
Chapter 2
Fundamentals of Adaptive Filtering

2.1 Introduction

This chapter includes a brief review of deterministic and random signal
representations. Due to the extent of those subjects, our review is limited to the
concepts that are directly relevant to adaptive filtering. The properties of the
correlation matrix of the input signal vector are investigated in some detail, since
they play a key role in the statistical analysis of the adaptive-filtering algorithms.

The Wiener solution that represents the minimum mean-square error (MSE)
solution of discrete-time filters realized through a linear combiner is also introduced.
This solution depends on the input signal correlation matrix as well as on the
cross-correlation between the elements of the input signal vector and the reference
signal. The values of these correlations form the parameters of the MSE surface,
which is a quadratic function of the adaptive-filter coefficients. The linearly
constrained Wiener filter is also presented, a technique commonly used in antenna
array processing applications. The transformation of the constrained minimization
problem into an unconstrained one is also discussed. Motivated by the importance
of the properties of the MSE surface, we analyze them using some results related to
the input signal correlation matrix.

In practice the parameters that determine the MSE surface shape are not
available. What is left is to directly or indirectly estimate these parameters using the
available data and to develop adaptive algorithms that use these estimates to search
the MSE surface, such that the adaptive-filter coefficients converge to the Wiener
solution in some sense. The starting point to obtain an estimation procedure is to
investigate the convenience of using the classical searching methods of optimization
theory [1–3] to adaptive filtering. The Newton and steepest-descent algorithms are
investigated as possible searching methods for adaptive filtering. Although both
methods are not directly applicable to practical adaptive filtering, smart reflections
inspired on them led to practical algorithms such as the least-mean-square (LMS)
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14 2 Fundamentals of Adaptive Filtering

[4, 5] and Newton-based algorithms. The Newton and steepest-descent algorithms
are introduced in this chapter, whereas the LMS algorithm is treated in the next
chapter.

Also, in the present chapter, the main applications of adaptive filters are revisited
and discussed in greater detail.

2.2 Signal Representation

In this section, we briefly review some concepts related to deterministic and random
discrete-time signals. Only specific results essential to the understanding of adaptive
filtering are reviewed. For further details on signals and digital signal processing we
refer to [6–13].

2.2.1 Deterministic Signals

A deterministic discrete-time signal is characterized by a defined mathematical
function of the time index k,1 with k D 0;˙1;˙2;˙3; : : :. An example of a
deterministic signal (or sequence) is

x.k/ D e�˛ k cos.!k/C u.k/ (2.1)

where u.k/ is the unit step sequence.
The response of a linear time-invariant filter to an input x.k/ is given by the

convolution summation, as follows [7]:

y.k/ D x.k/ � h.k/ D
1X

nD�1
x.n/h.k � n/

D
1X

nD�1
h.n/x.k � n/ D h.k/ � x.k/ (2.2)

where h.k/ is the impulse response of the filter.2

The Z-transform of a given sequence x.k/ is defined as

Zfx.k/g D X.z/ D
1X

kD�1
x.k/z�k (2.3)

1The index k can also denote space in some applications.
2An alternative and more accurate notation for the convolution summation would be .x � h/.k/
instead of x.k/ � h.k/, since in the latter the index k appears twice whereas the resulting
convolution is simply a function of k. We will keep the latter notation since it is more widely used.
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for regions in the Z-plane such that this summation converges. If the Z-transform
is defined for a given region of the Z-plane, in other words the above summation
converges in that region, the convolution operation can be replaced by a product of
the Z-transforms as follows [7]:

Y.z/ D H.z/ X.z/ (2.4)

where Y.z/, X.z/, and H.z/ are the Z-transforms of y.k/, x.k/, and h.k/,
respectively. Considering only waveforms that start at an instant k � 0 and have
finite power, their Z-transforms will always be defined outside the unit circle.

For finite-energy waveforms, it is convenient to use the discrete-time Fourier
transform defined as

Ffx.k/g D X.e|!/ D
1X

kD�1
x.k/e�|!k (2.5)

Although the discrete-time Fourier transform does not exist for a signal with infinite
energy, if the signal has finite power, a generalized discrete-time Fourier transform
exists and is largely used for deterministic signals [14].

2.2.2 Random Signals

A random variable X is a function that assigns a number to every outcome, denoted
by %, of a given experiment. A stochastic process is a rule to describe the time
evolution of the random variable depending on %, therefore it is a function of two
variables X.k; %/. The set of all experimental outcomes, i.e., the ensemble, is the
domain of %. We denote x.k/ as a sample of the given process with % fixed, where
in this case if k is also fixed, x.k/ is a number. When any statistical operator is
applied to x.k/ it is implied that x.k/ is a random variable, k is fixed, and % is
variable. In this book, x.k/ represents a random signal.

Random signals do not have a precise description of their waveforms. What is
possible is to characterize them via measured statistics or through a probabilistic
model. For random signals, the first- and second-order statistics are most of the
time sufficient for characterization of the stochastic process. The first- and second-
order statistics are also convenient for measurements. In addition, the effect on these
statistics caused by linear filtering can be easily accounted for as shown below.

Let’s consider for the time being that the random signals are real. We start
to introduce some tools to deal with random signals by defining the distribution
function of a random variable as

Px.k/.y/
4D probability of x.k/ being smaller or equal to y
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or

Px.k/.y/ D
Z y

�1
px.k/.z/d z (2.6)

The derivative of the distribution function is the probability density function (pdf)

px.k/.y/ D dPx.k/.y/

dy
(2.7)

The expected value, or mean value, of the process is defined by

mx.k/ D EŒx.k/� (2.8)

The definition of the expected value is expressed as

EŒx.k/� D
Z 1

�1
y px.k/.y/dy (2.9)

where px.k/.y/ is the pdf of x.k/ at the point y.
The autocorrelation function of the process x.k/ is defined by

rx.k; l/ D EŒx.k/x.l/� D
Z 1

�1

Z 1

�1
yzpx.k/;x.l/.y; z/dyd z (2.10)

where px.k/;x.l/.y; z/ is the joint probability density of the random variables x.k/
and x.l/ defined as

px.k/;x.l/.y; z/ D @2Px.k/;x.l/.y; z/

@y@z
(2.11)

where
Px.k/;x.l/.y; z/

4D probability of fx.k/ � y and x.l/ � zg
The autocovariance function is defined as

�2x .k; l/ D EfŒx.k/ �mx.k/�Œx.l/ �mx.l/�g D rx.k; l/ �mx.k/mx.l/ (2.12)

where the second equality follows from the definitions of mean value and autocor-
relation. For k D l , �2x .k; l/ D �2x .k/ which is the variance of x.k/.

The most important specific example of probability density function is the
Gaussian density function, also known as normal density function [15, 16]. The
Gaussian pdf is defined by

px.k/.y/ D 1p
2��2x .k/

e
� .y�mx.k//

2

2�2x .k/ (2.13)

wheremx.k/ and �2x .k/ are the mean and variance of x.k/, respectively.
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One justification for the importance of the Gaussian distribution is the central
limit theorem. Given a random variable x composed by the sum of n independent
random variables xi as follows:

x D
nX

iD1
xi (2.14)

the central limit theorem states that under certain general conditions, the probability
density function of x approaches a Gaussian density function for large n. The mean
and variance of x are given, respectively, by

mx D
nX

iD1
mxi (2.15)

�2x D
nX

iD1
�2xi (2.16)

Considering that the values of the mean and variance of x can grow, define

x
0 D x �mx

�x
(2.17)

In this case, for n ! 1 it follows that

px0 .y/ D 1p
2�

e� y2

2 (2.18)

In a number of situations we require the calculation of conditional distributions,
where the probability of a certain event to occur is calculated assuming that another
event B has occurred. In this case, we define

Px.k/.yjB/ D P.fx.k/ � yg \ B/

P.B/

4D probability of x.k/ � y assumingB has occurred (2.19)

This joint event consists of all outcomes % 2 B such that x.k/ D x.k; %/ � y.3 The
definition of the conditional mean is given by

mxjB.k/ D EŒx.k/jB� D
Z 1

�1
ypx.k/.yjB/dy (2.20)

where px.k/.yjB/ is the pdf of x.k/ conditioned on B.

3Or equivalently, such that X.k; %/ � y.
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The conditional variance is defined as

�2xjB.k/ D EfŒx.k/ �mxjB.k/�2jBg D
Z 1

�1
Œy �mxjB.k/�2px.k/.yjB/dy (2.21)

There are processes for which the mean and autocorrelation functions are shift
(or time) invariant, i.e.,

mx.k � i/ D mx.k/ D EŒx.k/� D mx (2.22)

rx.k; i/ D EŒx.k � j /x.i � j /� D rx.k � i/ D rx.l/ (2.23)

and as a consequence

�2x.l/ D rx.l/ �m2
x (2.24)

These processes are said to be wide-sense stationary (WSS). If the nth-order
statistics of a process is shift invariant, the process is said to be nth-order stationary.
Also if the process is nth-order stationary for any value of n, the process is stationary
in strict sense.

Two processes are considered jointly WSS if and only if any linear combination
of them is also WSS. This is equivalent to state that

y.k/ D k1 x1.k/C k2 x2.k/ (2.25)

must be WSS, for any constants k1 and k2, if x1.k/ and x2.k/ are jointly WSS.
This property implies that both x1.k/ and x2.k/ have shift-invariant means and
autocorrelations, and that their cross-correlation is also shift invariant.

For complex signals where x.k/ D xr.k/ C |xi .k/, y D yr C |yi , and z D
zr C |zi , we have the following definition of the expected value

EŒx.k/� D
Z 1

�1

Z 1

�1
ypxr.k/;xi .k/.yr ; yi /dyrdyi (2.26)

where pxr.k/;xi .k/.yr ; yi / is the joint probability density function (pdf) of xr.k/ and
xi .k/.

The autocorrelation function of the complex random signal x.k/ is defined by

rx.k; l/ D EŒx.k/x�.l/�

D
Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1
yz�pxr .k/;xi .k/;xr .l/;xi .l/.yr ; yi ; zr ; zi /dyrdyid zrd zi

(2.27)

where � denotes complex conjugate, since we assume for now that we are dealing
with complex signals, and pxr.k/;xi .k/;xr .l/;xi .l/.yr ; yi ; zr ; zi / is the joint probability
density function of the random variables x.k/ and x.l/.
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For complex signals the autocovariance function is defined as

�2x .k; l/ D EfŒx.k/ �mx.k/�Œx.l/ �mx.l/�
�g D rx.k; l/ �mx.k/m

�
x.l/ (2.28)

2.2.2.1 Autoregressive Moving Average Process

The process resulting from the output of a system described by a general linear
difference equation given by

y.k/ D
MX

jD0
bj x.k � j /C

NX

iD1
aiy.k � i/ (2.29)

where x.k/ is a white noise, is called autoregressive moving average (ARMA)
process. The coefficients ai and bj are the parameters of the ARMA process.
The output signal y.k/ is also said to be a colored noise since the autocorrelation
function of y.k/ is nonzero for a lag different from zero, i.e., r.l/ ¤ 0 for some
l ¤ 0.

For the special case where bj D 0 for j D 1; 2; : : : ;M , the resulting process
is called autoregressive (AR) process. The terminology means that the process
depends on the present value of the input signal and on a linear combination of
past samples of the process. This indicates the presence of a feedback of the output
signal.

For the special case where ai D 0 for i D 1; 2; : : : ; N , the process is identified
as a moving average (MA) process. This terminology indicates that the process
depends on a linear combination of the present and past samples of the input signal.
In summary, an ARMA process can be generated by applying a white noise to the
input of a digital filter with poles and zeros, whereas for the AR and MA cases the
digital filters are all-pole and all-zero filters, respectively.

2.2.2.2 Markov Process

A stochastic process is called a Markov process if its past has no influence in the
future when the present is specified [14,15]. In other words, the present behavior of
the process depends only on the most recent past, i.e., all behavior previous to the
most recent past is not required. A first-order AR process is a first-order Markov
process, whereas an N th-order AR process is considered an N th-order Markov
process. Take as an example the sequence

y.k/ D ay.k � 1/C n.k/ (2.30)

where n.k/ is a white-noise process. The process represented by y.k/ is determined
by y.k � 1/ and n.k/, and no information before the instant k � 1 is required. We
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conclude that y.k/ represents a Markov process. In the previous example, if a D 1

and y.�1/ D 0 the signal y.k/, for k � 0, is a sum of white noise samples, usually
called random walk sequence.

Formally, an mth-order Markov process satisfies the following condition: for all
k � 0, and for a fixedm, it follows that

Px.k/ .yjx.k � 1/; x.k � 2/; : : : ; x.0//

D Px.k/ .yjx.k � 1/; x.k � 2/; : : : ; x.k �m// (2.31)

2.2.2.3 Wold Decomposition

Another important result related to any WSS process x.k/ is the Wold decomposi-
tion, which states that x.k/ can be decomposed as

x.k/ D xr.k/C xp.k/ (2.32)

where xr .k/ is a regular process that is equivalent to the response of a stable,
linear, time-invariant, and causal filter to a white noise [14], and xp.k/ is a
perfectly predictable (deterministic or singular) process. Also, xp.k/ and xr.k/
are orthogonal processes, i.e., EŒxr.k/xp.k/� D 0. The key factor here is that the
regular process can be modeled through a stable autoregressive model [17] with
a stable and causal inverse. The importance of Wold decomposition lies on the
observation that a WSS process can in part be represented by an AR process of
adequate order, with the remaining part consisting of a perfectly predictable process.
Obviously, the perfectly predictable process part of x.k/ also admits an AR model
with zero excitation.

2.2.2.4 Power Spectral Density

Stochastic signals that are WSS are persistent and therefore are not finite-energy
signals. On the other hand, they have finite power such that the generalized discrete-
time Fourier transform can be applied to them. When the generalized discrete-time
Fourier transform is applied to a WSS process it leads to a random function of the
frequency [14]. On the other hand, the autocorrelation functions of most practical
stationary processes have discrete-time Fourier transform. Therefore, the discrete-
time Fourier transform of the autocorrelation function of a stationary random
process can be very useful in many situations. This transform, called power spectral
density, is defined as

Rx.e|!/ D
1X

lD�1
rx.l/e�|!l D F Œrx.l/� (2.33)
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where rx.l/ is the autocorrelation of the process represented by x.k/. The inverse
discrete-time Fourier transform allows us to recover rx.l/ from Rx.e|!/, through
the relation

rx.l/ D 1

2�

Z �

��
Rx.e

|!/e|!l d! D F�1ŒRx.e|!/� (2.34)

It should be mentioned that Rx.e|!/ is a deterministic function of ! and can be
interpreted as the power density of the random process at a given frequency in the
ensemble,4 i.e., considering the average outcome of all possible realizations of the
process. In particular, the mean squared value of the process represented by x.k/ is
given by

rx.0/ D 1

2�

Z �

��
Rx.e|!/d! (2.35)

If the random signal representing any single realization of a stationary process is
applied as input to a linear and time-invariant filter, with impulse response h.k/, the
following equalities are valid and can be easily verified:

y.k/ D
1X

nD�1
x.n/h.k � n/ D x.k/ � h.k/ (2.36)

ry.l/ D rx.l/ � rh.l/ (2.37)

Ry.e|!/ D Rx.e|!/jH.e|!/j2 (2.38)

ryx.l/ D rx.l/ � h.l/ D EŒx�.k/y.k C l/� (2.39)

Ryx.e|!/ D Rx.e|!/H.e|!/ (2.40)

where rh.l/ D h.l/ � h.�l/, Ry.e|!/ is the power spectral density of the output
signal, ryx.k/ is the cross-correlation of x.k/ and y.k/, and Ryx.e|!/ is the
corresponding cross-power spectral density.

The main feature of the spectral density function is to allow a simple analysis of
the correlation behavior of WSS random signals processed with linear time-invariant
systems. As an illustration, suppose a white noise is applied as input to a lowpass
filter with impulse response h.k/ and sharp cutoff at a given frequency !l . The
autocorrelation function of the output signal y.k/will not be a single impulse, it will
be h.k/ � h.�k/. Therefore, the signal y.k/ will look like a band-limited random
signal, in this case, a slow-varying noise. Some properties of the functionRx.e|!/ of
a discrete-time and stationary stochastic process are worth mentioning. The power
spectrum density is a periodic function of !, with period 2� , as can be verified
from its definition. Also, since for a stationary and complex random process we

4The average signal power at a given sufficiently small frequency range, �!, around a center
frequency !0 is approximately given by �!

2�
Rx.e|!0 /.
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have rx.�l/ D r�
x .l/, Rx.e

|!/ is real. Despite the usefulness of the power spectrum
density function in dealing with WSS processes, it will not be widely used in this
book since usually the filters considered here are time varying. However, it should
be noted its important role in areas such as spectrum estimation [18, 19].

If the Z-transforms of the autocorrelation and cross-correlation functions exist,
we can generalize the definition of power spectral density. In particular, the
definition of (2.33) corresponds to the following relation

ZŒrx.k/� D Rx.z/ D
1X

kD�1
rx.k/z

�k (2.41)

If the random signal representing any single realization of a stationary process is
applied as input to a linear and time-invariant filter with impulse response h.k/, the
following equalities are valid:

Ry.z/ D Rx.z/H.z/H.z
�1/ (2.42)

and
Ryx.z/ D Rx.z/H.z/ (2.43)

where H.z/ D ZŒh.l/�. If we wish to calculate the cross-correlation of y.k/ and
x.k/, namely ryx.0/, we can use the inverse Z-transform formula as follows:

EŒy.k/x�.k/� D 1

2�|

I
Ryx.z/

d z

z

D 1

2�|

I
H.z/Rx.z/

d z

z
(2.44)

where the integration path is a counterclockwise closed contour in the region
of convergence of Ryx.z/. The contour integral above equation is usually solved
through the Cauchy’s residue theorem [8].

2.2.3 Ergodicity

In the probabilistic approach, the statistical parameters of the real data are obtained
through ensemble averages (or expected values). The estimation of any parameter of
the stochastic process can be obtained by averaging a large number of realizations of
the given process, at each instant of time. However, in many applications only a few
or even a single sample of the process is available. In these situations, we need to
find out in which cases the statistical parameters of the process can be estimated by
using time average of a single sample (or ensemble member) of the process. This is
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obviously not possible if the desired parameter is time varying. The equivalence
between the ensemble average and time average is called ergodicity [14, 15].

The time average of a given stationary process represented by x.k/ is calcu-
lated by

OmxN D 1

2N C 1

NX

kD�N
x.k/ (2.45)

If

�2OmxN D lim
N!1Efj OmxN �mxj2g D 0

the process is said to be mean-ergodic in the mean-square sense. Therefore, the
mean-ergodic process has time average that approximates the ensemble average as
N ! 1. Obviously, OmxN is an unbiased estimate of mx since

EŒ OmxN � D 1

2N C 1

NX

kD�N
EŒx.k/� D mx (2.46)

Therefore, the process will be considered ergodic if the variance of OmxN tends to
zero (�2OmxN ! 0) when N ! 1. The variance �2OmxN can be expressed after some

manipulations as

�2OmxN D 1

2N C 1

2NX

lD�2N
�2x .k C l; k/

�
1 � jl j

2N C 1

�
(2.47)

where �2x .kCl; k/ is the autocovariance of the stochastic process x.k/. The variance
of OmxN tends to zero if and only if

lim
N!1

1

N

NX

lD0
�2x .k C l; k/ ! 0

The above condition is necessary and sufficient to guarantee that the process is
mean-ergodic.

The ergodicity concept can be extended to higher order statistics. In particular,
for second-order statistics we can define the process

xl.k/ D x.k C l/x�.k/ (2.48)

where the mean of this process corresponds to the autocorrelation of x.k/, i.e., rx.l/.
Mean-ergodicity of xl .k/ implies mean-square ergodicity of the autocorrelation of
x.k/.
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The time average of xl.k/ is given by

Omxl;N D 1

2N C 1

NX

kD�N
xl.k/ (2.49)

that is an unbiased estimate of rx.l/. If the variance of Omxl;N tends to zero as
N tends to infinity, the process x.k/ is said to be mean-square ergodic of the
autocorrelation, i.e.,

lim
N!1Efj Omxl;N � rx.l/j2g D 0 (2.50)

The above condition is satisfied if and only if

lim
N!1

1

N

NX

iD0
Efx.k C l/x�.k/x.k C l C i/x�.k C i/g � r2x.l/ D 0 (2.51)

where it is assumed that x.n/ has stationary fourth-order moments. The concept of
ergodicity can be extended to nonstationary processes [14], however, that is beyond
the scope of this book.

2.3 The Correlation Matrix

Usually, adaptive filters utilize the available input signals at instant k in their
updating equations. These inputs are the elements of the input signal vector
denoted by

x.k/ D Œx0.k/ x1.k/ : : : xN .k/�
T

The correlation matrix is defined as R D EŒx.k/xH.k/�, where xH.k/ is the
Hermitian transposition of x.k/, that means transposition followed by complex
conjugation or vice versa. As will be noted, the characteristics of the correlation
matrix play a key role in the understanding of properties of most adaptive-filtering
algorithms. As a consequence, it is important to examine the main properties of the
matrix R. Some properties of the correlation matrix come from the statistical nature
of the adaptive-filtering problem, whereas other properties derive from the linear
algebra theory.
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For a given input vector, the correlation matrix is given by

R D

2

6664

EŒjx0.k/j2� EŒx0.k/x
�
1 .k/� � � � EŒx0.k/x�

N .k/�

EŒx1.k/x
�
0 .k/� EŒjx1.k/j2� � � � EŒx1.k/x�

N .k/�
:::

:::
: : :

:::

EŒxN .k/x
�
0 .k/� EŒxN .k/x

�
1 .k/� � � � EŒjxN .k/j2�

3

7775

D EŒx.k/xH.k/� (2.52)

The main properties of the R matrix are listed below:

1. The matrix R is positive semidefinite.

Proof. Given an arbitrary complex weight vector w, we can form a signal
given by

y.k/ D wHx.k/

The magnitude squared of y.k/ is

y.k/y�.k/ D jy.k/j2 D wHx.k/xH.k/w � 0

The mean-square (MS) value of y.k/ is then given by

MSŒy.k/� D EŒjy.k/j2� D wHEŒx.k/xH.k/�w D wHRw � 0

Therefore, the matrix R is positive semidefinite. ut
Usually, the matrix R is positive definite, unless the signals that compose the
input vector are linearly dependent. Linear-dependent signals are rarely found in
practice.

2. The matrix R is Hermitian, i.e.,

R D RH (2.53)

Proof.

RH D EfŒx.k/xH.k/�H g D EŒx.k/xH.k/� D R ut

3. A matrix is Toeplitz if the elements of the main diagonal and of any secondary
diagonal are equal. When the input signal vector is composed of delayed versions
of the same signal (i.e., xi .k/ D x0.k � i/, for i D 1; 2; : : : ; N ) taken from a
WSS process, matrix R is Toeplitz.
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Proof. For the delayed signal input vector, with x.k/ WSS, matrix R has the
following form

R D

2
6664

rx.0/ rx.1/ � � � rx.N /

rx.�1/ rx.0/ � � � rx.N � 1/
:::

:::
: : :

:::

rx.�N/ rx.�N C 1/ � � � rx.0/

3
7775 (2.54)

By examining the right-hand side of the above equation, we can easily conclude
that R is Toeplitz. ut

Note that r�
x .i/ D rx.�i/, what also follows from the fact that the matrix R is

Hermitian.
If matrix R given by (2.54) is nonsingular for a givenN , the input signal is said to

be persistently exciting of order N C 1. This means that the power spectral density
Rx.e|!/ is different from zero at least at N C 1 points in the interval 0 < ! �
2� . It also means that a nontrivial N th-order FIR filter (with at least one nonzero
coefficient) cannot filter x.k/ to zero. Note that a nontrivial filter, with x.k/ as input,
would require at least N C 1 zeros in order to generate an output with all samples
equal to zero. The absence of persistence of excitation implies the misbehavior of
some adaptive algorithms [20, 21]. The definition of persistence of excitation is not
unique, and it is algorithm dependent (see the book by Johnson [20] for further
details).

From now on in this section, we discuss some properties of the correlation matrix
related to its eigenvalues and eigenvectors. A number � is an eigenvalue of the
matrix R, with a corresponding eigenvector q, if and only if

Rq D �q (2.55)

or equivalently
det.R � �I/ D 0 (2.56)

where I is the (N C 1) by (N C 1) identity matrix. Equation (2.56) is called
characteristic equation of R and has (N C1) solutions for �. We denote the (N C1)
eigenvalues of R by �0; �1; : : : ; �N . Note also that for every value of �, the vector
q D 0 satisfies (2.55); however, we consider only those particular values of � that
are linked to a nonzero eigenvector q.

Some important properties related to the eigenvalues and eigenvectors of R,
which will be useful in the following chapters, are listed below.

1. The eigenvalues of Rm are �mi , for i D 0; 1; 2; : : : ; N .

Proof. By premultiplying (2.55) by Rm�1, we obtain

Rm�1Rqi D Rm�1�iqi D �iRm�2Rqi

D �iRm�2�iqi D �2iR
m�3Rqi

D � � � D �mi qi (2.57)
ut
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2. Suppose R has N C 1 linearly independent eigenvectors qi ; then if we form a
matrix Q with columns consisting of the qi ’s, it follows that

Q�1RQ D

2
66666664

�0 0 � � � 0
0 �1

:::
::: 0 � � � :::
:::
::: 0

0 0 � � � �N

3
77777775

D � (2.58)

Proof.

RQ D RŒq0 q1 � � � qN � D Œ�0q0 �1q1 � � ��NqN �

D Q

2

66666664

�0 0 � � � 0
0 �1

:::
::: 0 � � � :::
:::
::: 0

0 0 � � � �N

3

77777775

D Q�

Therefore, since Q is invertible because the qi ’s are linearly independent, we can
show that

Q�1RQ D � ut

3. The nonzero eigenvectors q0, q1, : : : qN that correspond to different eigenvalues
are linearly independent.

Proof. If we form a linear combination of the eigenvectors such that

a0q0 C a1q1 C � � � C aNqN D 0 (2.59)

By multiplying the above equation by R we have

a0Rq0 C a1Rq1 C � � � C aNRqN D a0�0q0 C a1�1q1 C � � � C aN�NqN D 0

(2.60)

Now by multiplying (2.59) by �N and subtracting the result from (2.60), we
obtain

a0.�0 � �N /q0 C a1.�1 � �N /q1 C � � � C aN�1.�N�1 � �N /qN�1 D 0

By repeating the above steps, i.e., multiplying the above equation by R in one
instance and by �N�1 on the other instance, and subtracting the results, it yields
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a0.�0 � �N /.�0 � �N�1/q0 C a1.�1 � �N /.�1 � �N�1/q1
C � � � C aN�2.�N�2 � �N�1/qN�2 D 0

By repeating the same above steps several times, we end up with

a0.�0 � �N /.�0 � �N�1/ � � � .�0 � �1/q0 D 0

Since we assumed �0 ¤ �1, �0 ¤ �2, : : : �0 ¤ �N , and q0 was assumed
nonzero, then a0 D 0.

The same line of thought can be used to show that a0 D a1 D a2 D � � � D
aN D 0 is the only solution for (2.59). Therefore, the eigenvectors corresponding
to different eigenvalues are linearly independent. ut
Not all matrices are diagonalizable. A matrix of order (N C 1) is diagonalizable
if it possesses (N C1) linearly independent eigenvectors. A matrix with repeated
eigenvalues can be diagonalized or not, depending on the linear dependency of
the eigenvectors. A nondiagonalizable matrix is called defective [22].

4. Since the correlation matrix R is Hermitian, i.e., RH D R, its eigenvalues are
real. These eigenvalues are equal to or greater than zero given that R is positive
semidefinite.

Proof. First note that given an arbitrary complex vector w,

.wHRw/H D wHRH.wH/H D wHRw

Therefore, wHRw is a real number. Assume now that �i is an eigenvalue of R
corresponding to the eigenvector qi , i.e., Rqi D �iqi . By premultiplying this
equation by qHi , it follows that

qHi Rqi D �iqHi qi D �ikqik2

where the operation kak2 D ja0j2 C ja1j2 C � � � C jaN j2 is the Euclidean norm
squared of the vector a, that is always real. Since the term on the left hand is also
real, kqik2 ¤ 0, and R is positive semidefinite, we can conclude that �i is real
and nonnegative. ut
Note that Q is not unique since each qi can be multiplied by an arbitrary nonzero
constant, and the resulting vector continues to be an eigenvector.5 For practical
reasons, we consider only normalized eigenvectors having length one, that is

qHi qi D 1 for i D 0; 1; : : : ; N (2.61)

5We can also change the order in which the qi ’s compose matrix Q, but this fact is not relevant to
the present discussion.
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5. If R is a Hermitian matrix with different eigenvalues, the eigenvectors are
orthogonal to each other. As a consequence, there is a diagonalizing matrix Q
that is unitary, i.e., QHQ D I.

Proof. Given two eigenvalues �i and �j , it follows that

Rqi D �iqi

and
Rqj D �jqj (2.62)

Using the fact that R is Hermitian and that �i and �j are real, then

qHi R D �iqHi

and by multiplying this equation on the right by qj , we get

qHi Rqj D �iqHi qj

Now by premultiplying (2.62) by qHi , it follows that

qHi Rqj D �jqHi qj

Therefore,
�iqHi qj D �jqHi qj

Since �i ¤ �j , it can be concluded that

qHi qj D 0 for i ¤ j

If we form matrix Q with normalized eigenvectors, matrix Q is a unitary matrix.
ut

An important result is that any Hermitian matrix R can be diagonalized by a
suitable unitary matrix Q, even if the eigenvalues of R are not distinct. The proof
is omitted here and can be found in [22]. Therefore, for Hermitian matrices with
repeated eigenvalues it is always possible to find a complete set of orthonormal
eigenvectors.

A useful form to decompose a Hermitian matrix that results from the last
property is

R D Q�QH D
NX

iD0
�iqiq

H
i (2.63)

that is known as spectral decomposition. From this decomposition, one can easily
derive the following relation
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wHRw D
NX

iD0
�iwHqiq

H
i w D

NX

iD0
�i jwHqi j2 (2.64)

In addition, since qi D �iR�1qi , the eigenvectors of a matrix and of its
inverse coincide, whereas the eigenvalues are reciprocals of each other. As a
consequence,

R�1 D
NX

iD0

1

�i
qiq

H
i (2.65)

Another consequence of the unitary property of Q for Hermitian matrices is
that any Hermitian matrix can be written in the form

R D
hp
�0q0

p
�1q1 : : :

p
�NqN

i

2
6664

p
�0qH0p
�1qH1
:::p
�NqHN

3
7775

D LLH (2.66)

6. The sum of the eigenvalues of R is equal to the trace of R, and the product of the
eigenvalues of R is equal to the determinant of R.6

Proof.
trŒQ�1RQ� D trŒ��

where, trŒA� D PN
iD0 ai i . Since trŒA0A� D trŒAA0�, we have

trŒQ�1RQ� D trŒRQQ�1� D trŒRI� D trŒR� D
NX

iD0
�i

Also

detŒQ�1 R Q� D detŒR� detŒQ� detŒQ�1� D detŒR� D detŒ�� D
NY

iD0
�i : ut

7. The Rayleigh’s quotient defined as

R D wHRw
wHw

(2.67)

of a Hermitian matrix is bounded by the minimum and maximum eigenvalues,
i.e.,

�min � R � �max (2.68)

6This property is valid for any square matrix, but for more general matrices the proof differs from
the one presented here.
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where the minimum and maximum values are reached when the vector w is
chosen to be the eigenvector corresponding to the minimum and maximum
eigenvalues, respectively.

Proof. Suppose w D Qw0, where Q is the matrix that diagonalizes R, then

R D w0HQHRQw0

w0HQHQw0

D w0H�w0

w0Hw0

D
PN

iD0 �iw0
i
2

PN
iD0 w0

i
2

(2.69)

It is then possible to show, see Problem 14, that the minimum value for the above
equation occurs when wi D 0 for i ¤ j and �j is the smallest eigenvalue.
Identically, the maximum value for R occurs when wi D 0 for i ¤ l , where �l
is the largest eigenvalue. ut

There are several ways to define the norm of a matrix. In this book the norm
of a matrix R, denoted by kRk, is defined by

kRk2 D max
w¤0

kRwk2
kwk2

D max
w¤0

wHRHRw
wHw

(2.70)

Note that the norm of R is a measure of how a vector w grows in magnitude,
when it is multiplied by R.

When the matrix R is Hermitian, the norm of R is easily obtained by using
the results of (2.57) and (2.68). The result is

kRk D �max (2.71)

where �max is the maximum eigenvalue of R.
A common problem that we encounter in adaptive filtering is the solution of a

system of linear equations such as

Rw D p (2.72)

In case there is an error in the vector p, originated by quantization or estimation,
how does it affect the solution of the system of linear equations? For a positive
definite Hermitian matrix R, it can be shown [22] that the relative error in the
solution of the above linear system of equations is bounded by
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k�wk
kwk � �max

�min

k�pk
kpk (2.73)

where �max and �min are the maximum and minimum values of the eigenvalues
of R, respectively. The ratio �max=�min is called condition number of a matrix,
that is

C D �max

�min
D kRkkR�1k (2.74)

The value of C influences the convergence behavior of a number of adaptive-
filtering algorithms, as will be seen in the following chapters. Large value of C
indicates that the matrix R is ill-conditioned, and that errors introduced by the
manipulation of R may be largely amplified. WhenC D 1, the matrix is perfectly
conditioned. In case R represents the correlation matrix of the input signal of an
adaptive filter, with the input vector composed by uncorrelated elements of a
delay line (see Fig. 2.1b, and the discussions around it), then C D 1.

Example 2.1. Suppose the input signal vector is composed by a delay line with a
single input signal, i.e.,

x.k/ D Œx.k/ x.k � 1/ : : : x.k �N/�T

Given the following input signals:

(a)
x.k/ D n.k/

(b)
x.k/ D a cos!0k C n.k/

(c)

x.k/ D
MX

iD0
bin.k � i/

(d)
x.k/ D �a1x.k � 1/C n.k/

(e)
x.k/ D ae|.!0kCn.k//

where n.k/ is a white noise with zero mean and variance �2n ; in case (e) n.k/ is
uniformly distributed in the range �� to � .

Calculate the autocorrelation matrix R for N D 3.

Solution. (a) In this case, we have that EŒx.k/x.k � l/� D �2nı.l/, where ı.l/
denotes an impulse sequence. Therefore,
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R D EŒx.k/xT .k/� D �2n

2

6664

1 0 � � � 0
0 1 � � � 0
:::
:::
: : :

:::

0 0 � � � 1

3

7775 (2.75)

(b) In this example, n.k/ is zero mean and uncorrelated with the deterministic
cosine. The autocorrelation function can then be expressed as

r.k; k � l/ D EŒa2 cos.!0k/ cos.!0k � !0l/C n.k/n.k � l/�
D a2EŒcos.!0k/ cos.!0k � !0l/�C �2nı.l/

D a2

2
Œcos.!0l/C cos.2!0k � !0l/�C �2nı.l/ (2.76)

where ı.l/ again denotes an impulse sequence. Since part of the input signal is
deterministic and nonstationary, the autocorrelation is time dependent.

For the 3 � 3 case the input signal correlation matrix R.k/ becomes

a2

2

2
64

1C cos 2!0k C 2
a2
�2n cos!0 C cos!0.2k � 1/ cos 2!0 C cos 2!0.k � 1/

cos!0 C cos!0.2k � 1/ 1C cos 2!0.k � 1/C 2
a2
�2n cos!0 C cos!0.2.k � 1/� 1/

cos 2!0 C cos 2!0.k � 1/ cos!0 C cos!0.2.k � 1/� 1/ 1C cos 2!0.k � 2/C 2
a2
�2n

3
75

(c) By exploring the fact that n.k/ is a white noise, we can perform the following
simplifications:

r.l/ D EŒx.k/x.k � l/� D E

2

4
M�lX

jD0

MX

iD0
bibj n.k � i/n.k � l � j /

3

5

D
M�lX

jD0
bj blCjEŒn2.k � l � j /� D �2n

MX

jD0
bj blCj

0 � l C j � M (2.77)

where from the third to the fourth relation we used the fact thatEŒn.k� i/n.k�
l � j /� D 0 for i ¤ l C j . For M D 3, the correlation matrix has the
following form

R D �2n

2

6666666666666664

3X

iD0
b2i

2X

iD0
bibiC1

1X

iD0
bibiC2 b0b3

2X

iD0
bibiC1

3X

iD0
b2i

2X

iD0
bibiC1

1X

iD0
bibiC2

1X

iD0
bibiC2

2X

iD0
bibiC1

3X

iD0
b2i

2X

iD0
bibiC1

b0b3

1X

iD0
bibiC2

2X

iD0
bibiC1

3X

iD0
b2i

3

7777777777777775

(2.78)
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(d) By solving the difference equation, we can obtain the correlation between x.k/
and x.k � l/, that is

x.k/ D .�a1/lx.k � l/C
l�1X

jD0
.�a1/j n.k � j / (2.79)

Multiplying x.k�l/ on both sides of the above equation and taking the expected
value of the result, we obtain

EŒx.k/x.k � l/� D .�a1/lEŒx2.k � l/� (2.80)

since x.k � l/ is independent of n.k � j / for j � l � 1.
For l D 0, just calculate x2.k/ and apply the expectation operation to the

result. The partial result is

EŒx2.k/� D a21EŒx
2.k � 1/�C EŒn2.k/� (2.81)

therefore,

EŒx2.k/� D �2n

1 � a21
(2.82)

assuming x.k/ is WSS.
The elements of R are then given by

r.l/ D .�a1/jlj
1 � a21

�2n (2.83)

and the 3 � 3 autocorrelation matrix becomes

R D �2n

1 � a21

2

4
1 �a1 a21

�a1 1 �a1
a21 �a1 1

3

5

(e) In this case, we are interested in calculating the autocorrelation of a complex
sequence, that is

r.l/ D EŒx.k/x�.k � l/�

D a2EŒe�|.�!0l�n.k/Cn.k�l//� (2.84)

By recalling the definition of expected value in (2.9), for l ¤ 0,
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r.l/ D a2e|!0l
Z 1

�1

Z 1

�1
e�|.�n0Cn1/pn.k/;n.k�l/.n0; n1/dn0dn1

D a2e|!0l
Z �

��

Z �

��
e�|.�n0Cn1/pn.k/.n0/pn.k�l/.n1/dn0dn1

D a2e|!0l
Z �

��

Z �

��
e�|.�n0Cn1/ 1

2�

1

2�
dn0dn1

D a2e|!0l
1

4�2

Z �

��

Z �

��
e�|.�n0Cn1/dn0dn1

D a2e|!0l
1

4�2

�Z �

��
e|n0dn0

� �Z �

��
e�|n1dn1

�

D a2e|!0l
1

4�2

�
e|� � e�|�

|

� ��e�|� C e|�

|

�

D �a2e|!0l 1
�2
.sin�/.sin�/ D 0 (2.85)

where in the fifth equality it is used the fact that n.k/ and n.k � l/, for l ¤ 0,
are independent.

For l D 0

r.0/ D EŒx.k/x�.k/� D a2e|.!00/ D a2

Therefore,

r.l/ D EŒx.k/x�.k � l/� D a2e|.!0l/ı.l/

where in the 3 � 3 case

R D
2

4
a2 0 0

0 a2 0

0 0 a2

3

5

At the end it was verified the fact that when we have two exponential functions
(l ¤ 0) with uniformly distributed white noise in the range of �k� to k� as
exponents, these exponentials are nonorthogonal only if l D 0, where k is a positive
integer. ut

In the remaining part of this chapter and in the following chapters, we will
treat the algorithms for real and complex signals separately. The derivations of
the adaptive-filtering algorithms for complex signals are usually straightforward
extensions of the real signal cases, and some of them are left as exercises.
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2.4 Wiener Filter

One of the most widely used objective function in adaptive filtering is the MSE
defined as

F Œe.k/� D �.k/ D EŒe2.k/� D EŒd2.k/� 2d.k/y.k/C y2.k/� (2.86)

where d.k/ is the reference signal as illustrated in Fig. 1.1.
Suppose the adaptive filter consists of a linear combiner, i.e., the output signal is

composed by a linear combination of signals coming from an array as depicted in
Fig. 2.1a. In this case,

y.k/ D
NX

iD0
wi .k/xi .k/ D wT .k/x.k/ (2.87)

where x.k/ D Œx0.k/ x1.k/ : : : xN .k/�
T and w.k/ D Œw0.k/ w1.k/ : : :wN .k/�T are

the input signal and the adaptive-filter coefficient vectors, respectively.
In many applications, each element of the input signal vector consists of a

delayed version of the same signal, that is: x0.k/ D x.k/; x1.k/ D x.k �
1/; : : : ; xN .k/ D x.k � N/. Note that in this case the signal y.k/ is the result
of applying an FIR filter to the input signal x.k/.

Since most of the analyses and algorithms presented in this book apply equally
to the linear combiner and the FIR filter cases, we will mostly consider the latter
case throughout the rest of the book. The main reason for this decision is that
the fast algorithms for the recursive least-squares solution, to be discussed in the
forthcoming chapters, explore the fact that the input signal vector consists of the
output of a delay line with a single input signal, and, as a consequence, are not
applicable to the linear combiner case.

The most straightforward realization for the adaptive filter is through the direct-
form FIR structure as illustrated in Fig. 2.1b, with the output given by

y.k/ D
NX

iD0
wi .k/x.k � i/ D wT .k/x.k/ (2.88)

where x.k/ D Œx.k/ x.k � 1/ : : : x.k � N/�T is the input vector representing a
tapped-delay line, and w.k/ D Œw0.k/ w1.k/ : : :wN .k/�T is the tap-weight vector.

In both the linear combiner and FIR filter cases, the objective function can be
rewritten as

EŒe2.k/� D �.k/

D E
�
d2.k/� 2d.k/wT .k/x.k/C wT .k/x.k/xT .k/w.k/

�

D EŒd2.k/� � 2EŒd.k/wT .k/x.k/�C EŒwT .k/x.k/xT .k/w.k/� (2.89)
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y(k)

d(k)

x0(k) w0(k)

w1(k)

wN(k)

x1(k)

xN(k)

e(k)+

–
++

y(k)

d(k)

e(k)+

– +
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w0(k)

w1(k)

wN(k)

Fig. 2.1 (a) Linear
combiner; (b) Adaptive
FIR filter

For a filter with fixed coefficients, the MSE function in a stationary environment is
given by

� D EŒd2.k/� � 2wT EŒd.k/x.k/�C wT EŒx.k/xT .k/�w

D EŒd2.k/� � 2wT p C wTRw (2.90)
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where p D EŒd.k/x.k/� is the cross-correlation vector between the desired and
input signals, and R D EŒx.k/xT .k/� is the input signal correlation matrix. As
can be noted, the objective function � is a quadratic function of the tap-weight
coefficients which would allow a straightforward solution for w that minimizes �,
if vector p and matrix R are known. Note that matrix R corresponds to the Hessian
matrix of the objective function defined in the previous chapter.

If the adaptive filter is implemented through an IIR filter, the objective function is
a nonquadratic function of the filter parameters, turning the minimization problem
into a much more difficult one. Local minima are likely to exist, rendering
some solutions obtained by gradient-based algorithms unacceptable. Despite its
disadvantages, adaptive IIR filters are needed in a number of applications where
the order of a suitable FIR filter is too high. Typical applications include data
equalization in communication channels and cancellation of acoustic echo, see
Chap. 10.

The gradient vector of the MSE function related to the filter tap-weight coeffi-
cients is given by7

gw D @�

@w
D

�
@�

@w0

@�

@w1
: : :

@�

@wN

�T

D �2p C 2Rw (2.91)

By equating the gradient vector to zero and assuming R is nonsingular, the optimal
values for the tap-weight coefficients that minimize the objective function can be
evaluated as follows:

wo D R�1p (2.92)

This solution is called the Wiener solution. Unfortunately, in practice, precise
estimations of R and p are not available. When the input and the desired signals
are ergodic, one is able to use time averages to estimate R and p, what is implicitly
performed by most adaptive algorithms.

If we replace the optimal solution for w in the MSE expression, we can calculate
the minimum MSE provided by the Wiener solution:

�min D EŒd2.k/� � 2wT
o p C wT

o RR�1p

D EŒd2.k/� � wT
o p (2.93)

The above equation indicates that the optimal set of parameters removes part of the
power of the desired signal through the cross-correlation between x.k/ and d.k/,
assuming both signals stationary. If the reference signal and the input signal are
orthogonal, the optimal coefficients are equal to zero and the minimum MSE is

7Some books define gw as
h
@�

@w

iT
, here we follow the notation more widely used in the subject

matter.
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EŒd2.k/�. This result is expected since nothing can be done with the parameters
in order to minimize the MSE if the input signal carries no information about the
desired signal. In this case, if any of the taps is nonzero, it would only increase
the MSE.

An important property of the Wiener filter can be deduced if we analyze the
gradient of the error surface at the optimal solution. The gradient vector can be
expressed as follows:

gw D @EŒe2.k/�

@w
D EŒ2e.k/

@e.k/

@w
� D �EŒ2e.k/x.k/� (2.94)

With the coefficients set at their optimal values, i.e., at the Wiener solution, the
gradient vector is equal to zero, implying that

EŒe.k/x.k/� D 0 (2.95)

or
EŒe.k/x.k � i/� D 0 (2.96)

for i D 0; 1; : : : ; N . This means that the error signal is orthogonal to the elements
of the input signal vector. In case either the error or the input signal has zero mean,
the orthogonality property implies that e.k/ and x.k/ are uncorrelated.

The orthogonality principle also applies to the correlation between the output
signal y.k/ and the error e.k/, when the tap weights are given by w D wo. By
premultiplying (2.95) by wT

o , the desired result follows:

EŒe.k/wT
o x.k/� D EŒe.k/y.k/� D 0 (2.97)

The gradient with respect to a complex parameter has not been defined. For our
purposes the complex gradient vector can be defined as [18]

gw.k/fF.e.k//g D 1

2

�
@F Œe.k/�

@reŒw.k/�
� |

@F Œe.k/�

@imŒw.k/�

	

where reŒ�� and imŒ�� indicate real and imaginary parts of Œ��, respectively. Note that
the partial derivatives are calculated for each element of w.k/.

For the complex case the error signal and the MSE are, respectively, described
by, see Chap. 14 for details,

e.k/ D d.k/ � wH.k/x.k/ (2.98)

and

� D EŒje.k/j2�
D EŒjd.k/j2� � 2refwHEŒd�.k/x.k/�g C wHEŒx.k/xH.k/�w

D EŒjd.k/j2� � 2reŒwHp�C wHRw (2.99)
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where p D EŒd�.k/x.k/� is the cross-correlation vector between the desired and
input signals, and R D EŒx.k/xH.k/� is the input signal correlation matrix. The
Wiener solution in this case is also given by (2.92).

Example 2.2. The input signal of a first-order adaptive filter is described by

x.k/ D ˛1x1.k/C ˛2x2.k/

where x1.k/ and x2.k/ are first-order AR processes and mutually uncorrelated
having both unit variance. These signals are generated by applying distinct white
noises to first-order filters whose poles are placed at �s1 and �s2, respectively.

(a) Calculate the autocorrelation matrix of the input signal.
(b) If the desired signal consists of x2.k/, calculate the Wiener solution.

Solution. (a) The models for the signals involved are described by

xi .k/ D �sixi .k � 1/C �ini .k/

for i D 1; 2. According to (2.83) the autocorrelation of either xi .k/ is given by

EŒxi .k/xi .k � l/� D �2i
.�si /jlj
1 � s2i

�2n;i (2.100)

where �2n;i is the variance of ni .k/. Since each signal xi .k/ has unit variance,
then by applying l D 0 to the above equation

�2i D 1� s2i

�2n;i
(2.101)

Now by utilizing the fact that x1.k/ and x2.k/ are uncorrelated, the autocorre-
lation of the input signal is

R D
�

˛21 C ˛22 �˛21s1 � ˛22s2
�˛21s1 � ˛22s2 ˛21 C ˛22

�

p D
�

˛2

�˛2s2
�

(b) The Wiener solution can then be expressed as

wo D R�1p

D 1

.˛21 C ˛22/
2 � .˛21s1 C ˛22s2/

2

"
˛21 C ˛22 ˛21s1 C ˛22s2

˛21s1 C ˛22s2 ˛21 C ˛22

# "
˛2

�˛2s2

#
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D 1

.1C ˛22
˛21
/2 � .s1 C ˛22

˛21
s2/2

2

4
1C ˛22

˛21
s1 C ˛22

˛21
s2

s1 C ˛22
˛21
s2 1C ˛22

˛21

3

5
"

˛2
˛21

� ˛2
˛21
s2

#

D ˛2

"
1

˛21C˛22�s1˛21�s2˛22 0

0 1

˛21C˛22Cs1˛21Cs2˛22

# "
1�s2
2

� 1Cs2
2

#

Let’s assume that in this example our task was to detect the presence of x2.k/ in
the input signal. For a fixed input-signal power, from this solution it is possible

to observe that lower signal to interference at the input, that is lower ˛22
˛21

, leads

to a Wiener solution vector with lower norm. This result reflects the fact that
the Wiener solution tries to detect the desired signal at the same time it avoids
enhancing the undesired signal, i.e., the interference x1.k/. ut

2.5 Linearly Constrained Wiener Filter

In a number of applications, it is required to impose some linear constraints on
the filter coefficients such that the optimal solution is the one that achieves the
minimum MSE, provided the constraints are met. Typical constraints are: unity
norm of the parameter vector; linear phase of the adaptive filter; prescribed gains
at given frequencies.

In the particular case of an array of antennas the measured signals can be linearly
combined to form a directional beam, where the signal impinging on the array in
the desired direction will have higher gain. This application is called beamforming,
where we specify gains at certain directions of arrival. It is clear that the array is
introducing another dimension to the received data, namely spatial information.
The weights in the antennas can be made adaptive leading to the so-called adaptive
antenna arrays. This is the principle behind the concept of smart antennas, where a
set of adaptive array processors filter the signals coming from the array, and direct
the beam to several different directions where a potential communication is required.
For example, in a wireless communication system we are able to form a beam for
each subscriber according to its position, ultimately leading to minimization of noise
from the environment and interference from other subscribers.

In order to develop the theory of linearly constrained optimal filters, let us
consider the particular application of a narrowband beamformer required to pass
without distortion all signals arriving at 90ı with respect to the array of antennas.
All other sources of signals shall be treated as interferers and must be attenuated as
much as possible. Figure 2.2 illustrates the application. Note that in case the signal
of interest does not impinge the array at 90ı with respect to the array, a steering
operation in the constraint vector c (to be defined) has to be performed [23].
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Fig. 2.2 Narrowband
beamformer

The optimal filter that satisfies the linear constraints is called the linearly con-
strained minimum-variance (LCMV) filter.

If the desired signal source is sufficiently far from the array of antennas, then we
may assume that the wavefronts are planar at the array. Therefore, the wavefront
from the desired source will reach all antennas at the same instant, whereas the
wavefront from the interferer will reach each antenna at different time instants.
Taking the antenna with input signal x0 as a time reference t0, the wavefront will
reach the i th antenna at [23]

ti D t0 C i
d cos 	

c

where 	 is the angle between the antenna array and the interferer direction of arrival,
d is the distance between neighboring antennas, and c is the speed of propagation
of the wave (3 � 108 m/s).

For this particular case, the LCMV filter is the one that minimizes the array
output signal energy

� D EŒy2.k/� D EŒwT x.k/xT .k/w�

subject to W
NX

jD0
cjwj D f (2.102)
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where

w D Œw0 w1 : : :wN �
T

x.k/ D Œx0.k/ x1.k/ : : : xN .k/�
T

and

c D Œ1 1 : : : 1�T

is the constraint vector, since 	 D 90ı. The desired gain is usually f D 1.
In the case the desired signal impinges the array at an angle 	 with respect to the

array, the incoming signal reaches the i th antenna delayed by i d cos 	
c

with respect
to the 0th antenna [24]. Let’s consider the case of a narrowband array such that
all antennas detect the impinging signal with the same amplitude when measured
taking into consideration their relative delays, which are multiples of d cos 	

c
. In such

a case the optimal receiver coefficients would be

wi D e|!
i

N C 1
(2.103)

for i D 0; 1; : : : ; N , in order to add coherently the delays of the desired incoming
signal at a given direction 	 . The impinging signal appears at the i th antenna
multiplied by e�|!
i , considering the particular case of array configuration of
Fig. 2.2. In this uniform linear array, the antenna locations are

pi D id

for i D 0; 1; : : : ; N . Using the 0th antenna as reference, the signal will reach the
array according to the following pattern

Qc D e|!t
h
1 e�|! d cos 	

c e�|! 2d cos 	
c : : : e�|! Nd cos 	

c

iT

D e|!t
h
1 e�| 2�� d cos 	 e�| 2�� 2d cos 	 : : : e�| 2�� Nd cos 	

iT
(2.104)

where the equality !
c

D 2�
�

was employed, with � being the wavelength correspond-
ing to the frequency !.

By defining the variable .!; 	/ D 2�
�
d cos 	 , we can describe the output signal

of the beamformer as

y D e|!t
NX

iD0
wie�| .!;	/i

D e|!tH.!; 	/ (2.105)
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where H.!; 	/ modifies the amplitude and phase of transmitted signal at a given
frequency !. Note that the shaping function H.!; 	/ depends on the impinging
angle.

For the sake of illustration, if the antenna separation is d D �
2
, 	 D 60ı, and N

is odd, then the constraint vector would be

c D
h
1 e�| �2 e�|� : : : e�| N�2

iT

D
h
1 � | � 1 : : : e�| N�2

iT
(2.106)

Using the method of Lagrange multipliers, we can rewrite the constrained
minimization problem described in (2.102) as

�c D EŒwT x.k/xT .k/w�C �.cTw � f / (2.107)

The gradient of �c with respect to w is equal to

gw D 2Rw C �c (2.108)

where R D EŒx.k/xT .k/�. For a positive definite matrix R, the value of w that
satisfies gw D 0 is unique and minimizes �c . Denoting wo as the optimal solution,
we have

2Rwo C �c D 0

2cTwo C �cTR�1c D 0

2f C �cTR�1c D 0

where in order to obtain the second equality, we premultiply the first equation by
cTR�1. Therefore,

� D �2.cTR�1c/�1f

and the LCMV filter is

wo D R�1c.cTR�1c/�1f (2.109)

If more constraints need to be satisfied by the filter, these can be easily
incorporated in a constraint matrix and in a gain vector, such that

CTw D f (2.110)

In this case, the LCMV filter is given by

wo D R�1C.CTR�1C/�1f (2.111)
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Fig. 2.3 The generalized sidelobe canceller

If there is a desired signal, the natural objective is the minimization of the
MSE, not the output energy as in the narrowband beamformer. In this case, it is
straightforward to modify (2.107) and obtain the optimal solution

wo D R�1p C R�1C.CT R�1C/�1.f � CTR�1p/ (2.112)

where p D EŒd.k/ x.k/�, see Problem 20.
In the case of complex input signals and constraints, the optimal solution is

given by

wo D R�1p C R�1C.CHR�1C/�1.f � CHR�1p/ (2.113)

where CHw D f.

2.5.1 The Generalized Sidelobe Canceller

An alternative implementation to the direct-form constrained adaptive filter showed
above is called the generalized sidelobe canceller (GSC) (see Fig. 2.3) [25].

For this structure the input signal vector is transformed by a matrix

T D ŒC B� (2.114)

where C is the constraint matrix and B is a blocking matrix that spans the null space
of C, i.e., matrix B satisfies

BTC D 0 (2.115)

The output signal y.k/ shown in Fig. 2.3 is formed as

y.k/ D wT
u CT x.k/C wT

l BT x.k/

D .Cwu C Bwl /
T x.k/

D .Tw/T x.k/

D NwT x.k/ (2.116)

where w D ŒwT
u wT

l �
T and Nw D Tw.
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The linear constraints are satisfied if CT Nw D f. But as CTB D 0, then the
condition to be satisfied becomes

CT Nw D CT Cwu D f (2.117)

Therefore, for the GSC structure shown in Fig. 2.3 there is a necessary condition
that the upper part of the coefficient vector, wu, should be initialized as

wu D .CT C/�1f (2.118)

Minimization of the output energy is achieved with a proper choice of wl . In
fact, we transformed a constrained optimization problem into an unconstrained one,
which in turn can be solved with the classical linear Wiener filter, i.e.,

min
wl

EŒy2.k/� D min
wl

EfŒyu.k/C wT
l xl .k/�2g

D wl;o

D �R�1
l pl ; (2.119)

where

Rl D EŒxl .k/xTl .k/�

D EŒBT x.k/xT .k/B�

D BT Œx.k/xT .k/�B

D BTRB (2.120)

and

pl D EŒyu.k/ xl .k/� D EŒxl .k/ yu.k/�

D EŒBT x.k/ wT
u CT x.k/�

D EŒBT x.k/ xT .k/Cwu�

D BT EŒx.k/ xT .k/�Cwu

D BTRCwu

D BTRC.CTC/�1f (2.121)

where in the above derivations we utilized the results and definitions from (2.116)
and (2.118).

Using (2.118), (2.120), and (2.121) it is possible to show that

wl;o D �.BT RB/�1BTRC.CTC/�1f (2.122)
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Given that wl;o is the solution to an unconstrained minimization problem of
transformed quantities, any unconstrained adaptive filter can be used to estimate
recursively this optimal solution. The drawback in the implementation of the
GSC structure comes from the transformation of the input signal vector via a
constraint matrix and a blocking matrix. Although in theory any matrix with linearly
independent columns that spans the null space of C can be employed, in many
cases the computational complexity resulting from the multiplication of B by x.k/
can be prohibitive. Furthermore, if the transformation matrix T is not orthogonal,
finite-precision effects may yield an overall unstable system. A simple solution that
guarantees orthogonality in the transformation and low computational complexity
can be obtained with a Householder transformation [26].

2.6 MSE Surface

The MSE is a quadratic function of the parameters w. Assuming a given fixed w,
the MSE is not a function of time and can be expressed as

� D �2d � 2wT p C wTRw (2.123)

where �2d is the variance of d.k/ assuming it has zero-mean. The MSE is a quadratic
function of the tap weights forming a hyperparaboloid surface. The MSE surface is
convex and has only positive values. For two weights, the surface is a paraboloid.
Figure 2.4 illustrates the MSE surface for a numerical example where w has two
coefficients. If the MSE surface is intersected by a plane parallel to the w plane,
placed at a level superior to �min, the intersection consists of an ellipse representing
equal MSE contours as depicted in Fig. 2.5. Note that in this figure we showed three
distinct ellipses, corresponding to different levels of MSE. The ellipses of constant
MSE are all concentric. In order to understand the properties of the MSE surface, it
is convenient to define a translated coefficient vector as follows:

�w D w � wo (2.124)

The MSE can be expressed as a function of �w as follows:

� D �2d � wT
o p C wT

o p � 2wT p C wT Rw

D �min ��wT p � wTRwo C wTRw

D �min ��wT p C wTR�w

D �min � wT
o R�w C wTR�w

D �min C�wTR�w (2.125)

where we used the results of (2.92) and (2.93). The corresponding error surface
contours are depicted in Fig. 2.6.



48 2 Fundamentals of Adaptive Filtering

0
5

10
15

20
25

0

5

10w0
w1

15

20

25
0

50

100

150

200

250

M
S

E
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Fig. 2.6 Translated contours of the MSE surface

By employing the diagonalized form of R, the last equation can be rewritten as
follows:

� D �min C�wTQ�QT�w

D �min C vT�v

D �min C
NX

iD0
�iv

2
i (2.126)

where v D QT�w are the rotated parameters.
The above form for representing the MSE surface is an uncoupled form, in the

sense that each component of the gradient vector of the MSE with respect to the
rotated parameters is a function of a single parameter, that is

gvŒ�� D Œ2�0v0 2�1v1 : : : 2�N vN �
T

This property means that if all vi ’s are zero except one, the gradient direction
coincides with the nonzero parameter axis. In other words, the rotated parameters
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Fig. 2.7 Rotated contours of the MSE surface

represent the principal axes of the hyperellipse of constant MSE, as illustrated in
Fig. 2.7. Note that since the rotated parameters are the result of the projection of the
original parameter vector �w on the eigenvectors qi direction, it is straightforward
to conclude that the eigenvectors represent the principal axes of the constant MSE
hyperellipses.

The matrix of second derivatives of � as related to the rotated parameters is �. We
can note that the gradient will be steeper in the principal axes corresponding to larger
eigenvalues. This is the direction, in the two axes case, where the ellipse is narrow.

2.7 Bias and Consistency

The correct interpretation of the results obtained by the adaptive-filtering algorithm
requires the definitions of bias and consistency. An estimate is considered unbiased
if the following condition is satisfied

EŒw.k/� D wo (2.127)

The differenceEŒw.k/� � wo is called the bias in the parameter estimate.
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An estimate is considered consistent if

w.k/ ! wo as k ! 1 (2.128)

Note that since w.k/ is a random variable, it is necessary to define in which sense
the limit is taken. Usually, the limit with probability one is employed. In the case
of identification, a system is considered identifiable if the given parameter estimates
are consistent. For a more formal treatment on this subject, refer to [21].

2.8 Newton Algorithm

In the context of the MSE minimization discussed in the previous section, see
(2.123), the coefficient-vector updating using the Newton method is performed as
follows:

w.k C 1/ D w.k/� �R�1gw.k/ (2.129)

where its derivation originates from (1.4). Assuming the true gradient and the matrix
R are available, the coefficient-vector updating can be expressed as

w.k C 1/ D w.k/ � �R�1Œ�2p C 2Rw.k/� D .I � 2�I/w.k/C 2�wo (2.130)

where if � D 1=2, the Wiener solution is reached in one step.
The Wiener solution can be approached using a Newton-like search algorithm,

by updating the adaptive-filter coefficients as follows:

w.k C 1/ D w.k/ � � OR�1
.k/Ogw.k/ (2.131)

where OR�1
.k/ is an estimate of R�1 and Ogw.k/ is an estimate of gw, both at

instant k. The parameter � is the convergence factor that regulates the convergence
rate. Newton-based algorithms present, in general, fast convergence. However,
the estimate of R�1 is computationally intensive and can become numerically
unstable if special care is not taken. These factors made the steepest-descent-based
algorithms more popular in adaptive-filtering applications.

2.9 Steepest-Descent Algorithm

In order to get a practical feeling of a problem that is being solved using the steepest-
descent algorithm, we assume that the optimal coefficient vector, i.e., the Wiener
solution, is wo, and that the reference signal is not corrupted by measurement noise.8

8Noise added to the reference signal originated from environment and/or thermal noise.
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The main objective of the present section is to study the rate of convergence,
the stability, and the steady-state behavior of an adaptive filter whose coefficients
are updated through the steepest-descent algorithm. It is worth mentioning that the
steepest-descent method can be considered an efficient gradient-type algorithm, in
the sense that it works with the true gradient vector, and not with an estimate of it.
Therefore, the performance of other gradient-type algorithms can at most be close
to the performance of the steepest-descent algorithm. When the objective function
is the MSE, the difficult task of obtaining the matrix R and the vector p impairs the
steepest-descent algorithm from being useful in adaptive-filtering applications. Its
performance, however, serves as a benchmark for gradient-based algorithms.

The steepest-descent algorithm updates the coefficients in the following general
form

w.k C 1/ D w.k/ � �gw.k/ (2.132)

where the above expression is equivalent to (1.6). It is worth noting that several
alternative gradient-based algorithms available replace gw.k/ by an estimate Ogw.k/,
and they differ in the way the gradient vector is estimated. The true gradient
expression is given in (2.91) and, as can be noted, it depends on the vector p and the
matrix R, that are usually not available.

Substituting (2.91) in (2.132), we get

w.k C 1/ D w.k/� 2�Rw.k/C 2�p (2.133)

Now, some of the main properties related to the convergence behavior of the
steepest-descent algorithm in stationary environment are described. First, an anal-
ysis is required to determine the influence of the convergence factor � in the
convergence behavior of the steepest-descent algorithm.

The error in the adaptive-filter coefficients when compared to the Wiener solution
is defined as

�w.k/ D w.k/ � wo (2.134)

The steepest-descent algorithm can then be described in an alternative way, that is:

�w.k C 1/ D �w.k/ � 2�ŒRw.k/� Rwo�

D �w.k/ � 2�R�w.k/

D .I � 2�R/�w.k/ (2.135)

where the relation p D Rwo (see (2.92)) was employed. It can be shown from the
above equation that

�w.k C 1/ D .I � 2�R/kC1�w.0/ (2.136)

or
w.k C 1/ D wo C .I � 2�R/kC1Œw.0/� wo� (2.137)
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The (2.135) premultiplied by QT , where Q is the unitary matrix that diagonalizes
R through a similarity transformation, yields

QT�w.k C 1/ D .I � 2�QTRQ/QT �w.k/

D v.k C 1/

D .I � 2��/v.k/

D

2

66664

1 � 2��0 0 � � � 0

0 1� 2��1
:::

:::
:::

: : :
:::

0 0 1 � 2��N

3

77775
v.k/ (2.138)

In the above equation, v.k C 1/ D QT�w.k C 1/ is the rotated coefficient-vector
error. Using induction, (2.138) can be rewritten as

v.k C 1/ D .I � 2��/kC1v.0/

D

2

66664

.1 � 2��0/
kC1 0 � � � 0

0 .1 � 2��1/
kC1 :::

:::
:::

: : :
:::

0 0 .1 � 2��N /kC1

3

77775
v.0/ (2.139)

This equation shows that in order to guarantee the convergence of the coefficients,
each element 1�2��i must have an absolute value less than one. As a consequence,
the convergence factor of the steepest-descent algorithm must be chosen in the range

0 < � <
1

�max
(2.140)

where �max is the largest eigenvalue of R. In this case, all the elements of the
diagonal matrix in (2.139) tend to zero as k ! 1, resulting in v.k C 1/ ! 0

for large k.
The � value in the above range guarantees that the coefficient vector approaches

the optimum coefficient vector wo. It should be mentioned that if matrix R has
large eigenvalue spread, the convergence speed of the coefficients will be primarily
dependent on the value of the smallest eigenvalue. Note that the slowest decaying
element in (2.139) is given by .1 � 2��min/

kC1.
The MSE presents a transient behavior during the adaptation process that can

be analyzed in a straightforward way if we employ the diagonalized version of R.
Recalling from (2.125) that

�.k/ D �min C�wT .k/R�w.k/ (2.141)
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the MSE can then be simplified as follows:

�.k/ D �min C�wT .k/Q� QT �w.k/

D �min C vT .k/� v.k/

D �min C
NX

iD0
�iv

2
i .k/ (2.142)

If we apply the result of (2.139) in (2.142), it can be shown that the following
relation results

�.k/ D �min C vT .k � 1/.I � 2��/� .I � 2��/v.k � 1/

D �min C
NX

iD0
�i .1 � 2��i /2kv2i .0/ (2.143)

The analyses presented in this section show that before the steepest-descent
algorithm reaches the steady-state behavior, there is a transient period where the
error is usually high and the coefficients are far from the Wiener solution. As can
be seen from (2.139), in the case of the adaptive-filter coefficients, the convergence
will follow .N C 1/ geometric decaying curves with ratios rwi D .1� 2��i /. Each
of these curves can be approximated by an exponential envelope with time constant

wi as follows [5]:

rwi D e
�1

wi D 1 � 1


wi
C 1

2Š
2wi
C � � � (2.144)

In general, rwi is slightly smaller than one, specially in the cases of slowly
decreasing modes that correspond to small values �i and �. Therefore,

rwi D .1 � 2��i/ � 1 � 1


wi
(2.145)

then


wi � 1

2��i

for i D 0; 1; : : : ; N .
For the convergence of the MSE, the range of values of� is the same to guarantee

the convergence of the coefficients. In this case, due to the exponent 2k in (2.143),
the geometric decaying curves have ratios given by rei D .1 � 4��i /, that can be
approximated by exponential envelopes with time constants given by


ei � 1

4��i
(2.146)



2.9 Steepest-Descent Algorithm 55

for i D 0; 1; : : : ; N , where it was considered that 4�2�2i 	 1. In the convergence of
both the error and the coefficients, the time required for the convergence depends on
the ratio of the eigenvalues of the input signal. Further discussions on convergence
properties that apply to gradient-type algorithms can be found in Chap. 3.

Example 2.3. The matrix R and the vector p are known for a given experimental
environment:

R D
�

1 0:4045

0:4045 1

�

p D Œ0 0:2939�T

EŒd2.k/� D 0:5

(a) Deduce the equation for the MSE.
(b) Choose a small value for �, and starting the parameters at Œ�1 � 2�T

plot the convergence path of the steepest-descent algorithm in the MSE surface.
(c) Repeat the previous item for the Newton algorithm starting at Œ0 � 2�T .

Solution. (a) The MSE function is given by

� D EŒd2.k/� � 2wT p C wTRw

D �2d � 2Œw1 w2�

�
0

0:2939

�
C Œw1 w2�

�
1 0:4045

0:4045 1

� �
w1
w2

�

After performing the algebraic calculations, we obtain the following result

� D 0:5C w21 C w22 C 0:8090w1w2 � 0:5878w2

(b) The steepest-descent algorithm was applied to minimize the MSE using a
convergence factor � D 0:1=�max, where �max D 1:4045. The convergence
path of the algorithm in the MSE surface is depicted in Fig. 2.8. As can be noted,
the path followed by the algorithm first approaches the main axis (eigenvector)
corresponding to the smaller eigenvalue, and then follows toward the minimum
in a direction increasingly aligned with this main axis.

(c) The Newton algorithm was also applied to minimize the MSE using a conver-
gence factor � D 0:1=�max. The convergence path of the Newton algorithm in
the MSE surface is depicted in Fig. 2.9. The Newton algorithm follows a straight
path to the minimum. ut
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Fig. 2.8 Convergence path of the steepest-descent algorithm
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Fig. 2.9 Convergence path of the Newton algorithm
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2.10 Applications Revisited

In this section, we give a brief introduction to the typical applications where the
adaptive-filtering algorithms are required, including a discussion of where in the real
world these applications are found. The main objective of this section is to illustrate
how the adaptive-filtering algorithms, in general, and the ones presented in the book,
in particular, are applied to solve practical problems. It should be noted that the
detailed analysis of any particular application is beyond the scope of this book.
Nevertheless, a number of specific references are given for the interested reader.
The distinctive feature of each application is the way the adaptive filter input signal
and the desired signal are chosen. Once these signals are determined, any known
properties of them can be used to understand the expected behavior of the adaptive
filter when attempting to minimize the chosen objective function (for example, the
MSE, �).

2.10.1 System Identification

The typical setup of the system identification application is depicted in Fig. 2.10.
A common input signal is applied to the unknown system and to the adaptive filter.
Usually, the input signal is a wideband signal, in order to allow the adaptive filter to
converge to a good model of the unknown system.

Assume the unknown system has impulse response given by h.k/, for k D
0; 1; 2; 3; : : : ;1, and zero for k < 0. The error signal is then given by

e.k/ D d.k/� y.k/

D
1X

lD0
h.l/x.k � l/�

NX

iD0
wi .k/x.k � i/ (2.147)

where wi .k/ are the coefficients of the adaptive filter.

Adaptive
filter

Unknown
system

x(k) e(k)

y(k)

d(k)

+
–

Fig. 2.10 System
identification
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Assuming that x.k/ is a white noise, the MSE for a fixed w is given by

� D EfŒhT x1.k/� wT xNC1.k/�2g
D E

�
hT x1.k/xT1.k/h � 2hT x1.k/xTNC1.k/w C wT xNC1.k/xTNC1.k/w

�

D �2x

1X

iD0
h2.i/� 2�2xhT

�
INC1

01�.NC1/

�
w C wTRNC1w (2.148)

where x1.k/ and xNC1.k/ are the input signal vector with infinite and finite lengths,
respectively.

By calculating the derivative of � with respect to the coefficients of the adaptive
filter, it follows that

wo D hNC1 (2.149)

where

hTNC1 D hT
�

INC1
01�.NC1/

�
(2.150)

If the input signal is a white noise, the best model for the unknown system is
a system whose impulse response coincides with the N C 1 first samples of the
unknown system impulse response. In the cases where the impulse response of
the unknown system is of finite length and the adaptive filter is of sufficient order
(i.e., it has enough number of parameters), the MSE becomes zero if there is no
measurement noise (or channel noise). In practical applications the measurement
noise is unavoidable, and if it is uncorrelated with the input signal, the expected
value of the adaptive-filter coefficients will coincide with the unknown-system
impulse response samples. The output error will of course be the measurement
noise. We can observe that the measurement noise introduces a variance in the
estimates of the unknown system parameters.

Some real world applications of the system identification scheme include
modeling of multipath communication channels [27], control systems [28], seismic
exploration [29], and cancellation of echo caused by hybrids in some communica-
tion systems [30–34], just to mention a few.

2.10.2 Signal Enhancement

In the signal enhancement application, the reference signal consists of a desired
signal x.k/ that is corrupted by an additive noise n1.k/. The input signal of
the adaptive filter is a noise signal n2.k/ that is correlated with the interference
signal n1.k/, but uncorrelated with x.k/. Figure 2.11 illustrates the configuration
of the signal enhancement application. In practice, this configuration is found in
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Adaptive
filter

e(k)n2(k)

x(k) +n1(k)

+
–

Fig. 2.11 Signal enhancement (n1.k/ and n2.k/ are noise signals correlated with each other)

acoustic echo cancellation for auditoriums [35], hearing aids, noise cancellation in
hydrophones [36], cancelling of power line interference in electrocardiography [28],
and in other applications. The cancelling of echo caused by the hybrid in some
communication systems can also be considered a signal enhancement problem [28].

In this application, the error signal is given by

e.k/ D x.k/C n1.k/ �
NX

lD0
wln2.k � l/ D x.k/C n1.k/� y.k/ (2.151)

The resulting MSE is then given by

EŒe2.k/� D EŒx2.k/�C EfŒn1.k/� y.k/�2g (2.152)

where it was assumed that x.k/ is uncorrelated with n1.k/ and n2.k/. The above
equation shows that if the adaptive filter, having n2.k/ as the input signal, is able to
perfectly predict the signal n1.k/, the minimum MSE is given by

�min D EŒx2.k/� (2.153)

where the error signal, in this situation, is the desired signal x.k/.
The effectiveness of the signal enhancement scheme depends on the high

correlation between n1.k/ and n2.k/. In some applications, it is useful to include
a delay of L samples in the reference signal or in the input signal, such that
their relative delay yields a maximum cross-correlation between y.k/ and n1.k/,
reducing the MSE. This delay provides a kind of synchronization between the
signals involved. An example exploring this issue will be presented in the following
chapters.

2.10.3 Signal Prediction

In the signal prediction application, the adaptive-filter input consists of a delayed
version of the desired signal as illustrated in Fig. 2.12. The MSE is given by

� D EfŒx.k/� wT x.k �L/�2g (2.154)



60 2 Fundamentals of Adaptive Filtering
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+
–

z–L

Fig. 2.12 Signal prediction

The minimization of the MSE leads to an FIR filter, whose coefficients are the
elements of w. This filter is able to predict the present sample of the input signal
using as information old samples such as x.k�L/; x.k�L�1/; : : : ; x.k�L�N/.
The resulting FIR filter can then be considered a model for the signal x.k/ when the
MSE is small. The minimum MSE is given by

�min D r.0/� wT
o

2

66666664

r.L/

r.LC 1/

:

:

:

r.LCN/

3

77777775

(2.155)

where wo is the optimum predictor coefficient vector and r.l/ D EŒx.k/x.k � l/�

for a stationary process.
A typical predictor’s application is in linear prediction coding of speech sig-

nals [37], where the predictor’s task is to estimate the speech parameters. These
parameters w are part of the coding information that is transmitted or stored along
with other information inherent to the speech characteristics, such as pitch period,
among others.

The adaptive signal predictor is also used for adaptive line enhancement (ALE),
where the input signal is a narrowband signal (predictable) added to a wideband
signal. After convergence, the predictor output will be an enhanced version of the
narrowband signal.

Yet another application of the signal predictor is the suppression of narrowband
interference in a wideband signal. The input signal, in this case, has the same
general characteristics of the ALE. However, we are now interested in removing
the narrowband interferer. For such an application, the output signal of interest is
the error signal [35].

2.10.4 Channel Equalization

As can be seen from Fig. 2.13, channel equalization or inverse filtering consists
of estimating a transfer function to compensate for the linear distortion caused
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Fig. 2.13 Channel equalization

by the channel. From another point of view, the objective is to force a prescribed
dynamic behavior for the cascade of the channel (unknown system) and the adaptive
filter, determined by the input signal. The first interpretation is more appropriate
in communications, where the information is transmitted through dispersive chan-
nels [33,38]. The second interpretation is appropriate for control applications, where
the inverse filtering scheme generates control signals to be used in the unknown
system [28].

In the ideal situation, where n.k/ D 0 and the equalizer has sufficient order, the
error signal is zero if

W.z/H.z/ D z�L (2.156)

where W.z/ and H.z/ are the equalizer and unknown system transfer functions,
respectively. Therefore, the ideal equalizer has the following transfer function

W.z/ D z�L

H.z/
(2.157)

From the above equation, we can conclude that if H.z/ is an IIR transfer function
with nontrivial numerator and denominator polynomials, W.z/ will also be IIR. If
H.z/ is an all-pole model, W.z/ is FIR. If H.z/ is an all-zero model, W.z/ is an
all-pole transfer function.

By applying the inverse Z-transform to (2.156), we can conclude that the optimal
equalizer impulse response convolved with the channel impulse response produces
as a result an impulse. This means that for zero additional error in the channel,
the output signal y.k/ restores x.k � L/ and, therefore, one can conclude that a
deconvolution process took place.

The delay in the reference signal plays an important role in the equalization
process. Without the delay, the desired signal is x.k/, whereas the signal y.k/ will
be mainly influenced by old samples of the input signal, since the unknown system
is usually causal. As a consequence, the equalizer should also perform the task of
predicting x.k/ simultaneously with the main task of equalizing the channel. The
introduction of a delay alleviates the prediction task, leaving the equalizer free to
invert the channel response. A rule of thumb for choosing the delay was proposed
and analyzed in [28], where it was conjectured that the best delay should be close to
half the time span of the equalizer. In practice, the reader should try different delays.
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In the case the unknown system is not of minimum phase, i.e., its transfer
function has zeros outside the unit circle of the Z plane, the optimum equalizer is
either stable and noncausal, or unstable and causal. Both solutions are unacceptable.
The noncausal stable solution could be better approximated by a causal FIR filter
when the delay is included in the desired signal. The delay forces a time shift in the
ideal impulse response of the equalizer, allowing the time span, where most of the
energy is concentrated, to be in the causal region.

If channel noise signal is present and is uncorrelated with the channel’s input
signal, the error signal and y.k/ will be accordingly noisier. However, it should be
noticed that the adaptive equalizer, in the process of reducing the MSE, disturbs
the optimal solution by trying to reduce the effects of n.k/. Therefore, in a noisy
environment the equalizer transfer function is not exactly the inverse of H.z/.

In practice, the noblest use of the adaptive equalizer is to compensate for the
distortion caused by the transmission channel in a communication system. The main
distortions caused by the channels are high attenuation and intersymbol interference
(ISI). The ISI is generated when different frequency components of the transmitted
signals arrive at different times at the receiver, a phenomenon caused by the
nonlinear group delay of the channel [38]. For example, in a digital communication
system, the time-dispersive channel extends a transmitted symbol beyond the time
interval allotted to it, interfering in the past and future symbols. Under severe ISI,
when short symbol space is used, the number of symbols causing ISI is large.

The channel impulse response is a time spread sequence described by h.k/ with
the received signal being given by

re.k C J / D x.k/h.J /C
kCJX

lD�1; l¤k
x.l/h.k C J � l/C n.k C J / (2.158)

where J denotes the channel time delay (including the sampler phase). The first term
of the above equation corresponds to the desired information, the second term is the
interference of the symbols sent before and after x.k/. The third term accounts for
channel noise. Obviously only the neighboring symbols have significant influence
in the second term of the above equation. The elements of the second term involving
x.l/, for l > k, are called pre-cursor ISI since they are caused by components of
the data signal that reach the receiver before their cursor. On the other hand, the
elements involving x.l/, for l < k, are called post-cursor ISI.

In many situations, the ISI is reduced by employing an equalizer consisting
of an adaptive FIR filter of appropriate length. The adaptive equalizer attempts
to cancel the ISI in the presence of noise. In digital communication, a decision
device is placed after the equalizer in order to identify the symbol at a given instant.
The equalizer coefficients are updated in two distinct circumstances by employing
different reference signals. During the equalizer training period, a previously chosen
training signal is transmitted through the channel and a properly delayed version
of this signal, that is prestored in the receiver end, is used as reference signal.
The training signal is usually a pseudo-noise sequence long enough to allow the
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Fig. 2.14 Decision-feedback equalizer

equalizer to compensate for the channel distortions. After convergence, the error
between the adaptive-filter output and the decision device output is utilized to update
the coefficients. The resulting scheme is the decision-directed adaptive equalizer.
It should be mentioned that in some applications no training period is available.
Usually, in this case, the decision-directed error is used all the time.

A more general equalizer scheme is the decision-feedback equalizer (DFE)
illustrated in Fig. 2.14. The DFE is widely used in situations where the channel
distortion is severe [38, 39]. The basic idea is to feed back, via a second FIR filter,
the decisions made by the decision device that is applied to the equalized signal.
The second FIR filter is preceded by a delay, otherwise there is a delay-free loop
around the decision device. Assuming the decisions were correct, we are actually
feeding back the symbols x.l/, for l < k, of (2.158). The DFE is able to cancel the
post-cursor ISI for a number of past symbols (depending on the order of the FIR
feedback filter), leaving more freedom for the feedforward section to take care of
the remaining terms of the ISI. Some known characteristics of the DFE are [38]:

• The signals that are fed back are symbols, being noise free and allowing
computational savings.

• The noise enhancement is reduced, if compared with the feedforward-only
equalizer.

• Short time recovery when incorrect decisions are made.
• Reduced sensitivity to sampling phase.

The DFE operation starts with a training period where a known sequence is
transmitted through the channel, and the same sequence is used at the receiver as the
desired signal. The delay introduced in the training signal is meant to compensate
for the delay the transmitted signal faces when passing through the channel. During
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the training period the error signal, which consists of the difference between the
delayed training signal and signal y.k/, is minimized by adapting the coefficients
of the forward and feedback filters. After this period, there is no training signal
and the desired signal will consist of the decision device output signal. Assuming
the decisions are correct, this blind way of performing the adaptation is the best
solution to keep track of small changes in the channel behavior.

Example 2.4. In this example we will verify the effectiveness of the Wiener
solution in environments related to the applications of noise cancellation, prediction,
equalization, and identification.

(a) In a noise cancellation environment a sinusoid is corrupted by noise as follows

d.k/ D cos!0k C n1.k/

with

n1.k/ D �an1.k � 1/C n.k/

jaj < 1 and n.k/ is a zero-mean white noise with variance �2n D 1. The input
signal of the Wiener filter is described by

n2.k/ D �bn2.k � 1/C n.k/

where jbj < 1.
(b) In a prediction case the input signal is modeled as

x.k/ D �ax.k � 1/C n.k/

with n.k/ being a white noise with unit variance and jaj < 1.
(c) In an equalization problem a zero-mean white noise signal s.k/ with variance c

is transmitted through a channel with an AR model described by

Ox.k/ D �a Ox.k � 1/C s.k/

with jaj < 1 and the received signal given by

x.k/ D Ox.k/C n.k/

whereas n.k/ is a zero-mean white noise with variance d and uncorrelated with
s.k/.

(d) In a system identification problem a zero-mean white noise signal x.k/ with
variance c is employed as the input signal to identify an AR system whose
model is described by
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v.k/ D �av.k � 1/C x.k/

where jaj < 1 and the desired signal is given by

d.k/ D v.k/C n.k/

Repeat the problem if the system to be identified is an MA whose model is
described by

v.k/ D �ax.k � 1/C x.k/

For all these cases describe the Wiener solution with two coefficients and
comment on the results.

Solution. Some results used in the examples are briefly reviewed. A 2 � 2 matrix
inversion is performed as

R�1 D 1

r11r22 � r12r21
�
r22 �r12

�r21 r11

�

where rij is the element of row i and column j of the matrix R. For two first-order
AR modeled signals x.k/ and v.k/, whose poles are, respectively, placed at �a and
�b with the same white-noise input with unit variance, their cross-correlations are
given by9

EŒx.k/v.k � l/� D .�a/l
1 � ab

for l > 0, and

EŒx.k/v.k � l/� D .�b/�l
1 � ab

for l < 0, are frequently required in the following solutions.

(a) The input signal in this case is given by n2.k/, whereas the desired signal is
given by d.k/. The elements of the correlation matrix are computed as

EŒn2.k/n2.k � l/� D .�b/jlj
1 � b2

The expression for the cross-correlation vector is given by

9Assuming x.k/ and v.k/ are jointly WSS.
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p D
�

EŒ.cos!0k C n1.k//n2.k/�

EŒ.cos!0k C n1.k//n2.k � 1/�
�

D
�

EŒn1.k/n2.k/�

EŒn1.k/n2.k � 1/�

�

D
�

1
1�ab �

2
n

� a
1�ab �

2
n

�
D

�
1

1�ab
� a
1�ab

�

where in the last expression we substituted �2n D 1.
The coefficients corresponding to the Wiener solution are given by

wo D R�1p D
�
1 b

b 1

� �
1

1�ab
� a
1�ab

�
D

�
1
b�a
1�ab

�

The special case where a D 0 provides a quite illustrative solution. In this
case

wo D
�
1

b

�

such that the error signal is given by

e.k/ D d.k/ � y.k/ D cos!0k C n.k/ � wT
o

�
n2.k/

n2.k � 1/

�

D cos!0k C n.k/ � n2.k/ � bn2.k � 1/

D cos!0k C n.k/C bn2.k � 1/� n.k/ � bn2.k � 1/ D cos!0k

As can be observed the cosine signal is fully recovered since the Wiener filter
was able to restore n.k/ and remove it from the desired signal.

(b) In the prediction case the input signal is x.k/ and the desired signal is x.kCL/.
Since

EŒx.k/x.k � L/� D .�a/jLj

1 � a2

the input signal correlation matrix is

R D
�

EŒx2.k/� EŒx.k/x.k � 1/�

EŒx.k/x.k � 1/� EŒx2.k � 1/�

�

D
"

1
1�a2 � a

1�a2
� a
1�a2

1
1�a2

#
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Vector p is described by

p D
�

EŒx.k C L/x.k/�

EŒx.k C L/x.k � 1/�

�
D

2

4
.�a/jLj

1�a2
.�a/jLC1j

1�a2

3

5

The expression for the optimal coefficient vector is easily derived.

wo D R�1p

D .1 � a2/
"

1
1�a2

a
1�a2

a
1�a2

1
1�a2

# 2

4
.�a/L
1�a2

.�a/LC1

1�a2

3

5

D
�
.�a/L
0

�

where in the above equation the value ofL is considered positive. The predictor
result tells us that an estimate Ox.k C L/ of x.k CL/ can be obtained as

Ox.k C L/ D .�a/Lx.k/

According to our model for the signal x.k/, the actual value of x.k C L/ is

x.k C L/ D .�a/Lx.k/C
L�1X

iD0
.�a/in.k � i/

The results show that if x.k/ is an observed data at a given instant of time, the
best estimate of x.kCL/ in terms of x.k/ is to average out the noise as follows

Ox.k C L/ D .�a/Lx.k/C E

"
L�1X

iD0
.�a/in.k � i/

#
D .�a/Lx.k/

since EŒn.k � i/� D 0.
(c) In this equalization problem, matrix R is given by

R D
�

EŒx2.k/� EŒx.k/x.k � 1/�
EŒx.k/x.k � 1/� EŒx2.k � 1/�

�
D

"
1

1�a2 c C d � a
1�a2 c

� a
1�a2 c

1
1�a2 c C d

#

By utilizing as desired signal s.k � L/ and recalling that it is a white noise
and uncorrelated with the other signals involved in the experiment, the cross-
correlation vector between the input and desired signals has the following
expression
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p D
�

EŒx.k/s.k �L/�
EŒx.k � 1/s.k �L/�

�
D

�
.�1/LaLc

.�1/L�1aL�1c

�

The coefficients of the underlying Wiener solution are given by

wo D R�1p D 1

c2

1�a2 C 2 dc
1�a2 C d2

"
1

1�a2 c C d a
1�a2 c

a
1�a2 c

1
1�a2 c C d

# �
.�1/LaLc

.�1/L�1aL�1c

�

D .�1/LaLc
c2

1�a2 C 2 cd
1�a2 C d2

"
c

1�a2 C d � c
1�a2

ac
1�a2 � a�1d � a�1c

1�a2

#

D .�1/LaLc
c2

1�a2 C 2 cd
1�a2 C d2

�
d

�a�1d � a�1c

�

If there is no additional noise, i.e., d D 0, the above result becomes

wo D
�

0

.�1/L�1aL�1.1 � a2/
�

that is, the Wiener solution is just correcting the gain of the previously received
component of the input signal, namely x.k� 1/, while not using its most recent
component x.k/. This happens because the desired signal s.k � L/ at instant
k has a defined correlation with any previously received symbol. On the other
hand, if the signal s.k/ is a colored noise the Wiener filter would have a nonzero
first coefficient in a noiseless environment. In case there is environmental noise,
the solution tries to find a perfect balance between the desired signal modeling
and the noise amplification.

(d) In the system identification example the input signal correlation matrix is
given by

R D
�
c 0

0 c

�
:

With the desired signal d.k/, the cross-correlation vector is described as

p D
�

EŒx.k/d.k/�

EŒx.k � 1/d.k/�

�
D

�
c

�ca
�

The coefficients of the underlying Wiener solution are given by

wo D R�1p D
�
1
c
0

0 1
c

� �
c

�ca
�

D
�
1

�a
�
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Note that this solution represents the best way a first-order FIR model can
approximate an IIR model, since

Wo.z/ D 1 � az�1

and

1

1C az�1 D 1 � az�1 C a2z�2 C � � �

On the other hand, if the unknown model is the described FIR model such
as v.k/ D �ax.k � 1/ C x.k/, the Wiener solution remains the same and
corresponds exactly to the unknown system model.

In all these examples, the environmental signals are considered WSS and
their statistics assumed known. In a practical situation, not only the statistics
might be unknown but the environments are usually nonstationary as well. In
these situations, the adaptive filters come into play since their coefficients vary
with time according to measured signals from the environment. ut

2.10.5 Digital Communication System

For illustration, a general digital communication scheme over a channel consisting
of a subscriber line (telephone line, for example) is shown in Fig. 2.15. In either
end, the input signal is first coded and conditioned by a transmit filter. The filter
shapes the pulse and limits in band the signal that is actually transmitted. The signal
then crosses the hybrid to travel through a dual duplex channel. The hybrid is an
impedance bridge used to transfer the transmit signal into the channel with minimal
leakage to the near-end receiver. The imperfections of the hybrid cause echo that
should be properly cancelled.

In the channel, the signal is corrupted by white noise and crosstalk (leakage
of signals being transmitted by other subscribers). After crossing the channel and
the far-end hybrid, the signal is filtered by the receive filter that attenuates high-
frequency noise and also acts as an antialiasing filter. Subsequently, we have a joint
DFE and echo canceller, where the forward filter and echo canceller outputs are
subtracted. The result after subtracting the decision feedback output is applied to the
decision device. After passing through the decision device, the symbol is decoded.

Other schemes for data transmission in subscriber line exist [33]. The one shown
here is for illustration purposes, having as special feature the joint equalizer and
echo canceller strategy. The digital subscriber line (DSL) structure shown here has
been used in integrated services digital network (ISDN) basic access that allows a
data rate of 144 Kbits/s [33]. Also, a similar scheme is employed in the high bit
rate digital subscriber line (HDSL) [32,40] that operates over short and conditioned
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loops [41, 42]. The latter system belongs to a broad class of digital subscriber line
collectively known as XDSL.

In wireless communications, the information is transported by propagating elec-
tromagnetic energy through the air. The electromagnetic energy is radiated to the
propagation medium via an antenna. In order to operate wireless transmissions, the
service provider requires authorization to use a radio bandwidth from government
regulators. The demand for wireless data services is more than doubling each year
leading to foreseeable spectrum shortage in the years to come. As a consequence, all
efforts to maximize the spectrum usage is highly desirable and for sure the adaptive
filtering techniques play an important role in achieving this goal. Several examples
in the book illustrate how the adaptive filters are employed in many communication
systems so that the readers can understand some applications in order to try some
new they envision.

2.11 Concluding Remarks

In this chapter, we described some of the concepts underlying the adaptive filtering
theory. The material presented here forms the basis to understand the behavior of
most adaptive-filtering algorithms in a practical implementation. The basic concept
of the MSE surface searching algorithms was briefly reviewed, serving as a starting
point for the development of a number of practical adaptive-filtering algorithms
to be presented in the following chapters. We illustrated through several examples
the expected Wiener solutions in a number of distinct situations. In addition, we
presented the basic concepts of linearly constrained Wiener filter required in array
signal processing. The theory and practice of adaptive signal processing is also the
main subject of some excellent books such as [28, 43–51].

2.12 Problems

1. Suppose the input signal vector is composed by a delay line with a single input
signal, compute the correlation matrix for the following input signals:

(a)

x.k/ D sin

�
6
k

�
C cos


�
4
k

�
C n.k/

(b)
x.k/ D an1.k/ cos .!0k/C n2.k/

(c)
x.k/ D an1.k/ sin .!0k C n2.k//
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(d)
x.k/ D �a1x.k � 1/� a2x.k � 2/C n.k/

(e)

x.k/ D
4X

iD0
0:25n.k � i/

(f)
x.k/ D an.k/e|!0k

In all cases, n.k/; n1.k/, and n2.k/ are white-noise processes, with zero mean
and with variances �2n , �2n1 , and �2n2 , respectively. These random signals are
considered independent.

2. Consider two complex random processes represented by x.k/ and y.k/.

(a) Derive �2xy.k; l/ D EŒ.x.k/ � mx.k//.y.l/ � my.l//� as a function of
rxy.k; l/, mx.k/ andmy.l/.

(b) Repeat (a) if x.k/ and y.k/ are jointly WSS.
(c) Being x.k/ and y.k/ orthogonal, in which conditions are they not corre-

lated?

3. For the correlation matrices given below, calculate their eigenvalues, eigenvec-
tors, and conditioning numbers.

(a)

R D 1

4

2

664

4 3 2 1

3 4 3 2

2 3 4 3

1 2 3 4

3

775

(b)

R D

2
664

1 0:95 0:9025 0:857375

0:95 1 0:95 0:9025

0:9025 0:95 1 0:95

0:857375 0:9025 0:95 1

3
775

(c)

R D 50�2n

2
664

1 0:9899 0:98 0:970

0:9899 1 0:9899 0:98

0:98 0:9899 1 0:9899

0:970 0:98 0:9899 1

3
775
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(d)

R D

2
664

1 0:5 0:25 0:125

0:5 1 0:5 0:25

0:25 0:5 1 0:5

0:125 0:25 0:5 1

3
775

4. For the correlation matrix given below, calculate its eigenvalues and eigenvec-
tors, and form the matrix Q.

R D 1

4

�
a1 a2
a2 a1

�

5. The input signal of a second-order adaptive filter is described by

x.k/ D ˛1x1.k/C ˛2x2.k/

where x1.k/ and x2.k/ are first-order AR processes and uncorrelated between
themselves having both unit variance. These signals are generated by applying
distinct white noises to first-order filters whose poles are placed at a and �b,
respectively.

(a) Calculate the autocorrelation matrix of the input signal.
(b) If the desired signal consists of ˛3x2.k/, calculate the Wiener solution.

6. The input signal of a first-order adaptive filter is described by

x.k/ D p
2x1.k/C x2.k/C 2x3.k/

where x1.k/ and x2.k/ are first-order AR processes and uncorrelated between
themselves having both unit variance. These signals are generated by applying
distinct white noises to first-order filters whose poles are placed at �0:5 andp
2
2

, respectively. The signal x3.k/ is a white noise with unit variance and
uncorrelated with x1.k/ and x2.k/.

(a) Calculate the autocorrelation matrix of the input signal.
(b) If the desired signal consists of 1

2
x3.k/, calculate the Wiener solution.

7. Repeat the previous problem if the signal x3.k/ is exactly the white noise that
generated x2.k/.

8. In a prediction case a sinusoid is corrupted by noise as follows

x.k/ D cos!0k C n1.k/

with

n1.k/ D �an1.k � 1/C n.k/
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where jaj < 1. For this case describe the Wiener solution with two coefficients
and comment on the results.

9. Generate the ARMA processes x.k/ described below. Calculate the variance of
the output signal and the autocorrelation for lags 1 and 2. In all cases, n.k/ is
zero-mean Gaussian white noise with variance 0.1.

(a)

x.k/ D 1:9368x.k � 1/� 0:9519x.k � 2/C n.k/

�1:8894n.k � 1/C n.k � 2/

(b)

x.k/ D �1:9368x.k � 1/� 0:9519x.k � 2/C n.k/

C1:8894n.k � 1/C n.k � 2/

Hint: For white noise generation consult for example [15, 16].
10. Generate the AR processes x.k/ described below. Calculate the variance of

the output signal and the autocorrelation for lags 1 and 2. In all cases, n.k/ is
zero-mean Gaussian white noise with variance 0.05.

(a)
x.k/ D �0:8987x.k � 1/� 0:9018x.k � 2/C n.k/

(b)
x.k/ D 0:057x.k � 1/C 0:889x.k � 2/C n.k/

11. Generate the MA processes x.k/ described below. Calculate the variance of
the output signal and the autocovariance matrix. In all cases, n.k/ is zero-mean
Gaussian white noise with variance 1.

(a)

x.k/ D 0:0935n.k/C 0:3027n.k � 1/C 0:4n.k � 2/

C 0:3027n.k � 4/C 0:0935n.k � 5/

(b)
x.k/ D n.k/ � n.k � 1/C n.k � 2/� n.k � 4/C n.k � 5/

(c)

x.k/ D n.k/C 2n.k � 1/C 3n.k � 2/C 2n.k � 4/C n.k � 5/

12. Show that a process generated by adding two AR processes is in general an
ARMA process.
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13. Determine if the following processes are mean ergodic:

(a)
x.k/ D an1.k/ cos.!0k/C n2.k/

(b)
x.k/ D an1.k/ sin.!0k C n2.k//

(c)
x.k/ D an.k/e2|!0k

In all cases, n.k/; n1.k/, and n2.k/ are white-noise processes, with zero
mean and with variances �2n , �2n1 , and �2n2 , respectively. These random
signals are considered independent.

14. Show that the minimum (maximum) value of (2.69) occurs when wi D 0 for
i ¤ j and �j is the smallest (largest) eigenvalue, respectively.

15. Suppose the matrix R and the vector p are known for a given experimental
environment. Compute the Wiener solution for the following cases:

(a)

R D 1

4

2
664

4 3 2 1

3 4 3 2

2 3 4 3

1 2 3 4

3
775

p D
�
1

2

3

8

2

8

1

8

�T

(b)

R D

2

664

1 0:8 0:64 0:512

0:8 1 0:8 0:64

0:64 0:8 1 0:8

0:512 0:64 0:8 1

3

775

p D 1

4
Œ0:4096 0:512 0:64 0:8�T

(c)

R D 1

3

2

4
3 �2 1

�2 3 �2
1 �2 3

3

5

p D
�
�2 1 � 1

2

�T
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16. For the environments described in the previous problem, derive the updating
formula for the steepest-descent method. Considering that the adaptive-filter
coefficients are initially zero, calculate their values for the first ten iterations.

17. Repeat the previous problem using the Newton method.
18. Calculate the spectral decomposition for the matrices R of Problem 15.
19. Calculate the minimum MSE for the examples of Problem 15 considering that

the variance of the reference signal is given by �2d .
20. Derive (2.112).
21. Derive the constraint matrix C and the gain vector f that impose the condition

of linear phase onto the linearly constrained Wiener filter.
22. Show that the optimal solutions of the LCMV filter and the GSC filter with

minimum norm are equivalent and related according to wLCMV D TwGSC,
where T D ŒC B� is a full-rank transformation matrix with CTB D 0 and

wLCMV D R�1C.CTR�1C/�1f

and

wGSC D
�

.CTC/�1f
�.BTRB/�1BTRC.CT C/�1f

�

23. Calculate the time constants of the MSE and of the coefficients for the examples
of Problem 15 considering that the steepest-descent algorithm was employed.

24. For the examples of Problem 15, describe the equations for the MSE surface.
25. Using the spectral decomposition of a Hermitian matrix show that

R
1
N D Q�

1
N QH D

NX

iD0
�

1
N

i qiq
H
i

26. Derive the complex steepest-descent algorithm.
27. Derive the Newton algorithm for complex signals.
28. In a signal enhancement application, assume that n1.k/ D n2.k/ � h.k/, where

h.k/ represents the impulse response of an unknown system. Also, assume that
some small leakage of the signal x.k/, given by h0.k/ � x.k/, is added to the
adaptive-filter input. Analyze the consequences of this phenomenon.

29. In the equalizer application, calculate the optimal equalizer transfer function
when the channel noise is present.
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