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Preface

This monograph is a collection of chapters authored or coauthored by friends and
colleagues of Professor Gilbert Walter in celebration of his 80th birthday. The
authors represent a spectrum of disciplines, mathematics, applied mathematics,
electrical engineering, and statistics; yet, the monograph has one common theme:
multiscale analysis.

Multiscale analysis has recently become a topic of increasing interest because
of its important applications, in particular, in analyzing complex systems in which
the data behave differently depending upon which scale the data are looked at. The
advent of wavelets has given an impetus to multiscale analysis, but other techniques
such as sampling and subsampling have been used successfully as a tool in analyzing
multiscale signals. For this reason we have decided to include a variety of chapters
covering different aspects and applications of multiscale analysis.

The monograph is divided into three main parts: Part I is a collection of chapters
on sampling theory while Parts II and III contain chapters on multiscale analysis
and statistical analysis, respectively. The level of presentation varies. Few chapters
are very specialized, while others are self-contained or of expository nature, but
most chapters should be accessible to graduate students in mathematics or electrical
engineering.

Part I, which consists of eight chapters, has chapters on sampling, interpo-
lation, and approximation in the space of bandlimited functions, shift-invariant
and reproducing-kernel Hilbert spaces, and the Hardy space H2(D) of analytic
functions in the open unit disk. Part II contains four chapters on a unified theory
for multiscale analysis, multiscale signal processing, developing algorithms for
signal and image classification problems in large data sets, and wavelet analysis
of ECG (electrocardiogram) signals. Part III is comprised of three chapters on
characterization of continuous probability distributions, Bayesian wavelet shrinkage
methods, and multiparameter regularization for the construction of estimators in
statistical learning theory.

In Chapter 1, W. Madych revisits the classical cardinal series and considers
its symmetric partial sums. He derives necessary and sufficient conditions for its
convergence under growth conditions on the coefficients that imply analogous
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viii Preface

asymptotic behavior of the function represented by the series. Several corollaries,
including sampling type theorems, are obtained.

Chapter 2, by F. Stenger, M. Youssef, and J. Niebsch, is also related to the
cardinal series and the Sinc function , but in the context of function interpolation
and approximation. Function interpolation may be carried out using algebraic
polynomials, splines, Fourier polynomials, rational functions, wavelets, or Sinc
methods. Function interpolation by one of the above methods frequently has one
of the following features: (1) the modulus of the error of approximation near one
endpoint of an interval differs considerably from the modulus of the error near the
other end-point; (2) the moduli of the errors near the two endpoints of the interval
are roughly the same, but differ appreciably from the modulus of the error in the
mid-range of the interval. The authors call the former the (E-E) case and the latter
the (E-M) case.

In this chapter the authors describe methods for getting a more uniform ap-
proximation throughout the interval of approximation in the two aforementioned
cases (E-E) and (E-M). They also discuss improving approximation of the derivative
obtained by differentiating the constructed interpolation approximations.

In Chapter 3, H. R. Fernández-Morales, A. G. Garcia, and G. Pérez-Villalón
consider sampling in a general shift-invariant space V2(φ) of L2(IRd) with a setΦ of
r stable generators and in which the data are samples of some filtered versions of the
signal itself taken at a sub-lattice of ZZd . The authors call this problem the problem
of generalized sampling in shift-invariant spaces. Assuming that the �2-norm of the
generalized samples of any f ∈ V2(φ) is stable with respect to the L2(IRd)-norm
of the signal f , the authors derive frame expansions in the shift-invariant subspace
V2(φ) allowing the recovery of signals in this space from the available data.

A similar sampling problem is considered by M. Nashed and Q. Sun in Chapter 4,
where they consider a variety of Hilbert and Banach spaces of functions that
admit sampling expansions of the form f (t) = ∑∞n=1 f (tn)Sn(t), where {Sn(t)}∞n=1
is a family of functions that depend on the sampling points {tn} but not on the
function f . Those function spaces, which arise in connection with sampling ex-
pansions, include reproducing-kernel spaces, Sobolev spaces, shift-invariant spaces,
translation-invariant spaces and spaces of signals with finite rate of innovation. The
authors first discuss the engineering approach to the Shannon sampling theorem
which is based on trains of delta functions and then try to provide rigorous
justification to the engineering approach using distribution theory and generalized
functions. They also discuss sampling in some reproducing-kernel Banach spaces.

Chapter 5 by P. Vaidyanathan and P. Pal gives an overview of the concept of
coprime sampling and its applications. Coprime sampling was recently introduced
by the authors first for the case of one-dimensional signals and then extended to
multidimensional signals. The basic idea is that a continuous-time (or spatial) signal
is sampled simultaneously by two sets of samplers, with sampling rates 1/NT and
1/MT where M and N are coprime integers and T > 0.One of the main results is that
it is possible to estimate the autocorrelation of the signal at a much higher rate 1/T
than the total sampling rate. Thus, any application which is based on autocorrelation
will benefit from such sampling and reconstruction. An interesting mathematical
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problem that comes up when coprime sampling is extended to higher dimensions
is how to generate a pair of integer matrices M and N which are commuting and
coprime.

Chromatic derivatives and series expansions have recently been introduced as an
alternative representation to Taylor series for bandlimited functions and they have
been shown to be more useful in practical applications than Taylor series. Chromatic
series have similar properties to those of the Whittaker–Shannon–Kotel’nikov
sampling series. In Chapter 6, A. Zayed gives an overview of chromatic derivatives
and series in one and several variables and then use the Bargmann transform to
show that functions, in the Bargmann–Segal–Foch space F, which is a reproducing-
kernel Hilbert Space of entire functions, can be represented by chromatic series
expansions. As a result, some properties of the Bargmann–Segal–Foch space can be
deduced from those of chromatic series.

In Chapter 7, by D. Alpay, P. Jorgensen, I. Lewkowicz, and I. Marziano, the
authors use functional analysis techniques to solve interpolation problems not in the
context of bandlimited functions or shift-invariant spaces but in the setting of the
Hardy space H2(D) of functions analytic in the open unit disk D. The space H2(D)
plays an important role in complex analysis, signal processing, and linear dynamical
systems. Recently the Cuntz semigroups of C∗-algebras and the Cuntz relations
for positive elements in a C∗-algebra have attracted some attention because of
their newly discovered connections with applications in signal processing, sub-band
filters, and wavelets, which all fall within a larger context of multiscale analysis.

In this work the authors study the Cuntz relations in a different context. They
introduce connections between the Cuntz relations and the Hardy space H2(D) and
then use a decomposition of elements in H2(D) associated with certain isometries
which satisfy the Cuntz relations, to solve a new kind of multipoint interpolation
problem in H2(D) where for instance only a linear combination of the values
of a function at given points is preassigned, rather than the values at the points
themselves.

Chapter 8 by J. Benedetto and S. Datta deals with the autocorrelation of se-
quences and the construction of constant amplitude zero autocorrelation (CAZAC)
sequences x on the integers ZZ by means of Hadamard matrices. Recall that a real
Hadamard matrix is a square matrix whose entries are either +1 or −1 and whose
rows are mutually orthogonal. First, the authors explain from a practical point of
view why constant amplitude and zero autocorrelation sequences are important.
The zero autocorrelation property ensures minimum interference between signals
sharing the same channel.

The authors review properties and problems related to Hadamard matrices and
then establish the relation between CAZAC sequences on ZZ/NZZ, Hadamard
matrices, and the discrete Fourier transform. They proceed to construct CAZAC
sequences on ZZ by means of Hadamard matrices and construct unimodular
functions on ZZ whose autocorrelations are triangles.

Part II, Multiscale Analysis, consists of Chapters 9–12. The authors in Chapter 9
explain that chaos and random fractal theories, which have been used in the
analysis of complex data, are fundamentally two different theories. Chaos theory
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shows that irregular behaviors in a complex system may be generated by nonlinear
deterministic processes, while noise or randomness does not play any role. On the
other hand, random fractal theory assumes that the dynamics of the system are
inherently random.

Since the two theories are different, different conclusions may be drawn depend-
ing upon which theory is used to analyze the data. A great deal of research has been
devoted to determining whether a complex time series is generated by a chaotic
or a random system. The authors discuss the scale-dependent Lyapunov exponent
(SDLE) and use it to develop a unified multiscale analysis theory of complex data.

The goal of Chapter 10, by E. Lin, M. Haske, M. Smith, and D. Sowards,
is to determine the optimal wavelet, order, level, and threshold for denoising
and compressing an ECG (electrocardiogram) signal while smoothing out and
maintaining the integrity of the original signal. The wavelets used are: Daubechies,
Biorthogonal Spline, Coiflet, and Symlet. Various thresholds have been utilized,
such as soft, hard, global, rigorous SURE, heuristic SURE, universal, and minimax.
But, the two kinds of thresholding that are used extensively in this chapter are hard
and soft thresholding.

It is well known that the Hermite functions are an orthogonal basis for L2(R).
They are also eigenfunctions of a Sturm–Liouville differential operator, as well
as the Fourier transform. D. Mugler and A. Mahadevan in Chapter 11 call these
functions the continuous Hermite functions (CHF) to distinguish them from another
set of functions that they introduced in a previous work and called the discrete
Hermite functions (DHF).

The DHF have the analogous property that they are eigenvectors of a shifted
(centered) Fourier matrix and they also form an orthonormal set in a vector space.
The authors discuss the notion of Gaussian derivatives and their relationship to
the Hermite functions. Because of their relationship with the Gaussian derivatives,
the CHF have been used for the multiscale Hermite transform. Multiscale analysis
in this chapter refers to the ability to zoom in on features in a signal, moving
from a coarse approximation to include details at several different levels. In
particular, multiscale analysis provides a decomposition of the input signal into an
approximation signal and detail signals at several different levels. The main goal
of this chapter is to extend these results to the discrete case. The discrete Hermite
transform analysis of an input signal is then compared to the wavelet analysis of the
same signal at three different levels.

Local discriminant basis (LDB), which was developed by Saito and Coifman
for the purpose of classification, is a tool to extract useful features in signal and
image classification problems. It works by decomposing training signals into a time–
frequency dictionary. The dictionaries decompose signals into a redundant set of
orthogonal subspaces. Each subspace contains basis vectors localized in time and
frequency. The goal is, given a dictionary, to find the signal representation within
the dictionary that is most useful for classification.

In Chapter 12, B. Marchand and N. Saito propose the use of signatures and earth
mover’s distance (EMD) to provide data adaptive statistic that is more descriptive
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than the distribution of energies and more robust than an epdf (empirical probability
density function)-based approach.

The authors first review LDB and EMD and then outline how they can be incor-
porated into a fast EMD-based LDB algorithm and then compare its performance
with different LDB algorithms. They also demonstrate the capabilities of their
new algorithm, in comparison with both energy distribution and epdf-based LDB
algorithms, by using four different classification problems made of synthetic data
sets.

Part III, Statistical Analysis, is comprised of Chapters 13–15. The problem of
characterizing a probability distribution is an important problem in various fields.
Various systems of distributions have been constructed to provide approximations
to a wide variety of distributions. These systems are designed with the requirements
of computational ease and feasibility of algebraic manipulation.

In Chapter 13, G. Hamadani focuses on the characterization of the Amoroso
distribution, which is a four-parameter, continuous, univariate, unimodel pdf, with
semi-infinite range. Many well-known and important distributions are special cases
or limiting cases of the Amoroso distribution. The author gives characterizations
of the Amoroso distribution in two separate cases based on the truncated moment
of a function of first-order statistic and of a function of nth order statistic. He also
presents similar characterizations of other distributions, such as SSK, SKS, SK, and
SKS-type distributions.

Bayesian paradigm is popular in wavelet data processing because Bayes rules
are shrinkers. The Bayes rules can be constructed to mimic the thresholding rules
for wavelets, i.e., to slightly shrink the large coefficients and heavily shrink the
small coefficients. A paradigmatic task in which wavelets are typically applied is
the recovery of an unknown signal f from noisy measurements.

In Chapter 14 by N.Reményi and B. Vidakovic, the authors review some of these
concepts and discuss different Bayesian wavelet regression models and methods for
wavelet shrinkage. As an illustration of the Bayesian approach, they present BAMS
(Bayesian adaptive multiresolution shrinkage) method.

The subject of Chapter 15, the last chapter of the monograph, is the so-called
statistical learning theory. One of the central problems in the statistical learning
theory is this: given some empirical data Z = {(xi,yi), i = 1,2, . . .n}, construct the
estimator f : X → Y that approximates best the relationship between the input x
and the output y of a system, i.e., y ≈ f (x). The data are seen as the realizations
of random variables (x,y) ∈ X ×Y with a probability density p(x,y). The theory
suggests an approach for constructing an estimator that is based on an operator
equation for the estimator. The authors, S. Lu, S. Pereverzyev Jr, and S. Sampath,
discuss this operator equation and show how it can be treated by the recently
developed multiparameter regularization methods, the dual regularized total least
squares (DRTLS) and the multi-penalty regularization (MPR).

Finally, the editors would like to express their gratitude to Professor Gilbert
Walter for his support and guidance over the years and more importantly for his
kindness and friendship. We also wish to thank the Springer-Verlag editors for their
support, in particular, Mr. Steven Elliot, who initiated the project, and Merry Stubber
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and Dr. Alison Waldron for their help throughout the project. The first editor would
like to thank the Battlefield Visualization Branch at the US Air Force Research
Lab (AFRL) and the Ohio University Faculty Fellowship Leave program for their
generous financial support. Her particular thanks are given to Dr. Jeffery Connor
(Ohio University), Dr. Paul Havigs (AFRL), and Ms. Kathryn Farris (AFRL) for
their encouragement and support.

USA Xiaoping Shen
USA Ahmed I. Zayed
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Chapter 1
Convergence of Classical Cardinal Series

W.R. Madych

Abstract We consider symmetric partial sums of the classical cardinal series and
record necessary and sufficient conditions for convergence. Included are growth
conditions on the coefficients that imply analogous asymptotic behavior of the
function represented by the series. Several relatively immediate corollaries are also
recorded, including sampling-type theorems.

Mathematics subject classification (2000): 40A30; 94A20

1.1 Introduction

The classical cardinal series with coefficients {a(n) : n = 0,±1,±2, . . .} is de-
fined by

f (z) =
∞

∑
n=−∞

a(n)
sinπ(z− n)
π(z− n)

, (1.1)

where the variable z is often restricted to the real line but, in general, can take on
complex values. The coefficients of course are in general complex.

Under suitable restrictions on the coefficients {a(n) : n = 0,±1,±2, . . .} the
series (1.1) provides a solution to the interpolation problem of finding an entire
function f (z) of exponential type no greater than π that satisfies

f (n) = a(n), n = 0,±1,±2, . . . . (1.2)

W.R. Madych (�)
Department of Mathematics, 196 Auditorium Road, University of Connecticut,
Storrs, CT 06269-3009, USA
e-mail: madych@math.uconn.edu

X. Shen and A.I. Zayed (eds.), Multiscale Signal Analysis and Modeling,
DOI 10.1007/978-1-4614-4145-8 1, © Springer Science+Business Media New York 2013
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The cardinal series (1.1) is a well-known and highly celebrated solution to the
interpolation problem (1.2). Indeed the list [2–8,10,11,15–17,19,20] is but a small
sampling of the many articles and books that are devoted to or significantly treat the
subject. We assume that the reader is familiar with what are now relatively widely
well-known facts concerning the cardinal series (1.1) that are associated with the
theory commonly referred to as the W-K-S sampling theorem and that can be found,
for example, in [11, Lecture 20] or [16, Chap. 9].

In this note we are concerned with the convergence of the symmetric partial sums
of (1.1), more specifically, with conditions on the coefficients {a(n)} that insure the
convergence of the sequence { fN(z) : N = 1,2, . . .} of symmetric partial sums

fN(z) =
N

∑
n=−N

a(n)
sinπ(z− n)
π(z− n)

. (1.3)

We use standard notation and only alert the reader to the fact that Eπ denotes the
class of entire functions of exponential type no greater than π that have no greater
than polynomial growth along the real axis. In view of the distributional variant of
the Paley–Wiener theorem, for example, see [9, Theorem 1.7.7], Eπ consists of the
Fourier transforms of distributions with support in the interval [−π ,π ].

The main results, including some explanatory material, are given in Sect. 1.2. All
the details, including necessary technical lemmas, are given in Sect. 1.3. Section 1.4
is devoted to certain miscellany that is a relatively immediate consequence of the
development in Sects. 1.2 and 1.3; Corollary 6 here is an example of a sampling-
type theorem mentioned in the introduction.

1.2 Results

We make use of the fact that the partial sums fN(z) defined by (1.3) can be
re-expressed as

fN(z) =
sinπz
π

N

∑
n=−N

(−1)na(n)
(z− n)

. (1.4)

It follows from (1.4) that when the sequence of coefficients {a(n)} is even,
namely a(−n) = a(n) for n = 1,2, . . . , we may write

fN(z) =
sinπz
π

{
a(0)

z
+ 2z

N

∑
n=1

(−1)na(n)
(z2 − n2)

}
. (1.5)

From (1.5) it is clear that when {a(n)} is an even sequence then the convergence
of ∑(−1)na(n)/n2 is a sufficient condition for the convergence of the partial sums
{ fN(z)}. This condition is also necessary. Furthermore, the limiting function f (z)
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is a solution within a certain class of entire functions to the interpolation problem
f (n) = a(n), n = 0,±1,±2, . . . . We formulate this more precisely as follows.

Theorem 1. Suppose the sequence of coefficients {a(n)} is even, namely a(−n) =
a(n) for n = 1,2, . . . .

1. If

∑(−1)n a(n)
n2 converges, (1.6)

then the partial sums fN(z), N = 1,2, . . . , converge uniformly on compact subsets
of the complex plane C. The limiting function

f (z) =
sinπz
π

{
a(0)

z
+ 2z

∞

∑
n=1

(−1)na(n)
(z2 − n2)

}
(1.7)

is even, is in Eπ , satisfies

| f (z)|e−π | Im z| = O(|z|2 log |z|) as |z| → ∞, (1.8)

and solves the interpolation problem (1.2).
2. If (1.6) fails to hold then the sequence fN(z) fails to converge as N → ∞ at every

point z that is not an integer.

The statement concerning convergence of the partial sums fN(z) can be refor-
mulated as follows: There is an entire function f (z) such that for every positive
number R,

lim
N→∞ sup

|z|≤R

∣∣∣∣∣ f (z)−
N

∑
n=−N

a(n)
sinπ(z− n)
π(z− n)

∣∣∣∣∣.
In view of the function

zsinπz,

any solution of the interpolation problem (1.2) that is even, is in Eπ , and enjoys (1.8)
cannot be unique. Additional restrictions on the coefficients {a(n)} are required
to ensure that the solution given by (1.7) is unique within an appropriate class
of entire functions in analogy with the celebrated sampling theorem, for example,
[11, Lecture 20, Theorem 1].

Theorem 2. Suppose the sequence of coefficients {a(n)} is even and satisfies
property (1.6). If, in addition, for some p that satisfies 0 ≤ p ≤ 2 we have

a(n) = O(np) as n → ∞, (1.9)

then the limiting function f (z) defined by (1.7) satisfies

| f (z)|e−π | Im z| = O(|z|p log |z|) as |z| → ∞. (1.10)
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If 0 ≤ p < 1 then the limiting function f (z) defined by (1.7) is the unique solution to
the interpolation problem (1.2) that is in Eπ , is even, and satisfies (1.10).

Note that condition (1.9) on the growth of the coefficients {a(n)} does not imply
that the solution (1.7) of the interpolation problem (1.2) has the same order of
growth. However, an additional restriction, on what amounts to the oscillatory nature
of the coefficients, will ensure that the solution (1.7) has the same order of growth
as the coefficients (1.9).

Theorem 3. Suppose the sequence of coefficients {a(n)} is even and satisfies
property (1.6). If, in addition, for some p that satisfies 0 ≤ p ≤ 2 we have

a(n+ 1)− a(n)= O(np−1) as n → ∞ when 0 < p ≤ 2 (1.11)

and
∞

∑
n=1

|a(n+ 1)− a(n)|< ∞ when p = 0, (1.12)

then the limiting function f (z) defined by (1.7) satisfies

| f (z)|e−π | Im z| = O(|z|p) as |z| → ∞. (1.13)

When the sequence of coefficients {a(n)} is odd, namely a(−n) = −a(n) for
n = 1,2, . . . , in view of (1.4) we have

fN(z) =
2sinπz
π

N

∑
n=1

(−1)nna(n)
(z2 − n2)

. (1.14)

From (1.14) it should be clear that the conditions required of {a(n)} in this case will
be somewhat more restrictive than in the even case. Nevertheless, with relatively
minor modifications, the analogues of Theorems 1–3 remain valid and can be
formulated as follows.

Theorem 4. Suppose the sequence of coefficients {a(n)} is odd, namely a(−n) =
−a(n) for n = 1,2, . . . .

1. If

∑(−1)n a(n)
n

converges, (1.15)

then the partial sums fN(z), N = 1,2, . . . , converge uniformly on compact subsets
of the complex plane C. The limiting function

f (z) =
2sinπz
π

∞

∑
n=1

(−1)nna(n)
(z2 − n2)

(1.16)

is odd, is in Eπ , satisfies
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| f (z)|e−π | Im z| = O(|z| log |z|) as |z| → ∞, (1.17)

and solves the interpolation problem (1.2).
2. If (1.15) fails to hold, then the sequence fN(z) fails to converge as N → ∞ at

every point z that is not an integer.

In view of the function
sinπz,

any solution of the interpolation problem (1.2) that is odd, is in Eπ , and enjoys
(1.17) cannot be unique. In this case I am unaware of any conditions on the
coefficients other than the decay conditions implied by the sampling-type theorems,
for example, [11, Lecture 20, Theorems 1 and 2] or Corollary 6 in Sect. 1.4, that
will ensure that the solution (1.16) is unique within some appropriate class of entire
functions. The statements in Theorem 4 concerning convergence are also implied
by [18, Theorem 1].

Theorem 5. Suppose the sequence of coefficients {a(n)} is odd and satisfies
property (1.15). If, in addition, for some p that satisfies 0 ≤ p ≤ 1 we have

a(n) = O(np) as n → ∞, (1.18)

then the limiting function f (z) defined by (1.16) satisfies

| f (z)|e−π | Im z| = O(|z|p log |z|) as |z| → ∞. (1.19)

Note that condition (1.18) on the growth of the coefficients {a(n)} does not imply
that the solution (1.16) of the interpolation problem (1.2) has the same order of
growth. However, as in the earlier case, an additional restriction, on what amounts
to the oscillatory nature of the coefficients, will ensure that the solution (1.16) has
the same order of growth as the coefficients (1.18).

Theorem 6. Suppose the sequence of coefficients {a(n)} is odd and satisfies
property (1.15). If, in addition, for some p that satisfies 0 ≤ p ≤ 1 we have

a(n+ 1)− a(n)= O(np−1) as n → ∞ when 0 < p ≤ 1 (1.20)

and

∞

∑
n=1

|a(n+ 1)− a(n)|< ∞ when p = 0, (1.21)

then the limiting function f (z) defined by (1.16) satisfies

| f (z)|e−π | Im z| = O(|z|p) as |z| → ∞. (1.22)
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1.3 Details

In what follows the symbol C, with or without a subscript, is used to denote certain
generic constants whose specific value can vary from one occurrence to another.

1.3.1 Proof of Theorem 1

In view of (1.5) we may re-express fN(z) as

fN(z) =
sinπz
π

{
a(0)

z
+ 2z

N

∑
n=1

[(
1

(z2 − n2)
+

1
n2

)
(−1)na(n)− (−1)n a(n)

n2

]}

=
sinπz
π

{
a(0)

z
+ 2z

N

∑
n=1

(
(−1)nz2

n2(z2 − n2)

)
a(n)− 2z

N

∑
n=1

(−1)n a(n)
n2

}

= φN(z)+ψN(z),

where

φN(z) =
sinπz
π

{
a(0)

z
+ 2z

N

∑
n=1

(
(−1)nz2

n2(z2 − n2)

)
a(n)

}

and

ψN(z) =
−2zsinπz

π

N

∑
n=1

(−1)n a(n)
n2 .

In view of (1.6) the sequenceψN(z) converges uniformly on compacta as N →∞.
Condition (1.6) also implies that limn→∞ a(n)/n2 = 0 and hence ∑∞n=1 a(n)/n4

converges absolutely. It follows that the series

∞

∑
n=1

(
2z3 sinπz
π(z2 − n2)

)
(−1)n a(n)

n2

converges absolutely and uniformly on compacta. This means, of course, that φN(z)
converges uniformly on compacta as N → ∞.

From the last expression for fN(z) it follows that fN(z) converges uniformly on
compacta as N → ∞ since both φN(z) and ψN(z) do so.

We may express the limiting function f (z) as

f (z) =
sinπz
π

{
a(0)

z
+ 2z

∞

∑
n=1

(−1)na(n)
(z2 − n2)

}
(1.7)
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since the series in fact converges to the entire function f (z). In view of the above
development we may also express f (z) as

f (z) = φ(z)+ czsinπz, (1.23)

where

φ(z) =
sinπz
π

{
a(0)

z
+ 2z

∞

∑
n=1

(
(−1)nz2

n2(z2 − n2)

)
a(n)

}

and

c =
−2
π

N

∑
n=1

(−1)n a(n)
n2 .

An efficient way of arguing that f (z) is in Eπ is to observe that this is an
immediate consequence of (1.8).

To see that f (z) satisfies (1.8) use representation (1.7) of f (z), assume |z| ≥ 100,
and break up the series into a sum over n ≥ 2|z| and another over n < 2|z|. Thus

f (z) = AN(z)+BN(z),

where N is the greatest integer ≤ 2|z|,

AN(z) =
sinπz
π

{
a(0)

z
+ 2z

N

∑
n=1

(−1)na(n)
z2 − n2

}
,

and

BN(z) =
sinπz
π

{
2z

∞

∑
n=N+1

(−1)na(n)
z2 − n2

}
.

To estimate AN(z) assume that Im z is positive so that |ei2πz−1| ≤ 2 and note that

∣∣∣ sinπz
z± n

∣∣∣= |e−iπz|
∣∣∣e2π iz− 1

z± n

∣∣∣= eπ | Im z|
∣∣∣e2π i(z±n)− 1

z± n

∣∣∣
and ∣∣∣e2π i(z±n)− 1

z± n

∣∣∣≤ C

1+
∣∣|n|− |z|∣∣ .

Hence,

2zsinπz
z2 − n2 =

{ 1
z− n

+
1

z+ n

}
sinπz ≤ Ceπ | Im z|

1+
∣∣|n|− |z|∣∣ ,
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so that

|AN(z)| ≤Ceπ | Im z|
N

∑
n=0

|a(n)|
1+
∣∣n−|z|∣∣ .

Now,
|a(n)| ≤C|z|2

in the above sum, since for n ≥ 1 (1.6) implies that |a(n)|/n2 is bounded which in
turn implies |a(n)| ≤Cn2 ≤CN2. The last two displayed inequalities imply that

|AN(z)| ≤C|z|2eπ | Im z|
N

∑
n=0

1

1+
∣∣n−|z|∣∣ ≤C|z|2eπ | Im z| log |z|. (1.24)

An analogous argument mutatis mutandis shows that (1.24) is still valid when
Im z ≤ 0 so that (1.24) holds whenever |z| is sufficiently large.

To estimate BN(z) break it up into two terms analogous to φN(z) andψN(z) above.
Namely, write

BN(z) =
sinπz
π

{
2

∞

∑
n=N+1

(
(−1)nz3

n2(z2 − n2)

)
a(n)− 2z

∞

∑
n=N+1

(−1)n a(n)
n2

}

and note that∣∣∣∣∣
∞

∑
n=N+1

(
(−1)nz3

n2(z2 − n2)

)
a(n)

∣∣∣∣∣≤ |z|3
∞

∑
n=N+1

C1|a(n)|
n4

≤ |z|3
∞

∑
n=N+1

C2

n2 ≤C3|z|3N−1 ≤C|z|2

and

∣∣∣z ∞

∑
n=N+1

(−1)n a(n)
n2

∣∣∣≤C|z|.

The last expression for BN(z) together with the last two inequalities implies that

|BN(z)| ≤C|z|2eπ | Im z|. (1.25)

The desired result (1.8) follows from (1.24) and (1.25).
Now, suppose that the series in (1.6) diverges. The proof of item 2 can be reduced

to two simple cases. (a) If the terms of the series in (1.6) are unbounded, then so are
the terms of the series (1.7), and desired result follows. (b) If the terms of the series
in (1.6) are bounded, then using representation (1.23) for f (z), note that the series
representing φ(z) converges while the series representing the constant c diverges,
and the desired result follows.
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1.3.2 Proof of Theorem 2

The proof of (1.10) is essentially analogous to the proof of (1.8) while making
use of the additional restrictions on the coefficients {a(n)}. The only significant
modification involves the estimation of BN(z) which requires the consideration of
two cases depending on whether p is less than or ≥1.

Thus, use representation (1.7) of f (z), assume |z| ≥ 100, break up the series into
a sum over n ≥ 2|z| and another over n < 2|z|, and write

f (z) = AN(z)+BN(z),

where N is the greatest integer ≤ 2|z| and both AN(z) and BN(z) are defined exactly
the same as in the proof of (1.8). Then estimating AN(z) as before but using the fact
that in this case |a(n)| ≤C|z|p results in

|AN(z)| ≤C|z|peπ | Im z| log |z|. (1.26)

As mentioned earlier the estimation of BN(z) depends on whether p is less than
or ≥1.

If 0 ≤ p < 1, simply recall that

BN(z) =
sinπz
π

{
2z

∞

∑
n=N+1

(−1)na(n)
z2 − n2

}

and observe that∣∣∣∣z ∑
n≥2|z|

(−1)na(n)
(z2 − n2)

∣∣∣∣≤ |z| ∑
n≥2|z|

4|a(n)|
3n2 ≤C1|z| ∑

n≥2|z|
np−2 ≤C2|z| |z|p−1.

to conclude that

|BN(z)| ≤C|z|peπ | Im z|. (1.27)

If 1 ≤ p ≤ 2 estimate exactly as in the derivation of (1.8) but use the bound
|a(n)| ≤Cnp. This leads to (1.27) for this case.

Bounds (1.26) and (1.27) together imply the desired result (1.10).
To see the uniqueness statement we argue as follows: If g(z) is another solution

of the interpolation problem (1.2), is in Eπ , is even, and satisfies (1.10) for some
p< 1, then h(z) =

(
f (z)−g(z)

)
/sinπz is an entire function that is o(|z|) as |z| →∞.

Hence Cauchy’s estimate, [1, p 122, identity (25) with n = 1] implies that h(z) is
a constant. In view of the fact that h(z) is odd this constant must be zero. Thus
g(z) = f (z), which implies the desired result.
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1.3.3 A Technical Lemma

Let

Sn(z) =
sinπz
π

n

∑
k=−n

(−1)k

(z− k)
. (1.28)

Then in view of the uniqueness statement in Theorem 2, it follows that

lim
n→∞Sn(z) = 1

uniformly on compacta. Our proof of Theorem 3 uses the fact that Sn(z) is uniformly
bounded in n on strips parallel to the real axis, {z : | Im z|< R <∞}, which however
does not follow from Theorem 2 and requires an additional tweak.

Lemma. There is a positive constant C, independent of z and n, such that

|Sn(z)| ≤Ceπ | Im z|. (1.29)

To see the lemma note that for positive k

(−1)2k−1

z− (2k− 1)
+

(−1)2k

z− 2k
=

1
(z− 2k+ 1)(z− 2k)

and that ∣∣∣∣ sinπz
(z− 2k+ 1)(z− 2k)

∣∣∣∣≤ Ceπ | Im z|

1+ |z− 2k|2

with a similar estimate valid for negative k. Hence

|S2k(z)− S2(k−1)(z)| ≤Ceπ | Im z|
{

1
1+ |z− 2k|2 +

1
1+ |z+ 2k|2

}
.

If n is even, n = 2m, then

S2m(z) = S0(z)+
m

∑
k=1

{
S2k(z)− S2(k−1)(z)

}
,

and if n is odd, n = 2m+ 1, then

S2m+1(z) = S2m(z)− 2zsinπz
z2 − (2m+ 1)2 .
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Hence

|S2m(z)|= |S0(z)|+
m

∑
k=1

|S2k(z)− S2(k−1)(z)|

≤Ceπ | Im z|
{

1
1+ |z| +

m

∑
k=1

{
1

1+ |z− 2k|2 +
1

1+ |z+ 2k|2
}}

which implies that (1.29) is valid when n = 2m and since

∣∣∣ 2zsinπz
z2 − (2m+ 1)2

∣∣∣≤Ceπ | Im z|

inequality (1.29) follows for all n.

1.3.4 Proof of Theorem 3

As in the proof of Theorem 2, use representation of f (z), assume |z| ≥ 100, and
break up the series into a sum over n ≥ 2|z| and another over n < 2|z|, and write

f (z) = AN(z)+BN(z),

where N is the greatest integer ≤ 2|z| and both AN(z) and BN(z) are defined exactly
the same as before. Also note that the hypothesis on the coefficients {a(n)} implies
that a(n) = O(np) as n → ∞.

BN(z) can be estimated in exactly the same way as in the proof of Theorem 2 to
get

|BN(z)| ≤C|z|peπ | Im z|.

To estimate AN(z) use summation by parts to write

AN(z) =
N−1

∑
n=0

Sn(z)
(
a(n)− a(n+ 1)

)
+ SN(z)a(N),

where

S0(z) =
sinπz
πz

and

Sn(z) = S0(z)+
sinπz
π

{
2z

n

∑
k=1

(−1)k

z2 − k2

}
, n = 1,2, . . . .
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In view of inequality (1.29) the last expression for AN(z) allows us to write

|AN(z)| ≤Ceπ | Im z|
{

N−1

∑
n=0

∣∣a(n)− a(n+ 1)
∣∣+ |a(N)|

}

which together with the hypothesis on the coefficients {a(n)} implies that

|AN(z)| ≤C|z|peπ | Im z|.

The bounds on AN(z) and BN(z) imply the desired result (1.22).

1.3.5 Proof of Theorems 4 and 5

The proofs of Theorems 4 and 5 are essentially the same as those of Theorems 1
and 2, mutatis mutandis.

The necessary modifications are evident by reexpressing (1.16) as

f (z) =
2sinπz
π

{
∞

∑
n=1

[( n
(z2 − n2)

+
1
n

)
(−1)na(n)− (−1)n a(n)

n

]}

which, in analogy with (1.23), can be written as

f (z) = φ(z)+ csinπz, (1.30)

where

φ(z) =
2sinπz
π

{
∞

∑
n=1

(
(−1)nz2

n(z2 − n2)

)
a(n)

}

and

c =
−2
π

N

∑
n=1

(−1)n a(n)
n

.

Also recall that

∣∣∣2nsinπz
z2 − n2

∣∣∣= ∣∣∣{ 1
z− n

− 1
z+ n

}
sinπz

∣∣∣≤ Ceπ | Im z|

1+
∣∣||n|− |z|∣∣ .

1.3.6 Another Technical Lemma

In analogy with (1.28) let

Sgnn(z) =
sinπz
π

n

∑
k=−n

(−1)k sgn(k)
(z− k)

, (1.31)
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where

sgn(z) =

{
z/|z| if z �= 0,

0 when z = 0.

Then in view of Theorem 5 it follows that there is an entire function Sgn(z) in Eπ
such that

lim
n→∞Sgnn(z) = Sgn(z)

uniformly on compacta. Our proof of Theorem 6 is analogous to that of Theorem 3
and uses the fact that Sgnn(z) is uniformly bounded in n on strips parallel to the real
axis, {z : | Im z|< R <∞}, which does not follow from Theorem 5. The proof of the
following lemma is completely analogous to the proof of (1.29).

Lemma. There is a positive constant C, independent of z and n, such that

|Sgnn(z)| ≤Ceπ | Im z|. (1.32)

1.3.7 Proof of Theorem 6

Our proof of Theorem 6 is completely analogous to that of Theorem 3. Simply
replace Sn(z) with Sgnn(z) and use (1.32) instead of (1.29).

1.4 Additional Remarks, Examples, and Corollaries

1.4.1 Specific Bounds

It should be evident from the above development that more specific bounds on the
growth of the coefficients {a(n)} will lead, via essentially the same calculations, to
more specific bounds on the growth of the corresponding function (1.7) or (1.16).

For example, if in Theorem 2 we assume that 0 ≤ p ≤ 1 and

‖{a(n)}‖p = sup
n

|a(n)|
(1+ |n|)p < ∞,

then we may conclude that

| f (z)| ≤C‖{a(n)}‖p eπ | Imz|(1+ |z|)p log(e+ |z|),

where C is a constant that may depend on p but is otherwise independent of {a(n)}.
Similar results are valid in all the other cases.
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1.4.2 Some Special Functions

If
a(n) = (−1)n = cosπn,

then the statement in Theorem 2 concerning uniqueness can be applied to conclude
that

cosπz =
sinπz
π

{
1
z
+ 2z

∞

∑
k=1

1
(z2 − k2)

}
. (1.33)

But the fact that the right-hand side of (1.33) is bounded when z is restricted to
a strip about the real axis, | Im z| ≤ ε < ∞ does not follow from Theorem 3 since
|a(n+ 1)− a(n)|= 2. On the other hand, unlike the partial sums of

1 =
sinπz
π

{
1
z
+ 2z

∞

∑
k=1

(−1)k

(z2 − k2)

}
(1.34)

and

Sgn(z) =
2sinπz
π

{
∞

∑
k=1

(−1)kk
(z2 − k2)

}
, (1.35)

the partial sums

cosnπz =
sinπz
π

{
1
z
+ 2z

n

∑
k=1

1
(z2 − k2)

}

are not uniformly bounded.
In fact, choosing z = n+ 1/2, we have for sufficiently large n

|π cosnπz|= 1
n+ 1/2

+ 2(n+ 1/2)
n

∑
k=1

1
n+ k+ 1/2

1
n− k+ 1/2

≥ 2(n+ 1/2)
n

∑
k=1

1
2(n+ 1/2)

1
n− k+ 1/2

=
n

∑
m=1

1
m− 1/2

≥ logn,

where the first inequality above follows from 1
n+1/2 > 0 and n + k + 1/2 ≤

2(n+ 1/2). This implies that on the strips | Im z| ≤ ε < ∞ and for sufficiently
large |z|, the uniform bound

|cosnπz| ≤C log |z|

guaranteed by Theorem 2 cannot be improved.
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Fig. 1.1 Plot of Sgn(x) for −2 ≤ x ≤ 8

Formulas (1.33) and (1.34) are classical and well known, for example, see [1,
formulas (11) and (13) on p 188]. But the fact that they also follow from Theorem 2,
involving cardinal series expansions seems not to be so well known. We also bring
attention to the elementary curiosity concerning the difference of behavior of their
respective partial sums.

For the record we also mention the following which follows from the develop-
ment in Sect. 1.3.6.

Corollary 1. The function Sgn(z) defined by (1.35) is a member of Eπ that is odd
and satisfies both

Sgn(n) = sgn(n), n = 0,±1,±2, . . .

and
|Sgn(z)| ≤Ceπ | Im z|,

where

sgn(z) =

{
z/|z| if z �= 0

0 when z = 0

and C is a constant independent of z.

The above considerations suggest that reasonable candidates for a pair of odd
functions in Eπ that are analogous to the pair of even functions 1 and cosπz might
be the pair Sgn(z) and an odd function w(z) that satisfies (Figs. 1.1 and 1.2)

w(n) = (−1)n sgn(n), n = 0,±1,±2 . . . . (1.36)
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Fig. 1.2 Plot of Sgn(x) for −10 ≤ x ≤ 80

Note that in the case of the coefficients {w(n)} given by (1.36)

∞

∑
n=1

(−1)n w(n)
n

does not converge

so in view of second item in Theorem 4, such a function w, unlike the case of the
cosine, cannot be represented by a cardinal series (1.1). Nevertheless, if we ignore
the second term on the right-hand side of (1.30) and use the coefficients a(n) =w(n)
in the first term, we may write

w(z) =
2sinπz
π

{
∞

∑
n=1

(
z2

n(z2 − n2)

)}
, (1.37)

where the series converges uniformly on compacta and defines an odd entire
function in Eπ that satisfies (1.36). A calculation analogous to the one used to obtain
a lower bound on |cosn(z)| shows that

|w(N + 1/2)| ≥C log(N) for sufficiently large N

so that w(z) is not bounded on the strips | Im z| ≤ ε <∞. But the function w defined
by (1.37) does satisfy

|w(z)| ≤Ceπ | Im z| log |z| for sufficiently large |z|

as can be verified by a calculation essentially identical to the one used to establish
(1.17).
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Fig. 1.3 Plot of Cgn(x) for −2 ≤ x ≤ 8

If w is the function defined by (1.37), then its derivative at z = 0 is 0, namely
w′(0) = 0. This seems somewhat unnatural. A comparison with Sgn(z) suggests
that the value of this derivative should be −Sgn′(0) =− log4. This can be achieved
without altering the values at the integers z = 0,±1,±2, . . . , by simply adding
− log4

π sinπz to w(z). Thus as an odd analogue of cosπz we propose the function
(Figs. 1.3 and 1.4)

Cgn(z) = w(z)− log4
π

sinπz .

1.4.3 Special Classes of Data

Here the term data is used to refer to the coefficients {a(n)} in (1.1).
As mentioned in the introduction, the class Eπ of entire functions u(z) consists

of Fourier transforms of distributions û with support in the interval [−π ,π ]. In other
words, for every u in Eπ there is a distribution û with support in the interval [−π ,π ]
such that u(z) is the value of the distribution û evaluated at the test function ϕ(ξ ) =
eizξ

2π that, in the standard notation of linear functionals, can be expressed as

u(z) = 〈ϕ , û〉.
In the case that û is an integrable function, the last identity can be re-expressed as

u(z) =
1

2π

∫ π
−π

eizξ û(ξ )dξ .
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Fig. 1.4 Plot of Cgn(x) for −10 ≤ x ≤ 80

The Paley–Wiener class PW consists of those members u of Eπ such that û
is square integrable. This class is often referred to as the class of band-limited
functions that plays a very prominent role in classical sampling theory. While it
makes sense to refer to the members of Eπ as being frequency band-limited, the
term “band-limited” is so closely associated with the subclass PW in the literature
that to avoid confusion, we have precluded its use in the wider sense.

An issue of interest in sampling theory are requirements on u or û that guarantee
that the cardinal series f (z) with coefficients a(n) = u(n), n = 0,±1,±2, . . . exists
and satisfies the property that f = u. In what follows we give several such conditions
that are consequences of the results in Sect. 1.2 and are somewhat less restrictive
than those associated with classical sampling theory.

As an immediate consequence of the uniqueness statement in Theorem 2 we have

Corollary 2. Suppose u is an even entire function in Eπ such that for some value of
p < 1

u(x) = O(|x|p) as x →±∞
on the real axis. Then the symmetric partial sums (1.3) of the cardinal series with
coefficients a(n) = u(n), n = 0,±1,±2, . . . converge uniformly on compacta to u(z).

If û is integrable or, more generally, a finite measure, then u(z) is bounded on the
real axis. Hence Corollary 2 can be applied in this case to get

Corollary 3. Suppose u is an even entire function in Eπ such that û is an integrable
function or, more generally, a finite measure. Then the symmetric partial sums (1.3)
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of the cardinal series with coefficients a(n) = u(n), n = 0,±1,±2, . . . converge
uniformly on compacta to u(z).

If k is a nonnegative integer, then PW k denotes the class of those entire functions
u whose derivative of order k, u(k), is in the Paley–Wiener class PW . In other words,
PW k = {u : u(k) ∈ PW}. The class PW k is endowed with the natural semi-norm

‖u‖PWk =
{∫ ∞

−∞
|u(k)(x)|2dx

}1/2
.

Note that PW 0 = PW and PW k ⊂ PW k+1 where the containment is proper.
The standard sampling theorem for PW does not apply to PW k when k ≥ 1.

Nevertheless, it was shown in [14] that members u of PW k can be recovered from
their samples {u(n)} via the spline summability method. Additional properties of
PW k can be found in [12].

The following facts concerning PW k will be useful in what follows:
If u is in PW k, k ≥ 1, then

u(x) = O
(
|x|k−1/2

)
as x →±∞ (1.38)

on the real axis, and the samples {u(n)} enjoy

∞

∑
n=−∞

|Δ ku(n)|2 ≤C‖u‖2
PWk , (1.39)

where Δ ku(n) are the forward differences of order k of {u(n)} that can be defined
recursively as

Δ1u(n) = Δu(n) = u(n+ 1)− u(n), Δ k+1u(n) = Δ ku(n+ 1)−Δ ku(n).

In view of (1.38) Corollary 2 implies the following.

Corollary 4. Suppose u is an even function in PW 1. Then the symmetric partial
sums (1.3) of the cardinal series with coefficients a(n) = u(n), n = 0,±1,±2, . . .
converge uniformly on compacta to u(z).

The corresponding results for odd functions are not quite so transparent. Never-
theless Theorem 4 can be used to show that the following is true.

Corollary 5. Suppose u is an odd entire function in Eπ such that û is an integrable
function. Then the symmetric partial sums (1.3) of the cardinal series with coeffi-
cients a(n) = u(n), n = 0,±1,±2, . . . converge uniformly on compacta to u(z).

To see this, note that u(n) are the Fourier coefficients of û(ξ ) while {(−1)nu(n)}
are the Fourier coefficients of û(ξ −π). In other words
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û(ξ )∼
∞

∑
n=−∞

u(n)e−inξ =−2i
∞

∑
n=1

u(n)sinnξ , −π ≤ ξ ≤ π

with partial sums

ûN(ξ ) =−2i
N

∑
n=1

u(n)sinnξ , −π ≤ ξ ≤ π

and

û(ξ −π)∼−2i
∞

∑
n=1

(−1)nu(n)sinnξ , −π ≤ ξ ≤ π .

Since both û(ξ ) and û(ξ −π) are integrable functions it follows that both

∞

∑
n=1

u(n)
n

and
∞

∑
n=1

(−1)n u(n)
n

converge,

see, for example, [21, Theorem 8.7 and the remarks that follow on p 59]. In view of
Theorem 4 the convergence of the second series implies that the symmetric partial
sums (1.3) of the cardinal series with coefficients a(n) = u(n), n = 0,±1,±2, . . .
converge uniformly on compacta to an entire function f (z).

To see that f (z) = u(z) we argue as follows: the arithmetic means of the partial
sums ûn(ξ ) converge to û(ξ ) in L1, for example, see [21, Theorem 5.5(ii) on p 144].
That is

lim
N→∞

∫ π

−π

∣∣∣û(ξ )− 1
N

N

∑
n=1

ûn(ξ )
∣∣∣dξ = 0.

Hence the arithmetic means of the partial sums fN of the corresponding cardinal
series converge to u(z) uniformly on strips, namely

lim
N→∞

1
N

N

∑
n=1

fn(z) = u(z)

uniformly on the strips | Imz| ≤ ε < ∞. Since the arithmetic means of a sequence
converge to the same limit as the original sequence we may conclude that f (z) =
u(z).

Corollaries 3 and 5 can be combined to obtain

Corollary 6. Suppose u is an entire function in Eπ such that û is an integrable func-
tion. Then the symmetric partial sums (1.3) of the cardinal series with coefficients
a(n) = u(n), n = 0,±1,±2, . . . converge uniformly on compacta to u(z).

Versions of the statement of Corollary 6 have been recorded in [3, Theorem 1
and the cited references] and [7, Theorem 3 on p 70]. For alternate proofs see [2, p
124] and [13, p 499].
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There is an analogue of Corollary 4 for odd functions u(z), but its proof is
significantly more complicated. For example, to see that (1.39) implies that (1.15)
is valid for the coefficients a(n) = u(n) we argue as follows:

∞

∑
n=1

(−1)n a(n)
n

=
∞

∑
k=1

{
a(2k)

2k
− a(2k− 1)

2k− 1

}

=
∞

∑
k=1

{
a(2k)

2k
− a(2k− 1)

2k

}
+

∞

∑
k=1

{
1
2k

− 1
2k− 1

}
a(2k− 1)

=
∞

∑
k=1

a(2k)− a(2k− 1)
2k

−
∞

∑
k=1

a(2k− 1)
2k(2k− 1)

.

Now, the Schwarz inequality and (1.39) yield

∣∣∣ ∞∑
k=1

a(2k)− a(2k− 1)
2k

∣∣∣2 ≤
{

∞

∑
k=1

1
(2k)2

}
∞

∑
k=1

|a(2k)− a(2k− 1)|2 ≤C‖u‖2
PW1

while (1.38) yields
∞

∑
k=1

|a(2k− 1)|
2k(2k− 1)

< ∞.

Altogether the above identity and inequalities imply (1.15).
It now follows from Theorem 4 that if a(n) = u(n) and u is in PW 1, then the

symmetric partial sums for the cardinal series (1.3) converge to the entire function
f (z) given by (1.16). An argument analogous to the one used to prove the uniqueness
portion of Theorem 3 shows that f (z) = u(z)+ csinπz where c is a constant. But
our argument for the fact that the constant c is indeed 0 involves more intricate
properties of PW k and is too complicated to be included here.

However, let us bring attention to the fact that a variant of the above argument
used to show that the coefficients a(n) = u(n) satisfy (1.15) when u(z) is an odd
function in PW 1 can be used to show that such coefficients satisfy (1.6) when u(z)
is an even function in PW 2.

We summarize these observations as follows:

Corollary 7. Suppose u is an odd function in PW 1. Then the symmetric partial
sums (1.3) of the cardinal series with coefficients a(n) = u(n), n = 0,±1,±2, . . .
converge uniformly on compacta to u(z)+ csinπz. If u is an even function in PW 2,
then the symmetric partial sums (1.3) of the cardinal series with coefficients a(n) =
u(n), n = 0,±1,±2, . . . converge uniformly on compacta to u(z)+ czsinπz.
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Chapter 2
Improved Approximation via Use
of Transformations

Frank Stenger, Maha Youssef, and Jenny Niebsch

Abstract Function interpolation may be carried out using algebraic polynomial,
splines, Fourier polynomial, rational functions, wavelets, or Sinc methods. In this
chapter we describe methods for getting a more uniform approximation throughout
the interval of approximation in the cases when the magnitude of the errors
of interpolation is either much larger at one endpoint of the interval than the
other, or when the magnitudes of the errors at endpoints are roughly the same,
but differ considerably from those errors in the mid-range of the interval. We
also discuss improving approximation of the derivative obtained by differentiating
the constructed interpolation approximations. This chapter extends the recently
obtained results of (Stenger, J Complex 25:292–302, 2009).

2.1 Introduction and Summary

Wavelets have become a powerful tool for solving computational problems of
engineering and science and to this end, G.G. Walter has made many excellent
contributions [12, 19, 20]. The majority of wavelet applications use Sinc functions
[14, 17, 19, 21], although Walter and Shen have made important extensions to other
types of wavelets [12,20,21]. We expect that the work of [20,21] will have important
applications to other areas of electrical engineering, such as to the work of [7].
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It is often possible to improve a wavelet or other method of approximation by a
very simple procedure, and this is the main purpose of the this chapter.

More specifically, we address in this chapter, the approximations of a function f
on an interval or arc Γ , given a set of data points

X =
{
(x j, f j)

}N
j=−M , (2.1)

where the x j are distinct points of Γ . We assume that the data X is being interpolated
in some way, by a polynomial, a rational function, Fourier polynomial, a spline
method, a wavelet method, or a Sinc method.

A novel family of polynomial-like approximations that interpolate given Sinc
data of the form {(x j, f j)}N

j=−M where the x j are Sinc points was recently derived in
[16]. Sinc interpolation to this data (see [17, Definition 1.5.12 and Theorem 1.5.13])
is of course accurate, provided that the function f with f j = f (x j) belongs to a
suitable space of functions. Frequently, we also desire derivative approximations of
the function f , and one way of obtaining these is by differentiating the interpolant
used to interpolate the data X . On the other hand, this type of approximation of the
derivative may not be very accurate, as is the case of Chebyshev polynomial, or Sinc
approximation. To this end, the main purpose of this chapter [16] was to be able to
get more accurate method of obtaining an approximation for the derivative of the
function f at the Sinc points X . This chapter [16] was thus directed mainly to the
replacement of Sinc interpolation with polynomial-like interpolation.

Function interpolation by one of the above-stated methods frequently has one of
the following features:

(E–E) The modulus of the error of approximation near one endpoint of an interval
differs considerably from the modulus of the error near the other endpoint.

(E–M) The modulus of the error near the two endpoints of the interval is roughly
equal but differs appreciably from the modulus of the error in the mid-range of
the interval.

In this chapter, we extend the methods of [16] by introducing, respectively,
“PE−E” and “PE−M”—polynomial-like interpolation at the points x j. These poly-
nomials are obtained, respectively, via use of transformations on the independent
variable. The resulting new variables are rational functions of integer or fractional
powers over finite, semi-infinite, infinite intervals, or even over arcs in the complex
plane. The derivative of these newly constructed polynomials also enables more
accurate approximations of the derivative than the derivative of the original method
of interpolation.

As in [16], we initially study the errors in Sinc spaces ([16, Section 1.5.2]),
inasmuch as these spaces contain the usual spaces of functions that are analytic
on an interval containing Γ and inasmuch as these spaces also house functions that
have singularities at endpoints of Γ .
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Sinc methods enable uniform approximation of functions on Γ , in spite of
possible singularities at endpoints of Γ . We thus also present a short review of basic
Sinc notation, and we then present the usual and well-known Lagrange polynomial
interpolation in Sect. 2.2. In Sect. 2.3, we introduce the polynomial PE−E referred
to above, for approximating a function on [−1,1], as well as for approximating the
derivative of f at x j by differentiating this polynomial. In Sect. 2.4 we extend the
results of Sect. 2.3 to the approximation over a more general arc Γ . In Sect. 2.5 we
present the transformation PE−M, initially for approximation f and its derivative on
[−1,1], and we then extend these results to approximation over a more general arc
Γ , via use of the methods of Sect. 2.4. In Sect. 2.6 we present several examples of
applications of our results.

2.2 Sinc Notation and Interpolation Formulas

In this section we recall some Sinc notation, and we also discuss polynomial
interpolation. Our polynomial interpolation presentation differs somewhat from that
of [16], where the interval [0,1] was the starting point of derivation. Here it is more
convenient to derive the initial polynomial approximation for the interval [−1,1],
for purposes of obtaining simpler formulas for other intervals.

2.2.1 Some Sinc Concepts

Let us first establish some mathematical notation which we shall require. Let Z
denote the set of all integers, R the real line, and C the complex plane {a+ ib : a ∈
R,b ∈ R}.

For a positive number h ∈ R and for x ∈ C, the Sinc function sinc(x) is defined
by ([14, 22])

sinc(x) =
sin(πx)
πx

.

This function has value 1 at x = 0, and vanishes at all other integer values of x .
It is more convenient for application to use the notation S(k,h)(x) for the function

S(k,h)(x) = sinc
( x

h
− k
)
.

Given a number d > 0, we define the strip Dd as

Dd = {z ∈ C : |ℑz|< d}.
Let D be a simply connected domain having a boundary ∂D , and let a and b

denote two distinct points of ∂D . Let ϕ denote a conformal map of D onto Dd such
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that ϕ(a) = −∞ and ϕ (b) = ∞, and let us define the inverse conformal map by
ψ = ϕ−1. Let us also define ρ by ρ(z) = eϕ(z). In addition, let Γ be an arc defined
by

Γ = {z ∈C : z = ψ(u) : u ∈R}.
Letting α,β , and d denote arbitrary positive numbers, we denote by Lα ,β (ϕ) the

family of all functions that are analytic in D such that for all z ∈ D , we have

| f (z)| ≤C
|ρ(z)|α

[1+ |ρ(z)|]α+β .

We next restrict the above numbers α, β , and d such that 0 < α ≤ 1, 0 < β ≤
1, and 0 < d < π , to define another class of functions Mα ,β (ϕ) to be the set of
all functions g defined on D that have finite limits g(a) = limz→a g(z) and g(b) =
limz→b g(z) where the limits are taken from within D , and such that f ∈ Lα ,β (ϕ),
where

f = g− g(a)+ρ g(b)
1+ρ

.

A one-dimensional approximation for a function f defined on an arc Γ can be
obtained by applying the following Sinc interpolation formula:

f (x) ≈ fM,N(x) =
N

∑
k=−M

f (xk)ωk(x), x ∈ Γ , (2.2)

where xk = ψ(kh) are Sinc points on Γ and ωk(x) are Sinc basis functions. These
Sinc basis functions are defined in the above notation, for arbitrary Γ , as follows.
Note that ρ(xk) = ek h.

δ j(x) = S( j,h)◦ϕ(x), j =−M, . . . ,N

ω j(x) = δ j(x), j =−M+ 1, . . . ,N − 1

ω−M(x) =
1

1+ρ(x)
−

N

∑
j=−M+1

δ j(x)

1+ e jh

ωN(x) =
ρ(x)

1+ρ(x)
−

N−1

∑
j=−M

e jhδ j(x)

1+ e jh
, (2.3)

cf. [14]. Using the interpolation (2.2) in calculations generates an accurate approx-
imation with an exponentially decaying error rate which for M = [β N/α] is given
for h = (π d/(β N))1/2, by

|EN |= ‖ f − fN‖ ≤ K N
1
2 e−

√
πdαN , (2.4)

where [·] denotes the greatest integer function, where ‖ · ‖ denotes the sup norm on
Γ , and where K is a constant independent of N .
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It seems natural to obtain an approximation to f (n), the nth derivative of f , by
differentiating equation (2.2) with respect to x, which yields the approximation

f (n)(x)≈ f (n)M,N(x) =
N

∑
k=−M

f (xk)ω
(n)
k (x), x ∈ Γ , (2.5)

where xk are Sinc points on Γ and ωk(x) are Sinc basis function defined in (2.3).
If M = [β N/α] , if h is selected as above, and if ϕ ′ is uniformly bounded on Γ , then
this approximation has an error bounded by [8]

‖{ f − fM,N}(n)‖ ≤ Kn

√
Nn+1e−

√
πdαN , (2.6)

with constant Kn depending only on f and n, but independent of N . Otherwise
the approximation (2.5), while converging to f (n) on compact subsets of Γ , is
unbounded at endpoints of Γ .

Unfortunately, the formula (2.5) is useful only for some transformations ϕ of
R onto R. The formula (2.5) always yields unbounded results in neighborhoods of
finite endpoints of Γ (see e.g., [6]).

2.2.2 Sinc and Lagrange Polynomial Approximation

Our polynomial interpolation presentation differs somewhat from that of [16], where
the interval [0,1] was the starting point of derivation. Here it is more convenient for
purposes of simplicity of expression of the novel formulas which we shall derive to
consider polynomial approximation on the interval [−1,1]. The polynomial methods
of [16] and of this chapter, in fact, polynomials of a rational function of ρ = eϕ .

Consider, for example, the case when each of the basis functions ω j of (2.2)
are just the functions δ j of the equation following (2.2). In this case, the Sinc
approximation (2.2) may be written in the form ([14, 15])

fM,N(x) =
h
π

sin
(π

h
ϕ(x)

) N

∑
k=−M

(−1)k f (xk)

ϕ(x)− k h
, x ∈ Γ . (2.7)

This equation shows that the Sinc approximation is itself a product of
sin(π ϕ(x)/h) and a rational function of ϕ(x) . Indeed, as was demonstrated in
[1–3], via the introduction of a novel method of barycentric interpolation, the
factor sin(π ϕ(x)/h) is not even necessary for purposes of evaluation of fM,N(x).
Rational function methods of approximation of f were also introduced in ([13],
[14, Thm. 5.2.5]); those also were rationals in ρ = eϕ (but different ones from the
“polynomial-like” rationals of this chapter), which interpolated at the same Sinc
points, and which had the same order of error as the Sinc approximation (2.7).
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2.2.3 Lagrange Polynomial Interpolation on [−1, 1]

Generally Lagrange polynomial approximation over the interval [−1,1] is defined
in the following way.

Given a set of m = M +N + 1 distinct points
{

x j
}N

j=−M on the interval [−1,1]

and function values,
{

f (x j)
}N

j=−M, at these points, there exists a unique polynomial
p(x) of degree at most m− 1 satisfying,

p(x j) = f (x j) , j =−M,−M+ 1, . . . ,N. (2.8)

Here p(x) can be expressed as follows:

p(x) =
N

∑
j=−M

b j(x) f (x j) , (2.9)

where

b j(x) =
g(x)

(x− x j)g′(x)
, (2.10)

where

g(x) =
N

∏
l=−M

(x− xl). (2.11)

2.2.4 The Derivative of p(x)

We get the derivative of p by differentiating Eqs. (2.9) and (2.10) with respect to x.
To this end, and for our later purposes, it is convenient to define an m×m matrix
A =

[
a j,k
]
, j,k =−M, . . . ,N such that

f ′(x j)≈ p′(x j) =
N

∑
k=−M

a j,k f (xk) . (2.12)

Here we have

a j,k = b′k(x j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g′(x j)

(x j − xk)g′(xk)
if k �= j.

N

∑
l=−M,l �= j

1
x j − xl

if k = j.
(2.13)
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2.2.5 Error Estimates for Sinc Data

We now derive bounds on the errors of the approximation for the case of Sinc data
for the interval [−1,1]. These estimates are similar to the ones introduced in [16].
The following theorem will give an error estimate for the approximation of the
function f (x) by p(x) as well as an error bound for the approximation of f ′(x j)
by p′(x j) for the case when the x j are Sinc points, and when f ∈ Mα ,β (ϕ), with
ϕ(x) = log((1+ x)/(1− x)), this being a conformal map of the region.

D2 = D∪y∈(−1,1) B(y,r) where r > 0, and B(y,r) = {z ∈C : |z− y|< r}.

We shall assume here for sake of simplicity of derivation of our results that
M = N.

Theorem 1. Let M = N, h = η√
N

with a constant η > 0 and independent of N, and

let
{

x j
}N

j=−N denote the Sinc points as defined above. Let f be in Mα ,β (ϕ), analytic

and bounded in D2, and let p and p′(x j) given by (2.9) and (2.12). Then there exist
two constants A and B, independent of N, such that

‖ f (x)− p(x)‖ ≤ A

√
N

r2N exp

(
−π2N

1
2

2η

)
(2.14)

and

max
j=−N,...,N

| f ′(x j)− p′(x j)| ≤ B
N

r2N exp

(
−π2N

1
2

2η

)
. (2.15)

The proof of the theorem requires three lemmas, the proofs of which can be found
in [16, 17].

Lemma 2. Let h = η√
N

, with η a positive constant and with N a positive integer. If

z = e
h
2 then

zN

(1+ z)2N ≤ 2−2N , (2.16)

and there exists a constant A1 independent of N such that

N

∑
j=1

log(1− ze− jh)≤ −π2N
1
2

6cη
+ log(N

1
4 )+A1 . (2.17)

Lemma 3. Let h = η√
N

, with η a positive constant and with N a positive integer.
Then there exist two constants A2 and A3 independent of N such that

N

∑
j=1

log(1− e− jh)≤ −π2N
1
2

6η
+ log(N

1
2 )+A2, (2.18)
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and

N

∑
j=1

log(1+ e− jh)≥ −π2N
1
2

12η
+ log(N

1
2 )−A3 . (2.19)

Lemma 4. Let g(x) be defined as (2.11). Then

|g′(x0)|= max
j=−N,...,N

|g′(x j)|. (2.20)

We now prove Theorem 1. This will be carried out via a sequence of sub-proofs.

Proof of Theorem 1: Proof of (2.14)

The error in approximating a function f (x) by p(x) using m interpolation points is
given by the following contour integral, for the error Em( f ,x) = f (x)− p(x),

Em( f ,x) =
g(x)
2π i

∫
∂D2

f (z)
(z− x)g(z)

dz. (2.21)

To find the upper bound of this integral, we will use the definition of D2 which
gives |z− x| ≥ r and |z− x j| ≥ r for all x and x j in [−1,1] and z ∈ ∂D2. Since we
assumed f (x) to be bounded in D2, we take | f (x)| ≤ B( f ) in D2. Then

|Em( f ,x)| = | f (x)− p(x)| ≤ B( f )
rm+1 max

x∈[−1,1]
|g(x)|L(∂D2)

2π
, (2.22)

where L(∂D2)≤ 4+ 2πr is the length of ∂D2.
Since ρ(x) = 1+x

1−x , we have x = ρ−1
ρ+1 ; this transformation maps ρ ∈ (0,∞) to

x ∈ (−1,1). We estimate that the maximum value of g takes place approximately at
ρ = exp( h

2 ) (see [16]). Under these assumptions, we have

∣∣∣∣g
(
ρ− 1
ρ+ 1

)∣∣∣∣ = N

∏
j=−N

∣∣∣∣ρ− 1
ρ+ 1

− e jh − 1
e jh + 1

∣∣∣∣
=

N

∏
j=−N

∣∣∣∣ 2ρ− 2e jh

(ρ+ 1)(1+ e jh)

∣∣∣∣
=

22NρN+1

(1+ρ)2N+1

N

∏
j=1

(
1−ρe− jh

1+ e− jh

)2

|1− e−(N+1)h|.

Now using the fact that |1−e−(N+1)h| ≤ 1 and that log∏N
j=1 a j =∑N

j=1 loga j, we
apply Lemmas 2 and 3 to get

∣∣∣∣g
(
ρ− 1
ρ+ 1

)∣∣∣∣≤C1
√

Ne
−π2N

1
2

2η ,
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where C1 is a constant independent of N and h. Using this bound in (2.22) yields the
right-hand side of (2.14).

Proof of (2.15):

We can similarly bound the approximation error for the derivative, f ′(x j), by p′(x j):

Em( f ′) = | f ′(x j)− p′(x j)| ≤ B(f )
rm+1 max

j∈(−N,...,N)
|g′(x j)|L(∂D2)

2π
. (2.23)

Using Lemma 4 we have

max
j∈(−N,...,N)

|g′(x j)| = |g′(x0)|=
N

∏
k=1

|xk · x−k|.

Since M = N, we have x−k =−xk on (−1,1), and therefore

|g′(x0)| =
N

∏
k=1

(xk)
2 =

N

∏
k=1

(
ekh − 1
ekh + 1

)2

.

Now we only need to use Lemma 3 to get the right-hand side of (2.15).

2.3 Approximating with Transformed Polynomials

All of the “polynomials” which we shall construct are for the interval [−1,1] .
Hence given the data X of (2.1) on the arc Γ , let ξ = ξ (x) denote a one-to-one
transformation of the arc Γ to the interval [−1,1]. This transformation transforms
the distinct points X of (2.1) to the distinct points

X ′ =
{
ξ j
}N

j=−M , ξ j = ξ (x j). (2.24)

Our “polynomial” takes the form

P(ξ )≡
N

∑
j=−M

G(ξ ) f j

(ξ − ξ j)G′(ξ j)
, (2.25)

in which

G(ξ ) =
N

∏
j=−M

(ξ − ξ j) . (2.26)
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The evaluation of PE−E(x) for approximating f (x) using (2.25) is straightforward
by taking ξ = ξ (x) in (2.25). On the other hand, we find that

dP(ξ (x))
dx

|x=x j =
N

∑
k=−M

a j,k
dξ (x)

dx
|x=x j fk, (2.27)

where, from (2.13),

a j,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G′(ξ j)

(ξ j − ξk)G′(ξk)
if k �= j

N

∑
l=−M,l �= j

1
(ξ j − ξk)

if k = j
(2.28)

and where explicit expressions for the evaluation of dξ (x)
dx will depend on explicit

expressions for ξ (x) and will be given below.

2.4 Approximating with the Polynomials PE–E

The purpose of the polynomials PE−E is to make more equal the magnitudes of the
errors of interpolation in neighborhoods of the endpoints of Γ .

2.4.1 The Polynomials PE−E on [−1, 1]

We consider here the approximation of f and f ′ on [−1,1], but with polynomials
PE−E .

Recall, for the case of the arc (−1,1), we have ϕ = ϕ2, with ϕ2(x) = log((1+
x)/(1− x)), ρ(x) = ρ2(x) = exp(ϕ2(x)), and x = (ρ2(x)− 1)/(ρ2(x)+ 1) .

We assume that we are given a (polynomial, trigonometric polynomial, rational
function, spline, wavelet, or Sinc) method of interpolating the data X , of (2.1), i.e.,
of the given data

X = {(x j, f j)}N
j=−M,

where the x j are distinct points on [−1,1] (i.e., not necessarily Sinc points) listed
in increasing order. Suppose furthermore that the magnitudes of the errors of
approximation differ appreciably near the endpoints ±1 . In this case, consider
replacing x with ξ , where

ξ =
x− c

1− cx
(2.29)



2 Improved Approximation via Use of Transformations 35

and where c is a point of (−1,1) . This transformation ξ is a one-to-one transforma-
tion of the interval [−1,1] to itself. Our aim is to obtain a polynomial approximation
with polynomial in the variable ξ , such that the errors of our polynomial near ±1
are approximately equal, by suitably selecting c .

Our “polynomial” takes the form (2.25) and (2.26), in which ξ j = (x j − c)/
(1− cx j) .

If c< 0, then more of the given Sinc points are shifted towards the right endpoint,
which decreases the error at this endpoint and increases it at the left endpoint, while
for c > 0, we achieve the opposite effect.

The evaluation of PE−E(x) for approximating f (x) using (2.25) is straight-
forward by taking ξ = ξ (x) in (2.25), with ξ (x) given in (2.29).
Similarly, we can approximate the derivative of f at x j using (2.27), with

dξ (x)
dx

=
1− c2

(1− cx)2 . (2.30)

2.4.2 PE−E for Other Intervals

Let ϕ be a conformal map defined as in Sect. 2.2.1 above, which transforms Γ to
R. Recall [8] that if F ∈ Mα ,β (ϕ), then f = F ◦ϕ−1 ◦ϕ2 ∈ Mα ,β (ϕ2). Furthermore
for the case of Γ2 = (−1,1), we have x = (ρ2 − 1)/(ρ2 + 1), where according to
our above definition, ρ2 = exp(ϕ2) . Inasmuch as the above polynomial P(x) of
Sect. 2.2.4 is a suitable polynomial for approximation on Γ2 = (−1,1), it follows
from Sinc theory [17] that a polynomial PE−E = PE−E(ξ ) in the variable ξ =
(ρ(x)− 1)/(ρ(x)+ 1) with ρ(x) = exp(ϕ(x)) will then be a good approximation
on Γ = ϕ−1((R)) .

Hence, if we take ρ(x) = exp(φ(x)), then (with c ∈ (−1,1) as above), the
new shifted polynomial PE−E with shift from ψ(0) to ψ(log((1 + c)/(1− c)) =
ψ(log(q)) is a polynomial PE−E(ξ ) in the variable ξ = (ρ(x)−q)/(ρ(x)+q), with
q = (1+ c)/(1− c) .

Now suppose that we are given the above set of data points X , with the x j

distinct points of Γ , and that we wish to interpolate this data with this “polynomial”
PE−E(ξ ). The interpolation points ξ j then become ξ j = (ρ(x j)− q)/(ρ(x j) + q) .
The “polynomial” PE−E thus takes the form of (2.25). This polynomial PE−E

interpolates the data X , i.e., we have PE−E(ξ j) = f j , and it can be readily evaluated
using (2.25) and (2.26) to get a method of approximating f (x)≈ PE−E(ξ (x)) on Γ .

To approximate f ′(x j), on Γ , we use the derivative dPE−E (ξ (x))
dx which can be

evaluated via use of (2.27) and (2.28), with

dξ (x)
dx

=
2qρ(x)ϕ ′(x)
(ρ(x)+ q)2 . (2.31)
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2.5 Approximating with the Polynomials PE−M

In this case, we assume that the errors of the given method of approximation in
neighborhoods of the endpoints of Γ are approximately equal in magnitude, but
differ considerably in magnitude from the errors in the mid-range of Γ , and we now
wish to have similar magnitudes of the errors at the endpoints and mid-range of Γ .

2.5.1 PE−M for [−1,1]

Recall once again, that for the case of Γ = Γ2 = (−1,1), we gave x = (ρ2(x)−
1)/(ρ2(x)+ 1) where ρ2(x) = (1+ x)/(1− x) . In order to equalize the errors at the
endpoints of Γ2 with those of the mid-range of γ2, we take

ξ = ξ (x) =
ρ2(x)α − 1
ρ2(x)α + 1

=
(1+ x)α− (1− x)α

(1+ x)α+(1− x)α
.

(2.32)

The polynomial PE−M(ξ (x)) can then be evaluated via use of (2.25), taking
ξ j = ξ (x j), and we can use this polynomial to get a new approximation to the
function f (x) on [−1,1] . Evidently, these new points of interpolation ξ j have
properties similar to those of the Sinc points of Γ2 . Hence, if the original method of
interpolation is based on classical polynomial (e.g., Chebyshev, or Newton–Cotes)
methods, then this new method of approximation should yield greater accuracy
when f has singularities at the endpoints of Γ2 .

Similarly, we can use (2.27) to get a new approximation to f ′(x j), where we now
require use of the expression

ξ ′(x j) =
4α (1− x j)

2α−2

((1+ x j)α +(1− x j)α)2 . (2.33)

2.5.2 PE−M for an Arbitrary Arc Γ

We now define ξ by the equation

ξ = ξ (x) =
ρ(x)α − 1
ρ(x)α + 1

, (2.34)

where α is a positive number.
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Towards evaluation of the resulting polynomial PE−M(ξ (x)), we use (2.25)
and (2.26) in which we take ξ = ξ (x) . To approximate f ′(x j), we simply
differentiate PE−M(ξ (x)) with respect to x, and for this purpose, we require

dξ (x)
dx

=
2α ρ(x)α ϕ ′(x)
(ρ(x)α + 1)2 . (2.35)

2.5.3 A PE−M for Equi-Spaced Interpolation

Equi-spaced interpolation corresponds to Sinc interpolation on the real line, in
which case, we have ϕ(x) = x, so that ρ(x) = exp(x). Thus (2.34) yields the
transformation

ξ = ξ (x) =
ρ(x)α − 1
ρ(x)α + 1

=
eα x − 1
eα x + 1

. (2.36)

In this case, we have
dξ (x)

dx
=

2α eα x

(eα x + 1)2 . (2.37)

2.5.4 A More General PE−M for [−1,1]

We can postulate a further generalization of the transformation (2.32) above, for
polynomial approximation on [−1,1] . These transformations are given by

ξ = ξ (x) =
(1+ x)α− (1− x)β

(1+ x)α+(1− x)β
, (2.38)

or more generally, by

ξ = ξ (x) =
(1+ x)α− q(1− x)β

(1+ x)α+ q(1− x)β
. (2.39)

In (2.39), q, α , and β are arbitrary positive numbers. These transformations may
enable polynomial approximations that are more efficient than those made possible
using (2.32) in the case when f has different Lipschitz behavior at the two endpoints
±1 of Γ2 . The transformation (2.39) is somewhat more general than (2.38), in that
it also enables a shift of the origin, in the spirit of Sect. 2.4.1.

We may note that for the case of (2.39), we have

dξ (x)
dx

=
2q(1− x)α−1(1+ x)β−1 (β (1+ x)+α (1− x))

((1+ x)α+ q(1− x)β)2
, (2.40)



38 F. Stenger et al.

which is positive on (−1,1) for all positive values of α, β , and q and which shows
that the transformations (2.38) and (2.39) are one-to-one transformations of the
interval (−1,1) to itself.

In this chapter, we neither consider further study of these transformations, nor
their extension to other arcs.

2.5.5 Some Explicit Transformations Based on Sinc

At this point, we express some polynomial approximations in polynomials in the
variable ξ as a function of x as follows (see [17, Section 1.5.3] for more detail and
for other such transformations).

1. If ϕ(x) = x, then Γ = R, the Sinc points are x j = j h, and ξ = (ρ
(x)− 1)/(ρ(x)+ 1) = (ex − 1)/(ex+ 1).

2. If ϕ(x) = φ2(x) = log((1+x)/(1−x), then Γ =Γ2 = (−1,1), the Sinc points are
x j = (e j h − 1)/(e j h + 1), and (ρ2 − 1)/(ρ2 + 1) = x.

3. If ϕ(x) = log(x), then Γ = (0,∞), the Sinc points are x j = e j h, and ξ = (ρ(x)−
1)/(ρ(x)+ 1) = (x− 1)/(x+ 1).

4. If ϕ(x) = log(sinh(x)), then Γ = (0,∞), the Sinc points are x j = log(e j h +√
1+ e2 j h, and ξ = (ρ(x)− 1)/(ρ(x)+ 1) = (sinh(x)− 1)/(sinh(x)+ 1).

5. If ϕ(x) = log(x+
√

1+ x2), then Γ = R, the Sinc points are x j = sinh( j h), and
ξ = (ρ(x)− 1)/(ρ(x)+ 1) = (

√
x2 + 1+ x− 1)/(

√
x2 + 1+ x+ 1).

Other interesting examples are possible via use of the excellent double exponen-
tial transformations of [9, 10, 18].

2.6 Numerical Examples

In this section we give some examples of improving a given approximation of a
function as well as examples of improving approximations of the derivative of the
given approximation. All of our plots are obtained by evaluation both functions and
approximations at the points x =−1+( j− 1/2)/1000, for j = 1, . . . ,1000 .

2.6.1 Improving Approximations to Runge’s Function

In [11] Runge studied the approximation of the function
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Fig. 2.1 Newton–Cotes polynomial error

f (x) =
1

1+ x2 ⇐⇒ −5 ≤ x ≤ 5

=
1

1+ 25x2 ⇐⇒ −1 ≤ x ≤ 1

(2.41)

using equi-spaced Newton–Cotes polynomials. Although Runge’s problem is over a
century old, it is only in recent times that exponentially convergent Runge defeating
methods have been developed [4, 5]. In this example we illustrate the errors of
approximation of this function.

Example 1. In Fig. 2.1 we have plotted the difference between f and the Newton–
Cotes po lynomial P2N+1 that interpolates f at the points x j = −1+ ( j − 1)/N,
j = 1, 2, . . . , 2N + 1, with N = 12 .
In Fig. 2.2, we plotted the difference f ′−P′

2N+1, with P2N+1 as in Fig. 2.1.

Example 2. In Figs. 2.3 and 2.4, we have plotted the errors of Sinc approximation
of f , and f ′, namely,

f (x) −
N

∑
j=−N

f (x j)S( j,h)(x)

f ′(x) −
N

∑
j=−N

f (x j)(S( j,h)(x))′,

(2.42)
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Fig. 2.2 Derivative of Newton–Cotes polynomial error
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Fig. 2.3 Sinc approximation error

with h = 1/N, and with N = 12 . The approximation is reasonably accurate, but not
impressively so, since, while “Sinc points” { j h} are used ([17, Section 1.5.1]), the
function f does not belong to the space of [17, Example 1.5.4].



2 Improved Approximation via Use of Transformations 41

−1 −0.5 0 0.5 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Fig. 2.4 Derivative of Sinc approximation error

Example 3. Here we use the polynomial PE−M(ξ (x)) based on the transformation
ξ = (eα x−1)/(eα x+1), a transformation motivated by item #1 of Sect. 2.5.5, since
the interpolation points { jh} are Sinc points of the real line R . Figures 2.5 and 2.6
illustrate plots of the differences

f (x) − PE−M(ξ (x)),

d f (x)
dx

− dPE−M(ξ (x))
dx

.

(2.43)

Example 4. Here we use the polynomial PE−M(ξ (x)) based on the transformation

ξ = ξ (x) =
(1+ x)α− (1− x)α)
1+ x)α+(1− x)α

, (2.44)

the transformation given in (2.32) . We get the following figures that illustrate the
approximations as given in (2.42), but with PE−M now depending on the ξ of (2.43)
(Figs. 2.3 and 2.4).

Example 5. Here we illustrate use of the transformation of Sect. 2.4.1, which we
may, upon observing that the f is an even function, and that the interpolation points
x j are evenly distributed on [−1,1] . We first extend the domain of approximation
from [0,1] to [−1,1] by means of the transformation y = 2x2 − 1, and we then
approximate over [−1,1] with the variable z = (y − c)/(1 + yc) . We have only
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Fig. 2.6 Derivative of exponential polynomial error
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Fig. 2.7 Trans algebraic polynomial error
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plotted for 0 ≤ x ≤ 1 ; the plot for x → −x is similar, due to symmetry. Note the
incredibly accurate approximation thus obtainable (Figs. 2.9 and 2.10).



2 Improved Approximation via Use of Transformations 45

2.6.2 More Uniform Chebyshev Polynomial Approximation

Use of Chebyshev polynomial approximation has become an accurate way to solve
many problems in applications. The results are usually very accurate, except in the
presence of singularities at endpoints of the interval of approximation. To this end
we have carried out several tests of polynomial approximations to functions that
have singularities at endpoints of the interval, and we have reached the following
conclusions:

1. The approximation of f (x) = (1 − x)5/4 and its derivative by means of the
transformation (2.28). Only about 10 % improvement was possible, mainly
because this transformation is unable to remove the singularity.

2. The approximation of (1−x2)5/4 using the transformation (2.32). Here, too, only
about 10 % improvement was possible.

3. The approximation of the function (1− x)1/4 using the transformation (2.38).
Fantastic improvement was possible, with proper choice of α and β , as is
illustrated in Figs. 2.11 and 2.12 below. Best results were obtained for N = 12,
with α = 0.86, and β = 0.387. Evidently, this transformation has possibilities.
We were not able to determine a priori the parameters α and β .

4. The transformation (2.39) had almost no advantages over (2.38), i.e., whenever
we tried it, best approximation always occurred with q very close to 1 . These
parameters were determined via a “trial and error” Bellman-style selection
process, i.e., we first fixed q and we then determined α and β . A different order
of selection may determine different values of these parameters.

2.6.3 More Uniform Wavelet Approximation

Here, too, we did several examples to study wavelet approximations. Methods for
improving approximations in cases when f has on singularities at endpoints of
the interval are well known (see [17, Section 3.10]). Hence we turned our studies
only to cases of when f has singularities at endpoints of the interval. To this end,
our conclusions were similar to those in the previous section, i.e., the transfor-
mations (2.29) and (2.36) produced relatively little improvement, whereas (2.37)
produced excellent results.

We include here the function f (x) = x(π2 − x2)1/4, for which we have assumed
a given approximation at the points jπ/(N + 1) of the interval (0,π). We assumed
that this odd period function was approximated via use of the wavelet approximation
([17, (1.4.15)])

WN(x) =
sin(N x)

N

N−1

∑
k=1

(−1)k sin
(

kπ
N

)
f
(

kπ
N

)
cos(x)− cos

(
kπ
N

) . (2.45)
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We observe from Figs. 2.13 and 2.14 that in taking N = 12, using the transforma-
tion (2.39) and making the selections α = 0.94, β = 0.457, and c = 0.9999 reduce
the error of approximation by about a factor of 25 .
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2.7 Conclusion

In this chapter, we introduced polynomial-like procedures for improving the
approximation of a function using given interpolating data, although independently
of the method of approximation. To this end, up to three parameters c↔ q and α and
β were used in our approximations. These parameters were determined by trial and
error. They depend not only on the function f that is being approximated but also on
the order of approximation. At this time we do not have a method for determining
these parameters a priori.
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Chapter 3
Generalized Sampling in L2(Rd) Shift-Invariant
Subspaces with Multiple Stable Generators

H.R. Fernández-Morales, A. G. Garcı́a, and G. Pérez-Villalón

Abstract In order to avoid most of the problems associated with classical
Shannon’s sampling theory, nowadays, signals are assumed to belong to some
shift-invariant subspace. In this work we consider a general shift-invariant space V 2

Φ
of L2(Rd) with a set Φ of r stable generators. Besides, in many common situations,
the available data of a signal are samples of some filtered versions of the signal itself
taken at a sub-lattice of Rd . This leads to the problem of generalized sampling in
shift-invariant spaces. Assuming that the �2-norm of the generalized samples of any
f ∈ V 2

Φ is stable with respect to the L2(Rd)-norm of the signal f , we derive frame
expansions in the shift-invariant subspace allowing the recovery of the signals in V 2

Φ
from the available data. The mathematical technique used here mimics the Fourier
duality technique which works for classical Paley–Wiener spaces.

3.1 By Way of Introduction

The classical Whittaker–Shannon–Kotel’nikov sampling theorem (WSK sampling
theorem) [23, 52] states that any function f band-limited to [−1/2,1/2], i.e.,

f (t) =
∫ 1/2
−1/2 f̂ (w)e2π itwdw for each t ∈ R, may be reconstructed from the sequence

of samples { f (n)}n∈Z as

f (t) =
∞

∑
n=−∞

f (n)
sin π(t − n)
π(t − n)

, t ∈ R .
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Thus, the Paley–Wiener space PW1/2 of band-limited functions to [−1/2,1/2] is
generated by the integer shifts of the cardinal sine function, sinc(t) := sin πt/πt.
A simple proof of this result is given by using the Fourier duality technique which
uses that the Fourier transform

F : PW1/2 −→ L2[−1/2,1/2]

f �−→ f̂

is a unitary operator from the Paley–Wiener space PW1/2 of band-limited functions
to [−1/2,1/2] onto L2[−1/2,1/2]. Thus, applying the inverse Fourier transform
F−1 to the Fourier series f̂ = ∑∞n=−∞ f (n)e−2π inw of f̂ in L2[−1/2,1/2] one gets

f (t) =
∞

∑
n=−∞

f (n)F−1[e−2π inwχ[−1/2,1/2](w)
]
(t)

=
∞

∑
n=−∞

f (n)
sin π(t − n)
π(t − n)

in L2(R) .

The pointwise convergence comes from the fact that PW1/2 is a reproducing
kernel Hilbert space (written shortly as RKHS) where convergence in norm implies
pointwise convergence (which is, in this case, uniform on R); this comes out from
the inequality | f (t)| ≤ ‖ f‖ for each t ∈ R and f ∈ PW1/2 (for the RKHS’s theory
and applications, see, for instance, [37]).

The WSK theorem has its d-dimensional counterpart. Any function f band-
limited to the d-dimensional cube [−1/2,1/2]d, i.e., f (t)=

∫
[−1/2,1/2]d f̂ (x)e2π ix�tdx

for each t ∈ R
d (here we are using the notation x�t := x1t1 + · · ·+ xdtd identifying

elements in R
d with column vectors), may be reconstructed from the sequence of

samples { f (α)}α∈Zd as

f (t) = ∑
α∈Zd

f (α)
sin π(t1 −α1)

π(t1 −α1)
· · · sin π(td −αd)

π(td −αd)
, t = (t1, . . . , td) ∈ R

d ,

where α = (α1, . . . ,αd). Although Shannon’s sampling theory has had an enormous
impact, it has a number of problems, as pointed out by Unser in [44,45]: It relies on
the use of ideal filters; the band-limited hypothesis is in contradiction with the idea
of a finite duration signal; the band-limiting operation generates Gibbs oscillations;
and finally, the sinc function has a very slow decay at infinity which makes
computation in the signal domain very inefficient. Besides, in several dimensions,
it is also inefficient to assume that a multidimensional signal is band-limited to a
d-dimensional interval. Moreover, many applied problems impose different a priori
constraints on the type of signals. For this reason, sampling and reconstruction
problems have been investigated in spline spaces, wavelet spaces, and general shift-
invariant spaces; signals are assumed to belong to some shift-invariant space of the
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form V 2
ϕ := spanL2{ϕ(t−α) : α ∈Z

d} where the function ϕ in L2(Rd) is called the
generator of V 2

ϕ . See, for instance, [1,3,4,6,7,10,24,45,47,49–51,53] and references
therein.

In this new context, the analogous of the WSK sampling theorem in a
shift-invariant space V 2

ϕ was first time proved by Walter in [47].

3.1.1 Walter’s Sampling Theorem in Shift-Invariant Spaces

Let ϕ ∈ L2(R) be a stable generator for the shift-invariant space V 2
ϕ which means

that the sequence {ϕ(·−n)}n∈Z is a Riesz basis for V 2
ϕ . A Riesz basis in a separable

Hilbert space is the image of an orthonormal basis by means of a bounded invertible
operator. Any Riesz basis {xn}∞n=1 has a unique biorthogonal (dual) Riesz basis
{yn}∞n=1, i.e., 〈xn,ym〉H = δn,m, such that the expansions

x =
∞

∑
n=1

〈x,yn〉H xn =
∞

∑
n=1

〈x,xn〉H yn

hold for every x∈H (see [11] for more details and proofs). Recall that the sequence
{ϕ(·− n)}n∈Z is a Riesz sequence, i.e., a Riesz basis for V 2

ϕ (see, for instance, [11,
p 143]) if and only if there exist two positive constants 0 < A ≤ B such that

A ≤ ∑
k∈Z

|ϕ̂(w+ k)|2 ≤ B , a.e. w ∈ [0,1] .

Thus, we have that V 2
ϕ = {∑n∈Z an ϕ(·− n) : {an} ∈ �2(Z)} ⊂ L2(R) .

We assume that the functions in the shift-invariant space V 2
ϕ are continuous on R.

This is equivalent to say that the generator ϕ is continuous on R and the function
∑n∈Z |ϕ(t −n)|2 is uniformly bounded on R (see [42]). Thus, any f ∈V 2

ϕ is defined
on R as the pointwise sum f (t) = ∑n∈Z anϕ(t − n) for each t ∈ R.

On the other hand, the space V 2
ϕ is the image of the Hilbert space L2[0,1] by

means of the isomorphism

Tϕ : L2[0,1]−→V 2
ϕ

{e−2π inx}n∈Z �−→ {ϕ(t − n)}n∈Z ,

which maps the orthonormal basis {e−2π inw}n∈Z for L2[0,1] onto the Riesz basis
{ϕ(t − n)}n∈Z for V 2

ϕ . For any F ∈ L2[0,1] we have

TϕF(t) = ∑
n∈Z

〈
F,e−2π inx〉ϕ(t − n)

=

〈
F,∑

n∈Z
ϕ(t − n)e−2π inx

〉
= 〈F,Kt〉L2[0,1] , t ∈ R ,
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where, for each t ∈R, the function Kt ∈ L2[0,1] is given by

Kt(x) = ∑
n∈Z
ϕ(t − n)e−2π inx = ∑

n∈Z
ϕ(t + n)e−2π inx = Zϕ(t,x) .

Here, Zϕ(t,x) :=∑n∈Zϕ(t +n)e−2π inx denotes the Zak transform of the function ϕ .
See [11, 22] for properties and uses of the Zak transform.

As a consequence, the samples in { f (a+m)}m∈Z of f ∈V 2
ϕ , where a ∈ [0,1) is

fixed, can be expressed as

f (a+m) = 〈F,Ka+m〉= 〈F,e−2π imxKa〉 , m ∈ Z where F = T −1
ϕ f .

Thus, the stable recovery of f ∈V 2
ϕ from the sequence of its samples { f (a+m)}m∈Z

reduces to the study of the sequence
{

e−2π imxKa(x)
}

m∈Z in L2[0,1]. Recall that the
operator mF : L2[0,1]→ L2[0,1] given as the product mF( f ) = F f is well defined
if and only if F ∈ L∞[0,1], and then, it is bounded with norm ‖mF‖ = ‖F‖∞. As a
consequence, the following result comes out:

Theorem 1. The sequence of functions
{

e−2π imxKa(x)
}

m∈Z is a Riesz basis for
L2[0,1] if and only if the inequalities 0< ‖Ka‖0 ≤‖Ka‖∞<∞ hold, where ‖Ka‖0 :=
ess infx∈[0,1] |Ka(x)| and ‖Ka‖∞ := esssupx∈[0,1] |Ka(x)|. Moreover, its biorthogonal

Riesz basis is
{

e−2π imx/Ka(x)
}

m∈Z
.

In particular, the sequence
{

e−2π imxKa(x)
}

m∈Z is an orthonormal basis in L2[0,1] if
and only if |Ka(x)|= 1 a.e. in [0,1].

Let a be a real number in [0,1) such that 0< ‖Ka‖0 ≤‖Ka‖∞<∞; next, we prove
Walter’s sampling theorem for V 2

ϕ in [47]. Given f ∈ V 2
ϕ , we expand the function

F = T −1
ϕ f ∈ L2[0,1] with respect to the Riesz basis

{
e−2π inx/Ka(x)

}
n∈Z

. Thus,
we get

F = ∑
n∈Z

〈F,Ka+n〉e−2π inx

Ka(x)
= ∑

n∈Z
f (a+ n)

e−2π inx

Ka(x)
in L2[0,1] .

Applying the operator Tϕ to the above expansion we obtain

f = ∑
n∈Z

f (a+ n)Tϕ
(

e−2π inx/Ka(x)
)
= ∑

n∈Z
f (a+ n)Sa(·− n) in L2(R) ,

where we have used the shifting property Tϕ (e−2π inxF)(t) = (TϕF)(t − n), t ∈ R,
and n ∈ Z, satisfied by the isomorphism Tϕ for the particular function Sa :=
Tϕ(1/Ka) ∈ V 2

ϕ . As in the Paley–Wiener case, the shift-invariant space V 2
ϕ is a

RKHS. Indeed, for each t ∈R, the evaluation functional at t is bounded:

| f (t)| ≤ ‖F‖‖Kt‖≤ ‖T −1
ϕ ‖‖Kt‖‖ f‖= ‖T −1

ϕ ‖
(
∑
n∈Z

|ϕ(t − n)|2
)1/2

‖ f‖, f ∈V 2
ϕ .
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Therefore, the L2-convergence implies pointwise convergence which here is uniform
on R. The convergence is also absolute due to the unconditional convergence of a
Riesz expansion. Thus, for each f ∈V 2

ϕ , we get the sampling formula

f (t) =
∞

∑
n=−∞

f (a+ n)Sa(t − n) , t ∈ R . (3.1)

This mathematical technique, which mimics the Fourier duality technique for Paley–
Wiener spaces [23], has been successfully used in deriving sampling formulas in
other sampling settings [14,16,17,19,21,25,31,32]. In this work, it will be used for
obtaining generalized sampling formulas in L2(Rd) shift-invariant subspaces with
multiple stable generators.

3.1.2 Statement of the General Problem

Assume that our functions (signals) belong to some shift-invariant space of the form

V 2
Φ := spanL2(Rd)

{
ϕk(t −α) : k = 1,2, . . . ,r and α ∈ Z

d} ,
where the functions inΦ := {ϕ1, . . . ,ϕr} in L2(Rd) are called a set of generators for
V 2
Φ . Assuming that the sequence {ϕk(t −α)}α∈Zd , k=1,2,...,r is a Riesz basis for V 2

Φ ,
the shift-invariant space V 2

Φ can be described as

V 2
Φ =

{
∑
α∈Zd

r

∑
k=1

dk(α) ϕk(t −α) : dk ∈ �2(Zd),k = 1,2, . . . ,r

}
. (3.2)

See [8, 9, 36] for the general theory of shift-invariant spaces and their applications.
These spaces and the scaling functionsΦ = {ϕ1, . . . ,ϕr} appear in the multiwavelet
setting. Multiwavelets lead to multiresolution analyses and fast algorithms just
as scalar wavelets, but they have some advantages: they can have short support
coupled with high smoothness and high approximation order, and they can be
both symmetric and orthogonal (see, for instance, [29]). Classical sampling in
multiwavelet subspaces has been studied in [38, 43].

On the other hand, in many common situations, the available data are samples
of some filtered versions f ∗ h j of the signal f itself, where the average function
h j reflects the characteristics of the acquisition device. This leads to generalized
sampling (also called average sampling) in V 2

Φ (see, among others, [1, 5, 14, 16, 17,
30, 34, 35, 40, 41, 43]).

Suppose that s convolution systems (linear time-invariant systems or filters in en-
gineering jargon) L j, j = 1,2, . . . ,s, are defined on the shift-invariant subspace V 2

Φ
of L2(Rd). Assume also that the sequence of samples {(L j f )(Mα)}α∈Zd , j=1,2,...,s

for f in V 2
Φ is available, where the samples are taken at the sub-lattice MZ

d of
Z

d , where M denotes a matrix of integer entries with positive determinant. If we
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sample any function f ∈ V 2
Φ on MZ

d , we are using the sampling rate 1/r(detM)
and, roughly speaking, we will need, for the recovery of f ∈ V 2

Φ , the sequence
of generalized samples {(L j f )(Mα)}α∈Zd , j=1,2,...,s coming from s ≥ r(detM)
convolution systems L j.

Assume that the sequences of generalized samples satisfy the following stability
condition: There exist two positive constants 0 < A ≤ B such that

A‖ f‖2 ≤
s

∑
j=1
∑
α∈Zd

|L j f (Mα)|2 ≤ B‖ f‖2 for all f ∈V 2
Φ .

In [5] the set of systems {L1,L2, . . . ,Ls} is said to be an M-stable filtering sampler
for V 2

Φ . The aim of this work is to obtain sampling formulas in V 2
Φ having the form

f (t) = (detM)
s

∑
j=1
∑
α∈Zd

(L j f )(Mα)S j(t −Mα) , t ∈R
d , (3.3)

such that the sequence of reconstruction functions {S j(·−Mα)}α∈Zd , j=1,2,...,s is a

frame for the shift-invariant space V 2
Φ . This will be done in the light of the frame

theory for separable Hilbert spaces, by using a similar mathematical technique as in
the above section.

Recall that a sequence {xn} is a frame for a separable Hilbert space H if there
exist two constants A,B > 0 (frame bounds) such that

A‖x‖2 ≤∑
n
|〈x,xn〉|2 ≤ B‖x‖2 for all x ∈ H .

Given a frame {xn} for H the representation property of any vector x ∈ H
as a series x = ∑n cnxn is retained, but, unlike the case of Riesz bases, the
uniqueness of this representation (for overcomplete frames) is sacrificed. Suitable
frame coefficients cn, depending linearly and continuously on x, are obtained by
using the dual frames {yn} of {xn}, i.e., the sequence {yn} is another frame for H
such that, for each x ∈ H , the expansions x = ∑n〈x,yn〉xn = ∑n〈x,xn〉yn hold. For
more details on the frame theory see the superb monograph [11] and the references
therein.

3.2 Preliminaries on L2(Rd) Shift-Invariant Subspaces

Let Φ := {ϕ1,ϕ2, . . . ,ϕr} be a set of functions, where ϕk ∈ L2(Rd) k = 1,2, . . . ,r ,
such that the sequence

{
ϕk(t − α)

}
α∈Zd , k=1,2...,r is a Riesz basis for the shift-

invariant space

V 2
Φ :=

{
∑
α∈Zd

r

∑
k=1

dk(α) ϕk(t −α) : dk ∈ �2(Zd), k = 1,2 . . . ,r

}
⊂ L2(Rd) .
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There exists a necessary and sufficient condition involving the Gramian matrix
function

GΦ(w) := ∑
α∈Zd

Φ̂(w+α)Φ̂(w+α)
�
, where Φ̂ := (ϕ̂1, ϕ̂2, . . . , ϕ̂r)

� ,

which assures that the sequence {ϕk(·−α)}α∈Zd , k=1,2...,r is a Riesz basis for V 2
Φ ,

namely (see, for instance, [5]): There exist two positive constants c and C such that

cIr ≤ GΦ (w)≤C Ir a.e. w ∈ [0,1)d . (3.4)

We assume throughout this chapter that the functions in the shift-invariant space
V 2
Φ are continuous on R

d . As in the case of one generator, this is equivalent to the
generators Φ being continuous on R

d with ∑α∈Zd |Φ(t −α)|2 uniformly bounded
on R

d . Thus, any f ∈V 2
Φ is defined on R

d as the pointwise sum

f (t) =
r

∑
k=1
∑
α∈Zd

dk(α) ϕk(t −α) , t ∈ R
d . (3.5)

Besides, the space V 2
Φ is an RKHS since the evaluation functionals, Et f := f (t), are

bounded on V 2
Φ . Indeed, for each fixed t ∈ R

d , we have

| f (t)|2 =

∣∣∣∣∣ ∑
α∈Zd

r

∑
k=1

dk(α) ϕk(t −α)
∣∣∣∣∣
2

≤
(
∑
α∈Zd

r

∑
k=1

|dk(α)|2
)(
∑
α∈Zd

r

∑
k=1

|ϕk(t −α)|2
)

=

(
∑
α∈Zd

r

∑
k=1

|dk(α)|2
)(
∑
α∈Zd

|Φ(t −α)|2
)

≤ ‖ f‖2

c ∑
α∈Zd

|Φ(t −α)|2, f ∈V 2
Φ ,

where we have used Cauchy–Schwarz’s inequality in (3.5), and the inequality
satisfied for any lower Riesz bound c of the Riesz basis {ϕk(· −α)}α∈Zd, k=1,2...,r

for V 2
Φ , i.e., c∑α∈Zd ∑r

k=1 |dk(α)|2 ≤ ‖ f‖2.
Thus, the convergence in V 2

Φ in the L2(Rd) sense implies pointwise convergence
which is uniform on R

d .
The product space

L2
r [0,1)

d :=
{

F = (F1,F2, . . . ,Fr)
� : Fk ∈ L2[0,1)d , k = 1,2, . . . ,r

}
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with its usual inner product

〈F,H〉L2
r [0,1)d :=

r

∑
k=1

〈Fk,Hk〉L2[0,1)d =
∫

[0,1)d

H∗(w)F(w)dw

becomes a Hilbert space. Similarly, we introduce the product Banach space
L∞r [0,1)

d .

The system
{

e−2π iα�wek
}
α∈Zd , k=1,2,...,r, where ek denotes the vector of Rr with

all the components null except the kth component which is equal to one, is an
orthonormal basis for L2

r [0,1)
d .

The shift-invariant space V 2
Φ is the image of L2

r [0,1)
d by means of the

isomorphism

TΦ : L2
r [0,1)

d −→V 2
Φ

{e−2π iα�wek}α∈Zd , k=1,2,...,r �−→ {ϕk(t −α)}α∈Zd, k=1,2,...,r,

which maps the orthonormal basis
{

e−2π iα�wek
}
α∈Zd , k=1,2,...,r for L2

r [0,1)
d onto

the Riesz basis {ϕk(t − α)}α∈Zd , k=1,2,...,r for V 2
Φ . For each F = (F1, . . . ,Fr)

� ∈
L2

r [0,1)
d we have

TΦF(t) := ∑
α∈Zd

r

∑
k=1

〈
Fk,e

−2π iα�·〉
L2[0,1)dϕk(t −α) , t ∈ R

d . (3.6)

The isomorphism TΦ can also be expressed by

f (t) = TΦF(t) = 〈F,Kt〉L2
r [0,1)d , t ∈ R

d ,

where the kernel transform R
d � t �→ Kt ∈ L2

r [0,1)
d is defined as Kt(x) := ZΦ(t,x),

and ZΦ denotes the Zak transform of Φ , i.e.,

(ZΦ)(t,w) := ∑
α∈Zd

Φ(t +α)e−2π iα�w .

Note that (ZΦ) = (Zϕ1, . . . ,Zϕr)
� where Z denotes the usual Zak transform.

The following shifting property of TΦ will be used later: For F ∈ L2
r [0,1)

d and
α ∈ Z

d , we have

TΦ
[
F(·)e−2π iα�·](t) = TΦF(t −α) , t ∈ R

d . (3.7)

3.2.1 The Convolution Systems Lj on V2
Φ

We consider s convolution systems L j f = f ∗h j, j = 1,2, . . . ,s, defined for f ∈V 2
Φ

where each impulse response h j belongs to one of the following three types:
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(a) The impulse response h j is a linear combination of partial derivatives of shifted
delta functionals, i.e.,

(
L j f

)
(t) := ∑

|β |≤Nj

c j,βDβ f (t + d j,β ) , t ∈ R
d .

If there is a system of this type, we also assume that ∑α∈Zd |Dβϕ(t −α)|2 is
uniformly bounded on R

d for |β | ≤ Nj .
(b) The impulse response h j of L j belongs to L2(Rd). Thus, for any f ∈ V 2

ϕ ,
we have

(
L j f

)
(t) := [ f ∗h j](t) =

∫
Rd

f (x)h j(t − x)dx, t ∈ R
d .

(c) The function ĥ j ∈ L∞(Rd) whenever Hϕk(x) := ∑α∈Zd |ϕ̂k(x+α)| ∈ L2[0,1)d

for all k = 1,2, . . . ,r.

Lemma 1. Let L be a convolution system of the type (b) or (c). Then, for
each fixed t ∈ R

d the sequence {(L ϕk
)
(t +α)}α∈Zd belongs to �2(Zd) for each

k = 1, . . . ,r.

Proof. First assume that h ∈ L2(Rd); then, we have

∑
α∈Zd

|L ϕk(t +α)|2 =
∥∥∥∥∥ ∑
α∈Zd

L ϕk(t +α)e−2π iα�x

∥∥∥∥∥
2

L2[0,1)d

= ‖ZL ϕk(t,x)‖2
L2[0,1)d

=

∥∥∥∥∥ ∑
α∈Zd

(
L̂ ϕk

)
(x+α)e2π i(x+α)�t

∥∥∥∥∥
2

L2[0,1)d

,

where, in the last equality, we have used a version of the Poisson summation
formula [20, Lemma 2.1]. Notice that ϕ̂k, ĥ∈ L2(Rd) implies, by Cauchy–Schwarz’s
inequality, that ϕ̂kĥ= L̂ ϕk ∈ L1(Rd). Now,

∥∥∥∥∥ ∑
α∈Zd

(
L̂ ϕk

)
(x+α)e2π i(x+α)�t

∥∥∥∥∥
2

L2[0,1)d

=

∥∥∥∥∥ ∑
α∈Zd

ϕ̂k(x+α)ĥ(x+α)e2π i(x+α)�t

∥∥∥∥∥
2

L2[0,1)d

≤
∥∥∥∥∥∥
(
∑
α∈Zd

|ϕ̂k(x+α)|2
)1/2(

∑
α∈Zd

|ĥ(x+α)|2
)1/2

∥∥∥∥∥∥
2

L2[0,1)d

≤C1/2‖h‖2
L2[0,1)d ,
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where we have used (3.4) and the fact that ‖h‖2
L2(Rd)

= ‖∑α∈Zd |ĥ(x+α)|2‖L1[0,1)d .

Finally, assume that Hϕk ∈ L2[0,1)d; since ϕ̂k ∈ L1(Rd)∩L2(Rd), we obtain that

L̂ ϕk = ϕ̂kĥ ∈ L1(Rd)∩ L2(Rd). Since ∑α∈Zd |L̂ ϕk(x +α)| ≤ ‖ĥ‖L∞(Rd)Hϕk(x),
using again [20, Lemma 2.1], we get

∑
α∈Zd

|L ϕk(t +α)|2 =
∥∥∥∥∥ ∑
α∈Zd

(
L̂ ϕk

)
(x+α)e2π i(x+α)�t

∥∥∥∥∥
2

L2[0,1)d

≤
∥∥∥∥∥ ∑
α∈Zd

|L̂ ϕk(x+α)|
∥∥∥∥∥

2

L2[0,1)d

≤
∥∥∥ĥ∥∥∥2

L∞(Rd)

∥∥Hϕk

∥∥2
L2[0,1)d .

��
Lemma 2. Let L be a convolution system of the type (a), (b), or (c). Then, for each
f ∈V 2

Φ , we have

(L f ) (t) =
〈
F,
(
ZLΦ

)
(t, ·)〉L2

r [0,1)d , where F = T −1
Φ f .

Proof. Assume that L is a convolution system of type (a). Under our hypothesis
on L , for m = 0,1,2 . . . ,N, we have that

f (m)(t) = ∑
α∈Zd

r

∑
k=1

〈
Fk,e

−2π iα�·
〉
ϕ(m)

k (t −α) .

Having in mind we have assumed that ∑α∈Zd |Φ(m)(t −α)|2 is uniformly bounded
on R

d , we obtain that

(L f )(t) =
N

∑
m=0

cm f (m)(t + dm) =
N

∑
m=0

cm ∑
α∈Zd

r

∑
k=1

〈
Fk,e

−2π iα�·
〉
ϕ(m)

k (t + dm −α)

=
r

∑
k=1

〈
Fk,

N

∑
m=0

cm ∑
α∈Zd

ϕk
(m)(t + dm −α)e−2π iα�·

〉
L2[0,1)d

=
r

∑
k=1

〈
Fk, ∑

α∈Zd

L ϕk(t −α)e−2π iα�·
〉

=
r

∑
k=1

〈
Fk,(ZL ϕk)(t, ·)

〉
L2[0,1)d .

Assume now that L is a convolution system of the type (b) or (c). For each t ∈R
d ,

considering the function ψ(x) := h(−x), we have

(L f )(t) = 〈 f ,ψ(·− t)〉L2(Rd) =

〈
∑
α∈Zd

r

∑
k=1

〈
Fk,e

−2π iα�·
〉
ϕk(·−α),ψ(·− t)

〉
L2(Rd)
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= ∑
α∈Zd

r

∑
k=1

〈
Fk,e

−2π iα�·
〉

L2[0,1)d
〈ϕk,ψ(·− t +α)〉L2(Rd)

= ∑
α∈Zd

r

∑
k=1

〈
Fk,e

−2π iα�·
〉

L2[0,1)d
L ϕk(t −α) .

Since the sequence {(L ϕk)(t +α)}α∈Zd ∈ �2(Zd), Parseval’s equality gives

(L f )(t) =
r

∑
k=1

〈
Fk, ∑

α∈Zd

L ϕk(t −α)e−2π iα�·
〉

L2[0,1)d

=
〈
F,(ZLΦ)(t, ·)〉L2

r (0,1)
,

which ends the proof. ��

3.2.2 Sampling at a Lattice of Zd: An Expression for the
Samples

Given a nonsingular matrix M with integer entries, we consider the lattice in Z
d

generated by M, i.e.,

ΛM := {Mα : α ∈ Z
d} ⊂ Z

d .

Without loss of generality, we can assume that detM > 0; otherwise, we can
consider M′ = ME where E is some d × d integer matrix satisfying detE = −1.
Trivially, ΛM = Λ ′

M . We denote by M� and M−� the transpose matrices of M and
M−1, respectively. The following useful generalized orthogonal relationship holds
(see [46]):

∑
p∈N (M�)

e−2π iα�M−T p =

{
detM, α ∈ΛM

0 α ∈ Z
d \ΛM

(3.8)

where

N (M�) := Z
d ∩{M�x : x ∈ [0,1)d}. (3.9)

The set N (M�) has detM elements (see [46] or [48]). One of these elements is
zero, say i1 = 0; we denote the rest of elements by i2, . . . , idetM ordered in any form;
from now on, N (M�) = {i1 = 0, i2, . . . , idetM} ⊂ Z

d .
Note that the sets, defined as Ql := M−�il + M−�[0,1)d , l = 1,2, . . . ,detM,

satisfy (see [48, p 110])

Ql ∩Ql′ = /0 if l �= l′ and Vol

(
detM⋃
l=1

Ql

)
= 1 .
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Thus,
∫
[0,1)d F(x)dx = ∑detM

l=1

∫
Ql

F(x)dx, for any function F integrable in [0,1)d and

Z
d-periodic. See also [39] and references therein for an abstract version of sampling

in lattice invariant subspaces.
Now, assume that we sample the filtered versions L j f of f ∈V 2

Φ , j = 1,2, . . . ,s,
at a lattice ΛM . Having in mind Lemma 2, for j = 1,2, . . . ,s and α ∈ Z

d , we obtain
that

(
L j f

)
(Mα) = 〈F,ZL jΦ(Mα, ·)〉 =

〈
F,ZL jΦ(0, ·)e−2π iα�M�·

〉
L2

r [0,1)d
, (3.10)

where F = T −1
Φ f ∈ L2

r [0,1)
d . Denote

g j(x) := ZL jΦ(0,x) , j = 1,2, . . . ,s ; (3.11)

in other words, g�j (x) :=
(
g j,1(x),g j,2(x), . . . ,g j,r(x)

)
, where g j,k(x) = ZL jϕk(0,x)

for 1 ≤ j ≤ s and 1 ≤ k ≤ r.
As a consequence of expression (3.10) for generalized samples, a challenging

problem is to study the completeness, Bessel, frame, or Riesz basis properties of any
sequence

{
g j(x)e−2π iα�M�x

}
α∈Zd , j=1,2,...,s in L2

r [0,1)
d . To this end we introduce

the s× r(detM) matrix of functions

G(x) :=

⎡
⎢⎢⎢⎢⎣

g�1 (x) g�1 (x+M−�i2) · · · g�1 (x+M−�idetM)

g�2 (x) g�2 (x+M−�i2) · · · g�2 (x+M−�idetM)

...
...

...
...

g�s (x) g�s (x+M−�i2) · · · g�s (x+M−�idetM)

⎤
⎥⎥⎥⎥⎦ (3.12)

and its related constants

AG := ess inf
x∈[0,1)d

λmin[G
∗(x)G(x)], BG := esssup

x∈[0,1)d
λmax[G

∗(x)G(x)] ,

where G
∗(x) denotes the transpose conjugate of the matrix G(x) and λmin (re-

spectively λmax), the smallest (respectively the largest) eigenvalue of the positive
semidefinite matrix G

∗(x)G(x). Observe that 0 ≤ AG ≤ BG ≤ ∞. Note that in the
definition of the matrix G(x) we are considering the Z

d-periodic extension of the
involved functions g j, j = 1,2, . . . ,s.

We now present a general result valid for functions g j in L2
r [0,1)

d , j = 1,2, . . . ,s,
even if they are not given by (3.11).

Lemma 3. Let g j be in L2
r [0,1)

d for j = 1,2, . . . ,s and let G(x) be its associated
matrix as in (3.12). Then:

(a) The sequence
{

g j(x)e−2π iα�M�x
}
α∈Zd , j=1,2,...,s is a complete system for

L2
r [0,1)

d if and only if the rank of the matrix G(x) is r(detM) a.e. in [0,1)d.
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(b) The sequence
{

g j(x)e−2π iα�M�x
}
α∈Zd , j=1,2,...,s is a Bessel sequence for

L2
r [0,1)

d if and only if g j ∈ L∞r [0,1)
d (or equivalently BG <∞). In this case, the

optimal Bessel bound is BG/(detM).

(c) The sequence
{

g j(x)e−2π iα�M�x
}
α∈Zd , j=1,2,...,s is a frame for L2

r [0,1)
d if and

only if 0 < AG ≤ BG < ∞ . In this case, the optimal frame bounds are
AG/(detM) and BG/(detM).

(d) The sequence
{

g j(x)e−2π iα�M�x
}
α∈Zd , j=1,2,...,s is a Riesz basis for L2

r [0,1)
d if

and only if it is a frame and s = r(detM).

Proof. For any F ∈ L2
r [0,1)

d , we have

〈
F(x),g j(x)e−2π iα�M�x

〉
L2

r [0,1)d

=

∫
[0,1)d

r

∑
k=1

Fk(x)g j,k(x)e
2π iα�M�x dx

=
r

∑
k=1

detM

∑
l=1

∫
Ql

Fk(x)g j,k(x)e
2π iα�M�x dx

=
r

∑
k=1

∫
M−�[0,1)d

detM

∑
l=1

Fk

(
x+M−�il

)
g j,k

(
x+M−�il

)
e2π iα�M�x dx

=
∫

M−�[0,1)d

r

∑
k=1

detM

∑
l=1

Fk

(
x+M−�il

)
g j,k

(
x+M−�il

)
e2π iα�M�x dx

=

∫
M−�[0,1)d

detM

∑
l=1

g�j
(

x+M−�il
)

F
(

x+M−�il
)

e2π iα�M�x dx, (3.13)

where we have considered the Z
d-periodic extension of F. By using that the

sequence {e2π iα�M�x}α∈Zd is an orthogonal basis for L2(M−�[0,1)d) we obtain

s

∑
j=1
∑
α∈Zd

∣∣∣∣〈F(x),g j(x)e−2π iα�M�x
〉

L2
r [0,1)d

∣∣∣∣
2

=
1

detM

s

∑
j=1

∥∥∥∥∥
detM

∑
l=1

g�j (x+M−�il)F(x+M−�il)

∥∥∥∥∥
2

L2
r (M−�[0,1)d)

.

Denoting F(x) :=
[
F�(x),F�(x +M−�i2), . . . ,F�(x +M−�idetM)

]�
, the equality

above reads
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s

∑
j=1
∑
α∈Zd

∣∣∣〈F(x),g j(x)e−2π iα�M�x
〉

L2
r [0,1)d

∣∣∣2 = 1
detM

∥∥G(x)F(x)
∥∥2

L2
s (M−�[0,1)d)

.

(3.14)

On the other hand, using that the function g j is Zd-periodic, we obtain that the set{
g j(x+M−�il +M−�i1),g j(x+M−�il +M−�i2), . . . ,g j(x+M−�il +M−�idetM)

}
has the same elements as

{
g j(x+M−�i1),g j(x+M−�i2), . . . ,g j(x+M−�idetM)

}
.

Thus, the matrixG(x+M−�il) has the same columns of G(x), possibly in a different
order. Hence, rankG(x) = r(detM) a.e. in [0,1)d if and only if rankG(x) = r(detM)
a.e. in M−�[0,1)d . Moreover,

AG = ess inf
x∈M−� [0,1)d

λmin[G
∗(x)G(x)], BG = esssup

x∈M−�[0,1)d
λmax[G

∗(x)G(x)] . (3.15)

To prove (a), assume that there exists a set Ω ⊆ M−�[0,1)d with positive measure
such that rankG(x) < r(detM) for each x ∈ Ω . Then, there exists a measurable
function v(x), x ∈Ω , such that G(x)v(x) = 0 and ‖v(x)‖L2

r(detM)
(M−�[0,1)d) = 1 in Ω .

This function can be constructed as in [28, Lemma 2.4]. Define F ∈ L2
r [0,1)

d such
that F(x) = v(x) if x ∈ Ω and F(x) = 0 if x ∈ M−�[0,1)d \Ω . Hence, from (3.14),
we obtain that the system is not complete. Conversely, if the system is not complete,
by using (3.14), we obtain an F(x) different from 0 in a set with positive measure
such that G(x)F(x) = 0. Thus, rankG(x)< r(detM) on a set with positive measure.
To prove (b) notice that

s

∑
j=1
∑
α∈Zd

∣∣∣∣〈F(x),g j(x)e
−2π iα�M�x

〉
L2

r [0,1)d

∣∣∣∣
2

=
1

detM
‖G(x)F(x)‖2

L2
s (M−�[0,1)d)

=
1

detM

∫
M−�[0,1)d

F
∗(x)G∗(x)G(x)F(x)dx . (3.16)

If BG < ∞, then, for each F, we have

1
detM

∫
M−�[0,1)d

F
∗(x)G∗(x)G(x)F(x)dx ≤ BG

detM
‖F‖2

L2
r(detM)

(M−�[0,1)d)

=
BG

detM
‖F‖2

L2
r [0,1)d , (3.17)

from which the sequence
{

g j(x)e−2π iα�M�x
}
α∈Zd , j=1,2,...,s is a Bessel sequence

and its optimal Bessel bound is less than or equal to BG/(detM).
Let K < BG; there exists a set ΩK ⊂ M−�[0,1)d with positive measure such that
λmaxx∈ΩK

[G∗(x)G(x)]≥ K. Let F ∈ L2
r [0,1)

d such that its associated vector function
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F is 0 if x ∈ M−�[0,1)d \ΩK and F is an eigenvector of norm 1 associated with the
largest eigenvalue of G∗(x)G(x) if x ∈ΩK . Using (3.16), we obtain

s

∑
j=1
∑
α∈Zd

∣∣∣〈F(x),g j(x)e−2π iα�M�x
〉

L2
r [0,1)d

∣∣∣2 ≥ K
detM

‖F‖2
L2

r [0,1)d .

Therefore, if BG =∞, the sequence
{

g j(x)e−2π iα�M�x
}
α∈Zd , j=1,2,...,s is not a Bessel

sequence, and the optimal Bessel bound is BG/(detM).
To prove (c) assume first that 0 < AG ≤ BG < ∞. By using part (b), the sequence{

g j(x)e−2π iα�M�x
}
α∈Zd , j=1,2,...,s is a Bessel sequence in L2

r [0,1)
d . Moreover,

using (3.16) and the Rayleigh–Ritz theorem (see [26, p 176]), for each F∈ L2
r [0,1)

d ,
we obtain

s

∑
j=1
∑
α∈Zd

∣∣∣〈F(x),g j(x)e−2π iα�M�x
〉

L2
r [0,1)d

∣∣∣2 ≥ AG

detM
‖F‖2

L2
r(detM)

(M−�[0,1)d)

=
AG

detM
‖F‖2

L2
r [0,1)d . (3.18)

Hence, the sequence
{

g j(x)e−2π iα�M�x
}
α∈Zd , j=1,2,...,s is a frame with optimal

lower bound larger than or equal to AG/(detM).

Conversely, if
{

g j(x)e−2π iα�M�x
}
α∈Zd , j=1,2,...,s is a frame for L2

r [0,1)
d , we

know by part (b) that BG < ∞. In order to prove that AG > 0, consider any constant
K > AG. Then, there exists a set ΩK ⊂ M−�[0,1)d with positive measure such
that λminx∈ΩK

[G∗(x)G(x)] ≤ K. Let F ∈ L2
r [0,1)

d such that its associated F(x) is

0 if x ∈ M−�[0,1)d \ΩK and F(x) is an eigenvector of norm 1 associated with
the smallest eigenvalue of G∗(x)G(x) if x ∈ ΩK . Since F is bounded, we have that
G(x)F(x) ∈ L2

s (M
−�[0,1)d). From (3.16) we get

s

∑
j=1
∑
α∈Zd

∣∣∣∣〈F(x),g j(x)e−2π iα�M�x
〉

L2
r [0,1)d

∣∣∣∣
2

≤ K
detM

‖F‖2
L2

r(detM)
(M−�[0,1)d)

=
K

detM
‖F‖2

L2
r [0,1)d . (3.19)

Denoting by A the optimal lower frame bound of
{

g j(x)e−2π iα�M�x
}
α∈Zd , j=1,2,...,s,

we have obtained that K/(detM)≥ A for each K > AG; thus, AG/(detM) ≥ A and,
consequently, AG > 0. Moreover, under the hypotheses of part (c), we deduce that
AG/(detM) and BG/(detM) are the optimal frame bounds.

The proof of (d) is based on the following result ([11, Theorem 6.1.1]): A frame is
a Riesz basis if and only if it has a biorthogonal sequence. Assume that the sequence{

g j(x)e−2π iα�M�x
}
α∈Zd , j=1,2,...,s is a Riesz basis for L2

r [0,1)
d being the sequence

{h j,α}α∈Zd , j=1,2,...,s its biorthogonal sequence. Using (3.13) we get
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∫
M−�[0,1)d

detM

∑
l=1

g�j
(

x+M−�il
)

h j′,0
(

x+M−�il
)

e2π iα�M�x dx

=
〈

h j′,0(·),g j(x)e
−2π iα�M�·

〉
= δ j, j′δα ,0 .

Therefore,

detM

∑
l=1

g�j
(

x+M−�il
)

h j′,0

(
x+M−�il

)
e2π iα�M�x

= (detM)δ j, j′ a.e. in M−�[0,1)d .

Thus, the matrix G(x) has a right inverse a.e. in M−�[0,1)d and, in particular,
s ≤ r(detM). On the other hand, AG > 0 implies that det[G∗(x)G(x)] > 0, a.e. in
M−�[0,1)d , and there exists the matrix [G∗(x)G(x)]−1

G
∗(x) a.e. in M−�[0,1)d .

This matrix is a left inverse of the matrix G(x) which implies s ≥ r(detM). Thus,
we obtain that r(detM) = s.

Conversely, assume that
{

g j(x)e−2π iα�M�x
}
α∈Zd , j=1,2,...,s is a frame for

L2
r [0,1)

d and r(detM) = s. In this case, G(x) is a square matrix, and
det[G(x)∗(x)G(x)(x)] > 0 a.e. in M−�[0,1)d implies that detG(x) �= 0 a.e. in
M−�[0,1)d . Having in mind the structure ofG(x) its inverse must be the r(detM)×s
matrix

G
−1(x) =

⎡
⎢⎢⎢⎣

c1(x) . . . cs(x)
c1(x+M−�i2) . . . cs(x+M−�i2)

...
...

c1(x+M−�idetM) . . . cs(x+M−�idetM)

⎤
⎥⎥⎥⎦ ,

where, for each j = 1,2, . . . ,s, the function c j ∈ L2
r [0,1)

d .

It is easy to verify that the sequence
{
(detM)c j(x)e−2π iα�M�x

}
α∈Zd , j=1,2,...,s is

a biorthogonal sequence of
{

g j(x)e−2π iα�M�x
}
α∈Zd , j=1,2,...,s, and therefore it is a

Riesz basis for L2
r [0,1)

d . ��

3.3 Generalized Regular Sampling in V 2
Φ

In this section we prove that expression (3.10) allows us to obtain F = T −1
Φ f from

the generalized samples {L j f (Mα)}α∈Zd , j=1,2,...,s; as a consequence, applying the

isomorphism TΦ , we recover the function f in V 2
Φ .
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Assume that the functions g j given in (3.11) belong to ∈ L∞r [0,1)
d for j =

1,2, . . . ,s; thus, g�j (x)F(x) ∈ L2[0,1)d . Having in mind (3.8) and the expres-
sion (3.10) for the generalized samples, we have that

(detM) ∑
α∈Zd

(
L j f

)
(Mα)e−2π iα�M�x

= ∑
α∈Zd

(
L j f

)
(α)e−2π iα�x ∑

p∈N (M�)
e−2π iα�M−� p

= ∑
p∈N (M�)

∑
α∈Zd

(
L j f

)
(α)e−2π iα�(x+M−� p)

= ∑
p∈N (M�)

∑
α∈Zd

〈
F,g j(·)e−2π iα�M�·

〉
L2

r [0,1)d
e−2π iα�(x+M−� p)

= ∑
p∈N (M�)

∑
α∈Zd

⎛
⎜⎝ ∫
[0,1)d

r

∑
k=1

Fk(y)g j,k(y)e
−2π iα�M�ydy

⎞
⎟⎠e−2π iα�(x+M−� p)

= ∑
p∈N (M�)

r

∑
k=1

Fk

(
x+M−�p

)
g j,k(x+M−�p)

= ∑
p∈N (M�)

g�j
(

x+M−�p
)

F(x+M−�p) .

Defining F(x) :=
[
F�(x),F�(x + M−�i2), . . . ,F�(x + M−�idetM)

]�, the above
equality allows us to write, in matrix form, that G(x)F(x) equals to

(detM)

[
∑
α∈Zd

(
L1 f

)
(Mα)e−2π iα�M�x, . . . , ∑

α∈Zd

(
Ls f

)
(Mα)e−2π iα�M�x

]�
.

In order to recover the function F = T −1
Φ f , assume the existence of an r× s matrix

a(x) := [a1(x), . . . ,as(x)], with entries in L∞[0,1)d , such that

[a1(x), . . . ,as(x)] G(x) = [Ir,O(detM−1)r×r] a.e. in [0,1)d .

If we left multiply G(x)F(x) by a(x), we get

F(x) = (detM)
s

∑
j=1
∑
α∈Zd

(L j f ) (Mα)a j(x)e
−2π iα�M�x in L2

r [0,1)
d . (3.20)

Finally, the isomorphism TΦ gives

f (t) = (detM)
s

∑
j=1
∑
α∈Zd

(
L j f

)
(Mα)(TΦa j)(t −Mα) , t ∈ R

d ,
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where we have used the shifting property (3.7) and that the space V 2
Φ is an RKHS.

Much more can be said about the above sampling result. In fact, the following
theorem holds:

Theorem 2. Assume that the functions g j given in (3.11) belong to L∞r [0,1)
d for

each j = 1,2, . . . ,s. Let G(x) be the associated matrix defined in [0,1)d as in (3.12).
The following statements are equivalents:

(a) AG > 0.
(b) There exists an r × s matrix a(x) :=

[
a1(x), . . . ,as(x)

]
with columns a j ∈

L∞r [0,1)
d and satisfying

[
a1(x), . . . ,as(x)]G(x) = [Ir,O(detM−1)r×r] a.e. in [0,1)d . (3.21)

(c) There exists a frame for V 2
Φ having the form {S j,a(·−Mα)}α∈Zd , j=1,2,...,s such

that for any f ∈V 2
Φ

f = (detM)
s

∑
j=1
∑
α∈Zd

(L j f )(Mα)S j,a(·−Mα) in L2(Rd) . (3.22)

(d) There exists a frame {S j,α(·)}α∈Zd , j=1,2,...,s for V 2
Φ such that for any f ∈V 2

Φ

f = (detM)
s

∑
j=1
∑
α∈Zd

(L j f )(Mα)S j,α in L2(Rd) . (3.23)

Proof. First we prove that (a) implies (b). As the determinant of the positive
semidefinite matrix G

∗(x)G(x) is equal to the product of its eigenvalues,
condition (a) implies that ess infx∈Rd det[G∗(x)G(x)] > 0. Hence, there exists
the left pseudo-inverse matrix G

†(x) := [G∗(x)G(x)]−1
G

∗(x), a.e. in [0,1)d ,
and it satisfies G

†(x)G(x) = Ir(detM). The first r rows of G
†(x) form an

r × s matrix [a1(x), . . . ,as(x)] which satisfies (3.21). Moreover, the func-
tions a j(x), j = 1,2, . . . ,s, are essentially bounded since the condition
ess infx∈[0,1)d det[G∗(x)G(x)]> 0 holds.

Next, we prove that (b) implies (c). For j = 1,2, . . . ,s, let a j(x) be a function
in L∞r [0,1)

d and satisfying [a1(x), . . . ,as(x)]G(x) = [Ir,O(detM−1)r×r]. In (3.20) we

have proved that, for each F = T −1
Φ ( f ) ∈ L2

r [0,1)
d , we have the expansion

F(x) = (detM)
s

∑
j=1
∑
α∈Zd

(
L j f

)
(Mα)a j(x)e−2π iα�M�x in L2

r [0,1)
d ,

from which

f = (detM)
s

∑
j=1
∑
α∈Zd

(
L j f

)
(Mα)S j,a(·−Mα) in L2(Rd) ,
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where S j,a := TΦa j for j = 1,2, . . . ,s . Since we have assumed that g j ∈ L∞r [0,1)
d

for each j = 1,2, . . . ,s , the sequence
{

g j(x)e−2π iα�M�x
}
α∈Zd , j=1,2,...,s is a Bessel

sequence in L2
r [0,1)

d by using part (b) in Lemma 3. The same argument proves that

the sequence
{
(detM)a j(x)e−2π iα�M�x

}
α∈Zd , j=1,2,...,s is also a Bessel sequence in

L2
r [0,1)

d . These two Bessel sequences satisfy for each F ∈ L2
r [0,1)

d

F(x) = (detM)
s

∑
j=1
∑
α∈Zd

〈
F,g je

−2π iα�M�·
〉

a j(x)e
−2π iα�M�x in L2

r [0,1)
d .

Hence, they are a pair of dual frames for L2
r [0,1)

d (see [11, Lemma 5.6.2]). Since
TΦ is an isomorphism, the sequence

{
S j,a(t −Mα)

}
α∈Zd , j=1,2,...,s is a frame for

V 2
Φ ; hence, (b) implies (c). Statement (c) implies (d) trivially.

Assume condition (d), applying the isomorphism T −1
Φ to the expansion (3.23)

we get

F(x) = (detM)
s

∑
j=1
∑
α∈Zd

〈
F,g je

−2π iα�M�·
〉
T −1
Φ (S j,α)(x) in L2

r [0,1)
d , (3.24)

where
{
T −1
Φ S j,α

}
α∈Zd , j=1,2,...,s is a frame for L2

r [0,1)
d . By using Lemma 3, the

sequence
{

g j(x)e−2π iα�M�x
}
α∈Zd , j=1,2,...,s

is a Bessel sequence; expansion (3.24)

implies that is also a frame (see [11, Lemma 5.6.2]). Hence, by using again
Lemma 3, condition (a) holds. ��

In the case that the functions g j, j = 1,2, . . . ,s, are continuous on R
d (for

instance, if the sequences of generalized samples
{
L jϕk(α)

}
α∈Zd belongs to

�1(Zd) for 1 ≤ j ≤ s and 1 ≤ k ≤ r), the following corollary holds:

Corollary 1. Assume that the functions g j , j = 1,2, . . . ,s, in (3.11) are continuous
on R

d. Then, the following assertions are equivalents:

(a) rank G(x) = r(detM) for all x ∈R
d.

(b) There exists a frame {S j,a(·− rn)}n∈Z, j=1,2,...,s for V 2
Φ satisfying the sampling

formula (3.22).

Proof. Whenever the functions g j, j = 1,2, . . . ,s, are continuous on R
d , condition

AG > 0 is equivalent to that det
[
G

∗(x)G(x)
] �= 0 for all x ∈ R

d . Indeed, if
detG∗(x)G(x)> 0, then the r first rows of the matrix G

†(x) := [G∗(x)G(x)]−1
G

∗(x)
give an r × s matrix a(x) = [a1(x),a2(x), . . . ,as(x)] satisfying statement (b) in
Theorem 2, and therefore AG > 0.

The reciprocal follows from the fact that det
[
G

∗(x)G(x)
] ≥ Ar(detM)

G
for all x ∈

R
d . Since det

[
G

∗(x)G(x)
] �= 0 is equivalent to rank G(x) = r(detM) for all x ∈R

d ,
the result is a consequence of Theorem 2. ��
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The reconstruction functions S j,a, j = 1,2, . . . ,s , are determined from the Fourier
coefficients of the components of a j(x) := [a1, j(x),a2, j(x), . . . ,ar, j]

�, j = 1,2, . . . ,s.

More specifically, if âk, j(α) :=
∫
[0,1)d ak, j(x)e2π iα�xdx, we get (see (3.6))

S j,a(t) = ∑
α∈Zd

r

∑
k=1

âk, j(α)ϕk(t −α) , t ∈ R
d . (3.25)

The Fourier transform in (3.25) gives Ŝ j,a(x) = ∑r
k=1 ak, j(x)ϕ̂k(x).

Assume that the r× s matrix a(x) =
[
a1(x),a2(x), . . . ,as(x)

]
satisfies (3.21). We

consider the periodic extension of ak, j, i.e., ak, j(x+α) = ak, j(x), α ∈ Z
d . For all

x ∈ [0,1)d , the r(detM)× s matrix

A
�(x) :=

⎡
⎢⎢⎢⎣

a1(x) a2(x) · · · as(x)
a1(x+M−�i2) a2(x+M−�i2) · · · as(x+M−�i2)

...
...

...
a1(x+M−�idetM) a2(x+M−�idetM) · · · as(x+M−�idetM)

⎤
⎥⎥⎥⎦ (3.26)

is a left inverse matrix of G(x), i.e., A�(x)G(x) = Ir(detM).
Provided that condition (3.21) is satisfied, it can be easily checked that all

matrices a(x) with entries in L∞[0,1)d and satisfying (3.21) correspond to the first r
rows of the matrices of the form

A
�(x) =G

†(x)+U(x)
[
Is −G(x)G†(x)

]
, (3.27)

where U(x) is any r(detM)× s matrix with entries in L∞[0,1)d , and G
† denotes the

left pseudo-inverse G†(x) := [G∗(x)G(x)]−1
G

∗(x).
Notice that if s = r(detM), there exists a unique matrix a(x), given by the first

r rows of G
−1(x); if s > r(detM), there are infinitely many solutions according

to (3.27).
Moreover, the sequence

{
(detM)a†

j(·)e−2π iα�M�·}
α∈Zd , j=1,2,...,s, associated

with the r × s matrix [a†
1(x),a

†
2(x), . . . ,a

†
s (x)] obtained from the r first

rows of G
†(x), gives precisely the canonical dual frame of the frame{

g j(·)e−2π iα�M�·}
α∈Zd , j=1,2,...,s. Indeed, the frame operator S associated to{

g j(·)e−2π iα�M�·}
α∈Zd , j=1,2,...,s is given by

S F(x) =
1

detM

[
g1(x),g2(x), . . . ,gs(x)

]
G(x)F(x) , F ∈ L2

r [0,1)
d ,

from which one gets

S
[
(detM)a†

j(·)e−2π iα�M�·
]
(x) = g j(x)e−2π iα�M�x , j = 1,2, . . . ,s and α ∈ Z

d .

Something more can be said in the case where s = r(detM):
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Theorem 3. Assume that the functions g j , j = 1,2, . . . ,s , given in (3.11) belong to
L∞r [0,1)

d and s = r(detM). The following statements are equivalent:

(a) AG > 0.
(b) There exists a Riesz basis {S j,α}α∈Zd, j=1,2,...,s for V 2

Φ such that for any f ∈V 2
Φ ,

the expansion

f = (detM) ∑
α∈Zd

s

∑
j=1

(L j f
)
(Mα) S j,α (3.28)

holds in L2(Rd).

In case the equivalent conditions are satisfied, necessarily S j,α(t) = S j,a(t −Mα),
t ∈R

d, where S j,a =TΦ (a j), j = 1,2, . . . ,s , and the r×s matrix a := [a1,a2, . . . ,as]
is formed with the r first rows of the inverse matrix G−1. The sampling functions S j,a,
j = 1,2, . . . ,s , satisfy the interpolation property (L j′S j,a)(Mα) = δ j, j′δα ,0, where
j, j′ = 1,2, . . . ,s and α ∈ Z

d.

Proof. Assume that AG > 0; since G(x) is a square matrix, this implies that
ess infx∈Rd |detG(x)| > 0. Therefore, the r first rows of G

−1(x) gives a solution
of the equation [a1(x), . . . ,as(x)]G(x) = [Ir,O(detM−1)r×r] with a j ∈ L∞r [0,1)

d for
j = 1,2, . . . ,s. According to Theorem 2, the sequence

{S j,α}α∈Zd , j=1,2,...,s := {S j,a(t −Mα)}α∈Zd , j=1,2,...,s ,

where S j,a =TΦ(a j), satisfies the sampling formula (3.28). Moreover, the sequence

{
(detM)a j(x)e−2π iα�M�x}

α∈Zd , j=1,2,...,s =
{
T −1
Φ S j,a(·−Mα)

}
α∈Zd , j=1,2,...,s

is a frame for L2
r [0,1)

d . Since r(detM) = s, according to Lemma 3, it is a Riesz basis
for L2

r [0,1)
d . Hence, the sequence {S j,a(t −Mα)}α∈Zd , j=1,2,...,s is a Riesz basis for

V 2
Φ , and condition (b) is proved.

Conversely, assume now that {S j,α}α∈Zd , j=1,2,...,s is a Riesz basis for V 2
Φ

satisfying (3.28). From the uniqueness of the coefficients in a Riesz basis, we get that
the interpolatory condition (L j′S j,α)(Mα ′) = δ j, j′δα ,α ′ holds for j, j′ = 1,2, . . . ,s
and α,α ′ ∈ Z

d . Since T −1
Φ is an isomorphism, {T −1

Φ S j,α}α∈Zd , j=1,2,...,s is a Riesz

basis for L2
r [0,1)

d . Expanding the function g j′(x)e
−2π iα ′�M�x with respect to the

dual basis of {T −1
Φ S j,α}α∈Zd , j=1,2,...,s, denoted by {G j,α}α∈Zd , j=1,2,...,s, we obtain

g j′(x)e
−2π iα ′�M�x = ∑

α∈Zd

s

∑
j=1

〈
g j′(·)e−2π iα ′�M�·,T −1

Φ S j,α

〉
L2[0,1)d

G j,α(x)

= ∑
α∈Zd

L j′S j,α(Mα ′)G j,α(x) = G j′,α ′(x) .
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Therefore, the sequence
{

g j(x)e−2π iα�M�x
}
α∈Zd , j=1,2,...,s is the dual basis of the

Riesz basis {T −1
Φ S j,α}α∈Zd, j=1,2,...,s . In particular, it is a Riesz basis for L2

r [0,1)
d ,

which implies, according to Lemma 3, that AG > 0; this proves (a). Moreover, the
sequence {T −1

Φ S j,α}α∈Zd , j=1,2,...,s is necessarily the unique dual basis of the Riesz

basis
{

g j(x)e−2π iα�M�x
}
α∈Zd , j=1,2,...,s. Therefore, this proves the uniqueness of the

Riesz basis {S j,α}α∈Zd , j=1,2,...,s for V 2
Φ satisfying (3.28). ��

3.3.1 Reconstruction Functions with Prescribed Properties

A generalized sampling formula in the shift-invariant space V 2
Φ as

f (t) = (detM)
s

∑
j=1
∑
α∈Zd

(L j f )(Mα)S j,a(t −Mα) , t ∈ R
d , (3.29)

can be read as a filter bank. Indeed, introducing the expression for the sampling
functions S j,a(t) = ∑β∈Zd ∑r

k=1 âk, j(β )ϕk(t −β ) , t ∈ R
d , the change γ := β +Mα

in the summation’s index gives

f (t) = (detM)
r

∑
k=1
∑
γ∈Zd

{
s

∑
j=1
∑
α∈Zd

(L j f )(Mα)âk, j(γ−Mα)

}
ϕk(t − γ) , t ∈R

d .

Thus, the relevant data for the recovery of the signal f ∈V 2
Φ ,

dk(γ) :=
s

∑
j=1
∑
α∈Zd

(L j f )(Mα)âk, j(γ−Mα) , γ ∈ Z
d , 1 ≤ k ≤ r ,

is obtained by means of r filter banks whose impulse responses involve the Fourier
coefficients of the entries of the r× s matrix a :=

[
a1,a2, . . . ,as

]
in (3.21), and the

input is given by the sampling data.
Notice that reconstruction functions S j,a with compact support in the above

sampling formula implies low computational complexities and avoids truncation
errors. This occurs whenever the generators ϕk have compact support and the sum
in (3.25) is finite. These sums are finite if and only if the entries of the r× s matrix
a are trigonometric polynomials. In this case, all the filter banks involved in the
reconstruction process are finite impulse response (FIR) filters.

In order to give a necessary and sufficient condition assuring compactly sup-
ported reconstruction functions S j,a in formula (3.29), we introduce first some
complex notation, more convenient for this study. We denote zα := zα1

1 zα2
2 · · · zαd

d
for z = (z1, . . . ,zd)∈C

d , α = (α1, . . . ,αd) ∈Z
d , and the d-torus by T

d := {z ∈C
d :

|z1|= |z2|= · · ·= |zd |= 1}. For 1 ≤ j ≤ s and 1 ≤ k ≤ r, we define
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g j,k(z) := ∑
μ∈Zd

L jϕk(μ)z−μ , g�j (z) :=
(
g j,1(z),g j,2(z), . . . ,g j,r(z)

)

and the s× r(detM) matrix

G(z) :=
[
g�j
(

z1e2π im�
1 il , . . . ,zde2π im�

d il
)]

j=1,2,...,s
k=1,2,...,r; l=1,2,...,detM

(3.30)

where m1, . . . ,md denote the columns of the matrix M−1. Recall that i1, i2, . . . , idetM

in Z
d are the elements of N (M�) defined in (3.9). Note also that for the values

x = (x1, . . . ,xd) ∈ [0,1)d and z = (e2π ix1 , . . . ,e2π ixd ) ∈ T
d , we have G(x) = G(z).

Provided that the functions g j are continuous on R
d , Corollary 1 can be

reformulated as follows: There exists an r× s matrix a(z) =
[
a1(z), . . . ,as(z)

]
with

entries essentially bounded in the torus Td and satisfying

a(z)G(z) = [Ir,O(detM−1)r×r] for all z ∈ T
d (3.31)

if and only if

rank G(z) = r(detM) for all z ∈ T
d . (3.32)

Denoting the columns of the matrix a(z) as a�j (z) =
(
a1, j(z), . . . ,ar, j(z)

)
,

j = 1,2, . . . ,s, the corresponding reconstruction functions S j,a in sampling formula
(3.29) are

S j,a(t) = ∑
α∈Zd

r

∑
k=1

âk, j(α)ϕk(t −α) , t ∈ R
d , (3.33)

where âk, j(α), α ∈ Z
d , are the Laurent coefficients of the functions ak, j(z), i.e.,

ak, j(z) = ∑
α∈Zd

âk, j(α)z−α . (3.34)

Note that, in order to obtain compactly supported reconstruction functions S j,a

in (3.29), we need an r× s matrix a(z) whose entries are Laurent polynomials, i.e.,
the sum in (3.34) is finite. The following result, which proof can be found in [16]
under minor changes, holds:

Theorem 4. Assume that the generators ϕk and the functions L jϕk, 1 ≤ k ≤ r and
1 ≤ j ≤ s, have compact support. Then, there exists an r × s matrix a(z) whose
entries are Laurent polynomials and satisfying (3.31) if and only if

rank G(z) = r(detM) for all z ∈ (C\ {0})d .

The reconstruction functions S j,a, j = 1,2, . . . ,s, obtained from such matrix a(z)
through (3.33) have compact support.
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From one of these r × s matrices, say ã(z) = [ã1(z), . . . , ãs(z)], we can get all
of them. Indeed, it is easy to check that they are given by the r first rows of the
r(detM)× s matrices of the form

A(z) = Ã(z)+U(z)
[
Is −G(z)Ã(z)

]
, (3.35)

where

Ã(z) :=
[
ã j(z1e2π im�

1 il , . . . ,zde2π im�
d il )
]

k=1,2,...,r; l=1,2,...,detM
j=1,2,...,s

,

and U(z) is any r(detM)× s matrix with Laurent polynomial entries. Remember
that m1, . . . ,md denote the columns of the matrix M−1 and i1, . . . , idetM the elements
of N (M�) defined in (3.9).

Next, we study the existence of reconstruction functions S j,a, j = 1,2, . . . ,s ,
in (3.29) having exponential decay; it means that there exist constants C > 0 and
q ∈ (0,1) such that |S j,a(t)| ≤ Cq|t| for each t ∈ R

d . In so doing, we introduce the
algebra H (Td) of all holomorphic functions in a neighborhood of the d-torus Td .
Note that the elements in H (Td) are characterized as admitting a Laurent series
where the sequence of coefficients decays exponentially fast [27].

The following theorem, which proof can be found in [16] under minor changes,
holds:

Theorem 5. Assume that the generators ϕk and the functions L jϕk, j = 1,2, . . . ,s
and k = 1,2, . . . ,r, have exponential decay. Then, there exists an r × s matrix
a(z) = [a1(z), . . . ,as(z)] with entries in H (Td) and satisfying (3.31) if and only
if rank G(z) = r(detM) for all z ∈ T

d.
In this case, all of such matrices a(z) are given as the first r rows of a r(detM)×s

matrix A(z) of the form

A(z) = G†(z)+U(z)
[
Is −G(z)G†(z)

]
, (3.36)

where U(z) denotes any r(detM)× s matrix with entries in the algebra H (Td) and

G†(z) :=
[
G∗(z)G(z)

]−1
G∗(z). The corresponding reconstruction functions S j,a, j =

1,2, . . . ,s, given by (3.33) have exponential decay.

3.3.2 Some Illustrative Examples

We include here some examples illustrating Theorem 4, a particular case of
Theorem 2, by taking B-splines as generators; they certainly are important for
practical purposes [44].
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First notice that if the generator ϕ has compact support, the only situation when
the reconstruction function Sa in formula (3.1) has compact support as well is
the special case when ϕ is the linear B-spline N2(t) := χ[0,1) ∗ χ[0,1)(t), where
χ[0,1) denotes the characteristic function of the interval [0,1). For any f ∈ V 2

N2
, the

following sampling formula holds:

f (t) =
∞

∑
n=−∞

f (n)N2(t + 1− n) , t ∈R .

In this special case where d = 1 and r = s = 1, we have G(z) = z, and consequently,
a(z) = z−1 in Theorem 4.

3.3.2.1 The Case d=== 1, r=== 1, M === 2, and s=== 3

Let N3(t) := χ[0,1)∗χ[0,1)∗χ[0,1)(t) be the quadratic B-spline, and let L j, j = 1,2,3 ,
be the systems

L1 f (t) = f (t); L2 f (t) = f

(
t +

2
3

)
and L3 f (t) = f

(
t +

4
3

)
.

Since the functions L jN3, j = 1,2,3 , have compact support, then the entries of
the 3× 2 matrix G(z) in (3.30) are Laurent polynomials, and we can try to search a
vector a(z) := [a1(z),a2(z),a3(z)] satisfying (3.31) with Laurent polynomials entries
also. This implies reconstruction functions S j,a, j = 1,2,3 , with compact support.
Proceeding as in [14], we obtain that any function f ∈V 2

N3
can be recovered through

the sampling formula

f (t) = ∑
n∈Z

3

∑
j=1

L j f (2n)S j,a(t − 2n) , t ∈R ,

where the reconstruction functions, according to (3.33), are given by

S1,a(t) =
1

16
[N3(t + 3)− 3N3(t + 2)− 3N3(t + 1)+N3(t)] ,

S2,a(t) =
1

16
[27N3(t + 1)− 9N3(t)] ,

S3,a(t) =
1

16
[−9N3(t + 1)+ 27N3(t)] , t ∈ R .
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3.3.2.2 The Case d=== 1, r=== 2, M === 1, and s=== 3

Consider the Hermite cubic splines defined as

ϕ1(t) =

⎧⎪⎪⎨
⎪⎪⎩
(t + 1)2(1− 2t), t ∈ [−1,0]

(1− t)2(1+ 2t), t ∈ [0,1]

0, |t|> 1

and ϕ2(t) =

⎧⎪⎪⎨
⎪⎪⎩
(t + 1)2t, t ∈ [−1,0]

(1− t)2t, t ∈ [0,1]

0, |t|> 1

.

They are stable generators for the space V 2
ϕ1,ϕ2

(see [12]). Consider the sampling
period M = 1 and the systems L j, j = 1,2,3 , defined by

L1 f (t) :=

t+1/3∫
t

f (u)du , L2 f (t) := L1 f
(

t +
1
3

)
, L3 f (t) := L1 f

(
t +

2
3

)
.

Since the functions L jϕk, j = 1,2,3 and k = 1,2 , have compact support, then the
entries of the 3× 2 matrix G(z) in (3.30) are Laurent polynomials, and we can try
to search an 2× 3 matrix a(z) := [a1(z),a2(z),a3(z)] satisfying (3.31) with Laurent
polynomials entries also. This leads to reconstruction functions S j,a, j = 1,2,3 , with
compact support. Proceeding as in [17], we obtain in V 2

ϕ1,ϕ2
the following sampling

formula:

f (t) = ∑
n∈Z

3

∑
j=1

L j f (n)S j,a(t − n) , t ∈ R ,

where the sampling functions, according to (3.33), are

S1,a(t) :=
85
44
ϕ1(t)+

1
11
ϕ1(t − 1)+

85
4
ϕ2(t)−ϕ2(t − 1) ,

S2,a(t) :=
−23
44
ϕ1(t)− 23

44
ϕ1(t − 1)− 23

4
ϕ2(t)+

23
4
ϕ2(t − 1) ,

S3,a(t) :=
1

11
ϕ1(t)+

85
44
ϕ1(t − 1)+ϕ2(t)− 85

4
ϕ2(t − 1) , t ∈ R .

3.3.3 L2-Approximation Properties

Consider an r × s matrix a(x) :=
[
a1(x),a2(x), . . . ,as(x)

]
with entries ak, j ∈

L∞[0,1)d , 1 ≤ k ≤ r, 1 ≤ j ≤ s, and satisfying (3.21). Let S j,a be the associated
reconstruction functions, j = 1,2, . . . ,s , given in Theorem 2. The aim of this section
is to show that if the set of generatorsΦ satisfies the Strang–Fix conditions of order
�, then the scaled version of the sampling operator
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Γa f (t) :=
s

∑
j=1
∑
α∈Zd

(L j f )(Mα)S j,a(t −Mα) , t ∈ R
d ,

gives L2-approximation order � for any smooth function f (in a Sobolev space).
In so doing, we take advantage of the good approximation properties of the scaled
space σ1/hV 2

Φ , where for h > 0, we are using the notation σh f (t) := f (ht), t ∈R
d .

The set of generators Φ = {ϕk}r
k=1 is said to satisfy the Strang–Fix conditions

of order � if there exist r finitely supported sequences bk : Zd → C such that the
function ϕ(t) = ∑r

k=1∑α∈Zd bk(α)ϕk(t −α) satisfies the Strang–Fix conditions of
order �, i.e.,

ϕ̂(0) �= 0, Dβ ϕ̂(α) = 0, |β |< �, α ∈ Z
d \ {0} . (3.37)

We denote by W �
2 (R

d) := { f : ‖Dγ f‖2 < ∞ , |γ| ≤ �} the usual Sobolev space and
by | f |�,2 := ∑|β |=�‖Dβ f‖2 the corresponding seminorm of a function f ∈W �

2 (R
d).

When 2� > d, we identify f ∈W �
2 (R

d) with its continuous choice (see [2]).
It is well known that if Φ satisfies the Strang–Fix conditions of order � and

the generators ϕk satisfy a suitable decay condition, the space V 2
Φ provides L2-

approximation order � for any function f regular enough. For instance, Lei et al.
proved in [33, Theorem 5.2] the following result: If a set Φ = {ϕk}r

k=1 of stable
generators satisfies the Strang–Fix conditions of order � and the decay condition
ϕk(t) = O

(
[1+ |t|]−d−�−ε) for each k = 1,2, . . . ,r and some ε > 0, then, for any

f ∈W �
2 (R

d), there exists a function fh ∈ σ1/hV 2
Φ such that

‖ f − fh‖2 ≤C | f |�,2 h� , (3.38)

where the constant C does not depend on h and f .
In this section we assume that all the systems L j, j = 1,2, . . . ,s, are of type (b),

i.e., L j f = f ∗h j, belonging the impulse response h j to the Hilbert space L 2(Rd).
Recall that a Lebesgue measurable function h : Rd −→ C belongs to the Hilbert
space L 2(Rd) if

|h|2 :=

⎛
⎜⎝ ∫
[0,1)d

(
∑
α∈Zd

|h(t −α)|
)2

dt

⎞
⎟⎠

1/2

< ∞ .

Notice that the space L 2(Rd) coincides with the amalgam space W (�1,L2) and
that L 2(Rd) ⊂ L1(Rd)∩L2(Rd). For f ∈ L2(Rd) and h ∈ L 2(Rd), the following
inequality holds:

∥∥{h∗ f (α)}α∈Zd

∥∥
2 ≤ |h|2 ‖ f‖2 (see [27, Theorem 3.1]); thus, the

sequence of generalized samples {(L j f )(Mα)}α∈Zd , j=1,2,...,s belongs to �2(Zd) for

any f ∈ L2(Rd).
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First we note that the operator Γa :
(
L2(Rd),‖ · ‖2

)−→ (
V 2
Φ ,‖ · ‖2

)
given by

(Γa f )(t) := (detM)
s

∑
j=1
∑
α∈Zd

(L j f )(Mα)S j,a(t −Mα) , t ∈R
d ,

is a well-defined bounded operator onto V 2
Φ . Besides, Γd f = f for all f ∈V 2

Φ .
Under appropriate hypotheses we prove that the scaled operator Γ h

a := σ1/hΓaσh

approximates, in the L2-norm sense, any function f in the Sobolev space W �
2 (R

d) as
h → 0+. Specifically we have the following:

Theorem 6. Assume 2� > d and that all the systems L j satisfy L j f = f ∗h j with
h j ∈ L 2(Rd), j = 1, . . . ,s. Then,

‖ f −Γ h
a f‖2 ≤ (1+ ‖Γa‖) inf

g∈σ1/hV 2
Φ

‖ f − g‖2, f ∈W �
2 (R

d),

where ‖Γa‖ denotes the norm of the sampling operator Γa. If the set of generators
Φ = {ϕk}r

k=1 satisfies the Strang–Fix conditions of order � and, for each k =
1,2, . . . ,r , the decay condition ϕk(t) = O

(
[1+ |t|]−d−�−ε) for some ε > 0, then

‖ f −Γ h
a f‖2 ≤C | f |�,2 h� for all f ∈W �

2 (R
d),

where the constant C does not depend on h and f .

Proof. Using that Γ h
a g = g for each g ∈ σ1/hV 2

Φ , then, for each f ∈ L2(Rd) and
g ∈ σ1/hV 2

Φ , Lebesgue’s Lemma [13, p 30] gives

‖ f −Γ h
a f‖2 ≤ ‖ f − g‖2 + ‖Γ h

a g−Γ h
a f‖2 ≤ (1+ ‖Γa‖) inf

g∈σ1/hV 2
Φ

‖ f − g‖2 ,

where we have used that ‖Γ h
a ‖ = ‖Γa‖ for h > 0. Now, for each f ∈ W �

2 (R
d) and

h > 0, there exists a function fh ∈ σ1/hV 2
Φ such that (3.38) holds, from which we

obtain the desired result. ��
More results on approximation by means of generalized sampling formulas can

be found in [15, 18].
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Chapter 4
Function Spaces for Sampling Expansions

M. Zuhair Nashed and Qiyu Sun

Abstract In this paper, we consider a variety of Hilbert and Banach spaces that
admit sampling expansions f (t) = ∑∞n=1 f (tn)Sn(t), where {Sn}∞n=1 is a family of
functions that depend on the sampling points {tn}∞n=1 but not on the function f .
Those function spaces, that arise in connection with sampling expansions, include
reproducing kernel spaces, Sobolev spaces, Wiener amalgam space, shift-invariant
spaces, translation-invariant spaces, and spaces modeling signals with finite rate of
innovation. Representative sampling theorems are presented for signals in each of
these spaces. The paper also includes recent results on nonlinear sampling of signals
with finite rate of innovation, convolution sampling on Banach spaces, and certain
foundational issues in sampling expansions.

4.1 Introduction

Series expansions and integral representations of functions and operators play a fun-
damental role in the analysis of direct problems of applied mathematics—witness
the role of power series, Fourier series, Karhunen–Loève expansion, eigenfunction
expansions of symmetric linear operators, and sampling expansions in signal
processing; and the role of Fourier transform, spectral integral representations,
and various integral representations in boundary value problems, potential theory,
complex analysis, and other areas.

Expansion theorems also play a fundamental role in inverse problems. Two
important problems discussed below are: (1) the recovery of a function from inner
product with a given set of functions (i.e., the moment problem), and (2) the
recovery of a function from its values on a subset of its domain (i.e., reconstruction
of a function from its samples via sampling expansion).
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One of the important problems in analysis is to expand a given function f in a
separable Banach space by a series of the form

f (t) =
∞

∑
n=1

cn fn(t), (4.1)

where { fn}∞n=1 is a suitable sequence of functions. This is not always possible. We
consider two important cases of such an expansion:

1. Let H be a separable Hilbert space and { fn}∞n=1 be an orthonormal sequence in
H. If {cn}∞n=1 is a sequence for which the right-hand side of the expansion (4.1)
converges to f in H, then cn = 〈 f , fn〉 for all n ≥ 1, and hence cn,n ≥ 1, are the
(generalized) Fourier coefficients. In this case, the series

f (t) =
∞

∑
n=1

〈 f , fn〉 fn(t) (4.2)

is called the (generalized) Fourier expansion. This series converges to f if and
only if the orthonormal sequence { fn} is complete in the sense that the only
function orthogonal to all the fn’s is the zero function. Equivalently, Parseval
equality

∞

∑
n=1

|〈 f , fn〉|2 = ‖ f‖2

holds for every f ∈ H.
This expansion theorem is a direct problem: Given f , find its expansion. The

associated inverse problem is the moment problem: determine f given moments
〈 f , fn〉,n ∈ J (an index set). Given any sequence of real number sn,n ∈ J, the
existence of the moment problem is whether there exists a function f such that
sn = 〈 f , fn〉,n ∈ J, while the uniqueness is whether such a function f is uniquely
determined by its moment sequence sn,n ∈ J.

2. The second type of expansion that is the central theme of this chapter, is what is
called a sampling expansion:

f (t) =
∞

∑
n=1

f (tn)Sn(t), (4.3)

where {Sn}∞n=1 is called a sampling sequence and {tn}∞n=1 is the sampling set. The
inverse problem for sampling is to determine f from given samples f (tn),n ≥ 1.

There have been many advances in sampling theory and its applications to signal
and image processing. In the past three decades, many authors developed sampling
theorems based on (1) the theory of regular and singular boundary value problems
and (2) transforms other than the Fourier transform, including such transforms as
the Sturm–Liouville transform, Jacobi transform, and Hankel transform, see [43].
Another main thrust has been in nonuniform sampling for non-bandlimited signals.
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In the past 20 years, there have been major advances in sampling theory and its
foundational aspects, where methods of functional analysis and harmonic analysis
have played pivotal roles. In particular, new directions in sampling theory have
been pursued using various function spaces that admit sampling expansions, such
as reproducing kernel Hilbert (Banach) spaces, Sobolev spaces, Wiener amalgam
space, shift-invariant spaces, translation-invariant spaces, and spaces modeling
signals with finite rate of innovation. Another direction of research on sampling
in the past decade involves average sampling, convolution sampling, nonlinear
sampling, and other fundamental issues in sampling theory. The reader may
refer to [1, 6, 7, 9–11, 15–24, 30, 33, 37, 39, 43] for various prospectives on these
advances.

The purpose of this chapter is to consider a variety of function spaces mentioned
above in which every function admits the sampling expansion (4.3). Representative
sampling expansions are presented for signals in each of these spaces. This chapter
also includes recent results on nonlinear sampling for signals with finite rate of
innovation, convolution sampling on Banach spaces, and certain foundational issues
in sampling expansions.

4.2 Fourier Series/Fourier Integral Approach
to the Whittaker, Shannon, and Kotel’nikov
Sampling Theorem

Let f be a bandlimited signal with finite energy; i.e.,

f (t) =
∫ Ω

−Ω
F(ω)eiωt dω , t ∈ (−∞,∞), (4.4)

for some square-integrable function F on [−Ω ,Ω ],Ω > 0. We extend F(ω)
periodically to the real line and expand the extension in complex Fourier series:

F(ω) =
∞

∑
n=−∞

cn exp(inπω/Ω), |ω |<Ω , (4.5)

where

cn =
1

2Ω

∫ Ω
−Ω

F(ω)exp(−inπω/Ω)dω . (4.6)

Comparing (4.4) and (4.6) leads to

cn =
1

2Ω
f (−nπ/Ω). (4.7)
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Substituting (4.7) in (4.5) gives

F(ω) =
1

2Ω

∞

∑
n=−∞

f (−nπ/Ω)exp(inπω/Ω)

=
1

2Ω

∞

∑
n=−∞

f (nπ/Ω)exp(−inπω/Ω), |ω |<Ω .

Substituting this in (4.4) and interchanging the order of integration and summation
leads to

f (t) =
1

2Ω

∞

∑
n=−∞

f (nπ/Ω)
∫ Ω

−Ω
exp(−inπω/Ω)exp(iωt)dω ,

which yields the celebrated classical expansion of a bandlimited signal f :

f (t) =
∞

∑
n=−∞

f (nπ/Ω)
sin(Ω t − nπ)
Ω t − nπ

. (4.8)

This can be simplified to

f (t) = sin(Ω t)
∞

∑
n=−∞

f (nπ/Ω)
(−1)n

Ω t − nπ
.

This classical proof is rigorous. The interchange of integration and summation can
be easily justified. But the proof is not very revealing: We perform this interchange
and a theorem pops up. A theorem is born, but we did not hear the heartbeat of its
proof.

4.3 Properties of the Sinc Function and the Paley–Wiener
Space

Let Bπ consist of all signals that are bandlimited to [−π ,π ] (i.e., Ω = π in (4.4))
and have finite energy. The space Bπ is the same as the Paley–Wiener space of
restrictions to the real axis of entire functions of exponential type π . The Paley–
Wiener space Bπ has many interesting properties that are not exploited or used in
the classical proof of the Whittaker–Shannon–Kotel’nikov sampling theorem. Some
of these properties are stated in the following theorem.

Theorem 1. (i) Bπ is a reproducing kernel space with kernel

sinc(s− t) :=
sinπ(s− t)
π(s− t)

.



4 Function Spaces for Sampling Expansions 85

(ii) The sequence {Sn}n∈Z, where Sn(t) := sinc(t −n), is an orthonormal basis for
Bπ .

(iii) The sequence {Sn}n∈Z has the discrete orthogonality property:

Sn(m) = δmn :=

{
1 if m = n,
0 if m �= n.

(iv) f (·− c) ∈ Bπ and ‖ f (·− c)‖2 = ‖ f‖2 for all f ∈ Bπ and c ∈ R. Hence Bπ is
unitarily translation-invariant subspace of L2(R).

(v) Bπ is a shift-invariant subspace of L2(R) generated by the sinc function:

Bπ =

{
∑
n∈Z

c(n) sinc(t − n) : ∑
n∈Z

|c(n)|2 < ∞
}
.

Proof. (i) Take f ∈ Bπ , and let F be the square-integrable function in (4.4). Then

f (t) =
∫ π
−π

eitωF(ω)dω , t ∈ (−∞,∞). (4.9)

This implies that

| f (t)| ≤
∫ π

−π
|F(ω)|dω ≤ (2π)1/2‖F‖2 = ‖ f‖2

and

f (t) =
1

2π

∫ π

−π
eitω

(∫ ∞
−∞

f (s)e−isωds

)
dω

=

∫ ∞

−∞
f (s)

(
1

2π

∫ π

−π
ei(t−s)ωdω

)
ds

=
∫ ∞

−∞
f (s)

sinπ(s− t)
π(s− t)

ds, t ∈ (−∞,∞).

Hence Bπ is a reproducing kernel Hilbert space with kernel sinπ(s−t)
π(s−t) .

(ii) By the reproducing property and symmetry of the sinc kernel k(s, t) :=
sinπ(s−t)
π(s−t) , we have that 〈Sn,Sm〉 = k(n,m), which takes value one if m = n and

zero if m �= n. Hence Sn,n ∈ Z, is an orthonormal set. The completeness of the
orthonormal set {Sn}n∈Z follows from (4.8).

(iii) The discrete orthogonality property is obvious.
(iv) Take f ∈ Bπ , and let F be the square-integrable function in (4.4). Then it

follows from (4.9) that for any c ∈ (−∞,∞),

f (t − c) =
1

2π

∫ π
−π

ei(t−c)ωF(ω)dω =
1

2π

∫ π
−π

eitωFc(ω)dω ,
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where Fc(ω) = e−icωF(ω) is square-integrable. Hence f (t − c) ∈ Bπ for all
t ∈ (−∞,∞).

(v) This follows from the conclusion that {Sn}n∈Z is an orthonormal basis for the
Paley–Wiener space Bπ . �

4.4 The Engineering Approach to Sampling
and Its Mathematical Deficiencies

We now turn to the engineering clever approach to the sampling theorem, see, e.g.,
[13, 30, 32]. We paraphrase some of the description in [13]. Let us consider what
happens when we sample f (t) at uniformly spaced times. If the sampling frequency
is fs, then we can model this with a multiplication of f (t) by a train of Dirac
impulsed spaces Ts := 1/ fs second apart:

f ∗(t) := f (t)Ts

∞

∑
n=−∞

δ (t − nTs) = Ts

∞

∑
n=−∞

f (nTs)δ (t − nTs).

Mathematicians consider the sequence of sampled values { f (nTs)}∞n=−∞ as a vector
in �2 (the space of all square-summable vectors). Electrical engineers like to
continue to think of this sequence as a time signal. So to stay in the analog
world, they use their beloved “Dirac impulse” as above. Informally, as they assert,
“multiplication by an impulse train” in the time domain corresponds to convolution
with an impulse train in the frequency domain. If the Fourier transform of the
sampled sequence f ∗(t) is F∗(ω), then

F∗(ω) = F(ω)∗
∞

∑
n=−∞

δ (ω− nωs) =
∞

∑
n=−∞

F(ω− nωs).

Hence, again informally, the Fourier transform of the samples (considered as a time
signal in the sense of the above representation) is an infinitely repeated replication
of F(ω) at intervals of ωs := 2π fs. The portion of the transform between −ωs/2
and ωs/2 is called the base band and all the other replication images. If f (t)
is bandlimited so that F(ω) is zero for |ω | > 2π fc, and if fs ≥ 2 fc (Shannon’s
rate), then there is no overlap between successive replications. We have lost no
information in the sampling process; if anything, we have picked up a lot of
“superfluous information” at frequencies outside the range of interest.

To recover the original signal, we must remove the replication images. First F(ω)
can be obtained from F∗(ω) by multiplying it by the characteristic function

χωs/2(ω) =
{

1 if |ω | ≤ ωs/2,
0 if |ω |> ωs/2.
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This is done by an analog filter known as an interpolation filter or a low-pass filter.
We are now back to F(ω), and the time function can be recovered via the inverse
Fourier transform:

f (t) =
∫ ∞
−∞

F(ω)eiωtdω .

In essence engineers view the Shannon sampling theorem in terms of an impulse
train and a low-pass filter in the following way [30, 32]:

f (t)
sampler�−→ f ∗(t) low pass filter�−→ f (t).

First the signal f ∈ Bπ is sampled at the integers to convert f (t) into the impulse
train

f ∗(t) =
∞

∑
n=−∞

f (n)δ (t − n),

where δ (t − n) is the Dirac delta function (impulse) at t = n. This is still expressed
as an analog signal. This then is transmitted through an ideal low-pass filter which
passes all frequencies of absolute value less than π and blocks all others. This
converts f ∗(t) back into f (t).

We denote the sampling map by S : f �−→ f ∗ and the low-pass filter map by
P : f ∗ �−→ f

Bπ
S�−→ unknown space

P�−→ Bπ .

But the above procedure has some mathematical difficulties which are not resolved
in the engineering approach:

• The sampler S takes f into f ∗, which is out of the space of bandlimited functions;
indeed, f ∗ is not a signal with finite energy.

• In what sense does the impulse train series converge? One may prove that the
series converges in the sense of tempered distributions to a generalized function.

• The map P recovers f at least formally since

P(δ (t − n)) =
1

2π

∫ π
−π

e−iωteiωndω =
sinπ(t − n)
π(t − n)

.

If P is continuous (in some topology), then

(P f ∗)(t) =
∞

∑
n=−∞

f (n)P(δ (t − n)) =
∞

∑
n=−∞

f (n)
sinπ(t − n)
π(t − n)

.

However, since S ′ (the space of all tempered distributions, see the next section)
is not a Hilbert space, we do not know if P is a continuous operator.

• Still another difficulty! P is not even well defined on S ′. Indeed,

Pg = F−1(χ[−π ,π ]ĝ), g ∈ S ′,
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where F−1 is the inverse Fourier transform of a tempered distribution. So P
corresponds under the Fourier transform to the multiplication of the Fourier
transform ĝ in S ′ by the characteristic function of [−π ,π ]. Unfortunately the
characteristic function is not a multiplier in S ′. Hence we need to restrict
ourselves to a subspace of S ′ in which χ[−π ,π ] is a multiplier.

These issues have been resolved by Nashed and Walter [28]. They obtained a
rigorous proof of the engineering approach, by considering the sampling map S as
an operator from Bπ to H−1 and the filtering map P as an operator (actually an
orthogonal projection) from H−1 to Bπ :

Bπ
S�−→ H−1 P�−→ Bπ ,

where H−1 is a Sobolev space, see the next section for the definition of Sobolev
spaces. More importantly, by emulating and extending this proof, they obtained
a general unifying approach for sampling theorems in reproducing kernel Hilbert
spaces (RKHS) that include many earlier sampling theorems.

4.5 Function Spaces: Tempered Distributions, Sobolev
Spaces and Reproducing Kernel Hilbert Spaces

4.5.1 The Space of Tempered Distributions

Let S be the space of all rapidly decreasing C∞ functions on the real line R, i.e.,
functions that satisfy

|g(k)(t)| ≤Cp,k(1+ |t|)−p, t ∈ R,

for all p,k = 0,1,2, . . .. Convergence on S may be defined by endowing S with
the seminorms:

μp,k := sup
t∈R

(1+ |t|)p|g(k)(t)|.

Then gn → g in S whenever

(1+ |t|)p(g(k)n (t)− g(k)(t)
)→ 0

uniformly in t ∈ R for each p and k ≥ 0 as n → ∞. The set S is dense in L2 :=
L2(R) (the space of all square-integrable functions on the real line). We observe
that compactly supported C∞ functions are contained in S , and that the space S is
complete with respect to the convergence of semi-norms μp,k, p,k ≥ 0.

A tempered distribution is an element in the dual space S ′ of S , i.e., S ′ consists
of all continuous linear functionals on S . The definition of Fourier transform

F f (ω) :=
∫ ∞

−∞
f (t)e−itωdt, f ∈ S
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may be extended from S to S ′. The following examples of Fourier transforms on
S ′ are needed in the derivation of a rigorous setting for the proof of the engineering
approach:

F
(
δ (t −α))= e−iωα ,

F

(
∑
n∈Z
δ (t − 2πn)

)
= ∑

n∈Z
δ (ω− n),

F

(
∑
n∈Z

aneint
)
= 2π ∑

n∈Z
anδ (ω− n),

and

F

(
∑
n∈Z

aneintχ[−π ,π ](t)
)
= ∑

n∈Z
an

sinπ(ω− n)
π(ω− n)

,

where {an}n∈Z ∈ �2.

4.5.2 Sobolev Spaces

An important Hilbert space structure on certain subsets of S ′ is provided by a
class of Sobolev spaces. For r ∈ R, the Sobolev space Hr consists of all tempered
distributions f ∈ S ′ such that

∫ ∞
−∞

| f̂ (ω)|2(ω2 + 1)rdω < ∞.

The inner product of f and g in Hr is defined by

〈 f ,g〉r :=
∫ ∞

−∞
f̂ (ω)ĝ(ω)(ω2 + 1)rdω ,

where f̂ :=F f is the Fourier transform of f . The space Hr is complete with respect
to this inner product. For r = 0, H0 is just L2(R) by Parseval identity. For r = 1,2, . . .,
Hr is the usual Sobolev space of functions that are (r− 1)-times differentiable and
whose rth derivative is in L2(R). For r = −1,−2, . . ., Hr contains all tempered
distributions with point support of order r. Thus the Dirac delta δ ∈ H−1, and δ ′,
the distributional derivative of δ , belongs to H−2.

4.5.3 Reproducing Kernel Hilbert Spaces

A Hilbert space H of complex-valued functions on a setΩ is called a RKHS if all the
evaluation functionals H � f �−→ f (t) ∈ C are continuous (bounded) for each fixed
t ∈Ω ; i.e., there exist a positive constant Ct for each t ∈Ω such that | f (t)| ≤Ct‖ f‖
for all f ∈ H.
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By Riesz representation theorem, for each t ∈Ω there exists a unique element kt

such that f (t) = 〈 f ,kt 〉 for all f ∈ H. The reproducing kernel k(·, ·) :Ω ×Ω �−→ C
of a RKHS H is defined by k(s, t) = 〈ks,kt〉,s, t ∈Ω .

We summarize some basic properties of RKHS that are particularly relevant to
signal processing, wavelet analysis, and approximation theory:

• k(s, t) = k(t,s) for all t,s ∈Ω .
• k(s,s)≥ 0 for all s∈Ω . Furthermore, if k(t0, t0)= 0 for some t0 ∈Ω , then f (t0)=

0 for all f ∈ H.
• |k(s, t)| ≤√k(s,s)

√
k(t, t) for all s, t ∈Ω .

• The reproducing kernel k(s, t) on Ω ×Ω is a nonnegative definite symmetric
kernel. Conversely by Aronszajn–Moore theorem, every nonnegative definite
symmetric function k(·, ·) on Ω ×Ω determines a unique Hilbert space Hk for
which k(·, ·) is a reproducing kernel [5]. Here a complex-valued function F on
Ω ×Ω is said to be positive definite if for any n points t1, . . . , tn ∈Ω , the matrix
A := (F(ti, t j))1≤i, j≤n is nonnegative definite, i.e., u∗Au =∑n

i, j=1 uiF(ti, t j)u j ≥ 0
for all u = (u1, . . . ,un) ∈ Cn.

• A closed subspace H̃ of a RKHS H is also a RKHS. Moreover, the orthogonal
projector P of H onto H̃ and the reproducing kernel k̃(s, t) of the RKHS H̃ are
related by P f (s) = 〈 f , k̃s〉,s ∈Ω for all f ∈ H where k̃s = Pks.

• If a RKHS space H with kernel k(·, ·) has direct orthogonal decomposition H =
H1 ⊕H2 for some complementary orthogonal closed subspaces H1 and H2, then
k = k1+k2, where k1,k2 are reproducing kernels of the reproducing kernel Hilbert
spaces H1 and H2, respectively.

• In a RKHS, the element representing a given bounded linear functional φ can be
expressed by means of the reproducing kernel: φ( f ) = 〈 f ,h〉, where h = φ(k).
Similarly for a bounded linear operator L on H to H, we have that L f (t) =
〈L f ,h〉 = 〈 f ,L∗h〉.

• Every finite-dimensional function space is a RKHS H with reproducing kernel
k(s, t) = ∑n

i=1 ui(s)ui(t), where {ui}n
i=1 is an orthonormal basis for H. (Notice

that the sum in the above definition of the kernel k is invariant under the choice
of orthonormal basis).

• The space W 1, that contains all functions f ∈ L2[0,1] such that f is absolutely
continuous and f ′, which exists almost everywhere, is in L2[0,1], and f (0) =
0, is a RKHS with kernel k(s, t) = min(s, t) under the inner product 〈 f ,g〉 =∫ 1

0 f (t)g(t)dt.
• Sobolev space Hs,s > 1/2, is a reproducing kernel Hilbert space.
• Let H be a separable RKHS, then its reproducing kernel k(·, ·) has the expansion:

k(s, t) =
∞

∑
n=1

ϕn(t)ϕn(s),

where {φn}∞n=1 is an orthonormal basis for H. We remark that for a general
separable Hilbert space H, ∑∞n=1ϕn(t)ϕn(s) is not a reproducing kernel and also
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that φn’s do not generally corresponds to sampling expansions. If they do, i.e.,if
ϕn(t) = k(tn, t) for some sequence {tn}, then we have that f (t) =∑∞n=1 f (tn)ϕn(t),
this constitutes a sampling theorem.

• If the reproducing kernel k(s, t) of a RKHS H is continuous on Ω ×Ω , then H
is a space of continuous functions (uniformly continuous on a boundedΩ ). This
follows from

| f (t)− f (s)|= |〈 f ,kt − ks〉| ≤ ‖ f‖‖kt − ks‖
and ‖kt − ks‖2 = k(t, t)− 2k(t,s)+ k(s,s) for all s, t ∈Ω .

• Strong convergence in a RKHS H implies pointwise convergence and uniform
convergence on compact sets, because

| f (t)− fn(t)|= |〈 f − fn,kt〉| ≤ ‖ f − fn‖
√

k(t, t).

• L2[a,b], the space of all square-integrable functions on the interval [a,b], is not a
RKHS. Indeed, point evaluation is not well defined. Each function f ∈ L2[a,b] is
actually an equivalence class of functions equal to each other almost everywhere.
Thus the“value” at a point has no meaning since any point has measure
zero.

4.6 Rigorous Justification of the Engineering Approach
to Sampling

This section involves a search for function spaces in which the mathematical
difficulties described in Sect. 4.3 are resolved. Clearly we want to work with a
subspace H of the space S ′ of tempered distributions. We require that δ ∈ H
and the convolution signal of the impulse train must converge in H under a mild
condition on { f (tn)}∞n=−∞. As remarked in Sect. 4.4, the characteristic function is
not a multiplier in the space S ′, and hence the space H must also have the property
that the characteristic function is a multiplier in H. Finally, the sampling map S and
the low-pass filter map P must be well defined on the appropriate spaces, and their
composition PS is the identity map:

• The characteristic functions are multipliers in the space of Fourier transforms
of the elements in Hr(R), which can be identified with the image under the
Fourier transform of L2

r (R), the space of square-integrable functions with respect
to the measure dμ(x) = (1+ |x|2)rdx. So we may consider Hr with r > −1/2;
specifically we take H−1, since δ ∈ H−1.

• We consider the sampling map S f = f ∗ as a map onto H−1. Then the partial sums
of the sampled impulse train ∑N

n=−N f (n)δ (t − n) belong to H−1 and converges
in the norm of H−1 to f ∗. This proposition does not require the signal to be
bandlimited, but the next result does.
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• When we consider projector onto the space H−1, Bπ ⊂ L2 ⊂H−1 and Bπ is closed
in the topology of H−1. Hence we can define the orthogonal projection of H−1

onto Bπ . The reproducing kernel of Bπ enables us to compute this projection
easily. In fact,

Pδa(t) = k(t,a), t ∈ R

and

P f ∗ = lim
N→∞

N

∑
n=−N

f (n)k(·,n)

in the norm of H−1 [28]. The above series converges to P f ∗(t) by the continuity
of the orthogonal projector and to f (t) by the sampling theorem. Thus P f ∗ = f .

The above ideas provide a mathematical proof of the engineering arguments, but
they also suggest important extensions to other RKHS, as discussed in [28].

4.7 Sampling in Reproducing Kernel Hilbert Spaces

At the outset, the expansions (4.2) and (4.3) mentioned in introduction section
appear markedly different, or at least not seem to be related. The expansion (4.2)
holds for any complete orthonormal sequence in a separable Hilbert space, and
sampling points {tn} could have no meaning in this context. On the other hand,
the sampling expansion does not require the sampling sequence {Sn(t)}∞n=1 to be
orthonormal.

The expansions (4.2) and (4.3) can indeed be related. In finite-dimensional spaces
the expansions are based on different choices of orthonormal basis. One with respect
to inner product of two continuous functions, and the other is based on discrete
orthogonality or biorthogonality of the sequences.

The expansions (4.2) and (4.3) may also be related in some special cases of
orthonormal sequences in certain infinite-dimensional spaces. Let f be a signal
defined on the real line. Suppose that there exists a reproducing kernel k(t,s)
such that for some real numbers {tn}∞n=1, the sequence fn(s) = k(tn,s),n ≥ 1, is
a complete orthonormal sequence, then cn = 〈 f , fn〉 = f (tn). The series expansion
∑∞n=1 cn fn then becomes a sampling expansion, i.e., it states how to recover f (t)
from the sample values { f (tn)}∞n=1. For example, for π-bandlimited signals, k(t,s) =
sinπ(t−s)
π(t−s) and Sn(t) = k(t,n) is an orthonormal basis for Bπ , and the expansion

result mentioned above reduces to the Whittaker–Shannon–Kotel’nikov sampling
expansion [42].

In [28], the authors introduced an approach that provided general sampling
theorem for functions in RKHS. The sampling theorems are for functions in a
general RKHS with reproducing kernel k(t,s), which is closed in the Sobolev
space H−p, p > 1/2. The sampling functions Sn,n ≥ 1, need not be an orthogonal
system, and the theory allows nonorthogonal sampling sequences. Then the system
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{Sn := k(tn, ·)}∞n=1 has to satisfy a biorthogonality condition, i.e., Sn(tm) = δmn

for all m,n ≥ 1, and the sampling points must satisfy a density-type condition.
This general setup includes sampling theorems related to other transforms than the
Fourier transform as in the classical theory. For example, Sturm–Liouville, Jacobi,
and Laguerre transforms are among the examples discussed in [28], as well as
sampling using frames. Also for the orthogonal case, several error analyses, such
as truncation, aliasing, jittering, and amplitude error, are discussed in details.

Now we state a representative sampling theorem for signals in a reproducing
kernel Hilbert space [28].

Theorem 2. Let H ⊂ L2(R) be a reproducing kernel Hilbert space that is closed in
the Sobolev space H−1 and under differentiation. Assume that its reproducing kernel
k(s, t) is continuous and has the zero sequence {tn} which is a set of uniqueness for
H, and assume that {tn} tends to infinity as n tends to infinity. If f ∈ H satisfies
f (t)/k(t, t) = O(t−2), then the sampled sequence

f ∗(t) =∑
n

f (tn)
k(tn, tn)

δ (t − tn)

converges in the sense of H−1 and its orthogonal projection onto H equals to f (t),
and the series

f (t) =∑
n

f (tn)
k(tn, tn)

k(tn, t)

converges uniformly on sets for which k(t, t) is bounded.

4.8 Sampling in Shift-Invariant Spaces

A shift-invariant space generated by a square-integrable function φ is given by

V2(φ) :=

{
∑
n∈Z

cnφ(·− n) : ∑
n∈Z

|cn|2 < ∞
}
.

Shift-invariant spaces have been shown to be realistic for modeling signals with
smoother spectrum, and also suitable for taking into account real acquisition and
reconstruction devices. The notion of shift-invariant spaces arises in approximation
theory, wavelet theory, and sampling theory.

For the generator φ of a shift-invariant space, we usually assume that {φ(·− n) :
n ∈ Z} consisting of all integer shifts of the generator φ is a Riesz basis for V2(φ);
i.e., there exist positive constants A and B such that

A∑
n∈Z

|cn|2 ≤
∥∥∥∑

n∈Z
cnφ(·− n)

∥∥∥2

2
≤ B∑

n∈Z
|cn|2.



94 M.Z. Nashed and Q. Sun

The Paley–Wiener space Bπ is a shift-invariant space generated by the sinc function
sinc(t), and the integer shifts of the sinc function form an orthonormal basis for
the Paley–Wiener space Bπ . The following is a representative sampling theorem for
signals in a shift-invariant space V2(φ) established in [40].

Theorem 3. Let φ be a real continuous function such that supt∈R |φ(t)|(1 +
|t|)1+ε < ∞ for some ε > 0, φ̂∗(ω) := ∑n∈Z φ(n)e−inω �= 0 for all ω ∈ R, and
{φ(t−n) : n∈ Z} is an orthonormal basis for V2(φ). Then any signal f ∈V2(φ) can
be stably reconstructed from its samples { f (n)}n∈Z on the integer lattice. Moreover,

f (t) = ∑
n∈Z

f (n)φ̃ (t − n) for all f ∈V2(φ),

where φ̃ ∈V2(φ) is defined by ˆ̃φ(ω) = φ̂ (ω)/φ̂∗(ω),ω ∈ R.

The reader may refer to [1, 4, 35, 37, 41] and references therein for some
fundamental issues to sampling theory in shift-invariant spaces.

4.9 Sampling in Unitarily Translation-Invariant Hilbert
Spaces

In this section, we consider sampling theorems on a unitarily translation-invariant
RKHS generated from a single function. To be more specific, the RKHS Hφ has the
reproducing kernel

kφ (t,s) =
∫ ∞

−∞
φ(u− t)φ(u− s)du (4.10)

generated by a function φ ∈ L1(R)∩L2(R), whose Fourier transform does not have
real zeros. Examples of such a generating function φ includes (σ2 + t2)−1, e−σ2t2

,
and e−σ |t| where σ > 0. The RKHS Hφ with reproducing kernel kφ in (4.10) is given
by

Hφ = { f : ‖ f‖Hφ < ∞}, (4.11)

where

‖ f‖Hφ :=

(
1

2π

∫
R
| f̂ (ω)|2/|φ̂(ω)|2dω

)1/2

.

Theorem 4 ([38]). Let φ be an integrable function on the real line such that its
Fourier transform φ̂ does not have real zeros and

∫
R |φ(t)|2(1 + t2)αdt < ∞ for

some α > 1, kφ be the reproducing kernel in (4.10), and · · · < λ−2 < λ−1 < λ0 =
0 < λ1 < λ2 < · · · be sampling points with λ j+1 −λ j ≥ ε > 0 for all j ∈ Z. Denote
by X the closed subspace of the reproducing kernel Hilbert space Hφ in (4.11)
spanned by kφ (·, t j), j ∈ Z. Then the sampling operator

X � f �−→ ( f (t j)) j∈Z
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is stable in the sense that there exist positive constants A and B such that

A‖ f‖Hφ ≤ ‖( f (t j)) j∈Z‖2 ≤ B‖ f‖Hφ for all f ∈ X .

Moreover, the sampling expansion

f (t) = ∑
j∈Z

f (t j)
kφ (t, t j)

kφ (0,0)

is valid for all f ∈ X .

4.10 Sampling Signals with Finite Rate of Innovation

Signals with finite rate of innovation are those signals that can be determined by
finitely many samples per unit of time [39]. The concept of signals with finite rate of
innovation was introduced and studied by Martin Vetterli and his school. Prototype
examples of signals with finite rate of innovation include delta pulses, narrow pulses
in ultrawide band communication, mass spectrometry data in medical diagnosis, and
splines with (non-)uniform knots. They also include bandlimited signals and time
signals in shift-invariant spaces, which are discussed in the previous sections.

A common feature of signals with finite rate of innovation is that they have a
parametric representation with a finite number of parameters per unit time. So we
may model a signal f with finite rate of innovation as a superposition of impulse
response of varying positions, amplitudes, and widths [34], i.e.,

f (t) = ∑
λ∈Λ

cλφλ (t −λ ), (4.12)

where each λ ∈Λ represents the innovative position of the signal, φλ is the impulse
response of the signal-generating device at the innovative position λ , and cλ is the
amplitude of the signal at the innovation position λ . Thus the function space

Vp(Φ) :=

{
∑
λ∈Λ

c(λ )φλ (·−λ ) : (c(λ ))λ∈Λ ∈ �p(Λ)

}
,1 ≤ p ≤ ∞, (4.13)

could be suitable for modeling signals with finite rate of innovation.
Sampling theory for signals with finite rate of innovation has been demonstrated

to be important for accurate time estimation of ultraband communication, registra-
tion of multiview images, pattern recognition, quantification of spectra, etc. The
following is a sampling theorem for signals with finite rate of innovation when the
innovative position of the signal and the impulse response of the signal-generating
device at the innovative position are given [8, 33]:
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Theorem 5. Let Λ ,Γ be relatively separated subsets of R, Φ = {φλ : λ ∈Λ} be a
family of continuous functions on R such that supt∈R,λ∈Λ |φλ (t)|(1+ |t|)α < ∞ for
some α > 1, and the space V2(Φ) be as in (4.13). Assume thatΦ is a Riesz basis of
V2(Φ), and that Γ is a stable ideal sampling set for V2(Φ), i.e., there exist positive
constants A and B such that

A‖ f‖2 ≤ ‖( f (γ))γ∈Γ ‖2 ≤ B‖ f‖2 for all f ∈V2(Φ).

Then there exists a displayer Ψ̃ = {ψ̃γ : γ ∈ Γ } such that

sup
t∈R,γ∈Γ

|ψγ (t)|(1+ |t|)α < ∞

and
f (t) = ∑

γ∈Γ
f (γ)ψ̃γ (t − γ) for all f ∈V2(Φ).

Now we consider nonlinear and highly challenging problem of how to identify
innovative positions and amplitudes of a signal with finite rate of innovation. For the
stability for identification, the innovation positions should be separated from each
other and the amplitudes at innovation positions should be above a certain level.
So we may model those signals with finite rate of innovation as superposition of
impulse response of active and nonactive generating devices located at unknown
neighbors of a uniform grid. In [36] we assume, after appropriate scaling, that
signals live in a perturbed shift-invariant space

V∞,� :=

{
∑
n∈Z

cnϕ(·− n−σn) : (ck)k∈Z ∈ �∞�(Z)

}

with unknown perturbation σ := (σk)k∈Z, where

�∞�(Z) =

{
c := (ck)k∈Z : ‖c‖�∞� := sup

ck �=0
|ck|+ |ck|−1 < ∞

}
.

A negative result for sampling in the perturbed shift-invariant space V∞,� is that not
all signals in such a space can be recovered from their samples if ϕ satisfies the
popular Strang-Fix condition. The reason is that one cannot determine the jitter σ0

of the signal∑k∈Zϕ(·−k−σ0),σ0 ∈R, as it has constant amplitudes and is identical
for all σ0 ∈R. On the positive side, it is shown in [36] that any signal h in a perturbed
shift-invariant space with unknown (but small) jitters can be recovered exactly from
its average samples 〈h,ψm(· − k)〉,1 ≤ m ≤ M,k ∈ Z, provided that the generator
ϕ of the perturbed shift-invariant space and the average samplers ψm,1 ≤ m ≤ M,
satisfy the following condition:

rank

(
[∇̂ϕ , ψ̂1](ξ ) · · · [∇̂ϕ , ψ̂M](ξ )
[ϕ̂ , ψ̂1](ξ ) · · · [ϕ̂ , ψ̂M](ξ )

)
= 2 for all ξ ∈ [−π ,π ]. (4.14)
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Here the bracket product [ f ,g] of two square-integrable functions f and g is given
by [ f ,g](ξ ) = ∑l∈Z f (ξ + 2lπ)g(ξ + 2lπ).

Theorem 6. Let ϕ and ψ1, . . . ,ψM satisfy (4.14) and have the following regularity
and decay properties:

sup
t∈R

(
|ϕ(t)|+ |ϕ ′(t)|+ |ϕ ′′(t)|+

M

∑
m=1

|ψm(t)|
)
(1+ |t|)α < ∞ (4.15)

for some α > 1. Then for any L≥ 1, there exists a positive number δ1 ∈ (0,1/2) such
that any signal h(t) = ∑k∈Z ckϕ(t − k−σk) in the space V∞,� with ‖(ck)k∈Z‖�∞� ≤
L and ‖(σk)k∈Z‖∞ ≤ δ1 could be reconstructed from its average sample data
〈h,ψm(·− k)〉,1 ≤ m ≤ M,k ∈ Z, in a stable way.

4.11 Sampling in Reproducing Kernel Banach Subspaces
of Lp

Let 1 ≤ p ≤ ∞. A bounded linear operator T on Lp(R) is said to be an idempotent
operator if T 2 = T . Denote the range space of the idempotent operator T on Lp(R)
by Vp; i.e.,

Vp :=
{

T f : f ∈ Lp(R)
}
. (4.16)

The Paley–Wiener space, finitely generated shift-invariant spaces, p-integrable
spline spaces, spaces modeling signals with finite rate of innovation, and Lp itself
are the range space of some idempotent operators.

Denote the Wiener amalgam space by

W 1 :=

{
f ∈ L1(R) : ‖ f‖W 1 :=

∥∥∥∥∥ sup
−1/2≤z<1/2

| f (·+ z)|
∥∥∥∥∥

1

< ∞

}

and the modulus of continuity of a kernel function K on R×R by

ωδ (K)(s, t) := sup
−δ≤z1,z2≤δ

|K(s+ z1, t + z2)−K(x,y)|.

A sampling set Γ in this chapter means a relatively separated discrete subset
of R; i.e.,

BΓ (δ ) := sup
t∈R
∑
γ∈Γ

χ[−δ ,δ ](t − γ)< ∞ (4.17)

for some δ > 0, where χE is the characteristic function on a set E . A sampling set
Γ is said to have gap δ > 0 if

AΓ (δ ) := inf
t∈R
∑
γ∈Γ

χ[−δ ,δ ](t − γ)≥ 1 (4.18)
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[1, 3, 4]. If we assume that the idempotent operator T is an integral operator

T f (s) =
∫

R
K(s, t) f (t)dt, f ∈ Lp(R), (4.19)

whose measurable kernel K has certain off-diagonal decay and regularity,∥∥∥∥sup
z∈R

|K(·+ z,z)|
∥∥∥∥

W1

< ∞ (4.20)

and

lim
δ→0

∥∥∥∥sup
z∈R

|ωδ (K)(·+ z,z)|
∥∥∥∥

W1

= 0, (4.21)

then,

• Vp is a reproducing kernel subspace of Lp(R); i.e., for any t ∈ R there exists a
positive constant Ct such that

| f (t)| ≤Ct‖ f‖Lp(R) for all f ∈Vp. (4.22)

• The kernel K satisfies the “reproducing kernel property”:

∫
R

K(s,z)K(z, t)dz = K(s, t) for all s, t ∈ R. (4.23)

• K(·, t) ∈V for any t ∈ R.
• Vp := {∑λ∈Λ c(λ )φλ (t − λ ) : (c(λ ))λ∈Λ ∈ �p(Λ)}, where Λ is a relative

separated discrete subset of R and Φ = {φλ}λ∈Λ ⊂ Vp is localized in the sense
that there exists a function h in the Wiener amalgam space W 1 such that φλ is
dominated by h for every λ ∈Λ , i.e.,

|φλ (t)| ≤ h(t) for all λ ∈Λ and t ∈ R. (4.24)

• Signals in Vp have finite rate of innovation.
• For p = 2, an idempotent operator T with kernel K satisfying symmetric

condition K(x,y) = K(y,x) is a projection operator onto a closed subspace of L2.
In this case, the idempotent operator T and its kernel K is uniquely determined
by its range space V2 onto L2.

The following sampling problem in the reproducing kernel space Vp is estab-
lished in [25].

Theorem 7. Let 1 ≤ p ≤ ∞, T be an idempotent integral operator whose kernel
K satisfies (4.20) and (4.21), V be the reproducing kernel subspace of Lp(R)
associated with the operator T , and δ0 > 0 be so chosen that

r0 :=

∥∥∥∥sup
z∈R

|ωδ0/2(K)(·+ z,z)|
∥∥∥∥

L1(R)

< 1. (4.25)
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Then any signal f in V can be reconstructed in a stable way from its samples
f (γ),γ ∈ Γ , taken on a relatively separated subset Γ of R with gap δ0.

Similar conclusion to the one in the above sampling theorem has been established
in [12, Sect. 7.5] when the kernel K of the idempotent operator T satisfies the
symmetric condition K(x,y) = K(y,x).

4.12 Convolution Sampling in Reproducing Kernel Banach
Subspaces of Lp

In this section, we consider convolution sampling for signals in certain reproducing
kernel subspaces of Lp,1 ≤ p ≤ ∞. Here convolution sampling of a signal is ideal
sampling of the convoluted signal taken on a sampling set. Precisely, given an
integrable convolutor ψ and a sampling set Γ , the convolution sampling of a signal
f includes two steps: Convoluting ψ with the signal f ,

ψ ∗ f (t) :=
∫ ∞

−∞
f (s)ψ(t − s)ds,

and then sampling the convoluted signal ψ ∗ f at the sampling set Γ ,

f
convoluting�−→ f ∗ψ sampling�−→ {( f ∗ψ)(γ)}γ∈Γ .

The data obtained by the above convolution sampling procedure is given by
{( f ∗ψ)(γ)}γ∈Γ . In [27], it is shown that any signal in the reproducing kernel
subspace Vp associated with an idempotent operator can be stably reconstructed
from its convolution samples taken on a sampling set with small gap if and only if
the convolution procedure is stable on that space.

Theorem 8. Let 1 ≤ p ≤ ∞,ψ1, . . . ,ψL be integrable functions on the real line, Vp

be the reproducing kernel subspace of Lp in (4.16), and set Ψ = (ψ1, . . . ,ψL)
T .

Assume that the kernel K of the idempotent operator T associated with the
reproducing kernel space Vp satisfies (4.20) and (4.21). Then the following two
statements are equivalent:

(i) Ψ is a stable convolutor on Vp; i.e.,

0 < inf
g∈Vp,‖g‖p=1

L

∑
l=1

‖ψl ∗ g‖p ≤ sup
g∈Vp,‖g‖p=1

L

∑
l=1

‖ψl ∗ g‖p < ∞.
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(ii) Ψ is a stable convolution sampler on Vp for all sampling sets having sufficiently
small gap; i.e., there exists δ0 > 0 such that

0 < inf
0 �= f∈Vp

∑L
l=1

∥∥(ψl ∗ f (γ)
)
γ∈Γ
∥∥

p

‖ f‖p
≤ sup

0 �= f∈Vp

∑L
l=1

∥∥(ψl ∗ f (γ)
)
γ∈Γ
∥∥

p

‖ f‖p
<∞

holds for any sampling set Γ satisfying 1 ≤ AΓ (δ ) ≤ BΓ (δ ) < ∞ for some δ ∈
(0,δ0).

The equivalence in Theorem 8 was considered in [4] under the assumption that
the reproducing kernel space Vp is a finitely-generated shift-invariant space.

4.13 Reproducing Kernel Hilbert Space Induced
by Sampling Expansions

As indicated earlier, both the sampling map

f �−→ ( f (tn))
∞
n=1

and the inverse map
( f (tn))

∞
n=1 �−→ f

need to be continuous in a setting where sampling expansions are to be used. Thus
the evaluation functional Et f := f (t) needs to be continuous for all t. Equivalently,
the signal resides in a RKHS, even though this RKHS may not explicitly be
identified. In [28], the authors have shown that, under very mild conditions, many
versions of sampling theorems hold for RKHS. In [29], the authors asked whether an
RKHS exists for each sampling theorem and showed that the answer is affirmative
when a sampling sequence satisfies minimal properties. The starting point is an
abstract notion of a sampling expansion.

Definition: Let f be a function belonging to a class F of continuous functions on
Ω ⊂ R. A sampling theorem is associated with F if there is a sequence of sampling
pairs {(Sn, tn)} of functions Sn ∈ F and points tn ∈Ω such that

• Sn(tk) = δnk, where δnk is the Kronecker delta.
• For each f ∈ F , the sequence { f (tn)} ∈ �2, i.e., ∑n | f (tn)|2 < ∞.
• The set {tn} is a set of uniqueness for F .
• For each {bn} ∈ �2 the series ∑n bnSn(t) converges pointwise in Ω .

Then the authors construct a RKHS associated with sampling expansion as
follows [29]:
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Theorem 9. Let H0 be the Hilbert space consisting of F with the inner product
〈 f ,g〉0 = ∑n f (tn)g(tn). Then H0 satisfies the following:

• H0 is a reproducing kernel Hilbert space with k(t,s) = ∑n Sn(t)Sn(s) as its
reproducing kernel.

• {Sn} is an orthogonal basis for H0.
• The sampling expansion g(t) = ∑n g(tn)Sn(t) holds for any g ∈ H0.

4.14 Sampling in Reproducing Kernel Banach Spaces

A reproducing kernel Banach space is a Banach space B of functions on a set
Ω such that the evaluation functions f → f (t) is continuous for each t ∈ Ω [5].
The range space Vp of an idempotent integral operator is a reproducing kernel
Banach space when the kernel of the idempotent operator satisfies certain regularity
conditions. In this section, we investigate sampling in a reproducing kernel Banach
space.

Let 1 ≤ p ≤∞ and B be a Banach space with norm denoted by ‖ ·‖B. We say that
a countable subset Λ of Ω is a p-sampling set for the Banach space B if

0 < inf
f∈B,‖ f‖B=1

‖( f (λ ))λ∈Λ‖p ≤ sup
f∈B,‖ f‖B=1

‖( f (λ ))λ∈Λ‖p < ∞, (4.26)

and a countable collection of elements gλ ,λ ∈ Λ , in the dual space of B to be a
p-frame if

0 < inf
‖ f‖B=1

‖(gλ ( f ))λ∈Λ ‖p ≤ sup
‖ f‖B=1

‖(gλ ( f ))λ∈Λ‖p < ∞, (4.27)

i.e., the analysis operator T : B � f �−→ (gλ ( f ))λ∈Λ ∈ �p is bounded from both
above and below [2]. Similarly to sampling in a RKHS, for a reproducing kernel
Banach space B of functions on a set Ω , a countable subset Λ of Ω is a p-sampling
set for the space B if and only if the corresponding evaluation functionals hλ ,λ ∈Λ ,
form a p-frame for the space B. Moreover, in [14] it is shown that a reconstruction
formula always exists.

Theorem 10. Let 1 ≤ p,q ≤ ∞ satisfy 1/p+ 1/q = 1, B be a reproducing kernel
Banach space of functions on a set Ω , and Λ ⊂ Ω be a p-sampling set. Then there
exists a collection of functions Sλ (t),λ ∈Λ , such that:

• (Sλ (t))λ∈Λ is q-summable for every t ∈Ω .
• (ηλ )λ∈Λ is a p-frame for the range space of the sampling operator S : B � f �−→

( f (λ ))λ∈Λ ∈ �p, where ηλ = (Sλ ′(λ ))λ ′∈Λ .
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• Every signal f in the reproducing kernel Banach space B has the following
sampling expansion:

f (t) = ∑
λ∈Λ

f (λ )Sλ (t), t ∈Ω ,

with the pointwise convergence.

4.15 Average Sampling in L2

In this section, we consider very general sampling procedure where the samples
are obtained by inner products between time signal and sampling functionals. More
precisely, given a time signal f living in a Hilbert space H, its average sample yγ at
the location γ ∈ Γ is obtained by taking the inner product between the signal f and
the sampling functional ψγ (·− γ) at the location γ; i.e., the sampling procedure on
H via the average samplerΨ = (ψγ (·− γ))γ∈Γ is a linear operator from H to �2(Γ ):

S : H � f �−→ {yγ := 〈 f ,ψγ (·− γ)〉}γ∈Γ ∈ �2(Γ ). (4.28)

We restrict ourselves to consider well-localized samplersΨ =(ψγ (·−γ))γ∈Γ , which
means that Γ is a relatively separated subset of R and the sampling functionals ψγ
are dominated by a function h in the Wiener amalgam space W 1; i.e., |ψγ (t)| ≤ h(t)
for all t ∈ R and γ ∈ Γ . The reasons for considering well-localized samplers are
twofold:

• At each position γ ∈Γ , we locate an acquisition device, and hence it is reasonable
to assume that there are finitely many such acquisition devices in any unit
intervals, which in turn implies that Γ is relatively separated.

• We use the sampling functional ψγ to reflect the characteristic of the acquisition
device at the location γ , and hence the sampling functional ψγ should essentially
be supported in a neighborhood of the sampling location γ , which can be
described by the dominance by a function h with fast decay at infinity.

It is well known that signals with finite energy do not have finite rate of
innovation. In [26], we show that any signal f with finite energy could be determined
by its samples 〈 f ,ψγ (·− γ)〉,γ ∈Γ for some well-localized sampler (ψγ (·− γ))γ∈Γ ,
but could not be recovered in a stable way from the samples 〈 f ,ψγ (· − γ)〉,γ ∈ Γ
for any well-localized sampler (ψγ (·− γ))γ∈Γ .

Theorem 11. (i) There is a well-localized sampler (ψγ (·− γ))γ∈Γ such that any
function f ∈ L2 is uniquely determined by its samples 〈 f ,ψγ (·− γ)〉,γ ∈ Γ .

(ii) There does not exist a well-localized sampler (ψγ(· − γ))γ∈Γ such that the
sampling operator S in (4.28) is stable for H = L2 in the sense that there exist
positive constants A and B such that A‖ f‖2

2 ≤ ∑γ∈Γ |〈 f ,ψγ (·− γ)〉|2 ≤ B‖ f‖2
2

for all f ∈ L2.
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We remark that functions ψγ ,γ ∈ Γ , in the well-localized sampler in the first
conclusion of Theorem 11 cannot be selected to be supported in a fixed compact
set, but it is possible to let elements ψγ ,γ ∈ Γ , in the well-localized sampler to be
independent on γ ∈ Γ . This is closely related to the spectral problem: the density
of the collection of exponentials {exp(iγt)}γ∈Γ in a weighted L2 space [31]. In
[26], we conjecture that there is not a determining sampler {ψγ(·− γ)| γ ∈ Γ } such
that ‖ψγ‖2 = 1 and |ψγ(x)| ≤ C exp(−ε|x|) for some positive constants C,ε and a
relatively separated subset Γ of R.

Dedication. This chapter is dedicated to Professor Gilbert Walter on the occasion
of his 80th birthday:

• In appreciation of his friendship and important contributions to Mathematical
Analysis and Applications.

• With admiration of the novel and clever ways in which he has brought together
ideas from classical and modern analysis to advance our understanding of
generalized functions, wavelets, and signal processing.
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Chapter 5
Coprime Sampling and Arrays in One
and Multiple Dimensions

P.P. Vaidyanathan and Piya Pal

Abstract This chapter gives an overview of the concept of coprime sampling. The
basic idea is that a continuous-time (or spatial) signal is sampled simultaneously
by two sets of samplers, with sampling rates 1/MT and 1/NT where M and N are
coprime integers and T > 0. One of the results is that it is possible to estimate the
autocorrelation of the signal at a much higher rate (= 1/T ) than the total sampling
rate. Thus, any application which is based on autocorrelation will benefit from such
sampling and reconstruction. One example is in array processing, in the context
of estimation of direction of arrival (DOA) of sources. Traditionally, an array with
L sensors would be able to identify L− 1 independent sources, but with a pair of
coprime arrays, one can identify O(L2) sources. It is also shown how to use two
DFT filter banks, one in conjunction with each sampling array, to produce a much
denser tiling of the frequency domain than each filter bank would individually be
able to do. This chapter also discusses the extension of coprime sampling to multiple
dimensions by using sampling geometries that are defined based on lattices. In this
context the generation of coprime pairs of integer matrices is a very interesting
mathematical problem and is dealt with in detail. The use of coprime samplers
in system identification is also elaborated upon. A brief review of fractionally
spaced equalizers in digital communications, in the context of coprime sampling,
is included.

5.1 Introduction

Coprime sampling was recently introduced in [18] for the case of one-dimensional
signals and extended to multiple dimensions in [19]. The basic idea is that a
continuous-time (or spatial) signal is sampled simultaneously by two sets of
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samplers at rates 1/NT and 1/MT , where M and N are coprime integers. One of
the results is that it is possible to estimate the autocorrelation of the signal at the
much higher rate 1/T. Thus, any application which is based on autocorrelation will
benefit from such sampling and reconstruction.

One example is in array processing, in the context of estimation of directions
of arrival (DOA) of sources. Traditionally, an array with L sensors would be
able to identify L − 1 independent sources, but with a pair of coprime arrays,
one can identify O(L2) sources. It is also possible to use two DFT (Discrete
Fourier Transform) filter banks, one in conjunction with each sampling array, to
produce a much denser tiling of the frequency domain than each filter bank would
individually be able to do. Coprime sampling can also be used to estimate the
frequencies of sinusoids buried in noise. The highest frequency that can be estimated
is proportional to 1/T even though the number of samples per unit time is only
(1/NT )+ (1/MT).

Coprime sampling can be extended to multiple dimensions by using a pair of
samplers on lattice geometries. An important mathematical problem that comes
up in this context is the generation of pairs of integer matrices M and N which
are commuting and coprime. Coprime sampling also has interesting applications in
system identification and in channel equalization.

5.1.1 Outline

In this chapter we review coprime sampling and some of its applications. In Sect. 5.2
we introduce coprime samplers and spatial arrays for the case of one-dimensional
signals. The application in the estimation of direction of arrival of uncorrelated
sources is described in Sect. 5.3, and Sect. 5.4 explains the application of DFT filter
banks in conjunction with coprime arrays. For multidimensional signals, coprime
sampling theory based on lattice geometries is introduced in Sect. 5.5, and many
properties of multidimensional arrays are reviewed in Sect. 5.5.1. The use of two-
dimensional DFT filter banks in conjunction with coprime arrays is described in
Sect. 5.5.2. An important mathematical problem that comes up in this context is
the generation of pairs of integer matrices which are commuting and coprime.
This is discussed at length in Sect. 5.6. The application of coprime sampling in the
identification of linear systems from input-output measurements is briefly described
in Sect. 5.7, and applications in fractionally spaced equalizers are elaborated in
Sect. 5.8.

Historically, coprime sampling has in the past been used for identifying sinusoids
in noise (see references in [27, 28]). Coprime pulsing has also been employed for
the resolution of range ambiguities in radar [16]. Coprime arrays, their coarrays,
and applications, as discussed in this chapter, were introduced in [18], and the two-
dimensional extensions were given in [19].
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5.1.2 Notations

Here are some of the standard acronyms used throughout the chapter: (a) FIR (finite
duration impulse response), (b) IIR (infinite duration impulse response), (c) DFT
and IDFT (discrete fourier transform and its inverse), (d) LTI (linear time invariant),
and (e)MIMO (multiple input multiple output). Boldfaced letters indicate vectors
and matrices. AT ,A∗, and A†, respectively, denote the transpose, conjugate, and
transpose-conjugate of a matrix. The z-transform of a sequence x(n) is denoted as
X(z), that is, X(z) = ∑∞n=−∞ x(n)z−n. The greatest common divisor (gcd) of a set of
integers a,b,c, . . . is denoted as

(a,b,c, . . .). (5.1)

The quantity WN = e− j2π/N, where j =
√−1, arises in the expressions involving

the DFT, and the subscript is dropped if there is no ambiguity. The term polynomial
matrix refers to an expression of the form

H(z) =
J

∑
n=0

h(n)z−n, (5.2)

where h(n) are matrices. Thus a polynomial matrix is nothing but the transfer
function of a causal MIMO LTI system [23].

5.2 Coprime Arrays in One Dimension

Consider Fig. 5.1 which shows two uniform samplers operating in parallel on a
continuous-time signal. The rates of the samplers are 1/MT and 1/NT , where M > 1
and N > 1 are integers, and the sampled sequences are

x(Mn1) = xc(MT n1), x(Nn2) = xc(NT n2), (5.3)

where xc(t) is the underlying continuous-time signal being sampled. Imagine that
xc(t) is wide-sense stationary (WSS) with an autocorrelation

Rc(τ) = E[xc(t)x
∗
c(t − τ)] (5.4)

and that we are interested in obtaining the samples

R(k) = Rc(kT ) (5.5)

with sample spacing T. This sample rate 1/T is higher than the sampling rates of the
individual samplers. If M and N are coprime integers (i.e., have no common factors),
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Fig. 5.1 (a), ( b) Two uniform samplers operating in parallel on a signal xc(t) The rates are 1/MT
and 1/NT where M and N are integers (c) The autocorrelation of xc(t) sampled at the dense
spacing T

then it can be shown that the densely sampled sequence R(k) can be estimated from
the sparse set of samples x(Mn1) and x(Nn2) by time-domain averaging, no matter
how large M and N are. To see this observe that

R(k) = E[x(Mn1)x
∗(Nn2)] = E[x(n)x∗(n− k)], (5.6)

where

k = Mn1 −Nn2. (5.7)

If M and N are coprime, then given any integer k, there exist integers n1,n2 such
that (5.7) is satisfied. Thus, by performing a time-domain averaging such as

R(k)≈ 1
J

J−1

∑
n=0

x(M(n1 + nN)x∗(N(n2 + nM)), (5.8)

we can estimate R(k) (assuming that the process x(n) is ergodic). Considering that
there are two samplers, the total rate of sampling is

1
NT

+
1

MT
samples per unit time. (5.9)

The autocorrelation can therefore be estimated at a much higher sampling rate
1/T than the rate at which the signals are sampled. Notice that the total duration
of time for which samples have to be collected in order to perform the averaging in
(5.8) is approximately equal to MNJ. This affects the latency or delay involved in
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0 4 /2 8 /2N = 3a ULA 1

M = 4 0 3 /2 6 /2 9 /2b ULA 2

0 4 8−5−9 −6 −3 2 5 differencec

Fig. 5.2 (a), (b) A pair of sparse coprime arrays in space (c) The difference set k = Mn1 −Nn2

computing the autocorrelations. The price paid for sparsity (large M,N) is precisely
this latency. The choice of the rate 1/T depends on how finely we want the
autocorrelation sampled (e.g., Nyquist rate of Rc(τ)).

5.2.1 Spatial Arrays

If the sampling is in space, then this leads to applications in array processing, such
as the estimation of the direction of arrival (DOA) for electromagnetic waves [24].
In such applications, the variable T is typically λ/2 where λ is the wavelength
of interest. Figure 5.2(a), (b) shows an example of spatial arrays which are sparse
and coprime. The number of array elements is finite in this example: there are N
elements with spacing Mλ/2 and M elements with spacing Nλ/2. Figure 5.2(c)
shows the set of all differences Mn1 −Nn2 in the example. The actual locations of
the coarray elements will be at the points

(Mn1 −Nn2)λ/2. (5.10)

In the case of space arrays, the averaging (5.8) is replaced with snapshot averaging.
For example, if xl(nτ) and xm(nτ) are the samples of the outputs of the lth and mth
sensors at time nτ , then

R(k)≈ 1
J

J−1

∑
n=0

xl(nτ)x∗m(nτ), (5.11)

where k = l −m. Here J is the number of snapshots, and τ is the time-domain
sample spacing at the outputs of the spatial sensors. Thus, by snapshot averaging,
the autocorrelation R(k) can be computed for all values of k in (5.7) which can be
achieved for the specified ranges of n1 and n2. It is assumed here that the signal
has spatial wide-sense stationarity, that is, the autocorrelation depends only on the
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difference l−m. The fact that the two arrays are sparse also means that there is less
mutual coupling between adjacent sensor elements in space. This is an important
advantage in practical implementations of the system.

5.2.2 Coarrays

The set of all achievable values of the difference (5.7) will be referred to as the
difference coarray generated by the sampling arrays {Mn1} and {Nn2}. Thus, the
difference coarray is the set of lags k at which the autocorrelation R(k) = Rc(kT )
can be estimated. More precisely, we have the following definition.

Definition 1. Given any set N of numbers (e.g., sensor positions), the set of all
distinct differences

nl − nm, (5.12)

where nl ,nm ∈ N , is said to be the difference coarray of the set N .

Thus, if k belongs in the coarray, then so does −k, and the coarray is automati-
cally symmetric. For example, if N is the union of all the sensor positions in the
two coprime arrays, then the coarray would have all cross differences of the form

Mn1 −Nn2 and Nn2 −Mn1 (5.13)

and self-differences of the form

Mn1 −Mn′1 and Nn2 −Nn′2. (5.14)

A number of remarks are now in order:

1. If the sets of integers n1 and n2 defining the sensor positions Mn1 and Nn2 are
unrestricted (i.e., belong to the range −∞ < n1,n2 < ∞), then it is clear that all
the self differences are already included in the cross differences. It turns out that
even if the sets of integers n1 and n2 defining the sensor positions Mn1 and Nn2

are restricted to certain finite sets, it is often true that all the self differences
are included in the set of cross differences. For example, if 0 ≤ n1 ≤ N − 1 and
0 ≤ n2 ≤ M−1, then this can be verified to be the case [18]. For convenience we
shall therefore never explicitly refer to the self-differences, and take it for granted
that the complete coarray is just the union of the sets Mn1−Nn2 and Nn2 −Mn1.

2. In the context of coprime arrays we sometimes distinguish between Mn1 −Nn2

and Nn2 − Mn1 and refer to their union as a symmetric coarray for added
clarity.1

1This is a slight misuse of notation because the coarray of a set N , by definition, is a symmetric
set [see (5.12)].
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M = 4 0 3 6 9

0 9−9 −6 6 8−8 symmetric difference

0 4 8−5−9 −6 −3 2 5 difference

holes

0 4 8N = 3a

b

c

d

ULA 1

ULA 2

Fig. 5.3 (a), (b) Example of coprime ULAs with N = 3,M = 4, (c) Difference set k =Mn1−Nn2,
and (d) Symmetric difference All distances are in multiples of λ/2

3. Note that the elements in the set N can also be two- or three-dimensional
vectors, as in the case of higher-dimensional arrays [7].

4. Historically, the use of coarrays for the computation of autocorrelations, and
hence for applications in DOA estimation has been considered earlier in the
context of minimum redundancy arrays (MRAs) [1, 3, 8, 13], but coarrays of
coprime arrays have only been considered recently [18].

5.2.3 Arrays with Extra Elements

In the equation

k = Mn1 −Nn2, (5.15)

although k takes on all integer values if n1 and n2 are allowed to take all integer
values, in practice the ranges of n1 and n2 are limited. For example, if n1 and n2 are
in the ranges 0 ≤ n1 ≤ N − 1, 0 ≤ n2 ≤ M − 1, then k takes MN distinct values in
the range

−N(M− 1)≤ k ≤ M(N − 1). (5.16)

Since this range has room for nearly 2MN integers, the coarray has holes.
Figure 5.3(a), (b) shows an example of two spatial uniform linear arrays (ULAs)
with N = 3 and M = 4. (All distances are in multiples of λ/2.) The difference
set Mn1 −Nn2 contains integers from −9 to 8, with holes at −8,−7,−4,3,6, and
7 (Fig. 5.3c). If we also include the negative of this set, Nn2 −Mn1, then we get
the symmetric difference set shown in Fig. 5.3(d). This has a uniform stretch of all
integers from −6 to 6, and the holes are at ±7. This is precisely the coarray of the
set of all sensors in the union of the two arrays in this example:
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0 4 8 12 16 20 2N elements

0 3 6 9 M elements

0 12 16−3 20−9 −5 difference

Hole-free stretch [ 0, MN ]

a

b

c

0 16 20−16−20 14−14
symmetric
difference setd

ULA 1

ULA 2

Fig. 5.4 (a), (b) Example of coprime ULAs with 2N and M elements where N = 3,M = 4, (c)
Difference set k = Mn1 −Nn2, and (d) Symmetric difference. All distances are in multiples of λ/2

It is shown in [18] that if n1 and n2 are in the extended range

0 ≤ n1 ≤ 2N − 1, 0 ≤ n2 ≤ M− 1, (5.17)

then k takes all the MN contiguous values in the range 0 ≤ k ≤ MN − 1 (and some
values outside). The element k = MN is also automatically included (just set n1 =
N,n2 = 0). In particular, there are no holes in the range 0 ≤ k ≤ MN. Figure 5.4
shows what happens to the example with N = 3 and M = 4 when 2N sensors are
used instead of N. As seen from part (c), there is a hole-free range 0 ≤ k ≤ MN; in
fact, it is slightly longer in this example (−3 ≤ k ≤ 14). The symmetric difference
set now stretches from −14 to 14 (Fig. 5.4d). Alternatively, if n1 is in the range
0 ≤ n1 ≤ N − 1 and n2 in the extended range −(M − 1)≤ n2 ≤ M − 1, then also k
takes all the MN contiguous values in the range 0 ≤ k ≤ MN − 1.

It should be mentioned here that there is another array geometry called the nested
array geometry, which can create coarrays with O(N2) elements starting from O(N)
sensors. The nested array was developed in [11] and has the advantage that it can
produce a coarray without holes and has larger number of distinct coarray elements
compared to the coprime arrays. The coprime arrays on the other hand offer greater
spacing between sensors which helps to reduce mutual coupling between them.

5.3 Application in DOA Estimation

Consider Fig. 5.5(a) which schematically shows a monochromatic plane wave
arriving at an angle of θ with respect to the vertical. Figure 5.5(b) shows a pair
of coprime ULAs, with elements spaced apart by Mλ/2 and Nλ/2. There are 2N
elements in the first array and M elements in the second [as in (5.17)]. Figure 5.5(c)
shows the symmetric coarray with a ULA stretch in the range −A ≤ n ≤ A where

A = MN, (5.18)
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Fig. 5.5 (a) Schematic of a plane wave arriving at angle θ , (b) A pair of coprime ULAs, and (c)
Symmetric coarray or virtual array with aperture A

with virtual elements spaced apart by λ/2. We say that the coarray has aperture
A, that is, there are some missing sensors for |n|> A, but the region −A ≤ n ≤ A is
filled with virtual sensors.

Now, there are standard algorithms for the estimation of the direction of arrival
(DOA) based on the measured autocorrelation set R(k). The MUSIC algorithm [24],
for example, can estimate the DOAs of J independent sources from a knowledge of
R(k),−J ≤ k ≤ J. Typically, the so-called MUSIC spectrum is computed and plotted
and shows peaks at angles where there are sources. If we have a single ULA with N
elements, then since the coarray is an ULA in the range −(N − 1)≤ k ≤ N − 1, the
MUSIC algorithm can identify up to N − 1 sources. If the array is a union of two
coprime arrays as in our case (with 2N and M elements, respectively, as in [5.17)],
then R(k) can be estimated for

−MN ≤ k ≤ MN. (5.19)

Based on this one would expect that we can identify up to MN independent
sources. This is indeed the case, but the details of the development of the MUSIC
algorithm for estimation based on coprime coarrays (or coarrays of any other array
geometry) are rather nontrivial and have been developed in [10] (based on an earlier
work by the same authors in the context of nested arrays [11]).



114 P.P. Vaidyanathan and P. Pal

Fig. 5.6 MUSIC spectrum based on the coprime coarray generated from M = 7,N = 5. Up
to 35 independent sources can be identified. The figure shows an example with 24 independent
narrowband sources. The SNR is 0 dB

Consider an example where M = 7 and N = 5. The number of physical sensor
elements is M + 2N = 17. We have A = MN = 35 which shows that up to 35
independent narrowband sources can be identified. For the case where there are
24 independent sources, Fig. 5.6 shows the MUSIC spectrum computed as in [10].
The signal to noise ratio at the sensor outputs is assumed to be 0 dB in this example.
The figure clearly shows all the 24 peaks corresponding to the 24 sources.

Coprime sampling can also be used to estimate the frequencies of sinusoids
buried in noise. The idea is similar in principle to DOA estimation. The highest
frequency that can be estimated is proportional to 1/T even though the number of
samples per unit time is only (1/NT )+ (1/MT). For further details see [18].

5.4 Coprime DFT Filter Banks and Beamforming

We now consider the application of DFT filter banks [23] at the outputs of the
coprime arrays (Fig. 5.7). In this system we combine the outputs of the sensors
using IDFT matrices. This creates a set of M filters Hk(z) in the first array and
a set of N filters G�(z) in the second array. We will see that each filter Hk(z)
has multiple passbands (multiple beams or grating lobes in the array-processing
context), because of the large interelement spacing Nλ/2. The same remark applies
to G�(z). Assuming M and N are coprime, it was shown in [18] that by taking the
MN products of these sets of M and N DFT outputs and performing statistical
averaging, it is possible to simulate the behavior of an MN-point DFT filter bank
in the power-spectrum domain! Thus, the power-spectral frequency domain can
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Fig. 5.7 A pair of DFT (Discrete Fourier Transform ) filter banks generating M beams from array
one and N beams from array two

be densely tiled with MN narrowband filters, each with a single passband (even
though the two individual filter banks have only M and N filters, respectively, each
producing multiple passbands). This result was derived in [18] (and briefly reviewed
in [19]). In the context of array processing, since the DFT domain can be mapped to
the angle of arrival domain [24], this result has direct bearing on two-dimensional
beamforming.

To describe the details, consider Fig. 5.7(a), where the 0th filter is obtained by
adding the outputs of the taps h(n). The associated beam pattern is [24]

M−1

∑
n=0

h(n)e− jαn, (5.20)

where α = 2πd sinθ/λ , d is the interelement spacing and λ is the wavelength
of the monochromatic wave impinging on the array from the direction of arrival
θ . Traditionally, the interelement spacing is d = λ/2 (unlike in Fig. 5.7). Let the
corresponding α be denoted as ω :

ω = π sinθ . (5.21)

For the sparse array since the interelement spacing d = Nλ/2, the beampattern
H0(z) is

H(e jωN) =
M−1

∑
n=0

h(n)e− jNωn. (5.22)

We can regard this as a “transfer function” H(zN). Similarly, the 0th filter G0(z)
from the second array produces G(zM). The outputs of H0(z) and G0(z), in response
to two sources at ω1 and ω2, are

y1 = c1H(e jω1N)+ c2H(e jω2N) (5.23)
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and

y2 = c1G(e jω1M)+ c2G(e jω2M). (5.24)

Now

y1y∗2 = |c1|2H(e jω1N)G∗(e jω1M)+ |c2|2H(e jω2N)G∗(e jω2M)

+c1c∗2H(e jω1N)G∗(e jω2M)+ c∗1c2H(e jω2N)G∗(e jω1M). (5.25)

The “cascade effect” is represented by the first two terms, but there are cross
terms (last two terms). If c1(n) and c2(n) are zero-mean uncorrelated processes,
then the time average (snapshot average) of c1(n)c∗2(n) becomes negligible, and the
first two terms dominate. In this case the product beamformer behaves like a cascade
H(e jωN)G∗(e jωM). Next, in Fig. 5.7, the first IDFT operator produces an array bank
of M filters

Hk(z) = H(zNW k
M) =

M−1

∑
n=0

h(n)z−nNW−nk
M , (5.26)

0≤ k ≤ M−1, where WM = e− j2π/M. Similarly, the second IDFT operator produces

G�(z) = G(zMW �
N) =

N−1

∑
n=0

g(n)z−nMW−n�
N , (5.27)

0 ≤ �≤ N − 1. Assume that H(e jω) and G(e jω) are ideal low pass:

H(e jω) =

{
1 f or|ω |< π/M

0 otherwise.
(5.28)

G(e jω) =

{
1 f or|ω |< π/N

0 otherwise.
(5.29)

Notice that H(e jωN) has N passbands, with each passband having width 2π/MN,
and G(e jωM) has M passbands, with each passband having width 2π/MN. Since
Hk(e jω) and G�(e jω) are shifted versions of H(e jωN) and G(e jωM), they are also
multiple passband filters. Now consider the product

F�k(e
jω ) = G∗

�(e
jω )Hk(e

jω), (5.30)

0 ≤ � ≤ N − 1,0 ≤ k ≤ M − 1. Assuming M and N are coprime, it has been shown
in [18] that the following are true:

1. Each of the MN filters F�k(e jω) has only one passband, and its width is 2π/MN.
2. Moreover, no two of the filters F�k(e jω) have overlapping passbands, so the MN

passbands completely tile 0 ≤ ω < 2π .
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0

Fig. 5.8 The filters H(zN) and G(zM) and various shifted versions. Here M = 4 and N = 3

Figure 5.8 presents an example for M = 4 and N = 3. The filter G(z4) has four
passbands (each with width 2π/12) and three distinct shifted versions G(z4W �

3 ).
The filter H(z3) has three passbands (each with width 2π/12), and four distinct
shifted versions H(z3W k

4 ). Each shifted version G(z4W �
3 ) overlaps with any shifted

version H(z3W k
4 ) in precisely one passband. Furthermore, the twelve combinations

of (k, �) produce twelve distinct filters

H(z3W k
4 )G(z4W �

3 ), (5.31)

covering 0≤ω < 2π (shown at the top of the figure). Summarizing, we get the effect
of a MN-band DFT filter bank by combining one M-band filter bank operating on
M sensors and one N-band filter bank operating on N sensors, if the sensor spacings
are as in Fig. 5.7, and M,N are coprime. This is achieved by performing the snapshot
averaging operation, required to eliminate the cross terms in (5.25).



118 P.P. Vaidyanathan and P. Pal

Simulation Example with Snapshot Averaging. In practice when the filters are not
ideal, the band suppressions described above are not exact. Thus, even though the
shifted versions G(e jωMW �

N) and H(e jωNW k
M) ideally have only one overlapping

band, in practice, the “nonoverlapping bands” have overlap at the band edges. The
extent of this overlap can be reduced if the filters are replaced with

H(z) =
M1−1

∑
n=0

h(n)z−n, G(z) =
N1−1

∑
n=0

g(n)z−n, (5.32)

where M1 >M and N1 >N. This is equivalent to extending the antenna arrays so that
there are M1 >M antenna elements in the first array and N1 >N antenna elements in
the second. With appropriate choice of M1 and N1, the undesirable overlaps between
bands of G(e jωMW �

N) and H(e jωNW k
M) can be reduced to any specified extent, the

obvious price paid being the extra number of antenna elements. Figure 5.9 shows
beams simulated by snapshot averaging of the products of the form (5.25), obtained
from pairs of filters from the two filter banks. In this example M1 = M + 5 and
N1 = N + 5. Notice how the performance improves as we go from 100 to 700
snapshots. This simulation was performed by applying a signal from a specific angle
θ , measuring the filter bank outputs, averaging the products, and repeating this for
a dense set of values of θ . The filter taps h(n) and g(n) can be designed using
standard FIR filter design methods. In this example, the Remez exchange method
for equiripple FIR design was used [9]. More examples can be found in [18].

5.5 Coprime Sampling in Multiple Dimensions

In two dimensions, the most general form of uniform sampling is sampling on a
lattice (or a shifted version thereof). Given a square matrix A, the set of all points of
the form

t = An, (5.33)

where n is an integer vector, is said to be the lattice generated by A, and is denoted as
LAT (A) [4], [23]. Here we consider two lattices LAT (M) and LAT (N) generated by
integer matrices M and N. Figures 5.10(a), (b) shows two examples of such lattices.
The quantity

ρ(M) =
1

detM
(5.34)

is equal to the density of the lattice points (number of lattice points per unit
area). The region indicated as FPD(M) in the figure (abbreviation for fundamental
parallelepiped) is the set of all real vectors of the form

Mx, x ∈ [0,1)D (FPD(M)). (5.35)
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Fig. 5.9 Examples of simulated beams with M = 6,N = 5. Remez weights used, with M+5 and
N +5 sensor elements. Number of snapshots = 100 (top) and 700 (bottom)
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LAT (M)
LAT (N)

coarray

a b c

0 0
FPD(M)

FPD (N)

Fig. 5.10 Two-dimensional lattice arrays generated by coprime matrices and their difference
coarray

The notation x ∈ [0,1)D means that x is a real vector whose components are in
the range 0 ≤ xi < 1. The area of the FPD(M) is equal to detM. So there are detM
integer vectors in it. The symmetric parallelepiped SPD(M) is similarly defined as
the set of points

Mx, x ∈ (−1,1)D (SPD(M)). (5.36)

We say that the sampling lattices are coprime if the matrices M and N are
coprime in a certain sense to be defined below. Under this condition, many of the
properties exhibited by coprime samplers in one dimension can be made to work in
two dimensions also as shown in [19]. For example, it is possible to choose M and
N such that the difference coarray, now defined as the set of all integer vectors of
the form

k = Mn1 −Nn2, (5.37)

includes all the integers.2 Thus, if detM, detN are very large compared to unity,
then the coarray is much denser than the sparse coprime set of samples. In practice
n1 and n2 are restricted to be in a finite range, and in that case the negative of (5.37)
has to be explicitly included to obtain a symmetric difference set.

We now come to the definition of coprimality. First, we say that the integer matrix
L is a left factor of M if we can write M = LM1 for some integer matrix M1.

2Strictly speaking, the difference coarray is the set of all integers of the form m1 −m2, mi ∈ N ,
where N is in the union of all the elements in the two arrays. Thus, the coarray would include the
cross differences Mn1 −Nn2, Nn2 −Mn1 and the self-differences Mn1 −Mn′

1 and Nn2 −Nn′
2 as

in Sect. 5.2.2. For simplicity we sometimes refer to the elements Mn1 −Nn2 as the coarray and
the union of the elements Mn1 −Nn2 and Nn2−Mn1 as the “symmetric coarray” as in Sect. 5.2.2,
since the self-differences are usually included in these cross differences.
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The integer matrices M and N are said to be left coprime if they do not
have a common left factor L other than unimodular matrices (i.e., matrices with
detL =±1). Right coprimality is similarly defined.

When M and N are left coprime, the lattices LAT (M) and LAT (N) define a
coprime pair of samplers. Next, if M and N commute in multiplication, that is,

MN = NM, (5.38)

then it can be shown [2], [19] that M and N are also right coprime. In this case we
simply say that M and N are coprime.

5.5.1 Properties of Multidimensional Coarrays

We now mention a number of important properties of coarrays constructed from
lattices. The following result is proved in [19].

Lemma 1 (Difference-set element range). Assuming n1 ∈ FPD(N) and n2 ∈
FPD(M) and assuming MN = NM, the elements (5.37) belong in SPD(MN).

This is similar to the statement in one dimension that if 0 ≤ n1 ≤ N − 1 and
0 ≤ n2 ≤M−1, then the elements Mn1−Nn2 belong in the range −MN < k < MN.
The theorem below shows, in particular, that we can choose M and N such that there
are det(MN) distinct elements in the set of differences Mn1 −Nn2, as n1 and n2

vary over

n1 ∈ FPD(N), n2 ∈ FPD(M). (5.39)

So the difference set (5.37) has at least det(MN) freedoms. The coarray has more
(because of the negated differences Nn2 −Mn1), and they all belong in SPD(MN).
The following result is proved in [19].

Theorem 1 (Coprime coarrays in MD). Assume the D×D nonsingular integer
matrices M and N are commuting and coprime. Then:

1. Given any integer vector k, there exist integer vectors n1 and n2 such that (5.37)
holds. So the coarray contains all integer vectors when n1 and n2 vary over all
integers.

2. Let the integer vectors n1,n′
1 be restricted to FPD(N) and n2,n′

2 restricted to
FPD(M). Then

Mn1 −Nn2 �= Mn′
1 −Nn′

2, (5.40)

as long as (n1,n2) �= (n′
1,n

′
2).

3. The integer vectors Mn1 and Nn2 (i.e., the array elements) are distinct when
the integers n1 and n2 are such that n1 ∈ FPD(N) and n2 ∈ FPD(M), unless
n1 = n2 = 0.



122 P.P. Vaidyanathan and P. Pal

It can also be shown that if n1 ∈ FPD(2N) and n2 ∈ FPD(M) (or alternatively,
n1 ∈ FPD(N) and n2 ∈ SPD(M)), then all k ∈ FPD(MN) can be generated by
k = Mn1 −Nn2 (similar to the hole-free range of MN elements in the 1D case). All
detailed proofs can be found in [19].

5.5.2 Dense 2D Frequency Tiling with Coprime DFT Filter
Banks

In the one-dimensional case we explained how we can start with a coprime pair
of arrays and use two DFT filter banks to obtain a dense tiling of the frequency
domain by snapshot averaging (Sect. 5.4). Each DFT filter bank produces filters
with multiple passbands, but when we multiply a pair of filters, one from each filter
bank, then these multiple bands “mysteriously disappear” (as described in Sect. 5.4),
and there remains a single band. This band is very narrow (as if it is coming from
an MN-point DFT filter bank), and its position depends on the choice of the filter
pair. Since there are MN filter pairs, there are MN such bands and they tile the entire
frequency axis 0 ≤ ω < 2π . In the 2D case, we can do something similar. We will
only give a general outline here, because the details are very involved. All these
details can be found in [19]. Consider the two sparse arrays on lattices defined as
follows:

• Array one is on LAT (N) with elements located at Nn,n ∈ FPD(M), and has
detM elements. This is similar to having M elements spaced apart by Nλ/2 in
the 1D case (Fig. 5.7).

• Array two is on LAT (M) with elements located at Mm,m ∈ FPD(N), and has
detN elements. This is similar to having N elements spaced apart by Mλ/2 in
the 1D case (Fig. 5.7).

There are sophisticated ways to construct so-called M-DFT filter banks for Array
one by using multidimensional DFTs [4], [23]. Such a filter bank would have detM
filters. In this filter bank, since the sensors are on LAT (N), the detM filter responses
are appropriately shifted versions of

H(NTΩΩΩ) =∑
n

h(n)e− j(NTΩΩΩ)T n. (5.41)

The expressions for the filters are

Hk(N
TΩΩΩ) = H

(
NT (ΩΩΩ− 2πN−T M−T k)

)
, (5.42)

k ∈ FPD(MT ). Note that the filter number has been indexed by a vector k for
convenience. Since FPD(MT ) has room for |detM| integer vectors, there are |detM|
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Fig. 5.11 (a),(b) Passband regions of low-pass filters H(ΩΩΩ) and G(ΩΩΩ) in the two 2D DFT filter
banks
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Fig. 5.12 (a),(b) passband regions of the filters H(NTΩΩΩ) and G(MTΩΩΩ) and (c) the product filter

such filters. Each filter has multiple passbands (detN passbands to be precise) in the
2D frequency plane [0,2π)2 because of the dependence on NTΩΩΩ rather than ΩΩΩ.
Similarly, from the second array, we create an N-DFT filter bank which has detN
filters

Gj(M
TΩΩΩ) = G

(
MT (ΩΩΩ− 2πM−T N−T j)

)
, (5.43)

j ∈ FPD(NT ), and each filter has detM passbands. Figure 5.11 shows examples of
the passband supports of H(ΩΩΩ) and G(ΩΩΩ), and Fig. 5.12(a), (b) gives a qualitative
idea of what the multiple passband supports in H(NTΩΩΩ) and G(MTΩΩΩ) look like.
The detM filters Hk(NTΩΩΩ) and the detN filters Gj(MTΩΩΩ) are shifted versions of the
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0

1

2
Fig. 5.13 The dense tiling of
frequency plane obtained by
combining two coprime filter
banks. This can be achieved
by using an adjugate pair of
lattice generators. See text

filters H(NTΩΩΩ) and G(MTΩΩΩ), similar in principle to the filters in Fig. 5.8. Assuming
that M and N are commuting and coprime, a number of results have been proved in
[19] (all frequency responses are assumed to be real for simplicity):

1. If we multiply any of the detM filters Hk(NTΩΩΩ) with any of the detN filters
Gj(MTΩΩΩ), then there is exactly one overlapping passband, and its shape is
precisely FPD(2π(MN)−T ) (analogous to a bandpass filter with passband width
2π/MN in 1D). For the product H(NTΩΩΩ)G(MTΩΩΩ), this is demonstrated in
Fig. 5.12(c).

2. For the detMN different combinations of the product Hk(NTΩΩΩ)Gj(MTΩΩΩ),
these passbands have different center frequencies. If we take the union of all
the passband supports generated by these detMN combinations of Hk(NTΩΩΩ)
and Gj(MTΩΩΩ), then the result is the entire 2D frequency plane [0,2π)2, or
equivalently [−π ,π)2.

Thus, the product of a pair of filters produces a single passband whose area is only

1
det(MN)

(5.44)

times the 2D frequency plane, and the union of all the det(MN) products tiles the
entire frequency plane. In this way we can create a dense tiling of the frequency
plane starting from sparse 2D lattice arrays.3

In fact we can even obtain a simple rectangular tiling by starting from
non-rectangular lattices as demonstrated in Fig. 5.13 (the circular disk represents
the so-called visible region in the array-processing context; see Sect. 5.5.3). The
advantage of achieving such a rectangular tiling with the help of non-rectangular

3The product filters are physically realized as in the one-dimensional case, by multiplying the filter
outputs as in (5.25) and performing snapshot averages.
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(lattice) arrays is that there is more freedom in choice of geometry for the arrays.
For example, it is possible to maximize the minimum distance between the sensors
(see Sect. VI of [19]) and reduce mutual coupling. It is shown in [19] that such
rectangular tilings can be achieved by making N equal to the adjugate of the matrix
M (which in turn can be an arbitrary nonsingular lattice generator). We will discuss
adjugates again in Sect. 5.6.

5.5.3 Case of Monochromatic Plane Waves

For the special case where a plane monochromatic wave is being received by the
array (as in a simple array-processing setting, [24]), the “frequency vector” ΩΩΩ has
the following physical meaning:

ΩΩΩ=

[
Ω1

Ω2

]
=

2πd sinφ
λ

[
cosθ
sinθ

]
. (5.45)

Here d is a fixed scalar with spatial dimension, φ denotes the elevation angle,
and θ the azimuthal angle. With d = λ/2 we have

ΩΩΩ=

[
Ω1

Ω2

]
= π sinφ

[
cosθ
sinθ

]
. (5.46)

Note that the two componentsΩ1 and Ω2 are coupled, and

Ω 2
1 +Ω

2
2 = π2 sin2 φ . (5.47)

If we draw a circle with radius π sinφ in the (Ω1,Ω2) plane, then all points
on this circle represent the same elevation angle φ . At any point on this circle,
the angle θ represents the azimuthal angle. This is shown in Fig. 5.14(a). In the
rectangular frequency region defined by −π ≤ Ω1,Ω2 < π , the region which maps
into meaningful (θ ,φ) pairs is a disk with radius π , centered at the origin. This disk
can therefore be regarded as the visible region of the (Ω1,Ω2) plane and is shown
in Fig. 5.14(b).

5.6 Commuting Coprime Matrices

In this section we elaborate on the mathematical problem of constructing integer
matrices M and N which are commuting and coprime. Throughout the section the
greatest common divisor (gcd) of integers a,b,c, . . . is denoted as (a,b,c, . . .). Most
of the results reviewed here are from [12] and [20].
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Fig. 5.14 (a) The relation between the frequencies (Ω1,Ω2) and the angles θ ,φ in the context of
array processing. (b) The visible region of the (Ω1,Ω2) plane in the context of array processing
for plane monochromatic waves. See text

5.6.1 Some Important Families of Coprime Integer Matrices

Coprimality conditions for a number of 2× 2 integer matrix pairs are presented in
[12]. The results were based on the use of Bezout’s identity for integer matrices
which says that if the integer matrices P and Q are left coprime, there exist integer
matrices A and B such that

PA+QB = I. (5.48)

See [19] for further details on Bezout’s identity for integer matrices. In this section
we shall briefly summarize some of the main results from [12]. First consider two
circulant matrices

P =

[
p q
q p

]
, P1 =

[
p1 q1

q1 p1

]
. (5.49)

These always commute automatically (PP1 =P1P). The following result was proved
in [12].

Theorem 2. The circulant matrices (5.49) are coprime if and only if

(p+ q, p1 + q1) = 1 and (p− q, p1 − q1) = 1. (5.50)

That is, the two DFT coefficients of the top row of P should be coprime to the
corresponding DFT coefficients from P1.
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Next, consider the two skew-circulant matrices

P =

[
p q
−q p

]
, P1 =

[
p1 q1

−q1 p1

]
. (5.51)

These commute automatically. The following result was proved in [12].

Theorem 3. The skew-circulant matrices (5.51) are coprime if and only if

(p2 + q2, p2
1 + q2

1, p1q− q1p) = 1, (5.52)

and furthermore, this condition can be rewritten in the form (p2+q2, p2
1+q2

1, pp1+
qq1) = 1.

The special case where two matrices are adjugates of each other is particularly
interesting.4 The circulant adjugate pair has the form

P =

[
p q
q p

]
, P1 =

[
p −q
−q p

]
, (5.53)

whereas the skew-circulant adjugate pair has the form

P =

[
p q
−q p

]
, P1 =

[
p −q
q p

]
. (5.54)

These matrix pairs are obtained by setting p1 = p and q1 =−q in the general forms.
It can then be shown [12] that coprimality conditions (5.50) for the circulant pair
simplify to the single condition

(p+ q, p− q)= 1, (5.55)

which can be restated as follows:

(p,q) = 1, and p and q have opposite parity. (5.56)

It can also be shown that the skew-circulant adjugate pair (5.54) is coprime if and
only if (5.55) holds. Thus, surprisingly, the condition (5.52) is equivalent to (5.55)
whenever p1 = p and q1 = −q. The circulant adjugate pair and the skew-circulant
adjugate pair therefore share the same coprimality condition.

4The adjugate P̂ of P is the matrix of cofactors [5] which arises, for example, in the expression for
the inverse P−1 = P̂/detP. In the 2×2 case, P is also the adjugate of P̂, so we have an adjugate pair.
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Another result proved in [12] is that the triangular matrices

P =

[
p q
0 s

]
, P1 =

[
p1 q1

0 s1

]
, (5.57)

are left coprime if and only if

(s,s1) = 1 and (p, p1,q1s− qs1) = 1. (5.58)

For the special case of adjugate pairs

P =

[
p q
0 s

]
, P1 =

[
s −q
0 p

]
, (5.59)

the coprimality condition (5.58) reduces to

(p,s) = 1. (5.60)

Next, the 3× 3 triangular matrix P and its adjugate P̂

P =

⎡
⎣p q r

0 s t
0 0 u

⎤
⎦ , P̂ =

⎡
⎣su −qu qt − rs

0 pu −pt
0 0 ps

⎤
⎦ (5.61)

can be shown to be coprime [12] if and only if the diagonal elements of P are
coprime in pairs, that is, (p,s) = (p,u) = (s,u) = 1.

5.6.2 Generating Coprime Pairs Based on gcd of Minors

We now present a general condition for left coprimality [20] which holds for square
matrices of any size. This is a powerful result which allows us to generate a large
class of coprime matrices of arbitrary sizes, as we shall demonstrate.

Theorem 4. The D×D integer matrices M and N are left coprime if and only if
the gcd ΔD of all the D×D minors of the matrix[

M N
]

(5.62)

is equal to unity.

A similar result was also reported in some earlier papers in different contexts
[26], [15]. A simple proof can be found in [20], and is based on the Smith-form
decomposition [6], [23] of the matrix (5.62). The theorem implies in particular that
the gcd Δi of all the i× i minors of (5.62) is also unity, for 1 ≤ i ≤ D−1 (since Δi is
a factor of Δi+1). We will present a number of coprime families of matrices in this
section. But first, we mention some simple consequences of Theorem 4.
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1. If there is a D × D minor equal to unity, then ΔD = 1, and we conclude
immediately that M and N are coprime.

2. Bipolar matrices. If the elements of an integer matrix can only have the values 1
and −1, we call it a bipolar matrix. Here is a 3× 3 example:

⎡
⎣ 1 1 −1
−1 1 1
1 −1 1

⎤
⎦ . (5.63)

For such matrices the 2×2 minors can only be 0,2, or −2. Since 2 is a common
factor of such a set of numbers, the gcd of the 2× 2 minors cannot satisfy the
necessary condition Δ2 = 1. So a consequence of Theorem 4 is that two bipolar
matrices can never be coprime.

3. Mixing the columns. From the set of 2D columns of the D×D matrices P and Q,
suppose we pick any set of D columns and form the matrix Pnew, and with the
remaining D columns form the matrix Qnew. Then Pnew and Qnew are left coprime
if and only if P and Q are left coprime. This is because the set of all D ×D
minors of the composite matrix

[
P Q

]
is the same as the set of all D×D minors

of the composite matrix
[
Pnew Qnew

]
. For example, recall that the circulant and

its adjugate given in (5.53) are coprime if and only if (5.55) holds. Now consider
the skew circulant and its adjugate given in (5.54). Since the four columns in
(5.54) are identical to the four columns in (5.53), it follows readily that the skew-
circulant pair is coprime under the same condition (5.55). This is therefore a
second way to look at the skew-circulant case, which was handled in [20] using
a different technique, namely the use of Bezout’s identity for integer matrices.

5.6.2.1 Generalized Circulants

We now consider a 3× 3 integer matrix of the form

P =

⎡
⎣ p q r
αr p q
αq αr p

⎤
⎦ , (5.64)

where α, p,q, and r are integers. These are called generalized circulants. It is
readily verified that two generalized circulants with the same α commute. They
reduce to circulants for α = 1 and skew circulants for α = −1. It can be verified
that the adjugate of P has the same form:

P̂ =

⎡
⎣ p2 −αqr αr2 − pq q2 − pr
α(q2 − pr) p2 −αqr αr2 − pq
α(αr2 − pq) α(q2 − pr) p2 −αqr

⎤
⎦ . (5.65)
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The commuting matrices P and P̂ are coprime if and only if the 3× 3 minors of the
matrix

[
P P̂
]

have gcd = 1. The number of such minors is

(
2D
D

)
=

(
6
3

)
= 20. (5.66)

Even though the problem of identifying the gcd of these minors appears formidable,
there is plenty of structure in the matrix and therefore in the minors. Based on these,
the following result has been proved in [20].

Theorem 5. The generalized circulant matrix P and its adjugate P̂ are coprime if
and only if

(
detP, 3(p2 −αqr), 3(αr2 − pq), 3α(q2 − pr)

)
= 1. (5.67)

Here det P = p3 +αq3 +α2r3 − 3α pqr.

Other equivalent ways of stating this are also given in [20]. From the above result,
we deduce that a 3× 3 circulant (α = 1) is coprime to its adjugate if and only if

(detP, 3(p2 − qr), 3(r2 − pq), 3(q2 − pr)) = 1. (5.68)

It is shown in [20] that this is equivalent to simultaneously satisfying the following
two conditions:

(p+ q+ r, 3) = 1, (p2 − qr, q2 − pr, r2 − pq) = 1. (5.69)

Similarly, a 3× 3 skew circulant (α =−1) is coprime to its adjugate if and only if

(p− q+ r, 3) = 1, (p2 + qr, q2 − pr, r2 + pq) = 1. (5.70)

In this section many of the examples are circulants, skew circulants, or generalized
versions. The importance of circulants and skew circulants in 2D applications is
explained in [19] in some detail.

5.6.2.2 Adjugates

Many of the examples considered in this section were adjugate pairs. In the DFT
filter bank application described in Sect. 5.5.2, we mentioned that it is possible to
obtain a dense tiling of the 2D frequency plane by starting from a coprime pair
of DFT filter banks. This is done by performing snapshot averages of the products
of pairs of outputs from the two filter banks as in Sect. 5.4. In the 2D case it was
mentioned that the dense tiling can even be a rectangular tiling, if the two sparse
lattices LAT (M) and LAT (N) are appropriately chosen. For example, if N is the
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adjugate of M, this is indeed the case. This is the importance of adjugate pairs in
2D array processing. An interesting result on coprimality of adjugate pairs is the
following.

Theorem 6. Coprimality of adjugate pairs. Consider the integer matrix P and its
adjugate P̂ given by

P =

[
p q
r s

]
, P̂ =

[
s −q
−r p

]
. (5.71)

These are coprime if and only if

(ps− rq, s+ p) = 1, (5.72)

that is, if and only if the determinant of P and the trace of P are coprime.

This result was proved in [20], based on Theorem 4. In fact this result can be used to
rederive the coprimality conditions for many of the 2× 2 adjugate pairs mentioned
earlier in Sect. 5.6.1.

5.7 System Identification

Consider Fig. 5.15 which shows a continuous-time linear time invariant (LTI)
system with impulse response hc(t). Imagine we apply a discrete-time input x(n)
with sample spacing NT as shown, where N > 0 is an integer. Thus

yc(t) =∑
m

x(m)hc(t −mNT ). (5.73)

c 
y  ( t)

LTI system

MT   

y (n)

h  (t)cimpulse response

MT 2MT0

y (0)
y (1)

y (2)x (0)
x (1)

NT 2NT0

T0 2T

x (2)

h ( nT )c

a

b

Fig. 5.15 (a) A continuous-time channel with input stream at sparse rate 1/NT, and output
sampled at the sparse rate 1/MT. (b) Samples of the channel impulse response, with dense
spacing T
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aFig. 5.16 (a) Representation
of the system (5.76) using
multirate building blocks,
(b) its MIMO equivalent
representation

In the figure the system output is sampled with a different spacing MT (for some
integer M > 0) so that

y(n) =∑
m

x(m)hc((Mn−Nm)T ) =∑
m

x(m)h(Mn−Nm), (5.74)

where

h(k) = hc(kT ) (5.75)

is the sampled version of the impulse response, with a denser sample spacing T
than that of the input and the output. Now assume that M and N are coprime. This
means that given any integer k, there exist integers m and n such that k = Mn−Nm.
That is, the specific samples y(n) and x(m) are related by h(k). Thus every sample
h(k), taken at the dense spacing T , participates in the input-output relationship, even
though the input and output samples are spaced apart sparsely (by NT and MT ).

The main point we wish to make is that, from a knowledge of the sparse
sequences x(n) and y(n) in Fig. 5.15(a), it is actually possible to identify the dense
set of samples of the system h(n) in Fig. 5.15(b) completely. The details can be
found in [21]. To gain insight into this result, we start from the input-output relation

y(n) =∑
m

x(m)h(Mn−Nm) (5.76)

which would have been a convolution if M = N = 1. But for arbitrary integers
M,N (5.76) does not represent a convolution. It can however be represented as in
Fig. 5.16(a), where the building blocks ↑ N and ↓ M are defined by the following
input-output relationships:

u(n) =

{
x(n/N) if n is a multiple of N

0 otherwise
(5.77)

and

y(n) = v(Mn). (5.78)

Here ↑ N is called an N-fold expander and ↓ M is called an M-fold decimator.
These are time-varying building blocks [23], so the system in Fig. 5.16(a) is a linear
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and time-varying system. However, it can be shown [23], [21] that this system can
equivalently be represented by a multi-input multi-output (MIMO) LTI system. To
explain this, define the vector

x(n) =
[
x(Mn) x(Mn+ 1) . . . x(Mn+M− 1)

]T
(5.79)

which is called the blocked version of x(n) with block size M. If we imagine that
x(n) is divided into nonoverlapping blocks of M successive samples, then each x(n)
represents one such block. Similarly, let

y(n) =
[
y(Nn) y(Nn+ 1) . . . y(Nn+N− 1)

]T
(5.80)

be the blocked version of y(n) with block size N. It can then be shown that

Y(z) = H(z)X(z). (5.81)

That is, the system x(n) �→ y(n) is a N × M MIMO LTI system with transfer
matrix H(z). See Fig. 5.16(b). The elements Hkm(z) in this matrix are related to
the polyphase components [23] of the scalar filter H(z). To explain this, write H(z)
in the form

H(z) =
MN−1

∑
i=0

z−iEi(z
MN). (5.82)

This can always be done by defining the ith polyphase component as

Ei(z) =∑
n

h(MNn+ i)z−n. (5.83)

For arbitrary M and N, the (k,m)th element Hk,m(z) of the matrix H(z) can be
determined as follows: first express the integer Mk−Nm as

Mk−Nm = i0 +MNi1, (5.84)

where 0 ≤ i0 ≤ MN −1 is the remainder modulo MN. With this choice i1 is either 0
or −1. It can then be shown [21] that

Hkm(z) = zi1Ei0(z). (5.85)

For example, suppose M = 2 and N = 3. Then, working through the above details,
one can verify that

H(z) =

⎡
⎣E0(z) z−1E3(z)

E2(z) z−1E5(z)
E4(z) E1(z)

⎤
⎦ . (5.86)

Even though Fig. 5.16(a) can always be represented as in Fig. 5.16(b), we have to be
careful with the converse. Given an arbitrary N ×M LTI system H(z) we can draw
it as in Fig. 5.16(a) for some scalar LTI system H(z) if and only if M and N are
coprime [22].
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The main insight we gain from the MIMO representation is that the identification
of the system H(z) in Fig. 5.16(a) is equivalent to the identification of the MIMO
LTI system H(z) from measurements of its input and output. A direct proof that
such identification can indeed be done can be found in [21].

5.8 Fractionally Spaced Equalizers

Before concluding this chapter we would like to briefly mention the use of
coprime sampling rates in digital communication systems for the purpose of channel
equalization. Consider Fig. 5.17(a) which shows a communication channel assumed
to be an LTI system with impulse response hc(t). The channel input is at the rate
1/NT (symbol rate), and the output of the channel is sampled at a rate 1/MT at
the receiver. So the receiver sampling rate is N/M times the symbol rate. With
N > M we therefore have an oversampling receiver. For example, N = 2M implies
oversampling by two, and N = 3M/2 implies oversampling by 1.5. It is well known
that oversampling brings in some advantages [14], [17]. With no loss of generality
we can assume M and N to be coprime.

channel

MT   
y(n)

h  (t)c

x (0)
x(1)

NT 2NT0

x(2)

a

NG(z)M
x(n)

fractionally spaced equalizer

receiver

b

y(n)
NG(z)M

x(n)x(n)
MH(z)N

channel model fractionally spaced equalizer

x(n) y(n)M N
c

H(z) G(z)
x (n)M

channel model in MIMO form equalizer model in MIMO form

Fig. 5.17 (a) A channel hc(t) with output sampling rate 1/MT greater than the symbol rate
1/NT and the fractionally spaced equalizer G(z), (b) equivalent multirate representation, and (c)
equivalent MIMO LTI representation
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The receiver has to process the samples y(n) to produce the symbol-rate signal
x̂(n) (equalized signal). This is done by using the sampling-rate-alternation system
shown on the receiver side of Fig. 5.17(a), where G(z) is called a fractionally spaced
equalizer (FSE). The discrete-time equivalent of the channel with input and output
rates 1/NT and 1/MT was already shown to be as in the left side of Fig. 5.17(b).
Now, by using the fact that the system in Fig. 5.16(a) has the representation shown in
Fig. 5.16(b), we can redraw the entire system as shown in Fig. 5.17(c). In this system
x(n) and x̂(n) are the M-blocked versions of the transmitted and received symbol
streams. If the equalizer G(z) can be designed such that x̂(n) = x(n) (in absence of
channel noise, which is not shown here), then we have a zero-forcing equalizer.
From the figure it is clear that G(z) is a zero-forcing equalizer if and only if

G(z)H(z) = I. (5.87)

Since H(z) is N ×M with N > M, we can partition G(z) and H(z) to rewrite this as
follows:

[
G0(z) G1(z)

]⎡⎣H0(z)

H1(z)

⎤
⎦= I, (5.88)

where G0(z) has M columns and G1(z) has N −M columns. Thus the zero-forcing
condition is

G0(z)H0(z)+G1(z)H1(z) = I. (5.89)

For the case where H(z) is FIR, H(z) is a polynomial matrix, that is, it has the
form H(z) = ∑J

n=0 h(n)z−n. In this case there will exist an FIR equalizer G(z) such
that (5.89) holds, as long as H0(z) and H1(z) are right coprime. This follows from
Bezout’s identity for polynomial matrices [6], [23], which is similar to Bezout’s
identity for integer matrices (5.48) in Sect. 5.6.1).

In fact any partition with r > 0 columns for G0(z) and N − r > 0 columns for
G1(z) can be used in (5.88). It can be shown [22] that as long as the polynomial
matrix H(z) does not have a polynomial right factor R(z) other than unimodular
matrices, there will exist polynomial G(z) to satisfy (5.87). For further details on
these systems the reader should refer to [25], [26], and references therein.

5.9 Concluding Remarks

In this chapter we gave an overview of coprime sampling and its applications, both
in one dimension and in multiple dimensions. The discussions have also opened
up some interesting problems for future research. For example, recall that the
autocorrelation can be estimated at the dense rate 1/T from the samples taken at
the sparse rates 1/MT and 1/NT. This is true regardless of how sparse the two
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samplers are. However, there is obviously a price paid for making them arbitrarily
sparse. For example, the window of time required to collect data, in order to get a
certain accuracy in the autocorrelation estimate, will have to be too long if M and
N are very large. In the case of spatial sampling, large M and N imply that there is
less mutual coupling between sensors, which is good. On the other hand, arbitrarily
large spacing means that more physical area or aperture is required. Such trade-offs
have to be studied carefully.

In two dimensions, given a sampling density for the sparse samplers, namely
1/detM and 1/detN , there are many lattices that can realize these densities. Thus
the optimal choice of lattices is also an open problem. Many examples were given in
Sect. 5.5 and in [19], but no detailed study has been made about “optimal” choices.

Another interesting problem is the possibility of errors in sensor locations. Since
the dense coarray with spacing λ/2 is obtained by taking the differences of elements
in a sparse array, errors in sensor positions affect those in the coarray. A very dense
coarray with large “errors” will create errors in results (such as DOA estimates).
Another issue is the analysis of the accuracy of DOA estimates, which depends on
the number of snapshots. No such analysis is available for the case of estimates
based on the dense coarray. With regard to the application of coprime sampling in
system identification (Sect. 5.7), the application for channel identification in digital
communications is an interesting problem that remains to be explored because, in
such applications, the input x(n) is known only for short stretches of time (pilot
modes, during which no other signal transmission takes place). In short, it appears
that several interesting problems and new directions have been opened up by the
theory of coprime sampling.

Acknowledgments This work was supported in parts by the Office of Naval Research grant
N00014-08-1-0709 and the California Institute of Technology.

References

1. Abramovich YI, Gray DA, Gorokhov AY, Spencer NK (1998) positive-definite toeplitz
completion in DOA estimation for nonuniform linear antenna arrays. I. Fully augmentable
arrays. IEEE Trans Signal Proc 46:2458–2471

2. Chen T, Vaidyanathan PP (1993) The role of integer matrices in multidimensional multirate
systems. IEEE Trans Signal Proc SP-41:1035–1047

3. Chen CY, Vaidyanathan, PP (2008) Minimum redundancy MIMO radars. IEEE Int Symp Circ
Syst 45–48

4. Dudgeon, DE, Mersereau, RM (1984) Multidimensional digital signal processing, Prentice
Hall, Inc., Englewoods Cliffs

5. Horn RA, Johnson, CR (1985) Matrix analysis. Cambridge University Press, Cambridge
6. Kailath, T (1980) Linear Systems, Prentice Hall, Inc., Englewood Cliffs
7. Hoctor RT, Kassam, SA (1990) The unifying role of the coarray in aperture synthesis for

coherent and incoherent imaging. Proceedings of the IEEE. 78:735–752
8. Moffet A (1968) Minimum-redundancy linear arrays. IEEE Trans Antenn Propag 16:

172–175



5 Coprime Sampling and Arrays in One and Multiple Dimensions 137

9. Oppenheim AV, Schafer RW (1999) Discrete time signal processing, Prentice Hall, Inc.,
Englewood Cliffs

10. Pal P , Vaidyanathan, PP (2011) Coprime sampling and the MUSIC algorithm. Proc of the 14th
IEEE Digital Signal Processing Workshop, Sedona, AZ

11. Pal P, Vaidyanathan PP (2010) Nested arrays: a novel approach to array processing with
enhanced degrees of freedom. IEEE Trans Signal Process 58: 4167–4181

12. Pal P, Vaidyanathan PP (2011) Coprimality of certain families of integer matrices, IEEE Trans
Signal Process 59: 1481–1490

13. Pillai SU, Bar-Ness, Y, Haber F (1985) A new approach to array geometry for improved spatial
spectrum estimation. Proc IEEE 73: 1522–1524

14. Proakis JG (1995) Digital communications. McGraw Hill, Inc., New York
15. Rajagopal R, Potter LC (2003) Multivariate MIMO FIR inverses. IEEE Trans Image Proc12:

458–465
16. Skolnik MI (2001) Introduction to radar systems. McGraw-Hill, NY
17. Treichler JR, Fijalkow I, Johnson CR (1996) Fractionally spaced equalizers: how long should

they be? IEEE Signal Process Mag 13:65–81
18. Vaidyanathan PP, Pal P (2011) Sparse sensing with coprime samplers and arrays. IEEE Trans

Signal Process 59:573–586
19. Vaidyanathan PP, Pal P (2011) Theory of sparse coprime sensing in multiple dimensions. IEEE

Trans Signal Process 59:3592–3608
20. Vaidyanathan PP, Pal P (2011) A general approach to coprime pairs of matrices, based on

minors. IEEE Trans Signal Process 59:3536–3548
21. Vaidyanathan PP, Pal P (2010) System identification with sparse coprime sensing. IEEE Signal

Process Lett 17:823–826
22. Vaidyanathan PP, Pal P (2011) Coprime Sampling for System Stabilization with FIR Multirate

Controllers. Proc IEEE Asilomar Conf on Signals, Systems, and Compuers
23. Vaidyanathan PP (1993) Multirate systems and filter bank. Prentice Hall, Inc., Englewood

Cliffs
24. Van Trees HL (2002) Optimum array processing: part IV of detection, estimation and

modulation theory, Wiley Interscience, NY
25. Vrcelj B, Vaidyanathan PP (2002) MIMO biorthogonal partners and applications, IEEE Trans

Sig Process 50: 528–542
26. Vrcelj B, Vaidyanathan PP (2003) Fractional biorthogonal partners in channel equalization and

signal interpolation. IEEE Trans Signal Process 51:1928–1940
27. Xia XG (1999) On estimation of multiple frequencies in undersampled complex valued

waveforms. IEEE Trans Signal Process 47:3417–3419
28. Xia XG, Liu K (2005) A generalized Chinese remainder theorem for residue sets with errors

and its application in frequency determination from multiple sensors with low sampling rates.
IEEE Signal Process Lett 12:768–771



Chapter 6
Chromatic Expansions and the Bargmann
Transform

Ahmed I. Zayed

Abstract Chromatic series expansions of bandlimited functions have recently been
introduced in signal processing with promising results. Chromatic series share
similar properties with Taylor series insofar as the coefficients of the expansions,
which are called chromatic derivatives, are based on the ordinary derivatives of the
function, but unlike Taylor series, chromatic series have more practical applications.
The Bargmann transform was introduced in 1961 by V. Bargmann who showed,
among other things, that the Bargmann transform is a unitary transformation from
L2(IRn) onto the Bargmann–Segal–Foch space F on which Foch’s operator solutions
to some equations in quantum mechanics are realized.

The goal of this article is to survey results on chromatic derivatives and explore
the connection between chromatic derivatives and series on the one hand and the
Bargmann transform and the Bargmann–Segal–Foch space on the other hand.

6.1 Introduction

Chromatic derivatives and series expansions have recently been introduced by
A. Ignjatovic in [14, 15] as an alternative representation to Taylor series for
bandlimited functions, and they have been shown to be more useful in practical
applications than Taylor series; see [4, 6, 11–13, 22, 25, 26].

The nth chromatic derivative Kn[ f ](t0) of an analytic function f (t) at t0 is a linear
combination of the ordinary derivatives f (k)(t0), 0 ≤ k ≤ n, where the coefficients
of the combination are based on systems of orthogonal polynomials.

Chromatic derivatives are intrinsically related to the Fourier transformation. They
are constructed using the fact that, under the Fourier transformation, differentiation
in the time domain corresponds to multiplication by powers of ω in the frequency
domain.
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In two recent papers [27, 28] we introduced more general types of chromatic
derivatives and series that are better suited to handle integral transforms other than
the Fourier transform. In [28] we presented two different methods to construct
a differential operator L that gives rise to generalized chromatics derivatives and
their associated integral transform. In the first method the operator L arises from
certain Sturm–Liouville boundary-value problems, while in the second, it arises
from initial-value problems involving differential operators of order n.

The states of a quantum mechanical system of n degrees of freedom are described
by functions in configuration space variables (q1, . . . ,qn) or in momentum space
variables (p1, . . . , pn) or a complex combinations thereof, such as

ηk = 2−1/2 (qk − ipk) , ξk = 2−1/2 (qk + ipk) .

In 1928 Fock [7] introduced the operator solution ξk = ∂/∂ηk of the commutation
rule [ξk,ηk] = 1 that appears in quantum mechanics. In 1961, V. Bargmann
[1–3] investigated in greater detail the function space F on which Foch’s solution is
realized. He also studied the relationship between the space F, which is called the
Bargmann–Segal–Foch space, and the Hilbert space of square integrable functions
L2(IRn). That relationship was established using an integral transform that is now
known as the Bargmann transform. The Bargmann transform resurfaced again in
recent years because of its connection with other important transforms such as the
Gabor and Zak transforms [16, 17].

The purpose of this chapter is twofold: (1) to give an overview of chromatic
derivatives and series in one and several variables and (2) to show that functions
in the Bargmann–Segal–Foch space F can be represented by chromatic series
expansions. We utilize the Bargmann transform and chromatic derivatives to obtain
an orthonormal basis for the space F. A salient feature of this basis is that all the
elements of the basis are generated from one single function by applying successive
chromatic differentiations to it. This is reminiscent of the wavelets and Gabor
systems in which orthonormal bases of certain function spaces are generated from
one single function by translation and dilation in the former case and by translation
and modulation in the latter.

The notation we use in this chapter is standard. We denote the set of real numbers
by IR, the integers by ZZ, and the natural numbers by N.

The chapter is organized as follows. In Sect. 6.2 we give a brief introduction to
chromatic derivatives and series. A more general form of chromatic series, which
will be used to derive the main results of the articles, is presented in Sect. 6.3.
Because chromatic derivatives in higher dimensions are based on orthogonal
polynomials in several variables, we will give a brief introduction to the theory of
orthogonal polynomials in several variables in Sect. 6.4, followed by an introduction
to chromatic derivatives and series in higher dimensions in Sect. 6.5. Sections 6.6
and 6.7 give a brief introduction to the Bargmann–Segal–Foch space and the
Bargmann transform and some of their properties that will be used in the sequel.
The main result is presented in Sect. 6.8.
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6.2 Chromatic Derivatives and Series

In this section we describe the general idea of chromatic expansions associated with
a family of orthogonal polynomials.

For the reader’s convenience, we will briefly describe how chromatic series are
constructed in one dimension and relegate the treatment in higher dimensions to
Sect. 6.5. Let W (ω) be a nonnegative weight function such that all of its moments
are finite, that is, such that

μn =

∫ ∞

−∞
ωnW (ω)dω < ∞.

Let {Pn(ω)}∞n=0 be the family of polynomials orthonormal with respect to W (ω):∫ ∞

−∞
Pn(ω)Pm(ω)W (ω)dω = δm,n,

and let Kn( f ) = Pn(i d
dt )( f ) be the corresponding linear differential operator

obtained from Pn(ω) by replacing ωk (0 ≤ k ≤ n) with ik dk

dtk . These differential
operators are called chromatic derivatives associated with the family of orthogonal
polynomials {Pn(ω)} because they preserve the spectral features of bandlimited
signals.

Let ψ(z) be the Fourier transform of the weight function W (ω),

ψ(z) =
∫ ∞

−∞
eiωzW (ω)dω .

Because ψ(z) will be used in a Taylor-type expansion of functions analytic in
a domain around the origin, we shall assume that limsup(μn/n!)1/n < ∞, where,
ψ(n)(0) = inμn. This condition implies that ψ(z) is analytic around the origin. As
shown in [10], this condition holds if and only if

∫ ∞

−∞
ec|ω|W (ω)dω < ∞

for some c > 0, and in this case ψ(z) is analytic in the strip S(c/2) = {z : ℑ(z) <
c/2}.

The chromatic series expansion of f ∈ C∞(IR) is given by the following formal
series:

f (z) ∼
∞

∑
n=0

Kn( f )(0)Kn(ψ)(z). (6.1)

It has been shown in [10] that if f (z) is analytic in the strip S(c/2) and
∑∞n=0 |Kn( f )(0)|2 converges, then for all u ∈ IR, the series (6.1) converges to
f (z), uniformly in every strip {z : |ℑ(z)| < c/2 − ε}, for any ε > 0. Here it
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should be emphasized that although chromatic series were originally introduced for
bandlimited functions, the theory now applies to a much larger class of functions.

In the particular case, where W (ω) = χ(−1,1), the chromatic series associated
with the Legendre polynomials converge in the whole complex plane, that is,
the strip S(c/2) is C, and the set of entire functions for which ∑∞n=0 |Kn( f )(0)|2
converges is precisely the set of L2 functions whose Fourier transforms are finitely
supported, that is, the set of bandlimited functions. For such functions the chromatic
expansions converge uniformly on IR, and their truncated series are themselves ban-
dlimited which is analogous to the Whittaker–Shannon sampling series [29]. This is
in contrast to Taylor series whose truncated series are not. For this reason chromatic
series have more practical applications in signal processing than Taylor series.

6.3 Chromatic Derivatives Associated with More General
Differential Operators

In this section we summarize two generalizations of chromatic derivatives and their
associated chromatic series.

6.3.1 Chromatic Derivatives Associated with a Sturm–Liouville
Differential Operator

Consider the singular Sturm–Liouville boundary-value problem on the half line

Ly =−y′′+ q(x)y = λy, 0 ≤ x < ∞, (6.2)

y(0)cosα+ y′(0)sinα = 0, −π < α ≤ π , (6.3)

where q(x) ∈ L1(R+) is real valued. It is known that the condition q ∈ L1(R+)
implies that the problem is in the limit point case at ∞ and that the spectrum is
continuous [24]. In fact, there exists a non-decreasing function ρ(λ ) such that for
all f ∈ L2(R+)

f̂ (λ ) =
∫ ∞

0
f (x)φ(x,λ )dx (6.4)

exists in the mean and defines a function f̂ (λ ) such that

f (x) =
∫ ∞

−∞
f̂ (λ )φ(x,λ )dρ(λ ), (6.5)

where φ(x,λ ) is a solution of the differential equation (6.2) that satisfies the initial
condition

φ(0,λ ) = sinα, φ ′(0,λ ) =−cosα. (6.6)
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We call the integral transform (6.4) the φ -transform of f . Fix 0 < a < ∞, and let
K2(a) denote the set of all functions with supports in [0,a] that are square integrable
with respect to dρ . In most cases of interest dρ is supported on a half line which,
without loss of generality, we may take as [0,∞). For sufficient conditions for this to
hold see [20, p.128]. The main result can be summarized in the following theorem
whose proof can be found in [28].

Theorem 1. Consider the boundary-value problem (6.2) and (6.3), and let CK2(a)
denote the image of K2(a) under the transformation (6.5), i.e., f ∈ CK2(a) if and
only if there exists f̂ ∈ K2(a) such that (6.5) holds. Then there exists a sequence
of polynomials {pn(λ )}∞n=0 that are orthonormal with respect to dρ on [0,a], and
pn(λ ) is of exact degree n. Furthermore, for any f ∈CK2(a), we have for α �= 0,π

f (x) =
1

(sinα)

∞

∑
n=0

[pn(L) f ] (0)ψn(x), (6.7)

where

ψn(x) =
∫ ∞

0
pn(λ )φ(x,λ )dρ(λ ),

and the series converges to f in the mean. Similar expressions exist for α = 0
or π . The functions {ψn(x)} are orthonormal on [0,∞) and satisfy the initial
condition (6.6). The series (6.7) converges to f (x) pointwise for 0 ≤ x < ∞. In fact,
the series converges to f uniformly on compact subsets of (0,∞).

Definition 2. The nth generalized chromatic derivative of a function f associated
with the differential operator L at x = 0 is defined as

Kn[ f ](0) = 〈 f̂ , pn〉dρ =
1

(sinα)
[pn(L) f ] (0), for α �= 0,π

where f̂ is the φ transform of f . Analogous to (6.1), we define the generalized
chromatic series expansion of f as

∞

∑
n=0

Kn[ f ](0)Kn[ψ ](x), where ψn(x) = Kn[ψ ](x),

and

ψ(x) =
∫ a

0
φ(x,λ )dρ(λ ).

6.3.2 Chromatic Series Associated with More General
Integral Transforms

In this section we briefly introduce another generalization of chromatic series that is
more intrinsically related to integral transforms other than the Fourier transform. We
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begin with an integral transform and assume that the kernel of the transform arises
from an initial-value problem associated with a linear differential operator with
variable coefficients. It should be noted that the kernels of most classical integral
transforms, such as the Fourier, Laplace, Hankel, and Legendre transforms, possess
this property.

Consider the integral transform∫
J1

f̂ (λ )φ(x,λ )dλ , (6.8)

where J1 is either [0,∞) or (−∞,∞). Assume that the kernel function φ(x,λ )
satisfies the differential equation

Lφ(x,λ ) = λφ(x,λ ), x ∈ I (6.9)

on some interval I, where

L = qn(x)
dn

dxn + qn−1(x)
dn−1

dxn−1 + . . .+ q1(x)
d
dx

+ q0(x)

for some continuous functions qi(x) on I and qn(x) �= 0 on I.
Let a ∈ I and assume that φ(x,λ ) is continuous in λ and φ(a,λ ) �= 0. Without

loss of generality, we may take φ(a,λ ) = 1. If φ(a,λ ) = 0, we may take φ to satisfy
∂φ(x,λ )
∂x

∣∣∣
x=a

= 1. Such φ always exists as one of the fundamental solutions of the

initial-value problem [21]. We will focus on the case J1 = [0,∞)
Let w(λ )> 0 be a weight function on 0 ≤ λ ≤ b. Let {pn(λ )}∞n=0 be a complete

orthonormal system of polynomials in L2 ([0,b),w(λ )) with respect to the weight
function w(λ ).

Consider f (x) the integral transform (6.8) of f̂ ,

f (x) =
∫ b

0
f̂ (λ )φ(x,λ )dλ , x ∈ I. (6.10)

Applying the operator L to both sides of (6.10), we have

L f (x) =
∫ b

0
λ f̂ (λ )φ(x,λ )dλ .

and hence

pn(L) f (x) =
∫ b

0
pn(λ ) f̂ (λ )φ(x,λ )dλ .

Moreover, we have [pn(L) f ] (a) =
∫ b

0 pn(λ ) f̂ (λ )dλ =
〈

f̂ , pn
〉
. Thus, formally,

we have

f (x) =
∞

∑
n=0

Kn[ f ](a)ψn(x),
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where the series converges pointwise for x ∈ I,

ψn(x) = Kn[ψ ](x) =
∫ b

0
pn(λ )w(λ )φ(x,λ )dλ , x ∈ I, (6.11)

with

ψ(x) =
∫ b

0
w(λ )φ(x,λ )dλ ,

and Kn[ f ](a) = [pn(L) f ] (a) is the nth chromatic derivative of f associated with the
integral transform (6.8) and the system of orthonormal polynomials {pn} .

6.4 Orthogonal Polynomials Expansions in Several Variables

6.4.1 Orthogonal Polynomials in Several Variables

Let N denote the set of nonnegative integers and α be a multi-index α =
(α1, . . . ,αd) ∈ N

d . We use the notation

α! = α1!α2! . . .αd! , |α|= α1 + . . .+αd,

and δα ,β = δα1,β1
. . .δαd ,βd

. For x = (x1, . . . ,xd) ∈ IRd , we define the monomial
xα = xα1

1 . . .xαd
d and |α| is the degree of xα . A polynomial P in d variables is a

linear combination of the form

P(x) =∑
α

cαxα ,

where cα are complex numbers. We denote the set of all polynomials in d variables
by Π d and the set of all polynomials of degree at most n by Π d

n . The set of all
homogenous polynomials of degree n will be denoted by Pd

n

Pd
n =

{
P : P(x) = ∑

|α |=n

cαxα
}
.

Every polynomial in d variables can be written as a linear combination of
homogenous polynomials

P(x) =
n

∑
k=0
∑

|α |=k

cαxα .

It is known that the dimension rd
n of Pd

n is

rd
n =

(
n+ d− 1
n

)
.
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For a fixed d, we may write rn = rd
n . In one variable, monomials are ordered

according to their degrees as 1,x,x2, . . . ; however, in several variables, such natural
order does not exist. Therefore, we will use the lexicographic order, that is, α > β ,
if the first nonzero entry in the difference α −β = (α1 −β1,α2 −β2, . . . ,αd −βd)
is positive.

If < , > is an inner product onΠ d , we say that a polynomial P is orthogonal to a
polynomial Q if 〈P,Q〉= 0. A polynomial P is called an orthogonal polynomial if P
is orthogonal to all polynomials of lower degree, that is, 〈P,Q〉= 0, for all Q ∈Πd

with degQ < degP. Denote by V d
n the space of orthogonal polynomials of degree

exactly n:

V d
n =

{
P ∈Π d

n : 〈P,Q〉= 0, for all Q ∈Π d
n−1

}
;

the dimension of V d
n is the same as that of Pd

n .
A multi-sequence s : Nd → IR is written as s = (sα)α∈Nd , and for each multi-

sequence, we define a linear functional on Π d by

L(xα ) = sα , α ∈N
d .

Let the elements of the set
{
α ∈ N

d : |α|= n
}

be arranged as α(1),α(2), . . . ,α(rn)

according to the lexicographic order. Let xn denote the column vector

xn = (xα)|α |=n =
(

xα( j)
)rn

j=1
;

i.e., xn is a vector whose elements are the monomials xα for |α|= n, arranged in the
lexicographic order.

Define the vector moments sk = L(xk
)

and

s(k)+( j) = L
(

xk (x j)T
)
,

which is a matrix of size rd
k × rd

j whose elements are L(xα+β) for |α|= k, |β |= j.
Define the matrix

Mn,d =
(
s(k)+( j)

)n
k, j=0

and Δn,d = detMn,d ;

Mn,d is called a moment matrix and its elements are L(xα+β) for |α| ≤ n, |β | ≤ n.
If {Pα}|α |=n is a sequence of polynomials in Π d

n we get the column polynomial

vector Pn = (Pα(1), . . . ,Pα(rn) )
T , where α(1), . . . ,α(rn) is the lexicographic order in{

α ∈ N
d : |α|= n

}
. For more details on the subsequent discussion, see [5].

Definition 3. Let L be a moment functional. A sequence of polynomials {Pα}|α |=n

in Π d
n is said to be orthogonal with respect to L if

L(xm
P

T
n

)
= 0 for n > |m| and L(xn

P
T
n

)
= sn,

where sn is an invertible matrix of size rd
n × rd

n .
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By definitionL(xm
P

T
n

)
= 0 if and only if L(xβPα

)
= 0, |β |=m, |α|= n. Hence,

each Pα is orthogonal to any polynomial of lower degree. It is known that if L is a
moment functional and Pn is orthogonal as defined before, then {P0,P1, . . . ,Pn} is
a basis for Π d

n . Hence, there exists matrices ck of size rd
n × rd

k such that

xn = cnPn + cn−1Pn−1 + . . .+ c0P0. (6.12)

It is also known that for a given moment functional L, a system of orthogonal
polynomials exists if and only if Δn,d �= 0.

A moment linear functional L is said to be positive definite if L(p2
)
> 0 for all

p ∈ Π d , p �= 0. The associated sequence {sα} with L will be also called positive
definite.

If p = ∑aαxα , then L(p) = ∑aαsα and L(p2) = ∑α ,β aαaβ sα+β > 0 for every
sequence a = (aα) for which aα = 0, except for finitely many multi-indices α .
This implies that L is positive definite if and only if for every tuple (β (1), . . . ,β (r)),
1 ≤ j ≤ r, the matrix (sβ (i)+β ( j) )r

i, j=1 has positive determinant.
It is known [5] that if L is positive definite, then Δn,d > 0, and there exists a

system of orthogonal polynomials with respect to L. In fact, in this case, there
exists an orthonormal basis with respect to L, i.e., there exists a sequence of vector
polynomials {Pn} such that

L(PmP
T
n

)
= 0 if m �= n, L(PnP

T
n

)
= Irn ,

where Irn is the identity matrix of size rd
n × rd

n .
Let M denote the set of nonnegative Borel measures on IRd having moments of

all orders. Thus, μ ∈ M if

∫
IRd

|x|α dμ < ∞ for all α ∈ N
d,

and we call sα =
∫
Rd xαdμ the moments of μ . For such a measure μ ∈ M, we have

a moment functional L defined for polynomials P ∈Π d by

L(P) =
∫
Rd

P(x)dμ(x).

If dμ(x) = W(x)dx and W (x) is a nonnegative weight function, then L is positive
definite, that is, L(P2) > 0 for any 0 �= P ∈ Π d . It is known that if s = (sα ) is
a multi-sequence, then there exists μ ∈ M such that sα =

∫
xαdμ(x) if and only

if the associated moment functional L is nonnegative on the set of nonnegative
polynomials. That is, L(P)≥ 0 for any P ∈Π d

+ =
{

P ∈Π d : P(x)≥ 0
}
.
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6.4.2 Orthogonal Polynomial Expansions

Let L be a positive moment functional (hence positive definite) and let {Pn} be the
system of orthonormal polynomials associated with it. From the above discussion it
follows that there exists a measure μ ∈ M such that

L(xα ) = sα =

∫
Rd

xαdμ(x).

We assume that μ is absolutely continuous so that dμ =W (x)dx, with W being
nonnegative so that LW ( f ) =

∫
f (x)W (x)dx is positive definite. We also assume that

for some c > 0,

∫
IRd

ec‖x‖W (x)d(x)< ∞, (6.13)

so that polynomials are dense in L2(dμ) [5]. Condition (6.13) is satisfied, for
example, if μ is compactly supported.

We adopt the following notation: If P(x1, . . . ,xd) is a polynomial in x1, . . . ,xd ,

then the polynomial P
(
∂
∂x1

, . . . , ∂
∂xd

)
will be denoted by P

(
∂
∂x

)
, where xα is

replaced by ∂ |α|
∂xα where α is a multi-index. More explicitly, if α = (α1, . . . ,αd) ,

then
xα = xα1

1 xα1
2 ..xαd

d , |α|= α1 +α2 + . . .+αd, αi ∈ N

is replaced by
∂ |α |

∂xα1
1 ∂xα2

2 . . .∂xαd
d

.

Let {Pn
α}∞|α |=0 denote the sequence of orthonormal polynomials with respect to

LW . Let L2
W (IRd) denote the space of all square integrable functions with respect

to the weight function W . For any function f ∈ L2
W (IRd), consider its generalized

Fourier expansion with respect to {Pn
α}∞|α |=0 ,

f �
∞

∑
n=0
∑

|α |=n

cn
α( f )Pn

α , with cn
α( f ) =< f ,Pn

α >W=

∫
f (x)Pn

α (x)W (x)dx.

(6.14)

If we use the vector notation, we have

f �
∞

∑
n=0

cT
n ( f )Pn, with cn( f ) =< f ,Pn >W=

∫
f (x)Pn(x)W (x)dx;

here cn is a column vector with components cn
α and |α| = n. It follows that (6.14)

can be written as

f �
∞

∑
n=0

ProjV d
n

f , where ProjV d
n

f = cT
n ( f )Pn,
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which leads to

ProjV d
n

f (x) =
∫

f (y)Pn(x,y)W (x)dx, with Pn(x,y) = P
T
n (x)Pn(y).

6.5 Multidimensional Chromatic Derivatives

Let z = (z1,z2, . . . ,zd) ∈ C
d and define the inner product

< z,w >=
d

∑
k=1

zkwk,z,w ∈ C
d so that ‖z‖2 =

d

∑
k=1

|zk|2

If zk = xk + iyk, define ℜz = (x1,x2, . . . ,xd) and ℑz = (y1,y2, . . . ,yd) so that z =
ℜz+ iℑz. Moreover,

‖ℜz‖2 =
d

∑
k=1

x2
k , ‖ℑz‖2 =

d

∑
k=1

y2
k.

For every real a > 0, we let Sd(a) = {z ∈ C
d : ‖ℑ(z)‖< a}.

Definition 4. Let f : Cd → C; the nth chromatic derivatives K
n( f ) of f (z) with

respect to the polynomials {Pn
α} is defined as

K
n( f ) = Pn

(
−i
∂
∂ z

)
( f ),

where Pn is the column vector defined before.

Hence, the nth chromatic derivative of f is a column vector with rd
n components,

with each component being a linear combination of partial derivatives. It is easy to
check that if ω ∈ IRd is fixed, then1

Kn
α (e

i〈ω,z〉) = Pn
α(ω)e

i〈ω,z〉. (6.15)

For more details on the results of this section, see [9].

Proposition 5. Let ϕ(ω) ∈ L2
W (IRd) and define a corresponding function fϕ :

Sd(c/2)→ C by a W (ω)-weighted Fourier transform of ϕ:

fϕ (z) =
∫

IRd
ϕ(ω)ei〈ω,z〉W (ω)dω . (6.16)

1If x,ω ∈ IRd are both real vectors, then we denote their scalar product by x.ω . If at least one of
u, z is complex, we denote their scalar product by 〈u, z〉.
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Then fϕ (z) is analytic on Sd(c/2), and for all n and z ∈ Sd(c/2),

K
n[ fϕ ](z) =

∫
IRd

Pn(ω)ϕ(ω)ei〈ω,z〉W (ω)dω . (6.17)

Proof. Let z ∈ C
d and z = x+ iy, where x,y ∈ IRd , with ‖y‖ < c/2− ε for some

ε > 0; then for all α ∈N
d ,∫

IRd
|(iω)αϕ(ω)ei〈ω,z〉|W (ω)dω

≤
(∫

IRd
|ϕ(ω)|2W (ω)dω

∫
IRd
ω2αe2(ω.y)W(ω)dω

)1/2

≤ ‖ϕ‖W

(∫
IRd
ω2αe2‖ω‖‖y‖W (ω)dω

)1/2

Choose Mα > 0 such that for all ω ,

ω2α = ω2α1
1 . . .ω2αk

k ≤ ‖ω‖2α1 . . .‖ω‖2αk = ‖ω‖2|α | < Mαeε‖ω‖,

then

∫
IRd

|(iω)αϕ(ω)ei〈ω,z〉|W (ω)dω ≤ M1/2
α ‖ϕ‖W

(∫
IRd

e‖ω‖(c−ε)W (ω)dω
)1/2

<∞.

The claims now follow from (6.12), (6.13), and (6.15).

It is known that if condition (6.13) holds, then {Pn(ω)} is a complete system in
L2

W (IRd).

Proposition 6. Let ϕ(ω) ∈ L2
W (IRd); if for some fixed u ∈ Sd(c/2), the function

ϕ(ω)ei〈ω,u〉 belongs to L2
W (IRd), then in L2

W (IRd), we have

ϕ(ω)ei〈ω,u〉 =
∞

∑
n=0

[Kn[ fϕ ](u)]
T
Pn(ω), (6.18)

and for fϕ given by (6.16), we have

∞

∑
n=0
∑

|α |=n

|Kn
α [ fϕ ](u)|2 = ‖ϕ(ω)ei〈ω,u〉‖2

W < ∞. (6.19)

Proof. Let fϕ be given by (6.16). By Proposition 5, (6.17) holds. However, if
ϕ(ω)ei〈ω,u〉 belongs to the space L2

W (IRn), then (6.17) asserts that the projection
of ϕ(ω)ei〈ω,u〉 onto the vector Pn(ω) is equal to K

n[ fϕ ](u):

〈ϕ(ω)ei〈ω,u〉,Pn(ω)〉W =K
n[ fϕ ](u). (6.20)
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Since {Pn(ω)}n∈N is a complete orthonormal system in L2
W (IRd), (6.20) implies

(6.18), and Parseval’s theorem implies (6.19).

As a corollary, we have

Corollary 7. For every ϕ(ω) ∈ L2
W (IRd) and every u ∈ IRd, equality (6.18) holds

and

∞

∑
n=0
∑

|α |=n

|Kn
α [ fϕ ](u)|2 = ‖ϕ(ω)‖2

W . (6.21)

Thus, the sum ∑∞n=0∑|α |=n |Kn
α [ fϕ ](u)|2 is independent of u ∈ IRd.

Proof. If u∈ IRd , then ϕ(ω)ei〈ω,u〉 ∈L2
W (IRd) and ‖ϕ(ω)ei〈ω,u〉‖2

W = ‖ϕ(ω)‖2
W ; thus,

Proposition 6 applies.

Definition 8. Let z ∈ Sd(c/2) and define

ψ(z) =
∫

IRd
ei〈ω,z〉W (ω)dω , (6.22)

and more generally

Kn
α(ψ(z)) = ψ

n
α(z) =

∫
IRd

Pn
α(ω)e

i〈ω,z〉W (ω)dω ; (6.23)

we may also use the vector notationΨΨΨn(z) = (ψn
α(z))|α | = n.

Note that Proposition 5 implies that the integrals in the definitions of ψ(z) and
ψn
α(z) are finite.

Corollary 9. Let ε > 0, then for all z ∈ S( c
2 − ε)

∞

∑
n=0
∑

|α |=n

|ψn
α(z)|2 <

∥∥∥e(
c
2−ε)‖ω‖

∥∥∥2

W
< ∞. (6.24)

Proof. We apply Proposition 6 with ϕ(ω) = 1, in which case fϕ (z) = ψ(z), and,
using (6.19), obtain

∞

∑
n=0
∑

|α |=n

|ψn
α(z)|2 =

∥∥∥ei〈ω,z〉
∥∥∥2

W
=
∥∥∥e|ω.ℑ(z)|

∥∥∥2

W
<
∥∥∥e(

c
2−ε)‖ω‖

∥∥∥2

W
< ∞.

The last inequality follows from (6.13).

Definition 10. We denote by Λ2
W the vector space of functions f : Sd(c/2) → C

which are analytic on Sd(c/2) and satisfy ∑∞n=0∑|α |=n |Kn
α [ fϕ ](0)|2 < ∞. The

chromatic series expansion of a function f ∈ Λ2
W is given by the following formal

series:

f (z) ∼
∞

∑
n=0

[Kn( f )(u)]TΨn(z− u). (6.25)
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Proposition 11. The mapping

f (z) �→ ϕ f (ω) =
∞

∑
n=0

[Kn[ f ](0)]T Pn(ω) (6.26)

is an isomorphism between the vector spaces Λ2
W and L2

W (IRd), and its inverse is
given by (6.16).

Definition 12. For f ∈Λ2
W , we denote the corresponding ϕ f (ω) given by (6.26) by

FW [ f ](ω); thus, for z ∈ Sd(c/2),

f (z) =
∫

IRd
FW [ f ](ω)ei〈ω,z〉W (ω)dω . (6.27)

Proposition 11 and Corollary 7 imply the following corollary.

Corollary 14. For all f ∈ Λ2
W and all x ∈ IRd, the sum ∑∞n=0∑|α |=n |Kn

α [ fϕ ](x)|2
converges and is independent of x. Moreover,

f (z) =
∞

∑
n=0

[Kn( f )(u)]TΨn(z− u). (6.28)

Example. The most efficient system of orthogonal polynomials to use to generate
chromatic derivatives will depend on the shape of the support of the Fourier
transform FW [ f ] of f . Below we give some examples:

1. If the support of FW [ f ] is the half space
{

x ∈ IRd : x1,≥ 0, . . . ,xd ≥ 0
}

, we use
the normalized Laguerre polynomials

Lα(x) = Lk1
α1(x) · · ·Lkd

αd
(x), |α|= n,x ∈ IRd

+,ki ≥−1,

with weight function W (x) = xke−|x|1 , where |x|1 = x1 + · · ·+xd, k = (k1, . . . ,kd)
and Lαn (x) is the normalized Laguerre polynomial of degree n and parameter α.

2. If the support of FW [ f ] is the hypercube D = [−1,1]d, we may use the d-
dimensional Jacobi polynomials

P(a,b)
α (x) = P(a1,b1)

α1 (x1) · · ·P(ad ,bd)
αd

(xd), |α|= n,

with weight function

W (a,b)(x) =
d

∏
i=1

(1− xi)
ai(1+ xi)

bi ,

where a = (a1,a2, . . . ,ad),b = (b1,b2, . . . ,bd), and P(α ,β )
n (x) is the normalized

Jacobi polynomial of degree n with parameters α,β . See [23] for the definition
of the Laguerre and Jacobi polynomials.
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6.6 The Bargmann–Segal–Foch Space

In this section, we introduce the Bargmann–Segal–Foch space and some of its
properties that will be used later.

Definition 14. Let dμn(z) = ρndnxdny, ρn = (π)−n exp(−‖z‖2). The Bargmann–
Segal–Foch space F consists of all entire functions F(z) in C

n such that

‖F‖2
F =

∫
Cn

|F(z)|2dμn(z)< ∞.

It is a Hilbert space with inner product defined by

〈F,G〉F =

∫
Cn

F(z)G(z)dμn(z)< ∞

and hence with norm
‖F‖2

F =

∫
|F(z)|2dμ(z).

The inner product can also be defined in terms of the Taylor series coefficients of
F and G. For, if k = (k1, . . . ,kn),m = (m1, . . . ,mn) are multi-indices with ki,mi ∈ N

and

F(z) = ∑
|k|=0

akzk and G(z) =
∞

∑
|m|=0

bmzm, (6.29)

zk = zk1
1 zk2

2 · · · zkn
n and zk = rkeiθk , k = 1,2, . . . ,n, then

〈F,G〉F = π−n∑
k,m

akbmBk,m,

where

Bk,m =
n

∏
j=1

{(∫ 2π

0
ei(k j−mj)θ j dθj

)(∫ ∞

0
r

k j+mj+1
j e−r2

j drj

)}
,

and since

∫ ∞
0

r2m+1e−r2
dr =

m!
2
,

it is easily seen that

Bk,m =

{
0 if k �= m
πnm! if k = m

.
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Hence,

〈F,G〉F =
∞

∑
|m|=0

ambmm! , (6.30)

and

‖F‖2
F =∑ |am|2m!. (6.31)

Interchanging the integration and the summation signs is possible because of the
uniform convergence.

Lemma 15. The set
{

um(z) = zm/
√

m!
}∞
|m|=0 is an orthonormal basis of F.

Proof. The set
{

um(z) = zm/
√

m!
}∞
|m|=0 is an orthonormal family, i.e.,

〈uk,um〉F = δk,m.

This follows from (6.30).
Moreover, it is complete because in view of (6.30), if F ∈ F, then

√
m! am =

〈F,um〉F for all multi-indices m. Hence, if 〈F,um〉F = 0 for all m, then F = 0, and it
follows that {um(z)}∞|m|=0 is complete, and consequently it is an orthonormal basis
of F.

By applying the Cauchy–Schwarz inequality to the Taylor series of F =∑m amzm,
we obtain

|F(z)|2 ≤ (∑m!|am|2
)(
∑ |z|2m

m!

)
= e|z|

2‖F‖2
F , (6.32)

which shows that convergence in F implies pointwise convergence and uniform
convergence on compact sets. Another consequence of (6.32) is that the evaluation
map F → F(a) is continuous; hence F is a reproducing kernel Hilbert space. Since
{um(z)}∞|m|=0 is an orthonormal basis of F, the reproducing kernel can be found
explicitly. In fact, the reproducing kernel is readily seen to be

K(z,w) =∑
m

zmwm

m!
= e〈z,w〉 .

Thus, for any F ∈ F, we have by (6.30)

〈F(z),K(z,w)〉F =

∫
F(z)e〈w,z〉dμ(z) =

∞

∑
n=0

n!an
wn

n!
= F(w). (6.33)

6.7 The Bargmann Transform

The Bargmann transform was introduced in [3] to establish the mathematical
foundation for some of Foch’s work on quantum field theory. It has also appeared
in the area of quantum optics [18, 19]. Recently, it has appeared in some important
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applications, one of which is its use in the solution of the Gabor representation
problem and in the proof of the completeness of the canonical coherent states in
quantum mechanics and the Gabor frames in signal analysis [1, 16, 17].

Definition 16. The Bargmann transform A[ f ] of a function f : IRn → C is de-
fined by

A[ f ](z) = F(z) = (π)−n/4
∫

f (q)exp
{
−(‖z‖2 + ‖q‖2)/2+

√
2 z ·q

}
dnq (6.34)

which can be written as

F(z) = 〈k(z,q), f (q)〉L2(IRn), whenever f ∈ L2(IRn),

where z = x+ iy, and

k(z,q) = (π)−n/4 exp
{
−(‖z‖2 + ‖q‖2)/2+

√
2 z ·q

}
, (6.35)

q ∈ IRn real and z ∈ C
n complex.

If f is a locally integrable function such that f (q) = O(exp(a‖q‖2)) for
sufficiently large ‖q‖ , and some a < 1/2, in particular, if f ∈ L2(IRn), then its
Bargmann transform exists almost everywhere.

Let H̃m(x) be the Hermite polynomial of degree m defined by

H̃m(x) = 2xH̃m−1(x)− 2(m− 1)H̃m−2(x), H̃0(x) = 1, H̃1(x) = 2x.

We define the normalized Hermite polynomials by

Hm(x) =
1

4
√
π2m/2

√
m!

H̃m(x)

so that ∫
IR

Hk(x)Hm(x)e
−x2

dx = δk,m

or ∫
IR

hk(x)hm(x)dx = δk,m,

where hk(x) = Hk(x)e−x2/2 are the normalized Hermite functions, which are an
orthonormal basis of L2(IR).

Let α = (α1, . . . ,αn) be a multi-index with αi being a nonnegative integer and
|α| = α1 + · · ·+αn. We define the n-dimensional normalized Hermite polynomial
of degree m by

Hα(x) = Hα1(x1) · · ·Hαn(xn), |α|= m, x = (x1, . . . ,xn),
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with weight function W (x) = e−‖x‖2
, x ∈ IRn. The n-dimensional normalized

Hermite functions are defined by

hα(x) = Hα(x)e
−‖x‖2/2

so that ∫
IRn

hα(x)hβ (x)d
nx = δα ,β .

It then follows from the relation [8, P. 837, Formula 7.374-6]

∫
IR

e−(x−y)2
H̃n(x)dx =

√
π 2nyn , n = 0,1, . . . (6.36)

that the Bargmann transform of the normalized Hermite function hα(q) is uα(z) =
zα/

√
α! , |α|= 0,1,2, . . . .

Since the Hermite functions {hα(q)} are an orthonormal basis of L2(IRn), we
have for any f ∈ L2(IRn),

f (q) =∑
α
〈 f ,hα 〉hα(q) with ∑

α
|〈 f ,hα 〉|2 < ∞.

Therefore, the Bargmann transform, F(z) =A[ f ](z), of f is given by

F(z) =∑
α
〈 f ,hα 〉zα/

√
α!

which is in F since by (6.31)

‖F‖F =∑
α
|〈 f ,hα 〉|2 < ∞.

There are several ways to prove Parseval’s relation for the Bargmann transform.
The one we shall use is based on formula (6.30). Let F and G be the Bargmann
transforms of f ,g ∈ L2(IRn), respectively. If we denote 〈 f ,hα 〉 and 〈g,hα〉 by f̂α
and ĝα , then

〈 f , g〉L2(IRn) =

∫
IRn

(
∞

∑
|α |=0

f̂αhα(q)

)(
∞

∑
|β |=0

ĝβhβ (q)

)
dnq

=
∞

∑
|α |=0

f̂α ĝα .

On the other hand, by Lemma 15, one can show

〈F , G〉F =
∞

∑
|α |=0

f̂nĝn. (6.37)
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Therefore, we have the following Parseval’s relation for the Bargmann transform

〈F , G〉F = 〈 f , g〉L2(IRn). (6.38)

Theorem 17. The Bargmann transformation is a unitary transformation from
L2(IRn) onto F that maps the normalized Hermite functions hα(x) into uα(z) =
zα/

√
α! , |α|= 0,1,2, . . . .

6.8 Chromatic Expansions in the Bargmann–Segal–Foch
Space

In this section we show that functions in the Bargmann–Segal–Foch space can be
expanded in chromatic series. To this end we use the Bargmann transform and
chromatic derivatives to show that there exists an entire function ψ in the space
F whose chromatic derivatives K

m[ψ ](z) are an orthogonal basis for F, i.e., the
basis is generated from one single function by applying successively chromatic
differentiations to it.

Let

Li =
1√
2

(
∂
∂ zi

+ zi

)
.

It is easy to see that

LiF(z) =
∫

IRn
f (q)qik(z,q)d

nq,

hence

Hα (L)F(z) =
∫

IRn
f (q)Hα (q)k(z,q)dnq,

where Hα (L) = Hα1 (L1) · · ·Hαn (Ln) .
Following the results of Sect. 6.3, we have the following definition.

Definition 18. We define the αth chromatic derivative of F(z) with respect to the
operator L and the Hermite polynomials as

KαF(z) = Hα(L)F(z).

Let S (IRn) be the Schwartz space of rapidly decreasing functions consisting of
all φ ∈C∞ (IRn) such that

γl,m(φ) = sup
q∈IRn,|β |≤l,|α |≤m

∣∣∣∣∣qβ ∂ |α |φ(q)
∂qα1

1 · · ·qαn
n

∣∣∣∣∣< ∞,
where |α|= α1 + · · ·+αn, |β |= β1 + · · ·+βn, and αi,βi ∈ N.
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We now state the following theorem whose proof will be published somewhere
else.

Theorem 19. There exists a function φ ∈ S (IRn) whose Bergmann transform
A(φ) = ψ(z) ∈ F has the property that its chromatic derivatives {Kαψ(z)} are
an orthogonal basis of F. Hence, any F ∈ F can be written in the form

F(z) =∑
α

KαF(0)Kαψ(z). (6.39)
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Chapter 7
Representation Formulas for Hardy Space
Functions Through the Cuntz Relations
and New Interpolation Problems

Daniel Alpay, Palle Jorgensen, Izchak Lewkowicz, and Itzik Marziano

Abstract We introduce connections between the Cuntz relations and the Hardy
space H2 of the open unit disk D. We then use them to solve a new kind of multipoint
interpolation problem in H2, where, for instance, only a linear combination of the
values of a function at given points is preassigned, rather than the values at the points
themselves.

7.1 Introduction

One motivation for studying representations of the Cuntz relations comes from
signal processing, subband filters, and their applications to wavelets. This falls
within a larger context of multiscale problems, see, for example, [17]. In this
work we study the Cuntz relations in a different context and introduce connections
between them and the Hardy space H2 of the open unit disk D. We prove in
particular the following results: Let b be a finite Blaschke product of degree M,
and let e1, . . . ,eM be an orthonormal basis of H2 !bH2. A function f belongs to H2

and has norm less or equal to 1 if and only if it can be written as
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f (z) =
M

∑
j=1

e j(z) f j(b(z)), (7.1)

where f1, . . . , fM ∈ H2, are uniquely defined and are such that

‖ f‖2
H2

=
M

∑
j=1

‖ f j‖2
H2
. (7.2)

From now on, we denote by ‖ f‖2 the norm of an element of H2. Using Leech’s
factorization theorem (see Sect. 7.2), we prove that, equivalently, f belongs to H2

and has norm less or equal to 1 if and only if it can be written as

f (z) =
∑M

j=1 e j(z)σ1 j(b(z))

1− b(z)σ2(b(z))
, (7.3)

where

σ =

⎛
⎜⎜⎜⎝
σ11

...
σ1M

σ2

⎞
⎟⎟⎟⎠ (7.4)

is a Schur function, that is, analytic and contractive in D.
Representation (7.1) allows us to solve various interpolation problems in H2

by translating them into tangential interpolation problems at one point (in fact at
the origin) in HM

2 . The solution of this latter problem or, more generally, of the
bitangential interpolation problem in Hp×q

2 is well known. See, for instance, [1, 2].
Similarly, the representation (7.3) allows us to solve various interpolation prob-

lems in H2 by translating them into tangential interpolation problems at one point
(here too, in fact at the origin), for CM+1-valued Schur functions, whose solution
is well known. See, for instance, [13] for the general bitangential interpolation
problem for matrix-valued Schur functions.

We now illustrate these points. First note that, for b the Blaschke product with
zeroes the points a1, . . . ,aM, (7.1) leads to

f (a�) =
M

∑
j=1

e j(a�) f j(0), �= 1, . . . ,M. (7.5)

For preassigned values of f (a�), � = 1, . . . ,M, this reduces the Nevanlinna–Pick
interpolation problem for M points in H2 to a tangential interpolation problem
at the origin for functions in HM

2 , whose solution, as already mentioned, is well
known. The novelty in this chapter is by exploiting the above reduction scheme to
solve multipoint interpolation problems in H2. For example, consider the following
problem:
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Problem. Given M points a1, . . . ,aM in D and u =
(
u1 u2 · · · uM

) ∈ C
1×M and

γ ∈ C, find all f ∈ H2 such that

M

∑
�=1

u� f (a�) = γ. (7.6)

Solution using (7.1): It follows from (7.5) that

M

∑
�=1

u� f (a�) =
M

∑
j=1

(
M

∑
�=1

u�e j(a�)

)
f j(0)

=
M

∑
j=1

v j f j(0), (7.7)

with

v j =
M

∑
�=1

u�e j(a�), j = 1, . . . ,M. (7.8)

For preassigned value of the left side of (7.7) this is a classical tangential
interpolation problem for CM-valued functions with entries in the Hardy space. Let
v =

(
v1 v2 · · · vM

) ∈ C
1×M. Assuming vv∗ �= 0 we have that the set of solutions is

given by ⎛
⎜⎜⎜⎝

f1(z)
f2(z)

...
fM(z)

⎞
⎟⎟⎟⎠= γ

v∗

vv∗
+

(
IM +(z− 1)

v∗v
vv∗

)⎛⎜⎜⎜⎝
g1(z)
g2(z)

...
gM(z)

⎞
⎟⎟⎟⎠ ,

where g1, . . . ,gM ∈ H2 and

M

∑
�=1

‖ f j‖2
2 =

|γ|2
vv∗

+
M

∑
�=1

‖g j‖2
2.

It follows from (7.1) that a function f ∈ H2 satisfies (7.6) if and only if it can be
written as

f (z) =
γ

vv∗
M

∑
j=1

e j(z)v
∗
j +
(
e1(z) e2(z) · · · eM(z)

)
B(z)

⎛
⎜⎜⎜⎝

g1(z)
g2(z)

...
gM(z)

⎞
⎟⎟⎟⎠ ,

where we have denoted B(z) =
(

IM +(z− 1) v∗v
vv∗
)

. Note that B is an elementary

Blaschke factor, with zero at the origin.
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Solution using (7.3): In the case of representation (7.3), we have similarly

f (a�) =
M

∑
j=1

e j(a�)σ1 j(0), �= 1, . . . ,M. (7.9)

For preassigned values of f (a�), � = 1, . . . ,M, this reduces the Nevanlinna–Pick
interpolation problem for M points in H2 to a tangential interpolation problem at
the origin for matrix-valued Schur functions (7.4). As in the previous discussion
we exploit the above reduction scheme to interpolation problem in the Schur class
for multipoint interpolation problems. For example, in the case of the interpolation
constraint (7.6), it follows from (7.9) that

M

∑
�=1

u� f (a�) =
M

∑
j=1

u�

(
M

∑
�=1

e j(a�)

)
σ1 j(0)

=
M

∑
j=1

v jσ1 j(0), (7.10)

with v1, . . . ,vM as in (7.8). For preassigned value of the left side of (7.10) this is a
classical tangential interpolation problem for CM+1-valued Schur functions.

Problems of the form (7.9) have been studied for M = 2, under the name
multipoint interpolation problem, in [6]. In that paper, an involution ϕ of the open
unit disk which maps a1 into a2 is used. Then, one notes that the function

F(z) =

(
f (z)

f (ϕ(z))

)

satisfies the symmetry

F(ϕ(z)) = JF(z), where J =

(
0 1
1 0

)
.

This reduces the interpolation problem in H2 to an interpolation problem with
symmetries in H2

2. Unfortunately this method does not extend to the case M > 2.
For a related interpolation problem (for Nevanlinna functions), see also [14], where
the nth composition of the map ϕ is equal to the identity map: ϕ◦n(z) = z.

In the this chapter we use a decomposition of elements in H2 associated with
isometries defined from b and which satisfy the Cuntz relation. The representation
of Hardy functions, proved in [5], plays a major role in the reduction to inter-
polation problems in the setting of Schur functions. To ease the notation, we set
the discussion in the framework of scalar-valued functions, but the paper itself
(as well as [5]) is developed for matrix-valued functions. Besides being a key player
in complex analysis, the Hardy space H2 of the open unit disk plays an important
role in signal processing and in the theory of linear dynamical systems. An element
f in H2 can be described in (at least) three different ways: in terms of (1) power
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series, (2) integral conditions, or (3) a positive definite kernel. More precisely, in
case (1), one sees f as the z-transform of a discrete signal with finite energy, that is,
the z-transform of a sequence ( fn)n∈N0 ∈ �2:

f (z) =
∞

∑
n=0

fnzn, ‖ f‖2
H2

def
=

∞

∑
n=0

| fn|2 < ∞,

In case (2), one expresses the norm (in the equivalent way) as

‖ f‖2
2 =

1
2π

sup
r∈(0,1)

∫ 2π

0
| f (reit)|2dt < ∞,

and sees f as the transfer function (filter) of a �1-�2 stable linear system. See [20].
In case (3), we use the fact that H2 is the reproducing kernel Hilbert space with
reproducing kernel 1

1−zw∗ . From the characterization of elements in a reproducing
kernel Hilbert space, a function f defined in D belongs to H2 if and only if for some
M > 0, the kernel

1
1− zw∗ −

f (z) f (w)∗

M
(7.11)

is positive definite there. The smallest such M is ‖ f‖2
2. For M = 1, rewriting (7.11) as

a(z)a(w)∗ − h(z)h(w)∗

1− zw∗ , with a(z) =
(
1 −z f (z)

)
,

and using Leech’s factorization theorem (see next section), it was proved in [5] that
f admits a (in general not unique) representation of the form

f (z) =
σ1(z)

1− zσ2(z)
, (7.12)

where σ(z) =
(σ1(z)
σ2(z)

)
is analytic and contractive in the open unit disk.

Let now a ∈ D, and

ba(z) =
z− a

1− za∗
.

In [10] it was proved that the map

Ta f (z) =

√
1−|a|2

1− za∗
f (ba(z)) (7.13)
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is from H2 onto itself and unitary. In this chapter, we replace ba by an arbitrary finite
Blaschke product and define a counterpart of the operator Ta. If M = deg b, we now
have, instead of the unitary map, Ta a set of isometries S1, . . . ,SM in H2, defined as
follows: Take e1, . . . ,eM be an orthonormal basis of the space H2 ! bH2. Then,

(S jh)(z) = e j(z)h(b(z)), h ∈ H2, (7.14)

with S1, . . . ,SM satisfying the Cuntz relations:

M

∑
j=1

S jS
∗
j = IH2 , (7.15)

S∗j Sk =

{
IH2 , if j = k,

0, otherwise.
(7.16)

It follows from these relations that every element f ∈ H2 can be written in a
unique way as (7.1):

f (z) =
M

∑
j=1

e j(z) f j(b(z)),

where the f j ∈ H2 and satisfy (7.2)

‖ f‖2
2 =

M

∑
j=1

‖ f j‖2
2.

We note that S1, . . . ,SM in (7.14) form a finite system of M isometries with
orthogonal ranges in H2, with the sum of the ranges equal to all of H2. Thus they
define a representation of the Cuntz relations. This is a special case of a result of
Courtney, Muhly, and Schmidt, see [18, Theorem 3.3]. We send the reader to [18]
for a survey of the relevant literature and in particular for a discussion of the related
papers [27, 28]. For completeness, we provide a proof, in the matrix-valued case,
using reproducing kernel spaces techniques (see Sect. 7.4). As already mentioned,
one motivation for studying representations of the Cuntz relations comes from signal
processing. Our present application of the Cuntz relations to Leech’s problem from
harmonic analysis is entirely new. The immediate relevance to subband filters is a
careful selecting of the Cuntz isometries, one for each frequency subband, see [26,
Chapter 9]. In the case of wavelet applications, the number M is the scaling number
characterizing the particular family of wavelets under discussion.

We note that relations with the Cuntz relations in the indefinite inner product
case have been considered in [9], in the setting of de Branges–Rovnyak spaces;
see [15, 16]. This suggests connections with interpolation in these spaces (see [2,
Section 11], [12]), which will be considered elsewhere. We briefly discuss some of
these aspects in Sect. 7.7.
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Our paper is interdisciplinary, a mix of pure and applied, and we are motivated
by several prior developments and work by other authors. This we discuss in
Sects. 7.2–7.4. For the readers’ convenience, we mention here briefly some of
these connections. One motivation comes from earlier work [1] on two-sided, and
tangential, interpolation for matrix functions, see also [2] through [5], and [14].
In addition we make a connection to interpolation in de Branges–Rovnyak spaces
[12], to wavelet filters, see, e.g., [17], and to iterated function systems, see [18] by
Courtney, Muhly, and Schmidt, and [28] by Rochberg, to Hardy classes [29,30] and
to classical harmonic analysis, see, e.g., [32–35].

This chapter consists of six sections besides the introduction. Sects. 7.2 and 7.3
are of a review nature: in the second section we discuss Leech’s theorem, and in the
third section we discuss the realization result of [5]. In Sect. 7.4 we consider, in the
matrix-valued case, a set of operators which satisfy the Cuntz relations and were
considered earlier in [18] in the scalar case. Section 7.5 is devoted to the proof of
the matrix version of (7.3). We use the representation theorem of Sect. 7.5 to solve
in Sect. 7.6 new types of multipoint interpolation problems. Finally we outline in
the last section how some of the results extend to the case of de Branges–Rovnyak
spaces.

7.2 Leech’s Theorem

As already mentioned in the introduction, we set this chapter in the framework
of matrix-valued functions. When the Taylor coefficients fn are C

p×q-valued, one
defines a Cq×q-valued quadratic form by

[ f , f ]
def
=

1
2π

∫ 2π

0
( f (eit ))∗ f (eit )dt =

∞

∑
n=0

f ∗n fn.

The space Hp×q consists of the functions for which Tr [ f , f ] < ∞. In [5] a
representation theorem for elements f ∈ Hp×q

2 such that [ f , f ]≤ Iq in terms of Schur
functions was presented. See Theorem 7.3.1. Recall first that a Cp×q-valued function
σ defined in the open unit disk is analytic and contractive in the open unit disk if
and only if the kernel

Kσ (z,w) =
Ip −σ(z)σ(w)∗

1− zw∗ (7.17)

is positive definite in the open unit disk. Such functions are called Schur functions,
denoted by S p×q. Given σ ∈ S p×q and a C

k×p-valued function A analytic in the
open unit disk, the kernel

A(z)Kσ (z,w)A(w)
∗ =

A(z)A(w)∗ −B(z)B(w)∗

1− zw∗
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where B = Aσ , is positive in D. Leech’s theorem asserts that the converse holds: If
A and B are, respectively, Ck×p-valued and C

k×q-valued functions defined in D and
such that the kernel

A(z)A(w)∗ −B(z)B(w)∗

1− zw∗ (7.18)

is positive definite in D, then there exists σ ∈S p×q such that B=Aσ . Two proofs of
this theorem hold. The first assumes that A and B are bounded in the open unit disk,
and uses a commutant lifting result of M. Rosenblum. See [29] for Rosenblum’s
result and [30, Example 1, p 107], [7] for Leech’s theorem. The other proof requires
only analyticity of A and B in D, and uses tangential interpolation theory for Schur
functions, together with the normal family theorem. One can extend these arguments
to functions of bounded type in D, or even further weaken these hypothesis. For
completeness, we now outline a proof of Leech’s theorem for continuous functions
A and B. We first recall the following: Let N ∈ N and let w1, . . . ,wN ∈ D, ξ1, . . . ,ξN

∈ C
p, and η1, . . . ,ηN ∈ C

q. The tangential Nevanlinna-Pick interpolation problem
consists in finding all Schur functions σ ∈ S p×q such that

σ(wj)
∗ξ j = η j, j = 1, . . . ,N.

The fact that the function Kσ (z,w) defined by (7.17) is positive definite in D

implies that a necessary condition for the tangential Nevanlinna–Pick interpolation
problem to have a solution is that the N ×N Hermitian matrix P (known as the Pick
matrix) with � j entry

P�, j =
ξ ∗� ξ j −η∗

� η j

1−w�w∗
j

(7.19)

is nonnegative. This condition is in fact also sufficient, and there are various methods
to describe all solutions in terms of a linear fractional transformation. See, for
instance [13, 19, 21, 22]. With this result at hand we can outline a proof of Leech’s
theorem as follows: We assume given two functions A and B, respectively, Ck×q-
valued and C

k×q-valued, continuous in D and such that the kernel

A(z)A(w)∗ −B(z)B(w)∗

1− zw∗

is positive definite there. Consider w1,w2 . . . a countable set of points dense in the
open unit disk. The Hermitian block matrix with � j entry

A(w�)A(wj)
∗ −B(w�)B(wj)

∗

1−w�w∗
j

, �, j = 1, . . . ,N,

is nonnegative, and therefore, by the above-mentioned result on Nevanlinna–Pick
interpolation, there exists a Schur function σN ∈ S p×q such that

A(w�)σN(w�) = B(w�), �= 1, . . .N.
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To conclude the proof, one uses the normal family theorem to find a function
σ ∈ S p×q such that A(w�)σ(w�) = B(w�) for � ∈ N. By continuity, this equality
extends then to all of D.

7.3 A Representation of Hp×2
2 Functions

Leech’s theorem can be used to find a representation of elements of H2 in terms
of Schur functions, as we now recall. See [4, 5]. The following result is proved in
[5]. In the scalar case, it was proved earlier by Sarason using different methods.
See [35, p 50], [32–34]. In the discussion we shall find it convenient to partition
σ ∈ S (p+q)×q as

σ =

(
σ1

σ2

)
, (7.20)

with σ1 being C
p×q-valued and σ2 being C

q×q-valued.

Theorem 7.3.1 Let H ∈ Hp×q
2 . Then, the following are equivalent:

(1) It holds that

[H,H]≤ Iq. (7.21)

(2) The kernel

Ip

1− zw∗ −H(z)H(w)∗ (7.22)

is positive definite in D.
(3) There is a Schur function σ ∈ S (p+q)×q (see (7.20)) so that

H(z) = σ1(z)(Iq − zσ2(z))
−1. (7.23)

The key to proof of this theorem is to note that the kernel (7.22) can be rewritten
in the form (7.18) with

A(z) =
(
Ip zH(z)

)
and B(z) = H(z),

and apply Leech’s theorem: There exists σ ∈ S (p+q)×q as in (7.20) such that
A(z)σ(z) = B(z), that is,

σ1(z)+ zH(z)σ2(z) = H(z).

Equation (7.3.1) follows.
We note that an extension of the previous theorem to elements in the Arveson

space was given in [3, Theorem 10.3, p 182].
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7.4 The Cuntz Relations in Hp
2

Let b be a finite Blaschke product of degree M, and let

H (b) = H2 ! bH2.

It is well known that this space is finite dimensional and R0-invariant, where

R0 f (z) =
f (z)− f (0)

z
, f ∈ H (b).

Let (
f1(z) · · · fM(z)

)
=C(IM − zA)−1

denote a basis of H (b), where (C,A)∈C
1×M×C

M×M is an observable pair, namely

∩∞n=0 kerCAn = {0} .

Since the spectrum of A is inside the open unit disk, the series

P =
∞

∑
�=0

A�∗C∗CA�

converges and P > 0. The matrix P is the Gram matrix (observability Gramian in
control terminology) of the basis f1, . . . , fM and satisfies

P =
1

2π

∫ 2π

0

(
f1(eit) · · · fM(eit)

)∗ (
f1(eit) · · · fM(eit)

)
dt.

This matrix turns to be identical to the Pick matrix defined in (7.19). We denote
by Hp

2 the Hilbert space of Cp-valued functions with entries in H2 and with norm

∥∥∥∥∥∥∥
⎛
⎜⎝

h1
...

hp

⎞
⎟⎠
∥∥∥∥∥∥∥

2

Hp
2

=
p

∑
n=1

‖hn‖2
H2
.

We note that Hp
2 is the reproducing kernel Hilbert space with reproducing kernel

Ip
1−zw∗ .

We now introduce the Cuntz relations into this framework. This was treated
earlier in [18] using different methods.
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Theorem 7.4.1 Let e1, . . . ,eM be an orthonormal basis of H (b) and, for j =
1, . . .M

(S jh)(z) = e j(z)h(b(z)), h ∈ Hp
2 . (7.24)

Then, the S j satisfy the Cuntz relations:

M

∑
j=1

S jS
∗
j = IHp

2
, (7.25)

S∗j Sk =

{
IHp

2
, if j = k,

0, otherwise.
(7.26)

Proof. We proceed in a number of steps. The proof of the Cuntz identities (7.25)-
(7.26) is given in Steps 4 and 5, respectively.

Step 1: The set Hp
2(b) of functions of the form

F(z) = f (b(z)), f ∈ Hp
2 ,

with norm

‖F‖Hp
2(b)

= ‖ f‖Hp
2

is the reproducing kernel Hilbert space with reproducing kernel Ip
1−b(z)b(w)∗ .

This can be checked directly but is also a special case of [8, Theorem 3.1,
p 109].

Step 2: The operator Mej of multiplication by e j is an isometry from Hp
2(b) into Hp

2 .
Furthermore, the range of Mej and Mek are orthogonal for j �= k.
Indeed, let u,v ∈ C

p. It holds that

〈e jb
nu,ekbmv〉Hp

2
=

{
v∗u j = k and m = n,

0, otherwise.

We use that multiplication by b is an isometry from H2 into itself. If n = m and
j = k, the claim is clear. If n = m and j �= k, this is just the orthogonality of e j and
ek. If n > m, we have

〈e jb
nu,ekbmv〉Hp

2
= 〈e jb

n−mu,ekv〉Hp
2
= 0,

since e jbn−mu ∈ bHp
2 is orthogonal to ekv whose components belong to H (b) =

H2 ! bH2. The case n < m is obtained by interchanging the role of j and k.
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Step 3: Let e1, . . . ,eM denote an orthonormal basis of H (b). Then,

Hp
2 =⊕M

j=1e jH
p
2(b). (7.27)

Indeed, the reproducing kernel is written in terms of the orthonormal basis as (see,
for instance, [11, (6) p 346], [31])

Kb(z,w) =
M

∑
j=1

e j(z)(e j(w))
∗. (7.28)

Thus

Ip

1− zw∗ =
Ip

1− b(z)b(w)∗
1− b(z)b(w)∗

1− zw∗ =
M

∑
j=1

k j(z,w), (7.29)

with

k j(z,w) =
e j(z)(e j(w))∗Ip

1− b(z)b(w)∗
.

Equality (7.29) expresses the positive definite kernel Ip
1−zw∗ as a sum of positive

definite kernels. The reproducing kernel space associated to k j is e jH2(b). There-
fore, (7.27) holds as a sum of vector spaces, see [11, p 352]. Since, by Step 2,
e jH

p
2(b) is isometrically included into Hp

2 , the sum is orthogonal.

Step 4: S j and Sk are isometries, with orthogonal ranges when j �= k.
The fact that S j is an isometry follows from Steps 1 and 2. Indeed the range of

S j is in Hp
2 by Step 2 and

‖S jh‖2
Hp

2
= ‖h(b)‖2

Hp
2(b)

(by Step 2)

= ‖h‖2
Hp

2
(by Step 1).

Furthermore, for f ,g ∈ Hp
2 and j �= k,

〈S j f ,Skg〉Hp
2
= 〈Mej f (b),Mek g(b)〉Hp

2
= 0

by Step 2.

Step 5: It holds that ∑M
j=1 S jS∗j = IHp

2
.

Indeed, by the properties of multiplication and composition operators in reproducing
kernel Hilbert spaces, we have that, with ρw(z) = 1− zw∗, and u ∈ C

p:

(
S∗j

u
ρw

)
(z) =

u
ρb(w)(z)

(e j(w))
∗.
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Thus(
M

∑
j=1

S jS
∗
j

)(
u
ρw

)
(z) =

M

∑
j=1

1
1− b(z)b(w)∗

e j(z)(e j(w))
∗ =

u
ρw(z)

,

where we have used (7.28) and (7.29). This ends the proof since the closed linear
span of the functions 1

ρw
is all of H2. �

Thus we have the following decomposition result for elements in H2. When
M = 1, this result reduces to the fact that the operator Ta defined in (7.13) is a unitary
map from H2 into itself. To avoid confusion recall that H (b) denotes H2 ! bH2

while H p
2 (b) has been defined in Step 1 in the proof of Theorem 7.4.1.

Theorem 7.4.2 Let b be a finite Blaschke product of degree M, and let e1, . . . ,eM

be an orthonormal basis of H (b). Then, every element H ∈ Hp×q
2 can be written in

a unique way as

H(z) =
M

∑
j=1

e j(z)Hj(b(z)), (7.30)

where the Hj ∈ Hp×q
2 and

[H,H] =
M

∑
j=1

[Hj,Hj]. (7.31)

Proof. We define operators S1, . . . ,SM as in (7.24). Let H ∈ Hp×q
2 and ξ ∈ C

q.
It follows from the definition (7.24) of the S j and from (7.25) that

H(z)ξ =
M

∑
j=1

e j(z)Hjξ (z),

where Hj ∈ Hp×q
2 is defined by Hjξ = S∗j(Hξ ). Taking now into account (7.26)

we have

ξ ∗[H,H]ξ = 〈Hξ ,Hξ 〉Hp
2

=
M

∑
�, j=1

〈S�S∗�(Hξ ),S jS
∗
j(Hξ )〉Hp

2

=
M

∑
j=1

〈S∗j (Hξ ),S∗j(Hξ )〉Hp
2

=
M

∑
j=1

〈Hjξ ,Hjξ 〉Hp
2

= ξ ∗
M

∑
j=1

[Hj,Hj]ξ ,

and hence (7.31) holds. �
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7.5 Representation of Elements of Hp×q
2

We now present a generalization of Theorem 7.3.1. To this end, we generalize (7.4)
to a partitioning of a matrix-valued functions σ ∈ S (Mp+q)×q as

σ =

⎛
⎜⎜⎜⎝
σ11

...
σ1M

σ2

⎞
⎟⎟⎟⎠ , (7.32)

where σ11, . . .,σ1M and σ2 are Cp×q-valued and C
q×q-valued, respectively.

Theorem 7.5.1 Let b be a preassigned finite Blaschke product, and let e1, . . . ,eM be
an orthonormal basis of H (b). Let H ∈ Hp×q

2 . Then, the following are equivalent:

(1) Condition (7.21) holds [H,H]≤ Iq.
(2) There exists σ ∈ S (Mp+q)×q such that

H(z) =

(
M

∑
j=1

e j(z)σ1 j(b(z))

)
(Iq − b(z)σ2(b(z)))

−1, (7.33)

where σ ∈ S (Mp+q)×q is as in (7.32).

Proof. By Theorem 7.4.2, H subject to (7.21) can be written in a unique way as
(7.30), and it follows from (7.31) that

M

∑
j=1

[Hj,Hj]≤ Iq.

Using Theorem 7.3.1 with the function

G =

⎛
⎜⎜⎜⎝

H1

H2
...

HM

⎞
⎟⎟⎟⎠ ∈ HMp×q

2 ,

we see that there exists σ ∈ S (Mp+q)×q (see (7.32)) such that

⎛
⎜⎜⎜⎝

H1(z)
H2(z)

...
HM(z)

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝
σ11(z)
σ12(z)

...
σ1M(z)

⎞
⎟⎟⎟⎠(Iq − zσ2(z))

−1.

The result follows using (7.30). �



7 Representation Formulas for Hardy Space Functions Through the Cuntz . . . 175

The results in [5] are a special case of a family of interpolation problems with
relaxed constraints. See [24, 25]. We plan in a future publication to consider these
results in our new extended setting.

7.6 New Interpolation Problems

We have outlined in the introduction the connections between multipoint interpola-
tions and representations (7.1) and (7.3). We now add some details. Interpolation
problems whose solutions are outlined in this section will be considered in full
details in a future publication.

The case of (7.1): We consider the following problem: Find all functions H ∈Hp×q
2

such that

M

∑
j=1

ξ jH
( j−1)(a) = γ, (7.34)

for some preassigned matrices ξ1, . . . ,ξM ∈ C
r×p and γ ∈ C

r×q. To solve this
problem we use (7.30) with

b(z) =

(
z− a

1− za∗

)M

.

A basis of H (b) is given by

1
1− za∗

,
z

(1− za∗)2 , . . . ,
zM−1

(1− za∗)M .

(see, for instance, [21]). Set

E(z) =
(

1
1−za∗ Ip

z
(1−za∗)2 Ip · · · zM−1

(1−za∗)M Ip

)
. (7.35)

Since
b(a) = b′(a) = · · ·= b(M−1)(a) = 0, (7.36)

and with

H (z) =

⎛
⎜⎜⎜⎝

H1(b(z))
H2(b(z))

...
HM(b(z))

⎞
⎟⎟⎟⎠ ∈ HMp×q

2 ,
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we have that

H(a) = E(a)H (0)

H ′(a) = E ′(a)H (0),

...

H(M−1)(0) = E(M−1)(a)H (0),

Therefore, the interpolation problem (7.34) is equivalent to

CH (0) = γ,

with C ∈C
r×Mp given by

C =
M−1

∑
j=0

ξ jE
( j)(a).

When CC∗ > 0, this in turn can be solved using [2, Section 7], or directly, as

H (z) =C∗(CC∗)−1γ+
(
IMp +(z− 1)C∗(CC∗)−1C

)
G (z),

where G ∈ HMp×q
2 . The formula for H follows. We note that

[H ,H ] = γ∗(CC∗)−1γ+[G ,G ].

The case where CC∗ is not invertible is solved using pseudo-inverses.

The case of (7.3): We here assume first that p = q = 1 and

b(z) =
M

∏
�=1

z− a�
1− za∗�

,

where the a� are distinct points in D. We have now

C =
(
1 1 · · · 1

)
and A = diag (a∗1,a

∗
2, . . . ,a

∗
M).

Note that the pair (C,A) is observable. Define

P� j =
1

1− a ja∗�
, �, j = 1, . . . ,M. (7.37)

Namely we are in the case (7.19) with the ξ j = 1 and the η j = 0. In other words,
P is the Pick matrix obtained while interpolating all the points a� to the origin. We
mention the papers [23, 36] for a related discussion.
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Proposition 7.6.1 Let u=
(
u1 u2 · · · uM

) ∈C
1×M and γ ∈C be preassigned. Then,

the following are equivalent:

1. It holds that

M

∑
�=1

u�h(a�) = γ and ‖h‖H2 ≤ 1.

2. h is of the form

C(I− zA)−1P−1/2σ1(b(z))(1− b(z)σ2(b(z))
−1,

where σ =
(σ1

σ2

)
∈ S M+1 is such that

(
uP1/2 0

)
σ(0) = γ, (7.38)

where P is defined by (7.37).

When b(z) = ( z−a
1−za∗ )

M for some M ∈ N and a ∈ D, one obtains a different kind
of interpolation problem, as we now explain. Rewriting (7.33) as

H(z)(Iq − b(z)σ2(b(z))) = E(z)σ(b(z)), (7.39)

where E(z) is given by (7.35) with p = 1, and

σ1(z) =

⎛
⎜⎜⎜⎝
σ11(z)
σ12(z)

...
σ1M(z)

⎞
⎟⎟⎟⎠ .

Differentiating (7.39) M−1 times and taking into account (7.36), we obtain that

⎛
⎜⎜⎜⎝

H(a)
H ′(a)

...
H(M−1)(a)

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

E(a) 0p×p

E ′(a) 0p×p
...

E(M−1)(a) 0p×p

⎞
⎟⎟⎟⎠
(
σ1(0)
σ2(0)

)
. (7.40)

This allows to reduce (7.34) to a standard tangential interpolation problem for
Schur functions.
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7.7 The Case of De Branges Rovnyak Spaces

Let s be a Schur function. The kernel ks(z,w) =
1−s(z)s(w)∗

1−zw∗ is positive definite in the
open unit disk, and the associated reproducing kernel Hilbert space will be denoted
by H (s). Such spaces were introduced and studied in depth by de Branges and
Rovnyak in [16]. When s is an inner function (and in particular when s is finite
Blaschke product), we have

H (s) = H2 ! sH2.

In general, H (s) is only contractively included in H2. Let moreover b be a finite
Blaschke product. We have

1− s(b(z))s(b(w))∗

1− zw∗ =
1− s(b(z))s(b(w))∗

1− b(z)b(w)∗
1− b(z)b(w)∗

1− zw∗

=
M

∑
j=1

e j(z)e j(w)
∗ 1− s(b(z))s(b(w))∗

1− b(z)b(w)∗
,

(7.41)

with e1, . . . ,eM an orthonormal basis of H (b). This decomposition allows us to
define the operators S1, . . . ,SM as in (7.24), so that the following holds:

Theorem 7.7.1 The operators S1, . . . ,SM are continuous from H (s) into H (s(b))
and satisfy the Cuntz relations:

M

∑
j=1

S jS
∗
j = IH (s(b)), (7.42)

S∗j Sk =

{
IH (s), if j = k,

0, otherwise.
(7.43)

Proof. We proceed in a number of steps.

Step 1: The reproducing kernel Hilbert space M (s,b) with reproducing kernel
1−s(b(z))s(b(w))∗

1−b(z)b(w)∗ consists of the functions of the form F(z) = f (b(z)), with f ∈H (s)
and norm

‖F‖M (s,b) = ‖ f‖H (s).

This follows from a direct computation.
Step 2: The formula

(
Tj(ks(b)(·,w))

)
(z) = ks(z,b(w))e j(w)

∗, w ∈D
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defines a bounded densely defined operator, which has an extension to all of
H (s(b)), and whose adjoint is S j.

This follows from the decomposition (7.41).
Step 3: (7.42) holds.

Indeed,((
M

∑
j=1

S jS
∗
j

)
ks(b)(·,w)

)
(z) =

M

∑
j=1

e j(z)ks(b(z),b(w))e j(w)
∗

= ks(b)(z,w),

and hence, by continuity, equality (7.42) holds in H (s(b)).
Step 4: For j �= k we have

e jM (s,b)∩ ekM (s,b) = {0} (7.44)

Indeed, let H2(b) be as in Step 7.7 in the proof of Theorem 7.4.1. We have
H (s)⊂ H2 and hence

M (s,b)⊂ H2(b).

Thus (7.44) follows from Step 7.7 of that same theorem.
Step 5: Let Mej denote the operator of multiplication by e j. It holds that

H (s(b)) =⊕M
j=1Mej M (s,b). (7.45)

This follows from the decomposition (7.41), which implies that the sum

H (s(b)) =
M

∑
j=1

Mej M (s,b)

holds, and from Step 7.7, which insures that the sum is direct.
Step 5: (7.43) holds.

Indeed, from Step 7.7, the range of the operators Mej and Mek is orthogonal for
j �= k, and Mej is an isometry. �

Finally, we remark that (7.42) leads to decompositions of elements of the space
H (s(b)) in terms of elements of the space H (s) similar to (7.1): Every element
f ∈ H (s(b)) can be written in a unique way as

f (z) =
M

∑
j=1

e j(z) f j(b(z)),

where f1, . . . , fM ∈ H (s). Furthermore

‖ f‖2
H (s(b)) =

M

∑
j=1

‖ f j‖2
H (s).



180 D. Alpay et al.

Multipoint interpolation problems can be also considered in this setting, building
in particular on the recent work of Ball, Bolotnikov, and ter Horst [12] on
interpolation in de Branges–Rovnyak spaces. This will be developed in a separate
publication.

Our paper is meant as an interdisciplinary contribution, and it involves an
approach to filters and to operators having its genesis in many different fields, both
within mathematics and within engineering. We hope that we have succeeded at
least partially in communicating across traditional lines of division separating these
fields. As a result our listed references included below are likely to be incomplete.
We thank in particular Professor Paul Muhly for improving our reference list.

With apologies to Goethe and to Frenchmen:
Mathematicians are like Frenchmen: whatever you say to them they translate into

their own language and forthwith it is something entirely different
Johann Wolfgang von Goethe.
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Chapter 8
Constructions and a Generalization of Perfect
Autocorrelation Sequences on Z

John J. Benedetto and Somantika Datta

Abstract Low autocorrelation signals have fundamental applications in radar and
communications. We construct constant amplitude zero autocorrelation (CAZAC)
sequences x on the integers Z by means of Hadamard matrices. We then generalize
this approach to construct unimodular sequences x on Z whose autocorrelations Ax

are building blocks for all functions on Z. As such, algebraic relations between
Ax and Ay become relevant. We provide conditions for the validity of the formulas
Ax+y = Ax +Ay.

8.1 Introduction

8.1.1 Background

Let R be the real numbers, let Z be the integers, and set T=R/Z. A general problem
is to characterize the family of positive bounded Radon measures F, whose inverse
Fourier transforms are the autocorrelations of bounded sequences x. A special
case is when F ≡ 1 on T and x is unimodular on Z. The statement that F ≡ 1 is the
same as saying that the autocorrelation of x vanishes except at 0, where it takes the
value 1. We shall construct such unimodular sequences x based on the analysis of
Hadamard matrices.
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The problem of constructing unimodular sequences with zero autocorrelation,
which our constructions address, is central in the general area of waveform design,
and it is particularly relevant in several applications in the areas of radar and
communications and in the general area of constructing phase coded waveforms on
R with optimal narrow band ambiguity function behavior. In radar, the sequences
x can play a role in effective target recognition, see, e.g., [1, 9, 15, 20–23, 28]; and
in communications they can be used to address synchronization issues in cellular
(phone) access technologies, especially code division multiple access (CDMA),
e.g., [30–32]. With regard to the narrow band ambiguity function we refer to
[5, 6, 20, 25], which in turn refer to the vast literature in this subject.

In radar there are two main reasons that the sequences x should be unimodular,
that is, have constant amplitude. First, a transmitter can operate at peak power if x
has constant peak amplitude—the system does not have to deal with the surprise of
greater than expected amplitudes. Second, amplitude variations during transmission
due to additive noise can be theoretically eliminated. The zero autocorrelation
property ensures minimum interference between signals sharing the same channel.

8.1.2 Autocorrelation

We shall use the standard notation from harmonic analysis, e.g., [4, 27]. N is the
set of natural numbers and C is the set of complex numbers. C(Td) is the space
of C-valued continuous functions on T

d = R
d/Zd , and A(Td) is the subspace

of absolutely convergent Fourier series. M(Td) is the space of bounded Radon
measures on T

d , i.e., M(Td) is the dual space of the Banach space C(Td) taken with
the sup norm. L1(T) and L2(T) are the spaces of integrable and square integrable
functions on T, respectively. For a given λ > 0, the L1-dilation of f , fλ , is defined

as fλ (t) = λ f (λ t). Let "(t) = max(1−|t|,0) on R. Let ω(γ) = 1
2π

(
sinγ/2
γ/2

)2
; ω is

called the Fejér function [4]. The Fourier transform of f ∈ L1(R) is the function f̂
defined by

f̂ (γ) =
∫ ∞

−∞
f (t)e−2π itγdt, γ ∈ R̂ (= R).

A(R̂) denotes the space of such absolutely convergent Fourier transforms on R̂, with
an analogous definition for A(R̂d). We write the pairing between the function f and
f̂ as f ↔ f̂ . The Fourier transform of" isω2π . The complex conjugate of a function
f at a point t is denoted by f (t). For a set E, the measure of E is denoted by |E|.
Given two sets A and B, the set A\B consists of all elements in A that are not in B.

Definition 1. The autocorrelation Ax : Z→ C of x : Z→ C is formally defined as

∀k ∈ Z, Ax[k] = lim
N→∞

1
2N + 1

N

∑
m=−N

x[k+m]x[m].
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(Lower case Roman letters, such as x, are often used in some applied communities
to denote functions Z→ C.) There is an analogous definition of autocorrelation for
functions f : Rd →C, e.g., see Theorem 1.

If F ∈ A(Td) we write F̌ = f = { fk}, i.e., F̌ [k] = fk, where, for all k ∈ Z
d , fk =∫

Td F(γ)e2π ik·γdγ. There is a similar definition for μ̌ where μ ∈ M(Td), e.g., see
Theorem 1.

In the setting of R, we have the following theorem due to Wiener and Wint-
ner [36], which was later extended to R

d in [3, 18].

Theorem 1. Let μ be a bounded positive Radon measure on R. There is a
constructible function f ∈ L∞loc(R) whose autocorrelation A f exists for all t ∈ R,
and A f = μ̌ on R, i.e.,

∀t ∈ R, lim
T→∞

1
2T

∫ T

−T
f (t + x) f (x)dx =

∫
R

e2π itxdμ(x).

For any positive integer N, we denote the d-dimensional square in Z
d by

S(N), i.e.,

S(N) = {m = (m1,m2, . . . ,md) ∈ Z
d : −N ≤ mi ≤ N, i = 1, . . . ,d}.

On Z
d the following version of the Wiener–Wintner theorem can be ob-

tained [12].

Theorem 2. Let μ ∈ A(Td) be positive on T
d . There is a constructible function

x : Zd →C such that

∀k ∈ Z
d , Ax[k] = lim

N→∞
1

(2N + 1)d ∑
m∈S(N)

x[k+m]x[m]

= μ̌ [k]. (8.1)

Although the Wiener–Wintner theorem gives the construction of the function x, it
does not ensure boundedness of x. In fact, x need not be an element of �∞(Z) [19].
Our desire is to construct sequences x that have constant amplitude.

Let λ ∈ (0,1) have the binary expansion 0.α1α2α3 · · · , where each αi is either
0 or 1. It has been shown in [34, 35] that if we consider the Lebesgue measure on
(0,1) and if we define the unimodular (in fact, ±1-valued) function y by

y[k] =

{
2α2n+1 − 1 if k = n+ 1, n ∈N∪{0},
2α2n − 1 if k = 1− n, n ∈N,

(8.2)

then, for almost all values of λ , the autocorrelation of y, Ay, is

Ay[k] =

{
0 if k �= 0,
1 if k = 0.

(8.3)

Thus, Ay is the inverse Fourier transform of F ≡ 1 on T. Here, Lebesgue measure
on (0, 1) is the probability measure ([12], p 77).
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The expression (8.3) defines a sequence y having perfect autocorrelation. An
explicit or deterministic construction of such a unimodular sequence on Z is given
in [34], where the sequence consists of ±1 s. Inspired by that we propose a different
class of deterministic unimodular sequences with perfect autocorrelation that are
constructed from real Hadamard matrices. In fact, an extensive generalization of
such constructions can be found in [8].

Definition 2. (a) Let Z/NZ be the finite group {0,1, . . . ,N − 1} with addition
modulo N. We say that x : Z/NZ → C is a constant amplitude zero autocor-
relation (CAZAC) sequence if |x[k]|= 1 for each k ∈ Z/NZ and if

∀k = 1, . . . ,N − 1,
1
N∑

N−1
m=0x[m+ k]x[m] = 0.

(b) Given x : Z→ C. The sequence x is a CAZAC sequence on Z if |x[k]| = 1 for
each k ∈ Z and if Ax[k] = 0 for each k ∈ Z\{0}.

8.1.3 Outline

In Sect. 8.2.1, we review properties and problems related to Hadamard matrices.
This serves as background for Sect. 8.2.2, where we establish the relation between
CAZAC sequences on Z/NZ, Hadamard matrices, and the discrete Fourier trans-
form. Then, in Sect. 8.2.3, we construct CAZAC sequences on Z by means of
Hadamard matrices. Sect. 8.3 is devoted to extending the material of Sect. 8.2
in the following way. In Sect. 8.3.1 we construct unimodular functions on Z

whose autocorrelations are triangles, and we view this as a generalization of the
construction of CAZACs on Z. It is natural to think of such triangles as building
blocks of the functions on Z. As such, Sect. 8.3.2 is devoted to the formula Ax+y =
Ax +Ay, and we prove its validity a.e.

8.2 Hadamard Matrices and CAZAC Sequences

8.2.1 Hadamard Matrices

Definition 3. A real Hadamard matrix is a square matrix whose entries are either
+1 or −1 and whose rows are mutually orthogonal.

Let H be a Hadamard matrix of order n. Then, the matrix

[
H H
H −H

]
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is a Hadamard matrix of order 2n. This observation can be applied repeatedly
(as Kronecker products) to obtain the following sequence of Hadamard matrices:

H1 =
[

1
]
,

H2 =

[
H1 H1

H1 −H1

]
=

[
1 1
1 −1

]
,

H4 =

[
H2 H2

H2 −H2

]
=

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎦ , · · · .

Thus,

H2k =

[
H2k−1 H2k−1

H2k−1 −H2k−1

]

=

⎡
⎢⎢⎣

H2k−2 H2k−2 H2k−2 H2k−2

H2k−2 −H2k−2 H2k−2 −H2k−2

H2k−2 H2k−2 −H2k−2 −H2k−2

H2k−2 H2k−2 −H2k−2 H2k−2

⎤
⎥⎥⎦ . (8.4)

This method of constructing Hadamard matrices is due to Sylvester (1867) [29].
In this manner, he constructed Hadamard matrices of order 2k for every nonnegative
integer k.

The most important open question in the theory of Hadamard matrices is that
of existence. The Hadamard conjecture asserts that a Hadamard matrix of order 4N
exists for every positive integer N [16]. Hadamard matrices of orders 12 and 20 were
constructed by Hadamard in 1893 [14]. He also proved that if U is a unimodular
matrix of order N, then |det(U)| ≤ NN/2, with equality in the case U is real if and
only if U is Hadamard [14]. In 1933, Paley discovered a construction that produces
a Hadamard matrix of order q+ 1 when q is any prime power that is congruent
to 3 modulo 4, and that produces a Hadamard matrix of order 2(q+ 1) when q is
a prime power that is congruent to 1 modulo 4 [24]. His method uses finite fields.
The Hadamard conjecture should probably be attributed to Paley. The smallest order
that cannot be constructed by a combination of Sylvester’s and Paley’s methods is
92. A Hadamard matrix of this order was found using a computer by Baumert,
Golomb, and Hall in 1962. They used a construction, due to Williamson, that has
yielded many additional orders. In 2004, Hadi Kharaghani and Behruz Tayfeh-
Rezaie announced that they constructed a Hadamard matrix of order 428. As a result,
the smallest order for which no Hadamard matrix is presently known is 668.

Hadamard matrices are closely connected with Walsh functions [2, 26].
The Walsh functions, constructed by Walsh [33], are an orthonormal basis for
L2(T). Every Walsh function is constant over each of a finite number of subintervals
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of (0,1). A set of Walsh functions written down in appropriate order as rows of a
matrix will give a Hadamard matrix of order 2N as obtained by Sylvester’s method.
The Walsh functions defined on R correspond to the wavelet packets associated
with the Haar multiresolution analysis.

8.2.2 CAZACs and Circulant Hadamard Matrices

An N ×N matrix A of the form

A =

⎡
⎢⎢⎢⎢⎢⎣

a1 a2 a3 · · · aN

aN a1 a2 · · · aN−1

aN−1 aN a1 · · · aN−2
...

...
. . .

. . .
...

a2 a3 · · · aN a1

⎤
⎥⎥⎥⎥⎥⎦

is called a circulant matrix [17]. Each row is just the previous row cycled forward
by one step, so that the entries in each row are just a cyclic permutation of those
in the first. There is a characterization of CAZAC sequences in terms of circulant
Hadamard matrices with complex entries, see Theorem 4, e.g., [10]. For any finite
sequence x=(x[0],x[1], . . . ,x[N−1]) of N complex numbers (N ≥ 1), its normalized
discrete Fourier transform x̂ = (x̂[0], x̂[1], . . . , x̂[N − 1]) is defined by

x̂[ j] = N− 1
2

N−1

∑
k=0

x[k]e−2π ik j/N ( j = 0,1, . . . ,N − 1).

By Parseval’s relation,

N−1

∑
k=0

|x[k]|2 =
N−1

∑
j=0

|x̂[ j]|2.

It is easy to see that x is CAZAC if and only if x and x̂ are unimodular
(Corollary 1). This fact is a consequence of the following result.

Theorem 3. Let x : Z/NZ → C be the sequence x = (x[0],x[1], . . . ,x[N − 1]).
The condition,

∀m = 1, . . . ,N − 1,
1
N∑

N−1
k=0 x[m+ k]x[k] = 0, (8.5)

is valid if and only if there is a constant c such that |x̂|= c on Z/NZ.

Proof. (i) Suppose that |x̂|= c on Z/NZ. Then, for each j ∈ Z/NZ,

|x̂[ j]|2 = 1
N

N−1

∑
k=0

|x[k]|2 + 1
N ∑k �=�

x[k]x[�]e−2π i(k−�) j/N,
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and so

N|x̂[ j]|2 =
N−1

∑
k=0

|x[k]|2 +∑
k �=�

x[k]x[�]e−2π i(k−�) j/N.

Thus, by hypothesis, we have N|x̂[ j]|2 = ∑N−1
n=0 |x̂[n]|2 (= Nc2), and so

N−1

∑
n=0

|x̂[n]|2 =
N−1

∑
k=0

|x[k]|2 +∑
k �=�

x[k]x[�]e−2π i(k−�) j/N.

Hence, by Parseval’s identity, we have

∀ j ∈ Z/NZ, ∑
k �=�

x[k]x[�]e−2π i(k−�) j/N = 0. (8.6)

Fix k ∈ {0,1, . . . ,N − 1} and let m = k− �(mod N). Then, (8.6) becomes

N−1

∑
m=1

N−1

∑
�=0

x[�+m]x[�]e−2π im j/N = 0. (8.7)

In particular, there are N2 −N terms in the sum of (8.6) since we exclude the
diagonal of an N ×N array. For compatibility, for each m, there are N terms in
(8.7), and since there are N −1 values of m, we see that there are N2 −N terms
in the sum of (8.7). Now let f [m] = ∑N−1

�=0 x[�+m]x[�]. Then (8.7) becomes

∀ j ∈ Z/NZ,
N−1

∑
m=1

f [m]e−2π im j/N = 0. (8.8)

Multiplying both sides of (8.8) by e2π ik j/N , for a fixed k ∈ {0,1, . . . ,N − 1},
we have

∀ j ∈ Z/NZ,
N−1

∑
m=1

f [m]e−2π i(m−k) j/N = 0,

and so

N−1

∑
m=1

f [m]

(
N−1

∑
j=0

e−2π i(m−k) j/N

)
= 0 (8.9)

for every fixed k ∈ {0,1, . . . ,N − 1}. Since

N−1

∑
j=0

e−2π i(m−k) j/N =

{
N, k = m,

e−2πi(m−k)−1
e−2πi(m−k)/N−1

= 0, k �= m,
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and since m ∈ {1, . . . ,N − 1}, (8.9) allows us to assert that f [m] = 0 for each
m∈ {1, . . . ,N−1}. In fact, for any fixed k ∈ {1, . . . ,N−1}, the left side of (8.9)
becomes N f [k], and so f [k] = 0 by the right side of (8.9).

(ii) The converse is proved by retracing the steps of (i).
�

Corollary 1. Let x : Z/NZ → C be the unimodular sequences x = (x[0],x[1], . . . ,
x[N − 1]). The sequence x is a CAZAC sequence if and only if x̂ is a unimodular
sequence.

Proof. If x is a CAZAC sequence, then (8.5) is valid, and so |x̂|= c by Theorem 3.
By Parseval’s relation,

N−1

∑
j=0

|x̂[ j]|2 =
N−1

∑
k=0

|x[k]|2

or, Nc2 = N,

where in the last step we use the fact that x is unimodular. Thus, the constant c is
equal to 1 and x̂ is a unimodular sequence. The converse follows by retracing this
proof. �
Definition 4. A complex Hadamard matrix is a square matrix whose entries are
unimodular and whose rows are mutually orthogonal.

We have the following characterization of CAZAC sequences in terms of
circulant Hadamard matrices with complex entries.

Theorem 4. Given a sequence x :Z/NZ→C, and let Hx be a circulant matrix with
first row x = (x[0],x[1], . . . ,x[N −1]). Then x is a CAZAC sequence if and only if Hx

is a Hadamard matrix.

Proof.

Hx =

⎡
⎢⎢⎢⎣

x[0] x[1] · · · x[N − 1]
x[N − 1] x[0] · · · x[N − 2]
...

... · · · ...
x[1] x[2] · · · x[0]

⎤
⎥⎥⎥⎦ , H∗

x =

⎡
⎢⎢⎢⎣

x[0] x[N − 1] · · · x[1]
x[1] x[0] · · · x[2]
...

... · · · ...
x[N − 1] x[N − 2] · · · x[0]

⎤
⎥⎥⎥⎦ .

(i) Assume that Hx is a complex Hadamard matrix. Hence, all of the entries of Hx

are unimodular and

HxH∗
x = NIN , (8.10)

where IN is the N ×N identity matrix. As a consequence of (8.10) one has for
m = 1, . . . ,N − 1,
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N−1

∑
�=0

x[�+m]x[�] = 0,

which means that x has zero autocorrelation and is thus a CAZAC.
(ii) Conversely, suppose that x is a CAZAC. We want to show that Hx is a Hadamard

matrix. We already know that all the entries of Hx are unimodular since x is
unimodular and the entries of Hx are the elements of x. We want to show that
HxH∗

x = NIN . Due to unimodularity,

N−1

∑
�=0

|x[�]|2 = N, (8.11)

and so the diagonal entries of HxH∗
x equal N as required. Since x is CAZAC,

N−1

∑
�=0

x[�+m]x[�] = 0

for m �= 0, which means that every off-diagonal entry of HxH∗
x equals zero, and

this together with (8.11) implies that HxH∗
x is a Hadamard matrix. �

Due to this characterization of CAZACs there is a basic relation between CAZACs
and finite unit normed tight frames (FUNTFs) in C

d . We shall say that x : Z/NZ→
C

d is a CAZAC sequence in C
d if each ‖x[k]‖= 1 and

∀k = 1, . . . ,N − 1,
1
N∑

N−1
m=0〈x[m+ k],x[m]〉= 0.

Each x[m] = (x1[m], . . . ,xd [m]), where x j[m] ∈ C, m ∈ Z/NZ, and j = 1, . . . ,d, and
the inner product is

〈x[k],x[m]〉 =
d

∑
j=1

x j[k]x j[m].

The norm of each x[k] is then ‖x[k]‖ = 〈x[k],x[k]〉1/2. For fundamentals on frame
theory we refer to [11] or [13]. The following has been shown in [9].

Theorem 5. Let x = {x[n]}N
n=1 be a CAZAC sequence in C. Define

∀k = 1, . . . ,N, v(k) =
1√
d
(x[k],x[k+ 1], . . . ,x[k+ d− 1]).

Then v = {v(k)}N
k=1 is a CAZAC sequence in C

d and {v(k)}N
k=1 is a FUNTF for Cd

with frame constant N
d .
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8.2.3 CAZACs and Hadamard Sequences

In this section we construct infinite CAZAC sequences, i.e., CAZAC sequences on
Z, from real Hadamard matrices. Two different constructions are given. For the
proofs of Theorems 6 and 7 we refer the readers to [8].

Example 1. To construct a unimodular sequence x, let H1 be repeated once (20 = 1),
H2 be repeated twice (21), H4 be repeated 22 times, H8 be repeated 23 times, and, in
general, let H2n be repeated 2n times. For the positive integers, let x take values row
by row from the elements of the sequence of matrices

H1,H2,H2,H4,H4,H4,H4,H8, . . . . (8.12)

Set x[0] = 1, and for any k ∈ N, define x[−k] = x[k]. The sequence x is called the
exponential Hadamard sequence.

Theorem 6. Let x be the exponential Hadamard sequence. Then,

Ax[k] =

{
1 if k = 0,
0 if k �= 0.

Instead of having the Hadamard matrices repeat exponentially as described in
Example 1, we can construct unimodular sequences, whose autocorrelations vanish
everywhere except at the origin, by letting the Hadamard matrices repeat linearly.

Example 2. To construct the linear Hadamard sequence x, let H1 be repeated zero
times, H2 be repeated once, H4 be repeated twice, H8 be repeated thrice, and, in
general, let H2n be repeated n times. For the positive integers, let x take values row
by row from the elements of the sequence of matrices

H2,H4,H4,H8,H8,H8,H16,H16,H16,H16,H32, . . . .

Set x[0] = 1, and, for any k ∈ N, define x[−k] = x[k]. The sequence x is called the
linear Hadamard sequence.

The proof of the following result is similar to that of Theorem 6.

Theorem 7. Let x be the linear Hadamard sequence. Then,

Ax[k] =

{
1 if k = 0,
0 if k �= 0.

These two constructions are more general than they appear. For example, instead
of H1 = [1], one could start with H1 = [−1] and obtain the following sequence of
Hadamard matrices:
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H1 = [−1] ,

H2 =

[
H1 H1

H1 −H1

]
=

[−1 −1
−1 1

]
,

H4 =

[
H2 H2

H2 −H2

]
=

⎡
⎢⎢⎣
−1 −1 −1 −1
−1 1 −1 1
−1 −1 1 1
−1 1 1 −1

⎤
⎥⎥⎦ , . . . .

Using this sequence of Hadamard matrices in Example 1 or Example 2 would give
a different sequence x but one which would still have perfect autocorrelation.

Example 3. In practice, for applications, we cannot use an infinite sequence and
we would like to estimate the number of elements of the sequences in Examples 1
and 2 that can be used to make the corresponding autocorrelation reasonably small.
In other words, we would like to solve the following problem: given ε > 0, find
N ∈N such that

∀k ∈ Z,

∣∣∣∣∣ 1
N

N

∑
m=1

x[m+ k]x[m]

∣∣∣∣∣< ε.
Let x be the exponential Hadamard sequence of Example 1. Let ε > 0 and K ∈N.

The smallest N such that

∀ 0 < |k| ≤ K,

∣∣∣∣∣ 1
N

N

∑
m=1

x[m+ k]x[m]

∣∣∣∣∣< ε
satisfies the inequality

1
N

8$log2(K)%+1 − 1
7

+ 7
1

2M+1 < ε, (8.13)

where M is a function of N. For more information about the relationship between M
and N we refer to [8, 12].

(8.14) gives the values of N obtained via (8.13) for K = 16 and several values of
ε.

ε 1 0.5 0.25 0.1
K 16 16 16 16
M 14 15 16 17
N O(815) O(816) O(817) O(818)

(8.14)

The actual error estimate for the exponential Hadamard sequence is illustrated
in Fig. 8.1. This estimate is significantly better than that obtained in (8.13). The
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Fig. 8.1 Error estimates of the exponential Hadamard sequence; ε = 0.2

disparity is a consequence of the difficult counting problems inherent in dealing with
Hadamard matrices. However, Fig. 8.1 does imply a valid use of these sequences in
applications.

Next, let x be the linear Hadamard sequence of Example 2. Given ε > 0 and
K ∈ N. The smallest N such that

∀ 0 < |k| ≤ K,

∣∣∣∣∣ 1
N

N

∑
m=1

x[m+ k]x[m]

∣∣∣∣∣< ε
satisfies the inequality

(3$log2(K)%− 1)4$log2(K)%+1 + 4+ 9 ·4M+1

3M4M+1 − 4(4M − 1)
< ε, (8.15)

where M is a function of N.
(8.16) gives the values of N obtained from (8.15) for K = 16 and several values

of ε. Once again, Fig. 8.2 illustrates that the actual error estimates are much better
than that obtained in (8.15).
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Fig. 8.2 Error estimates of the linear Hadamard sequence; ε = 0.2

ε 1 0.5 0.25 0.1
K 16 16 16 16
M 5 7 13 31
N 35048 735464 5.16× 109 7.97× 1020

(8.16)

8.3 Autocorrelations as Sums of Triangles

8.3.1 The Construction of Sequences with Triangular
Autocorrelation

In this section a generalization of (8.3), the autocorrelation function of the sequence
given by (8.2), and of those constructed from Hadamard matrices in Sect. 8.2.3 and
also in [8] is given.

Theorem 8. Given M ∈ N and K > 0. Let A : Z→R be defined by
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A[k] =

{
K
(

1− |k|
M

)
if 0 ≤ |k| ≤ M,

0 otherwise.
(8.17)

Then there exists a constructible sequence x : Z→ R with constant amplitude
√

K
whose autocorrelation, Ax, is A.

Proof. (i) As mentioned in Sect. 8.1.2 one can deterministically construct a uni-
modular sequence y on Z whose autocorrelation is

Ay[k] =

{
0 if k �= 0,
1 if k = 0,

(8.18)

and we use (8.18) at the end of the proof. Wieners construction [34] of y is as
follows. On the positive integers, let y take values in the following order:
[1,−1] (this row has 1× 21 elements and is repeated 20 = 1 time);
[1,1;1,−1;−1,1;−1,−1] (this row has 2×22 elements and is repeated 21 =
2 times);
[1,1,1;1,1,−1;1,−1,1;1,−1,−1;−1,1,1;−1,1,−1;
−1,−1,1;−1,−1,−1] (this row has 3× 23 elements and is repeated 22 =
4 times); etc. Thus, y[1] = 1,y[2] = −1,y[3] = 1,y[4] = 1, . . .. In addition, let
y[0] = 1, and, for k ∈N, let y[−k] = y[k].

(ii) We define the function x : Z→ C by x[k] =
√

Ky[$ k
M %], where $.% denotes the

next largest integer. Note that |x|=√
K.

We show that the autocorrelation Ax of x is A as defined in (8.17). Since x is a
real sequence, the autocorrelation function is even, and so it is enough to prove
the result for k > 0. Let 0 ≤ Mp ≤ k ≤ M(p+1) for some p ∈N∪{0}. For any
given integer N, let nN be the smallest integer such that N < M(nN + 1). Then
we have

Ax[k] = lim
N→∞

1
2N + 1

N

∑
m=−N

x[m+ k]x[m]

= lim
N→∞

1
2N + 1

MnN

∑
m=−MnN

x[k+m]x[m]

+ lim
N→∞

1
2N + 1 ∑

MnN<|m|≤N

x[m+ k]x[m]

= lim
N→∞

(S1,N(k)+ S2,N(k)) = S1(k)+ S2(k). (8.19)

First, we calculate bounds on S2,N(k).
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|S2,N(k)| =
∣∣∣∣∣ 1
2N + 1 ∑

MnN<|m|≤N

x[m+ k]x[m]

∣∣∣∣∣
≤ 1

2N + 1 ∑
MnN<|m|≤N

|x[m+ k]x[m]|

=
K

2N + 1 ∑
MnN<|m|≤N

1 =
2K(N −MnN)

2N + 1
.

We know from the definition of nN that N −MnN < M. Therefore, S2(k) = 0.
Consequently, Ax[k] = limN→∞ S1,N(k) = S1(k). Next, we write

S1(k) = lim
N→∞

1
2N + 1

MnN

∑
m=−MnN

x[k+m]x[m]

= lim
N→∞

1
2N + 1

nN−1

∑
n=−nN

M(n+1)

∑
m=Mn+1

x[k+m]x[m]

+ lim
N→∞

1
2N + 1

x[−nN + k]x[−nN ]. (8.20)

Since x has the same value
√

Ky[n + 1] for all the integers m ∈ [Mn + 1,M
(n+ 1)], one can replace the x[m] in the first term of the right side of (8.20) by√

Ky[n+ 1]. Since the second term of the right side of (8.20) is 0 this implies

S1(k) = lim
N→∞

1
2N + 1

nN−1

∑
n=−nN

M(n+1)

∑
m=Mn+1

x[m+ k]
√

Ky[n+ 1]

= lim
N→∞

1
2N + 1

(
nN−1

∑
n=−nN

Mn+M(p+1)−k

∑
m=Mn+1

x[m+ k]
√

Ky[n+ 1]

+
nN−1

∑
n=−nN

M(n+1)

∑
Mn+M(p+1)−k+1

x[m+ k]
√

Ky[n+ 1]

)

= lim
N→∞

K
2N + 1

nN−1

∑
n=−nN

(
Mn+M(p+1)−k

∑
m=Mn+1

y[n+ p+ 1]y[n+1]

+
M(n+1)

∑
m=Mn+M(p+1)−k+1

y[n+ p+ 2]y[n+1]

)

= lim
N→∞

K
2N + 1

nN−1

∑
n=−nN

((M(p+ 1)− k)y[n+ p+ 1]y[n+1]
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+(k−Mp)y[n+ p+ 2]y[n+1])

= lim
N→∞

M(p+ 1)− k
2N + 1

2nNK
2nN

nN−1

∑
n=−nN

y[n+ p+ 1]y[n+ 1]+

+ lim
N→∞

(k−Mp)
2N + 1

2nNK
2nN

nN−1

∑
n=−nN

y[n+ p+ 2]y[n+ 1].

Since nN → ∞ as N → ∞, we have

lim
N→∞S1,N(k) = lim

N→∞
M(p+ 1)− k

2N + 1
2nNKAy[p]

+ lim
N→∞

k−Mp
2N + 1

2nNKAy[p+ 1]

= lim
N→∞

(
p+ 1− k

M

)
2nNM
2N + 1

KAy[p] (8.21)

+ lim
N→∞

(
k
M

− p

)
2nNM
2N + 1

KAy[p+ 1].

Note that

lim
N→∞

2nNM
2N + 1

= 1. (8.22)

In fact, from the choice of nN , we have MnN ≤ N < M(nN +1) so that 2MnN +
1 ≤ 2N + 1 < 2M(nN + 1)+ 1, and hence

2MnN

2M(nN + 1)+ 1
<

2MnN

2N + 1
≤ 2MnN

2MnN + 1
.

nN goes to infinity as N goes to infinity and so taking limits throughout as N
goes to infinity, we obtain (8.22).

Substituting (8.22) in (8.21) and using the fact that S2(k) = 0, we obtain
from (8.19) that

Ax[k] = S1(k) = K

(
p+ 1− k

M

)
Ay[p]+K

(
k
M

− p

)
Ay[p+ 1].

If 0 ≤ k ≤ M, then p = 0. For every other range of k, p is nonzero. Using the
values of Ay[p] as given by (8.18) and the fact that Ax is an even function one
obtains (8.17). �

Remark 1. The function A defined in Theorem 8 is the triangle "K,M(t) =

K max(1− |t|
M ,0) on R with height K and base length 2M restricted to the integers.
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The Fourier transform of "K,M(t) is KM
(

sinπMγ
πMγ

)2
. Thus, in Theorem 8, we have

constructed a sequence x of constant amplitude whose autocorrelation is the inverse
Fourier transform of the dilated Fejér function Kω2πM.

8.3.2 The Additive Property of Triangular Autocorrelation a.e.

As mentioned in Sect. 8.1.2, and repeated in the proof of Theorem 8, it has been
shown in [34,35] that if λ ∈ (0,1) has binary expansion 0.α1α2α3 · · · , if we consider
the Lebesgue measure on (0,1), and if we define the unimodular (in fact, ±1-valued)
function y by

y[k] =

{
2α2n+1 − 1 if k = n+ 1,n ∈N∪{0},
2α2n − 1 if k = 1− n,n ∈N,

then, for almost all values of λ , the autocorrelation of y, Ay, is

Ay[k] =

{
0 if k �= 0,
1 if k = 0.

In Theorem 8 it was shown that given M ∈ N this y can be used to construct x such
that x has constant amplitude and

Ax[k] =

{
1− |k|

M , if 0 ≤ |k| ≤ M,

0, otherwise.

In this case, x is unimodular. We shall now show that the autocorrelation of the sum
of two such functions is the sum of the respective autocorrelations for almost all x.

We begin with the following calculation.

Example 4. Let X be the set of unimodular functions x : Z → C for which there
exists a positive integer M with the property,

Ax[k] =

{
1− |k|

M , if 0 ≤ |k| ≤ M,

0, otherwise.

For given M ∈N, letΩ be the set of all possibilities of any 2M consecutive values of
x ∈ X . Then card(Ω) = 22M. Let E be the subset of Ω such that given ε, the sum of
the 2M consecutive values of x exceeds Mε in absolute value. Among the 2M values,
suppose that there are (M − j) +1s and (M + j) −1s, where −M ≤ j ≤ M. So the
absolute value of the sum of 2M consecutive values would be |M+ j− (M − j)| =
2| j|. The sum of these values exceeds Mε in absolute value if [Mε] ≤ 2| j| ≤ 2M.
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The number of ways of having (M − j) +1s and (M + j) −1s is
( 2M

M− j

)
=
( 2M

M+ j

)
.

The total number of possible values for which the sum exceeds Mε is

card(E) =
M

∑
| j|=[Mε

2 ]

(
2M

M− j

)
=

M

∑
j=[ Mε

2 ]

(
2M

M− j

)
+

M

∑
j=[Mε

2 ]

(
2M

M+ j

)
= 2

M

∑
j=[ Mε

2 ]

(
2M

M− j

)
.

Consequently,

card(E)
card(Ω)

= 2−2M2
M

∑
j=[Mε

2 ]

(
2M

M− j

)
= 2−2M+1

M

∑
j=[Mε

2 ]

(
2M

M− j

)
.

Theorem 9. (a) Let X be the set of unimodular functions x :Z→C for which there
exists a positive integer M with the property,

Ax[k] =

{
1− |k|

M , if 0 ≤ |k| ≤ M,

0, otherwise.

Then there is a well-defined finite Borel measure p on X induced from Lebesgue
measure 1 on (0,1), in a manner described in the proof.

(b) For almost all x,y ∈ X , with respect to p, we have

Ax+y = Ax +Ay,

noting that x+ y does not necessarily have constant amplitude and that Ax+y is
not generally a triangle.

Proof. (a) We know from (8.2) and (8.3) that there is S0 ⊆ [0,1] defined by the
properties: |S0|= 1 and

∀λ ∈ S0, ∃μλ : Z→C such that |μλ |= 1 and Aμλ [k] = δ0,k on Z.

From Theorem 8 we know that for each M ∈ N, there is SM ⊆ [0,1] defined by
the properties: |SM|= 1 and

∀λ ∈ SM, ∃μλ : Z→ C such that |μλ |= 1 and Aμλ [k] = max
(
0,1− |k|

M

)
on Z.

In fact, by the way we defined μλ in Theorem 8, we could take SM = S0.
However, we can equally well choose {SM : SM ⊆ S0, |SM|= 1} to be a disjoint
collection whose union is S0. In this case we define the functions fM : SM → X ,

1For the necessary measure theory and definitions of Borel and Lebesgue measure we refer to [7].
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λ �→ μλ , where Aμλ [k] = max
(
0,1− |k|

M

)
on Z, and f : S0 → X , λ �→ fM(λ )

when λ ∈ SM. In this way we use f to define a compact topology on X induced
from S0 ⊆ [0,1], and to define a bounded Borel measure p on X induced from
Lebesgue measure on [0,1].

We provide the technical properties of p in part (b) of the proof.
(b) We have already seen the construction of such x and y in Theorem 8. Formally,

Ax+y[k] = lim
N→∞

1
2N + 1

N

∑
m=−N

(x+ y)[m+ k](x+ y)[m]

= lim
N→∞

1
2N + 1

N

∑
m=−N

(x[m+ k]+ y[m+ k])(x[m]+ y[m])

= lim
N→∞

1
2N + 1

N

∑
m=−N

x[m+ k]x[m]+ lim
N→∞

1
2N + 1

N

∑
m=−N

y[m+ k]y[m]

+ lim
N→∞

1
2N + 1

N

∑
m=−N

x[m+ k]y[m]+ lim
N→∞

1
2N + 1

N

∑
m=−N

y[m+ k]x[m]

= Ax(k)+Ay(k)+ lim
N→∞

1
2N + 1

N

∑
m=−N

x[m+ k]y[m]

+ lim
N→∞

1
2N + 1

N

∑
m=−N

y[m+ k]x[m]. (8.23)

Let us denote the last two terms on the right side of (8.23) by S3 and S4,
respectively. We want to show that S3 = 0 and S4 = 0.

S3 = lim
N→∞

1
2N + 1

N

∑
m=−N

x[m+ k]y[m]. (8.24)

Without loss of generality we take y to be real-valued, and so (8.24) becomes

S3 = lim
N→∞

1
2N + 1

N

∑
m=−N

x[m+ k]y[m]. (8.25)

Suppose that

Ax[k] =

{
1− |k|

M1
, if 0 ≤ |k| ≤ M1,

0, otherwise,

and
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Ay[k] =

{
1− |k|

M2
, if 0 ≤ |k| ≤ M2,

0, otherwise.

Let PN be the largest integer so that

M2PN ≤ N ≤ M2(PN + 1). (8.26)

Then S3 can be written as

S3 = lim
N→∞

1
2N + 1

−M2PN−1

∑
m=−N

x[m+ k]y[m]

+ lim
N→∞

1
2N + 1

N

∑
m=M2PN+1

x[m+ k]y[m]

+ lim
N→∞

1
2N + 1

M2PN

∑
m=−M2PN

x[m+ k]y[m]. (8.27)

Let us denote the first two terms of (8.27) by s1 and s2, respectively. Now,

|s1| ≤
−M2PN−1

∑
m=−N

1 = N −M2PN

and

|s2| ≤
N

∑
m=M2PN+1

1 = N −M2PN .

From (8.26),
N −M2PN ≤ M2(PN + 1)−M2PN = M2

which means |s1| ≤ M2 and |s2| ≤ M2. Therefore,

lim
N→∞

|s1|
2N + 1

≤ lim
N→∞

M2

2N + 1
= 0

and also

lim
N→∞

|s2|
2N + 1

≤ lim
N→∞

M2

2N + 1
= 0.

Thus,

S3 = lim
N→∞

1
2N + 1

M2PN

∑
m=−M2PN

x[m+ k]y[m] (8.28)

= lim
N→∞

1
2N + 1

PN−1

∑
n=−PN

M2(n+1)

∑
m=M2n+1

x[m+ k]y[m]
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+ lim
N→∞

1
2N + 1

x[−M2PN + k]y[−M2PN ]

= lim
N→∞

1
2N + 1

PN−1

∑
n=−PN

M2(n+1)

∑
m=M2n+1

x[m+ k]y[M2(n+ 1)]. (8.29)

The last step (8.29) follows due to the fact that by construction, y is constant and
equal to either +1 or −1 in the interval [M2n+ 1,M2(n+ 1)]. So y[M2(n+ 1)] is
either +1 or −1. Between (M2n+1) and M2(n+1) there are M2 terms. So there are
M2 values of x. Suppose that of these M2 values there are j that have the value +1
and (M2 − j) that have the value −1. Upon multiplication by y(M2(n+1)) we have
either j values that are −1 and (M2 − j) values that are +1 or vice versa. In the sum
on the right side of (8.29) there are 2PN blocks of length M2. Let us say that the first
block has j1 terms equal to +1 and (M2 − j1) terms equal to −1, the second block
has j2 terms equal to +1 and (M2 − j2) terms equal to −1, and so on. Together,
there are ( j1 + j2 + · · ·+ j2PN ) terms equal to +1 and (M2 − j1 +M2 − j2 + · · ·+
M2 − j2PN ) = 2PNM2 − ( j1 + j2 + · · ·+ j2PN ) terms equal to −1. Let PNM2 = M and
j1+ j2+ · · ·+ j2PN =M− j, where −M ≤ j ≤M. Note that this M is unrelated to the
M that appears in Theorem 8 and part (a) of the statement of this theorem where it
indicates the length of the base of a triangle. Then 2PNM2 − ( j1 + j2 + · · ·+ j2PN ) =
2M − (M − j) = M + j. Thus, out of 2M consecutive values of x[m+ k]y[m], there
are (M − j) values that are +1 and (M + j) values that are −1. So the absolute
value of the sum of 2PNM2 = 2M and consecutive values of x[m+ k]y[m] would be
M+ j− (M− j) = 2| j|.

LetΩ be the set of all possibilities for the 2M consecutive values of x[m+k]y[m].
From (8.2), each such x and y corresponds to some λ ∈ (0,1). From Example 4 and
the definition of E ⊆Ω there, it follows that given ε the measure of the set for which
the sum of 2M consecutive values exceeds Mε in absolute value is

card(E)
card(Ω)

= 2−2M+1
M

∑
j=[Mε

2 ]

(
2M

M− j

)
.

This can be transported as an explicit, computable property of p.
It can be shown in a manner identical to that in [34] that

lim
M→∞

2−2M+1
M

∑
j=[Mε

2 ]

(
2M

M− j

)
= 0.

Thus the set of x and y for which there should fail to be an integral value of M =
PNM2 such that from that value on [see (8.28)]∣∣∣∣∣

M

∑
m=−M

x[m+ k]y[m]

∣∣∣∣∣≤ Mε+ 1
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has measure zero. Therefore,

limN→∞

∣∣∣∣∣ 1
2N + 1

M

∑
m=−M

x[m+ k]y[m]

∣∣∣∣∣≤ Mε+ 1
2N + 1

=
PNM2ε
2N + 1

+
1

2N + 1
. (8.30)

From (8.26),

PNM2

2N + 1
≤ N

2N + 1
→ 1

2

as N goes to infinity. So, the left side of (8.30) is less than ε
2 and for almost all x

and y,

lim
N→∞

1
2N + 1

N

∑
m=−N

x[m+ k]y[m] = 0.

In a similar way one can show that

S4 = lim
N→∞

1
2N + 1

N

∑
m=−N

y[m+ k]x[m] = 0

for almost every x and y. This concludes proving part (b). �
Remark 2. Due to Theorem 8, Theorem 9 can be trivially generalized to x and y that
have constant amplitude K1 and K2, respectively, and have autocorrelation functions

Ax[k] =

{
K1

(
1− |k|

M1

)
, if 0 ≤ |k| ≤ M1,

0, otherwise,

and

Ay[k] =

{
K2

(
1− |k|

M2

)
, if 0 ≤ |k| ≤ M2,

0, otherwise.

Remark 3. Given K > 0 and M ∈ N, on R, the inverse Fourier transform of

MK
(

sinπMγ
πMγ

)2
is K max

(
1− |t|

M ,0
)
. By the additive property of Fourier transform,

the inverse Fourier transform of F(γ) = ∑N
n=1 nKn

(
sinπnγ
πnγ

)2
, restricted to Z, is

F̌[m] =
N

∑
n=1

Kn max

(
1− |m|

n
,0

)
.

Due to Theorem 8, one can construct functions xn such that Axn = Kn max(1−
|m|
n ,0) with |xn|=

√
Kn. Theorem 9 implies that the sequence x = x1 + · · ·+ xN has

autocorrelation F̌ . Also, x ∈ �∞(Z) since |x| is bounded by ∑N
n=1

√
Kn. Thus, we
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have a function x ∈ �∞(Z) whose autocorrelation is the inverse Fourier transform of
dilates of Fejér functions.

Example 5. Generally, Ax+y[k] �= Ax[k] + Ay[k]. In fact, in the case of real-valued
sequences x,y ∈ �∞(Z), when all limits as N → ∞ exist, Ax+y[k] = Ax[k]+Ay[k]+
2Axy[−k], and there is no reason to expect Axy[−k] = 0 for each k ∈ Z. Here, Axy is
the cross-correlation of x and y defined by

∀k ∈ Z, Axy[k] = lim
N→∞

1
2N + 1

N

∑
m=−N

x[k+m]y[m].

As a particular example, note that the binary expansions, with a precision of 16
bit, of λx = 0.35 and λy = 0.9 are 0.01011001100110011 and 0.1110011001100110,
respectively. From these one can obtain sequences x and y of ±1s by following the
definition of y in (8.2). The partial autocorrelations of x, y, and x+ y have been
calculated by computing the sum in Definition 1 for N = 1,000, i.e., 2N+1= 2,001
terms. These partial autocorrelations at the integers between −10 and 10 are plotted
in Fig. 8.3. Clearly, the sums of the autocorrelations of x and y do not match the
autocorrelation of x+ y.
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8.4 Conclusions

In this chapter Hadamard matrices have been used to construct CAZAC sequences
on Z. Such sequences are important in the areas of radar and communication.
This is generalized to the construction of unimodular sequences on Z whose
autocorrelations are triangles. Finally, conditions under which the autocorrelation of
the sum of two sequences is the same as the sum of the respective autocorrelations
are studied.
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Part II
Multiscale Analysis



Chapter 9
On the Application of the SDLE to the Analysis
of Complex Time Series

Jianbo Gao, Jing Hu, and Wen-wen Tung

Abstract Complex systems often generate highly nonstationary and multiscale
signals because of nonlinear and stochastic interactions among their component
systems and hierarchical regulations imposed by the operating environments. Rapid
accumulation of such complex data in life sciences, systems biology, nano-sciences,
information systems, and physical sciences has made it increasingly important
to develop complexity measures that incorporate the concept of scale explicitly,
so that different behaviors of signals on varying scales can be simultaneously
characterized by the same scale-dependent measure. The scale-dependent Lyapunov
exponent (SDLE) discussed here is such a measure and can be used as the
basis for a unified theory of multiscale analysis of complex data. The SDLE
can readily characterize deterministic low-dimensional chaos, noisy chaos, random
1/ f α processes, random Levy processes, stochastic oscillations, and processes with
multiple scaling behavior. It can also readily deal with many types of nonstationarity,
detect intermittent chaos, and accurately detect epileptic seizures from EEG data
and distinguish healthy subjects from patients with congestive heart failure from
heart rate variability (HRV) data. More importantly, analyses of EEG and HRV
data illustrate that commonly used complexity measures from information theory,
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chaos theory, and random fractal theory can be related to the values of the SDLE at
specific scales, and useful information on the structured components of the data is
also embodied by the SDLE.

9.1 Introduction

Complex systems are usually comprised of multiple subsystems that exhibit both
highly nonlinear deterministic, as well as, stochastic characteristics, and are reg-
ulated hierarchically. These systems generate signals that exhibit complex charac-
teristics such as sensitive dependence on small disturbances, long memory, extreme
variations, and nonstationarity [1]. Examples of such signals are abundant, including
biological data such as heart rate variability (HRV) and EEG data [2], highly bursty
traffic on the Internet [3–5], and highly varying stock prices and foreign exchange
rates in financial markets [6, 7]. For illustration, in Fig. 9.1, we have shown an
example of HRV data for a normal young subject [8]. Evidently, the signal is
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Fig. 9.1 (a) The HRV data for a normal subject; (b, c) the segments of signals indicated as A and
B in (a); (d, e) power spectral density for the signals shown in (b,c)
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highly nonstationary and multiscaled, appearing oscillatory for some period of
time (Fig. 9.1b, d) and then varying as a 1/ f process for another period of time
(Fig. 9.1c, e).

While the multiscale nature of signals such as that shown in Fig. 9.1 cannot
be fully characterized by existing methods, the nonstationarity of the data is even
more troublesome, because it prevents direct application of spectral analysis or
methods based on chaos theory and random fractal theory. For example, in order
to reveal that the HRV data is of 1/ f nature [9, 10] with anti-persistent long-range
correlations [11, 12] and multifractality [13], time series such as shown in Fig. 9.1a
have to be preprocessed to remove components (such as oscillatory ones) that do not
conform to fractal scaling analysis. However, automated segmentation of complex
biological signals to remove undesired components is a significant open problem,
since it is closely related to the challenging task of accurately detecting transitions
from normal to abnormal states in physiological data.

Rapid accumulation of complex data in life sciences, systems biology, nano-
sciences, information systems, and physical sciences has made it increasingly
important to be able to analyze multiscale and nonstationary data. Since multiscale
signals behave differently depending upon which scale the data are looked at,
it is of fundamental importance to develop measures that explicitly incorporate
the concept of scale so that different behaviors of the data on varying scales
can be simultaneously characterized by the same scale-dependent measure. Here,
we discuss such a measure, the scale-dependent Lyapunov exponent (SDLE), and
develop a unified multiscale analysis theory of complex data.

This chapter is organized as follows. We first define the SDLE, then apply it
to characterize low-dimensional chaos, noisy chaos, and random processes with
power-law decaying power spectral density (so-called 1/ f α processes). We then
show how it can readily detect intermittent chaos, deal with nonstationarity, and
apply it to characterize EEG and HRV data. Finally, we make a few concluding
remarks, including a discussion of best practices for experimental data analysis.

9.2 SDLE: Definitions and Fundamental Properties

Chaos and random fractal theories have been used extensively in the analysis
of complex data [2, 3, 6, 11–18]. Chaos theory shows that apparently irregular
behaviors in a complex system may be generated by nonlinear deterministic
interactions of only a few numbers of degrees of freedom while noise or intrinsic
randomness does not play any role. Random fractal theory, on the other hand,
assumes that the dynamics of the system are inherently random. One of the most
important classes of random fractals is the set of 1/ f α processes that display
long-range correlations. Since the foundations of chaos theory and random fractal
theory are entirely different, different conclusions may be drawn depending upon
which theory is used to analyze the data. In fact, much of the research in the
past has been devoted to determining whether a complex time series is generated
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by a chaotic or a random system [19–30]. In this effort, 1/ f α processes have
distinguished themselves as the key counter examples invalidating commonly used
tests for chaos [30–32]. Thus, successful classification of chaos and 1/ f α processes
based on scales may fundamentally change the practice of time series analysis—
these theories will be used synergistically, instead of individually, to characterize
the behaviors of signals on a wide range of scales.

SDLE is a generalization of two important concepts, the time-dependent ex-
ponent curves [24] and the finite size Lyapunov exponent (LE) [33]. It was first
introduced by the authors in [34, 35], and has been further extended in [36, 37] and
applied to study EEG [38], HRV [39, 40], and Earth’s geodynamo [41].

We assume that all that is known is a scalar time series x(1),x(2), . . . ,x(n).
Regardless of whether the dynamics are chaotic or random, we use time-delay
embedding [42–44] to form vectors of the form: Vi = [x(i),x(i + L), . . . ,x(i+
(m− 1)L)], where the embedding dimension m and the delay time L are chosen
according to optimization criteria [24, 45]. When the time series is random, such a
procedure transforms the self-affine stochastic process to a self-similar process in
phase space. In this case, however, the specific values of m and L are not important,
so long as m > 1.

After a proper phase space is reconstructed, we consider an ensemble of
trajectories. We denote the initial separation between two nearby trajectories by ε0

and their average separation at time t and t +Δt by εt and εt+Δt , respectively. We
then examine the relation between εt and εt+Δt , where Δt is small. When Δt → 0,
we have

εt+Δt = εt eλ (εt)Δt , (9.1)

where λ (εt ) is the SDLE. It is given by

λ (εt) =
lnεt+Δt − lnεt

Δt
. (9.2)

Equivalently, we have a differential equation for εt ,

dεt
dt

= λ (εt )εt . (9.3)

Given a time series data, the smallest Δt possible is the sampling time τ .
To compute SDLE, we can start from an arbitrary number of shells,

εk ≤ ‖Vi −Vj‖ ≤ εk +Δεk, k = 1,2,3, . . . , (9.4)

where Vi,Vj are reconstructed vectors and εk (the radius of the shell) and Δεk (the
width of the shell) are arbitrarily chosen small distances (Δεk is not necessarily
a constant). We then monitor the evolution of all of the pairs of vectors (Vi,Vj)
within a shell and take the average. As we will see shortly, as far as estimation of
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the parameters corresponding to exponential or power-law divergence is concerned,
taking logarithm and averaging can be exchanged; (9.2) can now be written as

λ (εt ) =
〈
ln‖Vi+t+Δt −Vj+t+Δt‖− ln‖Vi+t −Vj+t‖

〉
Δt

(9.5)

where t and Δt are integers in units of the sampling time and the angle brackets
denote the average within a shell.

To see why taking logarithm and averaging can be exchanged for the purpose
of computing λ (εt), let us consider a case involving ε1(t) = ε1(0)eλ1t ,ε2(t) =
ε2(0)eλ2t , where λ1 = λ2 is a positive constant. Let ε(t) be the average of ε1(t)
and ε2(t). Then it is clear that SDLE is simply λ whether one takes average first
or takes logarithm first. In fact, when large t is concerned, if λ1 is slightly larger
than λ2, then taking logarithm first is beneficial, since, otherwise, the term eλ1t will
dominate, and thus the presence of λ2 will not be captured. Clearly, similar argument
applies to the situation of power-law divergence.

Note that in the above computational procedure, the initial set of shells for
computing SDLE serve as initial values of the scales; through evolution of the
dynamics, they will automatically converge to the range of inherent scales—which
are the scales that define (9.2) and (9.3). Also note that when analyzing chaotic time
series, the condition

| j− i| ≥ (m− 1)L (9.6)

needs to be imposed when finding pairs of vectors within a shell, to eliminate the
effects of tangential motions [24] and for an initial scale to converge to the inherent
scales [35].

To better understand the notion of “inherent scales,” it is beneficial to discuss
the notion “characteristic scale” (or “limiting scale”), ε∞, defined as the scale where
SDLE is close to 0. If one starts from ε0 ' ε∞, then, regardless of whether the data
is deterministically chaotic or simply random, εt will initially increase with time and
gradually settle around ε∞. Consequentially, λ (εt ) will be positive before εt reaches
ε∞. On the other hand, if one starts from ε0 ( ε∞, then εt will simply decrease,
yielding negative λ (εt), again regardless of whether the data are chaotic or random.
When ε0 ∼ ε∞, then λ (εt) will stay around 0—note, however, that ε∞ may not be
a single point but a function of time, such as a periodic function of time. These
discussions make it clear that chaos can only be observed on scales much smaller
than ε∞.

To better understand SDLE, we now point out a relation between SDLE and the
largest positive LE λ1 estimated for a true chaotic signal using, say, the Wolf et al.’s
algorithm [21]. It is given by [35]

λ1 =

∫ ε∗
0
λ (ε)p(ε)dε, (9.7)
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Fig. 9.2 λ (ε) curves for clean and noisy Lorenz systems

where ε∗ is a scale parameter (e.g., used for renormalization when using Wolf et al.’s
algorithm [21]); p(ε) is the probability density function for the scale ε given by

p(ε) = Z
dC(ε)

dε
, (9.8)

where Z is a normalization constant satisfying
∫ ε∗

0 p(ε)dε = 1 and C(ε) is the well-
known Grassberger–Procaccia’s correlation integral [19]. Note that the lower bound
for the integration is set to be zero here. In practice, on scales smaller than εmin, the
probability p(ε) will be zero. Therefore, one could replace the lower bound for the
integration by εmin.

To understand the SDLE, it is instructive to apply it to characterize chaotic
signals and 1/ f α processes. First, we analyze the chaotic Lorenz system with
stochastic forcing

dx/dt = −16(x− y)+Dη1(t),

dy/dt = −xz+ 45.92x− y+Dη2(t),

dz/dt = xy− 4z+Dη3(t). (9.9)

where ηi(t), i= 1,2,3 are independent Gaussian noise forcing terms with zero mean
and unit variance. When D = 0, the system is clean. Figure 9.2 shows five curves,
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for the cases with D = 0,1,2,3,4. The computations are done with 10,000 points
and m = 4, L = 2. We observe the following interesting features:

• For the clean chaotic signal, λ (ε) fluctuates slightly around a constant. As is
expected, this constant is the very largest positive LE, λ1,

λ (ε) = λ1. (9.10)

The small fluctuation in λ (ε) is due to the fact that the divergence rate on the
Lorenz attractor varies from one region to another.

• When there is stochastic forcing, λ (ε) is no longer a constant when ε is small
but diverges to infinity as ε → 0 according the following scaling law,

λ (ε)∼−γ lnε, (9.11)

where γ is a coefficient controlling the speed of loss of information. This feature
suggests that entropy generation is infinite when the scale ε approaches zero.

• When the noise is increased, the part of the curve with λ (ε) ∼ −γ lnε shifts to
the right. In fact, little chaotic signature can be identified when D is increased
beyond 3.

Note that similar results to those shown in Fig. 9.2 have been observed in other
model chaotic systems, including the Mackey–Glass delay differential equation with
multiple positive Lyapunov exponents [46]. To simplify our discussion of HRV data
analysis, we note that in order to resolve the behavior of λ (ε) on ever smaller scales,
longer and longer time series have to be used. More precisely, for a given dataset,
if the smallest resolvable scale is ε0, in order to resolve a smaller scale ε0/r, where
r > 1, a larger dataset has to be used—the larger the dimension of the attractor, the
longer the time series has to be.

Next we consider 1/ f α processes. Such type of processes is ubiquitous in science
and engineering (see [47] and references therein). Two important prototypical
models for such processes are fractional Brownian motion (fBm) process [48] and
ON/OFF intermittency with power-law distributed ON and OFF periods [47]. For
convenience, we introduce the Hurst parameter 0<H < 1 through a simple equation

α = 2H + 1. (9.12)

Depending on whether H is smaller than, equal to, or larger than 1/2, the process
is said to have anti-persistent correlation, short-range correlation, and persistent
long-range correlation [47]. Note that D = 1/H is the fractal dimension of such
processes and Kolmogorov’s 5/3 law for the energy spectrum of fully developed
turbulence [49] corresponds to H = 1/3.

It is well known that the variance of such stochastic processes increases with t
as t2H . Translating this into the average distance between nearby trajectories, we
immediately have

εt = ε0tH . (9.13)
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Using (9.2), we then have λ (εt )∼ H/t. Expressing t by εt , we obtain

λ (εt)∼ Hε−1/H
t . (9.14)

Equation(9.14) can be readily verified by calculating λ (εt ) from such processes.
SDLE also has distinct scaling laws for random Levy processes, stochastic

oscillations, and complex motions with multiple scaling laws on different scale
ranges. For the details, we refer to [34, 35].

Finally, we emphasize that λ1 > 0 (say, computed by Wolf et al.’s algorithm [21])
is not a sufficient condition for chaos. This is evident from (9.7): any non-chaotic
scalings of SDLE such as (9.11) and (9.14) will yield λ1 > 0.

9.2.1 Detecting Intermittent Chaos by SDLE

Intermittent chaos is a type of complex motion where regular (i.e., periodic) and
chaotic motions alternate. Note that the stretches of the time periods for regular
motions could be considerably longer than those of chaotic motions. Exactly
because of this, standard methods are unable to detect chaos in such motions.
This, however, is a simple task for SDLE. To illustrate the idea, we examine the
logistic map

xn+1 = axn(1− xn). (9.15)

When a = 3.8284, we have intermittent chaos. An example of the time series
is shown in Fig. 9.3a. We observe that time intervals exhibiting chaos are very
short compared with those exhibiting periodic motions. Traditional methods for
computing LE, being based on global average, are unable to quantify chaos in such
an intermittent situation, since the laminar phase dominates, neither can FSLE, since
it requires that divergence dominates most of the time. Interestingly, the SDLE curve
shown in Fig. 9.3b clearly indicates existence of chaotic motions, since the plateau
region extends almost one order of magnitude.

Why can SDLE even detect chaos in such a situation? The reason is that the
oscillatory part of the data only affects the scale range where λ (ε) ∼ 0. It cannot
affect the positive portion of λ (ε). This means SDLE has a nice scale separation
property to automatically separate the regular from chaotic motions.

9.2.2 Dealing with Nonstationarity

To facilitate our discussion of HRV data below, we now consider complicated
processes generated by the following two scenarios. One is to concatenate randomly
1/ f 2H+1 and oscillatory components. Another is to superimpose oscillatory com-
ponents on 1/ f 2H+1 process at randomly chosen time intervals. Either scenario
generates signals that appear quite similar to that shown in Fig. 9.1a. The λ (ε)
curves for such processes are shown in Fig. 9.4, for a wide range of the H parameter.
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We observe well-defined power-law relations, consistent with (9.14), when λ (ε) >
0.02. This result clearly shows that oscillatory components in the signals can only
affect the SDLE where λ (ε) is close to 0. This is an illustration of the effect of scale
isolation by the SDLE.

When we perturb chaotic data by similar procedures, will we still be able to
detect chaos? The answer is yes. In fact, the intermittent chaos discussed above may
be viewed as an example of such a procedure.

We are now ready to fully understand why the SDLE can deal with the types
of nonstationarity discussed here. One type of nonstationarity causes shifts of the
trajectory in phase space—the greater the nonstationarity, the larger the shifts.
SDLE, however, cannot be affected much by shifts, especially large ones, since it is
based on the coevolution of pairs of vectors within chosen small shells. The other
type is related to oscillatory components. They only affect SDLE near where it is
close to zero; therefore, they will not alter the distinct scaling for chaos and fractal
processes.

9.3 Applications: Biological Data Analysis

To better understand the SDLE and appreciate its power, we now apply it to examine
two types of physiological data, HRV and EEG.

9.3.1 EEG Analysis

EEG signals provide a wealth of information about brain dynamics, especially
related to cognitive processes and pathologies of the brain such as epileptic seizures.
To understand the nature of brain dynamics as well as to develop novel methods for
the diagnosis of brain pathologies, a number of complexity measures have been used
in the analysis of EEG data. These include the Lempel–Ziv (LZ) complexity [50],
the permutation entropy [51], the LE [21], the Kolmogorov entropy [20], the
correlation dimension D2 [19, 52], and the Hurst parameter [53–55]. We compare
the SDLE with these complexity measures or their close relatives.

The EEG signals analyzed here were measured intracranially by the Shands
hospital at the University of Florida. Such EEG data are also called depth EEG
and are considered cleaner and more free of artifacts than scalp (or surface) EEG.
Altogether, we have analyzed seven patients’ multiple-channel EEG data, each with
a duration of a few hours, with a sampling frequency of 200 Hz. When analyzing
EEG for epileptic seizure prediction/detection, it is customary to partition a long
EEG signal into short windows of length W points and calculate the measure of
interest for each window. The criterion for choosing W is such that the EEG signal
in each window is fairly stationary, is long enough to reliably estimate the measure
of interest, and is short enough to accurately resolve localized activities such as
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Fig. 9.5 Representative λ (ε) (per second) vs. ε for a seizure and non-seizure EEG segment

seizures. Since seizure activities usually last about 1–2 min, in practice, one often
chooses W to be about 10 s. When applying methods from random fractal theory
such as detrended fluctuation analysis (DFA) [53], it is most convenient when the
length of a sequence is a power of 2. Therefore, we have chosen W = 2,048 when
calculating various measures. We have found, however, that the variations of these
measures with time are largely independent of the window size W . The relations
among the measures studied here are the same for all the seven patients’ EEG data,
so we illustrate the results based on only one patient’s EEG signals.

We have examined the variation of λ (ε) with ε for each segment of the EEG
data. Two representative examples for seizure and non-seizure segments are shown
in Fig. 9.5. We observe that on a specific scale ε∗, the two curves cross. Loosely,
we may term any ε < ε∗ as small scale, while any ε > ε∗ as large scale. Therefore,
on small scales, λ (ε) is smaller for seizure than for non-seizure EEG, while on
large scales, the opposite is true. The variations of λsmall−ε and λlarge−ε with
time for this patient’s data, where small − ε and large − ε stand for (more or
less arbitrarily) chosen fixed small and large scales, are shown in Fig. 9.6a, b,
respectively. We observe two interesting features: (1) the pattern of variation of
λsmall−ε(t) is reciprocal of that of λlarge−ε(t). This result can be expected from
Fig. 9.5. (2) The variations in λsmall−ε(t) and λlarge−ε(t) clearly indicate the two
seizure events. Therefore, either λsmall−ε(t) or λlarge−ε(t) can be used to detect
epileptic seizures accurately.
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We now compare the SDLE with three commonly used measures from chaos
theory, the largest positive LE [21], the correlation entropy [20], the correlation
dimension [19], and one measure from random fractal theory, the Hurst parameter.
We discuss the three measures from chaos theory first.

The LE is a dynamic quantity. It characterizes the exponential growth of an
infinitesimal line segment, εt ∼ ε0eλ1t , ε0 → 0. It is often computed by the
algorithm of Wolf et al. [21], by monitoring the exponential divergence between
a reference and a perturbed trajectory. For truly chaotic signals, 1/λ1 gives the
prediction time scale of the dynamics. Also, it is well known that the sum of all
the positive Lyapunov exponents in a chaotic system equals the Kolmogorov–Sinai
(KS) entropy. The KS entropy characterizes the rate of creation of information in
a system. It is zero, positive, and infinite for regular, chaotic, and random motions,
respectively. It is difficult to compute, however. Therefore, one usually computes the
correlation entropy K2, which is a tight lower bound of the KS entropy. Similarly, the
box-counting dimension, which is a geometrical quantity characterizing the minimal
number of variables that are needed to fully describe the dynamics of a motion, is
difficult to compute, and one often calculates the correlation dimension D2 instead.
Again, D2 is a tight lower bound of the box-counting dimension. Both K2 and D2

can be readily computed from the correlation integral through the relation [19, 20].

C(m,ε)∼ εD2 e−mLτK2 (9.16)

where m and L are the embedding dimension and the delay time, τ is the sampling
time, and C(m,ε) is the correlation integral defined by

C(m,ε) =
1

N2

N

∑
i, j=1

θ (ε−‖Vi−Vj‖), (9.17)

where θ (y) is the Heaviside step function taking values 1 or 0 depending on whether
y ≥ 0 or not, Vi and Vj are reconstructed vectors, N is the number of points in the
time series, and ε is a prescribed small distance. Equation (9.16) means that in a
plot of lnC(m,ε) vs. lnε with m as a parameter, for truly low-dimensional chaos,
one observes a series of parallel straight lines, with the slope being D2 and the
spacing between the lines estimating K2 (where lines for larger m lie below those
for smaller m). From these descriptions, one would expect that λ1(t) and K2(t)
are similar, while D2(t) has little to do with either λ1(t) or K2(t). Surprisingly,
from Fig. 9.6c–e, we observe that this is not the case: λ1(t) is similar to D2(t) but
reciprocal of K2(t). In a moment, we shall explain how these puzzling relations may
be understood based on λsmall−ε(t) and λlarge−ε(t).

Next we consider the calculation of the Hurst parameter H. As pointed out earlier,
H characterizes the long-term correlations in a time series. There are many different
ways to estimate H. We have chosen DFA [53], since it is more reliable [47] and has
been used to study EEG [54, 55].
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DFA works as follows: First, divide a given EEG data of length N, which is
treated as a random walk process, into )N/l* nonoverlapping segments (where )x*
denotes the largest integer that is not greater than x), each containing l points; then
define the local trend in each segment to be the ordinate of a linear least-squares fit
of the time series in that segment; finally compute the “detrended walk,” denoted by
xl(n), as the difference between the original “walk” x(n) and the local trend. One
then examines the following scaling behavior:

Fd(l) =

〈
l

∑
i=1

xl(i)
2

〉
∼ l2H (9.18)

where the angle brackets denote ensemble averages of all the segments. From our
EEG data, we have found that the power-law fractal scaling breaks down around
l ≈ 6. This is caused by distinct time scales defined by the α rhythm [54] or the
dendritic time constants [55]. Figure 9.6f shows H(t) for our EEG data . We observe
that the pattern of H(t) is very similar to that of λ1(t) but reciprocal to K2(t) and
D2(t). Such relations cannot be readily understood intuitively, since the foundations
for chaos theory and random fractal theory are entirely different.

Let us now resolve all of the curious relations observed between λ1(t), K2(t),
D2(t), and H(t).

• Generally, entropy measures the randomness of a dataset. This pertains to small
scale. Therefore, K2(t) should be similar to λsmall−ε(t). This is indeed the case.
We should point out that we have also calculated other entropy-related measures,
such as the LZ complexity [50], which is closely related to the Shannon entropy
and permutation entropy [51], and observed similar variations. Therefore, we can
conclude that the variation of the entropy is represented by λsmall−ε(t), regardless
of how entropy is defined.

• To understand why λ1(t) calculated by the algorithm of Wolf et al. [21]
corresponds to λlarge−ε(t), we note that the algorithm of Wolf et al. [21] involves
a scale parameter that whenever the divergence between a reference and a
perturbed trajectory exceeds this chosen scale, a renormalization procedure is
performed. When the algorithm of Wolf et al. [21] is applied to a time series with
only a few thousand points, in order to obtain a well-defined LE, a fairly large-
scale parameter has to be chosen. This is the reason that the LE and λlarge−ε are
similar. In fact, the scale we have chosen to calculate λ1(t) is even larger than
that for calculating λlarge−ε(t). This is the reason that the value of λ1(t) shown in
Fig. 9.6c is smaller than that of λlarge−ε(t) shown in Fig. 9.6b.

• It is easy to see that if one fits the λ (ε) curves shown in Fig. 9.5 by a straight
line, then the variation of the slope with time should be similar to λsmall−ε(t) but
reciprocal of λlarge−ε(t). Such a pattern will be preserved even if one takes the
logarithm of λ (ε) first and then does the fitting. Such a discussion makes it clear
that even if EEG is not ideally of the 1/ f 2H+1 type, qualitatively, the relation
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λ (ε) ∼ ε−1/H holds. This in turn implies D2 ∼ 1/H. With these arguments, it
is clear that the seemingly puzzling relations among the measures considered
here can be readily understood by the λ (ε) curves. Most importantly, we have
established that commonly used complexity measures can be related to the values
of the SDLE at specific scales.

As we have pointed out, around the characteristic scale ε , λ (ε) is always close
to 0. The pattern of λ (ε) around ε is governed by the structured components in the
data, such as the α, γ, β , and δ waves. From Fig. 9.5, we observe that the patterns
for seizure and non-seizure EEG segments are very different. Such information
is certainly helpful in predicting/detecting seizures. Since the numerous measures
considered here are already very effective for this purpose, we will not pursue this
issue further here. The issue becomes more important when distinguishing healthy
subjects from patients with heart disease using the HRV data, as we will soon show.

9.3.2 HRV Analysis

HRV is an important dynamical variable of the cardiovascular function. Its most
salient feature is the spontaneous fluctuation, even when the environmental pa-
rameters are maintained constant and no perturbing influences can be identified.
Since the observation that HRV is related to various cardiovascular disorders [56], a
number of methods have been proposed to analyze HRV data. They include methods
based on simple statistics from time and frequency domain analyses (see [57]
and references therein), as well as those derived from chaos theory and random
fractal theory [10, 14, 15, 58–61]. We shall now show that the SDLE can readily
characterize the hidden differences in the HRV under healthy and diseased condi-
tions and shed much new light on the dynamics of the cardiovascular system.

We examine two types of HRV data, one for healthy subjects and another for
subjects with the congestive heart failure (CHF), a life-threatening disease. The data
were downloaded from the PhysioNet [8]. There are 18 healthy subjects and 15
subjects with CHF. Part of these datasets were analyzed by random fractal theory.
In particular, 12 of the 15 CHF datasets were analyzed by wavelet-based multifractal
analysis [13], for the purpose of distinguishing healthy subjects from CHF patients.
For ease of comparison, we take the first 3×104 points of both groups of HRV data
for analysis. In Fig. 9.7a, b, we have shown two typical λ (ε) vs. ε curves, one for a
healthy subject and another for a patient with CHF. We observe that for the healthy
subject, λ (ε) linearly decreases with lnε before λ reaches around 0, or, before ε
settles around the characteristic scale, ε . Recall that this is a characteristic of noisy
dynamics (Fig. 9.2). For the CHF case plotted in Fig. 9.7b, we observe that the λ (ε)
is oscillatory, with its value always close to 0, and hence, the only scale resolvable is
around ε . Since the length of the time series used in our analysis for the healthy and
the CHF subjects is the same, the inability of resolving the λ (ε) behavior on scales
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much smaller than ε for patients with CHF strongly suggests that the dimension of
the dynamics of the cardiovascular system for CHF patients is considerably higher
than that for healthy subjects.

We now discuss how to distinguish between healthy subjects and patients with
CHF from HRV analysis. We have devised two simple measures, or features. One
is to characterize how well the linear relation between λ (ε) and lnε can be defined.
We have quantified this by calculating the error between a fitted straight line and
the actual λ (ε) vs. lnε plots of Fig. 9.7a, b. The second feature is to characterize
how well the characteristic scale ε is defined. This is quantified by the ratio between
two scale ranges, one is from the second to the sixth point of the λ (ε) curves and
another is from the seventh to the 11th point of the λ (ε) curves. Now, each subject’s
data can be represented as a point in the feature plane, as shown in Fig. 9.8. We
observe that for healthy subjects, feature 1 is generally very small but feature 2 is
large, indicating that the dynamics of the cardiovascular system is like a nonlinear
system with stochasticity, with resolvable small-scale behaviors and well-defined
characteristic scale ε . The opposite is true for the patients with CHF: feature 1
is large but feature 2 is small, indicating that not only small-scale behaviors of
the λ (ε) curves cannot be resolved, but also that the characteristic scale ε is not
well defined. Very interestingly, these two simple features separate completely the
normal subjects from patients with CHF. In fact, each feature alone can almost
perfectly separate the two groups of subjects studied here.

It is interesting to note that for the purpose of distinguishing normal HRV from
CHF HRV, the features derived from SDLE are much more effective than other
metrics including the Hurst parameter, the sample entropy, and multiscale entropy.
For the details of the comparisons, we refer to [39].
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9.4 Concluding Remarks

In this chapter, we have discussed a multiscale complexity measure, the SDLE.
We have shown that it can readily characterize low-dimensional chaos and random
1/ f α processes, can readily detect intermittent chaos, can conveniently deal
with nonstationarity, and can accurately detect epileptic seizures from EEG and
distinguish healthy subjects from patients with CHF from HRV. More importantly,
we have established that commonly used complexity measures can be related to
the value of the SDLE at specific scales, and that the pattern of the SDLE around
the characteristic scale ε contains a lot of useful information on the structured
components of the data that may greatly help detect significant patterns. Because
of the ubiquity of chaos-like motions and 1/ f α-type processes and the complexity
of HRV and EEG data, our analyses strongly suggest that the SDLE is potentially
important for clinical practice and provides a comprehensive characterization of
complex data arising from a wide range of fields in science and engineering.

Our analyses have a number of important implications:

• To comprehensively characterize the complexity of complicated data such as
HRV or EEG data, a wide range of scales has to be considered, since the
complexity may be different on different scales. For this purpose, the entire λ (ε)
curve, where ε is such that λ (ε) is positive, provides a good solution. This point



228 J. Gao et al.

is particularly important when one wishes to compare the complexity between
two signals—the complexity for one signal may be higher on some scales, but
lower on other scales. The situation shown in Fig. 9.5 may be considered one of
the simplest.

• For detecting important events such as epileptic seizures, λsmall−ε and λlarge−ε
appear to provide better defined features than other commonly used complexity
measures. This may be due to the fact that λsmall−ε and λlarge−ε are evaluated at
fixed scales, while other measures are not. In other words, scale mixing may blur
the features for events being detected, such as seizures.

• In recent years, there has been much effort in searching for cardiac chaos [14–
18,58]. Due to the inability of unambiguously distinguishing deterministic chaos
from noise by calculating the largest positive LE and the correlation dimension,
it is still unclear whether the control mechanism of cardiovascular system is truly
chaotic or not. Our analysis here highly suggests that if cardiac chaos does exist,
it is more likely to be identified in healthy subjects than in pathological groups.
This is because the dimension of the dynamics of the cardiovascular system
appears to be lower for healthy than for pathological subjects. Intuitively, such
an implication makes sense, because a healthy cardiovascular system is a tightly
coupled system with coherent functions, while components in a malfunctioning
cardiovascular system are somewhat loosely coupled and function incoherently.

As example applications, we have focused on the analyses of HRV and EEG data
here. It is evident that SDLE will be useful for other kinds of complex data analyses,
including financial time series and various kinds of physiological data. While much
of the past as well as current research has been focused on determining whether
some experimental data are chaotic or not, the scaling laws of SDLE suggest that
it is often feasible to obtain the defining parameters of the data under study. That
is, if the data is chaotic, then one should find out what kind of chaos it is; and if it
is random, one can aim to find out what kind of random process that is, including
its correlation structure. While in principle, SDLE is able to do so without pre-
processing of the data under study, suitable detrending and denoising may help. A
particularly simple and versatile procedure is the smooth adaptive filter developed
by the authors, which has been successfully applied to recover chaos in heavy noise
environment [62–64].
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Chapter 10
Wavelet Analysis of ECG Signals

En-Bing Lin, Megan Haske, Marilyn Smith, and Darren Sowards

Abstract This study evaluated the effectiveness of different types of wavelets and
thresholds to process electrocardiograms. An electrocardiogram, or ECG, shows
the electrical activity in the heart and can be used to detect abnormalities. The
first process used term-by-term thresholding to denoise ECGs. The second process
denoised and compressed ECGs using global thresholding. The effectiveness was
determined by using the signal-to-noise ratio (SNR) and the percentage root mean
square difference (PRD).

10.1 Introduction

Electrocardiogram (ECG or EKG) signals are due to ionic current flows which
cause the cardiac fibers to contract and relax, subsequently generating a time variant
periodic signal. The ECG is a diagnostic tool that measures and records the electrical
activity of the heart in great detail. Interpretation of these details allows diagnosis of
a wide range of heart conditions which can vary from minor to life threatening.
The term electrocardiogram was introduced by the Dutch physiologist, Willem
Einthoven, in the 1890s and early 1900s. In 1924, Einthoven received the Nobel
Prize for his life’s work in developing the ECG [6]. By the 1950s, developments
in ECG technology allowed medical professionals to observe electrical stimulated
heart signals by placing electrodes in and around the heart muscle. More recently,
the study of ECG signals in medical applications has become one of the fastest
growing research topics. Proficiency in the interpretation of the ECGs is an essential
skill for medical professionals. A single normal cycle of the ECG represents succes-
sive arterial depolarization and repolarization as well as ventricular depolarization
and repolarization, which are due to cardiac contractions that occur with every
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heartbeat. These are approximated by the peaks and troughs of the ECG waveform.
It consists of well-defined, successive waves denoted P, Q, R, S, and T waves (see
Fig. 10.4). Much attention has been paid to the adequate and accurate analysis
of the ECG signal that would lead to correct diagnoses of cardiac anomalies.
However, the picked-up ECG signal is corrupted by several sources of noise. This
corrupted noise considerably prevents accurate analysis of the ECG signal and
thereby preventing the potential for useful information extraction. Problematically,
errors in reading are common, and may lead to serious consequences. In an ECG
system, the potential difference between two electrodes placed on the skin surface
is considered as an input to the ECG plotter. Statistical data from past research
reveals that there is approximately 20–50 % discordance between the early ECG
interpretation and the final interpretation by a senior cardiologist. The interpreted
results from the ECG is evaluated by the doctor for the final diagnosis in deciding
how to best administer urgent treatment for the ailing patients with life-threatening
cardiovascular diseases. Unstable recording environment, spurious signals from
nearby equipment, poor electrodes, and electromagnetic pollution are a few causes
of unwanted noise contamination on the ECG signal. Results from laboratory
and clinical studies suggest that the existence of abnormal ventricular conduction
during sinus rhythm in regions surrounding a myocardial infraction, will generate
delayed and fractionated micro potentials on the ECG signals. The morphology
of ECG signal has been used for recognizing much variability in heart activity,
so the establishment of parameters of an ECG signal clear of noise is of utmost
importance. This gives a full picture complete with detailed information about
the electrophysiology of the hearts diseases and any ischemic changes that may
occur such as myocardial infarction, conduction defects, and arrhythmia. Different
attempts have been made to design filtering algorithms aimed to improve the signal-
to-noise ratio (SNR) values and recovering the ECG waves in noisy environments.
ECG signal is considered as a non-stationary signal. An efficient technique for
this nonstationary signal processing is the wavelet transform [14]. The wavelet
transform can be used as a decomposition of a signal in the time-frequency scale
plane. There are many applications of wavelet transform such as sub-band coding
data compression, characteristic points detection, and noise reduction. In order to
reduce the noise of ECG signals, many techniques including digital filters finite
impulse response (FIR or IIR), adaptive method, and wavelet transform thresholding
methods are available [7]. The goal of this chapter is to determine the optimal
wavelet, order, level, and threshold for denoising and compressing an ECG while
smoothing out and maintaining the integrity of the original signal. The wavelets used
were: Daubechies, Biorthogonal Spline, Coiflet, and Symlet. Various thresholds
were utilized: soft, hard, global, rigorous SURE, heuristic SURE, universal, and
minimax. The SNR in combination with the percentage root mean square difference
(PRD) helped determine the optimal conditions for wavelet denoising. Compression
scores and L2 norm recovery values determined the ideal conditions for wavelet
compression. This report includes background information about wavelets and
thresholding. The two processes and their results will be explained and analyzed.
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10.2 Wavelet Analysis

Wavelets provide time and frequency analysis simultaneously and offer flexibility
with many different properties and useful applications. In this section, we give a
brief overview on wavelet analysis [3].

10.2.1 Convolution, Filters, and Filter Banks

Convolution is the process that if an input vector is processed through a filter, the
result is an output vector. The output vector can be used for many applications, for
example, to reconstruct the input vector. The output vector can be calculated as a
series of shifting inner products:

y = h ∗ x, (10.1)

yn =
∞

∑
k=−∞

hkxn−k, (10.2)

Where x is input data (signal), y is output data, h is filter, and * is convolution.
A wide variety of filters can be used in the above equations. The filters used in this
chapter were all FIR filters. An FIR filter is a casual filter with a finite number of
elements that are nonzero [15]. FIR filters can further be classified as either high-
pass filters or low-pass filters. A low-pass filter annihilates high oscillatory trends,
or details, of a signal while maintaining low oscillatory trends, or approximations,
of a signal. A high-pass filter maintains high oscillatory trends of a signal while
eliminating the locally constant trends. The combination of a high-pass filter and
low-pass filter is called a filter bank [13].

10.2.2 Multiresolution Analysis

Multiresolution analysis is based upon a sequence of approximation spaces (Vj)
which must satisfy certain conditions. Let L2 be the space of square-integrable
functions. These conditions are [3]

. . .⊂V2 ⊂V1 ⊂V0 ⊂V−1 ⊂V−2 ⊂ . . . , (Cond. 1)

⋃
j∈Z

Vj = L2(R), (Cond. 2)

⋂
j∈Z

Vj = 0 (Cond. 3)
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Multiresolution is the idea that each subspace (VJ) is a scaled representation of V0:

f ∈Vj ⇔ f (2 j) ∈V0 : (Cond. 4)

The concept that an entire space can be represented using only scaled representa-
tions of a single function led to general expansion wavelet systems. In V1, general
expansion wavelet systems use a father function (φ(2t − n)) and its scaled and
dilated representations to form a basis. The relationship between V0 and V1 can be
described by the dilation equation [3]:

φ(t) =∑
n

h(n)
√

2φ(2t − n). (Cond. 5)

10.2.3 Wavelet Systems

A wavelet system is comprised of a father function φ and a mother function ψ .
In what follows, we will limit our discussion to discrete wavelet transforms and
orthogonal wavelet systems with compact support. Wavelet systems, also called
wavelet families, are rather unusual because their properties and conditions are not
derived from an equation. Rather, a wavelet system derives its equation from a set of
conditions and properties. One of the approaches in the design of a wavelet system
is to determine the intended application of the system. The purpose of the system
could be data compression, modeling, or denoising of signals. Once the purpose
of the system has been determined, desirable conditions are set and the important
properties are determined. These important properties can include:

• Compact Support
• Type of filter
• Length of filter
• Orthogonality
• Support Width
• Number of Vanishing Moments for φ and ψ
• Regularity

These conditions and properties lead to a set of equations. These equations are used
to determine the dilation equation. The dilation equation is

φ(t) =∑
n

h(n)
√

2φ(2t − n). (10.3)

The dilation equation uses an FIR, low-pass filter (h(n)). A low-pass filter must
be used in conjunction with a high-pass filter in order to have the most accurate
representation of a signal. Therefore, a mother function (ψ(t)) must also be derived
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from the dilation equation [15]. This is done by using the relationship between the
low-pass filter (h(n)) and high-pass filter (g(n)) [13]:

g(n) = (−1)nh(1− n). (10.4)

This relationship leads to the mother function:

ψ(t) =∑
n

g(n)
√

2φ(2t − n). (10.5)

The dilation equation uses the father function, and the wavelet equation determines
the mother function.

10.2.4 The Four Families

The Daubechies family (DBF) uses a general expansion wavelet system. A general
expansion wavelet system is a system that is generated from a single scaling
function φ(2t − n). This system forms an orthonormal basis with compact support.
Daubechies set conditions for the number of zero moments (vanishing moments) for
the mother functionψ(t). The desire was to have the maximum number of vanishing
moments forψ(t) in order to have increased smoothness for the mother function [3]:

∫
dxxlψ(x) = 0, l = 0, . . . ,L− 1. (10.6)

A high number of vanishing moments results in more accurate detail coefficients
because these coefficients can now be almost zero where a function is smooth.
Coiflets based on the following conditions:

∫
dxxlψ(x) = 0, l = 0, . . . ,L− 1. (10.7)

and ∫
dxxlφ(x) = 0, l = 1, . . . ,L− 1. (10.8)

One shortcoming of orthonormal wavelet bases is that the one FIR filter is
used for deconstruction and its transpose is used for reconstruction. When this
occurs, one wants to recover the signal after it is processed, the exact reconstruc-
tion of the original signal and symmetry of the FIR filters are impossible. The
Cohen−Daubechies−Feauveau Biorthogonal Spline Family (BSF) was designed
to overcome this shortcoming. If one FIR filter is used for deconstruction and
a different FIR filter for reconstruction, symmetry of the filters is possible [3].
Therefore, the BSF is defined as follows.
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Table 10.1 Key properties of four wavelet families

Daubechies Symlet Coiflet Biorthogonal

Any Positive Integer 2,3,… 1,2, …, 5 Nr, Nd

Yes Yes Yes No

Yes Yes Yes Yes

Yes Yes Yes Yes

2N-1 2N-1 6N-1 2Nr +1, 2Nd +1

approx. 0.2N for large N Nr-1 and Nr-2 at knots*

N N 2N-1 Nr(dec)

Wavelet Families Properties

Order(N)

Orthogonal

Biorthogonal

Compact  Support

Support Width

Regularity

Vanishing Moments
for

ψ(t) =∑
√

2gnφ(2t − n), (10.9)

ψ̃(t) =∑
√

2g̃nφ(2t − n), (10.10)

φ(t) =∑
√

2hnφ(2t − n), (10.11)

φ̃(t) =∑
√

2h̃nφ(2t − n), (10.12)

where φ(t) and ψ(t) are the functions used for deconstruction and ˜φ(t) and ˜ψ(t)
are used for reconstruction. The order of deconstruction and reconstruction does not
have to be the same. The relationship between the fathers’ filter coefficients is

(
∑hn

)(
∑ h̃n

)
= 2. (10.13)

The relationship between the low-pass and high-pass filters is maintained for
reconstruction and deconstruction.

10.2.5 Key Properties

Table 10.1 shows some key properties of the wavelet families used in this chapter.
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Fig. 10.1 Decomposition of a signal

10.2.6 Discrete Wavelet Transforms

10.2.6.1 Convolution Approach

Discrete wavelet transforms are defined by using the convolution of the highpass
and low-pass filters with a signal to produce approximation coefficients and detail
coefficients [15]:

a = h ∗ x, (10.14)

d = g ∗ x. (10.15)

where x is input data (signal), h is low-pass filter coefficient, a is approximation
coefficient, g is high-pass filter coefficient, and d is detail coefficient. Since the
approximation coefficients are obtained using a low-pass filter, which eliminates
high oscillatory trends, they form a relatively close approximation of the signal.
The combination of the approximation and the details of a signal are what make
the signal unique. So, the signal must be convolved with a high-pass filter to obtain
those important detail coefficients [13]. An example of the decomposition of a given
signal into approximation and details is shown in Fig. 10.1.
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10.2.6.2 Matrix Approach

Discrete wavelet transforms can also be represented as matrices. The wavelet
transform matrix, shown below, changes from family to family since the filter
coefficients of each family are different.

• Wavelet transform matrix

WN =

[
Lo D
Hi D

]
. (10.16)

The low-pass decomposition filter (Lo D) and high- pass decomposition filter
(Hi D) represent the matrices formed by the filter coefficients (h(n),g(n)). These
matrices are combined in a block matrix (WN) and are convolved with a signal to
form a matrix (Y ). Y represents the block matrix representation of the approximation
and detail coefficients matrices.

• Deconstruction

Y =WN ∗X . (10.17)

If WN is an orthogonal matrix, then the inverse is equivalent to the transpose
of itself [15]. Thus, the reconstruction filters (Lo R,Hi R) are the transposed
representations of the deconstruction filters:

W−1
N =W T

N =

[
Lo R
Hi R

]
. (10.18)

By using the transpose of the filter coefficient matrix, the signal can be reconstructed
by the combination of the approximation and detail coefficients.

• Reconstruction

X =W T
N ∗Y. (10.19)

10.2.7 Analysis and Synthesis Filter Banks

The figures in this subsection show the process that is used to transform signals
using wavelet systems in conjunction with discrete wavelet transform. The symbol
in Fig. 10.2, comprised of a downward arrow and the number two, indicates
downsampling to the second degree. Downsampling to the second degree is the
removal of roughly half the detail and approximation coefficients. Downsampling is
performed after a signal is processed through the filters because half the coefficients
have become redundant. Downsampling eliminates the redundant coefficients. The
symbol in Fig. 10.3, comprised of an upward arrow and the number two, indicates
upsampling to the second degree. Upsampling is the inserting of zeros in the place
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Fig. 10.2 Discrete wavelet transform deconstruction method

Fig. 10.3 Discrete wavelet transform reconstruction method

of the coefficients that were removed during downsampling. Subsampling is one
of the factors that help wavelets being good for data compression. We usually use
the approximation coefficients from the last level of deconstruction, along with all
detail coefficients, to reconstruct a signal.

10.3 Electrocardiograms and How They Relate to Wavelets

The heart has cardiac cells that pass electrical impulses through the heart. These
impulses regulate the pumping of the chambers (see Fig. 10.4). An electrocar-
diogram strip shows these electrical impulses as a signal. There are 12 different
leads that show various perspectives of the heart. These leads come from different
placements of electrodes over the body. An electrocardiogram is used to detect
abnormalities in the heart since each part of the signal corresponds to a part of the
movement of the impulse through the heart [4]. Different diseases can be diagnosed
by looking at the differences in the length, frequency, and amplitude of each part
of the wave. These factors depend on the voltage, speed, and path of the impulse
through the heart’s electrical system. Since each person is different, all of the
previously mentioned things can vary from person to person (see Fig. 10.5) [4].
Electrocardiograms are biomedical signals, and like most of them, ECGs are
non-stationary. Among different transform schemes, discrete wavelet transforms
have shown promise because of their good localization properties in the time and
frequency domain. Discrete wavelet transforms provide better performances than
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other transforms. Due to the compactness of supports and other properties described
in Sect. 10.2.5, the local behavior of the highly nonstationary signals is expected to
be well captured by wavelets than any other tools.

10.4 Main Results

In the context of data (or signals) approximation by using wavelets, one connects
the smoothing or denoising of signals with the measures of smoothness depending
on the magnitudes of their wavelet coefficients. Wavelet approximation using
thresholding allows an adaptive representation of signal discontinuities. Applying
thresholding in wavelet domain to problems of signal processing were used by
Donoho [5] and many others. In this chapter, we explored two separate processes.
The first process strictly denoised ECG signals using term-by-term thresholding.
The second process denoised and compressed ECGs using global thresholding
(GBL). The goal of both of these processes was to determine which wavelet and
thresholding combination removed the most noise while smoothing out and main-
taining the integrity of the signal. The best denoising combination was determined
by using the SNR and PRD. An additional goal of the second process was to
determine the best wavelet for compressing ECGs. The compression scores and
L2 norm recovery values were used to determine this additional goal. Our project
used real ECGs from the PhysioNet PTB Diagnostic ECG Database (http://www.
physionet.org/cgi-bin/ATM) [8].

10.4.1 Process 1

A group of male patients ranging from ages 43–63 were selected. Eight patients
were healthy controls, and eight had suffered myocardial infarctions (heart attacks).
The following wavelet families were used for both part one and two: Daubechies,
Biorthogonal Spline, Coiflet, and Symlet. Part one used soft thresholding in combi-
nation with rigorous SURE, heuristic SURE, universal, and minimax thresholding
rules. We denoised each patients’ ECG signal varying the wavelet and thresholding.
We evaluated each signal up to level 10 and varied the orders of the wavelet families.

10.4.1.1 Denoising

Signal interference (noise) can mask the true image of a signal. Denoising is
performed to remove the unwanted and unnecessary noise. When deconstructing a
signal using wavelets, the majority of the noise is isolated in the detail coefficients.
The formula,

s0(n) = sr(n)+ e(n) (10.20)

http://www.physionet.org/cgi-bin/ATM
http://www.physionet.org/cgi-bin/ATM
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describes how an observed signal is a pure signal and the noise that interferes with
it. To get rid of this noise, three steps are utilized:

• Denoising via wavelet deconstruction
• Thresholding
• Inverse discrete wavelet transform (reconstruction)

The first and third steps are determined solely based on the wavelet family; the
middle step is a procedure completely independent from the wavelet family and is
the essential part of the denoising procedure [1].

Once a signal has been decomposed into its detail and approximation coefficients,
it is now in a state where it can have thresholding imposed upon it. Two kinds of
thresholding are used extensively: hard and soft. Hard thresholding is more rigid,
whereas soft thresholding is smooth. For wavelet thresholding, there is a thresh-
olding value, λ , which acts as a standard for the values of the detail coefficients.
If the values do not meet the standards, that is, they are outside the λ , they are
automatically set to zero [15]. Hard thresholding can be expressed as follows:

s′(x) =

{
di, j i f |di, j|> λ
0 i f |di, j| ≤ λ .

(10.21)

It should be noted that hard thresholding creates discontinuities at any di, j equal to or
less than the defined λ . These discontinuities create a more jagged signal, which is
undesirable when denoising ECGs. A more desirable method to use when denoising
ECGs is soft thresholding. Soft thresholding can be described as follows [7]:

d′
i, j =

⎧⎪⎪⎨
⎪⎪⎩

di, j −λ i f di, j > λ
0 i f |di, j| ≤ λ
di, j +λ i f di, j <−λ .

(10.22)

As with hard thresholding, detail coefficients less than the threshold are scaled to
zero. If the other conditions are met, then the corresponding coefficients are shrunk
according to λ . Overall, this method creates a smooth signal which is the main
reason soft thresholding is utilized in process one.

10.4.1.2 Term-by-Term Thresholding

To calculate λ , one must use thresholding rules. The rules described in the following
methods are level dependent. They calculate a different λ from level to level. The
first method is rigorous SURE (RIG), and it uses Stein’s Unbiased Risk Estimator
to minimize the error [15]. Universal thresholding (UNI) is another known method
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which usually uses a higher thresholding value and often results in over smoothing.
The universal threshold can be expressed as:

λuniv = σ
√

2log(N), (10.23)

where σ is the standard deviation of the noise and N is the signal length [1].
Minimax thresholding realizes the minimum of set of functions for the mean
squared error. The final method used is heuristic SURE, which is just a combination
of universal and SURE [11]. Once the signal has been denoised, it is ready
to be reconstructed. Reconstruction is accomplished via inverse discrete wavelet
transform, using all detail coefficients and only the last level’s approximation
coefficients [2]. The intention of denoising is to have a reconstructed signal which
still depicts the important trends of the signal (i.e., accurately keeps the peaks and
troughs of an ECG) [1].

10.4.1.3 Comparison Method 1

The SNR for each reconstructed signal was compared to the original SNR to see
how much noise had been removed. The SNR was defined as:

SNR =
μ
σ
. (10.24)

The mean is represented by μ and the standard deviation by σ . Using the above
definition, the UNI rule was found to have removed the most noise. The Daubechies
wavelets of orders 9 and 10, level 10 removed the most noise when used in
conjunction with UNI; Biorthogonal Spline order 3.1, level 10 removed the least
amount of noise. The above definition of SNR was not an appropriate comparison
method for ECG denoising. When too much noise is removed, the shape of the
ECG is changed. When this occurs, an abnormality may not be able to be detected
anymore which defeats the purpose of an ECG. For example, Fig. 10.6 shows a
denoised signal that had too much noise removed compared to the original signal.
Figure 10.6 shows another denoised signal that maintains the shape of the signal
better. In fact, the differences between normal and abnormal ECGs are determined
by things such as the length, frequency, and amplitude of each part of the waves.

10.4.1.4 Comparison Method 2

In order to overcome the problem of removing too much noise and changing the
shape of the ECG signal, a different comparison method was used. This second
method used a different definition of the SNR in conjunction with the PRD. For
every level at every order, an individual PRD and SNR value was computed for the
four different thresholding rules.
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The signal-to-noise ratio, or SNR, indicates how much noise has been removed.
The equation for the SNR is [2]:

SNR := log10

⎛
⎜⎜⎝

k
∑

n=0
s2

r (n)

k
∑

n=0
e2(n)

⎞
⎟⎟⎠ , (10.25)

e(n) = s0(n)− sr(n), (10.26)

• s0: original signal
• sr: reconstructed signal
• e(n): noise

The percentage root mean square difference, or PRD, indicates how close the
denoised signal is to the original. The equation for the PRD is [2]:

PRD =

√√√√√√√
N
∑

n=0
(s0(n)− sr(n))2

N
∑

n=0
(s0(n))2

× 100%. (10.27)
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Table 10.2 The SNR and
PRD values found for
patient 252

Order Level SNR PRD Order Level SNR PRD
4 1 5.455 0.107 5 1 5.615 0.096

2 5.045 0.183 2 5.115 0.171
3 4.745 0.248 3 4.746 0.246
4 4.628 0.280 4 4.579 0.291
5 4.519 0.316 5 4.525 0.313
6 4.337 0.398 6 4.393 0.368
7 3.941 0.679 7 4.036 0.603
8 3.894 0.715 8 3.979 0.645
9 3.786 0.781 9 3.859 0.711

10 3.751 0.824 10 3.825 0.745

Patient 252
Method 1 (Coiflet,Rigorous)

The optimal SNR and PRD need to be reasonably small so that the most noise is
removed without distorting the shape of the signal. The denoised signal in Fig. 10.6
has a smaller SNR and bigger PRD than the denoised signal in Fig. 10.7. Notice in
Table 10.2, as the level increases, more noise is removed.
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10.4.1.5 Results for Process 1

In general, the ranking of the families’ ability to achieve the optimal result went:
Coiflet, Symlet, Daubechies, and then Biorthogonal Spline. The best balance
between the SNR and the PRD was at levels 4–6. At higher levels, a denoised signal
starts to deviate too much from its original. An attempt to find an appropriate range
for the optimal SNR and PRD was made and is explained in the next section.

10.4.1.6 Maximum PRD and Minimum SNR Selection

Recall, the denoised ECGs were analyzed using the SNR and PRD [2]. Plotting the
PRD and SNR values on a scatter plot as x and y, respectively. Indeed, plotting
a curve of best fit to PRD vs. SNR reveals an inverse relationship: while PRD
increases, SNR decreases [2]. Since the relationship between PRD and SNR is an
inverse one, it can be reasoned that there is a limit of maximum PRD and minimum
SNR. This limit reflects the highest order one can go in denoising a signal before
losing the characteristics of the true signal. We reasoned that there exists a function
to reveal this limit, which intersects the PRD-SNR curve of best fit. The PRD-SNR
curve is f , and the limiting curve of intersection is g. Intuitively, for g to intersect
f , g needs to increase where f decreases. The point of intersection between f and g
is the for mentioned limit. To create g, PRD was plotted as the independent variable
and a function g of the ratio between PRD and SNR as the dependent variable on a
scatter plot, which revealed a trend. Let I1 = [1,∞). The function g is:

g = e1+ PRD
SNR , ∀SNR(rigrsure,heursure) ∈ I1, (10.28)

g = e
PRD
SNR , ∀SNR(universal,minimax) ∈ I1. (10.29)

One should note several conditions of the above statements. For each thresholding
rule, there is a different intersecting function, with the only difference being an
addition of one to the quotient of the first equation. This is because of the larger
values of PRD and SNR produced by the universal and thresholding rules. Both
functions are only defined for SNR values equal to or greater than 1. This can be
reasoned by simply looking at the quotient in the natural exponent: the number
created by SNR<1 increases far too fast to create an accurate line of best fit.
Therefore, a second set of functions for g was created to include SNR<1, and dilute
the larger numbers and yield similarly desired results. Let I2 = (−∞,1)

g = e
1
2+

PRD
10(SNR) , ∀SNR(rigrsure) ∈ I2, (10.30)

g = e
PRD

10(SNR) ,∀SNR(heursure, universal) ∈ I2, (10.31)

g = e
1+ PRD

10(SNR) ,∀SNR(minimax) ∈ I2, (10.32)



10 Wavelet Analysis of ECG Signals 249

y = 3.5182x-0.239

R² = 0.9923

y = 0.6161x2+ 0.0207x + 2.8978
R² = 0.9989

0

2

4

6

8

10

12

0 1 2 3 4

Percent Root Mean Squared Difference

Patient 268 (Coif,Rig)

(PRD, SNR)

(PRD,g)

Power ((PRD, SNR))

Poly. ((PRD,g))

Fig. 10.8 The two scatter plots

Table 10.3 Data for the two
scatter plots Level PRD SNR g

1
2
3
4
5
6
7
8
9

10

0.239148
0.420638
0.519061
0.603438
0.665243
0.742455
1.354124
2.033773
3.28652

3.449886

4.836122
4.322654
4.128506
3.986385
3.895566
3.801270
3.337925
3.012680
2.576317
2.577234

2.856081
2.996096
3.082454
3.162538
3.224473
3.304608
4.078292
5.339175
9.734401
10.36671

Patient 268, Coiflet, RigorousSURE

To find the point of intersection, the two scatter plots described above must be
plotted on the same graph using their shared independent variable PRD. The point
of intersection between f and g reveals the maximum PRD and minimum SNR
(Fig. 10.8). As long as the level of deconstruction is within these limits, it can be
used to accurately denoise a signal. Within each threshold and order, the level cap
was determined to be six with the PRD exceeding the limit at level 7. Therefore, the
limit is level 6, which can be observed by denoising a signal and noticing how level
7 actually starts to create peaks and deviates from the actual signal. We comment
that the above functions g may be replaced by more accurate approximate functions
by using advanced interpolation techniques.
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10.4.2 Process 2

While exploring the available built-in wavelet functions in MATLAB, we found
a second available method for denoising electrocardiograms. We designed an m
file that utilized two built-in wavelet functions. These functions performed two
major tasks in denoising and compressing ECGs using GBL. GBL, the MATLAB
functions, and our process will all be discussed in the following sections.

10.4.2.1 Global Thresholding

GBL is different from the term-by-term thresholding rules used in process 1. GBL
uses a single thresholding value to denoise or compress a signal. This method of
thresholding is commonly referred to as block thresholding. The disadvantages to
term-by-term thresholding are that, when using wavelets, the thresholding values
are determined without taking into consideration the terms’ neighbors. This thresh-
olding method is not optimal for wavelets because it requires a trade-off between
variance and the mean squared error. These disadvantages led to the GBL method
which is able to determine the best thresholding value for an entire neighborhood
of coefficients. This type of thresholding method increases the adaptability of
wavelet thresholding since the thresholding value is not dependent upon individual
terms which can vary wildly in noisy signals. Since block thresholding takes into
consideration a term’s neighboring coefficients, the threshold tends to be more
receptive to the jumps and skips of the original, noisy signal. Not only does it
maintain a signal’s properties better, this thresholding method preserves peaks better
as well, even at the highest levels [9]. To select the threshold that minimizes error,
the formula

λ jb = [n−1 f (x jb)]
1/2 (10.33)

depicts the global threshold, where x jb is such that 2 jx jb lies in the middle of the
block Bb, j is the resolution, and b is the block index [9].

10.4.2.2 Steps of Process 2

Based on the descriptions from the above subsection, we have the following steps.
To begin process 2, we created a first MATLAB function and used the patient’s
ECG data to determine if soft or hard thresholding should be used, the number of
approximation coefficients that should be kept, and determined the best thresholding
value. We inputted the patient’s ECG data and whether or not we would be denoising
or compressing the signal. The outputted values were then stored and transferred
to a second function. Note, the only major difference between compression and
denoising is the type of threshold; compression uses hard thresholding and denois-
ing uses soft thresholding. In step 2, we used a second MATLAB function and
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the values obtained in step 1 to compress the ECG. The output was a compressed
version of the ECG. The second MATLAB function used GBL and the thresholding
value obtained in step 1. In step 3, the compressed ECG was entered into the first
MATLAB function. This time, we indicated that we were denoising the compressed
ECG. The output was then entered into the second MATLAB function which
denoised the compressed ECG, once again using GBL. The denoised signal was then
assessed using four values: SNR, PRD, compression score, and L2 norm recovery.

10.4.2.3 Comparison Method 3

The SNR and PRD, as defined in comparison method 2, were once again used
to determine which wavelet, order, and level achieved the optimal results for
denoising the ECGs. In order to compare how well the ECGs were compressed,
two new values had to be introduced: compression score and L2 norm recovery.
The compression score (PERF) represents the percentage of zero coefficients
used during reconstruction. The significance of zero coefficients was discussed in
Sect. 10.4.2. The closer the compression score is to 100 % the better. It is defined as

PERF = 100%× Zn

Cn
. (10.34)

• Zn = number of zero coefficients at current level
• Cn = number of coefficients

The L2 norm recovery value (PERFL2) shows how close a compressed signal is to
the original signal. The closer the L2 norm recovery value is to 100 %, the closer the
signal is the original:

PERFL2 = 100%× (vector-norm(coeffs of the current decomposition,2)2

(vector-norm(orginal signal,2))2 .

(10.35)

10.4.2.4 Results

The results obtained in process 2 indicated only minor differences in the PRD and
SNR values for each family. Overall, the results for each family were very good
when comparing the denoising indicators: SNR and PRD. The rankings were:

• Coiflet Family
• Symlet Family
• Daubechies Family
• Biorthogonal Spline Family
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Table 10.4 Comparison results of using different wavelets

Level PRD SNR PRD SNR PERF PERFL2
1 0.314 4.370 0.373 4.165 49.830 99.999
2 0.538 3.964 0.569 3.935 73.851 99.996
3 0.785 3.562 0.687 3.777 84.850 99.992
4 1.065 3.253 0.766 3.713 89.478 99.986
5 1.493 2.934 0.812 3.673 91.309 99.977
6 2.053 2.691 0.846 3.639 91.872 99.966
7 4.241 2.166 0.869 3.619 91.886 99.960
8 4.755 2.052 0.880 3.605 91.870 99.959
9 5.606 1.890 0.889 3.593 91.843 99.959

10 5.769 1.882 0.892 3.586 91.817 99.964

Level PRD SNR PRD SNR PERF PERFL2
1 0.250 4.752 0.350 4.205 49.970 99.999
2 0.421 4.342 0.534 4.004 73.692 99.997
3 0.521 4.147 0.646 3.855 83.919 99.992
4 0.601 4.000 0.709 3.788 88.109 99.987
5 0.655 3.903 0.741 3.741 89.614 99.978
6 0.709 3.837 0.763 3.714 90.150 99.966
7 1.221 3.396 0.778 3.704 90.149 99.959
8 1.542 3.198 0.786 3.698 90.098 99.959
9 3.005 2.603 0.792 3.694 90.037 99.962

10 3.066 2.620 0.794 3.693 89.965 99.969

Bior(P268,2.4,GBL)

Coiflet (P268,5,GBL)
Method 2

Patient 268 Data Results

Coiflet (P268,5,UNI)

Bior(P268,2.4,RIG)

Method 1

A few exceptions obtained bad results, they were Biorthogonal Spline of orders
1.1, 1.3, and 1.5; Daubechies order 1; and Symlet of order 5. These wavelets did
not obtain results as well as all other wavelets. All levels obtain good results in
both denoising and compression, but levels 4 and 5 had the optimal SNR to PRD
relationship. Biorthogonal Spline order 1.5 and level 5 consistently obtained the best
PERF and PERFL2 for the different ECGs. It obtained PERF scores between 91 %
and 93 %. Its PERFL2 were around 99 % to almost 100 %.

10.5 Process 1 vs. Process 2: The Result

The result of our study clearly showed that process 2 using GBL was far superior
to process 1 which used four different term-by-term thresholdings. The table in
this section shows the comparison data results for patient 268. The sample data set
shown uses the Biorthogonal Spline order 2.4 (Bior2.4) with rigrsure thresholding,
which obtained the worst results during process 1. The data set for the same wavelet
using GBL is shown on the right. Coiflet order five (Coif5) with UNI, which
obtained the best results in process 1 and its compliment using GBL, is also shown.
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Fig. 10.9 The middle highlight of level 4 denoising
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Fig. 10.10 Denoising at level 10 by using Biorthogonal 2.4

10.5.1 The Worst Case

The highlighted levels 4 and 10 are shown in the following figures (Fig. 10.9). For
process 1, level 4 denoisings were found to be the best signal therefore, it is not
surprising that Bior2.4 level 4 relatively meets our requirements. However, if you
look at the boxed region, you can see how GBL is better able to smooth away the
noisy regions while maintain, the integrity of the signal. The next figure shows the
Bior2.4 level 10 denoising for process 1 and process 2. Level 10 denoisings obtained
the worst results in process 1. The superiority of process 2, GBL, is clearly evident
(Fig. 10.10).

10.5.2 The Best Case

Coiflet order 5 level 4 with rigrsure thresholding obtained the best results for
process 1. This best case is compared to process 2 which obtained better results
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Fig. 10.11 The highlight of a singular part of the denoising at level 4
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Fig. 10.12 Denoising at level 10 by using Coiflet

with GBL. Note the boxed region which contains one of the major peaks in an
ECG. The amplitude and general shape of a peak can tell a cardiologist a lot about
the condition of your heart, so it is important to maintain it. GBL clearly maintains
this important region. The following figure of level 10 shows that GBL is able to
maintain a clearer image of the ECGs at higher levels of decomposition which the
thresholdings in process 1 were unable to do (Figs. 10.11 and 10.12).

10.6 Summary

For denoising ECG using term-by-term thresholds, Coiflet order five at level 4
decomposition is the best. When using any wavelet family or order, levels 4 and
5 are the best and levels 7 through 10 should not be used. When using GBL, any
wavelet family can be used along with any level to denoise and compress an ECG.
Levels 4 and 5 obtained the best, PRD and SNR relationship. In conclusion, we have
determined GBL is the best thresholding to use when denoising electrocardiograms.
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There are other developed systematic and computationally efficient procedures
for analyzing multivariate nonstationary signals such as the method developed
in [12]. Wavelet techniques are capable of revealing aspects of data that other time-
frequency analysis techniques miss, that is aspects like trends, breakdown points,
discontinuities in higher derivatives, and self-similarities [10]. With the choices of
wavelets studied in this chapter, one can further evaluate the wavelet coefficients
of ECG signals to obtain some comparison results between healthy and unhealthy
patients.
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Chapter 11
Multiscale Signal Processing with Discrete
Hermite Functions

Dale H. Mugler and Anandi Mahadevan

Abstract Discrete Hermite functions (DHf) provide a new way of analyzing digital
signals. As opposed to cumbersome computational methods that can only construct
orthogonal discrete Hermite functions effectively for a small number of indices,
there is a new method of computing DHf that is fast and efficient. Signal processing
techniques that have been applied using the continuous Hermite functions (CHf)
can now be adapted to the digital case, using this orthonormal set of DHf that share
many of the properties of the continuous CHf. For some time, a multiscale version
of the CHf has been available for analysis and has been applied to different kinds
of signals and shown to be related to receptive fields of neurons. In this chapter, we
explore the application of the digital DHf in multiscale analysis, showing analogies
to the multiscale analysis provided by the CHf.

11.1 Introduction

The continuous Hermite functions (CHf) have been used in a number of important
applications, including those for multiscale analysis, for example, in [16]. The CHf
have many interesting properties, including their relation to Gaussians and their
property of being eigenfunctions of the Fourier transform. The properties of the
CHf, [13], and their use in multiscale analysis are important for this chapter, since
this chapter widens the scope of their applications to involve the discrete Hermite
functions (DHf), as defined by Mugler and Clary in [2, 3]. Simply sampling the
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CHf over a finite discrete domain does not result in a set of vectors that retain
orthogonality or any of the other of the many properties of the CHf. Defined as
the eigenvectors of a specific tridiagonal matrix [2,11], the new set of DHf not only
retain the shapes of the CHf but are also mutually orthonormal and are eigenvectors
of a shifted (centered) Fourier matrix.

Multiscale analysis in this chapter refers to the ability, familiar from the theory of
wavelets, to zoom in on features in a signal, moving from a coarse approximation to
include details at several different levels. In particular, it provides a decomposition
of the input signal into an approximation signal and detail signals at several different
levels. That decomposition can be reversed to produce the original signal, with
more details on this described in Sect. 11.3. Multiscale analysis allows one to isolate
events that may happen in a very brief interval of time.

The shapes of the CHf have inspired a number of applications, for example, [14].
It is also important for applications of CHf that every function has a representation
in terms of the CHf, since they form an orthonormal set of functions in the space
of square-integrable functions over the whole real line L2(R). This property is also
true for the DHf.

The usual introduction to the CHf begins with Hermite polynomials, Hn(x).
These are a classic set of orthogonal polynomials, and there are two slightly different
ways of defining them. One form involves a monic set of polynomials, while the
other form results in the leading coefficient being a power of 2. They can be defined
either as Hn(x) = (−1)nex2/2 dn

dxn e−x2/2 for n ≥ 0 for the monic polynomial form or
as

Hn(x) = (−1)nex2 dn

dxn e−x2
(11.1)

for the case with leading coefficient being a power of 2. From the definition in (11.1),
it follows that H0(x) = 1,H1(x) = 2x,H2(x) = 4x2 − 2, . . . . Each of these forms is a
rescaling of the other, so that the choice of form is not overly essential. We choose
the second approach.

As is the case for classical sets of orthogonal polynomials, the Hermite poly-
nomials satisfy a three-term recurrence relation, which is Hn+1(x) = 2xHn(x)−
2nHn−1(x), with H0 = 1 and H−1 = 0. More importantly, the CHf hn(x) are each
defined as a normalized Gaussian multiple of the corresponding Hn(x); in particular,
the CHf are defined for n ≥ 0 by

hn(x) =
1

π1/4
√

2nn!
e−x2/2Hn(x). (11.2)

Multiplying the Hermite polynomials makes the CHf so that they are essentially of
finite support, although the length of that support increases as n increases. These
functions are orthonormal, in the sense that

∫ ∞

−∞
hn(x)hm(x)dx = δ (n−m) (11.3)
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Fig. 11.1 Discrete Hermite functions, undilated

and every L2 function has an expansion in terms of the CHf. Another important
property of the CHf is that they are eigenfunctions of the Fourier transform, in the
sense that F (hn(x)) = (−i)nhn(x), where F is the integral Fourier transform.

The DHf, as defined in [2, 3], have the analogous property that they are
eigenvectors of the centered Fourier matrix. In particular, FC (hk) = (−i)khk, where
FC is the centered Fourier matrix and hk is the kth eigenvector. As eigenvectors of a
related symmetric tridiagonal matrix, as explained in [2], they form an orthonormal
set of eigenvectors, and every vector of length N can be expressed as a linear
combination of the DHf. This means that for a vector x of length N, there is a
representation

x[n] =
N−1

∑
k=0

ckhk[n] (11.4)

0 ≤ n ≤ N − 1, where we use the bracket notation to indicate a discrete function
of index n. In this representation, (11.4), the ck are transform values given by the
simple inner products of vector x with DHf vector hk, i.e., with ck = 〈x,hk〉.

Figure 11.1 shows plots of h0,h1,h2, and h61, DHf vectors for the case when
N = 128. Plots of these vectors are indistinguishable from the plots of the
corresponding CHf for small indices of the subscript and very similar to the plots
of the corresponding CHf for higher indices. For example, h0 has the shape of a
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Fig. 11.2 Discrete Hermite functions, dilated with parameter s = 2

discrete Gaussian function. One can show that sampling the CHf at a special set of
discrete time values produces vectors extremely close to the DHf for small indices.

An advantage of the DHf for computational purposes is that it is easy to compute
these vectors since they are eigenvectors of the very sparse symmetric tridiagonal
matrix defined in [2].

It is important for the multiscale applications to follow that the DHf also have
a dilated form. This is a result of one of the authors with references as above
and in [6, 10]. The dilated form of the DHf is also important for applications
in electrocardiogram analysis [5, 12], and in ballistogram artifact removal from
electroencephalograms that was done by the authors in [7]. Since the initial DHf
vector is basically a discrete Gaussian, one can consider the width of this function
as a parameter s that we deem to equal 1 for the undilated case. The dilation comes
in interpreting the width of the Gaussian similar to the standard deviation. Producing
the dilated set of DHf with parameter s involves adjusting the symmetric tridiagonal
matrix defined in [2]. Since the dilated DHF are produced as eigenvectors of a very
sparse matrix (as in the undilated case), it is also a fast computational process to
produce the entire set of DHf, even for very large length N. As parameter s is
increased, the plots of the associated DHf are widened, similar to an increase in
the standard deviation of a Gaussian.

Figure 11.2 shows the plots of the same DHf vectors as in Fig. 11.1, except that
the vectors are dilated with dilation parameter s = 2.



11 Multiscale Signal Processing with Discrete Hermite Functions 261

The capability to determine all of the transform values ck in the representation of
digital function x in (11.4) is essential to the subband decomposition that leads to a
discrete multiscale Hermite analysis in Sect. 11.3. It is also important that the DHf
can be computed quickly and efficiently, in order to provide the multiscale analysis.

11.2 Multiscale for Continuous Hermite Functions

11.2.1 The DoG Function

In the paper [16], “The Multiscale Hermite Transform for Local Orientation
Analysis,” the authors use the continuous Hermite transform as related to Gaussian
derivatives and relate their work to the human visual system. In particular, they
involve a scale-space representation as a “multiscale representation that comprises
a continuous scale parameter and preserves the same spatial sampling at all scales.”
See also [4] and [17]. Another idea presented in [18] is to construct a family of
signals constructed by convolution with Gaussian kernels with different dilations of
the standard deviation.

As noted in [18], the Gaussian convolution of a signal f(x) depends both on x,
the signal’s independent variable, and on σ , the Gaussian’s standard deviation. In
particular that convolution is defined by

F(x,σ) = f (x)∗G(x;σ) =
∫ ∞

−∞
f (u)G(x− u;σ)du (11.5)

where

G(x;σ) =
1√

4πσ
e−x2/4σ (11.6)

is the Gaussian function with standard deviation σ . Equation (11.5) is the operation
of a smoothing filter, with the dilated Gaussian as the low-pass filter.

The starting point for the multiscale decomposition in [16] is the Difference of
two Gaussians (DoG) defined by

DoG = G(x;σ1)−G(x : σ2) (11.7)

where the first term is a narrower Gaussian, corresponding to a smaller standard
deviation σ1, and the second term is related to a wider Gaussian, corresponding to
σ2. This is generalized in [15] with the inclusion of two multipliers, g1 and g2,

DoG = g1 ·G(x;σ1)− g2 ·G(x : σ2). (11.8)

The DoG in (11.8) is related to the receptive fields of retinal ganglion cells [15],
where the ratios of the dilation parameters and the multipliers are used as σ2/σ1 = 3



262 D.H. Mugler and A. Mahadevan

0 50 100 150 200 250 300
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Fig. 11.3 The darker curve is the DOG difference of Gaussians

and g2/g1 = 4/5. A plot of a typical DoG curve using these values of the parameters
and the two Gaussians from (11.8) that define it is given in Fig. 11.3.

As noted in Sect. 11.1, the initial Hermite function is a Gaussian, and it follows
that the initial DHf h0 is a discretized Gaussian function. This has been shown to
be very close to a sampled version of a Gaussian function, although obtained in
a very different way. This means that a discrete DoG can be created using DHf
obtained with different dilation parameters. That is, a discrete DoG function can
be given by g1 · h0,s1 − g2 · h0,s2 , with constants g1 and g2 as in (11.8) and s as the
dilation parameter in the discrete case. This means that the development in [16] that
depended on the continuous version of the DoG might be able to be extended to the
digital case with this discrete DoG. Though the current article does not involve use
of discrete DoG, the authors plan to incorporate it into their research work in the
near future.

11.2.2 A Discrete Version of Gaussian Derivatives

Gaussian derivatives are related to the Hermite polynomials. From [8], with scaling
parameter σ ,

Dn(x) =
(−1)n
√

2nn!

1
σ
√
π

Hn(
x
σ
)e−x2/σ2
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=
1√
2nn!

· dn

d( x
σ )

n

[
1

σ
√
π

e−x2/σ2
]
. (11.9)

The Hermite functions hn(x) are defined using the Hermite polynomials, (11.2).
This definition can also be related to the Gaussian derivatives in (11.9) to obtain
a relation between the Gaussian derivatives and the Hermite functions. Solving for
Hn(x) in (11.2) and substituting in (11.9) yield that the Dn(x) are a weighted multiple
of e−x2/2 ·hn(x). For example, with σ = 1, the relation from (11.9) is

Dn(x) =
1√
π2nn!

e−x2/2hn(x). (11.10)

This leads to a discrete formulation of the Gaussian derivatives. For the DHf
from Sect. 11.1, the vector h0 is a digital version of the Gaussian function e−x2/2.
In conjunction with (11.10), we use the discretization of the Gaussian derivatives
Dn(x) given by dg0 = h0, and

dgn = h0.∗ hn (11.11)

for 1 ≤ n ≤ N − 1, where the vector multiplication (with the .∗ notation) in (11.11)
is term-by-term multiplication. See Fig. 11.4 for a graphical demonstration of the
qualities of this discretized set of Gaussian derivatives.

The discrete Hermite transform (DHmT) representation of an arbitrary digital
signal x leads to a representation of a windowed version of x using the discrete
Gaussian derivatives. Start with the DHmT representation

x[m] =
N−1

∑
k=0

ck,shk,s[m], (11.12)

where ck,s = 〈x,hk,s〉 is given by the usual inner product. With h0,s2 as the discrete
Gaussian with appropriate dilation parameter s2, form the term-by-term product of
h0,s2 with x in (11.12) to obtain

x.∗ h0,s2 =
N−1

∑
k=0

ck,sh0,s2 .∗ hk,s, (11.13)

x.∗ h0,s2 =
N−1

∑
k=0

ck,sdgk,

giving a representation of a Gaussian-windowed version of input vector x in terms
of the discrete Gaussian derivatives (11.11). The continuous Gaussian derivatives
are used as the filter functions in the general polynomial multiscale analysis
in [8]. It may be possible to do something similar for the discrete case with the
representation (13).



264 D.H. Mugler and A. Mahadevan

0 10 20 30 40 50
−0.05

0
0.05

D4

0 10 20 30 40 50
−0.05

0
0.05

FcD4

0 10 20 30 40 50
−0.05

0
0.05

D3

0 10 20 30 40 50
−0.05

0
0.05

FcD3

0 10 20 30 40 50
−0.05

0
0.05

D2

0 10 20 30 40 50

−0.05
0

0.05

FcD2

0 10 20 30 40 50
−0.05

0
0.05

D1

0 10 20 30 40 50
−0.05

0
0.05

FcD1

0 10 20 30 40 50
0

0.05
0.1

D0

0 10 20 30 40 50
0

0.05

0.1

FcD0

Fig. 11.4 Discrete Gaussian derivatives (left) and their Fourier transforms (right)

11.2.3 Localized Analysis

In [8], with local window function as the Gaussian

V (t) =
1√√
πσ

e−t2/2σ2
,

the author constructs a weighting function

W (t) =∑
k

V (t − kT )

where T is the period for the periodic repetition of the Gaussian. Provided that W
is nonzero for all appropriate values of t, there is a representation of signal x(t)
given by

x(t) =
1

W (t)∑k
x(t) ·V (t − kT ). (11.14)
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In particular, note that for any value of t in the domain of interest, say at t = tM, the
value of∑k x(t) ·V (t−kT ) at tM reduces to the one term in this sum that corresponds
to the value of kM for which the support of V (t − kT ) contains tM. That term would
be x(tM) ·V (tM − kMT ). The corresponding term in the denominator for W (tM) is
that term without the x(tM) multiple, so the fraction on the right side of (11.14)
reduces to x(tM).

To apply this kind of analysis directly to a discrete, digital signal x[n], let h0,s be
the discrete Gaussian obtained as the initial function of the set of discrete, dilated
Hermite functions with dilation parameter s. Define a digital weighting function by

W [n] =∑
k

h0,s[n− kT ],

a periodic function of T that covers the domain of values of interest. Note that the
dilation parameter s in h0,s must be large enough with respect to shift parameter T
so that there is overlap in the shifted discrete Gaussians.

Within each localized region, expand the discrete signal x ·∗ h0,σ1in a DHmT
expansion with scale parameter σ2 so that

x ·∗ h0,s1 =
N−1

∑
m=0

cmhm,s2 (11.15)

with cm,1 = 〈x ·h0,s1 ,hm,s2〉, the inner product of the windowed portion of the input
signal x with a s2−dilated DHf. This makes it so the coefficient in (11.15) is equal to

cm =
N−1

∑
k=0

x[k] ·h0,s1[k] ·hm,s2 [k]. (11.16)

For multiscale analysis, the windowed input signal, x · h0,s1 , and the expansion
in (11.15) for a localized region will be developed further so as to analyze the
windowed signal at different scales.

11.3 Multiscale Analysis with Discrete Hermite Functions

11.3.1 Background

As noted in Sect. 11.2, the authors in [16] use CHf as related to Gaussian derivatives
for the multiscale Hermite transform for continuous signals. A discrete form of
Gaussian derivatives was developed in Sect. 11.2.2 using the DHf that extend the
concept of Gaussian derivatives to provide an expansion (11.14) of a Gaussian-
windowed discrete signal in terms of those discrete Gaussian derivatives. These
results involve the relations between Gaussian derivatives and Hermite functions as
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given in both the continuous case (11.10) and discrete case (11.11). Section 11.1
summarized properties of the CHf as well as the DHf as developed in [2, 12].

Earlier, Martens [8, 9] established multiscale analysis in the broad context of
polynomial transforms, with downsampling and upsampling as important operations
in creating the multiscale representations. In [16], the authors provide a pyramidal
implementation of analysis and synthesis for the multiscale Hermite transform. The
idea of a pyramidal implementation was discussed in [1].

The idea of a multiscale analysis is closely connected to subbands and filter
banks, and we build upon that connection in this section. In a standard imple-
mentation of wavelets for multiscale analysis, the level one analysis involves a
low-pass filter and a high-pass filter that divide the frequency domain into two nearly
equal parts. The “detail” subsignal D1 corresponds to the output of the high-pass
filter and is the part of the signal that contains rapidly changing quantities. The
“approximation” subsignal A1 corresponds to the output of the low-pass filter and is
the coarse approximation to the signal. Together, if x is the input signal, wavelet
analysis results in the reconstruction of x as x = A1 + D1. Further levels of the
multiscale analysis subdivide the coarse subsignal A1 in exactly the same way as the
input signal, so that A1 = A2+D2, where A2 is an even coarser approximation to the
input signal and D2 is higher level details. Interpreted in the frequency domain, the
frequency intervals for A2 and D2 fit into the frequency interval of A1. Combining
the two equations above gives that x = A2 +D2 +D1.

Our approach for a multiscale analysis using DHf is similar to the standard
implementation of wavelets. It involves creating “approximation” and “detail”
subsignals at several levels, giving a multiscale representation for a discrete,
windowed input signal. At the end of this section, we will show that the sum of
specific terms leads to reconstruction of the windowed input signal. As discussed in
Sect. 11.2.3 on localized analysis, we assume that the input signal is windowed with
a discrete Gaussian window function in order to isolate a portion of the signal, but,
for ease of understanding, we will refer to the discrete input signal simply as x[n]
under that assumption.

11.3.2 Application of Multiscale Analysis for Discrete Signals

The method we use begins with the representation of the discrete input signal in
terms of the DHf as in (11.4). Our method essentially uses subband decompositions
for the multiscale analysis, but in the Hermite transform domain as opposed to the
usual Fourier transform domain. The DHmT transform values are the coefficients
in that representation, listed there as ck. Those transform values are the values
multiplying the corresponding DHf hk,σ . We assume that the number N of terms
in the expansion is at least an even number, for the first downsampling by 2, and in
general is a multiple of a power of 2, with that power being equal to the number of
levels in the multiscale analysis.

Downsampling in this method will refer to separating the transform values
into two distinct halves, similar to subband downsampling for general wavelet
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transformations. These begin as the transform values representing the input signal
as in (11.4). The approximation at level 1 will be the function related to the first half
of the transform values, and the details at level 1 will be the function related to the
second half of those values. In particular, if c1 represents the first half of the DHmT
values, i.e.,

c1 = {c0,s, . . . ,c(N−1)/2,s},
with s as the dilation parameter, then the approximation at level 1 A1 is the inverse
DHmT of the vector formed with c1 as the values in the first half and with zeros in
the second half. Similarly, the details at level 1, D1, are the inverse DHmT of the
vector c2 with first half as zeros and with second half as the DHmT values

c2 = {cN/2,s, . . . ,cN−1,s}.

The transform coefficients are effectively downsampled by 2 in the sense that they
are cut into first and second halves. Since x = ∑N−1

k=0 ck,shk,s, the representation x =
A1 +D1 results from the linearity of the DHmT transform.

The next level in the multiscale analysis involves the splitting of the “low-
pass” DHmT values c1 into halves. Since the DHf are basically their own Fourier
transforms, the lower-indexed hk functions that have their primary support near
the origin also have a spectrum that is nearer the origin. Using the lower-indexed
values for the approximation then connects this multiscale analysis using the DHf
to wavelet multiscale analysis.

Let c11 be the first half of c1 and c12 be the second half of c1. The approximation
at level 2 will be the inverse DHmT of the length N vector whose first fourth is
c11 but is otherwise zero. The details at level two are the inverse DHmT of the
length N vector whose second fourth is c12 but is otherwise zero. For the third-level
approximation and detail vectors, continue this process, halving the vector c11 once
again. This process can be continued to as many levels as the length of the input
vector will allow.

11.3.3 Results

This section provides an example of multiscale analysis up to three levels for
the multiscale analysis method as outlined in Sect. 11.3.2 and as applied to a
physiological signal. The example signal sample contains noise and is not perfectly
periodic, but is an actual physiological signal with basic periodicity. A plot of the
input signal is given in Fig. 11.5.

The DHmT of a signal includes a dilation parameter σ . It is important that the
dilation parameter be chosen large enough, at the beginning of the computation,
so that the DHf hk cover the entire interval of the windowed function. The DHf
beginning with the discrete Gaussian h0 have effective support that expands as k
increases, and the multiscale analysis will use relatively small index values as the
number of levels in the multiscale analysis increases.
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Fig. 11.7 Second-level DHmT approximation and detail

Using the method outlined in Sect. 11.3.2, the first-level approximation and
details are plotted in a common graph in Fig. 11.6. At this level, the details are small
in magnitude and contain mostly high-frequency noise, and the underlying pattern
of periodicity is seen in the first-level approximation.

Completing the multiscale analysis with the DHmT to the second level, the
approximation and details at level two are shown in Fig. 11.7. The larger scale is
clear from the plot as the approximation becomes smoother.

At the third level of the multiscale analysis of the signal pictured in Fig. 11.5, a
very clear underlying periodic pattern is seen in the approximation at level three in
Fig. 11.8. The periodic pattern is even more clear at level three than at the previous
levels of the preceding figures. The details at level three have magnitudes that are
the largest of these particular vectors. Note the smoothness of the approximation of
the input signal at this level.

The subband method, here employed for the DHmT instead of the Fourier
transform, provides the usual reconstruction of the input signal from the multiscale
signals illustrated in Figs. 11.5–11.8. If the scaling parameter s is kept constant over
the different levels, then the reason that

x = A3 +D3 +D2 +D1,
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Fig. 11.8 Third-level DHmT approximation and detail

follows from the linearity of the DHmT transform.
The computational cost of this multiscale analysis is only in the determination of

the forward transform and several inverse DHmT.

11.3.4 Comparison to Wavelet Analysis

The DHmT analysis of an input signal as illustrated in Figs. 11.6–11.8 is compared
in this section to wavelet analysis of the same signal for the three different levels.
The wavelet decompositions presented here use the biorthogonal 3.3 wavelet.

The first figure shows the wavelet decomposition, both the approximation and
details, at level one (Fig. 11.9). This can be compared to Fig. 11.6.

The next figure, Fig. 11.10, shows the wavelet decomposition at level two. This
plot should be compared to Fig. 11.7.

Figure 11.11 shows the wavelet decomposition at level three. This plot should be
compared to Fig. 11.8.
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In general, the DHmT decomposition approximations are somewhat smoother for
this particular input signal than those in the corresponding wavelet decompositions.
There are subtle but distinct differences between the two decompositions for this
input signal. That the decompositions are somewhat similar indicates that the DHmT
may provide an alternative multiscale analysis to that provided by wavelets.

11.4 Conclusions

The previous section described a method for using the DHmT to produce a
multiscale analysis of a digital signal. Figures 11.5–11.8 illustrate a multiscale
analysis for an example of a nearly periodic physiological signal. This multiscale
analysis is made possible by the new method of producing a complete set of DHf [3]
in a way that preserves the property of the CHf that they are essentially their
own Fourier transform. The new method also provides a computationally efficient
method to produce the entire set of DHf. Previous methods to produce versions of
the CHf for the discrete case are cumbersome and are generally able to only produce
a small number of the DHf for actual use. The method of the previous section is
based on a subband decomposition of the DHmT values.
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The basic properties of the CHf and analogous properties of the new set of DHf
were described at the beginning of this chapter. It is important to this multiscale
analysis that the DHf form an orthonormal set of vectors. The DoG function was
discussed in Sect. 11.2, beginning with the relations used in the article [16] that
used this development for multiscale analysis involving the CHf. That article also
involved the Gaussian derivatives for the continuous case, and these were shown to
extend to the discrete case in Sect. 11.2.2 with a set of discrete Gaussian derivatives
based on the DHf. A multiscale analysis involving these discrete Gaussian derivative
functions is an idea still awaiting further development, as a different approach was
used for the multiscale analysis in Sect. 11.3. The idea that multiscale analysis is
related to windowing was developed further in Sect. 11.2.3 with that idea being used
throughout this chapter.

This chapter touches on several different ways to develop multiscale analysis
using the DHf and develops and demonstrates the working of one such method
to conclusion. The importance of multiscale analysis suggests that the other ways
should also be developed further as well. That work is still to come.
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Chapter 12
Earth Mover’s Distance-Based Local
Discriminant Basis

Bradley Marchand and Naoki Saito

Abstract Local discriminant basis (LDB) is a tool to extract useful features for
signal and image classification problems. Original LDB methods rely on the time–
frequency energy distribution of classes or empirical probability densities, with
some information theoretic measure (such as Kullback–Leibler divergence) for
feature selection. Depending on the problem, energy distributions may not provide
the best information for classification. Further, training set sizes and accuracy in the
computed empirical probability density functions (epdfs) may hinder the learning
process. To improve these deficiencies and provide a more data adaptive algorithm,
we propose the use of signatures and earth mover’s distance (EMD). Signatures and
EMD provide a data adaptive statistic that is more descriptive than the distribution
of energies and more robust than an epdf-based approach. In this chapter, we
first review LDB and EMD and then outline how they can be incorporated into
a fast EMD based LDB algorithm.We then demonstrate the capabilities of our new
algorithm in comparison to both energy distribution and epdf-based LDB algorithms
using four different classification problems using synthetic datasets.

12.1 Introduction

Local discriminant basis (LDB) is a best basis algorithm developed by Saito and
Coifman for the purpose of classification [9, 10]. It works by decomposing training
signals into a time–frequency dictionary, such as block discrete cosine transform,
local cosine transform, or wavelet packet transform (WPT). The dictionaries
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Fig. 12.1 Depiction of the wavelet packet transform. The process is the same as the wavelet
decomposition with the added decomposition of the high-pass coefficients. This yields a redundant
decomposition

decompose signals into a redundant set of orthogonal subspaces, as shown in
Fig. 12.1. Each subspace contains basis vectors localized in time and frequency. Its
goal, given a dictionary, is to find the signal representation within the dictionary
that is most useful for classification and discrimination. The idea is that these
dictionaries provide us with localized elementary building blocks for isolating
critical differences among signal classes. These differences are learned from LDB’s
time–frequency map. In the original LDB algorithm, this map was a simple
accumulation of class signal energy at each coordinate in each subspace. Formally,

let Nc be the number of signals belonging to class c,
{

x(c)i

}Nc

i=1
be the set of

signals belonging to class c, and w j,k,l be basis vectors from our selected dictionary
parameterized by indices j, k, and l indicating the scale (or level of decomposition),
frequency band, and position of basis vector, respectively. Then, our energy map for
class c is formed as,

Γ (c)
j,k,l :=

Nc

∑
i=1

(
w j,k,l ·x(c)i

)2

Nc

∑
i=1

∥∥∥x(c)i

∥∥∥2
.

Later Saito et al. [11] proposed a refinement of the algorithm by changing the
time–frequency map from an accumulation of class signal energy to statistical
distributions of the expansion coefficients. Although any distribution metric can
be used to evaluate the discriminating power of a coordinate, average shifted
histograms (ASH) [12] were used to compute an empirical probability density
function (epdf) in [11] for their computational efficiency. This improvement allows
LDB to detect finer differences because the statistical behavior of the class signals
in each coordinate in the dictionary can be analyzed.



12 Earth Mover’s Distance-Based Local Discriminant Basis 277

In this chapter, to further refine LDB’s time–frequency map, we propose the use
of signatures instead of epdfs and the use of earth mover’s distance (EMD) [7]
to compute the discriminating power of a coordinate. Signatures provide us with
a fully data-driven representation, which can be efficiently used with EMD. This
representation is more efficient than a histogram and is able to represent complex
data structure with fewer samples. EMD is a metric between signatures that naturally
extends the notion of distance between points to that of sets or distributions of
elements. We begin by reviewing the concept of signatures and EMD in the next
section. Then we will outline an EMD-based LDB algorithm in Sect. 12.3. Next, in
Sect. 12.4, we will compare performance of all three LDB algorithms on synthetic
datasets using various base classifiers. Finally, we conclude in Sect. 12.5 with a
summary of performance.

12.2 Earth Mover’s Distance

A signature represents a set of clusters of feature vectors, say, in R
d . Each such

cluster is represented by its mean, m j, of vectors belonging to that cluster and
the weight (or importance) of that cluster, wm j . The number of clusters in a
signature varies with the complexity of the object being represented. Signatures
are generalized histograms. A histogram is a fixed partitioning of the underlying
space with cluster centers defined as the central value in each bin. The weight
of each cluster is the percentage of points in the bin. The flexibility provided by
signatures is the ability to place the “bins” where the data is located. For example,
representation of data that exists on a curved manifold might require a relatively fine
partitioning of the space to achieve a histogram that captures the distribution of the
data. However, a signature representation is likely to be much more efficient since
we are not required to partition the entire space, and feature clusters can be placed
at ideal locations along the manifold. A comparison of histograms and signatures
is detailed in [8]. Unfortunately, most dissimilarity measures cannot be applied to
signatures. This is because they rely on direct correspondence between bins. That
is, they can be used for histograms that contain the same number of bins. This is,
however, not guaranteed with signatures. EMD, on the other hand, is designed for
use with signatures.

EMD was first introduced by Rubner, et al. [8] for retrieval of color and textured
images. It has several properties that have many advantages over other distance
measures:

• Applies to signatures
• Naturally reflects nearness
• Allows for partial matching
• Is a metric (if total weights of two signatures are equal and cost is a metric)

EMD has the intuitive interpretation of the minimum amount of work required to
move piles of soil (or earth) into holes. The location and size of the piles of soil are
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represented by cluster centers and weights of a signature, respectively. Similarly, the
other signature represents the location and size of the holes to be filled. Formally, if
we let

P = {(p1,wp1), . . . ,(pm,wpm)},
Q = {(q1,wq1), . . . ,(qn,wqn)}

be our two signatures and C = [ci j] the cost matrix where ci j represents the cost of
moving one unit of mass from the ith cluster in P to the jth cluster in Q, then the
EMD algorithm seeks the flow F = [ fi j ] that minimizes the work

W (P,Q,F):=
m

∑
i=1

n

∑
j=1

ci j fi j ,

subject to the constraints:

fi j ≥ 0 1 ≤ i ≤ m,1 ≤ j ≤ n;

n

∑
j=1

fi j ≤ wpi 1 ≤ i ≤ m;

m

∑
i=1

fi j ≤ wq j 1 ≤ j ≤ n;

m

∑
i=1

n

∑
j=1

fi j = min

(
m

∑
i=1

wpi ,
n

∑
j=1

wq j

)
.

Once the optimal flow F is found, EMD is the resulting work normalized by the
total flow:

EMD(P,Q):=
W (P,Q,F)

∑m
i=1∑

n
j=1 fi j

.

This normalization is necessary to avoid favoring smaller signatures if the two
signatures have different total weights.

The optimal flow is found by solving the well-known transportation problem, or
the Monge-Kantorovich mass transportation problem [5]. Typically, this requires
the use of a linear programming such as the simplex method to solve for the
optimal flow. A detailed explanation of the simplex method can be found in [5].
However, there are a few situations where fast algorithms that do not require linear
programming can be used.

In particular, for the one dimensional case where the cost is the Euclidean
distance and the signatures have equal total weights, wΣ , Rubner and Tomasi [7,
Sect. 2.3.1] showed that the EMD can be directly calculated by
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EMD(P,Q) =
∑m+n−1

k=1 |p̂k − q̂k|(rk+1 − rk)

wΣ
,

where r1,r2, . . . ,rm+n is the sorted list of

p1, p2, . . . , pm,q1,q2, . . . ,qn,

and

p̂k:= ∑
pi≤rk

wpi , q̂k:= ∑
qi≤rk

wqi .

The algorithm relies on the fact that the minimum work between two one
dimensionals distributions is known to be the L1 distance between the cumulative
distribution functions (cdfs), as discussed by [7, Sect. 2.3.1]. We note that
the L1 distance between two cdfs is a special instance of the so-called ρ̄ or
Ornstein distance [1]; see also [6] on the deep relationship between EMD and
the Marrows distance often used in statistics. The following theorem is presented
for convenience:

Theorem 1. Define the empirical cdfs of 1D signatures P and Q as

P(t):=

⎧⎪⎪⎨
⎪⎪⎩

0 t ∈ (−∞, p(1)),

∑k
i=1 wp(i) t ∈ [p(k), p(k+1)), 1 ≤ k ≤ m− 1,

∑m
i=1 wp(i) t ∈ [p(m),∞),

Q(t):=

⎧⎪⎪⎨
⎪⎪⎩

0 t ∈ (−∞,q(1)),
∑k

j=1 wq( j)
t ∈ [q(k),q(k+1)), 1 ≤ k ≤ n− 1,

∑n
j=1 wq( j)

t ∈ [q(n),∞),

where {p(i)} and {q( j)} are sorted versions (in nondecreasing order) of {pi} and
{q j}, respectively. If P and Q have equal total weights ∑m

i=1 wpi = ∑n
j=1 wq j =:

wΣ , then

EMD(P,Q) =

∫ ∞

−∞
|P(t)−Q(t)|dt

wΣ
.

Throughout this chapter we will be using this fast 1D version of EMD, which
restricts our cost function to L1 distance. We could use a simplex solver, which
would allow other cost functions, but the use of the simplex solver greatly impacts
speed. The worst-case computational cost for a simplex solver is exponential, but
the use of a transportation-simplex solver and a good initial solution (close to
an optimal solution) greatly improves performance. Rubner and Tomasi report [7,
Sect. 2.3] an empirical performance of O(n3 logn) in the case when both P and
Q have n = m clusters. This is opposed to the fast 1D EMD solver which has a
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computational cost of O(n logn). Clustering helps lighten the computational burden
of the transportation-simplex solver, but introduces complexity to the algorithm
(in the form of clustering parameters) and presents variability of results. With 1D
EMD we can completely avoid clustering the data.

12.3 EMD-Based Local Discriminant Basis

Generally, the LDB algorithm is broken into the following steps:

Algorithm 2. Given a training dataset T that consists of C classes of signals

{{x(c)i }Nc
i=1}C

c=1:

• Choose a dictionary and specify the maximum level of decomposition.
• Expand all the signals into tree-structured subspaces.
• For each class, compute a time–frequency map.
• Use the time–frequency maps to compute the discriminating power of each

coordinate.
• Prune the tree by examining the discriminating power of each subspace.
• Order the basis vectors by their discriminating power.

This process is made efficient by the speed with which the signals can be expanded
into the selected dictionary, and by exploiting the tree structure in the pruning
process and using additive discriminant measures for comparison.

Definition 1. Let p and q be any two vectors in R
n. A discriminant measure,

D(p,q), is a map D : (Rn ×R
n)→R such that

• D(p,p) = 0.
• (Nonnegative) D(p,q)≥ 0 for all p, q in R

n.

A discriminant measure is said to be additive if

D(p,q) =
n

∑
i=1

D(pi,qi).

For our EMD-based LDB, we construct our time–frequency map by collecting
signatures for each coordinate of each class in a subspace. Specifically, for
coordinate l of class c in subspace Ω j,k, our signatures are

s(c)
( j,k,l) =

{(
w j,k,l ·x(c)i ,1/Nc

)}Nc

i=1
. (12.1)

The collection of these signatures form our time–frequency map. In this formulation
we have chosen our samples for each class to be equally weighted, which is
reasonable since we are not assuming or attempting to compute the relative
importance of a particular signal to its class or its overall ability to discriminate. To
efficiently evaluate the discriminant power of a coordinate or subspace, we define
our additive measure using EMD as follows.
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Definition 2. Let s(c)
( j,k,l) be the signature for training signals belonging to class c at

level j, block k, and position l. Then the EMD distance between classes is defined
as the sum of the pairwise EMD distances:

D( j,k, l) :=
C−1

∑
m=1

C

∑
n=m+1

EMD
(

s(m)
( j,k,l),s

(n)
( j,k,l)

)
. (12.2)

We refer to D( j,k, l) as the discriminant power of the coordinate. The discriminant
power of a subspace is then

Γ ( j,k) :=
2n0− j−1

∑
l=0

D( j,k, l), 0 ≤ j ≤ J ≤ n0; 0 ≤ k ≤ 2 j − 1, (12.3)

where the length of each signal in the dataset is assumed to be n = 2n0 , and J is the
maximum depth of decomposition set by the user.

We also use the notation D(Ω j,k) := Γ ( j,k) to emphasize that Γ ( j,k) is a
discriminant measure for the subspace Ω j,k. Often the sum in (12.3) is truncated;
more precisely, we only sum the k0 largest values from each subspace rather than
summing all the 2n0− j values as (12.3). (Note that for a certain j for k0 set by the
user, we could have k0 > 2n0− j. In that case, we sum all the 2n0− j values.) This helps
with situations where there are many weak coordinates summing to a large value.

Note that D(Ω j,k) is an additive discriminant for subspace Ω j,k since it has
been defined as the sum of the discriminant powers of the subspace coordinates.
The benefit of an additive discriminant measure comes in the pruning process. Using
the tree-structure notation shown in Fig. 12.1, pruning starts at the base of the tree
and is conducted by the following rule:

Algorithm 3. Let 0 ≤ j ≤ J ≤ n0 and 0 ≤ k ≤ 2 j − 1. If D(Ω j,k) ≥ D(Ω j+1,2k ∪
Ω j+1,2k+1), then select Ω j,k over Ω j+1,2k ∪Ω j+1,2k+1; otherwise, select Ω j+1,2k ∪
Ω j+1,2k+1.

If the measure D(Ω j+1,2k ∪Ω j+1,2k+1) is additive, it can be efficiently computed as

D(Ω j+1,2k)+D(Ω j+1,2k+1),

which only requires the addition of the discriminant measure for the individual
subspaces to obtain the measure of their union.

Substituting our signature time–frequency map, (12.1), and EMD discriminant
measure, (12.3), into Algorithm 2, we obtain our EMD-based LDB algorithm. This
algorithm benefits from the adaptive structure of signatures and the robustness of
EMD while remaining computationally fast and capable of detecting fine differences
with few parameters. Further, our signatures can be quickly updated to incorporate
new information. This becomes important when we consider situations where
training data is limited and/or the data is noisy. Here incremental learning is
important so that new information can be incorporated without complete retraining
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and better training samples can be used as they are available. We can avoid the need
to retrain on the entire set by initializing our algorithm with a small training set and
storing the signature map constructed above with the modification that we store the
sum of the sample values and the number of samples in each cluster as our features
and weights. This allows us to update the mean features and weights without storing
any extra information. The signature’s mean value and weight are calculated during
the computation of the EMD. Any new data that we wish to incorporate can easily
be added by decomposing it into the selected dictionary and incorporating it into
our stored signature map. To accommodate limited memory resources and reduce
time to extend signature storage, a specified limit can be set for the signature length
during initialization, so that memory can be preallocated. If a signature has reached
the storage capacity specified or is within a threshold distance to a cluster in the
signature, then we can use our grouping technique which is similar to clustering.

Algorithm 4. Let m∗ be our capacity and m < m∗. Given signature

S = {(s1,ws1), . . . ,(sm,wsm)},

where si is the sum of each cluster value and wsi is the number of samples in each
cluster for i ∈ {1, . . . ,m}. Let 0 ≤ τ be our grouping threshold and snew a new
sample:

• If there exists sk, k ∈ {1, . . . ,m} such that |snew − sk|< τ , then set sk = sk + snew

and wsk = wsk + 1.
• Else add new sample to the end of the signature:

S = {(si,ws1), . . . ,(sm,wsm),(snew,1)}.

Although we are only working in 1D, Algorithm 4 works in any dimension as long
as our signatures are not at capacity, m = m∗. When a signature reaches capacity we
reduce the signature size by combining the closest clusters of the signature. Having
our signature evolve in this manner means that our capacity acts as a resolution
parameter and our grouping threshold as a sensitivity parameter. In a situation
with a complex structure over a relatively large span, our capacity limit may force
a less than ideal signature resolution reducing the signature’s ability to describe
the structure. Therefore, considerations for the training data must be taken when
choosing signature capacity.

12.4 Local Discriminant Basis Algorithm Performance

The purpose of constructing a feature space is to pull out the important properties
of the datasets for the purposes of discrimination or compression. A good feature
space should provide dimension reduction and/or improved classifier performance.
LDB algorithms naturally provide dimension reduction by expanding data into an
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orthonormal basis followed by selecting the most discriminant basis coordinates.
In practice, relatively few LDB vectors are usually needed for discrimination. To
evaluate our algorithm on increasing classifier performance, we use two different
base classifiers, linear discriminant analysis (LDA) and classification tree (CT);
see, e.g., [4, Sects. 4.3 and 9.2] for the details of these classifiers. These two
classifiers construct distinct decision boundaries, which gives us an indication of
the complexity of the separation. LDA seeks an optimally separating hyperplane
as its decision boundary. A classification tree seeks an optimal partitioning of each
coordinate.

For comparison, we have three LDB algorithms available: time–frequency LDB
algorithm (LDBK), epdf-based LDB algorithm (LDBKASH), and EMD-based
LDB algorithm (LDBKEMD). Each algorithm is analyzing a different quantity
to determine class separability. For LDBK we are concerned with normalized
coefficient energy. For LDBKASH we measure separation of coefficients’ epdfs.
And for LDBKEMD we are computing the separation of the empirical cumulative
distribution functions (ecdfs). All three are analyzing the same information, just in
different ways. As we will see in the examples below, how you analyze the infor-
mation greatly impacts the quality of the selected feature space. Our LDBKASH
and LDBKEMD algorithms are using distribution information and not a single
statistic for each coordinate. So, they are able to incorporate information about the
statistical distribution of the coefficients into the selection process. This allows for
the detection of subtler differences that can be lost in the case of a single statistic.
However, estimating reliable epdfs using a noisy dataset with a limited number of
samples is quite difficult.

To compare the performance of the different LDB algorithms, we conduct
classification experiments on four different synthetic signal datasets. The first two
datasets (triangular waveforms and shape waveforms) were used by Saito [9] to
demonstrate the benefit of using the original LDB algorithms for classification.
Our third dataset is a variation of the shape waveforms dataset constructed for subtle
differences between classes. The last dataset looks at classes that differ in frequency
content only. Each dataset contains three different classes of signals. For each
class, we generated 100 signals to use for training each LDB algorithm. Another
1,000 signals are generated to test the constructed LDB feature spaces. For each
LDB algorithm, we set the parameter k0 = 10, i.e., we evaluate the goodness of
each subspace using the top ten most discriminant coordinates. For each dataset,
classifiers are trained using the top ten most discriminant features from each LDB
algorithm. We repeat this process of generating training and test sets, computing
features spaces, and applying classifiers ten times. The mean and standard deviation
of the misclassification over the ten trials are presented in Table 12.1. As for the
LDBK and LDBKASH algorithms, we use the symmetric relative entropy as the
discriminant measure D(p,q) throughout this article, i.e.,

D(p,q) = J(p,q) :=
n

∑
i=1

pi log
pi

qi
+ qi log

qi

pi
,
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Table 12.1 Table of training and test waveforms misclassification for all examples dis-
cussed

LDA CT

Train Test Train Test

Triangle waveform classification
STD 11.40%±1.10 22.18%±1.18 3.93%±0.78 30.58%±1.82
LDBK 14.13%±2.26 17.08%±1.05 5.87%±0.88 23.48%±1.98
LDBKASH 13.17%±2.18 16.60%±0.85 4.90%±1.31 22.36%±1.34
LDBKEMD 13.90%±1.75 16.38%±0.84 6.27%±1.91 23.82%±2.10
Shape waveform classification
STD 0.27%±0.41 6.94%±0.87 0.63%±0.60 6.58%±0.77
LDBK 4.10%±2.62 4.62%±1.66 0.87%±0.59 3.96%±1.27
LDBKASH 1.67%±0.92 2.54%±0.42 0.67%±0.61 3.50%±1.23
LDBKEMD 2.07%±0.78 3.07%±0.68 0.57%±0.42 2.98%±0.74
Bell waveform classification
STD 5.50%±1.57 28.93%±4.81 2.67%±1.31 20.78%±1.80
LDBK 34.10%±17.91 36.30%±17.00 7.33%±3.68 30.38%±10.19
LDBKASH 26.07%±6.35 28.40%±5.87 5.00%±1.61 24.38%±4.57
LDBKEMD 16.33%±6.25 19.40%±5.81 4.27%±0.81 17.91%±1.66
Chirp waveform classification
STD 0.00%±0.00 0.00%±0.00 1.63%±0.81 18.91%±1.15
LDBK 4.33%±4.26 6.92%±6.07 4.07%±2.57 20.36%±9.93
LDBKASH 18.37%±9.39 22.86%±9.26 5.93%±2.02 32.42%±7.74
LDBKEMD 0.00%±0.00 0.00%±0.00 0.00%±0.00 1.21%±0.51

Each example has results for all LDB algorithm using linear discriminate analysis and
classification tree classifiers. STD above indicates the use of the standard coordinate system
for representing signals, i.e., the raw signals are directly fed to the classifiers

Example 1. Triangular Waveforms
This example was originally examined in [2]. Later, Saito [9] extended the length

of the signals from 21 to 32, so that the signals are of dyadic length and could be
used to evaluate the performance of LDB. The example consists of three classes of
signals which are formed from a convex linear combination of triangular waveforms.
Specifically, the classes of signals are generated by the following formulas:

x(1)(i) = uh1(i)+ (1− u)h2(i)+ ε(i) for class 1, (12.4)

x(2)(i) = uh1(i)+ (1− u)h3(i)+ ε(i) for class 2, (12.5)

x(3)(i) = uh2(i)+ (1− u)h3(i)+ ε(i) for class 3, (12.6)

where i = 1, . . . ,32, h1(i) = max(6−|i−7|,0), h2(i) = h1(i−8), h3(i) = h1(i−4),
u is a uniform random variable on (0,1), and ε(i)’s are the i.i.d. standard normal
variates. Five sample waveforms from each class are shown in Fig. 12.2. This
example is convenient for performance evaluation because Breiman et al. [2]
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Fig. 12.2 Five sample waveforms from each class of triangular waveform dataset. Waveforms are
generated using (12.4)–(12.6)

computed the Bayes error rate to be 14 %, which gives us an ideal classifier
performance to expect. We use the wavelet packet dictionary with a 6-tap coiflet
filter [3, Sect. 8.2] to compute the LDB.

All three algorithms exhibit similar classification performance and had similar
basis selections. The LDA classifier performs the best with both training and
test classification results near the Bayes error rate, see Table 12.1. If we look at the
most discriminating basis vectors selected, Fig. 12.3a, we can identify the distinction
that is being used to discriminate between the classes. The vectors with the greatest
discriminant power are concentrated near the peaks of h1, h2, and h3. The basis
vectors are detecting the presence of the distinct characteristics of each class, i.e.,
the triangular peaks of h1, h2, and h3. The coefficient plot for all three algorithms
are similar, so we only show one in Fig. 12.3b. We see that each class lies on a linear
manifold segment. The difficult signals to classify lie at the intersections of these
linear manifold segments. These correspond to signals where one triangular peak is
much more prominent. For this example, there is no extra benefit to examining the
statistical distribution of the coefficients for each class. The time–frequency energy
maps provide, as computed by LDBK, sufficient information for discrimination.
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Fig. 12.3 (a) In the upper plot the mean training waveform for each of the triangular waveform
dataset is shown. In the plot below it, the three most discriminant LDB vectors are shown for each
LDB algorithm. (b) A scatter plot of the coefficients of the training signals in the top two most
discriminating LDBK coordinates. The symbols, “*,” “o,” “+,” represent class 1, class 2, class 3
signals, respectively
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Fig. 12.4 Five sample waveforms from each class of the shape waveform dataset

Example 2. Shape Waveforms
Our second dataset is comprised of signal classes of different shapes (cylinder,

bell, and funnel). All classes of signals are of finite duration, varied over when they
appear. The cylinder signal class is a flat-amplitude (i.e., boxcar) signal. The bell
signal class has a linearly increasing amplitude. And the funnel signal class has a
linearly decreasing amplitude. More precisely, our signal classes are generated by
the following formulae:

c(i) = (6+η) · χ[a,b](i)+ ε(i) cylinder,

b(i) = (6+η) · χ[a,b](i) · (i− a)/(b− a)+ ε(i) bell,

f (i) = (6+η) · χ[a,b](i) · (b− i)/(b− a)+ ε(i) funnel,

where i = 1, . . . ,128, a is an integer-valued uniform random variable on the interval
[16,32], b− a also obeys an integer-valued uniform distribution on [32,96], η and
ε(i)’s are the i.i.d. standard normal variates, and χ[a,b](i) is the characteristic, or
indicator, function on the interval [a,b]. Five example waveforms from each class
can be seen in Fig. 12.4. We use the wavelet packet coefficients from an 18-tap
coiflet filter [3, Sect. 8.2] to compute the LDB.

The ten most discriminating LDB vectors for each algorithm are shown in
Fig. 12.5. Classification performance, shown in Table 12.1, for each algorithm is
similar with a slight benefit to using LDBKASH or LDBKEMD. However, the top
LDB vectors selected do vary for each algorithm. For all the algorithms, within
the ten most discriminating vectors selected, there are features concentrated at



288 B. Marchand and N. Saito

Fig. 12.5 Top ten LDB vectors selected for the shape waveform using different LDB algorithms.
The subfigures in the right column show the selected subspaces indicated in black

the beginning and end of where we expect the cylinder, bell, or funnel to be.
For LDBKEMD, we note that unlike LDBK and LDBKASH, there are vectors
concentrated in the middle. While the ends emphasize the regions where we are
likely to see the most dramatic change in signal characteristics, our signals do vary
within the interval [a,b]. For our next example we will try to emphasize this by
making our classes more similar.

Example 3. Bell Waveforms
In the previous example we noted that the different LDB algorithms selected
somewhat different basis vectors. However, the differences had little impact on
the classification performance since all the LDB algorithms selected features that
focused on regions where there was a great deal of change between classes. For this
example, we attempt to make the shape distinction more subtle by considering three
bells with varying slopes. Specifically, the signals are generated by the following
formulae:

b1(i) = χ[a,b](i) · (i− a) ·S1+ ε(i) bell 1,

b2(i) = χ[a,b](i) · (i− a) ·S2+ ε(i) bell 2,

b3(i) = χ[a,b](i) · (i− a) ·S3+ ε(i) bell 3,
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Fig. 12.6 Five sample waveforms from each class of the Bell waveform dataset

where i = 1, . . . ,128, a is an integer-valued uniform random variable on the
interval [16,32], b−a also obeys an integer-valued uniform distribution on [32,96],
ε(i)’s are the i.i.d. standard normal variates, and χ[a,b](i) is the characteristic, or
indicator, function on the interval [a,b]. The slopes (S1, S2, and S3) are normal
random variables with standard deviation 0.2 and respective means of 1, 0.5, and
2. Five sample waveforms from each class can be seen in Fig. 12.6. Visually it
is quite difficult to distinguish between the classes of signals. For training, the
LDB is computed from the wavelet packet coefficients with a 18-tap coiflet filter
[3, Sect. 8.2].

Looking at the classification performance, shown in Table 12.1, we see a clear
performance increase between using energy versus the distribution of energy.
The LDBKASH and LDBKEMD algorithms show significantly lower average
misclassification rates and standard deviation than LDBK. Looking at the ten
selected basis vectors shown in Fig. 12.7, we see that the LDBKEMD vectors are
varied in position across the length of the signal with the center location being
the most important. The LDBKASH vectors have a narrower support and are
concentrated toward the center of the signal. The LDBK vectors are concentrated
toward the end of the signal where we would expect the greatest impact from the
varying slope. However, there is also a chance of the signal not being there due to
the randomness in the parameter b, the signal ending position. From the coefficient
plot, Fig. 12.8, we can see that the top 3 features for LDBKASH and LDBKEMD
correspond to the change in slope for each class. Bell 2 had the smallest slope, and
we see in the coefficient plot, indicated with the “o” marker, that it is at the bottom.
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Fig. 12.7 Top ten LDB vectors selected for the bell waveforms using different LDB algorithms.
The subfigures in the right column show the selected subspaces indicated in black

Then we see that bell 1, indicated with the “*” marker, follows after bell 2 with the
intermediate slope. And last we see bell 3, indicated with the “+” marker, which had
the largest slope.

Example 4. Chirp Waveforms
For our final example we will look at the ability of our LDB algorithms to
distinguish between frequency differences in signals. Our dataset will consist of
three different quadratic chirp waveforms with additive Gaussian noise. All chirps
start with 200- Hz oscillations, sweep down to varied minimum frequency ranges,
and go up to the 200- Hz level again in the end as the spectrogram in Fig. 12.9 shows.
More specifically,

c1(i) = cos

(
2π
[

80
3

t(i)3 + 120t(i)

])
+ ε(i) chirp 1,

c2(i) = cos

(
2π
[

50
3

t(i)3 + 150t(i)

])
+ ε(i) chirp 2,

c3(i) = cos

(
2π
[

20
3

t(i)3 + 180t(i)

])
+ ε(i) chirp 3,
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Fig. 12.8 The distribution of the coefficients in the top three LDB coordinates for bell waveform
training and test datasets using (a) LDBKASH and (b) LDBKEMD algorithms. The symbols, “*,”
“o,” “+,” represent bell 1, bell 2, bell 3 signals, respectively
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Fig. 12.9 Spectrogram of chirp waveforms for chirp waveform dataset. Horizontal axis is time
(seconds). Vertical axis is frequency (Hz)

where i = 1, . . . ,1024, t(i) = i/512−1, and ε(i)’s are i.i.d. standard normal variates.
For training, the LDB is computed from the wavelet packet coefficients with a 18-tap
coiflet filter.

From the result shown in Table 12.1, we see that LDBKEMD performs
very well with zero misclassification for an LDA classifier. The LDBKASH
algorithm performs the worst with a test misclassification rate around 23%
with an LDA classifier. For LDBK the test misclassification rate is around
7% with an LDA classifier. If we look at the resulting LDB selected for each
algorithm and top ten LDB vectors, Fig. 12.10, we see that the LDBKASH
algorithm selected the root level with the most discriminating features being
concentrated toward the center of the signal. The LDBK algorithm also
selected features concentrated toward the center, but with wider support. On the
other hand, the features selected by the LDBKEMD algorithm are quite different.
Some of the LDBKEMD vectors are concentrated around the beginning and ending
locations while the others have much wider supports in time.
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Fig. 12.10 Top ten LDB vectors selected for the chirp waveforms using different LDB algorithms.
The subfigures in the right column show the selected subspaces indicated in black

12.5 Conclusion

LDB is an effective and computationally fast method for extracting discriminant
features from signals. Furthermore, as we demonstrated in Sect. 12.4, the resulting
feature space is interpretable; we know what is being used in each feature through
the corresponding LDB basis vector and the expansion coefficients of the signals
relative to that vector and therefore have a better understanding of when it will
not be as effective and why. Also, we presented yet another LDB algorithm using
a new discriminant measure based on signatures and EMD and demonstrated its
capability of detecting features that can be missed using other versions of LDBs.
Our EMD-based LDB can also be adapted to use new training data as it is provided.
In comparison to LDBKASH, our LDBKEMD algorithm has fewer parameters to
tweak and avoids the difficult task of estimating reliable epdfs, which make this new
algorithm more robust. As demonstrated by our last two examples, it provides for
better separation of classes with less training and a measure of discrimination that
is less susceptible to outliers. However, as shown with our first two examples, in
some situations expending extra effort, i.e., incorporating statistical behavior of the
expansion coefficients, does not necessarily improve the performance.
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Part III
Statistical Analysis



Chapter 13
Characterizations of Certain Continuous
Distributions

G.G. Hamedani

Abstract In designing a stochastic model for a particular modeling problem, an
investigator will be vitally interested to know if their model fits the requirements of a
specific underlying probability distribution. To this end, the investigator will vitally
depend on the characterizations of the selected distribution. The Amoroso, SSK
(Shakil–Singh–Kibria), SKS (Shakil–Kibria–Singh), SK (Shakil–Kibria), and SKS-
type distributions have been suggested to have potential applications in modeling
and are characterized here based on either a simple relationship between two
truncated moments or a truncated moment of a function of the first order statistic
or of a function of the nth order statistic, the two more interesting order statistics.
We also present a characterization of SKS-type distribution based on the conditional
expectation of adjacent generalized order statistics.

13.1 Introduction

In designing a stochastic model for a particular modeling problem, an investigator
will be vitally interested to know if their model fits the requirements of a specific
underlying probability distribution. To this end, the investigator will depend on
the characterizations of the selected distribution. Generally speaking, the problem
of characterizing a distribution is an important problem in various fields and
has recently attracted the attention of many researchers. Consequently, various
characterization results have been reported in the literature. These characterizations
have been established in many different directions, one of which is in terms of the
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truncated moments. We like to mention here the works of Galambos and Kotz [8],
Kotz and Shanbhag [20], Glänzel [9,10], Glänzel et al. [12], Glänzel and Hamedani
[11], and Hamedani [13–15].

Recently, Ahsanullah and Hamedani [3] characterized the power function and
the beta of the first-kind distributions based on a truncated moment of the nth order
statistic and first order statistic, respectively, extending some known characteriza-
tions of the power function and the uniform distributions (see [1,2]). Following [3],
Hamedani et al. [17] characterized the following distributions based on a truncated
moment of the first order statistic: Burr type XII ( a special case), generalized beta
1, generalized beta 2 (the last two family of distributions unify many distributions
employed for size distribution of income [21]), generalized Pareto, Pareto of first
kind, and Weibull. The following families of distributions were also mentioned
in [17] as special cases of Weibull: Burr type X, chi-square, extreme value type
2, gamma and Rayleigh. Hamedani [15] established characterizations of 31 more
continuous univariate distributions based on a truncated moment of the first order
statistic or of the nth order statistic or of a function of the first order statistic or of a
function of the nth order statistic.

Various systems of distributions have been constructed to provide approximations
to a wide variety of distributions (see, e.g., [18]). These systems are designed with
the requirements of ease of computation and feasibility of algebraic manipulation.
To meet the requirements, there must be as few parameters as possible in defining a
member of the system.

One of these systems is Pearson system. A continuous distribution belongs to this
system if its probability density function (pd f ) f (x) satisfies a differential equation
of the form

1
f (x)

d f (x)
dx

=− x+ a
bx2 + cx+ d

(13.1)

where a,b,c, and d are real parameters such that f (x) is a pdf. The shape of
the pdf depends on the values of these parameters. Pearson [22] classified the
different shapes into a number of types I–VII (see Appendix A). Many well-known
distributions are special cases of Pearson-type distributions which are characterized
in [15], Sects. 3–6.

Another system is Burr system, [6], which like Pearson system, has various types
I–XII. This system, however, is not as involved and as basic as Pearson system.
There are also families of distributions like extreme value and Pareto which have
different kind or type members. These distributions are also characterized in [15]
Sects. 3–6.

The families discussed in Sects. 5.3 and 5.5 of [15] were first introduced in
[5] in the context of minimum dynamic discrimination information approach to
probability modeling. The families in Sects. 5.8 and 5.9 of [15] appeared in [4],
which were shown to be maximum dynamic entropy models.

The presentation of the content of this work is as follows. Sect. 13.2 deals
with introduction of Amoroso distribution, the natural unification of the gamma
and extreme value distributions. In Sect. 13.3, we present characterizations of
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the Amoroso distribution based on the truncated moment of a function of first
order statistic and of a function of nth order statistic. Section 13.4 is devoted to
definitions of SSK, SKS, SK, and SKS-type distributions. In Sect. 13.5, we present
characterizations of SSK distribution based on a simple relationship between two
truncated moments. Section 13.6 deals with the characterizations of SKS-type
distribution based on the truncated moment of a function of first order statistic
and of a function of nth order statistic. We also give a characterization of this
distribution based on conditional expectation of adjacent generalized order statistics.
In Sect. 13.7 we present a characterization of SK distribution based on a simple
relation between two truncated moments. Finally, in Sect. 13.8 we have a very short
concluding remark. For further characterization results in this direction, we refer the
reader to Ahsanullah and Hamedani [3], Hamedani et al. [17], and Hamedani [15].

13.2 The Amoroso Distribution

This section deals with introducing the Amoroso distribution. It is pointed out by
Crooks [7] that the Amoroso distribution, a four parameter, continuous, univariate,
unimodel pdf with semi-infinite range, was originally developed to model lifetimes
(see [7] for more details). Moreover, many well-known and important distributions
are special cases or limiting forms of the Amoroso distribution. Table 13.1 is taken
(with permission from G.E. Crooks for which we are grateful to him) from [7],
which shows 35 special and four limiting cases of the Amoroso distribution. These
distributions and their importance in different fields of studies have been discussed
in detail in [7].

The pdf of the Amoroso distribution is given by

f (x;a,α,τ,k) =
1

Γ (k)

∣∣∣ τα
∣∣∣(x− a

α

)τk−1

exp

{
−
(

x− a
α

)τ}
(13.2)

for x, a,α, τ in R,k > 0, support x ≥ a if α > 0, x ≤ a if α < 0. As usual, Γ (k) =∫ ∞
0 uk−1 e−u du, for k > 0.

The four real parameters of the Amoroso distribution consist of a location
parameter a, a scale parameter α , and two shape parameters, τ and k. The shape
parameter k is positive, and most of the time, an integer, k = n, or half-integer k = m

2 .
If the random variable X has the Amoroso distribution with parameters a, α, τ and
k > 0, we write X ∼ Amoroso(a,α,τ,k).

For further details about the distributions listed in Table 13.1 and their
applications, we refer the reader to Crooks [7].

We give Table 13.2 displaying four cases based on the signs of α and τ for the
random variable X ∼ Amoroso(a,α,τ,k). Without loss of generality we assume
a = 0 throughout this work.
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Table 13.1 The Amoroso family of distributions

Amoroso a α k τ
Stacy 0 · · ·
Gen. Fisher-Tippett · · n ·
Fisher-Tippett · · 1 ·
Fréchet · · 1 < 0
Generalized Fréchet · · n < 0
Scaled inverse chi 0 · m

2 −2
Inverse chi 0 1√

2
m
2 −2

Inverse Rayleigh 0 · 1 −2
Pearson type V · · · −1
Inverse gamma 0 · · −1
Scaled inverse chi-square 0 · m

2 −1
Inverse chi-square 0 1

2
m
2 −1

Lévy · · 1
2 −1

Inverse exponential 0 · 1 −1
Pearson type III · · · 1
Gamma 0 · · 1
Erlang 0 > 0 n 1
Standard gamma 0 1 · 1
Scaled chi-square 0 · m

2 1
Chi-square 0 2 m

2 1
Shifted exponential · · 1 1
Exponential 0 · 1 1
Standard exponential 0 1 1 1
Wien 0 · 4 1
Nakagami · · · 2
Scaled chi 0 · m

2 2
Chi 0

√
2 m

2 2
Half-normal 0 · 1

2 2
Rayleigh 0 · 1 2
Maxwell 0 · 3

2 2
Wilson-Hilferty 0 · · 3
Generalized Weibull · · n > 0
Weibull · · 1 > 0
Pseudo-Weibull · · 1+ 1

τ > 0
Stretched exponential 0 · 1 > 0
Log–gamma · · · · limτ→∞
Power law · · 1−p

τ · limτ→0

Log-normal · · 1
(τσ)2 · limτ→0

Normal · · · 1 limk→∞
m, n positive integers

For α > 0 and τ > 0, Amoroso(0,α,τ,k) = GG(α,τ,k), generalized gamma
distribution. The characterizations given here are valid for the distributions of −X
(when α < 0,τ > 0) , 1

X (when α > 0,τ < 0), and − 1
X (when α < 0,τ < 0) .
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Table 13.2 Special rvs with generalized gamma distributions

τ > 0 τ < 0
α > 0 X ∼ GG(α ,τ ,k) 1

X ∼ GG
(

1
α ,−τ ,k

)
α < 0 −X ∼ GG(−α ,τ ,k) − 1

X ∼ GG
(− 1

α ,−τ ,k
)

Table 13.2 shows that for α < 0 a simple change of parameters α ′ = −α will
produce the cases on the second row of the table. So, we investigate here the
characterizations of the distribution of X when α > 0 and τ > 0 (Case I) and when
α > 0 and τ < 0 (Case II).

Case I The pdf of the Amoroso random variable is given by

f (x;α,τ,k) =
τ

αΓ (k)

( x
α

)τk−1
exp
{
−
( x
α

)τ}
,x ≥ 0 (13.3)

where all three parameters α, τ , and k are positive.

Case II Letting γ =−τ > 0, the pd f of the Amoroso random variable X is now

f (x;α,γ,k) =
γ

αΓ (k)

( x
α

)−(γk+1)
exp

{
−
( x
α

)−γ}
,x ≥ 0 (13.4)

where all three parameters α, γ , and k are positive.
The cumulative distribution function (cd f ), F , corresponding to (13.2) and (13.4)

are, respectively,

F (x) =
1

Γ (k)

∫ ( x
α )
τ

0
uk−1e−udu, x ≥ 0 (13.5)

and

F (x) = 1− 1
Γ (k)

∫ ( x
α )

−γ

0
uk−1e−udu, x ≥ 0 (13.6)

13.3 Characterizations of the Amoroso Distribution

This section is devoted to the characterizations of the Amoroso distribution based
on truncated moment of a function of first order statistic as well as on truncated
moment of a function of nth order statistic. As we pointed out in Sect. 13.2, we will
present our characterizations of the Amoroso distribution in two separate cases as
follows. First, however, we give the pd f of the jth order statistic.

Let X1:n ≤ X2:n ≤ ·· · ≤ Xn:n be the order statistics of a random sample of size
n from a continuous cd f F with the corresponding pd f f . The random variable
Xj:n denotes the jth order statistic from a random sample of n independent random
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variables X1,X , . . . ,Xn with common cd f F.Then, the pd f f j:n of Xj:n, j = 1,2, . . . ,n
is given by

f j:n (x) =
n!

( j− 1)!(n− j)!
f (x)(F (x)) j−1 (1−F (x))n− j .

The pd f s of the first and the nth order statistics are, respectively

f1:n (x) = n f (x) (1−F (x))n−1 and fn:n (x) = n f (x) (F (x))n−1 .

13.3.1 Characterizations of the Amoroso PDF (Case I)

In this subsection we present a characterization of the Amoroso distribution with
pd f (13.3) in terms of a truncated moment of a function of the nth order statistic.
We define the function

γ1
[
k;
( x
α

)τ]
=

∫ ( x
α )

τ

0
uk−1e−udu f or α > 0,τ > 0,k > 0, and x ≥ 0.

Proposition 13.3.1.1. Let X : Ω → [0,∞) be a continuous random variable with
cd f F. The pd f of X is (13.3) if and only if

E

{
γ1
[

k;

(
Xn:n

α

)τ]
|Xn:n < t

}
=

n
n+ 1

γ1
[

k;
( t
α

)τ]
, t > 0. (13.7)

Proof. Let X have pd f (13.3), then F (x) is given by (13.5). Now using (13.5) on
the left-hand side of (13.7), we arrive at

E

{
γ1
[

k;

(
Xn:n

α

)τ]
|Xn:n < t

}
=

∫ t
0 γ1
[
k;
(

x
α
)τ]

d ((F (x))n)

(F (t))n

= γ1
[

k;
( t
α

)τ]
− Γ (k)

n+ 1
F (t)

=
n

n+ 1
γ1
[

k;
( t
α

)τ]
t > 0.

Now, assume (3.1.1) holds, then

∫ t

0
γ1
[
k;
( x
α

)τ]
d ((F (x))n) =

n
n+ 1

γ1
[

k;
( t
α

)τ]
(F (t))n , t > 0.

Differentiating both sides of the above equation with respect to t and upon
simplification, we obtain
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f (t)
F (t)

=

d
dt γ1

[
k;
(

t
α
)τ]

γ1
[
k;
(

t
α
)τ] , t > 0.

Integrating both sides of the last equation with respect to t from x to ∞, and in

view of the fact that limt→∞ γ1
[
k;
(

t
α
)τ]

=Γ (k) , we obtain (13.5) which completes

the proof. �
Remark 13.3.1.2. For k = 1, the following characterization in terms of the first order
statistic is given for (13.3) (see [17], Subsection (vi)).

Proposition 13.3.1.3. Let X :Ω → R
+ be a continuous random variable with cd f

F such that limx→∞ xτ (1−F (x))n = 0. Then X has pd f (13.3) (with k = 1) if and
only if

E [X τ1:n|X1:n > t] = tτ +
ατ

n
, t > 0.

13.3.2 Characterizations of the Amoroso PDF (Case II)

In this subsection we present a characterization of the Amoroso distribution with
pd f (13.4) in terms of a truncated moment of a function of the first order statistic.

Proposition 13.3.2.1. Let X : Ω → [0,∞) be a continuous random variable with
cd f F. The pd f of X is (13.4) if and only if

E

{
γ1

[
k;

(
X1:n

α

)−γ]
|X1:n > t

}
=

n
n+ 1

γ1
[

k;
( t
α

)−γ]
, t > 0. (13.8)

Proof. Let X have pd f (13.4), then F (x) is given by (13.6), and

E

{
γ1

[
k;

(
X1:n

α

)−γ]
|X1:n > t

}
=

∫ ∞
t γ1

[
k;
(

x
α
)−γ]

n f (x) (1−F (x))n−1 dx

(1−F (t))n

= γ1
[

k;
( t
α

)−γ]
− Γ (k)

n+ 1
(1−F (t))

=
n

n+ 1
γ1
[

k;
( t
α

)−γ]
, t > 0.

Now, assume (13.8) holds, then

∫ ∞
t
γ1
[

k;
( x
α

)−γ]
n f (x) (1−F (x))n−1 dx =

n
n+1

γ1
[

k;
( t
α

)−γ]
(1−F (t))n , t > 0.
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Differentiating both sides of the above equation with respect to t and upon
simplification, we obtain

− f (t)
1−F (t)

=

d
dtγ1

[
k;
(

t
α
)−γ]

γ1
[
k;
(

t
α
)−γ] , t > 0.

Integrating both sides of this equation with respect to t from 0 to x, and in view

of the fact that limt→0 γ1
[
k;
(

t
α
)−γ]

= Γ (k) , we obtain (13.6) . �

Remark 13.3.2.2. For k = 1, the following characterization in terms of the nth order
statistic is given for (13.4) (see [15], Subsect. 4.2).

Proposition 13.3.2.3. Let X :Ω → R
+ be a continuous random variable with cd f

F such that limx→0 x−γ (F (x))n = 0. Then X has pd f (13.4) (with k = 1) if and
only if

E
[
X−γ

n:n |Xn:n < t
]
= t−γ +

1
nαγ

, t > 0.

13.4 The SSK (Shakil–Singh–Kibria), SKS
(Shakil–Kibria–Singh), SKS-Type, and SK
(Shakil–Kibria) Distributions

In this section we will give the definitions of SSK, SKS, SKS-type, and SK
distributions in Subsects. 13.4.1–13.4.4, respectively. Recently, some researchers
have considered a generalization of (13.1) given by

1
f (x)

d f (x)
dx

=
∑m

j=0 a jx j

∑m
j=0 b jx j , (13.9)

where m, n ∈N /{0} and the coefficients a j
′s, b j

′s are real parameters. The system
of continuous univariate pd f s generated by (13.9) is called generalized Pearson
system which includes a vast majority of continuous pd f s.

13.4.1 SSK Distribution (Product Distribution Based
on the Generalized Pearson Differential Equation)

Shakil et al. [25] consider 13.10 when m = 2, n = 1, b0 = 0, b1 �= 0, and x > 0. The
solution of this special case is an interesting three parameter distribution with pd f
f given by

f (x;α,β ,ν) =C1xν exp
(−αx2 −βx

)
, x > 0,α > 0,β > 0,ν > 0, (13.10)
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where α = − a2
2b1

, β = − a1
b1

, ν = a0
b1

, and b1 �= 0 are parameters and C1 is the
normalizing constant.

Remark 13.4.1.1. A special case of equation (13.4), with γ = 2, will also have a
solution of the form (13.10) as well.

The family of the distributions represented by pd f 13.10 can be expressed in
terms of confluent hypergeometric functions of Tricomi and Kummer. As pointed
out in [25], it is a rich family which includes the product of exponential and Rayleigh
pd f s, the product of gamma and Rayleigh pd f s, the product of gamma and Rice
pd f s, the product of gamma and normal pd f s, and the product of gamma and
half-normal pd f s, among others. For detailed treatment (theory and applications)
of this family we refer the reader to [25]. The family of SSK distributions will be
characterized in Sect. 13.5.

13.4.2 SKS Distribution

Shakil et al. [24] consider (13.9) when m = 2p, n= p+1, a j = 0, j = 1,2, . . . , p−1,
p+ 1, . . . ,2p− 1 = 0; b j = 0, j = 1,2, . . . , p, bp+1 �= 0, and x > 0. The solution of
this special case is an interesting four parameter distribution with pd f f (using their
notation) given by

f (x;α,β ,ν, p) =C2xν−1 exp
(−αxp −βx−p) , x > 0,α ≥ 0,β ≥ 0,ν ∈ R,

(13.11)

where α = − a2p
pbp+1

, β =
ap

pbp+1
, ν =

(ap+bp+1)

bp+1
, bp+1 �= 0,and p ∈ N /{0} are

parameters and C2 is the normalizing constant.
Shakil et al. [24] classified their newly proposed family into the following three

classes:

Class I. α > 0,β = 0,ν > 0, and p ∈N/{0} .
Class II. α = 0,β > 0,ν < 0, and p ∈N/{0} .

Class III. α > 0,β > 0,ν ∈ R, and p ∈N/{0} .
Shakil et al. [24] pointed out that they found their “newly proposed model fits

better than gamma, log-normal and inverse Gaussian distributions in the fields of
biomedicine, demography, environmental and ecological sciences, finance, lifetime
data, reliability theory, traffic data, etc. They hope that the findings of their paper will
be useful for the practitioners in various fields of theoretical and applied sciences.”
They also pointed out that “It appears from literature that not much attention has
been paid to the study of the family of continuous pd f s that can be generated as a
solution of the generalized Pearson differential equation (13.11), except three papers
cited in [24].” For a detailed treatment of the above-mentioned three cases and their
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significance as well as related statistical analysis, we refer the reader to [24]. These
cases were characterized in Hamedani [16] based on a simple relationship between
two truncated moments.

13.4.3 SKS-Type Distribution

The SKS distribution has support in (0,∞), and one may be interested in similar
distribution with bounded support. We would like to present here a distribution with
bounded support, which we call it SKS type given by the pd f

f (x;α,β , p) =Cpx−(p+1) (β −αx2p)exp
(−αxp −βx−p) , 0 < x <

(
β
α

) 1
2p

,

(13.12)

where α > 0, β > 0, and p ∈ R
+ are parameters and C = exp

(
2
√
αβ
)

is the

normalizing constant.

Remark 13.4.3.1. We do not require p to be a positive integer in (13.12). If,
however, p ∈ N /{0}, then (13.12) will be a member of the generalized Pearson
system defined via (13.9)

1
f (x)

d f (x)
dx

=
β 2 p−β (p+ 1)xp − 2αβ px2p−α (p− 1)x3p +α2 px4p

βxp+1 −αx3p+1 .

The cd f F corresponding to the pd f (13.12) is

F (x) =C exp
(−αxp −βx−p) ,0 < x <

(
β
α

) 1
2p

. (13.13)

The family of SKS-type distributions will be characterized in Sect. 13.6.

13.4.4 SK Distribution

Shakil and Kibria [23] consider a solution of (13.9) for m = p, n = p+ 1, a j = 0,
j = 1,2, . . . , p−1, b j = 0, j = 0,1, . . . , p, ap �= 0, b1 �= 0, bp+1 �= 0, and x > 0. This
special five-parameter solution is given by

f (x;α,β ,ν,τ, p) =C3xν−1 (αxp +β )−τ , x > 0,α > 0,β > 0,ν > 0,τ > 0, p ∈ N/{0} ,
(13.14)
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where α , β , ν , τ , p are parameters, τ > ν
p , and C3 is the normalizing constant.

We refer the reader to [23] for further details and statistical analyses related to this
family.

Final Remark of Sect. 13.4. In view of (13.9), we would like to make the observa-
tion that the pd f f of a sub-family of the Amoroso family satisfies the generalized
Pearson differential equation (13.9) with, of course, appropriate boundary condition.
For a = 0, α > 0 (or α < 0), τ = −γ , γ ∈ N /{0}, and k > 0, the pd f f given by
(13.2) satisfies (13.9) with a0 = γαγ , a j = 0, j = 1,2, . . . ,γ − 1, aγ = −(γk+ 1);
b j = 0, j = 0,1, . . . ,γ , and bγ+1 = 1, i.e.,

1
f (x)

d f (x)
dx

=
γαγ − (γk+ 1)xγ

xγ+1 .

For a = 0, α > 0 (or α < 0) , τ = γ , γ ∈ N /{0}, and k > 0, the pd f f given
by (2.1) satisfies (4.1) with a0 = γk− 1 , a j = 0, j = 1,2, . . . ,γ − 1, aγ = −γα−γ ;
b0 = 0, and b1 = 1, i.e.,

1
f (x)

d f (x)
dx

=
(γk− 1)− γα−γxγ

x
.

13.5 Characterizations of the SSK Distribution

In this section we present characterizations of the pd f (13.10) in terms of a simple
relationship between two truncated moments. Our characterization results presented
here will employ an interesting result due to Glänzel [9], which is stated here
(Theorem G) for the sake of completeness.

Theorem G. Let (Ω ,F ,P) be a given probability space and let H = [a,b] be an
interval for some a < b (a = −∞ and b = +∞ might as well be allowed). Let X :
Ω → H be a continuous random variable with the distribution function F and let g
and h be two real functions defined on H such that

E [g(X) |X ≥ x] = E [h(X) |X ≥ x]λ (x) ,x ∈ H

is defined with some real function λ . Assume that g, h ∈ C1 (H), λ ∈ C2 (H), and
F is twice continuously differentiable and strictly monotone function on the set H.
Finally, assume that the equation hλ = g has no real solution in the interior of H.
Then F is uniquely determined by the functions g,h, and λ , particularly

F (x) =
∫ x

a
C

∣∣∣∣ λ ′ (u)
λ (u)h(u)− g(u)

∣∣∣∣exp(−s(u))du,
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where the function s is a solution of the differential equation

s′ =
λ ′h
λh− g

and C is a constant, chosen to make
∫

H dF = 1.

Remark 13.5.1. In Theorem G, the interval H need not be closed.

Proposition 13.5.2. Let X : Ω → (0,∞) be a continuous random variable and let
h(x) = x1−ν exp(βx) for x ∈ (0,∞) . The pd f of X is (13.10) if and only if there exist
functions g and λ defined in Theorem G satisfying the differential equation

λ ′ (x)
λ (x)h(x)− g(x)

= 2αxν exp(−βx) , x > 0. (13.15)

Proof. Let X have pd f (13.10) and let

g(x) = x1−ν (α+βx−1) , x > 0

and

λ (x) = 2α exp(−βx) , x > 0.

Then

(1−F (x))E [h(X) |X ≥ x] =
C1

2α
exp
(−αx2) , x > 0,

(1−F (x))E [g(X) |X ≥ x] =C1 exp
(−αx2 −βx

)
, x > 0,

where C1 is a constant. We also have

λ (x)h(x)− g(x) =−βx−ν < 0 f or x > 0.

The differential equation (13.15) clearly holds.
Conversely, if g and λ satisfy the differential equation (13.15) , then

s′ (x) =
λ ′ (x)h(x)

λ (x)h(x)− g(x)
= 2αx, x > 0,

and hence
s(x) = αx2, x > 0.

�
Now from Theorem G, X has pd f (13.10).

Corollary 13.5.3. Let X : Ω → (0,∞) be a continuous random variable and let
h(x) = x1−ν (2α+βx−1

)
and g(x) = x1−ν exp(βx) for x ∈ (0,∞) . The pd f of X is

(13.10) if and only if the function λ has the form
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λ (x) =
1

2α
exp(βx) ,x > 0.

Remark 13.5.4. The general solution of the differential equation (13.15) is

λ (x) = exp
(
αx2)[−∫ 2αxν exp

(−αx2 −βx
)

g(x)dx+D

]
, x > 0,

where D is a constant. One set of appropriate functions is given in Proposi-
tion 13.5.2.

13.6 Characterizations of the SKS-Type Distribution

In this section we present two characterizations of pd f (13.12) in terms of a
truncated moment of a function of first order statistic and of a function of nth order
statistic, respectively. These characterizations are consequences of the following
two theorems given in Hamedani [15], which are stated here for the sake of
completeness. We also present a characterization of the pd f (13.12) based on the
conditional expectation of adjacent generalized order statistics.

Theorem 1 (Theorem 2.2 of [15], p 464). Let X : Ω → (a,b), a ≥ 0 be a
continuous random variable with cd f F such that limx→b xδ (1−F (x))n = 0, for
some δ > 0. Let g(x,δ ,n) be a real-valued function which is differentiable with

respect to x and
∫ b

a
δxδ−1

ng(x,δ ,n)dx = ∞. Then

E
[
Xδ1:n|X1:n > t

]
= tδ + g(t,δ ,n) , a < t < b,

implies that

F (t) = 1−
(

g(a,δ ,n)
g(t,δ ,n)

) 1
n

exp

(
−
∫ t

a

δxδ−1

ng(x,δ ,n)
dx

)
, a ≤ t < b.

Theorem 2 (Theorem 2.8 of [24], p 469). Let X : Ω → (a,b), a ≥ 0 be a
continuous random variable with cd f F such that limx→a (x− a)−δ (F (x))n = 0,
for some δ > 0. Let g(x,δ ,n) be a real-valued function which is differentiable with

respect to x and
∫ b

a
δ (x−a)−δ−1

ng(x,δ ,n) dx = ∞. Then

E
[
(X1:n − a)−δ |Xn:n < t

]
= (t − a)−δ + g(t,δ ,n) , a < t < b,

implies that

F (t) =

(
g(b,δ ,n)
g(t,δ ,n)

) 1
n

exp

(
−
∫ b

t

δ (x− a)−δ−1

ng(x,δ ,n)
dx

)
, a ≤ t < b.
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Proposition 13.6.3. Let X : Ω →
(

0,
(
β
α

) 1
2p
)

be a continuous random variable

with cd f F such that lim
x→
(
β
α

) 1
2p

xδ (1−F (x))n = 0, for some δ > 0. The pd f of

X is (13.12) if and only if

E
[
Xδ1:n|X1:n > t

]
= tδ +

δ
np

(
xδ+p

β −αx2p

)
, 0 < t <

(
β
α

) 1
2p

.

Proof. See Theorem 1. �

Proposition 13.6.4. Let X : Ω →
(

0,
(
β
α

) 1
2p
)

be a continuous random variable

with cd f F such that limx→0 x−δ (F (x))n = 0, for some δ > 0. The pd f of X is
(13.12) if and only if

E
[
X−δ

n:n |Xn:n < t
]
= t−δ − δ

np

(
xp−δ

β −αx2p

)
, 0 < t <

(
β
α

) 1
2p

.

Proof. See Theorem 2. �
The concept of generalized order statistics (gos) was introduced by Kamps [19]

in terms of their joint pd f . The order statistics, record values, k-record values,
Pfeifer records, and progressive type II order statistics are special cases of the gos.
The rvs (random variables) X (1,n,m,k), X (2,n,m,k), . . . , X (n,n,m,k), k > 0, and
m ∈ R are n gos from an absolutely continuous cd f F with corresponding pd f f if
their joint pd f f1,2,...,n (x1,x2, . . . ,xn) can be written as

f1,2,...,n (x1,x2, . . . ,xn) = k
(
Π n−1

j=1 γ j

)[
Π n−1

j=1 (1−F (x j))
m f (x j)

]
×(1−F (xn))

k−1 f (xn) ,F
−1 (0+)

< x1 < x2 < · · ·< xn < F−1 (1−) , (13.16)

where γ j = k+(n− j)(m+ 1) for all j, 1≤ j ≤ n, k is a positive integer, and m≥−1.
If k = 1 and m = 0, then X (r,n,m,k) reduces to the ordinary rth order statistic

and (13.16) will be the joint pd f of order statistics (Xj:n)1≤ j≤n from F. If k = 1 and
m = −1, then (13.16) will be the joint pd f of the first n upper record values of the
i.i.d. (independent and identically distributed) rvs with cd f F and pd f f .

Integrating out x1,x2, . . . ,xr−1,xr+1, . . . ,xn from (13.16), we obtain the pd f
fr,n,m,k of X (r,n,m,k):

fr,n,m,k (x) =
cr

Γ (r)
(1−F (x))γr−1 f (x)gr−1

m (F (x)) , (13.17)
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where cr =Π n−1
j=1 γ j and

gm (x) =
1

m+ 1

[
1− (1− x)m+1

]
, m �=−1

= − ln(1− x) ,m =−1,x ∈ (0,1) .

Since limm→−1
1

m+1

[
1− (1− x)m+1

]
= − ln (1− x), we write gm (x) = 1

m+1[
1− (1− x)m+1

]
, for all x ∈ (0,1) and all m with g−1 (x) = limm→−1 gm (x) .

The joint pd f of X (r,n,m,k) and X (r+ 1,n,m,k), 1 ≤ r < n, is given by (see
Kamps [19], p 68)

fr,,r+1,n,m,k (x,y) =
cr+1

Γ (r)
(1−F (x))m f (x)gr−1

m (F (x))(1−F (x))γr+1−1 f (y) ,x < y,

and consequently the conditional pd f of X (r+ 1,n,m,k) given X (r,n,m,k) = x, for
m ≥−1 , is

fr+1|r,n,m,k (y|x) = γr+1

(
1−F (y)
1−F (x)

)γr+1−1

· f (y)
(1−F (x))

, y > x, (13.18)

where γr+1 = γr − 1 − m. The conditional pd f of X (r,n,m,k) given X(r + 1,
n,m,k) = y, for m �=−1, is

fr|r+1,n,m,k (x|y) = r (1−F (x))m

(
1− (1−F (x))m+1

m+ 1

)r−1

×
(

1− (1−F (y))m+1

m+ 1

)−r

f (x) , x < y. (13.19)

Our last characterization of the pd f (13.12) will be based on the conditional
expectation of X (r,n,m,k) given X (r+ 1,n,m,k) when m = 0.

Proposition 13.6.5. Let (Xj) j≥1 be a sequence of i.i.d. rvs on

(
0,
(
β
α

) 1
2p
)

with an

absolutely continuous cd f F, corresponding pd f f and with limx→0 s(x) (F (x))r =
0, where s(x) = r C∗ (αx−p +βxp), where C∗ is an arbitrary positive constant. Let
(X (r,n,m,k))1≤r≤n be the first n gos from F. Then

E [s(X (r,n,m,k)) |X (r+ 1,n,m,k) = t] = s(t)+C∗,0 < t <

(
β
α

) 1
2p

(13.20)
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implies that

F (x) =C exp
(−αxp −βx−p) , 0 < x <

(
β
α

) 1
2p

,

where C = exp
(

2
√
αβ
)
.

Proof. From (13.20), in view of (13.19), we have

∫ t

0
s(x) r (F (x))r−1 (F (t))−r f (x)dx = s(t)+C∗, 0 < t <

(
β
α

) 1
2p

.

Upon integrating by parts on the left-hand side of the last equality and in view of
the assumption limx→0 s(x)(F (x))r = 0, we have

C∗ (F (t))r =−
∫ t

0
s′ (x) (F (x))r dx. (13.21)

Now, differentiating both sides of (13.21) with respect to t, we arrive at

f (t)
F (t)

=− 1
rC∗

s′ (t) .

Integrating both sides of this equality from x to
(
β
α

) 1
2p
, we have

F (x) =
{

exp
(

2
√
αβ
)}

exp
(−αxp −βx−p) , 0 < x <

(
β
α

) 1
2p

. �

13.7 Characterizations of the SK Distribution

In this section we present characterizations of the pd f (13.14) in terms of a simple
relationship between two truncated moments. Our characterization results presented
here will, as in Sect. 13.5, employ Theorem G.

Proposition 13.7.1. Let X : Ω → (0,∞) be a continuous random variable and let
h(x) = xp−ν for x ∈ (0,∞) . The pd f of X is (13.14), with τ > 1, if and only if there
exist functions g and λ defined in Theorem G, satisfying the differential equation

λ ′ (x)
λ (x)h(x)− g(x)

= α p(τ− 1)xν−1 (αxp +β )−1 , x > 0. (13.22)



13 Characterizations of Certain Continuous Distributions 313

Proof. Let X have pd f (13.14) and let

g(x) = xp−ν (αxp +β )−1 , x > 0,

and

λ (x) =
τ

τ− 1
(αxp +β ) , x > 0.

Then

(1−F (x))E [h(X) |X ≥ x] =
C3

α p(τ− 1)
(αxp +β )1−τ , x > 0,

(1−F (x))E [g(X) |X ≥ x] =
C3

α pτ
(αxp +β )−τ , x > 0,

and

λ (x)h(x)− g(x) =−1
τ

xp−ν < 0 f or x > 0.

The differential equation (13.22) clearly holds.
Conversely, if g and λ satisfy the differential equation (13.22), then

s′ (x) =
λ ′ (x)h(x)

λ (x)h(x)− g(x)
= α p(τ− 1)xp−1 (αxp +β )−1 , x > 0,

and hence

s(x) = ln(αxp +β )τ−1 , x > 0. �

Now from Theorem G, X has pd f (13.14).

Corollary 13.7.2. Let X : Ω → (0,∞) be a continuous random variable and let
h(x) = xp−ν (αxp +β )−1and g(x) = xp−ν for x ∈ (0,∞) . The pd f of X is (13.14),
with τ > 1, if and only if the function λ has the form

λ (x) =
τ

τ− 1
(αxp +β ) , x > 0.

13.8 Conclusion

In designing a stochastic model for a particular modeling problem, an investigator
will be vitally interested to know if their model fits the requirements of a specific
underlying probability distribution. To this end, the investigator will vitally depend
on the characterizations of the selected distribution. A good number of distributions
which have important applications in many different fields have been mentioned
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in this work. Various characterizations of these distributions have been established.
We certainly hope that these results will be of interest to an investigator who may
believe their model has a distribution mentioned here and is looking for justifying
the validity of their model.

Appendix A

We like to mention that this kind of characterization based on the ratio of truncated
moments is stable in the sense of weak convergence; in particular, let us assume
that there is a sequence {Xn} of random variables with distribution functions {Fn}
such that the functions gn, hn, and λn (n ∈ N) satisfy the conditions of Theorem G
and let gn → g, hn → h for some continuously differentiable real functions g and h.
Let, finally, X be a random variable with distribution F . Under the condition that
gn (X) and hn (X) are uniformly integrable and the family is relatively compact, the
sequence Xn converges to X in distribution if and only if λn converges weakly to λ ,
where

λ (x) =
E [g(X) |X ≥ x]
E [h(X) |X ≥ x]

.

This stability theorem makes sure that the convergence of distribution functions
is reflected by corresponding convergence of the functions g , h, and λ , respectively.
It guarantees, for instance, the “convergence” of characterization of the Wald
distribution to that of the Lévy-Smirnov distribution if α → ∞, as was pointed out
in [11].

A further consequence of the stability property of Theorem G is the application
of this theorem to special tasks in statistical practice such as the estimation of
the parameters of discrete distributions. For such purpose, the functions g, h, and,
specially, λ should be as simple as possible. Since the function triplet is not uniquely
determined, it is often possible to choose λ as a linear function. Therefore, it is worth
analyzing some special cases which helps to find new characterizations reflecting the
relationship between individual continuous univariate distributions and appropriate
in other areas of statistics.

In view of Theorem G, a characterization of the Pearson system, due to Glänzel
[9], is given below.

Proposition A-2. Let X : Ω → H ⊆ R be a continuous random variable and let
g(x) = x2 − tx−w, h(x) = rx+u for x ∈ H, where r, t, u, and w are real parameters
such that the distribution is well defined on H. The distribution function of X belongs
to Pearson’s system if and only if the function λ has the form λ = x, x ∈ H.

Remark A-3. Since it can always be assumed that the expectation of a non-strictly
positive continuous random variable is zero, we let u = 0 , where appropriate, in the
brief discussion below. Note that w > 0 if u = 0.



13 Characterizations of Certain Continuous Distributions 315

The following cases can be distinguished:

Type I. r ∈ (0,1), t �= 0. (This is the family of finite beta distribution.)
Type II. r ∈ (0,1), t = 0. (This is a symmetric beta distribution.)

Type III. r = 1, t �= 0. (This is the family of gamma distribution.)
r = 1, t = 0. (This is the normal distribution.)

Type IV. r ∈
(

1+ t2

4w ,∞
)
, t �= 0.

Type V. r = 1+ t2

4w , t �= 0. (This is the family of inverse Gaussian distribution.)

Type VI. r ∈
(

1,1+ t2

4w

)
, t �= 0. (This is the family of infinite beta distribution.)

Type VII. r ∈
(

1+ t2

4w ,∞
)
, t = 0.

The following proposition is given in Glänzel and Hamedani [11]

Proposition A-4. Let X : Ω → H ⊆ R be a continuous random variable and let

g(x) =
{(a0+1)x2+(a1+c)x+a2}

{a0x2+a1x+a2} , h(x) = {x+c}
{a0x2+a1x+a2} for x ∈ H, where c > 0, a0, a1,

and a2 are real parameters such that the distribution function is well defined on H.
The distribution function of X belongs to Pearson’s system if and only if the function
λ has the form λ = x, x ∈ H.

The families of Pearson’s system can be obtained from special choices of the
parameters c, a0, a1, and a2(see, e.g., [18]).
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Chapter 14
Bayesian Wavelet Shrinkage Strategies:
A Review

Norbert Reményi and Brani Vidakovic

Abstract In this chapter the authors overview recent developments and current
status of use of Bayesian paradigm in wavelet shrinkage. The paradigmatic problem
where wavelet shrinkage is employed is that of nonparametric regression where
data are modeled as observations from an unknown signal contaminated with a
Gaussian noise. Bayes rules as general shrinkers provide a formal mechanism to
implement shrinkage in the wavelet domain that is model based and adaptive.
New developments including dependence models, complex wavelets and MCMC
strategies are described. Applications include inductance plethysmography data and
curve classification procedure applied in botany. The chapter features an extensive
set of references consisting of almost 100 entries.

14.1 Introduction

Wavelet-based tools became standard methodology in many areas of modern
statistics, for example, in regression, density and function estimation, factor anal-
ysis, modeling and forecasting of time series, functional data analysis, and data
mining and classification, with ranges of application areas in science and engineer-
ing. Wavelets owe their initial popularity in statistics to shrinkage, a simple and yet
powerful procedure in nonparametric statistical modeling. Wavelet shrinkage is a
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three-step procedure: (1) data are transformed into a set of wavelet coefficients; (2) a
shrinkage of the coefficients is performed; and (3) the processed wavelet coefficients
are transformed back to the domain of the original data.

Wavelet domains are desirable modeling environments; several supporting
arguments are listed below.

Discrete wavelet transformations tend to “disbalance” the data. Even though the
orthogonal transforms preserve the �2 norm of the data (the square root of sum
of squares of observations, or the “energy” as engineers like to say), most of the �2

norm in the transformed data is concentrated in only a few wavelet coefficients. This
concentration narrows the class of plausible models and facilitates the thresholding.
The disbalancing property also yields a variety of criteria for the selection of best
basis.

Wavelets, as modeling building blocks, are well localized in both time and scale
(frequency). Signals with rapid local changes (signals with discontinuities, cusps,
sharp spikes, etc.) can be represented with only a few wavelet coefficients. This
parsimony does not, in general, hold for other standard orthonormal bases which
may require many “compensating” coefficients to describe discontinuity artifacts or
local bursts.

Heisenberg’s principle states that time-frequency models cannot be arbitrarily
precise in the time and frequency domains simultaneously, rather this precision is
bounded from the below by a universal constant. Wavelets adaptively distribute the
time-frequency precision by their innate nature. The economy of wavelet transforms
can be attributed to their ability to confront the limitations of Heisenberg’s principle
in a data-dependent manner.

An important feature of wavelet transforms is their whitening property. There
is ample theoretical and empirical evidence that wavelet transforms simplify the
dependence structure in the original data. For example, it is possible, for any given
stationary dependence in the input signal, to construct a biorthogonal wavelet basis
such that the corresponding in the transform are uncorrelated (a wavelet counterpart
of Karhunen–Loève transform). For a discussion and examples see [91].

We conclude this incomplete list of features of wavelet transforms by pointing
out their sensitivity to self-similar data. The scaling laws are distinctive features of
self-similar data. Such laws are clearly visible in the wavelet domain in the so-called
wavelet spectra, wavelet counterparts of the Fourier spectra.

More arguments can be given: computational speed of the wavelet transfor-
mation, easy incorporation of prior information about some features of the signal
(smoothness, distribution of energy across scales), etc.

Prior to describing a formal setup for Bayesian wavelet shrinkage, we provide a
brief review of discrete wavelet transforms and traditional wavelet shrinkage.

Basics on wavelets can be found in many texts, monographs, and papers at many
different levels of exposition. The interested reader should consult monographs by
[33, 68, 87, 91], among others. An introductory article is [88].
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14.1.1 Discrete Wavelet Transformations and Wavelet
Shrinkage

Let yyy be a data vector of dimension (size) n. For the simplicity we choose n to be
a power of 2, say 2J . We assume that measurements yyy belong to an interval and
consider periodized wavelet bases. Generalizations to different sample sizes and
general wavelet and wavelet-like transformations are straightforward.

Suppose that the vector yyy is wavelet transformed to a vector ddd. This linear and
orthogonal transform can be fully described by an n × n orthogonal matrix WWW .
The use of the matrix WWW is possible when n is not large (of order of a few thousand,
at most), but for large n, fast filtering algorithms are employed. The filtering
procedures are based on so-called quadrature mirror filters which are uniquely
determined by the choice of wavelet and fast Mallat’s algorithm [63]. The wavelet
decomposition of the vector yyy can be written as

ddd = (H�yyy,GH�−1yyy, . . . ,GH2yyy,GHyyy,Gyyy). (14.1)

Note that in (14.1), ddd has the same length as yyy and � is any fixed number between
1 and J = log2 n. The operators G and H acting on data sequences are defined
coordinate-wise via

(Ha)k = Σm∈ZZZhm−2kam, and (Ga)k = Σm∈ZZZgm−2kam, k ∈ ZZZ,

where g and h are high- and low-pass wavelet filters. Components of g and h
are connected via the quadrature mirror relationship, gn = (−1)nh1−n. For all
commonly used wavelet bases, the taps of filters g and h are readily available in
the literature or in standard software packages.

The elements of ddd are called “wavelet coefficients.” The subvectors described
in (14.1) correspond to detail levels. For instance, the vector Gyyy contains n/2 =
2J−1 coefficients representing the level of the finest detail. When � = J, the vectors
GHJ−1yyy = {d00} and HJyyy = {c00} contain a single coefficient each and represent
the coarsest possible level of detail and the smooth part in wavelet decomposition,
respectively.

In general, jth detail level in the wavelet decomposition (14.1) contains 2 j

elements, and can be written as

GHJ− j−1yyy = (d j,0,d j,1, . . . ,d j,2 j−1). (14.2)

Wavelet shrinkage methodology consists of shrinking the magnitudes of wavelet
coefficients. The simplest wavelet shrinkage technique is thresholding. The com-
ponents of ddd are replaced by 0 if their absolute value does not exceed a fixed
threshold λ .
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The two most common thresholding policies are hard and so f t thresholding with
corresponding rules given by:

θ h(d,λ ) = d 1(|d|> λ ),
θ s(d,λ ) = (d − sign(d)λ ) 1(|d|> λ ),

where 1(A) is the indicator of relation A, i.e., 1(A) = 1 if A is true and 1(A) = 0 if
A is false.

In the next section we describe how the Bayes rules, resulting from the models
on wavelet coefficient, can act as shrinkage/thresholding rules.

14.2 Wavelets and Bayes

Bayesian paradigm has become very popular in wavelet data processing since Bayes
rules are shrinkers. This is true in general, although examples of Bayes rules that
expand can be found, see [89]. The Bayes rules can be constructed to mimic the
thresholding rules: to slightly shrink the large coefficients and heavily shrink the
small coefficients. In addition, Bayes rules result from realistic statistical models on
wavelet coefficients and such models allow for incorporation of prior information
about the true signal. Furthermore, most Bayes rules can be easily either computed
by simulation or expressed in a closed form. Reviews of early Bayesian approaches
can be found in [3, 78, 86, 87]. An edited volume on Bayesian modeling in the
wavelet domain appeared 12 years ago [65].

A paradigmatic task in which the wavelets are typically applied is recovery
of an unknown signal fff observed with noise eee. In statistical terms this would
be a task of nonparametric regression. Wavelet transformations WWW are applied to
noisy measurements yi = fi + ei, i = 1, . . . ,n, or, in vector notation, yyy = fff + eee.
The linearity of WWW implies that the transformed vector ddd = WWW (yyy) is the sum of the
transformed signal θθθ = WWW ( fff ) and the transformed noise εεε = WWW (eee). Furthermore,
the orthogonality of WWW and Gaussianity of eee implies Gaussianity of εεε as well.

Bayesian methods are applied in the wavelet domain, that is, after the data have
been transformed. The wavelet coefficients can be modeled in totality, as a single
vector, or one by one, due to decorrelating property of wavelet transforms. Block-
modeling approaches are also possible.

When the model is on individual wavelet (detail) coefficients di ∼ N(θi,σ2), i =
1, . . . ,n, the interest relies in the estimation of the θi. Usually we concentrate on
typical wavelet coefficient and model: d = θ + ε . Bayesian methods are applied
to estimate the location parameter θ , which will be, in the sequel, argument in
the inverse wavelet transform. A prior on θ , and possibly on other parameters of
the distribution of ε , is elicited, and the corresponding Bayes estimators are back-
transformed. Various choices of Bayesian models have been motivated by different,
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often contrasting, interests. Some models were driven by empirical justifications,
others by pure mathematical considerations; some models lead to simple closed-
form rules, the other require extensive Markov Chain Monte Carlo (MCMC)
simulations to produce the estimate. Bayes rules with respect to absolute or 0-1
loss functions are capable of producing bona fide thresholding rules.

14.2.1 An Illustrative Example

As an illustration of the Bayesian approach we present BAMS (Bayesian adaptive
multiresolution shrinkage). The method, due to [90], is motivated by empirical con-
siderations on the coefficients and leads to easily implementable Bayes estimates,
available in closed form.

The BAMS originates from the observation that a realistic Bayes model should
produce prior predictive distributions of the observations which “agree” with the
observations. Other authors were previously interested in the empirical distribution
of the wavelet coefficients, see, for example, [57, 58, 63, 77, 81, 86]. Their common
argument can be summarized by the following statement:

For most of the signals and images encountered in practice, the empirical
distribution of a typical detail wavelet coefficient is notably centered about
zero and peaked at it.

In accordance with the spirit of this statement, [63] suggested to fit empirical
distributions of wavelet coefficients by the exponential power model

f (d) =C · e−(|d|/α)β , α,β > 0,

where C = β
2αΓ (1/β ) .

Following the Bayesian paradigm, prior distributions should be elicited on the
parameters of the model d|θ ,σ2 ∼ N(θ ,σ2) and Bayesian estimators (namely,
posterior means under squared loss) computed. In BAMS, priors on θ and σ2 are
set such that the marginal (prior predictive) distribution of the wavelet coefficients
is a double exponential distribution DE , that is, an exponential power one with
β = 1. The double exponential distribution can be obtained by marginalizing the
normal likelihood by adopting exponential prior on its variance σ2. The choice of
an exponential prior can be justified by its maxent property, that is, exponential
distribution is the entropy maximizer in the class of all distributions supported on
(0,∞) with a fixed first moment, and in that sense is noninformative.
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Thus, BAMS uses the exponential prior σ2 ∼ E(μ), μ > 0, which leads to the
marginal likelihood

d|θ ∼ DE

(
θ ,

1√
2μ

)
, with density f (d|θ ) = 1

2

√
2μe−

√
2μ|d−θ |.

Vidakovic [86] considered the previous marginal likelihood but with a t distribu-
tion as the prior on θ . The Bayes rules with respect to the squared error loss under
general but symmetric priors π(θ ) can be expressed using the Laplace transforms
of π(θ ).

In personal communication with the second author, Jim Berger and Peter Müller
suggested in 1993 the use of ε-contamination priors in the wavelet context pointing
out that such priors would lead to rules which are smooth approximations to a
thresholding.

The choice

π(θ ) = εδ (0)+ (1− ε)ξ (θ ) (14.3)

also reflects prior belief that some locations (corresponding to the signal or function
to be estimated) are 0 and that there is a nonzero spread component ξ describing
“large” locations. In addition to this prior sparsity of the signal part, this prior leads
to desirable shapes of the resulting Bayes rules. Note that here 0 ≤ ε ≤ 1 denotes
the mixing weight, not the random error component, and will be used throughout
this chapter in contamination priors.

In BAMS, the spread part ξ is chosen as θ ∼ DE(0,τ). The Bayes rule under the
squared error loss is

δπ(d) =
(1− ε) mξ (d) δξ (d)

(1− ε) mξ (d)+ ε DE
(

0, 1√
2μ

) , (14.4)

where

mξ (d) =
τe−|d|/τ − 1√

2μ e−
√

2μ|d|

2τ2 − 1/μ

and

δξ (d) =
τ(τ2 − 1/(2μ))de−|d|/τ+ τ2(e−|d|√2μ − e−|d|/τ)/μ

(τ2 − 1/(2μ))(τe−|d|/τ− (1/
√

2μ)e−|d|√2μ)

are the prior predictive distribution and the Bayes rule for the spread part of the
prior, ξ . Rule (14.4) is the BAMS rule, which falls between comparable hard and
soft thresholding rules.



14 Bayesian Wavelet Shrinkage Strategies: A Review 323

Bayes rules under the squared error loss and regular models are never
thresholding rules. To extend this motivating example, we consider the posterior
median as an estimator for θ . It is well known that under the absolute error
loss L(θ ,d) = |θ − d|, the posterior risk is minimized by the posterior median.
The posterior median was first considered by Abramovich et al. [7] in the context
of wavelet shrinkage. It could be a thresholding rule, which is preferable to smooth
shrinkage rules in many applications, like model selection, data compression,
dimension reduction, and related statistical tasks in which it is desirable to replace
by zero a majority of the processed coefficients.

For the model above the posterior distribution is π�(θ |d) = f (d|θ )π(θ )/mπ(d),
where

mπ(d) = (1− ε) mξ (d)+ ε DE

(
0,

1√
2μ

)
.

In order to find the median of the posterior distribution, the solution of the following
equation, with respect to u, is needed:

∫ u

−∞
π�(θ |d)dθ =

1
2
. (14.5)

It is easy to show with simple calculus that if d ≥ 0,

max
∫ 0−

−∞
π�(θ |d)dθ =

1
2
, (14.6)

and in case d < 0,

min
∫ 0

−∞
π�(θ |d)dθ =

1
2
. (14.7)

Because π�(θ |d) is a probability density, the integral in (14.5) is non-decreasing
in u. Therefore, by using results (14.6) and (14.7), the posterior median is always
greater than equal to zero, when d ≥ 0, and less than equal to zero, when d < 0.

To find the posterior median, first consider the case d ≥ 0. We know that the
solution u satisfies u ≥ 0. The equation in (14.5) becomes

ε
√

2μ
2 e−

√
2μd +(1− ε)

√
2μ

4τ e−
√

2μd
{

1√
2μ+1/τ +

1√
2μ−1/τ

[
e(
√

2μ−1/τ)u − 1
]}

mπ(d)
=

1
2
.

Next, assume d < 0. Then the solution satisfies u ≤ 0 and (14.5) becomes:

(1− ε)
√

2μ
4τ

{
1√

2μ+1/τ ed/τ + 1√
2μ−1/τ ed/τ − 1√

2μ−1/τ e−(
√

2μ−1/τ)u
}

mπ(x)
=

1
2
.



324 N. Reményi and B. Vidakovic

From the above, the algorithm for finding the posterior median δM(d) is:

For d > 0,

if
ε
√

2μ
2 e−

√
2μd +(1− ε)

√
2μ

4τ e−
√

2μd 1√
2μ+1/τ

mπ(d)
>

1
2
, δM(d) = 0

else δM(d) =
1√

2μ− 1/τ
log

{[
mπ(d)/2− ε

√
2μ
2 e−

√
2μd

(1− ε)
√

2μ
4τ e−

√
2μd

+
2/τ

2μ− 1/τ2

]
(
√

2μ− 1/τ)

}
.

For d < 0,

if
(1− ε)

√
2μ

4τ

[
1√

2μ+1/τ ed/τ + 1√
2μ−1/τ ed/τ − 1√

2μ−1/τ e(
√

2μ−1/τ)d
]

mπ(d)
<

1
2
,

δM(d) = 0

else δM(d) =− 1√
2μ− 1/τ

log

{
−
[ mπ (d)/2

(1−ε)
√

2μ
4τ

− 1√
2μ+1/τ ed/τ

1√
2μ−1/τ e

√
2μd

− e−(
√

2μ−1/τ)d

]}
.

For d = 0,

δM(d) = 0. (14.8)

The rule δM(d) based on algorithm (14.8) is the BAMS-MED rule. As evident from
Fig. 14.1, the BAMS-MED rule is a thresholding rule.

14.3 Bayesian Wavelet Regression

14.3.1 Term-by-Term Shrinkage

As we indicated in the introduction, the most popular application of wavelets is the
nonparametric regression problem

yi = f (xi)+ ei, i = 1, . . . ,n.

The usual assumptions are that xi, i = 1, . . . ,n are equispaced (e.g., time points), and
the random errors ei are i.i.d. normal, with zero mean and variance σ2. The interest
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Fig. 14.1 BAMS-MED rule (14.8) for ε = 0.9, μ = 1, and τ = 2

is to estimate the function f using the observations y. After applying a linear and
orthogonal wavelet transform, the problem becomes

d jk = θ jk + ε jk,

where d jk, θ jk, and ε jk are the wavelet coefficients (at resolution j and position k)
corresponding to y, f , and e, respectively.

Due to the whitening property of wavelet transforms [39], many existing methods
assume independence of the wavelet coefficients and model the wavelet coefficients
one by one using notation for a generic wavelet coefficient, d = θ + ε . Shrinkage is
performed term by term, which is sometimes referred to as diagonal shrinkage.

An early example of the diagonal Bayesian approach to wavelet regression is
the adaptive Bayesian wavelet shrinkage (ABWS) proposed by Chipman et al. [27].
Their approach is based on the stochastic search variable selection (SSVS) proposed
by George and McCulloch [41], with the assumption that σ is known.

Chipman et al. [27] start with the model

d|θ ,σ2 ∼ N(θ ,σ2).

The prior on θ is defined as a mixture of two normals

θ |γ j ∼ γ jN(0,(c jτ j)
2)+ (1− γ j)N(0,τ2

j ),
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where

γ j ∼ Ber(p j).

Because the hyperparameters p j,c j, and τ j depend on the level j to which the
corresponding θ (or d) belongs, and can be level-wise different, the method is
adaptive.

The Bayes rule under squared error loss for θ (from the level j) has an explicit
form,

δ (d) =

[
P(γ j = 1|d) (c jτ j)

2

σ2 +(c jτ j)2 +P(γ j = 0|d) τ2
j

σ2 + τ2
j

]
d, (14.9)

where

P(γ j = 1|d) = p jπ(d|γ j = 1)
(1− p j)π(d|γ j = 0)

and

π(d|γ j = 1)∼ N(0,σ2 +(c jτ j)
2) and π(d|γ j = 0)∼ N(0,σ2 + τ2

j ).

For other early examples of the Bayesian approach to wavelet regression see
papers, for example, by Abramovich et al. [7, 28, 31, 85].

A more recent paper by Johnstone and Silverman [51] presents a class of
empirical Bayes methods for wavelet shrinkage. The hyperparameters of the model
are estimated by marginal maximum likelihood; therefore, the threshold is estimated
from the data. The authors consider different level-dependent priors, all of which are
a mixture of point mass at zero and a heavy-tailed density. One of the choices for the
heavy-tailed density is the double exponential (Laplace) prior, for which we present
the posterior mean to exemplify their methodology.

At level j of the wavelet decomposition, define the sequence zk = d jk/σ j, where
σ j is the standard deviation of the noise at level j, which is estimated from the data.
Therefore, zk = μk+εk, where the εk are i.i.d. N(0,1) random variables. The authors
model parameters μk with independent mixture prior distributions

π(μ) = (1−w)δ0(μ)+wγ(μ),

where δ0(μ) denotes a point mass at zero. Using the double exponential distribution
γa(μ) = 1

2 exp{−a|μ |}, with scale parameter a > 0, the marginal distribution of z
becomes

m(z) = (1−w)ϕ(z)+wg(z),
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where ϕ denotes the standard normal density and

g(z) = 1
2 aexp

{
1
2 a2}[e−azΦ(z− a)+ eazΦ̃(z+ a)

]
.

In the above equation Φ denotes the cumulative distribution of the standard normal
and Φ̃ = 1−Φ . The posterior distribution of μ becomes

π�(μ |z) = (1−wpost)δ0(μ)+wpost f1(μ |z),

where the posterior probability wpost is

wpost(z) = wg(z)
/
[wg(z)+ (1−w)ϕ(z)]

and

f1(μ |z) =
{

eazϕ(μ− z− a)
/[

e−azΦ(z− a)+ eazΦ̃(z+ a)
]
, μ ≤ 0

e−azϕ(μ− z+ a)
/[

e−azΦ(z− a)+ eazΦ̃(z+ a)
]
, μ > 0,

which is a weighted sum of truncated normal distributions. Detailed derivations of
g(z) and f1(μ |z) are provided by Pericchi and Smith [72]. It can be shown that the
posterior mean is

E(μ |z) = wpost(z)

[
z− a

[
e−azΦ(z− a)− eazΦ̃(z+ a)

]
e−azΦ(z− a)+ eazΦ̃(z+ a)

]
. (14.10)

A schematic picture of the posterior mean (14.10) is presented in Fig. 14.2 for
w = 0.1 and a = 0.5. It exhibits a desirable shrinkage pattern slightly shrinking
large and heavily shrinking small coefficients in magnitude.

The mixing weight w and scale parameter a are estimated by marginal maximum
likelihood for each dyadic level j. The authors also provide the posterior median for
the above model and closed-form equations for the posterior mean and median in
case γ(μ) is a quasi-Cauchy distribution. For more details and related theoretical
results the reader is referred to [51], and for more examples using the method,
see [52].

Several more recent papers have considered term-by-term Bayesian wavelet
shrinkage. Angelini and Sapatinas [10] consider an empirical Bayes approach to
wavelet regression by eliciting the ε-contamination class of prior distributions
and using type II maximum likelihood approach to prior selection. Angelini and
Vidakovic [11] show that Γ -minimax shrinkage rules are Bayes with respect to a
least favorable contamination prior with a uniform spread distribution. Their method
allows for incorporation of information about the energy in the signal of interest.
Cutillo et al. [32] consider thresholding rules induced by a variation of the Bayesian
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Fig. 14.2 Posterior mean rule (14.10) for w = 0.1 and a = 0.5

MAP principle in a properly set Bayesian model. The rule proposed is called larger
posterior mode (LPM) because it always picks the mode of the posterior larger
in absolute value. Ter Braak (2006) extends the normal Bayesian linear model by
specifying a flat prior on the δ th power of the variance components of the regression
coefficients. In the orthonormal case, easy-to-compute analytic expressions are
derived, and the procedure is applied in a simulation study of wavelet denoising.

14.3.2 Bayesian Block Shrinkage

Methods considered above are called diagonal, since the wavelet coefficients are
assumed independent. In reality the wavelet coefficients are dependent, but this
dependence is weak and decreases with increasing the separation distance between
them and the number of vanishing moments of the decomposing wavelet. Many
authors argued that shrinkage performance can be improved by considering the
neighborhoods of wavelet coefficients (blocks, parent-child relations, cones of
influence, etc.) and report improvements over the diagonal methods. Examples
include classical block thresholding methods by Hall et al. [19–21, 44–46] where
wavelet coefficients are thresholded based on block sums of squares.
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Abramovich et al. [4] considered an empirical Bayes approach to incorporating
information on neighboring wavelet coefficients into function estimation. The
authors group wavelet coefficients d jk into m j nonoverlapping blocks b jK (K =
1, . . . ,m j) of length l j at each resolution level j. The block of observed wavelet
coefficients will be denoted as b̂ jK . They consider the following prior model for
blocks b jK :

b jK |γ jK ∼ N(0,γ jKVj),

γ jK ∼ Ber(π j).

Independence of blocks across different resolution levels is assumed. This prior
model allows for a covariance structure between neighboring coefficients in the
same block, supporting the fact that wavelet coefficients are more likely to contain
signal if this is true for their neighbors as well. The covariance matrix Vj is specified
at each level j by two hyperparameters τ j and ρ j, where the correlation between
the coefficients, ρ j, decreases as the distance between the coefficients increases.
Combining the prior model with the likelihood b̂ jK ∼ N(b jK ,σ2I) leads to the
posterior mean of b jK as

E(b jK |b̂ jK) =
1

1+O jK
A jb̂ jK , (14.11)

where

O jK =
1−π j

π j

(
det(Vj)

σ2l j det(A j)

)1/2

exp

{
− b̂

′
jKA jb̂ jK

2σ2

}
,

A j = (σ2V−1
j + I)−1.

Rule (14.11) is a nonlinear block shrinkage rule, by which the observed wavelet
coefficients in block jK are shrunk by the same factor determined by all
the coefficients within the block. The authors also provide details for the posterior
median and the Bayes factor procedure, which are individual and block thresholding
rules, respectively.

Hyperparameters π j, τ j , and ρ j are estimated by marginal maximum likelihood
method for each level j, and hyperparameter σ is estimated by the standard median
absolute deviation suggested by Donoho and Johnstone [35]. After plugging in
the estimate σ̂ and some reparametrization, the negative log-likelihood function
−l j(π j,τ j ,ρ j, σ̂) was minimized by the Nelder–Mead simplex search method.

The authors present detailed simulation study of the method and an application
to inductance plethysmography data. For details the reader is referred to [4].

A paper by De Canditiis and Vidakovic [34] proposed the BBS (Bayesian
block shrinkage) method, which also allows for dependence between the
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wavelet coefficients. The modeling is accomplished by using a mixture of two
normal-inverse-gamma (NIG) distributions as a joint prior on wavelet coefficients
and noise variance within each block. In this sense it is a generalization of the
ABWS method by Chipman et al. [27]. The authors group the wavelet coefficients
into nonoverlapping, mutually independent blocks ddd jH of size l j. Assuming a
normal likelihood ddd jH ∼ N(θθθ jH ,σ2I), the prior model is specified as

θθθ jH ,σ2|γ j ∼ γ jNIG(α,δ ,000,Σ j)+ (1− γ j)NIG(α,δ ,000,Δ j),

γ j ∼ Ber(p j),

where the covariance matrices are specified as Σ [s, t] = c2
jρ |s−t| and Δ [s, t] =

τ2
j ρ |s−t|, which is in the same fashion as in [4]. The first part of the above mixture

prior models wavelet coefficients with large magnitude (c j ( 1) and the second
part captures small coefficients (τ j is small), similarly to the ABWS method.
The posterior distribution for the model above remains a mixture of NIG distribution
with mixing weights updated by the observed wavelet coefficients. The posterior and
marginal distributions are derived in the paper. The posterior mean of θθθ jH becomes

E(θθθ jH |ddd jH) = A jH(ddd jH)mmm
�
jH +(1−A jH(ddd jH))mmm

��
jH , (14.12)

where

A jH(ddd jH) =
p j

|Σ�
j |1/2

|Σ j |1/2

p j
|Σ�

j |1/2

|Σ j |1/2 +(1− p j)
|Δ��

j |1/2

|Δ j |1/2 +

[
α+dddT

jH (I−Δ��
j )ddd jH

α+dddT
jH (I−Σ�

j )ddd jH

]−(δ+l j)/2

and

Σ�
j = (Σ−1

j + I)−1,

Δ��
j = (Δ−1

j + I)−1,

mmm�
jH = Σ�

j ddd jH ,

mmm��
jH = Δ��

j ddd jH .

The posterior mean (14.12) is a linear combination of two affine shrinkage
estimators mmm�

jH and mmm��
jH , which preserve the smooth part and remove the noise,

respectively. The weight A jH(ddd jH) depends on the observed wavelet coefficients in
a nonlinear fashion. For more details on hyperparameter selection, simulations, and
performance the reader is referred to [34].
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Huerta [47] proposed a multivariate Bayes wavelet shrinkage method which
allows for correlations between wavelet coefficients corresponding to the same level
of detail. The paper assumes the multivariate normal likelihood for the observed
wavelet coefficients, that is,

d|θ ,σ2 ∼ N(θ ,σ2In).

Note that the wavelet coefficients are not grouped into blocks, as opposed to the
methods discussed before. The prior structure is specified as

θ |τ2 ∼ N(0,τ2Σ),

σ2 ∼ IG(α1,δ1),

τ2 ∼ IG(α2,δ2),

where Σ is an n× n matrix defining the prior correlation structure among wavelet
coefficients. The matrix is specified as a block diagonal matrix, where each block
defines the correlation structure for different wavelet decomposition level. The
building blocks of matrix Σ are defined in the same way as in the methods discussed
above.

Since there is no closed-form expression for the marginal posterior π�(θ |d), a
standard Gibbs sampling procedure is adopted to obtain posterior inferences on the
vector of wavelet coefficients d. For further details and applications of the method
the reader is referred to [47].

Wang and Wood [93] considered a different approach for Bayesian block
shrinkage, based directly on the block sum of squares. The sum of squares of
the coefficients in the block forms a noncentral chi-square random variable, on
which the Bayesian model is formulated. Let ĉB denote the block of empirical
wavelet coefficients, B representing the labels and n(B) the number of labels, in
general. Then the assumed likelihood function is ĉB ∼ Nn(B)(cB,σ2In(B)). Define
z = ‖ĉB‖2 = Σi∈Bĉ2

i , the sum of squares of the coefficients in the block. It follows
that z ∼ χ2

m(z|ρ ,σ2), that is, z has noncentral χ2 distribution with m = n(B) degrees
of freedom, noncentrality parameter ρ = ‖cB‖2, and scale parameterσ2. The authors
formulate the prior model on the noncentrality parameter as

ρ |β ∼ χ2
m(ρ |0,β−1),

β |σ2,θ ∼ F(β |σ2,θ ).

In other words this specifies a central χ2 density with m degrees of freedom and
scale parameter β−1 as a prior for ρ and specifies a prior for β with cumulative
distribution function F(β |σ2,θ ). Their article focuses on a mixture structure

F(β |σ2,θ ) = pF(β |σ2,λ ,J = 1)+ (1− p)F(β |σ2,λ ,J = 0),
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where

F(β |σ2,λ ,J = 1) = I{β=∞}(β ).

Here J is a Bernoulli random variable, with J = 0 corresponding to a distribution
on the right side of the mixture, and J = 1 referring to a point mass at infinity
distribution. Using an identity satisfied by the noncentral χ2 density the authors
provide closed-form equations for the marginal distribution and the posterior mean
of ρ for the model setup above. The equations are the function of F(β |σ2,λ ,J = 0),
which is to be specified. The authors consider four particular cases of this prior, the
point mass prior, the power prior, the exponential prior, and general discrete prior.
For the power prior—on which the paper focuses on—the marginal distribution and
posterior mean of ρ is derived as

f
(
z|σ2,θ

)
= pχ2

m

(
ρ |0,σ2)+(1− p)

(λ + 1)
(
2σ2

)λ+1

Γ
(

1
2 m
)

zλ+2
γ
(
η ,

z
2σ2

)
,

E
(
ρ |z,σ2,θ

)
= (1−π)

{
mσ2 + z− mσ2 + 2z

z/(2σ2)
Cη,1

( z
2σ2

)
+

4σ4

z
Cη,2

( z
2σ2

)}
,

where

π =
pχ2

m(ρ |0,σ2)

f (z|σ2,θ )
,

Cη, j(x) = γ(η+ j,x)/γ(η ,x),

η = 1+λ +
1
2

m,

γ(a,x) =
∫ x

0
ta−1e−tdt.

Hyperparameter σ2 is estimated analogously to the median absolute deviation
estimator suggested by Donoho and Johnstone [35], hyperparameter λ is estimated
by a “quick-and-dirty” heuristics, and finally hyperparameter p is estimated by
marginal maximum likelihood. Given values of hyperparametersσ2 and θ = (p,λ ),
the authors propose to estimate wavelet coefficients cB by the shrinkage procedure

cB = ĉB{Bσ2,θ (z)/z} 1
2 , (14.13)

where Bσ2,θ (z) denotes the posterior mean or posterior median of ρ . The authors
report good MSE results based on simulations on well-known test functions. For
more details the reader is referred to [93].
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There is a wide range of other articles considering Bayesian modeling of
neighboring wavelet coefficients. To name a few, [76] use a Bayesian hidden
Markov tree (HMT) to model the structure of wavelet coefficients in images.
Jansen and Bultheel [48] introduce a geometrical prior model for configurations
of wavelet coefficients and combine this with local characterization of a classical
thresholding into a Bayesian framework. Sendur and Selesnick [80] use parent–
child neighboring relation and Laplacian bivariate prior to derive MAP estimators
for wavelet coefficients. Pižurica et al. [73] use a Markov random field (MRF)
prior model to incorporate inter- and intrascale dependencies of wavelet coefficients.
Portilla et al. [74] models neighborhoods of image wavelet coefficients at adjacent
positions and scales using scale mixtures of Gaussians.

A recent non-Bayesian development was proposed by Fryzlewitz [40] in a form
of fast, hard-thresholding algorithm based on coupling parents and children in the
wavelet coefficient tree.

14.3.3 Complex Wavelet Shrinkage

Wavelet shrinkage methods using complex-valued wavelets provide additional
insights to shrinkage process. Lina and Mayrand [61] describes the complex-
valued Daubechies’ wavelets in detail. Both complex- and real-valued Daubechies’
wavelets are indexed by the number of vanishing moments, N. For a given N, there
are 2N−1 solutions to the defining equations of Daubechies’ wavelets, of which
not all are distinct. For example, in case N = 3, there are four possible solutions
to the defining equations, but only two are distinct. Two solutions give the real-
valued extremal-phase wavelet and the other two are a complex-valued conjugate
pair, giving equivalent complex-valued wavelets. This complex wavelet was also
derived by Lawton [56] through “zero-flipping”; he notes that apart from the Haar
wavelet, complex wavelets with an odd number of vanishing moments are the only
compactly supported wavelets which are symmetric. The complex-valued wavelet
transformation can also be represented by a complex-valued matrix W , which is
unitary; therefore, W̄ TW =WW̄ T = I. Here W̄ denotes the complex conjugate of W .

After taking complex wavelet transformation of a real-valued signal, our model
becomes

d jk = θ jk + ε jk,

where the observed wavelet coefficients d jk are complex numbers at resolution j
and location k.

Several papers considering Bayesian wavelet shrinkage with complex wavelets
are available. For example, [59, 60, 62] focus on image denoising, in which the
phase of the observed wavelet coefficients is preserved, but the modulus of the
coefficients is shrunk by the Bayes rule.

Here we summarize the complex empirical Bayes (CEB) procedure proposed by
Barber and Nason [14], which modifies both the phase and modulus of wavelet
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coefficients by a bivariate shrinkage rule. The authors assume a common i.i.d.
normal noise model eee ∼ Nn(000,σ2In); however, after taking complex wavelet
transform, the real and imaginary parts of the transformed noise εεε = W eee become
correlated. The authors demonstrate that

cov{Re(εεε), Im(εεε)} = −σ2Im(WW T )/2,

cov{Re(εεε),Re(εεε)} = σ2{In +Re(WW T )}/2,

cov{Im(εεε), Im(εεε)} = σ2{In −Re(WW T )}/2. (14.14)

Representing the complex-valued wavelet coefficients as a bivariate real-valued
random variables, the model for the observed wavelet coefficients becomes

d jk|θ jk ∼ N2(θ jk,Σ j),

where Σ j is determined by (14.14) for each dyadic level j. Noise variance σ2 is
estimated by the usual median absolute deviation by Donoho and Johnstone [35].

The authors consider a bivariate mixture prior of the form

θ jk ∼ p jN2(000,Vj)+ (1− p j)δ0,

where δ0 is the usual point mass probability at (0,0)T . This prior is the bivariate
extension of the prior considered by Abramovich et al. [7]. Conjugacy of the normal
distribution results in the posterior distribution

θ jk|d jk ∼ p̃ jkN2(μ jk,Ṽj)+ (1− p̃ jk)δ0,

where

p̃ jk =
p j f (d jk|p j = 1)

p j f (d jk|p j = 1)+ (1− p j) f (d jk|p j = 0)
,

f (d jk|p j = 1) =
1

2π
√|Vj +Σ j|

exp

{
−1

2
dT

jk(Vj +Σ j)
−1d jk

}
,

f (d jk|p j = 0) =
1

2π
√|Σ j|

exp

{
−1

2
dT

jkΣ
−1
j d jk

}
,

Ṽj =
(

V−1
j +Σ−1

j

)−1
and μ jk = ṼjΣ−1

j d jk.

The posterior mean of θ jk becomes

E(θ jk) = p̃ jkμ jk, (14.15)
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which is denoted as “CEB-Posterior mean.” The authors consider two additional
estimation rules, the phase-preserving “CEB-Keep or kill” and the hybrid “CEB-
MeanKill” procedure.

Estimation of the prior parameters p j and Vj is employed by the data-driven
empirical Bayes approach maximizing the logarithm of the marginal likelihood.
However, optimizing the bivariate likelihood is more involved because we have
more parameters compared to the real-valued case.

Barber and Nason [14] present an extensive simulation study of the CEB
method alongside with the phase-preserving CMWS hard-thresholding method also
developed in their paper. Simulations show that complex-valued denoising is very
effective and dominates existing real-valued wavelet shrinkage methods.

14.3.4 Complex Wavelet Shrinkage via Gibbs Sampling

In this section, we describe a new adaptive wavelet denoising methodology using
complex wavelets. The method is based on a fully Bayesian hierarchical model that
uses a bivariate mixture prior. The crux of the procedure is computational in which
the posterior mean is computed through MCMC simulations.

We build on the results of [14] and formulate a bivariate model in the complex
wavelet domain, representing the wavelet coefficients as bivariate real-valued
random variables. As standardly done in Bayesian modeling, we formulate a
hierarchical model which accounts for the uncertainty of the prior parameters by
adopting hyperpriors on them. Since a closed-form solution to the Bayes estimator
does not exist, MCMC methodology is applied and an approximate estimator
(posterior mean) from the output of simulational runs is computed. Although the
simplicity of a closed-form solution is lost, the procedure is fully Bayesian, adaptive
to the underlying signal and the estimation of the hyperparameters is automatic
via the MCMC sampling algorithm. The estimation is governed by the data and
hyperprior distributions on the parameters.

We start with the following hierarchical bivariate Bayesian model on the
observed complex-valued wavelet coefficients d jk:

d jk|θ jk,σ2 ∼ N2(θ jk,σ2Σ j),

θ jk|ε j ,Cj ∼ (1− ε j)δ0 + ε jEP2(μ ,Cj ,β ), (14.16)

where EP2 denotes the bivariate exponential power distribution. The multivariate
exponential power distribution is an extension of the class of normal distributions in
which the heaviness of tails can be controlled. Its definition and properties can be
found in [42]. The prior on the location θ jk is a bivariate extension of the standard
mixture prior in the Bayesian wavelet shrinkage literature, consisting of a point mass
at zero and a heavy-tailed distribution. As a prior, [14] considered a mixture of point
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mass and bivariate normal distribution. A heavy-tailed mixture prior can probably
better capture the sparsity of wavelet coefficients; however, in the bivariate case, a
closed-form solution is infeasible, and we rely on MCMC simulation.

To specify the general case exponential power prior in (14.16), we use μ = 0,
because the wavelet coefficients are centered around zero by their definition. We
also fix β = 1/2, which gives our prior the following form:

π(θ |C) = 1

8π |C|1/2
exp

{
−1

2

(
θ ′C−1θ

)1/2
}
. (14.17)

The prior in (14.17) is equivalent to the bivariate double exponential distribution.
The univariate double exponential prior was extensively used in the real-valued
wavelet context, hence it is natural to extend it to the bivariate case.

From model (14.16) it is apparent that the mixture prior on θ jk is set level-
wise, for each dyadic level j, which ensures the adaptivity of the method. Quantity
σ2Σ j represents the scaled covariance matrix of the noise for each decomposition
level, and Cj represents the level-wise scale matrix in the exponential power prior.
Explicit expression for the covariance (Σ j) induced by white noise in complex
wavelet shrinkage can be found in [14] and mentioned above in (14.14). We adopt
the approach described in their paper to model the covariance structure of the noise.

Instead of estimating hyperparameters σ2, ε j, and Cj, we specify hyperprior
distributions on them in a fully Bayesian manner. We specify a conjugate inverse
gamma prior on the noise variance σ2 and an inverse-Wishart prior on the matrix
Cj describing the covariance structure of the spread prior of θ jk. Mixing weight
ε j regulates the strength of shrinkage of a wavelet coefficient to zero. We specify
a “noninformative” uniform prior on this parameter, allowing the estimation to be
fully governed by the data.

For computational purposes, we represent our exponential power prior as a scale
mixtures of multivariate normal distributions, which is an essential step for efficient
Monte Carlo simulation. From [43], the bivariate exponential power distribution
with μ = 0 and β = 1/2 can be represented as

EP2(μ = 0,Cj,β = 1/2) =
∫ ∞

0
N2(0,vCj)

1

Γ (3/2)83/2
v1/2e−v/8dv,

which is a scale mixtures of bivariate normal distributions with mixing distribution
gamma. Using the specified hyperpriors and the mixture representation, the model
in (14.16) extends to

d jk|θ jk,σ2 ∼ N2(θ jk,σ2Σ j),

σ2 ∼ IG(a,b),

θ jk|z jk,v jk,Cj ∼ (1− z jk)δ0 + z jkN2(0,v jkCj),
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z jk|ε j ∼ Ber(ε j),

ε j ∼ U(0,1),

v jk ∼ Ga(3/2,8),

Cj ∼ IW(A j,w). (14.18)

Note that, for computational purposes, we also introduced a latent variable z jk

in the above model. Variable z jk is a Bernoulli variable indicating whether our
parameter θ jk comes from a point mass at zero (z jk = 0) or from a bivariate
normal distribution (z jk = 1). By representing the exponential power prior as a
scale mixtures of normals, the hierarchical model in (14.18) becomes tractable,
because the full conditional distributions of all the parameters become explicit.
Therefore, we can develop a Gibbs sampling algorithm to update all the necessary

parameters. We used the sample average θ̂ jk = Σiθ
(i)
jk /N of the simulational runs,

as the standard estimator for the posterior mean. To apply the Gibbs sampling
algorithm we only need to specify hyperparameters a, b, A j, and w, which influence
lower level of the hierarchical model. The rest of the parameters are updated via
the Gibbs sampling procedure. The method is called complex Gibbs sampling
wavelet smoother (CGSWS). For more details about the implementation, contact
the authors.

Application to Inductance Plethysmography Data

For illustration we apply the described CGSWS method to a real-world data set
from anesthesiology collected by inductance plethysmography. The recordings were
made by the Department of Anaesthesia at the Bristol Royal Infirmary and represent
measure of flow of air during breathing. The data set was analyzed by several
authors, for example, [4, 7, 66]. For more information about the data, refer to these
papers.

The top part of Fig. 14.3 shows a section of plethysmograph recording lasting
approximately 80 s (n = 4,096 observations), while the bottom part shows the
reconstruction of the signal with the CGSWS method. In the reconstruction process
we applied N = 5,000 iterations of the Gibbs sampler of which the first 2,000 was
burn-in. The aim of smoothing is to preserve features such as peak heights while
eliminating spurious rapid variation. The result provided by the proposed method
satisfies these requirements providing a very smooth result. Abramovich et al. [4]
report the heights of the first peak while analyzing this data set. In our case the
height is 0.8389, which is quite close to the result 0.8433, obtained by Abramovich
et al. [4], and better compared to the results obtained by other established methods
analyzed in their paper.
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Fig. 14.3 Reconstruction of the (IPD) inductance plethysmography data by CGSWS

14.3.5 Bayesian Wavelet Shrinkage in Curve Classification

We consider the paper by Wang et al. [92] to give an application of Bayesian
wavelet shrinkage in curve classification. The authors consider Bayesian wavelet-
based classification models for binary and multicategory data where the predictor is
a random function.

Functional data analysis deals with the analysis of data sets where the units are
curves that are ordered measurements on a regular grid. Functional data is frequently
encountered in scientific research. Classification of functional data is a relatively
new problem, and there are several approaches, from using simple summary
quantiles to nonparametric methods using splines. Wang et al. [92] propose a
Bayesian wavelet-based classification method, because wavelets are known to
have nice properties for representing a wide range of functional spaces including
functions with sharp-localized changes. The proposed method unifies wavelet-based
regression with logistic classification models, representing functional data using
wavelet basis functions and using the wavelet coefficients for classification within a
logistic model.

Consider data set {YYYiii,zi}, i = 1, . . . ,n, where YYY iii is a vector of m measurements
and zi is a binary classification variable. We represent the vector of measurements as
YYY iii = fff iii +εεε iii, where fff iii is an underlying nonparametric function and εεε iii ∼ N(0,σ2I).
Representing functions fff iii in wavelet basis we get YYY iii = XXXβββ iii + εεε iii, where XXX is the
discrete wavelet transformation matrix and βββ iii is the vector of wavelet coefficients.
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The authors consider the following unified hierarchical Bayesian model for wavelet
regression and classification:

Random function YYY iii ∼ N(XXXβββ iii,σ
2I),

βββ iii,σ
2|ηηη iii,ggg ∼ NIG(0,diag(ηηη iii)diag(ggg),aσ ,bσ ),

g j ∼ IG(u j,v j),

ηi jk ∼ Ber(ρ j).

Binary outcome zi ∼ Ber(pi),

Ti ∼ N(βββ ttt
iiiθθθ ,τ

2), where Ti = logit(pi),

θθθ ,τ2|γγγ,hhh ∼ NIG(0,diag(γγγ)diag(hhh),aτ ,bτ),

h j ∼ IG(c j,d j),

γ jk ∼ Ber(π j), (14.19)

for i = 1, . . . ,n, j = 1, . . . , log2 m, and k = 0, . . . ,2 j − 1.
The first part in (14.19) is a model for the observed random functions YYY iii, where

variable selection priors for the wavelet coefficients are adopted from the Bayesian
wavelet modeling literature similar to [34]. Parameter g j is a scaling parameter,
and parameter ηi jk is the usual latent indicator variable to model the sparsity of
the wavelet representation. The second part in (14.19) is a classification model for
variable zi ∈ {0,1} taking unit value with unknown probability pi. The logistic
classification model relates the wavelet coefficients βββ iii to the latent variable Ti =
logit(pi) through a linear model Ti = βββ ttt

iiiθθθ + δi, where δi ∼ N(0,τ2) and where θθθ is
a vector of regression coefficients. Similar variable selection prior for θθθ is assumed
as for βββ iii to reduce the dimensionality of the problem.

For functional data with binary outcomes the model in (14.19) is an extension
of a standard classification model with an additional layer of functional regression
model. Because the posterior distribution of the parameters is not available in
a standard form, posterior inference has to rely on MCMC methods. Wang et
al. [92] derive the full conditional distributions for the parameters, which allow
for implementation of a Gibbs sampling algorithm. The model in (14.19) is also
extended to multicategory classification by the authors.

14.3.5.1 Application to Leaf Data

Wang et al. [92] analyzed a data set from [53] that contains leaf images of six
different species. The data was converted into a pseudo-time series by measuring
local angle and trace of the leaf images. For a purpose of binary classification
analysis one maple (Circinatum) and one oak (Garryana) species were selected with
150 instances. Example curves adopted from [92] can be seen in Fig. 14.4.



340 N. Reményi and B. Vidakovic

20 40 60 80 100 120
−5

0

5

a

b

c

d

20 40 60 80 100 120
−5

0

5

20 40 60 80 100 120
−2

0

2

20 40 60 80 100 120
−2

0

2

Fig. 14.4 Adopted from [92]: “Pseudo-time series curves from leaf images. (a) and (b) Every
other curve in two species in the data set, 33 of Circinatum and 42 of Garryana. (c) and (d)
Example of single curve from two species, Circinatum and Garryana”

The classification was carried out by randomly selecting 140 curves from
the training and ten curves from the testing set. This was repeated 20 times,
and the correct classification rate (CCR) was reported. The proposed wavelet-
based classification method had CCR=94% and outperformed all other methods
considered, including empirical Bayes thresholding plugged into a support vector
machine (SVM) classifier. The authors carried out analysis for other existing and
simulated data sets, including nonequispaced and multicategory data, and reported
good performance. For more details the reader is referred to [92].

14.3.6 Related Work

There are numerous papers related to wavelet shrinkage and wavelet regression.
Here we list some additional references related to the topics discussed in this
chapter, as a repository for researchers interested in the area.
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For related overview summaries about wavelet methods see [3, 12, 67], for
example. An excellent critical overview and simulation study comparing different
wavelet shrinkage methods can be found in [13]. Articles focusing only on Bayesian
wavelet-based modeling include [65, 78, 86].

Some recent results about theoretical properties and optimality of Bayesian
wavelet estimators can be found in [1, 2, 16, 17, 51, 70, 71].

There are several papers on Bayesian wavelet estimation in the signal and image
processing community. These papers usually specify a single, nonmixture prior
on the wavelet coefficients and compute a Bayes estimator. Posterior mode is a
popular choice, which is used, for example, by Figueiredo and Nowak [38, 64],
who use generalized Gaussian and complexity priors to model wavelet coefficients.
Other articles in this group include [18] using approximate α-stable prior, [23]
using generalized Gaussian distribution (GCD) as a prior, [37] using Bessel K
forms (BKF) densities, and [58] using Besov norm priors for modeling wavelet
coefficients. Achim and Kuruoğlu [8] develop a bivariate maximum a posteriori
estimator using a bivariate α-stable distribution to model wavelet coefficients in the
complex wavelet domain.

Some non-Bayesian improvements related to block thresholding include [20, 22,
24–26, 36], to name a few. More general theoretical results about block empirical
Bayes estimation appear in [95].

All Bayesian estimators depend on hyperparameters that have to be specified.
Purely subjective elicitation is only possible when considerable knowledge about
the underlying signal is available. The empirical Bayes method is an efficient, com-
pletely data-driven procedure to estimate the hyperparameters based on marginal
maximum likelihood method. Several papers in the literature used this method to
estimate hyperparameters of the model. For more information about the method
see, for example, papers by Clyde and George [29, 30, 50, 51].

The usual assumptions for wavelet regression are equispaced sampling points
with a sample size being a power of 2, i.i.d. normal random errors with zero
mean and constant variance. Extension of these assumptions has been considered
in several articles. To name a few non-Bayesian procedures, [49] consider wavelet
thresholding with stationary correlated noise, and [55] extend wavelet threshold-
ing to irregularly spaced data, to equally spaced data sets of arbitrary size, to
heteroscedastic and correlated data, and to data which contains outliers. An early
example of a Bayesian wavelet shrinkage method incorporating theoretical results
on the covariance structure of wavelet coefficients is by Vannucci and Corradi [84].
Ambler and Silverman [9] allow for the possibility that the wavelet coefficients
are locally correlated in both location (time) and scale (frequency). This leads to
an analytically intractable prior structure; however, they show that it is possible to
draw independent samples from a close approximation to the posterior distribution
by an approach based on coupling from the past, making it possible to take a
simulation-based approach to wavelet shrinkage. Wang and Wood [94] consider a
Bayesian wavelet shrinkage method which includes both time and wavelet domain
methods to estimate the correlation structure of the noise and a Bayesian block
shrinkage procedure based on [93]. Ray and Mallick [75] develop a Bayesian
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wavelet shrinkage method to accommodate broad class of noise models for image
processing applications. The method is based on the Box-Cox family of power
transformations.

Kohn et al. [54] develop a wavelet shrinkage method which incorporates a
Bayesian approach for automatically choosing among wavelet bases and averaging
of the regression function estimates over different bases.

Barber et al. [15, 79] derive Bayesian credible intervals for Bayesian wavelet re-
gression estimates based on cumulants and saddlepoint approximation, respectively.

Olhede and Walden [69] discuss an “analytic” wavelet thresholding which
incorporates information from the discrete Hilbert transform of the signal, creating
a complex-valued “analytic” vector. A recent paper describing a data-adaptive
thresholding by controlling the false discovery rate (FDR) is by Abramovich
et al. [5]. A Bayesian interpretation of the FDR procedure and application to wavelet
thresholding can be found in [82].

Application of the Bayesian maximum a posteriori multiple testing (testimation)
procedure to wavelet thresholding can be found in [6].
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Chapter 15
Multiparameter Regularization for Construction
of Extrapolating Estimators in Statistical
Learning Theory
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Abstract One-parameter regularization methods, such as the Tikhonov
regularization, are used to solve the operator equation for the estimator in
the statistical learning theory. Recently, there has been a lot of interest in the
construction of the so called extrapolating estimators, which approximate the input–
output relationship beyond the scope of the empirical data. The standard Tikhonov
regularization produces rather poor extrapolating estimators. In this paper, we
propose a novel view on the operator equation for the estimator where this equation
is seen as a perturbed version of the operator equation for the ideal estimator.
This view suggests the dual regularized total least squares (DRTLS) and multi-
penalty regularization (MPR), which are multi-parameter regularization methods,
as methods of choice for constructing better extrapolating estimators. We propose
and test several realizations of DRTLS and MPR for constructing extrapolating
estimators. It will be seen that, among the considered realizations, a realization of
MPR gives best extrapolating estimators. For this realization, we propose a rule for
the choice of the used regularization parameters that allows an automatic selection
of the suitable extrapolating estimator.
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15.1 Introduction

Let us consider a system as a functioning entity that takes an input and gives the
output. In many scientific studies, one would like to understand how a specific
system performs, i.e., given an input how the system produces the output. In
particular, one would like to be able to predict the system output. It is very
difficult to access the internal structure of many systems, and this complicates the
discovery of the system internal functioning mechanisms. In this case, the available
information about the system are input–output pairs, which are obtained from the
system observations and often called the empirical data.

In machine learning [1, 7, 27], a part of computer science, one is concerned with
the design and development of algorithms, called (machine) learning algorithms,
that allow computers (machines) to predict (to make a decision about) the system
output based on the empirical data from the system observations.

The analysis of learning algorithms is done in the framework of (computa-
tional) learning theories. One of such theories is the so-called statistical learning
theory [30, 33]. According to this theory, the learning algorithm should construct a
function, called an estimator, that approximates well the relationship between sys-
tem input and system output. The theory defines the measure of the approximation
quality of an estimator and, according to this measure, an ideal estimator that has
the best approximation quality over a specified function space.

Usually, the ideal estimator cannot be constructed. So, the task of the learning
algorithm is to use the empirical data for constructing an estimator that converges
to the ideal estimator when the number of observations goes to infinity. The theory
suggests a natural approach for constructing an estimator based on the empirical
data. This approach leads to an operator equation for the estimator.

As it was observed in [14, 20], there is a similarity between the construction of
an estimator and the solution of inverse problems, which are usually formulated
as operator equations [15, 17, 18, 31]. Many inverse problems are ill-posed, and for
their stable solution, one uses the so-called regularization methods. The operator
equation for the estimator in the statistical learning theory is also ill-posed: it does
not have a unique solution, and many solutions of this equation are far away from
the desired ideal estimator. So, this suggests to apply the regularization methods
from the theory of inverse problems. In [16, 29], it was proposed to use the
Tikhonov regularization method for solving the operator equation for the estimator.
Application of general regularization methods, which are used for solving ill-posed
inverse problems, is considered in [4].

One can distinguish between two types of estimators: interpolating and extrapo-
lating. In the case of the interpolating estimator, the inputs in the empirical data are
coming from some specified set, and further inputs are also expected to come from
this set. One can also say that the interpolating estimator provides a prediction at the
unknown inputs within the set that is defined by the existing observations. Whereas,
the extrapolating estimator provides a prediction outside this set.
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It has been observed that Tikhonov regularization could give good interpolating
estimators. On the contrary, the extrapolating estimators that are constructed by the
Tikhonov regularization have a rather poor approximation quality. Thus, alternative
methods for constructing extrapolating estimators are needed.

Our analysis of the operator equation for the estimator suggests that it can be
viewed as a perturbed version of the operator equation for the ideal estimator where
both the operator and the right-hand side are modified (perturbed). Recently, in the
regularization theory, there has been developed a method, called the dual regularized
total least squares (DRTLS) [23–25], which is designed for perturbed operator
equations. Therefore, this method can be suggested to solve the operator equation
for the estimator. For each realization of DRTLS one can construct a corresponding
realization of the so-called multi-penalty regularization (MPR) [8,21] method. This
method can be also suggested to solve the operator equation for the estimator.

Tikhonov regularization belongs to a family of the so-called one-parameter
regularization methods. On the contrary, DRTLS and MPR are multiparameter
regularization methods. This gives them a bigger flexibility for the solution of the
perturbed operator equations. And so, one could expect that they could construct
better extrapolating estimators.

In this chapter, for solving the operator equation for the estimator, we propose
several realizations of DRTLS and MPR. The quality of the extrapolating
estimators that are constructed by these realizations will be compared. It will
turn out that, among the considered realizations, a realization of MPR gives best
extrapolating estimators.

Each realization of a regularization method requires a rule for the choice of the
regularization parameters that are used in the method. We will propose such a rule
for the mentioned realization of MPR that constructs best extrapolating estimators.

This chapter is organized as follows. In Sect. 15.2, we review the main concepts
of the statistical learning theory and derive the operator equation for the estimator.
DRTLS and MPR are presented in Sect. 15.3. The perturbation levels in the operator
equation for the estimator, which can be used in the application of regularization
methods, are estimated in Sect. 15.4. We present several realizations of DRTLS and
MPR as well as the comparison of extrapolating estimators that are obtained by
these realizations in Sect. 15.5. For the realization that gives the best extrapolating
estimators, we propose a rule for the choice of the used regularization parameters in
Sect. 15.6. This chapter is finished with conclusions and outlook in Sect. 15.7.

15.2 The Problem of the Construction of an Estimator
in the Statistical Learning Theory

In the statistical learning theory, the empirical data z = {(xi,yi), i = 1, . . . ,n} are
seen as the realizations of random variables (x,y) ∈ X ×Y with a probability density
p(x,y). Specifically, we consider the situation when both X and Y are subsets of R.
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One of the central problems in the statistical learning theory is the construction
of the estimator f : X → Y that approximates well the relationship between x and y,
i.e. y ≈ f (x). The common way of measuring the approximation quality of f is the
consideration of the expected error:

E 2( f ) =
∫

X×Y

(y− f (x))2 p(x,y)dxdy.

Minimization of E ( f ) over an appropriate function space leads to an ideal
estimator. A rather broad function space, for which it is also possible to give an
explicit form of the corresponding ideal estimator, is obtained from the following
splitting of the density p:

p(x,y) = px(x) py|x(y|x), (15.1)

where px(x) =
∫

Y p(x,y)dy is the so-called marginal probability density, and
py|x(y|x) is the so-called conditional probability density for y given x. Then, the
minimizer of E ( f ) over the function space

L2(X , px) =

⎧⎨
⎩ f : X → Y

∣∣∣∣∣∣‖ f‖2
p :=

∫
X

f 2(x)px(x)dx <+∞

⎫⎬
⎭

is given by

fp(x) =
∫
Y

y py|x(y|x)dy.

Minimization of the expected error E ( f ) over a subspace H ⊂ L2(X , px), i.e.,

E ( f )→ min
f∈H

, (15.2)

means in fact finding a function f ∈ H that best approximates fp(x) in L2(X , px),
i.e., a function for which the norm ‖ f − fp‖2

p is minimal. This follows from the
following property of the expected error:

E 2( f ) = ‖ f − fp‖2
p +E 2( fp).

This fact allows the formulation of the operator equation for the solution of (15.2).
Let J : H → L2(X , px) be the inclusion operator. Then, solution of (15.2) satisfies
the operator equation

J ∗J f = J ∗ fp. (15.3)

It is common to assume that this equation is uniquely solvable and define its solution
as f † [13, 14].
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Since the probability density p is usually unknown in practice, function f †

provides an ideal estimator that one cannot have but that one tries to approximate
using the empirical data z. In the construction of this approximating estimator fz, an
important role is played by the so-called empirical error

E 2
emp( f ) =

1
n

n

∑
i=1

(yi − f (xi))
2,

which is the statistical approximation of the expected error. The first idea for the
construction of the estimator fz ∈ H could be to find such fz that minimizes the
empirical error over the function space H , i.e., to solve the following minimization
problem:

Eemp( f )→ min
f∈H

. (15.4)

However, usually there are many minimizers of Eemp( f ), even such that Eemp

( f ) = 0, but among them, there are many that are far away from the desired f †.
Before discussing the further steps, let us formulate an operator equation for the

minimizer of (15.4). For this purpose, let us define the so-called sampling operator
Sx : H → R

n that acts as follows Sx : f �→ ( f (x1), f (x2), . . . , f (xn)) and take the
following weighted euclidean norm in R

n: ‖x‖2 = 1
n ∑

n
i=1 x2

i for x ∈ R
n. Then, the

empirical error can be written as

Eemp( f ) = ‖y− Sx f‖,

where y = (y1,y2, . . . ,yn). And so, the minimization problem (15.4) is equivalent to
solving the operator equation

S∗xSx f = S∗xy. (15.5)

As the minimization problem (15.4), also the operator equation (15.5) does not have
a unique solution, and there are many solutions of (15.5) that are far away from f †.

In [16, 29], it was proposed to modify (15.4) using the Tikhonov regularization:

E 2
emp( f )+β‖ f‖2

H → min
f∈H

, (15.6)

where β > 0 is the so-called regularization parameter. The minimization prob-
lem (15.6) is equivalent to solving the following operator equation:

(S∗xSx +β I) f = S∗xy, (15.7)

where I : H →H is the identity operator. The regularization parameter β has to be
chosen such that the corresponding estimator, i.e., the solution of (15.6) or (15.7),
approximates well the ideal estimator f †.

As it was mentioned in the Introduction, two situations can be distinguished. In
the first situation, the further inputs x are expected to come from a set Xe that is
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defined by the existing inputs x = (x1,x2, . . . ,xn). This set Xe is usually conv{xi, i =
1, . . . ,n}. The estimators that correspond to this situation are called interpolating
estimators. It is quite well-known that the regularization parameter β in (15.7) can
be chosen such that the solution of (15.7) is a good interpolating estimator, i.e., it
approximates well the ideal estimator f †.

On the contrary, in the second situation, the further inputs x are expected to
come also outside Xe. The estimators in this situation are called extrapolating
estimators. As it will be seen in Sect. 15.5, estimators that are constructed by
Tikhonov regularization, i.e., the solutions of (15.7) for various values of β ,
have bad extrapolating properties. Thus, for the construction of the extrapolating
estimators, other methods are needed.

To our best knowledge, it has not been yet observed that equation (15.5) can be
viewed as a perturbed version of the operator equation (15.3). As it will be seen
in Sect. 15.4, as the number of observations n increases, the operator and the right-
hand side in (15.5) approach the operator and the right-hand side in (15.3). More
precisely, in corresponding norms, it holds that

lim
n→∞‖J

∗J − S∗xSx‖= 0,

lim
n→∞‖J

∗ fp − S∗xy‖= 0.

Such a view suggests that the operator equation (15.5) can be treated by the recently
developed DRTLS method [23–25] and the corresponding MPR [8, 21] method.

15.3 Dual Regularized Total Least Squares
and Multi-penalty Regularization

Let us assume that there is an operator A0 : F → G , which acts between Hilbert
spaces F , space of solutions, and G , space of data. Assume further, that for some
perfect data g0 ∈ R(A0)⊂ G , there is a unique solution f0 ∈ F to the problem

A0 f = g0. (15.8)

Now, consider the situation when the pair (A0,g0) is not known, but instead, we
are given an operator Ah : F →G and data gδ ∈G that can be seen as noisy versions
of the operator A0 and data g0 such that

‖g0 − gδ‖ ≤ δ ,
‖A0 −Ah‖ ≤ h,

with some known noise levels {δ ,h} ⊂ (0,+∞).
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For the ill-posed problem (15.8), the operator equation

Ah f = gδ (15.9)

may have no solution, or its solution may be arbitrarily far away from f0. In this case,
the so-called regularization methods [15, 17, 18, 31] are used. Many regularization
methods consider the situation when only the data has some noise, and the involved
operator A0 is known exactly. A method, called DRTLS, that takes into account also
the noise in the operator has been recently proposed in [23–25]. We review this
method below.

Let us fix an operator B that is defined on F and acts to some other Hilbert
space. The idea of DRTLS is to approximate f0 by the solution of the following
minimization problem:

‖B f‖→ min
f ,A

subject to ‖A−Ah‖ ≤ h, ‖A f − gδ‖ ≤ δ . (15.10)

The solution of this minimization problem for which its constrains are active solves
the following operator equation:

(A∗
hAh +αB∗B+β I) f = A∗

hgδ , (15.11)

where I : F → F is the identity operator and α,β satisfy the following conditions:

‖Ah fα ,β − gδ‖= δ + h‖ fα ,β‖,

β =−h(δ + h‖ fα ,β‖)
‖ fα ,β‖

, (15.12)

where fα ,β is the solution of the operator equation (15.11) for the fixed α,β .
An iterative procedure for approximating the pair (α,β ) in (15.12) has been

proposed in [25]. It should be noted that β < 0 in (15.12). On the other hand, the
operator equation (15.11) with α > 0 and β > 0 arises in the application of the so-
called MPR (see, e.g., [8, 21]) to the operator equation (15.9), where the following
minimization problem is considered:

‖Ah f − gδ‖2 +α‖B f‖2 +β‖ f‖2 → min
f
, (15.13)

with α > 0 and β > 0.
For the application of DRTLS and MPR one needs to select the operator B,

and one needs a procedure, the so-called parameter choice rule [15], to select the
appropriate parameters (α,β ). Parameter choice rules in the regularization methods
need the noise levels in the considered ill-posed inverse problem [3]. In our case, as
we mentioned in Sect. 15.2, we propose to view the operator S∗xSx and the right-hand
side S∗xy in (15.5) as the noisy versions of the operator J ∗J and the right-hand
side J ∗ fp in (15.3).
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Thus, for the parameter choice rules, we need to estimate perturbation levels
measured by

‖J ∗J − S∗xSx‖ and ‖J ∗ fp − S∗xy‖. (15.14)

These estimations are derived in the next section.

15.4 Estimations of the Operator and Data Noise

In the analysis of the problems in the statistical learning theory, one often assumes
(see, e.g., [10]) that there are constants {Σ ,M} ⊂ (0,+∞) such that

∫
Y

(
exp

( |y− f †(x)|
M

)
− |y− f †(x)|

M
− 1

)
py|x(y|x)dy ≤ Σ2

2M2 (15.15)

for almost all x ∈ X .
Now, we specify the structure of the subspace H ⊂ L2(X , px). Since for the

functions f ∈ H we are interested in their values f (x) for x ∈ X , it is natural to
require that the functionals f (x) are continuous on H . Reproducing Kernel Hilbert
spaces (RKHS) [2, 6, 12] gives a rich variety of such spaces.

An RKHS is defined by a symmetric positive definite function K(x, x̃) : X×
X → R, which is called a kernel. Let us recall that a function K(x, x̃) is symmetric
if K(x, x̃) = K(x̃,x), and it is positive definite if for any n ∈N, any {x1, . . . ,xn} ⊂ X ,
and any {a1, . . . ,an} ⊂ R, with at least one ai �= 0,

n

∑
i=1

n

∑
j=1

aia jK(xi,x j)> 0. (15.16)

This property allows to define the scalar product for the functions of the form

f (x) =
n

∑
i=1

aiK(x,xi),

g(x) =
m

∑
j=1

b jK(x, x̃ j) (15.17)

as follows:

( f ,g)K =
n

∑
i=1

m

∑
j=1

aib jK(xi, x̃ j). (15.18)

The RKHS that is defined (induced) by K is built as the completion of the space of
all finite linear combinations (15.17) with respect to the norm that is induced by the
scalar product (15.18). This RKHS is denoted by HK .
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Let us also note the following property of linear combinations (15.17) that easily
follows from (15.16).

Proposition 1. Two functions f (x) and g(x) of the form

f (x) =
n

∑
i=1

aiK(x,xi), {ai}n
i=1 ⊂ R,

g(x) =
n

∑
i=1

ãiK(x,xi), {ãi}n
i=1 ⊂ R

are equal if and only if ai = ãi for i = 1, . . . ,n.

It is common to put the following additional assumptions on the kernel K [4,11].

Assumption 1. The kernel K is measurable. It is bounded with

sup
x∈X

√
K(x,x)≤ κ <+∞.

The induced RKHS HK is separable.

With (15.15) and Assumption 1, we derive the estimates for the operator and data
noise (15.14) in the following proposition.

Proposition 2. Let f † be the solution of (15.3) with H = HK, and let (15.15) and
Assumption 1 hold. For η ∈ (0,1], consider the following set of events:

Gη = {z = (x,y) ∈ (X ×Y )n |‖J ∗J − S∗xSx‖ ≤ h,‖J ∗ fp − S∗xy‖ ≤ δ},

with

h = h(n,η) =
1√
n

2
√

2κ2 log
4
η
,

δ = δ (n,η) = 2

(
κM

n
+
κΣ +

√
2κ2‖ f †‖√
n

)
log

4
η
.

Then, P[Gη ]≥ 1−η .

Proof. In [4], the following set of events was considered:

G′
η = {z = (x,y) ∈ (X ×Y )n |‖J ∗J − S∗xSx‖ ≤ h,‖S∗xSx f † − S∗xy‖ ≤ δ ′},

with δ ′ = δ ′(n,η) = 2
(
κM

n + κΣ√
n

)
log 4

η . Using the results from [9, 14, 28], it was

shown in [4] that P[G′
η ]≥ 1−η .
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Now, consider z ∈ G′
η , and let us estimate the corresponding data noise

from (15.14):

‖J ∗ fp − S∗xy‖= ‖J ∗J f † − S∗xy‖ ≤ ‖J ∗J f † − S∗xSx f †‖+ ‖S∗xSx f † − S∗xy‖

≤ h(n,η)‖ f †‖+ δ ′(n,η) = 2

(
κM
n

+
κΣ +

√
2κ2‖ f †‖√
n

)
log

4
η
.

Thus, z ∈ Gη ; therefore, Gη ⊃ G′
η , and

P[Gη ]≥ P[G′
η ]≥ 1−η .

�
Remark 15.4.1. Since 1

n ≤ 1√
n for n ∈ N, the considered errors can be estimated as

‖J ∗J − S∗xSx‖ ≤ ch√
n
,

‖J ∗ fp − S∗xy‖ ≤ cδ√
n
, (15.19)

with some constants {ch,cδ} ⊂ (0,+∞). These estimations can be used in
the numerical realization of the regularization methods, which are used for
solving (15.5).

15.5 Numerical Realization and Tests

In order to apply DRTLS and MPR to the operator equation (15.5) with H = HK

one has to choose the weighted operator B. The simplest choice of this operator is
the identity operator I : HK →HK . With this choice, both DRTLS and MPR become
the Tikhonov regularization (TR). Now, let us check the extrapolating properties of
the estimators, which are obtained by TR.

In the context of the extrapolating estimators, additionally to the inputs {xi}n
i=1,

which are presented in the given empirical data z, one also deals with the inputs
{xi}m

i=n+1 for which the corresponding outputs {yi}m
i=n+1 are not known. Moreover,

the additional inputs {xi}m
i=n+1 are usually outside the Xe := conv{xi, i = 1, . . . ,n}.

Thus, for a good extrapolating estimator, one expects additionally to a good
approximation of the ideal estimator f † over the set Xe also a good approximation
of f † over the conv{xi, i = n+ 1, . . . ,m}.

In the statistical learning theory, the following function is often used as an ideal
estimator for testing learning algorithms (e.g., [26]):

f †(x) =
1
10

(
x+ 2

(
e−8( 4π

3 −x)
2

− e−8( π2 −x)
2

− e−8( 3π
2 −x)

2
))

, x ∈ [0,2π ].
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This function belongs to the RKHS that is generated by the kernel K(x, x̃) = xx̃+
exp(−8(x − x̃)2). We will use the RKHS that is generated by this kernel as the
space H .

The inputs x in the empirical data are taken as follows:

xi =
π
10

(i− 1), i = 1, . . . ,15, (15.20)

and the outputs y in the empirical data are generated as follows:

yi = f †(xi)+ δ̂ξi, i = 1, . . . ,15, (15.21)

where {ξi} are independent random variables with the uniform distribution over
[−1,1]. We consider δ̂ = 0.02.

The estimator fβ that is constructed by TR with H = HK has the following
representation:

fβ =
n

∑
i=1

ciK(x,xi). (15.22)

The coefficients c = (c1,c2, . . . ,cn)
′ in this representation satisfy the following

system of linear equations (e.g., [20, 30]):

(K+βnI)c = y, (15.23)

where I is the identity matrix of order n and K = (K(xi,x j))
n
i, j=1.

Now, consider the situation when there is an additional input x16 =
π
10 15. Denote

‖ f − g‖∞[a,b] := max
x∈[a,b]

| f (x)− g(x)|. In Fig. 15.1, one sees the estimator fβ , which is

constructed by TR, and has the minimal extrapolating error min
β∈(0,1]

‖ f † − fβ‖∞[x15,x16]
.

While it is possible to find such an estimator fβ that has a rather small interpolating
error ‖ f † − fβ‖∞[x1,x15]

, the result in Fig. 15.1 shows that TR-estimators have rather
bad extrapolating properties. Thus, other choices for the operator B in DRTLS and
MPR are needed.

The sampling operator, which is scaled with the factor
√

n for convenience, i.e.,√
nSx : HK → R

n, can be proposed as a next choice for the operator B. Such an
operator can be viewed as a statistical approximation of the identity operator. But
in the contrast to the identity operator such a choice leads to a multiparameter
regularization method that is different from TR. In this case, in the application
of DRTLS to (15.5), one considers for several pairs of the parameters (α,β ) the
following operator equation:

(T ∗
x Tx +αnS∗xSx +β I) f = T ∗

x S∗xy, (15.24)
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Fig. 15.1 The graph of the TR-estimator fβ (red curve) with the smallest extrapolating error ‖ f †−
fβ‖∞[x15,x16 ]

. Red points correspond to the empirical data (15.20), (15.21). Blue dashed curve is the

graph of the ideal estimator f †. The extrapolating interval [x15,x16] is located between two vertical
black dashed lines

where Tx := S∗xSx. As in the case of TR, the estimator fα ,β that is constructed
by DRTLS with H = HK and B =

√
nSx has the representation (15.22). The

coefficients c in this representation satisfy the system of linear equations that is
derived in the next proposition.

Proposition 3. The function f ∈ HK of the form

f (x) =
n

∑
i=1

ciK(x,xi) (15.25)

solves the operator equation (15.24) with H = HK if and only if the coefficients
c = (c1,c2, . . . ,cn)

′ satisfy the following system of linear equations:

[K2 + n2(αK+β I)]c = Ky, (15.26)

where I is the identity matrix of order n and K = (K(xi,x j))
n
i, j=1.

Proof. The derivation of the system (15.26) is similar to the derivation of the
system (15.23) (see, e.g., [20, 30]).

It can be shown (e.g., [11, 20]) that the operator S∗x : Rn → HK is the following:

(S∗xy)(x) =
1
n

n

∑
i=1

K(x,xi)yi.



15 Multiparameter Regularization for Construction of Extrapolating . . . 359

For the functions of the form (15.25) we have that

Tx f = S∗xSx f =
1
n

n

∑
i=1

K(x,xi)
n

∑
j=1

K(xi,x j)c j .

Since T ∗
x = Tx, we get that

T ∗
x S∗xy = TxS∗xy =

1
n2

n

∑
i=1

K(x,xi)
n

∑
j=1

K(xi,x j)y j,

T ∗
x Tx f = T 2

x f =
1
n2

n

∑
i=1

K(x,xi)
n

∑
k=1

K(xi,xk)
n

∑
j=1

K(xk,x j)c j.

Thus, substituting the function (15.25) into the equation (15.24), we obtain in
the left- and right-hand side of this equation a linear combination of functions
{K(x,xi)}n

i=1. Since these linear combinations are equal only if their coefficients
are equal (Proposition 1), we obtain the system of linear equations (15.26). �

In the case when the additional inputs {xi}m
i=n+1 are given, it makes sense to

include them into the sampling operator for the operator B. So, let us denote all
given inputs as x̃ = {xi}m

i=1. Then, instead of B=
√

nSx, one can propose to consider

B =
√

mSx̃. (15.27)

The estimator fα ,β , which is constructed by DRTLS with such an operator B, has
the following representation:

f (x) =
m

∑
i=1

ciK(x,xi). (15.28)

The system of linear equations for the coefficients c can be derived similarly to the
system (15.26). This system is the following:

[
J′KJK̃+ n2(αK̃+β Ĩ)

]
c = J′Ky,

where Ĩ is the identity matrix of order m, K̃ = (K(xi,x j))
m
i, j=1, and J = (ai j | i =

1, . . . ,n; j = 1, . . . ,m) with aii = 1, and ai j = 0 when i �= j.
Now, let us check the extrapolating properties of the estimators, which are

constructed by DRTLS with B from (15.27). Let us take the empirical data from
the test of TR, i.e., (15.20), (15.21), and let us consider two cases of additional
inputs:

1. One additional input:

x16 =
π
10

15; (15.29)
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Fig. 15.2 The graphs of the DRTLS-estimators fα,β (red curves) with the smallest extrapolating
errors ‖ f † − fα,β‖∞[x15 ,x16]

(a) and ‖ f † − fα,β‖∞[x15,x18]
(b). Red points correspond to the empirical

data (15.20), (15.21). Blue dashed curve is the graph of the ideal estimator f †. The extrapolating
intervals [x15,x16] (a) and [x15,x18] (b) are located between two vertical black dashed lines

2. Three additional inputs:

xi =
π
10

i, i = 16,17,18. (15.30)

In Fig. 15.2a, b, one sees the estimators fα ,β , which are constructed by DRTLS
and which have the minimal extrapolating errors. These estimators have better
extrapolating properties than estimators that are constructed by TR, but the approx-
imation of the ideal estimator over the set Xe is rather poor. Can another choice of
the operator B improve this situation?

Recently [5], in the context of the statistical learning theory the following penalty
functional was considered:

ρ( f ) =
m

∑
i, j=1

( f (xi)− f (x j))
2wi j ,

where wi j are weights factors, which can be interpreted as edge weights in the data
adjacency graph and are usually taken as wi j = exp(−(xi − x j)

2). This functional
can be represented as

ρ( f ) = ‖B f‖2
K, with B = (S∗x̃LSx̃)

1/2, (15.31)

where the matrix L is the so-called graph Laplacian that is given by L = D−W ,
W = (wi j)

m
i, j=1, D = (di j)

m
i, j=1 is a diagonal matrix with dii = ∑m

j=1 wi j . Thus, ρ( f )
can be used in DRTLS.

As in the previous choice of the operator B, it can be shown that the estimator
fα ,β , which is constructed by DRTLS with B from (15.31), has the representa-
tion (15.28). The coefficients c in this representation satisfy the following system
of linear equations:

[
J′KJK̃+ n2(αLK̃+β Ĩ)

]
c = J′Ky.
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Fig. 15.3 The graphs of the MPR-estimators fα,β (red curves) with the smallest extrapolating
errors ‖ f † − fα,β‖∞[x15 ,x16]

(a) and ‖ f † − fα,β‖∞[x15,x18]
(b). Red points correspond to the empirical

data (15.20), (15.21). Blue dashed curve is the graph of the ideal estimator f †. The extrapolating
intervals [x15,x16] (a) and [x15,x18] (b) are located between two vertical black dashed lines

Our numerical experiments show that the obtained estimators are similar to
the estimators that correspond to the choice (15.27). Thus, the choice (15.31) of
the operator B does not improve the estimators that are constructed by DRTLS.
However, MPR with the operator B from (15.31) gives much better estimators. Note,
that in contrast to DRTLS, in MPR both regularization parameters α,β are positive.

In Fig. 15.3a, b, one sees the estimators fα ,β , which are constructed by MPR and
which have the minimal extrapolating errors. These estimators have not only the
best extrapolating properties among the estimators that were considered so far, but
they also approximate well the ideal estimator on the set Xe.

In practice, as any regularization method, MPR requires a rule for the choice of
the involved regularization parameters. Such a rule is proposed in the next section.

15.6 The Choice of the Regularization Parameters in MPR

The so-called discrepancy principle (DP) (see, e.g., [15]) is a well-known choice
rule for the parameters in the regularization methods. Let us consider the general
framework of the Sect. 15.3. Denote { fr} the family of the regularized solutions
of (15.9) that are constructed by a regularization method. Then, according to DP,
one chooses fr such that

‖Ah fr − gδ‖=Cδ , C > 1. (15.32)

There is a difficulty in using DP for the operator equation (15.5). Namely, a
sharp estimate of the noise level δ is not available. Although Proposition 2 and
Remark 15.4.1 give theoretical estimations of the noise level δ , in practice the
choice of the involved constants there, in particular the constant cδ in (15.19), is not
clear. Moreover, the y-values in the empirical data have often the form (15.21), and
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a good estimate of δ̂ can be assumed to be known. In this case, it seems reasonable
instead of the condition (15.32), which in the case of the inverse problem (15.5) has
the form

‖S∗xSx fr − S∗xy‖=Cδ , (15.33)

to consider the following condition:

‖Sx fr − y‖= Ĉδ̂ . (15.34)

Note, that the norms in the above conditions are connected through the following
estimate:

‖S∗xSx fr − S∗xy‖ ≤ ‖S∗x‖ · ‖Sx fr − y‖.

Thus, the control of the modified discrepancy ‖Sx fr − y‖ leads to the control of the
original discrepancy ‖S∗xSx fr−S∗xy‖. This may be used in the theoretical justification
of the condition (15.34).

In MPR fr = fα ,β , and the condition (15.34), as well as the original condi-
tion (15.33), does not uniquely identify the pair of the regularization parameters
(α,β ). The set of parameters that satisfy (15.34) can be called the discrepancy
curve [22].

Among the pairs (α,β ) on the discrepancy curve, one can look for the pair
that defines the estimator with good extrapolating properties. For this purpose
we propose to employ the so-called quasi-optimality principle [32]. The whole
procedure for the choice of the appropriate pair of the regularization parameters
(α,β ) is presented below.

In the numerical realization of the regularization methods, the discrete sets of
the regularization parameters in the form of the geometric sequence are frequently
used. So, let us consider the following sequence for the parameters β :

βk = β0qk, q > 1, k = 0,1, . . . ,kmax.

For each βk, let us determine αk for which the condition (15.34) is satisfied, i.e.,

‖Sx fαk ,βk
− y‖= Ĉδ̂ . (15.35)

This can be done using the so-called model function approach [19, 25, 34].
Now, let us define a closeness functional d( fα ,β , fα ′ ,β ′) that describes how close

in some sense is the estimator fα ,β to the estimator fα ′ ,β ′ . For example, if xb ∈ X is
an input point of interest, which can be an input without the corresponding output
as (15.29), then d(·, ·) can be taken as follows:

d( fα ,β , fα ′,β ′) = | fα ,β (xb)− fα ′,β ′(xb)|. (15.36)
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Fig. 15.4 (a) The discrepancy region with Ĉ = 1. The red point corresponds to the pair (αk,βk)
that is selected by the principle (15.37). (b) The graph of the corresponding MPR-estimator fαk,βk

.
Red points correspond to the empirical data (15.20), (15.21). Blue dashed curve is the graph of
the ideal estimator f †. The extrapolating interval [x15,x16] is located between two vertical black
dashed lines

Using the idea of the quasi-optimality principle and the chosen closeness
functional d, among the pairs (αk,βk) that satisfy (15.35), one chooses such a
pair that minimizes d( fαk,βk

, fαk−1,βk−1
), i.e., one chooses the pair (αk,βk) with the

following index k:

k = argmink=1,...,kmax
{d( fαk,βk

, fαk−1,βk−1
)}. (15.37)

Let us test the proposed procedure. Consider the empirical data (15.20) and
(15.21). For these data δ̂ = 0.02. Let us consider one additional input x16

from (15.29). First, let us take Ĉ = 1. As the closeness functional d, we take (15.36)
with xb = x16. In Fig. 15.4a, the discrepancy region, i.e., the region that contains
(α,β ) that satisfy

‖Sx fα ,β − y‖ ≤ Ĉδ̂

is presented. The red point depicts the pair (αk,βk) that is selected by the
principle (15.37). In Fig. 15.4b, the corresponding estimator fαk ,βk

is presented. One
observes that the chosen estimator is rather close to the best extrapolating estimator
in Fig. 15.3a, which demonstrates effectiveness of the proposed parameters choice
rule.

By varying the value of the constant Ĉ one can obtain even better estimators.
This is demonstrated in Fig. 15.5, where the results for Ĉ = 0.1 can be found. This
suggests that the influence of the constant Ĉ should be studied in detail.
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Fig. 15.5 (a) The discrepancy region with Ĉ = 0.1. The red point corresponds to the pair (αk,βk)
that is selected by the principle (15.37). (b) The graph of the corresponding MPR-estimator fαk,βk

.
Red points correspond to the empirical data (15.20), (15.21). Blue dashed curve is the graph of
the ideal estimator f †. The extrapolating interval [x15,x16] is located between two vertical black
dashed lines

15.7 Conclusions and Outlook

Construction of good extrapolating estimators requires novel approaches to the
problem of constructing an estimator in the statistical learning theory, which can
be formulated as an operator equation. We showed that this operator equation
can be viewed as a perturbed operator equation with a perturbed operator and
perturbed right-hand side. This view suggests the application of the multi-parameter
regularization methods, such as DRTLS and MPR. Our numerical tests showed that
among the considered realizations of DRTLS and MPR, a realization of MPR gives
best extrapolating estimators, and thus, it can be proposed as a method of choice for
constructing good extrapolating estimators. As any regularization method, MPR re-
quires an automatic procedure for selecting the involved regularization parameters.
We proposed such a procedure and demonstrated its successful performance.

Future research can be concentrated in the following directions.
We derived the perturbation levels in the operator equation for the estimator. This

can be considered as a first step in the analysis of the application of multiparameter
regularization methods, in particular MPR, for construction of extrapolating estima-
tors. This analysis should be continued until the derivation of the estimates of the
estimator general and extrapolating errors.

Other B-operators in MPR, such as (15.27) , can be tried.
It is notable that with (15.27) the system of linear equations, which appears

in the numerical realization of the corresponding MPR, has simpler structure
than with (15.31). Thus, it is of particular interest to compare the quality of the
extrapolating estimators that are constructed by these realizations of MPR.

One can also view

Sx f = y (15.38)



15 Multiparameter Regularization for Construction of Extrapolating . . . 365

as a perturbed operator equation. Application of DRTLS and MPR to (15.38) is
quite straightforward, and it is remarkable that the systems of linear equations,
which appear in the numerical realization , have a simpler structure in comparison
to the systems that arise in the application of DRTLS and MPR to the operator
equation (15.5). It remains to be verified whether this application leads to better
extrapolating estimators. It should be also noted that the estimation and the
interpretation of the perturbation levels in (15.38) have to be addressed.

Finally, a theoretical justification of the proposed choice rule for the regulariza-
tion parameters in MPR is required. A more detailed study of the influence of the
constant Ĉ in (15.34) and of the connection between the conditions (15.34) and
(15.33) should be also done.
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Heavy-tailed prior, 336
Hermite cubic splines, 76
Hermite polynomials

CHf, 258
functions, 263
Gaussian derivatives, 262–263

Hidden Markov tree (HMT), 333
Hierarchical model. See Bayesian hierarchical

model
HMT. See Hidden Markov tree (HMT)
HRV analysis. See Heart rate variability (HRV)

analysis
Huerta, G., 331

I
Ignjatovic, A., 139
Ill-posed inversed problem, 348, 353
Inductance plethysmography data (IPD),

337–338
Intermittent Chaos, 218, 220
Interpolating estimators, 348, 349, 352
Interpolation

cardinal series, 4
polynomial-like interpolation., 26
and Sinc notation (see Sinc notation and

interpolation formulas)
Interpolation problems, 175–177
Inverse problem

expansion theorems, 81
regularization methods., 348
sampling sequence, 82

IPD. See Inductance plethysmography data
(IPD)

J
Jansen, M., 333
Johnstone, I.M., 326, 329, 332, 334



374 Index

K
Kamps, U., 310
Kibria, B.M., 306
Kohn, R., 342
Kolmogorov–Sinai (KS) entropy, 223
Kotz, S., 298
KS entropy. See Kolmogorov–Sinai (KS)

entropy
Kuruoglu, E.E., 341

L
Lagrange polynomial approximation, 29
Laplace transforms, 322
Larger posterior mode (LPM), 328
Lattices sampling

coprime, 120
geometries, 106
Zd (see Generalized sampling)

Laurent polynomials
reconstruction functions, 73, 76
sampling functions, 76

Lawton, W., 333
LDA. See Linear discriminant analysis (LDA)
LDB. See Local discriminant basis (LDB)
Leech’s theorem, 167–169
Left inverse matrices, 70
Lei, J.J., 77
Lempel–Ziv (LZ) complexity, 220, 224
Levy, D., 218
Lina, J.-M., 333
Linear discriminant analysis (LDA), 285, 292
Local discriminant basis (LDB)

algorithm performance
bell waveforms, 288–290
chirp waveforms, 290–293
dimension reduction, 282–283
LDA and CT, 283
LDBK, 283
LDBKASH vs. LDBKEMD, 283, 293
shape waveforms, 287–288
synthetic signal datasets, 283
training and test waveforms

misclassification, 283–284
triangular waveforms, 284–287

ASH, 276
classification and discrimination, 276
depiction, WPT, 276
EMD (see Earth mover’s distance (EMD))
time–frequency dictionary, 275–276
time–frequency map, 276–277

Lorenz systems, 216
LPM. See Larger posterior mode (LPM)

LZ complexity. See Lempel–Ziv (LZ)
complexity

M
Machine learning algorithms, 348
Mackey, M.C., 217
Mallat, S., 319
Mallick, B.K., 341
Marginal probability density, 350
Markov Chain Monte Carlo (MCMC), 321,

335
Markov random field (MRF), 333
Martens, J.B., 266
Maximum likelihood estimation, 326, 327, 332
Mayrand, M., 333
McCulloch, R., 325
MCMC. See Markov Chain Monte Carlo

(MCMC)
Minimum redundancy arrays (MRAs), 111
Model function approach, 362
Monge-Kantorovich mass transport, 278
Moore-Penrose left pseudo-inverse, 68, 70
MPR. See Multi-penalty regularization (MPR)
MRAs. See Minimum redundancy arrays

(MRAs)
MRF. See Markov random field (MRF)
Mugler, D.H., 258
Müller, P., 322
Multidimensional sampling

coprimality, 120
2D frequency tiling

dense tiling, frequency plane, 124
DFT, 122
mutual coupling, 125
passband regions, 123

lattice arrays, 118, 120
monochromatic plane waves, 125
properties of multidimensional coarrays,

121–122
Multiparameter regularization

DRTLS and MPR, 352–354
empirical data, 348
machine learning algorithms, 348
numerical realization and tests

additional input cases, 359–360
graph Laplacian, 360
MPR estimators fα ,β , 361
TR, 356–359

regularization parameter choice, 361–364
RKHS, 354–356
statistical learning theory (see Statistical

learning theory)



Index 375

Multi-penalty regularization (MPR)
B-operators, 364
closeness functional descriptions, 362–363
description, 353
discrepancy curve, 362
DP, 361–362
DRTLS, 349, 356, 364
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Rovnyak, J., 178
Rubner, Y., 277–279
Runge, C., 38–44
Runge’s function

derivative, Sinc approximation error, 39, 41
exponential polynomial error, 41, 42
f minus trans circ poly approx error, 44
f-prime minus trans algebraic polynomial

prime, 41, 43
Newton–Cotes polynomial error, 39, 40
Sinc approximation error, 39, 40
trans algebraic polynomial error, 41, 43
trans circ poly prime error, 44

S
Saito, N., 275, 276, 283, 284
Sampling

and arrays (see Coprime sampling and
arrays)

classical sampling theory, 20
function spaces (see Sampling expansions)
generalized (see Generalized sampling)

Sampling expansions
average, 102–103
Banach space, 82
convolution, reproducing Kernel Banach

subspaces, 99–100
engineering approach, 91–92
expansion theorems, 81
Fourier series/integral approach,

83–84
function spaces, 88–91
Kernel Hilbert space, 100–101
mathematical deficiencies

definition, 88
replication images, 86
Shannon sampling theorem, 87

non-bandlimited signals, 82
properties, Sinc Function and the

Paley–Wiener space, 84–86

reproducing kernel banach spaces,
101–102

reproducing kernel banach subspaces, Lp,
97–99

RKHS, 92–93
series expansions and integral

representations, 81
shift-invariant spaces, 93–94
signals, finite rate of innovation, 95–97
unitarily translation-invariant Hilbert

spaces, 94–95
Sampling operator, 351, 357, 359
Sampling theory

band-limited functions, 20
functional analysis and harmonic analysis,

83
lattice geometries, 106
modeling signals, 95
shift-invariant spaces., 94
signal and image processing, 82

Sapatinas, T., 327
Sarason, D., 169
Scale-dependent Lyapunov exponent (SDLE)

biological data analysis
EEG (see Electroencephalography

(EEG) analysis)
HRV (see Heart rate variability (HRV)

analysis)
characterization, 227–228
complex systems, 212
definitions and fundamental properties

chaos theory, 213
computational procedure, 215
fBm process, 217
inherent scales and characteristic scale,

215
logarithm and averaging, 215
Lorenz systems, 216, 217
phase space, 214
reconstructed vectors, 214
scaling law, 217, 218
stochastic processes, 217, 218
time series, 214

detection, intermittent Chaos, 218, 219
HRV, 212
multiscale complexity measure, 227
multiscale nature, signals, 212, 213
nonstationarity, 218–220

Scaling law, 217, 218
Schur functions, 167–169
SDLE. See Scale-dependent Lyapunov

exponent (SDLE)
Selesnick, I.W., 333
Sendur, L., 333
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Shakil–Kibria (SK) distributions
characterizations, 312–313
five-parameter solution, 306–307

Shakil–Kibria–Singh (SKS)-type distributions
characterizations

arbitrary positive constant, 311–312
CDF, 309–310
conditional pdf, 311
first and nth order statistic, 309
GOS, 310
real-valued function, 309

description, 306
log-normal and inverse Gaussian, 305
Pearson system defined, 306
truncated moments, 305–306

Shakil, M., 304–306
Shakil–Singh–Kibria (SSK) distributions

characterizations
continuous random variable, 307
differential equation, 308–309
real functions, 307–308

confluent hypergeometric functions,
305

parameter, 304–305
Shanbhag, D.N., 298
Shannon, D.C., 224
Shen, X., 25
Shift-invariant space. See Almost-shift-

invariant space
Shift-invariant spaces

Fourier duality technique, 55
function spaces, 83
Riesz sequence, 53
sampling, 93–94
Zak transform, 54

Signal to-noise ratio (SNR), 234
Signal with finite of innovation

representative sampling expansions, 83
sampling

regularity and decay properties, 97
shift-invariant space, 96
theory, 95

Signature
EMD, 277–280
time–frequency map, 281

Silverman, B.W., 326, 341
Sinc interpolation, 29
Sinc methods, 26, 27, 34
Sinc notation and interpolation formulas

basis functions, 28, 29
derivative, p(x), 30
error estimates, data, 31–33
and Lagrange polynomial approximation,

29

Lagrange polynomial interpolation, 30
mathematical notation, 27

Sinc points
definition, function, 29
Rational function methods, 29

Smith, A.F.M., 327
SNR. See Signal to-noise ratio (SNR)
Sobolev space, 89
Sparse sampling, 120
Sparsity, 107, 322, 336, 339
Spectral problem, 103
SSVS. See Stochastic search variable selection

(SSVS)
Stable generators. See Generalized sampling
Statistical learning theory

definition, 348
estimator construction

approximation quality measurement,
350

empirical data, 349
empirical error, 351
expected error, 350
extrapolating estimators, 352
marginal probability and conditional

probability density, 350
realizations, random variables, 349
regularization parameter, 351–352
sampling operator, 351
TR, 351

estimator types, 348
ideal estimator, testing learning algorithms,

356
ill-posed, 348
TR, 349

Stein, E.M., 244
Stochastic search variable selection (SSVS),

325–326
Strang-fix conditions, 76–78, 96
Subband decomposition

DHmT values, 272
digital function, 261
multiscale analysis, 266

Support vector machine (SVM) classifier, 340
SVM classifier. See Support vector machine

(SVM) classifier
Sylvester, J.J., 187, 188
Symmetric partial sums

cardinal series, 20–23
convergence, 4

Symmetric relative entropy, 283
System identification

blocked version, 133
continuous-time channel, 131
multirate building blocks, 132
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T
Ter Braak, C.J.F., 328
Thresholding

analytic wavelet, 342
BAMS-MED rule, 324
characterization, classical, 333
ECG signals, 243
empirical Bayes, 340
GBL, 243
global, 250
hard and soft, 244, 322
individual and block, 329
term-by-term, 244–245
wavelet shrinkage, 319–320
wavelet transform, 234

Tikhonov regularization (TR)
additional input cases, 359–360
DRTLS-estimator graphs, 360
empirical data, 357
estimator graph, 357, 358
extrapolating properties, 359
ideal estimator, testing learning algorithms,

356
linear equations, 358–359
RKHS, 357

Time-delay embedding, 214
Tomasi, C., 278, 279
TR. See Tikhonov regularization (TR)
Triangular autocorrelation

Fejér function, 195–199
function, sequence, 195
Lebesgue measure, 199
unimodular functions, 199–205

Truncated moments
Amoroso distribution, 301
first order statistic, 298, 303–304
nth order statistic, 298, 302–303
ratio, 314

Two dimensional sampling, 106, 115

U
Unimodular sequences, 183, 190, 192
Unitarily translation-invariant Hilbert spaces,

94–95
Unser, M., 52

V
Vannucci, M., 341
Vetterli, M., 95

Vidakovic, B., 322, 327, 329
von Goethe, J.W., 180

W
Walden, A., 342
Walsh, J.L., 187, 188
Walter, G.G., 25, 53–55, 88
Wang, X., 331, 338, 339, 341
Waveforms

bell, 288–290
chirp, 290–293
shape, 287–288
triangular, 284–287

Wavelet approximation
error, 47
odd period function, 45
transformed, error, 47

Wavelets, 25
Wavelet shrinkage

Bayesian, 338–340
complex

bivariate real-valued random variables,
334

CEB, 333–335
Daubechies and zero-flipping, 333
Gibbs sampling (see Gibbs sampling)
valued and matrix, 333

discrete transformations
coefficients and decomposition, 319
linear and orthogonal, 319
quadrature mirror filters, 319
thresholding, 319–320

Wavelet transform
discrete, 239–240
shrinkage, 319–320

Whittaker cardinal series, 142
Whittaker–Shannon–Kotel’nikov (WSK)

sampling theorem, 51
Wide-sense stationary (WSS), 107
Wiener, N., 185, 196
Wiener–Wintner theorem, 185
Windowed input signal, 265, 266
Wintner, A., 185
Wolf, A., 215, 218, 223, 224
Wood, A.T.A., 331
WSS. See Wide-sense stationary (WSS)

Z
Zak transform, 54, 58
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