
Chapter 3
Generalized Sampling in L2(Rd) Shift-Invariant
Subspaces with Multiple Stable Generators

H.R. Fernández-Morales, A. G. Garcı́a, and G. Pérez-Villalón

Abstract In order to avoid most of the problems associated with classical
Shannon’s sampling theory, nowadays, signals are assumed to belong to some
shift-invariant subspace. In this work we consider a general shift-invariant space V 2

Φ
of L2(Rd) with a set Φ of r stable generators. Besides, in many common situations,
the available data of a signal are samples of some filtered versions of the signal itself
taken at a sub-lattice of Rd . This leads to the problem of generalized sampling in
shift-invariant spaces. Assuming that the �2-norm of the generalized samples of any
f ∈ V 2

Φ is stable with respect to the L2(Rd)-norm of the signal f , we derive frame
expansions in the shift-invariant subspace allowing the recovery of the signals in V 2

Φ
from the available data. The mathematical technique used here mimics the Fourier
duality technique which works for classical Paley–Wiener spaces.

3.1 By Way of Introduction

The classical Whittaker–Shannon–Kotel’nikov sampling theorem (WSK sampling
theorem) [23, 52] states that any function f band-limited to [−1/2,1/2], i.e.,

f (t) =
∫ 1/2
−1/2 f̂ (w)e2π itwdw for each t ∈ R, may be reconstructed from the sequence

of samples { f (n)}n∈Z as

f (t) =
∞

∑
n=−∞

f (n)
sin π(t − n)

π(t − n)
, t ∈ R .
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Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés
(Madrid), Spain
e-mail: hfernand@math.uc3m.es; agarcia@math.uc3m.es
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Thus, the Paley–Wiener space PW1/2 of band-limited functions to [−1/2,1/2] is
generated by the integer shifts of the cardinal sine function, sinc(t) := sin πt/πt.
A simple proof of this result is given by using the Fourier duality technique which
uses that the Fourier transform

F : PW1/2 −→ L2[−1/2,1/2]

f �−→ f̂

is a unitary operator from the Paley–Wiener space PW1/2 of band-limited functions
to [−1/2,1/2] onto L2[−1/2,1/2]. Thus, applying the inverse Fourier transform
F−1 to the Fourier series f̂ = ∑∞

n=−∞ f (n)e−2π inw of f̂ in L2[−1/2,1/2] one gets

f (t) =
∞

∑
n=−∞

f (n)F−1[e−2π inwχ[−1/2,1/2](w)
]
(t)

=
∞

∑
n=−∞

f (n)
sin π(t − n)

π(t − n)
in L2(R) .

The pointwise convergence comes from the fact that PW1/2 is a reproducing
kernel Hilbert space (written shortly as RKHS) where convergence in norm implies
pointwise convergence (which is, in this case, uniform on R); this comes out from
the inequality | f (t)| ≤ ‖ f‖ for each t ∈ R and f ∈ PW1/2 (for the RKHS’s theory
and applications, see, for instance, [37]).

The WSK theorem has its d-dimensional counterpart. Any function f band-
limited to the d-dimensional cube [−1/2,1/2]d, i.e., f (t)=

∫
[−1/2,1/2]d f̂ (x)e2π ix�tdx

for each t ∈ R
d (here we are using the notation x�t := x1t1 + · · ·+ xdtd identifying

elements in R
d with column vectors), may be reconstructed from the sequence of

samples { f (α)}α∈Zd as

f (t) = ∑
α∈Zd

f (α)
sin π(t1 −α1)

π(t1 −α1)
· · · sin π(td −αd)

π(td −αd)
, t = (t1, . . . , td) ∈ R

d ,

where α = (α1, . . . ,αd). Although Shannon’s sampling theory has had an enormous
impact, it has a number of problems, as pointed out by Unser in [44,45]: It relies on
the use of ideal filters; the band-limited hypothesis is in contradiction with the idea
of a finite duration signal; the band-limiting operation generates Gibbs oscillations;
and finally, the sinc function has a very slow decay at infinity which makes
computation in the signal domain very inefficient. Besides, in several dimensions,
it is also inefficient to assume that a multidimensional signal is band-limited to a
d-dimensional interval. Moreover, many applied problems impose different a priori
constraints on the type of signals. For this reason, sampling and reconstruction
problems have been investigated in spline spaces, wavelet spaces, and general shift-
invariant spaces; signals are assumed to belong to some shift-invariant space of the
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form V 2
ϕ := spanL2{ϕ(t−α) : α ∈Z

d} where the function ϕ in L2(Rd) is called the
generator of V 2

ϕ . See, for instance, [1,3,4,6,7,10,24,45,47,49–51,53] and references
therein.

In this new context, the analogous of the WSK sampling theorem in a
shift-invariant space V 2

ϕ was first time proved by Walter in [47].

3.1.1 Walter’s Sampling Theorem in Shift-Invariant Spaces

Let ϕ ∈ L2(R) be a stable generator for the shift-invariant space V 2
ϕ which means

that the sequence {ϕ(·−n)}n∈Z is a Riesz basis for V 2
ϕ . A Riesz basis in a separable

Hilbert space is the image of an orthonormal basis by means of a bounded invertible
operator. Any Riesz basis {xn}∞

n=1 has a unique biorthogonal (dual) Riesz basis
{yn}∞

n=1, i.e., 〈xn,ym〉H = δn,m, such that the expansions

x =
∞

∑
n=1

〈x,yn〉H xn =
∞

∑
n=1

〈x,xn〉H yn

hold for every x∈H (see [11] for more details and proofs). Recall that the sequence
{ϕ(·− n)}n∈Z is a Riesz sequence, i.e., a Riesz basis for V 2

ϕ (see, for instance, [11,
p 143]) if and only if there exist two positive constants 0 < A ≤ B such that

A ≤ ∑
k∈Z

|ϕ̂(w+ k)|2 ≤ B , a.e. w ∈ [0,1] .

Thus, we have that V 2
ϕ = {∑n∈Z an ϕ(·− n) : {an} ∈ �2(Z)} ⊂ L2(R) .

We assume that the functions in the shift-invariant space V 2
ϕ are continuous on R.

This is equivalent to say that the generator ϕ is continuous on R and the function
∑n∈Z |ϕ(t −n)|2 is uniformly bounded on R (see [42]). Thus, any f ∈V 2

ϕ is defined
on R as the pointwise sum f (t) = ∑n∈Z anϕ(t − n) for each t ∈ R.

On the other hand, the space V 2
ϕ is the image of the Hilbert space L2[0,1] by

means of the isomorphism

Tϕ : L2[0,1]−→V 2
ϕ

{e−2π inx}n∈Z �−→ {ϕ(t − n)}n∈Z ,

which maps the orthonormal basis {e−2π inw}n∈Z for L2[0,1] onto the Riesz basis
{ϕ(t − n)}n∈Z for V 2

ϕ . For any F ∈ L2[0,1] we have

TϕF(t) = ∑
n∈Z

〈
F,e−2π inx〉ϕ(t − n)

=

〈

F, ∑
n∈Z

ϕ(t − n)e−2π inx

〉

= 〈F,Kt〉L2[0,1] , t ∈ R ,
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where, for each t ∈R, the function Kt ∈ L2[0,1] is given by

Kt(x) = ∑
n∈Z

ϕ(t − n)e−2π inx = ∑
n∈Z

ϕ(t + n)e−2π inx = Zϕ(t,x) .

Here, Zϕ(t,x) := ∑n∈Z ϕ(t +n)e−2π inx denotes the Zak transform of the function ϕ .
See [11, 22] for properties and uses of the Zak transform.

As a consequence, the samples in { f (a+m)}m∈Z of f ∈V 2
ϕ , where a ∈ [0,1) is

fixed, can be expressed as

f (a+m) = 〈F,Ka+m〉= 〈F,e−2π imxKa〉 , m ∈ Z where F = T −1
ϕ f .

Thus, the stable recovery of f ∈V 2
ϕ from the sequence of its samples { f (a+m)}m∈Z

reduces to the study of the sequence
{

e−2π imxKa(x)
}

m∈Z in L2[0,1]. Recall that the
operator mF : L2[0,1]→ L2[0,1] given as the product mF( f ) = F f is well defined
if and only if F ∈ L∞[0,1], and then, it is bounded with norm ‖mF‖ = ‖F‖∞. As a
consequence, the following result comes out:

Theorem 1. The sequence of functions
{

e−2π imxKa(x)
}

m∈Z is a Riesz basis for
L2[0,1] if and only if the inequalities 0< ‖Ka‖0 ≤‖Ka‖∞ < ∞ hold, where ‖Ka‖0 :=
ess infx∈[0,1] |Ka(x)| and ‖Ka‖∞ := esssupx∈[0,1] |Ka(x)|. Moreover, its biorthogonal

Riesz basis is
{

e−2π imx/Ka(x)
}

m∈Z
.

In particular, the sequence
{

e−2π imxKa(x)
}

m∈Z is an orthonormal basis in L2[0,1] if
and only if |Ka(x)|= 1 a.e. in [0,1].

Let a be a real number in [0,1) such that 0< ‖Ka‖0 ≤‖Ka‖∞ <∞; next, we prove
Walter’s sampling theorem for V 2

ϕ in [47]. Given f ∈ V 2
ϕ , we expand the function

F = T −1
ϕ f ∈ L2[0,1] with respect to the Riesz basis

{
e−2π inx/Ka(x)

}

n∈Z
. Thus,

we get

F = ∑
n∈Z

〈F,Ka+n〉e−2π inx

Ka(x)
= ∑

n∈Z
f (a+ n)

e−2π inx

Ka(x)
in L2[0,1] .

Applying the operator Tϕ to the above expansion we obtain

f = ∑
n∈Z

f (a+ n)Tϕ

(
e−2π inx/Ka(x)

)
= ∑

n∈Z
f (a+ n)Sa(·− n) in L2(R) ,

where we have used the shifting property Tϕ (e−2π inxF)(t) = (TϕF)(t − n), t ∈ R,
and n ∈ Z, satisfied by the isomorphism Tϕ for the particular function Sa :=
Tϕ(1/Ka) ∈ V 2

ϕ . As in the Paley–Wiener case, the shift-invariant space V 2
ϕ is a

RKHS. Indeed, for each t ∈R, the evaluation functional at t is bounded:

| f (t)| ≤ ‖F‖‖Kt‖≤ ‖T −1
ϕ ‖‖Kt‖‖ f‖= ‖T −1

ϕ ‖
(

∑
n∈Z

|ϕ(t − n)|2
)1/2

‖ f‖, f ∈V 2
ϕ .
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Therefore, the L2-convergence implies pointwise convergence which here is uniform
on R. The convergence is also absolute due to the unconditional convergence of a
Riesz expansion. Thus, for each f ∈V 2

ϕ , we get the sampling formula

f (t) =
∞

∑
n=−∞

f (a+ n)Sa(t − n) , t ∈ R . (3.1)

This mathematical technique, which mimics the Fourier duality technique for Paley–
Wiener spaces [23], has been successfully used in deriving sampling formulas in
other sampling settings [14,16,17,19,21,25,31,32]. In this work, it will be used for
obtaining generalized sampling formulas in L2(Rd) shift-invariant subspaces with
multiple stable generators.

3.1.2 Statement of the General Problem

Assume that our functions (signals) belong to some shift-invariant space of the form

V 2
Φ := spanL2(Rd)

{
ϕk(t −α) : k = 1,2, . . . ,r and α ∈ Z

d} ,

where the functions in Φ := {ϕ1, . . . ,ϕr} in L2(Rd) are called a set of generators for
V 2

Φ . Assuming that the sequence {ϕk(t −α)}α∈Zd , k=1,2,...,r is a Riesz basis for V 2
Φ ,

the shift-invariant space V 2
Φ can be described as

V 2
Φ =

{

∑
α∈Zd

r

∑
k=1

dk(α) ϕk(t −α) : dk ∈ �2(Zd),k = 1,2, . . . ,r

}

. (3.2)

See [8, 9, 36] for the general theory of shift-invariant spaces and their applications.
These spaces and the scaling functions Φ = {ϕ1, . . . ,ϕr} appear in the multiwavelet
setting. Multiwavelets lead to multiresolution analyses and fast algorithms just
as scalar wavelets, but they have some advantages: they can have short support
coupled with high smoothness and high approximation order, and they can be
both symmetric and orthogonal (see, for instance, [29]). Classical sampling in
multiwavelet subspaces has been studied in [38, 43].

On the other hand, in many common situations, the available data are samples
of some filtered versions f ∗ h j of the signal f itself, where the average function
h j reflects the characteristics of the acquisition device. This leads to generalized
sampling (also called average sampling) in V 2

Φ (see, among others, [1, 5, 14, 16, 17,
30, 34, 35, 40, 41, 43]).

Suppose that s convolution systems (linear time-invariant systems or filters in en-
gineering jargon) L j, j = 1,2, . . . ,s, are defined on the shift-invariant subspace V 2

Φ
of L2(Rd). Assume also that the sequence of samples {(L j f )(Mα)}α∈Zd , j=1,2,...,s

for f in V 2
Φ is available, where the samples are taken at the sub-lattice MZ

d of
Z

d , where M denotes a matrix of integer entries with positive determinant. If we
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sample any function f ∈ V 2
Φ on MZ

d , we are using the sampling rate 1/r(detM)
and, roughly speaking, we will need, for the recovery of f ∈ V 2

Φ , the sequence
of generalized samples {(L j f )(Mα)}α∈Zd , j=1,2,...,s coming from s ≥ r(detM)
convolution systems L j.

Assume that the sequences of generalized samples satisfy the following stability
condition: There exist two positive constants 0 < A ≤ B such that

A‖ f‖2 ≤
s

∑
j=1

∑
α∈Zd

|L j f (Mα)|2 ≤ B‖ f‖2 for all f ∈V 2
Φ .

In [5] the set of systems {L1,L2, . . . ,Ls} is said to be an M-stable filtering sampler
for V 2

Φ . The aim of this work is to obtain sampling formulas in V 2
Φ having the form

f (t) = (detM)
s

∑
j=1

∑
α∈Zd

(L j f )(Mα)S j(t −Mα) , t ∈R
d , (3.3)

such that the sequence of reconstruction functions {S j(·−Mα)}α∈Zd , j=1,2,...,s is a

frame for the shift-invariant space V 2
Φ . This will be done in the light of the frame

theory for separable Hilbert spaces, by using a similar mathematical technique as in
the above section.

Recall that a sequence {xn} is a frame for a separable Hilbert space H if there
exist two constants A,B > 0 (frame bounds) such that

A‖x‖2 ≤ ∑
n
|〈x,xn〉|2 ≤ B‖x‖2 for all x ∈ H .

Given a frame {xn} for H the representation property of any vector x ∈ H
as a series x = ∑n cnxn is retained, but, unlike the case of Riesz bases, the
uniqueness of this representation (for overcomplete frames) is sacrificed. Suitable
frame coefficients cn, depending linearly and continuously on x, are obtained by
using the dual frames {yn} of {xn}, i.e., the sequence {yn} is another frame for H
such that, for each x ∈ H , the expansions x = ∑n〈x,yn〉xn = ∑n〈x,xn〉yn hold. For
more details on the frame theory see the superb monograph [11] and the references
therein.

3.2 Preliminaries on L2(Rd) Shift-Invariant Subspaces

Let Φ := {ϕ1,ϕ2, . . . ,ϕr} be a set of functions, where ϕk ∈ L2(Rd) k = 1,2, . . . ,r ,
such that the sequence

{
ϕk(t − α)

}
α∈Zd , k=1,2...,r is a Riesz basis for the shift-

invariant space

V 2
Φ :=

{

∑
α∈Zd

r

∑
k=1

dk(α) ϕk(t −α) : dk ∈ �2(Zd), k = 1,2 . . . ,r

}

⊂ L2(Rd) .
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There exists a necessary and sufficient condition involving the Gramian matrix
function

GΦ(w) := ∑
α∈Zd

Φ̂(w+α)Φ̂(w+α)
�
, where Φ̂ := (ϕ̂1, ϕ̂2, . . . , ϕ̂r)

� ,

which assures that the sequence {ϕk(·−α)}α∈Zd , k=1,2...,r is a Riesz basis for V 2
Φ ,

namely (see, for instance, [5]): There exist two positive constants c and C such that

cIr ≤ GΦ (w)≤C Ir a.e. w ∈ [0,1)d . (3.4)

We assume throughout this chapter that the functions in the shift-invariant space
V 2

Φ are continuous on R
d . As in the case of one generator, this is equivalent to the

generators Φ being continuous on R
d with ∑α∈Zd |Φ(t −α)|2 uniformly bounded

on R
d . Thus, any f ∈V 2

Φ is defined on R
d as the pointwise sum

f (t) =
r

∑
k=1

∑
α∈Zd

dk(α) ϕk(t −α) , t ∈ R
d . (3.5)

Besides, the space V 2
Φ is an RKHS since the evaluation functionals, Et f := f (t), are

bounded on V 2
Φ . Indeed, for each fixed t ∈ R

d , we have

| f (t)|2 =

∣
∣
∣
∣
∣ ∑
α∈Zd

r

∑
k=1

dk(α) ϕk(t −α)

∣
∣
∣
∣
∣

2

≤
(

∑
α∈Zd

r

∑
k=1

|dk(α)|2
)(

∑
α∈Zd

r

∑
k=1

|ϕk(t −α)|2
)

=

(

∑
α∈Zd

r

∑
k=1

|dk(α)|2
)(

∑
α∈Zd

|Φ(t −α)|2
)

≤ ‖ f‖2

c ∑
α∈Zd

|Φ(t −α)|2, f ∈V 2
Φ ,

where we have used Cauchy–Schwarz’s inequality in (3.5), and the inequality
satisfied for any lower Riesz bound c of the Riesz basis {ϕk(· −α)}α∈Zd, k=1,2...,r

for V 2
Φ , i.e., c∑α∈Zd ∑r

k=1 |dk(α)|2 ≤ ‖ f‖2.
Thus, the convergence in V 2

Φ in the L2(Rd) sense implies pointwise convergence
which is uniform on R

d .
The product space

L2
r [0,1)

d :=
{

F = (F1,F2, . . . ,Fr)
� : Fk ∈ L2[0,1)d , k = 1,2, . . . ,r

}
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with its usual inner product

〈F,H〉L2
r [0,1)d :=

r

∑
k=1

〈Fk,Hk〉L2[0,1)d =
∫

[0,1)d

H∗(w)F(w)dw

becomes a Hilbert space. Similarly, we introduce the product Banach space
L∞

r [0,1)
d .

The system
{

e−2π iα�wek
}

α∈Zd , k=1,2,...,r, where ek denotes the vector of Rr with
all the components null except the kth component which is equal to one, is an
orthonormal basis for L2

r [0,1)
d .

The shift-invariant space V 2
Φ is the image of L2

r [0,1)
d by means of the

isomorphism

TΦ : L2
r [0,1)

d −→V 2
Φ

{e−2π iα�wek}α∈Zd , k=1,2,...,r �−→ {ϕk(t −α)}α∈Zd, k=1,2,...,r,

which maps the orthonormal basis
{

e−2π iα�wek
}

α∈Zd , k=1,2,...,r for L2
r [0,1)

d onto

the Riesz basis {ϕk(t − α)}α∈Zd , k=1,2,...,r for V 2
Φ . For each F = (F1, . . . ,Fr)

� ∈
L2

r [0,1)
d we have

TΦ F(t) := ∑
α∈Zd

r

∑
k=1

〈
Fk,e

−2π iα�·〉
L2[0,1)d ϕk(t −α) , t ∈ R

d . (3.6)

The isomorphism TΦ can also be expressed by

f (t) = TΦ F(t) = 〈F,Kt〉L2
r [0,1)d , t ∈ R

d ,

where the kernel transform R
d 
 t �→ Kt ∈ L2

r [0,1)
d is defined as Kt(x) := ZΦ(t,x),

and ZΦ denotes the Zak transform of Φ , i.e.,

(ZΦ)(t,w) := ∑
α∈Zd

Φ(t +α)e−2π iα�w .

Note that (ZΦ) = (Zϕ1, . . . ,Zϕr)
� where Z denotes the usual Zak transform.

The following shifting property of TΦ will be used later: For F ∈ L2
r [0,1)

d and
α ∈ Z

d , we have

TΦ
[
F(·)e−2π iα�·](t) = TΦ F(t −α) , t ∈ R

d . (3.7)

3.2.1 The Convolution Systems Lj on V2
Φ

We consider s convolution systems L j f = f ∗h j, j = 1,2, . . . ,s, defined for f ∈V 2
Φ

where each impulse response h j belongs to one of the following three types:
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(a) The impulse response h j is a linear combination of partial derivatives of shifted
delta functionals, i.e.,

(
L j f

)
(t) := ∑

|β |≤Nj

c j,β Dβ f (t + d j,β ) , t ∈ R
d .

If there is a system of this type, we also assume that ∑α∈Zd |Dβ ϕ(t −α)|2 is
uniformly bounded on R

d for |β | ≤ Nj .
(b) The impulse response h j of L j belongs to L2(Rd). Thus, for any f ∈ V 2

ϕ ,
we have

(
L j f

)
(t) := [ f ∗h j](t) =

∫

Rd

f (x)h j(t − x)dx, t ∈ R
d .

(c) The function ĥ j ∈ L∞(Rd) whenever Hϕk(x) := ∑α∈Zd |ϕ̂k(x+α)| ∈ L2[0,1)d

for all k = 1,2, . . . ,r.

Lemma 1. Let L be a convolution system of the type (b) or (c). Then, for
each fixed t ∈ R

d the sequence {(L ϕk
)
(t +α)}α∈Zd belongs to �2(Zd) for each

k = 1, . . . ,r.

Proof. First assume that h ∈ L2(Rd); then, we have

∑
α∈Zd

|L ϕk(t +α)|2 =
∥
∥
∥
∥
∥ ∑

α∈Zd

L ϕk(t +α)e−2π iα�x

∥
∥
∥
∥
∥

2

L2[0,1)d

= ‖ZL ϕk(t,x)‖2
L2[0,1)d

=

∥
∥
∥
∥
∥ ∑

α∈Zd

(
L̂ ϕk

)
(x+α)e2π i(x+α)�t

∥
∥
∥
∥
∥

2

L2[0,1)d

,

where, in the last equality, we have used a version of the Poisson summation
formula [20, Lemma 2.1]. Notice that ϕ̂k, ĥ∈ L2(Rd) implies, by Cauchy–Schwarz’s
inequality, that ϕ̂kĥ= L̂ ϕk ∈ L1(Rd). Now,

∥
∥
∥
∥
∥ ∑

α∈Zd

(
L̂ ϕk

)
(x+α)e2π i(x+α)�t

∥
∥
∥
∥
∥

2

L2[0,1)d

=

∥
∥
∥
∥
∥ ∑

α∈Zd

ϕ̂k(x+α)ĥ(x+α)e2π i(x+α)�t

∥
∥
∥
∥
∥

2

L2[0,1)d

≤
∥
∥
∥
∥
∥
∥

(

∑
α∈Zd

|ϕ̂k(x+α)|2
)1/2(

∑
α∈Zd

|ĥ(x+α)|2
)1/2

∥
∥
∥
∥
∥
∥

2

L2[0,1)d

≤C1/2‖h‖2
L2[0,1)d ,
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where we have used (3.4) and the fact that ‖h‖2
L2(Rd)

= ‖∑α∈Zd |ĥ(x+α)|2‖L1[0,1)d .

Finally, assume that Hϕk ∈ L2[0,1)d; since ϕ̂k ∈ L1(Rd)∩L2(Rd), we obtain that

L̂ ϕk = ϕ̂kĥ ∈ L1(Rd)∩ L2(Rd). Since ∑α∈Zd |L̂ ϕk(x +α)| ≤ ‖ĥ‖L∞(Rd)Hϕk(x),
using again [20, Lemma 2.1], we get

∑
α∈Zd

|L ϕk(t +α)|2 =
∥
∥
∥
∥
∥ ∑

α∈Zd

(
L̂ ϕk

)
(x+α)e2π i(x+α)�t

∥
∥
∥
∥
∥

2

L2[0,1)d

≤
∥
∥
∥
∥
∥ ∑

α∈Zd

|L̂ ϕk(x+α)|
∥
∥
∥
∥
∥

2

L2[0,1)d

≤
∥
∥
∥ĥ
∥
∥
∥

2

L∞(Rd)

∥
∥Hϕk

∥
∥2

L2[0,1)d .

��
Lemma 2. Let L be a convolution system of the type (a), (b), or (c). Then, for each
f ∈V 2

Φ , we have

(L f ) (t) =
〈
F,
(
ZL Φ

)
(t, ·)〉L2

r [0,1)d , where F = T −1
Φ f .

Proof. Assume that L is a convolution system of type (a). Under our hypothesis
on L , for m = 0,1,2 . . . ,N, we have that

f (m)(t) = ∑
α∈Zd

r

∑
k=1

〈
Fk,e

−2π iα�·
〉

ϕ(m)
k (t −α) .

Having in mind we have assumed that ∑α∈Zd |Φ(m)(t −α)|2 is uniformly bounded
on R

d , we obtain that

(L f )(t) =
N

∑
m=0

cm f (m)(t + dm) =
N

∑
m=0

cm ∑
α∈Zd

r

∑
k=1

〈
Fk,e

−2π iα�·
〉

ϕ(m)
k (t + dm −α)

=
r

∑
k=1

〈

Fk,
N

∑
m=0

cm ∑
α∈Zd

ϕk
(m)(t + dm −α)e−2π iα�·

〉

L2[0,1)d

=
r

∑
k=1

〈

Fk, ∑
α∈Zd

L ϕk(t −α)e−2π iα�·
〉

=
r

∑
k=1

〈
Fk,(ZL ϕk)(t, ·)

〉
L2[0,1)d .

Assume now that L is a convolution system of the type (b) or (c). For each t ∈R
d ,

considering the function ψ(x) := h(−x), we have

(L f )(t) = 〈 f ,ψ(·− t)〉L2(Rd) =

〈

∑
α∈Zd

r

∑
k=1

〈
Fk,e

−2π iα�·
〉

ϕk(·−α),ψ(·− t)

〉

L2(Rd)
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= ∑
α∈Zd

r

∑
k=1

〈
Fk,e

−2π iα�·
〉

L2[0,1)d
〈ϕk,ψ(·− t +α)〉L2(Rd)

= ∑
α∈Zd

r

∑
k=1

〈
Fk,e

−2π iα�·
〉

L2[0,1)d
L ϕk(t −α) .

Since the sequence {(L ϕk)(t +α)}α∈Zd ∈ �2(Zd), Parseval’s equality gives

(L f )(t) =
r

∑
k=1

〈
Fk, ∑

α∈Zd

L ϕk(t −α)e−2π iα�·
〉

L2[0,1)d

=
〈
F,(ZL Φ)(t, ·)〉L2

r (0,1)
,

which ends the proof. ��

3.2.2 Sampling at a Lattice of Zd: An Expression for the
Samples

Given a nonsingular matrix M with integer entries, we consider the lattice in Z
d

generated by M, i.e.,

ΛM := {Mα : α ∈ Z
d} ⊂ Z

d .

Without loss of generality, we can assume that detM > 0; otherwise, we can
consider M′ = ME where E is some d × d integer matrix satisfying detE = −1.
Trivially, ΛM = Λ ′

M . We denote by M� and M−� the transpose matrices of M and
M−1, respectively. The following useful generalized orthogonal relationship holds
(see [46]):

∑
p∈N (M�)

e−2π iα�M−T p =

{
detM, α ∈ ΛM

0 α ∈ Z
d \ΛM

(3.8)

where

N (M�) := Z
d ∩{M�x : x ∈ [0,1)d}. (3.9)

The set N (M�) has detM elements (see [46] or [48]). One of these elements is
zero, say i1 = 0; we denote the rest of elements by i2, . . . , idetM ordered in any form;
from now on, N (M�) = {i1 = 0, i2, . . . , idetM} ⊂ Z

d .
Note that the sets, defined as Ql := M−�il + M−�[0,1)d , l = 1,2, . . . ,detM,

satisfy (see [48, p 110])

Ql ∩Ql′ = /0 if l �= l′ and Vol

(
detM⋃

l=1

Ql

)

= 1 .
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Thus,
∫
[0,1)d F(x)dx = ∑detM

l=1

∫
Ql

F(x)dx, for any function F integrable in [0,1)d and

Z
d-periodic. See also [39] and references therein for an abstract version of sampling

in lattice invariant subspaces.
Now, assume that we sample the filtered versions L j f of f ∈V 2

Φ , j = 1,2, . . . ,s,
at a lattice ΛM . Having in mind Lemma 2, for j = 1,2, . . . ,s and α ∈ Z

d , we obtain
that

(
L j f

)
(Mα) = 〈F,ZL jΦ(Mα, ·)〉 =

〈
F,ZL jΦ(0, ·)e−2π iα�M�·

〉

L2
r [0,1)d

, (3.10)

where F = T −1
Φ f ∈ L2

r [0,1)
d . Denote

g j(x) := ZL jΦ(0,x) , j = 1,2, . . . ,s ; (3.11)

in other words, g�j (x) :=
(
g j,1(x),g j,2(x), . . . ,g j,r(x)

)
, where g j,k(x) = ZL jϕk(0,x)

for 1 ≤ j ≤ s and 1 ≤ k ≤ r.
As a consequence of expression (3.10) for generalized samples, a challenging

problem is to study the completeness, Bessel, frame, or Riesz basis properties of any
sequence

{
g j(x)e−2π iα�M�x

}
α∈Zd , j=1,2,...,s in L2

r [0,1)
d . To this end we introduce

the s× r(detM) matrix of functions

G(x) :=

⎡

⎢
⎢
⎢
⎢
⎣

g�1 (x) g�1 (x+M−�i2) · · · g�1 (x+M−�idetM)

g�2 (x) g�2 (x+M−�i2) · · · g�2 (x+M−�idetM)

...
...

...
...

g�s (x) g�s (x+M−�i2) · · · g�s (x+M−�idetM)

⎤

⎥
⎥
⎥
⎥
⎦

(3.12)

and its related constants

AG := ess inf
x∈[0,1)d

λmin[G
∗(x)G(x)], BG := esssup

x∈[0,1)d
λmax[G

∗(x)G(x)] ,

where G
∗(x) denotes the transpose conjugate of the matrix G(x) and λmin (re-

spectively λmax), the smallest (respectively the largest) eigenvalue of the positive
semidefinite matrix G

∗(x)G(x). Observe that 0 ≤ AG ≤ BG ≤ ∞. Note that in the
definition of the matrix G(x) we are considering the Z

d-periodic extension of the
involved functions g j, j = 1,2, . . . ,s.

We now present a general result valid for functions g j in L2
r [0,1)

d , j = 1,2, . . . ,s,
even if they are not given by (3.11).

Lemma 3. Let g j be in L2
r [0,1)

d for j = 1,2, . . . ,s and let G(x) be its associated
matrix as in (3.12). Then:

(a) The sequence
{

g j(x)e−2π iα�M�x
}

α∈Zd , j=1,2,...,s is a complete system for

L2
r [0,1)

d if and only if the rank of the matrix G(x) is r(detM) a.e. in [0,1)d.
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(b) The sequence
{

g j(x)e−2π iα�M�x
}

α∈Zd , j=1,2,...,s is a Bessel sequence for

L2
r [0,1)

d if and only if g j ∈ L∞
r [0,1)

d (or equivalently BG < ∞). In this case, the
optimal Bessel bound is BG/(detM).

(c) The sequence
{

g j(x)e−2π iα�M�x
}

α∈Zd , j=1,2,...,s is a frame for L2
r [0,1)

d if and
only if 0 < AG ≤ BG < ∞ . In this case, the optimal frame bounds are
AG/(detM) and BG/(detM).

(d) The sequence
{

g j(x)e−2π iα�M�x
}

α∈Zd , j=1,2,...,s is a Riesz basis for L2
r [0,1)

d if

and only if it is a frame and s = r(detM).

Proof. For any F ∈ L2
r [0,1)

d , we have

〈
F(x),g j(x)e−2π iα�M�x

〉

L2
r [0,1)d

=

∫

[0,1)d

r

∑
k=1

Fk(x)g j,k(x)e
2π iα�M�x dx

=
r

∑
k=1

detM

∑
l=1

∫

Ql

Fk(x)g j,k(x)e
2π iα�M�x dx

=
r

∑
k=1

∫

M−�[0,1)d

detM

∑
l=1

Fk

(
x+M−�il

)
g j,k

(
x+M−�il

)
e2π iα�M�x dx

=
∫

M−�[0,1)d

r

∑
k=1

detM

∑
l=1

Fk

(
x+M−�il

)
g j,k

(
x+M−�il

)
e2π iα�M�x dx

=

∫

M−�[0,1)d

detM

∑
l=1

g�j
(

x+M−�il
)

F
(

x+M−�il
)

e2π iα�M�x dx, (3.13)

where we have considered the Z
d-periodic extension of F. By using that the

sequence {e2π iα�M�x}α∈Zd is an orthogonal basis for L2(M−�[0,1)d) we obtain

s

∑
j=1

∑
α∈Zd

∣
∣
∣
∣

〈
F(x),g j(x)e−2π iα�M�x

〉

L2
r [0,1)d

∣
∣
∣
∣

2

=
1

detM

s

∑
j=1

∥
∥
∥
∥
∥

detM

∑
l=1

g�j (x+M−�il)F(x+M−�il)

∥
∥
∥
∥
∥

2

L2
r (M−�[0,1)d)

.

Denoting F(x) :=
[
F�(x),F�(x +M−�i2), . . . ,F�(x +M−�idetM)

]�
, the equality

above reads
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s

∑
j=1

∑
α∈Zd

∣
∣
∣
〈

F(x),g j(x)e−2π iα�M�x
〉

L2
r [0,1)d

∣
∣
∣
2
=

1
detM

∥
∥G(x)F(x)

∥
∥2

L2
s (M−�[0,1)d)

.

(3.14)

On the other hand, using that the function g j is Zd-periodic, we obtain that the set{
g j(x+M−�il +M−�i1),g j(x+M−�il +M−�i2), . . . ,g j(x+M−�il +M−�idetM)

}

has the same elements as
{

g j(x+M−�i1),g j(x+M−�i2), . . . ,g j(x+M−�idetM)
}

.
Thus, the matrixG(x+M−�il) has the same columns of G(x), possibly in a different
order. Hence, rankG(x) = r(detM) a.e. in [0,1)d if and only if rankG(x) = r(detM)
a.e. in M−�[0,1)d . Moreover,

AG = ess inf
x∈M−� [0,1)d

λmin[G
∗(x)G(x)], BG = esssup

x∈M−�[0,1)d
λmax[G

∗(x)G(x)] . (3.15)

To prove (a), assume that there exists a set Ω ⊆ M−�[0,1)d with positive measure
such that rankG(x) < r(detM) for each x ∈ Ω . Then, there exists a measurable
function v(x), x ∈ Ω , such that G(x)v(x) = 0 and ‖v(x)‖L2

r(detM)
(M−�[0,1)d) = 1 in Ω .

This function can be constructed as in [28, Lemma 2.4]. Define F ∈ L2
r [0,1)

d such
that F(x) = v(x) if x ∈ Ω and F(x) = 0 if x ∈ M−�[0,1)d \Ω . Hence, from (3.14),
we obtain that the system is not complete. Conversely, if the system is not complete,
by using (3.14), we obtain an F(x) different from 0 in a set with positive measure
such that G(x)F(x) = 0. Thus, rankG(x)< r(detM) on a set with positive measure.
To prove (b) notice that

s

∑
j=1

∑
α∈Zd

∣
∣
∣
∣

〈
F(x),g j(x)e

−2π iα�M�x
〉

L2
r [0,1)d

∣
∣
∣
∣

2

=
1

detM
‖G(x)F(x)‖2

L2
s (M−�[0,1)d)

=
1

detM

∫

M−�[0,1)d

F
∗(x)G∗(x)G(x)F(x)dx . (3.16)

If BG < ∞, then, for each F, we have

1
detM

∫

M−�[0,1)d

F
∗(x)G∗(x)G(x)F(x)dx ≤ BG

detM
‖F‖2

L2
r(detM)

(M−�[0,1)d)

=
BG

detM
‖F‖2

L2
r [0,1)d , (3.17)

from which the sequence
{

g j(x)e−2π iα�M�x
}

α∈Zd , j=1,2,...,s is a Bessel sequence
and its optimal Bessel bound is less than or equal to BG/(detM).
Let K < BG; there exists a set ΩK ⊂ M−�[0,1)d with positive measure such that
λmaxx∈ΩK

[G∗(x)G(x)]≥ K. Let F ∈ L2
r [0,1)

d such that its associated vector function
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F is 0 if x ∈ M−�[0,1)d \ΩK and F is an eigenvector of norm 1 associated with the
largest eigenvalue of G∗(x)G(x) if x ∈ ΩK . Using (3.16), we obtain

s

∑
j=1

∑
α∈Zd

∣
∣
∣
〈

F(x),g j(x)e−2π iα�M�x
〉

L2
r [0,1)d

∣
∣
∣
2 ≥ K

detM
‖F‖2

L2
r [0,1)d .

Therefore, if BG =∞, the sequence
{

g j(x)e−2π iα�M�x
}

α∈Zd , j=1,2,...,s is not a Bessel
sequence, and the optimal Bessel bound is BG/(detM).

To prove (c) assume first that 0 < AG ≤ BG < ∞. By using part (b), the sequence{
g j(x)e−2π iα�M�x

}
α∈Zd , j=1,2,...,s is a Bessel sequence in L2

r [0,1)
d . Moreover,

using (3.16) and the Rayleigh–Ritz theorem (see [26, p 176]), for each F∈ L2
r [0,1)

d ,
we obtain

s

∑
j=1

∑
α∈Zd

∣
∣
∣
〈

F(x),g j(x)e−2π iα�M�x
〉

L2
r [0,1)d

∣
∣
∣
2 ≥ AG

detM
‖F‖2

L2
r(detM)

(M−�[0,1)d)

=
AG

detM
‖F‖2

L2
r [0,1)d . (3.18)

Hence, the sequence
{

g j(x)e−2π iα�M�x
}

α∈Zd , j=1,2,...,s is a frame with optimal
lower bound larger than or equal to AG/(detM).

Conversely, if
{

g j(x)e−2π iα�M�x
}

α∈Zd , j=1,2,...,s is a frame for L2
r [0,1)

d , we
know by part (b) that BG < ∞. In order to prove that AG > 0, consider any constant
K > AG. Then, there exists a set ΩK ⊂ M−�[0,1)d with positive measure such
that λminx∈ΩK

[G∗(x)G(x)] ≤ K. Let F ∈ L2
r [0,1)

d such that its associated F(x) is

0 if x ∈ M−�[0,1)d \ΩK and F(x) is an eigenvector of norm 1 associated with
the smallest eigenvalue of G∗(x)G(x) if x ∈ ΩK . Since F is bounded, we have that
G(x)F(x) ∈ L2

s (M
−�[0,1)d). From (3.16) we get

s

∑
j=1

∑
α∈Zd

∣
∣
∣
∣

〈
F(x),g j(x)e−2π iα�M�x

〉

L2
r [0,1)d

∣
∣
∣
∣

2

≤ K
detM

‖F‖2
L2

r(detM)
(M−�[0,1)d)

=
K

detM
‖F‖2

L2
r [0,1)d . (3.19)

Denoting by A the optimal lower frame bound of
{

g j(x)e−2π iα�M�x
}

α∈Zd , j=1,2,...,s,
we have obtained that K/(detM)≥ A for each K > AG; thus, AG/(detM) ≥ A and,
consequently, AG > 0. Moreover, under the hypotheses of part (c), we deduce that
AG/(detM) and BG/(detM) are the optimal frame bounds.

The proof of (d) is based on the following result ([11, Theorem 6.1.1]): A frame is
a Riesz basis if and only if it has a biorthogonal sequence. Assume that the sequence
{

g j(x)e−2π iα�M�x
}

α∈Zd , j=1,2,...,s is a Riesz basis for L2
r [0,1)

d being the sequence
{h j,α}α∈Zd , j=1,2,...,s its biorthogonal sequence. Using (3.13) we get
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∫

M−�[0,1)d

detM

∑
l=1

g�j
(

x+M−�il
)

h j′,0
(

x+M−�il
)

e2π iα�M�x dx

=
〈

h j′,0(·),g j(x)e
−2π iα�M�·

〉
= δ j, j′δα ,0 .

Therefore,

detM

∑
l=1

g�j
(

x+M−�il
)

h j′,0

(
x+M−�il

)
e2π iα�M�x

= (detM)δ j, j′ a.e. in M−�[0,1)d .

Thus, the matrix G(x) has a right inverse a.e. in M−�[0,1)d and, in particular,
s ≤ r(detM). On the other hand, AG > 0 implies that det[G∗(x)G(x)] > 0, a.e. in
M−�[0,1)d , and there exists the matrix [G∗(x)G(x)]−1

G
∗(x) a.e. in M−�[0,1)d .

This matrix is a left inverse of the matrix G(x) which implies s ≥ r(detM). Thus,
we obtain that r(detM) = s.

Conversely, assume that
{

g j(x)e−2π iα�M�x
}

α∈Zd , j=1,2,...,s is a frame for

L2
r [0,1)

d and r(detM) = s. In this case, G(x) is a square matrix, and
det[G(x)∗(x)G(x)(x)] > 0 a.e. in M−�[0,1)d implies that detG(x) �= 0 a.e. in
M−�[0,1)d . Having in mind the structure ofG(x) its inverse must be the r(detM)×s
matrix

G
−1(x) =

⎡

⎢
⎢
⎢
⎣

c1(x) . . . cs(x)
c1(x+M−�i2) . . . cs(x+M−�i2)

...
...

c1(x+M−�idetM) . . . cs(x+M−�idetM)

⎤

⎥
⎥
⎥
⎦
,

where, for each j = 1,2, . . . ,s, the function c j ∈ L2
r [0,1)

d .

It is easy to verify that the sequence
{
(detM)c j(x)e−2π iα�M�x

}
α∈Zd , j=1,2,...,s is

a biorthogonal sequence of
{

g j(x)e−2π iα�M�x
}

α∈Zd , j=1,2,...,s, and therefore it is a

Riesz basis for L2
r [0,1)

d . ��

3.3 Generalized Regular Sampling in V 2
Φ

In this section we prove that expression (3.10) allows us to obtain F = T −1
Φ f from

the generalized samples {L j f (Mα)}α∈Zd , j=1,2,...,s; as a consequence, applying the

isomorphism TΦ , we recover the function f in V 2
Φ .
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Assume that the functions g j given in (3.11) belong to ∈ L∞
r [0,1)

d for j =
1,2, . . . ,s; thus, g�j (x)F(x) ∈ L2[0,1)d . Having in mind (3.8) and the expres-
sion (3.10) for the generalized samples, we have that

(detM) ∑
α∈Zd

(
L j f

)
(Mα)e−2π iα�M�x

= ∑
α∈Zd

(
L j f

)
(α)e−2π iα�x ∑

p∈N (M�)
e−2π iα�M−� p

= ∑
p∈N (M�)

∑
α∈Zd

(
L j f

)
(α)e−2π iα�(x+M−� p)

= ∑
p∈N (M�)

∑
α∈Zd

〈
F,g j(·)e−2π iα�M�·

〉

L2
r [0,1)d

e−2π iα�(x+M−� p)

= ∑
p∈N (M�)

∑
α∈Zd

⎛

⎜
⎝

∫

[0,1)d

r

∑
k=1

Fk(y)g j,k(y)e
−2π iα�M�ydy

⎞

⎟
⎠e−2π iα�(x+M−� p)

= ∑
p∈N (M�)

r

∑
k=1

Fk

(
x+M−�p

)
g j,k(x+M−�p)

= ∑
p∈N (M�)

g�j
(

x+M−�p
)

F(x+M−�p) .

Defining F(x) :=
[
F�(x),F�(x + M−�i2), . . . ,F�(x + M−�idetM)

]�, the above
equality allows us to write, in matrix form, that G(x)F(x) equals to

(detM)

[

∑
α∈Zd

(
L1 f

)
(Mα)e−2π iα�M�x, . . . , ∑

α∈Zd

(
Ls f

)
(Mα)e−2π iα�M�x

]�
.

In order to recover the function F = T −1
Φ f , assume the existence of an r× s matrix

a(x) := [a1(x), . . . ,as(x)], with entries in L∞[0,1)d , such that

[a1(x), . . . ,as(x)] G(x) = [Ir,O(detM−1)r×r] a.e. in [0,1)d .

If we left multiply G(x)F(x) by a(x), we get

F(x) = (detM)
s

∑
j=1

∑
α∈Zd

(L j f ) (Mα)a j(x)e
−2π iα�M�x in L2

r [0,1)
d . (3.20)

Finally, the isomorphism TΦ gives

f (t) = (detM)
s

∑
j=1

∑
α∈Zd

(
L j f

)
(Mα)(TΦ a j)(t −Mα) , t ∈ R

d ,
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where we have used the shifting property (3.7) and that the space V 2
Φ is an RKHS.

Much more can be said about the above sampling result. In fact, the following
theorem holds:

Theorem 2. Assume that the functions g j given in (3.11) belong to L∞
r [0,1)

d for
each j = 1,2, . . . ,s. Let G(x) be the associated matrix defined in [0,1)d as in (3.12).
The following statements are equivalents:

(a) AG > 0.
(b) There exists an r × s matrix a(x) :=

[
a1(x), . . . ,as(x)

]
with columns a j ∈

L∞
r [0,1)

d and satisfying

[
a1(x), . . . ,as(x)]G(x) = [Ir,O(detM−1)r×r] a.e. in [0,1)d . (3.21)

(c) There exists a frame for V 2
Φ having the form {S j,a(·−Mα)}α∈Zd , j=1,2,...,s such

that for any f ∈V 2
Φ

f = (detM)
s

∑
j=1

∑
α∈Zd

(L j f )(Mα)S j,a(·−Mα) in L2(Rd) . (3.22)

(d) There exists a frame {S j,α(·)}α∈Zd , j=1,2,...,s for V 2
Φ such that for any f ∈V 2

Φ

f = (detM)
s

∑
j=1

∑
α∈Zd

(L j f )(Mα)S j,α in L2(Rd) . (3.23)

Proof. First we prove that (a) implies (b). As the determinant of the positive
semidefinite matrix G

∗(x)G(x) is equal to the product of its eigenvalues,
condition (a) implies that ess infx∈Rd det[G∗(x)G(x)] > 0. Hence, there exists
the left pseudo-inverse matrix G

†(x) := [G∗(x)G(x)]−1
G

∗(x), a.e. in [0,1)d ,
and it satisfies G

†(x)G(x) = Ir(detM). The first r rows of G
†(x) form an

r × s matrix [a1(x), . . . ,as(x)] which satisfies (3.21). Moreover, the func-
tions a j(x), j = 1,2, . . . ,s, are essentially bounded since the condition
ess infx∈[0,1)d det[G∗(x)G(x)]> 0 holds.

Next, we prove that (b) implies (c). For j = 1,2, . . . ,s, let a j(x) be a function
in L∞

r [0,1)
d and satisfying [a1(x), . . . ,as(x)]G(x) = [Ir,O(detM−1)r×r]. In (3.20) we

have proved that, for each F = T −1
Φ ( f ) ∈ L2

r [0,1)
d , we have the expansion

F(x) = (detM)
s

∑
j=1

∑
α∈Zd

(
L j f

)
(Mα)a j(x)e−2π iα�M�x in L2

r [0,1)
d ,

from which

f = (detM)
s

∑
j=1

∑
α∈Zd

(
L j f

)
(Mα)S j,a(·−Mα) in L2(Rd) ,
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where S j,a := TΦ a j for j = 1,2, . . . ,s . Since we have assumed that g j ∈ L∞
r [0,1)

d

for each j = 1,2, . . . ,s , the sequence
{

g j(x)e−2π iα�M�x
}

α∈Zd , j=1,2,...,s is a Bessel

sequence in L2
r [0,1)

d by using part (b) in Lemma 3. The same argument proves that

the sequence
{
(detM)a j(x)e−2π iα�M�x

}
α∈Zd , j=1,2,...,s is also a Bessel sequence in

L2
r [0,1)

d . These two Bessel sequences satisfy for each F ∈ L2
r [0,1)

d

F(x) = (detM)
s

∑
j=1

∑
α∈Zd

〈
F,g je

−2π iα�M�·
〉

a j(x)e
−2π iα�M�x in L2

r [0,1)
d .

Hence, they are a pair of dual frames for L2
r [0,1)

d (see [11, Lemma 5.6.2]). Since
TΦ is an isomorphism, the sequence

{
S j,a(t −Mα)

}
α∈Zd , j=1,2,...,s is a frame for

V 2
Φ ; hence, (b) implies (c). Statement (c) implies (d) trivially.

Assume condition (d), applying the isomorphism T −1
Φ to the expansion (3.23)

we get

F(x) = (detM)
s

∑
j=1

∑
α∈Zd

〈
F,g je

−2π iα�M�·
〉
T −1

Φ (S j,α)(x) in L2
r [0,1)

d , (3.24)

where
{
T −1

Φ S j,α
}

α∈Zd , j=1,2,...,s is a frame for L2
r [0,1)

d . By using Lemma 3, the

sequence
{

g j(x)e−2π iα�M�x
}

α∈Zd , j=1,2,...,s
is a Bessel sequence; expansion (3.24)

implies that is also a frame (see [11, Lemma 5.6.2]). Hence, by using again
Lemma 3, condition (a) holds. ��

In the case that the functions g j, j = 1,2, . . . ,s, are continuous on R
d (for

instance, if the sequences of generalized samples
{
L jϕk(α)

}
α∈Zd belongs to

�1(Zd) for 1 ≤ j ≤ s and 1 ≤ k ≤ r), the following corollary holds:

Corollary 1. Assume that the functions g j , j = 1,2, . . . ,s, in (3.11) are continuous
on R

d. Then, the following assertions are equivalents:

(a) rank G(x) = r(detM) for all x ∈R
d.

(b) There exists a frame {S j,a(·− rn)}n∈Z, j=1,2,...,s for V 2
Φ satisfying the sampling

formula (3.22).

Proof. Whenever the functions g j, j = 1,2, . . . ,s, are continuous on R
d , condition

AG > 0 is equivalent to that det
[
G

∗(x)G(x)
] �= 0 for all x ∈ R

d . Indeed, if
detG∗(x)G(x)> 0, then the r first rows of the matrix G

†(x) := [G∗(x)G(x)]−1
G

∗(x)
give an r × s matrix a(x) = [a1(x),a2(x), . . . ,as(x)] satisfying statement (b) in
Theorem 2, and therefore AG > 0.

The reciprocal follows from the fact that det
[
G

∗(x)G(x)
] ≥ Ar(detM)

G
for all x ∈

R
d . Since det

[
G

∗(x)G(x)
] �= 0 is equivalent to rank G(x) = r(detM) for all x ∈R

d ,
the result is a consequence of Theorem 2. ��
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The reconstruction functions S j,a, j = 1,2, . . . ,s , are determined from the Fourier
coefficients of the components of a j(x) := [a1, j(x),a2, j(x), . . . ,ar, j]

�, j = 1,2, . . . ,s.

More specifically, if âk, j(α) :=
∫
[0,1)d ak, j(x)e2π iα�xdx, we get (see (3.6))

S j,a(t) = ∑
α∈Zd

r

∑
k=1

âk, j(α)ϕk(t −α) , t ∈ R
d . (3.25)

The Fourier transform in (3.25) gives Ŝ j,a(x) = ∑r
k=1 ak, j(x)ϕ̂k(x).

Assume that the r× s matrix a(x) =
[
a1(x),a2(x), . . . ,as(x)

]
satisfies (3.21). We

consider the periodic extension of ak, j, i.e., ak, j(x+α) = ak, j(x), α ∈ Z
d . For all

x ∈ [0,1)d , the r(detM)× s matrix

A
�(x) :=

⎡

⎢
⎢
⎢
⎣

a1(x) a2(x) · · · as(x)
a1(x+M−�i2) a2(x+M−�i2) · · · as(x+M−�i2)

...
...

...
a1(x+M−�idetM) a2(x+M−�idetM) · · · as(x+M−�idetM)

⎤

⎥
⎥
⎥
⎦

(3.26)

is a left inverse matrix of G(x), i.e., A�(x)G(x) = Ir(detM).
Provided that condition (3.21) is satisfied, it can be easily checked that all

matrices a(x) with entries in L∞[0,1)d and satisfying (3.21) correspond to the first r
rows of the matrices of the form

A
�(x) =G

†(x)+U(x)
[
Is −G(x)G†(x)

]
, (3.27)

where U(x) is any r(detM)× s matrix with entries in L∞[0,1)d , and G
† denotes the

left pseudo-inverse G†(x) := [G∗(x)G(x)]−1
G

∗(x).
Notice that if s = r(detM), there exists a unique matrix a(x), given by the first

r rows of G
−1(x); if s > r(detM), there are infinitely many solutions according

to (3.27).
Moreover, the sequence

{
(detM)a†

j(·)e−2π iα�M�·}
α∈Zd , j=1,2,...,s, associated

with the r × s matrix [a†
1(x),a

†
2(x), . . . ,a

†
s (x)] obtained from the r first

rows of G
†(x), gives precisely the canonical dual frame of the frame

{
g j(·)e−2π iα�M�·}

α∈Zd , j=1,2,...,s. Indeed, the frame operator S associated to
{

g j(·)e−2π iα�M�·}
α∈Zd , j=1,2,...,s is given by

S F(x) =
1

detM

[
g1(x),g2(x), . . . ,gs(x)

]
G(x)F(x) , F ∈ L2

r [0,1)
d ,

from which one gets

S
[
(detM)a†

j(·)e−2π iα�M�·
]
(x) = g j(x)e−2π iα�M�x , j = 1,2, . . . ,s and α ∈ Z

d .

Something more can be said in the case where s = r(detM):
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Theorem 3. Assume that the functions g j , j = 1,2, . . . ,s , given in (3.11) belong to
L∞

r [0,1)
d and s = r(detM). The following statements are equivalent:

(a) AG > 0.
(b) There exists a Riesz basis {S j,α}α∈Zd, j=1,2,...,s for V 2

Φ such that for any f ∈V 2
Φ ,

the expansion

f = (detM) ∑
α∈Zd

s

∑
j=1

(L j f
)
(Mα) S j,α (3.28)

holds in L2(Rd).

In case the equivalent conditions are satisfied, necessarily S j,α(t) = S j,a(t −Mα),
t ∈R

d, where S j,a =TΦ (a j), j = 1,2, . . . ,s , and the r×s matrix a := [a1,a2, . . . ,as]
is formed with the r first rows of the inverse matrix G−1. The sampling functions S j,a,
j = 1,2, . . . ,s , satisfy the interpolation property (L j′S j,a)(Mα) = δ j, j′δα ,0, where
j, j′ = 1,2, . . . ,s and α ∈ Z

d.

Proof. Assume that AG > 0; since G(x) is a square matrix, this implies that
ess infx∈Rd |detG(x)| > 0. Therefore, the r first rows of G

−1(x) gives a solution
of the equation [a1(x), . . . ,as(x)]G(x) = [Ir,O(detM−1)r×r] with a j ∈ L∞

r [0,1)
d for

j = 1,2, . . . ,s. According to Theorem 2, the sequence

{S j,α}α∈Zd , j=1,2,...,s := {S j,a(t −Mα)}α∈Zd , j=1,2,...,s ,

where S j,a =TΦ(a j), satisfies the sampling formula (3.28). Moreover, the sequence

{
(detM)a j(x)e−2π iα�M�x}

α∈Zd , j=1,2,...,s =
{
T −1

Φ S j,a(·−Mα)
}

α∈Zd , j=1,2,...,s

is a frame for L2
r [0,1)

d . Since r(detM) = s, according to Lemma 3, it is a Riesz basis
for L2

r [0,1)
d . Hence, the sequence {S j,a(t −Mα)}α∈Zd , j=1,2,...,s is a Riesz basis for

V 2
Φ , and condition (b) is proved.

Conversely, assume now that {S j,α}α∈Zd , j=1,2,...,s is a Riesz basis for V 2
Φ

satisfying (3.28). From the uniqueness of the coefficients in a Riesz basis, we get that
the interpolatory condition (L j′S j,α)(Mα ′) = δ j, j′δα ,α ′ holds for j, j′ = 1,2, . . . ,s
and α,α ′ ∈ Z

d . Since T −1
Φ is an isomorphism, {T −1

Φ S j,α}α∈Zd , j=1,2,...,s is a Riesz

basis for L2
r [0,1)

d . Expanding the function g j′(x)e
−2π iα ′�M�x with respect to the

dual basis of {T −1
Φ S j,α}α∈Zd , j=1,2,...,s, denoted by {G j,α}α∈Zd , j=1,2,...,s, we obtain

g j′(x)e
−2π iα ′�M�x = ∑

α∈Zd

s

∑
j=1

〈
g j′(·)e−2π iα ′�M�·,T −1

Φ S j,α

〉

L2[0,1)d
G j,α(x)

= ∑
α∈Zd

L j′S j,α(Mα ′)G j,α(x) = G j′,α ′(x) .
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Therefore, the sequence
{

g j(x)e−2π iα�M�x
}

α∈Zd , j=1,2,...,s is the dual basis of the

Riesz basis {T −1
Φ S j,α}α∈Zd, j=1,2,...,s . In particular, it is a Riesz basis for L2

r [0,1)
d ,

which implies, according to Lemma 3, that AG > 0; this proves (a). Moreover, the
sequence {T −1

Φ S j,α}α∈Zd , j=1,2,...,s is necessarily the unique dual basis of the Riesz

basis
{

g j(x)e−2π iα�M�x
}

α∈Zd , j=1,2,...,s. Therefore, this proves the uniqueness of the

Riesz basis {S j,α}α∈Zd , j=1,2,...,s for V 2
Φ satisfying (3.28). ��

3.3.1 Reconstruction Functions with Prescribed Properties

A generalized sampling formula in the shift-invariant space V 2
Φ as

f (t) = (detM)
s

∑
j=1

∑
α∈Zd

(L j f )(Mα)S j,a(t −Mα) , t ∈ R
d , (3.29)

can be read as a filter bank. Indeed, introducing the expression for the sampling
functions S j,a(t) = ∑β∈Zd ∑r

k=1 âk, j(β )ϕk(t −β ) , t ∈ R
d , the change γ := β +Mα

in the summation’s index gives

f (t) = (detM)
r

∑
k=1

∑
γ∈Zd

{
s

∑
j=1

∑
α∈Zd

(L j f )(Mα)âk, j(γ −Mα)

}

ϕk(t − γ) , t ∈R
d .

Thus, the relevant data for the recovery of the signal f ∈V 2
Φ ,

dk(γ) :=
s

∑
j=1

∑
α∈Zd

(L j f )(Mα)âk, j(γ −Mα) , γ ∈ Z
d , 1 ≤ k ≤ r ,

is obtained by means of r filter banks whose impulse responses involve the Fourier
coefficients of the entries of the r× s matrix a :=

[
a1,a2, . . . ,as

]
in (3.21), and the

input is given by the sampling data.
Notice that reconstruction functions S j,a with compact support in the above

sampling formula implies low computational complexities and avoids truncation
errors. This occurs whenever the generators ϕk have compact support and the sum
in (3.25) is finite. These sums are finite if and only if the entries of the r× s matrix
a are trigonometric polynomials. In this case, all the filter banks involved in the
reconstruction process are finite impulse response (FIR) filters.

In order to give a necessary and sufficient condition assuring compactly sup-
ported reconstruction functions S j,a in formula (3.29), we introduce first some
complex notation, more convenient for this study. We denote zα := zα1

1 zα2
2 · · · zαd

d
for z = (z1, . . . ,zd)∈C

d , α = (α1, . . . ,αd) ∈Z
d , and the d-torus by T

d := {z ∈C
d :

|z1|= |z2|= · · ·= |zd |= 1}. For 1 ≤ j ≤ s and 1 ≤ k ≤ r, we define
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g j,k(z) := ∑
μ∈Zd

L jϕk(μ)z−μ , g�j (z) :=
(
g j,1(z),g j,2(z), . . . ,g j,r(z)

)

and the s× r(detM) matrix

G(z) :=
[
g�j
(

z1e2π im�
1 il , . . . ,zde2π im�

d il
)]

j=1,2,...,s
k=1,2,...,r; l=1,2,...,detM

(3.30)

where m1, . . . ,md denote the columns of the matrix M−1. Recall that i1, i2, . . . , idetM

in Z
d are the elements of N (M�) defined in (3.9). Note also that for the values

x = (x1, . . . ,xd) ∈ [0,1)d and z = (e2π ix1 , . . . ,e2π ixd ) ∈ T
d , we have G(x) = G(z).

Provided that the functions g j are continuous on R
d , Corollary 1 can be

reformulated as follows: There exists an r× s matrix a(z) =
[
a1(z), . . . ,as(z)

]
with

entries essentially bounded in the torus Td and satisfying

a(z)G(z) = [Ir,O(detM−1)r×r] for all z ∈ T
d (3.31)

if and only if

rank G(z) = r(detM) for all z ∈ T
d . (3.32)

Denoting the columns of the matrix a(z) as a�j (z) =
(
a1, j(z), . . . ,ar, j(z)

)
,

j = 1,2, . . . ,s, the corresponding reconstruction functions S j,a in sampling formula
(3.29) are

S j,a(t) = ∑
α∈Zd

r

∑
k=1

âk, j(α)ϕk(t −α) , t ∈ R
d , (3.33)

where âk, j(α), α ∈ Z
d , are the Laurent coefficients of the functions ak, j(z), i.e.,

ak, j(z) = ∑
α∈Zd

âk, j(α)z−α . (3.34)

Note that, in order to obtain compactly supported reconstruction functions S j,a

in (3.29), we need an r× s matrix a(z) whose entries are Laurent polynomials, i.e.,
the sum in (3.34) is finite. The following result, which proof can be found in [16]
under minor changes, holds:

Theorem 4. Assume that the generators ϕk and the functions L jϕk, 1 ≤ k ≤ r and
1 ≤ j ≤ s, have compact support. Then, there exists an r × s matrix a(z) whose
entries are Laurent polynomials and satisfying (3.31) if and only if

rank G(z) = r(detM) for all z ∈ (C\ {0})d .

The reconstruction functions S j,a, j = 1,2, . . . ,s, obtained from such matrix a(z)
through (3.33) have compact support.
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From one of these r × s matrices, say ã(z) = [ã1(z), . . . , ãs(z)], we can get all
of them. Indeed, it is easy to check that they are given by the r first rows of the
r(detM)× s matrices of the form

A(z) = Ã(z)+U(z)
[
Is −G(z)Ã(z)

]
, (3.35)

where

Ã(z) :=
[
ã j(z1e2π im�

1 il , . . . ,zde2π im�
d il )

]

k=1,2,...,r; l=1,2,...,detM
j=1,2,...,s

,

and U(z) is any r(detM)× s matrix with Laurent polynomial entries. Remember
that m1, . . . ,md denote the columns of the matrix M−1 and i1, . . . , idetM the elements
of N (M�) defined in (3.9).

Next, we study the existence of reconstruction functions S j,a, j = 1,2, . . . ,s ,
in (3.29) having exponential decay; it means that there exist constants C > 0 and
q ∈ (0,1) such that |S j,a(t)| ≤ Cq|t| for each t ∈ R

d . In so doing, we introduce the
algebra H (Td) of all holomorphic functions in a neighborhood of the d-torus Td .
Note that the elements in H (Td) are characterized as admitting a Laurent series
where the sequence of coefficients decays exponentially fast [27].

The following theorem, which proof can be found in [16] under minor changes,
holds:

Theorem 5. Assume that the generators ϕk and the functions L jϕk, j = 1,2, . . . ,s
and k = 1,2, . . . ,r, have exponential decay. Then, there exists an r × s matrix
a(z) = [a1(z), . . . ,as(z)] with entries in H (Td) and satisfying (3.31) if and only
if rank G(z) = r(detM) for all z ∈ T

d.
In this case, all of such matrices a(z) are given as the first r rows of a r(detM)×s

matrix A(z) of the form

A(z) = G†(z)+U(z)
[
Is −G(z)G†(z)

]
, (3.36)

where U(z) denotes any r(detM)× s matrix with entries in the algebra H (Td) and

G†(z) :=
[
G∗(z)G(z)

]−1
G∗(z). The corresponding reconstruction functions S j,a, j =

1,2, . . . ,s, given by (3.33) have exponential decay.

3.3.2 Some Illustrative Examples

We include here some examples illustrating Theorem 4, a particular case of
Theorem 2, by taking B-splines as generators; they certainly are important for
practical purposes [44].
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First notice that if the generator ϕ has compact support, the only situation when
the reconstruction function Sa in formula (3.1) has compact support as well is
the special case when ϕ is the linear B-spline N2(t) := χ[0,1) ∗ χ[0,1)(t), where
χ[0,1) denotes the characteristic function of the interval [0,1). For any f ∈ V 2

N2
, the

following sampling formula holds:

f (t) =
∞

∑
n=−∞

f (n)N2(t + 1− n) , t ∈R .

In this special case where d = 1 and r = s = 1, we have G(z) = z, and consequently,
a(z) = z−1 in Theorem 4.

3.3.2.1 The Case d=== 1, r=== 1, M === 2, and s=== 3

Let N3(t) := χ[0,1)∗χ[0,1)∗χ[0,1)(t) be the quadratic B-spline, and let L j, j = 1,2,3 ,
be the systems

L1 f (t) = f (t); L2 f (t) = f

(

t +
2
3

)

and L3 f (t) = f

(

t +
4
3

)

.

Since the functions L jN3, j = 1,2,3 , have compact support, then the entries of
the 3× 2 matrix G(z) in (3.30) are Laurent polynomials, and we can try to search a
vector a(z) := [a1(z),a2(z),a3(z)] satisfying (3.31) with Laurent polynomials entries
also. This implies reconstruction functions S j,a, j = 1,2,3 , with compact support.
Proceeding as in [14], we obtain that any function f ∈V 2

N3
can be recovered through

the sampling formula

f (t) = ∑
n∈Z

3

∑
j=1

L j f (2n)S j,a(t − 2n) , t ∈R ,

where the reconstruction functions, according to (3.33), are given by

S1,a(t) =
1

16
[N3(t + 3)− 3N3(t + 2)− 3N3(t + 1)+N3(t)] ,

S2,a(t) =
1

16
[27N3(t + 1)− 9N3(t)] ,

S3,a(t) =
1

16
[−9N3(t + 1)+ 27N3(t)] , t ∈ R .
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3.3.2.2 The Case d=== 1, r=== 2, M === 1, and s=== 3

Consider the Hermite cubic splines defined as

ϕ1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(t + 1)2(1− 2t), t ∈ [−1,0]

(1− t)2(1+ 2t), t ∈ [0,1]

0, |t|> 1

and ϕ2(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(t + 1)2t, t ∈ [−1,0]

(1− t)2t, t ∈ [0,1]

0, |t|> 1

.

They are stable generators for the space V 2
ϕ1,ϕ2

(see [12]). Consider the sampling
period M = 1 and the systems L j, j = 1,2,3 , defined by

L1 f (t) :=

t+1/3∫

t

f (u)du , L2 f (t) := L1 f
(

t +
1
3

)
, L3 f (t) := L1 f

(
t +

2
3

)
.

Since the functions L jϕk, j = 1,2,3 and k = 1,2 , have compact support, then the
entries of the 3× 2 matrix G(z) in (3.30) are Laurent polynomials, and we can try
to search an 2× 3 matrix a(z) := [a1(z),a2(z),a3(z)] satisfying (3.31) with Laurent
polynomials entries also. This leads to reconstruction functions S j,a, j = 1,2,3 , with
compact support. Proceeding as in [17], we obtain in V 2

ϕ1,ϕ2
the following sampling

formula:

f (t) = ∑
n∈Z

3

∑
j=1

L j f (n)S j,a(t − n) , t ∈ R ,

where the sampling functions, according to (3.33), are

S1,a(t) :=
85
44

ϕ1(t)+
1

11
ϕ1(t − 1)+

85
4

ϕ2(t)−ϕ2(t − 1) ,

S2,a(t) :=
−23
44

ϕ1(t)− 23
44

ϕ1(t − 1)− 23
4

ϕ2(t)+
23
4

ϕ2(t − 1) ,

S3,a(t) :=
1

11
ϕ1(t)+

85
44

ϕ1(t − 1)+ϕ2(t)− 85
4

ϕ2(t − 1) , t ∈ R .

3.3.3 L2-Approximation Properties

Consider an r × s matrix a(x) :=
[
a1(x),a2(x), . . . ,as(x)

]
with entries ak, j ∈

L∞[0,1)d , 1 ≤ k ≤ r, 1 ≤ j ≤ s, and satisfying (3.21). Let S j,a be the associated
reconstruction functions, j = 1,2, . . . ,s , given in Theorem 2. The aim of this section
is to show that if the set of generators Φ satisfies the Strang–Fix conditions of order
�, then the scaled version of the sampling operator
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Γa f (t) :=
s

∑
j=1

∑
α∈Zd

(L j f )(Mα)S j,a(t −Mα) , t ∈ R
d ,

gives L2-approximation order � for any smooth function f (in a Sobolev space).
In so doing, we take advantage of the good approximation properties of the scaled
space σ1/hV 2

Φ , where for h > 0, we are using the notation σh f (t) := f (ht), t ∈R
d .

The set of generators Φ = {ϕk}r
k=1 is said to satisfy the Strang–Fix conditions

of order � if there exist r finitely supported sequences bk : Zd → C such that the
function ϕ(t) = ∑r

k=1 ∑α∈Zd bk(α)ϕk(t −α) satisfies the Strang–Fix conditions of
order �, i.e.,

ϕ̂(0) �= 0, Dβ ϕ̂(α) = 0, |β |< �, α ∈ Z
d \ {0} . (3.37)

We denote by W �
2 (R

d) := { f : ‖Dγ f‖2 < ∞ , |γ| ≤ �} the usual Sobolev space and
by | f |�,2 := ∑|β |=�‖Dβ f‖2 the corresponding seminorm of a function f ∈W �

2 (R
d).

When 2� > d, we identify f ∈W �
2 (R

d) with its continuous choice (see [2]).
It is well known that if Φ satisfies the Strang–Fix conditions of order � and

the generators ϕk satisfy a suitable decay condition, the space V 2
Φ provides L2-

approximation order � for any function f regular enough. For instance, Lei et al.
proved in [33, Theorem 5.2] the following result: If a set Φ = {ϕk}r

k=1 of stable
generators satisfies the Strang–Fix conditions of order � and the decay condition
ϕk(t) = O

(
[1+ |t|]−d−�−ε) for each k = 1,2, . . . ,r and some ε > 0, then, for any

f ∈W �
2 (R

d), there exists a function fh ∈ σ1/hV 2
Φ such that

‖ f − fh‖2 ≤C | f |�,2 h� , (3.38)

where the constant C does not depend on h and f .
In this section we assume that all the systems L j, j = 1,2, . . . ,s, are of type (b),

i.e., L j f = f ∗h j, belonging the impulse response h j to the Hilbert space L 2(Rd).
Recall that a Lebesgue measurable function h : Rd −→ C belongs to the Hilbert
space L 2(Rd) if

|h|2 :=

⎛

⎜
⎝

∫

[0,1)d

(
∑

α∈Zd

|h(t −α)|
)2

dt

⎞

⎟
⎠

1/2

< ∞ .

Notice that the space L 2(Rd) coincides with the amalgam space W (�1,L2) and
that L 2(Rd) ⊂ L1(Rd)∩L2(Rd). For f ∈ L2(Rd) and h ∈ L 2(Rd), the following
inequality holds:

∥
∥{h∗ f (α)}α∈Zd

∥
∥

2 ≤ |h|2 ‖ f‖2 (see [27, Theorem 3.1]); thus, the
sequence of generalized samples {(L j f )(Mα)}α∈Zd , j=1,2,...,s belongs to �2(Zd) for

any f ∈ L2(Rd).



78 H.R. Fernández-Morales et al.

First we note that the operator Γa :
(
L2(Rd),‖ · ‖2

)−→ (
V 2

Φ ,‖ · ‖2
)

given by

(Γa f )(t) := (detM)
s

∑
j=1

∑
α∈Zd

(L j f )(Mα)S j,a(t −Mα) , t ∈R
d ,

is a well-defined bounded operator onto V 2
Φ . Besides, Γd f = f for all f ∈V 2

Φ .
Under appropriate hypotheses we prove that the scaled operator Γ h

a := σ1/hΓaσh

approximates, in the L2-norm sense, any function f in the Sobolev space W �
2 (R

d) as
h → 0+. Specifically we have the following:

Theorem 6. Assume 2� > d and that all the systems L j satisfy L j f = f ∗h j with
h j ∈ L 2(Rd), j = 1, . . . ,s. Then,

‖ f −Γ h
a f‖2 ≤ (1+ ‖Γa‖) inf

g∈σ1/hV 2
Φ

‖ f − g‖2, f ∈W �
2 (R

d),

where ‖Γa‖ denotes the norm of the sampling operator Γa. If the set of generators
Φ = {ϕk}r

k=1 satisfies the Strang–Fix conditions of order � and, for each k =
1,2, . . . ,r , the decay condition ϕk(t) = O

(
[1+ |t|]−d−�−ε) for some ε > 0, then

‖ f −Γ h
a f‖2 ≤C | f |�,2 h� for all f ∈W �

2 (R
d),

where the constant C does not depend on h and f .

Proof. Using that Γ h
a g = g for each g ∈ σ1/hV 2

Φ , then, for each f ∈ L2(Rd) and
g ∈ σ1/hV 2

Φ , Lebesgue’s Lemma [13, p 30] gives

‖ f −Γ h
a f‖2 ≤ ‖ f − g‖2 + ‖Γ h

a g−Γ h
a f‖2 ≤ (1+ ‖Γa‖) inf

g∈σ1/hV 2
Φ

‖ f − g‖2 ,

where we have used that ‖Γ h
a ‖ = ‖Γa‖ for h > 0. Now, for each f ∈ W �

2 (R
d) and

h > 0, there exists a function fh ∈ σ1/hV 2
Φ such that (3.38) holds, from which we

obtain the desired result. ��
More results on approximation by means of generalized sampling formulas can

be found in [15, 18].
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