
Chapter 14
Bayesian Wavelet Shrinkage Strategies:
A Review

Norbert Reményi and Brani Vidakovic

Abstract In this chapter the authors overview recent developments and current
status of use of Bayesian paradigm in wavelet shrinkage. The paradigmatic problem
where wavelet shrinkage is employed is that of nonparametric regression where
data are modeled as observations from an unknown signal contaminated with a
Gaussian noise. Bayes rules as general shrinkers provide a formal mechanism to
implement shrinkage in the wavelet domain that is model based and adaptive.
New developments including dependence models, complex wavelets and MCMC
strategies are described. Applications include inductance plethysmography data and
curve classification procedure applied in botany. The chapter features an extensive
set of references consisting of almost 100 entries.

14.1 Introduction

Wavelet-based tools became standard methodology in many areas of modern
statistics, for example, in regression, density and function estimation, factor anal-
ysis, modeling and forecasting of time series, functional data analysis, and data
mining and classification, with ranges of application areas in science and engineer-
ing. Wavelets owe their initial popularity in statistics to shrinkage, a simple and yet
powerful procedure in nonparametric statistical modeling. Wavelet shrinkage is a
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three-step procedure: (1) data are transformed into a set of wavelet coefficients; (2) a
shrinkage of the coefficients is performed; and (3) the processed wavelet coefficients
are transformed back to the domain of the original data.

Wavelet domains are desirable modeling environments; several supporting
arguments are listed below.

Discrete wavelet transformations tend to “disbalance” the data. Even though the
orthogonal transforms preserve the �2 norm of the data (the square root of sum
of squares of observations, or the “energy” as engineers like to say), most of the �2

norm in the transformed data is concentrated in only a few wavelet coefficients. This
concentration narrows the class of plausible models and facilitates the thresholding.
The disbalancing property also yields a variety of criteria for the selection of best
basis.

Wavelets, as modeling building blocks, are well localized in both time and scale
(frequency). Signals with rapid local changes (signals with discontinuities, cusps,
sharp spikes, etc.) can be represented with only a few wavelet coefficients. This
parsimony does not, in general, hold for other standard orthonormal bases which
may require many “compensating” coefficients to describe discontinuity artifacts or
local bursts.

Heisenberg’s principle states that time-frequency models cannot be arbitrarily
precise in the time and frequency domains simultaneously, rather this precision is
bounded from the below by a universal constant. Wavelets adaptively distribute the
time-frequency precision by their innate nature. The economy of wavelet transforms
can be attributed to their ability to confront the limitations of Heisenberg’s principle
in a data-dependent manner.

An important feature of wavelet transforms is their whitening property. There
is ample theoretical and empirical evidence that wavelet transforms simplify the
dependence structure in the original data. For example, it is possible, for any given
stationary dependence in the input signal, to construct a biorthogonal wavelet basis
such that the corresponding in the transform are uncorrelated (a wavelet counterpart
of Karhunen–Loève transform). For a discussion and examples see [91].

We conclude this incomplete list of features of wavelet transforms by pointing
out their sensitivity to self-similar data. The scaling laws are distinctive features of
self-similar data. Such laws are clearly visible in the wavelet domain in the so-called
wavelet spectra, wavelet counterparts of the Fourier spectra.

More arguments can be given: computational speed of the wavelet transfor-
mation, easy incorporation of prior information about some features of the signal
(smoothness, distribution of energy across scales), etc.

Prior to describing a formal setup for Bayesian wavelet shrinkage, we provide a
brief review of discrete wavelet transforms and traditional wavelet shrinkage.

Basics on wavelets can be found in many texts, monographs, and papers at many
different levels of exposition. The interested reader should consult monographs by
[33, 68, 87, 91], among others. An introductory article is [88].
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14.1.1 Discrete Wavelet Transformations and Wavelet
Shrinkage

Let yyy be a data vector of dimension (size) n. For the simplicity we choose n to be
a power of 2, say 2J . We assume that measurements yyy belong to an interval and
consider periodized wavelet bases. Generalizations to different sample sizes and
general wavelet and wavelet-like transformations are straightforward.

Suppose that the vector yyy is wavelet transformed to a vector ddd. This linear and
orthogonal transform can be fully described by an n × n orthogonal matrix WWW .
The use of the matrix WWW is possible when n is not large (of order of a few thousand,
at most), but for large n, fast filtering algorithms are employed. The filtering
procedures are based on so-called quadrature mirror filters which are uniquely
determined by the choice of wavelet and fast Mallat’s algorithm [63]. The wavelet
decomposition of the vector yyy can be written as

ddd = (H�yyy,GH�−1yyy, . . . ,GH2yyy,GHyyy,Gyyy). (14.1)

Note that in (14.1), ddd has the same length as yyy and � is any fixed number between
1 and J = log2 n. The operators G and H acting on data sequences are defined
coordinate-wise via

(Ha)k = Σm∈ZZZhm−2kam, and (Ga)k = Σm∈ZZZgm−2kam, k ∈ ZZZ,

where g and h are high- and low-pass wavelet filters. Components of g and h
are connected via the quadrature mirror relationship, gn = (−1)nh1−n. For all
commonly used wavelet bases, the taps of filters g and h are readily available in
the literature or in standard software packages.

The elements of ddd are called “wavelet coefficients.” The subvectors described
in (14.1) correspond to detail levels. For instance, the vector Gyyy contains n/2 =
2J−1 coefficients representing the level of the finest detail. When � = J, the vectors
GHJ−1yyy = {d00} and HJyyy = {c00} contain a single coefficient each and represent
the coarsest possible level of detail and the smooth part in wavelet decomposition,
respectively.

In general, jth detail level in the wavelet decomposition (14.1) contains 2 j

elements, and can be written as

GHJ− j−1yyy = (d j,0,d j,1, . . . ,d j,2 j−1). (14.2)

Wavelet shrinkage methodology consists of shrinking the magnitudes of wavelet
coefficients. The simplest wavelet shrinkage technique is thresholding. The com-
ponents of ddd are replaced by 0 if their absolute value does not exceed a fixed
threshold λ .
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The two most common thresholding policies are hard and so f t thresholding with
corresponding rules given by:

θ h(d,λ ) = d 1(|d|> λ ),

θ s(d,λ ) = (d − sign(d)λ ) 1(|d|> λ ),

where 1(A) is the indicator of relation A, i.e., 1(A) = 1 if A is true and 1(A) = 0 if
A is false.

In the next section we describe how the Bayes rules, resulting from the models
on wavelet coefficient, can act as shrinkage/thresholding rules.

14.2 Wavelets and Bayes

Bayesian paradigm has become very popular in wavelet data processing since Bayes
rules are shrinkers. This is true in general, although examples of Bayes rules that
expand can be found, see [89]. The Bayes rules can be constructed to mimic the
thresholding rules: to slightly shrink the large coefficients and heavily shrink the
small coefficients. In addition, Bayes rules result from realistic statistical models on
wavelet coefficients and such models allow for incorporation of prior information
about the true signal. Furthermore, most Bayes rules can be easily either computed
by simulation or expressed in a closed form. Reviews of early Bayesian approaches
can be found in [3, 78, 86, 87]. An edited volume on Bayesian modeling in the
wavelet domain appeared 12 years ago [65].

A paradigmatic task in which the wavelets are typically applied is recovery
of an unknown signal fff observed with noise eee. In statistical terms this would
be a task of nonparametric regression. Wavelet transformations WWW are applied to
noisy measurements yi = fi + ei, i = 1, . . . ,n, or, in vector notation, yyy = fff + eee.
The linearity of WWW implies that the transformed vector ddd = WWW (yyy) is the sum of the
transformed signal θθθ = WWW ( fff ) and the transformed noise εεε = WWW (eee). Furthermore,
the orthogonality of WWW and Gaussianity of eee implies Gaussianity of εεε as well.

Bayesian methods are applied in the wavelet domain, that is, after the data have
been transformed. The wavelet coefficients can be modeled in totality, as a single
vector, or one by one, due to decorrelating property of wavelet transforms. Block-
modeling approaches are also possible.

When the model is on individual wavelet (detail) coefficients di ∼ N(θi,σ2), i =
1, . . . ,n, the interest relies in the estimation of the θi. Usually we concentrate on
typical wavelet coefficient and model: d = θ + ε . Bayesian methods are applied
to estimate the location parameter θ , which will be, in the sequel, argument in
the inverse wavelet transform. A prior on θ , and possibly on other parameters of
the distribution of ε , is elicited, and the corresponding Bayes estimators are back-
transformed. Various choices of Bayesian models have been motivated by different,
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often contrasting, interests. Some models were driven by empirical justifications,
others by pure mathematical considerations; some models lead to simple closed-
form rules, the other require extensive Markov Chain Monte Carlo (MCMC)
simulations to produce the estimate. Bayes rules with respect to absolute or 0-1
loss functions are capable of producing bona fide thresholding rules.

14.2.1 An Illustrative Example

As an illustration of the Bayesian approach we present BAMS (Bayesian adaptive
multiresolution shrinkage). The method, due to [90], is motivated by empirical con-
siderations on the coefficients and leads to easily implementable Bayes estimates,
available in closed form.

The BAMS originates from the observation that a realistic Bayes model should
produce prior predictive distributions of the observations which “agree” with the
observations. Other authors were previously interested in the empirical distribution
of the wavelet coefficients, see, for example, [57, 58, 63, 77, 81, 86]. Their common
argument can be summarized by the following statement:

For most of the signals and images encountered in practice, the empirical
distribution of a typical detail wavelet coefficient is notably centered about
zero and peaked at it.

In accordance with the spirit of this statement, [63] suggested to fit empirical
distributions of wavelet coefficients by the exponential power model

f (d) =C · e−(|d|/α)β
, α,β > 0,

where C = β
2αΓ (1/β ) .

Following the Bayesian paradigm, prior distributions should be elicited on the
parameters of the model d|θ ,σ2 ∼ N(θ ,σ2) and Bayesian estimators (namely,
posterior means under squared loss) computed. In BAMS, priors on θ and σ2 are
set such that the marginal (prior predictive) distribution of the wavelet coefficients
is a double exponential distribution DE , that is, an exponential power one with
β = 1. The double exponential distribution can be obtained by marginalizing the
normal likelihood by adopting exponential prior on its variance σ2. The choice of
an exponential prior can be justified by its maxent property, that is, exponential
distribution is the entropy maximizer in the class of all distributions supported on
(0,∞) with a fixed first moment, and in that sense is noninformative.
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Thus, BAMS uses the exponential prior σ2 ∼ E(μ), μ > 0, which leads to the
marginal likelihood

d|θ ∼ DE

(
θ ,

1√
2μ

)
, with density f (d|θ ) = 1

2

√
2μe−

√
2μ|d−θ |.

Vidakovic [86] considered the previous marginal likelihood but with a t distribu-
tion as the prior on θ . The Bayes rules with respect to the squared error loss under
general but symmetric priors π(θ ) can be expressed using the Laplace transforms
of π(θ ).

In personal communication with the second author, Jim Berger and Peter Müller
suggested in 1993 the use of ε-contamination priors in the wavelet context pointing
out that such priors would lead to rules which are smooth approximations to a
thresholding.

The choice

π(θ ) = εδ (0)+ (1− ε)ξ (θ ) (14.3)

also reflects prior belief that some locations (corresponding to the signal or function
to be estimated) are 0 and that there is a nonzero spread component ξ describing
“large” locations. In addition to this prior sparsity of the signal part, this prior leads
to desirable shapes of the resulting Bayes rules. Note that here 0 ≤ ε ≤ 1 denotes
the mixing weight, not the random error component, and will be used throughout
this chapter in contamination priors.

In BAMS, the spread part ξ is chosen as θ ∼ DE(0,τ). The Bayes rule under the
squared error loss is

δπ(d) =
(1− ε) mξ (d) δξ (d)

(1− ε) mξ (d)+ ε DE
(

0, 1√
2μ

) , (14.4)

where

mξ (d) =
τe−|d|/τ − 1√

2μ e−
√

2μ|d|

2τ2 − 1/μ

and

δξ (d) =
τ(τ2 − 1/(2μ))de−|d|/τ + τ2(e−|d|√2μ − e−|d|/τ)/μ

(τ2 − 1/(2μ))(τe−|d|/τ − (1/
√

2μ)e−|d|√2μ)

are the prior predictive distribution and the Bayes rule for the spread part of the
prior, ξ . Rule (14.4) is the BAMS rule, which falls between comparable hard and
soft thresholding rules.



14 Bayesian Wavelet Shrinkage Strategies: A Review 323

Bayes rules under the squared error loss and regular models are never
thresholding rules. To extend this motivating example, we consider the posterior
median as an estimator for θ . It is well known that under the absolute error
loss L(θ ,d) = |θ − d|, the posterior risk is minimized by the posterior median.
The posterior median was first considered by Abramovich et al. [7] in the context
of wavelet shrinkage. It could be a thresholding rule, which is preferable to smooth
shrinkage rules in many applications, like model selection, data compression,
dimension reduction, and related statistical tasks in which it is desirable to replace
by zero a majority of the processed coefficients.

For the model above the posterior distribution is π�(θ |d) = f (d|θ )π(θ )/mπ(d),
where

mπ(d) = (1− ε) mξ (d)+ ε DE

(
0,

1√
2μ

)
.

In order to find the median of the posterior distribution, the solution of the following
equation, with respect to u, is needed:

∫ u

−∞
π�(θ |d)dθ =

1
2
. (14.5)

It is easy to show with simple calculus that if d ≥ 0,

max
∫ 0−

−∞
π�(θ |d)dθ =

1
2
, (14.6)

and in case d < 0,

min
∫ 0

−∞
π�(θ |d)dθ =

1
2
. (14.7)

Because π�(θ |d) is a probability density, the integral in (14.5) is non-decreasing
in u. Therefore, by using results (14.6) and (14.7), the posterior median is always
greater than equal to zero, when d ≥ 0, and less than equal to zero, when d < 0.

To find the posterior median, first consider the case d ≥ 0. We know that the
solution u satisfies u ≥ 0. The equation in (14.5) becomes

ε
√

2μ
2 e−

√
2μd +(1− ε)

√
2μ

4τ e−
√

2μd
{

1√
2μ+1/τ +

1√
2μ−1/τ

[
e(
√

2μ−1/τ)u − 1
]}

mπ(d)
=

1
2
.

Next, assume d < 0. Then the solution satisfies u ≤ 0 and (14.5) becomes:

(1− ε)
√

2μ
4τ

{
1√

2μ+1/τ ed/τ + 1√
2μ−1/τ ed/τ − 1√

2μ−1/τ e−(
√

2μ−1/τ)u
}

mπ(x)
=

1
2
.
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From the above, the algorithm for finding the posterior median δM(d) is:

For d > 0,

if
ε
√

2μ
2 e−

√
2μd +(1− ε)

√
2μ

4τ e−
√

2μd 1√
2μ+1/τ

mπ(d)
>

1
2
, δM(d) = 0

else δM(d) =
1√

2μ − 1/τ
log

{[
mπ(d)/2− ε

√
2μ
2 e−

√
2μd

(1− ε)
√

2μ
4τ e−

√
2μd

+
2/τ

2μ − 1/τ2

]
(
√

2μ − 1/τ)

}
.

For d < 0,

if
(1− ε)

√
2μ

4τ

[
1√

2μ+1/τ ed/τ + 1√
2μ−1/τ ed/τ − 1√

2μ−1/τ e(
√

2μ−1/τ)d
]

mπ(d)
<

1
2
,

δM(d) = 0

else δM(d) =− 1√
2μ − 1/τ

log

{
−
[ mπ (d)/2

(1−ε)
√

2μ
4τ

− 1√
2μ+1/τ ed/τ

1√
2μ−1/τ e

√
2μd

− e−(
√

2μ−1/τ)d

]}
.

For d = 0,

δM(d) = 0. (14.8)

The rule δM(d) based on algorithm (14.8) is the BAMS-MED rule. As evident from
Fig. 14.1, the BAMS-MED rule is a thresholding rule.

14.3 Bayesian Wavelet Regression

14.3.1 Term-by-Term Shrinkage

As we indicated in the introduction, the most popular application of wavelets is the
nonparametric regression problem

yi = f (xi)+ ei, i = 1, . . . ,n.

The usual assumptions are that xi, i = 1, . . . ,n are equispaced (e.g., time points), and
the random errors ei are i.i.d. normal, with zero mean and variance σ2. The interest
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Fig. 14.1 BAMS-MED rule (14.8) for ε = 0.9, μ = 1, and τ = 2

is to estimate the function f using the observations y. After applying a linear and
orthogonal wavelet transform, the problem becomes

d jk = θ jk + ε jk,

where d jk, θ jk, and ε jk are the wavelet coefficients (at resolution j and position k)
corresponding to y, f , and e, respectively.

Due to the whitening property of wavelet transforms [39], many existing methods
assume independence of the wavelet coefficients and model the wavelet coefficients
one by one using notation for a generic wavelet coefficient, d = θ + ε . Shrinkage is
performed term by term, which is sometimes referred to as diagonal shrinkage.

An early example of the diagonal Bayesian approach to wavelet regression is
the adaptive Bayesian wavelet shrinkage (ABWS) proposed by Chipman et al. [27].
Their approach is based on the stochastic search variable selection (SSVS) proposed
by George and McCulloch [41], with the assumption that σ is known.

Chipman et al. [27] start with the model

d|θ ,σ2 ∼ N(θ ,σ2).

The prior on θ is defined as a mixture of two normals

θ |γ j ∼ γ jN(0,(c jτ j)
2)+ (1− γ j)N(0,τ2

j ),
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where

γ j ∼ Ber(p j).

Because the hyperparameters p j,c j, and τ j depend on the level j to which the
corresponding θ (or d) belongs, and can be level-wise different, the method is
adaptive.

The Bayes rule under squared error loss for θ (from the level j) has an explicit
form,

δ (d) =

[
P(γ j = 1|d) (c jτ j)

2

σ2 +(c jτ j)2 +P(γ j = 0|d) τ2
j

σ2 + τ2
j

]
d, (14.9)

where

P(γ j = 1|d) = p jπ(d|γ j = 1)
(1− p j)π(d|γ j = 0)

and

π(d|γ j = 1)∼ N(0,σ2 +(c jτ j)
2) and π(d|γ j = 0)∼ N(0,σ2 + τ2

j ).

For other early examples of the Bayesian approach to wavelet regression see
papers, for example, by Abramovich et al. [7, 28, 31, 85].

A more recent paper by Johnstone and Silverman [51] presents a class of
empirical Bayes methods for wavelet shrinkage. The hyperparameters of the model
are estimated by marginal maximum likelihood; therefore, the threshold is estimated
from the data. The authors consider different level-dependent priors, all of which are
a mixture of point mass at zero and a heavy-tailed density. One of the choices for the
heavy-tailed density is the double exponential (Laplace) prior, for which we present
the posterior mean to exemplify their methodology.

At level j of the wavelet decomposition, define the sequence zk = d jk/σ j, where
σ j is the standard deviation of the noise at level j, which is estimated from the data.
Therefore, zk = μk+εk, where the εk are i.i.d. N(0,1) random variables. The authors
model parameters μk with independent mixture prior distributions

π(μ) = (1−w)δ0(μ)+wγ(μ),

where δ0(μ) denotes a point mass at zero. Using the double exponential distribution
γa(μ) = 1

2 exp{−a|μ |}, with scale parameter a > 0, the marginal distribution of z
becomes

m(z) = (1−w)ϕ(z)+wg(z),
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where ϕ denotes the standard normal density and

g(z) = 1
2 aexp

{
1
2 a2}[e−azΦ(z− a)+ eazΦ̃(z+ a)

]
.

In the above equation Φ denotes the cumulative distribution of the standard normal
and Φ̃ = 1−Φ . The posterior distribution of μ becomes

π�(μ |z) = (1−wpost)δ0(μ)+wpost f1(μ |z),

where the posterior probability wpost is

wpost(z) = wg(z)
/
[wg(z)+ (1−w)ϕ(z)]

and

f1(μ |z) =
{

eazϕ(μ − z− a)
/[

e−azΦ(z− a)+ eazΦ̃(z+ a)
]
, μ ≤ 0

e−azϕ(μ − z+ a)
/[

e−azΦ(z− a)+ eazΦ̃(z+ a)
]
, μ > 0,

which is a weighted sum of truncated normal distributions. Detailed derivations of
g(z) and f1(μ |z) are provided by Pericchi and Smith [72]. It can be shown that the
posterior mean is

E(μ |z) = wpost(z)

[
z− a

[
e−azΦ(z− a)− eazΦ̃(z+ a)

]
e−azΦ(z− a)+ eazΦ̃(z+ a)

]
. (14.10)

A schematic picture of the posterior mean (14.10) is presented in Fig. 14.2 for
w = 0.1 and a = 0.5. It exhibits a desirable shrinkage pattern slightly shrinking
large and heavily shrinking small coefficients in magnitude.

The mixing weight w and scale parameter a are estimated by marginal maximum
likelihood for each dyadic level j. The authors also provide the posterior median for
the above model and closed-form equations for the posterior mean and median in
case γ(μ) is a quasi-Cauchy distribution. For more details and related theoretical
results the reader is referred to [51], and for more examples using the method,
see [52].

Several more recent papers have considered term-by-term Bayesian wavelet
shrinkage. Angelini and Sapatinas [10] consider an empirical Bayes approach to
wavelet regression by eliciting the ε-contamination class of prior distributions
and using type II maximum likelihood approach to prior selection. Angelini and
Vidakovic [11] show that Γ -minimax shrinkage rules are Bayes with respect to a
least favorable contamination prior with a uniform spread distribution. Their method
allows for incorporation of information about the energy in the signal of interest.
Cutillo et al. [32] consider thresholding rules induced by a variation of the Bayesian
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Fig. 14.2 Posterior mean rule (14.10) for w = 0.1 and a = 0.5

MAP principle in a properly set Bayesian model. The rule proposed is called larger
posterior mode (LPM) because it always picks the mode of the posterior larger
in absolute value. Ter Braak (2006) extends the normal Bayesian linear model by
specifying a flat prior on the δ th power of the variance components of the regression
coefficients. In the orthonormal case, easy-to-compute analytic expressions are
derived, and the procedure is applied in a simulation study of wavelet denoising.

14.3.2 Bayesian Block Shrinkage

Methods considered above are called diagonal, since the wavelet coefficients are
assumed independent. In reality the wavelet coefficients are dependent, but this
dependence is weak and decreases with increasing the separation distance between
them and the number of vanishing moments of the decomposing wavelet. Many
authors argued that shrinkage performance can be improved by considering the
neighborhoods of wavelet coefficients (blocks, parent-child relations, cones of
influence, etc.) and report improvements over the diagonal methods. Examples
include classical block thresholding methods by Hall et al. [19–21, 44–46] where
wavelet coefficients are thresholded based on block sums of squares.
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Abramovich et al. [4] considered an empirical Bayes approach to incorporating
information on neighboring wavelet coefficients into function estimation. The
authors group wavelet coefficients d jk into m j nonoverlapping blocks b jK (K =
1, . . . ,m j) of length l j at each resolution level j. The block of observed wavelet
coefficients will be denoted as b̂ jK . They consider the following prior model for
blocks b jK :

b jK |γ jK ∼ N(0,γ jKVj),

γ jK ∼ Ber(π j).

Independence of blocks across different resolution levels is assumed. This prior
model allows for a covariance structure between neighboring coefficients in the
same block, supporting the fact that wavelet coefficients are more likely to contain
signal if this is true for their neighbors as well. The covariance matrix Vj is specified
at each level j by two hyperparameters τ j and ρ j, where the correlation between
the coefficients, ρ j, decreases as the distance between the coefficients increases.
Combining the prior model with the likelihood b̂ jK ∼ N(b jK ,σ2I) leads to the
posterior mean of b jK as

E(b jK |b̂ jK) =
1

1+O jK
A jb̂ jK , (14.11)

where

O jK =
1−π j

π j

(
det(Vj)

σ2l j det(A j)

)1/2

exp

{
− b̂

′
jKA jb̂ jK

2σ2

}
,

A j = (σ2V−1
j + I)−1.

Rule (14.11) is a nonlinear block shrinkage rule, by which the observed wavelet
coefficients in block jK are shrunk by the same factor determined by all
the coefficients within the block. The authors also provide details for the posterior
median and the Bayes factor procedure, which are individual and block thresholding
rules, respectively.

Hyperparameters π j, τ j , and ρ j are estimated by marginal maximum likelihood
method for each level j, and hyperparameter σ is estimated by the standard median
absolute deviation suggested by Donoho and Johnstone [35]. After plugging in
the estimate σ̂ and some reparametrization, the negative log-likelihood function
−l j(π j,τ j ,ρ j, σ̂) was minimized by the Nelder–Mead simplex search method.

The authors present detailed simulation study of the method and an application
to inductance plethysmography data. For details the reader is referred to [4].

A paper by De Canditiis and Vidakovic [34] proposed the BBS (Bayesian
block shrinkage) method, which also allows for dependence between the
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wavelet coefficients. The modeling is accomplished by using a mixture of two
normal-inverse-gamma (NIG) distributions as a joint prior on wavelet coefficients
and noise variance within each block. In this sense it is a generalization of the
ABWS method by Chipman et al. [27]. The authors group the wavelet coefficients
into nonoverlapping, mutually independent blocks ddd jH of size l j. Assuming a
normal likelihood ddd jH ∼ N(θθθ jH ,σ2I), the prior model is specified as

θθθ jH ,σ2|γ j ∼ γ jNIG(α,δ ,000,Σ j)+ (1− γ j)NIG(α,δ ,000,Δ j),

γ j ∼ Ber(p j),

where the covariance matrices are specified as Σ [s, t] = c2
jρ |s−t| and Δ [s, t] =

τ2
j ρ |s−t|, which is in the same fashion as in [4]. The first part of the above mixture

prior models wavelet coefficients with large magnitude (c j � 1) and the second
part captures small coefficients (τ j is small), similarly to the ABWS method.
The posterior distribution for the model above remains a mixture of NIG distribution
with mixing weights updated by the observed wavelet coefficients. The posterior and
marginal distributions are derived in the paper. The posterior mean of θθθ jH becomes

E(θθθ jH |ddd jH) = A jH(ddd jH)mmm
�
jH +(1−A jH(ddd jH))mmm

��
jH , (14.12)

where

A jH(ddd jH) =
p j

|Σ�
j |1/2

|Σ j |1/2

p j
|Σ�

j |1/2

|Σ j |1/2 +(1− p j)
|Δ��

j |1/2

|Δ j |1/2 +

[
α+dddT

jH (I−Δ��
j )ddd jH

α+dddT
jH (I−Σ�

j )ddd jH

]−(δ+l j)/2

and

Σ�
j = (Σ−1

j + I)−1,

Δ��
j = (Δ−1

j + I)−1,

mmm�
jH = Σ�

j ddd jH ,

mmm��
jH = Δ��

j ddd jH .

The posterior mean (14.12) is a linear combination of two affine shrinkage
estimators mmm�

jH and mmm��
jH , which preserve the smooth part and remove the noise,

respectively. The weight A jH(ddd jH) depends on the observed wavelet coefficients in
a nonlinear fashion. For more details on hyperparameter selection, simulations, and
performance the reader is referred to [34].
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Huerta [47] proposed a multivariate Bayes wavelet shrinkage method which
allows for correlations between wavelet coefficients corresponding to the same level
of detail. The paper assumes the multivariate normal likelihood for the observed
wavelet coefficients, that is,

d|θ ,σ2 ∼ N(θ ,σ2In).

Note that the wavelet coefficients are not grouped into blocks, as opposed to the
methods discussed before. The prior structure is specified as

θ |τ2 ∼ N(0,τ2Σ),

σ2 ∼ IG(α1,δ1),

τ2 ∼ IG(α2,δ2),

where Σ is an n× n matrix defining the prior correlation structure among wavelet
coefficients. The matrix is specified as a block diagonal matrix, where each block
defines the correlation structure for different wavelet decomposition level. The
building blocks of matrix Σ are defined in the same way as in the methods discussed
above.

Since there is no closed-form expression for the marginal posterior π�(θ |d), a
standard Gibbs sampling procedure is adopted to obtain posterior inferences on the
vector of wavelet coefficients d. For further details and applications of the method
the reader is referred to [47].

Wang and Wood [93] considered a different approach for Bayesian block
shrinkage, based directly on the block sum of squares. The sum of squares of
the coefficients in the block forms a noncentral chi-square random variable, on
which the Bayesian model is formulated. Let ĉB denote the block of empirical
wavelet coefficients, B representing the labels and n(B) the number of labels, in
general. Then the assumed likelihood function is ĉB ∼ Nn(B)(cB,σ2In(B)). Define
z = ‖ĉB‖2 = Σi∈Bĉ2

i , the sum of squares of the coefficients in the block. It follows
that z ∼ χ2

m(z|ρ ,σ2), that is, z has noncentral χ2 distribution with m = n(B) degrees
of freedom, noncentrality parameter ρ = ‖cB‖2, and scale parameter σ2. The authors
formulate the prior model on the noncentrality parameter as

ρ |β ∼ χ2
m(ρ |0,β−1),

β |σ2,θ ∼ F(β |σ2,θ ).

In other words this specifies a central χ2 density with m degrees of freedom and
scale parameter β−1 as a prior for ρ and specifies a prior for β with cumulative
distribution function F(β |σ2,θ ). Their article focuses on a mixture structure

F(β |σ2,θ ) = pF(β |σ2,λ ,J = 1)+ (1− p)F(β |σ2,λ ,J = 0),
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where

F(β |σ2,λ ,J = 1) = I{β=∞}(β ).

Here J is a Bernoulli random variable, with J = 0 corresponding to a distribution
on the right side of the mixture, and J = 1 referring to a point mass at infinity
distribution. Using an identity satisfied by the noncentral χ2 density the authors
provide closed-form equations for the marginal distribution and the posterior mean
of ρ for the model setup above. The equations are the function of F(β |σ2,λ ,J = 0),
which is to be specified. The authors consider four particular cases of this prior, the
point mass prior, the power prior, the exponential prior, and general discrete prior.
For the power prior—on which the paper focuses on—the marginal distribution and
posterior mean of ρ is derived as

f
(
z|σ2,θ

)
= pχ2

m

(
ρ |0,σ2)+(1− p)

(λ + 1)
(
2σ2

)λ+1

Γ
(

1
2 m

)
zλ+2

γ
(

η ,
z

2σ2

)
,

E
(
ρ |z,σ2,θ

)
= (1−π)

{
mσ2 + z− mσ2 + 2z

z/(2σ2)
Cη,1

( z
2σ2

)
+

4σ4

z
Cη,2

( z
2σ2

)}
,

where

π =
pχ2

m(ρ |0,σ2)

f (z|σ2,θ )
,

Cη, j(x) = γ(η + j,x)/γ(η ,x),

η = 1+λ +
1
2

m,

γ(a,x) =
∫ x

0
ta−1e−tdt.

Hyperparameter σ2 is estimated analogously to the median absolute deviation
estimator suggested by Donoho and Johnstone [35], hyperparameter λ is estimated
by a “quick-and-dirty” heuristics, and finally hyperparameter p is estimated by
marginal maximum likelihood. Given values of hyperparameters σ2 and θ = (p,λ ),
the authors propose to estimate wavelet coefficients cB by the shrinkage procedure

cB = ĉB{Bσ 2,θ (z)/z} 1
2 , (14.13)

where Bσ 2,θ (z) denotes the posterior mean or posterior median of ρ . The authors
report good MSE results based on simulations on well-known test functions. For
more details the reader is referred to [93].
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There is a wide range of other articles considering Bayesian modeling of
neighboring wavelet coefficients. To name a few, [76] use a Bayesian hidden
Markov tree (HMT) to model the structure of wavelet coefficients in images.
Jansen and Bultheel [48] introduce a geometrical prior model for configurations
of wavelet coefficients and combine this with local characterization of a classical
thresholding into a Bayesian framework. Sendur and Selesnick [80] use parent–
child neighboring relation and Laplacian bivariate prior to derive MAP estimators
for wavelet coefficients. Pižurica et al. [73] use a Markov random field (MRF)
prior model to incorporate inter- and intrascale dependencies of wavelet coefficients.
Portilla et al. [74] models neighborhoods of image wavelet coefficients at adjacent
positions and scales using scale mixtures of Gaussians.

A recent non-Bayesian development was proposed by Fryzlewitz [40] in a form
of fast, hard-thresholding algorithm based on coupling parents and children in the
wavelet coefficient tree.

14.3.3 Complex Wavelet Shrinkage

Wavelet shrinkage methods using complex-valued wavelets provide additional
insights to shrinkage process. Lina and Mayrand [61] describes the complex-
valued Daubechies’ wavelets in detail. Both complex- and real-valued Daubechies’
wavelets are indexed by the number of vanishing moments, N. For a given N, there
are 2N−1 solutions to the defining equations of Daubechies’ wavelets, of which
not all are distinct. For example, in case N = 3, there are four possible solutions
to the defining equations, but only two are distinct. Two solutions give the real-
valued extremal-phase wavelet and the other two are a complex-valued conjugate
pair, giving equivalent complex-valued wavelets. This complex wavelet was also
derived by Lawton [56] through “zero-flipping”; he notes that apart from the Haar
wavelet, complex wavelets with an odd number of vanishing moments are the only
compactly supported wavelets which are symmetric. The complex-valued wavelet
transformation can also be represented by a complex-valued matrix W , which is
unitary; therefore, W̄ TW =WW̄ T = I. Here W̄ denotes the complex conjugate of W .

After taking complex wavelet transformation of a real-valued signal, our model
becomes

d jk = θ jk + ε jk,

where the observed wavelet coefficients d jk are complex numbers at resolution j
and location k.

Several papers considering Bayesian wavelet shrinkage with complex wavelets
are available. For example, [59, 60, 62] focus on image denoising, in which the
phase of the observed wavelet coefficients is preserved, but the modulus of the
coefficients is shrunk by the Bayes rule.

Here we summarize the complex empirical Bayes (CEB) procedure proposed by
Barber and Nason [14], which modifies both the phase and modulus of wavelet
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coefficients by a bivariate shrinkage rule. The authors assume a common i.i.d.
normal noise model eee ∼ Nn(000,σ2In); however, after taking complex wavelet
transform, the real and imaginary parts of the transformed noise εεε = W eee become
correlated. The authors demonstrate that

cov{Re(εεε), Im(εεε)} = −σ2Im(WW T )/2,

cov{Re(εεε),Re(εεε)} = σ2{In +Re(WW T )}/2,

cov{Im(εεε), Im(εεε)} = σ2{In −Re(WW T )}/2. (14.14)

Representing the complex-valued wavelet coefficients as a bivariate real-valued
random variables, the model for the observed wavelet coefficients becomes

d jk|θ jk ∼ N2(θ jk,Σ j),

where Σ j is determined by (14.14) for each dyadic level j. Noise variance σ2 is
estimated by the usual median absolute deviation by Donoho and Johnstone [35].

The authors consider a bivariate mixture prior of the form

θ jk ∼ p jN2(000,Vj)+ (1− p j)δ0,

where δ0 is the usual point mass probability at (0,0)T . This prior is the bivariate
extension of the prior considered by Abramovich et al. [7]. Conjugacy of the normal
distribution results in the posterior distribution

θ jk|d jk ∼ p̃ jkN2(μ jk,Ṽj)+ (1− p̃ jk)δ0,

where

p̃ jk =
p j f (d jk|p j = 1)

p j f (d jk|p j = 1)+ (1− p j) f (d jk|p j = 0)
,

f (d jk|p j = 1) =
1

2π
√|Vj +Σ j|

exp

{
−1

2
dT

jk(Vj +Σ j)
−1d jk

}
,

f (d jk|p j = 0) =
1

2π
√|Σ j|

exp

{
−1

2
dT

jkΣ−1
j d jk

}
,

Ṽj =
(

V−1
j +Σ−1

j

)−1
and μ jk = ṼjΣ−1

j d jk.

The posterior mean of θ jk becomes

E(θ jk) = p̃ jkμ jk, (14.15)
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which is denoted as “CEB-Posterior mean.” The authors consider two additional
estimation rules, the phase-preserving “CEB-Keep or kill” and the hybrid “CEB-
MeanKill” procedure.

Estimation of the prior parameters p j and Vj is employed by the data-driven
empirical Bayes approach maximizing the logarithm of the marginal likelihood.
However, optimizing the bivariate likelihood is more involved because we have
more parameters compared to the real-valued case.

Barber and Nason [14] present an extensive simulation study of the CEB
method alongside with the phase-preserving CMWS hard-thresholding method also
developed in their paper. Simulations show that complex-valued denoising is very
effective and dominates existing real-valued wavelet shrinkage methods.

14.3.4 Complex Wavelet Shrinkage via Gibbs Sampling

In this section, we describe a new adaptive wavelet denoising methodology using
complex wavelets. The method is based on a fully Bayesian hierarchical model that
uses a bivariate mixture prior. The crux of the procedure is computational in which
the posterior mean is computed through MCMC simulations.

We build on the results of [14] and formulate a bivariate model in the complex
wavelet domain, representing the wavelet coefficients as bivariate real-valued
random variables. As standardly done in Bayesian modeling, we formulate a
hierarchical model which accounts for the uncertainty of the prior parameters by
adopting hyperpriors on them. Since a closed-form solution to the Bayes estimator
does not exist, MCMC methodology is applied and an approximate estimator
(posterior mean) from the output of simulational runs is computed. Although the
simplicity of a closed-form solution is lost, the procedure is fully Bayesian, adaptive
to the underlying signal and the estimation of the hyperparameters is automatic
via the MCMC sampling algorithm. The estimation is governed by the data and
hyperprior distributions on the parameters.

We start with the following hierarchical bivariate Bayesian model on the
observed complex-valued wavelet coefficients d jk:

d jk|θ jk,σ2 ∼ N2(θ jk,σ2Σ j),

θ jk|ε j ,Cj ∼ (1− ε j)δ0 + ε jEP2(μ ,Cj ,β ), (14.16)

where EP2 denotes the bivariate exponential power distribution. The multivariate
exponential power distribution is an extension of the class of normal distributions in
which the heaviness of tails can be controlled. Its definition and properties can be
found in [42]. The prior on the location θ jk is a bivariate extension of the standard
mixture prior in the Bayesian wavelet shrinkage literature, consisting of a point mass
at zero and a heavy-tailed distribution. As a prior, [14] considered a mixture of point
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mass and bivariate normal distribution. A heavy-tailed mixture prior can probably
better capture the sparsity of wavelet coefficients; however, in the bivariate case, a
closed-form solution is infeasible, and we rely on MCMC simulation.

To specify the general case exponential power prior in (14.16), we use μ = 0,
because the wavelet coefficients are centered around zero by their definition. We
also fix β = 1/2, which gives our prior the following form:

π(θ |C) = 1

8π |C|1/2
exp

{
−1

2

(
θ ′C−1θ

)1/2
}
. (14.17)

The prior in (14.17) is equivalent to the bivariate double exponential distribution.
The univariate double exponential prior was extensively used in the real-valued
wavelet context, hence it is natural to extend it to the bivariate case.

From model (14.16) it is apparent that the mixture prior on θ jk is set level-
wise, for each dyadic level j, which ensures the adaptivity of the method. Quantity
σ2Σ j represents the scaled covariance matrix of the noise for each decomposition
level, and Cj represents the level-wise scale matrix in the exponential power prior.
Explicit expression for the covariance (Σ j) induced by white noise in complex
wavelet shrinkage can be found in [14] and mentioned above in (14.14). We adopt
the approach described in their paper to model the covariance structure of the noise.

Instead of estimating hyperparameters σ2, ε j, and Cj, we specify hyperprior
distributions on them in a fully Bayesian manner. We specify a conjugate inverse
gamma prior on the noise variance σ2 and an inverse-Wishart prior on the matrix
Cj describing the covariance structure of the spread prior of θ jk. Mixing weight
ε j regulates the strength of shrinkage of a wavelet coefficient to zero. We specify
a “noninformative” uniform prior on this parameter, allowing the estimation to be
fully governed by the data.

For computational purposes, we represent our exponential power prior as a scale
mixtures of multivariate normal distributions, which is an essential step for efficient
Monte Carlo simulation. From [43], the bivariate exponential power distribution
with μ = 0 and β = 1/2 can be represented as

EP2(μ = 0,Cj,β = 1/2) =
∫ ∞

0
N2(0,vCj)

1

Γ (3/2)83/2
v1/2e−v/8dv,

which is a scale mixtures of bivariate normal distributions with mixing distribution
gamma. Using the specified hyperpriors and the mixture representation, the model
in (14.16) extends to

d jk|θ jk,σ2 ∼ N2(θ jk,σ2Σ j),

σ2 ∼ IG(a,b),

θ jk|z jk,v jk,Cj ∼ (1− z jk)δ0 + z jkN2(0,v jkCj),
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z jk|ε j ∼ Ber(ε j),

ε j ∼ U(0,1),

v jk ∼ Ga(3/2,8),

Cj ∼ IW(A j,w). (14.18)

Note that, for computational purposes, we also introduced a latent variable z jk

in the above model. Variable z jk is a Bernoulli variable indicating whether our
parameter θ jk comes from a point mass at zero (z jk = 0) or from a bivariate
normal distribution (z jk = 1). By representing the exponential power prior as a
scale mixtures of normals, the hierarchical model in (14.18) becomes tractable,
because the full conditional distributions of all the parameters become explicit.
Therefore, we can develop a Gibbs sampling algorithm to update all the necessary

parameters. We used the sample average θ̂ jk = Σiθ
(i)
jk /N of the simulational runs,

as the standard estimator for the posterior mean. To apply the Gibbs sampling
algorithm we only need to specify hyperparameters a, b, A j, and w, which influence
lower level of the hierarchical model. The rest of the parameters are updated via
the Gibbs sampling procedure. The method is called complex Gibbs sampling
wavelet smoother (CGSWS). For more details about the implementation, contact
the authors.

Application to Inductance Plethysmography Data

For illustration we apply the described CGSWS method to a real-world data set
from anesthesiology collected by inductance plethysmography. The recordings were
made by the Department of Anaesthesia at the Bristol Royal Infirmary and represent
measure of flow of air during breathing. The data set was analyzed by several
authors, for example, [4, 7, 66]. For more information about the data, refer to these
papers.

The top part of Fig. 14.3 shows a section of plethysmograph recording lasting
approximately 80 s (n = 4,096 observations), while the bottom part shows the
reconstruction of the signal with the CGSWS method. In the reconstruction process
we applied N = 5,000 iterations of the Gibbs sampler of which the first 2,000 was
burn-in. The aim of smoothing is to preserve features such as peak heights while
eliminating spurious rapid variation. The result provided by the proposed method
satisfies these requirements providing a very smooth result. Abramovich et al. [4]
report the heights of the first peak while analyzing this data set. In our case the
height is 0.8389, which is quite close to the result 0.8433, obtained by Abramovich
et al. [4], and better compared to the results obtained by other established methods
analyzed in their paper.
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Fig. 14.3 Reconstruction of the (IPD) inductance plethysmography data by CGSWS

14.3.5 Bayesian Wavelet Shrinkage in Curve Classification

We consider the paper by Wang et al. [92] to give an application of Bayesian
wavelet shrinkage in curve classification. The authors consider Bayesian wavelet-
based classification models for binary and multicategory data where the predictor is
a random function.

Functional data analysis deals with the analysis of data sets where the units are
curves that are ordered measurements on a regular grid. Functional data is frequently
encountered in scientific research. Classification of functional data is a relatively
new problem, and there are several approaches, from using simple summary
quantiles to nonparametric methods using splines. Wang et al. [92] propose a
Bayesian wavelet-based classification method, because wavelets are known to
have nice properties for representing a wide range of functional spaces including
functions with sharp-localized changes. The proposed method unifies wavelet-based
regression with logistic classification models, representing functional data using
wavelet basis functions and using the wavelet coefficients for classification within a
logistic model.

Consider data set {YYYiii,zi}, i = 1, . . . ,n, where YYY iii is a vector of m measurements
and zi is a binary classification variable. We represent the vector of measurements as
YYY iii = fff iii +εεε iii, where fff iii is an underlying nonparametric function and εεε iii ∼ N(0,σ2I).
Representing functions fff iii in wavelet basis we get YYY iii = XXXβββ iii + εεε iii, where XXX is the
discrete wavelet transformation matrix and βββ iii is the vector of wavelet coefficients.
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The authors consider the following unified hierarchical Bayesian model for wavelet
regression and classification:

Random function YYY iii ∼ N(XXXβββ iii,σ
2I),

βββ iii,σ
2|ηηη iii,ggg ∼ NIG(0,diag(ηηη iii)diag(ggg),aσ ,bσ ),

g j ∼ IG(u j,v j),

ηi jk ∼ Ber(ρ j).

Binary outcome zi ∼ Ber(pi),

Ti ∼ N(βββ ttt
iiiθθθ ,τ

2), where Ti = logit(pi),

θθθ ,τ2|γγγ,hhh ∼ NIG(0,diag(γγγ)diag(hhh),aτ ,bτ),

h j ∼ IG(c j,d j),

γ jk ∼ Ber(π j), (14.19)

for i = 1, . . . ,n, j = 1, . . . , log2 m, and k = 0, . . . ,2 j − 1.
The first part in (14.19) is a model for the observed random functions YYY iii, where

variable selection priors for the wavelet coefficients are adopted from the Bayesian
wavelet modeling literature similar to [34]. Parameter g j is a scaling parameter,
and parameter ηi jk is the usual latent indicator variable to model the sparsity of
the wavelet representation. The second part in (14.19) is a classification model for
variable zi ∈ {0,1} taking unit value with unknown probability pi. The logistic
classification model relates the wavelet coefficients βββ iii to the latent variable Ti =
logit(pi) through a linear model Ti = βββ ttt

iiiθθθ + δi, where δi ∼ N(0,τ2) and where θθθ is
a vector of regression coefficients. Similar variable selection prior for θθθ is assumed
as for βββ iii to reduce the dimensionality of the problem.

For functional data with binary outcomes the model in (14.19) is an extension
of a standard classification model with an additional layer of functional regression
model. Because the posterior distribution of the parameters is not available in
a standard form, posterior inference has to rely on MCMC methods. Wang et
al. [92] derive the full conditional distributions for the parameters, which allow
for implementation of a Gibbs sampling algorithm. The model in (14.19) is also
extended to multicategory classification by the authors.

14.3.5.1 Application to Leaf Data

Wang et al. [92] analyzed a data set from [53] that contains leaf images of six
different species. The data was converted into a pseudo-time series by measuring
local angle and trace of the leaf images. For a purpose of binary classification
analysis one maple (Circinatum) and one oak (Garryana) species were selected with
150 instances. Example curves adopted from [92] can be seen in Fig. 14.4.
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Fig. 14.4 Adopted from [92]: “Pseudo-time series curves from leaf images. (a) and (b) Every
other curve in two species in the data set, 33 of Circinatum and 42 of Garryana. (c) and (d)
Example of single curve from two species, Circinatum and Garryana”

The classification was carried out by randomly selecting 140 curves from
the training and ten curves from the testing set. This was repeated 20 times,
and the correct classification rate (CCR) was reported. The proposed wavelet-
based classification method had CCR=94% and outperformed all other methods
considered, including empirical Bayes thresholding plugged into a support vector
machine (SVM) classifier. The authors carried out analysis for other existing and
simulated data sets, including nonequispaced and multicategory data, and reported
good performance. For more details the reader is referred to [92].

14.3.6 Related Work

There are numerous papers related to wavelet shrinkage and wavelet regression.
Here we list some additional references related to the topics discussed in this
chapter, as a repository for researchers interested in the area.
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For related overview summaries about wavelet methods see [3, 12, 67], for
example. An excellent critical overview and simulation study comparing different
wavelet shrinkage methods can be found in [13]. Articles focusing only on Bayesian
wavelet-based modeling include [65, 78, 86].

Some recent results about theoretical properties and optimality of Bayesian
wavelet estimators can be found in [1, 2, 16, 17, 51, 70, 71].

There are several papers on Bayesian wavelet estimation in the signal and image
processing community. These papers usually specify a single, nonmixture prior
on the wavelet coefficients and compute a Bayes estimator. Posterior mode is a
popular choice, which is used, for example, by Figueiredo and Nowak [38, 64],
who use generalized Gaussian and complexity priors to model wavelet coefficients.
Other articles in this group include [18] using approximate α-stable prior, [23]
using generalized Gaussian distribution (GCD) as a prior, [37] using Bessel K
forms (BKF) densities, and [58] using Besov norm priors for modeling wavelet
coefficients. Achim and Kuruoğlu [8] develop a bivariate maximum a posteriori
estimator using a bivariate α-stable distribution to model wavelet coefficients in the
complex wavelet domain.

Some non-Bayesian improvements related to block thresholding include [20, 22,
24–26, 36], to name a few. More general theoretical results about block empirical
Bayes estimation appear in [95].

All Bayesian estimators depend on hyperparameters that have to be specified.
Purely subjective elicitation is only possible when considerable knowledge about
the underlying signal is available. The empirical Bayes method is an efficient, com-
pletely data-driven procedure to estimate the hyperparameters based on marginal
maximum likelihood method. Several papers in the literature used this method to
estimate hyperparameters of the model. For more information about the method
see, for example, papers by Clyde and George [29, 30, 50, 51].

The usual assumptions for wavelet regression are equispaced sampling points
with a sample size being a power of 2, i.i.d. normal random errors with zero
mean and constant variance. Extension of these assumptions has been considered
in several articles. To name a few non-Bayesian procedures, [49] consider wavelet
thresholding with stationary correlated noise, and [55] extend wavelet threshold-
ing to irregularly spaced data, to equally spaced data sets of arbitrary size, to
heteroscedastic and correlated data, and to data which contains outliers. An early
example of a Bayesian wavelet shrinkage method incorporating theoretical results
on the covariance structure of wavelet coefficients is by Vannucci and Corradi [84].
Ambler and Silverman [9] allow for the possibility that the wavelet coefficients
are locally correlated in both location (time) and scale (frequency). This leads to
an analytically intractable prior structure; however, they show that it is possible to
draw independent samples from a close approximation to the posterior distribution
by an approach based on coupling from the past, making it possible to take a
simulation-based approach to wavelet shrinkage. Wang and Wood [94] consider a
Bayesian wavelet shrinkage method which includes both time and wavelet domain
methods to estimate the correlation structure of the noise and a Bayesian block
shrinkage procedure based on [93]. Ray and Mallick [75] develop a Bayesian
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wavelet shrinkage method to accommodate broad class of noise models for image
processing applications. The method is based on the Box-Cox family of power
transformations.

Kohn et al. [54] develop a wavelet shrinkage method which incorporates a
Bayesian approach for automatically choosing among wavelet bases and averaging
of the regression function estimates over different bases.

Barber et al. [15, 79] derive Bayesian credible intervals for Bayesian wavelet re-
gression estimates based on cumulants and saddlepoint approximation, respectively.

Olhede and Walden [69] discuss an “analytic” wavelet thresholding which
incorporates information from the discrete Hilbert transform of the signal, creating
a complex-valued “analytic” vector. A recent paper describing a data-adaptive
thresholding by controlling the false discovery rate (FDR) is by Abramovich
et al. [5]. A Bayesian interpretation of the FDR procedure and application to wavelet
thresholding can be found in [82].

Application of the Bayesian maximum a posteriori multiple testing (testimation)
procedure to wavelet thresholding can be found in [6].
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