be able to analyze multiscale and nonstationary data. Since multiscale
signals behave differently depending upon which scale the data are looked at,
it is of fundamental importance to develop measures that explicitly incorporate
the concept of scale so that different behaviors of the data on varying scales
can be simultaneously characterized by the same scale-dependent measure. Here,
we discuss such a measure, the scale-dependent Lyapunov exponent (SDLE), and
develop a unified multiscale analysis theory of complex data.

This chapter is organized as follows. We first define the SDLE, then apply it
to characterize low-dimensional chaos, noisy chaos, and random processes with
power-law decaying power spectral density (so-called 1/ f α processes). We then
show how it can readily detect intermittent chaos, deal with nonstationarity, and
apply it to characterize EEG and HRV data. Finally, we make a few concluding
remarks, including a discussion of best practices for experimental data analysis.

9.2 SDLE: Definitions and Fundamental Properties

Chaos and random fractal theories have been used extensively in the analysis
of complex data [2, 3, 6, 11–18]. Chaos theory shows that apparently irregular
behaviors in a complex system may be generated by nonlinear deterministic
interactions of only a few numbers of degrees of freedom while noise or intrinsic
randomness does not play any role. Random fractal theory, on the other hand,
assumes that the dynamics of the system are inherently random. One of the most
important classes of random fractals is the set of 1/ f α processes that display
long-range correlations. Since the foundations of chaos theory and random fractal
theory are entirely different, different conclusions may be drawn depending upon
which theory is used to analyze the data. In fact, much of the research in the
past has been devoted to determining whether a complex time series is generated
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by a chaotic or a random system [19–30]. In this effort, 1/ f α processes have
distinguished themselves as the key counter examples invalidating commonly used
tests for chaos [30–32]. Thus, successful classification of chaos and 1/ f α processes
based on scales may fundamentally change the practice of time series analysis—
these theories will be used synergistically, instead of individually, to characterize
the behaviors of signals on a wide range of scales.

SDLE is a generalization of two important concepts, the time-dependent ex-
ponent curves [24] and the finite size Lyapunov exponent (LE) [33]. It was first
introduced by the authors in [34, 35], and has been further extended in [36, 37] and
applied to study EEG [38], HRV [39, 40], and Earth’s geodynamo [41].

We assume that all that is known is a scalar time series x(1),x(2), . . . ,x(n).
Regardless of whether the dynamics are chaotic or random, we use time-delay
embedding [42–44] to form vectors of the form: Vi = [x(i),x(i + L), . . . ,x(i+
(m− 1)L)], where the embedding dimension m and the delay time L are chosen
according to optimization criteria [24, 45]. When the time series is random, such a
procedure transforms the self-affine stochastic process to a self-similar process in
phase space. In this case, however, the specific values of m and L are not important,
so long as m > 1.

After a proper phase space is reconstructed, we consider an ensemble of
trajectories. We denote the initial separation between two nearby trajectories by ε0

and their average separation at time t and t +Δt by εt and εt+Δt , respectively. We
then examine the relation between εt and εt+Δt , where Δt is small. When Δt → 0,
we have

εt+Δt = εt eλ (εt)Δt , (9.1)

where λ (εt ) is the SDLE. It is given by

λ (εt) =
lnεt+Δt − lnεt

Δt
. (9.2)

Equivalently, we have a differential equation for εt ,

dεt

dt
= λ (εt )εt . (9.3)

Given a time series data, the smallest Δt possible is the sampling time τ .
To compute SDLE, we can start from an arbitrary number of shells,

εk ≤ ‖Vi −Vj‖ ≤ εk +Δεk, k = 1,2,3, . . . , (9.4)

where Vi,Vj are reconstructed vectors and εk (the radius of the shell) and Δεk (the
width of the shell) are arbitrarily chosen small distances (Δεk is not necessarily
a constant). We then monitor the evolution of all of the pairs of vectors (Vi,Vj)
within a shell and take the average. As we will see shortly, as far as estimation of
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the parameters corresponding to exponential or power-law divergence is concerned,
taking logarithm and averaging can be exchanged; (9.2) can now be written as

λ (εt ) =

〈
ln‖Vi+t+Δt −Vj+t+Δt‖− ln‖Vi+t −Vj+t‖

〉

Δt
(9.5)

where t and Δt are integers in units of the sampling time and the angle brackets
denote the average within a shell.

To see why taking logarithm and averaging can be exchanged for the purpose
of computing λ (εt), let us consider a case involving ε1(t) = ε1(0)eλ1t ,ε2(t) =
ε2(0)eλ2t , where λ1 = λ2 is a positive constant. Let ε(t) be the average of ε1(t)
and ε2(t). Then it is clear that SDLE is simply λ whether one takes average first
or takes logarithm first. In fact, when large t is concerned, if λ1 is slightly larger
than λ2, then taking logarithm first is beneficial, since, otherwise, the term eλ1t will
dominate, and thus the presence of λ2 will not be captured. Clearly, similar argument
applies to the situation of power-law divergence.

Note that in the above computational procedure, the initial set of shells for
computing SDLE serve as initial values of the scales; through evolution of the
dynamics, they will automatically converge to the range of inherent scales—which
are the scales that define (9.2) and (9.3). Also note that when analyzing chaotic time
series, the condition

| j− i| ≥ (m− 1)L (9.6)

needs to be imposed when finding pairs of vectors within a shell, to eliminate the
effects of tangential motions [24] and for an initial scale to converge to the inherent
scales [35].

To better understand the notion of “inherent scales,” it is beneficial to discuss
the notion “characteristic scale” (or “limiting scale”), ε∞, defined as the scale where
SDLE is close to 0. If one starts from ε0 � ε∞, then, regardless of whether the data
is deterministically chaotic or simply random, εt will initially increase with time and
gradually settle around ε∞. Consequentially, λ (εt ) will be positive before εt reaches
ε∞. On the other hand, if one starts from ε0 � ε∞, then εt will simply decrease,
yielding negative λ (εt), again regardless of whether the data are chaotic or random.
When ε0 ∼ ε∞, then λ (εt) will stay around 0—note, however, that ε∞ may not be
a single point but a function of time, such as a periodic function of time. These
discussions make it clear that chaos can only be observed on scales much smaller
than ε∞.

To better understand SDLE, we now point out a relation between SDLE and the
largest positive LE λ1 estimated for a true chaotic signal using, say, the Wolf et al.’s
algorithm [21]. It is given by [35]

λ1 =

∫ ε∗

0
λ (ε)p(ε)dε, (9.7)
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Fig. 9.2 λ (ε) curves for clean and noisy Lorenz systems

where ε∗ is a scale parameter (e.g., used for renormalization when using Wolf et al.’s
algorithm [21]); p(ε) is the probability density function for the scale ε given by

p(ε) = Z
dC(ε)

dε
, (9.8)

where Z is a normalization constant satisfying
∫ ε∗

0 p(ε)dε = 1 and C(ε) is the well-
known Grassberger–Procaccia’s correlation integral [19]. Note that the lower bound
for the integration is set to be zero here. In practice, on scales smaller than εmin, the
probability p(ε) will be zero. Therefore, one could replace the lower bound for the
integration by εmin.

To understand the SDLE, it is instructive to apply it to characterize chaotic
signals and 1/ f α processes. First, we analyze the chaotic Lorenz system with
stochastic forcing

dx/dt = −16(x− y)+Dη1(t),

dy/dt = −xz+ 45.92x− y+Dη2(t),

dz/dt = xy− 4z+Dη3(t). (9.9)

where ηi(t), i= 1,2,3 are independent Gaussian noise forcing terms with zero mean
and unit variance. When D = 0, the system is clean. Figure 9.2 shows five curves,
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for the cases with D = 0,1,2,3,4. The computations are done with 10,000 points
and m = 4, L = 2. We observe the following interesting features:

• For the clean chaotic signal, λ (ε) fluctuates slightly around a constant. As is
expected, this constant is the very largest positive LE, λ1,

λ (ε) = λ1. (9.10)

The small fluctuation in λ (ε) is due to the fact that the divergence rate on the
Lorenz attractor varies from one region to another.

• When there is stochastic forcing, λ (ε) is no longer a constant when ε is small
but diverges to infinity as ε → 0 according the following scaling law,

λ (ε)∼−γ lnε, (9.11)

where γ is a coefficient controlling the speed of loss of information. This feature
suggests that entropy generation is infinite when the scale ε approaches zero.

• When the noise is increased, the part of the curve with λ (ε) ∼ −γ lnε shifts to
the right. In fact, little chaotic signature can be identified when D is increased
beyond 3.

Note that similar results to those shown in Fig. 9.2 have been observed in other
model chaotic systems, including the Mackey–Glass delay differential equation with
multiple positive Lyapunov exponents [46]. To simplify our discussion of HRV data
analysis, we note that in order to resolve the behavior of λ (ε) on ever smaller scales,
longer and longer time series have to be used. More precisely, for a given dataset,
if the smallest resolvable scale is ε0, in order to resolve a smaller scale ε0/r, where
r > 1, a larger dataset has to be used—the larger the dimension of the attractor, the
longer the time series has to be.

Next we consider 1/ f α processes. Such type of processes is ubiquitous in science
and engineering (see [47] and references therein). Two important prototypical
models for such processes are fractional Brownian motion (fBm) process [48] and
ON/OFF intermittency with power-law distributed ON and OFF periods [47]. For
convenience, we introduce the Hurst parameter 0<H < 1 through a simple equation

α = 2H + 1. (9.12)

Depending on whether H is smaller than, equal to, or larger than 1/2, the process
is said to have anti-persistent correlation, short-range correlation, and persistent
long-range correlation [47]. Note that D = 1/H is the fractal dimension of such
processes and Kolmogorov’s 5/3 law for the energy spectrum of fully developed
turbulence [49] corresponds to H = 1/3.

It is well known that the variance of such stochastic processes increases with t
as t2H . Translating this into the average distance between nearby trajectories, we
immediately have

εt = ε0tH . (9.13)
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Using (9.2), we then have λ (εt )∼ H/t. Expressing t by εt , we obtain

λ (εt)∼ Hε−1/H
t . (9.14)

Equation(9.14) can be readily verified by calculating λ (εt ) from such processes.
SDLE also has distinct scaling laws for random Levy processes, stochastic

oscillations, and complex motions with multiple scaling laws on different scale
ranges. For the details, we refer to [34, 35].

Finally, we emphasize that λ1 > 0 (say, computed by Wolf et al.’s algorithm [21])
is not a sufficient condition for chaos. This is evident from (9.7): any non-chaotic
scalings of SDLE such as (9.11) and (9.14) will yield λ1 > 0.

9.2.1 Detecting Intermittent Chaos by SDLE

Intermittent chaos is a type of complex motion where regular (i.e., periodic) and
chaotic motions alternate. Note that the stretches of the time periods for regular
motions could be considerably longer than those of chaotic motions. Exactly
because of this, standard methods are unable to detect chaos in such motions.
This, however, is a simple task for SDLE. To illustrate the idea, we examine the
logistic map

xn+1 = axn(1− xn). (9.15)

When a = 3.8284, we have intermittent chaos. An example of the time series
is shown in Fig. 9.3a. We observe that time intervals exhibiting chaos are very
short compared with those exhibiting periodic motions. Traditional methods for
computing LE, being based on global average, are unable to quantify chaos in such
an intermittent situation, since the laminar phase dominates, neither can FSLE, since
it requires that divergence dominates most of the time. Interestingly, the SDLE curve
shown in Fig. 9.3b clearly indicates existence of chaotic motions, since the plateau
region extends almost one order of magnitude.

Why can SDLE even detect chaos in such a situation? The reason is that the
oscillatory part of the data only affects the scale range where λ (ε) ∼ 0. It cannot
affect the positive portion of λ (ε). This means SDLE has a nice scale separation
property to automatically separate the regular from chaotic motions.

9.2.2 Dealing with Nonstationarity

To facilitate our discussion of HRV data below, we now consider complicated
processes generated by the following two scenarios. One is to concatenate randomly
1/ f 2H+1 and oscillatory components. Another is to superimpose oscillatory com-
ponents on 1/ f 2H+1 process at randomly chosen time intervals. Either scenario
generates signals that appear quite similar to that shown in Fig. 9.1a. The λ (ε)
curves for such processes are shown in Fig. 9.4, for a wide range of the H parameter.
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We observe well-defined power-law relations, consistent with (9.14), when λ (ε) >
0.02. This result clearly shows that oscillatory components in the signals can only
affect the SDLE where λ (ε) is close to 0. This is an illustration of the effect of scale
isolation by the SDLE.

When we perturb chaotic data by similar procedures, will we still be able to
detect chaos? The answer is yes. In fact, the intermittent chaos discussed above may
be viewed as an example of such a procedure.

We are now ready to fully understand why the SDLE can deal with the types
of nonstationarity discussed here. One type of nonstationarity causes shifts of the
trajectory in phase space—the greater the nonstationarity, the larger the shifts.
SDLE, however, cannot be affected much by shifts, especially large ones, since it is
based on the coevolution of pairs of vectors within chosen small shells. The other
type is related to oscillatory components. They only affect SDLE near where it is
close to zero; therefore, they will not alter the distinct scaling for chaos and fractal
processes.

9.3 Applications: Biological Data Analysis

To better understand the SDLE and appreciate its power, we now apply it to examine
two types of physiological data, HRV and EEG.

9.3.1 EEG Analysis

EEG signals provide a wealth of information about brain dynamics, especially
related to cognitive processes and pathologies of the brain such as epileptic seizures.
To understand the nature of brain dynamics as well as to develop novel methods for
the diagnosis of brain pathologies, a number of complexity measures have been used
in the analysis of EEG data. These include the Lempel–Ziv (LZ) complexity [50],
the permutation entropy [51], the LE [21], the Kolmogorov entropy [20], the
correlation dimension D2 [19, 52], and the Hurst parameter [53–55]. We compare
the SDLE with these complexity measures or their close relatives.

The EEG signals analyzed here were measured intracranially by the Shands
hospital at the University of Florida. Such EEG data are also called depth EEG
and are considered cleaner and more free of artifacts than scalp (or surface) EEG.
Altogether, we have analyzed seven patients’ multiple-channel EEG data, each with
a duration of a few hours, with a sampling frequency of 200 Hz. When analyzing
EEG for epileptic seizure prediction/detection, it is customary to partition a long
EEG signal into short windows of length W points and calculate the measure of
interest for each window. The criterion for choosing W is such that the EEG signal
in each window is fairly stationary, is long enough to reliably estimate the measure
of interest, and is short enough to accurately resolve localized activities such as
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seizures. Since seizure activities usually last about 1–2 min, in practice, one often
chooses W to be about 10 s. When applying methods from random fractal theory
such as detrended fluctuation analysis (DFA) [53], it is most convenient when the
length of a sequence is a power of 2. Therefore, we have chosen W = 2,048 when
calculating various measures. We have found, however, that the variations of these
measures with time are largely independent of the window size W . The relations
among the measures studied here are the same for all the seven patients’ EEG data,
so we illustrate the results based on only one patient’s EEG signals.

We have examined the variation of λ (ε) with ε for each segment of the EEG
data. Two representative examples for seizure and non-seizure segments are shown
in Fig. 9.5. We observe that on a specific scale ε∗, the two curves cross. Loosely,
we may term any ε < ε∗ as small scale, while any ε > ε∗ as large scale. Therefore,
on small scales, λ (ε) is smaller for seizure than for non-seizure EEG, while on
large scales, the opposite is true. The variations of λsmall−ε and λlarge−ε with
time for this patient’s data, where small − ε and large − ε stand for (more or
less arbitrarily) chosen fixed small and large scales, are shown in Fig. 9.6a, b,
respectively. We observe two interesting features: (1) the pattern of variation of
λsmall−ε(t) is reciprocal of that of λlarge−ε(t). This result can be expected from
Fig. 9.5. (2) The variations in λsmall−ε(t) and λlarge−ε(t) clearly indicate the two
seizure events. Therefore, either λsmall−ε(t) or λlarge−ε(t) can be used to detect
epileptic seizures accurately.
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We now compare the SDLE with three commonly used measures from chaos
theory, the largest positive LE [21], the correlation entropy [20], the correlation
dimension [19], and one measure from random fractal theory, the Hurst parameter.
We discuss the three measures from chaos theory first.

The LE is a dynamic quantity. It characterizes the exponential growth of an
infinitesimal line segment, εt ∼ ε0eλ1t , ε0 → 0. It is often computed by the
algorithm of Wolf et al. [21], by monitoring the exponential divergence between
a reference and a perturbed trajectory. For truly chaotic signals, 1/λ1 gives the
prediction time scale of the dynamics. Also, it is well known that the sum of all
the positive Lyapunov exponents in a chaotic system equals the Kolmogorov–Sinai
(KS) entropy. The KS entropy characterizes the rate of creation of information in
a system. It is zero, positive, and infinite for regular, chaotic, and random motions,
respectively. It is difficult to compute, however. Therefore, one usually computes the
correlation entropy K2, which is a tight lower bound of the KS entropy. Similarly, the
box-counting dimension, which is a geometrical quantity characterizing the minimal
number of variables that are needed to fully describe the dynamics of a motion, is
difficult to compute, and one often calculates the correlation dimension D2 instead.
Again, D2 is a tight lower bound of the box-counting dimension. Both K2 and D2

can be readily computed from the correlation integral through the relation [19, 20].

C(m,ε)∼ εD2 e−mLτK2 (9.16)

where m and L are the embedding dimension and the delay time, τ is the sampling
time, and C(m,ε) is the correlation integral defined by

C(m,ε) =
1

N2

N

∑
i, j=1

θ (ε −‖Vi−Vj‖), (9.17)

where θ (y) is the Heaviside step function taking values 1 or 0 depending on whether
y ≥ 0 or not, Vi and Vj are reconstructed vectors, N is the number of points in the
time series, and ε is a prescribed small distance. Equation (9.16) means that in a
plot of lnC(m,ε) vs. lnε with m as a parameter, for truly low-dimensional chaos,
one observes a series of parallel straight lines, with the slope being D2 and the
spacing between the lines estimating K2 (where lines for larger m lie below those
for smaller m). From these descriptions, one would expect that λ1(t) and K2(t)
are similar, while D2(t) has little to do with either λ1(t) or K2(t). Surprisingly,
from Fig. 9.6c–e, we observe that this is not the case: λ1(t) is similar to D2(t) but
reciprocal of K2(t). In a moment, we shall explain how these puzzling relations may
be understood based on λsmall−ε(t) and λlarge−ε(t).

Next we consider the calculation of the Hurst parameter H. As pointed out earlier,
H characterizes the long-term correlations in a time series. There are many different
ways to estimate H. We have chosen DFA [53], since it is more reliable [47] and has
been used to study EEG [54, 55].
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DFA works as follows: First, divide a given EEG data of length N, which is
treated as a random walk process, into 
N/l� nonoverlapping segments (where 
x�
denotes the largest integer that is not greater than x), each containing l points; then
define the local trend in each segment to be the ordinate of a linear least-squares fit
of the time series in that segment; finally compute the “detrended walk,” denoted by
xl(n), as the difference between the original “walk” x(n) and the local trend. One
then examines the following scaling behavior:

Fd(l) =

〈
l

∑
i=1

xl(i)
2

〉

∼ l2H (9.18)

where the angle brackets denote ensemble averages of all the segments. From our
EEG data, we have found that the power-law fractal scaling breaks down around
l ≈ 6. This is caused by distinct time scales defined by the α rhythm [54] or the
dendritic time constants [55]. Figure 9.6f shows H(t) for our EEG data . We observe
that the pattern of H(t) is very similar to that of λ1(t) but reciprocal to K2(t) and
D2(t). Such relations cannot be readily understood intuitively, since the foundations
for chaos theory and random fractal theory are entirely different.

Let us now resolve all of the curious relations observed between λ1(t), K2(t),
D2(t), and H(t).

• Generally, entropy measures the randomness of a dataset. This pertains to small
scale. Therefore, K2(t) should be similar to λsmall−ε(t). This is indeed the case.
We should point out that we have also calculated other entropy-related measures,
such as the LZ complexity [50], which is closely related to the Shannon entropy
and permutation entropy [51], and observed similar variations. Therefore, we can
conclude that the variation of the entropy is represented by λsmall−ε(t), regardless
of how entropy is defined.

• To understand why λ1(t) calculated by the algorithm of Wolf et al. [21]
corresponds to λlarge−ε(t), we note that the algorithm of Wolf et al. [21] involves
a scale parameter that whenever the divergence between a reference and a
perturbed trajectory exceeds this chosen scale, a renormalization procedure is
performed. When the algorithm of Wolf et al. [21] is applied to a time series with
only a few thousand points, in order to obtain a well-defined LE, a fairly large-
scale parameter has to be chosen. This is the reason that the LE and λlarge−ε are
similar. In fact, the scale we have chosen to calculate λ1(t) is even larger than
that for calculating λlarge−ε(t). This is the reason that the value of λ1(t) shown in
Fig. 9.6c is smaller than that of λlarge−ε(t) shown in Fig. 9.6b.

• It is easy to see that if one fits the λ (ε) curves shown in Fig. 9.5 by a straight
line, then the variation of the slope with time should be similar to λsmall−ε(t) but
reciprocal of λlarge−ε(t). Such a pattern will be preserved even if one takes the
logarithm of λ (ε) first and then does the fitting. Such a discussion makes it clear
that even if EEG is not ideally of the 1/ f 2H+1 type, qualitatively, the relation
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λ (ε) ∼ ε−1/H holds. This in turn implies D2 ∼ 1/H. With these arguments, it
is clear that the seemingly puzzling relations among the measures considered
here can be readily understood by the λ (ε) curves. Most importantly, we have
established that commonly used complexity measures can be related to the values
of the SDLE at specific scales.

As we have pointed out, around the characteristic scale ε , λ (ε) is always close
to 0. The pattern of λ (ε) around ε is governed by the structured components in the
data, such as the α, γ, β , and δ waves. From Fig. 9.5, we observe that the patterns
for seizure and non-seizure EEG segments are very different. Such information
is certainly helpful in predicting/detecting seizures. Since the numerous measures
considered here are already very effective for this purpose, we will not pursue this
issue further here. The issue becomes more important when distinguishing healthy
subjects from patients with heart disease using the HRV data, as we will soon show.

9.3.2 HRV Analysis

HRV is an important dynamical variable of the cardiovascular function. Its most
salient feature is the spontaneous fluctuation, even when the environmental pa-
rameters are maintained constant and no perturbing influences can be identified.
Since the observation that HRV is related to various cardiovascular disorders [56], a
number of methods have been proposed to analyze HRV data. They include methods
based on simple statistics from time and frequency domain analyses (see [57]
and references therein), as well as those derived from chaos theory and random
fractal theory [10, 14, 15, 58–61]. We shall now show that the SDLE can readily
characterize the hidden differences in the HRV under healthy and diseased condi-
tions and shed much new light on the dynamics of the cardiovascular system.

We examine two types of HRV data, one for healthy subjects and another for
subjects with the congestive heart failure (CHF), a life-threatening disease. The data
were downloaded from the PhysioNet [8]. There are 18 healthy subjects and 15
subjects with CHF. Part of these datasets were analyzed by random fractal theory.
In particular, 12 of the 15 CHF datasets were analyzed by wavelet-based multifractal
analysis [13], for the purpose of distinguishing healthy subjects from CHF patients.
For ease of comparison, we take the first 3×104 points of both groups of HRV data
for analysis. In Fig. 9.7a, b, we have shown two typical λ (ε) vs. ε curves, one for a
healthy subject and another for a patient with CHF. We observe that for the healthy
subject, λ (ε) linearly decreases with lnε before λ reaches around 0, or, before ε
settles around the characteristic scale, ε . Recall that this is a characteristic of noisy
dynamics (Fig. 9.2). For the CHF case plotted in Fig. 9.7b, we observe that the λ (ε)
is oscillatory, with its value always close to 0, and hence, the only scale resolvable is
around ε . Since the length of the time series used in our analysis for the healthy and
the CHF subjects is the same, the inability of resolving the λ (ε) behavior on scales
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Fig. 9.7 λ (ε) (per beat) vs. ε (in semi-log scale) for HRV data of (a) a healthy subject and (b) a
subject with CHF

much smaller than ε for patients with CHF strongly suggests that the dimension of
the dynamics of the cardiovascular system for CHF patients is considerably higher
than that for healthy subjects.

We now discuss how to distinguish between healthy subjects and patients with
CHF from HRV analysis. We have devised two simple measures, or features. One
is to characterize how well the linear relation between λ (ε) and lnε can be defined.
We have quantified this by calculating the error between a fitted straight line and
the actual λ (ε) vs. lnε plots of Fig. 9.7a, b. The second feature is to characterize
how well the characteristic scale ε is defined. This is quantified by the ratio between
two scale ranges, one is from the second to the sixth point of the λ (ε) curves and
another is from the seventh to the 11th point of the λ (ε) curves. Now, each subject’s
data can be represented as a point in the feature plane, as shown in Fig. 9.8. We
observe that for healthy subjects, feature 1 is generally very small but feature 2 is
large, indicating that the dynamics of the cardiovascular system is like a nonlinear
system with stochasticity, with resolvable small-scale behaviors and well-defined
characteristic scale ε . The opposite is true for the patients with CHF: feature 1
is large but feature 2 is small, indicating that not only small-scale behaviors of
the λ (ε) curves cannot be resolved, but also that the characteristic scale ε is not
well defined. Very interestingly, these two simple features separate completely the
normal subjects from patients with CHF. In fact, each feature alone can almost
perfectly separate the two groups of subjects studied here.

It is interesting to note that for the purpose of distinguishing normal HRV from
CHF HRV, the features derived from SDLE are much more effective than other
metrics including the Hurst parameter, the sample entropy, and multiscale entropy.
For the details of the comparisons, we refer to [39].
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9.4 Concluding Remarks

In this chapter, we have discussed a multiscale complexity measure, the SDLE.
We have shown that it can readily characterize low-dimensional chaos and random
1/ f α processes, can readily detect intermittent chaos, can conveniently deal
with nonstationarity, and can accurately detect epileptic seizures from EEG and
distinguish healthy subjects from patients with CHF from HRV. More importantly,
we have established that commonly used complexity measures can be related to
the value of the SDLE at specific scales, and that the pattern of the SDLE around
the characteristic scale ε contains a lot of useful information on the structured
components of the data that may greatly help detect significant patterns. Because
of the ubiquity of chaos-like motions and 1/ f α-type processes and the complexity
of HRV and EEG data, our analyses strongly suggest that the SDLE is potentially
important for clinical practice and provides a comprehensive characterization of
complex data arising from a wide range of fields in science and engineering.

Our analyses have a number of important implications:

• To comprehensively characterize the complexity of complicated data such as
HRV or EEG data, a wide range of scales has to be considered, since the
complexity may be different on different scales. For this purpose, the entire λ (ε)
curve, where ε is such that λ (ε) is positive, provides a good solution. This point
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is particularly important when one wishes to compare the complexity between
two signals—the complexity for one signal may be higher on some scales, but
lower on other scales. The situation shown in Fig. 9.5 may be considered one of
the simplest.

• For detecting important events such as epileptic seizures, λsmall−ε and λlarge−ε
appear to provide better defined features than other commonly used complexity
measures. This may be due to the fact that λsmall−ε and λlarge−ε are evaluated at
fixed scales, while other measures are not. In other words, scale mixing may blur
the features for events being detected, such as seizures.

• In recent years, there has been much effort in searching for cardiac chaos [14–
18,58]. Due to the inability of unambiguously distinguishing deterministic chaos
from noise by calculating the largest positive LE and the correlation dimension,
it is still unclear whether the control mechanism of cardiovascular system is truly
chaotic or not. Our analysis here highly suggests that if cardiac chaos does exist,
it is more likely to be identified in healthy subjects than in pathological groups.
This is because the dimension of the dynamics of the cardiovascular system
appears to be lower for healthy than for pathological subjects. Intuitively, such
an implication makes sense, because a healthy cardiovascular system is a tightly
coupled system with coherent functions, while components in a malfunctioning
cardiovascular system are somewhat loosely coupled and function incoherently.

As example applications, we have focused on the analyses of HRV and EEG data
here. It is evident that SDLE will be useful for other kinds of complex data analyses,
including financial time series and various kinds of physiological data. While much
of the past as well as current research has been focused on determining whether
some experimental data are chaotic or not, the scaling laws of SDLE suggest that
it is often feasible to obtain the defining parameters of the data under study. That
is, if the data is chaotic, then one should find out what kind of chaos it is; and if it
is random, one can aim to find out what kind of random process that is, including
its correlation structure. While in principle, SDLE is able to do so without pre-
processing of the data under study, suitable detrending and denoising may help. A
particularly simple and versatile procedure is the smooth adaptive filter developed
by the authors, which has been successfully applied to recover chaos in heavy noise
environment [62–64].
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