
Chapter 12
Earth Mover’s Distance-Based Local
Discriminant Basis

Bradley Marchand and Naoki Saito

Abstract Local discriminant basis (LDB) is a tool to extract useful features for
signal and image classification problems. Original LDB methods rely on the time–
frequency energy distribution of classes or empirical probability densities, with
some information theoretic measure (such as Kullback–Leibler divergence) for
feature selection. Depending on the problem, energy distributions may not provide
the best information for classification. Further, training set sizes and accuracy in the
computed empirical probability density functions (epdfs) may hinder the learning
process. To improve these deficiencies and provide a more data adaptive algorithm,
we propose the use of signatures and earth mover’s distance (EMD). Signatures and
EMD provide a data adaptive statistic that is more descriptive than the distribution
of energies and more robust than an epdf-based approach. In this chapter, we
first review LDB and EMD and then outline how they can be incorporated into
a fast EMD based LDB algorithm.We then demonstrate the capabilities of our new
algorithm in comparison to both energy distribution and epdf-based LDB algorithms
using four different classification problems using synthetic datasets.

12.1 Introduction

Local discriminant basis (LDB) is a best basis algorithm developed by Saito and
Coifman for the purpose of classification [9, 10]. It works by decomposing training
signals into a time–frequency dictionary, such as block discrete cosine transform,
local cosine transform, or wavelet packet transform (WPT). The dictionaries
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Fig. 12.1 Depiction of the wavelet packet transform. The process is the same as the wavelet
decomposition with the added decomposition of the high-pass coefficients. This yields a redundant
decomposition

decompose signals into a redundant set of orthogonal subspaces, as shown in
Fig. 12.1. Each subspace contains basis vectors localized in time and frequency. Its
goal, given a dictionary, is to find the signal representation within the dictionary
that is most useful for classification and discrimination. The idea is that these
dictionaries provide us with localized elementary building blocks for isolating
critical differences among signal classes. These differences are learned from LDB’s
time–frequency map. In the original LDB algorithm, this map was a simple
accumulation of class signal energy at each coordinate in each subspace. Formally,

let Nc be the number of signals belonging to class c,
{

x(c)i

}Nc

i=1
be the set of

signals belonging to class c, and w j,k,l be basis vectors from our selected dictionary
parameterized by indices j, k, and l indicating the scale (or level of decomposition),
frequency band, and position of basis vector, respectively. Then, our energy map for
class c is formed as,

Γ (c)
j,k,l :=

Nc

∑
i=1

(
w j,k,l ·x(c)i

)2

Nc

∑
i=1

∥∥∥x(c)i

∥∥∥
2

.

Later Saito et al. [11] proposed a refinement of the algorithm by changing the
time–frequency map from an accumulation of class signal energy to statistical
distributions of the expansion coefficients. Although any distribution metric can
be used to evaluate the discriminating power of a coordinate, average shifted
histograms (ASH) [12] were used to compute an empirical probability density
function (epdf) in [11] for their computational efficiency. This improvement allows
LDB to detect finer differences because the statistical behavior of the class signals
in each coordinate in the dictionary can be analyzed.
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In this chapter, to further refine LDB’s time–frequency map, we propose the use
of signatures instead of epdfs and the use of earth mover’s distance (EMD) [7]
to compute the discriminating power of a coordinate. Signatures provide us with
a fully data-driven representation, which can be efficiently used with EMD. This
representation is more efficient than a histogram and is able to represent complex
data structure with fewer samples. EMD is a metric between signatures that naturally
extends the notion of distance between points to that of sets or distributions of
elements. We begin by reviewing the concept of signatures and EMD in the next
section. Then we will outline an EMD-based LDB algorithm in Sect. 12.3. Next, in
Sect. 12.4, we will compare performance of all three LDB algorithms on synthetic
datasets using various base classifiers. Finally, we conclude in Sect. 12.5 with a
summary of performance.

12.2 Earth Mover’s Distance

A signature represents a set of clusters of feature vectors, say, in R
d . Each such

cluster is represented by its mean, m j, of vectors belonging to that cluster and
the weight (or importance) of that cluster, wm j . The number of clusters in a
signature varies with the complexity of the object being represented. Signatures
are generalized histograms. A histogram is a fixed partitioning of the underlying
space with cluster centers defined as the central value in each bin. The weight
of each cluster is the percentage of points in the bin. The flexibility provided by
signatures is the ability to place the “bins” where the data is located. For example,
representation of data that exists on a curved manifold might require a relatively fine
partitioning of the space to achieve a histogram that captures the distribution of the
data. However, a signature representation is likely to be much more efficient since
we are not required to partition the entire space, and feature clusters can be placed
at ideal locations along the manifold. A comparison of histograms and signatures
is detailed in [8]. Unfortunately, most dissimilarity measures cannot be applied to
signatures. This is because they rely on direct correspondence between bins. That
is, they can be used for histograms that contain the same number of bins. This is,
however, not guaranteed with signatures. EMD, on the other hand, is designed for
use with signatures.

EMD was first introduced by Rubner, et al. [8] for retrieval of color and textured
images. It has several properties that have many advantages over other distance
measures:

• Applies to signatures
• Naturally reflects nearness
• Allows for partial matching
• Is a metric (if total weights of two signatures are equal and cost is a metric)

EMD has the intuitive interpretation of the minimum amount of work required to
move piles of soil (or earth) into holes. The location and size of the piles of soil are
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represented by cluster centers and weights of a signature, respectively. Similarly, the
other signature represents the location and size of the holes to be filled. Formally, if
we let

P = {(p1,wp1), . . . ,(pm,wpm)},
Q = {(q1,wq1), . . . ,(qn,wqn)}

be our two signatures and C = [ci j] the cost matrix where ci j represents the cost of
moving one unit of mass from the ith cluster in P to the jth cluster in Q, then the
EMD algorithm seeks the flow F = [ fi j ] that minimizes the work

W (P,Q,F):=
m

∑
i=1

n

∑
j=1

ci j fi j ,

subject to the constraints:

fi j ≥ 0 1 ≤ i ≤ m,1 ≤ j ≤ n;

n

∑
j=1

fi j ≤ wpi 1 ≤ i ≤ m;

m

∑
i=1

fi j ≤ wq j 1 ≤ j ≤ n;

m

∑
i=1

n

∑
j=1

fi j = min

(
m

∑
i=1

wpi ,
n

∑
j=1

wq j

)
.

Once the optimal flow F is found, EMD is the resulting work normalized by the
total flow:

EMD(P,Q):=
W (P,Q,F)

∑m
i=1 ∑n

j=1 fi j
.

This normalization is necessary to avoid favoring smaller signatures if the two
signatures have different total weights.

The optimal flow is found by solving the well-known transportation problem, or
the Monge-Kantorovich mass transportation problem [5]. Typically, this requires
the use of a linear programming such as the simplex method to solve for the
optimal flow. A detailed explanation of the simplex method can be found in [5].
However, there are a few situations where fast algorithms that do not require linear
programming can be used.

In particular, for the one dimensional case where the cost is the Euclidean
distance and the signatures have equal total weights, wΣ , Rubner and Tomasi [7,
Sect. 2.3.1] showed that the EMD can be directly calculated by
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EMD(P,Q) =
∑m+n−1

k=1 |p̂k − q̂k|(rk+1 − rk)

wΣ
,

where r1,r2, . . . ,rm+n is the sorted list of

p1, p2, . . . , pm,q1,q2, . . . ,qn,

and

p̂k:= ∑
pi≤rk

wpi , q̂k:= ∑
qi≤rk

wqi .

The algorithm relies on the fact that the minimum work between two one
dimensionals distributions is known to be the L1 distance between the cumulative
distribution functions (cdfs), as discussed by [7, Sect. 2.3.1]. We note that
the L1 distance between two cdfs is a special instance of the so-called ρ̄ or
Ornstein distance [1]; see also [6] on the deep relationship between EMD and
the Marrows distance often used in statistics. The following theorem is presented
for convenience:

Theorem 1. Define the empirical cdfs of 1D signatures P and Q as

P(t):=

⎧⎪⎪⎨
⎪⎪⎩

0 t ∈ (−∞, p(1)),

∑k
i=1 wp(i) t ∈ [p(k), p(k+1)), 1 ≤ k ≤ m− 1,

∑m
i=1 wp(i) t ∈ [p(m),∞),

Q(t):=

⎧
⎪⎪⎨
⎪⎪⎩

0 t ∈ (−∞,q(1)),

∑k
j=1 wq( j)

t ∈ [q(k),q(k+1)), 1 ≤ k ≤ n− 1,

∑n
j=1 wq( j)

t ∈ [q(n),∞),

where {p(i)} and {q( j)} are sorted versions (in nondecreasing order) of {pi} and
{q j}, respectively. If P and Q have equal total weights ∑m

i=1 wpi = ∑n
j=1 wq j =:

wΣ , then

EMD(P,Q) =

∫ ∞

−∞
|P(t)−Q(t)|dt

wΣ
.

Throughout this chapter we will be using this fast 1D version of EMD, which
restricts our cost function to L1 distance. We could use a simplex solver, which
would allow other cost functions, but the use of the simplex solver greatly impacts
speed. The worst-case computational cost for a simplex solver is exponential, but
the use of a transportation-simplex solver and a good initial solution (close to
an optimal solution) greatly improves performance. Rubner and Tomasi report [7,
Sect. 2.3] an empirical performance of O(n3 logn) in the case when both P and
Q have n = m clusters. This is opposed to the fast 1D EMD solver which has a
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computational cost of O(n logn). Clustering helps lighten the computational burden
of the transportation-simplex solver, but introduces complexity to the algorithm
(in the form of clustering parameters) and presents variability of results. With 1D
EMD we can completely avoid clustering the data.

12.3 EMD-Based Local Discriminant Basis

Generally, the LDB algorithm is broken into the following steps:

Algorithm 2. Given a training dataset T that consists of C classes of signals

{{x(c)i }Nc
i=1}C

c=1:

• Choose a dictionary and specify the maximum level of decomposition.
• Expand all the signals into tree-structured subspaces.
• For each class, compute a time–frequency map.
• Use the time–frequency maps to compute the discriminating power of each

coordinate.
• Prune the tree by examining the discriminating power of each subspace.
• Order the basis vectors by their discriminating power.

This process is made efficient by the speed with which the signals can be expanded
into the selected dictionary, and by exploiting the tree structure in the pruning
process and using additive discriminant measures for comparison.

Definition 1. Let p and q be any two vectors in R
n. A discriminant measure,

D(p,q), is a map D : (Rn ×R
n)→R such that

• D(p,p) = 0.
• (Nonnegative) D(p,q)≥ 0 for all p, q in R

n.

A discriminant measure is said to be additive if

D(p,q) =
n

∑
i=1

D(pi,qi).

For our EMD-based LDB, we construct our time–frequency map by collecting
signatures for each coordinate of each class in a subspace. Specifically, for
coordinate l of class c in subspace Ω j,k, our signatures are

s(c)
( j,k,l) =

{(
w j,k,l ·x(c)i ,1/Nc

)}Nc

i=1
. (12.1)

The collection of these signatures form our time–frequency map. In this formulation
we have chosen our samples for each class to be equally weighted, which is
reasonable since we are not assuming or attempting to compute the relative
importance of a particular signal to its class or its overall ability to discriminate. To
efficiently evaluate the discriminant power of a coordinate or subspace, we define
our additive measure using EMD as follows.
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Definition 2. Let s(c)
( j,k,l) be the signature for training signals belonging to class c at

level j, block k, and position l. Then the EMD distance between classes is defined
as the sum of the pairwise EMD distances:

D( j,k, l) :=
C−1

∑
m=1

C

∑
n=m+1

EMD
(

s(m)
( j,k,l),s

(n)
( j,k,l)

)
. (12.2)

We refer to D( j,k, l) as the discriminant power of the coordinate. The discriminant
power of a subspace is then

Γ ( j,k) :=
2n0− j−1

∑
l=0

D( j,k, l), 0 ≤ j ≤ J ≤ n0; 0 ≤ k ≤ 2 j − 1, (12.3)

where the length of each signal in the dataset is assumed to be n = 2n0 , and J is the
maximum depth of decomposition set by the user.

We also use the notation D(Ω j,k) := Γ ( j,k) to emphasize that Γ ( j,k) is a
discriminant measure for the subspace Ω j,k. Often the sum in (12.3) is truncated;
more precisely, we only sum the k0 largest values from each subspace rather than
summing all the 2n0− j values as (12.3). (Note that for a certain j for k0 set by the
user, we could have k0 > 2n0− j. In that case, we sum all the 2n0− j values.) This helps
with situations where there are many weak coordinates summing to a large value.

Note that D(Ω j,k) is an additive discriminant for subspace Ω j,k since it has
been defined as the sum of the discriminant powers of the subspace coordinates.
The benefit of an additive discriminant measure comes in the pruning process. Using
the tree-structure notation shown in Fig. 12.1, pruning starts at the base of the tree
and is conducted by the following rule:

Algorithm 3. Let 0 ≤ j ≤ J ≤ n0 and 0 ≤ k ≤ 2 j − 1. If D(Ω j,k) ≥ D(Ω j+1,2k ∪
Ω j+1,2k+1), then select Ω j,k over Ω j+1,2k ∪Ω j+1,2k+1; otherwise, select Ω j+1,2k ∪
Ω j+1,2k+1.

If the measure D(Ω j+1,2k ∪Ω j+1,2k+1) is additive, it can be efficiently computed as

D(Ω j+1,2k)+D(Ω j+1,2k+1),

which only requires the addition of the discriminant measure for the individual
subspaces to obtain the measure of their union.

Substituting our signature time–frequency map, (12.1), and EMD discriminant
measure, (12.3), into Algorithm 2, we obtain our EMD-based LDB algorithm. This
algorithm benefits from the adaptive structure of signatures and the robustness of
EMD while remaining computationally fast and capable of detecting fine differences
with few parameters. Further, our signatures can be quickly updated to incorporate
new information. This becomes important when we consider situations where
training data is limited and/or the data is noisy. Here incremental learning is
important so that new information can be incorporated without complete retraining
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and better training samples can be used as they are available. We can avoid the need
to retrain on the entire set by initializing our algorithm with a small training set and
storing the signature map constructed above with the modification that we store the
sum of the sample values and the number of samples in each cluster as our features
and weights. This allows us to update the mean features and weights without storing
any extra information. The signature’s mean value and weight are calculated during
the computation of the EMD. Any new data that we wish to incorporate can easily
be added by decomposing it into the selected dictionary and incorporating it into
our stored signature map. To accommodate limited memory resources and reduce
time to extend signature storage, a specified limit can be set for the signature length
during initialization, so that memory can be preallocated. If a signature has reached
the storage capacity specified or is within a threshold distance to a cluster in the
signature, then we can use our grouping technique which is similar to clustering.

Algorithm 4. Let m∗ be our capacity and m < m∗. Given signature

S = {(s1,ws1), . . . ,(sm,wsm)},

where si is the sum of each cluster value and wsi is the number of samples in each
cluster for i ∈ {1, . . . ,m}. Let 0 ≤ τ be our grouping threshold and snew a new
sample:

• If there exists sk, k ∈ {1, . . . ,m} such that |snew − sk|< τ , then set sk = sk + snew

and wsk = wsk + 1.
• Else add new sample to the end of the signature:

S = {(si,ws1), . . . ,(sm,wsm),(snew,1)}.

Although we are only working in 1D, Algorithm 4 works in any dimension as long
as our signatures are not at capacity, m = m∗. When a signature reaches capacity we
reduce the signature size by combining the closest clusters of the signature. Having
our signature evolve in this manner means that our capacity acts as a resolution
parameter and our grouping threshold as a sensitivity parameter. In a situation
with a complex structure over a relatively large span, our capacity limit may force
a less than ideal signature resolution reducing the signature’s ability to describe
the structure. Therefore, considerations for the training data must be taken when
choosing signature capacity.

12.4 Local Discriminant Basis Algorithm Performance

The purpose of constructing a feature space is to pull out the important properties
of the datasets for the purposes of discrimination or compression. A good feature
space should provide dimension reduction and/or improved classifier performance.
LDB algorithms naturally provide dimension reduction by expanding data into an
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orthonormal basis followed by selecting the most discriminant basis coordinates.
In practice, relatively few LDB vectors are usually needed for discrimination. To
evaluate our algorithm on increasing classifier performance, we use two different
base classifiers, linear discriminant analysis (LDA) and classification tree (CT);
see, e.g., [4, Sects. 4.3 and 9.2] for the details of these classifiers. These two
classifiers construct distinct decision boundaries, which gives us an indication of
the complexity of the separation. LDA seeks an optimally separating hyperplane
as its decision boundary. A classification tree seeks an optimal partitioning of each
coordinate.

For comparison, we have three LDB algorithms available: time–frequency LDB
algorithm (LDBK), epdf-based LDB algorithm (LDBKASH), and EMD-based
LDB algorithm (LDBKEMD). Each algorithm is analyzing a different quantity
to determine class separability. For LDBK we are concerned with normalized
coefficient energy. For LDBKASH we measure separation of coefficients’ epdfs.
And for LDBKEMD we are computing the separation of the empirical cumulative
distribution functions (ecdfs). All three are analyzing the same information, just in
different ways. As we will see in the examples below, how you analyze the infor-
mation greatly impacts the quality of the selected feature space. Our LDBKASH
and LDBKEMD algorithms are using distribution information and not a single
statistic for each coordinate. So, they are able to incorporate information about the
statistical distribution of the coefficients into the selection process. This allows for
the detection of subtler differences that can be lost in the case of a single statistic.
However, estimating reliable epdfs using a noisy dataset with a limited number of
samples is quite difficult.

To compare the performance of the different LDB algorithms, we conduct
classification experiments on four different synthetic signal datasets. The first two
datasets (triangular waveforms and shape waveforms) were used by Saito [9] to
demonstrate the benefit of using the original LDB algorithms for classification.
Our third dataset is a variation of the shape waveforms dataset constructed for subtle
differences between classes. The last dataset looks at classes that differ in frequency
content only. Each dataset contains three different classes of signals. For each
class, we generated 100 signals to use for training each LDB algorithm. Another
1,000 signals are generated to test the constructed LDB feature spaces. For each
LDB algorithm, we set the parameter k0 = 10, i.e., we evaluate the goodness of
each subspace using the top ten most discriminant coordinates. For each dataset,
classifiers are trained using the top ten most discriminant features from each LDB
algorithm. We repeat this process of generating training and test sets, computing
features spaces, and applying classifiers ten times. The mean and standard deviation
of the misclassification over the ten trials are presented in Table 12.1. As for the
LDBK and LDBKASH algorithms, we use the symmetric relative entropy as the
discriminant measure D(p,q) throughout this article, i.e.,

D(p,q) = J(p,q) :=
n

∑
i=1

pi log
pi

qi
+ qi log

qi

pi
,
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Table 12.1 Table of training and test waveforms misclassification for all examples dis-
cussed

LDA CT

Train Test Train Test

Triangle waveform classification
STD 11.40%±1.10 22.18%±1.18 3.93%±0.78 30.58%±1.82
LDBK 14.13%±2.26 17.08%±1.05 5.87%±0.88 23.48%±1.98
LDBKASH 13.17%±2.18 16.60%±0.85 4.90%±1.31 22.36%±1.34
LDBKEMD 13.90%±1.75 16.38%±0.84 6.27%±1.91 23.82%±2.10
Shape waveform classification
STD 0.27%±0.41 6.94%±0.87 0.63%±0.60 6.58%±0.77
LDBK 4.10%±2.62 4.62%±1.66 0.87%±0.59 3.96%±1.27
LDBKASH 1.67%±0.92 2.54%±0.42 0.67%±0.61 3.50%±1.23
LDBKEMD 2.07%±0.78 3.07%±0.68 0.57%±0.42 2.98%±0.74
Bell waveform classification
STD 5.50%±1.57 28.93%±4.81 2.67%±1.31 20.78%±1.80
LDBK 34.10%±17.91 36.30%±17.00 7.33%±3.68 30.38%±10.19
LDBKASH 26.07%±6.35 28.40%±5.87 5.00%±1.61 24.38%±4.57
LDBKEMD 16.33%±6.25 19.40%±5.81 4.27%±0.81 17.91%±1.66
Chirp waveform classification
STD 0.00%±0.00 0.00%±0.00 1.63%±0.81 18.91%±1.15
LDBK 4.33%±4.26 6.92%±6.07 4.07%±2.57 20.36%±9.93
LDBKASH 18.37%±9.39 22.86%±9.26 5.93%±2.02 32.42%±7.74
LDBKEMD 0.00%±0.00 0.00%±0.00 0.00%±0.00 1.21%±0.51

Each example has results for all LDB algorithm using linear discriminate analysis and
classification tree classifiers. STD above indicates the use of the standard coordinate system
for representing signals, i.e., the raw signals are directly fed to the classifiers

Example 1. Triangular Waveforms
This example was originally examined in [2]. Later, Saito [9] extended the length

of the signals from 21 to 32, so that the signals are of dyadic length and could be
used to evaluate the performance of LDB. The example consists of three classes of
signals which are formed from a convex linear combination of triangular waveforms.
Specifically, the classes of signals are generated by the following formulas:

x(1)(i) = uh1(i)+ (1− u)h2(i)+ ε(i) for class 1, (12.4)

x(2)(i) = uh1(i)+ (1− u)h3(i)+ ε(i) for class 2, (12.5)

x(3)(i) = uh2(i)+ (1− u)h3(i)+ ε(i) for class 3, (12.6)

where i = 1, . . . ,32, h1(i) = max(6−|i−7|,0), h2(i) = h1(i−8), h3(i) = h1(i−4),
u is a uniform random variable on (0,1), and ε(i)’s are the i.i.d. standard normal
variates. Five sample waveforms from each class are shown in Fig. 12.2. This
example is convenient for performance evaluation because Breiman et al. [2]
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Fig. 12.2 Five sample waveforms from each class of triangular waveform dataset. Waveforms are
generated using (12.4)–(12.6)

computed the Bayes error rate to be 14 %, which gives us an ideal classifier
performance to expect. We use the wavelet packet dictionary with a 6-tap coiflet
filter [3, Sect. 8.2] to compute the LDB.

All three algorithms exhibit similar classification performance and had similar
basis selections. The LDA classifier performs the best with both training and
test classification results near the Bayes error rate, see Table 12.1. If we look at the
most discriminating basis vectors selected, Fig. 12.3a, we can identify the distinction
that is being used to discriminate between the classes. The vectors with the greatest
discriminant power are concentrated near the peaks of h1, h2, and h3. The basis
vectors are detecting the presence of the distinct characteristics of each class, i.e.,
the triangular peaks of h1, h2, and h3. The coefficient plot for all three algorithms
are similar, so we only show one in Fig. 12.3b. We see that each class lies on a linear
manifold segment. The difficult signals to classify lie at the intersections of these
linear manifold segments. These correspond to signals where one triangular peak is
much more prominent. For this example, there is no extra benefit to examining the
statistical distribution of the coefficients for each class. The time–frequency energy
maps provide, as computed by LDBK, sufficient information for discrimination.
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Fig. 12.3 (a) In the upper plot the mean training waveform for each of the triangular waveform
dataset is shown. In the plot below it, the three most discriminant LDB vectors are shown for each
LDB algorithm. (b) A scatter plot of the coefficients of the training signals in the top two most
discriminating LDBK coordinates. The symbols, “*,” “o,” “+,” represent class 1, class 2, class 3
signals, respectively



12 Earth Mover’s Distance-Based Local Discriminant Basis 287

Fig. 12.4 Five sample waveforms from each class of the shape waveform dataset

Example 2. Shape Waveforms
Our second dataset is comprised of signal classes of different shapes (cylinder,

bell, and funnel). All classes of signals are of finite duration, varied over when they
appear. The cylinder signal class is a flat-amplitude (i.e., boxcar) signal. The bell
signal class has a linearly increasing amplitude. And the funnel signal class has a
linearly decreasing amplitude. More precisely, our signal classes are generated by
the following formulae:

c(i) = (6+η) · χ[a,b](i)+ ε(i) cylinder,

b(i) = (6+η) · χ[a,b](i) · (i− a)/(b− a)+ ε(i) bell,

f (i) = (6+η) · χ[a,b](i) · (b− i)/(b− a)+ ε(i) funnel,

where i = 1, . . . ,128, a is an integer-valued uniform random variable on the interval
[16,32], b− a also obeys an integer-valued uniform distribution on [32,96], η and
ε(i)’s are the i.i.d. standard normal variates, and χ[a,b](i) is the characteristic, or
indicator, function on the interval [a,b]. Five example waveforms from each class
can be seen in Fig. 12.4. We use the wavelet packet coefficients from an 18-tap
coiflet filter [3, Sect. 8.2] to compute the LDB.

The ten most discriminating LDB vectors for each algorithm are shown in
Fig. 12.5. Classification performance, shown in Table 12.1, for each algorithm is
similar with a slight benefit to using LDBKASH or LDBKEMD. However, the top
LDB vectors selected do vary for each algorithm. For all the algorithms, within
the ten most discriminating vectors selected, there are features concentrated at
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Fig. 12.5 Top ten LDB vectors selected for the shape waveform using different LDB algorithms.
The subfigures in the right column show the selected subspaces indicated in black

the beginning and end of where we expect the cylinder, bell, or funnel to be.
For LDBKEMD, we note that unlike LDBK and LDBKASH, there are vectors
concentrated in the middle. While the ends emphasize the regions where we are
likely to see the most dramatic change in signal characteristics, our signals do vary
within the interval [a,b]. For our next example we will try to emphasize this by
making our classes more similar.

Example 3. Bell Waveforms
In the previous example we noted that the different LDB algorithms selected
somewhat different basis vectors. However, the differences had little impact on
the classification performance since all the LDB algorithms selected features that
focused on regions where there was a great deal of change between classes. For this
example, we attempt to make the shape distinction more subtle by considering three
bells with varying slopes. Specifically, the signals are generated by the following
formulae:

b1(i) = χ[a,b](i) · (i− a) ·S1+ ε(i) bell 1,

b2(i) = χ[a,b](i) · (i− a) ·S2+ ε(i) bell 2,

b3(i) = χ[a,b](i) · (i− a) ·S3+ ε(i) bell 3,
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Fig. 12.6 Five sample waveforms from each class of the Bell waveform dataset

where i = 1, . . . ,128, a is an integer-valued uniform random variable on the
interval [16,32], b−a also obeys an integer-valued uniform distribution on [32,96],
ε(i)’s are the i.i.d. standard normal variates, and χ[a,b](i) is the characteristic, or
indicator, function on the interval [a,b]. The slopes (S1, S2, and S3) are normal
random variables with standard deviation 0.2 and respective means of 1, 0.5, and
2. Five sample waveforms from each class can be seen in Fig. 12.6. Visually it
is quite difficult to distinguish between the classes of signals. For training, the
LDB is computed from the wavelet packet coefficients with a 18-tap coiflet filter
[3, Sect. 8.2].

Looking at the classification performance, shown in Table 12.1, we see a clear
performance increase between using energy versus the distribution of energy.
The LDBKASH and LDBKEMD algorithms show significantly lower average
misclassification rates and standard deviation than LDBK. Looking at the ten
selected basis vectors shown in Fig. 12.7, we see that the LDBKEMD vectors are
varied in position across the length of the signal with the center location being
the most important. The LDBKASH vectors have a narrower support and are
concentrated toward the center of the signal. The LDBK vectors are concentrated
toward the end of the signal where we would expect the greatest impact from the
varying slope. However, there is also a chance of the signal not being there due to
the randomness in the parameter b, the signal ending position. From the coefficient
plot, Fig. 12.8, we can see that the top 3 features for LDBKASH and LDBKEMD
correspond to the change in slope for each class. Bell 2 had the smallest slope, and
we see in the coefficient plot, indicated with the “o” marker, that it is at the bottom.
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Fig. 12.7 Top ten LDB vectors selected for the bell waveforms using different LDB algorithms.
The subfigures in the right column show the selected subspaces indicated in black

Then we see that bell 1, indicated with the “*” marker, follows after bell 2 with the
intermediate slope. And last we see bell 3, indicated with the “+” marker, which had
the largest slope.

Example 4. Chirp Waveforms
For our final example we will look at the ability of our LDB algorithms to
distinguish between frequency differences in signals. Our dataset will consist of
three different quadratic chirp waveforms with additive Gaussian noise. All chirps
start with 200- Hz oscillations, sweep down to varied minimum frequency ranges,
and go up to the 200- Hz level again in the end as the spectrogram in Fig. 12.9 shows.
More specifically,

c1(i) = cos

(
2π
[

80
3

t(i)3 + 120t(i)

])
+ ε(i) chirp 1,

c2(i) = cos

(
2π
[

50
3

t(i)3 + 150t(i)

])
+ ε(i) chirp 2,

c3(i) = cos

(
2π
[

20
3

t(i)3 + 180t(i)

])
+ ε(i) chirp 3,
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Fig. 12.8 The distribution of the coefficients in the top three LDB coordinates for bell waveform
training and test datasets using (a) LDBKASH and (b) LDBKEMD algorithms. The symbols, “*,”
“o,” “+,” represent bell 1, bell 2, bell 3 signals, respectively



292 B. Marchand and N. Saito

Fig. 12.9 Spectrogram of chirp waveforms for chirp waveform dataset. Horizontal axis is time
(seconds). Vertical axis is frequency (Hz)

where i = 1, . . . ,1024, t(i) = i/512−1, and ε(i)’s are i.i.d. standard normal variates.
For training, the LDB is computed from the wavelet packet coefficients with a 18-tap
coiflet filter.

From the result shown in Table 12.1, we see that LDBKEMD performs
very well with zero misclassification for an LDA classifier. The LDBKASH
algorithm performs the worst with a test misclassification rate around 23%
with an LDA classifier. For LDBK the test misclassification rate is around
7% with an LDA classifier. If we look at the resulting LDB selected for each
algorithm and top ten LDB vectors, Fig. 12.10, we see that the LDBKASH
algorithm selected the root level with the most discriminating features being
concentrated toward the center of the signal. The LDBK algorithm also
selected features concentrated toward the center, but with wider support. On the
other hand, the features selected by the LDBKEMD algorithm are quite different.
Some of the LDBKEMD vectors are concentrated around the beginning and ending
locations while the others have much wider supports in time.
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Fig. 12.10 Top ten LDB vectors selected for the chirp waveforms using different LDB algorithms.
The subfigures in the right column show the selected subspaces indicated in black

12.5 Conclusion

LDB is an effective and computationally fast method for extracting discriminant
features from signals. Furthermore, as we demonstrated in Sect. 12.4, the resulting
feature space is interpretable; we know what is being used in each feature through
the corresponding LDB basis vector and the expansion coefficients of the signals
relative to that vector and therefore have a better understanding of when it will
not be as effective and why. Also, we presented yet another LDB algorithm using
a new discriminant measure based on signatures and EMD and demonstrated its
capability of detecting features that can be missed using other versions of LDBs.
Our EMD-based LDB can also be adapted to use new training data as it is provided.
In comparison to LDBKASH, our LDBKEMD algorithm has fewer parameters to
tweak and avoids the difficult task of estimating reliable epdfs, which make this new
algorithm more robust. As demonstrated by our last two examples, it provides for
better separation of classes with less training and a measure of discrimination that
is less susceptible to outliers. However, as shown with our first two examples, in
some situations expending extra effort, i.e., incorporating statistical behavior of the
expansion coefficients, does not necessarily improve the performance.
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