
Chapter 13
Characterizations of Certain Continuous
Distributions

G.G. Hamedani

Abstract In designing a stochastic model for a particular modeling problem, an
investigator will be vitally interested to know if their model fits the requirements of a
specific underlying probability distribution. To this end, the investigator will vitally
depend on the characterizations of the selected distribution. The Amoroso, SSK
(Shakil–Singh–Kibria), SKS (Shakil–Kibria–Singh), SK (Shakil–Kibria), and SKS-
type distributions have been suggested to have potential applications in modeling
and are characterized here based on either a simple relationship between two
truncated moments or a truncated moment of a function of the first order statistic
or of a function of the nth order statistic, the two more interesting order statistics.
We also present a characterization of SKS-type distribution based on the conditional
expectation of adjacent generalized order statistics.

13.1 Introduction

In designing a stochastic model for a particular modeling problem, an investigator
will be vitally interested to know if their model fits the requirements of a specific
underlying probability distribution. To this end, the investigator will depend on
the characterizations of the selected distribution. Generally speaking, the problem
of characterizing a distribution is an important problem in various fields and
has recently attracted the attention of many researchers. Consequently, various
characterization results have been reported in the literature. These characterizations
have been established in many different directions, one of which is in terms of the
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truncated moments. We like to mention here the works of Galambos and Kotz [8],
Kotz and Shanbhag [20], Glänzel [9,10], Glänzel et al. [12], Glänzel and Hamedani
[11], and Hamedani [13–15].

Recently, Ahsanullah and Hamedani [3] characterized the power function and
the beta of the first-kind distributions based on a truncated moment of the nth order
statistic and first order statistic, respectively, extending some known characteriza-
tions of the power function and the uniform distributions (see [1,2]). Following [3],
Hamedani et al. [17] characterized the following distributions based on a truncated
moment of the first order statistic: Burr type XII ( a special case), generalized beta
1, generalized beta 2 (the last two family of distributions unify many distributions
employed for size distribution of income [21]), generalized Pareto, Pareto of first
kind, and Weibull. The following families of distributions were also mentioned
in [17] as special cases of Weibull: Burr type X, chi-square, extreme value type
2, gamma and Rayleigh. Hamedani [15] established characterizations of 31 more
continuous univariate distributions based on a truncated moment of the first order
statistic or of the nth order statistic or of a function of the first order statistic or of a
function of the nth order statistic.

Various systems of distributions have been constructed to provide approximations
to a wide variety of distributions (see, e.g., [18]). These systems are designed with
the requirements of ease of computation and feasibility of algebraic manipulation.
To meet the requirements, there must be as few parameters as possible in defining a
member of the system.

One of these systems is Pearson system. A continuous distribution belongs to this
system if its probability density function (pd f ) f (x) satisfies a differential equation
of the form

1
f (x)

d f (x)
dx

=− x+ a
bx2 + cx+ d

(13.1)

where a,b,c, and d are real parameters such that f (x) is a pdf. The shape of
the pdf depends on the values of these parameters. Pearson [22] classified the
different shapes into a number of types I–VII (see Appendix A). Many well-known
distributions are special cases of Pearson-type distributions which are characterized
in [15], Sects. 3–6.

Another system is Burr system, [6], which like Pearson system, has various types
I–XII. This system, however, is not as involved and as basic as Pearson system.
There are also families of distributions like extreme value and Pareto which have
different kind or type members. These distributions are also characterized in [15]
Sects. 3–6.

The families discussed in Sects. 5.3 and 5.5 of [15] were first introduced in
[5] in the context of minimum dynamic discrimination information approach to
probability modeling. The families in Sects. 5.8 and 5.9 of [15] appeared in [4],
which were shown to be maximum dynamic entropy models.

The presentation of the content of this work is as follows. Sect. 13.2 deals
with introduction of Amoroso distribution, the natural unification of the gamma
and extreme value distributions. In Sect. 13.3, we present characterizations of
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the Amoroso distribution based on the truncated moment of a function of first
order statistic and of a function of nth order statistic. Section 13.4 is devoted to
definitions of SSK, SKS, SK, and SKS-type distributions. In Sect. 13.5, we present
characterizations of SSK distribution based on a simple relationship between two
truncated moments. Section 13.6 deals with the characterizations of SKS-type
distribution based on the truncated moment of a function of first order statistic
and of a function of nth order statistic. We also give a characterization of this
distribution based on conditional expectation of adjacent generalized order statistics.
In Sect. 13.7 we present a characterization of SK distribution based on a simple
relation between two truncated moments. Finally, in Sect. 13.8 we have a very short
concluding remark. For further characterization results in this direction, we refer the
reader to Ahsanullah and Hamedani [3], Hamedani et al. [17], and Hamedani [15].

13.2 The Amoroso Distribution

This section deals with introducing the Amoroso distribution. It is pointed out by
Crooks [7] that the Amoroso distribution, a four parameter, continuous, univariate,
unimodel pdf with semi-infinite range, was originally developed to model lifetimes
(see [7] for more details). Moreover, many well-known and important distributions
are special cases or limiting forms of the Amoroso distribution. Table 13.1 is taken
(with permission from G.E. Crooks for which we are grateful to him) from [7],
which shows 35 special and four limiting cases of the Amoroso distribution. These
distributions and their importance in different fields of studies have been discussed
in detail in [7].

The pdf of the Amoroso distribution is given by

f (x;a,α,τ,k) =
1

Γ (k)

∣
∣
∣

τ
α

∣
∣
∣

(
x− a

α

)τk−1

exp

{

−
(

x− a
α

)τ}

(13.2)

for x, a,α, τ in R,k > 0, support x ≥ a if α > 0, x ≤ a if α < 0. As usual, Γ (k) =
∫ ∞

0 uk−1 e−u du, for k > 0.
The four real parameters of the Amoroso distribution consist of a location

parameter a, a scale parameter α , and two shape parameters, τ and k. The shape
parameter k is positive, and most of the time, an integer, k = n, or half-integer k = m

2 .
If the random variable X has the Amoroso distribution with parameters a, α, τ and
k > 0, we write X ∼ Amoroso(a,α,τ,k).

For further details about the distributions listed in Table 13.1 and their
applications, we refer the reader to Crooks [7].

We give Table 13.2 displaying four cases based on the signs of α and τ for the
random variable X ∼ Amoroso(a,α,τ,k). Without loss of generality we assume
a = 0 throughout this work.
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Table 13.1 The Amoroso family of distributions

Amoroso a α k τ
Stacy 0 · · ·
Gen. Fisher-Tippett · · n ·
Fisher-Tippett · · 1 ·
Fréchet · · 1 < 0
Generalized Fréchet · · n < 0
Scaled inverse chi 0 · m

2 −2
Inverse chi 0 1√

2
m
2 −2

Inverse Rayleigh 0 · 1 −2
Pearson type V · · · −1
Inverse gamma 0 · · −1
Scaled inverse chi-square 0 · m

2 −1
Inverse chi-square 0 1

2
m
2 −1

Lévy · · 1
2 −1

Inverse exponential 0 · 1 −1
Pearson type III · · · 1
Gamma 0 · · 1
Erlang 0 > 0 n 1
Standard gamma 0 1 · 1
Scaled chi-square 0 · m

2 1
Chi-square 0 2 m

2 1
Shifted exponential · · 1 1
Exponential 0 · 1 1
Standard exponential 0 1 1 1
Wien 0 · 4 1
Nakagami · · · 2
Scaled chi 0 · m

2 2
Chi 0

√
2 m

2 2
Half-normal 0 · 1

2 2
Rayleigh 0 · 1 2
Maxwell 0 · 3

2 2
Wilson-Hilferty 0 · · 3
Generalized Weibull · · n > 0
Weibull · · 1 > 0
Pseudo-Weibull · · 1+ 1

τ > 0
Stretched exponential 0 · 1 > 0
Log–gamma · · · · limτ→∞
Power law · · 1−p

τ · limτ→0

Log-normal · · 1
(τσ)2 · limτ→0

Normal · · · 1 limk→∞

m, n positive integers

For α > 0 and τ > 0, Amoroso(0,α,τ,k) = GG(α,τ,k), generalized gamma
distribution. The characterizations given here are valid for the distributions of −X
(when α < 0,τ > 0) , 1

X (when α > 0,τ < 0), and − 1
X (when α < 0,τ < 0) .
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Table 13.2 Special rvs with generalized gamma distributions

τ > 0 τ < 0
α > 0 X ∼ GG(α ,τ ,k) 1

X ∼ GG
(

1
α ,−τ ,k

)

α < 0 −X ∼ GG(−α ,τ ,k) − 1
X ∼ GG

(− 1
α ,−τ ,k

)

Table 13.2 shows that for α < 0 a simple change of parameters α ′ = −α will
produce the cases on the second row of the table. So, we investigate here the
characterizations of the distribution of X when α > 0 and τ > 0 (Case I) and when
α > 0 and τ < 0 (Case II).

Case I The pdf of the Amoroso random variable is given by

f (x;α,τ,k) =
τ

αΓ (k)

( x
α

)τk−1
exp

{

−
( x

α

)τ}
,x ≥ 0 (13.3)

where all three parameters α, τ , and k are positive.

Case II Letting γ =−τ > 0, the pd f of the Amoroso random variable X is now

f (x;α,γ,k) =
γ

αΓ (k)

( x
α

)−(γk+1)
exp

{

−
( x

α

)−γ
}

,x ≥ 0 (13.4)

where all three parameters α, γ , and k are positive.
The cumulative distribution function (cd f ), F , corresponding to (13.2) and (13.4)

are, respectively,

F (x) =
1

Γ (k)

∫ ( x
α )τ

0
uk−1e−udu, x ≥ 0 (13.5)

and

F (x) = 1− 1
Γ (k)

∫ ( x
α )−γ

0
uk−1e−udu, x ≥ 0 (13.6)

13.3 Characterizations of the Amoroso Distribution

This section is devoted to the characterizations of the Amoroso distribution based
on truncated moment of a function of first order statistic as well as on truncated
moment of a function of nth order statistic. As we pointed out in Sect. 13.2, we will
present our characterizations of the Amoroso distribution in two separate cases as
follows. First, however, we give the pd f of the jth order statistic.

Let X1:n ≤ X2:n ≤ ·· · ≤ Xn:n be the order statistics of a random sample of size
n from a continuous cd f F with the corresponding pd f f . The random variable
Xj:n denotes the jth order statistic from a random sample of n independent random
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variables X1,X , . . . ,Xn with common cd f F.Then, the pd f f j:n of Xj:n, j = 1,2, . . . ,n
is given by

f j:n (x) =
n!

( j− 1)!(n− j)!
f (x)(F (x)) j−1 (1−F (x))n− j .

The pd f s of the first and the nth order statistics are, respectively

f1:n (x) = n f (x) (1−F (x))n−1 and fn:n (x) = n f (x) (F (x))n−1 .

13.3.1 Characterizations of the Amoroso PDF (Case I)

In this subsection we present a characterization of the Amoroso distribution with
pd f (13.3) in terms of a truncated moment of a function of the nth order statistic.
We define the function

γ1

[

k;
( x

α

)τ]
=

∫ ( x
α )

τ

0
uk−1e−udu f or α > 0,τ > 0,k > 0, and x ≥ 0.

Proposition 13.3.1.1. Let X : Ω → [0,∞) be a continuous random variable with
cd f F. The pd f of X is (13.3) if and only if

E

{

γ1

[

k;

(
Xn:n

α

)τ]

|Xn:n < t

}

=
n

n+ 1
γ1

[

k;
( t

α

)τ]

, t > 0. (13.7)

Proof. Let X have pd f (13.3), then F (x) is given by (13.5). Now using (13.5) on
the left-hand side of (13.7), we arrive at

E

{

γ1

[

k;

(
Xn:n

α

)τ]

|Xn:n < t

}

=

∫ t
0 γ1

[

k;
(

x
α
)τ
]

d ((F (x))n)

(F (t))n

= γ1

[

k;
( t

α

)τ]

− Γ (k)
n+ 1

F (t)

=
n

n+ 1
γ1

[

k;
( t

α

)τ]

t > 0.

Now, assume (3.1.1) holds, then

∫ t

0
γ1

[

k;
( x

α

)τ]
d ((F (x))n) =

n
n+ 1

γ1

[

k;
( t

α

)τ]

(F (t))n , t > 0.

Differentiating both sides of the above equation with respect to t and upon
simplification, we obtain
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f (t)
F (t)

=

d
dt γ1

[

k;
(

t
α
)τ
]

γ1

[

k;
(

t
α
)τ
] , t > 0.

Integrating both sides of the last equation with respect to t from x to ∞, and in

view of the fact that limt→∞ γ1

[

k;
(

t
α
)τ
]

=Γ (k) , we obtain (13.5) which completes

the proof. �
Remark 13.3.1.2. For k = 1, the following characterization in terms of the first order
statistic is given for (13.3) (see [17], Subsection (vi)).

Proposition 13.3.1.3. Let X : Ω → R
+ be a continuous random variable with cd f

F such that limx→∞ xτ (1−F (x))n = 0. Then X has pd f (13.3) (with k = 1) if and
only if

E [X τ
1:n|X1:n > t] = tτ +

ατ

n
, t > 0.

13.3.2 Characterizations of the Amoroso PDF (Case II)

In this subsection we present a characterization of the Amoroso distribution with
pd f (13.4) in terms of a truncated moment of a function of the first order statistic.

Proposition 13.3.2.1. Let X : Ω → [0,∞) be a continuous random variable with
cd f F. The pd f of X is (13.4) if and only if

E

{

γ1

[

k;

(
X1:n

α

)−γ
]

|X1:n > t

}

=
n

n+ 1
γ1

[

k;
( t

α

)−γ]

, t > 0. (13.8)

Proof. Let X have pd f (13.4), then F (x) is given by (13.6), and

E

{

γ1

[

k;

(
X1:n

α

)−γ
]

|X1:n > t

}

=

∫ ∞
t γ1

[

k;
(

x
α
)−γ

]

n f (x) (1−F (x))n−1 dx

(1−F (t))n

= γ1

[

k;
( t

α

)−γ]

− Γ (k)
n+ 1

(1−F (t))

=
n

n+ 1
γ1

[

k;
( t

α

)−γ]

, t > 0.

Now, assume (13.8) holds, then

∫ ∞

t
γ1

[

k;
( x

α

)−γ
]

n f (x) (1−F (x))n−1 dx =
n

n+1
γ1

[

k;
( t

α

)−γ]

(1−F (t))n , t > 0.
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Differentiating both sides of the above equation with respect to t and upon
simplification, we obtain

− f (t)
1−F (t)

=

d
dt γ1

[

k;
(

t
α
)−γ

]

γ1

[

k;
(

t
α
)−γ

] , t > 0.

Integrating both sides of this equation with respect to t from 0 to x, and in view

of the fact that limt→0 γ1

[

k;
(

t
α
)−γ

]

= Γ (k) , we obtain (13.6) . �

Remark 13.3.2.2. For k = 1, the following characterization in terms of the nth order
statistic is given for (13.4) (see [15], Subsect. 4.2).

Proposition 13.3.2.3. Let X : Ω → R
+ be a continuous random variable with cd f

F such that limx→0 x−γ (F (x))n = 0. Then X has pd f (13.4) (with k = 1) if and
only if

E
[

X−γ
n:n |Xn:n < t

]

= t−γ +
1

nαγ , t > 0.

13.4 The SSK (Shakil–Singh–Kibria), SKS
(Shakil–Kibria–Singh), SKS-Type, and SK
(Shakil–Kibria) Distributions

In this section we will give the definitions of SSK, SKS, SKS-type, and SK
distributions in Subsects. 13.4.1–13.4.4, respectively. Recently, some researchers
have considered a generalization of (13.1) given by

1
f (x)

d f (x)
dx

=
∑m

j=0 a jx j

∑m
j=0 b jx j , (13.9)

where m, n ∈N /{0} and the coefficients a j
′s, b j

′s are real parameters. The system
of continuous univariate pd f s generated by (13.9) is called generalized Pearson
system which includes a vast majority of continuous pd f s.

13.4.1 SSK Distribution (Product Distribution Based
on the Generalized Pearson Differential Equation)

Shakil et al. [25] consider 13.10 when m = 2, n = 1, b0 = 0, b1 	= 0, and x > 0. The
solution of this special case is an interesting three parameter distribution with pd f
f given by

f (x;α,β ,ν) =C1xν exp
(−αx2 −β x

)

, x > 0,α > 0,β > 0,ν > 0, (13.10)
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where α = − a2
2b1

, β = − a1
b1

, ν = a0
b1

, and b1 	= 0 are parameters and C1 is the
normalizing constant.

Remark 13.4.1.1. A special case of equation (13.4), with γ = 2, will also have a
solution of the form (13.10) as well.

The family of the distributions represented by pd f 13.10 can be expressed in
terms of confluent hypergeometric functions of Tricomi and Kummer. As pointed
out in [25], it is a rich family which includes the product of exponential and Rayleigh
pd f s, the product of gamma and Rayleigh pd f s, the product of gamma and Rice
pd f s, the product of gamma and normal pd f s, and the product of gamma and
half-normal pd f s, among others. For detailed treatment (theory and applications)
of this family we refer the reader to [25]. The family of SSK distributions will be
characterized in Sect. 13.5.

13.4.2 SKS Distribution

Shakil et al. [24] consider (13.9) when m = 2p, n= p+1, a j = 0, j = 1,2, . . . , p−1,
p+ 1, . . . ,2p− 1 = 0; b j = 0, j = 1,2, . . . , p, bp+1 	= 0, and x > 0. The solution of
this special case is an interesting four parameter distribution with pd f f (using their
notation) given by

f (x;α,β ,ν, p) =C2xν−1 exp
(−αxp −β x−p) , x > 0,α ≥ 0,β ≥ 0,ν ∈ R,

(13.11)

where α = − a2p
pbp+1

, β =
ap

pbp+1
, ν =

(ap+bp+1)

bp+1
, bp+1 	= 0,and p ∈ N /{0} are

parameters and C2 is the normalizing constant.
Shakil et al. [24] classified their newly proposed family into the following three

classes:

Class I. α > 0,β = 0,ν > 0, and p ∈N/{0} .
Class II. α = 0,β > 0,ν < 0, and p ∈N/{0} .

Class III. α > 0,β > 0,ν ∈ R, and p ∈N/{0} .
Shakil et al. [24] pointed out that they found their “newly proposed model fits

better than gamma, log-normal and inverse Gaussian distributions in the fields of
biomedicine, demography, environmental and ecological sciences, finance, lifetime
data, reliability theory, traffic data, etc. They hope that the findings of their paper will
be useful for the practitioners in various fields of theoretical and applied sciences.”
They also pointed out that “It appears from literature that not much attention has
been paid to the study of the family of continuous pd f s that can be generated as a
solution of the generalized Pearson differential equation (13.11), except three papers
cited in [24].” For a detailed treatment of the above-mentioned three cases and their
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significance as well as related statistical analysis, we refer the reader to [24]. These
cases were characterized in Hamedani [16] based on a simple relationship between
two truncated moments.

13.4.3 SKS-Type Distribution

The SKS distribution has support in (0,∞), and one may be interested in similar
distribution with bounded support. We would like to present here a distribution with
bounded support, which we call it SKS type given by the pd f

f (x;α,β , p) =Cpx−(p+1) (β −αx2p)exp
(−αxp −β x−p) , 0 < x <

(
β
α

) 1
2p

,

(13.12)

where α > 0, β > 0, and p ∈ R
+ are parameters and C = exp

(

2
√

αβ
)

is the

normalizing constant.

Remark 13.4.3.1. We do not require p to be a positive integer in (13.12). If,
however, p ∈ N /{0}, then (13.12) will be a member of the generalized Pearson
system defined via (13.9)

1
f (x)

d f (x)
dx

=
β 2 p−β (p+ 1)xp − 2αβ px2p−α (p− 1)x3p +α2 px4p

β xp+1 −αx3p+1 .

The cd f F corresponding to the pd f (13.12) is

F (x) =C exp
(−αxp −β x−p) ,0 < x <

(
β
α

) 1
2p

. (13.13)

The family of SKS-type distributions will be characterized in Sect. 13.6.

13.4.4 SK Distribution

Shakil and Kibria [23] consider a solution of (13.9) for m = p, n = p+ 1, a j = 0,
j = 1,2, . . . , p−1, b j = 0, j = 0,1, . . . , p, ap 	= 0, b1 	= 0, bp+1 	= 0, and x > 0. This
special five-parameter solution is given by

f (x;α,β ,ν,τ, p) =C3xν−1 (αxp +β )−τ , x > 0,α > 0,β > 0,ν > 0,τ > 0, p ∈ N/{0} ,
(13.14)
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where α , β , ν , τ , p are parameters, τ > ν
p , and C3 is the normalizing constant.

We refer the reader to [23] for further details and statistical analyses related to this
family.

Final Remark of Sect. 13.4. In view of (13.9), we would like to make the observa-
tion that the pd f f of a sub-family of the Amoroso family satisfies the generalized
Pearson differential equation (13.9) with, of course, appropriate boundary condition.
For a = 0, α > 0 (or α < 0), τ = −γ , γ ∈ N /{0}, and k > 0, the pd f f given by
(13.2) satisfies (13.9) with a0 = γαγ , a j = 0, j = 1,2, . . . ,γ − 1, aγ = −(γk+ 1);
b j = 0, j = 0,1, . . . ,γ , and bγ+1 = 1, i.e.,

1
f (x)

d f (x)
dx

=
γαγ − (γk+ 1)xγ

xγ+1 .

For a = 0, α > 0 (or α < 0) , τ = γ , γ ∈ N /{0}, and k > 0, the pd f f given
by (2.1) satisfies (4.1) with a0 = γk− 1 , a j = 0, j = 1,2, . . . ,γ − 1, aγ = −γα−γ ;
b0 = 0, and b1 = 1, i.e.,

1
f (x)

d f (x)
dx

=
(γk− 1)− γα−γxγ

x
.

13.5 Characterizations of the SSK Distribution

In this section we present characterizations of the pd f (13.10) in terms of a simple
relationship between two truncated moments. Our characterization results presented
here will employ an interesting result due to Glänzel [9], which is stated here
(Theorem G) for the sake of completeness.

Theorem G. Let (Ω ,F ,P) be a given probability space and let H = [a,b] be an
interval for some a < b (a = −∞ and b = +∞ might as well be allowed). Let X :
Ω → H be a continuous random variable with the distribution function F and let g
and h be two real functions defined on H such that

E [g(X) |X ≥ x] = E [h(X) |X ≥ x]λ (x) ,x ∈ H

is defined with some real function λ . Assume that g, h ∈ C1 (H), λ ∈ C2 (H), and
F is twice continuously differentiable and strictly monotone function on the set H.
Finally, assume that the equation hλ = g has no real solution in the interior of H.
Then F is uniquely determined by the functions g,h, and λ , particularly

F (x) =
∫ x

a
C

∣
∣
∣
∣

λ ′ (u)
λ (u)h(u)− g(u)

∣
∣
∣
∣
exp(−s(u))du,
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where the function s is a solution of the differential equation

s′ =
λ ′h

λ h− g

and C is a constant, chosen to make
∫

H dF = 1.

Remark 13.5.1. In Theorem G, the interval H need not be closed.

Proposition 13.5.2. Let X : Ω → (0,∞) be a continuous random variable and let
h(x) = x1−ν exp(β x) for x ∈ (0,∞) . The pd f of X is (13.10) if and only if there exist
functions g and λ defined in Theorem G satisfying the differential equation

λ ′ (x)
λ (x)h(x)− g(x)

= 2αxν exp(−β x) , x > 0. (13.15)

Proof. Let X have pd f (13.10) and let

g(x) = x1−ν (α +β x−1) , x > 0

and

λ (x) = 2α exp(−β x) , x > 0.

Then

(1−F (x))E [h(X) |X ≥ x] =
C1

2α
exp

(−αx2) , x > 0,

(1−F (x))E [g(X) |X ≥ x] =C1 exp
(−αx2 −β x

)

, x > 0,

where C1 is a constant. We also have

λ (x)h(x)− g(x) =−β x−ν < 0 f or x > 0.

The differential equation (13.15) clearly holds.
Conversely, if g and λ satisfy the differential equation (13.15) , then

s′ (x) =
λ ′ (x)h(x)

λ (x)h(x)− g(x)
= 2αx, x > 0,

and hence
s(x) = αx2, x > 0.

�
Now from Theorem G, X has pd f (13.10).

Corollary 13.5.3. Let X : Ω → (0,∞) be a continuous random variable and let
h(x) = x1−ν (2α +β x−1

)

and g(x) = x1−ν exp(β x) for x ∈ (0,∞) . The pd f of X is
(13.10) if and only if the function λ has the form
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λ (x) =
1

2α
exp(β x) ,x > 0.

Remark 13.5.4. The general solution of the differential equation (13.15) is

λ (x) = exp
(

αx2)
[

−
∫

2αxν exp
(−αx2 −β x

)

g(x)dx+D

]

, x > 0,

where D is a constant. One set of appropriate functions is given in Proposi-
tion 13.5.2.

13.6 Characterizations of the SKS-Type Distribution

In this section we present two characterizations of pd f (13.12) in terms of a
truncated moment of a function of first order statistic and of a function of nth order
statistic, respectively. These characterizations are consequences of the following
two theorems given in Hamedani [15], which are stated here for the sake of
completeness. We also present a characterization of the pd f (13.12) based on the
conditional expectation of adjacent generalized order statistics.

Theorem 1 (Theorem 2.2 of [15], p 464). Let X : Ω → (a,b), a ≥ 0 be a
continuous random variable with cd f F such that limx→b xδ (1−F (x))n = 0, for
some δ > 0. Let g(x,δ ,n) be a real-valued function which is differentiable with

respect to x and
∫ b

a
δxδ−1

ng(x,δ ,n)dx = ∞. Then

E
[

Xδ
1:n|X1:n > t

]

= tδ + g(t,δ ,n) , a < t < b,

implies that

F (t) = 1−
(

g(a,δ ,n)
g(t,δ ,n)

) 1
n

exp

(

−
∫ t

a

δxδ−1

ng(x,δ ,n)
dx

)

, a ≤ t < b.

Theorem 2 (Theorem 2.8 of [24], p 469). Let X : Ω → (a,b), a ≥ 0 be a
continuous random variable with cd f F such that limx→a (x− a)−δ (F (x))n = 0,
for some δ > 0. Let g(x,δ ,n) be a real-valued function which is differentiable with

respect to x and
∫ b

a
δ (x−a)−δ−1

ng(x,δ ,n) dx = ∞. Then

E
[

(X1:n − a)−δ |Xn:n < t
]

= (t − a)−δ + g(t,δ ,n) , a < t < b,

implies that

F (t) =

(
g(b,δ ,n)
g(t,δ ,n)

) 1
n

exp

(

−
∫ b

t

δ (x− a)−δ−1

ng(x,δ ,n)
dx

)

, a ≤ t < b.
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Proposition 13.6.3. Let X : Ω →
(

0,
(

β
α

) 1
2p
)

be a continuous random variable

with cd f F such that lim
x→

(
β
α

) 1
2p

xδ (1−F (x))n = 0, for some δ > 0. The pd f of

X is (13.12) if and only if

E
[

Xδ
1:n|X1:n > t

]

= tδ +
δ
np

(

xδ+p

β −αx2p

)

, 0 < t <

(
β
α

) 1
2p

.

Proof. See Theorem 1. �

Proposition 13.6.4. Let X : Ω →
(

0,
(

β
α

) 1
2p
)

be a continuous random variable

with cd f F such that limx→0 x−δ (F (x))n = 0, for some δ > 0. The pd f of X is
(13.12) if and only if

E
[

X−δ
n:n |Xn:n < t

]

= t−δ − δ
np

(

xp−δ

β −αx2p

)

, 0 < t <

(
β
α

) 1
2p

.

Proof. See Theorem 2. �
The concept of generalized order statistics (gos) was introduced by Kamps [19]

in terms of their joint pd f . The order statistics, record values, k-record values,
Pfeifer records, and progressive type II order statistics are special cases of the gos.
The rvs (random variables) X (1,n,m,k), X (2,n,m,k), . . . , X (n,n,m,k), k > 0, and
m ∈ R are n gos from an absolutely continuous cd f F with corresponding pd f f if
their joint pd f f1,2,...,n (x1,x2, . . . ,xn) can be written as

f1,2,...,n (x1,x2, . . . ,xn) = k
(

Π n−1
j=1 γ j

)[

Π n−1
j=1 (1−F (x j))

m f (x j)
]

×(1−F (xn))
k−1 f (xn) ,F

−1 (0+)

< x1 < x2 < · · ·< xn < F−1 (1−) , (13.16)

where γ j = k+(n− j)(m+ 1) for all j, 1≤ j ≤ n, k is a positive integer, and m≥−1.
If k = 1 and m = 0, then X (r,n,m,k) reduces to the ordinary rth order statistic

and (13.16) will be the joint pd f of order statistics (Xj:n)1≤ j≤n from F. If k = 1 and
m = −1, then (13.16) will be the joint pd f of the first n upper record values of the
i.i.d. (independent and identically distributed) rvs with cd f F and pd f f .

Integrating out x1,x2, . . . ,xr−1,xr+1, . . . ,xn from (13.16), we obtain the pd f
fr,n,m,k of X (r,n,m,k):

fr,n,m,k (x) =
cr

Γ (r)
(1−F (x))γr−1 f (x)gr−1

m (F (x)) , (13.17)
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where cr = Π n−1
j=1 γ j and

gm (x) =
1

m+ 1

[

1− (1− x)m+1
]

, m 	=−1

= − ln(1− x) ,m =−1,x ∈ (0,1) .

Since limm→−1
1

m+1

[

1− (1− x)m+1
]

= − ln (1− x), we write gm (x) = 1
m+1

[

1− (1− x)m+1
]

, for all x ∈ (0,1) and all m with g−1 (x) = limm→−1 gm (x) .

The joint pd f of X (r,n,m,k) and X (r+ 1,n,m,k), 1 ≤ r < n, is given by (see
Kamps [19], p 68)

fr,,r+1,n,m,k (x,y) =
cr+1

Γ (r)
(1−F (x))m f (x)gr−1

m (F (x))(1−F (x))γr+1−1 f (y) ,x < y,

and consequently the conditional pd f of X (r+ 1,n,m,k) given X (r,n,m,k) = x, for
m ≥−1 , is

fr+1|r,n,m,k (y|x) = γr+1

(
1−F (y)
1−F (x)

)γr+1−1

· f (y)
(1−F (x))

, y > x, (13.18)

where γr+1 = γr − 1 − m. The conditional pd f of X (r,n,m,k) given X(r + 1,
n,m,k) = y, for m 	=−1, is

fr|r+1,n,m,k (x|y) = r (1−F (x))m

(

1− (1−F (x))m+1

m+ 1

)r−1

×
(

1− (1−F (y))m+1

m+ 1

)−r

f (x) , x < y. (13.19)

Our last characterization of the pd f (13.12) will be based on the conditional
expectation of X (r,n,m,k) given X (r+ 1,n,m,k) when m = 0.

Proposition 13.6.5. Let (Xj) j≥1 be a sequence of i.i.d. rvs on

(

0,
(

β
α

) 1
2p
)

with an

absolutely continuous cd f F, corresponding pd f f and with limx→0 s(x) (F (x))r =
0, where s(x) = r C∗ (αx−p +β xp), where C∗ is an arbitrary positive constant. Let
(X (r,n,m,k))1≤r≤n be the first n gos from F. Then

E [s(X (r,n,m,k)) |X (r+ 1,n,m,k) = t] = s(t)+C∗,0 < t <

(
β
α

) 1
2p

(13.20)
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implies that

F (x) =C exp
(−αxp −β x−p) , 0 < x <

(
β
α

) 1
2p

,

where C = exp
(

2
√

αβ
)

.

Proof. From (13.20), in view of (13.19), we have

∫ t

0
s(x) r (F (x))r−1 (F (t))−r f (x)dx = s(t)+C∗, 0 < t <

(
β
α

) 1
2p

.

Upon integrating by parts on the left-hand side of the last equality and in view of
the assumption limx→0 s(x)(F (x))r = 0, we have

C∗ (F (t))r =−
∫ t

0
s′ (x) (F (x))r dx. (13.21)

Now, differentiating both sides of (13.21) with respect to t, we arrive at

f (t)
F (t)

=− 1
rC∗

s′ (t) .

Integrating both sides of this equality from x to
(

β
α

) 1
2p
, we have

F (x) =
{

exp
(

2
√

αβ
)}

exp
(−αxp −β x−p) , 0 < x <

(
β
α

) 1
2p

. �

13.7 Characterizations of the SK Distribution

In this section we present characterizations of the pd f (13.14) in terms of a simple
relationship between two truncated moments. Our characterization results presented
here will, as in Sect. 13.5, employ Theorem G.

Proposition 13.7.1. Let X : Ω → (0,∞) be a continuous random variable and let
h(x) = xp−ν for x ∈ (0,∞) . The pd f of X is (13.14), with τ > 1, if and only if there
exist functions g and λ defined in Theorem G, satisfying the differential equation

λ ′ (x)
λ (x)h(x)− g(x)

= α p(τ − 1)xν−1 (αxp +β )−1 , x > 0. (13.22)
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Proof. Let X have pd f (13.14) and let

g(x) = xp−ν (αxp +β )−1 , x > 0,

and

λ (x) =
τ

τ − 1
(αxp +β ) , x > 0.

Then

(1−F (x))E [h(X) |X ≥ x] =
C3

α p(τ − 1)
(αxp +β )1−τ , x > 0,

(1−F (x))E [g(X) |X ≥ x] =
C3

α pτ
(αxp +β )−τ , x > 0,

and

λ (x)h(x)− g(x) =−1
τ

xp−ν < 0 f or x > 0.

The differential equation (13.22) clearly holds.
Conversely, if g and λ satisfy the differential equation (13.22), then

s′ (x) =
λ ′ (x)h(x)

λ (x)h(x)− g(x)
= α p(τ − 1)xp−1 (αxp +β )−1 , x > 0,

and hence

s(x) = ln(αxp +β )τ−1 , x > 0. �

Now from Theorem G, X has pd f (13.14).

Corollary 13.7.2. Let X : Ω → (0,∞) be a continuous random variable and let
h(x) = xp−ν (αxp +β )−1and g(x) = xp−ν for x ∈ (0,∞) . The pd f of X is (13.14),
with τ > 1, if and only if the function λ has the form

λ (x) =
τ

τ − 1
(αxp +β ) , x > 0.

13.8 Conclusion

In designing a stochastic model for a particular modeling problem, an investigator
will be vitally interested to know if their model fits the requirements of a specific
underlying probability distribution. To this end, the investigator will vitally depend
on the characterizations of the selected distribution. A good number of distributions
which have important applications in many different fields have been mentioned
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in this work. Various characterizations of these distributions have been established.
We certainly hope that these results will be of interest to an investigator who may
believe their model has a distribution mentioned here and is looking for justifying
the validity of their model.

Appendix A

We like to mention that this kind of characterization based on the ratio of truncated
moments is stable in the sense of weak convergence; in particular, let us assume
that there is a sequence {Xn} of random variables with distribution functions {Fn}
such that the functions gn, hn, and λn (n ∈ N) satisfy the conditions of Theorem G
and let gn → g, hn → h for some continuously differentiable real functions g and h.
Let, finally, X be a random variable with distribution F . Under the condition that
gn (X) and hn (X) are uniformly integrable and the family is relatively compact, the
sequence Xn converges to X in distribution if and only if λn converges weakly to λ ,
where

λ (x) =
E [g(X) |X ≥ x]
E [h(X) |X ≥ x]

.

This stability theorem makes sure that the convergence of distribution functions
is reflected by corresponding convergence of the functions g , h, and λ , respectively.
It guarantees, for instance, the “convergence” of characterization of the Wald
distribution to that of the Lévy-Smirnov distribution if α → ∞, as was pointed out
in [11].

A further consequence of the stability property of Theorem G is the application
of this theorem to special tasks in statistical practice such as the estimation of
the parameters of discrete distributions. For such purpose, the functions g, h, and,
specially, λ should be as simple as possible. Since the function triplet is not uniquely
determined, it is often possible to choose λ as a linear function. Therefore, it is worth
analyzing some special cases which helps to find new characterizations reflecting the
relationship between individual continuous univariate distributions and appropriate
in other areas of statistics.

In view of Theorem G, a characterization of the Pearson system, due to Glänzel
[9], is given below.

Proposition A-2. Let X : Ω → H ⊆ R be a continuous random variable and let
g(x) = x2 − tx−w, h(x) = rx+u for x ∈ H, where r, t, u, and w are real parameters
such that the distribution is well defined on H. The distribution function of X belongs
to Pearson’s system if and only if the function λ has the form λ = x, x ∈ H.

Remark A-3. Since it can always be assumed that the expectation of a non-strictly
positive continuous random variable is zero, we let u = 0 , where appropriate, in the
brief discussion below. Note that w > 0 if u = 0.
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The following cases can be distinguished:

Type I. r ∈ (0,1), t 	= 0. (This is the family of finite beta distribution.)
Type II. r ∈ (0,1), t = 0. (This is a symmetric beta distribution.)

Type III. r = 1, t 	= 0. (This is the family of gamma distribution.)
r = 1, t = 0. (This is the normal distribution.)

Type IV. r ∈
(

1+ t2

4w ,∞
)

, t 	= 0.

Type V. r = 1+ t2

4w , t 	= 0. (This is the family of inverse Gaussian distribution.)

Type VI. r ∈
(

1,1+ t2

4w

)

, t 	= 0. (This is the family of infinite beta distribution.)

Type VII. r ∈
(

1+ t2

4w ,∞
)

, t = 0.

The following proposition is given in Glänzel and Hamedani [11]

Proposition A-4. Let X : Ω → H ⊆ R be a continuous random variable and let

g(x) =
{(a0+1)x2+(a1+c)x+a2}

{a0x2+a1x+a2} , h(x) = {x+c}
{a0x2+a1x+a2} for x ∈ H, where c > 0, a0, a1,

and a2 are real parameters such that the distribution function is well defined on H.
The distribution function of X belongs to Pearson’s system if and only if the function
λ has the form λ = x, x ∈ H.

The families of Pearson’s system can be obtained from special choices of the
parameters c, a0, a1, and a2(see, e.g., [18]).
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