
Chapter 15
Multiparameter Regularization for Construction
of Extrapolating Estimators in Statistical
Learning Theory

Shuai Lu, Sergiy Pereverzyev Jr., and Sivananthan Sampath

Abstract One-parameter regularization methods, such as the Tikhonov
regularization, are used to solve the operator equation for the estimator in
the statistical learning theory. Recently, there has been a lot of interest in the
construction of the so called extrapolating estimators, which approximate the input–
output relationship beyond the scope of the empirical data. The standard Tikhonov
regularization produces rather poor extrapolating estimators. In this paper, we
propose a novel view on the operator equation for the estimator where this equation
is seen as a perturbed version of the operator equation for the ideal estimator.
This view suggests the dual regularized total least squares (DRTLS) and multi-
penalty regularization (MPR), which are multi-parameter regularization methods,
as methods of choice for constructing better extrapolating estimators. We propose
and test several realizations of DRTLS and MPR for constructing extrapolating
estimators. It will be seen that, among the considered realizations, a realization of
MPR gives best extrapolating estimators. For this realization, we propose a rule for
the choice of the used regularization parameters that allows an automatic selection
of the suitable extrapolating estimator.
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15.1 Introduction

Let us consider a system as a functioning entity that takes an input and gives the
output. In many scientific studies, one would like to understand how a specific
system performs, i.e., given an input how the system produces the output. In
particular, one would like to be able to predict the system output. It is very
difficult to access the internal structure of many systems, and this complicates the
discovery of the system internal functioning mechanisms. In this case, the available
information about the system are input–output pairs, which are obtained from the
system observations and often called the empirical data.

In machine learning [1, 7, 27], a part of computer science, one is concerned with
the design and development of algorithms, called (machine) learning algorithms,
that allow computers (machines) to predict (to make a decision about) the system
output based on the empirical data from the system observations.

The analysis of learning algorithms is done in the framework of (computa-
tional) learning theories. One of such theories is the so-called statistical learning
theory [30, 33]. According to this theory, the learning algorithm should construct a
function, called an estimator, that approximates well the relationship between sys-
tem input and system output. The theory defines the measure of the approximation
quality of an estimator and, according to this measure, an ideal estimator that has
the best approximation quality over a specified function space.

Usually, the ideal estimator cannot be constructed. So, the task of the learning
algorithm is to use the empirical data for constructing an estimator that converges
to the ideal estimator when the number of observations goes to infinity. The theory
suggests a natural approach for constructing an estimator based on the empirical
data. This approach leads to an operator equation for the estimator.

As it was observed in [14, 20], there is a similarity between the construction of
an estimator and the solution of inverse problems, which are usually formulated
as operator equations [15, 17, 18, 31]. Many inverse problems are ill-posed, and for
their stable solution, one uses the so-called regularization methods. The operator
equation for the estimator in the statistical learning theory is also ill-posed: it does
not have a unique solution, and many solutions of this equation are far away from
the desired ideal estimator. So, this suggests to apply the regularization methods
from the theory of inverse problems. In [16, 29], it was proposed to use the
Tikhonov regularization method for solving the operator equation for the estimator.
Application of general regularization methods, which are used for solving ill-posed
inverse problems, is considered in [4].

One can distinguish between two types of estimators: interpolating and extrapo-
lating. In the case of the interpolating estimator, the inputs in the empirical data are
coming from some specified set, and further inputs are also expected to come from
this set. One can also say that the interpolating estimator provides a prediction at the
unknown inputs within the set that is defined by the existing observations. Whereas,
the extrapolating estimator provides a prediction outside this set.
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It has been observed that Tikhonov regularization could give good interpolating
estimators. On the contrary, the extrapolating estimators that are constructed by the
Tikhonov regularization have a rather poor approximation quality. Thus, alternative
methods for constructing extrapolating estimators are needed.

Our analysis of the operator equation for the estimator suggests that it can be
viewed as a perturbed version of the operator equation for the ideal estimator where
both the operator and the right-hand side are modified (perturbed). Recently, in the
regularization theory, there has been developed a method, called the dual regularized
total least squares (DRTLS) [23–25], which is designed for perturbed operator
equations. Therefore, this method can be suggested to solve the operator equation
for the estimator. For each realization of DRTLS one can construct a corresponding
realization of the so-called multi-penalty regularization (MPR) [8,21] method. This
method can be also suggested to solve the operator equation for the estimator.

Tikhonov regularization belongs to a family of the so-called one-parameter
regularization methods. On the contrary, DRTLS and MPR are multiparameter
regularization methods. This gives them a bigger flexibility for the solution of the
perturbed operator equations. And so, one could expect that they could construct
better extrapolating estimators.

In this chapter, for solving the operator equation for the estimator, we propose
several realizations of DRTLS and MPR. The quality of the extrapolating
estimators that are constructed by these realizations will be compared. It will
turn out that, among the considered realizations, a realization of MPR gives best
extrapolating estimators.

Each realization of a regularization method requires a rule for the choice of the
regularization parameters that are used in the method. We will propose such a rule
for the mentioned realization of MPR that constructs best extrapolating estimators.

This chapter is organized as follows. In Sect. 15.2, we review the main concepts
of the statistical learning theory and derive the operator equation for the estimator.
DRTLS and MPR are presented in Sect. 15.3. The perturbation levels in the operator
equation for the estimator, which can be used in the application of regularization
methods, are estimated in Sect. 15.4. We present several realizations of DRTLS and
MPR as well as the comparison of extrapolating estimators that are obtained by
these realizations in Sect. 15.5. For the realization that gives the best extrapolating
estimators, we propose a rule for the choice of the used regularization parameters in
Sect. 15.6. This chapter is finished with conclusions and outlook in Sect. 15.7.

15.2 The Problem of the Construction of an Estimator
in the Statistical Learning Theory

In the statistical learning theory, the empirical data z = {(xi,yi), i = 1, . . . ,n} are
seen as the realizations of random variables (x,y) ∈ X ×Y with a probability density
p(x,y). Specifically, we consider the situation when both X and Y are subsets of R.
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One of the central problems in the statistical learning theory is the construction
of the estimator f : X → Y that approximates well the relationship between x and y,
i.e. y ≈ f (x). The common way of measuring the approximation quality of f is the
consideration of the expected error:

E 2( f ) =
∫

X×Y

(y− f (x))2 p(x,y)dxdy.

Minimization of E ( f ) over an appropriate function space leads to an ideal
estimator. A rather broad function space, for which it is also possible to give an
explicit form of the corresponding ideal estimator, is obtained from the following
splitting of the density p:

p(x,y) = px(x) py|x(y|x), (15.1)

where px(x) =
∫

Y p(x,y)dy is the so-called marginal probability density, and
py|x(y|x) is the so-called conditional probability density for y given x. Then, the
minimizer of E ( f ) over the function space

L2(X , px) =

⎧⎨
⎩ f : X → Y

∣∣∣∣∣∣‖ f‖2
p :=

∫

X

f 2(x)px(x)dx <+∞

⎫⎬
⎭

is given by

fp(x) =
∫

Y

y py|x(y|x)dy.

Minimization of the expected error E ( f ) over a subspace H ⊂ L2(X , px), i.e.,

E ( f )→ min
f∈H

, (15.2)

means in fact finding a function f ∈ H that best approximates fp(x) in L2(X , px),
i.e., a function for which the norm ‖ f − fp‖2

p is minimal. This follows from the
following property of the expected error:

E 2( f ) = ‖ f − fp‖2
p +E 2( fp).

This fact allows the formulation of the operator equation for the solution of (15.2).
Let J : H → L2(X , px) be the inclusion operator. Then, solution of (15.2) satisfies
the operator equation

J ∗J f = J ∗ fp. (15.3)

It is common to assume that this equation is uniquely solvable and define its solution
as f † [13, 14].
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Since the probability density p is usually unknown in practice, function f †

provides an ideal estimator that one cannot have but that one tries to approximate
using the empirical data z. In the construction of this approximating estimator fz, an
important role is played by the so-called empirical error

E 2
emp( f ) =

1
n

n

∑
i=1

(yi − f (xi))
2,

which is the statistical approximation of the expected error. The first idea for the
construction of the estimator fz ∈ H could be to find such fz that minimizes the
empirical error over the function space H , i.e., to solve the following minimization
problem:

Eemp( f )→ min
f∈H

. (15.4)

However, usually there are many minimizers of Eemp( f ), even such that Eemp

( f ) = 0, but among them, there are many that are far away from the desired f †.
Before discussing the further steps, let us formulate an operator equation for the

minimizer of (15.4). For this purpose, let us define the so-called sampling operator
Sx : H → R

n that acts as follows Sx : f �→ ( f (x1), f (x2), . . . , f (xn)) and take the
following weighted euclidean norm in R

n: ‖x‖2 = 1
n ∑n

i=1 x2
i for x ∈ R

n. Then, the
empirical error can be written as

Eemp( f ) = ‖y− Sx f‖,

where y = (y1,y2, . . . ,yn). And so, the minimization problem (15.4) is equivalent to
solving the operator equation

S∗xSx f = S∗xy. (15.5)

As the minimization problem (15.4), also the operator equation (15.5) does not have
a unique solution, and there are many solutions of (15.5) that are far away from f †.

In [16, 29], it was proposed to modify (15.4) using the Tikhonov regularization:

E 2
emp( f )+β‖ f‖2

H → min
f∈H

, (15.6)

where β > 0 is the so-called regularization parameter. The minimization prob-
lem (15.6) is equivalent to solving the following operator equation:

(S∗xSx +β I) f = S∗xy, (15.7)

where I : H →H is the identity operator. The regularization parameter β has to be
chosen such that the corresponding estimator, i.e., the solution of (15.6) or (15.7),
approximates well the ideal estimator f †.

As it was mentioned in the Introduction, two situations can be distinguished. In
the first situation, the further inputs x are expected to come from a set Xe that is
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defined by the existing inputs x = (x1,x2, . . . ,xn). This set Xe is usually conv{xi, i =
1, . . . ,n}. The estimators that correspond to this situation are called interpolating
estimators. It is quite well-known that the regularization parameter β in (15.7) can
be chosen such that the solution of (15.7) is a good interpolating estimator, i.e., it
approximates well the ideal estimator f †.

On the contrary, in the second situation, the further inputs x are expected to
come also outside Xe. The estimators in this situation are called extrapolating
estimators. As it will be seen in Sect. 15.5, estimators that are constructed by
Tikhonov regularization, i.e., the solutions of (15.7) for various values of β ,
have bad extrapolating properties. Thus, for the construction of the extrapolating
estimators, other methods are needed.

To our best knowledge, it has not been yet observed that equation (15.5) can be
viewed as a perturbed version of the operator equation (15.3). As it will be seen
in Sect. 15.4, as the number of observations n increases, the operator and the right-
hand side in (15.5) approach the operator and the right-hand side in (15.3). More
precisely, in corresponding norms, it holds that

lim
n→∞

‖J ∗J − S∗xSx‖= 0,

lim
n→∞

‖J ∗ fp − S∗xy‖= 0.

Such a view suggests that the operator equation (15.5) can be treated by the recently
developed DRTLS method [23–25] and the corresponding MPR [8, 21] method.

15.3 Dual Regularized Total Least Squares
and Multi-penalty Regularization

Let us assume that there is an operator A0 : F → G , which acts between Hilbert
spaces F , space of solutions, and G , space of data. Assume further, that for some
perfect data g0 ∈ R(A0)⊂ G , there is a unique solution f0 ∈ F to the problem

A0 f = g0. (15.8)

Now, consider the situation when the pair (A0,g0) is not known, but instead, we
are given an operator Ah : F →G and data gδ ∈G that can be seen as noisy versions
of the operator A0 and data g0 such that

‖g0 − gδ‖ ≤ δ ,

‖A0 −Ah‖ ≤ h,

with some known noise levels {δ ,h} ⊂ (0,+∞).
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For the ill-posed problem (15.8), the operator equation

Ah f = gδ (15.9)

may have no solution, or its solution may be arbitrarily far away from f0. In this case,
the so-called regularization methods [15, 17, 18, 31] are used. Many regularization
methods consider the situation when only the data has some noise, and the involved
operator A0 is known exactly. A method, called DRTLS, that takes into account also
the noise in the operator has been recently proposed in [23–25]. We review this
method below.

Let us fix an operator B that is defined on F and acts to some other Hilbert
space. The idea of DRTLS is to approximate f0 by the solution of the following
minimization problem:

‖B f‖→ min
f ,A

subject to ‖A−Ah‖ ≤ h, ‖A f − gδ‖ ≤ δ . (15.10)

The solution of this minimization problem for which its constrains are active solves
the following operator equation:

(A∗
hAh +αB∗B+β I) f = A∗

hgδ , (15.11)

where I : F → F is the identity operator and α,β satisfy the following conditions:

‖Ah fα ,β − gδ‖= δ + h‖ fα ,β‖,

β =−h(δ + h‖ fα ,β‖)
‖ fα ,β‖

, (15.12)

where fα ,β is the solution of the operator equation (15.11) for the fixed α,β .
An iterative procedure for approximating the pair (α,β ) in (15.12) has been

proposed in [25]. It should be noted that β < 0 in (15.12). On the other hand, the
operator equation (15.11) with α > 0 and β > 0 arises in the application of the so-
called MPR (see, e.g., [8, 21]) to the operator equation (15.9), where the following
minimization problem is considered:

‖Ah f − gδ‖2 +α‖B f‖2 +β‖ f‖2 → min
f
, (15.13)

with α > 0 and β > 0.
For the application of DRTLS and MPR one needs to select the operator B,

and one needs a procedure, the so-called parameter choice rule [15], to select the
appropriate parameters (α,β ). Parameter choice rules in the regularization methods
need the noise levels in the considered ill-posed inverse problem [3]. In our case, as
we mentioned in Sect. 15.2, we propose to view the operator S∗xSx and the right-hand
side S∗xy in (15.5) as the noisy versions of the operator J ∗J and the right-hand
side J ∗ fp in (15.3).
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Thus, for the parameter choice rules, we need to estimate perturbation levels
measured by

‖J ∗J − S∗xSx‖ and ‖J ∗ fp − S∗xy‖. (15.14)

These estimations are derived in the next section.

15.4 Estimations of the Operator and Data Noise

In the analysis of the problems in the statistical learning theory, one often assumes
(see, e.g., [10]) that there are constants {Σ ,M} ⊂ (0,+∞) such that

∫

Y

(
exp

( |y− f †(x)|
M

)
− |y− f †(x)|

M
− 1

)
py|x(y|x)dy ≤ Σ2

2M2 (15.15)

for almost all x ∈ X .
Now, we specify the structure of the subspace H ⊂ L2(X , px). Since for the

functions f ∈ H we are interested in their values f (x) for x ∈ X , it is natural to
require that the functionals f (x) are continuous on H . Reproducing Kernel Hilbert
spaces (RKHS) [2, 6, 12] gives a rich variety of such spaces.

An RKHS is defined by a symmetric positive definite function K(x, x̃) : X×
X → R, which is called a kernel. Let us recall that a function K(x, x̃) is symmetric
if K(x, x̃) = K(x̃,x), and it is positive definite if for any n ∈N, any {x1, . . . ,xn} ⊂ X ,
and any {a1, . . . ,an} ⊂ R, with at least one ai 
= 0,

n

∑
i=1

n

∑
j=1

aia jK(xi,x j)> 0. (15.16)

This property allows to define the scalar product for the functions of the form

f (x) =
n

∑
i=1

aiK(x,xi),

g(x) =
m

∑
j=1

b jK(x, x̃ j) (15.17)

as follows:

( f ,g)K =
n

∑
i=1

m

∑
j=1

aib jK(xi, x̃ j). (15.18)

The RKHS that is defined (induced) by K is built as the completion of the space of
all finite linear combinations (15.17) with respect to the norm that is induced by the
scalar product (15.18). This RKHS is denoted by HK .
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Let us also note the following property of linear combinations (15.17) that easily
follows from (15.16).

Proposition 1. Two functions f (x) and g(x) of the form

f (x) =
n

∑
i=1

aiK(x,xi), {ai}n
i=1 ⊂ R,

g(x) =
n

∑
i=1

ãiK(x,xi), {ãi}n
i=1 ⊂ R

are equal if and only if ai = ãi for i = 1, . . . ,n.

It is common to put the following additional assumptions on the kernel K [4,11].

Assumption 1. The kernel K is measurable. It is bounded with

sup
x∈X

√
K(x,x)≤ κ <+∞.

The induced RKHS HK is separable.

With (15.15) and Assumption 1, we derive the estimates for the operator and data
noise (15.14) in the following proposition.

Proposition 2. Let f † be the solution of (15.3) with H = HK, and let (15.15) and
Assumption 1 hold. For η ∈ (0,1], consider the following set of events:

Gη = {z = (x,y) ∈ (X ×Y )n |‖J ∗J − S∗xSx‖ ≤ h,‖J ∗ fp − S∗xy‖ ≤ δ},

with

h = h(n,η) =
1√
n

2
√

2κ2 log
4
η
,

δ = δ (n,η) = 2

(
κM

n
+

κΣ +
√

2κ2‖ f †‖√
n

)
log

4
η
.

Then, P[Gη ]≥ 1−η .

Proof. In [4], the following set of events was considered:

G′
η = {z = (x,y) ∈ (X ×Y )n |‖J ∗J − S∗xSx‖ ≤ h,‖S∗xSx f † − S∗xy‖ ≤ δ ′},

with δ ′ = δ ′(n,η) = 2
(

κM
n + κΣ√

n

)
log 4

η . Using the results from [9, 14, 28], it was

shown in [4] that P[G′
η ]≥ 1−η .
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Now, consider z ∈ G′
η , and let us estimate the corresponding data noise

from (15.14):

‖J ∗ fp − S∗xy‖= ‖J ∗J f † − S∗xy‖ ≤ ‖J ∗J f † − S∗xSx f †‖+ ‖S∗xSx f † − S∗xy‖

≤ h(n,η)‖ f †‖+ δ ′(n,η) = 2

(
κM
n

+
κΣ +

√
2κ2‖ f †‖√
n

)
log

4
η
.

Thus, z ∈ Gη ; therefore, Gη ⊃ G′
η , and

P[Gη ]≥ P[G′
η ]≥ 1−η .

�
Remark 15.4.1. Since 1

n ≤ 1√
n for n ∈ N, the considered errors can be estimated as

‖J ∗J − S∗xSx‖ ≤ ch√
n
,

‖J ∗ fp − S∗xy‖ ≤ cδ√
n
, (15.19)

with some constants {ch,cδ} ⊂ (0,+∞). These estimations can be used in
the numerical realization of the regularization methods, which are used for
solving (15.5).

15.5 Numerical Realization and Tests

In order to apply DRTLS and MPR to the operator equation (15.5) with H = HK

one has to choose the weighted operator B. The simplest choice of this operator is
the identity operator I : HK →HK . With this choice, both DRTLS and MPR become
the Tikhonov regularization (TR). Now, let us check the extrapolating properties of
the estimators, which are obtained by TR.

In the context of the extrapolating estimators, additionally to the inputs {xi}n
i=1,

which are presented in the given empirical data z, one also deals with the inputs
{xi}m

i=n+1 for which the corresponding outputs {yi}m
i=n+1 are not known. Moreover,

the additional inputs {xi}m
i=n+1 are usually outside the Xe := conv{xi, i = 1, . . . ,n}.

Thus, for a good extrapolating estimator, one expects additionally to a good
approximation of the ideal estimator f † over the set Xe also a good approximation
of f † over the conv{xi, i = n+ 1, . . . ,m}.

In the statistical learning theory, the following function is often used as an ideal
estimator for testing learning algorithms (e.g., [26]):

f †(x) =
1
10

(
x+ 2

(
e−8( 4π

3 −x)
2

− e−8( π
2 −x)

2

− e−8( 3π
2 −x)

2
))

, x ∈ [0,2π ].
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This function belongs to the RKHS that is generated by the kernel K(x, x̃) = xx̃+
exp(−8(x − x̃)2). We will use the RKHS that is generated by this kernel as the
space H .

The inputs x in the empirical data are taken as follows:

xi =
π
10

(i− 1), i = 1, . . . ,15, (15.20)

and the outputs y in the empirical data are generated as follows:

yi = f †(xi)+ δ̂ξi, i = 1, . . . ,15, (15.21)

where {ξi} are independent random variables with the uniform distribution over
[−1,1]. We consider δ̂ = 0.02.

The estimator fβ that is constructed by TR with H = HK has the following
representation:

fβ =
n

∑
i=1

ciK(x,xi). (15.22)

The coefficients c = (c1,c2, . . . ,cn)
′ in this representation satisfy the following

system of linear equations (e.g., [20, 30]):

(K+β nI)c = y, (15.23)

where I is the identity matrix of order n and K = (K(xi,x j))
n
i, j=1.

Now, consider the situation when there is an additional input x16 =
π
10 15. Denote

‖ f − g‖∞
[a,b] := max

x∈[a,b]
| f (x)− g(x)|. In Fig. 15.1, one sees the estimator fβ , which is

constructed by TR, and has the minimal extrapolating error min
β∈(0,1]

‖ f † − fβ‖∞
[x15,x16]

.

While it is possible to find such an estimator fβ that has a rather small interpolating
error ‖ f † − fβ‖∞

[x1,x15]
, the result in Fig. 15.1 shows that TR-estimators have rather

bad extrapolating properties. Thus, other choices for the operator B in DRTLS and
MPR are needed.

The sampling operator, which is scaled with the factor
√

n for convenience, i.e.,√
nSx : HK → R

n, can be proposed as a next choice for the operator B. Such an
operator can be viewed as a statistical approximation of the identity operator. But
in the contrast to the identity operator such a choice leads to a multiparameter
regularization method that is different from TR. In this case, in the application
of DRTLS to (15.5), one considers for several pairs of the parameters (α,β ) the
following operator equation:

(T ∗
x Tx +αnS∗xSx +β I) f = T ∗

x S∗xy, (15.24)
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Fig. 15.1 The graph of the TR-estimator fβ (red curve) with the smallest extrapolating error ‖ f †−
fβ‖∞

[x15,x16 ]
. Red points correspond to the empirical data (15.20), (15.21). Blue dashed curve is the

graph of the ideal estimator f †. The extrapolating interval [x15,x16] is located between two vertical
black dashed lines

where Tx := S∗xSx. As in the case of TR, the estimator fα ,β that is constructed
by DRTLS with H = HK and B =

√
nSx has the representation (15.22). The

coefficients c in this representation satisfy the system of linear equations that is
derived in the next proposition.

Proposition 3. The function f ∈ HK of the form

f (x) =
n

∑
i=1

ciK(x,xi) (15.25)

solves the operator equation (15.24) with H = HK if and only if the coefficients
c = (c1,c2, . . . ,cn)

′ satisfy the following system of linear equations:

[K2 + n2(αK+β I)]c = Ky, (15.26)

where I is the identity matrix of order n and K = (K(xi,x j))
n
i, j=1.

Proof. The derivation of the system (15.26) is similar to the derivation of the
system (15.23) (see, e.g., [20, 30]).

It can be shown (e.g., [11, 20]) that the operator S∗x : Rn → HK is the following:

(S∗xy)(x) =
1
n

n

∑
i=1

K(x,xi)yi.
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For the functions of the form (15.25) we have that

Tx f = S∗xSx f =
1
n

n

∑
i=1

K(x,xi)
n

∑
j=1

K(xi,x j)c j .

Since T ∗
x = Tx, we get that

T ∗
x S∗xy = TxS∗xy =

1
n2

n

∑
i=1

K(x,xi)
n

∑
j=1

K(xi,x j)y j,

T ∗
x Tx f = T 2

x f =
1
n2

n

∑
i=1

K(x,xi)
n

∑
k=1

K(xi,xk)
n

∑
j=1

K(xk,x j)c j.

Thus, substituting the function (15.25) into the equation (15.24), we obtain in
the left- and right-hand side of this equation a linear combination of functions
{K(x,xi)}n

i=1. Since these linear combinations are equal only if their coefficients
are equal (Proposition 1), we obtain the system of linear equations (15.26). �

In the case when the additional inputs {xi}m
i=n+1 are given, it makes sense to

include them into the sampling operator for the operator B. So, let us denote all
given inputs as x̃ = {xi}m

i=1. Then, instead of B=
√

nSx, one can propose to consider

B =
√

mSx̃. (15.27)

The estimator fα ,β , which is constructed by DRTLS with such an operator B, has
the following representation:

f (x) =
m

∑
i=1

ciK(x,xi). (15.28)

The system of linear equations for the coefficients c can be derived similarly to the
system (15.26). This system is the following:

[
J′KJK̃+ n2(αK̃+β Ĩ)

]
c = J′Ky,

where Ĩ is the identity matrix of order m, K̃ = (K(xi,x j))
m
i, j=1, and J = (ai j | i =

1, . . . ,n; j = 1, . . . ,m) with aii = 1, and ai j = 0 when i 
= j.
Now, let us check the extrapolating properties of the estimators, which are

constructed by DRTLS with B from (15.27). Let us take the empirical data from
the test of TR, i.e., (15.20), (15.21), and let us consider two cases of additional
inputs:

1. One additional input:

x16 =
π
10

15; (15.29)
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Fig. 15.2 The graphs of the DRTLS-estimators fα,β (red curves) with the smallest extrapolating
errors ‖ f † − fα,β‖∞

[x15 ,x16]
(a) and ‖ f † − fα,β‖∞

[x15,x18]
(b). Red points correspond to the empirical

data (15.20), (15.21). Blue dashed curve is the graph of the ideal estimator f †. The extrapolating
intervals [x15,x16] (a) and [x15,x18] (b) are located between two vertical black dashed lines

2. Three additional inputs:

xi =
π
10

i, i = 16,17,18. (15.30)

In Fig. 15.2a, b, one sees the estimators fα ,β , which are constructed by DRTLS
and which have the minimal extrapolating errors. These estimators have better
extrapolating properties than estimators that are constructed by TR, but the approx-
imation of the ideal estimator over the set Xe is rather poor. Can another choice of
the operator B improve this situation?

Recently [5], in the context of the statistical learning theory the following penalty
functional was considered:

ρ( f ) =
m

∑
i, j=1

( f (xi)− f (x j))
2wi j ,

where wi j are weights factors, which can be interpreted as edge weights in the data
adjacency graph and are usually taken as wi j = exp(−(xi − x j)

2). This functional
can be represented as

ρ( f ) = ‖B f‖2
K, with B = (S∗x̃LSx̃)

1/2, (15.31)

where the matrix L is the so-called graph Laplacian that is given by L = D−W ,
W = (wi j)

m
i, j=1, D = (di j)

m
i, j=1 is a diagonal matrix with dii = ∑m

j=1 wi j . Thus, ρ( f )
can be used in DRTLS.

As in the previous choice of the operator B, it can be shown that the estimator
fα ,β , which is constructed by DRTLS with B from (15.31), has the representa-
tion (15.28). The coefficients c in this representation satisfy the following system
of linear equations:

[
J′KJK̃+ n2(αLK̃+β Ĩ)

]
c = J′Ky.
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Fig. 15.3 The graphs of the MPR-estimators fα,β (red curves) with the smallest extrapolating
errors ‖ f † − fα,β‖∞

[x15 ,x16]
(a) and ‖ f † − fα,β‖∞

[x15,x18]
(b). Red points correspond to the empirical

data (15.20), (15.21). Blue dashed curve is the graph of the ideal estimator f †. The extrapolating
intervals [x15,x16] (a) and [x15,x18] (b) are located between two vertical black dashed lines

Our numerical experiments show that the obtained estimators are similar to
the estimators that correspond to the choice (15.27). Thus, the choice (15.31) of
the operator B does not improve the estimators that are constructed by DRTLS.
However, MPR with the operator B from (15.31) gives much better estimators. Note,
that in contrast to DRTLS, in MPR both regularization parameters α,β are positive.

In Fig. 15.3a, b, one sees the estimators fα ,β , which are constructed by MPR and
which have the minimal extrapolating errors. These estimators have not only the
best extrapolating properties among the estimators that were considered so far, but
they also approximate well the ideal estimator on the set Xe.

In practice, as any regularization method, MPR requires a rule for the choice of
the involved regularization parameters. Such a rule is proposed in the next section.

15.6 The Choice of the Regularization Parameters in MPR

The so-called discrepancy principle (DP) (see, e.g., [15]) is a well-known choice
rule for the parameters in the regularization methods. Let us consider the general
framework of the Sect. 15.3. Denote { fr} the family of the regularized solutions
of (15.9) that are constructed by a regularization method. Then, according to DP,
one chooses fr such that

‖Ah fr − gδ‖=Cδ , C > 1. (15.32)

There is a difficulty in using DP for the operator equation (15.5). Namely, a
sharp estimate of the noise level δ is not available. Although Proposition 2 and
Remark 15.4.1 give theoretical estimations of the noise level δ , in practice the
choice of the involved constants there, in particular the constant cδ in (15.19), is not
clear. Moreover, the y-values in the empirical data have often the form (15.21), and
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a good estimate of δ̂ can be assumed to be known. In this case, it seems reasonable
instead of the condition (15.32), which in the case of the inverse problem (15.5) has
the form

‖S∗xSx fr − S∗xy‖=Cδ , (15.33)

to consider the following condition:

‖Sx fr − y‖= Ĉδ̂ . (15.34)

Note, that the norms in the above conditions are connected through the following
estimate:

‖S∗xSx fr − S∗xy‖ ≤ ‖S∗x‖ · ‖Sx fr − y‖.

Thus, the control of the modified discrepancy ‖Sx fr − y‖ leads to the control of the
original discrepancy ‖S∗xSx fr−S∗xy‖. This may be used in the theoretical justification
of the condition (15.34).

In MPR fr = fα ,β , and the condition (15.34), as well as the original condi-
tion (15.33), does not uniquely identify the pair of the regularization parameters
(α,β ). The set of parameters that satisfy (15.34) can be called the discrepancy
curve [22].

Among the pairs (α,β ) on the discrepancy curve, one can look for the pair
that defines the estimator with good extrapolating properties. For this purpose
we propose to employ the so-called quasi-optimality principle [32]. The whole
procedure for the choice of the appropriate pair of the regularization parameters
(α,β ) is presented below.

In the numerical realization of the regularization methods, the discrete sets of
the regularization parameters in the form of the geometric sequence are frequently
used. So, let us consider the following sequence for the parameters β :

βk = β0qk, q > 1, k = 0,1, . . . ,kmax.

For each βk, let us determine αk for which the condition (15.34) is satisfied, i.e.,

‖Sx fαk ,βk
− y‖= Ĉδ̂ . (15.35)

This can be done using the so-called model function approach [19, 25, 34].
Now, let us define a closeness functional d( fα ,β , fα ′ ,β ′) that describes how close

in some sense is the estimator fα ,β to the estimator fα ′ ,β ′ . For example, if xb ∈ X is
an input point of interest, which can be an input without the corresponding output
as (15.29), then d(·, ·) can be taken as follows:

d( fα ,β , fα ′,β ′) = | fα ,β (xb)− fα ′,β ′(xb)|. (15.36)
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Fig. 15.4 (a) The discrepancy region with Ĉ = 1. The red point corresponds to the pair (αk,βk)
that is selected by the principle (15.37). (b) The graph of the corresponding MPR-estimator fαk,βk

.
Red points correspond to the empirical data (15.20), (15.21). Blue dashed curve is the graph of
the ideal estimator f †. The extrapolating interval [x15,x16] is located between two vertical black
dashed lines

Using the idea of the quasi-optimality principle and the chosen closeness
functional d, among the pairs (αk,βk) that satisfy (15.35), one chooses such a
pair that minimizes d( fαk,βk

, fαk−1,βk−1
), i.e., one chooses the pair (αk,βk) with the

following index k:

k = argmink=1,...,kmax
{d( fαk,βk

, fαk−1,βk−1
)}. (15.37)

Let us test the proposed procedure. Consider the empirical data (15.20) and
(15.21). For these data δ̂ = 0.02. Let us consider one additional input x16

from (15.29). First, let us take Ĉ = 1. As the closeness functional d, we take (15.36)
with xb = x16. In Fig. 15.4a, the discrepancy region, i.e., the region that contains
(α,β ) that satisfy

‖Sx fα ,β − y‖ ≤ Ĉδ̂

is presented. The red point depicts the pair (αk,βk) that is selected by the
principle (15.37). In Fig. 15.4b, the corresponding estimator fαk ,βk

is presented. One
observes that the chosen estimator is rather close to the best extrapolating estimator
in Fig. 15.3a, which demonstrates effectiveness of the proposed parameters choice
rule.

By varying the value of the constant Ĉ one can obtain even better estimators.
This is demonstrated in Fig. 15.5, where the results for Ĉ = 0.1 can be found. This
suggests that the influence of the constant Ĉ should be studied in detail.
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Fig. 15.5 (a) The discrepancy region with Ĉ = 0.1. The red point corresponds to the pair (αk,βk)
that is selected by the principle (15.37). (b) The graph of the corresponding MPR-estimator fαk,βk

.
Red points correspond to the empirical data (15.20), (15.21). Blue dashed curve is the graph of
the ideal estimator f †. The extrapolating interval [x15,x16] is located between two vertical black
dashed lines

15.7 Conclusions and Outlook

Construction of good extrapolating estimators requires novel approaches to the
problem of constructing an estimator in the statistical learning theory, which can
be formulated as an operator equation. We showed that this operator equation
can be viewed as a perturbed operator equation with a perturbed operator and
perturbed right-hand side. This view suggests the application of the multi-parameter
regularization methods, such as DRTLS and MPR. Our numerical tests showed that
among the considered realizations of DRTLS and MPR, a realization of MPR gives
best extrapolating estimators, and thus, it can be proposed as a method of choice for
constructing good extrapolating estimators. As any regularization method, MPR re-
quires an automatic procedure for selecting the involved regularization parameters.
We proposed such a procedure and demonstrated its successful performance.

Future research can be concentrated in the following directions.
We derived the perturbation levels in the operator equation for the estimator. This

can be considered as a first step in the analysis of the application of multiparameter
regularization methods, in particular MPR, for construction of extrapolating estima-
tors. This analysis should be continued until the derivation of the estimates of the
estimator general and extrapolating errors.

Other B-operators in MPR, such as (15.27) , can be tried.
It is notable that with (15.27) the system of linear equations, which appears

in the numerical realization of the corresponding MPR, has simpler structure
than with (15.31). Thus, it is of particular interest to compare the quality of the
extrapolating estimators that are constructed by these realizations of MPR.

One can also view

Sx f = y (15.38)
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as a perturbed operator equation. Application of DRTLS and MPR to (15.38) is
quite straightforward, and it is remarkable that the systems of linear equations,
which appear in the numerical realization , have a simpler structure in comparison
to the systems that arise in the application of DRTLS and MPR to the operator
equation (15.5). It remains to be verified whether this application leads to better
extrapolating estimators. It should be also noted that the estimation and the
interpretation of the perturbation levels in (15.38) have to be addressed.

Finally, a theoretical justification of the proposed choice rule for the regulariza-
tion parameters in MPR is required. A more detailed study of the influence of the
constant Ĉ in (15.34) and of the connection between the conditions (15.34) and
(15.33) should be also done.
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