
Chapter 3
The Least-Mean-Square (LMS) Algorithm

3.1 Introduction

The least-mean-square (LMS) is a search algorithm in which a simplification of
the gradient vector computation is made possible by appropriately modifying the
objective function [1,2]. The LMS algorithm, as well as others related to it, is widely
used in various applications of adaptive filtering due to its computational simplicity
[3–7]. The convergence characteristics of the LMS algorithm are examined in
order to establish a range for the convergence factor that will guarantee stability.
The convergence speed of the LMS is shown to be dependent on the eigenvalue
spread of the input signal correlation matrix [2–6]. In this chapter, several properties
of the LMS algorithm are discussed including the misadjustment in stationary
and nonstationary environments [2–9] and tracking performance [10–12]. The
analysis results are verified by a large number of simulation examples. Chapter 15,
Sect. 15.1, complements this chapter by analyzing the finite-wordlength effects in
LMS algorithms.

The LMS algorithm is by far the most widely used algorithm in adaptive filtering
for several reasons. The main features that attracted the use of the LMS algorithm
are low computational complexity, proof of convergence in stationary environment,
unbiased convergence in the mean to the Wiener solution, and stable behavior when
implemented with finite-precision arithmetic. The convergence analysis of the LMS
presented here utilizes the independence assumption.

3.2 The LMS Algorithm

In Chap. 2 we derived the optimal solution for the parameters of the adaptive filter
implemented through a linear combiner, which corresponds to the case of multiple
input signals. This solution leads to the minimum mean-square error in estimating
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80 3 The Least-Mean-Square (LMS) Algorithm

the reference signal d.k/. The optimal (Wiener) solution is given by

wo D R�1p (3.1)

where R D EŒx.k/xT .k/� and p D EŒd.k/x.k/�, assuming that d.k/ and x.k/ are
jointly WSS.

If good estimates of matrix R, denoted by OR.k/, and of vector p, denoted by
Op.k/, are available, a steepest-descent-based algorithm can be used to search the
Wiener solution of (3.1) as follows:

w.k C 1/ D w.k/ � �Ogw.k/

D w.k/ C 2�. Op.k/ � OR.k/w.k// (3.2)

for k D 0; 1; 2; : : :, where Ogw.k/ represents an estimate of the gradient vector of
the objective function with respect to the filter coefficients.

One possible solution is to estimate the gradient vector by employing instanta-
neous estimates for R and p as follows:

OR.k/ D x.k/xT .k/

Op.k/ D d.k/x.k/ (3.3)

The resulting gradient estimate is given by

Ogw.k/ D �2d.k/x.k/ C 2x.k/xT .k/w.k/

D 2x.k/.�d.k/ C xT .k/w.k//

D �2e.k/x.k/ (3.4)

Note that if the objective function is replaced by the instantaneous square error
e2.k/, instead of the MSE, the above gradient estimate represents the true gradient
vector since

@e2.k/

@w
D

�
2e.k/

@e.k/

@w0.k/
2e.k/

@e.k/

@w1.k/
: : : 2e.k/

@e.k/

@wN .k/

�T

D �2e.k/x.k/

D Ogw.k/ (3.5)

The resulting gradient-based algorithm is known1 as the least-mean-square (LMS)
algorithm, whose updating equation is

w.k C 1/ D w.k/ C 2�e.k/x.k/ (3.6)

where the convergence factor � should be chosen in a range to guarantee conver-
gence.

1Because it minimizes the mean of the squared error.



3.2 The LMS Algorithm 81

w0(k)

w1(k)

wN(k)

+
++

-

y(k)

d(k)

x(k)

e(k)

2µ

+

+

+

z–1

z–1

z–1
z–1

z–1

z–1

Fig. 3.1 LMS adaptive FIR filter

Algorithm 3.1 LMS algorithm
Initialization
x.0/ D w.0/ D Œ0 0 : : : 0�T

Do for k � 0

e.k/ D d.k/ � xT .k/w.k/

w.k C 1/ D w.k/ C 2�e.k/x.k/

Figure 3.1 depicts the realization of the LMS algorithm for a delay line input
x.k/. Typically, one iteration of the LMS requires N C2 multiplications for the filter
coefficient updating and N C1 multiplications for the error generation. The detailed
description of the LMS algorithm is shown in the table denoted as Algorithm 3.1.

It should be noted that the initialization is not necessarily performed as described
in Algorithm 3.1, where the coefficients of the adaptive filter were initialized with
zeros. For example, if a rough idea of the optimal coefficient value is known, these
values could be used to form w.0/ leading to a reduction in the number of iterations
required to reach the neighborhood of wo.
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3.3 Some Properties of the LMS Algorithm

In this section, the main properties related to the convergence behavior of the LMS
algorithm in a stationary environment are described. The information contained
here is essential to understand the influence of the convergence factor � in various
convergence aspects of the LMS algorithm.

3.3.1 Gradient Behavior

As shown in Chap. 2, see (2.91), the ideal gradient direction required to perform a
search on the MSE surface for the optimum coefficient vector solution is

gw.k/ D 2
˚
E

�
x.k/xT .k/

�
w.k/ � E Œd.k/x.k/�

�
D 2ŒRw.k/ � p� (3.7)

In the LMS algorithm, instantaneous estimates of R and p are used to determine
the search direction, i.e.,

Ogw.k/ D 2
�
x.k/xT .k/w.k/ � d.k/x.k/

�
(3.8)

As can be expected, the direction determined by (3.8) is quite different from that of
(3.7). Therefore, by using the more computationally attractive gradient direction of
the LMS algorithm, the convergence behavior is not the same as that of the steepest-
descent algorithm.

On average, it can be said that the LMS gradient direction has the tendency to
approach the ideal gradient direction since for a fixed coefficient vector w

EŒOgw.k/� D 2fE �
x.k/xT .k/

�
w � E Œd.k/x.k/�g

D gw (3.9)

hence, vector Ogw.k/ can be interpreted as an unbiased instantaneous estimate of gw.
In an ergodic environment, if, for a fixed w vector, Ogw.k/ is calculated for a large
number of inputs and reference signals, the average direction tends to gw, i.e.,

lim
M!1

1

M

MX
iD1

Ogw.k C i/ ! gw (3.10)
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3.3.2 Convergence Behavior of the Coefficient Vector

Assume that an unknown FIR filter with coefficient vector given by wo is being
identified by an adaptive FIR filter of the same order, employing the LMS algorithm.
Measurement white noise n.k/ with zero mean and variance �2

n is added to the
output of the unknown system.

The error in the adaptive-filter coefficients as related to the ideal coefficient
vector wo, in each iteration, is described by the N C 1-length vector

�w.k/ D w.k/ � wo (3.11)

With this definition, the LMS algorithm can alternatively be described by

�w.k C 1/ D �w.k/ C 2�e.k/x.k/

D �w.k/ C 2�x.k/
�
xT .k/wo C n.k/ � xT .k/w.k/

�
D �w.k/ C 2�x.k/

�
eo.k/ � xT .k/�w.k/

�
D �

I � 2�x.k/xT .k/
�
�w.k/ C 2�eo.k/x.k/ (3.12)

where eo.k/ is the optimum output error given by

eo.k/ D d.k/ � wT
o x.k/

D wT
o x.k/ C n.k/ � wT

o x.k/

D n.k/ (3.13)

The expected error in the coefficient vector is then given by

EŒ�w.k C 1/� D EfŒI � 2�x.k/xT .k/��w.k/g C 2�EŒeo.k/x.k/� (3.14)

If it is assumed that the elements of x.k/ are statistically independent of the elements
of �w.k/ and eo.k/, (3.14) can be simplified as follows:

EŒ�w.k C 1/� D fI � 2�EŒx.k/xT .k/�gEŒ�w.k/�

D .I � 2�R/EŒ�w.k/� (3.15)

The first assumption is justified if we assume that the deviation in the parameters is
dependent on previous input signal vectors only, whereas in the second assumption
we also considered that the error signal at the optimal solution is orthogonal to the
elements of the input signal vector. The above expression leads to

EŒ�w.k C 1/� D .I � 2�R/kC1EŒ�w.0/� (3.16)
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Equation (3.15) premultiplied by QT , where Q is the unitary matrix that
diagonalizes R through a similarity transformation, yields

E
�
QT �w.k C 1/

� D .I � 2�QT RQ/E
�
QT �w.k/

�
D E

�
�w0.k C 1/

�
D .I � 2��/E

�
�w0.k/

�

D

2
66664

1 � 2��0 0 � � � 0

0 1 � 2��1

:::
:::

:::
: : :

:::

0 0 1 � 2��N

3
77775 E

�
�w0.k/

�

(3.17)

where �w0.k C 1/ D QT �w.k C 1/ is the rotated-coefficient error vector. The
applied rotation yielded an equation where the driving matrix is diagonal, making it
easier to analyze the equation’s dynamic behavior. Alternatively, the above relation
can be expressed as

E
�
�w0.k C 1/

� D .I � 2��/kC1E
�
�w0.0/

�

D

2
666664

.1 � 2��0/kC1 0 � � � 0

0 .1 � 2��1/kC1
:::

:::
:::

: : :
:::

0 0 .1 � 2��N /kC1

3
777775

E
�
�w0.0/

�

(3.18)

This equation shows that in order to guarantee convergence of the coefficients in the
mean, the convergence factor of the LMS algorithm must be chosen in the range

0 < � <
1

�max
(3.19)

where �max is the largest eigenvalue of R. Values of � in this range guarantees
that all elements of the diagonal matrix in (3.18) tend to zero as k ! 1, since
�1 < .1 � 2��i/ < 1, for i D 0; 1; : : : ; N . As a result EŒ�w0.k C1/� tends to zero
for large k.

The choice of � as above explained ensures that the mean value of the coefficient
vector approaches the optimum coefficient vector wo. It should be mentioned that
if the matrix R has a large eigenvalue spread, it is advisable to choose a value
for � much smaller than the upper bound. As a result, the convergence speed of
the coefficients will be primarily dependent on the value of the smallest eigenvalue,
responsible for the slowest mode in (3.18).
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The key assumption for the above analysis is the so-called independence theory
[4], which considers all vectors x.i/, for i D 0; 1; : : : ; k, statistically independent.
This assumption allowed us to consider �w.k/ independent of x.k/xT .k/ in (3.14).
Such an assumption, despite not being rigorously valid especially when x.k/

consists of the elements of a delay line, leads to theoretical results that are in good
agreement with the experimental results.

3.3.3 Coefficient-Error-Vector Covariance Matrix

In this subsection, we derive the expressions for the second-order statistics of the
errors in the adaptive-filter coefficients. Since for large k the mean value of �w.k/

is zero, the covariance of the coefficient-error vector is defined as

covŒ�w.k/� D EŒ�w.k/�wT .k/� D E
˚
Œw.k/ � wo�Œw.k/ � wo�T

�
(3.20)

By replacing (3.12) in (3.20) it follows that

covŒ�w.k C 1/� D E
n�

I � 2�x.k/xT .k/
�

�w.k/�wT .k/
�
I � 2�x.k/xT .k/

�T

C ŒI � 2�x.k/xT .k/��w.k/2�eo.k/xT .k/

C 2�eo.k/x.k/�wT .k/ŒI � 2�x.k/xT .k/�T

C 4�2e2
o.k/x.k/xT .k/

o
(3.21)

By considering eo.k/ independent of �w.k/ and orthogonal to x.k/, the second
and third terms on the right-hand side of the above equation can be eliminated. The
details of this simplification can be carried out by describing each element of the
eliminated matrices explicitly. In this case,

covŒ�w.k C 1/� D covŒ�w.k/� C E
��2�x.k/xT .k/�w.k/�wT .k/

� 2��w.k/�wT .k/x.k/xT .k/

C 4�2x.k/xT .k/�w.k/�wT .k/x.k/xT .k/

C 4�2e2
o.k/x.k/xT .k/

�
(3.22)

In addition, assuming that �w.k/ and x.k/ are independent, (3.22) can be
rewritten as

covŒ�w.k C 1/� D covŒ�w.k/� � 2�EŒx.k/xT .k/�EŒ�w.k/�wT .k/�

� 2�EŒ�w.k/�wT .k/�EŒx.k/xT .k/�

C 4�2E
˚
x.k/xT .k/EŒ�w.k/�wT .k/�x.k/xT .k/

�
C 4�2EŒe2

o.k/�EŒx.k/xT .k/�
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D covŒ�w.k/� � 2�R covŒ�w.k/�

� 2� covŒ�w.k/�R C 4�2A C 4�2�2
nR (3.23)

The calculation of A D E
˚
x.k/xT .k/EŒ�w.k/�wT .k/�x.k/xT .k/

�
involves

fourth-order moments and the result can be obtained by expanding the matrix inside
the operation EŒ�� as described in [4] and [13] for jointly Gaussian input signal
samples. The result is

A D 2R covŒ�w.k/� R C R trfR covŒ�w.k/�g (3.24)

where trŒ�� denotes trace of Œ��. Equation (3.23) is needed to calculate the excess
mean-square error caused by the noisy estimate of the gradient employed by the
LMS algorithm. As can be noted, covŒ�w.kC1/� does not tend to 0 as k ! 1, due
to the last term in (3.23) that provides an excitation in the dynamic matrix equation.

A more useful form for (3.23) can be obtained by premultiplying and postmulti-
plying it by QT and Q, respectively, yielding

QT covŒ�w.k C 1/�Q D QT covŒ�w.k/� Q

� 2�QT RQQT covŒ�w.k/�Q

� 2�QT covŒ�w.k/�QQT RQ

C 8�2QT RQQT covŒ�w.k/�QQT RQ

C 4�2QT RQQT trfRQQT covŒ�w.k/�gQ

C 4�2�2
n QT RQ (3.25)

where we used the equality QT Q D QQT D I. Using the fact that QT trŒB�Q D
trŒQT BQ�I for any B,

covŒ�w0.k C 1/� D covŒ�w0.k/� � 2�� covŒ�w0.k/� � 2� covŒ�w0.k/��

C 8�2� covŒ�w0.k/��C4�2� tr
˚
� covŒ�w0.k/�

� C4�2�2
n�

(3.26)

where covŒ�w0.k/� D EŒQT �w.k/�wT .k/Q�.
As will be shown in Sect. 3.3.6, only the diagonal elements of covŒ�w0.k/�

contribute to the excess MSE in the LMS algorithm. By defining v0.k/ as a vector
with elements consisting of the diagonal elements of covŒ�w0.k/�, and � as a vector
consisting of the eigenvalues of R, the following relation can be derived from the
above equations

v0.k C 1/ D .I � 4�� C 8�2�2 C 4�2��T /v0.k/ C 4�2�2
n�

D Bv0.k/ C 4�2�2
n� (3.27)
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where the elements of B are given by

bij D
(

1 � 4��i C 8�2�2
i C 4�2�2

i for i D j

4�2�i �j for i ¤ j :
(3.28)

The value of the convergence factor � must be chosen in a range that guarantees
the convergence of v0.k/. Since matrix B is symmetric, it has only real-valued
eigenvalues. Also since all entries of B are also non-negative, the maximum among
the sum of elements in any row of B represents an upper bound to the maximum
eigenvalue of B and to the absolute value of any other eigenvalue, see pages 53
and 63 of [14] or the Gershgorin theorem in [15]. As a consequence, a sufficient
condition to guarantee convergence is to force the sum of the elements in any row
of B to be kept in the range 0 <

PN
j D0 bij < 1. Since

NX
j D0

bij D 1 � 4��i C 8�2�2
i C 4�2�i

NX
j D0

�j (3.29)

the critical values of � are those for which the above equation approaches 1, as for
any � the expression is always positive. This will occur only if the last three terms
of (3.29) approach zero, that is

�4��i C 8�2�2
i C 4�2�i

NX
j D0

�j � 0

After simple manipulation the stability condition obtained is

0 < � <
1

2�max C PN
j D0 �j

<
1PN

j D0 �j

D 1

trŒR�
(3.30)

where the last and simpler expression is more widely used in practice because trŒR�

is quite simple to estimate since it is related to the Euclidean norm squared of the
input signal vector, whereas an estimate �max is much more difficult to obtain. It will
be shown in (3.45) that � controls the speed of convergence of the MSE.

The upper bound obtained for the value of � is important from the practical point
of view, because it gives us an indication of the maximum value of � that could
be used in order to achieve convergence of the coefficients. However, the reader
should be advised that the given upper bound is somewhat optimistic due to the
approximations and assumptions made. In most cases, the value of � should not be
chosen close to the upper bound.
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3.3.4 Behavior of the Error Signal

In this subsection, the mean value of the output error in the adaptive filter
is calculated, considering that the unknown system model has infinite impulse
response and there is measurement noise. The error signal, when an additional
measurement noise is accounted for, is given by

e.k/ D d 0.k/ � wT .k/x.k/ C n.k/ (3.31)

where d 0.k/ is the desired signal without measurement noise. For a given known
input vector x.k/, the expected value of the error signal is

EŒe.k/� D EŒd 0.k/� � EŒwT .k/x.k/� C EŒn.k/�

D EŒd 0.k/� � wT
o x.k/ C EŒn.k/� (3.32)

where wo is the optimal solution, i.e., the Wiener solution for the coefficient vector.
Note that the input signal vector was assumed known in the above equation, in
order to expose what can be expected if the adaptive filter converges to the optimal
solution. If d 0.k/ was generated through an infinite impulse response system, a
residue error remains in the subtraction of the first two terms due to undermodeling
(adaptive FIR filter with insufficient number of coefficients), i.e.,

EŒe.k/� D E

" 1X
iDN C1

h.i/x.k � i/

#
C EŒn.k/� (3.33)

where h.i/, for i D N C1; : : : ; 1, are the coefficients of the process that generated
the part of d 0.k/ not identified by the adaptive filter. If the input signal and n.k/

have zero mean, then EŒe.k/� D 0.

3.3.5 Minimum Mean-Square Error

In this subsection, the minimum MSE is calculated for undermodeling situations
and in the presence of additional noise. Let’s assume again the undermodeling case
where the adaptive filter has less coefficients than the unknown system in a system
identification setup. In this case we can write

d.k/ D hT x1.k/ C n.k/

D
h
wT

o h
T

i �
x.k/

x1.k/

�
C n.k/ (3.34)
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where wo is a vector containing the first N C 1 coefficients of the unknown system
impulse response, h contains the remaining elements of h. The output signal of an
adaptive filter with N C 1 coefficients is given by

y.k/ D wT .k/x.k/

In this setup the MSE has the following expression

� D E
n
d 2.k/ � 2wT

o x.k/wT .k/x.k/ � 2h
T

x1.k/wT .k/x.k/

�2ŒwT .k/x.k/�n.k/ C ŒwT .k/x.k/�2
o

D E

�
d 2.k/ � 2ŒwT .k/ 0T1�

�
x.k/

x1.k/

�
ŒwT

o h
T

�

�
x.k/

x1.k/

�

�2ŒwT .k/x.k/�n.k/ C ŒwT .k/x.k/�2
�

D EŒd 2.k/� � 2ŒwT .k/ 0T1�R1
�

wo

h

�
C wT .k/Rw.k/ (3.35)

where

R1 D E

��
x.k/

x1.k/

�
ŒxT .k/ xT

1.k/�

�

and 01 is an infinite length vector whose elements are zeros. By calculating the
derivative of � with respect to the coefficients of the adaptive filter, it follows that
(see derivations around (2.91) and (2.148))

Owo D R�1trunc fp1gN C1 D R�1trunc

�
R1

�
wo

h

��
N C1

D R�1truncfR1hgN C1 (3.36)

where truncfagN C1 represents a vector generated by retaining the first N C 1

elements of a. It should be noticed that the results of (3.35) and (3.36) are algorithm
independent.

The minimum mean-square error can be obtained from (3.35), when assuming
the input signal is a white noise uncorrelated with the additional noise signal, that is

�min D EŒe2.k/�min D
1X

iDN C1

h2.i/EŒx2.k � i/� C EŒn2.k/�

D
1X

iDN C1

h2.i/�2
x C �2

n (3.37)

This minimum error is achieved when it is assumed that the adaptive-filter mul-
tiplier coefficients are frozen at their optimum values, refer to (2.148) for similar
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discussion. In case the adaptive filter has sufficient order to model the process
that generated d.k/, the minimum MSE that can be achieved is equal to the
variance of the additional noise, given by �2

n . The reader should note that the
effect of undermodeling discussed in this subsection generates an excess MSE with
respect to �2

n .

3.3.6 Excess Mean-Square Error and Misadjustment

The result of the previous subsection assumes that the adaptive-filter coefficients
converge to their optimal values, but in practice this is not so. Although the
coefficient vector on average converges to wo, the instantaneous deviation �w.k/ D
w.k/ � wo, caused by the noisy gradient estimates, generates an excess MSE. The
excess MSE can be quantified as described in the present subsection. The output
error at instant k is given by

e.k/ D d.k/ � wT
o x.k/ � �wT .k/x.k/

D eo.k/ � �wT .k/x.k/ (3.38)

then

e2.k/ D e2
o.k/ � 2eo.k/�wT .k/x.k/ C �wT .k/x.k/xT .k/�w.k/ (3.39)

The so-called independence theory assumes that the vectors x.k/, for all k, are
statistically independent, allowing a simple mathematical treatment for the LMS
algorithm. As mentioned before, this assumption is in general not true, especially in
the case where x.k/ consists of the elements of a delay line. However, even in this
case the use of the independence assumption is justified by the agreement between
the analytical and the experimental results. With the independence assumption,
�w.k/ can be considered independent of x.k/, since only previous input vectors are
involved in determining �w.k/. By using the assumption and applying the expected
value operator to (3.39), we have

�.k/ D EŒe2.k/�

D �min � 2EŒ�wT .k/�EŒeo.k/x.k/� C EŒ�wT .k/x.k/xT .k/�w.k/�

D �min � 2EŒ�wT .k/�EŒeo.k/x.k/� C E
˚
trŒ�wT .k/x.k/xT .k/�w.k/�

�
D �min � 2EŒ�wT .k/�EŒeo.k/x.k/� C E

˚
trŒx.k/xT .k/�w.k/�wT .k/�

�
(3.40)

where in the fourth equality we used the property trŒA � B� D trŒB � A�. The last term
of the above equation can be rewritten as

tr
˚
EŒx.k/xT .k/�EŒ�w.k/�wT .k/�

�
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Since R D EŒx.k/xT .k/� and by the orthogonality principle EŒeo.k/x.k/� D 0, the
above equation can be simplified as follows:

�.k/ D �min C EŒ�wT .k/R�w.k/� (3.41)

The excess in the MSE is given by

��.k/
4D �.k/ � �min D EŒ�wT .k/R�w.k/�

D EftrŒR�w.k/�wT .k/�g
D trfEŒR�w.k/�wT .k/�g (3.42)

By using the fact that QQT D I, the following relation results

��.k/ D tr
˚
EŒQQT RQQT �w.k/�wT .k/QQT �

�
D trfQ� covŒ�w0.k/�QT g (3.43)

Therefore,

��.k/ D trf� covŒ�w0.k/�g (3.44)

From (3.27), it is possible to show that

��.k/ D
NX

iD0

�i v
0
i .k/ D �T v0.k/ (3.45)

Since

v0
i .k C 1/ D .1 � 4��i C 8�2�2

i /v
0
i .k/ C 4�2�i

NX
j D0

�j v0
j .k/ C 4�2�2

n�i

(3.46)

and v0
i .k C1/ � v0

i .k/ for large k, we can apply a summation operation to the above
equation in order to obtain

NX
j D0

�j v0
j .k/ D ��2

n

PN
iD0 �i C 2�

PN
iD0 �2

i v0
i .k/

1 � �
PN

iD0 �i

� ��2
n

PN
iD0 �i

1 � �
PN

iD0 �i

D ��2
n trŒR�

1 � �trŒR�
(3.47)
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where the term 2�
PN

iD0 �2
i v0

i .k/ was considered very small as compared to the
remaining terms of the numerator. This assumption is not easily justifiable, but is
valid for small values of �.

The excess mean-square error can then be expressed as

�exc D lim
k!1 ��.k/ � ��2

n trŒR�

1 � �trŒR�
(3.48)

This equation, for very small �, can be approximated by

�exc � ��2
n trŒR� D �.N C 1/�2

n�2
x (3.49)

where �2
x is the input signal variance and �2

n is the additional-noise variance.
The misadjustment M , defined as the ratio between the �exc and the minimum

MSE, is a common parameter used to compare different adaptive signal processing
algorithms. For the LMS algorithm, the misadjustment is given by

M
4D �exc

�min
� �trŒR�

1 � �trŒR�
(3.50)

3.3.7 Transient Behavior

Before the LMS algorithm reaches the steady-state behavior, a number of iterations
are spent in the transient part. During this time, the adaptive-filter coefficients
and the output error change from their initial values to values close to that of the
corresponding optimal solution.

In the case of the adaptive-filter coefficients, the convergence in the mean will
follow .N C 1/ geometric decaying curves with ratios rwi D .1 � 2��i /. Each of
these curves can be approximated by an exponential envelope with time constant
�wi as follows (see (3.18)) [2]:

rwi D e
�1
�wi D 1 � 1

�wi

C 1

2Š�2
wi

C � � � (3.51)

where for each iteration, the decay in the exponential envelope is equal to the
decay in the original geometric curve. In general, rwi is slightly smaller than
one, especially for the slowly decreasing modes corresponding to small �i and �.
Therefore,

rwi D .1 � 2��i/ � 1 � 1

�wi

(3.52)

then

�wi D 1

2��i
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for i D 0; 1; : : : ; N . Note that in order to guarantee convergence of the tap
coefficients in the mean, � must be chosen in the range 0 < � < 1=�max

(see (3.19)).
According to (3.30), for the convergence of the MSE the range of values for

� is 0 < � < 1=trŒR�, and the corresponding time constant can be calculated
from matrix B in (3.27), by considering the terms in �2 small as compared to the
remaining terms in matrix B. In this case, the geometric decaying curves have ratios
given by rei D .1 � 4��i / that can be fitted to exponential envelopes with time
constants given by

�ei D 1

4��i

(3.53)

for i D 0; 1; : : : ; N . In the convergence of both the error and the coefficients, the
time required for the convergence depends on the ratio of eigenvalues of the input
signal correlation matrix.

Returning to the tap coefficients case, if � is chosen to be approximately 1=�max

the corresponding time constant for the coefficients is given by

�wi � �max

2�i

� �max

2�min
(3.54)

Since the mode with the highest time constant takes longer to reach convergence,
the rate of convergence is determined by the slowest mode given by �wmax D
�max=.2�min/. Suppose the convergence is considered achieved when the slowest
mode provides an attenuation of 100, i.e.,

e
�k

�wmax D 0:01

this requires the following number of iterations in order to reach convergence:

k � 4:6
�max

2�min

The above situation is quite optimistic because � was chosen to be high. As
mentioned before, in practice we should choose the value of � much smaller than
the upper bound. For an eigenvalue spread approximating one, according to (3.30)
let’s choose � smaller than 1=Œ.N C 3/�max].2 In this case, the LMS algorithm will
require at least

k � 4:6
.N C 3/�max

2�min
� 2:3.N C 3/

iterations to achieve convergence in the coefficients.

2This choice also guarantees the convergence of the MSE.
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The analytical results presented in this section are valid for stationary
environments. The LMS algorithm can also operate in the case of nonstationary
environments, as shown in the following section.

3.4 LMS Algorithm Behavior in Nonstationary
Environments

In practical situations, the environment in which the adaptive filter is embedded
may be nonstationary. In these cases, the input signal autocorrelation matrix and/or
the cross-correlation vector, denoted, respectively, by R.k/ and p.k/, are/is varying
with time. Therefore, the optimal solution for the coefficient vector is also a time-
varying vector given by wo.k/.

Since the optimal coefficient vector is not fixed, it is important to analyze if the
LMS algorithm will be able to track changes in wo.k/. It is also of interest to learn
how the tracking error in the coefficients given by EŒw.k/� � wo.k/ will affect the
output MSE. It will be shown later that the excess MSE caused by lag in the tracking
of wo.k/ can be separated from the excess MSE caused by the measurement noise,
and therefore, without loss of generality, in the following analysis the additional
noise will be considered zero.

The coefficient-vector updating in the LMS algorithm can be written in the
following form

w.k C 1/ D w.k/ C 2�x.k/e.k/

D w.k/ C 2�x.k/Œd.k/ � xT .k/w.k/� (3.55)

Since

d.k/ D xT .k/wo.k/ (3.56)

the coefficient updating can be expressed as follows:

w.k C 1/ D w.k/ C 2�x.k/ŒxT .k/wo.k/ � xT .k/w.k/� (3.57)

Now assume that an ensemble of a nonstationary adaptive identification process
has been built, where the input signal in each experiment is taken from the same
stochastic process. The input signal is considered stationary. This assumption results
in a fixed R matrix, and the nonstationarity is caused by the desired signal that
is generated by applying the input signal to a time-varying system. With these
assumptions, by using the expected value operation to the ensemble, with the
coefficient updating in each experiment given by (3.57), and additionally assuming
that w.k/ is independent of x.k/ yields

EŒw.k C 1/� D EŒw.k/� C 2�EŒx.k/xT .k/�wo.k/ � 2�EŒx.k/xT .k/�EŒw.k/�

D EŒw.k/� C 2�Rfwo.k/ � EŒw.k/�g (3.58)
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If the lag in the coefficient vector is defined by

lw.k/ D EŒw.k/� � wo.k/ (3.59)

(3.58) can be rewritten as

lw.k C 1/ D .I � 2�R/lw.k/ � wo.k C 1/ C wo.k/ (3.60)

In order to simplify our analysis, we can premultiply the above equation by QT ,
resulting in a decoupled set of equations given by

l0w.k C 1/ D .I � 2��/l0w.k/ � w0
o.k C 1/ C w0

o.k/ (3.61)

where the vectors with superscript are the original vectors projected onto the
transformed space. As can be noted, each element of the lag-error vector is
determined by the following relation

l 0
i .k C 1/ D .1 � 2��i/l

0
i .k/ � w0

oi .k C 1/ C w0
oi .k/ (3.62)

where l 0
i .k/ is the i th element of l0w.k/. By properly interpreting the above equation,

we can say that the lag is generated by applying the transformed instantaneous
optimal coefficient to a first-order discrete-time lag filter denoted as L

00

i .z/, i.e.,

L0
i .z/ D � z � 1

z � 1 C 2��i

W 0
oi .z/ D L

00

i .z/W 0
oi .z/ (3.63)

The discrete-time filter transient response converges with a time constant of the
exponential envelope given by

�i D 1

2��i

(3.64)

which is of course different for each individual tap. Therefore, the tracking ability of
the coefficients in the LMS algorithm is dependent on the eigenvalues of the input
signal correlation matrix.

The lag in the adaptive-filter coefficients leads to an excess mean-square error.
In order to calculate the excess MSE, suppose that each element of the optimal
coefficient vector is modeled as a first-order Markov process. This nonstationary
situation can be considered somewhat simplified as compared with some real
practical situations. However, it allows a manageable mathematical analysis while
retaining the essence of handling the more complicated cases. The first-order
Markov process is described by

wo.k/ D �wwo.k � 1/ C nw.k/ (3.65)
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Fig. 3.2 Lag model in
nonstationary environment

where nw.k/ is a vector whose elements are zero-mean white noise processes with
variance �2

w, and �w < 1. Note that .1 � 2��i / < �w < 1, for i D 0; 1; : : : ; N ,
since the optimal coefficients values must vary slower than the adaptive-filter
tracking speed, i.e., 1

2��i
< 1

1��w . This model may not represent an actual system

when �w ! 1, since the EŒwo.k/wT
o .k/� will have unbounded elements if, for

example, nw.k/ is not exactly zero mean. A more realistic model would include
a factor .1 � �w/

p
2 , for p � 1, multiplying nw.k/ in order to guarantee that

EŒwo.k/wT
o .k/� is bounded. In the following discussions, this case will not be

considered since the corresponding results can be easily derived (see Problem 14).
From (3.62) and (3.63), we can infer that the lag-error vector elements are

generated by applying a first-order discrete-time system to the elements of the
unknown system coefficient vector, both in the transformed space. On the other
hand, the coefficients of the unknown system are generated by applying each
element of the noise vector nw.k/ to a first-order all-pole filter, with the pole placed
at �w. For the unknown coefficient vector with the above model, the lag-error vector
elements can be generated by applying each element of the transformed noise vector
n0

w.k/ D QT nw.k/ to a discrete-time filter with transfer function

Hi .z/ D �.z � 1/z

.z � 1 C 2��i /.z � �w/
(3.66)

This transfer function consists of a cascade of the lag filter L
00

i .z/ with the all-pole
filter representing the first-order Markov process as illustrated in Fig. 3.2. Using the
inverse Z-transform, the variance of the elements of the vector l0w.k/ can then be
calculated by

EŒl
02
i .k/� D 1

2	|

I
Hi .z/Hi .z

�1/�2
wz�1 d z

D
�

1

.1 � �w � 2��i /.1 � �w C 2��i�w/

� � ���i

1 � ��i

C 1 � �w
1 C �w

�
�2

w

(3.67)

If �w is considered very close to 1, it is possible to simplify the above equation as

EŒl
02
i .k/� � �2

w
4��i .1 � ��i /

(3.68)

Any error in the coefficient vector of the adaptive filter as compared to the
optimal coefficient filter generates an excess MSE (see (3.41)). Since the lag is one
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source of error in the adaptive-filter coefficients, then the excess MSE due to lag is
given by

�lag D EŒlTw.k/Rlw.k/�

D E
˚
trŒRlw.k/lTw.k/�

�
D tr

˚
REŒlw.k/lTw.k/�

�
D tr

˚
�EŒl0w.k/l0Tw.k/�

�

D
NX

iD0

�i EŒl
02
i .k/�

� �2
w

4�

NX
iD0

1

1 � ��i

(3.69)

If � is very small, the MSE due to lag tends to infinity indicating that the
LMS algorithm, in this case, cannot track any change in the environment. On
the other hand, for � appropriately chosen the algorithm can track variations in
the environment leading to an excess MSE. This excess MSE depends on the
variance of the optimal coefficient disturbance and on the values of the input signal
autocorrelation matrix eigenvalues, as indicated in (3.69). In the case � is very small
and �w is not very close to 1, the approximation for (3.67) becomes

EŒl
02
i .k/� � �2

w
1 � �2

w
(3.70)

As a result the MSE due to lag is given by

�lag � .N C 1/�2
w

1 � �2
w

(3.71)

It should be noticed that �w closer to 1 than the modes of the adaptive filter is the
common operation region, therefore the result of (3.71) is not discussed further.

Now we analyze how the error due to lag interacts with the error generated by
the noisy calculation of the gradient in the LMS algorithm. The overall error in the
taps is given by

�w.k/ D w.k/ � wo.k/ D fw.k/ � EŒw.k/�g C fEŒw.k/� � wo.k/g (3.72)

where the first error in the above equation is due to the additional noise and the
second is the error due to lag. The overall excess MSE can then be expressed as

�total D EfŒw.k/ � wo.k/�T RŒw.k/ � wo.k/�g
� Ef.w.k/ � EŒw.k/�/T R.w.k/ � EŒw.k/�/g

CEf.EŒw.k/� � wo.k//T R.EŒw.k/� � wo.k//g (3.73)
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since 2Ef.w.k/ � EŒw.k/�/T R.EŒw.k/� � wo.k//g � 0, if we consider the fact
that wo.k/ is kept fixed in each experiment of the ensemble. As a consequence, an
estimate for the overall excess MSE can be obtained by adding the results of (3.48)
and (3.69), i.e.,

�total � ��2
n trŒR�

1 � �trŒR�
C �2

w
4�

NX
iD0

1

1 � ��i

(3.74)

If small � is employed, the above equation can be simplified as follows:

�total � ��2
n trŒR� C �2

w
4�

.N C 1/ (3.75)

Differentiating the above equation with respect to � and setting the result to zero
yields an optimum value for � given by

�opt D
s

.N C 1/�2
w

4�2
n trŒR�

(3.76)

The �opt is supposed to lead to the minimum excess MSE. However, the user should
bear in mind that the �opt can only be used if it satisfies stability conditions, and if its
value can be considered small enough to validate (3.75). Also this value is optimum
only when quantization effects are not taken into consideration, where for short-
wordlength implementation the best � should be chosen following the guidelines
given in Chap. 15. It should also be mentioned that the study of the misadjustment
due to nonstationarity of the environment is considerably more complicated when
the input signal and the desired signal are simultaneously nonstationary [8, 10–17].
Therefore, the analysis presented here is only valid if the assumptions made
are valid. However, the simplified analysis provides a good sample of the LMS
algorithm behavior in a nonstationary environment and gives a general indication of
what can be expected in more complicated situations.

The results of the analysis of the previous sections are obtained assuming that
the algorithm is implemented with infinite precision.3 However, the widespread use
of adaptive-filtering algorithms in real-time requires their implementation with short
wordlength, in order to meet the speed requirements. When implemented with short-
wordlength precision the LMS algorithm behavior can be very different from what
is expected in infinite precision. In particular, when the convergence factor � tends
to zero it is expected that the minimum mean-square error is reached in steady state;
however, due to quantization effects the MSE tends to increase significantly if � is
reduced below a certain value. In fact, the algorithm can stop updating some filter
coefficients if � is not chosen appropriately. Chapter 15, Sect. 15.1, presents detailed
analysis of the quantization effects in the LMS algorithm.

3This is an abuse of language, by infinite precision we mean very long wordlength.
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3.5 Complex LMS Algorithm

The LMS algorithm for complex signals, which often appear in communications
applications, is derived in Chap. 14. References [18, 19] provide details related to
complex differentiation required to generate algorithms working in environments
with complex signals.

By recalling that the LMS algorithm utilizes instantaneous estimates of matrix
R, denoted by OR.k/, and of vector p, denoted by Op.k/, given by

OR.k/ D x.k/xH .k/

Op.k/ D d �.k/x.k/ (3.77)

The actual objective function being minimized is the instantaneous square error
je.k/j2. According to the derivations in Sect. 14.3, the expression of the gradient
estimate is

Ogw�fe.k/e�.k/g D �e�.k/x.k/ (3.78)

By utilizing the output error definition for the complex environment case and the
instantaneous gradient expression, the updating equations for the complex LMS
algorithm are described by

�
e.k/ D d.k/ � wH .k/x.k/

w.k C 1/ D w.k/ C �ce�.k/x.k/
(3.79)

If the convergence factor �c D 2�, the expressions for the coefficient updating
equation of the complex and real cases have the same form and the analysis results
for the real case equally applies to the complex case.4

An iteration of the complex LMS requires N C 2 complex multiplications for
the filter coefficient updating and N C 1 complex multiplications for the error
generation. In a non-optimized form each complex multiplication requires four real
multiplications. The detailed description of the complex LMS algorithm is shown
in the table denoted as Algorithm 3.2. As for any adaptive-filtering algorithm, the
initialization is not necessarily performed as described in Algorithm 3.2, where the
coefficients of the adaptive filter are started with zeros.

4The missing factor 2 here originates from the term 1
2

in definition of the gradient that we opted to
use in order to be coherent with most literature, in actual implementation the factor 2 of the real
case is usually incorporated to the �.
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Algorithm 3.2 Complex LMS algorithm
Initialization
x.0/ D w.0/ D Œ0 0 : : : 0�T

Do for k � 0

e.k/ D d.k/ � wH .k/x.k/

w.k C 1/ D w.k/ C �ce
�.k/x.k/

3.6 Examples

In this section, a number of examples are presented in order to illustrate the use
of the LMS algorithm as well as to verify theoretical results presented in the
previous sections.

3.6.1 Analytical Examples

Some analytical tools presented so far are employed to characterize two interesting
types of adaptive-filtering problems. The problems are also solved with the LMS
algorithm.

Example 3.1. A Gaussian white noise with unit variance colored by a filter with
transfer function

Hin.z/ D 1

z � 0:5

is transmitted through a communication channel with model given by

Hc.z/ D 1

z C 0:8

and with the channel noise being Gaussian white noise with variance �2
n D 0:1.

Figure 3.3 illustrates the experimental environment. Note that x0.k/ is generated
by first applying Gaussian white noise with variance �2

in D 1 to a filter with transfer
function Hin.z/. The result is applied to a communication channel with transfer
function Hc.z/, and then Gaussian channel noise with variance �2

n D 0:1 is added.
On the other hand, d.k/ is generated by applying the same Gaussian noise with
variance �2

in D 1 to the filter with transfer function Hin.z/, with the result delayed
by L samples.
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Fig. 3.3 Channel equalization of Example 3.1

(a) Determine the best value for the delay L.
(b) Compute the Wiener solution.
(c) Choose an appropriate value for � and plot the convergence path for the LMS

algorithm on the MSE surface.
(d) Plot the learning curves of the MSE and the filter coefficients in a single run as

well as for the average of 25 runs.

Solution. (a) In order to determine L, we will examine the behavior of the cross-
correlation between the adaptive-filter input signal denoted by x0.k/ and the
reference signal d.k/.

The cross-correlation between d.k/ and x0.k/ is given by

p.i/ D EŒd.k/x0.k � i/�

D 1

2	|

I
Hin.z/z�Lzi Hin.z�1/Hc.z�1/�2

in

d z

z

D 1

2	|

I
1

z � 0:5
z�Lzi z

1 � 0:5z

z

1 C 0:8z
�2

in

d z

z

where the integration path is a counterclockwise closed contour corresponding
to the unit circle.

The contour integral of the above equation can be solved through the
Cauchy’s residue theorem. For L D 0 and L D 1, the general solution is

p.0/ D EŒd.k/x0.k/� D �2
in

�
0:5�LC1 1

0:75

1

1:4

�

where in order to obtain p.0/, we computed the residue at the pole located at
0:5. The values of the cross-correlation for L D 0 and L D 1 are, respectively

p.0/ D 0:47619

p.0/ D 0:95238
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For L D 2, we have that

p.0/ D �2
in

�
0:5�LC1 1

0:75

1

1:4
� 2

�
D �0:09522

where in this case we computed the residues at the poles located at 0:5 and at 0,
respectively. For L D 3, we have

p.0/ D �2
inŒ

0:5�LC1

1:05
� 3:4� D 0:4095

From the above analysis, we see that the strongest correlation between x0.k/

and d.k/ occurs for L D 1. For this delay, the equalization is more effective.
As a result, from the above calculations, we can obtain the elements of vector p
as follows:

p D
�

p.0/

p.1/

�
D

�
0:9524

0:4762

�

Note that p.1/ for L D 1 is equal to p.0/ for L D 0.
The elements of the correlation matrix of the adaptive-filter input signal are

calculated as follows:

r.i/ D EŒx0.k/x0.k � i/�

D 1

2	|

I
Hin.z/Hc.z/zi Hin.z�1/Hc.z�1/�2

in

d z

z
C �2

nı.i/

D 1

2	|

I
1

z � 0:5

1

z C 0:8
zi z

1 � 0:5z

z

1 C 0:8z
�2

in

d z

z
C �2

nı.i/

where again the integration path is a counterclockwise closed contour corre-
sponding to the unit circle, and ı.i/ is the unitary impulse. Solving the contour
integral equation, we obtain

r.0/ D EŒx02.k/�

D �2
in

�
1

1:3

0:5

0:75

1

1:4
C �1

1:3

�0:8

1:4

1

0:36

�
C �2

n D 1:6873

where in order to obtain r.0/, we computed the residues at the poles located at
0:5 and �0:8, respectively. Similarly, we have that

r.1/ D EŒx0.k/x0.k � 1/�

D �2
in

�
1

1:3

1

0:75

1

1:4
C �1

1:3

1

1:4

1

0:36

�
D �0:7937

where again we computed the residues at the poles located at 0:5 and �0:8,
respectively.
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Fig. 3.4 Convergence path on the MSE surface

The correlation matrix of the adaptive-filter input signal is given by

R D
�

1:6873 �0:7937

�0:7937 1:6873

�

(b) The coefficients corresponding to the Wiener solution are given by

wo D R�1p

D 0:45106

�
1:6873 0:7937

0:7937 1:6873

� �
0:9524

0:4762

�

D
�

0:8953

0:7034

�

(c) The LMS algorithm is applied to minimize the MSE using a convergence
factor � D 1=40trŒR�, where trŒR� D 3:3746. The value of � is 0:0074.
This small value of the convergence factor allows a smooth convergence path.
The convergence path of the algorithm on the MSE surface is depicted in
Fig. 3.4. As can be noted, the path followed by the LMS algorithm looks like
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a noisy steepest-descent path. It first approaches the main axis (eigenvector)
corresponding to the smaller eigenvalue, and then follows toward the minimum
in a direction increasingly aligned with this main axis.

(d) The learning curves of the MSE and the filter coefficients in a single run are
depicted in Fig. 3.5. The learning curves of the MSE and the filter coefficients,
obtained by averaging the results of 25 runs, are depicted in Fig. 3.6. As can be
noted, these curves are less noisy than in the single run case. ut

The adaptive-filtering problems discussed so far assumed that the signals taken
from the environment were stochastic signals. Also, by assuming these signals were
ergodic, we have shown that the adaptive filter is able to approach the Wiener
solution by replacing the ensemble average by time averages. In conclusion, we
can assume that the solution reached by the adaptive filter is based on time averages
of the cross-correlations of the environment signals.

For example, if the environment signals are periodic deterministic signals, the
optimal solution depends on the time average of the related cross-correlations
computed over one period of the signals. Note that in this case, the solution obtained
using an ensemble average would be time varying since we are dealing with a
nonstationary problem. The following examples illustrate this issue.

Example 3.2. Suppose in an adaptive-filtering environment, the input signal con-
sists of

x.k/ D cos.!0k/

The desired signal is given by

d.k/ D sin.!0k/

where !0 D 2	
M

. In this case M D 7.
Compute the optimal solution for a first-order adaptive filter.

Solution. In this example, the signals involved are deterministic and periodic. If the
adaptive-filter coefficients are fixed, the error is a periodic signal with period M . In
this case, the objective function that will be minimized by the adaptive filter is the
average value of the squared error defined by

NEŒe2.k/� D 1

M

M�1X
mD0

�
e2.k � m/

�

D NEŒd 2.k/� � 2wT Np C wT NRw (3.80)

where

NR D
� NEŒcos2.!0k/� NEŒcos.!0k/ cos.!0.k � 1//�

NEŒcos.!0k/ cos.!0.k � 1//� NEŒcos2.!0k/�

�
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and

Np D � NEŒsin.!0k/ cos.!0k/� NEŒsin.!0k/ cos.!0k � 1/�
�T

The expression for the optimal coefficient vector can be easily derived.

wo D NR�1 Np

Now the above results are applied to the problem described. The elements of the
vector Np are calculated as follows:

Np D 1

M

M�1X
mD0

�
d.k � m/x.k � m/

d.k � m/x.k � m � 1/

�

D 1

M

M�1X
mD0

�
sin.!0.k � m// cos.!0.k � m//

sin.!0.k � m// cos.!0.k � m � 1//

�

D 1

2

�
0

sin.!0/

�

D
�

0

0:3909

�

The elements of the correlation matrix of the adaptive-filter input signal are
calculated as follows:

Nr.i/ D NEŒx.k/x.k � i/�

D 1

M

M�1X
mD0

Œcos.!0.k � m// cos.!0.k � m � i//�

where

Nr.0/ D NEŒcos2.!0.k//� D 0:5

Nr.1/ D NEŒcos.!0.k// cos.!0.k � 1//� D 0:3117

The correlation matrix of the adaptive-filter input signal is given by

NR D
�

0:5 0:3117

0:3117 0:5

�
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The coefficients corresponding to the optimal solution are given by

Nwo D NR�1 Np D
� �0:7972

1:2788

�
ut

Example 3.3. (a) Assume the input and desired signals are deterministic and
periodic with period M . Study the LMS algorithm behavior.

(b) Choose an appropriate value for � in the previous example and plot the
convergence path for the LMS algorithm on the average error surface.

Solution. (a) It is convenient at this point to recall the coefficient updating of the
LMS algorithm

w.k C 1/ D w.k/ C 2�x.k/e.k/ D w.k/ C 2�x.k/
�
d.k/ � xT .k/w.k/

�
This equation can be rewritten as

w.k C 1/ D �
I � 2�x.k/xT .k/

�
w.k/ C 2�d.k/x.k/ (3.81)

The solution of (3.81), as a function of the initial values of the adaptive-filter
coefficients, is given by

w.k C 1/ D
kY

iD0

�
I � 2�x.i/xT .i/

�
w.0/

C
kX

iD0

8<
:

kY
j DiC1

�
I � 2�x.j /xT .j /

�
2�d.i/x.i/

9=
; (3.82)

where we define that
Qk

j DkC1Œ�� D 1 for the second product.
Assuming the value of the convergence factor � is small enough to guarantee

that the LMS algorithm will converge, the first term on the right-hand side of
the above equation will vanish as k ! 1. The resulting expression for the
coefficient vector is given by

w.k C 1/ D
kX

iD0

8<
:

kY
j DiC1

�
I � 2�x.j /xT .j /

�
2�d.i/x.i/

9=
;

The analysis of the above solution is not straightforward. Following an alterna-
tive path based on averaging the results in a period M , we can reach conclusive
results.
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Let us define the average value of the adaptive-filter parameters as follows:

w.k C 1/ D 1

M

M�1X
mD0

w.k C 1 � m/

Similar definition can be applied to the remaining parameters of the algorithm.
Considering that the signals are deterministic and periodic, we can apply the

average operation to (3.81). The resulting equation is

w.k C 1/ D 1

M

M�1X
mD0

�
I � 2�x.k � m/xT .k � m/

�
w.k � m/

C 1

M

M�1X
mD0

2�d.k � m/x.k � m/

D ŒI � 2�x.k/xT .k/� w.k/ C 2�d.k/x.k/ (3.83)

For large k and small �, it is expected that the parameters converge to
the neighborhood of the optimal solution. In this case, we can consider that
w.k C 1/ � w.k/ and that the following approximation is valid

x.k/xT .k/w.k/ � x.k/xT .k/ w.k/

since the parameters after convergence wander around the optimal solution.
Using these approximations in (3.83), the average values of the parameters in
the LMS algorithm for periodic signals are given by

w.k/ � x.k/xT .k/
�1

d.k/x.k/ D NR�1 Np

(b) The LMS algorithm is applied to minimize the squared error of the problem
described in Example 3.2 using a convergence factor � D 1=100trŒ NR�, where
trŒ NR� D 1. The value of � is 0:01. The convergence path of the algorithm on the
MSE surface is depicted in Fig. 3.7. As can be verified, the parameters generated
by the LMS algorithm approach the optimal solution. ut

Example 3.4. The leaky LMS algorithm has the following updating equation

w.k C 1/ D .1 � 2�
/w.k/ C 2�e.k/x.k/ (3.84)

where 0 < 
 � 1.
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Fig. 3.7 Convergence path on the MSE surface

(a) Compute the range of values of � such that the coefficients converge in average.
(b) What is the objective function this algorithm actually minimizes?
(c) What happens to the filter coefficients if the error and/or input signals become

zero?

Solution. (a) By utilizing the error expression we generate the coefficient updating
equation given by

w.k C 1/ D fI � 2�Œx.k/xT .k/ C 
I�gw.k/ C 2�d.k/x.k/

By applying the expectation operation it follows that

EŒw.k C 1/� D fI � 2�ŒR C 
I�gEŒw.k/� C 2�p

The inclusion of 
 is equivalent to add a white noise to the input signal
x.n/, such that a value of 
 is added to the eigenvalues of the input signal
autocorrelation matrix. As a result, the condition for the stability in the mean
for the coefficients is expressed as

0 < � <
1

�max C 
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The coefficients converge to a biased solution with respect to the Wiener
solution and are given by

EŒw.k/� D ŒR C 
I��1p

for k ! 1.
(b) Equation (3.84) can be rewritten in a form that helps us to recognize the gradient

expression.

w.k C 1/ D w.k/ C 2�.�
w.k/ C e.k/x.k//

D w.k/ � 2�.
w.k/ � d.k/x.k/ C x.k/xT .k/w.k// (3.85)

By inspection we observe that in this case the gradient is described by

gw.k/ D 2
w.k/ � 2e.k/x.k/ D 2
w.k/ � 2d.k/x.k/ C 2x.k/xT .k/w.k/

The corresponding objective function that is indeed minimized is given by

�.k/ D f
 jjw.k/jj2 C e2.k/g

(c) For zero input or zero error signal after some initial iterations, the dynamic
updating (3.84) has zero excitation. Since the eigenvalues of the transition
matrix fI � 2�Œx.k/xT .k/ C 
I�g are smaller than one, then the adaptive-filter
coefficients will tend to zero for large k. ut

3.6.2 System Identification Simulations

In this subsection, a system identification problem is described and solved by using
the LMS algorithm. In the following chapters the same problem will be solved using
other algorithms presented in the book. For the FIR adaptive filters the following
identification problem is posed:

Example 3.5. An adaptive-filtering algorithm is used to identify a system with
impulse response given below.

h D Œ0:1 0:3 0:0 � 0:2 � 0:4 � 0:7 � 0:4 � 0:2�T

Consider three cases for the input signal: colored noises with variance �2
x D 1 and

eigenvalue spread of their correlation matrix equal to 1.0, 20, and 80, respectively.
The measurement noise is Gaussian white noise uncorrelated with the input and
with variance �2

n D 10�4. The adaptive filter has eight coefficients.
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(a) Run the algorithm and comment on the convergence behavior in each case.
(b) Measure the misadjustment in each example and compare with the theoretical

results where appropriate.
(c) Considering that fixed-point arithmetic is used, run the algorithm for a set of

experiments and calculate the expected values for jj�w.k/Qjj2 and �.k/Q for
the following case:

Additional noise: white noise with variance �2
n D 0:0015

Coefficient wordlength: bc D 16 bits
Signal wordlength: bd D 16 bits
Input signal: Gaussian white noise with variance �2

x D 1:0

(d) Repeat the previous experiment for the following cases

bc D 12 bits, bd D 12 bits.
bc D 10 bits, bd D 10 bits.

(e) Suppose the unknown system is a time-varying system whose coefficients
are first-order Markov processes with �w D 0:99 and �2

w D 0:0015. The
initial time-varying-system multiplier coefficients are the ones above described.
The input signal is Gaussian white noise with variance �2

x D 1:0, and the
measurement noise is also Gaussian white noise independent of the input
signal and of the elements of nw.k/, with variance �2

n D 0:01. Simulate
the experiment described, measure the total excess MSE, and compare to the
calculated results.

Solution. (a) The colored input signal is generated by applying Gaussian white
noise, with variance �2

v , to a first-order filter with transfer function

H.z/ D z

z � a

As can be shown from (2.83), the input signal correlation matrix in this case
is given by

R D �2
v

1 � a2

2
6664

1 a � � � a7

a 1 � � � a6

:::
:::

: : :
:::

a7 a6 � � � 1

3
7775

The proper choice of the value of a, in order to obtain the desired
eigenvalue spread, is not a straightforward task. Some guidelines are now
discussed. For example, if the adaptive filter is of first order, the matrix R
is two by two with eigenvalues

�max D �2
v

1 � a2
.1 C a/
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and

�min D �2
v

1 � a2
.1 � a/

respectively. In this case, the choice of a is straightforward.
In general, it can be shown that

�max

�min
� jHmax.e|!/j2

jHmin.e|!/j2

For a very large order adaptive filter, the eigenvalue spread approaches

�max

�min
� jHmax.e|!/j2

jHmin.e|!/j2 D
�

1 C a

1 � a

� 2

where the details to reach this result can be found in page 124 of [20].
Using the above relations as guidelines, we reached the correct values

of a. These values are a D 0:6894 and a D 0:8702 for eigenvalue spreads
of 20 and 80, respectively.

Since the variance of the input signal should be unity, the variance of the
Gaussian white noise that produces x.k/ should be given by

�2
v D 1 � a2

For the LMS algorithm, we first calculate the upper bound for � .�max/

to guarantee the algorithm stability, and run the algorithm for �max, �max=5,
and �max=10.

In this example, the LMS algorithm does not converge for �D�max�0:1.
The convergence behavior for �max=5 and �max=10 is illustrated through the
learning curves depicted in Fig. 3.8, where in this case the eigenvalue spread
is 1. Each curve is obtained by averaging the results of 200 independent
runs. As can be noticed, the reduction of the convergence factor leads to
a reduction in the convergence speed. Also note that for � D 0:02 the
estimated MSE is plotted only for the first 400 iterations, enough to display
the convergence behavior. In all examples the tap coefficients are initialized
with zero. Fig. 3.9 illustrates the learning curves for the various eigenvalue
spreads, where in each case the convergence factor is �max=5. As expected
the convergence rate is reduced for a high eigenvalue spread.

(b) The misadjustment is measured and compared with the results obtained
from the following relation

M D �.N C 1/�2
x

1 � �.N C 1/�2
x



114 3 The Least-Mean-Square (LMS) Algorithm

–60

–50

–40

–30

–20

–10

0

10

20

0 100 200 300 400 500 600 700 800

E
st

im
at

ed
 M

S
E

  (
10

 lo
g(

M
S

E
))

Number of iterations, k

m=0.02
m=0.01

Fig. 3.8 Learning curves for the LMS algorithm with convergence factors �max=5 and �max=10

–60

–50

–40

–30

–20

–10

0

10

20

0 500 1000 1500 2000 2500 3000 3500

E
st

im
at

ed
 M

S
E

  (
10

 lo
g(

M
S

E
))

Number of iterations, k

08021

Fig. 3.9 Learning curves for the LMS algorithm for eigenvalue spreads: 1, 20, and 80



3.6 Examples 115

Table 3.1 Evaluation of the LMS algorithm

Misadjustment �emax �wmax Iterations

� �max
�min

Experiment Theory

0.020000 1 0.2027 0.1905 12.5 25 58
0.012800 20 0.1298 0.1141 102.5 205 473
0.010240 80 0.1045 0.0892 338.9 677.5 1,561
0.010000 1 0.0881 0.0870 25 50 116
0.006401 20 0.0581 0.0540 205 410 944
0.005119 80 0.0495 0.0427 677.5 1,355 3,121

Also, for the present problem we calculated the time constants �wi and
�ei , and the expected number of iterations to achieve convergence using the
relations

�wi � 1

2��i

�ei � 1

4��i

k � �emax ln.100/

Table 3.1 illustrates the obtained results. As can be noted the analytical
results agree with the experimental results, especially those related to the
misadjustment. The analytical results related to the convergence time are
optimistic as compared with the measured results. These discrepancies are
mainly due to the approximations in the analysis.

(c), (d) The LMS algorithm is implemented employing fixed-point arithmetic using
16, 12, and 10 bits for data and coefficient wordlengths. The chosen
value of � is 0:01. The learning curves for the MSE are depicted in
Fig. 3.10. Figure 3.11 depicts the evolution of jj�w.k/Qjj2 with the number
of iterations. The experimental results show that the algorithm still works
for such limited precision. In Table 3.2, we present a summary of the results
obtained from simulation experiments and a comparison with the results
predicted by the theory. The experimental results are obtained by averaging
the results of 200 independent runs. The relations employed to calculate
the theoretical results shown in Table 3.2 correspond to (15.26) and (15.32)
derived in Chap. 15. These relations are repeated here for convenience:

EŒjj�w.k/Qjj2� D �.�2
n C �2

e /.N C 1/

1 � �.N C 1/�2
x

C .N C 1/�2
w

4��2
x Œ1 � �.N C 1/�2

x �

�.k/Q D �2
e C �2

n

1 � �.N C 1/�2
x

C .N C 1/�2
w

4�Œ1 � �.N C 1/�2
x �
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Table 3.2 Results of the finite precision implementation of the LMS
algorithm

�.k/Q EŒjj�w.k/Qjj2�

No. of bits Experiment Theory Experiment Theory

16 1.629 10�3 1.630 10�3 1.316 10�4 1.304 10�4

12 1.632 10�3 1.631 10�3 1.309 10�4 1.315 10�4

10 1.663 10�3 1.648 10�3 1.465 10�4 1.477 10�4
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Fig. 3.12 The excess MSE of the LMS algorithm in nonstationary environment, � D 0:05

The results of Table 3.2 confirm that the finite-precision implementation
analysis presented is accurate.

(e) The performance of the LMS algorithm is also tested in the nonstationary
environment above described. The excess MSE is measured and depicted in
Fig. 3.12. For this example �opt is found to be greater than �max. The value
of � used in the example is 0:05. The excess MSE in steady state predicted
by the relation

�total � ��2
n trŒR�

1 � �trŒR�
C �2

w
4�

NX
iD0

1

1 � ��i

is 0:124, whereas the measured excess MSE in steady state is 0:118. Once
more the results obtained from the analysis are accurate. ut
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3.6.3 Channel Equalization Simulations

In this subsection an equalization example is described. This example will be used
as pattern for comparison of several algorithms presented in this book.

Example 3.6. Perform the equalization of a channel with the following impulse
response

h.k/ D 0:1 .0:5k/

for k D 0; 1; : : : 8. Use a known training signal that consists of independent binary
samples (�1,1). An additional Gaussian white noise with variance 10�2:5 is present
at the channel output.

(a) Find the impulse response of an equalizer with 50 coefficients.
(b) Convolve the equalizer impulse response at a given iteration after convergence,

with the channel impulse response and comment on the result.

Solution. (a) We apply the LMS algorithm to solve the equalization problem. We
use �max=5 for the value of the convergence factor. In order to obtain �max,
the values of �max D 0:04275 and �2

x D 0:01650 are measured and applied in
(3.30). The resulting value of � is 0:2197.

(b) The appropriate value of L is found to be round . 9C50
2

/ D 30. The impulse
response of the resulting equalizer is shown in Fig. 3.13. By convolving this
response with the channel impulse response, we obtain the result depicted in
Fig. 3.14 that clearly approximates an impulse. The measured MSE is 0:3492.

ut

3.6.4 Fast Adaptation Simulations

The exact evaluation of the learning curves of the squared error or coefficients of an
adaptive filter is a difficult task. In general the solution is to run repeated simulations
and average their results. For the LMS algorithm this ensemble averaging leads
to results which are close to those predicted by independence theory [4], if
the convergence factor is small. In fact, the independence theory is a first-order
approximation in � to the actual learning curves of �.k/ [4, 21].

However, for large � the results from the ensemble average can be quite
different from the theoretical prediction [22]. The following example explores this
observation.
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Fig. 3.15 Learning curves for the LMS algorithm with convergence factor � D 0:08, result of
ensemble averages with 10 and 100 independent simulations as well as the theoretical curve

Example 3.7. An adaptive-filtering algorithm is used to identify a system. Consider
three cases described below.

(a) The unknown system has length 10, the input signal is a stationary Gaussian
noise with variance �2

x D 1 and the measurement noise is Gaussian white noise
uncorrelated with the input and with variance �2

n D 10�4.
(b) The unknown system has length 2, the input signal is a stationary uniformly

distributed noise in the range �0:5 and 0.5, and there is no measurement noise.
(c) Study the behavior of the ensemble average as well as the mean square value

of the coefficient error of an LMS algorithm with a single coefficient, when the
input signal is a stationary uniformly distributed noise in the range �a and a,
and there is no measurement noise.

Solution. (a) Figure 3.15 depicts the theoretical learning curve for the squared
error obtained using the independence theory as well as the curves obtained by
averaging the results of 10 and 100 independent runs. The chosen convergence
factor is � D 0:08. As we can observe the simulation curves are not close to the
theoretical one, but they get closer as the number of independent runs increases.

(b) Figure 3.16 shows the exact theoretical learning curve for the squared error
obtained from [23] along with the curves obtained by averaging the results
of 100, 1,000 and 10,000 independent runs. The chosen convergence factor is
� D 4:00. As we can observe the theoretical learning curve diverges whereas
the simulation curves converge. A closer look at this problem is given in the
next item.
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(c) From (3.12), the evolution of the squared deviation in the tap coefficient is
given by

�w2.k C 1/ D �
1 � 2�x2.k/

�2
�w2.k/

where �w.0/ is fixed, and the additional noise is zero. Note that the evolu-
tion of �w2.k/ is governed by the random factor

�
1 � 2�x2.k/

�2
. With the

assumptions on the input signal these random factors form an independent, iden-
tically distributed random sequence. The above model can then be rewritten as

�w2.k C 1/ D
(

kY
iD0

�
1 � 2�x2.i/

�2

)
�w2.0/ (3.86)

The objective now is to study the differences between the expected value
of �w2.k C 1/ and its ensemble average. In the first case, by using the
independence of the random factors in (3.86) we have that

EŒ�w2.k C 1/� D
(

kY
iD0

E
�
.1 � 2�x2.i//2

�)
�w2.0/

D ˚
E

�
.1 � 2�x2.0//2

��kC1
�w2.0/ (3.87)
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Since the variance of the input signal is �2
x D a2

3
and its fourth-order moment is

given by a4

5
, the above equation can be rewritten as

EŒ�w2.k C 1/� D ˚
E

�
.1 � 2�x2.0//2

��kC1
�w2.0/

D
	

1 � 4�
a2

3
C 4�2 a4

5


kC1

�w2.0/ (3.88)

From the above equation we can observe that the rate of convergence of
EŒ�w2.k/� is equal to lnfE �

.1 � 2�x2.0//2
�g.

Let’s examine now how the ensemble average of �w2.k/ evolves, for large
k and �, by computing its logarithm as follows:

lnŒ�w2.k C 1/� D
kX

iD0

lnŒ.1 � 2�x2.i//2� C lnŒ�w2.0/� (3.89)

By assuming that lnŒ.1 � 2�x2.i//2� exists and by employing the law of large
numbers [13], we obtain

lnŒ�w2.k C 1/�

k C 1
D 1

k C 1

(
kX

iD0

lnŒ.1 � 2�x2.i//2� C lnŒ�w2.0/�

)
(3.90)

which converges asymptotically to

E
˚
ln

�
.1 � 2�x2.i//2

��

For large k, after some details found in [22], from the above relation it can be
concluded that

�w2.k C 1/ � C e.kC1/EflnŒ.1�2�x2.i//2�g (3.91)

where C is a positive number which is not a constant and will be different
for each run of the algorithm. In fact, C can have quite large values for some
particular runs. In conclusion, the ensemble average of �w2.k C 1/ decreases
or increases with a time constant close to EflnŒ.1 � 2�x2.i//2�g�1. Also it
converges to zero if and only if EflnŒ.1 � 2�x2.i//2�g < 0, leading to a
distinct convergence condition on 2�x2.i/ from that obtained by the mean-
square stability. In fact, there is a range of values of the convergence factor
in which the ensemble average converges but the mean-square value diverges,
explaining the convergence behavior in Fig. 3.16.

Figure 3.17 depicts the curves of lnfE �
.1 � 2�x2.0//2

�g (the logarithm of
the rate of convergence of mean-square coefficient error) and of EflnŒ.1 �
2�x2.i//2�g as a function of 2�x2.i/. For small values of 2�x2.i/ both curves
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Fig. 3.17 Parameters related to the rate of convergence, Case 1: EfŒlnŒ.1 � 2�x2.i//2�g, Case 2:
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are quite close, however for larger values they are somewhat different in par-
ticular at the minima of the curves which correspond to the fastest convergence
rate. In addition, as the curves become further apart the convergence is faster for
the ensemble average of the squared coefficient error than for the mean-square
coefficient error for large k. ut

3.6.5 The Linearly Constrained LMS Algorithm

In the narrowband beamformer application discussed in Sect. 2.5, our objective was
to minimize the array output power subjecting the linear combiner coefficients to
a set of constraints. Now, let us derive an adaptive version of the LCMV filter by
first rewriting the linearly constrained objective function of (2.107) for the case of
multiple constraints as

�c D E
�
wT x.k/xT .k/w

� C �T
�
CT w � f

�
D wT Rw C �T

�
CT w � f

�
(3.92)

where R is the input signal autocorrelation matrix, C is the constraint matrix, and �

is the vector of Lagrange multipliers.



124 3 The Least-Mean-Square (LMS) Algorithm

The constrained LMS-based algorithm [24] can be derived by searching for the
coefficient vector w.k C1/ that satisfies the set of constraints and represents a small
update with respect to w.k/ in the direction of the negative of the gradient (see
(2.108)), i.e.,

w.k C 1/ D w.k/ � �gwf�c.k/g
D w.k/ � �Œ2R.k/w.k/ C C�.k/� (3.93)

where R.k/ is some estimate of the input signal autocorrelation matrix at instant k,
C is again the constraint matrix, and �.k/ is the .N C 1/ � 1 vector of Lagrange
multipliers.

In the particular case of the constrained LMS algorithm, matrix R.k/ is chosen as
an instantaneous rank-one estimate given by x.k/xT .k/. In this case, we can utilize
the method of Lagrange multipliers to solve the constrained minimization problem
defined by

�c.k/ D wT .k/x.k/xT .k/w.k/ C �T .k/
�
CT w.k/ � f

�
D wT .k/x.k/xT .k/w.k/ C �

wT .k/C � fT
�
�.k/ (3.94)

The gradient of �c.k/ with respect to w.k/ is given by

gwf�c.k/g D 2x.k/xT .k/w.k/ C C�.k/ (3.95)

The constrained LMS updating algorithm related to (3.93) becomes

w.k C 1/ D w.k/ � 2�x.k/xT .k/w.k/ � �C�.k/

D w.k/ � 2�y.k/x.k/ � �C�.k/ (3.96)

If we apply the constraint relation CT w.k C 1/ D f to the above expression, it
follows that

CT w.k C 1/ D f

D CT w.k/ � 2�CT x.k/xT .k/w.k/ � �CT C�.k/

D CT w.k/ � 2�y.k/CT x.k/ � �CT C�.k/ (3.97)

By solving the above equation for ��.k/ we get

��.k/ D �
CT C

��1
CT Œw.k/ � 2�y.k/x.k/� � �

CT C
��1

f (3.98)

If we substitute (3.98) in the updating (3.96), we obtain

w.k C 1/ D PŒw.k/ � 2�y.k/x.k/� C fc (3.99)
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where fc D C.CT C/�1f and P D I � C.CT C/�1CT . Notice that the updated
coefficient vector given in (3.99) is a projection onto the hyperplane defined by
CT w D 0 of an unconstrained LMS solution plus a vector fc that brings the
projected solution back to the constraint hyperplane.

If there is a reference signal d.k/, the updating equation is given by

w.k C 1/ D Pw.k/ C 2�e.k/Px.k/ C fc (3.100)

In the case of the constrained normalized LMS algorithm (see Sect. 4.4), the
solution satisfies wT .k C 1/x.k/ D d.k/ in addition to CT w.k C 1/ D f [25].
Alternative adaptation algorithms may be derived such that the solution at each
iteration also satisfies a set of linear constraints [26].

For environments with complex signals and complex constraints, the updating
equation is given by

w.k C 1/ D Pw.k/ C �ce
�.k/Px.k/ C fc (3.101)

where CH w.k C 1/ D f, fc D C.CH C/�1f and P D I � C.CH C/�1CH .
An efficient implementation for constrained adaptive filters was proposed in [27],

which consists of applying a transformation to the input signal vector based on
Householder transformation. The method can be regarded as an alternative imple-
mentation of the generalized sidelobe canceller structure, but with the advantages
of always utilizing orthogonal/unitary matrices and rendering low computational
complexity.

Example 3.8. An array of antennas with four elements, with inter-element spacing
of 0:15 m, receives signals from two different sources arriving at 90ı and 30ı of
angles with respect to the axis where the antennas are placed. The desired signal
impinges on the antenna at 90ı. The signal of interest is a sinusoid of frequency
20 MHz and the interferer signal is a sinusoid of frequency 70 MHz. The sampling
frequency is 2 GHz.

Use the linearly constrained LMS algorithm in order to adapt the array coeffi-
cients.

Solution. The adaptive-filter coefficients are initialized with w.0/ D C.CT C/�1f.
The value of � used is 0.1. Figure 3.18 illustrates the learning curve for the output
signal. Figure 3.19 illustrates details of the output signal in the early iterations where
we can observe the presence of both sinusoid signals. In Fig. 3.20, the details of
the output signal after convergence shows that mainly the desired sinusoid signal
is present. The array output power response after convergence, as a function of the
angle of arrival, is depicted in Fig. 3.21. From this figure, we observe the attenuation
imposed by the array on signals arriving at 30ı of angle, where the interference
signal impinges. ut
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3.7 Concluding Remarks

In this chapter, we studied the LMS adaptive algorithm that is certainly the most
popular among the adaptive-filtering algorithms. The attractiveness of the LMS
algorithm is due to its simplicity and accessible analysis under idealized conditions.
As demonstrated in the present chapter, the noisy estimate of the gradient that
is used in the LMS algorithm is the main source of loss in performance for
stationary environments. Further discussions on the convergence behavior and on
the optimality of the LMS algorithm have been reported in the open literature, see
for example [28–34].

For nonstationary environments we showed how the algorithm behaves assuming
the optimal parameter can be modeled as a first-order Markov process. The analysis
allowed us to determine the conditions for adequate tracking and acceptable excess
MSE. Further analysis can be found in [35].

The quantization effects on the behavior of the LMS algorithm are presented in
Chap. 15. The algorithm is fairly robust against quantization errors, and this is for
sure one of the reasons for its choice in a number of practical applications [36, 37].

A number of simulation examples with the LMS algorithm was presented
in this chapter. The simulations included examples in system identification and
equalization. Also a number of theoretical results derived in the present chapter were
verified, such as the excess MSE in stationary and nonstationary environments, the
finite-precision analysis, etc.

3.8 Problems

1. The LMS algorithm is used to predict the signal x.k/ D cos.	k=3/ using a
second-order FIR filter with the first tap fixed at 1, by minimizing the mean
squared value of y.k/. Calculate an appropriate �, the output signal, and the
filter coefficients for the first ten iterations. Start with wT .0/ D Œ1 0 0�.

2. The signal

x.k/ D �0:85x.k � 1/ C n.k/

is applied to a first-order predictor, where n.k/ is Gaussian white noise with
variance �2

n D 0:3.

(a) Compute the Wiener solution.
(b) Choose an appropriate value for � and plot the convergence path for the

LMS algorithm on the MSE error surface.
(c) Plot the learning curves for the MSE and the filter coefficients in a single

run as well as for the average of 25 runs.

3. Assuming it is desired to minimize the objective function EŒe4.k/� utilizing a
stochastic gradient type of algorithm such as the LMS. The resulting algorithm
is called least-mean fourth algorithm [38]. Derive this algorithm.
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4. The data-reusing LMS algorithm has the following updating equation

Oel .k/ D d.k/ � OwT
l .k/x.k/

OwlC1.k/ D Owl .k/ C 2� Oel .k/x.k/ (3.102)

for l D 0; 1; : : : ; L � 1, and

w.k C 1/ D OwL.k/ D OwL�1.k/ C 2� OeL�1.k/x.k/ (3.103)

where Ow0.k/ D w.k/.

(a) Compute the range of values of � such that the coefficients converge in
average.

(b) What is the objective function this algorithm actually minimizes?
(c) Compare its convergence speed and computational complexity with the

LMS algorithm.

5. The momentum LMS algorithm has the following updating equation

w.k C 1/ D w.k/ C 2�e.k/x.k/ C 
Œw.k/ � w.k � 1/� (3.104)

for j
 j < 1.

(a) Compute the range of values of � such that the coefficients converge in
average.

(b) What is the objective function this algorithm actually minimizes?
(c) Show that this algorithm can have faster convergence and higher misadjust-

ment than the LMS algorithm.

6. An LMS algorithm can be updated in a block form. For a block of length 2 the
updating equations have the following form.

�
e.k/

e.k � 1/

�
D

�
d.k/

d.k � 1/

�
�

�
xT .k/w.k/

xT .k � 1/w.k � 1/

�

D
�

d.k/

d.k � 1/

�
�

�
xT .k/

xT .k � 1/

�
w.k � 1/

�
�

0 2�xT .k/x.k � 1/

0 0

� �
e.k/

e.k � 1/

�

This relation, in a more compact way, is equivalent to
"

e.k/

e.k � 1/

#
D

"
1 �2�xT .k/x.k � 1/

0 1

#
�1 ( "

d.k/

d.k � 1/

#
�

"
xT .k/

xT .k � 1/

#
w.k � 1/

)

(3.105)

Derive an expression for a block of length L C 1.
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7. Use the LMS algorithm to identify a system with the transfer function given
below. The input signal is a uniformly distributed white noise with variance
�2

x D 1, and the measurement noise is Gaussian white noise uncorrelated with
the input with variance �2

n D 10�3. The adaptive filter has 12 coefficients.

H.z/ D 1 � z�12

1 � z�1

(a) Calculate the upper bound for � .�max/ to guarantee the algorithm stability.
(b) Run the algorithm for �max=2, �max=10, and �max=50. Comment on the

convergence behavior in each case.
(c) Measure the misadjustment in each example and compare with the results

obtained by (3.50).
(d) Plot the obtained FIR filter frequency response at any iteration after

convergence is achieved and compare with the unknown system.

8. Repeat the previous problem using an adaptive filter with eight coefficients and
interpret the results.

9. Repeat problem 2 in case the input signal is a uniformly distributed white noise
with variance �2

nx
D 0:5 filtered by an all-pole filter given by

H.z/ D z

z � 0:9

10. Perform the equalization of a channel with the following impulse response

h.k/ D ku.k/ � .2k � 9/u.k � 5/ C .k � 9/u.k � 10/

Using a known training signal that consists of a binary (�1,1) random signal,
generated by applying a white noise to a hard limiter (the output is 1 for positive
input samples and �1 for negative). An additional Gaussian white noise with
variance 10�2 is present at the channel output.

(a) Apply the LMS with an appropriate � and find the impulse response of an
equalizer with 100 coefficients.

(b) Convolve one of the equalizer’s impulse response after convergence with
the channel impulse response and comment on the result.

11. Under the assumption that the elements of x.k/ are jointly Gaussian, show that
(3.24) is valid.

12. In a system identification problem the input signal is generated by an autore-
gressive process given by

x.k/ D �1:2x.k � 1/ � 0:81x.k � 2/ C nx.k/
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where nx.k/ is zero-mean Gaussian white noise with variance such that �2
x D 1.

The unknown system is described by

H.z/ D 1 C 0:9z�1 C 0:1z�2 C 0:2z�3

The adaptive filter is also a third-order FIR filter, and the additional noise is
zero-mean Gaussian white noise with variance �2

n D 0:04. Using the LMS
algorithm:

(a) Choose an appropriate �, run an ensemble of 20 experiments, and plot the
average learning curve.

(b) Plot the curve obtained using (3.41), (3.45), and (3.46), and compare the
results.

(c) Compare the measured and theoretical values for the misadjustment.
(d) Calculate the time constants �wi and �ei , and the expected number of

iterations to achieve convergence.

13. In a nonstationary environment the optimal coefficient vector is described by

wo.k/ D ��1wo.k � 1/ � �2wo.k � 2/ C nw.k/

where nw.k/ is a vector whose elements are zero-mean Gaussian white
processes with variance �2

w. Calculate the elements of the lag-error vector.
14. Repeat the previous problem for

wo.k/ D �wwo.k � 1/ C .1 � �w/nw.k/

15. The LMS algorithm is applied to identify a 7th-order time-varying unknown
system whose coefficients are first-order Markov processes with �w D 0:999

and �2
w D 0:001. The initial time-varying-system multiplier coefficients are

wT
o D Œ0:03490 � 0:011 � 0:06864 0:22391 0:55686 0:35798

� 0:0239 � 0:07594�

The input signal is Gaussian white noise with variance �2
x D 0:7, and the

measurement noise is also Gaussian white noise independent of the input signal
and of the elements of nw.k/, with variance �2

n D 0:01.

(a) For � D 0:05, compute the excess MSE.
(b) Repeat (a) for � D 0:01.
(c) Compute �opt and comment if it can be used.

16. Simulate the experiment described in Problem 15, measure the excess MSE,
and compare to the calculated results.

17. Reduce the value of �w to 0.97 in Problem 15, simulate, and comment on the
results.
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18. Suppose a 15th-order FIR digital filter with multiplier coefficients given below
is identified through an adaptive FIR filter of the same order using the LMS
algorithm.

(a) Considering that fixed-point arithmetic is used, compute the expected value
for jj�w.k/Qjj2 and �.k/Q, and the probable number of iterations before
the algorithm stops updating, for the following case:

Additional noise: white noise with variance �2
n D 0:0015

Coefficient wordlength: bc D 16 bits
Signal wordlength: bd D 16 bits
Input signal: Gaussian white noise with variance �2

x D 0:7

� D 0:01

Hint: Utilize the formulas for the time constant in the LMS algorithm and
(15.28).

(b) Simulate the experiment and plot the learning curves for the finite- and
infinite-precision implementations.

(c) Compare the simulated results with those obtained through the closed form
formulas.

wT
o D Œ0:0219360 0:0015786 � 0:0602449 � 0:0118907 0:1375379

0:0574545 � 0:3216703 � 0:5287203 � 0:2957797 0:0002043

0:290670 � 0:0353349 � 0:068210 0:0026067 0:0010333 � 0:0143593�

19. Repeat the above problem for the following cases

(a) �2
n D 0:01, bc D 12 bits, bd D 12 bits, �2

x D 0:7, � D 2:0 10�3.
(b) �2

n D 0:1, bc D 10 bits, bd D 10 bits, �2
x D 0:8, � D 1:0 10�4.

(c) �2
n D 0:05, bc D 14 bits, bd D 14 bits, �2

x D 0:8, � D 2:0 10�3.

20. Find the optimal value of � .�opt/ that minimizes the excess MSE given in
(15.32), and compute for � D �opt the expected value of jj�w.k/Qjj2 and
�.k/Q for the examples described in Problem 19.

21. Repeat Problem 18 for the case where the input signal is a first-order Markov
process with �x D 0:95.

22. A digital channel model can be represented by the following impulse response:

Œ�0:001 � 0:002 0:002 0:2 0:6 0:76 0:9 0:78 0:67 0:58

0:45 0:3 0:2 0:12 0:06 0 � 0:2 � 1 � 2 � 1 0 0:1�

The channel is corrupted by Gaussian noise with power spectrum given by

jS.e|!/j2 D �0j!j3=2

where �0 D 10�1:5. The training signal consists of independent binary samples
(�1,1).
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Design an FIR equalizer for this problem and use the LMS algorithm. Use a
filter of order 50 and plot the learning curve.

23. For the previous problem, using the maximum of 51 adaptive filter coefficients,
implement a DFE equalizer and compare the results with those obtained with
the FIR filter. Again use the LMS algorithm.

24. Implement with fixed-point arithmetic the DFE equalizer of Problem 23, using
the LMS algorithm with 12 bits of wordlength for data and coefficients.

25. Use the complex LMS algorithm to equalize a channel with the transfer function
given below. The input signal is a four Quadrature Amplitude Modulation
(QAM)5 signal representing a randomly generated bit stream with the signal-

to-noise ratio
�2

Qx

�2
n

D 20 at the receiver end, that is, Qx.k/ is the received signal
without taking into consideration the additional channel noise. The adaptive
filter has ten coefficients.

H.z/ D .0:34 � 0:27|/ C .0:87 C 0:43|/z�1 C .0:34 � 0:21|/z�2

(a) Calculate the upper bound for � .�max/ to guarantee the algorithm stability.
(b) Run the algorithm for �max=2, �max=10, and �max=50. Comment on the

convergence behavior in each case.
(c) Plot the real versus imaginary parts of the received signal before and after

equalization.
(d) Increase the number of coefficients to 20 and repeat the experiment in (c).

26. In a system identification problem the input signal is generated from a four
QAM of the form

x.k/ D xre.k/ C |xim.k/

where xre.k/ and xim.k/ assume values ˙1 randomly generated. The unknown
system is described by

H.z/ D 0:32C0:21| C .�0:3C0:7|/z�1 C .0:5�0:8|/z�2 C .0:2C0:5|/z�3

The adaptive filter is also a third-order complex FIR filter, and the additional
noise is zero-mean Gaussian white noise with variance �2

n D 0:4. Using the
complex LMS algorithm, choose an appropriate �, run an ensemble of 20
experiments, and plot the average learning curve.

5The M -ary QAM constellation points are represented in by si D Qai C | Qbi , with Qai D
˙ Qd; ˙3 Qd; : : : ; ˙.

p
M � 1/ Qd , and Qbi D ˙ Qd ; ˙3 Qd; : : : ; ˙.

p
M � 1/ Qd . The parameter Qd is

represents half of the distance between two points in the constellation.



134 3 The Least-Mean-Square (LMS) Algorithm

References

1. B. Widrow, M.E. Hoff, Adaptive switching circuits. WESCOM Conv. Rec. 4, 96–140 (1960)
2. B. Widrow, J.M. McCool, M.G. Larimore, C.R. Johnson Jr., Stationary and nonstationary

learning characteristics of the LMS adaptive filters. Proc. IEEE 64, 1151–1162 (1976)
3. G. Ungerboeck, Theory on the speed of convergence in adaptive equalizers for digital

communication. IBM J. Res. Dev. 16, 546–555 (1972)
4. J.E. Mazo, On the independence theory of equalizer convergence. Bell Syst. Tech. J. 58,

963–993 (1979)
5. B. Widrow, S.D. Stearns, Adaptive Signal Processing (Prentice Hall, Englewood Cliffs, 1985)
6. S. Haykin, Adaptive Filter Theory, 4th edn. (Prentice Hall, Englewood Cliffs, 2002)
7. M.G. Bellanger, Adaptive Digital Filters and Signal Analysis, 2nd edn. (Marcel Dekker, Inc.,

New York, 2001)
8. D.C. Farden, Racking properties of adaptive signal processing algorithms. IEEE Trans.

Acoust. Speech Signal Proc. ASSP-29, 439–446 (1981)
9. B. Widrow, E. Walach, On the statistical efficiency of the LMS algorithm with nonstationary

inputs. IEEE Trans. Inform. Theor. IT-30, 211–221 (1984)
10. O. Macchi, Optimization of adaptive identification for time varying filters. IEEE Trans.

Automat. Contr. AC-31, 283–287 (1986)
11. A. Benveniste, Design of adaptive algorithms for the tracking of time varying systems. Int.

J. Adapt. Contr. Signal Process. 1, 3–29 (1987)
12. W.A. Gardner, Nonstationary learning characteristics of the LMS algorithm. IEEE Trans. Circ.

Syst. CAS-34, 1199–1207 (1987)
13. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd edn. (McGraw Hill,

New York, 1991)
14. F.J. Gantmacher, The Theory of Matrices, vol. 2 (Chelsea Publishing Company, New York,

1964)
15. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (John Hopkins University Press,

Baltimore, 1996)
16. V. Solo, The limiting behavior of LMS. IEEE Trans. Acoust. Speech Signal Process. 37,

1909–1922 (1989)
17. N.J. Bershad, O.M. Macchi, Adaptive recovery of a chirped sinusoid in noise, Part 2:

Performance of the LMS algorithm. IEEE Trans. Signal Process. 39, 595–602 (1991)
18. D.H. Brandwood, A complex gradient operator and its application in adaptive array theory. IEE

Proc. Parts F and G 130, 11–16 (1983)
19. A. Hjørungnes, D. Gesbert, Complex-valued matrix differentiation: Techniques and key results.

IEEE Trans. Signal Process. 55, 2740–2746 (2007)
20. D.G. Manolakis, V.K. Ingle, S.M. Kogon, Statistical and Adaptive Signal Processing (McGraw

Hill, New York, 2000)
21. O. Macchi, E. Eweda, Second-order convergence analysis of stochastic adaptive linear filter.

IEEE Trans. Automat. Contr. AC-28, 76–85 (1983)
22. V.H. Nascimento, A.H. Sayed, On the learning mechanism of adaptive filters. IEEE Trans.

Signal Process. 48, 1609–1625 (2000)
23. S. Florian, A. Feuer, Performance analysis of the LMS algorithm with a tapped delay line

(two-dimensional case). IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 1542–1549
(1986)

24. O.L. Frost III, An algorithm for linearly constrained adaptive array processing. Proc. IEEE 60,
926–935 (1972)

25. J.A. Apolinário Jr., S. Werner, T.I. Laakso, P.S.R. Diniz, Constrained normalized adaptive
filtering for CDMA mobile communications, in Proceedings of 1998 EUSIPCO-European
Signal Processing Conference, Rhodes, Greece, Sept 1998, pp. 2053–2056

26. J.A. Apolinário Jr., M.L.R. de Campos, C.P. Bernal O, The constrained conjugate-gradient
algorithm. IEEE Signal Process. Lett. 7, 351–354 (2000)



References 135

27. M.L.R. de Campos, S. Werner, J.A. Apolinário Jr., Constrained adaptation algorithms
employing Householder transformation. IEEE Trans. Signal Process. 50, 2187–2195 (2002)

28. A. Feuer, E. Weinstein, Convergence analysis of LMS filters with uncorrelated Gaussian data.
IEEE Trans. Acoust. Speech Signal Process. ASSP-33, 222–230 (1985)

29. D.T. Slock, On the convergence behavior of the LMS and normalized LMS algorithms. IEEE
Trans. Signal Process. 40, 2811–2825 (1993)

30. W.A. Sethares, D.A. Lawrence, C.R. Johnson Jr., R.R. Bitmead, Parameter drift in LMS
adaptive filters. IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 868–878 (1986)

31. S.C. Douglas, Exact expectation analysis of the LMS adaptive filter. IEEE Trans. Signal
Process. 43, 2863–2871 (1995)

32. H.J. Butterweck, Iterative analysis of the state-space weight fluctuations in LMS-type adaptive
filters. IEEE Trans. Signal Process. 47, 2558–2561 (1999)

33. B. Hassibi, A.H. Sayed, T. Kailath, H 1 optimality of the LMS Algorithm. IEEE Trans. Signal
Process. 44, 267–280 (1996)

34. O.J. Tobias, J.C.M. Bermudez, N.J. Bershad, Mean weight behavior of the filtered-X LMS
algorithm. IEEE Trans. Signal Process. 48, 1061–1075 (2000)

35. V. Solo, The error variance of LMS with time varying weights. IEEE Trans. Signal Process.
40, 803–813 (1992)

36. S.U. Qureshi, Adaptive equalization. Proc. IEEE, 73, 1349–1387 (1985)
37. M.L. Honig, Echo cancellation of voiceband data signals using recursive least squares and

stochastic gradient algorithms. IEEE Trans. Comm. COM-33, 65–73 (1985)
38. V.H. Nascimento, J.C.M. Bermudez, Probability of divergence for the least-mean fourth

algorithm. IEEE Trans. Signal Proces. 54, 1376–1385 (2006)


	Chapter3 The Least-Mean-Square (LMS) Algorithm
	3.1 Introduction
	3.2 The LMS Algorithm
	3.3 Some Properties of the LMS Algorithm
	3.3.1 Gradient Behavior
	3.3.2 Convergence Behavior of the Coefficient Vector
	3.3.3 Coefficient-Error-Vector Covariance Matrix
	3.3.4 Behavior of the Error Signal
	3.3.5 Minimum Mean-Square Error
	3.3.6 Excess Mean-Square Error and Misadjustment
	3.3.7 Transient Behavior

	3.4 LMS Algorithm Behavior in Nonstationary Environments
	3.5 Complex LMS Algorithm
	3.6 Examples
	3.6.1 Analytical Examples
	3.6.2 System Identification Simulations
	3.6.3 Channel Equalization Simulations
	3.6.4 Fast Adaptation Simulations
	3.6.5 The Linearly Constrained LMS Algorithm

	3.7 Concluding Remarks
	3.8 Problems
	References


