
Chapter 16
Quantization Effects in the RLS Algorithm

16.1 Introduction

In this chapter, several aspects of the finite-wordlength effects in the RLS algorithm
are discussed for the cases of implementation with fixed- and floating-point
arithmetic [1, 3–6, 8, 9].

16.2 Error Description

All the elements of matrices and vectors in the RLS algorithm will deviate from
their correct values due to quantization effects. The error generated in any individual
quantization is considered to be a zero-mean random variable that is independent of
any other error and quantities related to the adaptive-filter algorithm. The variances
of these errors depend on the type of quantization and arithmetic that will be applied
in the algorithm implementation.

The errors in the quantities related to the conventional RLS algorithm are
defined by

ne.k/ D e.k/ � e.k/Q (16.1)

n .k/ D SD.k � 1/Qx.k/ � ŒSD.k � 1/Qx.k/�Q (16.2)

NSD.k/ D SD.k/ � SD.k/Q (16.3)

nw.k/ D w.k/ � w.k/Q (16.4)

ny.k/ D y.k/ � y.k/Q (16.5)

n".k/ D ".k/� ".k/Q (16.6)

where the subscript Q denotes the quantized form of the given matrix, vector, or
scalar.

P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation,
DOI 10.1007/978-1-4614-4106-9 16, © Springer Science+Business Media New York 2013

605



606 16 Quantization Effects in the RLS Algorithm

It is assumed that the input signal and desired signal suffer no quantization;
so only quantizations of internal computations are taken into account. With the
above definitions, the following relations describe the computational error in some
quantities of interest related to the RLS algorithm:

e.k/Q D d.k/ � xT .k/w.k � 1/Q � ne.k/ (16.7)

w.k/Q D w.k � 1/Q C SD.k/Qx.k/e.k/Q � nw.k/ (16.8)

where ne.k/ is the noise sequence due to quantization in the inner product
xT .k/w.k � 1/Q and nw.k/ is a noise vector due to quantization in the product
SD.k/Qx.k/e.k/Q.

The development here is intended to study the algorithm behavior when the
internal signals, vectors, and matrices are available in quantized form as happens in
a practical implementation. This means that, for example in Algorithm 5.2, all the
information needed from the previous time interval .k � 1/ to update the adaptive
filter at instant k are available in quantized form.

Now we can proceed with the analysis of the deviation in the coefficient vector
generated by the quantization error. By defining

�w.k/Q D w.k/Q � wo (16.9)

and considering that

d.k/ D xT .k/wo C n.k/

then it follows that

e.k/Q D �xT .k/�w.k � 1/Q � ne.k/C n.k/ (16.10)

and

�w.k/Q D �w.k � 1/Q C SD.k/Qx.k/Œ�xT .k/�w.k � 1/Q � ne.k/C n.k/�

�nw.k/ (16.11)

(16.11) can be rewritten as follows:

�w.k/Q D ŒI � SD.k/Qx.k/xT .k/��w.k � 1/Q C n0w.k/ (16.12)

where

n0w.k/ D SD.k/Qx.k/Œn.k/ � ne.k/� � nw.k/ (16.13)
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Algorithm 16.1 RLS algorithm including quantization
Initialization
SD.�1/ D ıI
where ı can be the inverse of an estimate of the input signal power.
x.�1/ D w.�1/ D Œ0 0 : : : 0�T

Do for k � 0

e.k/Q D d 0.k/� xT .k/w.k � 1/Q � ne.k/C n.k/

 .k/Q D SD.k � 1/Qx.k/� n .k/

SD.k/Q D 1
�

�
SD.k � 1/Q �  .k/Q 

T
.k/Q

�C 
T
.k/Qx.k/

�
� NSD .k/

w.k/Q D w.k � 1/Q C e.k/QSD.k/Qx.k/� nw.k/
If necessary compute
y.k/Q D wT .k/Qx.k/� ny.k/

".k/Q D d.k/� yQ.k/

The solution of (16.12) can be calculated as

�w.k/Q D
kY
iD0

�
I � SD.i/Qx.i/xT .i/

�
�w.�1/Q

C
kX
iD0

8<
:

kY
jDiC1

ŒI � SD.j /Qx.j /xT .j /�

9=
; n0w.i/ (16.14)

where in the last term of the above equation for i D k, we consider that

kY
jDkC1

Œ�� D 1

Now, if we rewrite Algorithm 5.2 taking into account that any calculation in
the present updating generates quantization noise, we obtain Algorithm 16.1 that
describes the RLS algorithm with quantization and additional noise taken into
account. Notice that Algorithm 16.1 is not a new algorithm.

16.3 Error Models for Fixed-Point Arithmetic

In the case of fixed-point arithmetic, with rounding assumed for quantization, the
error after each product can be modeled as a zero-mean stochastic process, with
variance given by [2, 7]

�2 D 2�2b

12
(16.15)
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where b is the number of bits after the sign bit. Here it is assumed that the number
of bits after the sign bit for quantities representing signals and filter coefficients are
different, and given by bd and bc , respectively. It is also assumed that the internal
signals are properly scaled, so that no overflow occurs during the computations, and
that the signal values are between �1 and C1. If in addition independence between
errors is assumed, each element in (16.1)–(16.6) is on average zero. The respective
covariance matrices are given by

EŒn2e.k/� D EŒn2".k/� D �2e (16.16)

EŒNSD .k/N
T

SD.k/� D �2SD I (16.17)

EŒnw.k/nTw.k/� D �2wI (16.18)

EŒn .k/n
T

 
.k/� D �2

 
I (16.19)

EŒn2y.k/� D �2y (16.20)

If distinction is made between data and coefficient wordlengths, the noise
variances of data and coefficients are respectively given by

�2e D �2y D �
2�2bd
12

(16.21)

�2w D � 0 2�2bc
12

(16.22)

where � 0 D � D 1 if the quantization is performed after addition, i.e., the products
are performed in full precision and the quantization is applied only after all the
additions in the inner product are finished. For quantization after each product, then
� D N C1 and � 0 D N C2, since each quantization in the partial product generates
an independent noise, and the number of products in the error computation is N C1

whereas in the coefficient computation it is N C 2.
As an illustration, it is shown how to calculate the value of the variance �2SD

when making some simplifying assumptions. The value of �2SD depends on how
the computations to generate SD.k/ are performed. Assume the multiplications and
divisions are performed with the same wordlength and that the needed divisions
are performed once, followed by the corresponding scalar matrix product. Also,
assuming the inner product quantizations are performed after the addition, each
element of the matrix SD.k/Q requires five multiplications1 considering that 1=� is
prestored. The diagonal elements of (16.17) consist ofN C1 noise autocorrelations,
each with variance 5�2 . The desired result is then given by

1One is due to the inner product at the denominator; one is due to the division; one is due to the
product of the division result by 1=�; one is to calculate the elements of the outer product of the
numerator; the other is the result of quantization of the product of the last two terms.
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�2SD D 5.N C 1/�2 (16.23)

where �2 is the variance of each multiplication error.

16.4 Coefficient-Error-Vector Covariance Matrix

Assume that the quantization signals ne.k/; n.k/, and the vector nw.k/ are all
independent of the data, filter coefficients, and each other. Also, assuming that
these errors are all zero-mean stochastic processes, the covariance matrix of the
coefficient-error vector given byEŒ�w.k/Q�wT .k/Q� can be derived from (16.12)
and (16.13)

cov Œ�w.k/Q� D EŒ�w.k/Q�wT .k/Q�

D E
˚
ŒI � SD.k/Qx.k/xT .k/��w.k � 1/Q�wT .k � 1/Q

ŒI � x.k/xT .k/SD.k/Q�
�

CEŒSD.k/Qx.k/xT .k/SD.k/Q�EŒn2.k/�

CEŒSD.k/Qx.k/xT .k/SD.k/Q�EŒn2e.k/�

CEŒnw.k/nTw.k/� (16.24)

The above equation can be approximated in the steady state, where each term on
the right-hand side will be considered separately. It should be noted that during the
derivations it is implicitly assumed that the algorithm follows closely the behavior
of its infinite-precision counterpart. This assumption can always be considered as
true if the wordlengths used are sufficiently long. However, under short-wordlength
implementation this assumption might not be true as will be discussed later on.

Term 1: The elements of �w.k � 1/Q can be considered independent of SD.k/Q
and x.k/. In this case, the first term in (16.24) can be expressed as

T1 D cov Œ�w.k � 1/Q� � cov Œ�w.k � 1/Q�EŒx.k/xT .k/SD.k/Q�
�EŒSD.k/Qx.k/xT .k/�cov Œ�w.k � 1/Q�

CE ˚SD.k/Qx.k/xT .k/cov Œ�w.k � 1/Q�x.k/xT .k/SD.k/Q
�

(16.25)

If it is recalled that SD.k/Q is the unquantized SD.k/ matrix disturbed by a noise
matrix that is uncorrelated to the input signal vector, then in order to compute the
second and third terms of T1 it suffices to calculate

EŒSD.k/x.k/xT .k/� � E ŒSD.k/� E
�
x.k/xT .k/

�
(16.26)
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where the approximation is justified by the fact that SD.k/ is slowly varying as
compared to x.k/ when � ! 1. Using (5.55) it follows that

E
�
SD.k/x.k/xT .k/

� � 1 � �

1 � �kC1 I (16.27)

Now we need to use stronger assumptions for SD.k/ than those considered in
the above equation. If the matrix EŒSD.k/Q� is assumed to be approximately
constant for large k (see the discussions around (5.54)), the last term in T1 can
be approximated by

E
˚
SD.k/Qx.k/xT .k/covŒ�w.k � 1/Q�x.k/xT .k/SD.k/Q

�
� EŒSD.k/Q�E

˚
x.k/xT .k/cov Œ�w.k � 1/Q�x.k/xT .k/

�
EŒSD.k/Q�

(16.28)

If it is further assumed that the elements of the input signal vector are jointly
Gaussian, then each element of the middle term in the last equation can be given by

E
˚
x.k/xT .k/cov Œ�w.k � 1/Q�x.k/xT .k/

�
i;j

D
NX
mD0

NX
lD0

cov Œ�w.k � 1/Q�mlEŒxi .k/xm.k/xl .k/xj .k/�

D 2fRcov Œ�w.k � 1/Q�Rgi;j C ŒR�i;j tr fRcov Œ�w.k � 1/Q�g (16.29)

where Œ��i;j denotes the i th, j th element of the matrix Œ��. It then follows that

E
˚
x.k/xT .k/cov Œ�w.k � 1/Q�x.k/xT .k/

�
D 2R cov Œ�w.k � 1/Q�R C Rtr

˚
Rcov Œ�w.k � 1/Q�

�
(16.30)

The last term of T1 in (16.25), after simplified, yields

2

�
1 � �

1 � �kC1

�2
cov Œ�w.k � 1/Q�C

�
1 � �

1 � �kC1

�2
tr
˚
Rcov Œ�w.k � 1/Q�

�
R�1

CE ˚NSD.k/x.k/x
T .k/cov Œ�w.k � 1/Q�x.k/xT .k/NSD.k/

�
(16.31)

After a few manipulations, it can be shown that the third term in the above equa-
tion is nondiagonal with NSD.k/ being symmetric for the RLS algorithm described
in Algorithm 16.1. On the other hand, if the matrix R is diagonal dominant, that is
in general the case, the third term of (16.31) becomes approximately diagonal and
given by2

2The proof is not relevant but following the lines of (16.30) and considering that its last term is the
most relevant, the result follows.
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TS.k/ � �2SD�
4
x trfcov Œ�w.k � 1/Q�gI (16.32)

where �2x is the variance of the input signal. This term, which is proportional to a
quantization noise variance, can actually be neglected in the analysis, since it has in
general much smaller norm than the remaining terms in T1.

Terms 2 and 3: Using the same arguments applied before, such as SD.k/ is almost
fixed as � ! 1, then the main result required to calculate the terms 2 and 3 of
(16.24) is approximately given by

EŒSD.k/Qx.k/xT .k/SD.k/Q� � EŒSD.k/�REŒSD.k/�CEŒNSD .k/RNSD.k/�

�
�

1 � �

1 � �kC1

�2
R�1 (16.33)

where the term EŒNSD.k/RNSD .k/� can be neglected because it is in general much
smaller than the remaining term. In addition, it will be multiplied by a small variance
when (16.33) is replaced back in (16.24). From (16.24), (16.28), (16.33), (16.16),
(16.18), and (16.22), it follows that

cov Œ�w.k/Q� D
"
1 � 2

�
1 � �

1 � �kC1

�
C 2

�
1 � �

1 � �kC1

�2#
cov Œ�w.k � 1/Q�

C
�

1 � �

1 � �kC1

�2
tr fRcov Œ�w.k � 1/Q�gR�1

C
�

1 � �

1 � �kC1

�2
.�2n C �2e /R

�1 C �2wI (16.34)

Now, by considering in (16.34) that in the steady state cov Œ�w.k/Q� �
cov Œ�w.k � 1/Q�, multiplying the resulting expression by R, and calculating
the trace of the final equation, it can be shown that

tr fR cov Œ�w.k � 1/Q�g � .1 � �/2.N C 1/.�2n C �2e /C �2wtr .R/
.1 � �/Œ2� � .1� �/.N C 1/�

(16.35)

where it was considered that �kC1 ! 0. Replacing the (16.35) in (16.34), and
computing the steady-state solution the following equation results

cov Œ�w.k/Q� � .1 � �/.�2n C �2e /

2� � .1 � �/.N C 1/
R�1

C .1 � �/tr .R/R�1 C Œ2� � .1 � �/.N C 1/�I
2.1� �/�Œ2�� .1 � �/.N C 1/�

�2w (16.36)
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Finally, if the trace of the above equation is calculated considering that x.k/ is a
Gaussian white noise with variance �2x , and that 2� � .1 � �/.N C 1/ for � ! 1,
the resulting expected value of jj�w.k/Qjj2 is

EŒjj�w.k/Qjj2� � .1 � �/.N C 1/

2�

�2n C �2e
�2x

C .N C 1/�2w
2�.1� �/

(16.37)

As can be noted if the value of � is very close to one, the square errors in the tap
coefficients tend to increase and to become more dependent of the tap coefficient
wordlengths. On the other hand, if � is not close to one, in general for fast
tracking purposes, the effects of the additive noise and data wordlength become
more disturbing to the coefficient square errors. The optimum value for � close to
1, as far as quantization effects are concerned, can be derived by calculating the
derivative of Ejj�w.k/Qjj2� with respect to � and setting the result to zero

�opt � 1 � �w�xp
�2n C �2e

(16.38)

where it was assumed that .2� � 1/ � 1.
By noting that 1��

1��kC1 should be replaced by 1
kC1 when � D 1, it can be shown

from (16.34) that the algorithm tends to diverge when � D 1, since in this case
jjcov Œ�w.k/Q�jj is growing with k.

16.5 Algorithm Stop

In some cases the adaptive-filter tap coefficients may stop adapting due to quanti-
zation effects. In particular, the conventional RLS algorithm will freeze when the
coefficient updating term is not representable with the available wordlength. This
occurs when its modulus is smaller than half the value of the least significant bit, i.e.,

je.k/QSD.k/Qx.k/ji < 2�bc�1 (16.39)

where j ji denotes the modulus of the i th component. Equivalently it can be
concluded that updating will be stopped if

EŒe.k/2Q�EŒjSD.k/Qx.k/xT .k/SD.k/Qji i �

�
�

1 � �

1 � �kC1

�2
�2e C �2n
�2x

< 2�2bc�2 (16.40)

where x.k/ was considered a Gaussian white noise with variance �2x , and the
following approximation was made: EŒe.k/2Q� � �2e C �2n .
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For a given coefficient wordlength bc , the algorithm can always be kept
updating if

� < 1 � 2�bc�1 �xp
�2e C �2n

(16.41)

On the other hand, if the above condition is not satisfied, it can be expected that the
algorithm will stop updating in

k �
p
�2e C �2n
�x

2bcC1 � 1 (16.42)

iterations for � D 1, and

k � lnŒ.� � 1/

p
�2e C�2n
�x

2bcC1 C 1�

ln�
� 1 (16.43)

iterations for � < 1.
In the case � D 1 the algorithm always stops updating. If �2n and bc are not

large, any steady-state analysis for the RLS algorithm when � D 1 does not apply,
since the algorithm stops prematurely. Because of that, the norm of the covariance
of �w.k/Q does not become unbounded.

16.6 Mean-Square Error

The MSE in the conventional RLS algorithm in the presence of quantization noise
is given by

�.k/Q D EŒ"2.k/Q� (16.44)

By recalling that ".k/Q can be expressed as

".k/Q D �xT .k/�w.k/Q � ne.k/C n.k/ (16.45)

it then follows that

�.k/Q D EŒxT .k/�w.k/QxT .k/�w.k/Q�C �2e C �min

D E
˚
tr Œx.k/xT .k/�w.k/Q�wT .k/Q�

�C �2e C �min

D tr
˚
R cov Œ�w.k/Q�

�C �2e C �min (16.46)

By replacing (16.35) in (16.46), it can be concluded that

�.k/Q D .1 � �/2.N C 1/.�2n C �2e /C �2wtr R
.1 � �/Œ2� � .1 � �/.N C 1/�

C �min C �2e (16.47)
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If it is again assumed that x.k/ is a Gaussian white noise with variance �2x and that
2� � .1 � �/.N C 1/ for � ! 1, the MSE expression can be simplified to

�.k/Q � �min C �2e C .N C 1/�2w�
2
x

2�.1� �/ (16.48)

16.7 Fixed-Point Implementation Issues

The implementation of the conventional RLS algorithm in fixed-point arithmetic
must consider the possibility of occurrence of overflow and underflow during the
computations. In general, some scaling must be performed in certain quantities of
the RLS algorithm to avoid undesired behavior due to overflow and underflow.
The scaling procedure must be applied in almost all computations required in the
conventional RLS algorithm [5], increasing the computational complexity and/or the
implementation control by a large amount. A possible solution is to leave enough
room in the integer and fractional parts of the number representation, in order to
avoid frequent overflows and underflows and also avoid the use of cumbersome
scaling strategies. In other words, a fixed-point implementation does require a
reasonable number of bits to represent each quantity.

The error propagation analysis can be performed by studying the behavior of the
difference between each quantity of the algorithm calculated in infinite precision and
finite precision. This analysis allows the detection of divergence of the algorithm
due to quantization error accumulation. The error propagation analysis for the
conventional RLS algorithm reveals divergence behavior linked to the fact that
SD.k/ loses the positive definiteness property [5]. The main factors contributing
to divergence are:

– Large maximum eigenvalue in the matrix R that amplifies some terms in
propagation error of the SD.k/ matrix. In this case, SD.k/ might have a small
minimum eigenvalue, being as consequence “almost” singular.

– A small number of bits used in the calculations increases the roundoff noise
contributing to divergence.

– The forgetting factor when small turns the memory of the algorithm short,
making the matrix SD.k/ deviate from its expected steady-state value and more
likely to lose the positive definiteness property.

Despite these facts, the conventional RLS algorithm can be implemented without
possibility of divergence if some special quantization strategies for the internal
computations are used [5]. These quantization strategies, along with adaptive scaling
strategies, must be used when implementing the conventional RLS algorithm in
fixed-point arithmetic with short wordlength.
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16.8 Floating-Point Arithmetic Implementation

In this section, a succinct analysis of the quantization effects in the conventional
RLS algorithm when implemented in floating-point arithmetic is presented. Most
of the derivations are given in Sect. 16.9 and follow closely the procedure of the
fixed-point analysis.

In floating-point arithmetic, quantization errors are injected after multiplication
and addition operations and are modeled as follows: [10]:

flŒa C b� D a C b � .a C b/na (16.49)

flŒa � b� D a � b � a � b � np (16.50)

where na and np are zero-mean random variables that are independent of any other
errors. Their variances are given by

�2np � 0:18 2�2b (16.51)

and

�2na < �
2
np

(16.52)

where b is the number of bits in the mantissa representation.
The quantized error and the quantized coefficient vector are given by

e.k/Q D d 0.k/ � xT .k/w.k � 1/Q � ne.k/C n.k/ (16.53)

w.k/Q D w.k � 1/Q C SD.k/Qx.k/e.k/Q � nw.k/ (16.54)

where ne.k/ and nw.k/ represent computational errors and their expressions are
given in Sect. 16.9. Since nw.k/ is a zero-mean vector, it is shown in Sect. 16.9 that
on average w.k/Q tends to wo. Also, it can be shown that

�w.k/Q D ŒI � SD.k/Qx.k/xT .k/C N�w.k/��w.k � 1/
CN0

a.k/wo C SD.k/Qx.k/Œn.k/ � ne.k/� (16.55)

where N�w.k/ combines several quantization noise effects as discussed in
Sect. 16.9 and N0

a.k/ is a diagonal noise matrix that models the noise generated
in the vector addition required to update w.k/Q.

The covariance matrix of�w.k/Q can be calculated through the same procedure
previously used in the fixed-point case, resulting in

cov Œ�w.k/Q� � .1 � �/.�2n C �2e /R
�1

2� � .1 � �/.N C 1/

C .1 � �/R�1tr
˚
RdiagŒw2oi �

�C Œ2� � .1 � �/.N C 1/�diagŒw2oi �

2.1� �/�Œ2�� .1 � �/.N C 1/�
�2n0

a
(16.56)
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where NSD .k/ of (16.3) and N�w.k/ were considered negligible as compared to
the remaining matrices multiplying�w.k � 1/ in (16.55). The expression of �2

n0

a
is

given by (16.52). The term diagŒw2oi � represents a diagonal matrix formed with the
squared elements of wo.

The expected value of jj�w.k/Qjj2 in the floating-point case is approximately
given by

EŒjj�w.k/Qjj2� � .1� �/.N C 1/

2�

�2n C �2e
�2x

C 1

2�.1� �/
jjwojj2�2n0

a
(16.57)

where it was considered that x.k/ is a Gaussian white noise with variance �2x
and that 2� � .1 � �/.N C 1/ for � ! 1. If the value of � is very close
to one, the squared errors in the tap coefficients tend to increase. Notice that the
second term on the right-hand side of the above equation turns these errors more
dependent on the precision of the vector addition of the taps updating. For � not
very close to one, the effects of the additive noise and data wordlength become
more pronounced. In floating-point implementation, the optimal value of � as far as
quantization effects are concerned is given by

�opt D 1 � �n0

a
�xp

�2n C �2e
jjwojj (16.58)

where this relation was obtained by calculating the derivative of (16.57) with respect
to �, and equalizing the result to zero in order to reach the value of � that minimizes
theEŒjj�w.k/Qjj2�. For � D 1, like in the fixed-point case, jjcov Œ�w.k/Q�jj is also
a growing function that can make the conventional RLS algorithm diverge.

The algorithm may stop updating if

je.k/QSD.k/x.k/ji < 2�bc�1wi .k/ (16.59)

where j ji is the modulus of the i th component and bc is the number of bits in the
mantissa of the coefficients representation. Following the same procedure to derive
(16.40), we can infer that the updating will be stopped if

�
1 � �

1 � �kC1

�2
�2e C �2n
�2x

< 2�2bc�2jwoi j2 (16.60)

where woi is the i th element of wo.
The updating can be continued indefinitely if

� < 1 � 2�bc�1 �x jwoi jp
�2e C �2n

(16.61)

In the case � does not satisfy the above condition, the algorithm will stop updating
the i th tap in approximately

k D
p
�2e C �2n
�x jwoi j � 1 (16.62)
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iterations for � D 1, and

k � lnŒ.� � 1/

p
�2eC�2n
�x jwoi j 2

�bc�1 C 1�

ln�
� 1 (16.63)

iterations for � < 1.
Following the same procedure as in the fixed-point implementation, it can be

shown that the MSE in the floating-point case is given by

�.k/Q D tr fRcov Œ�w.k/Q�g C �2e C �min

�
.1 � �/2.N C 1/.�2n C �2e /C �2n0

a
tr
˚
RdiagŒw2oi �

�
.1� �/Œ2� � .1 � �/.N C 1/�

C �2e C �min

(16.64)

where �2" was considered equal to �2e . If x.k/ is a Gaussian white noise with
variance �2x and 2� � .1��/.N C1/ for � ! 1, the MSE can be approximated by

�.k/Q � �min C �2e C
jjwojj2�2n0

a
�2x

2�.1� �/ (16.65)

Note that �2e has a somewhat complicated expression that is given in Sect. 16.9.
Finally, it should be mentioned that in floating-point implementations the matrix

SD.k/ can also lose its positive definite property [11]. In [5], it was mentioned that
if no interactions between errors is considered, preserving the symmetry of SD.k/ is
enough to keep it positive definite. However, interactions between errors do exist in
practice, so the conventional RLS algorithm can become unstable in floating-point
implementations unless some special quantization procedures are employed in the
actual implementation. An alternative is to use numerically stable RLS algorithms
discussed in Chaps. 7–9.

16.9 Floating-Point Quantization Errors in RLS Algorithm

The error in the a priori output error computation is given by

ne.k/ � �na.k/Œd.k/ � xT .k/w.k � 1/Q�

�xT .k/

2
6664
npo .k/ 0 0 � � � 0

0 np1.k/ � � � � � � 0
:::

: : :

0 0 � � � � � � npN .k/

3
7775w.k � 1/Q
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�Œna1 .k/ na2 .k/ : : : naN .k/�

2
66666666666664

1X
iD0

x.k � i/wi .k � 1/Q

2X
iD0

x.k � i/wi .k � 1/Q

:::
NX
iD0

x.k � i/wi .k � 1/Q

3
77777777777775

D �na.k/e.k/Q � xT .k/Np.k/w.k � 1/Q � na.k/si .k/

where npi .k/ accounts for the noise generated in the products x.k � i/wi .k� 1/Q
and nai .k/ accounts for the noise generated in the additions of the product
xT .k/w.k� 1/. Please note that the error terms of second- and higher-order have
been neglected.

Using similar assumptions one can show that

nw.k/ D � ˚nSx.k/e.k/Q C SD.k/QN0
p.k/x.k/e.k/Q

CN00
p.k/SD.k/Qx.k/e.k/Q

C N0
a.k/Œw.k � 1/C SD.k/Qx.k/e.k/Q�

�

where

nSx.k/ D

2
666666664

NX
jD1

n0
a1;j
.k/

jX
iD0

SD1;i .k/Qx.k � i/

:::
NX
jD1

n0
aNC1;j

.k/

jX
iD0

SDNC1;i
.k/Qx.k � i/

3
777777775

N0
a.k/ D

2
66664

n0
ao
.k/ 0 � � � 0

0 n0
a1
.k/

:::
:::

: : :
:::

0 � � � � � � n0
aN
.k/

3
77775

N0
p.k/ D

2
66664

n0
po
.k/ 0 � � � 0

0 n0
p1
.k/

:::
:::

: : :
:::

0 � � � � � � n0
pN
.k/

3
77775
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N00
p.k/ D

2
666664

n00
p1;1
.k/ n00

p1;2
.k/ � � � n00

p1;NC1
.k/

n00
p2;1
.k/ n00

p2;2
.k/

:::
:::

: : :
:::

n00
pNC1;1

.k/ � � � � � � n00
pNC1;NC1

.k/

3
777775

The vector nSx.k/ is due to the quantization of additions in the matrix product
SD.k/x.k/, while the matrix N00

p.k/ accounts for product quantizations in the
same operation. The matrix N0

a.k/ models the error in the vector addition to
generate w.k/Q, while N0

p.k/ models the quantization in the product of e.k/ by
SD.k/Qx.k/.

By replacing d 0.k/ by xT .k/wo in the expression of e.k/Q given in (16.7),
it follows that

e.k/Q D �xT .k/�w.k � 1/Q � n0
e.k/C n.k/

By using in the above equation the expression of w.k/Q of (16.8) (after subtracting
wo in each side of the equation), and neglecting the second- and higher-order errors,
after some manipulations the following equality results:

�w.k/Q D ŒI � SD.k/Qx.k/xT .k/C nSxxT .k/C SD.k/QN0
p.k/x.k/xT .k/

CN00
p.k/SD.k/Qx.k/xT .k/C N0

a.k/SD.k/Qx.k/xT .k/

CN0
a.k/��w.k � 1/Q C N0

a.k/wo C SD.k/Qx.k/Œn.k/ � n0
e.k/�

Since all the noise components in the above equation have zero mean, on average
the tap coefficients will converge to their optimal values because the same dynamic
equation describes the evolution of �w.k/ and�w.k/Q.

Finally, the variance of the a priori error noise can be derived as follows:

�2e D �2" D �2na�.k/Q C �2np

NX
iD0

Ri;icov Œw.k/Q�i;i

C�2na

8<
:E

2
4
 

1X
iD0

x.k � i/wi .k � 1/Q

!23
5

CE
2
4
 

2X
iD0

x.k � i/wi .k � 1/Q

!23
5

C � � � C E

2
4
 

NX
iD0

x.k � i/wi .k � 1/Q

!23
5
9=
;
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where �2
n0

ai
D �2na was used and [ ]i;i means diagonal elements of [ ]. The second

term in the above equation can be further simplified as follows:

tr fRcov Œw.k/Q�g �
NX
iD0

Ri;iw
2
oi C

NX
iD0

Ri;icov Œ�w.k/�i;i

Cfirst � and higher � order terms � � �
Since this term is multiplied by �2np , any first- and higher-order terms can be

neglected. The first term of �2e is also small in the steady state. The last term can be
rewritten as

�2na

8<
:E

2
4
 

1X
iD0

x.k � i/woi

!23
5CE

2
4
 

2X
iD0

x.k � i/woi

!23
5C � � �

CE
2
4
 

NX
iD0

x.k � i/woi

!23
5
9=
; D �2na

8<
:

NX
jD1

jX
iD0

Ri;i Œcov .�w.k//�i;i

9=
;

where terms of order higher than one were neglected, x.k/ was considered un-
correlated to �w.k/, and covŒ�w.k/� was considered a diagonal matrix. Actually,
if x.k/ is considered a zero-mean Gaussian white noise from the proof of (5.36) and
(5.55), it can be shown that

cov Œ�w.k/� � �2n
�2x

I

Since this term will be multiplied by �2na and �2np , it can also be disregarded.
In conclusion

�2e � �2na

8<
:EŒ

NX
jD1

.

jX
iD0

x.k � i/woi /
2�

9=
;C �2np

NX
iD0

Ri;iw
2
oi

This equation can be simplified further when x.k/ is as described above and
�2na D �2np D �2d

�2e � �2d

"
NX
iD1
.N � i C 2/Ri;iw

2
oi � R1;1w

2
o1

#

D �2d �
2
x

"
NX
iD1
.N � i C 2/w2oi � w2o1

#
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