Chapter 4
Function Spaces for Sampling Expansions

M. Zuhair Nashed and Qiyu Sun

Abstract In this paper, we consider a variety of Hilbert and Banach spaces that
admit sampling expansions f(t) = ¥, _; f(t:)Sn(z), where {S,};7_, is a family of
functions that depend on the sampling points {z,};_; but not on the function f.
Those function spaces, that arise in connection with sampling expansions, include
reproducing kernel spaces, Sobolev spaces, Wiener amalgam space, shift-invariant
spaces, translation-invariant spaces, and spaces modeling signals with finite rate of
innovation. Representative sampling theorems are presented for signals in each of
these spaces. The paper also includes recent results on nonlinear sampling of signals
with finite rate of innovation, convolution sampling on Banach spaces, and certain

foundational issues in sampling expansions.

4.1 Introduction

Series expansions and integral representations of functions and operators play a fun-
damental role in the analysis of direct problems of applied mathematics—witness
the role of power series, Fourier series, Karhunen—Loeve expansion, eigenfunction
expansions of symmetric linear operators, and sampling expansions in signal
processing; and the role of Fourier transform, spectral integral representations,
and various integral representations in boundary value problems, potential theory,
complex analysis, and other areas.

Expansion theorems also play a fundamental role in inverse problems. Two
important problems discussed below are: (1) the recovery of a function from inner
product with a given set of functions (i.e., the moment problem), and (2) the
recovery of a function from its values on a subset of its domain (i.e., reconstruction
of a function from its samples via sampling expansion).
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One of the important problems in analysis is to expand a given function f in a
separable Banach space by a series of the form

oo

f(t): chfn(t)v 4.1)

n=1

where {f,}7_, is a suitable sequence of functions. This is not always possible. We
consider two important cases of such an expansion:

1. Let H be a separable Hilbert space and {f, },_, be an orthonormal sequence in
H.If {c,};_, is a sequence for which the rlght hand side of the expansion (4.1)
converges to f in H, then ¢, = (f, f,,) for all n > 1, and hence c,,n > 1, are the
(generalized) Fourier coefficients. In this case, the series

flt) = Z<f, ) fult) 4.2)

n=

is called the (generalized) Fourier expansion. This series converges to f if and
only if the orthonormal sequence {f,} is complete in the sense that the only
function orthogonal to all the f;’s is the zero function. Equivalently, Parseval
equality

Z Fof)l? = A1

holds for every f € H.

This expansion theorem is a direct problem: Given f, find its expansion. The
associated inverse problem is the moment problem: determine f given moments
(f, fa),n € J (an index set). Given any sequence of real number s,,n € J, the
existence of the moment problem is whether there exists a function f such that
sn = {f,fn),n € J, while the uniqueness is whether such a function f is uniquely
determined by its moment sequence s,,n € J.

2. The second type of expansion that is the central theme of this chapter, is what is
called a sampling expansion:

oo

F(6) =" fta)Sn(t), (4.3)

n=1

where {S,,}77_, is called a sampling sequence and {t,};,_, is the sampling set. The
inverse problem for sampling is to determine f from given samples f(¢,),n > 1.

There have been many advances in sampling theory and its applications to signal
and image processing. In the past three decades, many authors developed sampling
theorems based on (1) the theory of regular and singular boundary value problems
and (2) transforms other than the Fourier transform, including such transforms as
the Sturm-Liouville transform, Jacobi transform, and Hankel transform, see [43].
Another main thrust has been in nonuniform sampling for non-bandlimited signals.
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In the past 20 years, there have been major advances in sampling theory and its
foundational aspects, where methods of functional analysis and harmonic analysis
have played pivotal roles. In particular, new directions in sampling theory have
been pursued using various function spaces that admit sampling expansions, such
as reproducing kernel Hilbert (Banach) spaces, Sobolev spaces, Wiener amalgam
space, shift-invariant spaces, translation-invariant spaces, and spaces modeling
signals with finite rate of innovation. Another direction of research on sampling
in the past decade involves average sampling, convolution sampling, nonlinear
sampling, and other fundamental issues in sampling theory. The reader may
refer to [1,6,7,9-11, 15-24, 30, 33, 37, 39, 43] for various prospectives on these
advances.

The purpose of this chapter is to consider a variety of function spaces mentioned
above in which every function admits the sampling expansion (4.3). Representative
sampling expansions are presented for signals in each of these spaces. This chapter
also includes recent results on nonlinear sampling for signals with finite rate of
innovation, convolution sampling on Banach spaces, and certain foundational issues
in sampling expansions.

4.2 Fourier Series/Fourier Integral Approach
to the Whittaker, Shannon, and Kotel’nikov
Sampling Theorem

Let f be a bandlimited signal with finite energy; i.e.,
Q .
0= [ Fl@)$®do, 1€ (~,) (4.4)
-Q

for some square-integrable function F on [—Q,Q],2 > 0. We extend F(®)
periodically to the real line and expand the extension in complex Fourier series:

Fl@)= Y coexplintn/Q), o] <, 4.5)

Nn=-—oo

where

1 e .
=35 /&F(a)) exp(—intw/Q)do. (4.6)

Comparing (4.4) and (4.6) leads to

1
cn = Ef(—nn/!)). 4.7
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Substituting (4.7) in (4.5) gives

1

) i f(—nm/Q)exp(intew/Q)

Nn=-—oo

F(w)

| =
= — 2 f(nm/Q)exp(—inntw/Q), 0| < Q.
2~
Substituting this in (4.4) and interchanging the order of integration and summation
leads to

f(t):% 3 f(nn/g)[;exp(_mm/g)exp(iwt)dw,

Nn—=—o0
which yields the celebrated classical expansion of a bandlimited signal f:

F0)= 3, flomje) THZ0T),

n=—oco

(4.8)
—nmn

This can be simplified to

f0) =sin(@1) Y fonm/@) A1)

Qt —nrw’

n=—oo

This classical proof is rigorous. The interchange of integration and summation can
be easily justified. But the proof is not very revealing: We perform this interchange
and a theorem pops up. A theorem is born, but we did not hear the heartbeat of its

proof.

4.3 Properties of the Sinc Function and the Paley—Wiener
Space

Let By consist of all signals that are bandlimited to [—7, 7] (i.e., Q = 7 in (4.4))
and have finite energy. The space By is the same as the Paley—Wiener space of
restrictions to the real axis of entire functions of exponential type 7. The Paley—
Wiener space B, has many interesting properties that are not exploited or used in
the classical proof of the Whittaker—Shannon—Kotel’nikov sampling theorem. Some
of these properties are stated in the following theorem.

Theorem 1. (i) By is a reproducing kernel space with kernel

. __sinm(s—1)
SIHC(S—I) = W
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(ii) The sequence { Sy }ncz, where Sy(t) := sinc(t —n), is an orthonormal basis for
Bn’.
(iii) The sequence {Sy},cz has the discrete orthogonality property:

1 ifm=n,

Sn(m) = Onn := {0 if m +# n.

(iv) f(-—c)€Bgand||f(-—c)|l2=||fl|2forall f € Bz and c € R. Hence By is
unitarily translation-invariant subspace of L*(R).
(v) By is a shift-invariant subspace of L*(R) generated by the sinc function:

Bﬂ_{zc ) sinc(t —n): Y, |e(n) }

nez nez
Proof. (i) Take f € By, and let F be the square-integrable function in (4.4). Then

f= [ ’; O F (0)da, t € (—o0,00). 4.9)

This implies that

101 < [ IF@)do < 2m) P2 = £l

and

- (i e
_ / < / ﬂe'(’”wdw) ds

_/ smn ))ds 1 € (—oo,00).

Hence By is a reproducing kernel Hilbert space with kernel $22(5~1)

s—t)

(i) By the reproducing property and symmetry of the sinc kérng:l k(s,t) =
%, we have that (S,,S,) = k(n,m), which takes value one if m = n and
zero if m # n. Hence S;,,n € Z, is an orthonormal set. The completeness of the
orthonormal set {S,, },,cz follows from (4.8).

(iii) The discrete orthogonality property is obvious.
(iv) Take f € By, and let F' be the square-integrable function in (4.4). Then it

follows from (4.9) that for any ¢ € (—oe, ),

fli-0)= 5 [ o0 w)o = - [* or @0
21 )z 21 ’
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where F.(®) = e “®F(®) is square-integrable. Hence f(t —c) € By for all

1 € (—oo,00).
(v) This follows from the conclusion that {S,},cz is an orthonormal basis for the
Paley—Wiener space By. (]

4.4 The Engineering Approach to Sampling
and Its Mathematical Deficiencies

We now turn to the engineering clever approach to the sampling theorem, see, e.g.,
[13, 30, 32]. We paraphrase some of the description in [13]. Let us consider what
happens when we sample f(¢) at uniformly spaced times. If the sampling frequency
is f;, then we can model this with a multiplication of f(z) by a train of Dirac
impulsed spaces Ty := 1/ f; second apart:

PO =0T Y 8¢-nT)=T, 3 f(nT)8( —nTy).

n=—oco Nn=-—oo

Mathematicians consider the sequence of sampled values { f(nT;) }i_ ., as a vector
in ¢, (the space of all square-summable vectors). Electrical engineers like to
continue to think of this sequence as a time signal. So to stay in the analog
world, they use their beloved “Dirac impulse” as above. Informally, as they assert,
“multiplication by an impulse train” in the time domain corresponds to convolution
with an impulse train in the frequency domain. If the Fourier transform of the
sampled sequence f*(¢) is F*(®), then

F*(w)=F(o)* i S(w—nwy)= Y F(o—nw).

n=—co n=—oo

Hence, again informally, the Fourier transform of the samples (considered as a time
signal in the sense of the above representation) is an infinitely repeated replication
of F() at intervals of @, := 27 f;. The portion of the transform between — /2
and w;/2 is called the base band and all the other replication images. If f(r)
is bandlimited so that F(®) is zero for |w| > 2xf,, and if f; > 2f. (Shannon’s
rate), then there is no overlap between successive replications. We have lost no
information in the sampling process; if anything, we have picked up a lot of
“superfluous information” at frequencies outside the range of interest.

To recover the original signal, we must remove the replication images. First F (@)
can be obtained from F*(®) by multiplying it by the characteristic function

(@) = 1 if |o| < wy/2,
X289V 0 if o] > @y)2.



4 Function Spaces for Sampling Expansions 87

This is done by an analog filter known as an interpolation filter or a low-pass filter.
We are now back to F(®), and the time function can be recovered via the inverse
Fourier transform:

fy = /:F(w)e"wfdw.

In essence engineers view the Shannon sampling theorem in terms of an impulse
train and a low-pass filter in the following way [30, 32]:

S0 0 S ),

First the signal f € By is sampled at the integers to convert f(z) into the impulse

train
2 f(n)é(t—n)
N=—o0

where 6 (7 — n) is the Dirac delta function (impulse) at ¢ = n. This is still expressed
as an analog signal. This then is transmitted through an ideal low-pass filter which
passes all frequencies of absolute value less than 7 and blocks all others. This
converts f*(¢) back into f (7).

We denote the sampling map by S : f — f* and the low-pass filter map by

Pifif
B [aknown spice]- -

But the above procedure has some mathematical difficulties which are not resolved
in the engineering approach:

* The sampler S takes f into f*, which is out of the space of bandlimited functions;
indeed, f* is not a signal with finite energy.

* In what sense does the impulse train series converge? One may prove that the
series converges in the sense of tempered distributions to a generalized function.

e The map P recovers f at least formally since

_ 1 d —iot za)n smn(t—n)
P(5(t—n))—ﬁ/7 e do = T

If P is continuous (in some topology), then

= 3 fwPGG-n)= Y fin S‘“”( sinz(t—n)

e e —n)

However, since .’ (the space of all tempered distributions, see the next section)
is not a Hilbert space, we do not know if P is a continuous operator.
« Still another difficulty! P is not even well defined on .¥”’. Indeed,

Pg= yil(x[fn,n]g)u ges,
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where .# ! is the inverse Fourier transform of a tempered distribution. So P
corresponds under the Fourier transform to the multiplication of the Fourier
transform g in . by the characteristic function of [—7,|. Unfortunately the
characteristic function is not a multiplier in .. Hence we need to restrict
ourselves to a subspace of .’ in which X[-nx 1s a multiplier.

These issues have been resolved by Nashed and Walter [28]. They obtained a
rigorous proof of the engineering approach, by considering the sampling map S as
an operator from B; to H~! and the filtering map P as an operator (actually an
orthogonal projection) from H~! to By:

By s H ' s By,

where H~! is a Sobolev space, see the next section for the definition of Sobolev
spaces. More importantly, by emulating and extending this proof, they obtained
a general unifying approach for sampling theorems in reproducing kernel Hilbert
spaces (RKHS) that include many earlier sampling theorems.

4.5 Function Spaces: Tempered Distributions, Sobolev
Spaces and Reproducing Kernel Hilbert Spaces

4.5.1 The Space of Tempered Distributions

Let . be the space of all rapidly decreasing C* functions on the real line R, i.e.,
functions that satisfy

gD < Cou(1+1t)77, 1 €R,

for all p,k=0,1,2,.... Convergence on . may be defined by endowing .’ with
the seminorms:

tp i = sup(1+ [t])7[g®(1)].
teR
Then g, — g in .¥ whenever
(14 1) (g3 (1) = W) = 0

uniformly in ¢ € R for each p and k > 0 as n — oo. The set .# is dense in L? :=
L?*(R) (the space of all square-integrable functions on the real line). We observe
that compactly supported C* functions are contained in ., and that the space .7 is
complete with respect to the convergence of semi-norms [, x, p,k > 0.

A tempered distribution is an element in the dual space .’ of .7, i.e., .’ consists
of all continuous linear functionals on .¥. The definition of Fourier transform

F (@) = /7 Z FOe0d, fe.s
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may be extended from .7 to .. The following examples of Fourier transforms on
" are needed in the derivation of a rigorous setting for the proof of the engineering

approach: _
ﬁ(S(t — oc)) =e 1%

3“( Y 6(t—27rn)) =Y 8(w—n),

nez nez

ﬁ( D a,,e””) =21 Y an6(®w—n),

neZ neZ

and

9< > ane™ ¥ n (f)> =y anw,

neZ neZ n(a)—»n)

where {a, },ez € £2.

4.5.2 Sobolev Spaces

An important Hilbert space structure on certain subsets of .¥”’ is provided by a
class of Sobolev spaces. For r € R, the Sobolev space H" consists of all tempered
distributions f € %’ such that

/ (@) (@* + 1) do < o.
The inner product of f and g in H" is defined by
(8= | F@i)( +1)do,

where f := % f is the Fourier transform of f. The space H" is complete with respect
to this inner product. For » = 0, H? is just L?(R) by Parseval identity. For r = 1,2, ...,
H" is the usual Sobolev space of functions that are (r — 1)-times differentiable and
whose rth derivative is in L?>(R). For r = —1,—2,..., H" contains all tempered
distributions with point support of order . Thus the Dirac delta § € H~!, and &',
the distributional derivative of &, belongs to H~2.

4.5.3 Reproducing Kernel Hilbert Spaces

A Hilbert space H of complex-valued functions on a set €2 is called a RKHS if all the
evaluation functionals H > f — f(r) € C are continuous (bounded) for each fixed
t € Q; i.e., there exist a positive constant C; for each 7 € Q such that |f(7)| < G| f]]
forall f € H.
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By Riesz representation theorem, for each ¢ € €2 there exists a unique element &,
such that f(¢t) = (f,k) forall f € H. The reproducing kernel k(-,-) : Q x Q — C
of a RKHS H is defined by k(s,t) = (ks, k:),s,t € Q.

We summarize some basic properties of RKHS that are particularly relevant to
signal processing, wavelet analysis, and approximation theory:

o k(s,t) =k(t,s) forall t,s € Q.

o k(s,s) >0forall s € Q. Furthermore, if k(fo,79) = O for some 7y € Q, then f(fp) =
Oforall f € H.

o |k(s,1)] < \/k(s,8)\/k(t,t) forall 5,1 € Q.

 The reproducing kernel k(s,z) on Q x  is a nonnegative definite symmetric
kernel. Conversely by Aronszajn—Moore theorem, every nonnegative definite
symmetric function k(-,-) on £ x Q determines a unique Hilbert space H; for
which &(-,-) is a reproducing kernel [5]. Here a complex-valued function F on
€ x Q is said to be positive definite if for any n points t1,...,t, € €, the matrix
A= (F (t;,1}))1<i j<n is nonnegative definite, i.e., u*Au =3 ;| wiF (t;,t;)u; > 0
forall u= (uy,...,u,) € C".

A closed subspace A of a RKHS H is also a RKHS. Moreover, the orthogonal
projector P of H onto H and the reproducing kernel k(s,?) of the RKHS H are
related by Pf(s) = (f,ks),s € Q for all f € H where k; = Pk;.

» If a RKHS space H with kernel k(+,-) has direct orthogonal decomposition H =
H; @ H; for some complementary orthogonal closed subspaces H; and H», then
k =k 4 ko, where k;, k, are reproducing kernels of the reproducing kernel Hilbert
spaces H; and H», respectively.

* In a RKHS, the element representing a given bounded linear functional ¢ can be
expressed by means of the reproducing kernel: ¢ (f) = (f,h), where h = ¢ (k).
Similarly for a bounded linear operator L on H to H, we have that Lf(r) =
(Lf,h) = (f.L°h).

* Every finite-dimensional function space is a RKHS H with reproducing kernel

k(s,t) = Y ui(s)ui(r), where {u;}! | is an orthonormal basis for H. (Notice
that the sum in the above definition of the kernel k is invariant under the choice
of orthonormal basis).

* The space W!, that contains all functions f € L?[0, 1] such that f is absolutely
continuous and f’, which exists almost everywhere, is in L?[0,1], and £(0) =
0, is a RKHS with kernel k(s,7) = min(s,7) under the inner product (f,g) =
Jo f(6)g(t)dr.

 Sobolev space H*,s > 1/2, is a reproducing kernel Hilbert space.

» Let H be a separable RKHS, then its reproducing kernel k(+, -) has the expansion:

where {¢,}> , is an orthonormal basis for H. We remark that for a general

separable Hilbert space H, Y, | @u(1) @a(s) is not a reproducing kernel and also
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that ¢,’s do not generally corresponds to sampling expansions. If they do, i.e.,if
©n(t) = k(t,,1) for some sequence {#, }, then we have that f(¢) =¥, f(t,) @a(1),
this constitutes a sampling theorem.

o If the reproducing kernel k(s,#) of a RKHS H is continuous on £ x Q, then H
is a space of continuous functions (uniformly continuous on a bounded £2). This
follows from

@) = F()| = [(f ke = k)| < | f N[ llke — s

and ||k, — ks||* = k(t,t) — 2k(t,s) + k(s,s) for all 5,1 € Q.
* Strong convergence in a RKHS H implies pointwise convergence and uniform
convergence on compact sets, because

1f(@) = fu@) = {f = fus k)| < [1f = fullV/K(2,1).

e Ly[a,b], the space of all square-integrable functions on the interval [a, b], is not a
RKHS. Indeed, point evaluation is not well defined. Each function f € L?[a, b] is
actually an equivalence class of functions equal to each other almost everywhere.
Thus the*“value” at a point has no meaning since any point has measure
Zero.

4.6 Rigorous Justification of the Engineering Approach
to Sampling

This section involves a search for function spaces in which the mathematical
difficulties described in Sect.4.3 are resolved. Clearly we want to work with a
subspace H of the space ./ of tempered distributions. We require that 6 € H
and the convolution signal of the impulse train must converge in H under a mild
condition on {f(#,)};-_... As remarked in Sect. 4.4, the characteristic function is
not a multiplier in the space %, and hence the space H must also have the property
that the characteristic function is a multiplier in H. Finally, the sampling map S and
the low-pass filter map P must be well defined on the appropriate spaces, and their
composition PS is the identity map:

* The characteristic functions are multipliers in the space of Fourier transforms
of the elements in H"(R), which can be identified with the image under the
Fourier transform of L (R), the space of square-integrable functions with respect
to the measure du (x) = (1 + |x>)"dx. So we may consider H" with r > —1/2;
specifically we take H !, since § € H™!.

+ We consider the sampling map Sf = f* as a map onto H~!. Then the partial sums
of the sampled impulse train ¥__,, f(n)8(t —n) belong to H~! and converges
in the norm of H~! to f*. This proposition does not require the signal to be
bandlimited, but the next result does.
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» When we consider projector onto the space H~', By C L, C H~ ! and B is closed
in the topology of H~!'. Hence we can define the orthogonal projection of H~!
onto By. The reproducing kernel of B; enables us to compute this projection
easily. In fact,

Po,(t) =k(t,a), t €R

and

N
Pf = lim 3 f(KC)
in the norm of H~! [28]. The above series converges to Pf*(t) by the continuity
of the orthogonal projector and to f(¢) by the sampling theorem. Thus Pf* = f.

The above ideas provide a mathematical proof of the engineering arguments, but
they also suggest important extensions to other RKHS, as discussed in [28].

4.7 Sampling in Reproducing Kernel Hilbert Spaces

At the outset, the expansions (4.2) and (4.3) mentioned in introduction section
appear markedly different, or at least not seem to be related. The expansion (4.2)
holds for any complete orthonormal sequence in a separable Hilbert space, and
sampling points {z,} could have no meaning in this context. On the other hand,
the sampling expansion does not require the sampling sequence {S,(¢)}_, to be
orthonormal.

The expansions (4.2) and (4.3) can indeed be related. In finite-dimensional spaces
the expansions are based on different choices of orthonormal basis. One with respect
to inner product of two continuous functions, and the other is based on discrete
orthogonality or biorthogonality of the sequences.

The expansions (4.2) and (4.3) may also be related in some special cases of
orthonormal sequences in certain infinite-dimensional spaces. Let f be a signal
defined on the real line. Suppose that there exists a reproducing kernel k(z,s)
such that for some real numbers {z,}_,, the sequence f;(s) = k(tn,s),n > 1, is
a complete orthonormal sequence, then ¢, = (f, f,) = f(t,). The series expansion
Yo cufn then becomes a sampling expansion, i.e., it states how to recover f(z)
from the sample values { f(#,) }:-_,. For example, for w-bandlimited signals, k(t,s) =
SI%(:)S) and Sy,(t) = k(t,n) is an orthonormal basis for By, and the expansion
result mentioned above reduces to the Whittaker—Shannon—Kotel’nikov sampling
expansion [42].

In [28], the authors introduced an approach that provided general sampling
theorem for functions in RKHS. The sampling theorems are for functions in a
general RKHS with reproducing kernel k(z,s), which is closed in the Sobolev
space H”,p > 1/2. The sampling functions S,,n > 1, need not be an orthogonal
system, and the theory allows nonorthogonal sampling sequences. Then the system
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{Sn 1= k(tn,-)};_; has to satisfy a biorthogonality condition, i.e., Sy(tn) = Sun
for all m,n > 1, and the sampling points must satisfy a density-type condition.
This general setup includes sampling theorems related to other transforms than the
Fourier transform as in the classical theory. For example, Sturm-Liouville, Jacobi,
and Laguerre transforms are among the examples discussed in [28], as well as
sampling using frames. Also for the orthogonal case, several error analyses, such
as truncation, aliasing, jittering, and amplitude error, are discussed in details.

Now we state a representative sampling theorem for signals in a reproducing
kernel Hilbert space [28].

Theorem 2. Let H C L*(R) be a reproducing kernel Hilbert space that is closed in
the Sobolev space H™" and under differentiation. Assume that its reproducing kernel
k(s,t) is continuous and has the zero sequence {t,} which is a set of uniqueness for
H, and assume that {t,} tends to infinity as n tends to infinity. If f € H satisfies
f(t)/k(t,t) = O(t=2), then the sampled sequence

710 = 2 8t

converges in the sense of H™' and its orthogonal projection onto H equals to f(t),
and the series
f(tn)

flt)= Z Fo i)

converges uniformly on sets for which k(t,t) is bounded.

k(ty,1)

4.8 Sampling in Shift-Invariant Spaces

A shift-invariant space generated by a square-integrable function ¢ is given by

Va(9) := { 2 cnd(- z |Cn|2 < °°}
neZ ncl
Shift-invariant spaces have been shown to be realistic for modeling signals with
smoother spectrum, and also suitable for taking into account real acquisition and
reconstruction devices. The notion of shift-invariant spaces arises in approximation
theory, wavelet theory, and sampling theory.
For the generator ¢ of a shift-invariant space, we usually assume that {¢(- —n) :
n € Z} consisting of all integer shifts of the generator ¢ is a Riesz basis for V,(¢);
i.e., there exist positive constants A and B such that

AY lal<|| %

neZ

2
cnd (- n)H §BZ |cn|2.
nez 2 neZ
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The Paley—Wiener space By is a shift-invariant space generated by the sinc function
sinc(t), and the integer shifts of the sinc function form an orthonormal basis for
the Paley—Wiener space B. The following is a representative sampling theorem for
signals in a shift-invariant space V»(¢) established in [40].

Theorem 3. Let ¢ be a real continuous function such that sup,cg|¢(7)](1 +
[t])!7€ < oo for some € > 0, ¢* (@) := Y,cz 0(n)e ™ # 0 for all ® € R, and
{@(t —n): n€Z}is an orthonormal basis for Va(¢). Then any signal f € V2(9) can
be stably reconstructed from its samples { f (n) }ncz on the integer lattice. Moreover,

f@6)y= 3 f(m)o(t—n) forall f€Va(9),

neZ

where § € Va(9) is defined by ¢(w) = §(w)/$*(0),» €R.

The reader may refer to [1, 4, 35, 37, 41] and references therein for some
fundamental issues to sampling theory in shift-invariant spaces.

4.9 Sampling in Unitarily Translation-Invariant Hilbert
Spaces

In this section, we consider sampling theorems on a unitarily translation-invariant
RKHS generated from a single function. To be more specific, the RKHS Hy has the
reproducing kernel

k¢(t,s):/7:q)(u—t)q)(u—s)du (4.10)

generated by a function ¢ € L' (R)NL?(R), whose Fourier transform does not have
real zeros. Examples of such a generating function ¢ includes (¢ +%)~!, e"’ztz,
and eVl where ¢ > 0. The RKHS Hy with reproducing kernel kg in (4.10) is given
by

Hy ={f :[|flln, <o}, 4.11)

where
1 . - 5 1/2
Il = (55 [, F@P/b@Pd0)

Theorem 4 ([38]). Let ¢ be an integrable function on the real line such that its
Fourier transform ¢ does not have real zeros and [g|¢(t)|*(1 +12)%dt < oo for
some o > 1, ky be the reproducing kernel in (4.10), and --- < A2 <A1 <Ay =
0 <A < A2 < --- be sampling points with Aj11 — Aj > € >0 for all j € Z. Denote
by 2 the closed subspace of the reproducing kernel Hilbert space Hy in (4.11)
spanned by ky (-,1;), j € Z. Then the sampling operator

23 fr—= (1)) jez
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is stable in the sense that there exist positive constants A and B such that

Al flla, <) jezlla < Bl|fllm, forall fe 2.

Moreover; the sampling expansion

0= 3 102G

=/ ;0)

isvalid forall f € 2.

4.10 Sampling Signals with Finite Rate of Innovation

Signals with finite rate of innovation are those signals that can be determined by
finitely many samples per unit of time [39]. The concept of signals with finite rate of
innovation was introduced and studied by Martin Vetterli and his school. Prototype
examples of signals with finite rate of innovation include delta pulses, narrow pulses
in ultrawide band communication, mass spectrometry data in medical diagnosis, and
splines with (non-)uniform knots. They also include bandlimited signals and time
signals in shift-invariant spaces, which are discussed in the previous sections.

A common feature of signals with finite rate of innovation is that they have a
parametric representation with a finite number of parameters per unit time. So we
may model a signal f with finite rate of innovation as a superposition of impulse
response of varying positions, amplitudes, and widths [34], i.e.,

f(6)="3 ca02(t—2), (4.12)

AEA

where each A € A represents the innovative position of the signal, ¢, is the impulse
response of the signal-generating device at the innovative position A, and ¢, is the
amplitude of the signal at the innovation position A. Thus the function space

Vp(@) = { 2 cA)ga(-=A): (c(A))ren € f”(/\)}J <p<e,  (413)

AEA

could be suitable for modeling signals with finite rate of innovation.

Sampling theory for signals with finite rate of innovation has been demonstrated
to be important for accurate time estimation of ultraband communication, registra-
tion of multiview images, pattern recognition, quantification of spectra, etc. The
following is a sampling theorem for signals with finite rate of innovation when the
innovative position of the signal and the impulse response of the signal-generating
device at the innovative position are given [8,33]:
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Theorem 5. Let A,I" be relatively separated subsets of R, ® = {¢; : A € A} bea
family of continuous functions on R such that sup,cg 5 c4 |92 (1)|(14 [t])* < oo for
some o > 1, and the space Vo(®) be as in (4.13). Assume that @ is a Riesz basis of
Vo (@), and that T is a stable ideal sampling set for Vo(®), i.e., there exist positive
constants A and B such that

Allfll2 < [[(f(M)yerl2 < B[ fll2 forall f € Vo(®).

Then there exists a displayer ¥ = {{, : y € I'} such that

sup |y (1)[(1+ Jt])* < e
teR,yell

and
)= f(Ny(t—y) forall f € Va(®).
yel

Now we consider nonlinear and highly challenging problem of how to identify
innovative positions and amplitudes of a signal with finite rate of innovation. For the
stability for identification, the innovation positions should be separated from each
other and the amplitudes at innovation positions should be above a certain level.
So we may model those signals with finite rate of innovation as superposition of
impulse response of active and nonactive generating devices located at unknown
neighbors of a uniform grid. In [36] we assume, after appropriate scaling, that
signals live in a perturbed shift-invariant space

Voo, 1= { N enp(-—n—0,) : (ci)rez € %’(Z)}

nez

with unknown perturbation ¢ := (0 )xcz, Where

0(2) = {c = (cr)rez : ||c|\g;-2 = sup |ex| + |ck|*1 < oo} .

Ck%o

A negative result for sampling in the perturbed shift-invariant space V., ¢ is that not
all signals in such a space can be recovered from their samples if ¢ satisfies the
popular Strang-Fix condition. The reason is that one cannot determine the jitter oy
of the signal Y7 (- —k—0p), 0p € R, as it has constant amplitudes and is identical
for all op € R. On the positive side, it is shown in [36] that any signal / in a perturbed
shift-invariant space with unknown (but small) jitters can be recovered exactly from
its average samples (i, W, (- —k)),1 < m < M,k € Z, provided that the generator
¢ of the perturbed shift-invariant space and the average samplers y;,,,1 <m <M,
satisfy the following condition:

rank (WA"” vil(€) Vo. AM]((;)> =2 forall € € [-m, 7). (4.14)
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Here the bracket product [f,g] of two square-integrable functions f and g is given
by [f,8)(§) = Xiez f(§ +2Im)g(E +2Im).

Theorem 6. Let ¢ and y,. .., Wy satisfy (4.14) and have the following regularity
and decay properties:

M
sup <|<P(t)| +lo (O +19"(0) + Z,l Illfm(t)|> (1+ )% <o (4.15)

forsome o > 1. Then for any L > 1, there exists a positive number 8 € (0,1/2) such
that any signal h(t) = Yz ckp(t —k — o) in the space Ve o with ||(ci)kezllez <
L and ||(0k)kezll < 01 could be reconstructed from its average sample data
(hy (- —k)), 1 <m < M,k € Z, in a stable way.

4.11 Sampling in Reproducing Kernel Banach Subspaces
of 17

Let 1 < p <oo. A bounded linear operator 7 on L”(R) is said to be an idempotent
operator if 72 = T. Denote the range space of the idempotent operator 7 on L”(R)
by V,; i.e.,

V,:={Tf: fe”(R)}. (4.16)
The Paley—Wiener space, finitely generated shift-invariant spaces, p-integrable

spline spaces, spaces modeling signals with finite rate of innovation, and L? itself
are the range space of some idempotent operators.
< m}
1

Denote the Wiener amalgam space by
ws(K)(s,1):= sup [K(s+z1,0+22) —K(x,y)].
—6<z1,2,<8

sup [ f(-+2)
—1/2<z<1/2

wh= {fGLl(R) S Ml = |

and the modulus of continuity of a kernel function K on R x R by

A sampling set I' in this chapter means a relatively separated discrete subset
of R;i.e.,
Br(8):=sup Y x| 55t —7) <o (4.17)
tcR yell
for some § > 0, where ¥ is the characteristic function on a set E. A sampling set
I is said to have gap 6 > 0 if

Ap(8):=inf Y y_s55(1—7)>1 (4.18)
IERyeF
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[1,3,4]. If we assume that the idempotent operator 7 is an integral operator

Tf(6) = | Kls.0)f0)dr, f €' (R), (4.19)
R
whose measurable kernel K has certain off-diagonal decay and regularity,
sup|K(-+2z,2)| ‘ < oo (4.20)
zeR wl
and
lim |[sup |@ws(K) (- +z,2)] =0, (4.21)
60 zeR wl
then,

* V), is a reproducing kernel subspace of L”(R); i.e., for any ¢ € R there exists a
positive constant C; such that

F(O)I <Clfllrw) forall £ €V, (4.22)

e The kernel K satisfies the “reproducing kernel property”:
/ K(s,2)K(z,t)dz=K(s,t) foralls,r € R. (4.23)
R

* K(-,t) €V foranyt cR.

o Vo= {Zseac)ga(t —A) 1 (c(A))ren € €P(A)}, where A is a relative
separated discrete subset of R and @ = {¢; }1cx C V,, is localized in the sense
that there exists a function % in the Wiener amalgam space W' such that ¢; is
dominated by & forevery A € A, i.e.,

|95.(1)| < h(r) forallA €A andrecR. (4.24)

* Signals in V), have finite rate of innovation.

e For p = 2, an idempotent operator 7 with kernel K satisfying symmetric
condition K (x,y) = K(y,x) is a projection operator onto a closed subspace of L%.
In this case, the idempotent operator 7 and its kernel K is uniquely determined
by its range space V5 onto L.

The following sampling problem in the reproducing kernel space V), is estab-
lished in [25].

Theorem 7. Let 1 < p < oo, T be an idempotent integral operator whose kernel
K satisfies (4.20) and (4.21), V be the reproducing kernel subspace of LP(R)
associated with the operator T, and & > 0 be so chosen that

<1. (4.25)
L(R)

ro .=

sup|@g, /2 (K) (- +2,2)|
z€R
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Then any signal f in 'V can be reconstructed in a stable way from its samples
f(y),y €T, taken on a relatively separated subset I" of R with gap .

Similar conclusion to the one in the above sampling theorem has been established
in [12, Sect. 7.5] when the kernel K of the idempotent operator T satisfies the
symmetric condition K (x,y) = K(y,x).

4.12 Convolution Sampling in Reproducing Kernel Banach
Subspaces of 1/

In this section, we consider convolution sampling for signals in certain reproducing
kernel subspaces of L?,1 < p < eo. Here convolution sampling of a signal is ideal
sampling of the convoluted signal taken on a sampling set. Precisely, given an
integrable convolutor y and a sampling set I, the convolution sampling of a signal
f includes two steps: Convoluting y with the signal f,

wef)= [ f6wli-sds,

and then sampling the convoluted signal y * f at the sampling set I,

convoluting
—

f Frow R LFaey) (0) dyer

The data obtained by the above convolution sampling procedure is given by
{(f *w)(¥)}yer. In [27], it is shown that any signal in the reproducing kernel
subspace V), associated with an idempotent operator can be stably reconstructed
from its convolution samples taken on a sampling set with small gap if and only if
the convolution procedure is stable on that space.

Theorem 8. Let 1 < p < oo, yq,...,yy be integrable functions on the real line, V),
be the reproducing kernel subspace of LP in (4.16), and set ¥ = (y,...,y.)T.
Assume that the kernel K of the idempotent operator T associated with the
reproducing kernel space V), satisfies (4.20) and (4.21). Then the following two
statements are equivalent:

(i) W is a stable convolutor on'V), i.e.,

L
0< ZIIWz*gllp sup Y [lyrxgllp <.

A’GVP HA’HP 15 g<Vpllgllp=11=1
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(ii) W is astable convolution sampler on'V), for all sampling sets having sufficiently
small gap; i.e., there exists & > 0 such that

0< inf Z{‘:I H(Wl*f(w)yer”p < sup ZIL:I H(Wl*f(Y))yeFHp
0£feV, /11 0£feV, 171

holds for any sampling set I' satisfying 1 < Ar(8) < Br(8) < e for some 6 €
(0, ).

The equivalence in Theorem 8 was considered in [4] under the assumption that
the reproducing kernel space V), is a finitely-generated shift-invariant space.

4.13 Reproducing Kernel Hilbert Space Induced
by Sampling Expansions

As indicated earlier, both the sampling map

Jr—= ()i

and the inverse map
(f@))zr — f

need to be continuous in a setting where sampling expansions are to be used. Thus
the evaluation functional E, f := f(¢) needs to be continuous for all 7. Equivalently,
the signal resides in a RKHS, even though this RKHS may not explicitly be
identified. In [28], the authors have shown that, under very mild conditions, many
versions of sampling theorems hold for RKHS. In [29], the authors asked whether an
RKHS exists for each sampling theorem and showed that the answer is affirmative
when a sampling sequence satisfies minimal properties. The starting point is an
abstract notion of a sampling expansion.

Definition: Let f be a function belonging to a class .% of continuous functions on
Q C R. A sampling theorem is associated with .7 if there is a sequence of sampling
pairs {(Sy,#,)} of functions S, € .% and points #, €  such that

o Su(ty) = 8k, where O, is the Kronecker delta.

s Foreach f € .7, the sequence {f(t,)} € £2,i.e., Y, |f(t)|* < oo.

* The set {f,} is a set of uniqueness for .%.

* For each {b,} € (? the series 3, b,S,(t) converges pointwise in Q.

Then the authors construct a RKHS associated with sampling expansion as
follows [29]:
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Theorem 9. Ler Hy be the Hilbert space consisting of F with the inner product
(f,8)0 =X, f(ta)g(tn). Then Hy satisfies the following:

* Hy is a reproducing kernel Hilbert space with k(t,s) = Y, S,(t)Su(s) as its
reproducing kernel.

o {8} is an orthogonal basis for H.

 The sampling expansion g(t) =Y., 8(t,)Sn(t) holds for any g € Hj.

4.14 Sampling in Reproducing Kernel Banach Spaces

A reproducing kernel Banach space is a Banach space B of functions on a set
€ such that the evaluation functions f — f(¢) is continuous for each 7 € Q [5].
The range space V), of an idempotent integral operator is a reproducing kernel
Banach space when the kernel of the idempotent operator satisfies certain regularity
conditions. In this section, we investigate sampling in a reproducing kernel Banach
space.

Let 1 < p < oo and B be a Banach space with norm denoted by || - || 5. We say that
a countable subset A of €2 is a p-sampling set for the Banach space B if

0< _inf  [[(f(A)reallp < sup [[(f(A))reallp <o (4.26)
feB.||fllz=1 feB||flp=1

and a countable collection of elements g;,A € A, in the dual space of B to be a
p-frame if

A (82 (fNreallp < o (8 (f)reallp <o, (4.27)

i.e., the analysis operator T : B3 f — (g2(f))rea € ¢ is bounded from both
above and below [2]. Similarly to sampling in a RKHS, for a reproducing kernel
Banach space B of functions on a set €2, a countable subset A of €2 is a p-sampling
set for the space B if and only if the corresponding evaluation functionals 3, A € A,
form a p-frame for the space B. Moreover, in [14] it is shown that a reconstruction
formula always exists.

Theorem 10. Ler 1 < p,q < oo satisfy 1/p+1/q=1, B be a reproducing kernel
Banach space of functions on a set 2, and A C Q2 be a p-sampling set. Then there
exists a collection of functions S (t), A € A, such that:

o (82(t))pea is g-summable for everyt € Q.
* (M) sea is a p-frame for the range space of the sampling operator S: B> f —

(f(A))aea € €7, where M = (Spr(A))wrea-



102 M.Z. Nashed and Q. Sun

e Every signal f in the reproducing kernel Banach space B has the following
sampling expansion:

f0)=3 fA)8(t), 1€ 2,

AEA

with the pointwise convergence.

4.15 Average Sampling in L?

In this section, we consider very general sampling procedure where the samples
are obtained by inner products between time signal and sampling functionals. More
precisely, given a time signal f living in a Hilbert space H, its average sample y, at
the location y € I is obtained by taking the inner product between the signal f and
the sampling functional v (- — y) at the location ¥; i.e., the sampling procedure on
H via the average sampler ¥ = (yy(- — ¥))yer is a linear operator from H to ¢2(I'):

S H3 fr— {yy:=(f,9(- = V) }yer € A(I). (4.28)

We restrict ourselves to consider well-localized samplers ¥ = (yy (- —7¥))yer, which
means that I" is a relatively separated subset of R and the sampling functionals y,
are dominated by a function / in the Wiener amalgam space W'; i.e., |y (¢)| < h(t)
for all t € R and y € I'. The reasons for considering well-localized samplers are
twofold:

» Ateach position y € I', we locate an acquisition device, and hence it is reasonable
to assume that there are finitely many such acquisition devices in any unit
intervals, which in turn implies that I" is relatively separated.

* We use the sampling functional yy to reflect the characteristic of the acquisition
device at the location ¥, and hence the sampling functional y, should essentially
be supported in a neighborhood of the sampling location 7y, which can be
described by the dominance by a function 4 with fast decay at infinity.

It is well known that signals with finite energy do not have finite rate of
innovation. In [26], we show that any signal f with finite energy could be determined
by its samples (f, yy (- — 7)),y € I for some well-localized sampler (y (- —¥))yer,
but could not be recovered in a stable way from the samples (f, yy(- — 7)),y €I’
for any well-localized sampler (yy (- —¥))yer-

Theorem 11. (i) There is a well-localized sampler (Wy(- —¥))yer such that any
function f € L? is uniquely determined by its samples (f, yy(-—7y),yer.

(ii) There does not exist a well-localized sampler (Wy(- — ¥))yer such that the
sampling operator S in (4.28) is stable for H = L? in the sense that there exist
positive constants A and B such that A f|3 < Z.er |(f, vy (- — Y))* < B|If13

forall f € 2.
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We remark that functions yy,y € I', in the well-localized sampler in the first
conclusion of Theorem 11 cannot be selected to be supported in a fixed compact
set, but it is possible to let elements Y,y € I', in the well-localized sampler to be
independent on y € I'. This is closely related to the spectral problem: the density
of the collection of exponentials {exp(iyr)}yer in a weighted L? space [31]. In
[26], we conjecture that there is not a determining sampler {yy(- —y)| y € I'} such
that [|yy||2 = 1 and |y, (x)| < Cexp(—eg|x|) for some positive constants C, € and a
relatively separated subset I" of R.
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Analysis and Applications.

* With admiration of the novel and clever ways in which he has brought together
ideas from classical and modern analysis to advance our understanding of
generalized functions, wavelets, and signal processing.
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