
Chapter 1
Convergence of Classical Cardinal Series

W.R. Madych

Abstract We consider symmetric partial sums of the classical cardinal series and
record necessary and sufficient conditions for convergence. Included are growth
conditions on the coefficients that imply analogous asymptotic behavior of the
function represented by the series. Several relatively immediate corollaries are also
recorded, including sampling-type theorems.

Mathematics subject classification (2000): 40A30; 94A20

1.1 Introduction

The classical cardinal series with coefficients {a(n) : n = 0,±1,±2, . . .} is de-
fined by

f (z) =
∞

∑
n=−∞

a(n)
sinπ(z− n)

π(z− n)
, (1.1)

where the variable z is often restricted to the real line but, in general, can take on
complex values. The coefficients of course are in general complex.

Under suitable restrictions on the coefficients {a(n) : n = 0,±1,±2, . . .} the
series (1.1) provides a solution to the interpolation problem of finding an entire
function f (z) of exponential type no greater than π that satisfies

f (n) = a(n), n = 0,±1,±2, . . . . (1.2)
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The cardinal series (1.1) is a well-known and highly celebrated solution to the
interpolation problem (1.2). Indeed the list [2–8,10,11,15–17,19,20] is but a small
sampling of the many articles and books that are devoted to or significantly treat the
subject. We assume that the reader is familiar with what are now relatively widely
well-known facts concerning the cardinal series (1.1) that are associated with the
theory commonly referred to as the W-K-S sampling theorem and that can be found,
for example, in [11, Lecture 20] or [16, Chap. 9].

In this note we are concerned with the convergence of the symmetric partial sums
of (1.1), more specifically, with conditions on the coefficients {a(n)} that insure the
convergence of the sequence { fN(z) : N = 1,2, . . .} of symmetric partial sums

fN(z) =
N

∑
n=−N

a(n)
sinπ(z− n)

π(z− n)
. (1.3)

We use standard notation and only alert the reader to the fact that Eπ denotes the
class of entire functions of exponential type no greater than π that have no greater
than polynomial growth along the real axis. In view of the distributional variant of
the Paley–Wiener theorem, for example, see [9, Theorem 1.7.7], Eπ consists of the
Fourier transforms of distributions with support in the interval [−π ,π ].

The main results, including some explanatory material, are given in Sect. 1.2. All
the details, including necessary technical lemmas, are given in Sect. 1.3. Section 1.4
is devoted to certain miscellany that is a relatively immediate consequence of the
development in Sects. 1.2 and 1.3; Corollary 6 here is an example of a sampling-
type theorem mentioned in the introduction.

1.2 Results

We make use of the fact that the partial sums fN(z) defined by (1.3) can be
re-expressed as

fN(z) =
sinπz

π

N

∑
n=−N

(−1)na(n)
(z− n)

. (1.4)

It follows from (1.4) that when the sequence of coefficients {a(n)} is even,
namely a(−n) = a(n) for n = 1,2, . . . , we may write

fN(z) =
sinπz

π

{
a(0)

z
+ 2z

N

∑
n=1

(−1)na(n)
(z2 − n2)

}
. (1.5)

From (1.5) it is clear that when {a(n)} is an even sequence then the convergence
of ∑(−1)na(n)/n2 is a sufficient condition for the convergence of the partial sums
{ fN(z)}. This condition is also necessary. Furthermore, the limiting function f (z)
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is a solution within a certain class of entire functions to the interpolation problem
f (n) = a(n), n = 0,±1,±2, . . . . We formulate this more precisely as follows.

Theorem 1. Suppose the sequence of coefficients {a(n)} is even, namely a(−n) =
a(n) for n = 1,2, . . . .

1. If

∑(−1)n a(n)
n2 converges, (1.6)

then the partial sums fN(z), N = 1,2, . . . , converge uniformly on compact subsets
of the complex plane C. The limiting function

f (z) =
sinπz

π

{
a(0)

z
+ 2z

∞

∑
n=1

(−1)na(n)
(z2 − n2)

}
(1.7)

is even, is in Eπ , satisfies

| f (z)|e−π | Im z| = O(|z|2 log |z|) as |z| → ∞, (1.8)

and solves the interpolation problem (1.2).
2. If (1.6) fails to hold then the sequence fN(z) fails to converge as N → ∞ at every

point z that is not an integer.

The statement concerning convergence of the partial sums fN(z) can be refor-
mulated as follows: There is an entire function f (z) such that for every positive
number R,

lim
N→∞

sup
|z|≤R

∣∣∣∣∣ f (z)−
N

∑
n=−N

a(n)
sinπ(z− n)

π(z− n)

∣∣∣∣∣.
In view of the function

zsin πz,

any solution of the interpolation problem (1.2) that is even, is in Eπ , and enjoys (1.8)
cannot be unique. Additional restrictions on the coefficients {a(n)} are required
to ensure that the solution given by (1.7) is unique within an appropriate class
of entire functions in analogy with the celebrated sampling theorem, for example,
[11, Lecture 20, Theorem 1].

Theorem 2. Suppose the sequence of coefficients {a(n)} is even and satisfies
property (1.6). If, in addition, for some p that satisfies 0 ≤ p ≤ 2 we have

a(n) = O(np) as n → ∞, (1.9)

then the limiting function f (z) defined by (1.7) satisfies

| f (z)|e−π | Im z| = O(|z|p log |z|) as |z| → ∞. (1.10)



6 W.R. Madych

If 0 ≤ p < 1 then the limiting function f (z) defined by (1.7) is the unique solution to
the interpolation problem (1.2) that is in Eπ , is even, and satisfies (1.10).

Note that condition (1.9) on the growth of the coefficients {a(n)} does not imply
that the solution (1.7) of the interpolation problem (1.2) has the same order of
growth. However, an additional restriction, on what amounts to the oscillatory nature
of the coefficients, will ensure that the solution (1.7) has the same order of growth
as the coefficients (1.9).

Theorem 3. Suppose the sequence of coefficients {a(n)} is even and satisfies
property (1.6). If, in addition, for some p that satisfies 0 ≤ p ≤ 2 we have

a(n+ 1)− a(n)= O(np−1) as n → ∞ when 0 < p ≤ 2 (1.11)

and
∞

∑
n=1

|a(n+ 1)− a(n)|< ∞ when p = 0, (1.12)

then the limiting function f (z) defined by (1.7) satisfies

| f (z)|e−π | Im z| = O(|z|p) as |z| → ∞. (1.13)

When the sequence of coefficients {a(n)} is odd, namely a(−n) = −a(n) for
n = 1,2, . . . , in view of (1.4) we have

fN(z) =
2sinπz

π

N

∑
n=1

(−1)nna(n)
(z2 − n2)

. (1.14)

From (1.14) it should be clear that the conditions required of {a(n)} in this case will
be somewhat more restrictive than in the even case. Nevertheless, with relatively
minor modifications, the analogues of Theorems 1–3 remain valid and can be
formulated as follows.

Theorem 4. Suppose the sequence of coefficients {a(n)} is odd, namely a(−n) =
−a(n) for n = 1,2, . . . .

1. If

∑(−1)n a(n)
n

converges, (1.15)

then the partial sums fN(z), N = 1,2, . . . , converge uniformly on compact subsets
of the complex plane C. The limiting function

f (z) =
2sinπz

π

∞

∑
n=1

(−1)nna(n)
(z2 − n2)

(1.16)

is odd, is in Eπ , satisfies
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| f (z)|e−π | Im z| = O(|z| log |z|) as |z| → ∞, (1.17)

and solves the interpolation problem (1.2).
2. If (1.15) fails to hold, then the sequence fN(z) fails to converge as N → ∞ at

every point z that is not an integer.

In view of the function
sinπz,

any solution of the interpolation problem (1.2) that is odd, is in Eπ , and enjoys
(1.17) cannot be unique. In this case I am unaware of any conditions on the
coefficients other than the decay conditions implied by the sampling-type theorems,
for example, [11, Lecture 20, Theorems 1 and 2] or Corollary 6 in Sect. 1.4, that
will ensure that the solution (1.16) is unique within some appropriate class of entire
functions. The statements in Theorem 4 concerning convergence are also implied
by [18, Theorem 1].

Theorem 5. Suppose the sequence of coefficients {a(n)} is odd and satisfies
property (1.15). If, in addition, for some p that satisfies 0 ≤ p ≤ 1 we have

a(n) = O(np) as n → ∞, (1.18)

then the limiting function f (z) defined by (1.16) satisfies

| f (z)|e−π | Im z| = O(|z|p log |z|) as |z| → ∞. (1.19)

Note that condition (1.18) on the growth of the coefficients {a(n)} does not imply
that the solution (1.16) of the interpolation problem (1.2) has the same order of
growth. However, as in the earlier case, an additional restriction, on what amounts
to the oscillatory nature of the coefficients, will ensure that the solution (1.16) has
the same order of growth as the coefficients (1.18).

Theorem 6. Suppose the sequence of coefficients {a(n)} is odd and satisfies
property (1.15). If, in addition, for some p that satisfies 0 ≤ p ≤ 1 we have

a(n+ 1)− a(n)= O(np−1) as n → ∞ when 0 < p ≤ 1 (1.20)

and

∞

∑
n=1

|a(n+ 1)− a(n)|< ∞ when p = 0, (1.21)

then the limiting function f (z) defined by (1.16) satisfies

| f (z)|e−π | Im z| = O(|z|p) as |z| → ∞. (1.22)
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1.3 Details

In what follows the symbol C, with or without a subscript, is used to denote certain
generic constants whose specific value can vary from one occurrence to another.

1.3.1 Proof of Theorem 1

In view of (1.5) we may re-express fN(z) as

fN(z) =
sinπz

π

{
a(0)

z
+ 2z

N

∑
n=1

[(
1

(z2 − n2)
+

1
n2

)
(−1)na(n)− (−1)n a(n)

n2

]}

=
sinπz

π

{
a(0)

z
+ 2z

N

∑
n=1

(
(−1)nz2

n2(z2 − n2)

)
a(n)− 2z

N

∑
n=1

(−1)n a(n)
n2

}

= φN(z)+ψN(z),

where

φN(z) =
sinπz

π

{
a(0)

z
+ 2z

N

∑
n=1

(
(−1)nz2

n2(z2 − n2)

)
a(n)

}

and

ψN(z) =
−2zsinπz

π

N

∑
n=1

(−1)n a(n)
n2 .

In view of (1.6) the sequence ψN(z) converges uniformly on compacta as N → ∞.
Condition (1.6) also implies that limn→∞ a(n)/n2 = 0 and hence ∑∞

n=1 a(n)/n4

converges absolutely. It follows that the series

∞

∑
n=1

(
2z3 sinπz
π(z2 − n2)

)
(−1)n a(n)

n2

converges absolutely and uniformly on compacta. This means, of course, that φN(z)
converges uniformly on compacta as N → ∞.

From the last expression for fN(z) it follows that fN(z) converges uniformly on
compacta as N → ∞ since both φN(z) and ψN(z) do so.

We may express the limiting function f (z) as

f (z) =
sinπz

π

{
a(0)

z
+ 2z

∞

∑
n=1

(−1)na(n)
(z2 − n2)

}
(1.7)
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since the series in fact converges to the entire function f (z). In view of the above
development we may also express f (z) as

f (z) = φ(z)+ czsinπz, (1.23)

where

φ(z) =
sin πz

π

{
a(0)

z
+ 2z

∞

∑
n=1

(
(−1)nz2

n2(z2 − n2)

)
a(n)

}

and

c =
−2
π

N

∑
n=1

(−1)n a(n)
n2 .

An efficient way of arguing that f (z) is in Eπ is to observe that this is an
immediate consequence of (1.8).

To see that f (z) satisfies (1.8) use representation (1.7) of f (z), assume |z| ≥ 100,
and break up the series into a sum over n ≥ 2|z| and another over n < 2|z|. Thus

f (z) = AN(z)+BN(z),

where N is the greatest integer ≤ 2|z|,

AN(z) =
sinπz

π

{
a(0)

z
+ 2z

N

∑
n=1

(−1)na(n)
z2 − n2

}
,

and

BN(z) =
sinπz

π

{
2z

∞

∑
n=N+1

(−1)na(n)
z2 − n2

}
.

To estimate AN(z) assume that Im z is positive so that |ei2πz−1| ≤ 2 and note that

∣∣∣ sinπz
z± n

∣∣∣= |e−iπz|
∣∣∣e2π iz− 1

z± n

∣∣∣= eπ | Im z|
∣∣∣e2π i(z±n)− 1

z± n

∣∣∣
and ∣∣∣e2π i(z±n)− 1

z± n

∣∣∣≤ C

1+
∣∣|n|− |z|∣∣ .

Hence,

2zsinπz
z2 − n2 =

{ 1
z− n

+
1

z+ n

}
sinπz ≤ Ceπ | Im z|

1+
∣∣|n|− |z|∣∣ ,
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so that

|AN(z)| ≤Ceπ | Im z|
N

∑
n=0

|a(n)|
1+

∣∣n−|z|∣∣ .
Now,

|a(n)| ≤C|z|2

in the above sum, since for n ≥ 1 (1.6) implies that |a(n)|/n2 is bounded which in
turn implies |a(n)| ≤Cn2 ≤CN2. The last two displayed inequalities imply that

|AN(z)| ≤C|z|2eπ | Im z|
N

∑
n=0

1

1+
∣∣n−|z|∣∣ ≤C|z|2eπ | Im z| log |z|. (1.24)

An analogous argument mutatis mutandis shows that (1.24) is still valid when
Im z ≤ 0 so that (1.24) holds whenever |z| is sufficiently large.

To estimate BN(z) break it up into two terms analogous to φN(z) and ψN(z) above.
Namely, write

BN(z) =
sinπz

π

{
2

∞

∑
n=N+1

(
(−1)nz3

n2(z2 − n2)

)
a(n)− 2z

∞

∑
n=N+1

(−1)n a(n)
n2

}

and note that∣∣∣∣∣
∞

∑
n=N+1

(
(−1)nz3

n2(z2 − n2)

)
a(n)

∣∣∣∣∣≤ |z|3
∞

∑
n=N+1

C1|a(n)|
n4

≤ |z|3
∞

∑
n=N+1

C2

n2 ≤C3|z|3N−1 ≤C|z|2

and

∣∣∣z ∞

∑
n=N+1

(−1)n a(n)
n2

∣∣∣≤C|z|.

The last expression for BN(z) together with the last two inequalities implies that

|BN(z)| ≤C|z|2eπ | Im z|. (1.25)

The desired result (1.8) follows from (1.24) and (1.25).
Now, suppose that the series in (1.6) diverges. The proof of item 2 can be reduced

to two simple cases. (a) If the terms of the series in (1.6) are unbounded, then so are
the terms of the series (1.7), and desired result follows. (b) If the terms of the series
in (1.6) are bounded, then using representation (1.23) for f (z), note that the series
representing φ(z) converges while the series representing the constant c diverges,
and the desired result follows.
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1.3.2 Proof of Theorem 2

The proof of (1.10) is essentially analogous to the proof of (1.8) while making
use of the additional restrictions on the coefficients {a(n)}. The only significant
modification involves the estimation of BN(z) which requires the consideration of
two cases depending on whether p is less than or ≥1.

Thus, use representation (1.7) of f (z), assume |z| ≥ 100, break up the series into
a sum over n ≥ 2|z| and another over n < 2|z|, and write

f (z) = AN(z)+BN(z),

where N is the greatest integer ≤ 2|z| and both AN(z) and BN(z) are defined exactly
the same as in the proof of (1.8). Then estimating AN(z) as before but using the fact
that in this case |a(n)| ≤C|z|p results in

|AN(z)| ≤C|z|peπ | Im z| log |z|. (1.26)

As mentioned earlier the estimation of BN(z) depends on whether p is less than
or ≥1.

If 0 ≤ p < 1, simply recall that

BN(z) =
sinπz

π

{
2z

∞

∑
n=N+1

(−1)na(n)
z2 − n2

}

and observe that∣∣∣∣z ∑
n≥2|z|

(−1)na(n)
(z2 − n2)

∣∣∣∣≤ |z| ∑
n≥2|z|

4|a(n)|
3n2 ≤C1|z| ∑

n≥2|z|
np−2 ≤C2|z| |z|p−1.

to conclude that

|BN(z)| ≤C|z|peπ | Im z|. (1.27)

If 1 ≤ p ≤ 2 estimate exactly as in the derivation of (1.8) but use the bound
|a(n)| ≤Cnp. This leads to (1.27) for this case.

Bounds (1.26) and (1.27) together imply the desired result (1.10).
To see the uniqueness statement we argue as follows: If g(z) is another solution

of the interpolation problem (1.2), is in Eπ , is even, and satisfies (1.10) for some
p< 1, then h(z) =

(
f (z)−g(z)

)
/sinπz is an entire function that is o(|z|) as |z| → ∞.

Hence Cauchy’s estimate, [1, p 122, identity (25) with n = 1] implies that h(z) is
a constant. In view of the fact that h(z) is odd this constant must be zero. Thus
g(z) = f (z), which implies the desired result.
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1.3.3 A Technical Lemma

Let

Sn(z) =
sinπz

π

n

∑
k=−n

(−1)k

(z− k)
. (1.28)

Then in view of the uniqueness statement in Theorem 2, it follows that

lim
n→∞

Sn(z) = 1

uniformly on compacta. Our proof of Theorem 3 uses the fact that Sn(z) is uniformly
bounded in n on strips parallel to the real axis, {z : | Im z|< R < ∞}, which however
does not follow from Theorem 2 and requires an additional tweak.

Lemma. There is a positive constant C, independent of z and n, such that

|Sn(z)| ≤Ceπ | Im z|. (1.29)

To see the lemma note that for positive k

(−1)2k−1

z− (2k− 1)
+

(−1)2k

z− 2k
=

1
(z− 2k+ 1)(z− 2k)

and that ∣∣∣∣ sinπz
(z− 2k+ 1)(z− 2k)

∣∣∣∣≤ Ceπ | Im z|

1+ |z− 2k|2

with a similar estimate valid for negative k. Hence

|S2k(z)− S2(k−1)(z)| ≤Ceπ | Im z|
{

1
1+ |z− 2k|2 +

1
1+ |z+ 2k|2

}
.

If n is even, n = 2m, then

S2m(z) = S0(z)+
m

∑
k=1

{
S2k(z)− S2(k−1)(z)

}
,

and if n is odd, n = 2m+ 1, then

S2m+1(z) = S2m(z)− 2zsinπz
z2 − (2m+ 1)2 .
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Hence

|S2m(z)|= |S0(z)|+
m

∑
k=1

|S2k(z)− S2(k−1)(z)|

≤Ceπ | Im z|
{

1
1+ |z| +

m

∑
k=1

{
1

1+ |z− 2k|2 +
1

1+ |z+ 2k|2
}}

which implies that (1.29) is valid when n = 2m and since

∣∣∣ 2zsin πz
z2 − (2m+ 1)2

∣∣∣≤Ceπ | Im z|

inequality (1.29) follows for all n.

1.3.4 Proof of Theorem 3

As in the proof of Theorem 2, use representation of f (z), assume |z| ≥ 100, and
break up the series into a sum over n ≥ 2|z| and another over n < 2|z|, and write

f (z) = AN(z)+BN(z),

where N is the greatest integer ≤ 2|z| and both AN(z) and BN(z) are defined exactly
the same as before. Also note that the hypothesis on the coefficients {a(n)} implies
that a(n) = O(np) as n → ∞.

BN(z) can be estimated in exactly the same way as in the proof of Theorem 2 to
get

|BN(z)| ≤C|z|peπ | Im z|.

To estimate AN(z) use summation by parts to write

AN(z) =
N−1

∑
n=0

Sn(z)
(
a(n)− a(n+ 1)

)
+ SN(z)a(N),

where

S0(z) =
sinπz

πz

and

Sn(z) = S0(z)+
sin πz

π

{
2z

n

∑
k=1

(−1)k

z2 − k2

}
, n = 1,2, . . . .
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In view of inequality (1.29) the last expression for AN(z) allows us to write

|AN(z)| ≤Ceπ | Im z|
{

N−1

∑
n=0

∣∣a(n)− a(n+ 1)
∣∣+ |a(N)|

}

which together with the hypothesis on the coefficients {a(n)} implies that

|AN(z)| ≤C|z|peπ | Im z|.

The bounds on AN(z) and BN(z) imply the desired result (1.22).

1.3.5 Proof of Theorems 4 and 5

The proofs of Theorems 4 and 5 are essentially the same as those of Theorems 1
and 2, mutatis mutandis.

The necessary modifications are evident by reexpressing (1.16) as

f (z) =
2sinπz

π

{
∞

∑
n=1

[( n
(z2 − n2)

+
1
n

)
(−1)na(n)− (−1)n a(n)

n

]}

which, in analogy with (1.23), can be written as

f (z) = φ(z)+ csinπz, (1.30)

where

φ(z) =
2sinπz

π

{
∞

∑
n=1

(
(−1)nz2

n(z2 − n2)

)
a(n)

}

and

c =
−2
π

N

∑
n=1

(−1)n a(n)
n

.

Also recall that

∣∣∣2nsinπz
z2 − n2

∣∣∣= ∣∣∣{ 1
z− n

− 1
z+ n

}
sinπz

∣∣∣≤ Ceπ | Im z|

1+
∣∣||n|− |z|∣∣ .

1.3.6 Another Technical Lemma

In analogy with (1.28) let

Sgnn(z) =
sinπz

π

n

∑
k=−n

(−1)k sgn(k)
(z− k)

, (1.31)
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where

sgn(z) =

{
z/|z| if z �= 0,

0 when z = 0.

Then in view of Theorem 5 it follows that there is an entire function Sgn(z) in Eπ
such that

lim
n→∞

Sgnn(z) = Sgn(z)

uniformly on compacta. Our proof of Theorem 6 is analogous to that of Theorem 3
and uses the fact that Sgnn(z) is uniformly bounded in n on strips parallel to the real
axis, {z : | Im z|< R < ∞}, which does not follow from Theorem 5. The proof of the
following lemma is completely analogous to the proof of (1.29).

Lemma. There is a positive constant C, independent of z and n, such that

|Sgnn(z)| ≤Ceπ | Im z|. (1.32)

1.3.7 Proof of Theorem 6

Our proof of Theorem 6 is completely analogous to that of Theorem 3. Simply
replace Sn(z) with Sgnn(z) and use (1.32) instead of (1.29).

1.4 Additional Remarks, Examples, and Corollaries

1.4.1 Specific Bounds

It should be evident from the above development that more specific bounds on the
growth of the coefficients {a(n)} will lead, via essentially the same calculations, to
more specific bounds on the growth of the corresponding function (1.7) or (1.16).

For example, if in Theorem 2 we assume that 0 ≤ p ≤ 1 and

‖{a(n)}‖p = sup
n

|a(n)|
(1+ |n|)p < ∞,

then we may conclude that

| f (z)| ≤C‖{a(n)}‖p eπ | Imz|(1+ |z|)p log(e+ |z|),

where C is a constant that may depend on p but is otherwise independent of {a(n)}.
Similar results are valid in all the other cases.
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1.4.2 Some Special Functions

If
a(n) = (−1)n = cosπn,

then the statement in Theorem 2 concerning uniqueness can be applied to conclude
that

cosπz =
sin πz

π

{
1
z
+ 2z

∞

∑
k=1

1
(z2 − k2)

}
. (1.33)

But the fact that the right-hand side of (1.33) is bounded when z is restricted to
a strip about the real axis, | Im z| ≤ ε < ∞ does not follow from Theorem 3 since
|a(n+ 1)− a(n)|= 2. On the other hand, unlike the partial sums of

1 =
sinπz

π

{
1
z
+ 2z

∞

∑
k=1

(−1)k

(z2 − k2)

}
(1.34)

and

Sgn(z) =
2sinπz

π

{
∞

∑
k=1

(−1)kk
(z2 − k2)

}
, (1.35)

the partial sums

cosn πz =
sinπz

π

{
1
z
+ 2z

n

∑
k=1

1
(z2 − k2)

}

are not uniformly bounded.
In fact, choosing z = n+ 1/2, we have for sufficiently large n

|π cosn πz|= 1
n+ 1/2

+ 2(n+ 1/2)
n

∑
k=1

1
n+ k+ 1/2

1
n− k+ 1/2

≥ 2(n+ 1/2)
n

∑
k=1

1
2(n+ 1/2)

1
n− k+ 1/2

=
n

∑
m=1

1
m− 1/2

≥ logn,

where the first inequality above follows from 1
n+1/2 > 0 and n + k + 1/2 ≤

2(n+ 1/2). This implies that on the strips | Im z| ≤ ε < ∞ and for sufficiently
large |z|, the uniform bound

|cosn πz| ≤C log |z|

guaranteed by Theorem 2 cannot be improved.



1 Convergence of Classical Cardinal Series 17

−2 −1 0 1 2 3 4 5 6 7 8

−1

0

1

Fig. 1.1 Plot of Sgn(x) for −2 ≤ x ≤ 8

Formulas (1.33) and (1.34) are classical and well known, for example, see [1,
formulas (11) and (13) on p 188]. But the fact that they also follow from Theorem 2,
involving cardinal series expansions seems not to be so well known. We also bring
attention to the elementary curiosity concerning the difference of behavior of their
respective partial sums.

For the record we also mention the following which follows from the develop-
ment in Sect. 1.3.6.

Corollary 1. The function Sgn(z) defined by (1.35) is a member of Eπ that is odd
and satisfies both

Sgn(n) = sgn(n), n = 0,±1,±2, . . .

and
|Sgn(z)| ≤Ceπ | Im z|,

where

sgn(z) =

{
z/|z| if z �= 0

0 when z = 0

and C is a constant independent of z.

The above considerations suggest that reasonable candidates for a pair of odd
functions in Eπ that are analogous to the pair of even functions 1 and cosπz might
be the pair Sgn(z) and an odd function w(z) that satisfies (Figs. 1.1 and 1.2)

w(n) = (−1)n sgn(n), n = 0,±1,±2 . . . . (1.36)
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Fig. 1.2 Plot of Sgn(x) for −10 ≤ x ≤ 80

Note that in the case of the coefficients {w(n)} given by (1.36)

∞

∑
n=1

(−1)n w(n)
n

does not converge

so in view of second item in Theorem 4, such a function w, unlike the case of the
cosine, cannot be represented by a cardinal series (1.1). Nevertheless, if we ignore
the second term on the right-hand side of (1.30) and use the coefficients a(n) =w(n)
in the first term, we may write

w(z) =
2sinπz

π

{
∞

∑
n=1

(
z2

n(z2 − n2)

)}
, (1.37)

where the series converges uniformly on compacta and defines an odd entire
function in Eπ that satisfies (1.36). A calculation analogous to the one used to obtain
a lower bound on |cosn(z)| shows that

|w(N + 1/2)| ≥C log(N) for sufficiently large N

so that w(z) is not bounded on the strips | Im z| ≤ ε < ∞. But the function w defined
by (1.37) does satisfy

|w(z)| ≤Ceπ | Im z| log |z| for sufficiently large |z|

as can be verified by a calculation essentially identical to the one used to establish
(1.17).
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Fig. 1.3 Plot of Cgn(x) for −2 ≤ x ≤ 8

If w is the function defined by (1.37), then its derivative at z = 0 is 0, namely
w′(0) = 0. This seems somewhat unnatural. A comparison with Sgn(z) suggests
that the value of this derivative should be −Sgn′(0) =− log4. This can be achieved
without altering the values at the integers z = 0,±1,±2, . . . , by simply adding
− log4

π sinπz to w(z). Thus as an odd analogue of cosπz we propose the function
(Figs. 1.3 and 1.4)

Cgn(z) = w(z)− log4
π

sinπz .

1.4.3 Special Classes of Data

Here the term data is used to refer to the coefficients {a(n)} in (1.1).
As mentioned in the introduction, the class Eπ of entire functions u(z) consists

of Fourier transforms of distributions û with support in the interval [−π ,π ]. In other
words, for every u in Eπ there is a distribution û with support in the interval [−π ,π ]
such that u(z) is the value of the distribution û evaluated at the test function ϕ(ξ ) =
eizξ

2π that, in the standard notation of linear functionals, can be expressed as

u(z) = 〈ϕ , û〉.
In the case that û is an integrable function, the last identity can be re-expressed as

u(z) =
1

2π

∫ π

−π
eizξ û(ξ )dξ .
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Fig. 1.4 Plot of Cgn(x) for −10 ≤ x ≤ 80

The Paley–Wiener class PW consists of those members u of Eπ such that û
is square integrable. This class is often referred to as the class of band-limited
functions that plays a very prominent role in classical sampling theory. While it
makes sense to refer to the members of Eπ as being frequency band-limited, the
term “band-limited” is so closely associated with the subclass PW in the literature
that to avoid confusion, we have precluded its use in the wider sense.

An issue of interest in sampling theory are requirements on u or û that guarantee
that the cardinal series f (z) with coefficients a(n) = u(n), n = 0,±1,±2, . . . exists
and satisfies the property that f = u. In what follows we give several such conditions
that are consequences of the results in Sect. 1.2 and are somewhat less restrictive
than those associated with classical sampling theory.

As an immediate consequence of the uniqueness statement in Theorem 2 we have

Corollary 2. Suppose u is an even entire function in Eπ such that for some value of
p < 1

u(x) = O(|x|p) as x →±∞

on the real axis. Then the symmetric partial sums (1.3) of the cardinal series with
coefficients a(n) = u(n), n = 0,±1,±2, . . . converge uniformly on compacta to u(z).

If û is integrable or, more generally, a finite measure, then u(z) is bounded on the
real axis. Hence Corollary 2 can be applied in this case to get

Corollary 3. Suppose u is an even entire function in Eπ such that û is an integrable
function or, more generally, a finite measure. Then the symmetric partial sums (1.3)
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of the cardinal series with coefficients a(n) = u(n), n = 0,±1,±2, . . . converge
uniformly on compacta to u(z).

If k is a nonnegative integer, then PW k denotes the class of those entire functions
u whose derivative of order k, u(k), is in the Paley–Wiener class PW . In other words,
PW k = {u : u(k) ∈ PW}. The class PW k is endowed with the natural semi-norm

‖u‖PWk =
{∫ ∞

−∞
|u(k)(x)|2dx

}1/2
.

Note that PW 0 = PW and PW k ⊂ PW k+1 where the containment is proper.
The standard sampling theorem for PW does not apply to PW k when k ≥ 1.

Nevertheless, it was shown in [14] that members u of PW k can be recovered from
their samples {u(n)} via the spline summability method. Additional properties of
PW k can be found in [12].

The following facts concerning PW k will be useful in what follows:
If u is in PW k, k ≥ 1, then

u(x) = O
(
|x|k−1/2

)
as x →±∞ (1.38)

on the real axis, and the samples {u(n)} enjoy

∞

∑
n=−∞

|Δ ku(n)|2 ≤C‖u‖2
PWk , (1.39)

where Δ ku(n) are the forward differences of order k of {u(n)} that can be defined
recursively as

Δ 1u(n) = Δu(n) = u(n+ 1)− u(n), Δ k+1u(n) = Δ ku(n+ 1)−Δ ku(n).

In view of (1.38) Corollary 2 implies the following.

Corollary 4. Suppose u is an even function in PW 1. Then the symmetric partial
sums (1.3) of the cardinal series with coefficients a(n) = u(n), n = 0,±1,±2, . . .
converge uniformly on compacta to u(z).

The corresponding results for odd functions are not quite so transparent. Never-
theless Theorem 4 can be used to show that the following is true.

Corollary 5. Suppose u is an odd entire function in Eπ such that û is an integrable
function. Then the symmetric partial sums (1.3) of the cardinal series with coeffi-
cients a(n) = u(n), n = 0,±1,±2, . . . converge uniformly on compacta to u(z).

To see this, note that u(n) are the Fourier coefficients of û(ξ ) while {(−1)nu(n)}
are the Fourier coefficients of û(ξ −π). In other words
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û(ξ )∼
∞

∑
n=−∞

u(n)e−inξ =−2i
∞

∑
n=1

u(n)sinnξ , −π ≤ ξ ≤ π

with partial sums

ûN(ξ ) =−2i
N

∑
n=1

u(n)sinnξ , −π ≤ ξ ≤ π

and

û(ξ −π)∼−2i
∞

∑
n=1

(−1)nu(n)sinnξ , −π ≤ ξ ≤ π .

Since both û(ξ ) and û(ξ −π) are integrable functions it follows that both

∞

∑
n=1

u(n)
n

and
∞

∑
n=1

(−1)n u(n)
n

converge,

see, for example, [21, Theorem 8.7 and the remarks that follow on p 59]. In view of
Theorem 4 the convergence of the second series implies that the symmetric partial
sums (1.3) of the cardinal series with coefficients a(n) = u(n), n = 0,±1,±2, . . .
converge uniformly on compacta to an entire function f (z).

To see that f (z) = u(z) we argue as follows: the arithmetic means of the partial
sums ûn(ξ ) converge to û(ξ ) in L1, for example, see [21, Theorem 5.5(ii) on p 144].
That is

lim
N→∞

∫ π

−π

∣∣∣û(ξ )− 1
N

N

∑
n=1

ûn(ξ )
∣∣∣dξ = 0.

Hence the arithmetic means of the partial sums fN of the corresponding cardinal
series converge to u(z) uniformly on strips, namely

lim
N→∞

1
N

N

∑
n=1

fn(z) = u(z)

uniformly on the strips | Imz| ≤ ε < ∞. Since the arithmetic means of a sequence
converge to the same limit as the original sequence we may conclude that f (z) =
u(z).

Corollaries 3 and 5 can be combined to obtain

Corollary 6. Suppose u is an entire function in Eπ such that û is an integrable func-
tion. Then the symmetric partial sums (1.3) of the cardinal series with coefficients
a(n) = u(n), n = 0,±1,±2, . . . converge uniformly on compacta to u(z).

Versions of the statement of Corollary 6 have been recorded in [3, Theorem 1
and the cited references] and [7, Theorem 3 on p 70]. For alternate proofs see [2, p
124] and [13, p 499].
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There is an analogue of Corollary 4 for odd functions u(z), but its proof is
significantly more complicated. For example, to see that (1.39) implies that (1.15)
is valid for the coefficients a(n) = u(n) we argue as follows:

∞

∑
n=1

(−1)n a(n)
n

=
∞

∑
k=1

{
a(2k)

2k
− a(2k− 1)

2k− 1

}

=
∞

∑
k=1

{
a(2k)

2k
− a(2k− 1)

2k

}
+

∞

∑
k=1

{
1
2k

− 1
2k− 1

}
a(2k− 1)

=
∞

∑
k=1

a(2k)− a(2k− 1)
2k

−
∞

∑
k=1

a(2k− 1)
2k(2k− 1)

.

Now, the Schwarz inequality and (1.39) yield

∣∣∣ ∞

∑
k=1

a(2k)− a(2k− 1)
2k

∣∣∣2 ≤
{

∞

∑
k=1

1
(2k)2

}
∞

∑
k=1

|a(2k)− a(2k− 1)|2 ≤C‖u‖2
PW1

while (1.38) yields
∞

∑
k=1

|a(2k− 1)|
2k(2k− 1)

< ∞.

Altogether the above identity and inequalities imply (1.15).
It now follows from Theorem 4 that if a(n) = u(n) and u is in PW 1, then the

symmetric partial sums for the cardinal series (1.3) converge to the entire function
f (z) given by (1.16). An argument analogous to the one used to prove the uniqueness
portion of Theorem 3 shows that f (z) = u(z)+ csinπz where c is a constant. But
our argument for the fact that the constant c is indeed 0 involves more intricate
properties of PW k and is too complicated to be included here.

However, let us bring attention to the fact that a variant of the above argument
used to show that the coefficients a(n) = u(n) satisfy (1.15) when u(z) is an odd
function in PW 1 can be used to show that such coefficients satisfy (1.6) when u(z)
is an even function in PW 2.

We summarize these observations as follows:

Corollary 7. Suppose u is an odd function in PW 1. Then the symmetric partial
sums (1.3) of the cardinal series with coefficients a(n) = u(n), n = 0,±1,±2, . . .
converge uniformly on compacta to u(z)+ csinπz. If u is an even function in PW 2,
then the symmetric partial sums (1.3) of the cardinal series with coefficients a(n) =
u(n), n = 0,±1,±2, . . . converge uniformly on compacta to u(z)+ czsinπz.
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