Chapter 1
Introduction to Adaptive Filtering

1.1 Introduction

In this section, we define the kind of signal processing systems that will be treated
in this text.

In the last 30 years significant contributions have been made in the signal
processing field. The advances in digital circuit design have been the key techno-
logical development that sparked a growing interest in the field of digital signal
processing. The resulting digital signal processing systems are attractive due to their
low cost, reliability, accuracy, small physical sizes, and flexibility.

One example of a digital signal processing system is called filter. Filtering is
a signal processing operation whose objective is to process a signal in order to
manipulate the information contained in it. In other words, a filter is a device that
maps its input signal to another output signal facilitating the extraction of the desired
information contained in the input signal. A digital filter is the one that processes
discrete-time signals represented in digital format. For time-invariant filters the
internal parameters and the structure of the filter are fixed, and if the filter is linear
then the output signal is a linear function of the input signal. Once prescribed
specifications are given, the design of time-invariant linear filters entails three basic
steps, namely: the approximation of the specifications by a rational transfer function,
the choice of an appropriate structure defining the algorithm, and the choice of the
form of implementation for the algorithm.

An adaptive filter is required when either the fixed specifications are unknown or
the specifications cannot be satisfied by time-invariant filters. Strictly speaking an
adaptive filter is a nonlinear filter since its characteristics are dependent on the input
signal and consequently the homogeneity and additive conditions are not satisfied.
However, if we freeze the filter parameters at a given instant of time, most adaptive
filters considered in this text are linear in the sense that their output signals are linear
functions of their input signals. The exceptions are the adaptive filters discussed in
Chap. 11.
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The adaptive filters are time varying since their parameters are continually
changing in order to meet a performance requirement. In this sense, we can
interpret an adaptive filter as a filter that performs the approximation step online.
In general, the definition of the performance criterion requires the existence of
a reference signal that is usually hidden in the approximation step of fixed-filter
design. This discussion brings the intuition that in the design of fixed (nonadaptive)
filters a complete characterization of the input and reference signals is required in
order to design the most appropriate filter that meets a prescribed performance.
Unfortunately, this is not the usual situation encountered in practice, where the
environment is not well defined. The signals that compose the environment are the
input and the reference signals, and in cases where any of them is not well defined,
the engineering procedure is to model the signals and subsequently design the filter.
This procedure could be costly and difficult to implement on-line. The solution to
this problem is to employ an adaptive filter that performs on-line updating of its
parameters through a rather simple algorithm, using only the information available
in the environment. In other words, the adaptive filter performs a data-driven
approximation step.

The subject of this book is adaptive filtering, which concerns the choice of
structures and algorithms for a filter that has its parameters (or coefficients) adapted,
in order to improve a prescribed performance criterion. The coefficient updating is
performed using the information available at a given time.

The development of digital very large-scale integration (VLSI) technology
allowed the widespread use of adaptive signal processing techniques in a large
number of applications. This is the reason why in this book only discrete-time
implementations of adaptive filters are considered. Obviously, we assume that
continuous-time signals taken from the real world are properly sampled, i.e., they
are represented by discrete-time signals with sampling rate higher than twice their
highest frequency. Basically, it is assumed that when generating a discrete-time
signal by sampling a continuous-time signal, the Nyquist or sampling theorem is
satisfied [1-9].

1.2 Adaptive Signal Processing

As previously discussed, the design of digital filters with fixed coefficients requires
well-defined prescribed specifications. However, there are situations where the
specifications are not available, or are time varying. The solution in these cases is to
employ a digital filter with adaptive coefficients, known as adaptive filters [10-17].

Since no specifications are available, the adaptive algorithm that determines the
updating of the filter coefficients requires extra information that is usually given in
the form of a signal. This signal is in general called a desired or reference signal,
whose choice is normally a tricky task that depends on the application.
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Adaptive filters are considered nonlinear systems, therefore their behavior
analysis is more complicated than for fixed filters. On the other hand, because the
adaptive filters are self-designing filters, from the practitioner’s point of view their
design can be considered less involved than in the case of digital filters with fixed
coefficients.

The general setup of an adaptive-filtering environment is illustrated in Fig. 1.1,
where k is the iteration number, x (k) denotes the input signal, y (k) is the adaptive-
filter output signal, and d(k) defines the desired signal. The error signal e(k) is
calculated as d (k) — y (k). The error signal is then used to form a performance (or
objective) function that is required by the adaptation algorithm in order to determine
the appropriate updating of the filter coefficients. The minimization of the objective
function implies that the adaptive-filter output signal is matching the desired signal
in some sense.

The complete specification of an adaptive system, as shown in Fig. 1.1, consists
of three items:

1. Application: The type of application is defined by the choice of the signals
acquired from the environment to be the input and desired-output signals.
The number of different applications in which adaptive techniques are being
successfully used has increased enormously during the last 3 decades. Some
examples are echo cancellation, equalization of dispersive channels, system
identification, signal enhancement, adaptive beamforming, noise cancelling, and
control [14-20]. The study of different applications is not the main scope of this
book. However, some applications are considered in some detail.

2. Adaptive-filter structure: The adaptive filter can be implemented in a number
of different structures or realizations. The choice of the structure can influence
the computational complexity (amount of arithmetic operations per iteration) of
the process and also the necessary number of iterations to achieve a desired
performance level. Basically, there are two major classes of adaptive digital filter
realizations, distinguished by the form of the impulse response, namely the finite-
duration impulse response (FIR) filter and the infinite-duration impulse response
(IIR) filters. FIR filters are usually implemented with nonrecursive structures,
whereas IIR filters utilize recursive realizations.



4 1 Introduction to Adaptive Filtering

* Adaptive FIR filter realizations: The most widely used adaptive FIR filter
structure is the transversal filter, also called tapped delay line, that implements
an all-zero transfer function with a canonic direct-form realization without
feedback. For this realization, the output signal y (k) is a linear combination
of the filter coefficients, that yields a quadratic mean-square error (MSE =
E|[|e(k)|?]) function with a unique optimal solution. Other alternative adaptive
FIR realizations are also used in order to obtain improvements as compared to
the transversal filter structure, in terms of computational complexity, speed of
convergence, and finite wordlength properties as will be seen later in the book.

* Adaptive IIR filter realizations: The most widely used realization of adaptive
IIR filters is the canonic direct-form realization [5], due to its simple imple-
mentation and analysis. However, there are some inherent problems related to
recursive adaptive filters which are structure dependent, such as pole-stability
monitoring requirement and slow speed of convergence. To address these
problems, different realizations were proposed attempting to overcome the
limitations of the direct-form structure. Among these alternative structures,
the cascade, the lattice, and the parallel realizations are considered because of
their unique features as will be discussed in Chap. 10.

3. Algorithm: The algorithm is the procedure used to adjust the adaptive filter
coefficients in order to minimize a prescribed criterion. The algorithm is deter-
mined by defining the search method (or minimization algorithm), the objective
function, and the error signal nature. The choice of the algorithm determines
several crucial aspects of the overall adaptive process, such as existence of
suboptimal solutions, biased optimal solution, and computational complexity.

1.3 Introduction to Adaptive Algorithms

The basic objective of the adaptive filter is to set its parameters, 8 (k), in such a
way that its output tries to minimize a meaningful objective function involving the
reference signal. Usually, the objective function F is a function of the input, the
reference, and adaptive-filter output signals, i.e., F = F[x(k),d(k), y(k)]. A con-
sistent definition of the objective function must satisfy the following properties:

 Non-negativity: F[x(k),d(k),y(k)] = 0,Vy(k),x(k), and d(k).
« Optimality: F[x(k), d(k),d(k)] = 0.

One should understand that in an adaptive process, the adaptive algorithm attempts
to minimize the function F, in such a way that y(k) approximates d(k), and as a
consequence, @ (k) converges to 8 ,, where 8, is the optimum set of coefficients that
leads to the minimization of the objective function.

Another way to interpret the objective function is to consider it a direct function
of a generic error signal e(k), which in turn is a function of the signals x (k), y(k),
and d(k), i.e., F = Fle(k)] = Fle(x(k),y(k),d(k))]. Using this framework,
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we can consider that an adaptive algorithm is composed of three basic items:
definition of the minimization algorithm, definition of the objective function form,
and definition of the error signal.

1. Definition of the minimization algorithm for the function F: This item is the
main subject of Optimization Theory [21,22], and it essentially affects the speed
of convergence and computational complexity of the adaptive process.

In practice any continuous function having high-order model of the parameters can
be approximated around a given point # (k) by a truncated Taylor series as follows

F[8 (k) + A0 (k)] ~ F[8 (k)] + gg {F[0 (k)] A8 (k)

+%A0T(k)H0{F[0(k)]}A0(k) (1.1)

where Hg{F[0(k)]} is the Hessian matrix of the objective function, and
gg {F[0(k)]} is the gradient vector, further details about the Hessian matrix and
gradient vector are presented along the text. The aim is to minimize the objective
function with respect to the set of parameters by iterating

0k +1) = 0(k) + A8 (k) (1.2)

where the step or correction term A6 (k) is meant to minimize the quadratic
approximation of the objective function F[0(k)]. The so-called Newton method
requires the first- and second-order derivatives of F[6 (k)] to be available at any
point, as well as the function value. These information are required in order
to evaluate (1.1). If Hg (0 (k)) is a positive definite matrix, then the quadratic
approximation has a unique and well-defined minimum point. Such a solution can be
found by setting the gradient of the quadratic function with respect to the parameters
correction terms, at instant k + 1, to zero which leads to

go LF[0(k)]} = —Hg {F[0(k)]; A0 (k) (1.3)

The most commonly used optimization methods in the adaptive signal processing
field are:

* Newton’s method: This method seeks the minimum of a second-order
approximation of the objective function using an iterative updating formula
for the parameter vector given by

8(k +1) = 0(k) — uHy' {Fle(k)]}gg {Fle(k)]} (1.4

where 1 is a factor that controls the step size of the algorithm, i.e., it determines
how fast the parameter vector will be changed. The reader should note that the
direction of the correction term A@ (k) is chosen according to (1.3). The matrix
of second derivatives of Fle(k)], Hg{F[e(k)]} is the Hessian matrix of the
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objective function, and gg { F[e(k)]} is the gradient of the objective function with
respect to the adaptive filter coefficients. It should be noted that the error e (k)
depends on the parameters 6 (k). If the function F[e(k)] is originally quadratic,
there is no approximation in the model of (1.1) and the global minimum of the
objective function would be reached in one step if 4 = 1. For nonquadratic
functions the value of u should be reduced.

* Quasi-Newton methods: This class of algorithms is a simplified version of the
method above described, as it attempts to minimize the objective function using
a recursively calculated estimate of the inverse of the Hessian matrix, i.e.,

0(k +1) = 6(k) — uS(k)gg { Fle(k)]} (1.5)
where S(k) is an estimate of Hal {F[e(k)]}, such that

Jim S(k) = Hg' {Fle()]}

A usual way to calculate the inverse of the Hessian estimate is through the matrix
inversion lemma (see, for example, [23] and some chapters to come). Also, the
gradient vector is usually replaced by a computationally efficient estimate.

» Steepest-descent method: This type of algorithm searches the objective function
minimum point following the opposite direction of the gradient vector of this
function. Consequently, the updating equation assumes the form

0(k +1) = 0(k) — ugg {Fle(k)} (1.6)

Here and in the open literature, the steepest-descent method is often also referred
to as gradient method.

In general, gradient methods are easier to implement, but on the other hand,
the Newton method usually requires a smaller number of iterations to reach a
neighborhood of the minimum point. In many cases, Quasi-Newton methods can be
considered a good compromise between the computational efficiency of the gradient
methods and the fast convergence of the Newton method. However, the Quasi-
Newton algorithms are susceptible to instability problems due to the recursive form
used to generate the estimate of the inverse Hessian matrix. A detailed study of the
most widely used minimization algorithms can be found in [21,22].

It should be pointed out that with any minimization method, the convergence
factor p controls the stability, speed of convergence, and some characteristics of
residual error of the overall adaptive process. Usually, an appropriate choice of
this parameter requires a reasonable amount of knowledge of the specific adaptive
problem of interest. Consequently, there is no general solution to accomplish this
task. In practice, computational simulations play an important role and are, in fact,
the most used tool to address the problem.

2. Definition of the objective function F[e(k)]: There are many ways to define an
objective function that satisfies the optimality and non-negativity properties for-
merly described. This definition affects the complexity of the gradient vector and
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the Hessian matrix calculation. Using the algorithm’s computational complexity
as a criterion, we can list the following forms for the objective function as the
most commonly used in the derivation of an adaptive algorithm:

» Mean-Square Error (MSE): Fle(k)] = E[|e(k)|?]

* Least Squares (LS): Fle(k)] = S le(k —i))?

* Weighted Least Squares (WLS): Fle(k)] = Y_,Alle(k — i)|% A is a
constant smaller than 1

+ Instantaneous Squared Value (ISV): Fle(k)] = |e(k)|?

The MSE, in a strict sense, is only of theoretical value, since it requires an
infinite amount of information to be measured. In practice, this ideal objective
function can be approximated by the other three listed. The LS, WLS, and
ISV functions differ in the implementation complexity and in the convergence
behavior characteristics; in general, the ISV is easier to implement but presents
noisy convergence properties, since it represents a greatly simplified objective
function. The LS is convenient to be used in stationary environment, whereas the
WLS is useful in applications where the environment is slowly varying.

3. Definition of the error signal e(k): The choice of the error signal is crucial for the
algorithm definition, since it can affect several characteristics of the overall al-
gorithm including computational complexity, speed of convergence, robustness,
and most importantly for the IIR adaptive filtering case, the occurrence of biased
and multiple solutions.

The minimization algorithm, the objective function, and the error signal as presented
give us a structured and simple way to interpret, analyze, and study an adaptive
algorithm. In fact, almost all known adaptive algorithms can be visualized in this
form, or in a slight variation of this organization. In the remaining parts of this
book, using this framework, we present the principles of adaptive algorithms. It may
be observed that the minimization algorithm and the objective function affect the
convergence speed of the adaptive process. An important step in the definition of an
adaptive algorithm is the choice of the error signal, since this task exercises direct
influence in many aspects of the overall convergence process.

1.4 Applications

In this section, we discuss some possible choices for the input and desired signals
and how these choices are related to the applications. Some of the classical
applications of adaptive filtering are system identification, channel equalization,
signal enhancement, and prediction.

In the system identification application, the desired signal is the output of the
unknown system when excited by a broadband signal, in most cases a white-noise
signal. The broadband signal is also used as input for the adaptive filter as illustrated
in Fig. 1.2. When the output MSE is minimized, the adaptive filter represents a
model for the unknown system.
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The channel equalization scheme consists of applying the originally transmitted
signal distorted by the channel plus environment noise as the input signal to an
adaptive filter, whereas the desired signal is a delayed version of the original
signal as depicted in Fig. 1.3. This delayed version of the input signal is in general
available at the receiver in a form of standard training signal. In a noiseless case,
the minimization of the MSE indicates that the adaptive filter represents an inverse
model (equalizer) of the channel.

In the signal enhancement case, a signal x (k) is corrupted by noise n;(k), and a
signal n, (k) correlated with the noise is available (measurable). If 1, (k) is used as
an input to the adaptive filter with the signal corrupted by noise playing the role of
the desired signal, after convergence the output error will be an enhanced version of
the signal. Figure 1.4 illustrates a typical signal enhancement setup.

Finally, in the prediction case the desired signal is a forward (or eventually a
backward) version of the adaptive-filter input signal as shown in Fig. 1.5. After
convergence, the adaptive filter represents a model for the input signal and can be
used as a predictor model for the input signal.

Further details regarding the applications discussed here will be given in the
following chapters.
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Example 1.1. Before concluding this chapter, we present a simple example in order
to illustrate how an adaptive filter can be useful in solving problems that lie in
the general framework represented by Fig. 1.1. We chose the signal enhancement
application illustrated in Fig. 1.4.

In this example, the reference (or desired) signal consists of a discrete-time
triangular waveform corrupted by a colored noise. Figure 1.6 shows the desired
signal. The adaptive-filter input signal is a white noise correlated with the noise
signal that corrupted the triangular waveform, as shown in Fig. 1.7.

The coefficients of the adaptive filter are adjusted in order to keep the squared
value of the output error as small as possible. As can be noticed in Fig. 1.8, as the
number of iterations increases the error signal resembles the discrete-time triangular
waveform shown in the same figure (dashed curve). O
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