
Chapter 17
Kalman Filters

17.1 Introduction

This section provides a brief description of Kalman filter that can be considered
an extension of the Wiener filtering concept [4]. The Kalman filter has as objective
the minimization of the estimation square error of a nonstationary signal buried in
noise. The estimated signal itself is modeled utilizing the state–space formulation
[1] describing its dynamical behavior. In summary, Kalman filtering deals with
random processes described using state–space modeling which generate signals that
can be measured and processed utilizing time recursive estimation formulas. The
presentation here is brief and addresses the case of signals and noises represented in
vector form; for more details in this subject the reader can consult many books
available presenting Kalman filtering, including [3, 5]. There are many different
ways to describe the Kalman filtering problem, and to derive its corresponding
relations, here we follow the presentations of [2, 6].

17.2 State–Space Model

A convenient form of representing some dynamic systems is through what is called
the state–space representation [1]. In such description, the outputs of the memory
elements are considered as the system states. The state signals are collected in a
vector denoted as x.k/ which are in turn generated from its previous state x.k � 1/

and from an external signal vector denoted as n.k/. The observed or measured
signals are collected in another vector denoted as y.k/ whose elements originate
from linear combinations of the previous state variables and of external signals
represented in n1.k/. If we know the values of the external signals n.k/ and n1.k/,
we can determine the current values of the system states, which will be the delay
inputs, and the system observation vector as follows:

�
x.k/ D A.k � 1/x.k � 1/ C B.k/n.k/

y.k/ D CT .k/x.k � 1/ C D.k/n1.k/
(17.1)
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Fig. 17.1 State-space model for Kalman filtering formulation

where x.k/ is the .N C 1/ � 1 vector of the state variables. If M is the number of
system inputs and L is the number of system outputs, we then have that A.k � 1/

is .N C 1/ � .N C 1/, B.k/ is .N C 1/ � M , C.k/ is .N C 1/ � L, and D.k/ is
L � L.1

Figure 17.1 shows the state–space system which generates the observation vector
y.k/ having as inputs the noise vectors n.k/ and n1.k/, where the state variables
x.k/ are processes generated with excitation noise n.k/.

The recursive solution of (17.1) can be described as

x.k/ D
k�1Y
lD0

A.l/x.0/ C
kX

iD1

"
k�1Y
lDi

A.l/

#
B.i/n.i/ (17.2)

where
Qk�1

lDk A.l/ D 1.

17.2.1 Simple Example

Let’s describe a particular example where we assume the signal x.k/ is a sample
of an autoregressive process generated from the output of a system described by a
linear difference equation given by

x.k/ D
N C1X
iD1

�ai .k � 1/x.k � i/ C n.k/ (17.3)

where n.k/ is a white noise. The coefficients ai .k � 1/, for i D 1; 2 : : : ; N C 1,
are the time-varying parameters of the AR process. As part of the Kalman filtering
procedure is the estimation of x.k/ from noisy measurements denoted as yl .k/ for
l D 1; 2; : : : ; L.

1In standard state–space formulation the matrix D.k/ represents a feedforward connection between
the input and the output of the dynamic system, in this discussion this matrix in not a feedforward
matrix and is considered to be identity.
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We can collect a sequence of signals to be estimated and noise measurements in
vector forms as

x.k/ D

2
6664

x.k/

x.k � 1/
:::

x.k � N /

3
7775

y.k/ D

2
6664

y1.k/

y2.k/
:::

yL.k/

3
7775 (17.4)

where L represents the number of observations collected in y.k/.
Each entry of the observation vector is considered to be generated through the

following model:

yl .k/ D cT
l .k/x.k � 1/ C n1;l .k/ (17.5)

where n1;l .k/ for l D 1; 2; : : : ; L are also white noises uncorrelated with each other
and with n.k/.

Applying the state–space formulation to the particular set of (17.3) and (17.5)
leads to a block of state variables originating from an autoregressive process
described by

x.k/ D

2
6664

x.k/

x.k � 1/
:::

x.k � N /

3
7775

D

2
6666664

�a1.k � 1/ �a2.k � 1/ � � � �aN .k � 1/ �aN C1.k � 1/

1 0 � � � 0 0

0 1 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � 1 0

3
7777775

2
6664

x.k � 1/

x.k � 2/
:::

x.k � N � 1/

3
7775

C

2
6664

1

0
:::

0

3
7775 n.k/

y.k/ D

2
6664

cT
1 .k/

cT
2 .k/

:::

cT
L.k/

3
7775

2
6664

x.k � 1/

x.k � 2/
:::

x.k � N � 1/

3
7775 C n1.k/ (17.6)
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where for this case of single-input and multiple-output system B.k/ is .N C1/�M

whose only nonzero element is the entry .1; 1/ that equals one, C.k/ is .N C1/�L,
and D.k/ is just an identity matrix since the measurement noise contributes to the
elements of the observation vector in an uncoupled form.

17.3 Kalman Filtering

In the following discussion we derive the Kalman filter for the general state–space
description of (17.1). For that it is assumed we know

Rn1.k/ D EŒn1.k/nT
1 .k/� (17.7)

Rn.k/ D EŒn.k/nT .k/� (17.8)

A.k � 1/ and C.k/, and that n.k/ and n1.k/ are zero-mean white processes and
uncorrelated with each other.

By assuming that we have the measurements y.k/ available and that we employ
all the data available up to a given iteration, we seek the optimal estimate of the state
vector x.k/, denoted by Ox.kjk/. As justified along the Kalman filtering derivation,
the optimal solution has the following general form:

Ox.kjk/ D A.k�1/Ox.k�1jk�1/ C K.k/
�
y.k/�CT .k/A.k � 1/Ox.k � 1jk � 1/

�
(17.9)

where K.k/ is the .N C 1/ � L matrix called Kalman gain. The reader can notice
that:

• The term A.k � 1/Ox.k � 1jk � 1/ tries to bring the contribution of the previous
estimation of the state variable to the current one, as suggests the state–space
equation (17.1).

• The term
�
y.k/ � CT .k/A.k � 1/Ox.k � 1jk � 1/

�
is a correction term consisting

of the difference between the observation vector and its estimate given by
CT .k/A.k � 1/Ox.k � 1jk � 1/, which in turn is a function the previous state-
variable estimate.

• The Kalman gain aims at filtering out estimation errors and noise so that the state
variable gets the best possible correction term, which minimizes the MSE.

In order to derive the optimal solution for the Kalman gain, let’s first consider
two cases where the estimate of x.k/ is computed using observation data available
until iteration k and another until iteration k � 1, denoted by Ox.kjk/ and Ox.kjk � 1/,
respectively. The estimation error vectors in these cases are defined by

e.kjk/ D x.k/ � Ox.kjk/ (17.10)

e.kjk � 1/ D x.k/ � Ox.kjk � 1/ (17.11)
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These errors have covariance matrices defined as

Re.kjk/ D EŒe.kjk/eT .kjk/� (17.12)

Re.kjk � 1/ D EŒe.kjk � 1/eT .kjk � 1/� (17.13)

Given an instant k � 1 when the information Ox.k � 1jk � 1/ and Re.k � 1jk � 1/

are available, we first try to estimate Ox.kjk � 1/ which does not require the current
observation. Whenever a new observation y.k/ is available, Ox.kjk/ is estimated.

According to (17.1), at a given iteration the actual state–space vector evolves as

x.k/ D A.k � 1/x.k � 1/ C B.k/n.k/ (17.14)

Since the elements of n.k/ are zero mean, a possible unbiased MSE estimate for
x.k/ is provided by

Ox.kjk � 1/ D A.k � 1/Ox.k � 1jk � 1/ (17.15)

since the previous estimate Ox.k � 1jk � 1/ is available and A.k � 1/ is assumed
known.

As a result, the state-variable estimation error when the last available observation
is related to iteration k � 1 is given by

e.kjk � 1/ D x.k/ � Ox.kjk � 1/

D A.k � 1/x.k � 1/ C B.k/n.k/ � A.k � 1/Ox.k � 1jk � 1/

D A.k � 1/e.k � 1jk � 1/ C B.k/n.k/ (17.16)

Assuming that EŒe.k � 1jk � 1/� D 0, meaning that Ox.k � 1jk � 1/ is an unbiased
estimate of x.k � 1/, and recalling that the elements of n.k/ are white noise with
zero mean, then it is possible to conclude that

EŒe.kjk � 1/� D 0 (17.17)

so that Ox.kjk � 1/ is also an unbiased estimate of x.k/.
The covariance matrix of e.kjk � 1/ can be expressed as follows:

Re.kjk � 1/ D EŒe.kjk � 1/eT .kjk � 1/�

D A.k � 1/EŒe.k � 1jk � 1/eT .k � 1jk � 1/�AT .k � 1/

CB.k/EŒn.k/nT .k/�BT .k/

D A.k � 1/Re.k � 1jk � 1/AT .k � 1/ C B.k/Rn.k/BT .k/

(17.18)



628 17 Kalman filters

The next step is to estimate Ox.kjk/ from Ox.kjk � 1/. In this case we use a linear
filtering of the most recent estimate of the state variable Ox.kjk � 1/ properly
combined with another linear filtered contribution of the most recent measurement
vector y.k/. The resulting estimation expression for Ox.kjk/ has the following form

Ox.kjk/ D QK.k/Ox.kjk � 1/ C K.k/y.k/ (17.19)

The challenge now is to compute the optimal expressions for the linear filtering
matrices QK.k/ and K.k/.

The state-variable estimation error e.kjk/ that includes the last available obser-
vation can then be described as

e.kjk/ D x.k/ � QK.k/Ox.kjk � 1/ � K.k/y.k/ (17.20)

This expression can be rewritten in a more convenient form by replacing Ox.kjk � 1/

using the first relation of (17.16) and replacing y.k/ by its state–space formulation
of (17.6). The resulting relation is

e.kjk/ D x.k/ C QK.k/ Œe.kjk � 1/ � x.k/� � K.k/
�
CT .k/x.k/ C n1.k/

�
D �

I � QK.k/ � K.k/CT .k/
�

x.k/ C QK.k/e.kjk � 1/ � K.k/n1.k/

(17.21)

We know that EŒn1.k/� D 0 and that EŒe.kjk � 1/� D 0 since Ox.kjk � 1/ is an
unbiased estimate of x.k/. However, Ox.kjk/ should also be an unbiased estimate of
x.k/, that is, EŒe.kjk/� D 0. The latter relation is true if we choose

QK.k/ D I � K.k/CT .k/ (17.22)

so that the first term in the last expression of (17.21) becomes zero.
By replacing (17.22) in (17.19), the estimate of the state variable using the current

measurements becomes

Ox.kjk/ D �
I � K.k/CT .k/

� Ox.kjk � 1/ C K.k/y.k/

D Ox.kjk � 1/ C K.k/
�
y.k/ � CT .k/Ox.kjk � 1/

�
(17.23)

where according to (17.21) and (17.22) the corresponding estimation error vector is
described by

e.kjk/ D �
I � K.k/CT .k/

�
e.kjk � 1/ � K.k/n1.k/

D QK.k/e.kjk � 1/ � K.k/n1.k/ (17.24)

where the last equality highlights the connection with (17.19).
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The covariance matrix of e.kjk/ can then be expressed as

Re.kjk/ D EŒe.kjk/eT .kjk/�

D �
I � K.k/CT .k/

�
Re.kjk � 1/

�
I � K.k/CT .k/

�T C K.k/Rn1.k/KT .k/

D �
I � K.k/CT .k/

�
Re.kjk � 1/

� ˚�
I � K.k/CT .k/

�
Re.kjk � 1/C.k/ � K.k/Rn1.k/

�
KT .k/ (17.25)

The trace of this covariance matrix determines how good is the estimate of the state
variables at a given iteration. As a result, the Kalman gain should be designed in
order to minimize the trace of Re.kjk/ shown as follows, since it corresponds to the
estimation error variance. Defining

�K D trŒRe.kjk/� (17.26)

it then follows that2

@�K

@K.k/
D �2

�
I � K.k/CT .k/

�
Re.kjk � 1/C.k/ C 2K.k/Rn1.k/ (17.27)

By equating this derivative with zero it is possible to simplify (17.25) since its last
term becomes zero, allowing the update to the covariance matrix to have a rather
simple form given by

Re.kjk/ D �
I � K.k/CT .k/

�
Re.kjk � 1/ (17.28)

The main purpose of (17.27) is of course to calculate the Kalman gain whose
expression is given by

K.k/ D Re.kjk � 1/C.k/
�
CT .k/Re.kjk � 1/C.k/ C Rn1.k/

��1
(17.29)

Now we have all the expressions required to describe the Kalman filtering algorithm.
First we should initialize Ox.0j0/ with x.0/ if available, otherwise generate a zero-
mean white Gaussian noise vector. Then initialize the error covariance matrix as
Re.0j0/ D x.0/xT .0/. After initialization the algorithm computes Ox.kjk � 1/ as per
(17.15) then the error covariance Re.kjk � 1/ using (17.18). Next we calculate the
Kalman gain as in (17.29) and update the estimate Ox.kjk/ using (17.23) which now
takes the form

Ox.kjk/ D Ox.kjk � 1/ C K.k/
�
y.k/ � CT .k/Ox.kjk � 1/

�
D Ox.kjk � 1/ C K.k/ Œy.k/ � Oy.kjk � 1/� (17.30)

2It was used the facts that @trŒAB�

@A D BT and @trŒABAT �

@A D 2AB, and that Re.kjk � 1/ and Rn1 .k/

are symmetric matrices.



630 17 Kalman filters

Algorithm 17.1 Kalman filter
Initialization

Ox.0j0/ D x.0/ Re.0j0/ D x.0/xT .0/

Do for k � 1
Ox.kjk � 1/ D A.k � 1/Ox.k � 1jk � 1/

Re.kjk � 1/ D A.k � 1/Re.k � 1jk � 1/AT .k � 1/ C B.k/Rn.k/BT .k/

K.k/ D Re.kjk � 1/C.k/
�
CT .k/Re.kjk � 1/C.k/ C Rn1 .k/

��1

Ox.kjk/ D Ox.kjk � 1/ C K.k/
�
y.k/ � CT .k/Ox.kjk � 1/

�
Re.kjk/ D �

I � K.k/CT .k/
�

Re.kjk � 1/

K k( ) z–1I

CT k( )

y k( )
x k|k( )

x k|k( –1)

x k |k( –1 –1)+ +
^

^

^

A k( -1)

–

Fig. 17.2 Kalman filtering structure

where in the first expression we used (17.15), and in the second expression we
observe that the term CT .k/Ox.kjk � 1/ represents an unbiased estimate of y.k/

denoted as Oy.kjk � 1/. Finally (17.28) updates the error covariance Re.kjk/

to include the current measurement contribution. Algorithm 17.1 describes the
Kalman filtering procedure. Figure 17.2 illustrates how the building blocks of the
Kalman filtering algorithm interact among themselves. As can be observed, from the
measurement signal y.k/ we perform the best possible estimate of the state variable
Ox.kjk/. The Kalman filter solution corresponds to the optimal minimum MSE
estimator whenever the noise and the state signal are jointly Gaussian, otherwise
it is the optimal linear minimum MSE solution, see [5] for details.

The complex version of the Kalman filter algorithm is almost identical to
Algorithm 17.1 and can be derived by replacing xT .0/ by xH .0/, CT .k/ by CH .k/,
and AT .k � 1/ by AH .k � 1/.

Example 17.1. In a nonstationary environment the optimal coefficient vector is
described by

wo.k/ D 0:9wo.k � 1/ � 0:81wo.k � 2/ C nw.k/

for k � 1, where nw.k/ is a zero-mean Gaussian white processes with variance
0:64. Assume wo.0/ D wo.�1/ D 0.

Assume this time-varying coefficient is observed through a noisy measurement
described by

y.k/ D 0:9wo.k/ C n1.k/
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Fig. 17.3 Tracking performance of the Kalman filter
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Fig. 17.4 Noisy measurement signal

where n1.k/ is another zero-mean Gaussian white processes with variance 0:16.
Run the Kalman filter algorithm to estimate wo.k/ from y.k/. Plot wo.k/, its

estimate Owo.k/ and y.k/.

Solution. The results presented correspond to the average of 200 independent runs
of the Kalman filter algorithm. Figure 17.3 shows the signal wo.k/ being tracked
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by its estimate Owo.k/ from iteration 900 to 1;000, whereas Fig. 17.4 illustrates the
measurement signal y.k/ from where Owo.k/ was computed. As can be observed, the
Kalman filter algorithm is able to track quite closely the signal wo.k/ from noisy
measurements given by y.k/. ut

17.4 Kalman Filter and RLS

As observed in the previous section, the Kalman filtering formulation requires
the knowledge of the state–space model generating the observation vector. Such
information is not available in a number of adaptive-filtering setups but is quite
common in problems related to tracking targets, positioning of dynamic systems,
and prediction and estimation of time-varying phenomena, just to mention a few.
However, a proper analysis of the Kalman filtering setup allows us to disclose some
links with the RLS algorithms. These links are the subject of this section.

Let’s start by observing that in the RLS context one tries to estimate the unknown
system parameters denoted as wo.k/ through the adaptive-filtering coefficients
w.k/. The equivalent operation in Kalman filtering is the estimation of x.k/ given
by Ox.kjk/. The reference signal in the RLS case is d.k/ corresponding to the scalar
version of y.k/ denoted as y.k/ in the Kalman case. The estimate of y.k/ is given
by Oy.kjk � 1/ D cT .k/Ox.kjk � 1/ since matrix CT .k/ is a row vector in the single
output case. As such, it is easy to infer that Oy.kjk � 1/ corresponds to the adaptive-
filter output denoted as y.k/ in the RLS case.

Equation (5.9) repeated here for convenience

w.k/ D w.k � 1/ C e.k/SD.k/x.k/ (17.31)

is meant for coefficient update in the RLS algorithms. This equation is equivalent to

Ox.kjk/ D Ox.kjk � 1/ C k.k/
�
y.k/ � cT .k/Ox.kjk � 1/

�
D Ox.kjk � 1/ C k.k/ .y.k/ � Oy.kjk � 1//

D Ox.kjk � 1/ C k.k/ey.k/ (17.32)

where ey.k/ is an a priori error in the estimate of y.k/. It can be observed that the
Kalman gain matrix K.k/ becomes a vector denoted as k.k/. By comparing (17.32)
with (17.31), we can infer that k.k/ is equivalent to SD.k/x.k/.

The updating of the Kalman gain in the scalar output case is given by

k.k/ D Re.kjk � 1/c.k/
�
cT .k/Re.kjk � 1/c.k/ C rn1.k/

��1
(17.33)
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where rn1.k/ is the additional noise variance. Again by comparing (17.32) with
(5.5), we can infer that k.k/ is equivalent to

SD.k/x.k/ D 1

�

�
SD.k � 1/ � SD.k � 1/x.k/xT .k/SD.k � 1/

� C xT .k/SD.k � 1/x.k/

	
x.k/

D SD.k � 1/x.k/

� C xT .k/SD.k � 1/x.k/

D
1
�

SD.k � 1/x.k/

1 C 1
�

xT .k/SD.k � 1/x.k/
(17.34)

Now if we assume that the measurement noise in (17.33) has unit variance, it is
straightforward to observe by comparing (17.33) and (17.34) that Re.kjk � 1/ plays
the role of 1

�
SD.k � 1/ in the RLS algorithm.

The related quantities in the specialized Kalman filter and the RLS algorithm
disclosed so far are

x.k/ ” wo.k/

y.k/ ” d.k/

Oy.kjk � 1/ ” y.k/

Ox.kjk/ ” w.k/

ey.k/ ” e.k/

k.k/ ” SD.k/x.k/

Re.kjk � 1/ ” 1

�
SD.k � 1/ (17.35)

These relations show that given that x.k/ in the Kalman filter algorithm follows the
pattern of wo.k/ and rn1.k/ has unit variance (compare (17.33) and (17.34)), the
Kalman filter and the RLS algorithms should lead to similar solutions.

As happens with the conventional RLS algorithm, the Kalman filter algorithm
faces stability problems when implemented in finite precision mainly related to
the ill-conditioning of the estimation error covariance matrix Re.kjk/. In prac-
tical implementations this matrix could be updated in a factorized form such as
Ue.kjk/De.kjk/UT

e .kjk/, where Ue.kjk/ is upper triangular with ones on the
diagonal and De.kjk/ is a diagonal matrix.

References

1. P.S.R. Diniz, E.A.B. da Silva, S.L. Netto, Digital Signal Processing: System Analysis and
Design, 2nd edn. (Cambridge University Press, Cambridge, 2010)

2. M.H. Hayes, Statistical Digital Signal Processing and Modeling (Wiley, New York, 1996)



634 17 Kalman filters

3. T. Kailath, A.H. Sayed, B. Hassibi, Linear Estimation (Prentice Hall, Englewood Cliffs, 2000)
4. R.E. Kalman, A new approach to linear filtering and prediction problem. Trans. ASME J. Basic

Eng. 82, 34–45 (1960)
5. S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice Hall,

Englewood Cliffs, 1993)
6. D.G. Manolakis, V.K. Ingle, S.M. Kogon, Statistical and Adaptive Signal Processing (McGraw

Hill, New York, 2000)


	Chapter
17 Kalman filters
	17.1 Introduction
	17.2 State–Space Model
	17.2.1 Simple Example

	17.3 Kalman Filtering
	17.4 Kalman Filter and RLS
	References


