
Chapter 9
QR-Decomposition-Based RLS Filters

9.1 Introduction

The application of QR decomposition [1] to triangularize the input data matrix
results in an alternative method for the implementation of the recursive least-
squares (RLS) method previously discussed. The main advantages brought about by
the recursive least-squares algorithm based on QR decomposition are its possible
implementation in systolic arrays [2–4] and its improved numerical behavior when
quantization effects are taken into account [5].

The earlier proposed RLS algorithms based on the QR decomposition [2, 3]
focused on the triangularization of the information matrix in order to avoid the
use of matrix inversion. However, their computational requirement was of OŒN 2

multiplications per output sample. Later, fast versions of the QR-RLS algorithms
were proposed with a reduced computational complexity of OŒN � [4–11].

In this chapter, the QR-RLS algorithms based on Givens rotations are presented
together with some stability considerations. Two families of fast algorithms are also
discussed [4–11], and one fast algorithm is presented in detail. These fast algorithms
are related to the tapped delay line FIR filter realization of the adaptive filter.

9.2 Triangularization Using QR-Decomposition

The RLS algorithm provides in a recursive way the coefficients of the adaptive filter
which lead to the minimization of the following cost function

�d .k/ D
kX

iD0

�k�i "2.i/ D
kX

iD0

�k�i Œd.i/ � xT .i/w.k/�2 (9.1)

where

x.k/ D Œx.k/ x.k � 1/ : : : x.k � N /�T
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368 9 QR-Decomposition-Based RLS Filters

is the input signal vector,

w.k/ D Œw0.k/ w1.k/ : : : wN .k/�T

is the coefficient vector at instant k, ".i/ is the a posteriori error at instant i , and �

is the forgetting factor.
The same problem can be rewritten as a function of increasing dimension

matrices and vectors which contain all the weighted signal information available
so far to the adaptive filter. These matrices are redefined here for convenience:

XT .k/ D X.k/

D

2
6664

x.k/ �1=2x.k � 1/ � � � �.k�1/=2x.1/ �k=2x.0/

x.k � 1/ �1=2x.k � 2/ � � � �.k�1/=2x.0/ 0
:::

:::
: : :

:::
:::

x.k � N / �1=2x.k � N � 1/ � � � 0 0

3
7775

D Œx.k/ �1=2x.k � 1/ : : : �k=2x.0/� (9.2)

y.k/ D X.k/w.k/ D

2

6664

y.k/

�1=2y.k � 1/
:::

�k=2y.0/

3

7775 (9.3)

d.k/ D

2
6664

d.k/

�1=2d.k � 1/
:::

�k=2d.0/

3
7775 (9.4)

".k/ D

2

6664

".k/

�1=2".k � 1/
:::

�k=2".0/

3

7775 D d.k/ � y.k/ (9.5)

The objective function of (9.1) can now be rewritten as

�d .k/ D "T .k/".k/ (9.6)

As shown in Chap. 5, (5.15), the optimal solution to the least-squares problem at a
given instant of time k can be found by solving the following equation

XT .k/X.k/w.k/ D XT .k/d.k/ (9.7)
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However, solving this equation by using the conventional RLS algorithm can be
a problem when the matrix RD.k/ D XT .k/X.k/ and its correspondent inverse
estimate become ill-conditioned due to loss of persistence of excitation of the input
signal or to quantization effects.

The QR decomposition approach avoids inaccurate solutions to the RLS problem
and allows easy monitoring of the positive definiteness of a transformed information
matrix in ill-conditioned situations.

9.2.1 Initialization Process

During the initialization period, i.e., from k D 0 to k D N , the solution of (9.7)
can be found exactly without using any matrix inversion. From (9.7), it can be found
that for k D 0 and x.0/ ¤ 0

w0.0/ D d.0/

x.0/
(9.8)

for k D 1

w0.1/ D d.0/

x.0/

w1.1/ D �x.1/w0.1/ C d.1/

x.0/
(9.9)

for k D 2

w0.2/ D d.0/

x.0/

w1.2/ D �x.1/w0.2/ C d.1/

x.0/

w2.2/ D �x.2/w0.2/ � x.1/w1.2/ C d.2/

x.0/
(9.10)

at the instant k, we can show by induction that

wi .k/ D
�

iX

j D1

x.j /wi�j .k/ C d.i/

x.0/
(9.11)

The above equation represents the so-called back-substitution algorithm.
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9.2.2 Input Data Matrix Triangularization

After the instant k D N , the above (9.11) is no longer valid and the inversion of
RD.k/ or the calculation of SD.k/ is required to find the optimal solution for the
coefficients w.k/. This is exactly what makes the conventional RLS algorithm more
sensitive to quantization effects and input signal conditioning. The matrix X.k/ at
instant k D N C 1 is given by

X.N C 1/ D

2

6666664

x.N C 1/ x.N / � � � x.1/

�1=2x.N / �1=2x.N � 1/ � � � �1=2x.0/

�x.N � 1/ �x.N � 2/ � � � 0
:::

:::
: : :

:::

�
N C1

2 x.0/ 0 � � � 0

3

7777775

D
�

x.N C 1/ x.N / � � �x.1/

�1=2X.N /

�
D

�
xT .N C 1/

�1=2X.N /

�
(9.12)

As it is noted, the matrix X.k/ is no longer upper triangular, and, therefore, the
back-substitution algorithm cannot be employed to find the tap-weight coefficients.

The matrix X.N C 1/ can be triangularized through an orthogonal trian-
gularization approach such as Givens rotations, Householder transformation, or
Gram–Schmidt orthogonalization [1]. Since here the interest is to iteratively apply
the triangularization procedure to each new data vector added to X.k/, the Givens
rotation seems to be the most appropriate approach.

In the Givens rotation approach, each element of the first line of (9.12) can be
eliminated by premultiplying the matrix X.N C 1/ by a series of Givens rotation
matrices given by

QQ.N C 1/ D Q0
N .N C 1/ � Q0

N �1.N C 1/ � � � Q0
0.N C 1/

D

2

6666664

cos �N .N C 1/ � � � 0 � � � � sin �N .N C 1/
:::

:::

0 IN 0
:::

:::

sin �N .N C 1/ � � � 0 � � � cos �N .N C 1/

3

7777775

�

2

6666666664

cos �N �1.N C 1/ � � � 0 � � � � sin �N �1.N C 1/ 0
:::

:::
:::

0 IN �1 0 0
:::

:::
:::

sin �N �1.N C 1/ � � � 0 � � � cos �N �1.N C 1/ 0

0 � � � 0 � � � 0 1

3

7777777775
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� � �

2
6666666664

cos �0.N C 1/ � sin �0.N C 1/ � � � 0 � � � 0

sin �0.N C 1/ cos �0.N C 1/ � � � 0 � � � 0
:::

:::

0 0 IN

:::
:::

0 0

3
7777777775

(9.13)

where Ii is an i by i identity matrix. The rotation angles �i are chosen such that
each entry of the first row of the resulting matrix is zero. Consider first the matrix
product Q0

0.N C 1/X.N C 1/. If:

cos �0.N C 1/x.1/ � sin �0.N C 1/�1=2x.0/ D 0 (9.14)

the element in the position .1; N C 1/ of the resulting matrix product will be zero.
If it is further considered that cos2 �0.N C 1/ C sin2 �0.N C 1/ D 1, it can be easily
deduced that

cos �0.N C 1/ D �1=2x.0/p
�x2.0/ C x2.1/

(9.15)

sin �0.N C 1/ D x.1/p
�x2.0/ C x2.1/

(9.16)

Next, Q0
1.N C1/ premultiplies Q0

0.N C1/X.N C1/ with the objective of generating
a zero element at the position .1; N / in the resulting product matrix. Note that the
present matrix product does not remove the zero of the element .1; N C 1/. The
required rotation angle can be calculated by first noting that the elements .1; N /

and .3; N / of Q0
0.N C 1/X.N C 1/ are, respectively

a D cos �0.N C 1/x.2/ � �1=2x.1/ sin �0.N C 1/ (9.17)

b D �x.0/ (9.18)

From these expressions we can compute the elements required in the following
rotation, which are given by

cos �1.N C 1/ D bp
a2 C b2

(9.19)

sin �1.N C 1/ D ap
a2 C b2

(9.20)

In this manner, after the last Givens rotation the input signal information matrix will
be transformed in a matrix with null first row

QQ.N C 1/X.N C 1/ D
�

0 0 � � � 0

U.N C 1/

�
(9.21)
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where U.N C 1/ is an upper triangular matrix.
In the next iteration, the input signal matrix X.N C 2/ receives a new row that

should be replaced by a zero vector through a QR decomposition. In this step, the
matrices involved are the following

X.N C 2/ D
�

x.N C 2/ x.N C 1/ � � � x.2/

�1=2X.N C 1/

�
(9.22)

and

2

66664

1 0 � � � � � �
0
::: QQ.N C 1/
:::

3

77775
X.N C 2/ D

2

4
x.N C 2/ x.N C 1/ � � � x.2/

0 0 � � � 0

�1=2U.N C 1/

3

5 (9.23)

In order to eliminate the new input vector through rotations with the corresponding
rows of the triangular matrix �1=2U.N C 1/, we apply the QR decomposition to
(9.23) as follows:

QQ.N C 2/

�
1 0
0 QQ.N C 1/

�
X.N C 2/ D

2

4
0 0 � � � 0

0 0 � � � 0

U.N C 2/

3

5 (9.24)

where again U.N C 2/ is an upper triangular matrix and QQ.N C 2/ is given by

QQ.N C 2/ D Q0
N .N C 2/Q0

N �1.N C 2/ � � � Q0
0.N C 2/

D

2

6666664

cos �N .N C 2/ � � � 0 � � � � sin �N .N C 2/
:::

:::

0 IN C1 0
:::

:::

sin �N .N C 2/ � � � 0 � � � cos �N .N C 2/

3

7777775

�

2
6666666664

cos �N �1.N C 2/ � � � 0 � � � � sin �N �1.N C 2/ 0
:::

:::

0 IN 0
:::

:::

sin �N �1.N C 2/ cos �N �1.N C 2/ 0

0 � � � 0 � � � 0 1

3
7777777775



9.2 Triangularization Using QR-Decomposition 373

� � �

2
6666666664

cos �0.N C 2/ 0 � sin �0.N C 2/ � � � 0

0 1 0 � � � 0

sin �0.N C 2/ 0 cos �0.N C 2/ � � � 0
:::

:::
:::

:::
:::

::: IN

0 0 0

3
7777777775

(9.25)

The above procedure should be repeated for each new incoming input signal vector
as follows:

Q.k/X.k/ D QQ.k/

�
1 0
0 QQ.k � 1/

� �
I2 0
0 QQ.k � 2/

�

� � �
�

Ik�N 0
0 QQ.k � N /

�
X.k/ D

2

664
0

U.k/

3

775

�
k � N

�
N C 1

(9.26)

„ƒ‚…
N C1

where Q.k/ is a .k C 1/ by .k C 1/ matrix which represents the overall triangular-
ization matrix via elementary Givens rotations matrices Q0

i .m/ for all m � k and
0 � i � N .

Since each Givens rotation matrix is orthogonal, then it can easily be proved that
Q.k/ is also orthogonal (actually orthonormal), i.e.,

Q.k/QT .k/ D IkC1 (9.27)

Also, from (9.27), it is straightforward to note that

Q.k/ D QQ.k/

�
1 0
0 Q.k � 1/

�
(9.28)

where QQ.k/ is responsible for zeroing the latest input vector xT .k/ in the first row
of X.k/. The matrix QQ.k/ is given by

QQ.k/ D

2

6666664

cos �N .k/ � � � 0 � � � � sin �N .k/
:::

:::

0 Ik�1 0
:::

:::

sin �N .k/ � � � 0 � � � cos �N .k/

3

7777775
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�

2
6666666664

cos �N �1.k/ � � � 0 � � � � sin �N �1.k/ 0
:::

:::
:::

0 Ik�2 0 0
:::

:::
:::

sin �N �1.k/ � � � 0 � � � cos �N �1.k/ 0

0 � � � 0 � � � 0 1

3
7777777775

� � �

2

6666666664

cos �0.k/ � � � 0 � � � � sin �0.k/ 0
:::

:::
:::

0 Ik�N �1 0 0
:::

:::
:::

sin �0.k/ � � � 0 � � � cos �0.k/ 0

0 IN

3

7777777775

D

2
666666666666666666666664

NY

iD0

cos �i .k/ � � � 0 � � � �
NY

iD1

cos �i .k/ sin �0.k/

:::
:::

0 Ik�N �1 0
:::

:::

sin �0.k/ cos �0.k/
:::

:::
:::

j �1Y

iD0

cos �i .k/ sin �j .k/ � � � 0 � � � :::

:::
::: � sin �N .k/

N �1Y

iD1

cos �i .k/ sin �0.k/

� � � �
NY

iDj C1

cos �i .k/ sin �j .k/ � � � � sin �N .k/

0
: : :

: : : 0
cos �N �1.k/

cos �N .k/

3
77777777777777775

(9.29)
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Note that the matrix QQ.k/ has the following general form

N C 1‚…„ƒ

QQ.k/ D

2
6666666664

� 0 � � � 0 � � � 0 � � � � �
0
::: Ik�N �1 0
� �
::: 0

: : :

� � �

3
7777777775

9
>>=

>>;
N C 1

(9.30)

where � represents a nonzero element. This structure of QQ.k/ is useful for
developing some fast QR-RLS algorithms.

Returning to (9.27), we can conclude that

Q.k/X.k/ D QQ.k/

2

666664

x.k/ x.k � 1/ � � � x.k � N /

0 0 � � � 0
:::

:::
: : :

:::

0 0 � � � 0

�1=2U.k � 1/

3

777775
(9.31)

The first Givens rotation angle required to replace x.k � N / by a zero is �0.k/

such that

cos �0.k/x.k � N / � sin �0.k/�1=2u1;N C1.k � 1/ D 0 (9.32)

where u1;N C1.k � 1/ is the element .1; N C 1/ of U.k � 1/. Then, it follows that

cos �0.k/ D �1=2u1;N C1.k � 1/

u1;N C1.k/
(9.33)

sin �0.k/ D x.k � N /

u1;N C1.k/
(9.34)

where
u2

1;N C1.k/ D x2.k � N / C �u2
1;N C1.k � 1/ (9.35)

From (9.35), it is worth noting that the .1; N C 1/ element of U.k/ is the square
root of the exponentially weighted input signal energy, i.e.,

u2
1;N C1.k/ D

k�NX

iD0

�i x2.k � N � i/ (9.36)
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In the triangularization process, all the submatrices multiplying each column of
X.k/ are orthogonal matrices and as a consequence the norm of each column in
X.k/ and Q.k/X.k/ should be the same. This confirms that (9.36) is valid. Also, it
can be shown that

kC1X

iD1

x2
i;j .k/ D

N C2�jX

iD1

u2
i;j .k/ D

kC1X

iD1

�i�1x2.k C 2 � i � j / (9.37)

for j D 1; 2; : : : ; N C 1.
Now consider that the intermediate calculations of (9.31) are performed as

follows:

QQ.k/

2

4
xT .k/

0
�1=2U.k � 1/

3

5 D Q0
N .k/ Q0

N �1.k/ � � � Q0
i .k/

2

4
x0

i .k/

0
U0

i .k/

3

5 (9.38)

where x0
i .k/ D Œx0

i .k/x0
i .k�1/ : : : x0

i .k�N Ci/0 : : : 0� and U0
i .k/ is an intermediate

upper triangular matrix. Note that x0
0.k/ D xT .k/, U0

0.k/ D �1=2U.k � 1/, and
U0

N C1.k/ D U.k/. In practice, the multiplication by the zero elements in (9.38)
should be avoided. We start by removing the increasing Ik�N �1 section of QQ.k/ (see
(9.30)), thereby generating a matrix with reduced dimension denoted by Q� .k/. The
resulting equation is

Q� .k/

�
xT .k/

�1=2U.k � 1/

�
D Q0

�N
.k/Q0

�N �1
.k/ � � � Q0

�i
.k/

�
x0

i .k/

U0
i .k/

�

D
�

0
U.k/

�
(9.39)

where Q0
�i

.k/ is derived from Q0
i .k/ by removing the Ik�N �1 section of Q0

i .k/ along
with the corresponding rows and columns, resulting in the following form

Q0
�i

.k/ D

2

6666666666664

cos �i .k/ � � � 0 � � � � sin �i .k/ � � � 0
:::

:::
:::

0 Ii 0 � � � 0
:::

:::
:::

sin �i .k/ � � � 0 � � � cos �i .k/ � � � 0
:::

:::
::: IN �i

0 � � � 0 � � � 0

3

7777777777775

(9.40)
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The Givens rotation elements are calculated by

cos �i .k/ D ŒU0
i .k/�iC1;N C1�i

ci

(9.41)

sin �i .k/ D x0
i .k � N C i/

ci

(9.42)

where ci D
q

ŒU0
i .k/�2iC1;N C1�i C x

02
i .k � N C i/ and Œ��i;j is the .i; j / element of

the matrix.

9.2.3 QR-Decomposition RLS Algorithm

The triangularization procedure above discussed can be applied to generate the
QR-RLS algorithm that avoids the calculation of the SD.k/ matrix of the conven-
tional RLS algorithm. The weighted a posteriori error vector can be written as a
function of the input data matrix, that is

".k/ D

2

6664

".k/

�1=2".k � 1/
:::

�k=2".0/

3

7775 D

2

6664

d.k/

�1=2d.k � 1/
:::

�k=2d.0/

3

7775 � X.k/w.k/ (9.43)

By premultiplying the above equation by Q.k/, it follows that

"q.k/ D Q.k/".k/ D Q.k/d.k/ � Q.k/X.k/w.k/

D dq.k/ �
�

0
U.k/

�
w.k/ (9.44)

where

"q.k/ D

2
6664

"q1.k/

"q2.k/
:::

"qkC1
.k/

3
7775

and

dq.k/ D

2
6664

dq1.k/

dq2.k/
:::

dqkC1
.k/

3
7775
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Since Q.k/ is an orthogonal matrix, (9.6) is equivalent to

�d .k/ D "T
q .k/"q.k/ (9.45)

because

"T
q .k/"q.k/ D "T .k/QT .k/Q.k/".k/ D "T .k/".k/

The weighted-square error can be minimized in (9.45) by calculating w.k/ such
that "qk�N C1

.k/ to "qkC1
.k/ are made zero using a back-substitution algorithm

such as

wi .k/ D
�

iX

j D1

uN C1�i;i�j C1.k/wi�j .k/ C dq kC1�i .k/

uN C1�i;iC1.k/
(9.46)

for i D 0; 1; : : : ; N , where
Pi�1

j Di Œ�� D 0. With this choice for w.k/, the minimum
weighted-square error at instant k is given by

�d
min.k/ D

k�NX

iD1

"2
qi

.k/ (9.47)

An important relation can be deduced by rewriting (9.44) as

dq.k/ D
2

4
dq1 .k/

� � ��
dq2 .k/

3

5 D

2

666666666664

dq1.k/
:::

dqk�N
.k/

� � � � �
dqk�N C1

.k/
:::

dqkC1
.k/

3

777777777775

D

2

6666666664

"q1.k/
:::

"qk�N
.k/

0
:::

0

3

7777777775

C
�

0
U.k/

�
w.k/ (9.48)

where w.k/ is the optimum coefficient vector at instant k. By examining (9.31) and
(9.44), the right-most side of (9.48) can then be expressed as
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�
"q1 .k/

dq2 .k/

�
D

2

6664

"q1.k/
:::

"qk�N
.k/

dq2 .k/

3

7775 D QQ.k/

2
666664

d.k/

�1=2

2

6664

"q1.k � 1/
:::

"qk�N �1
.k � 1/

dq2 .k � 1/

3

7775

3
777775

(9.49)

Using similar arguments around (9.38)–(9.40), and starting from (9.49), the
transformed weighted-error vector can be updated as described below:

QQ.k/

2

4
d.k/

�1=2

�
"q1.k � 1/

dq2 .k � 1/

�
3

5 D Q0
N .k/Q0

N �1.k/ � � � Q0
i .k/

2

64
d 0

i .k/

"0
qi

.k/

d0
q2i

.k/

3

75 (9.50)

where d 0
i .k/, "0

qi
.k/, and d0

q2i
.k/ are intermediate quantities generated during the

rotations. Note that "0
qN C1

.k/ D Œ"q2 .k/ "q3.k/ : : : "qk�N
.k/�T , d 0

N C1.k/ D "q1.k/,
and d0

q2N C1
D dq2.k/.

If we delete all the columns and rows of QQ.k/ whose elements are zeros and
ones, i.e., the Ik�N �1 section of QQ.k/ with the respective bands of zeros below,
above, and on each side of it in (9.30), one would obtain matrix Q� .k/. In this case,
the resulting equation corresponding to (9.49) is given by

d.k/ D
�

"q1.k/

dq2 .k/

�
D Q� .k/

�
d.k/

�1=2dq2 .k � 1/

�
(9.51)

Therefore, we eliminate the vector "0
qN C1

.k/ which is always increasing, such that
in real-time implementation the updating is performed through

d.k/ D Q� .k/

�
d.k/

�1=2dq2 .k � 1/

�

D Q0
�N

.k/ Q0
�N �1

.k/ � � � Q0
�i

.k/

"
d 0

i .k/

d0
q2i

.k/

#
(9.52)

Another important relation can be derived from (9.44) by premultiplying both
sides by QT .k/, transposing the result, and postmultiplying the result by the pinning
vector

"T
q .k/Q.k/

2
6664

1

0
:::

0

3
7775 D "T .k/

2
6664

1

0
:::

0

3
7775 D ".k/ (9.53)
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Then, from the definition of Q.k/ in (9.28) and (9.29), the following relation is
obtained

".k/ D "q1.k/

NY

iD0

cos �i .k/

D "q1.k/�.k/ (9.54)

This relation shows that the a posteriori output error can be computed without the
explicit calculation of w.k/. The only information needed is the Givens rotation
cosines. In applications where only the a posteriori output error is of interest, the
computationally intensive back-substitution algorithm of (9.46) to obtain wi .k/ can
be avoided.

Now, all the mathematical background to develop the QR-RLS algorithm has
been derived. After initialization, the Givens rotation elements are computed using
(9.41) and (9.42). These rotations are then applied to the information matrix and the
desired signal vector, respectively, as indicated in (9.39) and (9.52). The next step
is to compute the error signal using (9.54). Finally, if the tap-weight coefficients
are required we should calculate them using (9.46). Algorithm 9.1 summarizes the
algorithm with all essential computations.

Example 9.1. In this example, we solve the system identification problem described
in Sect. 3.6.2 by using the QR-RLS algorithm described in this section.

Solution. In the present example, we are mainly concerned in testing the algorithm
implemented in finite precision, since the remaining characteristics (such as:
misadjustment and convergence speed) should follow the same pattern of the
conventional RLS algorithm. We considered the case where eigenvalue spread of
the input signal correlation matrix is 20, with � D 0:99. The presented results
were obtained by averaging the outcomes of 200 independent runs. Table 9.1
summarizes the results, where it can be noticed that the MSE is comparable to the
case of the conventional RLS algorithm (consult Table 5.2). On the other hand, the
quantization error introduced by the calculations to obtain w.k/Q is considerable.
After leaving the algorithm running for a large number of iterations, we found no
sign of divergence.

In the infinite-precision implementation, the misadjustment measured was
0:0429. As expected (consult Table 5.1) this result is close to the misadjustment
obtained by the conventional RLS algorithm. ut

9.3 Systolic Array Implementation

The systolic array implementation of a given algorithm consists of mapping the
algorithm in a pipelined sequence of basic computation cells. These basic cells
perform their task in parallel, such that in each clock period all the cells are
activated. An in-depth treatment of systolic array implementation and parallelization
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Algorithm 9.1 QR-RLS algorithm

w.�1/ D Œ0 0 : : : 0�T , w0.0/ D d.0/

x.0/

For k D 1 to N (Initialization)
Do for i D 1 to k

wi .k/ D
�

iX

jD1

x.j /wi�j .k/ C d.i/

x.0/
(9.11)

End
End

U0
0.N C 1/ D �1=2X.N / (9.12)

d0
q2 0

.N C 1/ D Œ �1=2d.N / �d.N � 1/ : : : �.N C1/=2d.0/�T

For k � N C 1

Do for each k

� 0
�1 D 1

d 0
0.k/ D d.k/

x0
0.k/ D xT .k/

Do for i D 0 to N

ci D
q

ŒU0
i .k/�2iC1;N C1�i C x02

i .k � N C i /

cos �i D ŒU0

i .k/�iC1;N C1�i

ci
(9.41)

sin �i D x0
i .k�N Ci/

ci
(9.42)"

x0
iC1

.k/

U0
iC1.k/

#
D Q0

�i
.k/

�
x0

i
.k/

U0
i .k/

�
(9.39)

� 0
i D � 0

i�1 cos �i (9.54)"
d 0

iC1
.k/

d0
q2iC1

.k/

#
D Q0

�i
.k/

"
d 0

i
.k/

d0
q2i

.k/

#
(9.51)

End
d0

q2 0
.k C 1/ D �1=2d0

q2 N C1
.k/

U0
0.k C 1/ D �1=2U0

N C1.k/

�.k/ D � 0
N

".k/ D d 0
N C1.k/�.k/ (9.51)

If required compute

d.k/ D
"

d 0
N C1.k/

d0
q2 N C1

.k/

#
(9.51)

w0.k/ D dN C2.k/

uN C1;1.k/

Do for i D 1 to N

wi .k/ D
�

iX

jD1

uN C1�i;i�jC1.k/wi�j .k/ C dN C2�i .k/

uN C1�i;iC1.k/
(9.46)

End
End

of algorithms is beyond the scope of this text. Our objective in this section is to
demonstrate in a summarized form that the QR-RLS algorithm can be mapped in
a systolic array. Further details regarding this subject can be found in references
[2–4, 12, 13].
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Table 9.1 Results of the
finite-precision
implementation of the
QR-RLS algorithm

�.k/Q EŒjj�w.k/Qjj2�

No. of bits Experiment Experiment

16 1.544 10�3 0.03473
12 1.563 10�3 0.03254
10 1.568 10�3 0.03254

i2

O2

O3

O1

i1

ui,j(l)

If i1=0 then
O1 ← 1, O2 ← 0, O3 ← i2
ui,j = λui,j

Otherwise

c ← λ2u2
i,j(l) + i21

O1 ← cos θi−1 = λui,j(l)
c

O2 ← sin θi−1 = i1
c

O3 ← i2O1
ui,j(l + 1) ← c
End

i2

i3O2

O3

ui,j(l)
O1

i1

O1 ← i2
O2 ← i3
O3 ← i1i2 − i3λui,j(l)
ui,j(l + 1) ← i1i3 + i2λui,j(l)

a

b

Fig. 9.1 Basic cells: (a)
Angle processor, (b) Rotation
processor

A Givens rotation requires two basic steps. The first step is the calculation of the
sine and cosine which are the elements of the rotation matrix. The second step is the
application of the rotation matrix to given data. Therefore, the basic computational
elements required to perform the systolic array implementation of the QR-RLS
algorithm introduced in the last section are the angle and the rotation processors
shown in Fig. 9.1. The angle processor computes the cosine and sine, transferring
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__d2 (k–5)

d(k–4)

x (k–3)

__d3 (k-6)

__d4 (k–7)

__d5 (k–8)

u3,1 (k–6)

u2,1 (k–5)

u1,1 (k–4) u1,2 (k–3) u1,3 (k–2) u1,4 (k–1)

u2,3 (k–3)u2,2 (k–4)

u3,2 (k–5)

z –1

z –1

z –1

1

+

z –1
u4,1(k–7)

ε(k − 9)

Fig. 9.2 QR-Decomposition systolic array for N=3

the results to outputs 1 and 2, respectively, whereas in output 3 the cell delivers
a partial product of cosines meant to generate the error signal as in (9.54). The
rotation processor performs the rotation between the data coming from input 1 with
the internal element of the matrix U.l/ and transfers the result to output 3. This
processor also updates the elements of U.l/ and transfers the cosine and sine values
to the neighboring cell on the left.

Now, imagine that we have the upper triangular matrix U.k/ arranged below
the row consisting of the new information data vector as in (9.31), or equivalently
as in (9.39). Following the same pattern, we can arrange the basic cells in order
to compute the rotations of the QR-RLS algorithm as shown in Fig. 9.2, with the
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input signal x.k/ entering the array serially. In this figure, do not consider for this
moment the time indexes and the left-hand side column. The input data weighting
is performed by the processors of the systolic array.

Basically, the computations corresponding to the triangularization of (9.31) are
performed through the systolic array shown in Fig. 9.2, where at each instant of
time an element of the matrix U.k/ is stored in the basic processor as shown inside
the building blocks. Note that these stored elements are skewed in time and are
initialized with zero. The left-hand cells store the elements of the vector d.k/

defined in (9.51), which are also initialized with zero and updated in each clock
cycle. The column on the left-hand side of the array performs the rotation and stores
the rotated values of the desired signal vector which are essential to compute the
error signal.

In order to allow the pipelining, the outputs of each cell are computed at the
present clock period and made available to the neighboring cells in the following
clock period. Note that the neighboring cells on the left and below a given cell are
performing computations related to a previous iteration, whereas the cells on the
right and above are performing the computations of one iteration in advance. This
is the pipelining scheme of Fig. 9.2.

Each row of cells in the array implements a basic Givens rotation between one
row of �U.k � 1/ and a vector related to the new incoming data x.k/. The top row
of the systolic array performs the zeroing of the last element of the most recent
incoming x.k/ vector. The result of the rotation is then passed to the second row
of the array. This second row performs the zeroing of the second-to-last element
in the rotated input signal. The zeroing processing continues in the following rows
by eliminating the remaining elements of the intermediate vectors x0

i .k/, defined in
(9.38), through Givens rotations. The angle processors compute the rotation angles
that are passed to each row to perform the rotations.

More specifically, returning to (9.31), at the instant k, the element x.k � N / of
x.k/ is eliminated by calculating the angle �0.k/ in the upper angle processor. The
same processor also performs the computation of u1;N C1.k/ that will be stored and
saved for later elimination of x.k�N C1/, which occurs during the triangularization
of X.kC1/. In the same period of time, the neighboring rotation processor performs
the computation of u1;N .k � 1/ using the angle �0.k � 1/ that was received from the
angle processor in the beginning of the present clock period k. The modifications
to the first row of the U.k/ matrix and to the vector d.k/ related to the desired
signal are performed in the first row of the array, due to the rotation responsible
for the elimination of x.k � N /. Note that the effect of the angle �0.k/ in the
remaining elements of the first row of U.k/ will be felt only in the following
iterations, one element each time, starting from the right- to the left-hand side.

The second row of the systolic array is responsible for the rotation corresponding
to �1.l/ that eliminates the element x0

1.l � N C 1/ of x0
1.l/ defined in (9.38). The

rotation �1.l/ of course modifies the remaining nonzero elements of x0
1.l/ generating

x0
2.l/, whose elements are calculated by the rotation processor and forwarded to the

next row through output 3.
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uN+1-i,i-2(k–8) uN+1-i,i-1(k–8) uN+1-i,i+1(k–8)
wi(k–8)

wi-1(k–8)

__d5-i(k–8)

wi-2(k–8)wi-3(k–8)

yi(2) yi(3)yi(0) yi(1)

uN+1-i,i(k–8)

wi = 0 for i < 0
Do for i = 0; 1; : : : ;N
yi(N − i) = 0
Do for l= N − i + 1; : : : ; N
yi(l) = yi(l − 1) + uN+1−i,i−N+l(k − 8)wi−N+l−1(k − 8)
End

wi(k − 8) =
d5−i(k − 8) − yi(3)
uN+1−i,i+1(k − 8)

End

Fig. 9.3 Systolic array and algorithm for the computation of w.k/

Likewise, the .i C 1/th row performs the rotation �i .l/ that eliminates x0
i .l �

N C i/ and also the rotation in the vector d.l/.
In the bottom part of the systolic array, the product of "q1.l/ and �.l/ is calculated

at each clock instant, in order to generate a posteriori output error given by ".l/. The
output error obtained in a given sample period k corresponds to the error related to
the input data vector of 2.N C 1/ clock periods before.

The systolic array of Fig. 9.2 exhibits several desirable features such as local
interconnection, regularity, and simple control circuitry, that yields a simple imple-
mentation. A possible problem, as pointed out in [13], is the need to distribute a
single clock throughout a large array, without incurring any clock skew.

The presented systolic array does not allow the computation of the tap-weight
coefficients. A solution pointed out in [13] employs the array of Fig. 9.2 by freezing
the array and applying an appropriate input signal sequence such that the tap-
weight coefficients are made available at the array output ".l/. An alternative way
is to add a systolic array to solve the back-substitution problem [13]. The array is
shown in Fig. 9.3 with the corresponding algorithm. The complete computation of
the coefficient vector w.k/ requires 2N C1 clock samples. In this array, the square
cells produce the partial products involved in (9.11). The round cell performs the
subtraction of the sum of the product result with an element of the vector d.k � 8/,
namely d5�i .k � 8/. This cell also performs the division of the subtraction result
by the element uN C1�i;iC1.k � 8/ of the matrix U.k � 8/. Starting with i D 0, the
sum of products has no elements and as a consequence the round cell just performs
the division d5�i .k�8/

uN C1�i;iC1.k�8/
. On the other hand, for i D N all the square cells are

actually taking part in the computation of the sum of products.
Note that in this case, in order to obtain wN .k � 8/, the results of all the cells

starting from left to right must be ready, i.e., there is no pipelining involved.
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Example 9.2. Let us choose a simple example, in order to illustrate how the systolic
array implementation works, and compare the results with those belonging to the
standard implementation of the QR-RLS algorithm. The chosen order is N D 3 and
the forgetting factor is � D 0:99.

Suppose that in an adaptive-filtering environment, the input signal consists of

x.k/ D sin.!0k/

where !0 D �
250

.
The desired signal is generated by applying the same sinusoid to an FIR filter

whose coefficients are given by

wo D Œ1:0 0:9 0:1 0:2�T

Solution. First consider the results obtained with the conventional QR-RLS algo-
rithm. The contents of the vector d.k/ and of the matrix U.k/ are given below for
the first four iterations.

Iteration k D 1

d.k/ D

2

664

0:0000

0:0000

0:0000

0:0126

3

775 U.k/ D

2

664

0:0000 0:0000 0:0000 0:0000

0:0000 0:0000 0:0000 0:0000

0:0000 0:0000 0:0000 0:0000

0:0126 0:0000 0:0000 0:0000

3

775 (9.55)

Iteration k D 2

d.k/ D

2
664

0:0000

0:0000

0:0364

0:0125

3
775 U.k/ D

2
664

0:0000 0:0000 0:0000 0:0000

0:0000 0:0000 0:0000 0:0000

0:0251 0:0126 0:0000 0:0000

0:0125 0:0000 0:0000 0:0000

3
775 (9.56)

Iteration k D 3

d.k/ D

2
664

0:0000

0:0616

0:0363

0:0124

3
775 U.k/ D

2

6664

0:0000 0:0000 0:0000 0:0000

0:0377 0:0251 0:0126 0:0000

0.0250 0.0125 0:0000 0:0000

0:0124 0:0000 0:0000 0:0000

3

7775 (9.57)

Iteration k D 4

d.k/ D

2

664

0:0892

0:0613

0:0361

0:0124

3

775 U.k/ D

2

664

0:0502 0:0377 0:0251 0:0126

0:0375 0:0250 0:0125 0:0000

0:0249 0:0124 0:0000 0:0000

0.0124 0:0000 0:0000 0:0000

3

775 (9.58)



9.3 Systolic Array Implementation 387

Iteration k D 5

d.k/ D

2

664

0:1441

0:0668

0:0359

0:0123

3

775 U.k/ D

2

664

0:0785 0:0617 0:0449 0:0281

0:0409 0:0273 0:0136 0:0000

0:0248 0:0124 0:0000 0:0000

0:0123 0:0000 0:0000 0:0000

3

775 (9.59)

The data stored in the systolic array implementation represent the elements of
the vector d.k/ and of the matrix U.k/ skewed in time. This data is shown below
starting from the fourth iteration, since before that no data is available to the systolic
array.

Observe when the elements of the U.k/ appear stored at the systolic array.
For example, consider the highlighted elements. In particular, the element .4; 1/

at instant k D 4 appears stored in the systolic array at instant k D 10, whereas
the elements .3; 1/ and .3; 2/ at instant k D 3 appear stored in the systolic array at
instants k D 8 and k D 7, respectively. Following the same line of thought, it is
straightforward to understand how the remaining elements of the systolic array are
calculated.

Iteration k D 4

2

664

0:

0:

0:

0:

3

775

2

664

0: 0: 0: 0:0126

0: 0: 0:

0: 0:

0:

3

775 (9.60)

Iteration k D 5

2

664

0:

0:

0:

0:

3

775

2

664

0: 0: 0:0251 0:0281

0: 0: 0:0126

0: 0:

0:

3

775 (9.61)

Iteration k D 6

2

664

0:

0:

0:

0:

3

775

2

664

0: 0:0377 0:0449 0:0469

0: 0:0251 0:0125

0: 0:0126

0:

3

775 (9.62)

Iteration k D 7

2

664

0:

0:

0:

0:

3

775

2

6664

0:0502 0:0617 0:0670 0:0686

0:0377 0:0250 0:0136

0:0251 0.0125
0:0126

3

7775 (9.63)



388 9 QR-Decomposition-Based RLS Filters

Iteration k D 8

2

664

0:0892

0:0616

0:0364

0:0126

3

775

2

6664

0:0785 0:0870 0:0913 0:0927

0:0375 0:0273 0:0148

0.0250 0:0124

0:0125

3

7775 (9.64)

Iteration k D 9

2

664

0:1441

0:0613

0:0363

0:0125

3

775

2

664

0:1070 0:1141 0:1179 0:1191

0:0409 0:0297 0:0160

0:0249 0:0124

0:0124

3

775 (9.65)

Iteration k D 10

2
664

0:2014

0:0668

0:0361

0:0124

3
775

2
664

0:1368 0:1430 0:1464 0:1475

0:0445 0:0319 0:0170

0:0248 0:0123

0.0124

3
775 (9.66)

Iteration k D 11

2

664

0:2624

0:0726

0:0359

0:0124

3

775

2

664

0:1681 0:1737 0:1768 0:1778

0:0479 0:0340 0:0180

0:0246 0:0123

0:0123

3

775 (9.67)

It is a good exercise for the reader to examine the elements of the vectors and ma-
trices in (9.60)–(9.67) and detect when these elements appear in the corresponding
vectors d.k/ and matrices U.k/ of (9.55)–(9.59). ut

9.4 Some Implementation Issues

Several articles related to implementation issues of the QR-RLS algorithm such
as the elimination of square root computation [14], stability and quantization error
analyses [15–18] are available in the open literature. In this section, some of these
results are briefly reviewed.

The stability of the QR-RLS algorithm is the first issue to be concerned
when considering a real implementation. Fortunately, the QR-RLS algorithm
implemented in finite precision was proved stable in the bounded input/bounded
output sense in [16]. The proof was based on the analysis of the bounds for the
internal recursions of the algorithm [16, 17]. From another study based on the
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quantization-error propagation in the finite-precision implementation of the
QR-RLS algorithm, it was possible to derive the error recursions for the main
quantities of the algorithm, leading to the stability conditions of the QR-RLS
algorithm [18]. The convergence on average of the QR-RLS algorithm can be
guaranteed if the following inequality is satisfied [18]:

�1=2 k QQQ.k/ k2� 1 (9.68)

where the two norm k � k2 of a matrix used here is the square root of the largest
eigenvalue and the notation Œ��Q denotes the finite-precision version of Œ��. Therefore,

k QQQ.k/ k2D MAXi

q
cos2

Q �i .k/ C sin2
Q �i .k/ (9.69)

where MAXi Œ�� is the maximum value of Œ��. The stability condition can be rewritten
as follows:

� � 1

MAXi Œcos2
Q �i .k/ C sin2

Q �i .k/�
(9.70)

It can then be concluded that keeping the product of the forgetting factor and
the maximum eigenvalue of the Givens rotations smaller than unity is a sufficient
condition to guarantee the stability.

For the implementation of any adaptive algorithm, it is necessary to estimate
quantitatively the dynamic range of all internal variables of the algorithm in order
to determine the length of all the registers required in the actual implementation.
Although this issue should be considered in the implementation of any adaptive-
filtering algorithm, it is particularly relevant in the QR-RLS algorithms due to
their large number of internal variables. The first attempt to address this problem
was reported in [17], where expressions for the steady-state values of the cosines
and sines of the Givens rotations were determined, as well as the bounds for the
dynamic range of the information stored in the processing cells. The full quantitative
analysis of the dynamic range of all internal quantities of the QR-RLS algorithm
was presented in [18] for the conventional and systolic-array forms. For fixed-point
implementation, it is important to determine the internal signal with the largest
energy such that frequent overflow in the internal variables of the QR-RLS algorithm
can be avoided. The first entry of the triangularized information matrix can be shown
to have the largest energy [18] and its steady-state value is approximately

u0;0.k/ � 	xp
1 � �

(9.71)

where 	2
x is the variance of the input signal.

The procedure to derive the results above discussed consists of first analyzing the
QR-RLS algorithm for ideal infinite-precision implementation. The second step is
modeling the quantization errors and deriving the recursive equations that include
the overall error in each quantity of the QR-RLS algorithm [18]. Then conditions to
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guarantee the stability of the algorithm could be derived. A further step is to derive
closed-form solutions to the mean-squared values of the deviations in the internal
variables of the algorithm due to finite-precision operations. The main objective in
this step is to obtain the excess mean-square error and the variance of the deviation
in the tap-weight coefficients. Analytical expressions for these quantities are not
very simple unless a number of assumptions about the input and reference signals
are assumed [18]. However, they are useful to the designer.

9.5 Fast QR-RLS Algorithm

For the derivation of the fast QR-RLS algorithms, it is first necessary to study the
solutions of the forward and backward prediction problems. As seen in Chaps. 7 and
8, the predictor solutions were also required in the derivation of the lattice-based and
the fast transversal RLS algorithms.

A family of fast QR-RLS algorithms can be generated depending on the follo-
wing aspects of their derivation:

• The type of triangularization applied to the input signal matrix, taking into
consideration the notation adopted in this book where the first element of the data
vectors corresponds to the most recent data. The upper triangularization is related
to the updating of forward prediction errors, whereas the lower triangularization
involves the updating of backward prediction errors.

• The type of error utilized in the updating process, namely, if it is a priori or a
posteriori error.

Table 9.2 shows the classification of the fast QR-RLS algorithms indicating the
references where the specific algorithms can be found. Although these algorithms
are comparable in terms of computational complexity, those based on backward
prediction errors (which utilize lower triangularization of the information matrix)
are numerically stable when implemented in finite precision. This good numerical
behavior is related to backward consistency and minimal properties inherent to these
algorithms [20].

In this section, we start with the application of the QR decomposition to the lower
triangularization of the input signal information matrix. Then, the decomposition is
applied to the backward and forward prediction problems. This type of triangular-
ization is related to the updating of backward prediction errors.

A fast QR-RLS algorithm is derived by performing the triangularization of the
information matrix in this alternative form, namely by generating a lower triangular

Table 9.2 Classification of
the fast QR-RLS algorithms

Prediction

Error type Forward Backward

A priori [9] [10, 11]
A posteriori [4] [8, 19]
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matrix, and by first applying the triangularization to the backward linear prediction
problem. Originally, the algorithm to be presented here was proposed in [5] and later
detailed in [7] and [8]. The derivations are quite similar to those presented for the
standard QR-RLS algorithm. Therefore, we will use the previous results in order to
avoid unnecessary repetition. In order to accomplish this objective while avoiding
confusion, the following notations are, respectively, used for the triangularization
matrix and the lower triangular matricesQ andU . These matrices have the following
forms

U.k/ D

2

6664

0 0 � � � 0 u1;N C1

0 0 � � � u2;N u2;N C1

:::
:::

:::

uN C1;1 uN C1;2 � � � uN C1;N uN C1;N C1

3

7775 (9.72)

QQ.k/ D

2

6666666664

cos �N .k/ � � � 0 � � � � sin �N .k/ 0
:::

:::
:::

0 Ik�N �1 0
:::

:::
:::

:::

sin �N .k/ � � � 0 � � � cos �N .k/ 0
0 IN

3

7777777775

�

2

6666666664

cos �N �1.k/ � � � 0 � � � � sin �N �1.k/ 0
:::

:::
:::

0 Ik�N 0
:::

:::
:::

:::

sin �N �1.k/ � � � 0 � � � cos �N �1.k/ 0

0 � � � 0 � � � 0 IN �1

3

7777777775

� � �

2

6666664

cos �0.k/ � � � 0 � � � � sin �0.k/
:::

:::

0 Ik�1 0
:::

:::

sin �0.k/ � � � 0 � � � cos �0.k/

3

7777775
(9.73)

The triangularization procedure has the following general form

Q.k/X.k/ D QQ.k/

�
1 0
0 QQ.k � 1/

� �
I2 0
0 QQ.k � 2/

�

� � �
�

Ik�N 0
0 QQ.k � N /

�
X.k/
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D

2

664
0

U.k/

3

775

�
k � N

�
N C 1

(9.74)

„ƒ‚…
N C1

where Q.k/ is a .k C 1/ by .k C 1/ matrix which represents the overall triangular-
ization matrix.

As usual the multiplication by zero elements can be avoided by replacing QQ.k/

by Q� .k/, where the increasing Ik�N �1 section of QQ.k/ is removed very much like
in (9.38) and (9.39). The resulting equation is

Q� .k/

�
xT .k/

�1=2U.k � 1/

�
D Q0

�N
.k/Q0

�N �1
.k/ � � �Q0

�i
.k/

�
x0

i .k/

U 0
i .k/

�
(9.75)

whereQ0
�i

.k/ is derived fromQ0
i .k/ by removing the Ik�N �1 section of Q0

i .k/ along
with the corresponding rows and columns, resulting in the following form

Q0
�i

.k/ D

2
6666666666664

cos �i .k/ � � � 0 � � � � sin �i .k/ � � � 0
:::

:::
:::

0 IN �i 0 � � � 0
:::

:::
:::

sin �i .k/ � � � 0 � � � cos �i .k/ � � � 0
:::

:::
::: Ii

0 � � � 0 � � � 0

3
7777777777775

(9.76)

The Givens rotation elements are calculated by

cos �i .k/ D ŒU 0
i .k/�N C1�i;iC1

ci

(9.77)

sin �i .k/ D x0
i .k � i/

ci

(9.78)

where ci D
q

ŒU 0
i .k/�2N C1�i;iC1 C x

02
i .k � i/, and Œ��i;j denotes the .i; j / element

of the matrix.

9.5.1 Backward Prediction Problem

In the backward prediction problem, the desired signal and vector are respectively

db.k C 1/ D x.k � N / (9.79)
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db.k C 1/ D

2

666666666664

x.k � N /

�1=2x.k � N � 1/
:::

�
k�N

2 x.0/

0
:::

0

3

777777777775

(9.80)

The reader should note that in the present case an extra row was added to the vector
db.k C 1/. For example, the dimension of db.k C 1/ is now .k C 2/ by 1. The
backward-prediction-error vector is given by

"b.k C 1/ D db.k C 1/ � X.k C 1/wb.k C 1/

D ŒX.k C 1/ db.k C 1/�

� �wb.k C 1/

1

�
(9.81)

The triangularization matrix Q.k C 1/ of the input data matrix can be applied to
the backward prediction error resulting in

Q.k C 1/"b.k C 1/ D Q.k C 1/db.k C 1/ �
�

0
U.k C 1/

�
wb.k C 1/ (9.82)

or equivalently

"bq.k C 1/ D dbq.k C 1/ �
�

0
U.k C 1/

�
wb.k C 1/ (9.83)

From equations and (9.81) and (9.83), it follows that

"bq.k C 1/ D Q.k C 1/ŒX.k C 1/ db.k C 1/�

� �wb.k C 1/

1

�

D

2
666664

"bq1.k C 1/

0 "bq2.k C 1/
:::

"bqk�N C1
.k C 1/

U.k C 1/ xq3 .k C 1/

3
777775

� �wb.k C 1/

1

�
(9.84)

Also note that

Œ X.k C 1/ db.k C 1/� D X.N C2/.k C 1/ (9.85)
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where X.N C2/.k C 1/ is an extended version of X.k C 1/, with one input signal
information vector added. In other words, X.N C2/.k C 1/ is the information matrix
that would be obtained if one additional delay was added at the end of the delay line.

In order to avoid increasing vectors in the algorithm, "bq1.kC1/, "bq2.kC1/, : : : ,
"bqk�N

.k C 1/ can be eliminated in (9.84) through Givens rotations, as follows:

Qb.k C 1/"bq.k C 1/ D Qb.k C 1/

2

666664

"bq1.k C 1/

0 "bq2.k C 1/
:::

"bqk�N C1
.k C 1/

U.k C 1/ xq3 .k C 1/

3

777775

��wb.k C 1/

1

�

D
2

4
0 0

jj"b.k C 1/jj
U.k C 1/ xq3 .k C 1/

3

5
� �wb.k C 1/

1

�
(9.86)

Note that by induction ŒU �N C1�i;iC1.k C 1/ D jj"b;i .k C 1/jj, where
jj"b;i .k C 1/jj2 corresponds to the least-square backward prediction error of an
.i � 1/th-order predictor.

9.5.2 Forward Prediction Problem

In the forward prediction problem, the following relations are valid1:

df .k/ D x.k C 1/ (9.87)

df .k/ D

2

66664

x.k C 1/

�1=2x.k/
:::

�
kC1

2 x.0/

3

77775
(9.88)

"f .k/ D df .k/ �
�

X.k/

0

�
wf .k/ (9.89)

where df .k/ is the desired signal, df .k/ is the desired signal vector, and "f .k/ is
the error signal vector.

1The reader should note that here the definition of forward prediction error is slightly different
from that used in Chaps. 7 and 8, where in the present case we are using the input and desired
signals one step ahead. This allows us to use the same information matrix as the conventional
QR-Decomposition algorithm of Sect. 9.2.3.
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Now, we can consider applying the QR decomposition, as was previously done
in (9.74) to the forward prediction error above defined. It should be noted that in
the present case an extra row was added to the vectors "f .k/ and df .k/, as can be
verified in the following relations:

"f .k/ D
2

4 df .k/

ˇ̌
ˇ̌
ˇ̌
X.k/

0

3

5
�

1

�wf .k/

�
(9.90)

and

"f q.k/ D
�Q.k/ 0

0 1

� 2

4 df .k/

ˇ̌
ˇ̌
ˇ̌
X.k/

0

3

5
�

1

�wf .k/

�

D

2
6666664

"f q1.k/
::: 0

"f qk�N
.k/

xq2.k/ U.k/

�
kC1

2 x.0/ 0

3
7777775

�
1

�wf .k/

�
(9.91)

Note that:
2

4 df .k/

ˇ̌
ˇ̌
ˇ̌
X.k/

0

3

5 D X.N C2/.k C 1/ (9.92)

which is an order extended version of X.kC1/ and has dimension .kC2/ by .N C2/.
In order to recursively solve (9.91) without dealing with ever-increasing matrices,

a set of Givens rotations are applied in order to eliminate "f q1 .k/, "f q2 .k/,
: : : ; "f qk�N

.k/, such that the information matrix that premultiplies the vector
Œ1 �wf .k/�T is triangularized. The Givens rotations can recursively be obtained by

Qf .k/ D QQf .k/

�
1 0
0 Qf .k � 1/

�

D QQf .k/

�
1 0
0 QQf .k � 1/

�
� � �

�
Ik�N �1 0

0 QQf .N C 1/

�
(9.93)

where QQf .k/ is defined as

QQf .k/ D

2

6666664

cos �f .k/ � � � 0 � � � � sin �f .k/
:::

:::

0 Ik 0
:::

:::

sin �f .k/ � � � 0 � � � cos �f .k/

3

7777775
(9.94)
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If in each iteration, the above rotation is applied to (9.91), we have

"0
f q.k/ D QQf .k/

�
1 0
0 Qf .k � 1/

�

2
6666664

"f q1.k/
::: 0

"f qk�N
.k/

xq2.k/ U.k/

�
kC1

2 x.0/ 0

3
7777775

�
1

�wf .k/

�

D QQf .k/

2

666666664

"f q1 .k/

0 0
:::

0

xq2 .k/ U.k/

�1=2jj"f .k � 1/jj 0

3

777777775

�
1

�wf .k/

�

D

2
666664

0
::: 0
0

xq2 .k/ U.k/

jj"f .k/jj 0

3
777775

�
1

�wf .k/

�
(9.95)

where

cos �f .k/ D �1=2jj"f .k � 1/jj
q

�jj"f .k � 1/jj2 C "2
f q1

.k/
(9.96)

sin �f .k/ D "f q1.k/
q

�jj"f .k � 1/jj2 C "2
f q1

.k/
(9.97)

and jj"f .k/jj is the norm of the forward prediction error vector shown in (9.91).
This result can be shown by evoking the fact that the last element of "0

f q.k/ is equal
to jj"f .k/jj, since jj"0

f q.k/jj D jj"f q.k/jj D jj"f .k/jj, because these error vectors
are related through unitary transformations.

Also, it is worthwhile to recall that in (9.95) the relation ŒU �N C1�i;iC1.k/ D
jj"b;i .k/jj is still valid (see (9.86)). Also, by induction, it can easily be shown from
(9.91) that:

For k D 0; 1; : : : ; N

jj"f .k/jj D �
kC1

2 x.0/
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for k D N C 1

jj"0
f q.k/jj D jj"f .k/jj D

q
�kC1x2.0/ C "2

f q1
.k/

for k D N C 2

jj"f .k/jj D
q

�kC1x2.0/ C �"2
f q1

.k � 1/ C "2
f q1

.k/

D
q

�jj"f .k � 1/jj2 C "2
f q1

.k/

for k > N C 2

jj"f .k/jj2 D �jj"f .k � 1/jj2 C "2
f q1

.k/ (9.98)

In the present case, it can be assumed that the partial triangularization can be
performed at each iteration as follows:

2
666666664

0

0 0
:::

0

xq2.k/ U.k/

jj"f .k/jj 0

3
777777775

D QQf .k/

� QQ.k/ 0
0 1

�

2
66666664

x.k C 1/ xT .k/

0 0

�1=2xq2 .k � 1/ �1=2U.k � 1/

�1=2jj"f .k � 1/jj 0

3
77777775

(9.99)

Now we can eliminate xq2 .k/ through a set of rotations Q0
f .k C 1/ such that

U .N C2/.k C 1/ D Q0
f .k C 1/

�
xq2.k/ U.k/

jj"f .k/jj 0

�
(9.100)

where the superscript .N C 2/ in the above matrices denotes rotation matrices
applied to data with .N C 2/ elements.

From the above equation, we can realize that Q0
f .k C 1/ consists of a series of

rotations in the following order

Q0
f .k C 1/ D

2
64

IN 0
0 cos � 0

f1
.k C 1/ � sin � 0

f1
.k C 1/

sin � 0
f1

.k C 1/ cos � 0
f1

.k C 1/

3
75

� � �

2
66666664

1 0 � � � � � � � � � � � � � � � 0

0 cos � 0
fN

.k C 1/ 0 � � � 0 � � � 0 � sin � 0
fN

.k C 1/

::: 0 0
::: IN �1

:::
:::

0 sin � 0
fN

.k C 1/ 0 � � � 0 � � � 0 cos � 0
fN

.k C 1/

3
77777775
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�

2

66666664

cos � 0
fN C1

.k C 1/ 0 � � � 0 � � � 0 � sin � 0
fN C1

.k C 1/

0 0
::: IN

:::
:::

:::

sin � 0
fN C1

.k C 1/ 0 � � � 0 � � � 0 cos � 0
fN C1

.k C 1/

3

77777775

(9.101)

where the rotation entries of Q0
f .k C 1/ are calculated as follows:


i D
q


2
i�1 C x2

q2i .k/

cos � 0
fN C2�i

.k C 1/ D 
i�1


i

sin � 0
fN C2�i

.k C 1/ D xq2i .k/


i

(9.102)

for i D 1; : : : ; N C 1, where 
0 D jj"f .k/jj. Note that 
N C1 is the norm of the
weighted backward prediction error jj"b;0.k C 1/jj, for a zero-order predictor (see
(9.86)). The quantity xq2i .k/ denotes the i th element of the vector xq2 .k/.

Since the above rotations, at instant k, are actually completing the triangulariza-
tion of X.N C2/.k C 1/, it follows that

QQ.N C2/.k C 1/ D
�

Ik�N 0
0 Q0

f .k C 1/

�
QQf .k/

� QQ.k/ 0
0 1

�
(9.103)

If the pinning vector, Œ1 0 : : : 0�T , is postmultiplied on both sides of the above
equation, we obtain the following relation

QQ.N C2/.k C 1/

2
6664

1

0
:::

0

3
7775 D

�
Ik�N 0

0 Q0
f .k C 1/

�
QQf .k/

� QQ.k/ 0
0 1

�
2
6664

1

0
:::

0

3
7775

D

2

6664

�.N C2/.k C 1/

0
:::

r.N C2/.k C 1/

3

7775�
N C 2

D
�

Ik�N 0
0 Q0

f .k C 1/

�
QQf .k/

2

666664

�.k/

0
:::

r.k/

0

3

777775 �
N C 1

(9.104)
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where r.N C2/.k/ and r.k/ are vectors representing the last nonzero elements in the
first column of QQ.N C2/.k/ and QQ.k/, respectively, as can be seen in (9.73). Now,
we can proceed by taking the product involving the matrix QQf .k/ resulting in the
following relation

1
n

k�N �1

(

N C 1
n

2

6666664

�.k/ cos �f .k/

0
:::

r.k/

�.k/ sin �f .k/

3

7777775
D

"
Ik�N �1 0

0 Q0T
f .k C 1/

#
2

66664

�.N C2/.k C 1/

0
:::

r.N C2/.k C 1/

3

77775

o
1)
k�N �1

o
N C 2

(9.105)

Since our interest is to calculate r.k C 1/, the above equation can be reduced to

Q0
f .k C 1/

�
r.k/

�.k/ sin �f .k/

�
D r.N C2/.k C 1/ (9.106)

where the unused k � N rows and columns were deleted and r.k C 1/ is the last
N C1 rows of r.N C2/.k C1/. Now, since we have r.k C1/ available as a function of
known quantities, it is possible to calculate the angles of the reduced rotation matrix
Q� .k C 1/ using the following relation.

�
�.k C 1/

r.k C 1/

�
D Q� .k C 1/

2

6664

1

0
:::

0

3

7775 (9.107)

By examining the definition of Q� .k C 1/ in (9.75) and (9.76), it is possible to
conclude that it has the following general form (see (9.29) and (9.30) for similar
derivation)

N C 1‚ …„ ƒ

Q� .k C 1/ D

2
6664

� � � � � �
� �
:::

: : :

� � � � � �

3
7775
9
=

; N C 1

(9.108)

where � represents a nonzero element, with the first column given by
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2

666666666666666666664

NY

iD0

cos �i .k C 1/

N �1Y

iD0

cos �i .k C 1/ sin �N .k C 1/

:::

j �1Y

iD0

cos �i .k C 1/ sin �j .k C 1/

:::

sin �0.k C 1/

3

777777777777777777775

(9.109)

Although �.k C 1/ is not known, referring back to (9.107) and considering that
each angle �i is individually responsible for an element in the vector r.k C 1/, it is
possible to show that (9.107) can be solved by the following algorithm:

Initialize � 0
0 D 1

For i D 1 to N C 1 calculate

sin �i�1.k C 1/ D rN C2�i .k C 1/

� 0
0

(9.110)

� 02
1 D � 02

0Œ1 � sin2 �i�1.k C 1/�

D � 02
0 � r2

N C2�i .k C 1/ (9.111)

cos �i�1.k C 1/ D � 0
1

� 0
0

(9.112)

� 0
0 D � 0

1 (9.113)

After computation is finished make �.k C 1/ D � 0
1.

In the fast QR-RLS algorithm, we first calculate the rotated forward prediction
error as in (9.99), followed by the calculation of the energy of the forward prediction
error using (9.98) and the elements of QQf .k/ given in (9.96) and (9.97), respectively.
The rotation entries of Q0

f .k C 1/ are calculated using the relations of (9.102),
which in turn allow us to calculate r.N C2/.k C 1/ through (9.106). Given r.N C2/

.k C 1/, the rotation angles �i can be calculated via (9.110)–(9.112). The remaining
equations of the algorithm are the joint-processor section and the computation of
the forward prediction error given by (9.51) and (9.54), respectively.

The resulting Algorithm 9.2 is almost the same as the hybrid QR-lattice algorithm
of [8]. The main difference is the order the of computation of the angles �i . In [8]
the computation starts from �N by employing the relation

�.k C 1/ D
p

1 � jjr.k C 1/jj2 (9.114)
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Algorithm 9.2 Fast QR-RLS algorithm based on a posteriori backward prediction
error
Initialization

jj"f .�1/jj D ı ı small
All cosines with 1 (use for k � N C 1/

All other variables with zero.
Do for each k � 0�

"f q1 .k/

xq2 .k/

�
D Q� .k/

�
x.k C 1/

�1=2xq2 .k � 1/

�
(9.99)

jj"f .k/jj2 D �jj"f .k � 1/jj2 C "2
f q1

.k/ (9.98)

sin �f .k/ D "f q1 .k/

jj"f .k/jj (9.97)


0 D jj"f .k/jj
Do for i D 1 to N C 1


i D
q


2
i�1 C x2

q2i .k/ (9.102)

cos � 0
fN C2�i

.k C 1/ D 
i�1


i
(9.102)

sin � 0
fN C2�i

.k C 1/ D xq2i .k/


i
(9.102)

End

r.N C2/.k C 1/ D Q0
f .k C 1/

�
r.k/

�.k/ sin �f .k/

�
(9.106)

r.k C 1/ D last N C 1 elements of r.N C2/.k C 1/

� 0
0 D 1

Do for i D 1 to N C 1

sin �i�1.k C 1/ D rN C2�i .k C 1/

� 0
0

(9.110)

� 02
1 D � 02

0 � r2
N C2�i .k C 1/ (9.111)

cos �i�1.k C 1/ D � 0
1

� 0
0

(9.112)

� 0
0 D � 0

1

End
�.k C 1/ D � 0

1

Filter evolution�
"q1 .k C 1/

dq2 .k C 1/

�
D Q� .k C 1/

�
d.k C 1/

�1=2dq2 .k/

�
(9.51)

".k C 1/ D "q1 .k C 1/�.k C 1/ (9.54)
End

This algorithm is closely related to the normalized lattice algorithm (see [8]).
Some key results are needed to establish the relation between these algorithms. For
example it can be shown that the parameter �.k; N C 1/ of the lattice algorithms
corresponds to �2.k/ in the fast QR algorithm.

In Problem 17, it is proved that the elements of r.k C1/ in (9.106) correspond to
normalized backward prediction a posteriori errors of distinct orders [8]. This is the
explanation for the classification of Algorithm 9.2 in Table 9.2 as one which updates
the a posteriori backward prediction errors.
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Table 9.3 Results of the
finite-precision
implementation of the fast
QR-RLS algorithm

�.k/Q

No. of bits Experiment

16 1.7 10�3

12 2.0 10�3

10 2.1 10�3

Example 9.3. In this example, the system identification problem described in
Sect. 3.6.2 is solved using the QR-RLS algorithm described in this section. We
implemented the fast QR-RLS algorithm with finite precision.

Solution. The main objective of this example is to test the stability of the fast
QR-RLS algorithm. For that we run the algorithm implemented with fixed-point
arithmetic. The wordlengths used are 16, 12, and 10 bits, respectively. We force the
rotations to be kept passive. In other words, for each rotation the sum of the squares
of the quantized sine and cosine are kept less or equal to one. Also, we test � 0

1 to
prevent it from becoming less than zero. With these measures, we did not notice any
sign of divergence in our experiments. Table 9.3 shows the measured MSE in the
finite-precision implementation, where the expected MSE for the infinite-precision
implementation is 0:0015. The analysis of these results shows that the fast QR-RLS
has low sensitivity to quantization effects and is comparable to the other stable RLS
algorithms presented in this text. �

9.6 Conclusions and Further Reading

Motivated by the numerically well conditioned Givens rotations, two types of
rotation-based algorithms were presented in this chapter. In both cases the QR
decomposition implemented with orthogonal Givens rotations were employed. The
first algorithm is computationally intensive (order N 2) and is mainly useful in
applications where the input signal vector does not consist of time delayed elements.
The advantages of this algorithm are its numerical stability and its systolic array
implementation. The second class of algorithms explores the time-shift property of
the input signal vector which is inherent to a number of applications, yielding the
fast QR-RLS algorithms with order N numerical operations per output sample.

It should be noticed that the subject of QR-decomposition-based algorithms is not
fully covered here. A complete approach to generating fast QR-RLS algorithm using
lattice formulation is known [21–24]. In [21], the author applied QR decomposition
to avoid inversion of covariance matrices in the multichannel problem employing
lattice RLS formulation. A full orthogonalization of the resulting algorithm was
later proposed in [23]. By using different formulations, the works of [22, 23], and
[24] propose virtually identical QR-decomposition-based lattice RLS algorithms.
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In terms of computational complexity, the fast QR-RLS algorithm presented in this
chapter is more efficient. Although not discussed here, a solution to compute the
adaptive-filter weights from the internal quantities of the fast QR-RLS algorithm is
currently available [25].

Another family of algorithms employing QR decomposition are those that
replace the Givens rotation by the Householder transformation [1]. The House-
holder transformation can be considered an efficient method to compute the QR
decomposition and is known to yield more accurate results than the Givens rotations
in finite-precision implementations. In [26], the fast Householder RLS adaptive-
filtering algorithm was proposed and shown to require computational complexity
on the order of 7N . However, no stability proof for this algorithm exists so far. In
another work, the Householder transformation is employed to derive a block-type
RLS algorithm that can be mapped on a systolic-block Householder transformation
[27]. In [28], by employing the Householder transformation, a QR-based LMS
algorithm was proposed as a numerically stable and fast converging algorithm with
OŒN � computational complexity.

A major drawback of the conventional QR-RLS algorithm is the backsubstitution
algorithm which is required for computing the weight vector. In a systolic array, it
can be implemented as shown in this chapter, through a bidirectional array that
requires extra clock cycles. Alternatively, a two-dimensional array can be employed
despite being more computationally expensive [13]. An approach called inverse QR
method can be used to derive a QR-based RLS algorithm such that the weight vector
can be calculated without backsubstitution [29, 30]; however, no formal proof of
stability for this algorithm is known.

The QR decomposition has also been shown to be useful for the implementation
of numerically stable nonlinear adaptive-filtering algorithms. In [31], a QR-based
RLS algorithm for adaptive nonlinear filtering has been proposed.

Some performance evaluations of the QR-RLS and fast QR-RLS algorithms are
found in this chapter where these algorithms were employed in some simulation
examples.

9.7 Problems

1. If we consider each anti-diagonal element of �
1
2 U.k/ as a scaling constant di ,

and we divide the input signal vector initially by a constant ı, we can derive a
QR-decomposition algorithm without square roots as described below:

The first two rows to be rotated are

ı Qx.k/ ı Qx.k � 1/ � � � ı Qx.k � N /

d1�
1=2 Qu1;1.k � 1/ d1�

1=2 Qu1;2.k � 1/ � � � d1

where d1 D �1=2u1;N C1.k � 1/. The parameter ı can be initialized with 1.
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Applying the Givens rotation to the rows above results in

ı
0

x
0

1.k/ ı
0

x
0

1.k � 1/ � � � ı
0

x
0

1.k � N C 1/ 0

d
0

1 Qu0

1;1.k/ d
0

1 Qu0

1;2.k/ � � � d
0

1 Qu0

1;N .k/ d
0

1

where

d
02
1 D d 2

1 C ı2 Qx2.k � N /

c D d2
1

d2
1 Cı2 Qx2.k�N /

ı
02 D d2

1 ı2

d2
1 Cı2 Qx2.k�N /

s D ı2 Qx.k�N /

d2
1 Cı2 Qx2.k�N /

x
0

1.k � N C i/ D Qx.k � N C i/ � Qx.k � N /�1=2 Qu1;N �iC1.k � 1/

Qu0

1;N �iC1.k/ D c�1=2 Qu1;N C1�i .k � 1/ C s Qx.k � N C i/:

The same procedure can be used to triangularize completely the input signal
matrix.

(a) Using the above procedure derive a QR-RLS algorithm without square
roots.

(b) Compare the computational complexity of the QR-RLS algorithms with
and without square roots.

(c) Show that the triangularized matrix QU.k/ is related with U.k/ through

U.k/ D D
0 QU.k/

where D
0

is a diagonal matrix with the diagonal elements given by d
0

i for
i D 1; 2; : : : ; N C 1.

2. Since QT .k/Q.k/ D IkC1, the following identity is valid for any matrix A
and B:

CT D D AT B for Q.k/ ŒA j B� D ŒC j D�

where Q.k/; A; B; C;and D have the appropriate dimensions. By choosing
A; B; C; and D appropriately, derive the following relations.

(a) UT .k/U.k/ D �UT .k � 1/U.k � 1/ C x.k/xT .k/

(b) pD.k/ D �pD.k � 1/ C x.k/d.k/

where pD.k/ D ˙k
iD0�

kx.i/d.i/

(c) UT .k/U�T .k/x.k/ D x.k/

where U�T .k/ D �
U�1.k/

�T

(d) pT
D.k/U�1.k/U�T .k/x.k/ C "q1.k/�.k/ D d.k/.

3. Partitioning Q� .k/ as follows:

Q� .k/ D
�

�.k/ qT
� .k/

q0
� .k/ Q� r .k/

�
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show from (9.51) and (9.39) that

qT
� .k/�1=2U.k � 1/ C �.k/xT .k/ D 0T

qT
� .k/�1=2dq2.k � 1/ C �.k/d.k/ D "q1.k/.

4. Using the relations of the previous two problems and the fact that U.k/w.k/ D
dq2.k/, show that

(a) e.k/ D "q1.k/

�.k/

(b) ".k/ D e.k/�2.k/

(c) "q1.k/ D p
".k/e.k/.

5. Show that UT .k/dq2.k/ D pD.k/.
6. Using some of the formulas of the conventional RLS algorithm show that

�2.k/ D 1 � xT .k/R�1
D .k/x.k/.

7. The QR-RLS algorithm is used to predict the signal x.k/ D cos.�k=3/ using a
second-order FIR filter with the first tap fixed at 1. Note that we are interested
in minimizing the MSE of the FIR output error. Given � D 0:985, calculate
y.k/ and the filter coefficients for the first ten iterations.

8. Use the QR-RLS algorithm to identify a system with the transfer function given
below. The input signal is uniformly distributed white noise with variance 	2

x D
1 and the measurement noise is Gaussian white noise uncorrelated with the
input with variance 	2

n D 10�3. The adaptive filter has 12 coefficients.

H.z/ D 1 � z�12

1 � z�1

(a) Run the algorithm for � D 1, � D 0:99, and � D 0:97. Comment on the
convergence behavior in each case.

(b) Plot the obtained FIR filter frequency response at any iteration after
convergence is achieved and compare with the unknown system.

9. Perform the equalization of a channel with the following impulse response

h.k/ D
10X

lDk

.l � 10/Œu.k/ � u.k � 10/�

where u.k/ is a step sequence.
Use a known training signal that consists of a binary .�1; 1/ random signal.

An additional Gaussian white noise with variance 10�2 is present at the channel
output.

(a) Apply the QR-RLS with an appropriate � and find the impulse response of
an equalizer with 50 coefficients.

(b) Convolve the equalizer impulse response at a given iteration after conver-
gence, with the channel impulse response and comment on the result.
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10. In a system identification problem the input signal is generated by an autore-
gressive process given by

x.k/ D �1:2x.k � 1/ � 0:81x.k � 2/ C nx.k/

where nx.k/ is zero-mean Gaussian white noise with variance such that 	2
x D 1.

The unknown system is described by

H.z/ D 1 C 0:9z�1 C 0:1z�2 C 0:2z�3

The adaptive filter is also a third-order FIR filter. Using the QR-RLS algorithm:
Choose an appropriate �, run an ensemble of 20 experiments, and plot the

average learning curve.
11. The QR-RLS algorithm is applied to identify a 7th-order time-varying unknown

system whose coefficients are first-order Markov processes with �w D 0:999

and 	2
w D 0:001. The initial time-varying system multiplier coefficients are

wT
o D Œ0:03490 � 0:01100 � 0:06864 0:22391 0:55686 0:35798

�0:02390 � 0:07594�

The input signal is Gaussian white noise with variance 	2
x D 0:7, and the

measurement noise is also Gaussian white noise independent of the input signal
and of the elements of nw.k/, with variance 	2

n D 0:01.

(a) For � D 0:97 measure the excess MSE.
(b) Repeat (a) for � D �opt.

12. Suppose a 15th-order FIR digital filter with multiplier coefficients given below
is identified through an adaptive FIR filter of the same order using the QR-
RLS algorithm. Considering that fixed-point arithmetic is used and for 10
independent runs, calculate an estimate of the expected value of jj�w.k/Qjj2
and �.k/Q for the following case.

Additional noise : white noise with variance 	2
n D 0:0015

Coefficients wordlength: bc D 16 bits
Signal wordlength: bd D 16 bits
Input signal: Gaussian white noise with variance 	2

x D 0:7

� D 0:99

wT
o D Œ0:0219360 0:0015786 � 0:0602449 � 0:0118907 0:1375379

0:0574545 � 0:3216703 � 0:5287203 � 0:2957797 0:0002043 0:290670

�0:0353349 � 0:0068210 0:0026067 0:0010333 � 0:0143593�

Plot the learning curves for the finite- and infinite-precision implementations.
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13. Repeat the above problem for the following cases

(a) 	2
n D 0:01; bc D 9 bits, bd D 9 bits, 	2

x D 0:7; � D 0:98:

(b) 	2
n D 0:1; bc D 10 bits, bd D 10 bits, 	2

x D 0:8; � D 0:98.
(c) 	2

n D 0:05; bc D 8 bits, bd D 16 bits, 	2
x D 0:8; � D 0:98.

14. Repeat Problem 12 for the case where the input signal is a first-order Markov
process with �x D 0:95.

15. Repeat Problem 9 using the fast QR-RLS algorithm.
16. From (9.74) it is straightforward to show that

X.k/ D QT .k/

2
664

0

U.k/

3
775

D ŒQu.k/ Qd .k/�

2

664
0

U.k/

3

775

where Q.k/ D ŒQu.k/Qd .k/�T .

(a) Using the above relation show that the elements of xq2 .k/ in (9.95) are
given by

xq2i .k/ D ŒqT
di .k/ 0�df .k/

where qdi .k/ is the i th column of Qd .k/.
(b) Show that the a posteriori error vector for an N th-order forward predictor

can be given by

"f .k; N C 1/ D df .k/ �
N C1X

iD1

xq2i .k/

2

664
qdi .k/

0

3

775

(c) Can the above expression be generalized to represent the a posteriori error
vector for an .N � j /th-order forward predictor? See the expression below

"f .k; N C 1 � j / D df .k/ �
N C1X

iDj

xq2i .k/

2

664
qdi .k/

0

3

775



408 9 QR-Decomposition-Based RLS Filters

17. For the fast QR-RLS algorithm, show that the elements of r.k C 1/ correspond
to a normalized backward prediction a posteriori error defined as

rN C1�i .k/ D "b.k; i/ D "b.k; i/

jj"b;i .k/jj D "bqi .k; i/

jj"b;i .k/jj
i�1Y

j D0

cos �j .k/

where
Q�1

j D0 D 1, and "b.k; i C 1/ is the a posteriori backward prediction error
for a predictor of order i , with i D 0; 1; : : :. Note that jj"b;i .k/jj2 corresponds
to �d

bmin
.k; i C 1/ used in the lattice derivations of Chap. 7.
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