
Chapter 4
LMS-Based Algorithms

4.1 Introduction

There are a number of algorithms for adaptive filters which are derived from the
conventional LMS algorithm discussed in the previous chapter. The objective of the
alternative LMS-based algorithms is either to reduce computational complexity or
convergence time. In this chapter, several LMS-based algorithms are presented and
analyzed, namely, the quantized-error algorithms [1–11], the frequency-domain (or
transform-domain) LMS algorithm [12–14], the normalized LMS algorithm [15],
the LMS-Newton algorithm [16, 17], and the affine projection algorithm [18–26].
Several algorithms that are related to the main algorithms presented in this chapter
are also briefly discussed.

The quantized-error algorithms reduce the computational complexity of the LMS
algorithms by representing the error signal with short wordlength or by a simple
power-of-two number.

The convergence speed in the LMS-Newton algorithm is independent of the
eigenvalue spread of the input signal correlation matrix. This improvement is
achieved by using an estimate of the inverse of the input signal correlation matrix,
leading to a substantial increase in the computational complexity.

The normalized LMS algorithm utilizes a variable convergence factor that
minimizes the instantaneous error. Such a convergence factor usually reduces the
convergence time but increases the misadjustment.

In the frequency-domain algorithm, a transform is applied to the input signal in
order to allow the reduction of the eigenvalue spread of the transformed signal cor-
relation matrix as compared to the eigenvalue spread of the input signal correlation
matrix. The LMS algorithm applied to the better conditioned transformed signal
achieves faster convergence.

The affine projection algorithm reuses old data resulting in fast convergence
when the input signal is highly correlated, leading to a family of algorithms that
can trade-off computational complexity with convergence speed.
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138 4 LMS-Based Algorithms

4.2 Quantized-Error Algorithms

The computational complexity of the LMS algorithm is mainly due to multi-
plications performed in the coefficient updating and in the calculation of the
adaptive-filter output. In applications where the adaptive filters are required to
operate in high speed, such as echo cancellation and channel equalization, it is
important to minimize hardware complexity.

A first step to simplify the LMS algorithm is to apply quantization to the error
signal, generating the quantized-error algorithm which updates the filter coefficients
according to

w.k C 1/ D w.k/ C 2�QŒe.k/�x.k/ (4.1)

where QŒ�� represents a quantization operation. The quantization function is dis-
crete valued, bounded, and nondecreasing. The type of quantization identifies the
quantized-error algorithm.

If the convergence factor � is a power-of-two number, the coefficient updating
can be implemented with simple multiplications, basically consisting of bit shifts
and additions. In a number of applications, such as the echo cancellation in full-
duplex data transmission [2] and equalization of channels with binary data [3], the
input signal x.k/ is a binary signal, i.e., assumes values C1 and �1. In this case,
the adaptive filter can be implemented without any intricate multiplication.

The quantization of the error actually implies a modification in the objective
function that is minimized, denoted by F Œe.k/�. In a general gradient-type algorithm
coefficient updating is performed by

w.k C 1/ D w.k/ � �
@F Œe.k/�

@w.k/
D w.k/ � �

@F Œe.k/�

@e.k/

@e.k/

@w.k/
(4.2)

For a linear combiner the above equation can be rewritten as

w.k C 1/ D w.k/ C �
@F Œe.k/�

@e.k/
x.k/ (4.3)

Therefore, the objective function that is minimized in the quantized-error
algorithms is such that

@F Œe.k/�

@e.k/
D 2QŒe.k/� (4.4)

where F Œe.k/� is obtained by integrating 2QŒe.k/� with respect to e.k/. Note that
the chain rule applied in (4.3) is not valid at the points of discontinuity of QŒ�� where
F Œe.k/� is not differentiable [6].

The performances of the quantized-error and LMS algorithms are obviously dif-
ferent. The analyses of some widely used quantized-error algorithms are presented
in the following subsections.
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Fig. 4.1 Sign-error adaptive FIR filter: QŒe.k/� D sgnŒe.k/�

4.2.1 Sign-Error Algorithm

The simplest form for the quantization function is the sign (sgn) function defined by

sgnŒb� D
8
<

:

1; b > 0

0; b D 0

�1; b < 0

(4.5)

The sign-error algorithm utilizes the sign function as the error quantizer, where the
coefficient vector updating is performed by

w.k C 1/ D w.k/ C 2� sgnŒe.k/� x.k/ (4.6)

Figure 4.1 illustrates the realization of the sign-error algorithm for a delay line
input x.k/. If � is a power-of-two number, one iteration of the sign-error algorithm
requires N C1 multiplications for the error generation. The total number of additions
is 2N C2. The detailed description of the sign-error algorithm is shown in Algorithm
4.1. Obviously, the vectors x.0/ and w.0/ can be initialized in a different way from
that described in the algorithm.
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Algorithm 4.1 Sign-Error Algorithm
Initialization

x.0/ D w.0/ D Œ0 0 : : : 0�T

Do for k � 0
e.k/ D d.k/ � xT .k/w.k/

� D sgnŒe.k/�

w.k C 1/ D w.k/ C 2��x.k/

The objective function that is minimized by the sign-error algorithm is the
modulus of the error multiplied by two, i.e.,

F Œe.k/� D 2je.k/j (4.7)

Note that the factor two is included only to present the sign-error and LMS
algorithms in a unified form. Obviously, in real implementation this factor can be
merged with convergence factor �.

Some of the properties related to the convergence behavior of the sign-error
algorithm in a stationary environment are described, following the same procedure
used in the previous chapter for the LMS algorithm.

4.2.1.1 Steady-State Behavior of the Coefficient Vector

The sign-error algorithm can be alternatively described by

�w.k C 1/ D �w.k/ C 2� sgnŒe.k/� x.k/ (4.8)

where �w.k/ D w.k/ � wo. The expected value of the coefficient-error vector is
then given by

EŒ�w.k C 1/� D EŒ�w.k/� C 2�EfsgnŒe.k/� x.k/g (4.9)

The importance of the probability density function of the measurement noise n.k/

on the convergence of the sign-error algorithm is a noteworthy characteristic. This
is due to the fact that EfsgnŒe.k/� x.k/g D EfsgnŒ��wT .k/x.k/ C n.k/�x.k/g,
where the result of the sign operation is highly dependent on the probability density
function of n.k/. In [1], the authors present a convergence analysis of the output
MSE, i.e., EŒe2.k/�, for different distributions of the additional noise, such as
Gaussian, uniform, and binary distributions.

A closer examination of (4.8) indicates that even if the error signal becomes very
small, the adaptive-filter coefficients will be continually updated due to the sign
function applied to the error signal. Therefore, in a situation where the adaptive
filter has a sufficient number of coefficients to model the desired signal, and there
is no additional noise, �w.k/ will not converge to zero. In this case, w.k/ will be
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convergent to a balloon centered at wo, when � is appropriately chosen. The mean
absolute value of e.k/ is also convergent to a balloon centered around zero, that
means je.k/j remains smaller than the balloon radius r [6].

Recall that the desired signal without measurement noise is denoted as d 0.k/. If it
is considered that d 0.k/ and the elements of x.k/ are zero mean and jointly Gaussian
and that the additional noise n.k/ is also zero mean, Gaussian, and independent of
x.k/ and d 0.k/, the error signal will also be zero-mean Gaussian signal conditioned
on �w.k/. In this case, using the results of the Price theorem described in [29] and
in Papoulis [30], the following result is valid

EfsgnŒe.k/� x.k/g �
s

2

��.k/
EŒx.k/e.k/� (4.10)

where �.k/ is the variance of e.k/ assuming the error has zero mean. The above
approximation is valid for small values of �. For large �, e.k/ is dependent on
�w.k/ and conditional expected value on �w.k/ should be used instead [3–5].

By applying (4.10) in (4.9) and by replacing e.k/ by eo.k/ � �wT .k/x.k/, it
follows that

EŒ�w.k C 1/� D
(

I � 2�

s
2

��.k/
EŒx.k/xT .k/�

)

EŒ�w.k/�

C2�

s
2

��.k/
EŒeo.k/x.k/� (4.11)

From the orthogonality principle we know that EŒeo.k/x.k/� D 0, so that the last
element of the above equation is zero. Therefore,

EŒ�w.k C 1/� D
"

I � 2�

s
2

��.k/
R

#

EŒ�w.k/� (4.12)

Following the same steps for the analysis of EŒ�w.k/� in the traditional LMS
algorithm, it can be shown that the coefficients of the adaptive filter implemented
with the sign-error algorithm converge in the mean if the convergence factor is
chosen in the range

0 < � <
1

�max

r
��.k/

2
(4.13)

where �max is the largest eigenvalue of R. It should be mentioned that in case �max
�min

is
large, the convergence speed of the coefficients depends on the value of �min which
is related to the slowest mode in (4.12). This conclusion can be drawn by following
the same steps of the convergence analysis of the LMS algorithm, where by applying
a transformation to (4.12) we obtain an equation similar to (3.17).
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A more practical range for �, avoiding the use of eigenvalue, is given by

0 < � <
1

trŒR�

r
��.k/

2
(4.14)

Note that the upper bound for the value of � requires the knowledge of the MSE,
i.e., �.k/.

4.2.1.2 Coefficient-Error-Vector Covariance Matrix

The covariance of the coefficient-error vector defined as

covŒ�w.k/� D E
h
.w.k/ � wo/ .w.k/ � wo/T

i
(4.15)

is calculated by replacing (4.8) in (4.15) following the same steps used in the LMS
algorithm. The resulting difference equation for covŒ�w.k/� is given by

covŒ�w.k C 1/� D covŒ�w.k/� C 2�EfsgnŒe.k/�x.k/�wT .k/g
C2�EfsgnŒe.k/��w.k/xT .k/g C 4�2R (4.16)

The first term with expected value operation in the above equation can be
expressed as

EfsgnŒe.k/�x.k/�wT .k/g D EfsgnŒeo.k/��wT .k/x.k/�x.k/�wT .k/g
D EfEŒsgnŒeo.k/��wT .k/x.k/�x.k/j�w.k/��wT .k/g

where EŒaj�w.k/� is the expected value of a conditioned on the value of �w.k/. In
the first equality, e.k/ was replaced by the relation d.k/ � wT .k/x.k/ � wT

o x.k/ C
wT

o x.k/ D eo.k/ � �wT .k/x.k/. In the second equality, the concept of conditioned
expected value was applied.

Using the Price theorem and considering that the minimum output error eo.k/ is
zero-mean and uncorrelated with x.k/, the following approximations result

EfEŒsgnŒeo.k/ � �wT .k/x.k/�x.k/j�w.k/��wT .k/g

� E

(s
2

��.k/
EŒeo.k/x.k/ � x.k/xT .k/�w.k/j�w.k/��wT .k/

)

� �E

(s
2

��.k/
R�w.k/�wT .k/

)

D �
s

2

��.k/
RcovŒ�w.k/� (4.17)
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Following similar steps to derive the above equation, the second term with the
expected value operation in (4.16) can be approximated as

EfsgnŒe.k/��w.k/xT .k/g � �
s

2

��.k/
covŒ�w.k/�R (4.18)

Substituting (4.17) and (4.18) in (4.16), we can calculate the vector v0.k/

consisting of diagonal elements of covŒ�w0.k/�, using the same steps employed
in the LMS case (see (3.26)). The resulting dynamic equation for v0.k/ is given by

v0.k C 1/ D
 

I � 4�

s
2

��.k/
�

!

v0.k/ C 4�2� (4.19)

The value of � must be chosen in a range that guarantees the convergence of v0.k/,
which is given by

0 < � <
1

2�max

r
��.k/

2
(4.20)

A more severe and practical range for � is

0 < � <
1

2trŒR�

r
��.k/

2
(4.21)

For k ! 1 each element of v0.k/ tends to

vi .1/ D �

r
��.1/

2
(4.22)

4.2.1.3 Excess Mean-Square Error and Misadjustment

The excess MSE can be expressed as a function of the elements of v0.k/ by

��.k/ D
NX

iD0

�i vi .k/ D �T v0.k/ (4.23)

Substituting (4.22) in (4.23) yields

�exc D �

NX

iD0

�i

r
��.k/

2
; k ! 1

D �

NX

iD0

�i

r

�
�min C �exc

2
(4.24)



144 4 LMS-Based Algorithms

since limk!1 �.k/ D �min C �exc. Therefore,

�2
exc D �2

 
NX

iD0

�i

!2 �
��min

2
C ��exc

2

�

(4.25)

There are two solutions for �2
exc in the above equation, where only the positive one is

valid. The meaningful solution for �exc, when � is small, is approximately given by

�exc � �

r
��min

2

NX

iD0

�i

D �

r
��min

2
trŒR� (4.26)

By comparing the excess MSE predicted by the above equation with the
corresponding (3.49) for the LMS algorithm, it can be concluded that both can
generate the same excess MSE if � in the sign-error algorithm is chosen such that

� D �LMS

r
2

�
��1

min (4.27)

The misadjustment in the sign-error algorithm is

M D �

r
�

2�min
trŒR� (4.28)

Equation (4.26) would leave the impression that if there is no additional noise
and there are sufficient parameters in the adaptive filter, the output MSE would
converge to zero. However, when �.k/ becomes small, jjEŒ�w.k C 1/�jj in (4.11)
can increase, since the condition of (4.13) will not be satisfied. This is the situation
where the parameters reach the convergence balloon. In this case, from (4.8) we can
conclude that

jj�w.k C 1/jj2 � jj�w.k/jj2 D �4� sgnŒe.k/� e.k/ C 4�2jjx.k/jj2 (4.29)

from where it is possible to show that a decrease in the norm of �w.k/ is obtained
only when

je.k/j > �jjx.k/jj2 (4.30)

For no additional noise, first transpose the vectors in (4.8) and postmultiply each
side by x.k/. Next, squaring the resulting equation and applying the expected value
operation on each side, the obtained result is

EŒe2.k C 1/� D EŒe2.k/� � 4�EŒje.k/j jjx.k/jj2� C 4�2EŒjjx.k/jj4� (4.31)
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After convergence EŒe2.k C 1/� � EŒe2.k/�. Also, considering that

EŒje.k/j jjx.k/jj2� � EŒje.k/j�EŒjjx.k/jj2�

and

EŒjjx.k/jj4�
EŒjjx.k/jj2� � EŒjjx.k/jj2�

we conclude that

EŒje.k/j� � �EŒjjx.k/jj2�; k ! 1 (4.32)

For zero-mean Gaussian e.k/, the following approximation is valid

EŒje.k/j� �
r

2

�
	e.k/; k ! 1 (4.33)

therefore, the expected variance of e.k/ is

	2
e .k/ � �

2
�2 tr2ŒR�; k ! 1 (4.34)

where we used the relation trŒR� D EŒjjx.k/jj2�. This relation gives an estimate of
the variance of the output error when no additional noise exists. As can be noted,
unlike the LMS algorithm, there is an excess MSE in the sign-error algorithm caused
by the nonlinear device, even when 	2

n D 0.
If n.k/ has frequently large absolute values as compared to ��wT .k/x.k/, then

for most iterations sgnŒe.k/� D sgnŒn.k/�. As a result, the sign-error algorithm
is fully controlled by the additional noise. In this case, the algorithm does not
converge.

4.2.1.4 Transient Behavior

The ratios rwi of the geometric decaying convergence curves of the coefficients
in the sign-error algorithm can be derived from (4.12) by employing an identical
analysis of the transient behavior for the LMS algorithm. The ratios are given by

rwi D
 

1 � 2�

s
2

��.k/
�i

!

(4.35)

for i D 0; 1; : : : ; N . If � is chosen as suggested in (4.27), in order to reach the same
excess MSE of the LMS algorithm, then

rwi D
 

1 � 4

�
�LMS

s
�min

�.k/
�i

!

(4.36)
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By recalling that rwi for the LMS algorithm is .1 � 2�LMS�i/, since 2
�

q
�min
�.k/

< 1,

it is concluded that the sign-error algorithm is slower than the LMS for the same
excess MSE.

Example 4.1. Suppose in an adaptive-filtering environment that the input signal
consists of

x.k/ D e|!0k C n.k/

and that the desired signal is given by

d.k/ D e|!0.k�1/

where n.k/ is a uniformly distributed white noise with variance 	2
n D 0:1 and !0 D

2�
M

. In this case M D 8.
Compute the input signal correlation matrix for a first-order adaptive filter.

Calculate the value of �max for the sign-error algorithm.

Solution. The input signal correlation matrix for this example can be calculated as
shown below:

R D
�

1 C 	2
n e|!0

e�|!0 1 C 	2
n

�

Since in this case trŒR� D 2:2 and �min D 0:1, we have

�exc � �

r
��min

2
trŒR� D 0:87�

The range of values of the convergence factor is given by

0 < � <
1

2trŒR�

r
�.�min C �exc/

2

From the above expression, it is straightforward to calculate the upper bound for the
convergence factor that is given by

�max � 0:132 �

4.2.2 Dual-Sign Algorithm

The dual-sign algorithm attempts to perform large corrections to the coefficient
vector when the modulus of the error signal is larger than a prescribed level.
The basic motivation to use the dual-sign algorithm is to avoid the slow convergence
inherent to the sign-error algorithm that is caused by replacing e.k/ by sgnŒe.k/�

when je.k/j is large.
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The quantization function for the dual-sign algorithm is given by

dsŒa� D
�


 sgnŒa�; jaj > �

sgnŒa�; jaj � �
(4.37)

where 
 > 1 is a power of two. The dual-sign algorithm utilizes the function above
described as the error quantizer, and the coefficient updating is performed as

w.k C 1/ D w.k/ C 2� dsŒe.k/�x.k/ (4.38)

The objective function that is minimized by the dual-sign algorithm is given by

F Œe.k/� D
�

2
je.k/j � 2�.
 � 1/; je.k/j > �

2je.k/j; je.k/j � �
(4.39)

where the constant 2�.
 � 1/ was included in the objective function to make it
continuous. Obviously the gradient of F Œe.k/� with respect to the filter coefficients
is 2� dsŒe.k/�x.k/ except at points where dsŒe.k/� is nondifferentiable [6].

The same analysis procedure used for the sign-error algorithm can be applied
to the dual-sign algorithm except for the fact that the quantization function is now
different. The alternative quantization leads to particular expectations of nonlinear
functions whose solutions are not presented here. The interested reader should refer
to the work of Mathews [7]. The choices of 
 and � determine the convergence
behavior of the dual-sign algorithm [7], typically, a large 
 tends to increase both
convergence speed and excess MSE. A large � tends to reduce both the convergence
speed and the excess MSE. If limk!1 �.k/ � �2, the excess MSE of the dual-
sign algorithm is approximately equal to the one given by (4.26) for the sign-error
algorithm [7], since in this case je.k/j is usually much smaller than �. For a given
MSE in steady state, the dual-sign algorithm is expected to converge faster than the
sign-error algorithm.

4.2.3 Power-of-Two Error Algorithm

The power-of-two error algorithm applies to the error signal a quantization de-
fined by

peŒb� D
8
<

:

sgnŒb�; jbj � 1

2floorŒlog2jbj� sgnŒb�; 2�bd C1 � jbj < 1

�sgnŒb�; jbj < 2�bd C1

(4.40)

where floorŒ�� indicates integer smaller than Œ��, bd is the data wordlength excluding
the sign bit, and � is usually 0 or 2�bd .
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Fig. 4.2 Transfer characteristic of a quantizer with 3 bits and � D 0

The coefficient updating for the power-of-two error algorithm is given by

w.k C 1/ D w.k/ C 2� peŒe.k/�x.k/ (4.41)

For � D 2�bd , the additional noise and the convergence factor can be arbitrarily
small and the algorithm will not stop updating. For � D 0, when je.k/j < 2�bd C1

the algorithm reaches the so-called dead zone, where the algorithm stops updating
if je.k/j is smaller than 2�bd C1 most of the time [4, 8].

A simplified and somewhat accurate analysis of this algorithm can be performed
by approximating the function peŒe.k/� by a straight line passing through the
center of each quantization step. In this case, the quantizer characteristics can
be approximated by peŒe.k/� � 2

3
e.k/ as illustrated in Fig. 4.2. Using this

approximation, the algorithm analysis can be performed exactly in the same way
as the LMS algorithm. The results for the power-of-two error algorithm can be
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obtained from the results for the LMS algorithm, by replacing � by 2
3
�. It should

be mentioned that such results are only approximate, and more accurate ones can be
found in [8].

4.2.4 Sign-Data Algorithm

The algorithms discussed in this subsection cannot be considered as quantized error
algorithms, but since they were proposed with similar motivation we decided to
introduce them here. An alternative way to simplify the computational burden of
the LMS algorithm is to apply quantization to the data vector x.k/. One possible
quantization scheme is to apply the sign function to the input signals, giving rise to
the sign-data algorithm whose coefficient updating is performed as

w.k C 1/ D w.k/ C 2�e.k/ sgnŒx.k/� (4.42)

where the sign operation is applied to each element of the input vector.
The quantization of the data vector can lead to a decrease in the convergence

speed, and possible divergence. In the LMS algorithm, the average gradient
direction follows the true gradient direction (or steepest-descent direction), whereas
in the sign-data algorithm only a discrete set of directions can be followed. The
limitation in the gradient direction followed by the sign-data algorithm may cause
updates that result in frequent increase in the squared error, leading to instability.
Therefore, it is relatively easy to find inputs that would lead to the convergence of
the LMS algorithm and to the divergence of the sign-data algorithm [6,9]. It should
be mentioned, however, that the sign-data algorithm is stable for Gaussian inputs,
and, as such, has been found useful in certain applications.

Another related algorithm is the sign-sign algorithm that has very simple
implementation. The coefficient updating in this case is given by

w.k C 1/ D w.k/ C 2� sgnŒe.k/� sgnŒx.k/� (4.43)

The sign-sign algorithm also presents the limitations related to the quantized-data
algorithm.

4.3 The LMS-Newton Algorithm

In this section, the LMS-Newton algorithm incorporating estimates of the second-
order statistics of the environment signals is introduced. The objective of the
algorithm is to avoid the slow convergence of the LMS algorithm when the input
signal is highly correlated. The improvement in the convergence rate is achieved at
the expense of an increased computational complexity.
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Nonrecursive realization of the adaptive filter leads to an MSE surface that is a
quadratic function of the filter coefficients. For the direct-form FIR structure, the
MSE can be described by

�.k C 1/ D �.k/ C gw
T .k/ Œw.k C 1/ � w.k/�

C Œw.k C 1/ � w.k/�T R Œw.k C 1/ � w.k/� (4.44)

�.k/ represents the MSE when the adaptive-filter coefficients are fixed at w.k/ and
gw.k/ D �2p C 2Rw.k/ is the gradient vector of the MSE surface as related to the
filter coefficients at w.k/. The MSE is minimized at the instant k C 1 if

w.k C 1/ D w.k/ � 1

2
R�1gw.k/ (4.45)

This equation is the updating formula of the Newton method. Note that in the
ideal case, where matrix R and gradient vector gw.k/ are known precisely, w.k C
1/ D R�1p D wo. Therefore, the Newton method converges to the optimal solution
in a single iteration, as expected for a quadratic objective function.

In practice, only estimates of the autocorrelation matrix R and of the gradient
vector are available. These estimates can be applied to the Newton updating formula
in order to derive a Newton-like method given by

w.k C 1/ D w.k/ � � OR�1
.k/Ogw.k/ (4.46)

The convergence factor � is introduced so that the algorithm can be protected from
divergence, originated by the use of noisy estimates of R and gw.k/.

For stationary input signals, an unbiased estimate of R is

OR.k/ D 1

k C 1

kX

iD0

x.i/xT .i/

D k

k C 1
OR.k � 1/ C 1

k C 1
x.k/xT .k/ (4.47)

since

EŒ OR.k/� D 1

k C 1

kX

iD0

EŒx.i/xT .i/�

D R (4.48)

However, this is not a practical estimate for R, since for large k any change on
the input signal statistics would be disregarded due to the infinite memory of the
estimation algorithm.
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Another form to estimate the autocorrelation matrix can be generated by
employing a weighted summation as follows:

OR.k/ D ˛x.k/xT .k/ C .1 � ˛/ OR.k � 1/

D ˛x.k/xT .k/ C ˛

k�1X

iD0

.1 � ˛/k�i x.i/xT .i/ (4.49)

where in practice, ˛ is a small factor chosen in the range 0 < ˛ � 0:1. This range
of values of ˛ allows a good balance between the present and past input signal
information. By taking the expected value on both sides of the above equation and
assuming that k ! 1, it follows that

EŒ OR.k/� D ˛

kX

iD0

.1 � ˛/k�i EŒx.i/xT .i/�

D R k ! 1 (4.50)

Therefore, the estimate of R of (4.49) is unbiased.
In order to avoid inverting OR.k/, which is required by the Newton-like algorithm,

we can use the so-called matrix inversion lemma given by

ŒA C BCD��1 D A�1 � A�1BŒDA�1B C C�1��1DA�1 (4.51)

where A, B, C and D are matrices of appropriate dimensions, and A and C are
nonsingular. The above relation can be proved by simply showing that the result of
premultiplying the expression on the right-hand side by A C BCD is the identity
matrix (see problem 21). If we choose A D .1 � ˛/ OR.k � 1/, B D DT D x.k/, and
C D ˛, it can be shown that

OR�1
.k/ D 1

1 � ˛

2

4 OR�1
.k � 1/ �

OR�1
.k � 1/x.k/xT .k/ OR�1

.k � 1/

1�˛
˛

C xT .k/ OR�1
.k � 1/x.k/

3

5 (4.52)

The resulting equation to calculate OR�1
.k/ is less complex to update (of order

N 2 multiplications) than the direct inversion of OR.k/ at every iteration (of order N 3

multiplications).
If the estimate for the gradient vector used in the LMS algorithm is applied in

(4.46), the following coefficient updating formula for the LMS-Newton algorithm
results

w.k C 1/ D w.k/ C 2 � e.k/ OR�1
.k/x.k/ (4.53)
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Algorithm 4.2 LMS-Newton Algorithm
Initialization

OR�1
.�1/ D ıI .ffi a small positive constant/

w.0/ D x.�1/ D Œ0 0 : : : 0�T

Do for k � 0

e.k/ D d.k/ � xT .k/w.k/

OR�1
.k/ D 1

1�˛

"

OR�1
.k � 1/ � OR

�1

.k�1/x.k/xT .k/ OR
�1

.k�1/

1�˛
˛ CxT .k/ OR

�1

.k�1/x.k/

#

w.k C 1/ D w.k/ C 2 � e.k/ OR�1
.k/x.k/

The complete LMS-Newton algorithm is outlined in Algorithm 4.2. It should be
noticed that alternative initialization procedures to the one presented in Algorithm
4.2 are possible.

As previously mentioned, the LMS gradient direction has the tendency to
approach the ideal gradient direction. Similarly, the vector resulting from the

multiplication of OR�1
.k/ to the LMS gradient direction tends to approach the

Newton direction. Therefore, we can conclude that the LMS-Newton algorithm
converges in a more straightforward path to the minimum of the MSE surface. It can
also be shown that the convergence characteristics of the algorithm is independent
of the eigenvalue spread of R.

The LMS-Newton algorithm is mathematically identical to the recursive least-
squares (RLS) algorithm if the forgetting factor (�) in the latter is chosen such that
2� D ˛ D 1 � � [41]. Since a complete discussion of the RLS algorithm is given
later, no further discussion of the LMS-Newton algorithm is included here.

4.4 The Normalized LMS Algorithm

If one wishes to increase the convergence speed of the LMS algorithm without using
estimates of the input signal correlation matrix, a variable convergence factor is
a natural solution. The normalized LMS algorithm usually converges faster than
the LMS algorithm, since it utilizes a variable convergence factor aiming at the
minimization of the instantaneous output error.

The updating equation of the LMS algorithm can employ a variable convergence
factor �k in order to improve the convergence rate. In this case, the updating formula
is expressed as

w.k C 1/ D w.k/ C 2�ke.k/x.k/ D w.k/ C � Qw.k/ (4.54)

where �k must be chosen with the objective of achieving a faster convergence.
A possible strategy is to reduce the instantaneous squared error as much as possible.
The motivation behind this strategy is that the instantaneous squared error is a good
and simple estimate of the MSE.
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The instantaneous squared error is given by

e2.k/ D d 2.k/ C wT .k/x.k/xT .k/w.k/ � 2d.k/wT .k/x.k/ (4.55)

If a change given by Qw.k/ D w.k/ C � Qw.k/ is performed in the weight vector,
the corresponding squared error can be shown to be

Qe2.k/ D e2.k/ C 2� QwT .k/x.k/xT .k/w.k/ C � QwT .k/x.k/xT .k/� Qw.k/

�2d.k/� QwT .k/x.k/ (4.56)

It then follows that

�e2.k/
4D Qe2.k/ � e2.k/

D �2� QwT .k/x.k/e.k/ C � QwT .k/x.k/xT .k/� Qw.k/ (4.57)

In order to increase the convergence rate, the objective is to make �e2.k/ negative
and minimum by appropriately choosing �k .

By replacing � Qw.k/ D 2�ke.k/x.k/ in (4.57), it follows that

�e2.k/ D �4�ke2.k/xT .k/x.k/ C 4�2
ke2.k/ŒxT .k/x.k/�2 (4.58)

The value of �k such that @�e2.k/

@�k
D 0 is given by

�k D 1

2xT .k/x.k/
(4.59)

This value of �k leads to a negative value of �e2.k/, and, therefore, it corresponds
to a minimum point of �e2.k/.

Using this variable convergence factor, the updating equation for the LMS
algorithm is then given by

w.k C 1/ D w.k/ C e.k/x.k/

xT .k/x.k/
(4.60)

Usually a fixed convergence factor �n is introduced in the updating formula in order
to control the misadjustment, since all the derivations are based on instantaneous
values of the squared errors and not on the MSE. Also a parameter � should be
included, in order to avoid large step sizes when xT .k/x.k/ becomes small. The
coefficient updating equation is then given by

w.k C 1/ D w.k/ C �n

� C xT .k/x.k/
e.k/ x.k/ (4.61)

The resulting algorithm is called the normalized LMS algorithm, and is summarized
in Algorithm 4.3.
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Algorithm 4.3 The Normalized LMS Algorithm
Initialization

x.0/ D Ow.0/ D Œ0 0 : : : 0�T

choose �n in the range 0 < �n � 1

� D small constant
Do for k � 0

e.k/ D d.k/ � xT .k/w.k/

w.k C 1/ D w.k/ C �n

�CxT .k/x.k/
e.k/ x.k/

The range of values of �n to guarantee stability can be derived by first
considering that EŒxT .k/x.k/� D trŒR� and that

E

�
e.k/x.k/

xT .k/x.k/

�

� EŒe.k/x.k/�

EŒxT .k/x.k/�

Next, consider that the average value of the convergence factor actually applied to
the LMS direction 2e.k/x.k/ is �n

2 trŒR�
. Finally, by comparing the updating formula

of the standard LMS algorithm with that of the normalized LMS algorithm, the
desired upper bound result follows:

0 < � D �n

2 trŒR�
<

1

trŒR�
(4.62)

or 0 < �n < 2. In practice the convergence factor is chosen in the range 0 < �n � 1.

4.5 The Transform-Domain LMS Algorithm

The transform-domain LMS algorithm is another technique to increase the conver-
gence speed of the LMS algorithm when the input signal is highly correlated. The
basic idea behind this methodology is to modify the input signal to be applied to the
adaptive filter such that the conditioning number of the corresponding correlation
matrix is improved.

In the transform-domain LMS algorithm, the input signal vector x.k/ is trans-
formed in a more convenient vector s.k/, by applying an orthonormal (or unitary)
transform [10–12], i.e.,

s.k/ D Tx.k/ (4.63)

where TTT D I. The MSE surface related to the direct-form implementation of the
FIR adaptive filter can be described by

�.k/ D �min C �wT .k/R�w.k/ (4.64)
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Fig. 4.3 Transform-domain adaptive filter

where �w.k/ D w.k/ � wo. In the transform-domain case, the MSE surface
becomes

�.k/ D �min C � OwT
.k/EŒs.k/sT .k/�� Ow.k/

D �min C � OwT
.k/TRTT � Ow.k/ (4.65)

where Ow.k/ represents the adaptive coefficients of the transform-domain filter.
Fig. 4.3 depicts the transform-domain adaptive filter.

The effect of applying the transformation matrix T to the input signal is to rotate
the error surface as illustrated in the numerical examples of Figs. 4.4 and 4.5. It
can be noticed that the eccentricity of the MSE surface remains unchanged by the
application of the transformation, and, therefore, the eigenvalue spread is unaffected
by the transformation. As a consequence, no improvement in the convergence
rate is expected to occur. However, if in addition each element of the transform
output is power normalized, the distance between the points where the equal-error
contours (given by the ellipses) meet the coefficient axes (� Ow0 and � Ow1) and
the origin (point 0 � 0) are equalized. As a result, a reduction in the eigenvalue
spread is expected, especially when the coefficient axes are almost aligned with the
principal axes of the ellipses. Fig. 4.6 illustrates the effect of power normalization.
The perfect alignment and power normalization means that the error surface will
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become a hyperparaboloid spheric, with the eigenvalue spread becoming equal to
one. Alternatively, it means that the transform was able to turn the elements of the
vector s.k/ uncorrelated. Fig. 4.7 shows another error surface which after properly
rotated and normalized is transformed into the error surface of Fig. 4.8.

The autocorrelation matrix related to the transform-domain filter is given by

Rs D TRTT (4.66)

therefore if the elements of s.k/ are uncorrelated, matrix Rs is diagonal, meaning
that the application of the transformation matrix was able to diagonalize the
autocorrelation matrix R. It can then be concluded that TT , in this case, corresponds
to a matrix whose columns consist of the orthonormal eigenvectors of R. The
resulting transformation matrix corresponds to the Karhunen-Loève Transform
(KLT) [28].

The normalization of s.k/ and subsequent application of the LMS algorithm
would lead to a transform-domain algorithm with the limitation that the solution
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would be independent of the input signal power. An alternative solution, without
this limitation, is to apply the normalized LMS algorithm to update the coefficients
of the transform-domain algorithm. We can give an interpretation for the good
performance of this solution. Assuming the transform was efficient in the rotation
of the MSE surface, the variable convergence factor is large in the update of the
coefficients corresponding to low signal power. On the other hand, the convergence
factor is small if the corresponding transform output power is high. Specifically, the
signals si .k/ are normalized by their power denoted by 	2

i .k/ only when applied in
the updating formula. The coefficient update equation in this case is

Owi .k C 1/ D Owi .k/ C 2�

� C 	2
i .k/

e.k/si .k/ (4.67)

where 	2
i .k/ D ˛s2

i .k/ C .1 � ˛/	2
i .k � 1/, ˛ is a small factor chosen in the range

0 < ˛ � 0:1, and � is also a small constant to avoid that the second term of the
update equation becomes too large when 	2

i .k/ is small.



158 4 LMS-Based Algorithms

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

1

4

 10

Dw1ˆ

Dw0ˆ

Fig. 4.6 Contours of the power normalized MSE surface

In matrix form the above updating equation can be rewritten as

Ow.k C 1/ D Ow.k/ C 2�e.k/˙ �2.k/s.k/ (4.68)

where ˙ �2.k/ is a diagonal matrix containing as elements the inverse of the power
estimates of the elements of s.k/ added to � .

It can be shown that if � is chosen appropriately, the adaptive-filter coefficients
converge to

Owo D Rs
�1ps (4.69)

where Rs D TRTT and ps D Tp. As a consequence, the optimum coefficient
vector is

Owo D .TRTT /
�1

Tp D TR�1p D Two (4.70)

The convergence speed of the coefficient vector Ow.k/ is determined by the
eigenvalue spread of ˙ �2.k/Rs .

The requirement on the transformation matrix is that it should be invertible. If
the matrix T is not square (number of columns larger than rows), the space spanned
by the polynomials formed with the rows of T will be of dimension N C1, but these
polynomials are of order larger than N . This subspace does not contain the complete
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space of polynomials of order N . In general, except for very specific desired signals,
the entire space of N th-order polynomials would be required. For an invertible
matrix T there is a one-to-one correspondence between the solutions obtained by the
LMS and transform-domain LMS algorithms. Although the transformation matrix
is not required to be unitary, it appears that no advantages are obtained by using
nonunitary transforms [13].

The best unitary transform for the transform-domain adaptive filter is the KLT.
However, since the KLT is a function of the input signal, it cannot be efficiently
computed in real time. An alternative is to choose a unitary transform that is close
to the KLT of the particular input signal. By close is meant that both transforms
perform nearly the same rotation of the MSE surface. In any situation, the choice of
an appropriate transform is not an easy task. Some guidelines can be given, such as:
(a) Since the KLT of a real signal is real, the chosen transform should be real for real
input signals; (b) For speech signals the discrete-time cosine transform (DCT) is a
good approximation for the KLT [30]; (c) Transforms with fast algorithms should
be given special attention.
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A number of real transforms such as DCT, discrete-time Hartley transform, and
others, are available [30]. Most of them have fast algorithms or can be implemented
in recursive frequency-domain format. In particular, the outputs of the DCT are
given by

s0.k/ D 1p
N C 1

NX

lD0

x.k � l/ (4.71)

and

si .k/ D
r

2

N C 1

NX

lD0

x.k � l/ cos

�

�i
.2l C 1/

2.N C 1/

�

(4.72)

From Fig. 4.3, we observe that the delay line and the unitary transform form a
single-input and multiple-output preprocessing filter. In case the unitary transform
is the DCT, the transfer function from the input to the outputs of the DCT
preprocessing filter can be described in a recursive format as follows:
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Algorithm 4.4 The Transform-Domain LMS Algorithm
Initialization

x.0/ D Ow.0/ D Œ0 0 : : : 0�T

� D small constant
0 < ˛ � 0:1

Do for each x.k/ and d.k/ given for k � 0

s.k/ D Tx.k/

e.k/ D d.k/ � sT .k/ Ow.k/

Ow.k C 1/ D Ow.k/ C 2 � e.k/ ˙ �2.k/s.k/

Ti .z/ D k0

N C 1
cos �i

ŒzN C1 � .�1/i �.z � 1/

zN Œz2 � .2 cos 2�i /z C 1�
(4.73)

where

k0 D
� p

2 if i D 0

2 if i D 1; :::; N

and �i D �i
2.N C1/

. The derivation details are not given here, since they are beyond
the scope of this text.

For complex input signals, the discrete-time Fourier transform (DFT) is a natural
choice due to its efficient implementations.

Although no general procedure is available to choose the best transform when
the input signal is not known a priori, the decorrelation performed by the transform,
followed by the power normalization, is sufficient to reduce the eigenvalue spread
for a broad (not all) class of input signals. Therefore, the transform-domain LMS
algorithms are expected to converge faster than the standard LMS algorithm in most
applications [13].

The complete transform-domain LMS algorithm is outlined on Algorithm 4.4.

Example 4.2. Repeat the equalization problem of example 3.1 of the previous
chapter using the transform-domain LMS algorithm.

(a) Compute the Wiener solution.
(b) Choose an appropriate value for � and plot the convergence path for the

transform-domain LMS algorithm on the MSE surface.

Solution. (a) In this example, the correlation matrix of the adaptive-filter input
signal is given by

R D
�

1:6873 �0:7937

�0:7937 1:6873

�

and the cross-correlation vector p is

p D
�

0:9524

0:4762

�
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For square matrix R of dimension 2, the transformation matrix corresponding
to the cosine transform is given by

T D
" p

2
2

p
2

2p
2

2
�

p
2

2

#

For this filter order, the above transformation matrix coincides with the KLT.
The coefficients corresponding to the Wiener solution of the transform-

domain filter are given by

Owo D .TRTT /�1Tp

D
�

1
0:8936

0

0 1
2:4810

� �
1:0102

0:3367

�

D
�

1:1305

0:1357

�

(b) The transform-domain LMS algorithm is applied to minimize the MSE using
a small convergence factor � D 1=300, in order to obtain a smoothly
converging curve. The convergence path of the algorithm in the MSE surface
is depicted in Fig. 4.9. As can be noted, the transformation aligned the
coefficient axes with the main axes of the ellipses belonging to the error surface.
The reader should notice that the algorithm follows an almost straight path to
the minimum and that the effect of the eigenvalue spread is compensated by
the power normalization. The convergence in this case is faster than for the
LMS case. ut

From the transform-domain LMS algorithm point of view, we can consider that
the LMS-Newton algorithm attempts to utilize an estimate of the KLT through
OR�1

.k/. On the other hand, the normalized LMS algorithm utilizes an identity
transform with an instantaneous estimate of the input signal power given by
xT .k/x.k/.

4.6 The Affine Projection Algorithm

There are situations where it is possible to recycle the old data signal in order to im-
prove the convergence of the adaptive-filtering algorithms. Data-reusing algorithms
[18–24, 31] are considered an alternative to increase the speed of convergence in
adaptive-filtering algorithms in situations where the input signal is correlated. The
penalty to be paid by data reusing is increased algorithm misadjustment, and, as
usual, a trade-off between final misadjustment and convergence speed is achieved
through the introduction of a convergence factor.
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Let’s assume we keep the last L C 1 input signal vectors in a matrix as follows:

Xap.k/ D

2

6
6
6
4

x.k/ x.k � 1/ � � � x.k � L C 1/ x.k � L/

x.k � 1/ x.k � 2/ � � � x.k � L/ x.k � L � 1/
:::

:::
: : :

:::
:::

x.k � N / x.k � N � 1/ � � � x.k � L � N C 1/ x.k � L � N /

3

7
7
7
5

D Œx.k/ x.k � 1/ : : : x.k � L/� (4.74)

We can also define some vectors representing the partial reusing results at a given
iteration k, such as the adaptive-filter output, the desired signal, and the error
vectors.

These vectors are

yap.k/ D XT
ap.k/w.k/ D

2

6
6
6
4

yap;0.k/

yap;1.k/
:::

yap;L.k/

3

7
7
7
5

(4.75)
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dap.k/ D

2

6
6
6
4

d.k/

d.k � 1/
:::

d.k � L/

3

7
7
7
5

(4.76)

eap.k/ D

2

6
6
6
4

eap;0.k/

eap;1.k/
:::

eap;L.k/

3

7
7
7
5

D

2

6
6
6
4

d.k/ � yap;0.k/

d.k � 1/ � yap;1.k/
:::

d.k � L/ � yap;L.k/

3

7
7
7
5

D dap.k/ � yap.k/ (4.77)

The objective of the affine projection algorithm is to minimize

1

2
kw.k C 1/ � w.k/k2

subject to W
dap.k/ � XT

ap.k/w.k C 1/ D 0 (4.78)

The affine projection algorithm maintains the next coefficient vector w.k C 1/ as
close as possible to the current one1 w.k/, while forcing the a posteriori2 error to be
zero.

Using the method of Lagrange multipliers to turn the constrained minimization
into an unconstrained one, the unconstrained function to be minimized is

F Œw.k C 1/� D 1

2
kw.k C 1/ � w.k/k2 C �T

ap.k/Œdap.k/ � XT
ap.k/w.k C 1/� (4.79)

where �ap.k/ is an .L C 1/ � 1 vector of Lagrange multipliers. The above expres-
sion can be rewritten as

F Œw.k C 1/� D 1

2
Œw.k C 1/ � w.k/�T Œw.k C 1/ � w.k/�

C
h
dT

ap.k/ � wT .k C 1/Xap.k/
i

�ap.k/ (4.80)

The gradient of F Œw.k C 1/� with respect to w.k C 1/ is given by

gw fF Œw.k C 1/�g D 1

2
Œ2w.k C 1/ � 2w.k/� � Xap.k/�ap.k/ (4.81)

1This procedure is known as minimal distance principle.
2The a posteriori error is the one computed with the current available data (up to instant k) using
the already updated coefficient vector w.k C 1/.
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Algorithm 4.5 The Affine Projection Algorithm
Initialization

x.0/ D w.0/ D Œ0 0 : : : 0�T

choose � in the range 0 < � � 1

� D small constant
Do for k � 0

eap.k/ D dap.k/ � XT
ap.k/w.k/

w.k C 1/ D w.k/ C �Xap.k/
�

XT
ap.k/Xap.k/ C �I

�
�1

eap.k/

After setting the gradient of F Œw.k C 1/� with respect to w.k C 1/ equal to zero,
we get

w.k C 1/ D w.k/ C Xap.k/�ap.k/ (4.82)

If we substitute (4.82) in the constraint relation of (4.78), we obtain

XT
ap.k/Xap.k/�ap.k/ D dap.k/ � XT

ap.k/w.k/ D eap.k/ (4.83)

The update equation is now given by (4.82) with �ap.k/ being the solution of
(4.83), i.e.,

w.k C 1/ D w.k/ C Xap.k/
�

XT
ap.k/Xap.k/

��1

eap.k/ (4.84)

The above algorithm corresponds to the conventional affine projection algorithm
[20] with unity convergence factor. A trade-off between final misadjustment and
convergence speed is achieved through the introduction of a convergence factor as
follows

w.k C 1/ D w.k/ C �Xap.k/
�

XT
ap.k/Xap.k/

��1

eap.k/ (4.85)

Note that with the convergence factor the a posteriori error is no longer zero. In fact,
when measurement noise is present in the environment, zeroing the a posteriori
error is not a good idea since we are forcing the adaptive filter to compensate
for the effect of a noise signal which is uncorrelated with the adaptive-filter
input signal. The result is a high misadjustment when the convergence factor is
one. The description of the affine projection algorithm is given in Algorithm 4.5,
where an identity matrix multiplied by a small constant was added to the matrix
XT

ap.k/Xap.k/ in order to avoid numerical problems in the matrix inversion. The
order of the matrix to be inverted depends on the number of data vectors being
reused.

Let’s define the hyperplane S.k/ as follows

S.k/ D fw.k C 1/ 2 R
N C1 W d.k/ � wT .k C 1/x.k/ D 0g (4.86)

It is noticed that the a posteriori error over this hyperplane is zero, that is, given
the current input data stored in the vector x.k/ the coefficients are updated to a
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Fig. 4.10 Coefficient vector
updating for the normalized
LMS algorithm and
binormalized LMS algorithm

point where the error computed with the coefficients updated is zero. This definition
allows an insightful geometric interpretation for the affine projection algorithm.

In the affine projection algorithm the coefficients are computed such that they
belong to an LC1-dimensional subspace 2 R

N C1, where R represents the set of real
numbers, spanned by the L C1 columns of Xap.k/. The objective of having L C1 a
posteriori errors equal to zero has infinity number of solutions, such that any solution
on S.k/ can be added to a coefficient vector lying on S?.k/. By also minimizing
1
2
kw.k C 1/ � w.k/k2 specifies a solution with minimum disturbance. The matrix

Xap.k/.XT
ap.k/Xap.k//�1XT

ap.k/ represents an orthogonal projection operator on the
L C 1-dimensional subspace of RN C1 spanned by the L C 1 columns of Xap.k/.
This projection matrix has L C 1 eigenvalues equal to 1 and N � L eigenvalues
of value 0. On the other hand, the matrix I � �Xap.k/.XT

ap.k/Xap.k//�1XT
ap.k/ has

L C 1 eigenvalues equal to 1 and N � L eigenvalues of value 1 � �.
When L D 0 and L D 1 the affine projection algorithm has the normalized

LMS and binormalized LMS algorithms [22] as special cases, respectively. In
the binormalized case the matrix inversion has closed form solution. Figure 4.10
illustrates the updating of the coefficient vector for a two-dimensional problem
for the LMS algorithm, for the normalized LMS algorithm, for the normalized
LMS algorithm with a single data reuse3, and the binormalized LMS algorithm.
Here we assume that the coefficients are originally at Qw when the new data vector
x.k/ becomes available and x.k � 1/ is still stored, and this scenario is used to
illustrate the coefficient updating of related algorithms. In addition, it is assumed
an environment with no additional noise and a system identification with sufficient
order, where the LMS algorithm utilizes a small convergence factor whereas the
remaining algorithms use unit convergence factor. The conventional LMS algorithm
takes a step towards S.k/ yielding a solution w.k C 1/, anywhere between points
1 and 3 in Fig. 4.10, that is closer to S.k/ than Qw. The NLMS algorithm with

3In this algorithm the updating is performed in two steps: Ow.k/ D w.k/C e.k/x.k/

xT .k/x.k/
and w.kC1/ D

Ow.k/C Oe.k�1/x.k�1/

xT .k�1/x.k�1/
, where in the latter case Oe.k�1/ is computed with the previous data d.k�1/

and x.k � 1/ using the coefficients Ow.k/.
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Fig. 4.12 Three-dimensional coefficient vector updating for the normalized LMS algorithm and
binormalized LMS algorithm

unit convergence factor performs a line search in the direction of x.k/ to yield in a
single step the solution w.k C1/, represented by point 3 in Fig. 4.10, which belongs
to S.k/. A single reuse of the previous data using normalized LMS algorithm
would lead to point 4. The binormalized LMS algorithm, which corresponds to an
affine projection algorithm with two projections, yields the solution that belongs
to S.k � 1/ and S.k/, represented by point 5 in Fig. 4.10. As an illustration, it
is possible to observe in Fig. 4.11 that by repeatedly re-utilizing the data vectors
x.k/ and x.k � 1/ to update the coefficients with the normalized LMS algorithm
would reach point 5 in a zig-zag pattern after an infinite number of iterations. This
approach is known as Kaczmarz method [22].

For a noise-free environment and sufficient-order identification problem, the
optimal solution wo is at the intersection of L C 1 hyperplanes constructed with
linearly independent input signal vectors. The affine projection algorithm with unit
convergence factor updates the coefficient to the intersection. Figure 4.12 illustrates
the coefficient updating for a three-dimensional problem for the normalized and
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binormalized LMS algorithms. It can be observed in Fig. 4.12 that x.k/ and,
consequently, gwŒe2.k/� are orthogonal to the hyperplane S.k/. Similarly, x.k � 1/

is orthogonal to the hyperplane S.k � 1/. The normalized LMS algorithm moves
the coefficients from point 1 to point 2, whereas the binormalized LMS algorithm
updates the coefficients to point 3 at the intersection of the two hyperplanes.

The affine projection algorithm combines data reusing, orthogonal projections
of L consecutive gradient directions, and normalization in order to achieve faster
convergence than many other LMS-based algorithms. At each iteration, the affine
projection algorithm yields the solution w.k C 1/ which is at the intersection of
hyperplanes S.k/;S.k � 1/; : : : ;S.k � L/ and is as close as possible to w.k/. The
computational complexity of the affine projection algorithm is related to the number
of data vectors being reused which ultimately determines the order of the matrix to
be inverted. Some fast versions of the algorithm can be found in [21, 26]. It is also
possible to reduce computations by employing data-selective strategies as will be
discussed in Chapter 6.

4.6.1 Misadjustment in the Affine Projection Algorithm

The analysis of the affine projection algorithm is somewhat more involved than
some of the LMS-based algorithms. The following framework provides an alterna-
tive analysis approach utilizing the concept of energy conservation [32–36]. This
framework has been widely used in recent literature to analyze several adaptive-
filtering algorithms [36]. In particular, the approach is very useful to analyze the
behavior of the affine projection algorithm in a rather simple manner [35].

A general adaptive-filtering algorithm utilizes the following coefficient updating
form

w.k C 1/ D w.k/ � �Fx.k/fe.k/ (4.87)

where Fx.k/ is a matrix whose elements are functions of the input data and fe.k/ is
a vector whose elements are functions of the error. Assuming that the desired signal
is given by

d.k/ D wT
o x.k/ C n.k/ (4.88)

the underlying updating equation can be alternatively described by

�w.k C 1/ D �w.k/ � �Fx.k/fe.k/ (4.89)

where �w.k/ D w.k/ � wo.
In the case of the affine projection algorithm

fe.k/ D �eap.k/ (4.90)
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according to (4.77). By premultiplying (4.89) by the input vector matrix of (4.74),
the following expressions result

XT
ap.k/�w.k C 1/ D XT

ap.k/�w.k/ C �XT
ap.k/Fx.k/eap.k/

�Q"ap.k/ D �Qeap.k/ C �XT
ap.k/Fx.k/eap.k/ (4.91)

where

Q"ap.k/ D �XT
ap.k/�w.k C 1/ (4.92)

is the noiseless a posteriori error vector and

Qeap.k/ D �XT
ap.k/�w.k/ D eap.k/ � nap.k/ (4.93)

is the noiseless a priori error vector with

nap.k/ D

2

6
6
6
4

n.k/

n.k � 1/
:::

n.k � L/

3

7
7
7
5

being the standard noise vector.
For the regularized affine projection algorithm

Fx.k/ D Xap.k/
�

XT
ap.k/Xap.k/ C �I

��1

where the matrix �I is added to the matrix to be inverted in order to avoid numerical
problems in the inversion operation in the cases XT

ap.k/Xap.k/ is ill conditioned.
By solving (4.91), we get

1

�

�
XT

ap.k/Xap.k/
��1 	Qeap.k/ � Q"ap.k/


 D
�

XT
ap.k/Xap.k/ C �I

��1

eap.k/

If we replace the above equation in

�w.k C 1/ D �w.k/ C �Xap.k/
�

XT
ap.k/Xap.k/ C �I

��1

eap.k/ (4.94)

which corresponds to (4.89) for the affine projection case, it is possible to deduce
that

�w.k C 1/ � Xap.k/
�

XT
ap.k/Xap.k/

��1 Qeap.k/

D �w.k/ � Xap.k/
�

XT
ap.k/Xap.k/

��1 Q"ap.k/ (4.95)
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From the above equation it is possible to prove that

E
�k�w.k C 1/k2

�C E

�

QeT
ap.k/

�
XT

ap.k/Xap.k/
��1 Qeap.k/

�

D E
�k�w.k/k2

�C E

�

Q"T
ap.k/

�
XT

ap.k/Xap.k/
��1 Q"ap.k/

�

(4.96)

Proof. One can now calculate the Euclidean norm of both sides of (4.95)

�

�w.k C 1/ � Xap.k/
�

XT
ap.k/Xap.k/

��1 Qeap.k/

�T

�
�

�w.k C 1/ � Xap.k/
�

XT
ap.k/Xap.k/

��1 Qeap.k/

�

D
�

�w.k/ � Xap.k/
�

XT
ap.k/Xap.k/

��1 Q"ap.k/

�T

�
�

�w.k/ � Xap.k/
�

XT
ap.k/Xap.k/

��1 Q"ap.k/

�

By performing the inner products one by one, the above equation becomes

�wT .k C 1/�w.k C 1/ � �wT .k C 1/Xap.k/
�

XT
ap.k/Xap.k/

��1 Qeap.k/

�
�

Xap.k/
�

XT
ap.k/Xap.k/

��1 Qeap.k/

�T

�w.k C 1/

C
�

Xap.k/
�

XT
ap.k/Xap.k/

��1 Qeap.k/

�T �

Xap.k/
�

XT
ap.k/Xap.k/

��1 Qeap.k/

�

D �wT .k/�w.k/ � �wT .k/Xap.k/
�

XT
ap.k/Xap.k/

��1 Q"ap.k/

�
�

Xap.k/
�

XT
ap.k/Xap.k/

��1 Q"ap.k/

�T

�w.k/

C
�

Xap.k/
�

XT
ap.k/Xap.k/

��1 Q"ap.k/

�T �

Xap.k/
�

XT
ap.k/Xap.k/

��1 Q"ap.k/

�

Since Q"ap.k/ D �XT
ap.k/�w.k C 1/ and Qeap.k/ D �XT

ap.k/�w.k/

k�w.k C 1/k2 C Q"T
ap.k/

�
XT

ap.k/Xap.k/
��1 Qeap.k/

CQeT
ap.k/

�
XT

ap.k/Xap.k/
��1 Q"ap.k/ C QeT

ap.k/
�

XT
ap.k/Xap.k/

��1 Qeap.k/
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D k�w.k/k2 C QeT
ap.k/

�
XT

ap.k/Xap.k/
��1 Q"ap.k/

CQ"T
ap.k/

�
XT

ap.k/Xap.k/
��1 Qeap.k/ C Q"T

ap.k/
�

XT
ap.k/Xap.k/

��1 Q"ap.k/

By removing the equal terms on both sides of the last equation the following
equality holds

k�w.k C 1/k2 C QeT
ap.k/

�
XT

ap.k/Xap.k/
��1 Qeap.k/

D k�w.k/k2 C Q"T
ap.k/

�
XT

ap.k/Xap.k/
��1 Q"ap.k/ (4.97)

As can be observed no approximations were utilized so far. Now by applying the
expected value operation on both sides of the above equation, the expression of
(4.96) holds. ut

If it is assumed that the algorithm has converged, that is, the coefficients remain
in average unchanged, then E

�k�w.k C 1/k2
� D E

�k�w.k/k2
�
. As a result the

following equality holds in the steady state.

E

�

QeT
ap.k/

�
XT

ap.k/Xap.k/
��1 Qeap.k/

�

D E

�

Q"T
ap.k/

�
XT

ap.k/Xap.k/
��1 Q"ap.k/

�

(4.98)

In the above expression it is useful to remove the dependence on the a posteriori
error, what can be achieved by applying (4.91) to the affine projection algorithm
case.

Q"ap.k/ D Qeap.k/ � �XT
ap.k/Xap.k/

�
XT

ap.k/Xap.k/ C �I
��1

eap.k/ (4.99)

By substituting (4.98) in (4.99) we get

E

�

QeT
ap.k/

�

XT
ap.k/Xap.k/

�
�1 Qeap.k/

�

D E

�

QeT
ap.k/

�

XT
ap.k/Xap.k/

�
�1 Qeap.k/

� �QeT
ap.k/

�

XT
ap.k/Xap.k/ C �I

�
�1

eap.k/

� �eT
ap.k/

�
XT

ap.k/Xap.k/ C �I
�

�1 Qeap.k/

C �2eT
ap.k/

�

XT
ap.k/Xap.k/ C �I

�
�1

� XT
ap.k/Xap.k/

�
XT

ap.k/Xap.k/ C �I
�

�1

eap.k/

�

(4.100)
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The above expression can be simplified as

�2E
h
eT

ap.k/ OSap.k/ ORap.k/ OSap.k/eap.k/
i

D �E
h
QeT

ap.k/ OSap.k/eap.k/ C eT
ap.k/ OSap.k/Qeap.k/

i
(4.101)

where the following definitions are employed to simplify the discussion

ORap.k/ D XT
ap.k/Xap.k/

OSap.k/ D
�

XT
ap.k/Xap.k/ C �I

��1

(4.102)

By rescuing the definition of the error squared of (3.39) and applying the
expected value operator we obtain

�.k/ D EŒe2.k/� D EŒn2.k/� � 2EŒn.k/�wT .k/x.k/� C EŒ�wT .k/x.k/xT .k/�w.k/�

(4.103)

If the coefficients have weak dependency of the additional noise and applying the
orthogonality principle, we can simplify the above expression as follows

�.k/ D 	2
n C EŒ�wT .k/x.k/xT .k/�w.k/�

D 	2
n C EŒ Qe2

ap;0.k/� (4.104)

where Qeap;0.k/ is the first element of vector Qeap.k/.
In order to compute the excess mean-square error we can remove the value of

EŒ Qe2
ap;0.k/� from (4.101). Since our aim is to compute EŒ Qe2

ap;0.k/�, we can substitute
(4.93) in (4.101) in order to get rid of eap.k/. The resulting expression is given by

E
h
�.Qeap.k/ C nap.k//T OSap.k/ ORap.k/ OSap.k/.Qeap.k/ C nap.k//

i

D E
h
QeT

ap.k/ OSap.k/.Qeap.k/ C nap.k// C .Qeap.k/ C nap.k//T OSap.k/Qeap.k/
i

(4.105)

By considering the noise white and statistically independent of the input signal, the
above relation can be further simplified as

�E
h
QeT

ap.k/ OSap.k/ ORap.k/ OSap.k/Qeap.k/ C nT
ap.k/ OSap.k/ ORap.k/ OSap.k/nap.k/

i

D 2E
h
QeT

ap.k/ OSap.k/Qeap.k/
i

(4.106)
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The above expression, after some rearrangements, can be rewritten as

2E
n
trŒQeap.k/QeT

ap.k/ OSap.k/�
o

� �E
n
trŒQeap.k/QeT

ap.k/ OSap.k/ ORap.k/ OSap.k/�
o

D �E
n
trŒnap.k/nT

ap.k/ OSap.k/ ORap.k/ OSap.k/�
o

(4.107)

where we used the property trŒA � B� D trŒB � A�.
In addition, if matrix ORap.k/ is invertible it can be noticed that

OSap.k/ D
h ORap.k/ C �I

i�1

D OR�1

ap .k/
h
I � � OR�1

ap .k/ C �2 OR�2

ap .k/ � �3 OR�3

ap .k/ C � � �
i

� OR�1

ap .k/
h
I � � OR�1

ap .k/
i

� OR�1

ap .k/ (4.108)

where the last two relations are valid for � � 1.
By assuming that the matrix OSap.k/ is statistically independent of the noiseless a

priori error after convergence, and of the noise, the (4.107) can be rewritten as

2tr
n
EŒQeap.k/QeT

ap.k/�EŒ OSap.k/�
o

��tr
n
EŒQeap.k/QeT

ap.k/�EŒ OSap.k/�
o

C��tr
n
EŒQeap.k/QeT

ap.k/�
o
D �tr

n
EŒnap.k/nT

ap.k/�EŒ OSap.k/�
o

���tr
n
EŒnap.k/nT

ap.k/�
o

(4.109)

This equation can be further simplified by assuming the noise is white4 and � is
small leading to the following expression

.2 � �/trfEŒQeap.k/QeT
ap.k/�EŒ OSap.k/�g D �	2

n trfEŒ OSap.k/�g (4.110)

Our task now is to compute EŒQeap.k/QeT
ap.k/� where we will assume in the process

that this matrix is diagonal dominant whose final result has the following form

EŒQeap.k/QeT
ap.k/� D AEŒ Qe2

ap;0.k/� C �2B	2
n

Proof. The i -th rows of (4.92) and (4.93) are given by

Q"ap;i .k/ D �xT .k � i/�w.k C 1/ (4.111)

and

Qeap;i .k/ D �xT .k � i/�w.k/ D eap;i .k/ � n.k � i/ (4.112)

4 In this case, EŒnap.k/nT
ap.k/� D 	2

n I.
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for i D 0; : : : ; L. Using in (4.91) the fact that XT
ap.k/Fx.k/ � I for small � , then

� Q"ap.k/ D �Qeap.k/ C �eap.k/ (4.113)

By properly utilizing in (4.111) and (4.112) the i -th row of (4.91), we obtain

Q"ap;i .k/ D �xT .k � i/�w.k C 1/

D .1 � �/ Qeap;i .k/ � �n.k � i/

D �.1 � �/xT .k � i/�w.k/ � �n.k � i/ (4.114)

Squaring the above equation, assuming the coefficients are weakly dependent on
the noise which is in turn white noise, and following closely the procedure to derive
(4.96) from (4.95), we get

E
�
.xT .k � i/�w.k C 1//2

� D .1 � �/2E
�
.xT .k � i/�w.k//2

�C �2	2
n

(4.115)

The above expression relates the squared values of the a posteriori and a priori
errors. However, the same kind of relation holds for the previous time instant, that is

EŒ.xT .k � i � 1/�w.k//2� D .1 � �/2EŒ.xT .k � i � 1/�w.k � 1//2� C �2	2
n

or

EŒ Qe2
ap;iC1.k/� D .1 � �/2EŒ Qe2

ap;i .k � 1/� C �2	2
n (4.116)

Note that for i D 0 this term corresponds to the second diagonal element of the
matrix EŒQeap.k/QeT

ap.k/�. Specifically we can compute EŒ Qe2
ap;1.k/� as

EŒ.xT .k � 1/�w.k//2� D EŒ Qe2
ap;1.k/�

D .1 � �/2EŒ.xT .k � 1/�w.k � 1//2� C �2	2
n

D .1 � �/2EŒ Qe2
ap;0.k � 1/� C �2	2

n (4.117)

For i D 1 (4.116) becomes

EŒ.xT .k � 2/�w.k//2� D EŒ Qe2
ap;2.k/�

D .1 � �/2EŒ.xT .k � 2/�w.k � 1//2� C �2	2
n

D .1 � �/2EŒ Qe2
ap;1.k � 1/� C �2	2

n (4.118)
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By substituting (4.117) in the above equation it follows that

EŒ Qe2
ap;2.k/� D .1 � �/4EŒ Qe2

ap;0.k � 2/� C Œ1 C .1 � �/2��2	2
n (4.119)

By induction one can prove that

EŒ Qe2
ap;iC1.k/� D .1 � �/2.iC1/EŒ Qe2

ap;0.k � i � 1/� C
"

1 C
iX

lD1

.1 � �/2l

#

�2	2
n

(4.120)

By assuming that EŒ Qe2
ap;0.k/� � EŒ Qe2

ap;0.k � i/� for i D 0; : : : ; L, then

EŒQeap.k/QeT
ap.k/� D AEŒ Qe2

ap;0.k/� C �2B	2
n (4.121)

with

A D

2

6
6
6
6
6
4

1

.1 � �/2 0
.1 � �/4

0
: : :

.1 � �/2L

3

7
7
7
7
7
5

B D

2

6
6
6
6
6
6
6
6
6
6
6
4

0

1 0
1 C .1 � �/2

: : :

0 1 CPi
lD1.1 � �/2l

: : :

1 CPL�1
lD1 .1 � �/2l

3

7
7
7
7
7
7
7
7
7
7
7
5

where it was also considered that the above matrix EŒQeap.k/QeT
ap.k/� was diagonal

dominant, as it is usually the case in practice. Note from the above relation that the
convergence factor � should be chosen in the range 0 < � < 2, so that the elements
of the noiseless a priori error remain bounded for any value of L, in practice there
is no point in using � > 1. ut

We have available all the quantities required to calculate the excess MSE in the
affine projection algorithm. Specifically, we can substitute the result of (4.121) in
(4.110) obtaining

.2 � �/
h
EŒ Qe2

ap;0.k/�trfAEŒ OSap.k/�gC�2	2
n trfBEŒ OSap.k/�g

i
D �	2

n tr
n
EŒ OSap.k/�

o

(4.122)
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The second term on the left-hand side can be neglected in case the signal-to-noise
ratio is high. For small � this term also becomes substantially smaller than the term
on the right-hand side. For � close to one the referred terms become comparable
only for large L, when the misadjustment becomes less sensitive to L. In the
following discussions we will not consider the term multiplied by �2.

Assuming the diagonal elements of EŒ OSap.k/� are equal and the matrix A
multiplying it on the left-hand side is a diagonal matrix, after a few manipulations
it is possible to deduce that

EŒ Qe2
ap;0.k/� D �

2 � �
	2

n

trfEŒ OSap.k/�g
trfAEŒ OSap.k/�g

D .L C 1/�

2 � �

1 � .1 � �/2

1 � .1 � �/2.LC1/
	2

n (4.123)

Therefore, the misadjustment for the affine projection algorithm is given by

M D .L C 1/�

2 � �

1 � .1 � �/2

1 � .1 � �/2.LC1/
(4.124)

For large L and small 1 � �, this equation can be approximated by

M D .L C 1/�

.2 � �/
(4.125)

In [23], by considering a simplified model for the input signal vector consisting
of vectors with discrete angular orientation and the independence assumption, an
expression for the misadjustment of the affine projection algorithm was derived,
that is

M D �

2 � �
E

�
1

kx.k/k2

�

trŒR� (4.126)

which is independent of L. It is observed in the experiments that higher number
of reuses leads to higher misadjustment, as indicated in (4.125). The equivalent
expression of (4.126) using the derivations presented here would lead to

M D .L C 1/�

2 � �
E

�
1

kx.k/k2

�

trŒR� (4.127)

which can obtained from (4.123) by considering that

trfEŒ OSap.k/�g � .L C 1/E

�
1

kx.k/k2

�
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and

1

trfAEŒ OSap.k/�g � trŒR�

for � close to one.

4.6.2 Behavior in Nonstationary Environments

In a nonstationary environment the error in the coefficients is described by the
following vector

�w.k C 1/ D w.k C 1/ � wo.k C 1/ (4.128)

where wo.k C 1/ is the optimal time-varying vector. For this case, (4.95) becomes

�w.k C 1/ D � Ow.k/ C �Xap.k/
�

XT
ap.k/Xap.k/ C �I

��1

eap.k/ (4.129)

where � Ow.k/ D w.k/ � wo.k C 1/. By premultiplying the above expression by
XT

ap.k/ it follows that

XT
ap.k/�w.k C 1/ D XT

ap.k/� Ow.k/ C �XT
ap.k/Xap.k/

�
XT

ap.k/Xap.k/ C �I
�

�1

eap.k/

�Q"ap.k/ D �Qeap.k/ C �XT
ap.k/�Xap.k/

�
XT

ap.k/Xap.k/ C �I
�

�1

eap.k/

(4.130)

By solving the (4.130), it is possible to show that

1

�

�
XT

ap.k/Xap.k/
��1 �Qeap.k/ � Q"ap.k/

� D
�

XT
ap.k/Xap.k/ C �I

��1

eap.k/

(4.131)

Following the same procedure to derive (4.95), we can now substitute (4.131) in
(4.129) in order to deduce that

�w.k C 1/ � Xap.k/
�

XT
ap.k/Xap.k/

��1 Qeap.k/

D � Ow.k/ � Xap.k/
�

XT
ap.k/Xap.k/

��1 Q"ap.k/ (4.132)

By computing the energy on both sides of this equation as previously performed in
(4.96), it is possible to show that
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E
�k�w.k C 1/k2

�C E

�

QeT
ap.k/

�
XT

ap.k/Xap.k/
�

�1 Qeap.k/

�

D E
�k� Ow.k/k2

�C E

�

Q"T
ap.k/

�
XT

ap.k/Xap.k/
�

�1 Q"ap.k/

�

D E
�k�w.k/ C �wo.k C 1/k2

�C E

�

Q"T
ap.k/

�
XT

ap.k/Xap.k/
�

�1 Q"ap.k/

�

� E
�k�w.k/k2

�C E
�k�wo.k C 1/k2

�C E

�

Q"T
ap.k/

�
XT

ap.k/Xap.k/
�

�1 Q"ap.k/

�

(4.133)

where �wo.k C 1/ D wo.k/ � wo.k C 1/, and in the last equality we have assumed
that E

�
�wT .k/�wo.k C 1/

� � 0. This assumption is valid for simple models
for the time-varying behavior of the unknown system, such as random walk model
[30]5. We will adopt this assumption in order to simplify our analysis.

The time-varying characteristic of the unknown system leads to an excess
mean-square error. As before, in order to calculate the excess MSE we assume
that each element of the optimal coefficient vector is modeled as a first-order
Markov process. As previously mentioned, this nonstationary environment can be
considered somewhat simplified, but allows a manageable mathematical analysis.
The first-order Markov process is described by

wo.k/ D �wwo.k � 1/ C �wnw.k/ (4.134)

where nw.k/ is a vector whose elements are zero-mean white noise processes with
variance 	2

w, and �w < 1. If �w D 1 this model may not represent a real system
when �w ! 1, since the EŒwo.k/wT

o .k/� will have unbounded elements if, for
example, nw.k/ is not exactly zero mean. A better model utilizes a factor �w D
.1��w/

p
2 , for p � 1, multiplying nw.k/ in order to guarantee that EŒwo.k/wT

o .k/�

is bounded.
In our derivations of the excess MSE, the covariance of �wo.k C 1/ D wo.k/ �

wo.k C 1/ is required. That is

covŒ�wo.k C 1/� D E
�
.wo.k C 1/ � wo.k//.wo.k C 1/ � wo.k//T

�

D E
�
.�wwo.k/ C �wnw.k/ � wo.k//.�wwo.k/ C �wnw.k/ � wo.k//T

�

D E
˚
Œ.�w � 1/wo.k/ C �wnw.k/�Œ.�w � 1/wo.k/ C �wnw.k/�T




(4.135)

5In this model the coefficients change according to wo.k/ D wo.k � 1/ C nw.k/.



4.6 The Affine Projection Algorithm 179

Since each element of nw.k/ is a zero-mean white noise process with variance 	2
w,

and �w < 1, by applying the result of (2.82), it follows that

covŒ�wo.k C 1/� D �2
w	2

w
.1 � �w/2

1 � �2
w

I C �2
w	2

wI

D �2
w

�
1 � �w
1 C �w

C 1

�

	2
wI (4.136)

By employing this result, we can compute

E
�k�wo.k C 1/k2

� D trfcovŒ�wo.k C 1/�g D .N C 1/

�
2�2

w
1 C �w

�

	2
w (4.137)

We are now in a position to solve (4.133) utilizing the result of (4.137). Again
by assuming that the algorithm has converged, that is, the Euclidean norm of the
coefficients increment remains in average unchanged, then E

�k�w.k C 1/k2
� D

E
�k�w.k/k2

�
. As a result, (4.133) can be rewritten as

E

�

QeT
ap.k/

�
XT

ap.k/Xap.k/
��1 Qeap.k/

�

D E

�

Q"T
ap.k/

�
XT

ap.k/Xap.k/
��1 Q"ap.k/

�

C.N C 1/

�
2�2

w
1 C �w

�

	2
w (4.138)

Leading to the equivalent of (4.101) as follows

�2E
h
eT

ap.k/ OSap.k/ ORap.k/ OSap.k/eap.k/
i

D �E
h
QeT

ap.k/ OSap.k/eap.k/

CeT
ap.k/ OSap.k/Qeap.k/

i

C.N C 1/

�
2�2

w
1 C �w

�

	2
w (4.139)

By solving this equation following precisely the same procedure as (4.101) was
solved, we can derive the excess MSE only due to the time-varying unknown
system.

�lag D N C 1

�.2 � �/

�
2�2

w
1 C �w

�

	2
w (4.140)
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By taking into consideration the additional noise and the time-varying parameters
to be estimated, the overall excess MSE is given by

�exc D .L C 1/�

2 � �

1 � .1 � �/2

1 � .1 � �/2.LC1/
	2

n C N C 1

�.2 � �/

�
2�2

w
1 C �w

�

	2
w

D 1

2 � �

(

.L C 1/�
1 � .1 � �/2

1 � .1 � �/2.LC1/
	2

n C N C 1

�

�
2�2

w
1 C �w

�

	2
w

)

(4.141)

If �w D 1, L is large, and j1 � �j < 1, the above expression becomes simpler

�exc D 1

2 � �

�

.L C 1/�	2
n C 2.N C 1/

�.1 C �w/
	2

w

�

(4.142)

As can be observed, the contribution due to the lag is inversely proportional to the
value of �. This is an expected result since for small values of � an adaptive-filtering
algorithm will face difficulties in tracking the variations in the unknown system.

4.6.3 Transient Behavior

This subsection presents some considerations related to the behavior of the affine
projection algorithm during the transient. In order to achieve this goal we start by
removing the dependence of (4.96) on the noiseless a posteriori error through (4.99),
very much like previously performed in the derivations of (4.100) and (4.101). The
resulting expression is

E
�k�w.k C 1/k2

� D E
�k�w.k/k2

�C �2E
h
eT

ap.k/ OSap.k/ ORap.k/ OSap.k/eap.k/
i

��E
h
QeT

ap.k/ OSap.k/eap.k/ C eT
ap.k/ OSap.k/Qeap.k/

i
(4.143)

Since from (4.93)

eap.k/ D Qeap.k/ C nap.k/

D �XT
ap.k/�w.k/ C nap.k/

the above expression (4.143) can be rewritten as

E
�k�w.k C 1/k2

� D E
�k�w.k/k2

�

C�2E
h�

��wT .k/Xap.k/CnT
ap.k/

� OSap.k/ ORap.k/ OSap.k/
�
�XT

ap.k/�w.k/ C nap.k/
�i
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��E
h	��wT .k/Xap.k/


 OSap.k/
�
�XT

ap.k/�w.k/ C nap.k/
�

C
�
��wT .k/Xap.k/ C nT

ap.k/
� OSap.k/

�
�XT

ap.k/�w.k/
�i

(4.144)

By considering the noise white and uncorrelated with the other quantities of this
recursion, the above equation can be simplified to

E
�k�w.k C 1/k2

� D E
�k�w.k/k2

� � 2�E
h
�wT .k/Xap.k/ OSap.k/XT

ap.k/�w.k/
i

C�2E
h
�wT .k/Xap.k/ OSap.k/ ORap.k/ OSap.k/XT

ap.k/�w.k/
i

C�2E
h
nT

ap.k/ OSap.k/ ORap.k/ OSap.k/nap.k/
i

(4.145)

By applying the property that trŒAB� D trŒBA�, this relation is equivalent to

trfcovŒ�w.k C 1/�g D tr ŒcovŒ�w.k/�� � 2�tr
n
E
h
Xap.k/ OSap.k/XT

ap.k/�w.k/�wT .k/
io

C�2tr
n
E
h
Xap.k/ OSap.k/ ORap.k/ OSap.k/XT

ap.k/�w.k/�wT .k/
io

C�2tr
n
E
h OSap.k/ ORap.k/ OSap.k/

i
E
h
nap.k/nT

ap.k/
io

(4.146)

By assuming that the �w.k C 1/ is independent of the data and the noise is white,
it follows that

trfcovŒ�w.k C 1/�g D tr
nh

I � E
�
2�Xap.k/ OSap.k/XT

ap.k/

� �2Xap.k/ OSap.k/ ORap.k/ OSap.k/XT
ap.k/

�i
covŒ�w.k/�

o

C�2	2
n tr
n
E
h OSap.k/ ORap.k/ OSap.k/

io
(4.147)

Now by recalling that

OSap.k/ � OR�1

ap .k/
h
I � � OR�1

ap .k/
i

and by utilizing the unitary matrix Q, that in the present discussion diagonalizes
EŒXap.k/ OSap.k/XT

ap.k/�, the following relation is valid

tr
n
covŒ�w.k C 1/�QQT

o
D tr

n
QQT

h
I � E

�
2�Xap.k/ OSap.k/XT

ap.k/

� .1 � �/�2Xap.k/ OSap.k/XT
ap.k/

�i
QQT covŒ�w.k/�QQT

o

C.1 � �/�2	2
n tr
n
E
h OSap.k/

io
(4.148)
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Again by applying the property that trŒAB� D trŒBA� and assuming � small, it
follows that

tr
˚
QT covŒ�w.k C 1/�Q


 D tr
n
Q
h
I � QT E

�
2�Xap.k/ OSap.k/XT

ap.k/

� �2Xap.k/ OSap.k/XT
ap.k/

�
Q
i

QT covŒ�w.k/�QQT
o

C�2	2
n tr
n
E
h OSap.k/

io
(4.149)

By defining

�w0.k C 1/ D QT �w.k C 1/

Equation (4.149) can be rewritten as

trfcovŒ�w0.k C 1/�g D tr
n
QT Q

h
I � QT E

�
2�Xap.k/ OSap.k/XT

ap.k/

� �2Xap.k/ OSap.k/XT
ap.k/

�
Q
i

covŒ�w0.k/�
o

C�2	2
n tr
n
E
h OSap.k/

io

D tr
nh

I � 2� O� C �2 O�
i

covŒ�w0.k/�
o

C �2	2
n tr
n
E
h OSap.k/

io

(4.150)

where O� is a diagonal matrix whose elements are the eigenvalues of
EŒXap.k/ OSap.k/XT

ap.k/�, denoted as O�i , for i D 0; : : : ; N .

By using the likely assumption that covŒ�w0.k C 1/� and OSap.k/ are diagonal
dominant, we can disregard the trace operator in the above equation and observe
that the geometric decaying curves have ratios rcovŒ�w.k/� D .1 � 2� O�i C �2 O�i /. As
a result, according to the considerations in the derivation of (3.52), it is possible to
infer that the convergence time constant is given by

�ei D �covŒ�w.k/�

D 1

� O�i

1

2 � �
(4.151)

since the error squared depends on the convergence of the diagonal elements of
the covariance matrix of the coefficient-error vector, see discussions around (3.53).
As can be observed, the time constants for error convergence are dependent on
the inverse of the eigenvalues of EŒXap.k/ OSap.k/XT

ap.k/�. However, since � is not
constrained by these eigenvalues, the speed of convergence is expected to be higher
than for the LMS algorithm, particularly in situations where the eigenvalue spread
of the input signal is high. Simulation results confirm the improved performance of
the affine projection algorithm.
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4.6.4 Complex Affine Projection Algorithm

Using the method of Lagrange multipliers to transform the constrained minimization
into an unconstrained one, the unconstrained function to be minimized is

F Œw.k C 1/� D 1

2
kw.k C 1/ � w.k/k2 C re

n
�T

ap.k/Œdap.k/�XT
ap.k/w�.kC1/�

o

(4.152)

where �ap.k/ is a complex .L C 1/ � 1 vector of Lagrange multipliers, and the real
part operator is required in order to turn the overall objective function real valued.
The above expression can be rewritten as

F Œw.k C 1/� D 1

2
Œw.k C 1/ � w.k/�H Œw.k C 1/ � w.k/�

C1

2
�H

ap.k/
h
d�

ap.k/ � XH
ap.k/w.k C 1/

i

C1

2
�T

ap.k/
h
dap.k/ � XT

ap.k/w�.k C 1/
i

(4.153)

The gradient of F Œw.k C 1/� with respect to w�.k C 1/ is given by6

@F Œw.k C 1/�

@w�.k C 1/
D gw�fF Œw.k C 1/�g D 1

2
Œw.k C 1/ � w.k/� � 1

2
Xap.k/�ap.k/

(4.154)

After setting the gradient of F Œw.k C 1/� with respect to w�.k C 1/ equal to zero,
the expression below follows

w.k C 1/ D w.k/ C Xap.k/�ap.k/ (4.155)

By replacing (4.155) in the constraint relation d�
ap.k/ � XH

ap.k/w.k C 1/ D 0, we
generate the expression

XH
ap.k/Xap.k/�ap.k/ D d�

ap.k/ � XH
ap.k/w.k/ D e�

ap.k/ (4.156)

The update equation is now given by (4.155) with �ap.k/ being the solution of
(4.156), i.e.,

w.k C 1/ D w.k/ C Xap.k/
�

XH
ap.k/Xap.k/

��1

e�
ap.k/ (4.157)

6The reader should recall that when computing the gradient with respect to w�.k C 1/, w.k C 1/

is treated as a constant.
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Algorithm 4.6 Complex Affine Projection Algorithm
Initialization

x.0/ D w.0/ D Œ0 0 : : : 0�T

choose � in the range 0 < � � 1

� D small constant
Do for k � 0

e�

ap.k/ D d�

ap.k/ � XH
ap.k/w.k/

w.k C 1/ D w.k/ C �Xap.k/
�

XH
ap.k/Xap.k/ C �I

�
�1

e�

ap.k/

This updating equation corresponds to the complex affine projection algorithm with
unity convergence factor. As common practice, we introduce a convergence factor
in order to trade-off final misadjustment and convergence speed as follows

w.k C 1/ D w.k/ C �Xap.k/
�

XH
ap.k/Xap.k/

��1

e�
ap.k/ (4.158)

The description of the complex affine projection algorithm is given in Algorithm 4.6,
where as before a regularization is introduced through an identity matrix multiplied
by a small constant added to the matrix XH

ap.k/Xap.k/ in order to avoid numerical
problems in the matrix inversion.

4.7 Examples

This section includes a number of examples in order to access the performance of
the LMS-based algorithms described in this chapter.

4.7.1 Analytical Examples

Example 4.3 (Stochastic Gradient Algorithm). Derive the update equation for a
stochastic gradient algorithm designed to minimize the following objective function.

E ŒF Œw.k/�� D E
�
ajd.k/ � wH

1 .k/x.k/j4 C bjd.k/ � wT
2 .k/x.k/j4�

where

w.k/ D
�

w1.k/

w2.k/

�

and w2.k/ is a vector with real-valued entries. The parameters a and b are also real.
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Solution. The given objective function can be rewritten as

F Œw.k/� D a
˚
.d.k/ � wH

1 .k/x.k//2.d �.k/ � wT
1 .k/x�.k//2




Cb
˚
.d.k/ � wT

2 .k/x.k//2.d �.k/ � wT
2 .k/x�.k//2




where by denoting e1.k/ D d.k/ � wH
1 .k/x.k/ and e2.k/ D d.k/ � wT

2 .k/x.k/, it
is possible to compute the gradient expression as

gw�fF Œw.k/�g D
� �2ae�

1 .k/x.k/je1.k/j2
�2be�

2 .k/x.k/je2.k/j2 � 2be2.k/x�.k/je2.k/j2
�

The updating equation is then given by

w.k C 1/ D w.k/ � �

� �2ae�
1 .k/x.k/je1.k/j2

�4b re
�
e�

2 .k/x.k/
� je2.k/j2

�

D w.k/ C �

�
2ae�

1 .k/x.k/je1.k/j2
4b re

�
e�

2 .k/x.k/
� je2.k/j2

�

ut

Example 4.4. Normalized LMS Algorithm

(a) A normalized LMS algorithm using convergence factor equal to one has the
following data available

x.0/ D
�

2 C 
1

2

�

d.0/ D 1

and

x.1/ D
�

1

1 C 
2

�

d.1/ D 0

where the initial values for the coefficients are zero and 
1 and 
2 are real-valued
constants. Determine the hyperplanes

S.k/ D fw.k C 1/ 2 R
2 W d.k/ � wT .k C 1/x.k/ D 0g

for two updates.
(b) If the given data belong to an identification problem without additional noise,

what would be the coefficients of the unknown system?
(c) What would be the solution if 
1 D 
2 D 0?
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Solution. (a) The hyperplanes defined by the given data vectors are respectively
given by

S.0/ D fw.1/ 2 R
2 W 1 � .2 C 
1/w0.1/ � 2w1.1/ D 0g

and

S.1/ D fw.2/ 2 R
2 W 0 � w0.2/ � .1 C 
2/w1.2/ D 0g

(b) The solution lies on S.0/ \ S.1/. Thus

.2 C 
1/w0 C 2w1 D 1

w0 C .1 C 
2/w1 D 0

whose solution is

wo D
"

1C
2


1C
1
2C2
2�1

1C
1
2C2
2

#

assuming 
1 ¤ 0 and 
2 ¤ 0.
(c) For 
1 D 
2 D 0 the hyperplanes S.1/ and S.2/ are parallel and the solution

before is not valid. In this case there is no solution. ut
Example 4.5 (Complex Normalized LMS Algorithm). Which objective function is
actually minimized by the complex normalized LMS algorithm with regularization
factor � and convergence factor �n?

w.k C 1/ D w.k/ C �n

� C xH .k/x.k/
x.k/e�.k/ (4.159)

Assume that � is included for regularization purposes.

Solution. Our main task is to search for an objective function whose stochastic
gradient corresponds to the last term of the above equation. Define

˛ D
�

1

�n

� 1 C ˛p�

�

(4.160)

The objective function to be minimized with respect to the coefficients w�.k C 1/

is given by

�.k/ D ˛kw.k C 1/ � w.k/k2 C ˛pkd.k/ � xT .k/w�.k C 1/k2 (4.161)
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where

˛p D 1

� C xH .k/x.k/
(4.162)

This result can be verified by computing the derivative of the objective function with
respect to w�.k C 1/ as following described.

@�.k/

@w�.k C 1/
D ˛Œw.k C 1/ � w.k/� � ˛px.k/

�
d �.k/ � xH .k/w.k C 1/

�

By setting this result to zero it follows that

�
˛I C ˛px.k/xH .k/

�
w.k C 1/ D ˛w.k/ C ˛px.k/d �.k/ � ˛px.k/xH .k/w.k/

C˛px.k/xH .k/w.k/

D �
˛I C ˛px.k/xH .k/

�
w.k/ C ˛px.k/e�.k/

This equation can be rewritten as

w.k C 1/ D w.k/ C ˛p

�
˛I C ˛px.k/xH .k/

��1
x.k/e�.k/ (4.163)

After applying the matrix inversion lemma, as in (13.28), to compute the inverse
in the above equation we get

�
˛I C ˛px.k/xH .k/

��1 D I
˛

� I
˛

x.k/

�
xH .k/x.k/

˛
C 1

˛p

��1

xH .k/
I
˛

D 1

˛

"

I � x.k/xH .k/

xH .k/x.k/ C ˛
˛p

#

Since the above equation will be multiplied on the right-hand side by x.k/, it then
follows that

1

˛

"

I � x.k/xH .k/

xH .k/x.k/ C ˛
˛p

#

x.k/ D 1

˛

"
˛

˛p

x.k/

xH .k/x.k/ C ˛
˛p

#

D x.k/

˛pxH .k/x.k/ C ˛

By employing the relation ˛ D
�

1
�n

� 1 C ˛p�
�

in the expression above it

follows that

x.k/

˛pxH .k/x.k/ C ˛
D �nx.k/
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By replacing the above result in (4.163), it is possible to show that

w.k C 1/ D w.k/ C �n˛px.k/e�.k/

D w.k/ C �n

	
� C xH .k/x.k/


�1
x.k/e�.k/ ut

Example 4.6 (Transform-Domain LMS algorithm). A transform-domain LMS
algorithm is used in an application requiring two coefficients and employing
the DCT.

(a) Show in detail the update equation related to each adaptive filter coefficient
as a function of the input signal, given � and 	2

x , where the former is the
regularization factor and the latter is the variance of the input signal x.k/.

(b) Which value of � would generate an a posteriori error equal to zero?

Solution. (a) The transform matrix in this case is given by

T D
" p

2
2

p
2

2p
2

2
�

p
2

2

#

The update equation of the first coefficient is

Ow0.k C 1/ D Ow0.k/ C 2�

� C 	2
0 .k/

e.k/s0.k/

D Ow0.k/ C 2�p
2.� C 	2

0 .k//
e.k/.x0.k/ C x1.k//

and of the second coefficient is

Ow1.k C 1/ D Ow1.k/ C 2�

� C 	2
1 .k/

e.k/s1.k/

D Ow1.k/ C 2�p
2.� C 	2

1 .k//
e.k/.x0.k/ � x1.k//

where 	2
0 .k/ D 	2

1 .k/ D 1
2
	2

x0
.k/ C 1

2
	2

x1
.k/. These variances are estimated by

	2
xi

.k/ D ˛x2
i .k/ C .1 � ˛/	2

xi
.k � 1/, for i D 0; 1, ˛ is a small factor chosen

in the range 0 < ˛ � 0:1, and � is the regularization factor.
(b) In matrix form the above updating equation can be rewritten as

Ow.k C 1/ D Ow.k/ C 2�e.k/˙ �2.k/s.k/ (4.164)

where ˙ �2.k/ is a diagonal matrix containing as elements the inverse of the
power estimates of the elements of s.k/ added to the regularization factor � . By
replacing the above expression in the a posteriori error definition, it follows that
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".k/ D d.k/ � sT .k/ Ow.k C 1/

D d.k/ � sT .k/ Ow.k/ � 2�e.k/sT .k/˙ �2.k/s.k/ D 0

leading to

� D 1

2sT .k/˙ �2.k/s.k/ ut

4.7.2 System Identification Simulations

In this subsection, a standard system identification problem is described and solved
by using some of the algorithms presented in this chapter.

Example 4.7 (Transform-Domain LMS Algorithm). Use the transform-domain
LMS algorithm to identify the system described in example of Sect. 3.6.2. The
transform is the DCT.

Solution. All the results presented here for the transform-domain LMS algorithm
are obtained by averaging the results of 200 independent runs.

We run the algorithm with a value of � D 0:01, with ˛ D 0:05 and � D 10�6.
With this value of �, the misadjustment of the transform-domain LMS algorithm
is about the same as that of the LMS algorithm with � D 0:02. In Fig. 4.13,
the learning curves for the eigenvalue spreads 20 and 80 are illustrated. First note
that the convergence speed is about the same for different eigenvalue spreads,
showing the effectiveness of the rotation performed by the transform in this case.
If we compare these curves with those of Fig. 3.9 for the LMS algorithm, we
conclude that the transform-domain LMS algorithm has better performance than
the LMS algorithm for high eigenvalue spread. For an eigenvalue spread equal to
20, the transform-domain LMS algorithm requires around 200 iterations to achieve
convergence, whereas the LMS requires at least 500 iterations. This improvement is
achieved without increasing the misadjustment as can be verified by comparing the
results of Tables 3.1 and 4.1.

The reader should bear in mind that the improvements in convergence of the
transform-domain LMS algorithm can be achieved only if the transformation is
effective. In this example, since the input signal is colored using a first-order all-
pole filter, the cosine transform is known to be effective because it approximates
the KLT.

The finite-precision implementation of the transform-domain LMS algorithm
presents similar performance to that of the LMS algorithm, as can be verified by
comparing the results of Tables 3.2 and 4.2. An eigenvalue spread of one is used
in this example. The value of � is 0:01, while the remaining parameter values are
� D 2�bd and ˛ D 0:05. The value of � in this case is chosen the same as for the
LMS algorithm. ut
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Fig. 4.13 Learning curves for the transform-domain LMS algorithm for eigenvalue spreads: 20
and 80

Table 4.1 Evaluation of the
Transform-Domain LMS
Algorithm

�max
�min

Misadjustment

1 0.2027
20 0.2037
80 0.2093

Table 4.2 Results of the
Finite-Precision
Implementation of the
Transform-Domain LMS
Algorithm

�.k/Q EŒjj�w.k/Qjj2�

No of bits Experiment Experiment

16 1.627 10�3 1.313 10�4

12 1.640 10�3 1.409 10�4

10 1.648 10�3 1.536 10�4

Example 4.8 (Affine Projection Algorithm). An adaptive-filtering algorithm is used
to identify the system described in example of Sect. 3.6.2 using the affine projection
algorithm using L D 0, L D 1 and L D 4. Do not consider the finite-precision
case.

Solution. Figure 4.14 depicts the estimate of the MSE learning curve of the affine
projection algorithm for the case of eigenvalue spread equal to 1, obtained by
averaging the results of 200 independent runs. As can be noticed by increasing
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Fig. 4.14 Learning curves for the affine projection algorithms for L D 0, L D 1, and L D 4,
eigenvalue spread equal 1

L the algorithm becomes faster. The chosen convergence factor is � D 0:4, and
the measured misadjustments are M D 0:32 for L D 0, M D 0:67 for L D 1,
and M D 2:05 for L D 4. In all cases � D 0 is utilized, and for L D 1

in the first iteration we start with L D 0, whereas for L D 4 in the first four
iterations we employ L D 0; 1; 2; and 3, respectively. If we consider that the

term E
h

1
kx.k/k2

i
� 1

.N C1/	2
x

, the expected misadjustment according to (4.126) is

M D 0:25, which is somewhat close to the measured ones considering the above
approximation as well as the approximations in the derivation of the theoretical
formula.

Figure 4.15 depicts the average of the squared error obtained from 200 inde-
pendent runs for the case of eigenvalue spread equal to 80. Again we verify that
by increasing L the algorithm becomes faster. The chosen convergence factor is
also � D 0:4, and the measured misadjustments for three values of the eigenvalue
spread are listed in Table 4.3. It can be observed that higher eigenvalue spreads do
not increase the misadjustment substantially.

In Fig. 4.16, it is shown the effect of using different values for the convergence
factor, when L D 1 and the eigenvalue spread is equal to 1. For � D 0:2 the
misadjustment is M D 0:30, for � D 0:4 the misadjustment is M D 0:67, and for
� D 1 the misadjustment is M D 1:56. ut
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Fig. 4.15 Learning curves for the affine projection algorithms for L D 0, L D 1, and L D 4,
eigenvalue spread equal 80

Table 4.3 Evaluation of the Affine Projection Algorithm, � D 0:4

Misadjustment, L D 0 Misadjustment, L D 1 Misadjustment, L D 4
�max
�min

Experiment Theory Experiment Theory Experiment Theory

1 0.32 0.25 0.67 0.37 2.05 0.81
20 0.35 0.25 0.69 0.37 2.29 0.81
80 0.37 0.25 0.72 0.37 2.43 0.81

4.7.3 Signal Enhancement Simulations

In this subsection, a signal enhancement simulation environment is described. This
example will also be employed in some of the following chapters.

In a signal enhancement problem, the reference signal is

r.k/ D sin.0:2�k/ C nr.k/

where nr.k/ is zero-mean Gaussian white noise with variance 	2
nr

D 10. The input
signal is given by nr.k/ passed through a filter with the following transfer function

H.z/ D 0:4

z2 � 1:36z C 0:79
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Fig. 4.16 Learning curves for the affine projection algorithms for � D 0:2, � D 0:4, and � D 1

The adaptive filter is a 20th-order FIR filter. In all examples, a delay L D 10 is
applied to the reference signal.

Example 4.9 (Quantized-Error and Normalized LMS Algorithms). Using the sign-
error, power-of-two error with bd D 12, and normalized LMS algorithms:

(a) Choose an appropriate � in each case and run an ensemble of 50 experiments.
Plot the average learning curve.

(b) Plot the output errors and comment on the results.

Solution. The maximum value of � for the LMS algorithm in this example is
0:005. The value of � for both the sign-error and power-of-two LMS algorithms is
chosen 0:001. The coefficients of the adaptive filter are initialized with zero. For the
normalized LMS algorithm �n D 0:4 and � D 10�6 are used. Fig. 4.17 depicts
the learning curves for the three algorithms. The results show that the sign-error
and power-of-two error algorithms present similar convergence speed, whereas the
normalized LMS algorithm is faster to converge. The reader should notice that
the MSE after convergence is not small since we are dealing with an example where
the signal-to-noise ratio is low.

The DFT with 128 points of the input signal is shown in Fig. 4.18 where the
presence of the sinusoid cannot be noted. In the same figure are shown the DFT of
the error and the error signal itself, for the experiment using the normalized LMS
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algorithm. In the cases of DFT, the result presented is the magnitude of the DFT
outputs. As can be verified, the output error tends to produce a signal with the same
period of the sinusoid after convergence and the DFT shows clearly the presence of
the sinusoid. The other two algorithms lead to similar results. ut

4.7.4 Signal Prediction Simulations

In this subsection a signal prediction simulation environment is described. This
example will also be used in some of the following chapters.

In a prediction problem the input signal is

x.k/ D �p
2 sin.0:2�k/ C p

2 sin.0:05�k/ C nx.k/

where nx.k/ is zero-mean Gaussian white noise with variance 	2
nx

D 1. The adap-
tive filter is a fourth-order FIR filter.

(a) Run an ensemble of 50 experiments and plot the average learning curve.
(b) Determine the zeros of the resulting FIR filter and comment on the results.

Example 4.10 (Quantized-Error and Normalized LMS Algorithms). We solve the
above problem using the sign-error, power-of-two error with bd D 12, and
normalized LMS algorithms.

Solution. In the first step, each algorithm is tested in order to determine exper-
imentally the maximum value of � in which the convergence is achieved. The
choice of the convergence factor is �max=5 for each algorithm. The chosen values
of � for the sign-error and power-of-two LMS algorithms are 0:0028 and 0:0044,
respectively. For the normalized LMS algorithm, �n D 0:4 and � D 10�6 are
used. The coefficients of the adaptive filter are initialized with zero. The learning
curves for the three algorithms are depicted in Fig. 4.19. In all cases, we notice
a strong attenuation of the predictor response around the frequencies of the two
sinusoids. See, for example, the response depicted in Fig. 4.20 obtained by running
the power-of-two LMS algorithm. The zeros of the transfer function from the input
to the output error are calculated for the power-of-two algorithm:

�0:3939I �0:2351 ˙ |0:3876I �0:6766 ˙ |0:3422

Notice that the predictor tends to place its zeros at low frequencies, in order to
attenuate the two low-frequency sinusoids.

In the experiments, we notice that for a given additional noise, smaller con-
vergence factor leads to higher attenuation at the sinusoid frequencies. This is an
expected result since the excess MSE is smaller. Another observation is that the
attenuation also grows as the signal-to-noise ratio is reduced, again due to the
smaller MSE. ut
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using the power-of-two LMS algorithm

4.8 Concluding Remarks

In this chapter, a number of adaptive-filtering algorithms were presented derived
from the LMS algorithm. There were two basic directions followed in the derivation
of the algorithms: one direction was to search for simpler algorithms from the
computational point of view, and the other was to sophisticate the LMS algorithm
looking for improvements in performance. The simplified algorithms lead to
low-power, low-complexity and/or high-speed integrated circuit implementations
[31], at a cost of increasing the misadjustment and/or of losing convergence
speed among other things [32]. The simplified algorithms discussed here were the
quantized-error algorithms.

We also introduced the LMS-Newton algorithm, whose performance is indepen-
dent of the eigenvalue spread of the input signal correlation matrix. This algorithm
is related to the RLS algorithm which will be discussed in the following chapter,
although some distinctive features exist between them [41]. Newton-type algorithms
with reduced computational complexity are also known [42, 43], and the main
characteristic of this class of algorithms is to reduce the computation involving the
inverse of the estimate of R.

In the normalized LMS algorithm, the straightforward objective was to find the
step size that minimizes the instantaneous output error. There are many papers
dealing with the analysis [33]-[35] and applications [36] of the normalized LMS
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algorithm. The idea of using variable step size in the LMS and normalized LMS
algorithms can lead to a number of interesting algorithms [37]-[39], that in some
cases are very efficient in tracking nonstationary environments [40].

The transform-domain LMS algorithm aimed at reducing the eigenvalue spread
of the input signal correlation matrix. Several frequency-domain adaptive algo-
rithms, which are related in some sense to the transform-domain LMS algorithm,
have been investigated in the recent years [44]. Such algorithms exploit the whiten-
ing property associated with the normalized transform-domain LMS algorithm, and
most of them update the coefficients at a rate lower than the input sampling rate.
One of the resulting structures, presented in [45], can be interpreted as a direct
generalization of the transform-domain LMS algorithm and is called generalized
adaptive subband decomposition structure. Such structure consists of a small-size
fixed transform, which is applied to the input sequence, followed by sparse adaptive
subfilters which are updated at the input rate. In high-order adaptive-filtering
problems, the use of this structure with appropriately chosen transform-size and
sparsity factor can lead to significant convergence rate improvement for colored
input signals when compared to the standard LMS algorithm. The convergence
rate improvement is achieved without the need for large transform sizes. Other
algorithms to deal with high-order adaptive filters are discussed in Chap. 12.

The affine projection algorithm is very appealing in applications requiring a
trade-off between convergence speed and computational complexity. Although
the algorithms in the affine projection family might have high misadjustment,
their combination with deterministic objective functions leading to data selective
updating results in computationally efficient algorithms with low misadjustment and
high convergence speed [25], as will be discussed in Chap. 6.

Several simulation examples involving the LMS-based algorithms were pre-
sented in this chapter. These examples aid the reader to understand what are the
main practical characteristics of the LMS-based algorithms.

4.9 Problems

1. From (4.16) derive the difference equation for v0.k/ given by (4.19).
2. Prove the validity of (4.27).
3. The sign-error algorithm is used to predict the signal x.k/ D sin.�k=3/

using a second-order FIR filter with the first tap fixed at 1, by minimizing
the mean square value of y.k/. This is an alternative way to interpret how the
predictor works. Calculate an appropriate �, the output signal y.k/, and the
filter coefficients for the first 10 iterations. Start with wT .0/ D Œ1 0 0�.

4. Derive an LMS-Newton algorithm leading to zero a posteriori error.
5. Derive the updating equations of the affine projection algorithm, for L D 1.
6. Use the sign-error algorithm to identify a system with the transfer function

given below. The input signal is a uniformly distributed white noise with
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variance 	2
x D 1, and the measurement noise is Gaussian white noise

uncorrelated with the input with variance 	2
n D 10�3. The adaptive filter has

12 coefficients.

H.z/ D 1 � z�12

1 C z�1

(a) Calculate the upper bound for � .�max/ to guarantee the algorithm stability.
(b) Run the algorithm for �max=2, �max=5, and �max=10. Comment on the

convergence behavior in each case.
(c) Measure the misadjustment in each example and compare with the results

obtained by (4.28).
(d) Plot the obtained FIR filter frequency response at any iteration after

convergence is achieved and compare with the unknown system.

7. Repeat the previous problem using an adaptive filter with 8 coefficients and
interpret the results.

8. Repeat problem 6 when the input signal is a uniformly distributed white noise
with variance 	2

nx
D 0:5, filtered by an all-pole filter given by

H.z/ D z

z � 0:9

9. In problem 6, consider that the additional noise has the following variances (a)
	2

n D 0, (b) 	2
n D 1. Comment on the results obtained in each case.

10. Perform the equalization of a channel with the following impulse response

h.k/ D ku.k/ � .2k � 9/u.k � 5/ C .k � 9/u.k � 10/

using a known training signal consisting of a binary (-1,1) random signal. An
additional Gaussian white noise with variance 10�2 is present at the channel
output.

(a) Apply the sign-error with an appropriate � and find the impulse response
of an equalizer with 15 coefficients.

(b) Convolve the equalizer impulse response at an iteration after convergence,
with the channel impulse response and comment on the result.

11. In a system identification problem, the input signal is generated by an autore-
gressive process given by

x.k/ D �1:2x.k � 1/ � 0:81x.k � 2/ C nx.k/

where nx.k/ is zero-mean Gaussian white noise with variance such that 	2
x D 1.

The unknown system is described by

H.z/ D 1 C 0:9z�1 C 0:1z�2 C 0:2z�3
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The adaptive filter is also a third-order FIR filter. Using the sign-error
algorithm:

(a) Choose an appropriate �, run an ensemble of 20 experiments, and plot the
average learning curve.

(b) Measure the excess MSE and compare the results with the theoretical value.

12. In the previous problem, calculate the time constant �wi and the expected
number of iterations to achieve convergence.

13. The sign-error algorithm is applied to identify a 7th-order time-varying un-
known system whose coefficients are first-order Markov processes with �w D
0:999 and 	2

w D 0:001. The initial time-varying system multiplier coeffi-
cients are

wT
o D Œ0:03490�0:011�0:068640:223910:556860:35798�0:0239�0:07594�

The input signal is Gaussian white noise with variance 	2
x D 0:7, and the

measurement noise is also Gaussian white noise independent of the input signal
and of the elements of nw.k/, with variance 	2

n D 0:01.
For � D 0:01, simulate the experiment described and measure the excess MSE.

14. Reduce the value of �w to 0.95 in problem 13, simulate, and comment on the
results.

15. Suppose a 15th-order FIR digital filter with multiplier coefficients given
below, is identified through an adaptive FIR filter of the same order using
the sign-error algorithm. Use fixed-point arithmetic and run simulations for the
following case.

Additional noise: white noise with variance 	2
n D 0:0015

Coefficient wordlength: bc D 16 bits
Signal wordlength: bd D 16 bits
Input signal: Gaussian white noise with variance 	2

x D 0:7

� D 0:01

wT
o D Œ0:0219360 0:0015786 � 0:0602449 � 0:0118907 0:1375379

0:0574545 � 0:3216703 � 0:5287203 � 0:2957797 0:0002043

0:290670 � 0:0353349 � 0:068210 0:0026067 0:0010333 � 0:0143593�

Plot the learning curves of the estimates of EŒjj�w.k/Qjj2� and �.k/Q

obtained through 25 independent runs, for the finite- and infinite-precision
implementations.

16. Repeat the above problem for the following cases

(a) 	2
n D 0:01, bc D 12 bits, bd D 12 bits, 	2

x D 0:7, � D 10�4.
(b) 	2

n D 0:1, bc D 10 bits, bd D 10 bits, 	2
x D 0:8, � D 2:0 10�5.

(c) 	2
n D 0:05, bc D 14 bits, bd D 16 bits, 	2

x D 0:8, � D 3:5 10�4.
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17. Repeat problem 15 for the case where the input signal is a first-order Markov
process with �x D 0:95.

18. Repeat problem 6 for the dual-sign algorithm given 
 D 16 and � D 1, and
comment on the results.

19. Repeat problem 6 for the power-of-two error algorithm given bd D 6 and � D
2�bd , and comment on the results.

20. Repeat problem 6 for the sign-data and sign-sign algorithms and compare the
results.

21. Show the validity of the matrix inversion lemma defined in (4.51).
22. For the setup described in problem 8, choose an appropriate � and run the

LMS-Newton algorithm.

(a) Measure the misadjustment.
(b) Plot the frequency response of the FIR filter obtained after convergence is

achieved and compare with the unknown system.

23. Repeat problem 8 using the normalized LMS algorithm.
24. Repeat problem 8 using the transform-domain LMS algorithm with DFT.

Compare the results with those obtained with the standard LMS algorithm.
25. Repeat problem 8 using the affine projection algorithm.
26. Repeat problem 8 using the transform-domain LMS algorithm with DCT.
27. For the input signal described in problem 8, derive the autocorrelation matrix

of order one (2 � 2). Apply the DCT and the normalization to R in order to
generate OR D ˙ �2TRTT . Compare the eigenvalue spreads of R and OR.

28. Repeat the previous problem for R with dimension 3 by 3.
29. Use the complex affine projection algorithm with L D 3 to equalize a channel

with the transfer function given below. The input signal is a four QAM signal
representing a randomly generated bit stream with the signal-to-noise ratio
	2

Qx

	2
n

D 20 at the receiver end, that is, Qx.k/ is the received signal without
taking into consideration the additional channel noise. The adaptive filter has
ten coefficients.

H.z/ D .0:34 � 0:27|/ C .0:87 C 0:43|/z�1 C .0:34 � 0:21|/z�2

(a) Run the algorithm for � D 0:1, � D 0:4, and � D 0:8. Comment on the
convergence behavior in each case.

(b) Plot the real versus imaginary parts of the received signal before and after
equalization.

(c) Increase the number of coefficients to 20 and repeat the experiment in (b).

30. Repeat problem 29 for the case of the normalized LMS algorithm.
31. In a system identification problem the input signal is generated from a four

QAM of the form

x.k/ D xre.k/ C |xim.k/
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where xre.k/ and xim.k/ assume values ˙1 randomly generated. The unknown
system is described by

H.z/ D 0:32C0:21| C .�0:3C0:7|/z�1 C .0:5�0:8|/z�2 C .0:2C0:5|/z�3

The adaptive filter is also a third-order complex FIR filter, and the additional
noise is composed of zero-mean Gaussian white noises in the real and
imaginary parts with variance 	2

n D 0:4. Using the complex affine projection
algorithm with L D 1, choose an appropriate �, run an ensemble of 20
experiments, and plot the average learning curve.

32. Repeat problem 31 utilizing the affine projection algorithm with L D 4.
33. Derive a complex transform-domain LMS algorithm for the case the transfor-

mation matrix is the DFT.
34. The Quasi-Newton algorithm first proposed in [51] is described by the follow-

ing set of equations

e.k/ D d.k/ � wT .k/x.k/

�.k/ D 1

2xT .k/ OR�1
.k/x.k/

w.k C 1/ D w.k/ C 2 �.k/ e.k/ OR�1
.k/x.k/

OR�1
.k C 1/ D OR�1

.k/ � 2�.k/ .1 � �.k// OR�1
.k/x.k/xT .k/ OR�1

.k/ (4.165)

(a) Apply this algorithm as well as the binormalized LMS algorithm to identify
the system

H.z/ D 1 C z�1 C z�2

when the additional noise is a uniformly distributed white noise with variance
	2

n D 0:01, and the input signal is a Gaussian noise with unit variance filtered
by an all-pole filter given by

G.z/ D 0:19z

z � 0:9

Through simulations, compare the convergence speed of the two algorithms
when their misadjustments are approximately the same. The later condition can
be met by choosing the � in the binormalized LMS algorithm appropriately.

35. Show the update equation of a stochastic gradient algorithm designed to search
the following objective function.

F Œw.k/� D ajd.k/ � wH .k/x.k/j4 C bjd.k/ � wH .k/x.k/j3

36. (a) A normalized LMS algorithm with convergence factor equal to one receives
the following data
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x.0/ D
�

1

2

�

d.0/ D 1

and

x.1/ D
�

2

1

�

d.1/ D 0

with zero initial values for the coefficients. Determine the hyperplanesS.k/

S.k/ D fw.k C 1/ 2 R
2 W d.k/ � wT .k C 1/x.k/ D 0g

for the two updates.
(b) If these data belong to a system identification problem without additional

noise, what would be the optimal coefficients of the unknown system?
37. An adaptive filter is employed to identify an unknown system of order 20 using

sufficient order, and producing a misadjustment of 30%. Assume the input
signal is a white Gaussian noise with unit variance and 	2

n D 0:01.

(a) For an LMS algorithm what value of � is required to obtain the desired
result?

(b) What about the value of � for the affine projection algorithm with L D 2

and using (4.125)? Is this expression suitable for this case?

38. Given the updating equation

w.k C 1/ D w.k/ C �n

� C 	2
x .k/

e.k/ x.k/

where 	2
x.k/ D ˛x2.k/ C .1 � ˛/	2

x .k � 1/, derive the objective function that
the algorithm minimizes. Assume that � � 0 is included only for regularization
purposes.

39. Derive an affine projection algorithm for real signals and one reuse
(binormalized) employing a forgetting factor � such that

Xap.k/ D

2

6
6
6
4

x.k/ �x.k � 1/

x.k � 1/ �x.k � 2/
:::

:::

x.k � N / �x.k � N � 1/

3

7
7
7
5

D Œx.k/ �x.k � 1/�
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and

dap.k/ D
�

d.k/

�d.k � 1/

�

Describe in detail the objective function being minimized when a convergence
factor � is used.
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